
Mobile App Development:
Challenges and Opportunities for Automated Support

by

Mona Erfani Joorabchi

B.Sc., Shahid Beheshti University, Iran, 2007

M.Sc., Simon Fraser University, Canada, 2010

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Electrical and Computer Engineering)

The University of British Columbia

(Vancouver)

April 2016

© Mona Erfani Joorabchi, 2016

Abstract

Mobile app development is a relatively new phenomenon that is increasing rapidly
due to the ubiquity and popularity of smartphones among end-users. As with any
new domain, mobile app development has its own set of new challenges. The
work presented in this dissertation has focused on improving the state-of-the-art
by understanding the current practices and challenges in mobile app development
as well as proposing a new set of techniques and tools based on the identified
challenges.

To understand the current practices, real challenges and issues in mobile de-
velopment, we first conducted an explorative field study, in which we interviewed
12 senior mobile developers from nine different companies, followed by a semi-
structured survey, with 188 respondents from the mobile development commu-
nity. Next, we mined and quantitatively and qualitatively analyzed 32K non-
reproducible bug reports in one industrial and five open-source bug repositories.
Then, we performed a large-scale comparative study of 80K iOS and Android app-
pairs and 1.7M reviews by mining the Google Play and Apple app stores.

Based on the identified challenges, we first proposed a reverse engineering
technique that automatically analyzes a given iOS mobile app and generates a state
model of the app. Finally, we proposed an automated technique for detecting in-
consistencies in the same mobile app implemented for iOS and Android platforms.
To measure the effectiveness of the proposed techniques, we evaluated our methods
using various industrial and open-source mobile apps. The evaluation results point
to the effectiveness of the proposed model generation and mapping techniques in
terms of accuracy and inconsistency detection capability.

ii

Preface

All of the work presented henceforth was conducted by the author, Mona Erfani
Joorabchi. The contributions and evaluations presented in this dissertation are sum-
marized and published in four conference papers. Additionally, the author and an
ECE master student, Mohamed Ali, collaborated equally to a conference submis-
sion of Chapter 4 which is currently under review.

The following list presents publications for each chapter.

• Chapter 2:

– “Real Challenges in Mobile App Development” [86]. M. Erfani Joorabchi,
A. Mesbah and P. Kruchten. In Proceedings of the 7th ACM/IEEE In-
ternational Symposium on Empirical Software Engineering and Mea-
surement (ESEM 2013). ACM/IEEE. 15–24.

• Chapter 3:

– “Works For Me! Characterizing Non-reproducible Bug Reports” [87].
M. Erfani Joorabchi, M. Mirzaaghaei and A. Mesbah. In Proceedings
of the 11th ACM Working Conference on Mining Software Reposito-
ries (MSR 2014). ACM. 62–71.

• Chapter 4:

– The author and an ECE master student collaborated equally to an ACM
SIGSOFT conference submission of this work and it is currently under
review.

• Chapter 5:

– “Reverse Engineering iOS Mobile Applications” [85]. M. Erfani Joorabchi
and A. Mesbah. In Proceedings of the 19th IEEE Working Conference
on Reverse Engineering (WCRE 2012). IEEE Computer Society. 177–
186.

• Chapter 6:

iii

– “Detecting Inconsistencies in Multi-Platform Mobile Apps” [88]. M.
Erfani Joorabchi, M. Ali and A. Mesbah. In Proceedings of the 26th
IEEE International Symposium on Software Reliability Engineering
(ISSRE 2015). IEEE Computer Society. 450–460.

Regarding ethics approval, the following Human Ethics Certificates were ob-
tained from UBC Behavioural Research Ethics Board:

• Project Title “A Study of Cross-platform Development and Testing Practices
of Mobile Applications” with Certificate Numbers H12-03058 and H15-
02247.

iv

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . v

List of Tables . ix

List of Figures . xi

Acknowledgments . xiv

Dedication . xv

1 Introduction . 1
1.1 Research Questions . 5
1.2 Contributions . 8

2 Real Challenges in Mobile App Development 10
2.1 Introduction . 11
2.2 Study Design . 12

2.2.1 Methodology . 12
2.2.2 Data Collection and Analysis 12
2.2.3 Participant Demographics 15

2.3 Findings . 18
2.3.1 General Challenges for Mobile Developers 20
2.3.2 Developing for Multiple Platforms 23
2.3.3 Current Testing Practices 28
2.3.4 Analysis and Testing Challenges 37

2.4 What Has (not) Changed since 2012? A Follow-up Study 40
2.4.1 Survey Design . 40
2.4.2 Our Participants . 41
2.4.3 Analysis and Summary of Survey Findings 41

v

2.5 Threats to Validity . 45
2.6 Discussion . 46

2.6.1 Mapping Study . 46
2.6.2 Same App across Multiple Platforms 47
2.6.3 Testing Mobile-Specific Features 49
2.6.4 Other Challenging Areas 50

2.7 Related Work . 50
2.8 Conclusions . 55

3 Works For Me! Characterizing Non-reproducible
Bug Reports . 57
3.1 Introduction . 58
3.2 Non-Reproducible Bugs . 60
3.3 Methodology . 60

3.3.1 Bug Repository Selection 61
3.3.2 Mining Non-Reproducible Bug Reports 62
3.3.3 Quantitative Analysis . 64
3.3.4 Qualitative Analysis . 65

3.4 Results . 66
3.4.1 Frequency and Comparisons (RQ1) 68
3.4.2 Cause Categories (RQ2) 69
3.4.3 Common Transition Patterns (RQ3) 73
3.4.4 Fixed Non-reproducible Bugs (RQ4) 76

3.5 Discussion . 77
3.5.1 Quantitative Analysis of NR Bug Reports 77
3.5.2 Fixing NR Bugs . 77
3.5.3 Interbug Dependencies 78
3.5.4 Mislabelling . 78
3.5.5 Different Domains and Environments 78
3.5.6 Communication Issues 79
3.5.7 Threats to Validity . 79

3.6 Related Work . 80
3.7 Conclusions . 82

4 Same App, Two App Stores: A Comparative Study 84
4.1 Introduction . 84
4.2 Methodology . 86

4.2.1 Data Collection . 86
4.2.2 Matching Apps to Find App-Pairs 87
4.2.3 App-store Attribute Analysis 91
4.2.4 User Reviews . 92
4.2.5 Success Rates . 94

vi

4.2.6 Datasets and Classifiers 96
4.3 Findings . 96

4.3.1 Prevalence and Attributes (RQ1) 96
4.3.2 Top Rated Apps (RQ2) 102
4.3.3 Success Rate (RQ3) . 103
4.3.4 Major Complaints (RQ4) 108

4.4 Discussion . 110
4.4.1 Implications . 110
4.4.2 Threats to Validity . 111

4.5 Related Work . 112
4.6 Conclusions . 113

5 Reverse Engineering iOS Mobile Applications 114
5.1 Introduction . 114
5.2 Related Work . 116
5.3 Background and Challenges . 118
5.4 Our Approach . 121

5.4.1 Hooking into the Application 123
5.4.2 Analyzing UI Elements 124
5.4.3 Exercising UI Elements 124
5.4.4 Accessing the Next View Controller 125
5.4.5 Comparing States . 126
5.4.6 State Graph Generation 129

5.5 Tool Implementation: ICRAWLER 129
5.6 Empirical Evaluation . 130

5.6.1 Experimental Objects . 130
5.6.2 Experimental Design . 131
5.6.3 Results . 132
5.6.4 Findings . 134

5.7 Discussion . 134
5.8 Conclusions . 136

6 Detecting Inconsistencies in Multi-Platform
Mobile Apps . 137
6.1 Introduction . 138
6.2 Pervasive Inconsistencies . 139
6.3 Approach . 140

6.3.1 Inferring Abstract Models 141
6.3.2 Mapping Inferred Models 145
6.3.3 Visualizing the Models 151

6.4 Tool Implementation . 152
6.5 Evaluation . 153

vii

6.5.1 Experimental Objects . 153
6.5.2 Experimental Procedure 155
6.5.3 Results and Findings . 156

6.6 Discussion . 160
6.6.1 Comparison Criteria . 160
6.6.2 Limitations . 160
6.6.3 Applications . 161
6.6.4 Threats to Validity . 162

6.7 Related Work . 162
6.8 Conclusions . 163

7 Conclusions and Future Work . 165
7.1 Revisiting Research Questions 165
7.2 Future Work and Concluding Remarks 172

Bibliography . 175

viii

List of Tables

Table 2.1 Interview Participants. 14
Table 2.2 A mapping study. 47

Table 3.1 Studied bug repositories and their rate of NR bugs. 63
Table 3.2 Mapping of BUGZILLA and JIRA fields. 65
Table 3.3 NR Categories and Rules. 67
Table 3.4 Descriptive statistics between NR and Others, for each defined

metric: Active Time (AT), # Unique Authors (UA), # Com-
ments (C), # Watchers (W), from all repositories. 69

Table 3.5 Examples of STATUS (RESOLUTION) transitions of NR bug re-
ports. 74

Table 4.1 Collected app-pair attributes 88
Table 4.2 Real-world reviews and their classifications. 93
Table 4.3 Reviews and subcategories of problem discovery. 96
Table 4.4 Descriptive statistics for iOS and Android (AND), on Cluster

Size (C), Ratings (R), Ratings for all apps (R*), Stars (S), Stars
for all apps (S*), and Price (P). 98

Table 4.5 Statistics of 14 Apps used to build the classifiers (C1 = Generic
Classifier, C2 = Sentiment Classifier, NB = Naive Bayes Al-
gorithm, SVM = Support Vector Machines Algorithm, Train =
Training pool). 104

Table 4.6 Descriptive statistics for the iOS and Android (AND) reviews
for the app-pairs: Problem Discovery (PD), Feature Request
(FR), Non-informative (NI), Positive (P), Negative (N), Neutral
(NL), and SR (Success Rate). 106

Table 4.7 Descriptive statistics for the problematic reviews of the app-
pairs: Critical (CR), Post Update (PU), Price Complaints (PC),
and App Feature (AF). 110

Table 5.1 Experimental objects. 130
Table 5.2 Characteristics of the experimental objects. 131
Table 5.3 Results. 133

ix

Table 6.1 Six combinations for mapping. 149
Table 6.2 Characteristics of the experimental objects, together with total

number of edges, unique states, elements and manual unique
states counts (MC) across all the scenarios. 154

Table 6.3 Number of reported inconsistencies by CHECKCAMP, vali-
dated, average and percentage of their severity with examples
in each app-pair. 159

Table 6.4 Bug severity description. 160

x

List of Figures

Figure 2.1 How many years of work experience do you have in software
development: . 16

Figure 2.2 How many years of work experience do you have in native
mobile application development: 16

Figure 2.3 What platforms do you develop native mobile applications for
(Check all that apply): . 17

Figure 2.4 How many native mobile applications have you developed so far: 17
Figure 2.5 What types of native apps have you built (check all that apply)? 17
Figure 2.6 Which of the following applies to you: 18
Figure 2.7 If you are working in a company, how big is the native mobile

application developer team (including developers for different
platforms)? . 18

Figure 2.8 An overview of our four main categories with 31 subordinate
concepts. 19

Figure 2.9 Do you see the existence of multiple platforms as a challenge
for developing mobile applications and why? 21

Figure 2.10 Have you developed the same native mobile app across differ-
ent platforms? . 25

Figure 2.11 How are your native mobile apps tested? 28
Figure 2.12 Who is responsible for testing your native mobile apps? 29
Figure 2.13 How do you test your application’s correctness across multiple

platforms? . 30
Figure 2.14 What levels of testing do you apply and how? 31
Figure 2.15 iOS levels of testing. 33
Figure 2.16 Android levels of testing. 33
Figure 2.17 Windows levels of testing. 33
Figure 2.18 Blackberry levels of testing. 33

Figure 3.1 Overview of our methodology. 61
Figure 3.2 Active Time. 68
Figure 3.3 No. of Authors. 68
Figure 3.4 No. of Comments. 68

xi

Figure 3.5 No. of Watchers. 68
Figure 3.6 Overall Rate of NR Categories. 70
Figure 3.7 Rate of root cause categories in each bug repository. 71
Figure 3.8 Resolution-to-Resolution Transition Patterns of NR Bug Re-

ports (only weights larger than 2% are shown on the graph). . 75

Figure 4.1 Overview of our methodology. 87
Figure 4.2 Android Cluster for Swiped app. 88
Figure 4.3 a) Groupon and b) Scribblenauts apps. Android apps are shown

on top and iOS apps at the bottom. 90
Figure 4.4 Matching App-pair Criteria. 90
Figure 4.5 Clusters. 97
Figure 4.6 Ratings. 99
Figure 4.7 Stars. 99
Figure 4.8 Prices. 100
Figure 4.9 The rates of classifiers’ categories for our 2K app-pairs, where

each dot represents an app-pair. 105
Figure 4.10 The success rates for our 2K app-pairs, where each dot repre-

sents an app-pair. 106
Figure 4.11 Success rates for 2K app-pairs. The green round shape refers

to Android apps and the blue triangular shape refers to iOS apps.107
Figure 4.12 The rates of complaints categories for our 2K app-pairs, where

each dot represents an app-pair. 109

Figure 5.1 The Olympics2012 iPhone app going through a UI state tran-
sition, after a generated event. 120

Figure 5.2 The generated state graph of the Olympics2012 iPhone app. . 121
Figure 5.3 Relation between ICRAWLER and a given iPhone app. The

right side of the graph shows key components of an iPhone
app taken from [125]. 122

Figure 5.4 The new method in which we inject code to set the dismissed
boolean and then call the original method. 125

Figure 5.5 Swapping the original built-in method with our new method in
the +load function. 126

Figure 6.1 The overview of our technique for behaviour checking across
mobile platforms. 140

Figure 6.2 An edge object of MTG iPhone app with its touched element
and methods. 143

Figure 6.3 A snapshot of a state in MTG iPhone app with its captured UI
element objects. 144

xii

Figure 6.4 Visualization of mapping inferences for MTG iPhone (left) and
Android (right) app-pairs. The result indicates 3 unmatched
states shown with red border (including 2 functionality incon-
sistencies where iPhone has more states than Android and 1
platform specific inconsistency with MoreViewsController on
iPhone). Other 5 matched states have data inconsistencies
shown with yellow border. 151

Figure 6.5 Zooming into a selected State (or Edge) represents detected in-
consistencies and UI-structure (or touched element and meth-
ods) information of iPhone (left) and Android (right) app-pairs. 152

Figure 6.6 Plot of precision and recall for the five mapping combinations
of each app-pair. 157

Figure 6.7 F-measure obtained for the five mapping combinations on each
app-pair. 158

xiii

Acknowledgments

My deepest gratitude is to my supervisor, Dr. Ali Mesbah. I have been amazingly

fortunate to have a supervisor who gave me the freedom to explore on my own, and

at the same time the guidance to recover when my steps faltered. You have set an

example of excellence as a researcher, advisor, mentor, instructor, and role model.

I would like to thank my thesis committee members who were more than gen-

erous with their expertise and precious time through this process; your discus-

sion, ideas, and feedback have been absolutely invaluable. A special thank to Dr.

Philippe Kruchten for his co-authorship in our ESEM paper.

I also need to thank the very many great friends from the SALT lab for baring

with me and providing a great research and social atmosphere at the school.

I would like to acknowledge and thank Quickmobile for allowing me to con-

duct my research and providing any assistance requested. Special thanks go to the

members of the product development department for their continued support.

My deepest levels of gratitude also go to my amazing twin sister and best

friend, Minoo, who made a significant mark in my life with her presence, support,

and encouragement.

Last but not least, I would like to thank my amazing and supportive friend,

Dr. Nima Kaviani. Nima walked alongside me from the very starting point of my

Ph.D. career to the end. Thanks Nima for all the help, support, compassion, and

for your trustful manner.

xiv

Dedication

To the greatest blessings of my life:

“my mom and my dad, my sister and my brother...”

Your support, encouragement, and constant love have sustained me throughout my

life and successfully made me the person I am becoming. Thank you!

xv

Chapter 1

Introduction

The ubiquity and popularity of smartphones among end-users has increasingly

drawn software developers’ attention over the last few years. Mobile apps fall

broadly into three categories: native, web-based, and hybrid [157]. Native applica-

tions run on a device’s operating system and are required to be adapted for different

mobile devices and platforms, such as Apple’s iOS, Google’s Android, Windows

Phone, and Blackberry. While this approach provides the best performance and

access to all native platform features, the downside is, in order to build a multi-

platform application, the code has to be rewritten for each platform separately.

Web-based apps require a web browser on a mobile device. Web technologies such

as HTML, CSS, and JavaScript are used to build web-based apps and multiple

platforms can be targeted. However, web technologies are not allowed to access all

device features and performance can suffer. Hybrid apps are ‘native-wrapped’ web

apps and primarily built using HTML5 and JavaScript. The native-wrapped

container provides access to platform features. Recent surveys [50, 51] reveal that

developers are mainly interested in building native apps because they offer the best

performance and allow for advanced UI interactions. Throughout this dissertation,

we focus on native mobile apps. Henceforth, we use the term ‘mobile app’ or

simply ‘app’ to denote ‘native mobile application’.

While mobile app development for devices and platforms, including Nokia,

BlackBerry, Android, and Windows Phone goes back over 10 years, there has been

exponential growth in mobile app development since the Apple app store launched

in July 2008 [213]. Since then, other mobile platforms have opened online stores

and marketplaces as their distribution channels for third-party apps; the Android

1

Market opened a few months later, followed by BlackBerry App World, Nokia’s

Ovi Store and Windows Phone Marketplace. The easy distribution via the online

app stores have significantly lowered the barrier to market entry [64] and, therefore,

for the first time in software development history, small companies and single de-

velopers access distribution infrastructures that allow them to provide their mobile

apps to millions of users at the tap of a finger [186]. On the other hand, users were

granted control over the apps they download and install on their mobile devices,

and subsequently rate and review apps publicly on the online app stores. As a re-

sult, these app stores provide unique and critical communication channels between

developers and users, where users can provide relevant information to guide devel-

opers in accomplishing their software development, maintenance, and evolution

tasks.

Currently, iOS and Android mobile apps dominate the app market each with

over 1.5 million apps in their respective app stores, i.e., Apple’s AppStore and

Android Market, and there are hundreds of thousands of apps on Windows Mar-

ketplace and Blackberry AppWorld.1 Recent estimations indicate that by 2017

over 80 percent of all handset shipments will be smartphones, capable of running

mobile apps.2

As with any new domain, mobile app development has its own set of new chal-

lenges. Researchers have discussed some of the challenges involved in mobile

app development [82, 138, 166, 169, 186], however, most of the early related dis-

cussions are anecdotal in nature. Additionally, to obtain better insights of issues

and concerns in software development, in general, it is a common practice that

researchers investigate other sources of software development data. Thus, several

studies have made an effort to understand mobile development issues and concerns

through (1) mining mobile bug repositories [63, 112, 155] as they have become an

integral component of software development activities; (2) mining and analyzing

app stores’ content, such as user-reviews [71, 124, 185], mobile app descriptions

[105, 143, 200], mobile app bytecode [54, 194, 195]; and (3) mining question and

answer (QA) websites that are used by developers [62, 148, 149, 212]. While there

are substantial qualitative field studies [106, 133, 203] on different areas of soft-

1http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
2http://www.prweb.com/releases/2013/11/prweb11365872.htm

2

http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
http://www.prweb.com/releases/2013/11/prweb11365872.htm

ware engineering and traditional software development, limited field studies have

been conducted to investigate the actual challenges and issues associated with mo-

bile development.

Thus, we start by conducting the first qualitative field study to gain an under-

standing of the current practices and challenges in native mobile app development.

To this end, we follow a Grounded Theory approach, a research methodology stem-

ming from the social sciences [99], which is gaining increasing popularity in soft-

ware engineering research [44, 133, 199, 204]. Therefore, instead of starting with

predetermined hypotheses, we set our objective to discover the process and chal-

lenges of mobile app development across multiple platforms. We first conduct and

analyze interviews with 12 senior mobile app developers, from nine different in-

dustrial companies, who are experts in platforms such as iOS, Android, Windows

Mobile/Phone, and Blackberry. Based on the outcome of these interviews, we de-

sign and distribute an online survey, which has been completed by 188 mobile app

developers worldwide.

Our results reveal challenges of dealing with multiple mobile platforms during

mobile development. Mobile devices and platforms are extensively moving toward

fragmentation, i.e., 1) each mobile platform is different with regard to the pro-

gramming languages, API/SDK, supported tools, user interface, user experience,

and Human Computer Interaction (HCI) standards; 2) on each platform, various

devices exist with different properties such as memory, CPU speed, operating sys-

tem, graphical resolutions, and screen sizes. Developers currently treat the mobile

app for each platform separately and manually check that the functionality is pre-

served and consistent across multiple platforms. Furthermore, mobile developers

need better analysis tools in order to track metrics for their apps during the de-

velopment phase. Additionally, testing is a significant challenge. Current testing

frameworks do not provide the same level of support for different platforms and

current testing tools do not support important features for mobile testing such as

mobility, location services, sensors, or different gestures and inputs.

In our first study, developers mentioned that one of their challenges is to deal

with the crashes that are “very hard to catch and harder to reproduce” [86]. Thus,

we perform the first empirical analysis of non-reproducible bug reports. While we

start with mobile non-reproducible bugs, we notice that none of the related work

3

investigates non-reproducible bug reports in isolation. Thus, we expand the study

to other software environments and domains. Furthermore, our first field study in-

dicates that to attract as many users as possible, developers often publish the same

app for multiple mobile platforms [86]. While several studies have mined and ana-

lyzed app stores [71, 124, 185], all of these studies focus on one app store only and

none has studied the same app published on different app stores. Thus, we conduct

the first comparative study on mobile app-pairs, i.e., the same app implemented for

iOS and Android platforms, in order to analyze and compare their various attributes

and root causes of user complaints at multiple levels of granularity.

Additionally, a previous study [192] shows that many developers interact with

the graphical user interface (GUI) to comprehend the software by creating a men-

tal model of the application. Reverse engineering of desktop user interfaces was

first proposed by Memon et al. in a technique called GUI Ripping [159]. For

web applications, Mesbah et al. [163] proposed a crawling-based technique to re-

verse engineer the navigational structure and paths of a web application under test.

Amalfitano et al. [49] extend this approach and propose a GUI crawling technique

for a small subset of widgets of Android apps. While other related studies [97, 119]

focus on Android apps, none has been done to reverse engineer Objective-C iPhone

apps automatically. Thus, in order to help developers gain a high-level understand-

ing of their mobile apps, we propose the first automated technique that through

dynamic analysis of a given iPhone app, generates a state model of it. This gener-

ated model can assist mobile developers to better comprehend and visualize their

mobile apps. It can also be used for maintenance, analysis and testing purposes

(i.e., smoke testing, test case generation).

Finally, we use model-based techniques in our last study, in order to address a

major challenge, faced by industrial mobile developers. The challenge is to keep

the app consistent and ensure that the behaviour is the same across multiple plat-

forms [86]. Dealing with multiple platforms is not specific to the mobile domain.

The problem also exists for cross-browser compatibility testing [74, 161]. How-

ever, in the mobile domain, each mobile platform is different with regard to the

OS, programming languages, API/SDKs, and supported tools, making it much

more challenging to detect inconsistencies automatically. In the mobile domain,

Rosetta [100] infers likely mappings between the JavaME and Android graphics

4

APIs. While none of the related work addresses inconsistency detection across

native mobile apps, we propose the first automated technique which for the same

mobile app implemented for iOS and Android platforms infers abstract models

from the dynamically captured traces and formally compares the app-pair using

different comparison criteria to expose any detected inconsistencies.

1.1 Research Questions
The goal of this thesis is to understand the current practices and challenges in mo-

bile app development as well as proposing a new set of techniques and tools based

on the identified challenges to help mobile app developers. In order to address this

goal, we designed five research questions. The first three research questions aim to

obtain better insights regarding issues and concerns in mobile development through

(1) interviewing and surveying developers in the field, (2) mining bug repositories,

and (3) analyzing app stores’ content. The last two research questions are follow-

up studies, which address the identified challenges by proposing techniques and

tools.

RQ1. What are the main challenges developers face in practice when they

build mobile apps?

As a preliminary step in our research journey, we start with this basic and crit-

ical question. Thus, we conducted a qualitative field study, following a Grounded

Theory approach, in which we interviewed 12 senior mobile developers from nine

different companies, followed by a semi-structured survey, with 188 respondents

from the mobile development community.

RQ2. What are the characteristics of non-reproducible bug reports and the

challenges developers deal with?

In our first study, developers mentioned that one of their challenge is “deal-

ing with the crashes that are very hard to catch and harder to reproduce” [86].

While, ideally each bug report should help developers to find and fix a software

fault, there is a subset of reported bugs that is not (easily) reproducible, on which

developers spend considerable amounts of time and effort. Although we start with

mobile non-reproducible bugs, we notice that none of the related work investigates

non-reproducible bug reports in isolation. Thus, we expand the study to other soft-

5

ware environment and domains. We perform an empirical analysis of bug reports,

in particular, characterizing rate, nature, and root causes of 32K non-reproducible

reports. We quantitatively compared them with other resolution types, using a set

of metrics and qualitatively analyzed root causes of 1,643 non-reproducible bug

reports to infer common categories of the reasons these reports cannot be repro-

duced.

RQ3. What are the app-store characteristics of the same mobile app, published

in different marketplaces? How are the major concerns or complaints different on

each platform?

Furthermore, our first study indicates that to attract as many users as possible,

developers often implement and publish the same app for multiple mobile plat-

forms [86]. While, ideally, a given app should provide the same functionality and

high-level behaviour across platforms, this is not always the case in practice and

there might be known/unknown differences in functionality of the same app-pairs

due to many reasons (legal, marketing, platform, API access). For instance, a user

of the Android STARBUCKS app complains: “I downloaded the app so I could

place a mobile order only to find out it’s only available through the iPhone app.

A paying customer is a customer regardless of what phone they have and limiting

their access to the business is beyond me.” An iOS NFL app review reads: “on the

Galaxy you can watch the game live..., on this (iPad) the app crashes sometimes,

you can’t watch live games, and it is slow.” Thus, as part of our goal to gain mo-

bile development insights, we conducted a large-scale comparative study on 80K

iOS and Android mobile app-pairs, in order to analyze and compare their various

attributes, user reviews, and root causes of user complaints at multiple levels of

granularity. Since we noticed that most of the related work focused on one app

store only and none has studied the same app, published on different app stores,

we mine the two most popular app stores i.e., the Google Play and Apple app

stores and employ a mixed-methods approach using both quantitative and qualita-

tive analysis. We also looked for app-pairs in the top rated 100 free and 100 paid

apps listed on Google Play and Apple app stores and identify some of the obstacles

that prevent developers from publishing their apps in both stores. Additionally,

we built three automated classifiers and classified 1.7M reviews to understand how

user complaints and concerns vary across platforms.

6

RQ4. How can we help developers to better understand their mobile apps?

Additionally, the previous study [192] shows that many developers interact

with the graphical user interface (GUI) to comprehend the software by creating a

mental model of the application. Thus, in order to help developers gain a high-level

understanding of their mobile apps, we propose a reverse engineering technique

that automatically performs dynamic analysis of a given iPhone app by executing

the program and extracting information about the runtime behaviour. Our approach

exercises the application’s user interface to cover the interaction state space. Our

tool, called ICRAWLER (iPhone Crawler), is capable of automatically navigating

and generating a state model of a given iPhone app. This generated model can

assist mobile developers to better comprehend and visualize their mobile apps. It

can also be used for maintenance, analysis and testing purposes (i.e., smoke testing,

test case generation).

RQ5. How can we help developers to automatically detect inconsistencies in

their same mobile app across multiple platforms?

Finally, we address a major challenge, we found in our first qualitative study

[86]. The challenge, faced by industrial mobile developers, is to keep the app con-

sistent and ensure that the behaviour is the same across multiple platforms. This

challenge is due to the many differences across the platforms, from the devices’

hardware to operating systems (e.g., iOS/Android), and programming languages

used for developing the apps (e.g., Objective-C/Java). We found that developers

currently treat the mobile app for each platform separately and manually perform

screen-by-screen comparisons, often detecting many cross-platform inconsisten-

cies. This manual process is, tedious, time-consuming, and error-prone. Thus,

we first identify the most pervasive cross-platform inconsistencies between iOS

and Android mobile app-pairs, through industrial interviews as well as a document

shared with us by the interviewees, containing 100 real-world cross-platform mo-

bile app inconsistencies. Then, we propose an automated technique and tool, called

CHECKCAMP (Checking Compatibility Across Mobile Platforms), which for the

same mobile app implemented for iOS and Android platforms instruments and gen-

erates traces of the app on each platform for a set of user scenarios. Then, it infers

abstract models from the captured traces that contain code-based and GUI-based

information for each pair, and formally compares the app-pair using different com-

7

parison criteria to expose any discrepancies. Finally, it produces a visualization of

the models, depicting any detected inconsistencies.

1.2 Contributions
We have conducted a series of studies on different aspects of mobile app analy-

sis. In response to our research questions as outlined in Section 1.1, the following

papers have been published and one is currently under review:

• Chapter 2:

– “Real Challenges in Mobile App Development” [86]. M. Erfani Joorabchi,

A. Mesbah and P. Kruchten. In Proceedings of the 7th ACM/IEEE In-

ternational Symposium on Empirical Software Engineering and Mea-

surement (ESEM 2013). ACM/IEEE. 15–24.

• Chapter 3:

– “Works For Me! Characterizing Non-reproducible Bug Reports” [87].

M. Erfani Joorabchi, M. Mirzaaghaei and A. Mesbah. In Proceedings

of the 11th ACM Working Conference on Mining Software Reposito-

ries (MSR 2014). ACM. 62–71.

• Chapter 4: The author and an ECE master student collaborated equally to

an ACM SIGSOFT conference submission of this work and it is currently

under review. We addressed four research questions in this work and my

main contributions are:

– In RQ1, I was responsible for quantitative analysis of 80K app-pairs’

attributes. I compared their attributes such as ratings, stars, categories,

prices, versions and calculated their statistics to investigate their differ-

ences.

– In RQ1, I equally contributed to categorize the reasons of price fluctu-

ation.

– I was responsible for RQ2.

8

– In RQ3, I manually inspected and labeled 2.1K problematic reviews

for training the generic classifier.

– In RQ3, I manually inspected and labeled 2.1K problematic reviews

for training the sentiment classifier.

– In RQ3, I calculated the statistical results and figures for the generic

and sentiment classes.

– In RQ3, I equally contributed to defining success rate.

– In RQ4, I was responsible for topic modelling analysis on 20 app-pairs.

– In RQ4, I equally contributed to defining classes for the complaints

classifier.

– In RQ4, I manually inspected and labeled 500 problematic reviews for

the complaints classifier.

– I equally contributed in writing the paper.

• Chapter 5:

– “Reverse Engineering iOS Mobile Applications” [85]. M. Erfani Joorabchi

and A. Mesbah. In Proceedings of the 19th IEEE Working Conference

on Reverse Engineering (WCRE 2012). IEEE Computer Society. 177–

186.

• Chapter 6:

– “Detecting Inconsistencies in Multi-Platform Mobile Apps” [88]. M.

Erfani Joorabchi, M. Ali and A. Mesbah. In Proceedings of the 26th

IEEE International Symposium on Software Reliability Engineering

(ISSRE 2015). IEEE Computer Society. 450–460.

9

Chapter 2

Real Challenges in Mobile App Development

Summary3

Mobile app development is a relatively new phenomenon that is increasing rapidly

due to the ubiquity and popularity of smartphones among end-users. The goal of

our study is to gain an understanding of the main challenges developers face in

practice when they build apps for different mobile devices. We conducted a qual-

itative study, following a Grounded Theory approach, in which we interviewed

12 senior mobile developers from nine different companies, followed by a semi-

structured survey, with 188 respondents from the mobile development community.

The outcome is an overview of the current challenges faced by mobile develop-

ers in practice, such as developing apps across multiple platforms, lack of robust

monitoring, analysis, and testing tools, and emulators that are slow or miss many

features of mobile devices. Our initial study was conducted in 2012; to examine

whether the results of our study still hold in 2015, we survey 15 senior develop-

ers, including the senior interviewees in our earlier study, and report the findings.

Based on our findings of the current practices and challenges, we highlight areas

that require more attention from the research and development community.

3The main study in this chapter appeared at the 7th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM 2013) [86].

10

2.1 Introduction
The ubiquity and popularity of smartphones among end-users has increasingly

drawn software developers’ attention over the past recent years. Currently, iOS and

Android each have over 1.5 million mobile apps on Apple’s AppStore and Android

Market, and there are hundreds of thousands of apps on Windows Marketplace and

Blackberry AppWorld.4 Recent estimations indicate that by 2017 over 80 percent

of all handset shipments will be smartphones, capable of running mobile apps.5

As with any new domain, mobile application development has its own set of

new challenges, which researchers have recently started discussing [46, 138, 166].

Kochhar et al. [138] discussed the test automation culture among app developers

by surveying Android and Windows app developers. Miranda et al. [166] reported

on an exploratory study through semi-structured interviews. Most early related

discussions [82, 92, 169, 213], however, are anecdotal in nature. While there are

substantial qualitative studies on different areas of software engineering, limited

studies have been conducted to investigate the challenges that mobile app develop-

ers face in practice.

The goal of our study is to gain an understanding of the current practices and

challenges in native mobile app development. To this end, we conducted an explo-

rative study by following a Grounded Theory approach, a research methodology

stemming from the social sciences [99], which is gaining increasing popularity

in software engineering research [44, 133, 199, 204]. Thus, instead of starting

with predetermined hypotheses, we set our objective to discover the process and

challenges of mobile app development across multiple platforms. We started by

conducting interviews with 12 senior mobile app developers, from nine different

industrial companies. The developers are experts in building mobile apps for plat-

forms such as iOS, Android, Windows Mobile/Phone, and Blackberry. Based on

the outcome of these interviews, we designed and distributed an online survey,

which was properly completed by 188 mobile app developers worldwide.

Our results reveal challenges of dealing with multiple mobile platforms during

mobile development. While mobile devices and platforms are extensively moving

4http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
5http://www.displaysearch.com/pdf/131121 smartphones to pass global mobile phone

shipments by 2017.pdf

11

http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
http://www.displaysearch.com/pdf/131121_smartphones_to_pass_global_mobile_phone_shipments_by_2017.pdf
http://www.displaysearch.com/pdf/131121_smartphones_to_pass_global_mobile_phone_shipments_by_2017.pdf

toward fragmentation, the contemporary development process is missing the adap-

tation to leverage knowledge from platform to platform. Developers currently treat

the mobile app for each platform separately and manually check that the function-

ality is preserved across multiple platforms. Furthermore, mobile developers need

better analysis tools in order to track metrics for their apps during the development

phase. Additionally, testing is a significant challenge. Current testing frameworks

do not provide the same level of support for different platforms. Additionally,

platform-supported tools are required, as the current third party testing solutions

have limited support for important features of mobile testing such as mobility, lo-

cation services, sensors, or different gestures and inputs.

2.2 Study Design
The objective of our study is to gain an understanding of the challenges mobile app

developers face in practice.

2.2.1 Methodology

Considering the nature of our research goal, we decided to conduct a qualitative

study by following a Grounded Theory approach [79, 99]. Grounded Theory is

best suited when the intent is to learn how people manage problematic situations

and how people understand and deal with what is happening to them [45]. It is also

useful when the research area has not been covered in previous studies [130] and

the emphasis is on new theory generation [78], i.e., understanding a phenomenon.

Grounded Theory has been gaining more traction in software engineering research

recently [44, 70, 106, 132, 133, 139, 191, 203, 204].

2.2.2 Data Collection and Analysis

Our approach for conducting a Grounded Theory research includes a combination

of interviews and a semi-structured survey. The interviews targeted experts in mo-

bile app development and the survey was open to the general mobile development

community.

