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Abstract 

 

Currently, battery management systems are battery chargers, commonly comprised of power 

electronic circuits, which lack the ability to accurately estimate the state of health of a battery. 

Since, batteries have a limited lifetime, repeated charge and discharge cycles quickly deteriorate 

the electrical properties of the battery. With the reduced capacity and several other changes in the 

state of health of a battery, the electronic device might malfunction. This research is aimed to 

provide on device upgrade for all battery management systems and battery chargers to include 

battery health monitoring ability. For the evaluation of state of health of batteries, two 

approaches are considered in parallel, Electrochemical Impedance Spectroscopy (EIS) and 

profiling through charge and discharge curves.   

 

For EIS, the initial focus of this research is to design and validate the hardware that can perform 

EIS scans over a desired range of frequencies. Based on the footprints of scan, a state of health 

classification algorithm is proposed which categorizes batteries according to the set threshold. 

The main contribution of this project to existing EIS technology is the eradication of the need of 

battery modeling and parameter estimation from Nyquist plot to find the state of health of a 

battery. Tests are performed on hardware prototype to validate the designed algorithm that shows 

State of Health estimation accuracy of almost 90%.  

 

Another method considered for State of Health estimation is profiling through charge and 

discharge curves of the Li Ion batteries. Raw profiling data is examined to decipher the 

correlation between shape of charge and discharge curves and state of health. From the charging 
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profile of the battery, constant charge current duration parameter is identified to possess 

promising potential to provide information about state of health of a battery. The behavior of the 

parameter is investigated in detail with repeated laboratory tests on almost 200 samples gathered 

from five different battery vendors. This technique showed above 90% classification accuracy. 

 

Finally a comparison is drawn between the EIS technology and charge curve profiling method 

with respective advantages and disadvantages to emphasize the suitability of each technique for 

different field applications.      
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Chapter 1: Introduction 

1.1 Importance of Li ion batteries  

Li ion batteries have emerged as the backbone of rechargeable energy store. In 2013, the number 

of Li ion cells sold for electronic devices were reported to be around five billion [1] with 

exponential rise expected in the sales for coming years. The increased focus on Li ion batteries 

emerges from its ability to offer substantial power density and fast charge/discharge capability. 

The comparison of energy density of Li Ion technology is shown in figure 1.1 [1].  

 

Figure 1.1. Energy density comparison  

The present performance of Li ion technology in terms of energy density show significant 

advantage over other technologies such as Lead-Acid and Nickel based batteries, and has shown 

potential to undergo significant improvements. Therefore, this technology has lately caught the 

attention of researchers throughout the world.  
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Li Ion cells are compact in size, pose high specific energy and require no maintenance once 

installed. The cells are designed to exhibit deep cycle performance, i.e. designed to function 

normally when completely discharged and charged again. Several chemical configurations exist 

for lithium-ion batteries, but generally Li ion batteries can be separated into two groups: lithium 

iron phosphate (LFP, LiFePO4) and metal oxides (NCM, NCA, Cobalt, Manganese). A cell level 

comparison of Li ion technology with other technologies is presented in figure 1.2 [2]. 

 

Figure 1.2. Comparison of Li ion and lead acid Battery 

Due to superior energy density, lifetime and efficiency Li ion technology has become the future 

of portable electronic devices. With the elevated importance in the electronic world, the need of 

deciphering the operational characteristics and parameters of this technology has also become 

pertinent. This provides the motivation for this project to investigate, explore and analyze the 

characteristics of Li Ion batteries to design appropriate battery management systems for smooth 

and safe operation of power-hungry portable electronic devices.   
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1.2 Li ion cell design and chemistry 

A Li Ion cell comprises two electrodes separated by a separator. The positive terminal is called 

the cathode and is made up of Li-metal oxide and negative terminal is called anode, usually 

made from carbon (graphite). Similar to other battery types, the Li ion battery exploits a 

reversible chemical reaction to perform its operation. The chemical charge is stored in the battery 

when the battery is charged, while process of discharge involves extraction of stored chemical 

energy into electrical energy.  Following are the typical chemical reactions going on inside a Li 

ion battery at the respective terminals. 

  

Positive: LiXX𝑂2        𝐿𝑖1−𝑥𝑋𝑋𝑂2 +        𝐿𝑖+ +         x𝑒−  

 

Negative: C   +    x𝐿𝑖+  +   x𝑒−     𝐿𝑖𝑥𝐶  

 

Overall: LiXX𝑂2   +    C       𝐿𝑖𝑥𝐶 + 𝐿𝑖1−𝑥𝑋𝑋𝑂2 

 

Where XX = several combinations of Cobalt and Manganese 

Irrespective of the precise chemical composition of the Li ion batteries, the following general 

qualities make Li ion batteries distinctive from other type of batteries: 

1) Light weight among other rechargeable batteries 

2) Fast charge/discharge ability and deep cycle operation 

3) Very low self-discharge rate (about 1.5% per month) 

4) High open circuit voltage at the terminals  

Charging 

Charging 

Charging 

Discharging 

Discharging 

Discharging 
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1.3 Thesis outline and objective 

The condition of Li ion batteries deteriorates as they age through repeated charge and discharge 

cycles. In order to ensure optimal use of these electronic devices, it is vital to know how much 

remaining capacity of the battery is remaining which primarily corresponds to amount of energy 

storing capability of the battery. The remaining capacity of the battery is termed as State of 

Health (SoH) of a battery and can be calculated as:  

SoH (t) in % = 
𝐶𝑚𝑎𝑥

𝐶𝑟𝑎𝑡𝑒𝑑
 *100 

  Where 

𝐶𝑚𝑎𝑥 =  𝐶𝑟𝑎𝑡𝑒𝑑 − 𝐶𝑢𝑛𝑎𝑣𝑖𝑎𝑙𝑎𝑏𝑙𝑒(𝑡) 

The SoH of a battery decreases along with time as some part of the overall capacity of the battery 

becomes unavailable due to change in internal resistance, dielectric properties and mobility of 

electrolyte of the battery.  

 

Although there are several devices available in the market, which can decipher the SoH of a 

battery by performing different tests, these products have some serious drawbacks for large-scale 

application. The main shortcomings of these devices range from cost ineffectiveness to practical 

infeasibility, from strict restrictions on battery operating conditions to an intricate technical user 

interface. Therefore, the demand for a sophisticated, cost effective, general health check charger 

that can analyze, determine and classify the SoH of a battery with minimal restrictions on the 

operating conditions of the battery is growing in electronic industry.  

 

The aim of this study is to extend on the existing battery health diagnosing technologies to 

develop a state of the art health check charger. The distinctive features of Health Check Charger 
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(HCC) will be to provide instantaneous SoH information to the user about the health of the 

battery with minimal restrictions on the preoperational conditions of the battery. The goal is to 

estimate the health of the battery with the accuracy of 10% of margin of error.  

But before moving on to the technical details of test strategy and implementation technique, it is 

critical to set the desirable features and goals for the end product. Since HCC is consumer end 

product, it is vital to include some desirable features that are listed as follows: 

 

Figure 1.3. Health Check Charger desirable features 

 

The combination of the all these features will result in an intelligent product that can serve as an 

efficient battery health monitoring solution. Therefore, the goal of this thesis is to come up with a 

hardware prototype for a device that comprises of all these features. The scientific proof of 

concept and related technical details of the device technology are discussed in later chapters. 

Health 
Check 

Charger 

Portable 

Cost effective 

High accuracy 

Robust 

Low power 
consumption 

Smart user 
interface 

Light weight 

Time efficient 
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Chapter 2: Literature Review 

2.1 Background research  

In order to characterize the batteries, several types of methods have been devised which can be 

segregated into destructible and non-destructible categories [3]. Although destructive methods 

give precise information about the chemical properties of battery, they are rarely employed 

because they are impractical, largely because when a battery is tested through this method, it can 

no longer be reused.  Popular non-destructive methods that are in practice to determine the state 

of health of a battery are series impedance measurement, voltammetry and electrochemical 

impedance spectroscopy.  

 

The Ampere Hour (Ah) counting method is one of the most commonly used methods to 

determine the state of charge and capacity of the battery [4]. The method involves completely 

discharging of the battery and counting the coulombs provided by the battery to the load. The 

drawbacks of this method are that the method is time consuming and involves complete charge 

and discharge of battery, which might not be pragmatic in certain applications. The method also 

fails to distinguish between different battery aging mechanisms and provides an overall integral 

result. Another issue associated with this technique is the error accumulated while performing 

the integral over current, since the process of charging and discharging is not unity efficient 

(some of the energy is dissipated as heat across the series resistance of the battery). 

 

Another commonly used method for state of health determination of a battery is impedance 

measurement at single frequency or at a range of frequencies. This method provides information 

about the electrolyte conductivity that deteriorates as battery ages and can be used to differentiate 
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different type of batteries. However, this method provides limited information, as certain 

mechanisms show their effect in a specific frequency range i.e. at usually low frequencies [5].  

 

Electrochemical Impedance spectroscopy has been verified on the laboratory scale as a 

promising method to determine a range of aging effects in batteries [6]. The method is quick and 

provides instant results. The frequency range of the interest usually comprises of 10KHz to 

0.1mHz and therefore the testing of the battery only takes few minutes. However, with the 

existing approach, the results of this method are largely affected by variation in battery model 

used to calculate the parameters. The process of optimizing the parameters obtained from the 

Nyquist plot requires intensive processing and good initial estimate, which might not be possible 

sometimes. In addition to this the battery is required to be in a steady state condition before a test 

could be performed, the details of this limitation are explored in detail in chapter 3. These 

restrictions limit the application of this technique. However, this method is inherently cost 

effective, fast and reliable.  

 

Similarly, work has been done to find state of health of a battery using other methods such as 

profiling voltage across terminals during discharge [7]. Charge and discharge curves of the 

batteries show the impact of the aging effects and also provide vital information regarding 

battery capacity. This approach requires precisely calibrated instruments for voltage profile 

logging and requires the battery monitoring system to track the history of charge and discharge 

profiles of the battery. The method is reliable and has potential to accurately classify the state of 

health of a battery irrespective of the preoperational conditions, but industrial application is 

limited by model specific solution.   
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Chapter 3: Electrochemical Impedance Spectroscopy (EIS)  

3.1 Electrochemical impedance spectroscopy  

Electrochemical Impedance Spectroscopy (EIS) is a recent solid-state technique used to decipher 

dielectric and electric properties of materials. The technique is also sometimes referred as AC 

impedance spectroscopy due to the nature of the test. It is a non-destructive method to find the 

electrochemical properties of the batteries that provide quantitative information about individual 

components and properties of the battery. Batteries show non-linear relation between current and 

voltage, however, this method is only applicable to linear systems.  

 

The figure 3.1 shows how an electrochemical cell has a non-linear I-V relation. Therefore, in 

order to find the frequency response, a small excitation signal is applied such that the overall 

non-linear I-V curve shows pseudo linearity. In this small linear region, the non-linear properties 

of a battery can be approximated as pseudo linear I-V curve. The linearity assumption is only 

valid if the small signal AC excitation at the terminal of the cells is less than 10mV for single 

cell Li Ion Battery.  

 

The linearity condition basically implies that if 

      𝛼𝑥1(𝜔) =  𝛼𝑦1(𝜔) 

And  

      𝛽𝑥2(𝜔) = 𝛽𝑦2 (𝜔) 

Then,   

𝛼𝑥1(𝜔) +  𝛽𝑥2(𝜔) = 𝛼𝑦1(𝜔) +  𝛽𝑦2 (𝜔) 
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Such that the overall response in time domain is sum of the individual input signals (principle of 

superposition). If signal is not small enough, the system shows non-linear I-V characteristics and 

the steady state condition is not fulfilled resulting in issues related to drift, a phenomena that will 

be discussed, in detail, later in this chapter. However, in steady state condition, the frequency of 

the small ac signal can be varied and the response of current can be logged to find complex 

impedance. Figure 3.1 shows Electrochemical cell with small AC excitation. 

 

Figure 3.1. I-V profile of the electrochemical cell 

Initially, the voltage of a potentiostat circuit 𝑉𝑡 is made to match the open circuit voltage (OCV) 

across the terminals of the battery such that there is no current flowing through a battery. Then a 

small ac perturbation is applied 𝛿𝑉(𝑗𝜔𝑡)  on the top of the constant voltage 𝑉0 ° but the 

amplitude of the perturbation is kept small such that pseudo linear assumption is valid.  

 

𝑉𝑡(𝑗𝜔𝑡)   = 𝑉0 + 𝛿𝑉 (𝑗𝜔𝑡) 
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The current response 𝛿𝐼(𝑗𝜔𝑡 − 𝑗𝜑),  of the battery is recorded and the test cycle is repeated for 

perturbation signals comprising of different frequencies.  

 

𝐼𝑡(𝑗𝜔𝑡)   =   𝛿𝐼 (𝑗𝜔𝑡 − 𝑗𝜑) 

 

The angular frequency of the signal expressed in radians per seconds is associated with 

frequency in Hz by the following relation. 

 

𝜔 = 2𝜋𝑓 

 

Using the small signal voltage perturbation 𝛿𝑉 (𝑗𝜔𝑡) and current response𝛿𝐼 (𝑗𝜔𝑡 − 𝑗𝜑), the 

complex impedance Z (𝜔) is calculated.  

 

Z (𝜔) = 
𝛿𝑉𝑒𝑥𝑝(𝑗𝜔𝑡)

𝛿𝐼𝑒𝑥𝑝(𝑗𝜔𝑡−𝑗𝜑)
  

 

= 𝑍°𝑒𝑥𝑝 (𝑗𝜑)  

Using Euler’s relationship to expand the exponential term to get real and imaginary component 

of the complex impedance. 

exp (j𝜑) = cos(𝜑) + jsin(𝜑) 

 

Z (𝜔) = 𝑍°(cos(𝜑) + 𝑗𝑠𝑖𝑛(𝜑)) 
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The impedance is recorded at several excitation frequencies of interest such that a spectrum of 

impedances is captured for analysis. The impedance is a complex number with a real and 

imaginary part and usually a Nyquist plot is constructed with real impedance on the x-axis and 

negative of imaginary impedance on the y-axis to plot the results. The Nyquist plot shows how 

impedance of the system varies as a function of frequency and is used to study the 

electrochemical properties of the cells as shown in figure 3.2 [8].  

 

 

Figure 3.2. Typical nyquist plot for a lead acid battery 

The mathematical expression for the double layer capacitance and charge transfer resistance 

shown in the Nyquist plot is presented here. This region of the Nyquist plot is important because 

they electrochemical properties determine the overall available storage capacity of the battery. 



26 

Later in the coming chapter, this region of the EIS scan will be used to design a SoH estimation 

algorithm. To start off with, the expression of electrolyte resistance for a bounded area with 

cross-sectional area A, length L is: 

R= 𝜌
𝐿

𝐴
 

Where 𝜌 is the solution’s resistivity. Normally the reciprocal of the resistivity is used which is 

called the conductivity 𝜅, therefore the relation becomes  

R= 
𝐿

𝐴
.

1

𝜅
 

Using faraday’s law, for an electrochemical cell, the charge transfer relation that relates current 

and potential of an electrochemical cell is give as follows: 

 

i = 𝑖∘ ((
𝐶∘

𝐶∘
∗ 𝑒𝑥𝑝 (

𝛼𝑛𝐹𝜂

𝑅𝑇
) ) – (

𝐶𝑅

𝐶∘𝑅
∗ 𝑒𝑥𝑝 (

−(1−𝛼)𝑛𝐹𝜂

𝑅𝑇
))) 

Where, 𝑖∘ is exchange current density, 𝐶∘ is concentration of oxidant at the electrode surface, 𝐶∘
∗ 

is concentration of oxidant in bulk, 𝐶𝑅 is concentration of reductant at the electrode surface, 𝐶∘𝑅
∗  

is the concentration of the reductant in bulk, F is faraday constant, R is gas constant, T is 

temperature, 𝛼 is the reaction order, n is number of electrons involved and 𝜂 is the over potential.  

Under the condition of 𝐶∘= 𝐶∘
∗ and 𝐶𝑅=𝐶∘𝑅

∗ , the above charge transfer equation reduces to the 

Butler-Volmer equation:  

i = 𝑖∘ ((𝑒𝑥𝑝 (
𝛼𝑛𝐹𝜂

𝑅𝑇
) ) – (𝑒𝑥𝑝 (

−(1−𝛼)𝑛𝐹𝜂

𝑅𝑇
))) 

Using the small over-potential approximation, the exponential term reduces down to a linear 

relation and we can write the expression for the charge transfer resistance 𝑅𝑐𝑡 as, 
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𝑅𝑐𝑡 = 
𝑅𝑇

𝑛𝐹𝑖𝜊
 

Other important characteristic that relates the electrochemical property of the battery to the shape 

of the Nyquist plot is double layer capacitance 𝐶𝑑𝑙. The value of double layer capacitance 

depends on the electrode potential, temperature, ionic concentration, electrode roughness and 

impurity concentration. Usually, the value for 𝐶𝑑𝑙 is around 20-60 𝜇F/𝑐𝑚2. 

 

Since the process involves diffusion of charges and ions, this process can also induce an 

impedance term, also referred to as the Warburg Impedance. This impedance comes into effect at 

very low frequencies and normally results in a 45 degree slanted line on Nyquist plot. The 

Warburg -Impedance equation is  

𝑍𝜔 = 𝜎 (𝜔)−0.5 (1 − 𝑗) 

Where 𝜎(𝜔) represents frequency dependent Warburg coefficient, 𝜔 is the angular frequency.  

Therefore, combining together the electrical components presented to model the electrochemical 

processes of a cell, we get Randles cell model that represent reaction kinetics and charge transfer 

processes. The model is presented in figure 3.4 along with Nyquist diagram of the model:   

 

 

Figure 3.3. Warburg impedance formula and response 
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However, in order to model the non-ideality of the cell’s model, a constant phase element is used 

rather than an ideal capacitor for double layer capacitance. The impedance relation for this 

constant phase element is given as follows: 

𝑍𝐶𝑃𝐸 = 
1

𝑄(𝑗𝜔)𝛼
 

Where Q is the bulk capacitance, 𝜔 is the angular frequency and 𝛼 is the non-ideality coefficient 

that can range from 0 to 1. For an ideal capacitor, 𝛼 will have value of 1.  

 

The following relations can be used to model the electrochemical properties of the cell and the 

respective regions are shown in fig. 3.3.These properties define the overall state of condition of 

an electrochemical cell and therefore, an EIS scan essentially carries important information about 

the chemical properties and configuration of the electrochemical cell.  

 

In the upcoming chapters, EIS scans will be analyzed such that an estimate of the state of health 

of the battery can be obtained without using the equivalent circuit model and optimization 

technique for optimization method.  A major advantage of using EIS technique for testing a 

battery is that the EIS technique is time efficient. The test is comprised of a very small duration 

of time as compared to other methods used to categorize batteries such as Ah counting. Other 

advantages are that the test by nature is non-destructive and does not require the battery to be 

discharged. However, in order to perform the EIS test, the battery is expected to be in a certain 

state. The factors that can have an impact on EIS method are identified and discussed later in this 

chapter in section 3.3.   
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3.2 Review of selected publications 

Work has been done previously on SoH estimation of the battery using EIS technique as 

proposed in [9]. In this study, batteries were repeatedly charged and discharged using different 

SoC intervals as shown in table 3-1 for the artificial aging. An impedance spectrum was recorded 

from the Beginning of Life of batteries (fresh batteries) to End of Life (after accelerated aging). 

The Nyquist plots were used for comparison as batteries get aged with the aging conditions 

quoted in table 3-1. A key point to note herein figure 3.4 is that the Nyquist plot shifts towards 

the right side along the real axis as the battery ages (regardless of the cycling conditions of the 

battery as shown in the table). This result is experimentally verified and endorsed with the 

experimental results of the EIS scans presented in the Chapter 4. 

 

Table 3-1 Accelerated cycling aging conditions [9] 

 

Figure 3.4. Change of impedance characteristic during battery’s life: TC1 (Left), TC2 (Center) and TC3 

(Right) [9] 

(25℃ 50% SoC) for cells aged under Table 3-1 conditions 
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However, there are some shortcomings of the results presented in study [9]. The batteries were 

always tested while they were in steady state i.e. the batteries were resting for sufficient time 

such that all transients due to charge/discharge process had settled down. This condition might 

not be always applicable in real world scenario. If HCC has to operate and charge the battery, it 

is imperative to know the minimum possible time battery needs to be in rest before a test could 

be performed. This limitation holds vital significance because time is of essence, as user cannot 

wait for long period before the batteries could be used in critical applications. This thesis 

addresses this issue in detail in the later sections.  

 

Besides this, another limitation of the study was that the batteries were artificially aged using 

repeated cycles with same SoC span as shown in table 3-1. This artificial aging mechanism can 

impact some parts of the Nyquist plot more than the other parts. Batteries aged in real world 

application might show different behavior since the C-rate during charge and discharge process 

is not always similar, neither depth of discharge is identical for each cycle. This accelerated 

aging strategy might not cover the full breadth of change incurring in batteries operating in real 

world, hence, these shortcomings reduce the overall authenticity of this study.   

 

Similarly, EIS technique is suggested for SoH evaluation of batteries as proposed in [10]. The 

study recommends using intelligent integrated charger to perform EIS scan on a battery and the 

block diagram of the schematic of intelligent integrated charger circuit is shown in figure 3.5. 