Our interviews were conducted in an iterative style, and they are at the core of

the data collection and analysis process. At the end of each interview, we asked

12

the interviewees for feedback on our set of questions; what is missing and what

is redundant. The analytical process involves collecting, coding and analyzing

data after each interview while developing theory simultaneously. From the in-

terview transcripts, we analyze the data line-by-line, break down interviews into

distinct units of meaning (sentences or paragraphs), allocate codes to the text and

label them to generate concepts to these units. Our codes, where appropriate, are

taken from the text itself. Otherwise, they are created by the authors to capture the

emerging concepts. Furthermore, these concepts are then clustered into descriptive

categories. They are re-evaluated and subsumed into higher-order categories in

order to generate an emerging theory. Theoretical sampling evolves into an ever-

changing process, as codes are analyzed and categories and concepts continue to

develop [77]. We perform constant comparison [99] between the analyzed data

and the emergent theory until additional data being collected from the interviews

adds no new knowledge about the categories. Thus, once the interviewees’ answers

begin to resemble the previous answers, a state of saturation [98] is reached, and

that is when we stop the interviewing process.

Based on the theory emerging from the interview phase, we designed a semi-

structured survey, as another source of data, to challenge this theory. Before pub-

lishing the survey and making it publicly available, we asked four external people

– one senior Ph.D. student and three mobile app developers – to review the survey

in order to make sure all the questions were appropriate and easily comprehensible.

Most of our survey questions are closed-ended, but there are also a few optional

open-ended questions for collecting participants’ ‘insights’ and ‘experiences’. The

responses to these open-ended questions are fed into our coding and analysis step

to refine the results, where applicable. This survey, as distributed to participants,

is available online.6 Additionally, the first page of the survey includes the purpose

and procedures of the study, potential risks and benefits, privacy and confidential-

ity, our contact information and consent.

6http://www.ece.ubc.ca/∼merfani/survey.pdf

13

http://www.ece.ubc.ca/~merfani/survey.pdf

Table 2.1: Interview Participants.

ID Role Platform Experience Software
Dev Exp (yr)

Mobile Dev
Exp (yr)

Company (Mobile
Dev Team Size)

Company’s Platform Support

P1 iOS Lead iOS, Android 6-10 6 A (20) iOS, Android, Windows, Blackberry
P2 Android Lead Android, iOS 6-10 6 A (20) iOS, Android, Windows, Blackberry
P3 Blackberry Lead Blackberry, iOS, Android 6-10 6 A (20) iOS, Android, Windows, Blackberry
P4 iOS Lead iOS 6-10 3-4 B (2-5) iOS, Android
P5 Android Lead Android 6-10 3 B (2-5) iOS, Android
P6 iOS Dev iOS 4-5 3-4 C (20+) iOS, Android
P7 Windows Mobile Dev Windows, Android 10+ 2 D (1) Windows
P8 Android Dev Android 4-5 2-3 E (2-5) iOS, Android
P9 Android Lead Android, iOS, Windows 10+ 5-6 F (6-10) iOS, Android, Windows
P10 iOS Dev iOS, Android 10+ 3 G (1) iOS, Android
P11 Android Lead Android, Blackberry 10+ 6+ H (1) Android, Blackberry
P12 iOS Dev iOS, Windows 10+ 2-3 I (2-5) iOS, Windows

14

2.2.3 Participant Demographics

Interviews. We interviewed 12 experts from nine different companies in Canada.

Each interview session took on average around 30 minutes. We recorded audio

in the interview sessions and then transcribed them for later analysis. Table 2.1

presents each participant’s role in their company, the mobile platforms they have

expertise in, the number of years they have work experience in software develop-

ment and in mobile app development, the size of the mobile development team, and

finally all the mobile platforms that each company supports. Regarding the partici-

pants’ experience in developing mobile apps, five have around six years, four have

3–4 years and three have 2–3 years of experience. Five participants are mainly

iOS experts, five are Android experts, one is a Windows expert, and finally one is

a Blackberry expert. In addition, the category distribution of their apps includes

Tools/Utilities, Business, Social Networks, Maps/Navigation, Games, Education,

Travel, Music, Videos, Sports, Entertainment, and (events and conferences, medi-

cal professionals and self-improvement) categories.

Survey. Our survey was fully completed by 188 respondents. We released the

survey to a wide variety of mobile development groups. We targeted the popular

Mobile Development Meetup groups, LinkedIn groups related to the native mobile

development and shared the survey through our Twitter accounts. We kept the sur-

vey live for two and a half months. No reward or incentive (such as donations)

was offered to the participants. In our attempt to distribute our online survey, it

was interesting to see people’s reactions; they liked our post on LinkedIn groups

and gave encouraging comments such as “I hope it will help to make mobile app

developers’ lives easier”. The following shows our original invitation message:

Are you a native mobile app developer? Please participate in our research

study to help us understand the real challenges: Link to the survey

Thanks,

15

13%
20.9%

14.7%

51.4%

0%

20%

40%

60%

Less
 th

an
 2

ye
ar

s

2-5
 ye

ar
s

6-1
0 y

ea
rs

M
ore

 th
an

 10
 ye

ar
s

Figure 2.1: How many years of work experi-
ence do you have in software development:

16.4%

57.6%

19.2%
6.8%

0%

20%

40%

60%

80%

Less
 th

an
 1

ye
ar

1-3
 ye

ar
s

4-6
 ye

ar
s

M
ore

 th
an

 6
ye

ar
s

Figure 2.2: How many years of work experi-
ence do you have in native mobile applica-
tion development:

The demographics of the participants in the survey are as follows. 92% were

male and 5% female; they come from USA (48%), India (11%), Canada (10%),

Israel (5%), The Netherlands (3%), UK (3%), New Zealand (2%), Mexico (2%),

and 15 other countries.

The histogram of their work experience in software development is shown in

Figure 2.1, where 52% have more than 10 years, 15% between 6–10 years, 20%

between 2–5 years, and 13% less than 2 years. Their experience in native mo-

bile development, shown in Figure 2.2, ranges from 6% more than 6 years, 19%

between 4–6 years, 59% have between 1–3 years, to 16% less than 1 year.

The platforms they have expertise in are presented in Figure 2.3, which include

72% iOS, 65% Android, 26% Windows, 13% Blackberry, and 6% chose others

(e.g., Symbian, J2ME). In terms of the number of mobile apps they have developed,

Figure 2.4 depicts 64% have developed less than 10 apps, 22% have developed

10–20 apps and the rest more than 20 apps. As shown in Figure 2.5, they built

different types of apps such as Tools/Utilities, Business, Social Networks, Maps,

Games, Education and more.

Figure 2.6 indicates that 25% are freelance mobile developers, 33% work in a

company while 33% do both. As shown in Figure 2.7, 42% work with 2–5 native

16

72.3% 65.5%

13.6%
25.4%

10.7%

0%

20%

40%

60%

80%

iO
S (iP

hon
e/i

Pad
/iP

od
)

Androi
d

Blac
kberr

y

W
indow

s M
ob

ile
/Phon

e/8

Other

Figure 2.3: What platforms do you develop na-
tive mobile applications for (Check all that
apply):

More than 20
14.1%

10-20 Apps
22%

Less than 10
63.8%

Figure 2.4: How many native mobile applica-
tions have you developed so far:

31.1%

9.6%

38.4%
32.2%

15.3%
21.5%

33.3%

16.9% 15.8% 18.6%
11.9% 10.7%

14.7% 14.7%
18.1%

31.6%

51.4%
46.9%

5.1%

0%

30%

60%

Gam
es

W
ea

ther

Soc
ial

 N
etw

or
king

M
ap

s/N
av

iga
tio

n/Sea
rch

M
usic

New

s

Enter
tai

nmen
t

Ban
king/F

inan
ce

Video
/M

ov
ies

Shop
ping/R

eta
il

Spor
ts

Com
munica

tio
n

Foo
d/R

est
au

ra
nt

Tra
ve

l

Hea
lth

Educa
tio

n/L
ea

rn
ing

Too
ls/

Utili
tie

s

Busin
ess

Other

Figure 2.5: What types of native apps have you built (check all that apply)?

mobile app developers (including developers for different platforms), 27% are the

only mobile app developers and 15% work with 6–10 other developers.

17

26%
34.5% 32.2%

7.3%

0%

25%

50%

Free
lan

ce
App D

ev
elo

per

App D
ev

elo
per

in C
om

pan
y

Both
 ab

ov
e

Other

Figure 2.6: Which of the following applies to
you:

27.1%

42.4%

14.7% 15.8%

0%

25%

50%

Only
me (

on
e d

ev
elo

per)

2 t
o 5

 dev
elo

pers

6 t
o 1

0 d
ev

elo
pers

Other

Figure 2.7: If you are working in a company,
how big is the native mobile application
developer team (including developers for
different platforms)?

2.3 Findings
The findings from our study consist of 4 main categories and 31 subordinate con-

cepts. Figure 2.8 presents an overview of our results. For each concept, appropriate

codes and quotes are presented in this section.

In addition to the general challenges faced by mobile developers (Section 2.3.1),

two major themes emerged from the study, namely (1) challenges of developing

mobile apps across multiple platforms (Section 2.3.2), and (2) current practices

(Section 2.3.3) and challenges (Section 2.3.4) of mobile app analysis and testing.

18

Figure 2.8: An overview of our four main categories with 31 subordinate concepts.

19

2.3.1 General Challenges for Mobile Developers

In this subsection, we present the most prominent general challenges faced by mo-

bile app developers, emerging from our study results.

Moving toward Fragmentation rather than Unification

76% of our survey participants see the existence of multiple mobile platforms as a

challenge for developing mobile apps, while 23% believe it is an opportunity for

technology advances that drive innovation (See Figure 2.9).

More than half of the participants mentioned that mobile platforms are moving

toward fragmentation rather than unification:

• Fragmentation across platforms: Each mobile platform is different with re-

gard to the user interface, user experience, Human Computer Interaction

(HCI) standards, user expectations, user interaction metaphors, program-

ming languages, API/SDK, and supported tools.

• Fragmentation within the same platform: On the same platform, various de-

vices exist with different properties such as memory, CPU speed, and graph-

ical resolutions. There is also a fragmentation possible on the operating

system level. A famous example is a fragmentation on Android devices with

different screen sizes and resolutions. Almost every Android developer in

both our interviews and survey mentioned this as a huge challenge they have

to deal with on a regular basis.

Furthermore, device fragmentation is not only a challenge for development

but also for testing. All of our participants believe that platform versioning and

upgrading is a major concern; For example, a respondent said: “at the OS level,

some methods are deprecated or even removed.” So developers need to test their

apps against different OS versions and screen sizes to ensure that their app works.

Subject P5 said they mostly maintain “a candidate list of different devices and

sizes”. P11 explained, “because we monitor our application from the feedback of

the users, we tend to focus on testing the devices that are most popular.” Thus, the

current state of mobile platforms adds another dimension to the cost, with a wide

variety of devices and OS versions to test against. P11 continued, “right now we

20

Yes
75.7%

No
23.2%

Other
1.1%

Figure 2.9: Do you see the existence of multiple platforms as a challenge for developing mobile applica-
tions and why?

support 5 or 6 different (app) versions only because there are different OS versions,

and on each of those OS versions we also have 3–4 different screen sizes to make

sure the application works across each of the Android versions.” A respondent

stated, “we did a code split around version 2.3 (Android). So we have two different

versions of the applications: pre 2.3 version and post 2.3 version. And in terms of

our policy, we made that decision since it is too difficult to port some features.”

Monitoring, Analysis and Testing Support

“Historically, there has almost been no one doing very much in mobile app testing”,

stated P10 and explained that until fairly recently, there has been very little testing,

and very few dedicated testing teams. However, that is changing now and they have

started to reach out for quality and testing. Automated testing support is currently

very limited for native mobile apps. This is seen as one of the main challenges

by many of the participants. Current tools and emulators do not support important

features for mobile testing such as mobility, location services, sensors, or different

gestures and inputs. Our results indicate a strong need of mobile app developers for

better analysis and testing support. Many mentioned the need to monitor, measure,

and visualize various metrics of their apps through better analysis tools.

Open/Closed Development Platforms

Android is open source whereas iOS and Windows are closed source. Some par-

ticipants argued that Apple and Microsoft need to open up their platforms. P5

explained: “We have real challenges with iOS, not with Android. Because you

21

don’t have API to control, so you have to jump into loops and find a back door be-

cause the front door is locked. Whatever Apple allows is not enough sometimes.”

An example of such lack of control is given: “to find out whether we are connected

to the Bluetooth.” On the other hand, P9 explained that because Android is open

source and each manufacturer modifies the source code to their own desires and

releases it, sometimes they do not stick to the standards. A simple example is pro-

vided: “the standard Android uses commas to separate items in a list, but Samsung

phones use a semicolon.” A respondent stated, “Many Android devices have been

badly customized by carriers and original equipment manufacturers.”

Data Intensive Apps

Dealing with data is tricky for apps that are data intensive. As a respondent ex-

plained: “So much data cannot be stored on the device, and using a network con-

nection to sync up with another data source in the backend is challenging.” Re-

garding offline caching in hybrid solutions, P1 said: “Our apps have a lot of data

and offline caching doesn’t seem to really work well.”

Apps and Programming Languages

Two of our participants explained that there have been a number of comparisons

(e.g., performance-wise) between programming languages used for native mobile

development such as Java, C, and Objective-C. Java has huge benefits of

being platform independent and popular language with many resources and third

party libraries compares to Objective-C. However, P3 stated that Java is not

as efficient on a mobile device and slow. P1 elaborated that “while Apple had

built Cocoa framework over many years, recently Objective-C is accepted by

the iOS development community. Going with Java would negate a lot of their

advantages that they have in Cocoa.”

Keeping Up with Frequent Changes

One type of challenge mentioned by many developers is learning more languages

and APIs for the various platforms and remaining up to date with highly frequent

changes within each software development kit (SDK). “Most mobile developers

22

will need to support more than one platform at some point”, a respondent stated.

“Each platform is totally different (marketplaces, languages, tools, design guide-

lines), so you need experts for every one of them. Basically, it is like trying to write

simultaneously a book in Japanese and Russian; you need a native Japanese and a

native Russian, or quality will be ugly”, explained another respondent. As a result,

learning another platform’s language, tools, techniques, best practices, and HCI

rules is challenging.

While many developers complained about learning more languages and APIs

for the various platforms and the lack of an integrated development environment

that supports different mobile platforms, P1 explained: “Right now we develop in

two main platforms: iPhone and Android. That is not really that hard, the native

SDKs are pretty mature and they are easy to learn. Additionally, it is not required to

have hundreds of thousands of lines of code to do something. You have 50 thousand

lines of code and you have a complex app.”

2.3.2 Developing for Multiple Platforms

67% of our interview participants and 63% of our survey respondents have experi-

enced developing the same app for more than one mobile platform.

Mobile-web vs. Hybrid vs. Native Mobile Apps

Subjects P1 and P8 support developing hybrid apps. The remaining 10 interviewees

are in favour of building pure native apps and believe that the current hybrid model

tends to look and behave much more like web pages than mobile applications. P11

argued that “the native approach offers the greatest features” and P4 stated, “user

experience on native apps is far superior [compared] to a web app.” In a number

of cases, the participants had completely moved away from the hybrid to the native

approach. A recurring example given is Facebook’s switch from an HTML5-based

mobile app to a native one.

On the other hand, P1 argued that “it really depends on the complexity and type

of the application”, for example, “information sharing apps can easily adopt the

hybrid model to push news content and updates across multiple platforms.”

In the survey, 82% responded having native development experience, 11% have

23

tried hybrid solutions, and 7% have developed mobile web apps. Most respondents

are in favour of the native approach. Regarding mobile web, they stated that: “Mo-

bile web doesn’t feel or look like any of the platforms.” Or: “You will never be able

to control some hardware through the web.” Or: “Mobile web is a powerful tool

appropriate for some uses, but is not extensive enough to replace native.”

Regarding the hybrid approach, others said that: “HTML5 has much potential

and will likely address many of the current problems in the future as it saves devel-

opment time and cost”; or: “since many big players are investing a lot in HTML5,

it may take a big chunk of the front-end side when it becomes stable.”

Regarding native approach, they stated that: “There will always be a demand

for the specificity of a native app.” Or: “In some fields, web or hybrid will prevail;

but there are many cases where we need a native app.” Most of the participants

argued that when development cost is not an issue, companies tend to develop

native apps. Of course it also depends on the application type; where better user

experience or device specific features are needed, native seems to be a clear choice.

Lastly, when we asked our participants that whether native app development

will be replaced by hybrid solutions or mobile web development due to its chal-

lenges, all the interviewees and 70% of survey participants disagreed, and 10%

indicated that there will always be a combination of native and hybrid approaches:

“They’ll coexist as they do today in PC world.”

Available Cross-Platform Solutions

Regarding common practices for building cross-platform apps, our participants ex-

plained that a variety of technologies exists. Hybrid approaches have the concept

of recompilation in native with the power of cross-platform execution. PHONE-

GAP, APPCELERATOR TITANIUM, XAMARIN, CORONA7 and many other tools

exist, which follow different approaches and some have their own SDK. As ex-

pected, there are different attitudes towards them since there are no silver bul-

lets yet defined. For instance, P1 explained that “with PHONEGAP one basically

writes HTML and JavaScript code and it is translated to the native libraries,

but they have performance and user experience drawbacks.” A respondent said,

7http://coronalabs.com/

24

http://coronalabs.com/

37.4% 33.7%

19.8%

9.1%

0%

20%

40%

No

Yes,
 fr

om
 sc

ra
tch

Yes,
 por

t p
ar

t o
f it

Yes,
 ot

her

Figure 2.10: Have you developed the same native mobile app across different platforms?

“I would like to see mobile web applications or hybrid frameworks (e.g. PHONE-

GAP/ APPCELERATOR TITANIUM) reach a level of responsive user experience that

truly mimics the experience users will find native to the platform.”

Limiting Capabilities of a Platform’s Devices

Not all devices and operating systems of a platform have the same capabilities. For

instance, Android has different versions and browsers in some of those versions

have poor support for HTML5. Most of the participants in favour of the hybrid ap-

proach believe that once the adaptation is complete (e.g., with mature web browsers

in the platforms), there would be more interest from the community for hybrid de-

velopment.

Reusing Code vs. Writing from Scratch

67% of our interview participants have tried both methods of writing a native mo-

bile app from scratch for a different platform and reusing some portions of the

same code across platforms. The majority stated that it is impossible or challeng-

ing to port functionality across platforms and that when a code is reused in another

platform, the quality of the results is not satisfactory.

Figure 2.10 shows that out of the 63% survey respondents, who have expe-

rienced developing mobile apps across different platforms, 34% have written the

25

same app for each platform from scratch, and 20% have experienced porting some

of the existing code. A respondent said, “every platform has different requirements

for development and porting doesn’t always produce quality”; or: “At this moment,

I believe that it is best to create the apps from scratch targeting the individual OS.”

P11 argued that “we ported a very little amount of the code back and forth between

Android and Blackberry, but we typically write the code from scratch. While they

both use Java, they don’t work the same way. Even when basic low levels of Java

are the same, you have to rewrite the code.”

In addition to the differences at the programming language level (e.g., Java

versus Objective-C), P9 elaborated why migrating code does not work: “A

simple example is the way they [platforms] process push messages. In Android, a

push message wakes up parts of the app and it requests for CPU time. In iOS, the

server would pass the data to Apple push server. The server then sends it to the

device and no CPU time to process the data is required.” These differences across

platforms force developers to rewrite the same app for different platforms, with no

or little code reuse. This is seen as one of the main disadvantages of native app

development.

Behavioural Consistency versus Specific HCI Guidelines

Ideally, a given mobile app should provide the same functionality and behaviour

regardless of the target platform it is running on. However, due to the internal dif-

ferences in various mobile devices and operating systems, “a generic design for all

platforms does not exist”; For instance, P12 stated that “an Android design cannot

work all the way for the iPhone.” This is mainly due to the fact that HCI guidelines

are quite different across platforms, since no standards exist for the mobile world,

as they do for the Web for instance. Thus, developers are constantly faced with two

competing requirements:

• Familiarity for platform users: Each platform follows a set of specific HCI

guidelines to provide a consistent look-and-feel across applications on the

same device. This makes it easier for end users to navigate and interact with

various applications.

• Behavioural consistency across platforms: On the other hand, developers

26

would like their application to behave similarly across platforms, e.g., user

interaction with a certain feature on Blackberry should be the same as on

iPhone and Android.

Thus, creating a reusable basic design that will translate easily to all platforms

while preserving the behavioural consistency is challenging. As P9 stated: “The

app should be re-designed per platform/OS to make sure it flows well”; A respon-

dent put it: “We do screen by screen design review for each new platform”; or:

“Different platforms have different strengths and possibilities. It is foolish to try

to make the apps exactly the same between platforms”; and: “It requires multi-

platform considerations at the designing stage and clever decisions should be made

where platform-specific design is necessary.” Other respondents explained, “You

are writing a lot of native code, across all the different platforms. You have to write

it 3-4 times. One of the problems is keeping them consistent. There are UI and UX

differences between different platforms. Android is different from iPhone app and

you also want to take advantage of native, but you also want to make sure that the

same app is consistent across all the different platforms.”

Time, Effort, and Budget are Multiplied

Due to the lack of support for automated migration across platforms, developers

have to redesign and reimplement most of the application. Although the applica-

tion definition, the logic work, and backend connectivity would be similar regard-

less of platform, the production phase would require adaptations to create native

applications for each platform. This is because the flow of the application develop-

ment is different; iOS uses Objective-C for development, Android uses Java,

etc. Therefore, creating quality products across platforms is not only challenging

but also time-consuming and costly, i.e.“developing mobile apps across platforms

natively is like having a set of different developers per each platform”, stated P11.

As a result, “re-coding against wildly different API sets” increases the cost and

time-to-market within phases of design, development, testing, and maintenance,

which is definitely a large issue for start-up and smaller companies.

27

3.2%

63.8%

31.4%

1.6%
0%

50%

100%

Autom
ati

ca
lly

M
an

uall
y

Hyb
rid

 (b
oth

)

Other

Figure 2.11: How are your native mobile apps tested?

2.3.3 Current Testing Practices

As outlined in Subsection 2.3.1, many developers see analysis and testing of mobile

apps as an important activity to provide dependable solutions for end-users. Our

study results shed light on the current practices of mobile application analysis and

testing.

Manual Testing is Prevalent

As shown in Figure 2.11, 64% of our survey participants test their mobile apps

manually, 31% apply a hybrid approach, i.e., a combination of manual and auto-

mated testing and only 3% engage in fully automated testing. P3 explained: “Right

now, manually is the best option. It’s kind of like testing a new game, testing on

consoles and devices. It is that kind of testing I believe just maybe smaller, but

you have to worry about more platforms and versions.” A respondent stated: “Or-

ganizations, large and small, believe only in manual testing on a small subset of

devices”; and another one said: “It’s a mess. Even large organizations are hard

to convince to do automated testing”, or “I have not used automation testing. I’ve

heard good and bad about it, but most of my apps are small enough to be manually

tested.”

28

80.3%

58%

27.7%

1.1% 3.2%
0%

50%

100%

Dev
elo

per

Test
ing t

ea
m (te

ste
r)

Beta
 te

ste
r

No t
est

ing

Other

Figure 2.12: Who is responsible for testing your native mobile apps?

Developers are Testers

There are different combinations of testing processes and approaches currently

taken by the industry. They can be categorized based on a company’s size, clients,

development culture, testing policy, application type, and the mobile platforms

supported. These testing approaches are performed by various people such as de-

velopers, testing teams, beta testers, clients, as well as third-party testing services.

As indicated in Table 2.1, our interviewees’ companies vary from small size with

1–2 developers to larger mobile development companies or teams with over 20

developers. As expected, larger companies can afford dedicated testing teams or

employ beta field testing while in smaller companies testing is mainly done by de-

velopers or clients (end-users) and in more informal and ad-hoc way. Additionally,

large teams use more devices for manual testing, and have tried to automate part

of the testing procedure such as data creation, building and deploying the app into

devices.

Figure 2.12 depicts the results of our survey with regard to roles responsible

for testing. 80% of the respondents indicated that the developers are the testers,

53% have dedicated testing teams or testers, and 28% rely on beta testers.

The majority of the participants, with or without testing teams, stated that after

developing a new feature, the developers do their own testing first and make sure

it is functional and correct. This is mostly manual testing on simulators and if

29

Manually
22%

Test multiple
times for

each Platform
41%

No multiple
Platform

Development
37%

Figure 2.13: How do you test your application’s correctness across multiple platforms?

available on physical devices.

Test the App for Each Platform Separately

Our interviews reveal that app developers treat each platform completely separately

when it comes to testing. Currently, there is no coherent method for testing a given

mobile app across different platforms; being able to handle the differences at the UI

level is seen as a major challenge. Testers write “scripts that are specific for each

platform”, and they “are familiar with the functionality of the app, but are testing

each platform separately and individually”. We also noticed that there are usually

separate teams in the same company, each dedicated to a specific platform with

their own set of tools and techniques; P6, an iOS developer, said: “I am not sure

about Android, as the teams in our company are so separate and I don’t even know

what is going on with the other side.” Responses provided by 63% of our survey

participants, who develop the same native mobile app for more than one platform,

confirmed the interview results, stating: “The test cases apply to each platform, but

they must be implemented uniquely on each platform”, or: “I have to do it twice or

more depending on how many platforms I have to build it on”, or: “Treat them as

separate projects, as they essentially are, if native. Do testing independently!”

Figure 2.13 shows that, out of 63% of our survey participants that develop the

same native mobile app for more than one platform, 22% test their apps manually,

and 41% indicated that they “test the app for each platform separately”.

30

0%

50%

100%

Unit T
est

ing

In
teg

ra
tio

n Test
ing

Syst
em

 Test
ing

Reg
res

sio
n Test

ing

GUI T
est

ing

Acce
ptan

ce
Test

ing

Perf
or

man
ce

Test
ing

Usab
ilit

y T
est

ing

Secu
rit

y T
est

ing

N/A
Hybrid
Automatic
Manual

Figure 2.14: What levels of testing do you apply and how?

Levels of Testing

Levels of testing refer to the stages of testing such as unit, integration, system, re-

gression, GUI, etc. Our study aimed to determine the existence, value and process

of the testing stages in mobile app development. Figure 2.14 illustrates different

levels of testing applied on mobile apps. There is very little automation for dif-

ferent levels of testing, e.g., around 3% for each of GUI, acceptance, and usability

testing. P2 noted: “It is not really well structured or formal what we do. We do

some pieces of all of them [ad-hoc] but the whole testing is a manual process.”

GUI Testing

More than half of the participants admitted that GUI testing is challenging to au-

tomate. P2 said: “Automated UI testing is labor intensive, and can cause inertia

when you want to modify the UI. We have a manual tester, core unit testing, then

employ beta field testing with good monitoring.”

P7 stated: “Our company has Microsoft products. With Microsoft studio in-

terface, you can emulate a lot of sensors for testing GUI whereas in Eclipse for

Android, you need to click a lot of buttons. You can emulate the position in your

phone, but Android doesn’t do this.”

P3 elaborated: “Blackberry is actually really hard to create test scripts for GUI

31

testing. Because it is not like other platforms, which are touch-based and layout-

based. With Blackberry, you have to know what field manager is and it is hard to

actually get this information by clicking on buttons. You have to go through the

whole array of elements.”

Some tools were highlighted such as ROBOTIUM8 and MONKEYRUNNER9 for

Android. A few iOS developers said they have tried MONKEYTALK10 (formerly

called FONEMONKEY) and KIF11 for GUI testing; P1 stated: “I find KIF to be a lot

more mature than automation testing provided by Apple, esp. if you want to auto-

mate using a build server. Even with KIF you have to write a lot of Objective-C

code to work properly. But it is still hard to be used for our custom and dynamic

applications.”

Unit Testing

Our study shows that the use of unit testing in the mobile development community

is relatively low. Both interview and survey results (See Figure 2.14) reveal that

unit testing for native mobile apps was not commonplace in 2012, however, that

is changing recently (see Section 2.4). Figure 2.14 shows levels of testing for

all participants. The comparison of automation testing across the main platforms

shown in Figure 2.15 – Figure 2.18.

While some respondents argued that “the relatively small size of mobile apps

makes unit testing overkill and deciding whether it’s worth writing unit tests or save

the time and test manually is always difficult”; or: “Complete unit testing to get full

coverage is overkill. We only unit test critical code”; or: “Small projects with

small budgets - the overhead of creating rigorous test plans and test cases would

have a serious impact on the budget.” On the other hand, others said that “the

rapidly changing user expectations and technology mean unit testing is crucial.”

Our interviewees believe that having a test suite for the core generic features of the

app is the best approach in the long term. P12 said: “Unit tests are still the best.

They are easy to run, and provide immediate feedback when you break something.”

8http://code.google.com/p/robotium/
9http://developer.android.com/tools/help/monkeyrunner concepts.html

10http://www.gorillalogic.com/testing-tools/monkeytalk
11https://github.com/square/KIF

32

http://code.google.com/p/robotium/
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://www.gorillalogic.com/testing-tools/monkeytalk
https://github.com/square/KIF

0%

50%

100%

Unit T
est

ing
Integ

rat
ion

Syst
em

 Test
ing

Regr
ess

ion

GUI T
est

ing
Acce

ptan
ce

Perf
orm

an
ce

Usab
ilit

y T
est

ing

Secu
rit

y T
est

ing

N/A
Hybrid
Automatic
Manual

Figure 2.15: iOS levels of testing.

0%

50%

100%

Unit T
est

ing
Integ

rat
ion

Syst
em

 Test
ing

Regr
ess

ion

GUI T
est

ing
Acce

ptan
ce

Perf
orm

an
ce

Usab
ilit

y T
est

ing

Secu
rit

y T
est

ing

N/A
Hybrid
Automatic
Manual

Figure 2.16: Android levels of testing.

0%

50%

100%

Unit T
est

ing
Integ

rat
ion

Syst
em

 Test
ing

Regr
ess

ion

GUI T
est

ing
Acce

ptan
ce

Perf
orm

an
ce

Usab
ilit

y T
est

ing

Secu
rit

y T
est

ing

N/A
Hybrid
Automatic
Manual

Figure 2.17: Windows levels of testing.

0%

50%

100%

Unit T
est

ing
Integ

rat
ion

Syst
em

 Test
ing

Regr
ess

ion

GUI T
est

ing
Acce

ptan
ce

Perf
orm

an
ce

Usab
ilit

y T
est

ing

Secu
rit

y T
est

ing

N/A
Hybrid
Automatic
Manual

Figure 2.18: Blackberry levels of testing.

33

Unit testing seems to be more popular among Android and Windows develop-

ers, using JUnit and NUnit, respectively.

Two iOS participants have tried writing unit tests for iPhone using XCODE

INSTRUMENTS12 as well as SENTESTINGKITFRAMEWORK, a built-in Xcode tool.

P1 explained: “iOS apps are not really built to be fully unit tested. You have to

structure your code properly in order to actually write good unit tests. It is hard to

test our apps because a lot of view manipulation logic and business logic are mixed

in the controllers and it is hard to write unit tests for controllers. This is one of the

MVC’s [Model View Controller] shortcomings that could discourage developers

from writing unit tests. Testing models are easier with unit-test and a better way to

test UI is to write integration/acceptance tests using e.g., KIF or CALABASH.13”

P12 argued: “iOS doesn’t make it easy to have test automation” and a respondent

said: “Apple’s Developer testing tools don’t play well.”

Usability Testing

While there is not a common agreement on usability standards for all platforms

and “usability experts have not agreed on [mobile app] standards like [they have

for] the web”, our participants acknowledged that “usability is the most important

factor for testing on these devices, because that is what people care about.” P10

stated, “In the past we have controlled the dialog and the image and the distribu-

tion on the web but now the store providers, like Apple and Microsoft have. They

control whether we can submit or not. We have to follow their rules, and people

have a huge social platform to rank us on the store and it is much more front centre

than it was before.” End-users nowadays have the ability to collectively rank apps

on the mobile app stores. If users like an app, they download and start using it.

If not, they delete it and move on immediately. If they really like it, they rank it

high; Or if they really dislike it, they go on social media and complain. Thus, a

low-quality release can have devastating consequences for mobile developers. As

a result, there is a huge emphasis on usability testing. As P8 explained, “definitely

one of our big challenges is usability testing, which is manual. I do heuristic eval-

12https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/
InstrumentsUserGuide/Introduction/Introduction.html

13http://calaba.sh/

34

https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/Introduction/Introduction.html
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/InstrumentsUserGuide/Introduction/Introduction.html
http://calaba.sh/

uations personally and then evaluate with real users.” P11 elaborated: “Our us-

ability testing encompasses a large portion of not only features but also UI. Within

the application, we got a community of testers that are willing to test our newest

and greatest software parts and put some feedback on it.” Or a respondent said:

“You need to spend a good amount of time to fix the UI, usability and performance

issues for each platform.” Additionally, the next aspect is emotion, explained by

a participant: “the personal attachment of people to their devices cannot be simu-

lated in a test environment. Users take these devices into bed, bathroom, doctor’s

office. So in very intimate parts of their lives, they are using these apps and they

have an emotion attached to that.”

Security Testing

As observed by another study for Android apps [63], security bug reports are of

higher quality but get fixed slower than non-security bugs. While there has been a

number of studies related to security, privacy leaks and malware behaviour of mo-

bile apps [48, 67, 84, 189, 207], in practice, as it is shown in Figure 2.14, security

testing has the least priority (i.e., N/A) among mobile app development commu-

nity. P10 stated that “I don’t do security, but everything else I do. There is very

little tool supports to help with this.” However, P1 explained that it depends on

the extensive of testing, for example if the app is for a major enterprise client that

security is a top priority, they need more testing than normal apps. He continued:

“We have got security audit from various security companies that actually have

done security testing on our apps. But we don’t do anything internally.”

Performance Testing

The more critical the app is, the more performance testing is conducted. As shown

in Figure 2.14, performance testing has been performed mostly manually but some

of our participants have used different types of tools. P5 stated that “Because of

the nature of our apps which are on goggles, we have to be very critical about per-

formance and battery consumption. So we do a lot of related testing and measure

the currency of battery usage.” P7 added: “A lot of apps, such as games, require

performance, if you develop some middleware to drag down the user experiences,

35

nobody will use it because in games user experience is the most important feature.”

Beta Testers and Third Party Testing Services

Beta testing, such as TESTFLIGHT14, seems to be quite popular in mobile app

development; although P5 emphasized that “the beta testers are in the order of

dozens not thousands.” TestFlight automates parts of the process, from deploying

the app to collecting feedback. Further, there are many cases in which the clients

are responsible for testing, i.e., recruiting beta testers or acceptance testing. P6

explained that they have internal and external client tracking systems: “Basically

we have two bug tracking systems, internal and client tracking system (external).

The clients create bugs in that tracking system and our testing team try to reproduce

bugs to see if it is a valid and reproducible bug. If so they duplicate it in our internal

tracking system. Then developers will look at it again.”

Additionally, some developers rely on third party testing services such as PER-

FECTOMOBILE15 and DEVICEANYWHERE.16 However, “it is usually too volatile

and the tools in many cases support very simple apps. Honestly not really worth

the effort”, said one of our interviewees. Other participants’ attitudes toward test-

ing services are varied; P12 argued: “Services should be affordable, and not just

report bugs but also provide some documents that indicate how people test the ap-

plication, and give a high-level overview of all the paths and possibilities that are

tested.” Another respondent said: “Most online testing services charge a very hefty

premium even for apps that are distributed for free”; and: “It is nice to test an app

by a third party, someone who is not the developer. At the same time, just random

testing doesn’t do the trick. You need to have a more methodical approach, but the

problem with methodical approaches is that they turn the price up.” P11 said: “We

don’t want to lock in on one specific vendor and tend to use open-source tools, such

as JUnit.” Another problem mentioned is that “if we want to change something the

way we want to, we don’t have access to the source code. So we can’t change the

services of the framework.”