However, according to the results presented in the paper, this approach poses strict restrictions 

on the state of condition of the battery as EIS scans were performed on the battery only when 

they were completely charged, a condition, which is very unlikely to be fulfilled in real world 
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application as battery might be sitting at any SoC. The authors once again assumed a steady state 

condition when OCV of the battery is not changing after charging, without stating how much 

time the user have to wait before an EIS scan can be performed. Therefore, this solution needs in 

depth analysis, as the proposed solution is insufficient to cater contingencies of the real world.  

 

Figure 3.5. Blocked diagram of intelligent integrated charger [10] 

 

Both studies [9] and [10] used equivalent battery circuit for modeling purpose and parameter 

estimation to optimize the values of electrical components to match the Nyquist plot obtained by 

the EIS test. The reliability of using optimization techniques for parameter evaluation is 

debatable as the results of optimization method can vary largely even if Nyquist plots look 

similar. It is also essential to provide good initial estimate to the algorithm to begin with such 

that number of iterations required for the convergence are minimal.  Parameter estimation using 

the optimization method is time-consuming, computation intensive and can result in misleading 

results. Nevertheless, there will be a need of a function to relate SoH to the modeling parameters.   
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3.3 Parameters to be considered for EIS method 

Although using EIS technique has proved to be a promising method to categorize batteries with 

different electrical characteristics and dielectric properties in a laboratory setting, the industrial 

application of this method requires in depth analysis of parameters that affects this technique. 

This limitation largely stems from the restrictions on the preoperational conditions of the battery 

that are not always met in an industrial environment as discussed in section 3.2. The factors that 

will be addressed in this thesis that can impact the EIS method are listed below:   

 

3.3.1 Steady state condition 

Conventionally, before the EIS test is performed on the battery, the OCV of the battery is 

supposed to be constant which indicates that the battery has been resting for a while. This is 

primarily because when a battery is charged or discharged, the process of pumping in and 

removal of the charge disturbs the reversible chemical reactions going on in the battery. When 

the battery is removed from charge/discharge process, it takes a while before the OCV settles 

down. Conventionally, the battery is maintained to be in rest state for a long period to reach the 

desirable steady state. However, in real world application, time is of essence as the user cannot 

wait indefinitely for the battery to rest before a test could be performed especially in critical 

usage such as medical and warfare applications.  

 

Therefore, it is important to figure out how much time the battery has to be in rest state before an 

EIS scan could be performed on it. This study explores the regime in time domain where battery 

will be in quasi steady state such that impact of transient is negligible. As established earlier, the 

need to explore this limitation is vital for robust design of a consumer end device such as HCC. 
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3.3.2 State of Charge (SoC)    

SoC is basically the measure of amount of charge stored in the battery. The SoC of 100% 

corresponds to fully charged battery and 0% corresponds to a battery that is completely void of 

charge. Commonly SoC is also stated to be equivalent of fuel gauge of battery. A battery 

operating in the field could be at any SoC hence, it is important to come up with a robust SoH 

algorithm for the health check charger which can perform the operation at all level of SoC. This 

is critical because a user cannot wait for the battery to be completely charged or discharged 

before a test could be performed. Therefore, SoC is another parameter that has to be considered 

while designing health check charger SoH algorithm.  

SoC (t) = 
𝐶𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑡)

𝐶𝑚𝑎𝑥
 = 𝑆𝑜𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙 –  

[∫ 𝑖𝑐𝑒𝑙𝑙(𝑡)𝑑𝑡 +  𝐶𝑢𝑛𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒(𝑡)]

𝐶𝑚𝑎𝑥
 

3.3.3 State of Health (SoH) algorithm 

Once the abovementioned conditions are met and the EIS test is performed successfully to record 

the impedance data, only a part of the overall task is accomplished. The recorded data needs to 

be processed before an estimate of the SoH of a battery could be provided. This part of the test 

makes the health check charger device battery model specific, as model specific reference or 

thresholds are required to relate impedance data to the overall capacity of the battery. Usually a 

specific model comprising of basic electrical components is selected to model the battery and the 

values for the equivalent circuit components are calculated using optimization techniques. 

Commonly non-linear iterative search methods such as Newton method or Levenberg-Marquardt 

methods are used for optimization. However, the values of modeled electrical components 

obtained after optimization can vary largely with a slight deviation in the Nyquist plot. This can 

pacify the overall accuracy of the device by wrongly categorizing the battery therefore; there is 

substantial need to devise an efficient SoH determination algorithm.  
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Chapter 4: Test Plan and Experimental Setup For EIS 

 

4.1 Batteries selected for study 

For this extensive study on health check charger, 3.7 nominal voltage, 4.8Ah Li-ion batteries 

were chosen. A pool of 30 different samples of batteries was available from which every time, 

suitable numbers of batteries were chosen depending on the type of test. The batteries were 

accumulated after they served in the field to power up radio sets for a long period of time. The 

batteries comprised of a wide spectrum of SoH that made contrasts and comparisons in the 

results very prominent. The batteries were used with a serial adapter, which was used to ensure 

concrete connection of testing equipment to the battery terminals. Since all the batteries were of 

the same model and manufacturer, they had same electrical characteristics. The values are quoted 

from their datasheet in table 4-1: 

Nominal Voltage 3.7 V 

Capacity 4800 mAh 

Maximum Charge Voltage 4.2 V 

Minimum Discharge Voltage 3.0 V 

Charge Cut off point 0.24 A 

Safe operating temperature  0 – 40 degree Celsius 

Table 4-1 Characteristics of the batteries used in study 

 

The batteries were labeled with battery index each time the test was performed and the thermal 

and electrical limits of the battery were not breached. The voltage, current and temperature of the 

batteries were recorded simultaneously while a test was performed to ensure safe and reliable 

operation of the samples considered for the test.  
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4.2 Test plan and experimental setup for SoC factor  

In order to find the impact of SoC on the EIS method, a sample set of 14 batteries was selected. 

The table shows the batteries selected and their true corresponding SoH (capacity) that was 

measured by coulomb counting the discharge cycle of fully charge battery at C/4 discharge rate, 

which was then compared to overall rated capacity. A SoH of 100% corresponds to a battery 

having full capacity available of the rated capacity i.e. 4800mAh, whereas, SoH of 0 % relates to 

a battery with no capacity left. A SoH of 50% corresponds to 2400mAh of storage capacity.  

Battery ID State of Health in  % 

Battery 1 63 

Battery 2 92 

Battery 3 30 

Battery 4 65 

Battery 5 02 

Battery 6 90 

Battery 7 89 

Battery 8 84 

Battery 9  79 

Battery 10 76 

Battery 11 64 

Battery 12 13 

Battery 13 86 

Battery 14 83 

Table 4-2 Batteries selected for SoC analysis 

The batteries were completely charged initially and EIS scans were performed for each battery at 

an interval of discharge of 10% of the overall battery capacity using VMP2 biologic equipment. 

The discharge test was performed using Cadex c7400 battery analyzer and the battery was 

allowed to sufficient time such that a steady state condition was reached. The data of the EIS 

scan was logged in an excel file containing all the frequencies, real and imaginary impedance. 

All tests were performed at room temperature and pressure. Figure 4.1 shows the settings chosen 

for the EIS scan.   
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Figure 4.1. Settings for EIS scan 

The frequency range of 10 KHz to 50 mHz was selected to perform the EIS scans such that 

dielectric and electrochemical properties of the battery under observation could be investigated. 

A two point average over all test frequencies was performed to obtain a smooth scan and 

amplitude of the current signal was set to 40.0 mA such that pseudo linear assumption is valid 

and battery behaves as a linear system. Test frequencies were logarithmically spaced over the 

frequency range with six points per decade to have optimal resolution of the EIS scan.   
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4.3 Experimental results and analysis for SoC factor 

The EIS scans captured for all batteries were exported to Matlab, where the data was processed 

and plotted for analysis. There was slight variation in the EIS scans recorded for all batteries 

with no specific pattern observed. The impact of SoC on EIS scans was negligible as compared 

to the impact due to the solid electrolyte interface, charge transfer capacity and internal 

resistance of the batteries, since they determine the small signal response of a battery. A 

comparison of three batteries of different SoH is presented in the Nyquist plot shown in figure 

4.2 for all SoC.  

 

Figure 4.2. Impact of SoC on EIS scans 

As shown in the figure, the overall shape of EIS scans remains intact for a specific battery, 

irrespective of the SoC. The slight variation is due to the change in amount of charge stored and 

partly due to battery terminal connection. Sometimes, the parasitic resistance of the connections 

was observed to impact the EIS scans and therefore, it can have result in small deviation, 

however, overall, the scans remain in close vicinity and adhere to the same profile.  

The issue associated with the terminal connection of battery is illustrated in figure 4.3 and 4.4. 
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Figure 4.3. Dirt and residue on battery terminal 

 

Figure 4.4. EIS scan with poor terminal connection 

The impact of poor connection can be observed on the EIS scan with a large shift in the overall 

real impedance of the battery. This is because the terminal parasitic impedance only adds up to 

the series resistance, causing the EIS scans to shift towards the right side on a Nyquist plot. The 

overall shape of the Nyquist plot still remains the same as no change occurs in the dielectric and 

charge transfer properties of the battery.  
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4.4 Test plan and experimental setup for non-steady state analysis 

As discussed earlier, in real world application, time is of essence as the user cannot wait 

indefinitely for the battery to rest before a test could be performed especially in critical usage 

such as medical and warfare applications. It is imperative to know for how long the battery has to 

stay in the rest condition before an EIS scan could be performed to decipher the SoH condition 

of the battery. Therefore, a test plan was devised to determine the duration of the rest time.  

The batteries selected for this study are shown in table 4-3 and test plan details in table 4-4. Note 

that the batteries are selected from a pool of 14 batteries and have different battery ID’s from the 

previous test. Four batteries are selected such that we have good overall spread in SoH.  

Battery ID Battery State of Health in % 

Battery 1 64 

Battery 2 90 

Battery 3 30 

Battery 4 02 

Table 4-3 Batteries selected for non-steady state analysis 

 

EIS Scan Test ID Time at which test is performed 

1 30 seconds 

2 2 minutes 30 seconds 

3 5 minutes 30 seconds 

4 7 minutes 30 seconds 

5 10 minutes 30 seconds 

Table 4-4 Test plan details after each charge cycle 
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Once a battery was removed from the charging port after charging, the battery was allowed to 

rest and during that time OCV was recorded. After 30 seconds of rest time, first EIS scan was 

performed using VMP2 equipment. The battery was allowed to rest after the scan and OCV was 

recorded during rest time, before the next EIS scan was performed and so on. The final EIS scan 

was performed after 10.50 minutes when the battery had almost reached the steady state because 

the OCV of the battery was not changing afterwards.  

 

Since user can request the EIS scan to be performed at any SoC while the battery is charging, it 

is important to repeat the analysis at varying SoC. Therefore, three different types of tests were 

devised to come up with contingency analysis from user’s perspective. The difference between 

these tests was that the charging time was different in each test. The pictorial representation of 

the tests is shown below: 

 

Test 1: 25% SoC Increment 

In this test, the batteries selected for the study was completely discharged at first. Then the 

batteries were charged at an increment of 25 % of its actual capacity and the series of tests were 

performed.  

 

 

 

 

 

 

OCV  EISOCVEISOCVEISOCV 

Charge  Charge Charge Charge 
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Test 2: 50% SoC Increment 

In this test, the batteries were completely discharged first. Then the batteries were charged at an 

increment of 50 % of its actual capacity and the series of tests were performed.  

 

 

 

 

 

 

 

Test 3: 90% SoC Increment 

Again, the batteries were completely discharged at first. Then the batteries were charged at an 

increment of 90 % of its actual capacity and the series of tests were performed.  

 

 

 

 

 

 

 

For the charging purpose, Cadex c8000 battery testing equipment was used. The charging current 

was selected to be 1200 mA (c-rate= 0.25). C8000 has built in protection to cater for over 

charging and overcurrent and it also has runtime interface with PC via Cadex battery shop.  

Charge Charge 

OCV  EISOCVEISOCVEISOCV 

OCV  EISOCVEISOCVEISOCV 

Charge 
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4.5 Experimental results and analysis for non-steady state analysis 

The data recorded from the experimental setup for non-steady state analysis was imported in 

Matlab for data processing. Tests performed after 30 seconds of the rest were observed to have 

kinky and non-smooth Nyquist plot as shown in figure 4.5. The noise in the low frequency 

region was observed because the voltage at the terminals of the battery was changing with time 

and therefore the impedance captured at low frequencies was subjected to the drift. This drift was 

very evident at lowest frequency points. However, the deviation was observed to be smaller in 

the EIS scans performed at 2.5 minutes as shown in figure 4.6. This is because the voltage at the 

terminals of the battery was getting stable and the resulting drift effect at low frequencies was 

smaller. Finally, EIS the scan taken after 10 minutes of the rest was shown to be smooth Nyquist 

plot, because the steady state condition of the battery was reached. The impact of the drift on the 

low-end frequencies was no longer there; hence a smooth Nyquist shape was obtained.  

 

Figure 4.5. Nyquist plot after 30 seconds of rest for test 3 
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Figure 4.6. Nyquist plot after 2.5 minutes rest for test 3 

 

Figure 4.7. Nyquist plot after 10.5 minutes rest for test 3 
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All Nyquist plots captured for all the tests are shown in figure 4.8. The data was processed to 

locate the zero crossing and maximum point on the Nyquist plot for SoH algorithm analysis. 

With slight deviation along the real axis, the overall results came out to be coherent. The data 

showed that the Nyquist plot for each battery remains in the close proximity and follows similar 

shape, regardless of the charging status of the battery. This turned out to be a fortunate thing for 

HCC prototyping as the user can have the opportunity to stop the charging process and run the 

SoH determination test.  

 

Figure 4.8. All EIS scans for non-steady state analysis 

This slight deviation in the Nyquist plots along the real axis is due to the variable parasitic 

resistance across the battery terminals. This induces small error in SoH estimation that will be 

discussed in the later sections. However, for overall battery characterization, this impact is 
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minimal. The only factor of concern is the rest time before the EIS test could be performed 

which will be addressed in detail in chapter 5 where EIS scans were captured using HCC board. 

The OCV of the batteries was logged during resting time that showed that the voltage at the 

terminals of the battery settles down with the passage of time, resulting in suitable condition such 

that EIS scan could be performed. Figure 4.9 shows the gradient of the OCV for the battery 2. 

 

Figure 4.9. OCV gradient for battery 2 

This shows that with the passage of time, the transients of the battery die down. After 2 minutes 

the change in the voltage across the terminals of the battery is not very large, therefore an EIS 

scan could be captured. However, the best result can only be possible if the battery is in steady 

state. The tests illustrated that the OCV settles down non-linearly when the battery is allowed to 

rest at several SoC’s and after some time the gradient is small enough to assume quasi steady 

state condition. Figure 4.10 and 4.11 shows OCV comparison for batteries as test 1, 2 and 3 were 

performed on them. 
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Figure 4.10. OCV recording after tests for battery 2 (90% SoH) 

 

Figure 4.11. OCV recording after tests for battery 4 (02% SoH) 

The plots show that the OCV of the battery settles down in the similar way and is not related to 

the operational condition or SoC of the battery. The time it takes for the battery to reach the 

steady state condition was found to be constant throughout the tests. This observation hold key 

significance in determination of waiting time required, that the HCC needs to wait before it 

performs the EIS scans on the batteries. The independence from the SoC or the charge profile 

allows a generic algorithm to be designed. This topic will be explored further in detail in section 

5, where results recorded from HCC will be processed to decide the suitable resting time before 

the EIS test could be performed. 
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4.6 Data analysis for SoH algorithm 

After an EIS scan is successfully performed and the desired data is recorded, only part of the job 

is done. The data itself provides information about the individual characteristics and 

electrochemical properties of the battery, but in order to relate it to the state of health some 

operations are required to be performed. The user cannot take raw data and process it on his own 

to find the SoH of the battery. Therefore, an efficient SoH determination algorithm is has to be 

designed to give a prompt reply to the user’s request in a quantitative way. 

 

As discussed in previous section, the process of battery modeling and parameter evaluation 

through optimization is one option to estimate the SoH. However, the process is time consuming 

and requires complex computation. The process requires fast microcontroller chip for 

computation and it can extend the overall test time depending on number of iterations performed 

to obtain the final result. This reduces the overall feasibility of the battery modeling and 

parameter evaluation.  

 

Hence, a new approach is proposed in this thesis, according to which a SoH determination 

algorithm can be designed directly from the EIS plot. A function can be designed to to relate the 

characteristics of EIS scan to the overall state of health of a battery. The points of interest chosen 

to design the SoH algorithm are shown in figure 4.12 and they correspond to different 

characteristics of the battery’s electrochemical properties. The zero crossing point corresponds to 

series resistance. The maximum x and maximum y values correspond to double layer capacitance, 

charge transfer resistance and dielectric properties. The minimum x value corresponds to mass 
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kinetic properties such as diffusion of ions and Warburg impedance. Section 3.1 shows how 

these properties impact the corresponding regions of EIS scans by equivalent circuit modeling.  

 

Figure 4.12. Points of interest in Nyquist Plot 

All these factors correspond to electrochemical properties that relate to the ageing processes in a 

battery, as a result, SoH is a function of all of these characteristics. Therefore, a program was 

written in Matlab that could detect the points of interest in an EIS scans automatically. The zero-

crossing point, minimum x-value, maximum x-value, minimum y-value and maximum y-value 

were recorded for all EIS scans. However, before these points were directly calculated from the 

EIS scans, the raw data was processed to give a smooth EIS plot. In order to smooth the raw data 

obtained from the EIS scan, a moving point algorithm was implemented in Matlab.  

Simple Moving Average (SMA) = 
𝑝𝑀+ 𝑝𝑀−1 + 𝑝𝑀−2+⋯ + 𝑝𝑀−(𝑛−1)

𝑛
 

= 
1

𝑛
∑ 𝑝𝑀−𝑖

𝑛−1
𝑖=0  

The algorithm was used to smooth down the raw data obtained from the EIS scan such that the 

impact of noise and time variations in data logging could be minimized. Figure 4.13 shows 

normal EIS scan plotted along with the data smoothed by the moving point average algorithm.  
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Figure 4.13. Raw data vs smooth data using moving point average algorithm 

The algorithm was used to smooth all the EIS scans taken for the batteries for SoC study

 

Figure 4.14. All EIS scans with marked points of interests  
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The points of interests were plotted individually on z-axis with different SoH on y-axis, SoC on 

x-axis. The bar plots are shown in figure 4.15, 4.16, 4.17 and 4.18. 

 

Figure 4.15. Zero-crossing point evaluation 

 

Figure 4.16. Minimum Point (X value) evaluation 
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Figure 4.17. Maximum point (Y value) evaluation 

 

Figure 4.18. Maximum point (X value) evaluation 
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The data shows that the points of interest chosen for SoH algorithm had strong correlation with 

the SoH. The impact of SoC on these points is minimal as compared to variation coming from 

the SoH. However, the low SoC data was removed from analysis, since these batteries were 

discharged with rated 10% capacity and not actual 10% capacity. Therefore, the results of very 

low SoC for few batteries came out to be very divergent and non-coherent. In practice, when 

these batteries will be tested, the batteries will be operating according to their actual capacity so, 

the algorithm is expected to work fine on low SoC as well. This assumption was put to test in 

algorithm validation section and results presented in chapter 5 support this hypothesis.  

 

Using these points calculated for all EIS scans, a plot was constructed to estimate the error that 

can come from SoC. The SoH of batteries were plotted on the y-axis along with individual point 

of interest on the x-axis. The error bars show the variation in the point of interest that can happen 

due to the difference in SoC. The results are shown in figure 4.19, 4.20, 4.21 and 4.22.  

 

Figure 4.19. Zero crossing point error bar 
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Figure 4.20. Maximum point Y values error bar 

 

Figure 4.21. Maximum point X values error bar 
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Figure 4.22. Minimum point X values error bar 

The error bars on all these graphs indicate a small deviation that is caused by the variation in 

state of charge. The deviation is small as compared to overall span of values and therefore, the 

impact of this factor on SoH algorithm function can be eliminated if battery is not completely 

void of charge.  

 

Now the final SoH algorithm has to be a combination of all these points such that variation in 

one of these factors contributes partially to the overall SoH of the battery. Based on the variation 

shown by the points of interest in comparison to the overall SoH, the sensitivity factors were 

designed. More weight was assigned to the point of interest that showed larger correlation with 

the SoH. The overall function that relates all these point of interest to single function input value 

is shown below: 

 Function Input = 30*𝑴𝒂𝒙𝒙 + 20*𝑴𝒂𝒙𝒚 +40*𝑴𝒊𝒏𝒙 + 10*Zero 
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The function input relation to the SoH of the battery is shown in figure 4.23. 

 

Figure 4.23. Piece wise linear model for SoH vs Function output 

 

Since the function output itself cannot map to the SoH of the battery, another one to one function 

was required. Therefore, in order to make a suitable fit, a piece wise linear function was 

proposed such that the function input, x, maps to give SoH as a percentage as shown 

State of Health(𝑥) = {
−16.3 ∗ 𝑥 + 107.6,         0 < 𝑥 < 5.5

−1.77 ∗ 𝑥 + 27.7         5.5 < 𝑥 < 14.5
 

So, now the after successfully recording the EIS scan, this algorithm can process the data 

captured to determine the SoH of the battery. Although this SoH algorithm is designed using 14 

batteries as data points, the algorithm accuracy can be improved by increasing battery sample set. 