14https://developer.apple.com/testflight/update/
15http://www.perfectomobile.com/
16http://www.keynote.com/solutions/testing/mobile-testing

36

https://developer.apple.com/testflight/update/
http://www.perfectomobile.com/
http://www.keynote.com/solutions/testing/mobile-testing

Handling User Workflow Interruption

Related to the usability and multi-screens, some of our participants stated that many

users go through a workflow using multiple devices. For instance, P10 explained

that a user may search for a flight on her smart phone and find a good deal, but to

book the flight requires much typing. So she goes on her laptop or tablet and books

the flight from there, then she goes back to the smartphone to save the e-ticket.

Thus, long workflows tend to make users swap between devices, and apps should

be able to handle such interruptions.

2.3.4 Analysis and Testing Challenges

In this subsection, we present the challenges experienced, by our interview partic-

ipants and survey respondents, for analyzing and testing native mobile apps.

Limited Unit Testing Support for Mobile Specific Features

Although JUnit is used by more than half of the Android participants, many also

point out that “JUnit is designed for stationary applications and it has no interface

with mobile specifics such as sensors (GPS, accelerometer, gyroscope), rotation,

navigation”. As a result, “there is no simple way to inject GPS positions, to ro-

tate the device and verify it that way”. P11 explained: “we are creating a ‘map

application’, which requires users typically being outdoors, moving around and

navigating, which is not supported by current testing tools.” Writing mobile spe-

cific test scenarios requires a lot of codes and is time-consuming and challenging.

A number of participants indicated that having “a JUnit type of framework with

mobile specific APIs and assertions” would be very helpful.

Monitoring and Analysis

Both our interview and survey data indicate a strong need of mobile app develop-

ers for better analysis and monitoring support. Many mentioned the need to moni-

tor, measure, and visualize various metrics of their apps such as memory manage-

ment (to spot memory leaks), battery usage (to optimize battery life), CPU usage,

pulling/pushing data, and network performance (over various networks, e.g., 2G,

3G, 4G and wireless connections) through better analysis tools. “A visualization

37

tool such as those hospital monitoring devices with heart rate, blood pressure, etc.,

would help to gain a better understanding of an app’s health and performance”,

explained P8.

Handling Crashes

One major problem mentioned in mobile app testing is about crashes, which are

often intermittent, non-deterministic, and irrecoverable. It is challenging for devel-

opers to capture enough information about these crashes to analyze and reproduce

them [220] so that they can be fixed. Many developers in our study found it helpful

to have a set of tools that would enable capturing state data as a crash occurs and

creating a bug report automatically. P5 stated: “Dealing with the crashes that are

very hard to catch and harder to reproduce is an issue. It would be good that when

the crashes happen, system logs and crash logs can be immediately captured and

sent to developers over the phone.”

Emulators/Simulators

Emulators are known to mimic the software and hardware environments found on

actual devices whereas simulators only mimic the software environment. Many

mobile developers believe that better support is needed to mimic real environments

(e.g., network latency, sensors) for testing. Another issue mentioned is that rooted

simulators and emulators are needed in order to access features outside of the ap-

plication, such as settings, play store, Bluetooth and GPS, which could be part of

a test case. Also, the performance of emulators is a key factor mentioned by many

of our participants. Compared to iOS Simulator, “Android emulator is very slow. I

use my device for testing instead”, said P8.

Missing Platform-Supported Tools

Almost all of the participants mentioned that current tools are weak and unreli-

able with limited support for important features for mobile testing such as mobil-

ity, location services, sensors and different inputs. They have experienced many

automation failures or many cases where testing tools actually slowed the develop-

ment process down substantially.

38

Some of our participants stated that platform-supported tools are needed, e.g.,

“unit testing should be built-in”. A respondent said: “the platforms have to sup-

port it (testing). 3rd party solutions will never be good enough.”, and another one

said they need “strong integrated development environment support”. Some noted

that the process will be similar to that for web applications, “it took years to cre-

ate powerful tools for analyzing and testing web apps, and we are still not there

completely.”

Rapid Changes Over Time

Our interview reveals that requirements for mobile app projects change rapidly and

very often over time. This is the reason our participants argued that they have dif-

ficulties to keep the testing code up to date. A respondent said: “changing require-

ments means changing UI/logic, so GUI and integration tests must be constantly

rewritten.” P1 stated: “there are some testing tools out there, but we don’t use any

of them because we can’t keep the tests updated for our dynamic apps.” P10 stated

that due to rapid changes, they have “time constraints for creating test scripts and

performing proper testing”.

Testing Device in the Wild with Many Possibilities to Check

An issue mentioned by some of the participants is the fact that combination of pa-

rameters in the wild is challenging, but it is best to test the app where the users are

actually using it. P10 stated: “Weather condition has an effect on wireless activity

and the visual representation of app.” Our participants explained that there are so

many different possibilities to test, and places that could go potentially wrong on

mobile apps. Thus, “it is difficult to identify all the usage scenarios and possible

use cases while there is a lot of hidden states; for example, enabling/disabling the

location services, and weak and strong network for network connectivity”. P12

finds: “The relation between apps should be well managed, you might be inter-

rupting other apps, or they might be interrupting yours.” P12 provides an ex-

ample: “manage the states when an audio recording app goes into background.”

Furthermore, a participant argued that based on missing or misleading usage speci-

fications, they should avoid under-coverage (missing test cases) and over-coverage

39

(waste of time and human resources for testing situations that won’t happen in the

real world). Another related issue to take care includes upgrading as P12 explained:

“For example, when upgrading from iOS 5 to iOS 6, the permissions are different.

So your app in the wild just stop working. Unfortunately, there is nothing that can

help you figure those out.”

App Stores’ Requirements

Developers have to follow mobile app stores’ (e.g., Apple’s AppStore, Android

Google Play, Windows Marketplace and Blackberry AppWorld) requirements to

distribute their apps to end users. These requirements change often, and develop-

ers need a way to test their apps’ conformance. “I would like to have something

more robust for me to mimic what the publisher (store) will be doing so that I can

catch the error earlier in the development process,” said a respondent. Addition-

ally, “pushing the app to individual devices is more complex than necessary”, for

instance in iPhone.

2.4 What Has (not) Changed since 2012? A Follow-up
Study

Three years after our initial qualitative study, we felt it was necessary to find out

what has changed and what has remained the same in the app development spec-

trum of challenges and practices.

2.4.1 Survey Design

This follow-up study was conducted during the months of February and March

of 2015, by surveying mobile app experts. First, we created a document outlin-

ing the main findings of our results from the initial study with each finding has

space for an optional comment. We also included an open-ended question asking

whether the existing mobile app development challenges have changed or whether

new challenges have emerged since 2012.17 The goal of the extended study is not

to perform a whole new study. We aimed to target, particularly, our original inter-

17http://goo.gl/forms/kp98G1ldpY

40

http://goo.gl/forms/kp98G1ldpY

viewees (the earlier 12 experts) again for a follow-up and see what has changed.

Thus, we sent an email providing a link to this survey directly to 25 experts in our

network, including all the interviewees in our earlier study as well as new known

experts in our network. Similar to the original study, we also shared this link to the

popular Mobile Development Meetup and LinkedIn groups related to native mo-

bile development. However given the nature of this survey, all of our respondents

are from the emails we directly contacted.

2.4.2 Our Participants

We received 15 responses, from which four were from our original pool of inter-

viewees. The 15 respondents were native iOS or Android developers in Canada,

and they are from 12 different companies. Additionally, they have an average of

five years of app development experience.

2.4.3 Analysis and Summary of Survey Findings

The survey results reveal interesting findings; they indicate that overall, the list of

the challenges from our initial study is still valid and that there are some new or

changed challenges, which we discuss next.

Moving toward Fragmentation rather than Unification

External fragmentation, i.e., fragmentation across platforms, seems to have de-

creased since 2012; as a respondent explained: “the fragmentation [across plat-

forms] is definitely less visible than before. Before, there had to be implementa-

tions for Symbian, Blackberry, Android, iOS, and Windows Phone, but this has

changed; Android and iOS are the front runners. So by choosing [these] two, a

good percentage of users can already be covered.”

The challenge with internal fragmentation, i.e., fragmentation within the same

platform, used to mainly affect Android developers because of the many hardware

variations in devices. However, Apple is also moving into that direction. As a

result, currently there is also internal fragmentation with Apple as it has released

new devices with different screen sizes (such as iPhone 5, 6 and 6+) resulting in

more variations. A respondent stated: “They [Apple] have released updated APIs

41

that make supporting the new screen sizes much easier, but it requires using the

latest OS version (8.0), which is difficult if you have a legacy codebase.”

Open/Closed Development Platforms

Our respondents indicated that mobile development tools have matured signifi-

cantly and are more stable in the last few years. Apple and Google have released

enhanced IDEs (e.g., XCode 6, Android Studio) that makes development more ef-

ficient. Furthermore, app development has become more popular and it is easier to

find skilled developers as the pool of developers has grown.

In terms of Android being open-source, the fact that any manufacturer has the

ability to customize their version of Android and modify the source is still a major

issue on Android. Our respondents explained that manufacturers introduce varia-

tions on the underlying implementations of the OS that has the potential of break-

ing the contract of APIs. When this happens, apps that work on stock or near-stock

versions of the OS perform as expected, but the custom versions have unexpected

anomalies on the UI and also hardware components, such as the camera. This re-

sults in software fragmentation that is most difficult to deal with for app developers.

On the other hand, as explained by a respondent, “as an Android developer,

I have been blessed with two entities; the first being Google engineers and the

second being the open-source community. Both these entities have contributed

immensely to lower the barriers of mobile app development with tools, libraries

and documentation.” Another android developer agreed that “More open-source

libraries are now available that are easy to integrate into your mobile app provid-

ing robust functionality and interesting features. This helps prevent reinventing the

wheel as there are more resources for developers to lean on.” However, it was also

mentioned that while developers would prefer open-source software, most of the

apps out there are still closed-source.

Web vs. Hybrid vs. Native Mobile Apps

In terms of hybrid solutions and cross-platform tools that promise write-once, run

everywhere, the respondents stated that they are still not mature enough to be used

in production code. Currently, there seems to be more interest in adopting the hy-

42

brid approach. A respondent stated, “the trend I have seen recently is that people

start with a hybrid implementation with minimal functionality, and as they start

gaining traction, they change to a native implementation for performance and bet-

ter user experience.” Another respondent stated, “there is still quite a large tech-

nical debate, especially for start-ups, about whether to create native apps (specif-

ically iOS and Android) versus just creating a responsive mobile web experience.

This is mostly determined by [the availability of] funds and resources to create,

test, monitor, handle customer support issues, and maintain additional software

applications.”

Although our respondents agreed that mobile browsers are becoming more ma-

ture to support mobile web apps, they also raised concerns; for instance one re-

spondent added: “user expectations about the platform have also risen and some

UI effects (for example the extensive use of transparency in iOS 7+) are difficult to

do non-natively. So non-native apps are trying to hit a moving target, and there is

no reason to think that the target will stop moving.”

Also when it comes to more complex apps, hybrid apps cannot fully support

everything that is needed; “we have stayed away from hybrid also because it lim-

its the app performance and list of available APIs to use”, a respondent stated.

Another major problem in the hybrid approach, mentioned by our respondents, is

debugging: “it is difficult to debug code when developing a hybrid model as the is-

sue could be in the native or web layer. Also attaching a debugger to the web-layer

is slow and makes it extremely difficult to use.”

Monitoring and Analysis

All of the respondents still mentioned that monitoring and analysis challenges are

further increased today. While mobile app crash reporting tools such as CRASH-

LYTICS18, Google Analytics19 for mobile apps, and NEWRELIC20 have evolved

over time and a few profiling/monitoring tools embedded in the IDEs, our respon-

dents believed that “analytics, logging, crash-reporting, etc. are general require-

ments for any app development and should be available as a framework uniform

18https://try.crashlytics.com/
19http://www.google.com/analytics/mobile/
20http://newrelic.com/

43

https://try.crashlytics.com/
http://www.google.com/analytics/mobile/
http://newrelic.com/

across all platforms and controllable via configurations. At this moment, each of

these is being addressed via certain service providers in a variety of ways.”

Levels of Testing

There is more awareness among developers related to the benefits of testing and

more testing tools are emerging to help app developers. Most of our respondents

agreed that automated testing tools have improved in the last three years. So has

the prevalence of unit and GUI testing in practice. An android developer stated,

“for Unit testing and functional testing, Google and the open-source community

have come together once again to provide a toolset that allows developers to re-

ally provide unit testing and proper UI testing. Tools like ROBOLECTRIC21 and

ESPRESSO22 for Android have brought unit testing and functional testing to a much

higher level. But, it is still not easy to write the unit tests, mainly because of all the

deep native APIs that are difficult to mock.” Another respondent said, “with plat-

forms like GENYMOTION23 allowing to run the same application across multiple

devices very quickly and efficiently and then integration test platforms like Jenkins,

it has become easier to run the app across many different platforms.”

Keeping Up with Frequent Changes

It is still challenging to keep up with the new releases, especially with Apple break-

ing core functionality in new releases. A respondent stated, “it is getting more dif-

ficult to develop for iOS now and guidelines are scattered when it comes to App

Store submissions. Also, Apple has made this worse by discontinuing tools, buying

up others and breaking them, such as TESTFLIGHT.”

In terms of keeping up to date for devices, an Android developer explained

that “before Google and the open-source community (OSC) really picked up their

pace in Android 4.0, backwards compatibility was extremely difficult. Many de-

vices never got upgraded to newer versions. However, Google and the OSC found

ways to decouple some of their core APIs into libraries that brought backwards

compatibility all the way back to Android 2.0.”

21http://robolectric.org/
22https://code.google.com/p/android-test-kit/wiki/Espresso
23https://www.genymotion.com/

44

http://robolectric.org/
https://code.google.com/p/android-test-kit/wiki/Espresso
https://www.genymotion.com/

Data Intensive Apps

Regarding dealing with data-intensive apps, a respondent explained: “syncing with

a back-end is challenging but there are third-party tools such as PARSE24 that solve

this problem for some use-cases.”

Apart from the aforementioned updates, our respondents agreed that the rest of

our initial findings remains the same: “The rest is pretty much the same as it used

to be and I think your paper has captured it reasonably well”, a respondent stated.

2.5 Threats to Validity
Similar to quantitative research, qualitative studies could suffer from threats to

validity, which is challenging to assess as outlined by Onwuegbuzie et al. [179].

For instance, in codification, the researcher bias can be troublesome, skewing

results on data analysis [132]. We tried to mitigate this threat through triangulation;

The codification process was conducted by two researchers, one of whom had not

participated in the interviews, to ensure minimal interference of personal opinions

or individual preferences. Additionally, we conducted a survey to challenge the

results emerging from the interviews.

Both the interview and survey questionnaire were designed by a group of three

researchers, with feedback from four external people – one senior Ph.D. student

and three industrial mobile app developers – in order to ensure that all the questions

were appropriate and easily comprehensible.

Another concern was a degree of generalizability. We tried to draw represen-

tative mobile developer samples from nine different companies. Thus, the distri-

bution of participants includes different companies, development team sizes, plat-

forms, application domains, and programming languages – representing a wide

range of potential participants. Of course, the participants in the survey also have

a wide range of background and expertise. All this gives us some confidence that

the results have a degree of generalizability.

One risk within Grounded Theory is that the resulting findings might not fit

with the data or the participants [99]. To mitigate this risk, we challenged the

findings from the interviews with an online survey, filled out by 188 practitioners

24https://parse.com/products/core

45

https://parse.com/products/core

worldwide. The results of the survey confirmed that the main concepts and codes,

generated by the Grounded Theory approach, are in line with what the majority of

the mobile development community believes.

Lastly, in order to make sure that the right participants would take part in the

survey, we shared the survey link with some of the popular Mobile Development

Meetup and LinkedIn groups related to native mobile app development. Further-

more, we did not offer any financial incentives nor any special bonuses or prizes to

increase response rate.

2.6 Discussion
We discuss the challenges that are worth further investigation by the research and

development community.

2.6.1 Mapping Study

We complement our quantitative and qualitative analysis with a mapping study in

order to show how the research and industry community is investigating some of

these challenges. Table 2.2 presents a mapping study between the research commu-

nity and our challenges, listed into Analysis and Testing Studies and Multiple Plat-

forms Studies. Among analysis and testing studies are model-based approaches,

record-and-replay approaches, context-sensitive events, mobile security and pri-

vacy leaks, and performance profiling. Among multiple platforms studies are de-

vice fragmentation, cross-compilation approaches, and mappings and consistency

checking. Additionally, there exists a body of other challenges that are recognized

by researchers, listed under Other Studies in Table 2.2. Among them are studies

related to mobile energy efficiency, app bytecode, the impact of unstable or buggy

APIs, the impact of mobile ads, management of informative user reviews, manage-

ment of bug reports, and technology selection frameworks. We discussed most of

them in this section and the related work section.

46

Table 2.2: A mapping study.

Analysis and Testing Studies:

• Model-based Approach [49, 73, 85, 119, 128, 153, 154, 217]

• Record-and-Replay Approach [102]

• Context-Sensitive Approach [43, 66, 120, 146, 216]

• Mobile Security and Privacy Leaks [47, 54, 67, 84, 196, 218, 221]

• Performance Profiling [142, 151, 177]

Multiple Platforms Studies:

• Android Fragmentation [112, 135]

• Cross-Compilation Approach* [101, 117, 171, 187]

• Mappings and Consistency Checking [88, 100]

Other Studies:

• Mobile Energy Efficiency [57, 60, 176, 188]

• Mobile App Bytecode [194, 205]

• Impact of Unstable/Buggy APIs* [58, 147, 158, 195]

• Impact of Mobile Ads [107, 167, 173, 174]

• Informative User Reviews Management* [71, 105, 110, 123, 152, 181, 184]

• Bug Reports Management* [63, 112, 155, 168]

• Technology Selection Frameworks [157]

* Discussed in Section 2.7.

2.6.2 Same App across Multiple Platforms

Development

A prominent challenge emerging from our study is the fact that developers have to

build the same native app for multiple mobile platforms. Although developing for

multiple platforms is a recurring problem that is not unique to the mobile world,

the lack of proper development and analysis support in the mobile environment

47

exacerbates the challenges. Opting for standardized cross-platform solutions, such

as HTML5, seems to be the way to move forward. However, HTML5 needs to be

pushed towards maturation and adoption by major mobile manufacturers, which

in turn can mitigate many of the cross-platform development problems. Another

possible direction to pursue is exploring ways to declaratively construct [114] na-

tive mobile applications, by abstracting the implementation details into a model,

which could be used to generate platform-specific instances. That being said, deal-

ing with the critically of user experience in such apps and the dramatic differences

among the platforms not just in terms of APIs but also in the types of interactions,

are among the challenges.

Consistency Checking

Since each mobile platform requires its own unique environment in terms of pro-

gramming languages, tools, and development teams, another related challenge is

checking the correctness and consistency of the app developed across different plat-

forms. As revealed by our findings, developers currently conduct manual screen-

by-screen comparisons of the apps across platforms to check for consistent be-

haviour. However, this manual process is tedious and error-prone. One way to

tackle this problem is by constructing tools and techniques that can automatically

infer interaction models from the app on different platforms (See Table 2.2). In

Chapter 5, we reverse engineer a model of iOS applications [85]. Similarly, others

[119, 217] are looking into Android apps. The models of the app, generated from

different platforms, can be formally compared for equivalence on a pairwise basis

[162] to expose any detected discrepancies. In Chapter 6, we propose an auto-

mated technique for detecting inconsistencies in the same native app implemented

in iOS and Android platforms [88]. Other studies could use image-processing

techniques in the mapping phase. Additionally, they could focus on capturing in-

formation regarding the API calls made to utilize the device’s native functionality

such as GPS, SMS, Address Book, E-mail, Calendar, Camera, and Gallery, as well

as device’s network communication i.e., client-server communication of platform-

specific versions of a mobile app (similar to the cross-platform feature matching of

web applications [74]). Such automated techniques would drastically minimize the

48

difficulty and effort in consistency checking since many mobile developers manu-

ally “do screen-by-screen design review for each new platform”.

Testing

Regarding the testing challenges, follow-up studies could focus on generating test

cases for mobile apps. A centralized automatic testing system that generates a (dif-

ferent) test case for each target platform could be a huge benefit. While platform-

specific features can be customized, core features could share the same tests. Thus,

further research should focus on streamlining application development and testing

efforts regardless of the mobile platform.

2.6.3 Testing Mobile-Specific Features

The existing testing frameworks have limitations for testing mobile-specific fea-

tures and scenarios such as sensors (GPS, Accelerometer, gyroscope), rotation,

navigation, and mobility (changing network connectivity). As a consequence de-

velopers either need to write much test fixture code to assert mobile-specific sce-

narios or opt for manual testing. Thus, creating “a JUnit type of framework

with mobile-specific APIs and assertions” would be really beneficial. While there

are open-source and commercial tools available in the market that help emulate

contextual events e.g., Genymotion25 or Lockito26, our interviews mentioned that

built-in and platform-supported tools are needed as third-party solutions are hard

to be good enough.

Additionally, on the academic side as listed in Table 2.2, related studies [43,

66, 120, 146] proposed testing frameworks that consider not only GUI events but

also contextual events. Liang et al. [146] present Caiipa, a cloud service for testing

apps over an expanded mobile context space in a scalable way. It incorporates key

techniques to make app testing more tractable, including a context test space prior-

itizer to quickly discover failure scenarios for each app. Chandra et al. [66] have

developed techniques for scalable automated mobile app testing within two proto-

type services – VanarSena [190] and Caiipa [146]. In their paper, they describe a

25https://www.genymotion.com/
26https://play.google.com/store/apps/details?id=fr.dvilleneuve.lockito

49

https://www.genymotion.com/
https://play.google.com/store/apps/details?id=fr.dvilleneuve.lockito

vision for SMASH, a cloud-based mobile app testing service that combines both

previous systems to tackle the complexities presently faced by testers of mobile

apps.

2.6.4 Other Challenging Areas

There are also serious needs for (1) rooted emulators that can mimic the hardware

and software environments realistically; (2) better analysis tools, in order to mea-

sure and monitor different metrics of the app under development; (3) techniques

that would help debugging apps by capturing better state data when unexpected

crashes occur; (4) testing APIs from app stores, in order to catch the inconsisten-

cies of code with a store’s guidelines and internal APIs. In particular for Apple app

store, it would be beneficial if a set of testing APIs (e.g., as services) could check

the code against, before submitting to the stores.

2.7 Related Work
Researchers have discussed some of the challenges involved in mobile app de-

velopment [46, 82, 92, 138, 166, 169, 206, 213], however, most of these discus-

sions are anecdotal in nature. Other recent studies have made an effort to obtain

better insights regarding issues and concerns in mobile development through (1)

mining question and answer (QA) websites [62, 148, 149, 212] that are used by

developers; (2) mining and analyzing app stores’ content, such as user-reviews

[68, 71, 95, 113, 134–136, 140, 147, 152, 156, 181, 184], mobile app attributes

and descriptions [105, 143, 197], mobile app bytecode [54, 194, 195, 218], and (3)

mining mobile bug repositories [63, 112, 155, 168]. We categorize related work

into the aforementioned classes as well as cross-platform app development studies

and grounded theory studies in software engineering. We also provide a review of

the current papers and their relationship with the challenges in mobile development

that are widely recognized by the researchers, such as proliferation of malware via

fake markets or apps highjacking, crowdsourced requirements, the management of

non-informative reviews/bug reports from the crowd, and impact of unstable/buggy

APIs.

50

Mobile App Development and Testing Challenges

Recently, there have been numerous studies [46, 82, 92, 138, 150, 166, 169, 213]

related to the development and testing of mobile apps. Kochhar et al. [138] dis-

cussed the test automation culture among app developers. They surveyed 83 An-

droid and 127 Windows app developers and found that time constraints, compat-

ibility issues, lack of exposure, and cumbersome tools are the main challenges.

Miranda et al. [166] reported on an exploratory study through semi-structured in-

terviews with nine mobile developers. They found that developers perceive the

Android platform as more accessible and compatible with their existing knowl-

edge, however, its fragmentation is the major problem. Additionally, some devel-

opers choose iOS because sales are more profitable on that platform. Muccini et

al. [169] briefly discussed challenges and research directions on testing mobile

apps by analyzing the state of the art. Performance, security, reliability, and energy

are strongly affected by the variability of the environment where the mobile device

moves towards. Dehlinger et al. [82] briefly described four challenges they see

for mobile app software engineering and possible research directions. These chal-

lenges are namely, creating user interfaces accessible to differently-abled users,

developing for mobile application product-lines, supporting context-aware appli-

cations, and specifying requirements uncertainty. Franke et al. [92] have shown

that life-cycles of mobile platforms (iOS, Android, Java ME) have issues with the

official lifecycle models. They presented a way to reverse engineer any mobile

app lifecycle. They found for each platform either errors in the official models,

inconsistencies in the documentation or a lack of information in both. Wasserman

[213] briefly discussed a number of mobile-related research topics including devel-

opment processes, tools, user interface design, application portability, quality, and

security.

Mining QA Websites

Beyer et al. [62] presented a manual categorization of 450 Android related posts

of StackOverflow concerning their question and problem types using the input of

three Android app developers. The study highlights that developers have problems

with the usage of API components, such as user interface and core elements. Errors

51

are mentioned in questions related to Network, Database, and Fragments. Linares-

Vasquez et al. [148] used topic modelling techniques to extract hot topics from

StackOverflow mobile-development related questions. Their findings suggest that

most of the questions include general topics such as IDE-related and compatibility

issues, while the specific topics, such as crash reports and database connection, are

presented in a reduced set of questions. In another study, Linares-Vasquez et al.

[149] investigated how changes occurring to Android APIs trigger questions and

activity in StackOverow. They found that Android developers have more questions

when the behaviour of APIs is modified e.g., deleting public methods from APIs is

a trigger for questions. Wang et al. [212] analyzed API-related posts regarding iOS

and Android development from StackOverflow to understand API usage challenges

based on forum-based input from a multitude of developers. Bajaj et al. [56] mined

StackOverflow for questions and answers related to mobile web apps. They found

that web-related discussions are becoming more prevalent in mobile development,

and developers face implementation issues with new HTML5 features such as Can-

vas.

Mining App Stores

Khalid [134] manually analyzed and tagged reviews of iOS apps to identify the dif-

ferent issues that users of iOS apps complain about. They [136] studied 6,390 low

star-rating user-reviews for 20 free iOS apps and uncovered 12 types of complaints.

Their findings suggest that functional errors, feature requests and app crashes are

the most frequent complaints while privacy and ethical issues, and hidden app costs

are the complaints with the most negative impact on app ratings. Gorla et al. [105]

clustered Android apps by their description topics to identify potentially malicious

outliers in terms of API usage. Their CHABADA prototype identified several

anomalies in a set of 22K Android apps. Avdiienko et al. [54] compared benign

and malicious Android apps by mining their data flow from sensitive sources. They

found that the data for sensitive sources ends up in typical sinks that differ between

benign and malicious apps. Khalid et al. [135] helped game app developers deal

with Android fragmentation by picking the devices that have the most impact on

their app ratings, and aiding developers in prioritizing their testing efforts. Mining

52

the user reviews of 99 free game apps, they found that although apps receive user

reviews from 38-132 unique devices, 80% of the reviews originate from a small

subset of devices. Pagano et al. [181] carried out an exploratory study on over

one million reviews from iOS apps to determine their potential for requirements

engineering processes. They found that most of the feedback is provided shortly

after new releases, and the content has an impact on download numbers. They

also found that reviews’ topics include user experience, bug reports, and feature

requests. Linares-Vasquez et al. [147] investigated how the fault and change-

proneness of APIs used by free Android apps relates to their success estimated as

the average rating provided by the users. They [58] also surveyed 45 Android de-

velopers to indicate that apps having high user ratings use APIs that are less fault-

and change-prone than the APIs used by low rated apps. As also revealed by our

study, McDonnell et al. [158] found that rapid platform/library/API evolution is

among the challenges mobile developers and testers are faced with.

Mining Bug Repositories

Han et al. [112] analyzed fragmentation within Android by extracting topics from

bug reports of HTC and Motorola, using topic modelling techniques. They found

that hardware-based fragmentation affecting the bugs reported in the Android bug

repository as even for shared common topics there was a divergence in topic key-

words between vendors. Martie et al. [155] presented an approach to examine

the topics of concern for the Android open-source projects using issue trackers.

They used LDA to examine Android bug XML logs and analyzed topic trends and

distribution over time and releases.

Cross-platform App Development

There have been a number of comparison studies [81, 121, 180, 182] of several

“write once run anywhere” tools (e.g., PHONEGAP, APPCELERATOR TITANIUM,

XAMARIN, etc.). Other studies [83, 101, 129, 157] have analyzed different web-

based or hybrid mobile app development frameworks, while others [187] have dis-

cussed cross-compilation approach. For instance, Palmieri et al. [182] report a

comparison between four different cross-platform tools (RHODES, PHONEGAP,

53

DRAGONRAD and MOSYNC) to develop applications on different mobile OSs.

Huy et al. [121] studied and analyzed four types of mobile applications, namely,

native, mobile widgets, mobile web, and HTML5. Masi et al. [157] proposed a

framework to support developers with their technology selection process for the

development of a mobile application, which fits the given context and require-

ments. Gokhale et al. [101] discussed an approach for developing and delivering

existing web and desktop applications as mobile apps. Their proposal is a vari-

ant of Hybrid development model that utilizes code translators to translate existing

web or desktop applications for the target mobile platforms. Puder et al. [187] de-

scribed a cross-compilation approach, where Android apps are cross-compiled to

C for iOS and to C# for Windows Phone 7, from byte code level to API mapping.

Grounded Theory Studies in Software Engineering

Many researchers have used a grounded theory approach in qualitative software

engineering studies [44, 45, 70, 77, 78, 89, 90, 106, 130, 132, 132, 133, 139, 175,

191, 203, 204, 214] in order to understand software development practices and

challenges of industrial practitioners [44]. For instance, Khadka et al. [133] de-

scribed an exploratory study where 26 industrial practitioners were interviewed on

what makes a software system a legacy system, what the main drivers are that lead

to the modernization of such systems, and what challenges are faced during the

modernization process. The findings were validated through a survey with 198 re-

spondents. Greiler et al. [106] conducted a grounded theory study to understand

the challenges involved in Eclipse plug-in testing. The outcome of their interviews

with 25 senior practitioners and a structured survey of 150 professionals provides

an overview of the current testing practices, a set of barriers to adopting test prac-

tices, and the compensation strategies adopted because of limited testing by the

Eclipse community. Based on their findings, they proposed a set of recommen-

dations and areas for future research on plug-in based systems testing. Through

a grounded theory approach, Sulayman et al. [204] performed interviews with 21

participants representing 11 different companies, and analyze the data qualitatively.

They propose an initial framework of key software process improvement success

factors for small and medium Web companies. Kasurinen et al. [131] discussed

54

the limitations, difficulties, and improvement needs in software test automation for

different types of organizations. They surveyed employees from 31 software devel-

opment organizations and qualitatively analyzed 12 companies as individual cases.

They found that 74% of surveyed organizations do not use test automation consis-

tently. Karhu et al. [130] explored the factors that affect the use of software testing

automation through a case study within 5 different organizations. They collected

data from interviews with managers, testers, and developers and used grounded

theory. They found that the generic and independent (of third-party systems) tested

products emphasize on the wide use of testing automation. Coleman et al. [77, 78]

adopt the grounded theory methodology to report on the results of their study of

how software processes are applied in the Irish software industry. The outcome is

a theory that explains when and why software process improvement is undertaken

by software developers.

Our study aims at understanding the actual challenges mobile developers face

by interviewing and surveying developers in the field. To the best of our knowl-

edge, our work is the first to report a qualitative field study targeting mobile app

development practices and challenges.

2.8 Conclusions
Our study has given us a better, more objective understanding of the real challenges

faced by the mobile app developers today, beyond anecdotal stories.

Our results reveal that having to deal with multiple mobile platforms is one of

the most challenging aspects of mobile development. In particular, more recently

the challenge with internal fragmentation within the same platform is significant.

Since mobile devices and platforms are moving toward fragmentation, the devel-

opment process cannot leverage information and knowledge from a platform to

another platform. When the ‘same’ app is developed for multiple platforms, de-

velopers currently treat the mobile app for each platform separately and manually

check that the functionality is preserved across multiple platforms and devices.

Also creating a reusable user-interface design for the app is a trade-off between

consistency and adhering to each platform’s standards. Our study also shows that

mobile developers need mainly platform-supported analysis tools to measure and

55

monitor their apps. Also, testing is a huge challenge currently. Most develop-

ers test their mobile apps manually. There are more awareness recently for Unit

testing within the mobile community, however current testing frameworks do not

provide the same level of support for different platforms. Additionally, most devel-

opers feel that current testing tools are weak and have limited support for important

features of mobile testing such as mobility (e.g., changing network connectivity),

location services, sensors, or different gestures and inputs. Finally, emulators seem

to lack several real features of mobile devices, which makes analysis and testing,

even more, challenging.

56

Chapter 3

Works For Me! Characterizing Non-reproducible
Bug Reports

Summary27

Bug repository systems have become an integral component of software develop-

ment activities. Ideally, each bug report should help developers to find and fix a

software fault. However, there is a subset of reported bugs that is not (easily) re-

producible, on which developers spend considerable amounts of time and effort.

We present an empirical analysis of non-reproducible bug reports to characterize

their rate, nature, and root causes. We mine one industrial and five open-source

bug repositories, resulting in 32K non-reproducible bug reports. We (1) compare

properties of non-reproducible reports with their counterparts such as active time

and number of authors, (2) investigate their life-cycle patterns, and (3) examine 120

Fixed non-reproducible reports (i.e., non-reproducible reports that were marked as

Fixed later in their life-cycle). In addition, we qualitatively classify a set of ran-

domly selected non-reproducible bug reports (1,643) into six common categories.

Our results show that, on average, non-reproducible bug reports pertain to 17%

of all bug reports, remain active three months longer than their counterparts, can

be mainly (45%) classified as “Interbug Dependencies”, and 66% of Fixed non-

reproducible reports were indeed reproduced and fixed.

27This chapter appeared at the 11th ACM Working Conference on Mining Software Repositories
(MSR 2014) [87].

57

3.1 Introduction
When a failure is detected in a software system, a bug report is typically filed

through a bug tracking system. The developers then try to validate, locate, and

repair the reported bug as quickly as possible. In order to validate the existence

of the bug, the first step developers take is often using the information in the bug

report to reproduce the failure. However, reproducing reported bugs is not always

straightforward. In fact, some reported bugs are difficult or impossible to repro-

duce. When all attempts at reproducing a reported bug are futile, the bug is marked

as non-reproducible (NR) [7, 24].

Non-reproducible bugs are usually frustrating for developers to deal with [40].

First, developers usually spend a considerable amount of time trying to reproduce

them, without any success. Second, due to the very nature of these bug reports,

there is typically no coherent set of policies to follow when developers encounter

such bug reports. Third, because they cannot be reproduced, developers are reluc-

tant to take responsibility and close them.

Mistakenly marking an important bug as non-reproducible and ignoring it, can

have serious consequences. An example is the recent security vulnerability found

in Facebook [75], which allowed anyone to post to other users’ walls. Before

exposing the vulnerability, the person who had detected the vulnerability had filed a

bug report. However, the bug was ignored by Facebook engineers: “Unfortunately

your report [...] did not have enough technical information for us to take action on

it. We cannot respond to reports which do not contain enough detail to allow us to

reproduce an issue.”