The error in batteries having very low SoH is observed partly because their response to EIS scan 

can vary by large amount. However, the method promises to accurately estimate batteries with 

high SoH. The algorithm is designed to estimate SoH accurately in a time effective manner.  
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Chapter 5: Health Check Charger Prototype  

 

5.1 Hardware setup 

So far we have discussed EIS as a technique to evaluate the SoH of the battery. However, for 

product development of HCC, a portable hardware platform was needed that can perform EIS 

scan on Li Ion batteries. Therefore, for the development of HCC, the existing schematic and 

circuit provided by Cadex Electronics Inc. was used. A team of students of UBC developed the 

platform for their capstone project. The schematic was designed to performed EIS scans for 2.7 

V to 4.3 V batteries. The hardware comprised two parts: potentiostat circuit and digital signal 

processor. The potentiostat circuit comprised analog amplifiers and instrumentation amplifier to 

perform the EIS test. The circuit voltage and current sensors were used to record battery terminal 

voltage and current using ADC’s of DSP chip. The captured data was processed using 

STM32F429 micro-controller. Figure 5.1 shows the hardware circuit: 

 

Figure 5.1. Hardware implementation with LCD display 
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A potentiostat was designed to excite li-ion batteries with a voltage waveform. It included 

sensors and signal conditioning to measure the voltage and current response of the batteries 

under test. The basic design was found in [12] and was modified to allow the potentiostat to test 

batteries ranging from 2.7-4.7V and interface with a 3.3V. Appendix A outlines the potentiostat 

circuit’s main sub circuits. DAC1 is used to generate the waveform. The excitation conditioner is 

used to generate a low amplitude voltage wave without a DC offset. DAC2 generates a DC 

reference that allows the output of the potentiostat to be biased anywhere between 2.7-4.7V. The 

reference is set to match the open circuit voltage of the battery under test. The potentiostatic 

control sums the waveform and DC reference so it can be passed through the battery. A relay is 

used to connect the battery to the circuit. The current output is obtained by measuring the voltage 

across a 0.2 Ω shunt resistor. The voltage output is obtained by subtracting the DC reference 

from the output using a difference circuit and amplifying in order to measure it with an ADC. 

 

Figure 5.2. Potentiostatic block diagram 
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5.2 Software 

An STM32F429 Discovery development board was used to develop the firmware. The 

microcontroller interfaces with the potentiostat, relay, LCD touch screen, external SDRAM, and 

a personal computer. A system level block diagram can be seen below in Figure 5.3. 

 

Figure 5.3. EIS test circuit block diagram 

 

The battery tester obtains the impedance spectrum by using a multisine wave and successive sine 

waves. A multisine wave is used to obtain impedance data from 0.1 Hz to 7 Hz. Successive sine 

waves are used for 9 Hz to 2 kHz. The higher frequency impedance data was collected using 

successive sine waves because of sampling constraints and 16 test cycles were used. The EIS 

measurement consists of setting the DC reference to match the battery voltage, closing the relay, 

setting the waveform, sampling voltage and current, and computing the complex impedance. A 

flowchart of this process can be seen in Figure 5.4 below. The waveforms are cycled from 

multisine to successive sine waves until the complete impedance spectrum from 0.1 Hz to 2 kHz 

is obtained. 
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Figure 5.4. Impedance spectrum acquisition diagram  

The DC reference is set by first measuring the open circuit (OC) voltage of the battery and then 

adjusting the second DAC output until the voltage matches the OC voltage. Once the DC 

reference is set the relay is closed and the battery under test is electrically connected to the 

potentiostat. 

The waveforms are stored in arrays in the microcontroller and a DMA controller is used to 

control the first DAC to output the excitation wave. The DMA controller makes it possible to 

output the excitation wave with precise timing and also does not use any processing cycles from 

the microcontroller. While the waveform is running, ADCs are used to sample the voltage and 

current response and store the data in external SDRAM. 

The data is sampled at 400 kHz, which is possible because of the DMA controller. The voltage 

and current data are sampled simultaneously, so phase errors are not introduced when computing 

the impedance. 

A Fourier transform is used to obtain the voltage and current spectrum from the time domain 

data collected by the ADCs. Dividing the voltage and current spectrum yields the complex 

impedance. A Fourier transform is most commonly computed using a fast Fourier transform 

(FFT). However, performing an FFT with over 32,000 data points is not feasible on a 

microcontroller due to memory constraints. A Goertzel algorithm was used because it is able to 

compute the discrete Fourier transform for specific frequencies in the spectrum, which is 
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advantageous because when using multisine or successive sine waves only fixed number 

frequencies need to be computed. 

5.3 User interface 

The user interface is designed to be user friendly for storefront applications. It utilizes STM32F4 

microcontroller’s 320x240 touch screen LCD display, and is programmed with touchscreen 

buttons. The user interface was designed with the help of the STM32F4’s online libraries [11]. 

The main menu has a status bar on the top of the display to indicate the status of the tester. The 

user is notified whether Serial USB data transfer is connected, whether the waveform is being 

generated through the DAC channel and current and voltage measurements are also displayed on 

the top to ensure that no overcurrent has occurred. 

In the plot graph menu, on the top left the user have the option to exit the graphing menu and 

return to the main menu. The grid button allows user to toggle the grid on and off for better 

visualization of the graph and trace the data points on the plot. 

After the result button is pressed it will give a diagnosis of the battery’s state of health. The 

result is shown in the main menu along with the estimate of the SoH of the battery. 

 

Figure 5.5. User interface with LCD display 
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5.4 Nyquist plots using the HCC hardware  

Using hardware PCB shown in figure 5.1 and the new firmware implemented using STM32F429, 

EIS scans were performed. The goal was to compare and contrast the output of HCC hardware 

with research grade VMP2 equipment. The tests performed on the batteries comprised of data 

arrays of frequency, real impedance and imaginary impedance. The data was sent using USB 

option on the board to the PC using Hterm interface and baud rate of 9600 was selected. The data 

array were stored in excel file and later processed in Matlab to draw the comparison. The results 

of the Nyquist plots captured by the HCC hardware are shown in figure 5.6. 

 

Figure 5.6. HCC nyquist plot comparison with VMP2 

 

The data captured using HCC was identical in shape to VMP2. The circuit had parasitic 

resistance due to terminal connection that needed to be compensated. However, even after the 

compensation, slight deviation was observed in the high frequency side. The justification for the 

deviation stems from the design limitations in the PCB, causing parasitic capacitance. 
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5.5 SoH algorithm implementation and validation 

5.5.1 SoH algorithm implementation 

The SoH classification algorithm was coded in C in the firmware for STM32F429 

microcontroller. At the end of the operation of the algorithm, the calculated SoH of the battery 

was displayed on the LCD touch screen.  

     

Figure 5.7. SoH algorithm result display on LCD 

The user interface panel of firmware was programmed to have a graphing option, where user 

could view Nyquist plot of the battery. The graphing option comprised of two Nyquist plots, one 

drawn with the raw data obtained at the end of EIS test and second, having smoothed data after 

performing moving point average operation (blue line and green line in figure 5.8. respectively).   

 

Figure 5.8. Nyquist graph display on LCD 
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5.5.2  SoH algorithm validation 

 State of Charge factor 

After implementation of the SoH determination algorithm on the firmware, tests were performed 

to verify the authenticity of the approach. The 14 batteries picked are same as of section 4.2 

while other batteries are just used for algorithm verification. SoH of all of them is determined by 

coulomb counting of full discharge test.  

For this test, the batteries were fully charged and 5 consecutive tests were performed to verify if 

the results were coherent. The average error was calculated for tests that showed that for good 

batteries the error remained within 10% bracket, whereas, for poor batteries the variation was 

large and the model showed limited accuracy (T13 and T14). The average time taken to complete 

the tests was also recorded as shown in figure 5.9.  

 

Figure 5.9. SoH algorithm validation tests 

But in order to verify the feasibility of the SoH algorithm, further tests were performed at 

variable SoC of the batteries. The batteries were discharged by 10% each time and the test was 

performed to find the SoH using the hardware. The tests were designed to investigate the impact 

Battery ID State of Health in  % Test 1 Test 2 Test 3 Test 4 Test 5 Error Average(%) Average Test Time(s)

Battery 1 63 61.1 62.55 63.16 62.6 63.02 -0.514 40.57

Battery 2 90 90.65 91.22 91.35 91.75 90.6 1.114 41.23

Battery 3 30 26.83 27.4 23.29 24.28 25.07 -4.626 40.94

Battery 4 65 68.28 69.45 69.73 69.21 70.4 4.414 40.56

Battery 5 2 0 0 0 0 0 -2 42.12

Battery 6 90 83.39 84.14 85.64 83.8 86.42 -5.322 40.68

Battery 7 89 81.64 81.73 83.19 82.42 82.65 -6.674 40.92

Battery 8 84 80.63 80.45 81.64 80.55 79.97 -3.352 40.77

Battery 9 79 80.41 80.27 79.85 79.81 80.7 1.208 41.25

Battery 10 76 75.73 74.01 75.38 74.95 73.31 -1.324 40.87

Battery 11 64 59.72 59.07 57.81 59.37 59.58 -4.89 41.39

Battery 12 13 20.96 23.07 20.48 21.52 23.1 8.826 42.51

Battery 13 86 77.12 77.68 79.27 77.06 77.98 -8.178 41.89

Battery 14 83 82.59 78.92 79.25 76.05 80.32 -3.574 41.05

Battery T1 55 55.59 55.84 55.08 56.83 55.5 0.768 40.74

Battery T3 81 83.22 83.34 82.63 82.5 81.23 1.584 41.28

Battery T2 71 73.74 75.96 75.24 75.7 74.52 4.032 40.84

Battery T9 22 8.79 9.14 13.33 16.75 16.5 -9.098 41.61

Battery T13 43 8.32 7.68 7.12 8.23 10.25 -34.68 41.53

Battery T14 42 23.7 22.65 23.16 23.63 22.49 -18.874 40.98
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of SoC on the SoH algorithm, such that as long as the battery in steady state, the algorithm can 

operate to determine the SoH, independent of battery’s SoC. The results are shown in figure 5.10.  

 

Figure 5.10. SoH algorithm validation with varying SoC 

The results support the hypothesis that the SoH algorithm is independent of the SoC of the 

batteries as long as batteries are in steady state. The SoH estimation is highly accurate when 

battery is fully charged whereas there is small deviation on low SoC. But overall, the average 

error of the SoH estimation was confined within 10% window bracket.  