Researchers have analyzed bug repositories from various perspectives includ-

ing bug report quality [61], prediction [108], reassignment [109], bug fixing and

code reviewing [53, 219], reopening [222], and misclassification [116]. None of

these studies, however, has analyzed non-reproducible bugs in isolation. In fact,

most studies have ignored non-reproducible bugs by focusing merely on the Fixed

resolution.

In this work, we provide an empirical study on non-reproducible bug reports,

characterizing their prevalence, nature, and root causes. We mine six bug reposito-

ries and employ a mixed-methods approach using both quantitative and qualitative

58

analysis. To the best of our knowledge, we are the first to study and characterize

non-reproducible bug reports.

Overall, our work makes the following main contributions:

• We mine the bug repositories of one proprietary and five open source appli-

cations, comprising 188,319 bug reports in total; we extract 32,124 non-

reproducible bugs and quantitatively compare them with other resolution

types, using a set of metrics;

• We qualitatively analyze root causes of 1,643 non-reproducible bug reports

to infer common categories of the reasons these reports cannot be repro-

duced. We systematically classify 1,643 non-reproducible bug reports into

the inferred categories;

• We extract patterns of status and resolution changes pertaining to all the

mined non-reproducible bug reports. Further, we manually investigate 120

of these non-reproducible reports that were marked as Fixed later in their

life-cycle.

Our results show that, on average:

1. NR bug reports pertain to 17% of all bug reports;

2. compared with bug reports with other resolutions, NR bug reports remain

active around three months longer, and are similar in terms of the extent to

which they are discussed and/or the number of involved parties;

3. NR bug reports can be classified into 6 main cause categories, namely “In-

terbug Dependencies”’ (45%), “Environmental Differences” (24%), “Insuf-

ficient Information” (14%), “Conflicting Expectations” (12%), and “Non-

deterministic Behaviour” (3%);

4. 68% of all NR bug reports are resolved directly from the initial status (New

/ Open). The remaining 32% exhibit many resolution transition scenarios.

5. NR bug reports are seldom marked as Fixed (3%) later on; from those that

are finally fixed, 66% are actually reproduced and fixed through code patches

(i.e., changes in the source code).

59

3.2 Non-Reproducible Bugs
Most bug tracking systems are equipped with a default list of bug statuses and

resolutions, which can be customized if needed. Generally, each bug report has

a status, which specifies its current position in the bug report life cycle [7]. For

instance, reports start at New and progress to Resolved. From Resolved, they are

either Reopened or Closed, i.e., the issue is complete. At the Resolved status, there

are different resolutions that a bug report can obtain, such as Fixed, Duplicate,

Won’t Fix, Invalid, or Non-Reproducible [7, 24].

There are various definitions available for non-reproducible bugs online. We

adopt and slightly adapt the definition used in Bugzilla [24]:

Definition 1 A Non-Reproducible (NR) bug is one that cannot be reproduced

based on the information provided in the bug report. All attempts at reproduc-

ing the issue have been futile, and reading the system’s code provides no clues as

to why the described behaviour would occur.

Other resolution terminologies commonly used for non-reproducible bugs in-

clude Cannot Reproduce [28], Works on My Machine [40] and Works For Me [41].

Our interest in studying NR bugs was triggered by realizing that developers

spend considerable amounts of time and effort on these reports. For instance, issue

#106396 in the ECLIPSE project has 62 comments from 28 people, discussing how

to reproduce the reported bug [23]. This motivated us to conduct a systematic

characterization study of non-reproducible bug reports to better understand their

nature, frequency, and causes.

3.3 Methodology
Our analysis is based on a mixed-methods research approach [80], where we collect

and analyze both quantitative as well as qualitative data. All our empirical data is

available for download [9]. We address the following research questions in our

study:

RQ1. How prevalent are NR bug reports? Are NR bug reports treated differently

than other bug reports?

60

Figure 3.1: Overview of our methodology.

RQ2. Why can NR bug reports not be reproduced? What are the most common

cause categories?

RQ3. Which resolution transition patterns are common in NR bug reports?

RQ4. What portion of NR bug reports is fixed eventually? Were they mislabelled

initially? What cause categories do they belong to?

Figure 3.1 depicts our overall approach. We use this figure to illustrate our

methodology throughout this section.

3.3.1 Bug Repository Selection

To answer our research questions, we need bug tracking systems that provide ad-

vanced search/filter mechanisms and access to historical bug report life-cycles.

61

Since BUGZILLA and JIRA both support these features (e.g., Changed to/from

operators), we choose projects that use these two systems.

Table 3.1 shows the bug repositories we have selected for this study. To ensure

representativeness, we select five popular, actively maintained software projects

from three separate domains, namely desktop (FIREFOX and ECLIPSE IDE), web

(MEDIAWIKI and MOODLE), and mobile (FIREFOX ANDROID). In addition, we

include one commercial closed source application (INDUSTRIAL). The proprietary

bug tracking system is from a Vancouver-based mobile app development company.

The bug reports are filed by their testing team and end-users, and are related to

different mobile platforms such as Android, Blackberry, iOS, and Windows Phone,

as well as their content management platform and backend software.

3.3.2 Mining Non-Reproducible Bug Reports

In this study, we include all bug reports that are resolved as non-reproducible at

least once in their life-cycles. In our search queries, we include all resolution ter-

minologies commonly used for non-reproducible bug reports, as outlined in Sec-

tion 3.2. We extract these NR bug reports in three main steps (Box 1 in Figure

3.1):

Step 1. We start by filtering out all Invalid, Duplicate, and Rejected reports. Where

applicable, we also exclude Enhancement, Feedback, and Unconfirmed re-

ports. The set of bug reports retrieved afterward is the total set that we con-

sider in this study (‘#All Bugs’ in Table 3.1).

Step 2. We use the filter/search features available in the bug repository systems

and apply the Changed to/from operator on the resolution field to nar-

row down the list of bug reports further to the non-reproducible resolution

(‘#NR Bugs’ in Table 3.1).

Step 3. We extract and save the data in XML format, containing detailed informa-

tion for each retrieved bug report.

62

Table 3.1: Studied bug repositories and their rate of NR bugs.

ID Domain Repository Product/Component #All Bugs* #NR Bugs** NR(%) FixedNR(%)***

FF Desktop Bugzilla [4] Firefox 65,408 18,516 28% 1%
E Desktop Bugzilla [2] Eclipse/Platform 65,475 8,189 13% 4%
W Web Bugzilla [3] MediaWiki 9,335 1,125 12% 9%
M Web Jira [10] Moodle 22,175 2,503 11% 5%
FFA Mobile Bugzilla [4] FirefoxAndroid 7,902 1,148 15% 3%
PTY Mobile Jira Proprietary 18,024 643 4% 17%
Overall 188,319 32,124 17% 3%

*All Query: Resolution: All except (Duplicate, Invalid, Rejected) and Severity: All except (Enhancement, Feedback) and Status: All except Unconfirmed
**NR Query: All Query and Resolution: Changed to/from Non-Reproducible
***FixedNR Query: Resolution: Fixed and Severity: All except (Enhancement, Feedback) and Status: All except Unconfirmed and Resolution CHANGED FROM
Non-Reproducible and Resolution: CHANGED TO Fixed

63

This mining step was conducted during August, 2013. We did not constrain the

start date for any of the repositories. The detailed search queries used in our study

are available online [9]. Overall, our queries extracted 32,124 NR bug reports from

a total of 188,319 bug reports.

3.3.3 Quantitative Analysis

In order to perform our quantitative analysis, we measure the following metrics

from each extracted bug report:

Active Time pertains to the period between a bug report’s creation and the last

update in the report.

Number of Unique Authors measures the number of people directly involved with

the report, based on their user ID.

Number of Comments provides information about the extent to which a bug is

discussed; this is an indication of how much attention a bug report attracts.

Number of CCs/Watchers measures the number of people that would receive up-

date notifications for the report. It provides insights as how many people are

interested in a particular bug report.

Historical Status and Resolution Changes collects data on how the status and

resolution of a bug report changes throughout time.

To address RQ1, we measure the first four metrics for all the bug reports to

compare the properties of NR bug reports (32,124) with the others (156,195). We

built an analyzer tool, called NR-Bug-Analyzer [9], to calculate these metrics. It

takes as input the extracted XML files and measures the first four metrics (Box

2 in Figure 3.1). Since each repository system has a different set of fields, we

performed a mapping to link common fields in BUGZILLA and JIRA, as presented

in Table 3.2.

To address RQ3, the last metric (historical changes) is extracted for all NR bug

reports and used to mine common transition patterns. The data retrieved from bug

repositories does not contain any information on how the statuses and resolutions

64

Table 3.2: Mapping of BUGZILLA and JIRA fields.

BUGZILLA JIRA Description

1 bug id key The bug ID.
2 comment id id (in comment field) A unique ID for a comment.
3 who author (in comment field) Name and id of the user who added a bug, a

comment, or any other type of text.
4 creation ts created The date/time of bug creation.
5 delta ts resolved (updated) The timestamp of the last update. If resolved

field is not available, updated field is used.
6 bug status status The bug’s latest status.
7 resolution resolution The bug’s latest resolution.
8 cc watches Receive notifications.

change over time for each bug report. Thus our tool parses the HTML source of

each NR bug report to extract historical data of status and resolution changes (Box

3 in Figure 3.1). BUGZILLA provides a History Table with historical changes to

different fields of an issue, including the status and resolution fields, attachments,

and comments. We extract the history of each bug report by concatenating the

issue ID with the base URL of the HISTORY TABLE.28 JIRA provides a similar

mechanism called Change History. Our bug report analyzer tool along with all the

collected (open source) empirical data are available for download [9].

3.3.4 Qualitative Analysis

In order to address RQ2, we perform a qualitative analysis that requires manual

inspection. To conduct this analysis in a timely manner, we constrain the number

of NR bug reports to be analyzed through random sampling. The manual classifi-

cation is conducted in two steps, namely, common category inference and classifi-

cation.

Common Category Inference. In the first phase, we aim to infer a set of common

categories for the causes of NR bugs, i.e., understanding why they are resolved as

NR. We randomly selected 250 NR reports from the open source repositories and

250 NR reports from INDUSTRIAL.

In order to infer common cause categories, each bug report was thoroughly an-

alyzed based on the bug’s description, tester/developer discussions/comments, and

28For example, the base URL for the History Table in FIREFOX BUGZILLA is https://bugzilla.mozilla.org/
show activity.cgi?id=bug id.

65

https://bugzilla.mozilla.org/show_activity.cgi?id=bug_id
https://bugzilla.mozilla.org/show_activity.cgi?id=bug_id

historical data. We defined a set of classification definitions and rules and gener-

ated the initial set of categories and sub-categories (Box 4 in Figure 3.1). Then, the

generated (sub)categories were cross-validated through discussions, merged, and

refined (Box 5 in Figure 3.1). Based on an analysis of the reasons the bug reports

could not be reproduced, in total, we extracted six high-level cause categories, each

with a set of sub-categories, which were fed into our classification step. The cate-

gories and our classification rules are presented in Table 3.3. In the given examples

in Table 3.3 and throughout the work, R refers to reporter and D refers to anyone

else other than reporter.

Classification. In the second phase, we randomly selected 200 NR bug reports

from each of the open source repositories. In addition, to have a comparable num-

ber of NR bug reports from the commercial application, we included all the 643

NR bug reports from INDUSTRIAL in this step. We then systematically classified

these 1,643 NR bug reports, using the rules and (sub)categories inferred in the pre-

vious phase. Where needed, the sub-categories were refined in the process (Box 6

in Figure 3.1). Similar to the category inference step, each bug report was manu-

ally classified by analyzing its descriptions, discussions/comments, and historical

activities. At the end of this step, each of the 1,643 NR bug reports was distributed

into one of the 6 categories of Table 3.3.

Inspecting Fixed NR Bug Reports. To address RQ4, we performed a query on

the set of NR bug reports to extract the subset that is finally changed to a Fixed

resolution.

We randomly selected 20 fixed NR bug reports from the 6 repositories and man-

ually inspected them (120) to understand why they were marked as Fixed (Box 7

in Figure 3.1), to understand whether the reports were initially mislabelled [116]

or became reproducible/fixable, e.g., through additional information provided by

the reporter. In addition, this would provide more insights in types of NR bug re-

ports that are expected to be fixed, and the additional information that is commonly

asked for, which helps reproduce NR bugs.

3.4 Results
In this section, we present the results of our study for each research question.

66

Table 3.3: NR Categories and Rules.

1) Interbug Dependencies: NR report cannot be reproduced because it has been implicitly fixed:

a) as a result or a side effect of other bug fixes
b) although it is not clear what patch fixed this bug
c) and the bug is a possible duplicate of or closely related to other fixed bugs.

Example #759127 in FIREFOX: R: “It is now working with Firefox 15.0.1. I believe it was fixed by the patches to
#780543 and #788600 [...].”

2) Environmental Differences: NR report cannot be reproduced due to different environmental settings such as:

a) cashed data (e.g., cookies), user settings/preferences, builds/profiles, old versions
b) third party software, plugins, add-ons, local firewalls, extensions
c) databases, Virtual Machines (VM), Software Development Kits (SDK), IDE settings
d) hardware(mobile/computer) specifics such as memory, browser, Operating System (OS), compiler
e) network, server configuration, server being down/slow.

Example #261055 in FIREFOX: D: “This is probably an extension problem. Uninstall your extensions and see if
you can still reproduce these problems.” R: “that did it, I just uninstalled all themes and extensions, and afterwards
reinstalled everything from the getextensions website. And now everything works again [...].”

3) Insufficient Information: NR report cannot be reproduced due to lack of enough details in the report; developers
request more detailed information:

a) regarding test case(s)
b) pertaining to precise steps taken by the reporter leading to the bug
c) regarding different conditions that result in the reported bug.

Example in INDUSTRIAL: D: “Cannot reproduce this problem. [...] go to the main screen of the blackberry device,
hold ALT and press L+O+G, it will show the logs. That information can help us to some degree.”

4) Conflicting Expectations: NR report cannot be reproduced when there exist conflicting expectations of the
application’s functionality between end-users/developers/testers:

a) misunderstanding of a particular functionality or system behaviour when it works as designed (i.e., lack of
documentation)

b) misunderstanding of (non)supported features, out of scope, dropping support or obsolete functionality in
newer versions

c) change in requirements
d) misunderstandings turning into QA conversations

Example #29825 in ECLIPSE: D: “PDE Schema works as designed [...] Since we cannot tell when you want to
use tags and when you want to use reserved chars as-is, you need to escape them yourself EXCEPT, again, when
between the ’¡pre¿’ and ’¡/pre¿’ tags that we recognize as a special case [...].”

5) Non-deterministic Behaviour: NR report cannot be reproduced deterministically.

Example #MDLSITE-2255 in MOODLE: R: “This happened for me again, and then went away again (started work-
ing). It seems there is an intermittent problem.”

6) Other: NR report cannot be reproduced due to various other reasons, such as mistakes of reporters:

Example #MDL-35391 in MOODLE: R: “I’m so sorry... This is not a bug. It occurred because I have been using
Moodle 2.3 since beta and overwriting old source in the same directory. Could admin please delete this ticket? Sorry
again.” D: “Thanks for the explanation, closing.” 67

F
F

−
N

R
F

F
−

 O
th

er
s

E
−

N
R

E
−

O
th

er
s

W
−

N
R

W
−

O
th

er
s

M
−

N
R

M
−

O
th

er
s

F
FA

−
N

R
F

FA
−

O
th

er
s

P
T

Y
−

N
R

P
T

Y
−

O
th

er
s

0
10

00
20

00
30

00
A

ct
iv

e
T

im
e

(D
ay

s)

Figure 3.2: Active Time.

F
F

−
N

R
F

F
−

 O
th

er
s

E
−

N
R

E
−

O
th

er
s

W
−

N
R

W
−

O
th

er
s

M
−

N
R

M
−

O
th

er
s

F
FA

−
N

R
F

FA
−

O
th

er
s

P
T

Y
−

N
R

P
T

Y
−

O
th

er
s

0

2

4

6

8

10

12

N
um

be
r

of
 U

ni
qu

e
A

ut
ho

rs
Figure 3.3: No. of Authors.

F
F

−
N

R
F

F
−

 O
th

er
s

E
−

N
R

E
−

O
th

er
s

W
−

N
R

W
−

O
th

er
s

M
−

N
R

M
−

O
th

er
s

F
FA

−
N

R
F

FA
−

O
th

er
s

P
T

Y
−

N
R

P
T

Y
−

O
th

er
s

0

5

10

15

20

25

N
um

be
r

of
 C

om
m

en
ts

Figure 3.4: No. of Comments.

F
F

−
N

R
F

F
−

 O
th

er
s

E
−

N
R

E
−

O
th

er
s

W
−

N
R

W
−

O
th

er
s

M
−

N
R

M
−

O
th

er
s

F
FA

−
N

R
F

FA
−

O
th

er
s

P
T

Y
−

N
R

P
T

Y
−

O
th

er
s

0

2

4

6

8

10

12

14

N
um

be
r

of
 C

C

Figure 3.5: No. of Watchers.

3.4.1 Frequency and Comparisons (RQ1)

Table 3.1 presents the percentage of NR bug reports for each repository. The results

of our study show that, on average, 17% of all bug reports are resolved as non-

reproducible at least once in their life-cycles.

Figures 3.2–3.5 depict the results of comparing NR bug reports with other res-

olution types. For each bug repository, the NR bug reports are shown with grey

68

Table 3.4: Descriptive statistics between NR and Others, for each defined metric: Active Time (AT), #
Unique Authors (UA), # Comments (C), # Watchers (W), from all repositories.

Metric Type Mean Median SD Max p-value

AT NR 396 154 553 4534 0.00Others 313 40 531 4326

UA NR 3.16 3 2.22 85 0.00Others 3.06 2 2.61 103

C NR 5.14 3 7.9 459 0.03Others 5.93 3 12.5 1117

W NR 2.1 1 3 159 0.00Others 2.7 2 4.3 145

background. We ignore outliers for legibility. Table 3.4 shows the mean, me-

dian, standard deviation, max and p-value (Mann-Whitney) for each comparison

metric.29 The results show that active time is significantly different, i.e., NR bug

reports are on average three months longer active than non-NR bug reports. For

the number of unique authors, comments, and CC/watchers, the results are statisti-

cally significant (p < 0.05), but the observed differences, having almost the same

medians, are not indicative, meaning that NR bug reports receive as much attention

from reporters and developers as any other resolution type.

3.4.2 Cause Categories (RQ2)

Table 3.3 shows the classification rules we used in our cause category investiga-

tion. Figure 3.6 shows the six main categories that emerged in our analysis, with

their overall rate. As shown, “Interbug Dependencies” is the most common cate-

gory with having 45% of the NR bugs, followed by “Environmental Differences”

(24%), “Insufficient Information” (14%), “Conflicting Expectations” (12%), “Non-

deterministic Behaviour” (3%) and “Other” (2%). Additionally, Figure 3.7 depicts

the rate of the six cause categories per bug repository. We provide examples of

each category below.

Interbug Dependencies. Bug reports in this category are those that cannot be re-

produced because they have been indirectly fixed with or without explicit software

patches. This category implies that there are bug reports that perhaps are not identi-

cal but semantically closely related to each other. Overall, this is the most common

29Min was 0 in all cases.

69

Interbug
Dependencies

45%

Other
2% Non-deterministic

Behaviour
3%	

Conflicting
Expectations

12%

Insufficient
Information

14%

Environmental
Differences

24%

Figure 3.6: Overall Rate of NR Categories.

cause category we observed in the study (45%). Examples include:

#767543 in FIREFOX: “D: Works for me for Beta 15, Aurora 16, and Nightly

17 with Swype Beta 1.0.3.5809 on Galaxy Nexus. I think my fix for bug #767597

fixed this bug.”

#177769 in FIREFOX: “D: Will resolve this as NR since we don’t know which

checkin fixed this.”

#259652 in ECLIPSE: “D: I remember fixing this but can’t find the bug. Since

it doesn’t happen in HEAD, marking as NR.”

#723250 in FIREFOX ANDROID: “D: This should be fixed now with my latest

changes on inbound. Specifically, bug 728369.”

Environmental Differences. Bug reports in this category cannot be reproduced

due to environmental settings that are different for developers/testers/end-users.

This category accounts for 24%. Examples include:

#353838 in ECLIPSE: “D: [..] your install got corrupted because of incompat-

ible bundles. You could first try to disable or uninstall Papyrus and if that doesn’t

help try to remove the Object Teams bundles.”

#DTP-01 in INDUSTRIAL: “D: This has something to do with the XCODE

settings on the build machine. Try to build it on another computer and see if it

works. I cannot reproduce this on my iPhone, iPad + simulators.”

70

0%

50%

100%

Fir
efo

x

Ec
lip

se

Med
iaW

iki

Moodle

Fir
efo

xA
ndroid

Proprie
tar

y

Interbug Dependencies

Environmental Differences

Insufficient Information

Conflicting Expectations

Non-deterministic Behaviour

Other

Figure 3.7: Rate of root cause categories in each bug repository.

#456734 in FIREFOX: “R: I solved the problem by uninstalling firefox (without

extensions) and installing version 3.0.1 again, and then updating it again to 3.0.2.

It’s a mystery for me but it helped so it’s solved.”

Insufficient Information. This is when developers need more specific and detailed

information from the reporters. This category accounts for 14% of NR bug reports.

Examples of this category include:

#125142 in ECLIPSE:: “D: I haven’t been able to reproduce this bug in the

Java debugger [...]. Do you have a test case that displays the launch happening in

the foreground? marking as NR. Please reopen with a reproducible test case if this

is still occurring.”

#3103 in MEDIAWIKI: “D: I’m going to resolve this bug (as NR) on the

grounds that without further details of the circumstances in which it occurs, there’s

really not much we can do... ”

#19880 in MEDIAWIKI: “D: I’ve tested ru.wikipedia.org in IE5.5 on Windows

2000, IE6 on Windows XP, IE7 on Windows Vista, IE8 on Windows Vista. I was

unable to reproduce this problem. Perhaps the reporter of this bug could be more

specific.”

Also tickets are also resolved as NR when there is no response from reporters

for several months. For example:

#10014 in MEDIAWIKI: “D: Closing ‘support bug’ due to lack of response; if

the problem persists, please consider taking it up on the mediawiki-l mailing list.”

71

In the FIREFOX project, an automated message is set up in the bug tracking

system, which states “This bug has had no comments for a long time. Statistically,

we have found that bug reports that have not been confirmed by a second user after

three months are highly unlikely to be the source of a fix to the code. [...] If this bug

is not changed in any way in the next two weeks, it will be automatically resolved

(NR).”

Conflicting Expectations. This category represents bug reports in which there ex-

ist conflicting expectations of the software between end-users/developers/testers.

Such conflicts could be related to a particular system behaviour, functionality, fea-

ture, software support, activity, input/output types and ranges, or specification doc-

umentation. In these scenarios the user believes there is a bug in the system since

what they see is different from their mental model and/or expectations. As a result,

the reported bugs are not really bugs and thus cannot be reproduced by developers.

12% of NR bug reports fall into this category. Some examples are:

#956483 in FIREFOX ANDROID: “D: [...] getDefaultUAString is not

what you think. That controls the UA of the Java HTTP requests we make in Fennec.

This is not used by the Gecko networking and rendering engine. You need to use

the normal Gecko preferences to change the UA. This might work: [...] R: Thanks.

That works.”

#12593 in MEDIAWIKI: “R: [...] I can live with this because it is consistent

and predictable behaviour. Thinking about it, it is probably desirable that the

system works this way for migration purposes; for example: when importing a

dump into a newer MEDIAWIKI version.” says the reporter.

#19943 in MEDIAWIKI: “D: Seems ok to me. As long as extensions are passing

their path as either a full URL (with protocol) or relative from the docroot they

should be fine [...] Checked all extensions in MW SVN that call this, and they all

seem to be ok, [...]. Works for me, no real issue with addExtensionStyle()

here. R: Ah, I see. Needs documenting, then [...].”

#17265 in MEDIAWIKI: “R: Preferably, the user and talk page of the other

username should be deleted, because it’ll be impracticable to merge. I hope this

will be implemented and will help a lot of people. D: Works for me. There’s an

72

extension [...] that does this. Also, there’s a maintenance script [...] that can be

used for edit attribution, if someone wanted to manually merge two users.”

Non-deterministic Behaviour. This category represents bugs that cannot be re-

produced deterministically, meaning that the failure is intermittent and triggered at

random; and thus difficult to analyze. 3% of NR bug reports are in this category.

An example of a developer comment is given below:

#DTP-02 in INDUSTRIAL: “D: This crash is very random, hard to reproduce.

But my guess is it is network/analytics related. It may have to do with the user

scrolling through a number of events in the Schedule section which the app cannot

keep up with and then eventually crashes.”

Other. Any other reason not covered in the other 5 categories would fall under this

category (2%). One common instance in this category is bug reports that are mis-

takenly reported, such as opening an old ticket by mistake, or running the system

with incorrect permissions.

#152 in MEDIAWIKI: “R: For the last 3 hours I made the assumption that we

could only import articles from the template namespace ... Additionally I made an

error in my testing page that I just figured out. Closing...”

#8966 in MEDIAWIKI: “R: Shame on me, The function is not broken, I [mis]

understood the syntax.”

3.4.3 Common Transition Patterns (RQ3)

68% of NR bug reports are resolved directly from the initial status (New/Open→
Resolved(NR)). For the remaining 32%, there are various transition scenarios that

NR bugs go through, changing their status and resolution. Table 3.5 presents some

of the observed examples of the status transitions of NR bug reports. For instance,

the bug report in row #6 changes resolutions 5 times: Fixed→ Fixed→ Invalid→
NR→ Fixed.

73

Table 3.5: Examples of STATUS (RESOLUTION) transitions of NR bug reports.

STATUS (RESOLUTION)

1 NEW→RESOLVED(NR)→REOPENED→RESOLVED(NR)→REOPENED→RESOLVED(NR)
2 NEW→RESOLVED(NR)→REOPENED→ASSIGNED→RESOLVED(FIXED)→REOPENED→ RESOLVED(FIXED)
3 NEW→RESOLVED(FIXED)→REOPENED→RESOLVED(WONTFIX)→RESOLVED(NR)
4 NEW→RESOLVED(FIXED)→REOPENED→RESOLVED(NR)→REOPENED→NEW→RESOLVED(WONTFIX)
5 NEW→RESOLVED(FIXED)→REOPENED→RESOLVED(NR)→REOPENED→RESOLVED(FIXED)
6 UNCONFIRMED→NEW→RESOLVED(FIXED)→REOPENED→RESOLVED(FIXED)→REOPENED→RESOLVED(INVALID)
→REOPENED→RESOLVED(NR)→REOPENED→RESOLVED(FIXED)

7 NEW→ASSIGNED→NEW→RESOLVED(NR)→REOPENED→ASSIGNED→RESOLVED(FIXED)→VERIFIED
8 NEW→ASSIGNED→RESOLVED(NR)→REOPENED→ASSIGNED→RESOLVED(LATER)→REOPENED→NEW→ASSIGNED
→NEW→ASSIGNED→RESOLVED(FIXED)

9 UNCONFIRMED→RESOLVED(INCOMPLETE)→UNCONFIRMED→RESOLVED(INCOMPLETE)→RESOLVED(FIXED)
→RESOLVED(NR)

74

No Resolution

INCOMPLETE)

WONTFIX

FIXED

4.4

NR69.1

INVALID

DUPLICATE

CUSTOM RESOLUTIONS

4.6

5.1 2

Figure 3.8: Resolution-to-Resolution Transition Patterns of NR Bug Reports (only weights larger than 2%
are shown on the graph).

We examined resolution transitions of NR bug reports more closely, and plot-

ted a resolution change pattern graph for the six bug repositories, which is depicted

in Figure 3.8. In order to extract a common pattern for all the six repositories, we

abstracted away custom (repository-specific) resolutions such as Later, Remind,

Expired, Rejected, Unresolved, and NotEclipse. The custom resolutions are clus-

tered as Custom Resolutions in Figure 3.8. The other resolutions shown in the

graph were common in all the repositories.

We distinguish between two types of transitions in Figure 3.8: the black arrows

indicate all the direct connections to the NR resolution, i.e., all the fan-ins and fan-

outs; the grey arrows indicate the indirect connections between other resolutions

and NR resolution. To avoid cluttering the figure, we only show weights larger

than 2% on the graph. As the figure illustrates, 69% of the transitions are resolved

as NR from the beginning. 4.6% of the transitions are from Fixed to NR. For

75

instance, #376902 in FIREFOX was first resolved as Fixed then changed to NR with

a comment: “Fixed refers to problems fixed by actual code changes to FIREFOX.

Here NR is the correct resolution.”

Interestingly, 5.1% of the transitions are from NR to Fixed. We explore fixed

NR bug reports further in the following subsection.

3.4.4 Fixed Non-reproducible Bugs (RQ4)

The last column in Table 3.1 shows that, on average, 3% of all NR bugs become

Fixed. From these, around 66% actually become reproducible as valid bugs and

are fixed with code patches. They mainly fall into “Insufficient Information”, “En-

vironmental Differences”, and “Conflicting Expectations” cause categories. Some

examples include:

#209834 in ECLIPSE: “D: Now, when you described the problem more pre-

cisely I realized it’s a valid bug. I checked it in both 3.3.1.1 (which you’re using)

and N20071221-0010 (on which I’m on at this moment) and I can see the prob-

lem by clicking the ‘Apply’ button several times - a resource matched to *.a rule

changes it’s state even though the rule is enabled all the time. I’ll put up a fix in a

minute [...]” (“Insufficient Information” category)

#533470 in FIREFOX: “R: [...] I think I got to the bottom of it. The confusion

was caused by kernel settings: I thought it was fixed, but actually it was just a ipv6

module getting automatically loaded. The problem still exists when there is no

kernel ipv6 support available. I’ve submitted a simple patch to pulseaudio which

will hopefully be accepted and solve the problem.” (“Environmental Differences”

category)

#245584 in FIREFOX: “D: the problem was because NS NewURI was failing

- perhaps it was failing because there was something about the URL from IE’s

data that our networking system couldn’t handle? Since this was particular to that

URL in that person’s set of typed URLs in IE, it didn’t show up for everyone [...]”

(“Environmental Differences” category)

Interestingly, there were no code patches assigned to the rest of Fixed NR bug

reports (34%). These are mislabelled reports, as the Fixed resolution is used when

76

“a fix for a bug is checked into the tree and tested” [24]. From these, around 24%

are in the “Interbug Dependencies” category. For example:

#705166 in FIREFOX: “D1: [...], guess this bug is fixed in the latest nightly.

Working fine for me too. D2: [...] WorksForMe is not a correct resolution for this

one. The bug was actually fixed by the patch in bug 704575.”

3.5 Discussion
In this section, we discuss our general findings related to non-reproducible bug

reports and discuss some of the threats to validity of our results.

3.5.1 Quantitative Analysis of NR Bug Reports

Our investigation in the quantitative attributes of NR and other types of bug reports

shows that NR bug reports are as costly and important as the rest since they receive

the same amount of attention as other bug report types, in terms of the number

of comments and developers involved. Developers are typically reluctant to close

these bug reports, and they try to involve more people and ask questions through

comments. As a result, NR bug reports remain open substantially —around three

months on average— longer than other types of bug reports. This clearly points

to the uncertainly and low level of confidence developers have when dealing with

NR bugs. Possible explanations for leaving NR bug report open longer could be

that (1) they do not want to be responsible in case the NR bug turns out to be a real

(reproducible) bug that needs fixing, (2) they hope more concrete information will

be provided to help reproduce the bug, and/or (3) they wait for someone else to be

assigned to the report who knows how to reproduce the bug.

3.5.2 Fixing NR Bugs

As our results from the six repositories have shown, on average 17% of all bug

reports are resolved as NR. Among those, 3% are later marked as Fixed. A deeper

investigation into the Fixed NR reports revealed that around 66% of them become

indeed reproducible and fixed with code patches. The rest (34%) have no code

patches assigned to them, from which around 24% are in the “Interbug Dependen-

77

cies” category. This means overall only 1.98% of all NR bug reports are fixed with

an explicit code patch. This indicates that the majority of NR bug reports remain

unreproducible.

3.5.3 Interbug Dependencies

On the other hand, 45% of all NR bugs were categorized as “Interbug Dependen-

cies”, where they were non-reproducible because they were implicitly fixed in other

bug reports. Therefore, we expected the percentage of the explicit fixed NR bugs to

be higher than 3%. However, it turns out that developers use the NR resolution for

reports that are resolved as a consequence of other bug fixes. This implies that al-

most half of all NR bugs are actually (implicitly) fixed bugs. We believe coming up

with automatic solutions that would cluster these interbug dependent reports based

on inferred historical characteristics would help the developers in this regard.

3.5.4 Mislabelling

Our findings indicate that many reports are misclassified. These misclassifications

happen not due to human errors but also because of the fact that the available

resolutions in the repositories do not cover all possible scenarios. For instance,

many developers use the NR (or WorksForMe) resolution when they actually mean

the bug report is irrelevant, unimportant, or even fixed. This is different than the

formal definition of NR bugs (see Section 3.2). We observed many inconsistencies

and ambiguities around the usage of the Fixed and NR resolutions, in particular

in cases where a bug report needs to be marked as “fixed with no code patches”.

Bugs 376902 and 705166 (subsections 3.4.3 and 3.4.4, respectively) are examples

of these cases.

3.5.5 Different Domains and Environments

The active time of NR bug reports in the INDUSTRIAL repository is much lower

than the open source repositories (see Figure 3.2). According to Table 3.1, NR

bugs are more prevalent in the studied open-source projects, i.e., they pertain to

11–28% in the open source repositories and 4% in the industrial case. In addition,

as presented in the last column of Table 3.1, although the rate of NR bug reports

78

is lower in the INDUSTRIAL case, the rate of fixed NR bug reports is higher, com-

pared to the open source repositories. Although these findings apply to our sample

repositories, possible reasons behind these differences could be that in commercial

projects, there is more at stake and, therefore, developers (1) spend more time and

effort in reproducing even hard to reproduce bugs, and (2) cannot afford to simply

ignore NR bugs. It could also be that the company has a brute force policy in terms

of closing bug reports as soon as possible. On the other side, developers in open

source projects have less time to spend and less urgency to fix/close a bug report.

Additionally, in the mined repositories, the rate of NR bug reports in desk-

top applications is more than web and mobile apps, i.e., they are in the range of

13–28% for desktop, 11–12% for web, and 4–15% for mobile apps. Figure 3.2

indicates that NR bug reports have a lower active time in the repositories of the

mobile apps, compared to the desktop and web applications. In addition, the dif-

ference between the medians of NR and other bug reports is the highest in the web

applications, followed by the desktop, and mobile apps in our study.

3.5.6 Communication Issues

The two categories “Insufficient Information” (14%) and “Conflicting Expecta-

tions” (12%) indicate that there is a source of uncertainty and lack of proper com-

munication between the reporters and resolvers. Herzig et al. [116] observed this

uncertainty as a source of misclassification patterns in their recent bug report study.

Equipping bug tracking systems with better collaboration tools would facilitate and

enhance the communication needs between the two parties. For the category “En-

vironmental Differences” (24%), techniques that make it easier to capture the steps

leading to the bug through, e.g., record/replay methods [115], monitoring the dy-

namic execution of applications [59], or capturing user interactions [193] would be

helpful to reproduce the bug report.

3.5.7 Threats to Validity

Our manual classification of the bug reports could be a source of internal threats to

validity. In order to mitigate errors and possibilities of bias, we performed our man-

ual classification in two phases where (1) the inference of rules was initially done

79

by the first author; the rules were cross-validated and uncertainties were resolved

through extensive discussions and refinements between the first two authors; the

generated categories were discussed and refined by all the three authors, (2) the

actual distribution of bug reports into the 6 inferred categories was subsequently

conducted by the first author following the classification rules inferred in the first

step.

In addition, since this is the first study classifying NR bug reports, we had to

infer new classification rules and categories. Thus, one might argue that our NR

rules and categories are subjective with blurry edges and boundaries. By following

a systematic approach and triangulation we tried to mitigate this threat. Another

threat in our study is the selection and use of these bug repositories as the main

source of data. However, we tried to mitigate this threat by selecting various large

repositories and randomly selecting NR bug reports for analysis.

In terms of external threats, we tried our best to choose bug repositories from a

representative sample of popular and actively developed applications in three dif-

ferent domains (desktop, web, and mobile). With respect to bug tracking systems,

JIRA and BUGZILLA are well-known popular systems, although bug reports in

projects using other bug tracking systems could behave differently. Thus, regard-

ing a degree of generalizability, replication of such studies within different domains

and environments (in particular for industrial cases) would help to generalize the

results and create a larger body of knowledge.

All repositories except the INDUSTRIAL case are publicly available, making

the quantitative findings of our study reproducible.

3.6 Related Work
We categorize related work into two classes: empirical bug report studies and fail-

ure reproduction studies.

Empirical Bug Report Studies. Empirical bug report studies have so far focused

on different perspectives including understanding the quality of bug reports [61,

64, 118, 141], reassignments [109], bug report misclassifications [116], reopenings

[202, 222], prediction and statistical models [96, 108, 145, 201], bug fixing and

code reviewing process [219], and coordination patterns and activities around the

80

bug fixing process [53].

Herzig et al. [116] recently reported that every third ‘bug report’ is not really

a bug report. In a manual examination of more than 7,000 bug reports of five

open-source projects, they found 33.8% of all bug reports to be misclassified - that

is, rather than referring to a code fix, they resulted in a new feature, an update to

documentation, or an internal refactoring. This misclassification introduces errors

in bug prediction models: on average, 39% of files marked as defective actually

never had a bug. They estimated the impact of this misclassification on earlier

studies and recommended manual data validation for future studies. The results of

our study also confirm this finding.

Aranda et al. [53] report on a field study of coordination activities around bug

fixing, through a combination of case study and a survey of software profession-

als. They found that the histories of even simple bugs are strongly dependent on

social, organizational, and technical knowledge, which cannot be solely extracted

through automation of electronic repositories, and that such automation provides

incomplete and often erroneous accounts of coordination.

Zimmermann et al. [222] characterized how bug reports are reopened, by using

the Microsoft Windows operating system project as a case study, using a mixed-

methods approach. They categorized the reasons for reopening based on a survey

of 358 Microsoft employees and ran a quantitative study of Windows bug reports,

focusing on factors related to bug report edits and relationships between people in-

volved in handling the bug. They propose statistical models to describe the impact

of various metrics on reopening bugs ranging from the reputation of the opener to

how the bug was found.

Guo et al. [109] present a quantitative and qualitative analysis of the bug re-

assignment process in the Microsoft Windows Vista project. They quantify social

interactions in terms of both useful and harmful reassignments. They list five rea-

sons for reassignments: finding the root cause, determining ownership, poor bug

report quality, hard to determine proper fix, and workload balancing. Based on

their study, they propose recommendations for the design of more socially-aware

bug tracking systems.

To the best of our knowledge, our work is the first to report a characterization

study on non-reproducible bug reports.

81

Failure Reproduction Studies. Apart from the empirical bug studies, there have

been a number of studies [59, 115, 193] analyzing and proposing solutions for

failure reproduction. Roehm et al. [193] present an approach to monitor interac-

tions between users and their applications selectively at a high-level of abstraction,

which enables developers to analyze user interaction traces. Herbold et al. [115]

use a record/replay approach and monitor messages between GUI objects. Such

messages are triggered by user interactions such as mouse clicks or key presses.

We believe these techniques can help make NR bug reports easier to understand

and reproduce. In this work, however, we perform a mining study of NR bug re-

ports to understand their nature, leaving possible solutions for future work.

3.7 Conclusions
Working on non-reproducible bug reports is notoriously frustrating and time con-

suming for developers. In this work, we presented the first empirical study on

the frequency, nature, and root cause categories of non-reproducible bug reports.

We mined 6 bug tracking repositories from three different domains, and found

that 17% of all bug reports are resolved as non-reproducible at least once in their

life-cycles. Non-reproducible bug reports, on average, remain active around three

months longer than other resolution types while they are treated similarly in terms

of the extent to which they are discussed or the number of developers involved. In

addition, our analysis of resolution transitions in non-reproducible bug repots re-

vealed that such reports change their resolutions many times. Furthermore, around

2% of all NR bug reports are eventually fixed with code patches, while around half

are implicitly ‘fixed’.

Our manual examination revealed 6 common root cause categories. Our clas-

sification indicated that “Interbug Dependencies” forms the most common cat-

egory (45%), followed by “Environmental Differences” (24%), “Insufficient In-

formation” (14%), “Conflicting Expectations” (12%), and “Non-deterministic Be-

haviour” (3%). Our study shows that many NR bug reports are mislabelled pointing

to the need for bug repository systems and developers to resolve inconstancies in

the usage of the Fixed and NR resolutions.

Future work can focus on (1) bug reports in the “Interbug Dependencies” cate-

82

gory to design techniques that would facilitate identifying, linking, and clustering

them upfront so that developers would not have to waste time on them, (2) incorpo-

rating better collaboration tools into bug tracking systems to facilitate better com-

munication between different stakeholders to address the problem with the other

NR categories.

83

Chapter 4

Same App, Two App Stores: A Comparative Study

Summary30

Each mobile platform has its own online store for distributing apps to users. To

attract more users, implementing the same mobile app for different platforms has

become a common industry practice. App stores provide a unique channel for

users to share feedback on the acquired apps through ratings and textual reviews.

To understand the characteristics of and differences in how users perceive the same

app implemented for and distributed through different platforms, we perform a

large-scale comparative study. We mine the characteristics of 80K app-pairs from

a corpus of 2.4M apps collected from the Apple and Google Play app stores. We

quantitatively compare their app-store attributes, such as ratings, versions, prices,

and ask the developers about the identified differences. Further, we employ su-

pervised machine learning to build classifiers for sentiment and feedback analysis,

and classify 1.7M textual user reviews obtained from 2K of the mined app-pairs.

We analyze discrepancies and root causes of user complaints at multiple levels of

granularity across the two platforms.

4.1 Introduction
Online app stores are the primary medium for the distribution of mobile apps.

Through app stores, users can download and install apps on their mobile devices.

App stores also provide an important channel for app developers to collect user

30This chapter is submitted to an ACM SIGSOFT conference.

84

feedback, such as the overall rating of their app, and issues or feature requests

through user reviews.

To attract as many users as possible, developers often implement the same app

for multiple mobile platforms [86]. While ideally, a given app should provide

the same functionality and high-level behavior across platforms, this is not always

the case in practice [88]. For instance, a user of the Android STARBUCKS app

complains: “I downloaded the app so I could place a mobile order only to find out

it’s only available through the iPhone app.” Or an iOS NFL app review reads:

“on the Galaxy you can watch the game live..., on this (iPad) the app crashes

sometimes, you can’t watch live games, and it is slow.”

Currently, iOS [21] and Android [19] dominate the app market, each with over

1.5 million apps in their respective app stores; therefore, in this work, we focus on

these two platforms. We present a large-scale study on mobile app-pairs — same

app implemented for iOS and Android platforms — in order to analyze and com-

pare their various app-store attributes, textual user reviews, and root causes of user

complaints. We mine the two app stores and employ a mixed-methods approach

using both quantitative and qualitative analysis. Our study can help developers to

understand the dynamics of different markets, end-user perceptions, and reasons

behind varying success rates for the same app across platforms.

Researchers have mined app stores for analyzing user-reviews [71, 124, 185],

app descriptions [105, 143, 200], and app bytecode [54, 194, 195]. However, ex-

isting studies focus on one store at a time only. To the best of our knowledge, we

are the first to study the same apps, published on different app stores.

Overall, our work makes the following main contributions:

• We present the first dataset of 80,169 app-pairs, extracted by analyzing the

properties of 2.4M apps from the Google Play and Apple app stores. Our

app-pair dataset is publicly available [165].

• We compare the app-pairs’ attributes such as ratings, categories, prices, ver-

sions, updates and explore causes for variation among them.

• We identify app-pairs on the top rated 100 free and 100 paid apps listed on

Google Play and Apple app stores and explore some of the obstacles that

85

prevent developers from publishing their apps in both stores.

• We extract and classify user reviews to compare user sentiment and com-

plaints across app-pairs.

• Finally, we measure an app’s success using a proposed metric that combines

reviews, ratings, and stars. Based on developers’ feedback, we provide in-

sight into the varying success rates of app-pairs.

4.2 Methodology
Our analysis is based on a mixed-methods research approach [80], where we col-

lect and analyze both quantitative and qualitative data. We address the following

research questions in our study:

RQ1. How prevalent are app-pairs and what are the app-store characteristics of

app-pairs?

RQ2. What portion of the top rated apps are app-pairs? Why are some apps only

available on one platform?

RQ3. Are the app-pairs equally successful on both platforms?

RQ4. What are some of the major concerns or complaints on each platform?

Figure 4.1 depicts our overall approach. We use this figure to illustrate our

methodology throughout this section. We first describe how we collect our datasets

along with their attributes and descriptive statistics, and then describe how we de-

tect app-pairs. Finally, we explain the analysis steps performed on the app-pairs.

Additionally, to better understand our findings, we ask app developers about some

of the reasons behind the differences in app-pair attributes such as prices, update

frequencies, success rates, and top-rated apps existing only on one platform.

4.2.1 Data Collection

The first step in our work is to collect Android and iOS apps along with their

attributes (Box 1 in Figure 4.1). To this end, we use two open-source crawlers,

86

Figure 4.1: Overview of our methodology.

namely Google Play Store Crawler [103] and Apple Store Crawler [52] to mine

apps from the two app stores, respectively. We collect app attributes that are avail-

able on two stores. Since each app store has a different set of attributes, we first

map the attributes that exist in both app stores and ignore the rest. For instance,

information about the number of downloads is only available for Android but not

iOS, and thus, we ignore this attribute. This mining step was conducted in Novem-

ber 2014 and resulted in 1.4M Android apps and 1M iOS apps. Table 4.1 outlines

the attributes we collect. We save this data in a MONGODB database [165], which

takes up approximately 2.1GB of storage.

4.2.2 Matching Apps to Find App-Pairs

After creating the Android and iOS datasets separately, we set out to find app-pairs

by matching similar apps in the two datasets. The unique IDs for iOS and Android

apps are different and thus cannot be used to match apps, i.e., Android apps have

an application ID composed of characters while iOS apps have a unique 8 digit

number. However, app names are generally consistent across the platforms since

they are often built by the same company/developer. Thus, we use app name and

developer name to automatically search for app-pairs. This approach could result

87

Table 4.1: Collected app-pair attributes

iTunes; Google Description

1 name; title Name of the app.
2 developerName;

developer name
Name of the developer/company of the
app.

3 description; description Indicates the description of the app.
4 category; category Indicates the category of the app; 23

Apple & 27* Google categories.
5 isFree; free True if the app is free.
6 price; price Price ($) of the app.
7 ratingsAllVersions;

ratingsAllVersions
Number of users rating the app.

8 starsVersionAllVersions;
star rating

Average of all stars (1 to 5) given to the
app.

9 version; version string User-visible version string/number.
10 updated; updated Date the app was last updated.

*Google has its apps split into Games and Applications. We count Games as one category.

in multiple possible matches because (1) on one platform, developers may develop

close variants of their apps with extra features that have similar names (See Fig-

ure 4.2); (2) the same app could have slightly different names across the platforms

(See Figure 4.3–a); (3) the same app could have slightly different developer names

across the platforms (See Figure 4.3–b).

Figure 4.2: Android Cluster for Swiped app.

Clustering

To find app-pairs more accurately, we first cluster the apps on each platform. This

step (outlined in Box 2 of Figure 4.1) groups together apps on each platform that

belong to the same category, have similar app names (i.e., having the exact root

word, but allowing permutations) and the same developer name. Figure 4.2 is an

88

Algorithm 1: Android & iOS Clustering Algorithm
input : Collection of Apps (APPS)
output: APPS with Cluster IDs

1 begin
2 foreach i = 0, i <COUNT(APPS), i++ do
3 appName← APPS[i].name
4 devName← APPS[i].devName
5 category← APPS[i].category
6 clusterID← appName + devName +category
7 if CHECK(APPS[i],clusterID) then
8 APPS[i].clusterID← clusterID
9 end

10 foreach j = 0, j <COUNT(APPS), j++ do
11 if SIMILAR(APPS[j].name,appName) &

APPS[j].devName≡ devName then
12 and APPS[j].category==category APPS[j].clusterID← clusterID
13 end
14 end
15 end
16 end

example of a detected Android cluster. The apps in this cluster are all developed by

iGold Technologies, belong to the Game category and have similar (but not exact)

names.

To cluster the apps, we execute Algorithm 1 on the Android and iOS datasets,

separately. The algorithm takes as input a collection of apps and annotates the

collection to group the apps together. We loop through the entire collection of apps

(line 2). For each app, we extract the app name, developer name, and category

(lines 3, 4 and 5). Next, if an app has not been annotated previously we annotate

it with a unique clusterID (line 7). Then we search for apps, which have a similar

name, exact developer name, and belong to the same category (line 11). If a match

is found, we annotate the found app with the same clusterID (line 12).

Detecting App-Pairs

We consider an app-pair to consist of the iOS version and the Android version of

the same app. In our attempt to find app-pairs (Box 3 in Figure 4.1), we noticed that

Android and iOS apps have different naming conventions for app names and de-

veloper names. For instance, Figure 4.3–a depicts an app developed by ‘Groupon,

Inc.’, with different naming conventions for app names; ‘Groupon - Daily Deals,

89

Coupons’ on the Android platform whereas ‘Groupon - Deals, Coupons & Shop-

ping: Local Restaurants, Hotels, Beauty & Spa’ on the iOS platform. Similarly,

Figure 4.3–b shows the ‘Scribblenauts Remix’ app, which has the exact name on

both platforms, but has differences in the developer’s name.

(a) (b)
Figure 4.3: a) Groupon and b) Scribblenauts apps. Android apps are shown on top and iOS apps at the

bottom.

Figure 4.4 shows the app-pairs we find using matching criteria with different

constraints. Criteria E looks for app-pairs having exact app and developer name

whereas Criteria S relaxes both the app and developer name, thus matching the

apps in Figure 4.3 as app-pairs.

ID App-pair Criteria

E EXACT(AppName) & EXACT(DevName)
S SIMILAR(AppName) & SIMILAR(DevName)

Figure 4.4: Matching App-pair Criteria.

To find app-pairs, we match the Android clusters with their iOS counterparts.

First, we narrow down the search for a matching cluster by only retrieving those

with a similar developer name. This results in one or more possible matching

clusters and we identify the best match by comparing the items in each cluster.

90

Thus, for each app in the Android cluster, we look for an exact match (criteria E)

in the iOS cluster. If no match is found, we relax the criteria and look for matches

having a similar app and developer name (criteria S). The set of all possible app-

pairs is a superset of S, and S is a superset of E, as depicted in the Venn diagram of

Figure 4.4.

Exact App-Pairs

We perform the rest of our study using criteria E, which provides a large-enough

set of app-pairs for analysis. To confirm that criteria E correctly matches app-pairs,

we manually compared app names, descriptions, developers’ names, app icons and

screenshots of 100 randomly selected app-pairs and the results indicated that there

are no false positives.

4.2.3 App-store Attribute Analysis

To address RQ1, we recapture (Box 4 in Figure 4.1) the app-pairs’ attributes (see

Table 4.1) and update our dataset with the latest data. This step was conducted

in June 2015. We compare the updated attributes between the iOS and Android

app-pairs and present the results in Section 4.3.

To address RQ2, we use the iTunes Store RSS Feed Generator [127] to retrieve

the top rated apps, which enables us to create custom RSS feeds by specifying

feed length, genres, country, and types of the apps to be retrieved. These feeds

reflect the latest data in the Apple app store. The Google Play store provides the

list of top rated Android apps [209] as well. We collected the top 100 free and

100 paid iOS apps belonging to all genres, as well as top 100 free and 100 paid

Android apps belonging to all categories, in September 2015 (Box 5 in Figure 4.1).

To check whether a top app exists on both platforms, we used our exact app-pair

technique as described in the previous section. Since the lists were not long, we

also manually validated the pairs using the app name, developer name, description

and screenshots in the other market.

91

4.2.4 User Reviews

In addition to collecting app-store attributes for our app-pairs in RQ1, we analyze

user reviews of app-pairs to see if there are any discrepancies in the way users

experience the same app on two different platforms (RQ3 and RQ4).

To that end, we first select 2K app-pairs that have more than 500 ratings, from

our app-pair dataset. This allows us to target the most popular apps with enough

user reviews to conduct a thorough analysis. To retrieve the user reviews, we use

two open-source scrapers, namely the iTunes App Store Review Scraper [126] and

the Goole Play Store Review Scraper [104]. In total, we retrieve 1.7M user reviews

from the 2K app-pairs.

The goal is to semi-automatically classify the user reviews of the app-pairs

and compare them at the app and platform level. To achieve this, we use natural

language processing and supervised machine learning to train two classifiers (Box

6 in Figure 4.1). Each classifier can automatically put a review into one of its three

classes.

Generic Feedback Analysis. As shown in Table 4.2, our generic feedback clas-

sifier (C1) has three unique class labels {Problem Discovery, Feature Request,

Non-informative}; where Problem Discovery implies that the user review pertains

to a functional (bug), or non-functional (e.g., performance), or an unexpected is-

sue with the app. Feature Request indicates that the review contains suggestions,

improvements, requests to add/modify/bring back/remove features. Finally, Non-

informative means that the review is not a constructive or useful feedback; such

reviews typically contain user emotional expressions (e.g., ‘I love this app’, de-

scriptions (e.g., features, actions) or general comments. We have adopted these

classes from recent studies [71, 185] and slightly adapted them to fit our analysis

of user complaints and feedback on the two platforms.

Sentiment Analysis. Additionally, we are interested in comparing the sentiment

(C2 in Table 4.2) classes of {Positive, Negative, Neutral} between the reviews of

app-pairs. We use these rules to assign class labels to review instances. Table 4.2

provides real review examples of the classes in our classifiers.

92

Table 4.2: Real-world reviews and their classifications.

C1 – Generic Feedback Classifier

1 Problem Discovery: “Videos don’t work. The sound is working
but the video is just a black screen.”

2 Feature Request: “I would give it a 5 if there were a way to exclude
chain restaurants from dining options.”

3 Non-informative: “A far cry from Photoshop on the desktop, ob-
viously, but still a handy photo editor for mobile devices with great
support.”

C2 – Sentiment Classifier

1 Positive: “Amazing and works exactly how I want it to work. Noth-
ing bad about this awesome and amazing app!”

2 Negative: “The worst, I downloaded it with quite a lot of excitement
but ended up very disappointed”

3 Neutral: “its aight good most of the time but freezes sometimes”

Building Classifiers

Overall, we label 2.1K reviews for training each of the two classifiers (Box 7 in

Figure 4.1).

We randomly selected 1,050 Android user reviews and 1,050 iOS user reviews

from 14 app-pairs. We experimented with the number of app-pairs to find the

best F-measures. Additionally, these app-pairs were in the list of the most popu-

lar apps and categories in their app stores. This diversity of apps and categories

allows us to build robust classifiers capable of accurately labeling reviews which

are from different contexts, contain different vocabularies, and written by different

users. The manual labeling of reviews was first conducted by one author follow-

ing the classification rules inferred in Table 4.2. Subsequently, any uncertainties

were cross-validated and resolved through discussions and refinements between

the authors.

To build our classifiers, we use the bags of words representation, which counts

the number of occurrences of each word to turn the textual content into numeri-

cal feature vectors. Next, we preprocess the text, tokenize it and filter stop words.

We use the feature vectors to train our classifier and apply a machine learning al-

gorithm on the historical training data. In this work, we experimented with two

well-known and representative semi-supervised algorithms, Naive Bayes (NB) and

Support Vector Machines (SVM). We use the Scikit Learn Tool [198] to build our

classifiers. The training and testing data for our classifiers are 1,575 and 525 re-

93

views. We repeated this trial 25 times to train both our generic and sentiment

classifiers and compared the NB and SVM algorithms. We choose the generic

(C1) and sentiment (C2) classifiers with the best F-measure. Finally, we use the

generic and sentiment classifiers to classify ∼1.7M reviews of 2K app-pairs. The

results are presented in Section 4.3.

4.2.5 Success Rates

An important indication of the success of an app is the number of its downloads

by users. However, as explained in Section 4.2.1, although download counts are

available for Android apps, Apple does not publish this information for iOS apps.

This means we need to find another metric to measure and compare the success

rates of app-pairs. Since user feedback can also be an indication of the success

or failure of apps, we use the classified reviews from the previous step, along with

their ratings and number of stars, to compute a success metric (Box 8 in Figure 4.1),

which is defined as follows:

SuccessRate =
Rrev +(S̄×AR)

7
∗100 (4.1)

where

1. Rrev = Prev− (100− Nrev+PDrev
2)

2. S̄ = Average value for the stars of an app.

3. AR =

0.25 if AppRatings≤ Q1

0.50 if Q1 < AppRatings≤ Q2

0.75 if Q2 < AppRatings≤ Q3

1.00 if Q3 < AppRatings

and Prev, Nrev, and PDrev depict the rates of Positive, Negative, and Problem Dis-

covery reviews for each app. Also, each app has an overall ratings (AppRatings)

on the app stores, which indicates the number of users who rate the app. We cal-

culate the Q1, Q2, and Q3 as the first, second (median) and third quartiles of app

ratings for the 2K app-pairs for each platform. We choose to place more emphasis

on the ratings and stars since that information is collected directly from the app

stores and strongly reflects the users’ view of the app. Furthermore, we multiply

them together to fairly compare apps which have high stars and low ratings and

94

apps which have average stars but high ratings. We use a range based on quartiles

for AR as opposed to the actual number of ratings to normalize the data and fairly

compare the apps. As for the reviews Rrev, we add the Nrev, and PDrev together and

divide them by 2 and then subtract them from 100 to avoid negative numbers; we

subtract the result from the Prev to get an overall score. The star values S̄, ratings

AR, reviews Rrev, and the overall SuccessRate are between [0–5], [0.25–1], [0–2],

and [0–100%], respectively, for each app.

Major Complaints Analysis

The goal in RQ4 is to understand the nature of user complaints and how they differ

on the two platforms (Box 9 in Figure 4.1). To address this, we first collect the

Problem Discovery reviews for 20 app-pairs having (1) the biggest differences in

success rates between the platforms, (2) over 100 problematic reviews. These 20

app-pairs are split into 10 in which Android is more successful than iOS and 10 in

which iOS is more successful than Android. Then, we manually inspect and label

1K problematic reviews (Box 10 in Figure 4.1), by randomly selecting 25 Android

user reviews and 25 iOS user reviews from each of the 20 app-pairs. We noticed

that user complaints usually fall into the following five subcategories:

1. Critical: issues related to crashes and freezes;

2. Post Update: problems occurring after an update/upgrade;

3. Price Complaints: issues related to app prices;

4. App Features: issues related to functionality of a feature, or its compatibility,

usability, security, or performance;

5. Other: irrelevant comments.

Table 4.3 provides real example reviews of these categories. We use the labelled

dataset to build a complaints classifier to automatically classify ∼350K problematic

reviews of our 2K app-pairs.

95

Table 4.3: Reviews and subcategories of problem discovery.

C3 – Complaints Classifier (Classes and Examples)

1 Critical: “Crashing is terrible. This game crashes every two bat-
tles. Really annoying please fix.”

2 Post Update: “after the recent update, the music bar has disap-
peared and I’m not able to listen to my fav. Music anymore, have
to log on from safari to listen to it!.”

3 Price Complaints: “Don’t buy the pro I spent 4 dollars on the pro
now it won’t even let me assess the app without sending me back to
the home screen! Four dollars is a lot when it comes to apps and
now it’s freakin gone!.”

4 App Feature: “Video video. Is not working !!!!!!!! Please fix the
video player. Thats not right.”

4.2.6 Datasets and Classifiers

All our extracted data, datasets for the identified app-pairs and the 2K app-pairs

along with their extracted user reviews, as well as all our scripts and classifiers are

available for download [165].

4.3 Findings
In this section, we present the results of our study for each research question.

4.3.1 Prevalence and Attributes (RQ1)

Cluster of apps

We found 1,048,575 (∼1M) Android clusters for 1,402,894 (∼1.4M) Android apps

and 935,765 (∼0.9M) iOS clusters for 980,588 (∼1M) iOS apps in our dataset. The

largest Android cluster contains 219 apps31 and the largest iOS cluster contains 65

apps.32 Additionally, 7,845 Android and 9,016 iOS clusters have more than one

item. The first row of Table 4.4 shows descriptive statistics along with p-value

(Mann-Whitney) for cluster sizes, ignoring clusters of size 1. Figure 4.5 depicts

the results of comparing the cluster sizes between the two platforms. We ignore

outliers for legibility. The results are statistically significant (p < 0.05) and show

that while Android clusters deviate more than iOS clusters, the median in iOS is
31 https://play.google.com/store/search?q=Kira-Kira&c=apps&hl=en
32 https://itunes.apple.com/us/developer/urban-fox-production-llc/id395696788

96

https://play.google.com/store/search?q=Kira-Kira&c=apps&hl=en
https://itunes.apple.com/us/developer/urban-fox-production-llc/id395696788

AND iOS

2.0

2.5

3.0

3.5

4.0

4.5

5.0

C
lu

st
er

 S
iz

e
(#

 A
pp

s
in

 C
lu

st
er

s)

Figure 4.5: Clusters.

higher than Android by one. This could be explained perhaps by the following two

observations: (1) not all iOS apps are universal apps (i.e., run on all iOS devices)

and some apps have both iPhone-only and iPad-only apps instead of one universal

app; (2) iOS has more free and pro versions of the same app than Android.

Prevalence of app-pairs

We found 80,169 (∼80K) exact app-pairs (Criteria E in Figure 4.4), which is 8%

of the total iOS apps, and 5.7% of the total Android apps in our datasets. When we

relax both app and developer names, the number of app-pairs increases to 116,326

(∼117K) app-pairs, which is 13% of our iOS collection and 9.2% of our Android

collection. While our dataset contains apps from 22 Apple and 25 Google cate-

gories, most of the pairs belong to popular categories, which exist on both plat-

forms: {Games, Business, Lifestyle, Education, Travel, Entertainment, Music, Fi-

nance, Sports}.

Ratings & Stars

Interestingly, 68% of Android and only 18% of iOS apps have ratings (the number

of users who have rated the app). The Median is 0 for all iOS and 3 for all Android,

as depicted in Table 4.4. However, when we only consider apps with at least one

rating, the median increases to 21 for iOS and 11 for Android (See Figure 4.6).

97

Table 4.4: Descriptive statistics for iOS and Android (AND), on Cluster Size (C), Ratings (R), Ratings for
all apps (R*), Stars (S), Stars for all apps (S*), and Price (P).

ID Type Min Mean Median SD Max P

C iOS 2 3.30 3.00 2.11 65
0

AND 2 3.00 2.00 3.69 219

R iOS 5 1,935.00 21.00 26,827.24 1,710,251
0

AND 1 4,892.00 11.00 171,362.40 28,056,146

R* iOS 0 353.10 0.00 11,483.19 1,710,251
0

AND 0 3,302.00 3.00 140,807.60 28,056,146

S iOS 1 3.80 4.00 0.90 5
0

AND 1 4.04 4.10 0.82 5

S* iOS 0 0.70 0.00 1.52 5
0

AND 0 2.73 3.70 2.01 5

P iOS 0 3.41 1.99 9.53 500
0

AND 0 3.38 1.88 9.13 210

*Including apps that have no ratings/stars.

We ignore outliers for legibility. Furthermore, we compare the differences between

ratings for each pair. In 63% of the pairs, Android apps have more users rating them

(on average 4,821 more users) whereas in only 5% of the pairs, iOS apps have more

users rating them (on average 1,966 more users). Additionally, the results of ratings

in Table 4.4 are statistically significant (p < 0.05), indicating that while Android

users tend to rate apps more than iOS users, for the rated app-pairs, iOS apps have

higher ratings. The categories with the highest ratings were { Personalization,

Communication, Games} on Android and {Games, Social Networking, Photo &

Video} on iOS.

Similarly, 68% of Android and 18% of iOS apps have stars (i.e., the 1 to 5 score

given to an app). When we consider the apps with stars, the median increases to

4 for iOS and 4.1 for Android (See Figure 4.7). Additionally, comparing the stars

with the data, we had originally from November 2014, does not show considerable

change on the two platforms. Comparing the differences between the stars for

each pair, in 58% of the pairs, Android apps have more stars while in only 8%

of the pairs, iOS apps have more stars. Additionally, while the results of stars

are statistically significant (p < 0.05), the observed differences, having almost the

same medians (see Table 4.4), are not indicative, meaning that although Android

users tend to star apps more than iOS users, the starred app-pairs have similar

stars. The categories with the highest number of stars were {Weather, Music &

Audio, Comics} on Android and {Games, Weather, Photo & Video} on iOS.

98

AND iOS

0

50

100

150

200
N

um
be

r
of

 P
eo

pl
e

w
ho

 R
at

e

Figure 4.6: Ratings.

●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●

●

●

●

●●●●●●●

●

●●●●

●

●

●

●
●

●●●●

●

●●●●●●●

●

●●●●●●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●●●●

●

●

●●●●●●●●●●

●

●●

●●

●●●

●

●●●●●●●●

●

●●

●

●●●●●

●

●●●●

●

●

●

●

●

●●●

●

●●●●●●

●

●●●

●

●●●●

●

●●●

●

●●●●●●

●

●
●

●●

●●●

●

●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●

●●●●●

●

●●●●
●
●●●●●●●●●

●

●

●●●●●

●
●

●

●

●

●

●

●

●●●●●

●

●●●●

●
●

●

●●●

●

●●●

●

●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●

●

●●

●
●

●●●●●●●●●●●●●

●

●●●●●

●

●

●

●

●●●●●●●●●

●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●

●

●●●●●

●

●●●

●

●●

●

●●●

●

●

●

●●●

●

●

●

●●●

●

●●●●●●

●

●●●●●

●

●●●●●●●●●●

●

●

●

●●●●●●●●●●●●

●

●

●

●●●●●

●

●

●●●●

●

●

●

●

●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●

●

●●●●

●●●

●●

●

●●●●●

●

●

●
●

●●●●

●

●●

●

●

●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●

●

●

●

●

●●

●●

●●

●

●

●

●●●

●

●

●

●

●

●●●●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●
●

●

●

●●●

●

●●●●●

●

●●

●

●●●●●●●●●●●
●
●

●

●

●●●

●

●●

●

●●●

●

●●●●●●●

●

●

●●●●

●

●

●

●●●

●

●●●●●●

●

●●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●●●●●●●●●

●

●

●●

●

●●●●●

●

●

●

●●●

●

●●●

●

●●●●●

●

●●●●●●●●●●●●

●

●

●

●●

●

●●●●●●●●

●

●●●●●●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●

●
●

●

●●

●●

●

●●●●●●

●

●●●

●

●

●●●●●●●●

●

●

●●

●

●●

●

●

●●●

●

●●●●●●

●

●

●

●●●●

●

●

●

●

●●

●

●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●●●●

●

●

●●●

●

●●●●●●●●●●●●●●●

●

●

●●●

●
●

●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●

●

●●●●●●●●

●

●●●●

●
●

●

●●●

●

●●●●●●

●

●●

●

●

●

●

●

●●●

●
●

●

●

●

●●

●

●

●

●

●●●●●●●●●●

●

●●●●●●

●
●

●

●

●●

●●

●

●

●●●●●●●●

●

●●●

●

●●

●

●

●

●●●

●

●

●●

●

●●●

●●

●●●●●●●●●●●●

●

●●●●●

●

●●●●

●

●

●

●●

●●

●●●

●

●

●

●●●●●

●

●●●●●●●●●●●●●●●

●●●

●●

●●

●●●●●

●

●●●●●●

●

●●●●●●●

●

●

●●●

●

●

●

●

●●●●●●●●●●●●●●●

●●

●●

●●

●

●●●

●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●

●

●●

●

●

●

●

●●

●

●●

●

●●●●●

●

●●●●●●

●

●●●●●●●●

●●●

●●

●

●

●

●

●●●●●●●●●●

●

●

●

●●●●

●

●●●

●

●
●

●

●

●

●●●●

●

●●●

●

●●

●

●●●

●

●●●●

●

●●

●
●

●

●●●●

●

●

●

●

●●●●●

●

●

●

●●●●●●●●

●

●

●●●●●●●●

●
●

●●●●●●●●●●

●

●

●

●●

●

●●●●●●

●
●

●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●

●

●

●●

●

●●●

●

●●●

●

●●●

●

●●●●

●

●

●

●●●●

●

●●

●●

●●●●●●

●

●●●

●

●●

●

●●●●●●●

●

●●● ●

●

●

●●●●

●

●

●
●
●●

●●

●

●●

●●

●●

●

●●●

●

●●●●●●●

●

●

●

●

●

●

●

●
●
●

●

●●●

●

●

●

●●●

●

●

●

●

●●●

●

●

●
●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●

●
●
●●

●

●

●

●●

●●

●
●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●●

●

●●●

●●

●

●

●

●

●

●

●
●

●

●

●●●●●

●

●●

●

●●

●
●

●●●●●●●

●

●

●

●

●●●●

●

●

●

●

●

●●●

●
●

●

●●
●

●●

●

●

●●●●●

●

●●

●●
●●

●●●●

●

●

●

●

●●●

●

●

●●●

●

●

●●
●

●

●●
●
●

●●●●●●

●

●●●●

●

●

●●●●

●

●●

●

●

●●

●

●●●●●●●

●

●●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●●●●

●

●●

●

●●●●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●●●●●●

●●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●

●

●●

●

●

●●●

●●

●

●

●

●●●●●●

●

●

●●●

●

●

●

●●●
●

●●

●
●

●
●

●●●●●●

●

●

●●

●

●

●

●

●●●

●●●●

●

●

●●

●

●

●●●

●

●

●●

●

●

●●

●

●●

●●●

●

●

●

●

●●

●

●●●●●●●●●●

●

●

●

●

●

●
●
●

●●

●

●●●●

●

●●

●●

●

●●

●

●●

●●

●

●

●

●●

●

●●●●●

●

●

●●

●●

●

●●●●●●

●●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●
●

●●●●●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●●●●

●

●

●●

●●

●

●
●
●
●
●

●

●

●

●●

●●

●
●

●●●●

●

●

●●

●●●

●●●

●●

●

●

●●

●●

●●

●

●

●

●●

●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●
●
●●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●●●

●

●

●●●

●
●
●

●

●

●

●
●

●

●

●

●

●

●●●

●●●●●●●

●

●

●

●●●●●

●

●●●●●

●

●●●

●

●

●

●●●●●●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●●

●●●

●

●●

●

●●

●

●

●

●

●

●

●

●●●●

●

●●

●●

●

●●

●

●●

●

●

●●

●

●●●

●

●●●●●

●

●●●●●

●

●●

●

●●●●

●
●

●

●
●●●●
●

●

●

●

●

●

●

●●

●●

●
●

●

●

●●

●

●●●

●

●

●

●
●

●

●

●

●

●

●●

●

●●●●●

●

●

●●

●

●●●

●

●

●●●

●

●

●

●●

●●●

●

●●●

●

●

●

●●

●

●

●●

●●●●●●●●●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●●●

●●●●●

●

●

●●●

●

●●●

●

●●●

●●●

●

●●

●

●●

●

●

●

●●●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●

●
●●●

●

●●

●

●●●

●●●

●●●●●●

●●

●●

●

●●●

●
●

●

●

●
●

●

●●●

●

●

●●

●●

●
●●

●●

●●

●●

●
●

●

●

●

●●●

●●

●
●●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●●●

●

●●

●

●●●

●

●

●●●

●●

●

●

●

●

●●

●

●●●●

●

●

●●●

●
●

●●

●●

●●

●

●●
●

●●

●●

●

●

●

●●●

●●●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●
●

●

●●

●

●
●

●●●●●●

●●

●●●

●●

●

●

●

●

●●

●●

●●

●

●

●

●●●●

●●●

●

●

●

●

●

●●

●

●

●

●●●

●

●●●

●●

●●

●

●

●

●

●●●

●

●●●

●

●

●●●

●●

●

●

●

●

●

●

●●

●

●●●

●

●●●

●●

●

●

●●

●
●
●

●●●●●

●

●●●●

●

●

●●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●●
●

●

●●

●
●

●●●●●●●●●●

●●
●●

●●●●

●

●●●●

●

●●

●

●

●●●

●●

●

●●●

●

●

●

●●●

●

●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●●●

●●

●

●●●
●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●●●

●

●

●

●

●
●

●

●

●●●

●

●●●

●●

●

●

●●●

●

●

●

●

●

●●●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●●●●

●

●

●

●●●●

●

●

●

●●●●

●●

●

●●

●

●

●

●

●●●●

●
●

●●

●
●

●●

●●●

●●

●
●
●

●●●

●●

●

●

●

●●●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●●●●●

●

●

●●●●

●

●●

●●

●

●●●

●

●●●●●●●●●

●●

●●●

●

●

●

●

●

●●

●

●●●

●

●

●●●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●●●●●●

●
●

●

●

●●

●●

●

●●

●●

●

●

●●●

OldAND OldiOS AND iOS

1

2

3

4

5

S
ta

rs

Figure 4.7: Stars.