 

Figure 5.11. SoH Vs SoC readings for algorithm validation 

Battery ID SoH in  % SoC: 100 % SoC: 90 % SoC: 80 % SoC: 70 % SoC: 60 % SoC: 50 % SoC: 40 % SoC: 30 % SoC: 20 % SoC: 10 % SoC: 00 % Avg. Error %

1 63 60.63 61.38 66.19 63.44 64.26 56.82 55.8 57.62 64.99 56.65 56.65 3.84818

2 92 90.9 95.01 97.18 98.69 98.62 93.97 94.62 92.32 96.7 97.59 94.75 3.68636

3 30 22.34 16.87 21.48 16.61 13.06 9.91 9.34 12.54 32 22.11 21.36 12.3982

4 65 65.89 72.95 71.15 70.05 68.06 64.68 63.52 60.69 74.96 71.66 66.54 4.30636

5 2 0 0 0 0 0 0 0 0 0 0 0 2

6 90 83.93 84.32 90.41 89.5 93.18 85.51 87.86 91.45 80.43 77.87 72.62 5.72727

7 89 80.39 84.16 90.56 87.98 91.9 86.2 84.81 89.46 83.54 84.95 78.89 4.18182

8 84 78.24 83.08 88.88 87.21 90.62 85.62 83.05 88.06 81.72 79.51 83.23 3.23273

9 79 80.02 84.59 85.14 84.57 87.19 81.03 81.66 72.16 82.11 78.63 78.14 3.85273

10 76 73.65 74.92 78.56 81.52 80.25 76.08 71.99 76.61 76.36 75.26 68.59 2.63364

11 64 59.58 67.05 69.39 70.15 71.38 64.42 59.36 59.34 69.59 67.18 64.45 4.12091

12 13 21.84 10.69 11.53 13.35 11.37 12.15 11.29 11.09 24.57 23.85 23.66 4.74091

13 86 76.33 79.63 82.8 79.37 84.31 77.71 79.46 82.07 75.99 73.3 73.47 7.41455

14 83 79.68 81.96 85.03 89.8 87.51 81.07 81.66 79.64 84.64 80.31 77.73 3.08455
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Ideally the lines in the figure 5.11 should have been flat, based on argument that SoH test is 

independent of the SoC of the battery. However, the lines have small deviation with no particular 

pattern with variation in the SoC. Therefore, it is not possible to compensate for the slight 

deviation in the SoH algorithm result as a function of the SoC. Nevertheless, the deviation is 

small, resulting in accurate estimation of the SoH of the batteries within the 10% bracket.  

 Non steady State condition 

EIS tests were performed on the batteries using the HCC board in non-steady state condition to 

draw a comparison with the Nyquist plots captured by VMP2. The multi-sine approach used by 

the HCC board showed slight deviation in the low frequency region because of the drift effect. 

But overall, the plots captured very highly identical. Three EIS scans were taken at 2.5, 5 and 7 

minutes respectively, after batteries were completely charged and results are shown below: 

 

Figure 5.12. HCC comparison with VMP2 battery 1: SoH 64% 
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Figure 5.13. HCC comparison with VMP2 battery 2: SoH 90% 

 

Figure 5.14.  HCC comparison with VMP2 battery 3: SoH 30% 
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Figure 5.15.  HCC comparison with VMP2 battery 4: SoH 12% 

 

Figure 5.16.  HCC comparison with VMP2 battery 5: SoH 02% 
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The Nyquist plots show that there is small deviation in the Nyquist plot captured by the HCC 

circuit as compared to the Nyquist plots recorded using VMP2. The reason being, VMP2 has 

sophisticated self-calibration capability with cutting edge noise removal algorithm. This research 

grade equipment has very precise instrumentation hardware, whereas, the HCC circuit lacks such 

sophistication on hardware level. However, the deviation is not detrimental in terms of SoH 

classification. The algorithm designed for SoH determination is valid even with small deviation 

since for classification purposes, it’s not the absolute comparison with VMP2 that matters, rather 

the relative difference between the Nyquist plots counts. The comparison of all of the EIS scans 

captured by HCC circuit is shown in figure 5.17.  

 

Figure 5.17. Comparison of EIS scans 

The figure shows that as battery’s SoH goes down, the plot slides towards the right side, which 

basically implies increase in the resistance of the real component. Also the shape changes, 

because of the deterioration of surface electrolyte interface and increase in charge transfer 

resistance. This relative difference is of key interest in deciphering the SoH of the battery using 

the HCC device.     
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5.6 Cost estimate and economic analysis 

For all industrial or consumer end products, cost is of key concern. It is imperative to keep the 

fabrication costs low such that ample profit margin exists for the manufacturer. The initial goal 

for this thesis was to design an HCC such that the overall end of the process cost of the product 

is less than 500$. Target was successfully achieved with all costs kept way below the set 

threshold as cumulative material cost turned out to be within 100 $. 

 

Fortunately, as number of units produced increases, the cost per unit goes down. Therefore, in 

order to come up with a reasonable estimate of the overall cost of the hardware for HCC, bulk 

purchase price of components and electrical chips was considered (minimum of 1000 number of 

item ordered for each component). The overall circuit comprised of the EIS potentiostat circuit, 

power connector, controller board and charger circuit. The breakdown of the overall cost of the 

device is shown in table 5-1. 

Component Type Component 

Cost ($)(Bulk 
Purchase with at 
least 1000 pieces) 

  Resistor 2 

Potentiostat Circuit Capacitor 2 

  Semiconductor Chips 33 

Power Connectors  

Main DC Adapter 6 

Mini Male-Male Banana Cable 1 

Battery Adapter (Holder) 5 

Micro USB Cable (optional) 3 

Mini USB cable (Power 
Microcontroller) 3 

Charger Circuit PCB and components 13 

Modified STM32F429 Discovery 
Microcontroller Controller Board 30 

  

98 
Table 5-1 Cost breakdown of the HCC hardware 
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Chapter 6: Charge and Discharge Curve Profiling  

 

6.1 Background research 

In this chapter a new strategy is proposed to determine the SoH of the battery. The suggested 

method is an off branch extension of existing method used to classify state of health of battery: 

Coulomb-counting method. Coulomb counting method has been used extensively in industrial 

sector to estimate and benchmark the SoH of the battery, but by nature the method is time 

consuming, as it requires complete information of full discharge/charge cycle of a battery. In 

some applications the user cannot wait for the battery to be completely charged due to time 

constraints. As time is of essence, any method that can reduce the overall test time and also 

provide reliable accuracy is considered valuable.  

 

Basic principle of this method was first identified by Ramadass et al. when he proposed first 

capacity fade model for Li ion batteries [12]. The existence of side reaction that consumes the 

available capacity of the battery was further investigated by Branko [13]. The study concluded 

the presence of a side chemical reaction that consumes the available Li ions present in electrolyte 

increase the overall charge transfer impedance. The dissolution of Solid Electrolyte Interface 

layer and reduction in active surface area for redox reaction added up to the capacity fading 

causes. The study concluded that, as batteries cycle, the overall charge storing capacity of the 

battery reduces which can be predicted from the charge profile of the battery. The main impact 

of the capacity fade was observed in the constant current charging region of the charge profile as 

shown in figure 6.1. It is also important to notice the charge pumped in during constant current 

charging comprises of the major chunk of the overall charge storing capability of the battery and 

the charge stored in constant voltage region is very small.  
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Figure 6.1. Charge profile variation with number of cycles 

Similarly work was done to decipher the state of health of the battery using charging 

characteristics in [14]. Three characteristics were considered for this application, constant current 

time, constant voltage time and the resistance of the battery.  

 

Figure 6.2. Charge profile characteristics for a battery [14] 
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The study concluded that constant current timing method turned out to be the most reliable 

characteristic of the charging curve. The shape of capacity plot, fig 6.3 is identical to constant 

current charge time (CCCT) plot, figure 6.5. There is not pattern in capacity plot 6.3 and 

resistance plot or constant voltage charge time (CVCT) plot, fig 6.4 and 6.6 respectively. [14] 

 

Figure 6.3. Number of cycles Vs battery capacity 

 

Figure 6.4. Number of cycles Vs battery resistance 
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Figure 6.5. Number of cycles Vs constant charge current time 

 

Figure 6.6. Number of cycles Vs constant voltage charging time 
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The underlying principle for this method is that the charge storing capacity of the battery reduces 

as the battery ages and the effect of the reduced capacity is evident on the charging profile of a 

battery. The change is the shape of the charge profile can be evaluated to determine SoH of the 

battery. Major advantages of using this method are the decrease in the overall testing time and 

the elimination of an additional hardware on the existing BMS and battery chargers. This is a 

low cost inclusion on the existing infrastructure to provide battery health monitoring capability.      

 

However, coulombic efficiency of the battery is not 1. This means that the charge stored in the 

battery might not necessarily be equal to the charge taken out of the battery [15]. For new 

batteries the efficiency is high, however, for poor batteries, the difference in charge pumped in 

and taken out can differ by a large amount. Therefore, constant current charge timing method 

needed further investigation to come up with a generic relation between state of health and 

constant current timing method that can compensate for the difference in charge stored and taken 

out.   
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6.2 Proposed strategy 

The charging process of a lithium ion battery depends on various factors such as battery cut of 

voltage, charging current (C-rate) and overall capacity of the battery. Usually the manufacturer 

specifies these parameters. It is pertinent to ensure that battery charger operates with in the 

operational range defined by the manufacturer because overcharging of lithium ion batteries can 

result in serious safety concerns. However, irrespective of the exact cut of thresholds and values, 

the overall charging process can be segregated into two main categories: constant current and 

constant voltage charging. There is no trickle charging stage for lithium ion batteries as observed 

in the case of lead acid batteries due to low self-discharge rate.  

 

For this study, 5 different battery models were considered as shown in table 6-1. The charging 

rate was selected to be C/4 for all battery models. The charge profiles were for these models 

using Cadex 7400 battery analyzer to record time, voltage, current and temperature 

simultaneously. All tests were performed on room temperature and pressure.  

 

Table 6-1 Type of battery models used for data acquisition and analysis 
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6.3 Data acquisition and analysis 

For the models listed in Table 6-1, prime tests were performed on all the batteries. The prime test 

comprised three full charge and discharge cycles for each battery. The data was logged in an 

Excel file for each battery and the entire data bank was imported to Matlab for data processing.  

A generic function was written in Matlab that can take excel files as input. The format of the 

excel file was programmed in Cadex battery shop software. Matlab script was written to import 

raw data and process the information to plot the following graphs and make desirable 

comparisons of the parameters in investigation. Same script was used for all battery models.  