Prices of app-pairs

The normal expectation is that the same app should have the same price on both

platforms. However, comparing prices, 88% of app-pairs have different prices for

their Android versus iOS versions. Comparing the rate of free and paid apps, 10%

of the Android and 12% of iOS apps are paid. In 34% of the pairs, iOS apps have

a higher price whereas in 54% of the pairs, Android apps have a higher price (See

Figure 4.8). As Table 4.4 shows, the median is 1.99 for iOS and 2.11 for Android.

The results are statistically significant (p < 0.05), and indicate that for app-pairs

while more paid iOS apps exist, Android paid apps have slightly higher prices.

The categories with the most expensive apps were {Medical, Books & Reference,

Education} on Android and {Medical, Books, Navigation} on iOS.

To understand the reasons behind the price differences, we sent emails to all

the developers of app-pairs with price differences of more than $10 (US) and asked

them why their app-pairs were priced differently on the two platforms. Out of 52

emails, we received 25 responses and categorized the reasons:

Different monetization strategies per app store, i.e., paid apps vs. in-app pur-

chases vs. freemium vs. subscription. For instance, in the Android version,

the features exist as part of the app, while in the iOS version, the features are

optional or provided as an in-app purchase. A developer responded, “The

difference is that the Android version includes consolidation ($9.99), chart-

99

●●● ● ●●● ●● ●● ●● ●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●● ● ● ●● ●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ●●●● ● ●●●●●●●●● ●●● ●● ● ● ●●●●●●●●● ●● ●●●●●●● ●● ● ●●●●●●●●● ●●●●●● ●● ●●● ●●● ●●● ●●●●●
●●●

● ● ●●●●●●● ●●
●● ● ●

● ●
● ●●●

●●
●

●
● ●● ● ● ●● ● ●

● ● ● ●●●

● ●
●

●

●

●● ●● ●

0 50 100 150 200

0

100

200

300

400

500

AND Price ($)

iO
S

 P
ric

e
($

)

Figure 4.8: Prices.

ing ($14.99), reports ($9.99) and rosters ($14.99), whereas these are ‘in app

purchase’ options on Apple devices.”

Different set of features on the two platforms. e.g., a developer responded, “the

iOS version offers more features than the Android version.”

Development/Maintenance cost of the app. Different parameters play a role in

the development/maintenance cost of an app, the cost varies depending on

the characteristics of the app e.g., a developer responded, “Apple forces de-

velopers to constantly migrate the apps to their latest OS and tool versions,

which causes enormous costs. ... the effort to maintain an App on iOS is

much higher than on Android.” While another developer stated, “It’s easier

to develop for (less device fragmentation), Android is relatively expensive

and painful to create for and much harder to maintain and support.”

Demographic biases Developers price the app based on certain user demograph-

ics; e.g, “since iOS phones are $1,000+ in this market, these users are rich

and willing to pay more readily for apps than Android users.”

Exchange rate differences e.g., “price in both are set to 99 EUR as we are mainly

selling this in Europe. Play Store apparently still used USD converted by the

exchange rate of the day the app was published.”

100

We have to note that some of the developers we contacted were unaware of

price differences on the stores for their app-pairs.

Versions and last updated

While the app stores’ guidelines suggest that developers follow typical software

versioning conventions such as semantic versioning33 — (major.minor.patch) —

they do not enforce any scheme. Therefore, mobile apps exhibit a wide variety

of versioning formats containing letters and numbers, e.g., date-based schemes

(year.month.patch). Our analysis indicates that only 25% of the app-pairs have

identical versions. When we inspect the major digit only, 78% of the pairs have

the same version. 13% of the Android apps have a higher version while 9% of the

iOS apps have a higher version.

Comparing the date the apps were last updated, 58% of the app-pairs have

an iOS update date which is more recent than Android; while 42% have a more

recent Android update date. Interestingly, 30% of the app-pairs have update dates

which are more than 6 months apart. To understand why developers update their

apps inconsistently across the platforms, we emailed all the developers of app-pairs

which were recently updated (after January 2016) on either platform; and in which

the other platform has not been updated in 80 days or more. Out of 65 emails, we

received 15 responses and categorized the reasons below:

Ease of releasing updates e.g., “we are experimenting with a new 3D printing

feature, and wanted to try it on Android before we released it on iOS. As you

know, developers can release updates quickly to fix any problems on Android,

but on iOS, we have to wait a week or two while Apple reviews the game.”

Preferring one platform over the other for various reasons, e.g., “while there

are many Android handsets and potentially many downloads, this doesn’t

translate well to dollars spent, relative to iOS.”

Developer skills and expertise The developers might be more skilled at building

apps for one of the platforms than the other; e.g., “I learned iOS first and am

developing for iOS full time, so everything is easier for me with iOS.”

33 http://semver.org

101

http://semver.org

Update due to a platform-specific feature e.g., “only updated the iOS version to

switch over to AdMob as the advertising network for iOS. Apple announced

that iAd is being discontinued.”

We have to note that, similar to the reasons behind the price differences, some

of the developers we contacted, mentioned that the development/maintenance cost

of the app could affect updates on either platform.

Finding 1: We found 80K exact app-pairs. While Android users tend to rate and

star apps much more than iOS users, the Stars were equal and the Ratings were

higher on the iOS platform. Also, it is common to have price and update date

mismatches for app-pairs.

4.3.2 Top Rated Apps (RQ2)

Interestingly, our analysis on the top 100 free iOS and Android apps shows that

88% of the top iOS and 86% of the top Android apps have pairs. 37 app-pairs are

in the top 100 list for both platforms. On the other hand, for the top 100 paid iOS

and Android apps, 66% of the top iOS and 79% of the top Android apps have pairs.

30 of the paid pairs are in the top 100 for both platforms.

Furthermore, we sent emails to all the developers of apps with no pairs and

asked why their top rated Android or iOS app was only published for one platform.

One respondent stated the following: “while the situation is unique with every

company’s strategy and different with every individual product, there’s always a

set of driving factors with expertise, success record, target market size and cost

of development that influence the general strategy, starting from which market to

enter first, [to] when and if to enter another market (if at all).” Out of 81 emails,

we received 29 responses and categorized the reasons below:

Lack of resources e.g., “building the same app across two platforms is actually

twice the work given we can’t share code ... so we’d rather make a really

good app for one platform than make a mediocre one for two.”

Platform restrictions e.g., “I’ve only focused on the Android platform simply be-

cause Apple doesn’t allow for much customization to their UI.”

102

Revenue per platform e.g., “In my experience, iOS users spend more money, which

means a premium [paid app with a price higher than 2.99] is more likely to

succeed. ... while the Android platform has the market size, it proves to be

harder for small [companies] to make good money.”

Fragmentation within a platform e.g., “my app is very CPU intensive and thus,

I must test it on every model. With a much-limited number of models for iOS,

it’s feasible. On Android, it’s impossible to test on every model and quality

would thus suffer.”

Similar apps already exist on the other platform e.g., “Apple devices already have

a default podcast app.”

Platform-specific apps e.g., iTunes U app developed by Apple whereas Google

Play Games app developed by Google Play.

A common response from developers was that the app for the other platform

is under development. We also observed more antivirus programs are available for

Android. Thus, security could be more of an issue for the open-source Android

than the restricted iOS platform.

Finding 2: On average, 80% of the top rated apps are app-pairs. Main rea-

sons for apps existing only on one platform, include: lack of resources, platform

restrictions and fragmentation, and revenue per platform.

4.3.3 Success Rate (RQ3)

Classification. To evaluate the accuracy of the classifiers, we measure the F-

measure = 2×Precision×Recall
Precision+Recall for the Naive Bayes and SVM algorithms, listed in

Table 4.5, where Precision = TP
TP+FP and Recall = TP

TP+FN . We found that SVM

achieves a higher F-measure. On average, F(SVM) = 0.84 for the generic classifier

and F(SVM) = 0.74 for the sentiment classifier. The F-measures obtained by our

classifiers are similar to related studies such as [185] (0.72) and [71] (0.79). We se-

lected the classifiers with the best F-measures and used them to classify 1,702,100

(∼1.7M) reviews for 2,003 (∼2K) app-pairs.

103

Table 4.5: Statistics of 14 Apps used to build the classifiers (C1 = Generic Classifier, C2 = Sentiment Classifier, NB = Naive Bayes Algorithm, SVM = Support
Vector Machines Algorithm, Train = Training pool).

App GoogleCategory AppleCategory Train Test F(C1-NB) F(C2- NB) F(C1-SVM) F(C2-SVM)

1 FruitNinja Game(Arcade) Game 150 50 0.77 0.68 0.83 0.75
2 UPSMobile Business Business 150 50 0.80 0.69 0.82 0.76
3 Starbucks Lifestyle Food & Drink 150 50 0.75 0.63 0.84 0.77
4 YellowPages Travel & Local Travel 150 50 0.78 0.62 0.85 0.75
5 Vine Social Photo & Video 150 50 0.81 0.70 0.84 0.76
6 Twitter Social Social Networking 150 50 0.79 0.67 0.84 0.75
7 AdobePhotoShop Photography Photo & Video 150 50 0.82 0.72 0.85 0.75

Total / Average of 7 Apps 1,050 350 0.78 0.67 0.85 0.76
8 YahooFinance Finance Finance 75 25 0.75 0.66 0.84 0.73
...

Total / Average of 14 Apps 1,575 525 0.77 0.65 0.84 0.74

104

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

● ●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

● ●●●
●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

0 20 40 60 80 100

0

20

40

60

80

100

Android Problem Discovery (PD)

iO
S

 P
ro

bl
em

 D
is

co
ve

ry
 (

P
D

)

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●● ●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

0

20

40

60

80

100

Android Feature Request (FR)

iO
S

 F
ea

tu
re

 R
eq

ue
st

 (
F

R
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

0

20

40

60

80

100

Non−Informative Android

N
on

−I
nf

or
m

at
iv

e
iO

S

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

0

20

40

60

80

100

Android Positive (P)

iO
S

 P
os

iti
ve

 (
P

)

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●
●●

●

●
●

●

●

●

●

●●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

● ● ●

●
●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
● ●

●●
●

●

●

●

●

●

●

●

●

●

●●

● ●

●

● ●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●●

● ●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

● ●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ● ●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●
●

●

●

●

●
●

●

●

●

●● ●

● ●

●

●●
●

●
●

●
●

●

● ●

●

●

●

●

●

●

●●
●

●●

●

● ●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

● ●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●
●

●

●
●

●

●●

●
●

●
●
●●

●●

●

●●●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

● ●
●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●
●

● ●

●

●
●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

● ●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

● ●
●

●

●

0 20 40 60 80 100

0

20

40

60

80

100

Android Negative (N)

iO
S

 N
eg

at
iv

e
(N

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

0 20 40 60 80 100

0

20

40

60

80

100

Neutral Android

N
eu

tr
al

 iO
S

Figure 4.9: The rates of classifiers’ categories for our 2K app-pairs, where each dot represents an app-pair.

Figure 4.9 and Figure 4.10 plot the distribution of the rates for the main cate-

gories in the sentiment and generic classifiers for our app-pairs as well as the suc-

cess rate for our app-pairs. Each dot represents an app-pair. The statistical results

are depicted in Table 4.6. On average, Feature Request, Positive, and Negatives re-

105

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20 40 60 80

20

40

60

80

100

Success Rate Android

S
uc

ce
ss

 R
at

e
iO

S

Figure 4.10: The success rates for our 2K app-pairs, where each dot represents an app-pair.

Table 4.6: Descriptive statistics for the iOS and Android (AND) reviews for the app-pairs: Problem Dis-
covery (PD), Feature Request (FR), Non-informative (NI), Positive (P), Negative (N), Neutral (NL), and
SR (Success Rate).

ID Type Min Mean Median SD Max P

PD iOS 0.00 20.47 15.62 16.65 100.0
0.00

AND 0.00 21.06 17.54 14.61 100.0

FR iOS 0.00 17.50 16.03 10.81 100.0
0.00

AND 0.00 13.71 12.50 8.88 100.0

NI iOS 0.00 62.04 64.95 20.77 100.0
0.00

AND 0.00 65.23 67.10 17.45 100.0

P iOS 0.00 55.62 59.26 20.41 100.0
0.00

AND 0.00 49.74 51.36 17.64 100.0

N iOS 0.00 9.80 6.66 10.07 100.0
0.00

AND 0.00 7.72 5.74 7.39 100.0

NL iOS 0.00 34.57 32.45 14.87 100.0
0.00

AND 0.00 42.54 41.73 13.97 100.0

SR iOS 8.93 55.31 54.68 19.98 98.1
0.27

AND 11.84 55.97 55.22 18.83 92.4

views are more among iOS apps whereas Problem Discovery, Non-informative and

Neutral are more among Android apps. In addition, the average length of reviews

on the iOS platform is 103 characters and 76 characters on the Android platform.

Success Rate. Figure 4.11 shows the success rates for our app-pairs. The app-

pairs are arranged based on the difference of their success rates between the two

platforms. The far ends on the figure (ellipsed regions) indicate apps which are very

106

0	

20	

40	

60	

80	

100	

120	

0	 2	 4	 6	 8	 10	 12	 14	 16	 18	 20	

Su
cc

es
s

R
at

e
(S

R
)

App-pairs (Hundreds)

Android Success iOS Success

Android Success Rate iOS Success Rate

Figure 4.11: Success rates for 2K app-pairs. The green round shape refers to Android apps and the blue
triangular shape refers to iOS apps.

successful on one platform but not on the other. The results indicate that 17.4%

(348 app-pairs) of the app-pairs have a difference of 25% or more in their success

rate. The categories with the most successful apps were {Games, Entertainment,

Finance} on Android and {Games, Entertainment, Education} on iOS.

Finding 3: The majority of app-pairs are similarly successful on the two app

stores. However, 17% have a difference of more than 25% in their success rates.

Success Rate Differences. The method used to implement the app might affect its

success. We randomly selected 30 app-pairs with close success rates (within 5%

range) and downloaded their Android source code; we found that 8 of them were

implemented using a hybrid approach. The hybrid approach uses web technologies

such as HTML, CSS, and Javascript to build mobile apps that can run on multi-

ple platforms. We also analyzed 30 app-pairs that are more successful on iOS than

Android (difference greater than 20%) and 30 app-pairs that are more successful

on Android. We found only 4 in each set used the hybrid approach. In total, we

found 16 hybrid apps, which represents 17.7% of 90 app-pairs we inspected. This

result is in line with a recent study [210], which found that 15% of android apps are

developed using a hybrid approach. The results of this analysis indicate that some

107

app-pairs are equally successful because they use a hybrid approach, meaning they

have the same implementation on the two platforms.

Furthermore, to verify our success rate results, we sent emails to all the de-

velopers of app-pairs which have a difference of more than 30% in their success

rates. We asked if they have noticed the difference and possible reasons that their

two apps are not equally successful on both platforms. Although this is a sensi-

tive topic, out of 200 emails, we received 20 responses; all the developers agreed

with our findings and were aware of the differences, for example, one developer

said: “our app was by far more successful on iOS than on Android (about a million

downloads on iOS and 5k on Android).”

Overall, developers mentioned (release/update) timing and first impressions

can make a large difference in how users perceive the app on the app stores. The

variation in success can also be attributed to developers providing more (timely)

support on either side. Additionally, app store support and promotional opportuni-

ties were mentioned to help developers, e.g., “Apple ... promote your work if they

find it of good quality, this happened to us 4–5 times and this makes a big differ-

ence indeed”. Furthermore, some respondents find the Google Play’s quick review

process helpful to release bug fixes and updates quickly.

4.3.4 Major Complaints (RQ4)

The goal in RQ4 is to understand the nature of user complaints and whether they

differ on the two platforms.

Our complaint classifier has, on average, an F-measure of F(SVM) = 0.7. We

used the classifier to classify 350,324 (∼350K) problematic reviews for our 2K

app-pairs. The results, depicted in Figure 4.12 and Table 4.7, show that the com-

plaints about the apps vary between the two platforms. On average, iOS apps have

more critical and post update problems than their Android counterparts, which

could be due to Apple regularly forcing developers to migrate their apps to their

latest OS and SDK.

On the other hand, Android apps have more complaints related to App Fea-

tures subcategory (i.e., functionality of a feature, compatibility, usability, secu-

rity, performance), which could be due to device fragmentation on Android. The

108

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

0 20 40 60 80 100

0

20

40

60

80

100

Android Critical (CR)

iO
S

 C
rit

ic
al

 (
C

R
)

●

●

●

●

●●●●

●

●●

●

●●

●

● ●

●

●

●

●

● ●

●

●●
●

●

●

●

●●

●

●● ●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

● ●●●●●●●●●●●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●●

●

●

●

●

●●●●● ●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●●

●●

●

●●●●● ●

●

●

●

●

●

●

●
● ●●●●●

●

●

●●●●

●
●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ●●●

●

●

●●

●●
●

●
●

● ●

●

●●

●

●

●●●●

●

●●

●

●

●●● ●● ●

●

●

●

●
●

●

●
●

●

●

● ●

●●

●

●

●●

●

●

●

●

●
●

● ● ●●●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●●●●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●● ●●●

●

●●● ●● ●●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●●●●●●●

●

●

●●

● ●
●

●

●

●●

●

●

●

● ●

●●

●

●●●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●●

●

●

●

●

●

●
●

●●● ●●●●●●

●

● ●● ●●●

●

● ●●●● ●●●●●●

●

●●●●

●

●●●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●● ●●

●

●●
● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●●● ●

●

●

●
●

●●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●●

●●●

●

●

●
●●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●●

●

● ●

●

●

●

●

●●

● ●

●●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●● ● ●●

●

●●

●
●●
●

●

●●●

●●

●

●

●

●

●
●

●

●

● ●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●●

●

●●●●

●

●

●

●

● ●

●

●

●

●

●●
●

● ●

●

●

●●

●

● ●●●●

●

●●●●●●●● ●●● ●●●

●

●

●

●

●

●

●●

●

●

●●●

●
●

● ●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

● ●●
●

●

●

●

●

●● ●●●

●

●●

●

●●●● ●●●●

●

●●●●●

●

●

●

●●

●

●

●●

●

●

●●

●

● ●●

● ●

● ●●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

● ●

●

●
●

●●

●
●

●
●●

●

●

●

●●

●●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●●

●

●●
●●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

● ●

●
●

● ●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●● ●

●
●● ●

●

●

●

●

●● ●
●

● ●●

●

●

● ●

●

●

●
●●●

●

●

●
●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
● ●●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

0

20

40

60

80

100

Android Post Update (PU)

iO
S

 P
os

t U
pd

at
e

(P
U

)

● ●●

●

●

● ●

●

●

●●●● ●● ● ● ●●

●

●

●

●

●

●

●

●

●●

●

●

● ●●●●

● ●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●●●

●

●

●

●
●

● ●●

●

●

●
●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●
● ●

●

●

●●

● ●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●●

●

●●

●

●

● ● ●● ●●● ●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

●

●●

●

●

●● ●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●●

●

●
●

●

●

● ●

●

●

●

●●●●●

●

●●●●●● ●●

●

●

● ●●

●

●

●● ●

●

●

●

●●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●●

●
●

●●● ●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

● ●● ●●

●

●

●

●

●

●

● ●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●● ●●●●

●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●

● ●
●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●●

●

●

●

●
●

● ●

●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●●

●

●

●● ●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●● ●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●●

●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●
●●●

●

●

●●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

● ●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●●

●

●

●

●

●●

●

●

●

●● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

● ●● ● ●

●

●

●●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
● ●

●

●●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●
●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●
●

●

●
●● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●
● ●●

●

●

●●
●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●●●
●
● ●
●

●

●
●

●●●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

0

20

40

60

80

100

Android Price Complaints (PC)

iO
S

 P
ric

e
C

om
pl

ai
nt

s
(P

C
)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

0 20 40 60 80 100

0

20

40

60

80

100

Android App Feature (AF)

iO
S

 A
pp

 F
ea

tu
re

 (
A

F
)

Figure 4.12: The rates of complaints categories for our 2K app-pairs, where each dot represents an app-
pair.

wide array of Android devices running with different versions of Android, differ-

ent screen sizes, and different CPUs can cause security, performance or usability

problems. This negative side-effect of fragmentation is also discussed in the liter-

ature [86, 94, 111, 215].

Examples of iOS post update problems include users unable to login, features

no longer working, loss of information or data, and unresponsive or slow UI. Ex-

amples of Android problems include dissatisfaction with a certain functionality,

incompatibility with a certain device/OS, network and connection problems.

109

Table 4.7: Descriptive statistics for the problematic reviews of the app-pairs: Critical (CR), Post Update
(PU), Price Complaints (PC), and App Feature (AF).

ID Type Min Mean Median SD Max P

AF iOS 0.00 53.71 54.29 18.15 100.0
0.00

AND 0.00 60.55 60.92 16.25 100.0

CR iOS 0.00 23.72 21.05 16.40 100.0
0.00

AND 0.00 19.98 17.65 13.66 100.0

PU iOS 0.00 6.08 4.24 7.44 100.0
0.00

AND 0.00 3.91 2.33 5.17 50.0

PC iOS 0.00 7.76 5.00 9.41 100.0
0.00

AND 0.00 6.70 4.54 8.20 100.0

Finding 4: On average, iOS apps have more critical and post update prob-

lems while Android apps have more complaints related to app features and non-

functional properties.

4.4 Discussion
In this section, we discuss several implications for app developers, app stores, and

researchers as well as some of the threats to validity of our results.

4.4.1 Implications

For App Developers

Our findings and developer feedback indicate that developers wishing to test new

ideas or features find the Android platform more convenient since Google has less

formal guidelines and a fast review process compared to Apple’s strict guidelines

and lengthy review process. Also, paid apps seem to be more successful on the iOS

platform; thus, depending on the financial model adopted, developers might want

to prioritize building the app for iOS first assuming resources to build the apps for

both platforms is limited. Our automated classifiers can be useful for developers to

make sense of the feedback in user reviews and handle a large number of reviews

some apps receive. Based on our analysis of user reviews, iOS apps suffer from

more critical and post update problems. We would suggest that developers focus

their attention and resources on fixing such issues first, since many users seem

to be easily annoyed by them. On the other hand, the Android platform suffers

110

more from compatibility, usability and performance issues so this is where Android

developers should spend more time on.

For App Stores

App Stores’ support and promotional opportunities greatly benefit the developers.

We found evidence that Apple rewards well-made apps with promotional opportu-

nities, which could drive the success of the app, an approach that could be adopted

by Google Play. Google Play’s quick review process is appealing to many devel-

opers and something that can be improved on the Apple app store.

For Researchers

Our results indicate that 80% of the top rated apps exist on both the Apple and

Google Play app stores. While both platforms are popular and equally important,

Android has gained the majority of the attention from the software engineering re-

search community. Our suggestion is to look at both Apple Store and Google Play

in future studies to have a more representative coverage. Additionally, examining

app-pairs closely can help developers bridge the gap in terms of success for their

apps. As recently identified by Nagappan and Shihad [172] one of the obstacles

with cross-platform analysis is the lack of a dataset for such apps. Our dataset of

80K app-pairs [165] can help to mitigate this issue; our dataset can be leveraged

by other researchers for further cross-platform analysis.

4.4.2 Threats to Validity

Our manual labelling of the reviews to train the classifiers could be a source of

internal threat to validity. In order to mitigate this threat, uncertainties were cross-

validated and resolved through discussions and refinements between the authors.

As shown in Figure 4.4, the app-pairs detected in our study are a subset of all

possible app-pairs. Our study only considers exact matches for app-pairs, which

means there exist app-pairs that are not included in our analysis. For instance, an

app named The Wonder Weeks34 on iOS has a pair on the Android platform with

34 https://itunes.apple.com/app/the-wonder-weeks/id529815782?mt=8

111

https://itunes.apple.com/app/the-wonder-weeks/id529815782?mt=8

the name Baby Wonder Weeks Milestones,35 but not included in our study. While

our study has false negatives, our manual validation of 100 randomly selected app-

pairs shows that there are no false positives.

In terms of representativeness, we chose app-pairs from a large representative

sample of popular mobile apps and categories. With respect to generalizability,

iTunes and Google Play are the most popular systems currently, although apps in

other app stores could have other characteristics. Regarding replication, all our

data is publicly available [165], making the findings of our study reproducible.

4.5 Related Work
Mobile app stores provide app developers with a new and critical channel to extract

user feedback. As a result, many studies have been conducted recently through

mining and analysis of app store content such as user-reviews [68, 71, 95, 113,

124, 134–136, 140, 147, 156, 181, 183, 185, 208, 211], app descriptions [72, 105,

143, 200], and app bytecode [54, 194, 195, 218].

A number of studies [71, 93, 95, 110, 122] have focused on extracting valuable

information for developers from user reviews in app stores. Lacob et al. [122]

found that 23% of reviews represent feature requests. They proposed a prototype

for automatic retrieval of mobile app feature requests from online reviews. Chen et

al. [71] found that 35% of app reviews contain information that can directly help

developers improve their apps. They proposed AR-Miner, a technique to extract

the most informative user reviews. First, they filter out non-informative reviews

through text analysis and machine learning. Then, they use topic modelling to

recognize topics in the reviews classified as informative. Panichella et al. [185]

proposed an approach built on top of AR-Miner to automatically classify app re-

views into different categories. Khalid et al. [134, 136] manually analyzed and

tagged reviews of iOS apps to identify different issues that users of iOS apps com-

plain about. They studied 6,390 low star-rating reviews for 20 free iOS apps and

uncovered 12 types of complaints. They found that functional errors, feature re-

quests and app crashes are the most frequent complaints while privacy and ethical

issues, and hidden app costs are the complaints with the most negative impact on

35 https://play.google.com/store/apps/details?id=org.twisevictory.apps&hl=en

112

https://play.google.com/store/apps/details?id=org.twisevictory.apps&hl=en

app ratings. Chen et al. [72] developed mechanisms to verify the maturity ratings

of apps based on app descriptions and user reviews and investigated the possible

reasons behind incorrect ratings. They discovered that over 30% of Android apps

have unreliable maturity ratings.

Our work, on the other hand, aims at characterizing the differences in mobile

app-pairs across two different platforms. To the best of our knowledge, this is

the first work to report a large-scale study targeting iOS and Android mobile app-

pairs.

4.6 Conclusions
In this work, we present the first quantitative and qualitative study of mobile app-

pairs. We mined 80K iOS and Android app-pairs and compared their app-store

attributes. We built three automated classifiers and classified 1.7M reviews to un-

derstand how user complaints and concerns vary across platforms. Additionally,

we contacted app developers to understand some of the major differences in app-

pair attributes such as prices, update frequencies, success rates and top rated apps

existing only on one platform.

For future work, the testing and analysis of apps across multiple platforms

could be explored. While our recent study [88] is a step toward better under-

standing of it, with the increased fragmentation in devices and platforms, it still

remains a challenge to test mobile apps across varying hardware and platforms

[172]. Among other directions, the release dates of the app-pairs can be investi-

gated to understand which platform developers target first when they release a new

app. Additionally, app features, extracted from app descriptions, can be used to

compare on different platforms. Finally, while we combined the stars, ratings and

user reviews to measure app success, future studies could explore ways of measur-

ing user retention, number of downloads, user loyalty, recency, or monetization.

113

Chapter 5

Reverse Engineering iOS Mobile Applications

Summary36

As a result of the ubiquity and popularity of smartphones, the number of third party

mobile apps is explosively growing. With the increasing demands of users for new

dependable applications, novel software engineering techniques and tools geared

towards the mobile platform are required to support developers in their program

comprehension and analysis tasks. In this work, we propose a reverse engineering

technique that automatically (1) hooks into, dynamically runs, and analyzes a given

iOS mobile app, (2) exercises its user interface to cover the interaction state space

and extracts information about the runtime behaviour, and (3) generates a state

model of the given application, capturing the user interface states and transitions

between them. Our technique is implemented in a tool called ICRAWLER. To eval-

uate our technique, we have conducted a case study using six open-source iPhone

apps. The results indicate that ICRAWLER is capable of automatically detecting the

unique states and generating a correct model of a given mobile app.

5.1 Introduction
According to recent estimations [178], by 2015 over 70 percent of all handset ship-

ments will be smartphones, capable of running mobile apps.Currently, there are

over 600,000 mobile apps on Apple’s AppStore [21] and more than 400,000 on

36This chapter appeared at the 19th IEEE Working Conference on Reverse Engineering (WCRE
2012) [85].

114

Android Market [19].

Some of the challenges involved in mobile app development include handling

different devices, multiple operating systems (Android, Apple iOS, Windows Mo-

bile), and different programming languages (Java, Objective-C, Visual C++). More-

over, mobile apps are developed mostly in small-scale, fast-paced projects to meet

the competitive market’s demand [137]. Given the plethora of different mobile apps

to choose from, users show low tolerance for buggy unstable applications, which

puts an indirect pressure on developers to comprehend and analyze the quality of

their applications before deployment.

With the ever increasing demands of smartphone users for new applications,

novel software engineering techniques and tools geared towards the mobile plat-

form are required [82, 169, 213] to support mobile developers in their program

comprehension, analysis and testing tasks [91, 128].

According to a recent study [192], many developers interact with the graphical

user interface (GUI) to comprehend the software by creating a mental model of

the application. For traditional desktop applications, an average of 48% of the

application’s code is devoted to GUI [170]. Because of their highly interactive

nature, we believe the amount of GUI-related code is typically higher in mobile

apps.

To support mobile developers in their program comprehension and analysis

tasks, we propose a technique to automatically reverse engineer a given mobile app

and generate a comprehensible model of the user interface states and transitions

between them. In this work, we focus on native mobile apps for the iOS platform.

To the best of our knowledge, reverse engineering of iOS mobile apps has not been

addressed in the literature yet.

Our work makes the following contributions:

• A technique that automatically performs dynamic analysis of a given iPhone

app by executing the program and extracting information about the runtime

behaviour. Our approach exercises the application’s user interface to cover

the interaction state space;

• A heuristic-based algorithm for recognizing a new user interface state, com-

posed of different UI elements and properties.

115

• A tool implementing our technique, called ICRAWLER (iPhone Crawler),

capable of automatically navigating and generating a state model of a given

iPhone app. This generated model can assist mobile developers to better

comprehend and visualize their mobile app. It can also be used for analysis

and testing purposes (i.e., smoke testing, test case generation).

• An evaluation of the technique through a case study conducted on six differ-

ent open-source iPhone apps. The results of our empirical evaluation show

that ICRAWLER is able to identify the unique states of a given iPhone app

and generate its state model accurately, within the supported transitional UI

elements.

5.2 Related Work
We divide the related work in three categories: mobile app security testing, in-

dustrial testing tools currently available to mobile developers, and GUI reverse

engineering and testing.

Mobile App Security Testing. Security testing of mobile apps has gained most

of the attention from the research community when compared to other areas of re-

search such as functional testing, maintenance, or program comprehension. Most

security testing approaches are based on static analysis of mobile apps [67] to

detect mobile malware. Egele et al. [84] propose PIOS to perform static taint

analysis on iOS app binaries. To automatically identify possible privacy gaps, the

mobile app under test is disassembled and a control flow graph is reconstructed

from Objective-C binaries to find code paths from sensitive sources to sinks. Ex-

tending on PIOS, the same authors discuss the challenges involved in dynamic

analysis of iOS apps and propose a prototype implementation of an Objective-C

binary analyzer [205]. Interestingly, to exercise the GUIs, they use image process-

ing techniques. This work is closest to ours. However, their approach randomly

clicks on an screen area and reads the contents from the device’s frame buffer and

applies image processing techniques to compare screenshots and identify interac-

tive elements. Since image comparison techniques are known to have a high rate

of false positives, in our approach we “programmatically” detect state changes by

using a heuristic-based approach.

116

Industrial Testing Tools. Most industrial tools and techniques currently avail-

able for analyzing mobile apps are manual or specific to the application in a way

that they require knowledge of the source code and structure of the application.

For instance, KIF (Keep It Functional) [34] is an open source iOS integration test

framework, which uses the assigned accessibility labels of objects to interact with

the UI elements. The test runner is composed of a list of scenarios and each sce-

nario is composed of a list of steps. Other similar frameworks are FRANK [31]

and INSTRUMENTS [125]. A visual technology, called SIKULI [39], uses fuzzy

image matching algorithms on the screenshots to determine the positions of GUI

elements, such as buttons, in order to find the best matching occurrence of an im-

age of the GUI element in the screen image. SIKULI creates keyboard and mouse

click events at that position to interact with the element. There are also record and

playback tools for mobile apps such as MONKEYTALK [36]. However, using such

tools requires application-specific knowledge and much manual effort.

GUI Reverse Engineering and Testing. Reverse engineering of desktop user in-

terfaces was first proposed by Memon et al. in a technique called GUI Ripping

[159]. Their technique starts at the main window of a given desktop application,

automatically detects all GUI widgets and analyzes the application by executing

those elements. Their tool, called GUITAR, generates an event-flow graph to cap-

ture a model of the application’s behaviour and generate test-cases.

For web applications, Mesbah et al. [163] propose a crawling-based technique

to reverse engineer the navigational structure and paths of a web application under

test. The approach, called CRAWLJAX, automatically builds a model of the appli-

cation’s GUI by detecting the clickable elements, exercising them, and comparing

the DOM states before and after the event executions. The technique is used for

automated test case generation [164] and maintenance analysis [160] in web appli-

cations.

Amalfitano et al. [49] extend on this approach and propose a GUI crawling

technique for Android apps. Their prototype tool, called A2T2, manages to extract

models of a small subset of widgets of an Android app.

Gimblett et al. [97] present a generic description of UI model discovery, in

which a model of an interactive software is automatically discovered through sim-

ulating its user actions. Specifically they describe a reusable and abstract API for

117

user interface discovery.

Further, Chang et al. [69] build on SIKULI, the aforementioned tool, to auto-

mate GUI testing. They help GUI testers automate regression testing by program-

ming test cases once and repeatedly applying those test cases to check the integrity

of the GUI.

Hu et al. [119] propose a technique for detecting GUI bugs for Android ap-

plications using Monkey [35], an automatic event generation tool. Their technique

automatically generates test cases, feeds the application with random events, in-

struments the VM, and produces log/trace files to detect errors by analyzing them

post-run.

To the best of our knowledge, no work has been done so far to reverse engineer

Objective-C iPhone apps automatically. Our approach and algorithms are different

from the aforementioned related work in the way we track the navigation within the

application, retrieve the UI views and elements, and recognize a new state, which

are geared towards native iPhone user interfaces.

5.3 Background and Challenges
Here, we briefly describe the relevant iPhone programming concepts [125] required

for understanding our approach in Section 5.4.

Objective-C is the primary programming language used to write native iOS

apps. The language adds a thin layer of object-oriented and Smalltalk-style mes-

saging to the C programming language. Apple provides a set of Objective-C APIs

collectively called Cocoa. Cocoa Touch is a UI framework on top of Cocoa. One of

the main frameworks of Cocoa Touch is UIKit, which provides APIs to develope

iOS user interfaces.

The Model-View-Controller design pattern is used for building iOS apps. In

this model, the controller is a set of view controllers as well as the UIApplication

object, which receives events from the system and dispatches them to other parts

of the system for handling. As soon as an app is launched, the UIApplication

main function creates a singleton application delegate object that takes control.

The application delegate object can be accessed by invoking the shared application

class method from anywhere in code.

118

At a minimum, a window object and a view object are required for presenting

the application’s content. The window provides the area for displaying the content

and is loaded from the main nib file.37 Standard UI elements, which are provided

by the UIKit framework for presenting different types of content, such as labels,

buttons, tables, and text fields are inherited from the UIView class. Views draw

content in a designated rectangular area and handle events.

Events are objects sent to an application to inform it of user actions. Many

classes in UIKit handle touch events in ways that are distinctive to objects of the

class. The application sends these events to the view on which the touch occurred.

That view analyzes the events and responds in an appropriate manner. For exam-

ple, buttons and sliders are responsive to gestures such as a tap or a drag while

scroll views provide scrolling behaviour for tables or text views. When the sys-

tem delivers a touch event, it sends an action message to a target object when that

gesture occurs.

View controllers are used to change the UI state of an application. A view

controller is responsible for handling the creation and destruction of its views, and

the interactions between the views and other objects in the application. The UIKit

framework includes classes for view controllers such as UITabBarController,

UITableViewController and UINavigationController. Because iOS

apps have a limited amount of space in which to display content, view controllers

also provide the infrastructure needed to swap out the views from one view con-

troller and replace them with the views of another view controller. The most com-

mon relationships between source and destination view controllers in an iPhone

app are either by using a navigation controller, in which a child of a navigation con-

troller pushes another child onto the navigation stack, or by presenting a view con-

troller modally. The navigation controller is an instance of the UINavigation

Controller class and used for structured content applications to navigate be-

tween different levels of content in order to show a screen flow, whereas the modal

view controllers represent an interruption to the current workflow.

Challenges. Dynamic analysis of iOS apps has a number of challenges. Most iOS

apps are heavily based on event-driven graphical user interfaces. Simply launching

37A nib file is a special type of resource file to store the UI elements in.

119

	

	

Figure 5.1: The Olympics2012 iPhone app going through a UI state transition, after a generated event.

an application will not be sufficient to infer a proper understating of the applica-

tion’s runtime behaviour [205]. Unfortunately, most iOS apps currently do not

come with high coverage test suites. Therefore, to execute a wide range of paths

and reverse engineer a representative model, an approach targeting iOS apps needs

to be able to automatically change the application’s state and analyze state changes.

One challenge that follows is defining and detecting a new state of an applica-

tion while executing and changing its UI. In other words, automatically determin-

ing whether a state change has occurred is not that straightforward.

Another challenge, associated with tracking view controllers, revolves around

the fact that firing an event on the UI could result in several different scenarios

as far as the UI is concerned, namely, (1) the current view controller could go

to the next view controller (modally, by being pushed to the navigation stack, or

changing to the next tab in a tab bar view controller) or (2) UI element(s) in the

current interface could be dynamically added/removed/changed, or (3) the current

view controller goes back to the previous view controller (dismissed modally or

popped from the navigation stack), or (4) nothing happens. Analyzing each of these

scenarios requires a different way of monitoring the UI changes and the navigation

stack.

120

TabBarItemclicked

gotoArchery

gotoCycling1

gotoCycling2

gotoCycling3

gotoCycling4

gotoDiving

gotoEquestrian1

gotoEquestrian2

gotoEquestrian3

gotoFencing

gotoFootball

gotoArchery

gotoGymnastics1

gotoGymnastics2

gotoGymnastics3

gotoHandball

gotoHockey

gotoJudo

gotoRowing

gotoSailing

gotoShooting

gotoSwimming

gotoAthletics

gotoSynchronisedSwimming

gotoTableTennis

gotoTaekwondo

gotoTennis

gotoTriathlon

gotoVolleyball

gotoWaterPolo

gotoWeightlifting

gotoWrestling

gotoBadminton

gotoBasketball

gotoBeach

gotoBoxing

gotoCanoe1

gotoCanoe2

 TabBarItemclicked

Back

 TabBarItemclicked TabBarItemclicked

Figure 5.2: The generated state graph of the Olympics2012 iPhone app.

5.4 Our Approach
Our approach revolves around dynamically running a given iOS mobile app, nav-

igating its user interface automatically, and reverse engineering a model of the

application’s user interface states and transitions between them. Figure 5.1 shows

snapshots of an iPhone app (called Olympics2012, used in our case study in Sec-

tion 5.6) UI state transition after an event. Figure 5.2 shows the automatically

generated state graph of the same application. The figure is minimized because of

space restrictions, and it is depicted to give an impression of the graph inferred by

our approach.

Figure 5.3 depicts the relation between our technique and a given mobile app.

The following seven steps outline our technique’s operation.

121

iCrawler

iPhone Application

UI Application

Controller

Events

App Delegate

ViewiC
ra

w
le

r C
on

tro
lle

r
Shared Instance

State Flow Graph

View Controller

UI Window

Views & UI objects

KIF

UIEvent UITouch
event

Access
Invocation

Processing File
Processing Component

Legend

Inter Access

Figure 5.3: Relation between ICRAWLER and a given iPhone app. The right side of the graph shows key
components of an iPhone app taken from [125].

Step 1 - Hooking into the Application: As soon as the application is started, our

technique kicks in by setting up a shared instance object. As shown in Fig-

ure 5.3, we immediately hook into and monitor the application delegate ob-

ject to identify the initial view controller and infer information about its UI

components.

Step 2 - Analyzing UI Elements: After obtaining the initial view controller, we

have access to all its UI elements. We keep this information in an array

associated to the view controller. Meanwhile, our technique recognizes the

different types of UI elements, such as labels, buttons, table cells, and tabs,

and identifies which UI elements have an event listener assigned to them.

Step 3 - Exercising UI Elements: To exercise a UI element, we look for an un-

visited UI element that has an event listener. As depicted in Figure 5.3, after

gathering all the information about the event listeners, the UI object, and

its action and target, we generate an event on that element and pass it to

122

UIApplication object, which is responsible for receiving the events and

dispatching them to the code for further handling.

Step 4 - Accessing Next View Controller: By observing the changes on the cur-

rent view controller, we obtain the next view controller and analyze the be-

haviour. The event could lead to four scenarios: no user interface change,

the changes are within the current view controller, going to a new view con-

troller, or going to the previous view controller.

Step 5 - Analyzing New UI Elements: After getting a new view controller, we

collect all its UI elements. If the action has resulted in staying in the current

view controller, we record the changes on the UI elements.

Step 6 - Comparing UI States: Once we get the new view controller and its UI

elements, we need to compare the new state with all the perviously visited

unique states. This way, we can determine if the action changes the current

state or ends up on a state that has already been analyzed. If the state is not

visited before, it is added to the set of unique visited states.

Step 7 - Recursive Call: We recursively repeat from step 3 until no other exe-

cutable UI elements are left within the view controller and we have traversed

all the view controllers.

We further describe our approach in the following subsections.

5.4.1 Hooking into the Application

The process of accessing the initial view controller is different from the rest of

the view controllers. Since our goal is to be as nonintrusive and orthogonal to

the application’s source code as possible, we determine the initial view controller

by performing a low-level Objective-C program analysis on the application del-

egate object. To that end, we employ a number of runtime functions to deduce

the initial view controller. We use the Objective-C runtime reference library [38],

which provides support for the dynamic properties of the Objective-C language

and works with classes, objects, and properties directly. It is effective primarily for

low-level debugging and meta-programming. In addition, the Key-Value Coding

123

(KVC) protocol [37] is used to access UI objects at runtime. The KVC protocol

assists in accessing the properties of an object indirectly by key/value, rather than

through invocation of an accessor method or as instance variables [37].

Once the application delegate is accessed, we retrieve all the properties of this

class and their names. After getting the property names in the application delegate,

we call a KVC method to access an instance variable of the initial view controller

using the property name string. This way, we are able to identify the type of initial

view controller (e.g., UITabBarController, UINavigationController,

just a custom UIViewController). This knowledge is required for setting up

the initial state.

5.4.2 Analyzing UI Elements

In our approach, a UI state includes the current view controller, its properties,

accompanied by its set of UI elements. Once we get the view controller, we read

all the subviews, navigation items, as well as tool bar items of the view controller

in order to record the corresponding UI elements in an array associated to the view

controller. Having the required information for a state, we set a global variable to

point to the current state throughout the program.

5.4.3 Exercising UI Elements

We fire an event (e.g., a tap) on each unvisited UI element that has an event-listener

assigned to it. Since events are handled in different ways for different UI classes,

for each UI element type, such as tables, tabs, text views, and navigation bar items,

we recognize its type and access the appropriate view. As shown in Figure 5.3, we

use KIF’s methods to handle the event.

After an element is exercised, we use a delay to wait for the UI to update,

before calling the main function recursively. Based on our experience, a 1 second

waiting time is enough after firing different event types such as tapping on a table

cell or a button, scrolling a table up and down, and closing a view.

124

1 (void)icDismissModalVC:(BOOL) animated {
2 [NSUserDefaults

standardUserDefaults setBool:YES forKey:@"IC_isDismissed"];
3 // Call the original (now renamed) method
4 self icDismissModalVC:animated;
5 }

Figure 5.4: The new method in which we inject code to set the dismissed boolean and then call the original
method.

5.4.4 Accessing the Next View Controller

After exercising a UI element, we need to analyze the resulting UI state. An event

could potentially move the UI forward, backward, or have no effect at all.

At a low level, going back to a previous view controller in iPhone apps happens

either by popping the view controller from the navigation stack or by dismissing

a modal view controller. We monitor the navigation stack after executing each

event to track possible changes on the stack and thus, become aware of the pop

calls. However, being aware of dismissing a modal view needs to be addressed

differently. Our approach combines reflection with code injection to track if a

dismiss method is called. To that end, we employ the Category and Extension [65]

feature of Objective-C, which allows adding methods to an existing class without

subclassing it or knowing the original classes. We also use a technique called

Method Swizzling [76], which allows the method implementation of a class to be

swapped with another method.

We define a category extension to the UIViewController class and add

a new method in this category (See Figure 5.4). We then swap a built-in method

of the view controller, responsible for dismissing a view controller class, with the

new method (See Figure 5.5). The static +load method is also added to the cat-

egory and called when the class is first loaded. We use the +load method to

swap the implementation of the original method with our replaced method. The

swap method call swaps the method implementations such that calls to the orig-

inal method at run-time result in calls to our method defined in the category. As

show in Figure 5.4, we also call the original method, which is now renamed. Our

method stores a boolean data in the defaults system. The iOS defaults system is

available throughout the application, and any data saved in the defaults system will

persist through application sessions. Therefore, after a dismiss call occurs, we set

125

1 (void)load {
2 if (self == UIViewController class) {
3 Method originalMethod = class_getInstanceMethod(self, @selector(←↩

dismissModalViewControllerAnimated:));

5 Method replacedMethod = class_getInstanceMethod(self, @selector(←↩
icDismissModalVC:));

7 swap(originalMethod, replacedMethod);
8 }
9 }

Figure 5.5: Swapping the original built-in method with our new method in the +load function.

the dismissed boolean to true. At runtime, each time an action is executed, we

check the dismissed boolean in the NSUserDefaults object to see if dismiss

has occurred. We set this back to false if that is the case. This way we are able

to track if the event results in going back to a previous view controller to take the

proper corresponding action.

A new view controller could be pushed to the navigation stack, presented

modally, or be a new tab of a tab bar controller. If the action results in staying

in the current view controller, different state changes could still occur such as UI

element(s) dynamically being changed/added/removed, or a pop-up message or an

action sheet appearing. If we do not notice any changes within the current state,

we move further with finding the next clickable UI element. Otherwise, we need to

conduct a state comparison to distinguish new states from already visited states. If

the state is recognized as a new state, a screen shot of the interface is also recoded.

5.4.5 Comparing States

Another crucial step in our analysis is determining whether the state we encounter

after an event is a new UI state. As opposed to other techniques that are based on

image-based comparisons [69, 205], in order to distinguish a new state from the

previously detected states, we take a programmatic, heuristic-based approach in

which we compare the view controllers and all their UI elements of the application

before and after the event is executed.

Deciding what constitutes a UI state change is not always that straightforward.

For instance, consider when a user starts typing a string to a text field and that

126

action changes the value of the text field’s property, or when the sent button of an

email application is enabled as soon as the user starts typing a body of the email.

We need a way to figure out if these changes (changing text of a text field/label

or enabling a button) should be seen as a new state. To that end, we propose a

similarity-based heuristic to emphasize or ignore changes on specific properties of

view controllers, their accompanying UI elements, and the elements’ properties.

Our state recognition heuristic considers the following properties of view con-

trollers: class, title, and the number of UI elements. In addition, for each

UI element, it considers class, hidden, enable, target, and action. Al-

though our algorithm can handle as many properties as required, we are interested

in these attributes because we believe they are most likely to cause a visible UI state

change. We consider a set of distinct weights for each of the aforementioned at-

tributes of a view controller, denoted as WVC = {wvc1,wvc2, ..} as well as another

set of distinct weights for each of the aforementioned attributes of a UI element as

WE = {we1,we2, ..}. The value of each weight is a number between 0 and 1. All

weights have default values that can be overridden by the user’s input if required.

These default values are obtained for each weight through an experimental trial and

error method (discussed in Section 5.6). The similarity, σ , between two UI states

is a percentage calculated as follows:

σ =

∑
Size(WVC)
i=1 |WVCi|VCi +∑

Ne
j=1 ∑

Size(WE)
k=1 |WEk|El j

Size(WVC)+Ne×Size(WE)

×100

where VC returns 1 if the property of the two view controllers are equal and

0 otherwise, Size(WVC) and Size(WE) return the total number of properties

considered for a view controller and a UI element respectively. The second part of

the summation calculates similarity of each of the elements’ properties. El returns

1 if the property of the two UI elements is equal and Ne is the total number of UI

elements. The total summation of the view controllers and elements is divided by

the total number of properties.

Algorithm 2 shows our algorithm for checking the similarity of the current state

(after an event) with all the visited states. It returns a similar state if one is found

among the visited states. As input the algorithm gets two sets of distinct weights

127

Algorithm 2: State Change Recognition
input : Set of weights for view controller properties (Wvc)
input : Set of weights for UI element properties (We)
input : Similarity threshold (τ)
input : Set of the unique states visited (VS)
input : Current state (cs)
output: Similar state (s ∈ VS, otherwise nil)

1 begin
2 σ ← 0
3 foreach s ∈ VS do
4 σ ←
5 (Wvc(class) × (s.viewController.class ≡ cs.viewController.class) +
6 Wvc(title) × (s.viewController.title ≡ cs.viewController.title) +
7 Wvc(elements) × (s.uiElementsCount ≡ cs.uiElementsCount))
8 foreach e1 ∈ s.uiElementsArray do
9 e2← GETELEMENTATINDEX(cs,e1)

10 σ ← σ + (We(class) × (e1.class ≡ e2.class) + We(hidden) × (e1.hidden
≡ e2.hidden) + We(enable) × (e1.enable ≡ e2.enable) + We(target) ×
(e1.target ≡ e2.target) + We(action) × (e1.action ≡ e2.action))

11 attributes← Size(Wvc) + (s.uiElementsCount × Size(We))
12 if ((σ/attributes)×100)>= τ then
13 return s

14 return nil

for view controller and UI element, a similarity threshold (τ), the set of unique

states visited so far, and the current state.

For each visited state (line 3), we calculate the similarity of the two states by

adding the similarity of the two view controllers’ classes, titles and the number of

UI elements (line 7). Then for each UI element in a visited state (line 8), the cor-

responding UI element in the current state (line 9) is retrieved and their similarity

is calculated. Finally, we divide the similarity by the total number of attributes,

which are considered so far, calculate the percentage (line 12) and compare it to

the threshold. The algorithm assumes the two interfaces to be equivalent if the

calculation of the aforementioned weight-based attributes are more than or equal

to τ . In other words, we consider two UI states equal, if they have the same view

controller, title, set of UI elements, with the same set of selected properties, and

the same event listeners.

128

5.4.6 State Graph Generation

To explore the state space, we use a depth-first search algorithm and incrementally

create a multi-edge directed graph, called a state-flow graph [163], with the nodes

representing UI states and edges representing user actions causing a state transition.

5.5 Tool Implementation: ICRAWLER

We have implemented our approach in a tool called ICRAWLER. ICRAWLER is im-

plemented in Objective-C using Xcode 3. We use a number of libraries as follows.

DCINTROSPECT [30] is a library for debugging iOS user interfaces. It lis-

tens for shortcut keys to toggle view outlines and print view properties as well as

the action messages and target objects, to the console. We have extended DCIN-

TROSPECT in a way to extract a UI element’s action message, target object, it’s

properties and values. We further use our extension to this library to output all the

reverse engineered UI elements’ properties within one of our output files.

To generate an event or insert textual input, we use and extend the KIF frame-

work [34]. At runtime, ICRAWLER extracts UI elements with event-listeners as-

signed to them and collects information about the action message and target object

of each UI elements. By recognizing the type of a UI element, ICRAWLER gains

access to its appropriate view. Then it uses KIF’s internal methods to generate an

event on the view.

At the end of the reverse engineering process, the state graph is transformed

into an XML file using XSWI [42], which is a standalone XML stream writer

implemented in Objective-C.

The output of ICRAWLER consists of the following three items: (1) an XML

file, representing a directed graph with actions as edges and states as nodes. (2)

screenshots of the unique states, and (3) a log of all the reverse engineered UI

elements (including their properties, values, actions and targets), generated events

and states.

129

Table 5.1: Experimental objects.

ID Exp. Object Resource
1 Olympics2012 https://github.com/Frahaan/

2012-Olympics-iOS--iPad-and-iPhone--source-code
2 Tabster http://developer.apple.com/library/ios/#samplecode/

Tabster/Introduction/Intro.html#
3 TheElements http://developer.apple.com/library/ios/#samplecode/

TheElements/Introduction/Intro.html#
4 Recipes & Printing http://developer.apple.com/library/ios/#samplecode/

Recipes + Printing/Introduction/Intro.html#
5 NavBar http://developer.apple.com/library/ios/#samplecode/

NavBar/Introduction/Intro.html#
6 U Decide http://appsamuck.com/day12.html

5.6 Empirical Evaluation
To assess the effectiveness of our reverse engineering approach, we have conducted

a case study using six open-source iPhone apps.

We address the following research questions in our evaluation:

RQ1 Is ICRAWLER capable of identifying unique states of a given iPhone appli-

cation correctly?

RQ2 How complete is the generated state model in terms of the number of edges

and nodes?

RQ3 How much manual effort is required to set up and use ICRAWLER? What is

the performance of ICRAWLER?

5.6.1 Experimental Objects

We include six open-source experimental objects from the official Apple sample

code, Guithub, and other online resources. Table 5.1 shows each objects’s ID,

name, and resource. Table 5.2 presents the characteristics of these applications in

terms of their size and complexity. We use XCODE STATISTICIAN38 for collecting

metrics such as the number of header and main files, lines of code (LOC) and

38http://xcode-statistician.mac.informer.com/

130

https://github.com/Frahaan/2012-Olympics-iOS--iPad-and-iPhone--source-code
https://github.com/Frahaan/2012-Olympics-iOS--iPad-and-iPhone--source-code
http://developer.apple.com/library/ios/#samplecode/Tabster/Introduction/Intro.html#
http://developer.apple.com/library/ios/#samplecode/Tabster/Introduction/Intro.html#
http://developer.apple.com/library/ios/#samplecode/TheElements/Introduction/Intro.html#
http://developer.apple.com/library/ios/#samplecode/TheElements/Introduction/Intro.html#
http://developer.apple.com/library/ios/#samplecode/Recipes_+_Printing/Introduction/Intro.html#
http://developer.apple.com/library/ios/#samplecode/Recipes_+_Printing/Introduction/Intro.html#
http://developer.apple.com/library/ios/#samplecode/NavBar/Introduction/Intro.html#
http://developer.apple.com/library/ios/#samplecode/NavBar/Introduction/Intro.html#
http://appsamuck.com/day12.html
http://xcode-statistician.mac.informer.com/

Table 5.2: Characteristics of the experimental objects.

ID .m/.h Files LOC (Objective-C) Statements (;) Widgets

1 22 2,645 1,559 398
2 21 1,727 286 14
3 28 2,870 690 21
4 23 2,127 508 7
5 20 1,487 248 10
6 13 442 162 15

statements. The table also shows the number of UI widgets within each application.

The UI widget is a UI element, such as a tab bar view with all of its tab icons, a

table view with all of its cells, a label or a button. The number of UI widgets is

collected through ICRAWLER’s output file, which logs all the UI elements and their

properties.

5.6.2 Experimental Design

In order to address RQ1, we need to compare unique states generated by ICRAWLER

to the actual unique states for each application. As mentioned before, ICRAWLER

identifies the unique states through Algorithm 3 and keeps the screen-shots of the

unique states in a local folder. To form a comparison baseline, we manually run

and navigate each application and count the unique states and compare that with

the output of ICRAWLER.

To assess the ICRAWLER’s generated state model (RQ2), we also require to

form a baseline of the actual number of edges (i.e. user’s actions that change the

states) and states (unique and repetitive) to compare with the ICRAWLER’s state

model. Therefore, we manually run and navigate each application and count the

edges and the states. Note that there are currently no other similar tools available

to compare ICRAWLER’s results against.

In order to address RQ3, we measure the time required to set up ICRAWLER

and employ it to each of the given iPhone apps. The following series of manual

tasks are required before ICRAWLER can start the analysis:

• The ICRAWLER framework should be added to the application’s project un-

131

der analysis.

• In order to enable ICRAWLER to access the delegating application object,

the ICRAWLER’s initialization line of code should be added to the built-in

method, application: didFinishLaunchingWithOptions:.

• Finally, a preprocessor flag (RUN ICRAWLER) needs to be added to the cre-

ated Xcode target.

Further to investigate the performance of ICRAWLER for each application un-

der test, we measure the time between calling ICRAWLER and when ICRAWLER

finishes its job.

As we mentioned earlier, we obtain default values for the threshold and similar-

ity weights by an experimental trial and error method for each of the applications.

The best values that we have observed are: threshold (%70); weights include: view

controller’s class (0.8), title (0.8), and number of UI elements (0.8); UI ele-

ment’s class (0.7), hidden (0.7), enable (0.7), target (0.7), and action

(0.7). These are also the values used in our evaluation, for all the experimental

objects.

5.6.3 Results

Setting up ICRAWLER and utilizing it for a given iPhone app takes 10 minutes on

average. The results of our study are shown in Table 5.3. The table shows the num-

ber of Unique States, Total States, and Edges counted manually and

by ICRAWLER. Further, the total number of Generated Events and Total

Time for ICRAWLER are presented. We should note that the total time depends

on the application and includes the delay (1 sec) we use after each action. The

number of generated events is different from the number of detected edges. The

events include all the user actions, while the edges are only those actions that result

in a state change (including back-ward edges). For instance, scrolling a table or a

view up and down counts as an event while it is not an edge in the state model.

Another example, related to our state comparison algorithm, is a label that changes

after executing a button, which ICRAWLER does not consider as a new state.

Below, we describe some of the results in Table 5.3.

132

Table 5.3: Results.

Manual ICRAWLER

ID Unique
States

Tot.
States Edges Unique

States
Total
States Edges Gen.

Events
Total

Time (Sec)
1 6 81 43 6 81 43 85 88
2 11 16 17 9 12 11 18 18
3 6 16 15 6 16 15 27 29
4 6 13 10 3 5 4 8 10
5 8 14 13 3 5 4 7 9
6 2 13 2 2 13 2 12 13

The Olympics2012 (#1) application provides information about 38 sports

in the Olympics 2012 as well as a timetable and a count down (See Figure 5.1

and Figure 5.2). According to Table 5.3, ICRAWLER is capable of identifying the

correct number of uniques states, total states, and edges within this application.

The events include tapping on a tab bar item, scrolling up/down a view, scrolling

up/down a table, tapping on a backward/forward button and tapping on a button

which flips the view. The number of user actions, i.e., generated events, is 85

while the number of edges is 43 (including a back-ward edge). This is because

user actions such as scrolling are not changing states and as a result they are not

counted as edges. The number of uniques states is 6 while the number of total

states is 81. This is because there are 38 buttons in this application which lead to a

same UI state while presenting different data for 38 types of sports.

Events within Tabster (#2) include tapping on a tab bar item, scrolling up-

/down a table, tapping on a table cell, tapping on a backward/forward button,

tapping on a dismiss/present button and writing a text. When exercising UI ele-

ments which require text input through keyboard, we used a dummy string based

on the keyboard type e.g., numeric, alphanumeric, url or email address input. As

it is shown in Table 5.3, our approach is able to identify 11 edges and 9 uniques

states. However Tabster has the tab bar view with a “more page” feature and

ICRAWLER supports an ordinary tab bar view (without the “more” feature) at this

time. As a result, there is a difference between the number of uniques states and

edges in baseline and ICRAWLER.

Actions within TheElements (#3) application include tapping on a tab bar

item, scrolling up/down a table, tapping on a table cell, tapping on a back-ward/forward

133

button and tapping on a button which flips the view. ICRAWLER is successfully

able to cover the states and edges of TheElements. Here, we disabled a button,

which closes the application and forwards the user to the AppStore.

The Recipes & Printing application (#4) browses recipes and has the

ability to print the browsed recipes. Here, the difference between manual and

ICRAWLER results in Table 5.3 is due to ignoring the states and actions involved

with printing.

For tables, one could think of different strategies to take: (1) generate an event

on each and every single table cell, (2) randomly click on a number of table cells

(3) generate an event on the first table cell. In our technique, once ICRAWLER

encounters a table view, it scrolls down and up to ensure the scrolling action works

properly and it does not cause to any unwanted crashes, e.g., by having a specific

character in an image’s url and trying to load the image on a table cell. ICRAWLER

then generates an event on the first row and moves forward. This works well for

table cells that result to the same next view. However, there are cases in which

table cells lead to a different view. NavBar (#5) is such a case. There are five

different table cells within this application, which go to different UI states. Thus

we witness a difference between the number of edges or states counted manually

and by ICRAWLER. This is a clear empirical evidence suggesting that we need to

improve our table cell analysis strategy.

5.6.4 Findings

The results of our case study show that ICRAWLER is able to identify the unique

states of a given iPhone app and generate its state model correctly, within the sup-

ported UI elements and event types. Generally, it takes around 10 minutes to set up

and use ICRAWLER. The performance of ICRAWLER is acceptable. For the set of

experimental objects, the minimum analysis time was 9 seconds (5 states, 4 edges,

7 events) and the maximum was 88 seconds (81 states, 43 edges, 85 events).

5.7 Discussion

Limitations. There are some limitations within our current implementation of the

approach. Although it is minimal, the users still need to complete a few tasks

134

to set up ICRAWLER within their applications manually. There are also some UI

elements such as the tool bar, slider, page control, and search bar, which are not

supported currently. In addition, while ICRAWLER currently supports the most

common gestures in iOS apps such as tapping on a UI element, inserting text, and

scrolling views, there is no support yet for other advanced gestures such as swiping

pages and pinching (e.g., zooming in and out images).

Threats to Validity. The fact that we form the comparison baselines manually

could be a threat to internal validity. We did look for other tools to compare our

results against, without success. Manually going through the different applications

to create baselines is labour intensive and potentially subject to errors and author’s

bias. We tried to mitigate this threat by asking two other students to create the

comparison baselines.

Additionally, the independent variables of weights and threshold within our

state recognition algorithm have a direct effect on our dependent variables such as

number of unique states and edges. As a result, choosing other values for these in-

dependent variables rather than our default values, could result in difference in the

outcome. As mentioned in the evaluation section, we chose these optimal values

through a series of trial and error experiments.

In our attempt to gather the experimental objects, we noticed that there is a

small collection of open-source iPhone apps available online – note that we could

not use applications available in AppStore for our experiment since we needed

access to their source code. Even though, this made it difficult to select applications

that reflect the whole spectrum of different UI elements in iPhone apps, we believe

the selected objects are representative of the type of applications ICRAWLER can

reverse engineer. However, we acknowledge the fact that, in order to draw more

general conclusions, more mobile apps are required.

Applications. There are various applications for our technique. First of all, our

technique enables automatic interaction with the mobile app. This alone can be

seen as performing smoke testing (e.g., to detect crashes). In addition, the state

model inferred can be used for automated test case generation. Further, using the

model to provide a visualization of the state space supports developers to obtain

a better understanding of their mobile apps. The approach can be extended to

135

perform cross-platform testing [161], i.e., whether an application is working cor-

rectly on different platforms such as iOS and Android, by comparing the generated

models. Finally, other application areas could be in performance and accessibility

testing of iOS apps.

5.8 Conclusions
As smartphones become ubiquitous and the number of mobile apps increases, new

software engineering techniques and tools geared towards the mobile platform are

required to support developers in their program comprehension, analysis, and test-

ing tasks.

In this work, we presented our reverse engineering technique to automatically

navigate a given iPhone app and infer a model of its user interface states. We

implemented our approach in ICRAWLER, which is capable of exercising and ana-

lyzing UI changes and generate a state model of the application. The results of our

evaluation, on six open source iPhone apps, point to the efficacy of the approach

in automatically detecting unique UI states, with a minimum level of manual effort

required from the user. We believe our approach and techniques have the potential

to help mobile app developers increase the quality of iOS apps.

There are several opportunities in which our approach can be enhanced and

extended for future research. The immediate step would be to extend the current

version of ICRAWLER to support the remaining set of UI elements within UIKIT

such as the tool bar, slider, page control, and search bar. Other directions can use

this technique for smoke testing of iPhone apps as well as generating test cases

from the inferred state model. Furthermore, ICRAWLER can be extended to sup-

port iPad apps as well as reverse engineering analysis at the binary level. This is

beneficial as AppStore distributes binary code of the applications, and this would

be interesting to apply automated testing to any application disregarding having

accessibility to its source code.

136

Chapter 6

Detecting Inconsistencies in Multi-Platform
Mobile Apps

Summary39

Due to the increasing popularity and diversity of mobile devices, developers write

the same mobile app for different platforms. Since each platform requires its own

unique environment in terms of programming languages and tools, the teams build-

ing these multi-platform mobile apps are usually separate. This in turn can result

in inconsistencies in the apps developed. In this work, we propose an automated

technique for detecting inconsistencies in the same native app implemented for iOS

and Android platforms. Our technique (1) automatically instruments and traces the

app on each platform for given execution scenarios, (2) infers abstract models from

each platform execution trace, (3) compares the models using a set of code-based

and GUI-based criteria to expose any discrepancies, and finally (4) generates a vi-

sualization of the models, highlighting any detected inconsistencies. We have im-

plemented our approach in a tool called CHECKCAMP. CHECKCAMP can help

mobile developers in testing their apps across multiple platforms. An evaluation

of our approach with a set of 14 industrial and open-source multi-platform native

mobile app-pairs indicates that CHECKCAMP can correctly extract and abstract

the models of mobile apps from multiple platforms, infer likely mappings between

the generated models based on different comparison criteria, and detect inconsis-

39This chapter appeared at the 26th IEEE International Symposium on Software Reliability Engi-
neering (ISSRE 2015) [88].

137

tencies at multiple levels of granularity.

6.1 Introduction
Recent industry surveys [50, 51] indicate that mobile developers are mainly inter-

ested in building native apps, because they offer the best performance and allow for

advanced UI interactions. Native apps run directly on a device’s operating system,

as opposed to web-based or hybrid apps, which run inside a browser.

Currently, iOS [21] and Android [19] native mobile apps40 dominate the app

market each with over a million apps in their respective app stores. To attract more

users, implementing the same mobile app across these platforms has become a

common industry practice. Ideally, a given mobile app should provide the same

functionality and high-level behaviour on different platforms. However, as found

in our recent study [86], a major challenge faced by industrial mobile develop-

ers is to keep the app consistent across platforms. This challenge is due to the

many differences across the platforms, from the devices’ hardware, to operating

systems (e.g., iOS/Android), and programming languages used for developing the

apps (e.g., Objective-C/Java). We also found that developers currently treat the

mobile app for each platform separately and manually perform screen-by-screen

comparisons, often detecting many cross-platform inconsistencies [86]. This man-

ual process is, however, tedious, time-consuming, and error-prone.

In this work, we propose an automated technique, called CHECKCAMP (Check-

ing Compatibility Across Mobile Platforms), which for the same mobile app im-

plemented for iOS and Android platforms (1) instruments and generates traces of

the app on each platform for a set of user scenarios, (2) infers abstract models from

the captured traces that contain code-based and GUI-based information for each

pair, (3) formally compares the app-pair using different comparison criteria to ex-

pose any discrepancies, and (4) produces a visualization of the models, depicting

any detected inconsistencies. Our work makes the following main contributions:

• A technique to capture a set of run-time code-based and GUI related metrics

used for generating abstract models from iOS and Android app-pairs;

40In this work, we focus on native apps; henceforth, we use the terms ‘mobile app’ or simply ‘app’
to denote ‘native mobile app’.

138

• Algorithms along with an effective combination of mobile specific criteria to

compute graph-based mappings of the generated abstract models targeting

mobile app-pairs, used to detect cross-platform app inconsistencies;

• A tool implementing our approach, called CHECKCAMP, which visualizes

models of app-pairs, highlighting the detected inconsistencies. CHECK-

CAMP is publicly available [27];

• An empirical evaluation of CHECKCAMP through a set of seven industrial

and seven open-source iOS and Android mobile app-pairs.

Our results indicate that CHECKCAMP can correctly extract abstract models

of the app-pairs to infer likely mappings between the generated abstract models

based on the selected criteria; CHECKCAMP also detects 32 valid inconsistencies

in the 14 app-pairs.

6.2 Pervasive Inconsistencies
A major challenge faced by industrial mobile developers is to keep the app consis-

tent across platforms. This challenge and the need for tool support emerged from

the results of our qualitative study [86], in which we interviewed 12 senior app

developers from nine different companies and conducted a semi-structured survey,

with 188 respondents from the mobile development community.

In this work, to identify the most pervasive cross-platform inconsistencies be-

tween iOS and Android mobile app-pairs, we conducted an exploratory study by

interviewing three industrial mobile developers, who actively develop apps for both

platforms. The following categories and examples are extracted from the inter-

views as well as a document shared with us by the interviewees, containing 100

real-world cross-platform mobile app inconsistencies. Ranked in the order of im-

pact on app behaviour, the most pervasive inconsistency categories are as follows:

Functionality: The highest level of inconsistencies is missing functionality; e.g.,

“Notes cannot be deleted on Android whereas iOS has the option to delete

notes.” Or “After hitting send, you are prompted to confirm to upload – this

prompt is missing on iOS.”