 

This Figure 6.7 shows the charge current characteristics of 54 Samsung galaxy S4 batteries 

sorted in order of their SoH.  Similarly figure 6.8 shows charge current plotted on the same scale 

for all Samsung galaxy S4 batteries. Only single charge cycle is shown to present a direct 

correlation between the SoH of the battery with constant current charging time. The good 

batteries (shown with blue color) have longer constant current charging region as compared to 

the poor batteries (shown with red color). 

 

The same tests were repeated for other battery models such as Samsung galaxy S3 and Samsung 

galaxy note 1. The plots for these battery models are shown on the in the following figures 6.7-

6.12. Regardless of the overall capacity of the battery of the constant charging current value, 

there is a very obvious trend observed in the plots. The duration for which the battery stayed in 

the constant charging current region replicated the SoH profile of the battery. However, these 

plots only show partial information. The exact correlation between SoH of these batteries and 

constant current charge time is presented in next section.  
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Samsung Galaxy S4 plots: 

 

Figure 6.7. Charge current characteristics of Samsung Galaxy S4 batteries 

 

Figure 6.8. Overlap of single charging current cycle for Samsung Galaxy S4 batteries 
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Samsung Note 1 plots: 

 

Figure 6.9. Samsung Galaxy Note 1 charge current profiles 

 

Figure 6.10. Overlap of single charging current cycle for Samsung Galaxy Note 1 batteries 
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Samsung Galaxy S3 plots: 

 

Figure 6.11. Samsung Galaxy S3 charge current profiles 

 

Figure 6.12. Overlap of single charging current cycle for Samsung Galaxy S3 batteries 
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6.4 Charge vs. discharge capacity analysis 

Charge and Discharge Capacities of the batteries are two different ways of determining the SoH 

of battery. The former refers to the amount of charge stored in the battery during charging, 

whereas the later corresponds to the amount of the charge taken out of the battery during 

discharge. It is very important to note that the charge capacity of the battery might not be exactly 

same as the discharge capacity i.e. batteries don’t have 100% coulombic efficiency. This implies 

that some of the charge pumped into the battery is not stored as chemical energy rather it is 

wasted in loss mechanisms resulting in hysteresis effect. The hysteresis effect can be observed 

by running prime tests on the batteries of different models and using coulomb counting method 

to compare the charge and discharge capacities.  

In order to provide numerical data and supportive results, we have carried out tests on 4 different 

battery models of batteries. The exact model, capacity, number of batteries tested and battery 

vendors are specified in figure 1.  

Different battery models had different nominal voltages and different end of charge cut off 

voltages.

 

Figure 6.13. List of battery models used for the study 
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The results shown in the image are extracted from the prime tests performed on the batteries. The 

excel data of the C7000 prime tests was imported to Matlab where computation was performed. 

Since C7000 records one sample per minute, the precision of the charge and discharge capacities 

calculated can vary by a small amount (i.e. within 5% window) of the original value. The charge 

and discharge rate of all test results presented to support the arguments are carried out with C/4 

charge and discharge current rate.  

The plot shows State of Health of the batteries (referenced to the discharge capacity) versus the 

capacity estimated through coulomb counting during charge and discharge profile. The plot 

shows that the coulombic efficiency is not exactly 100% and there is slight deviation between the 

charge and discharge capacity.  

Charging Capacity 𝑄𝑐= ∫  𝑖𝑐(𝑡)𝑑𝑡
𝑡∘

𝑡=0
    Discharge Capacity 𝑄𝑑 = ∫  𝑖𝑑(𝑡)𝑑𝑡

𝑡∘

𝑡=0
   

Where 𝑖𝑐(𝑡) is charge current    where 𝑖𝑑(𝑡) is discharge current 

𝑡∘ is the final charging time    𝑡∘ is the final discharging time 

 

Figure 6.14. Comparison of measured capacity for Samsung Note 1 during charge and discharge operation 
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Figure 6.15. Comparison of measured capacity for Samsung Galaxy S3 during charge and discharge 

operation 

 

Figure 6.16. Comparison of measured capacity for Li Air Canada during charge and discharge operation 
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As observed from the plots, the coulombic efficiency of the batteries decreases as SoH battery 

degrades. For good batteries, the charge stored in the battery is almost the same as charge taken 

out of the battery. This observation is logical as good batteries have less series impedance and 

loss mechanisms are slow. However as batteries ages, the side reactions increase, causing the 

battery to heat up while charging. This causes loss of charge and therefore low coulombic 

efficiency. The heating effect was observed to amplify the hysteresis loss, however, the 

compensation for this is possible as one can ignore the charging duration for which temperature 

of battery is higher than a threshold. The maximum mismatch between the charge and discharge 

capacity was observed to be 31%. The thermal loss of energy while charging partially explains 

the difference between the charge and discharge capacity. For some models hysteresis 

compensation is necessary for implementation of this method.  

 

Figure 6.17. Comparison of measured capacity for Samsung Galaxy S4 during charge and discharge 

operation without temperature compensation 
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There were some outliers for samsung galaxy S4 batteries. However, when compensated for 

thermal losses, a good trend was observed, reinforcing the argument that charge profile is good 

indicator of SoH of the battery if the battery parameters are taken care of in runtime.   

The temperature compensation method used for this analysis was model specific to this battery 

model. The amount of charge pumped in the battery during the time for which the battery 

temperature was higher than specified threshold, was ignored. The justification for ignoring that 

amount of charge comes from heat loss as electrical energy is dissipated as thermal energy and 

not stored as chemical energy inside the battery. The figure 6.18 shows the compensated charge 

and discharge capacity calculated for Samsung S4 batteries.  

 

Figure 6.18. Comparison of measured capacity for Samsung Galaxy S4 during charge and discharge 

operation with temperature compensation 
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This study shows that there is hysteresis loss, which increases as the battery ages as degradation 

processes accelerate. The main indicator of the mismatch between the charge and discharge 

capacity is temperature. Although thermal loss of energy during the charging process contributes 

to large deviation in charge and discharge capacities, this loss mechanism can be easily detected 

and compensated. 

Energy lost  = 𝐼2𝑅𝑠𝑡 where I is charge/discharge current, 𝑅𝑠 is series resistance and t is time.  

Once suggested compensation method is to ignore the time period for which the charge was 

pumped into the battery if the battery’s temperature is higher than a predetermined value. 

However, this aspect needs to be further explored as threshold value of temperature might very 

across battery models and chemistries.  

6.5 Comparison across different battery models 

Data of 5 different battery models was used for analysis. These models have different charge 

profiles. The rated capacity of these battery models and charge voltage thresholds are different as 

summarized in the Figure below.  

 

Figure 6.19. Battery models with varying charge voltage threshold and capacities 
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The charge profile of good batteries (above 90% SoH) of all these models was compared to 

observe the effect of having different charge voltage on the current and voltage charge profile. 

The key parameter of interest in this test is the time duration at which the battery goes from 

constant current region to constant voltage region. The first cycle of the following plot presents a 

precise comparison of current and voltage profiles for different battery models during charging:  

 

Figure 6.20. Current profile comparison of different battery models 

 

Time to charge/discharge a battery completely = 
𝑅𝑎𝑡𝑒𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑏𝑎𝑡𝑡𝑒𝑟𝑦

𝑐ℎ𝑎𝑟𝑔𝑒 𝑜𝑟 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 
 

Charging current = 
𝐶

4
 = 

𝑅𝑎𝑡𝑒𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 

4 ℎ𝑜𝑢𝑟𝑠
 

Therefore time taken to charge/discharge = 
𝑅𝑎𝑡𝑒𝑑 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑏𝑎𝑡𝑡𝑒𝑟𝑦

𝑅𝑎𝑡𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 /4
 = 4 hours = 240 minutes.  

This the normalized time to charge/ discharge a battery and it remains constant for batteries with 

different rated capacities. The change in charging current compensates for the change in capacity 

such that the normalized charging time becomes independent of the battery model and rated 

capacity.  
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Figure 6.21. Voltage profile comparison of different battery models 

 

The figure 6.21shows that even though the charging voltage was different for these batteries, the 

time instant at which they switch from constant current mode to constant voltage mode, is 

approximately same. This reinforces the point that the proposed method is independent of battery 

model and hence, varying capacity or cut off charging voltage has no impact on the results.  

 

The results in this section are derived from the use of following mathematical equations: 

Efficiency of a cell = 𝜂 = 
𝑄𝑑

𝑄𝑐
  

  = 
∫  𝑖𝑑(𝑡)𝑑𝑡

𝑡∘
𝑡=0

 

∫  𝑖𝑐(𝑡)𝑑𝑡
𝑡∘

𝑡=0  
 

Where 𝑄𝑑 is the discharge capacity and 𝑄𝑐 is the charge capacity and 𝜂 is coulombic efficiency 

Energy lost as heat = 𝑄𝑐 - 𝑄𝑑 = (1- 𝜂) × 𝑄𝑐= 𝐼2𝑅𝑠𝑡  
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Chapter 7: Results and Conclusions 

7.1 Results and accomplishments of EIS technique 

For EIS technique, experiments were performed to investigate three different parameters 

affecting this approach, State of Charge impact, Non-steady state condition and State of Health 

algorithm design. The proposed SoH estimation algorithm (design discussed in section 4.6) 

exhibits accuracy with in 10% bracket for the SoH estimation as shown in figure 7.1. The tests 

were performed when the batteries were sitting at 100% SoC for this analysis.  

Function Input = 30*𝑀𝑎𝑥𝑥 + 20*𝑀𝑎𝑥𝑦 +40*𝑀𝑖𝑛𝑥 + 10*Zero 

Where x is function input for the state of health function.  

State of Health(𝑥) = {
−16.3 ∗ 𝑥 + 107.6,         0 < 𝑥 < 5.5

−1.77 ∗ 𝑥 + 27.7         5.5 < 𝑥 < 14.5
 

 

 

Figure 7.1. State of Health algorithm average error analysis 

The validation tests show that the algorithm can relate the EIS scan to the SoH of the battery 

without the need of equivalent circuit modeling and parameter extraction. The method 

Battery ID State of Health in  % Test 1 Test 2 Test 3 Test 4 Test 5 Error Average(%) Average Test Time(s)

Battery 1 63 61.1 62.55 63.16 62.6 63.02 -0.514 40.57

Battery 2 90 90.65 91.22 91.35 91.75 90.6 1.114 41.23

Battery 3 30 26.83 27.4 23.29 24.28 25.07 -4.626 40.94

Battery 4 65 68.28 69.45 69.73 69.21 70.4 4.414 40.56

Battery 5 2 0 0 0 0 0 -2 42.12

Battery 6 90 83.39 84.14 85.64 83.8 86.42 -5.322 40.68

Battery 7 89 81.64 81.73 83.19 82.42 82.65 -6.674 40.92

Battery 8 84 80.63 80.45 81.64 80.55 79.97 -3.352 40.77

Battery 9 79 80.41 80.27 79.85 79.81 80.7 1.208 41.25

Battery 10 76 75.73 74.01 75.38 74.95 73.31 -1.324 40.87

Battery 11 64 59.72 59.07 57.81 59.37 59.58 -4.89 41.39

Battery 12 13 20.96 23.07 20.48 21.52 23.1 8.826 42.51

Battery 13 86 77.12 77.68 79.27 77.06 77.98 -8.178 41.89

Battery 14 83 82.59 78.92 79.25 76.05 80.32 -3.574 41.05

Battery T1 55 55.59 55.84 55.08 56.83 55.5 0.768 40.74

Battery T3 81 83.22 83.34 82.63 82.5 81.23 1.584 41.28

Battery T2 71 73.74 75.96 75.24 75.7 74.52 4.032 40.84

Battery T9 22 8.79 9.14 13.33 16.75 16.5 -9.098 41.61

Battery T13 43 8.32 7.68 7.12 8.23 10.25 -34.68 41.53

Battery T14 42 23.7 22.65 23.16 23.63 22.49 -18.874 40.98
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successfully differentiates between good and poor SoH batteries and even provides an estimate 

of SoH with in 10% window of the original value. The test comprises of less than a minute and 

without the need of complex computation (modeling and optimization method) a fairly accurate 

of estimate of SoH can be extracted. Although the algorithm proposed for SoH evaluation is 

model specific, the approach can be extended to different battery models by obtaining a data 

bank of their EIS scans and using similar technique to obtain a mathematical expression for SoH.  

 

The analysis for the evaluation of State of Charge parameter comprised of a series of tests as 

explained in section 4.2. The motivation of this analysis was to investigate how the EIS scans 

varied along with the SoC of the batteries and how that will impact the SoH estimation 

algorithm. The results for this analysis are presented in figure 7.2.  

 

Figure 7.2. SoH algorithm evaluation with varying SoC 

Figure 7.2 shows that the SoH evaluation algorithm provides accurate estimate of the SoH at 

varying SoC level for all the batteries. The algorithm provides accuracy of within the window of 

10% of the original SoH. One reason for this small error is the slight deviation in the EIS scans 

of the battery as SoC varies from 0% to 100%. However, overall the result endorses that a 

battery can be tested at any SoC for EIS techniques to obtain a reasonable estimate.  

Battery ID SoH in  % SoC: 100 % SoC: 90 % SoC: 80 % SoC: 70 % SoC: 60 % SoC: 50 % SoC: 40 % SoC: 30 % SoC: 20 % SoC: 10 % SoC: 00 % Avg. Error %

1 63 60.63 61.38 66.19 63.44 64.26 56.82 55.8 57.62 64.99 56.65 56.65 3.84818

2 92 90.9 95.01 97.18 98.69 98.62 93.97 94.62 92.32 96.7 97.59 94.75 3.68636

3 30 22.34 16.87 21.48 16.61 13.06 9.91 9.34 12.54 32 22.11 21.36 12.3982

4 65 65.89 72.95 71.15 70.05 68.06 64.68 63.52 60.69 74.96 71.66 66.54 4.30636

5 2 0 0 0 0 0 0 0 0 0 0 0 2

6 90 83.93 84.32 90.41 89.5 93.18 85.51 87.86 91.45 80.43 77.87 72.62 5.72727

7 89 80.39 84.16 90.56 87.98 91.9 86.2 84.81 89.46 83.54 84.95 78.89 4.18182

8 84 78.24 83.08 88.88 87.21 90.62 85.62 83.05 88.06 81.72 79.51 83.23 3.23273

9 79 80.02 84.59 85.14 84.57 87.19 81.03 81.66 72.16 82.11 78.63 78.14 3.85273

10 76 73.65 74.92 78.56 81.52 80.25 76.08 71.99 76.61 76.36 75.26 68.59 2.63364

11 64 59.58 67.05 69.39 70.15 71.38 64.42 59.36 59.34 69.59 67.18 64.45 4.12091

12 13 21.84 10.69 11.53 13.35 11.37 12.15 11.29 11.09 24.57 23.85 23.66 4.74091

13 86 76.33 79.63 82.8 79.37 84.31 77.71 79.46 82.07 75.99 73.3 73.47 7.41455

14 83 79.68 81.96 85.03 89.8 87.51 81.07 81.66 79.64 84.64 80.31 77.73 3.08455
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Last parameter investigated for EIS technique is non-steady state condition. Conventionally EIS 

technique has always been investigated under the limitation of the steady state condition, 

however, meeting this requirement is more conducive in laboratory setting rather than field 

operation. Therefore, the tests were designed to predict how non-steady state condition would 

impact EIS scans of the battery. The experimental details of the tests are provided in section 4.5. 

Figure 7.3 shows EIS scans after 30 seconds of rest time, while figure 7.4 shows EIS scans after 

10.5 minutes of rest time. The rest time started when batteries were removed from charging.  

 

Figure 7.3. EIS scans of batteries after 30 seconds of rest time 

 

Figure 7.4. EIS scans after 10.5 minutes of the rest time 



91 

The comparison show that non steady state condition mostly impacts the low frequency region of 

the EIS scans. For low frequencies, a larger time window is required to acquire samples, and 

drifting OCV can therefore have a greater impact on this region of the Nyquist plot.  

 

However, in order to overcome the steady condition limitation it is proposed that OCV of the 

battery is logged before taking the EIS scan and the gradient of the voltage time graphs is 

sampled. Once the OCV gradient is small enough such that the steady state condition can be 

assumed, an EIS scan should be captured. Figure 7.4 shows the OCV gradient profile used for 

one of the batteries used for this study.  

 

Figure 7.5. OVC gradient for Battery 2 

Therefore, the study extends the previous work done on EIS approach and its application to real 

world contingencies. The limiting factors of EIS method were explored with respect to three 

different parameters, SoH algorithm design, impact of SoC variation and non-steady state 

analysis. The experimental results endorse the findings presented in the study to ease these 

limitations such that the EIS approach can used more effectively for field operations.  
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7.2 Results and accomplishments of charge profiling method 

For the charge profiling method, the battery bank comprises of around 200 different batteries, 

coming from five different vendors and having different capacities, with their complete charge 

and discharge cycles recorded using Cadex c7000 battery analyzer. Different battery models 

have different nominal voltages and different end of charge cut off voltages. The data obtained is 

at C/4 charging rate and therefore, the charge time is independent of the capacity of the battery.  

 

Figure 7.1 highlights the results of this method to relate the normalized constant current time 

variable to the SoH of the batteries. The graph shows that the approach seems to be consistent 

across all battery models and relation is independent of battery condition. The average error that 

can stem out of this estimation is expected to be precise to 8% of window of the original value.   

 

Figure 7.6. Relation between SoH of the batteries and normalized constant current duration 
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There are several advantages of using just constant charge region versus the entire charge profile. 

First of them is that it takes less amount of the time for the algorithm to provide the result. Since 

time is of essence in real world application, reducing the overall test is critical for state of the art 

devices. The overall test time saved for all these batteries if constant current method is used and 

not the entire profile of the battery is presented in the following figure:  

 

Figure 7.7. Percentage of overall test time saved Vs. SoH of the batteries 

As shown the poor batteries show large time saving as compared to the good batteries. This is 

because good batteries stay in constant current region for longer period of time.  

The second advantage of having just constant current method and not the complete profile is that 

it suits the daily routine applications in a better way. This approach allows the user to remove the 

battery from the charging dock, even if the battery is not completely charged. Since user doesn’t 

have to wait for the full charge time to get an accurate estimate of the overall SoH of the battery, 

this method has a concrete advantage as compared to the overall charge cycle profiling of the 

battery.   
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7.3 Comparison of EIS with charge/discharge profiling 

This section provides the summary of comparison of two different approaches presented for the 

SoH estimation of Li-Ion batteries. The following characteristics of the proposed techniques 

should be considered, however, the exact suitability of the method depends on the user 

application. 

 

Figure 7.8. Comparison of EIS technique with charge curve profiling 

Since cost and time are key factors of interest in industrial sector, both these methods provide a 

flexible solution as per demand. The charge curve method provides cheaper solution, as it 

requires no external hardware. However, the method is time consuming. For time sensitive 

application, EIS technique seems to be a suitable method. The hardware circuit required for 

performing EIS scan has to be very precise therefore; it increases the overall cost of the BMS.   
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7.4 Future work 

So far, the results presented in the thesis are based on some assumptions regarding the operating 

conditions of the battery. There assumptions might not be valid which real life operation of the 

batteries in field and therefore extensive analysis is required to mature this technology for 

industrial applications. The assumptions range from room temperature and pressure condition for 

the operation of the battery to recommended charge/discharge operating conditions. 

 

A significant change in the ambient temperature of a battery might result in abnormal operation. 

Similarly, charging or discharging a battery beyond its recommended ratings and limits can 

cause damage to the electrochemical properties of the battery. Therefore, these contingencies 

have to be taken into consideration before a user end device is introduced as a commercial 

product in the market.  

 

Further tests are recommended on various battery models of varying capacity, chemical 

configuration and cut-off voltages to validate the results across a range of models. This will 

amplify the accuracy of the algorithms proposed and also highlight the limitation of the proposed 

solutions to decipher the state of health of the batteries.  

 

As far as the EIS scan technology is concerned, improving the safety measures for the proposed 

design and circuit for HCC is essential. Since Li Ion cells have large energy density, a small 

failure can trigger catastrophic reaction that can damage the device under use completely. A 

small short circuit of the battery terminals can cause a high short circuit current resulting in 

thermal runway where flaming gases are ejected. Therefore, this area needs further improvement. 
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Appendix A 

The circuit level schematics and mathematical relations for the sub-sections of the potentiostatic 

circuit fig 5.1 are presented here. UBC capstone group 76 designed these hardware schematics.  

1) Excitation Condition  

 

Excitation Conditioner Circuit 

DAC 1 swing output = 250 × 
 3.3V

212  = 201mVpp 

Output = 
R4

R1
 (Excitation -1.65 V) 

2) Adjustable DC Reference 

 

DC Reference Circuit 

DC reference resolution = 
4.7𝑉 − 2.7𝑉

212  = 488 
𝜇𝑉

𝐿𝑆𝐵
 

Output Voltage = DC_Ref_Input × 
3.3 𝑘𝛺

5.6 𝑘𝛺
 + 2.7V 
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3) Potentiostatic Control (with shunt resistor) 

 

 Potentiostatic controller circuit 

Current measurement swing = (200mA*0.2𝛺).
50𝑉

𝑉
 = 2 V 

AD8531 Buffer current source/ sink ability = 250mA 

4) Difference (voltage response measurement) 

 

Voltage Measurement circuit 

Output = ((Output_potentiostat – Output_DC-Reference) × 30)  + 1.65V 