139

Figure 6.1: The overview of our technique for behaviour checking across mobile platforms.

Data: When the presentation of any type of data is different in terms of order,

phrasing/wording, imaging, or text/time format; e.g., “Button on Android

says ‘Find Events’ while it should say ‘Find’ similar to iOS.”

Layout: When a user interface element is different in terms of its layout such as

size, order, or position; e.g., “Android has the ‘Call’ button on the left and

‘Website’ on the right - iPhone has them the other way around.”

Style: The lowest level of inconsistency pertains to the user interface style; i.e.,

colour, text style, or design differences, e.g., “iOS has Gallery with a blue

background while Android has Gallery with a white background”.

We propose an approach that is able to automatically detect such inconsisten-

cies. Our main focus is on the first two since these can impact the behaviour of the

apps.

6.3 Approach
Figure 6.1 depicts an overview of our technique called CHECKCAMP. We describe

the main steps of our approach in the following subsections.

140

6.3.1 Inferring Abstract Models

We build separate dynamic analyzers for iOS and Android, to instrument the app-

pair. For each app-pair, we execute the same set of user scenarios to exercise

similar actions that would achieve the same functionality (e.g., reserving a hotel

or creating a Calendar event). As soon as the app is started, each analyzer starts

by capturing a collection of traces about the runtime behaviour, UI structures, and

method invocations. Since the apps are expected to provide the same functional-

ity, our intuition is that their traces should be mappable at an abstract level. The

collected traces from each app are used to construct a model:

Definition 2 (Model). A Model µ for a mobile app M is a directed graph, denoted

by a 4-tuple < α , η , V, E > where:

1. α is the initial edge representing the action initiating the app (e.g., a tap on

the app icon).

2. η is the node representing the initial state after M has been fully loaded.

3. V is a set of vertices representing the states of M. Each υ ∈ V represents a

unique screen of M annotated with a unique ID.

4. E is a set of directed edges (i.e., transitions) between vertices. Each (υ1, υ2)

∈ E represents a clickable c connecting two states if and only if state υ2 is

reached by executing c in state υ1.

5. µ can have multi-edges and be cyclic.

Definition 3 (State). A state s ∈ V represents the user interface structure of a

single mobile app screen. This structure is denoted by a 6-tuple, < γ , θ , τ , λ ,

Ω , δ >, where γ is a unique state ID, θ is a classname (e.g., name of a View

Controller in iOS or an Activity in Android), τ is the title of the screen, λ

is a screenshot of the current screen, Ω is a set of user interface elements with their

properties such as type, action, label/data, and δ is a set of auxiliary properties

(e.g., tag, distance) used for mapping states.

141

Definition 4 (Edge). An edge e ∈ E is a transition between two states representing

user actions. It is denoted by a 6-tuple, < γ , θ , τ , λ , Ω , δ >, where γ is a unique

edge ID, θ is a source state ID, τ is a target state ID, λ is a list of methods invoked

when the action is triggered, Ω is a set of properties of a touched element41 (i.e.

type, action, label/data) and δ is a set of auxiliary properties (e.g., tag, distance)

used for mapping purposes.

iOS App Model Inference

In iOS, events can be of different types, such as touch, motion, or multimedia

events. We focus on touch events since the majority of actions are of this type. A

touch event object may contain one or more finger gestures on the screen. It also

includes methods for accessing the UI view in which the touch occurs. We track

the properties of the UI element that the touch event is exercised on. To capture this

information, we employ the Category and Extension [65] feature of Objective-C,

which allows adding methods to an existing class without subclassing it or knowing

the original classes. We also use a technique called Method Swizzling [76], which

allows the method implementation of a class to be swapped with another method.

To that end, we define a category extension to the UIApplication class and a

new method in this category. We then swap a built-in method, responsible for send-

ing an event, with the new method. The swap method call modifies the method

implementations such that calls to the original method at runtime result in calls to

our method defined in the category. Additionally, we capture the invoked method

calls after an event is fired. We use aspects to dynamically hook into methods and

log method invocations. Once an event is fired at runtime, all the invoked methods

and their classes are traced and stored in a global dataset.

For each event fired, we add an edge to the model. Figure 6.2 shows an edge

object of an iPhone app (called MTG, used in our evaluation in Section 6.5) in-

cluding its captured touched element and invoked methods.

To construct the model, we need to capture the resulting state after an event is

triggered. In iPhone apps, a UI state includes the current visible view controller, its

properties, accompanied by its set of UI elements. We use a delay to wait for the UI
41 A touched element is the UI element which has been exercised when executing a scenario (e.g., a cell in a

table, a button, a tab in a tab bar).

142

Figure 6.2: An edge object of MTG iPhone app with its touched element and methods.

to update properly after an event, before triggering another event on a UI element.

Based on our empirical analyses, a two second waiting time is enough for most

iOS apps. An event could potentially move the UI forward, backward, or have no

effect at all. If the action results in staying in the current view controller, different

state mutations could still occur. For instance, UI element(s) could dynamically

be changed/added/removed, or the main view of the view controller be swapped

and replaced by another main view with a set of different UI element(s). At a

low level, moving the UI forward or backward loads a view controller in iPhone

apps. Similar to capturing properties of each edge, our approach for capturing UI-

structure of each state, combines reflection with code injection to observe loading

view controller methods.

Once we obtain a reference to the view controller, our approach takes a snap-

shot of the state and captures all the UI element objects in an array associated to

the view controller, such as tables with cells, tab bars with tab items, tool bar items,

navigation items (left, right, or back buttons), and it loops through all the subviews

(e.g., labels, buttons) of the view controller. For each of them, we create an element

object with its ID, type, action42, label, and details.

Figure 6.3 shows a snapshot of a state in the MTG iPhone app including its

UI element objects. For instance, the top left button in Figure 6.3 has ‘UIButton’

as type, ‘1’ as label, ‘button1Pressed’ as action (the event handler). We set

details for extra information such as the number of cells in a list. Using this

42 action pertains to the event handler, representing the method that will handle the event.

143

1 State(ID,ClassName,Title,#Elements)
2 (S4,DecklistCounterController,-,8)

4 UIElements
5 (Type,Label,Action,Details)
6 (UIButton,1,button1Pressed,-)
7 (UIButton,2,button2Pressed,-)
8 (UIButton,3,button3Pressed,-)
9 (UIButton,4,button4Pressed,-)

10 (UILabel,Total: 0 (+0),-,-)
11 (UIButton,Reset,resetPressed,-)
12 (UIButton,Undo,undoPressed,-)
13 (UITabBar,-,itemClicked,5tabs)

Figure 6.3: A snapshot of a state in MTG iPhone app with its captured UI element objects.

information, we create a state node in the model.

Android App Model Inference

At a high-level, our Android dynamic analyzer intercepts method calls executed

while interacting with an app and captures UI information (state) upon the return

of these methods. Similar to iOS, Android has different types of events. In our

approach, we focus on user-invoked events since they contribute to the greatest

changes in the UI and allow the app to progress through different states. These

types of events get executed when a user directly interacts with the UI of an app,

for instance by clicking a button or swiping on the screen. When a user interacts

with a UI element, the associated event listener method is invoked, and the element

is passed as one of its arguments. To create a new edge in our model, we inspect

these arguments and extract information about the UI element that was interacted

with by the user. This inspection also allows us to separate user-invoked events

from other types, by checking whether the method argument was a UI element

such as a button or table that the user can interact with. We compare the argument

against the andoird.widget package [1], which contains visual UI elements to be

used in apps.

In our android analyzer, a UI state includes the current visible screen, its prop-

erties, accompanied by its set of UI elements. When an executed method returns,

we use the activity that called the method to retrieve information about the state of

the UI. To access the UI layout of the current view, we use a method provided by

the Android library called getRootView [1]. This method returns a ViewGroup

144

object, which is a tree-like structure of all the UI elements present in the current

screen of the app. We traverse this tree recursively to retrieve all the UI elements.

Additionally, we capture some unique properties of the UI elements such as labels

for TextViews and Buttons, and number of items for ListViews. These

properties are used during the mapping phase to compare iOS and Android states

at a lower level.

6.3.2 Mapping Inferred Models

Next, we analyze each model-pair to infer likely mappings implied by the states and

edges through a series of phases. Prior to the Mapping phase, two preprocessing

steps are required namely Pruning and Merging.

Pruning

The first step in our analysis, is to prune the graph obtained for each platform,

in order merge duplicate states. This step is required as our dynamic analyzers

capture any state we encounter after an event is fired without checking if it is a

unique state or a duplicate state. This check can be carried out either separately in

each analyzer tool or once in the mapping phase. Having it in the mapping phase

ensures that the pruning procedure is consistent across platforms. Identifying a

new state of a mobile app while executing and changing its UI is challenging. In

order to distinguish a new state from previously detected states, we compare the

state nodes along with their properties, as shown in Algorithm 3.

As input, Algorithm 3 takes all States and Edges, obtained from the graph (G),

and outputs a pruned graph (P). We loop through all the states captured (line 4),

and compare each state with the rest of state space (line 6) based on their classes

and number of UI elements (line 8). Next, we proceed by checking their UI el-

ements (line 10) for equivalency of types and actions (line 12). Thus, data

changes do not reflect a unique state in our algorithm. In other words, two states

are considered the same if they have the same class and set of UI elements along

with their respective properties. Detected duplicate states are removed (line 18)

and the source and target state IDs for the edges are adjusted accordingly (line 19).

145

Algorithm 3: Pruning a Given Model
input : State Graph (G) of a Given Model (M)
output: Pruned State Graph (P)

1 begin
2 S← GETVERTICES(G)
3 E← GETEDGES(G)
4 foreach i = 0, i <COUNT(S), i++ do
5 s1← S[i]
6 foreach j = i+1, j <COUNT(S), j++ do
7 s2← S[j]
8 if s1(class)≡ s2(class) &

s1(#elements)≡ s2(#elements) then
9 elFlag← TRUE

10 foreach e1 ∈ s1.Elements do
11 e2← GETELEMENTATINDEX(s1,e1)
12 if e1.type 6= e2.type ‖

e1.action 6= e2.action then
13 elFlag← FALSE
14 break
15 end
16 end
17 if elFlag then
18 REMOVEDUPLICATESTATE(S,s2)
19 UPDATEEDGES(E,s1,s2)
20 end
21 end
22 end
23 end
24 return P(S,E)
25 end

Merging

Platform-specific differences that manifest in our models are abstracted away in

this phase. This step is required since such irrelevant differences can occur fre-

quently across platforms. For instance, the iPhone app may offer More as an op-

tion in its tab controller which is different from the Android app. If the iPhone

app has more than five items, the tab bar controller automatically inserts a special

view controller (called the More view controller) to handle the display of addi-

tional items. The More view controller lists the additional view controllers in a

table, which appears automatically when it is needed and is separate from custom

content. Thus, our approach merges the More state with the next state (view con-

146

Algorithm 4: Mapping two (iOS & Android) Models
input : iPhone State Graph (IG)
input : Android State Graph (AG)
output: IG with Mapping Properties (MIG)
output: AG with Mapping Properties (MAG)

1 begin
2 IS← GETVERTICES(IG)
3 AS← GETVERTICES(AG)
4 IE← GETEDGES(IG)
5 AE← GETEDGES(AG)
6 edgePairs[0]← INSERTEDGEPAIR(IE[0], AE[0])
7 foreach i = 0, i <COUNT(edgePairs), i++ do
8 pair← edgePairs[i]
9 if NOTMAPPED(pair) then

10 s1← GETSTATE(IS,pair[iphTrgtId])
11 s2← GETSTATE(AS,pair[andTrgtId])
12 iphEdges← GETOUTGOINGEDGES(s1,IE)
13 andEdges← GETOUTGOINGEDGES(s2,AE)
14 /*Find closest edge-pairs*/
15 nextPairs← FINDEDGEPAIRS(iphEdges,andEdges)
16 SETSTATEMAPPINGPROPERTIES(s1,s2)
17 SETEDGEMAPPINGPROPERTIES(nextPairs)
18 end
19 foreach j = 0, j <COUNT(nextPairs),j++ do
20 edgePairs[i+j+1]← INSERTEDGEPAIR(nextPairs[j])
21 end
22 end
23 return (MIG,MAG)
24 end

troller) to abstract away iPhone differences that are platform-specific and as such

irrelevant for our analysis. Similarly, the Android app may offer an option Menu

panel to provide a set of actions. The contents of the options menu appear at the

bottom of the screen when the user presses the Menu button. When a state is cap-

tured on Android and then the option Menu is clicked, our approach merges the

two states together to abstract away Android differences. Other differences such

as Android’s hardware back button vs. iPhone’s soft back button are taken into

account in our graph representations.

147

Mapping

The collected code-based (e.g., classname) and GUI-based (e.g., screen title)

data for states and edges are used in this phase to map the two models, as shown in

Algorithm 4. As input, Algorithm 4 takes iPhone (IG) and Android (AG) graphs,

produced after the pruning and merging phases, and outputs those models with a

set of computed auxiliary mapping properties for their states and edges (MIG and

MAG). The algorithm operates on the basis of the following assumptions (1) the

model of an app starts with an initial edge that leads to an initial state and (2)

conceptually, both models start with the same initial states. An array, edgePairs,

holds the initial iPhone and Android edges (line 6) and other edge-pairs are inserted

through the main loop (line 20). To find the edge-pairs, we first obtain the initial

iPhone and Android states (line 10 and 11) based on the target state IDs in the ini-

tial edge-pair. We then obtain all the outgoing iPhone edges (iphEdges in line

12) and Android edges (andEdges in line 13) from the already mapped state-pair.

To identify closest iPhone and Android edge-pairs (line 15), we loop through the

outgoing edges and calculate σEd , based on a set of comparison criteria as defined

in Formula 6.1:

σEd = min
∀Ediph∈iphEdges
∀Edand∈andEdges

(
f (Ediph,Edand)

∑
N f lags
i=1 Fi

)∗100 (6.1)

where

f (Ediph,Edand) = Faction ∗LD(I phaction,Andaction)

+Flabel ∗LD(I phlabel ,Andlabel)

+Ftype ∗Corresponds(I phtype,Andtype)

+Fclass ∗LD(I phclass,Andclass)

+Ftitle ∗LD(I phtitle,Andtitle)

+Felms ∗
NElPairs

∑
i=1

Similarity(I phelms,Andelms)

+Fmethods ∗LD(I phmethods,Andmethods)

with the action, label, and type of the touched element, classname, title

and attributes of UI elements in the target state, and the method calls invoked by

the event.

148

The edge-pair with the lowest computed σEd value is selected as the closest

Android-iPhone edge-pair and their mapping properties are appended to the model

accordingly (line 17). To instantiate different combinations of this metric, we use

a set of binary flags, denoted as Faction, Flabel , Ftype, Fclass, Ftitle, Felms and Fmethods.

The value of each flag is 1 or 0 to activate or ignore a criterion. We propose six

different instantiations, listed in Table 6.1, and compare them in our evaluation to

assess their effectiveness (discussed in Section 6.5).

Table 6.1: Six combinations for mapping.

ID Combinations of Comparison Criteria

Comb1 ClassName
Comb2 TouchedElement (action, label, type)
Comb3 TouchedElement+ClassName
Comb4 TouchedElement+ClassName+Title
Comb5 TouchedElement+ClassName+Title+UIElements
Comb6 TouchedElement+ClassName+Title+UIElements+Methods

LD in Formula 6.1 is a relative Levenshtein Distance [144] between two strings,

calculated as the absolute distance divided by the maximum length of the given

strings (See Formula 6.2). Some string patterns that are known to be equivalent are

chopped from the strings before calculating their distance. For instance, the words

“Activity” in Android classname and “ViewController”/“Controller” in iPhone

classname are omitted.

LD(str,str′) =
distance(str,str′)

maxLength(str,str′)
(6.2)

Corresponds in Formula 6.1 is used for comparing the element’s type based

on the corresponding Android-iPhone UI element equivalent mappings. Since iOS

and Android have different UI elements, a mapping is needed to find equivalent

widgets. We analyzed GUI elements that exist for both native Android [20] and

iPhone [13] platforms and identified the differences and similarities on the two

platforms. We used and extended upon existing mappings that are available online

[11]. During the interview sessions (See Section 6.2), we cross-validated over

30 control, navigation, and UI element mappings (such as button, label, picker and

slider) that function equivalently on the two platforms, so that the generated models

149

can be used in this phase. We have made these UI equivalent mappings publicly

available [27]. Corresponds returns 1 if two elements are seen as equivalent and

thus can be mapped, and 0 otherwise.

Further, Similarity in Formula 6.1 is a relative number ([0,1]) between two sets

of elements in the two (target) states calculated as follows:

Similarity(elAry,elAry′) =
elPairCount(elAry,elAry′)
maxCount(elAry,elAry′)

(6.3)

where the number of elements that can be mapped is divided by the maximum size

of the given arrays. Similar to the touched element, action, label, and type

properties of UI elements are used to compute mapping between them.

Finally, going back to our algorithm, mapped edge-pairs are inserted to the

main array (line 20), and the next set of states and edges are considered for mapping

recursively until no other outgoing edges are left.

Detecting Inconsistencies

Any unmatched state left without mapping properties from the previous phase is

considered as a functionality inconsistency. For a matched state-pair, since their

incoming edges are mapped, we assume that these target states should be equivalent

conceptually. Data inconsistencies pertain to text properties of the screen such as

titles, labels, buttons, and also the number of cells in a table and tabs. Image related

and style related properties are out of scope. We calculate data inconsistencies,

σState, in a pair of mapped states by computing LD between two titles as well as

text properties of the elements-pairs.

σState = dLD(I phtitle,Andtitle)e+
NElPairs

∑
i=1
dLD(I phtxt ,Andtxt)e (6.4)

To compute the correspondence between the elements, we loop through the two

arrays of elements. First, we compare the elements’ types based on the correspond-

ing Android-iPhone UI element equivalent mappings [14]. For any two elements

with the same type and a textual label, we compute LD. We ignore image element

types e.g., a button with an image. Where we have multiple elements of the same

type, the lowest computed LD is selected as the closest elements-pairs. The σState

150

IPH AND

Figure 6.4: Visualization of mapping inferences for MTG iPhone (left) and Android (right) app-pairs. The
result indicates 3 unmatched states shown with red border (including 2 functionality inconsistencies
where iPhone has more states than Android and 1 platform specific inconsistency with MoreViewsCon-
troller on iPhone). Other 5 matched states have data inconsistencies shown with yellow border.

is added as mapping distance to the models with the same mapping tag for the two

states (line 16). Additionally, the detected inconsistencies are added to mapping

result which are later manifested through our visualization.

Eventually, at the end of this phase, each state is marked as either unmatched,

matched with inconsistencies or completely matched in the two models, ready to

be visualized in the next phase. Thus, we automatically detect mismatched screens

by using one platform’s model as an oracle to check another platform’s model and

vice versa.

6.3.3 Visualizing the Models

After calculating the likely mappings and detecting potential inconsistencies, we

visualize the iOS and Android models, side-by-side, colour coding the mapping

results. Red, yellow and dark green border colours around states show unmatched,

matched with inconsistencies and completely matched states, respectively. Matched

states and edges share the same mapping tag. Figure 6.4 depicts an example of

the output of the visualization phase (it is minimized because of space restric-

tions). The models can be zoomed in and list detected inconsistencies as well as

151

IPH AND

Figure 6.5: Zooming into a selected State (or Edge) represents detected inconsistencies and UI-structure
(or touched element and methods) information of iPhone (left) and Android (right) app-pairs.

UI-structure information on selected state(-pair) or touched element and methods

information on selected edge(-pair) (See Figure 6.5).

6.4 Tool Implementation
Our approach is implemented in a tool called CHECKCAMP [27].

Its iPhone analyzer is implemented in Objective-C. We use and extend a num-

ber of external libraries. ASPECTS [22] uses Objective-C message forwarding and

hooks into messages to enable functionality similar to Aspect Oriented Program-

ming for Objective-C. DCINTROSPECT [30] is a library for debugging iOS user

interfaces. We extend DCINTROSPECT to extract a UI element’s action message,

target object, it’s properties and values.

The Android analyzer is implemented in Java (using Android 4.3). To intercept

method calls, we rely mainly on ASPECTJ.

Our Mapping and visualization engine is written in Objective-C and imple-

ments the states recognition and the states/edges mapping steps of the technique.

The output of the mapping engine is an interactive visualization of the iOS and

Android models, which highlights the inconsistencies between the app-pairs. The

visualization is implemented as a web application and uses the CYTOSCAPE.JS

library [29], which is a graph theory library to create models.

152

6.5 Evaluation
To evaluate the efficacy of our approach we conducted an empirical evaluation,

which addresses the following research questions:

RQ1. How accurate are the models inferred by CHECKCAMP?

RQ2. How accurate are the mapping methods? Which set of comparison criteria

provides the best results?

RQ3. Is CHECKCAMP capable of detecting valid inconsistencies in cross-platform

apps?

6.5.1 Experimental Objects

We include a set of seven large-scale industrial and seven open-source iPhone and

Android app-pairs (14 app-pairs in total). The industrial app-pairs are collected

from two local mobile companies in Vancouver. The open-source app-pairs are

collected from Github. We require the open-source app-pairs to be under the same

GitHub repository to ensure that their functionally is meant to be similar across

iPhone and Android. Table 6.2 shows the app-pairs included in our evaluation.

Each objects’s ID, name, resource, and their characteristics in terms of their size

and complexity is also presented. XCODE STATISTICIAN [15] and ECLIPSEMET-

RICS [5] are used to measure lines of code (LOC) in the iOS and Android apps,

respectively.

153

Table 6.2: Characteristics of the experimental objects, together with total number of edges, unique states, elements and manual unique states counts (MC) across
all the scenarios.

#LOC #Edges #Unique States #Elements #MC States
ID App [URL] (#Scenarios) AND IPH AND IPH AND IPH AND IPH AND IPH

1 MTG-Judge [8] (2) 3,139 1,822 23 38 11 14 118 125 11 14
2 Roadkill-Reporter [18, 33] (1) 1,799 474 3 17 1 5 48 103 4 5
3 NotifyYDP [16] (1) 1,673 1,960 5 18 2 5 101 96 2 5
4 Family [6] (1) ∼12K ∼14K 10 24 3 4 93 372 3 4
5 Chirpradio [17, 32] (1) 1,705 881 3 4 1 1 9 24 1 1
6 Whistle [14] (1) 702 111 3 4 1 1 6 4 1 1
7 Redmine [12] (1) 1,602 48 6 8 5 4 68 26 5 4
8 Industry App A (2) 8,376 4,015 37 46 13 14 1,041 1,286 13 13
9 Industry App B (4) ∼70k ∼28K 49 53 22 22 715 796 22 22
10 Industry App C (6) ∼68K ∼30K 76 87 37 36 1,142 1,028 37 36
11 Industry App D (4) ∼69K ∼28K 66 71 29 31 940 1,803 29 29
12 Industry App E (2) ∼68K ∼26K 23 28 11 12 353 265 11 12
13 Industry App F (3) ∼68K ∼28K 53 57 28 28 635 2,182 28 28
14 Industry App G (4) ∼69K ∼29K 53 56 27 27 813 1,128 27 27

154

6.5.2 Experimental Procedure

We used iOS 7.1 simulator and a Samsung Galaxy S3, to run the iPhone and An-

droid apps, respectively. To collect traces, two graduate students were recruited.

First, they installed a fresh version of each pair of the apps, which were then in-

strumented by CHECKCAMP. Next, to collect consistent traces, we wrote a set of

scenarios for our collected app-pairs and gave each student one scenario for each

app to access all use-cases of the Android or iPhone versions of the apps according

to the given scenarios. Note that the same user scenario is used for both the iOS

and Android versions of an app. The scenarios used in our evaluation are available

online [27].

Once traces were collected, CHECKCAMP was executed to obtain the models

and mappings. To asses the accuracy of the models generated (RQ1), we compare

the number of generated unique states to the actual number of unique states for

each app-pair. To form a comparison baseline, we manually examine and navigate

the user scenarios for each app-pair and document the number of unique states.

To evaluate the accuracy of the mappings (RQ2), we measure precision, recall,

and F-measure for each combination, listed in Table 6.1, and app-pair as follows:

Precision is the rate of mapped states reported by CHECKCAMP that are correct:
TP

TP+FP

Recall is the rate of correct mapped states that CHECKCAMP finds: TP
TP+FN

F-measure is the harmonic mean of precision and recall: 2×Precision×Recall
Precision+Recall

where T P (true positives), FP (false positives), and FN (false negatives), respec-

tively, represent the number of states that are correctly mapped (both fully matched

or matched with inconsistencies), falsely mapped, and missed. To document T P,

FP, and FN, associated with each app for our combinations of comparison crite-

ria, we manually examine the apps and compare the formed baseline against the

reported output.

To validate detected inconsistencies (RQ3), for the best combination calculated

in RQ2, we manually examine the reported inconsistencies in each app-pair. The

results from our analysis are presented in the next section.

155

Note that, to the best of our knowledge, there are currently no similar tools

to compare the results of CHECKCAMP against. That is why our baselines are

created manually.

6.5.3 Results and Findings

RQ1: Inferred models. We ran multiple Scenarios to cover all the screens/states

in each app. For each scenario, the initial model is constructed over its traces

and analyzed by CHECKCAMP. Table 6.2 presents the total number of Edges,

Unique States, and UI Elements for all the scenarios running on each Android and

iPhone app, produced by CHECKCAMP. The last column of the table also shows

the number of Unique States counted manually. As far as RQ1 is concerned, our

results show that CHECKCAMP is able to identify unique states of a given iPhone

and Android app-pair and generate their state models correctly for each scenario.

However, there is a few cases in our industry iPhone apps (IDs 8 and 11) and

Android app (ID 2) where the number of manual unique states does not exactly

match the number of unique states collected by the dynamic analyzer. This is

mainly because our approach currently takes into account the type of the class

(either Activity in Android or View Controller in iOS) in defining a state and thus

separate states are captured for different View Controllers (discussed in Section 6.6

under Limitations).

RQ2: Different mapping combinations. The precision and recall rates, mea-

sured for the first five combinations, listed in Table 6.1, for our 14 app-pairs, are

presented in Figure 6.6. The F-measure is shown in Figure 6.7. We do not in-

clude Combination 6 in these figures since apart from the touched element’s event-

handler (i.e., action), comparing the rest of the method calls did not improve

the mapping (discussed in Section 6.6 under Conclusive Comparison Criteria). As

far as RQ2 is concerned, our results show that CHECKCAMP is highly accurate

in mapping state-pairs. As expected, the results are higher in the open-source apps

due to the relative simplicity compared to the industry apps. The comparisons in

Figure 6.6 and Figure 6.7 reveal that Combination 5 followed by Combination 4

provide the best mapping results in recall, precision, and F-measure for the industry

apps. While the results of the combinations have less variation in the open-source

156

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Recall

P
re

ci
si

on
●●●● ●●●

●

●

●

●

●● ●

●

Comb1
Comb2
Comb3
Comb4
Comb5

Figure 6.6: Plot of precision and recall for the five mapping combinations of each app-pair.

apps, Combination 2 shows the best results for them. For the best combinations:

• The recall is 1 for the open-source apps, and for the industry apps it oscillates

between 0.68–1 (average 0.88) meaning that our approach can successfully

map most of the state-pairs present in an app-pair.

• The precision is 1 for the open-source apps, and for the industry apps it

oscillates between 0.88–1 (average 0.97), which is caused by a low rate of

false positives (discussed in Section 6.6 under Limitations).

• The F-measure is 1 for open-source apps, and varies between 0.75–1 (aver-

age 0.92), for industry apps.

RQ3: Valid inconsistencies. As far as RQ3 is concerned, for the best combina-

tions calculated in RQ2, Table 6.3 depicts the number of reported inconsistencies

by CHECKCAMP along with some examples. We manually examined and val-

idated (inconsistency categories) in each app-pair across the scenarios. We also

157

2 4 6 8 10 12 14

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Experimental Objects

F
−

m
ea

su
re

● ● ●

●

● ● ●

●

●

●

●

● ●

●

1 2 3 4 5 6 7 8 9 10 11 12 13 14

●

Comb1
Comb2
Comb3
Comb4
Comb5

Figure 6.7: F-measure obtained for the five mapping combinations on each app-pair.

computed the average rank and percentage of severity of the valid detected incon-

sistencies. The used severity ranks are presented in Table 6.4, which are adopted

from Bugzilla [25] and slightly adapted to fit inconsistency issues in mobile apps.

We computed the percentage of the valid inconsistencies’ severity as the ratio of

the average severity rank to the maximum severity rank (which is 5).

We found a number of valid functionality inconsistencies in the open-source

apps, and interestingly, two in the industrial apps (IDs 10 and 12). However, in

some app-pairs, functions such as email clients or opening browsers behaved dif-

ferently on the two platforms. For instance, in the case of app-pair with ID 3,

opening browsers and email clients take the Android app user to outside of the ap-

plication while that is not the case in the iPhone app. As such, the two models have

mismatched states in Table 6.2 as CHECKCAMP is not capturing states outside of

the app.

158

Table 6.3: Number of reported inconsistencies by CHECKCAMP, validated, average and percentage of their severity with examples in each app-pair.

ID #Reported (Categories) #Validated (Categories) Severity (Avg,%) Examples of Reported Inconsistencies

1 13 (2 func, 11 data) 13 (2 func, 11 data) 2.6 52% Android missing ‘Draft Time’/‘Update’ functionality (Figure 6.4)
table cells: iPhone(12628) vs. Android(6336)

2 4 (3 func, 1 data) 1 (1 func) 5 100% Android missing ‘Help’ functionality
3 2 (2 data) 2 (2 data) 2 40% Title: iPhone ‘Notify YDP’ vs. Android ‘’
4 3 (1 func, 2 data) 1 (1 func) 5 100% Android missing ‘Change Password’ functionality
5 1 (1 data) 1 (1 data) 2 40% Button: iPhone ‘’ vs. Android ‘Play’
6 0 0 – – –
7 5 (1 func, 4 data) 5 (1 func, 4 data) 2.6 52% iPhone missing a functionality
8 14 (14 data) 2 (2 data) 2 40% Button: iPhone ‘Reset’ vs. Android ‘RESET’
9 2 (2 data) 0 – – –
10 5 (1 func, 4 data) 3 (1 func, 2 data) 3 60% iPhone missing ‘Map’ functionality
11 2 (2 data) 1 (1 data) 2 40% Title: iPhone ‘May 14’ vs. Android ‘Schedule’
12 2 (1 func, 1 data) 2 (1 func, 1 data) 3.5 70% Android missing ‘Participants’ functionality
13 1 (1 data) 1 (1 data) 2 40% Title: iPhone ‘Details’ vs. Android ‘Hotels’
14 0 0 – – –

All 54 (9 func, 45 data) 32 (7 func, 25 data) 3 60% –

159

Table 6.4: Bug severity description.

Severity Description Rank

Critical Functionality loss, no work-around 5
Major Functionality loss, with possible work-around 4
Normal Makes a function difficult to use 3
Minor Not affecting functionality, behaviour is not natural 2
Trivial Not affecting functionality, cosmetic issue 1

Among the data inconsistencies in Table 6.3, are inconsistencies in the number

of cells and text of titles, labels, and buttons. Most of the false positives in the

reported data inconsistencies (in particular in app-pair with ID 8) are due to the

UI structure of a state being implemented differently on the two platforms (dis-

cussed in Section 6.6 under Limitations). Thus, CHECKCAMP could not map the

elements correctly and reported incorrect inconsistencies.

6.6 Discussion
In this section, we discuss our general findings, limitations of CHECKCAMP, and

some of the threats to validity of our results.

6.6.1 Comparison Criteria

Among the code-based and GUI-based comparison criteria, our evaluation shows

that the most effective in the mapping phase pertains to information about the text,

action, and type of UI elements that events are fired on, as well as the classname

and title of the states. In addition, while we extract a set of method calls after an

event fires, our investigation shows that only the action of the touched UI element is

effective. We found that even after omitting OS built-in methods, such as delegate

methods provided by the native SDK, or library API calls, the method names are

quite different in the two platforms and thus provided no extra value in the mapping

phase.

6.6.2 Limitations

There are some limitations to our current implementation. First, deciding what

constitutes a UI state is not always straightforward. For instance, consider two

160

screens with a list of different items. In the Android version of an app the same

Activity is used to implement the two screens while on the iPhone version sepa-

rate View Controllers exist and currently as shown in Algorithm 3, the type of the

class (either Activity in Android or View Controllers in iOS) is checked (line 8) for

identifying a state and thus (mistakenly) separate states are captured in iPhone.

Next, the low rate of false positives in RQ2 include examples where even con-

sidering our selected properties all together, CHECKCAMP still lacks enough in-

formation to conclude correct mappings. For instance, if an ImageButtonwhich

contains an image as a background is exercised, there would be no text/label to be

compared. Another limitation is with respect to the string edit distance used in

our algorithm; for instance, the two classnames DetailedTipsViewController and

TipsDetailActivity are falsely reported as being different based on their distance.

This means, if the outgoing edges can not be mapped correctly in Algorithm 4,

CHECKCAMP halts and cannot go any further. Backtracking based approaches

can be considered to recover if it performs incorrect matches.

Another limitation is related to the high false-positive rate in the reported data

inconsistencies in RQ3. In states with multiple elements of the same type, e.g., but-

tons with images or text properties, our programmatic approach in CHECKCAMP

cannot map them correctly. Another reason, occurred in some cases, is the UI

structure of a state-pair is implemented differently. For instance, in an Android

state, buttons exist with text properties whereas in the corresponding iPhone state,

those texts are implemented through labels along with buttons. However, this lim-

itation could be addressed through image-processing techniques [69, 205] on the

iPhone and Android screenshots collected by the dynamic analyzers. This could

enable the detection of other types of inconsistencies between app-pairs including

image-related data, layout, or style.

6.6.3 Applications

There are various applications for our technique. First of all, our technique sup-

ports mobile developers in comprehending, analyzing, and testing their native mo-

bile apps that have implementations in both iOS and Android. Many developers

interact with GUI to comprehend the software by creating a mental model of the

161

application [192]. On average, 48% of a desktop applications’s code is devoted to

GUI [170]. We believe the amount of GUI-related code is higher in mobile apps

due to their highly interactive nature. Thus, using the models to provide a visu-

alization of the apps accompanied with the UI-structure and method calls in the

visualization output, would support mobile developers and testers in their program

comprehension and analysis tasks and to obtain a better understanding of their mo-

bile apps. The models inferred by CHECKCAMP can also be used for generating

test cases. In terms of scalability, the results in Table 6.2 show that our approach

is scalable to large industrial mobile apps consisting of tens of thousands of LOC

and many states.

6.6.4 Threats to Validity

The fact that we form the comparison baselines manually could be a threat to in-

ternal validity. We did look for other similar tools to compare our results against,

without success. Manually going through the different applications to create base-

lines is labour intensive and potentially subject to errors and author’s bias. We

tried to mitigate this threat by asking the first two authors to create the compar-

ison baselines together before conducting the experiment. Additionally, we had

a small number of scenarios in particular for the open source apps. We tried to

mitigate this threat by assuring that these scenarios covered the app screens/states

fully. A threat to the external validity of our experiment is with regard to the gen-

eralization of the results to other mobile apps. To mitigate this threat, we selected

our experimental objects from industrial and open-source domains with variations

in functionality, structure and size. With respect to reproducibility of our results,

CHECKCAMP, the open-source experimental objects, their scenarios and results

are publicly available [27].

6.7 Related Work
Dealing with multiple platforms is not specific to the mobile domain. The problem

also exists for cross-browser compatibility testing. However, in the mobile domain,

each mobile platform is different with regard to the OS, programming languages,

API/SDKs, and supported tools, making it much more challenging to detect incon-

162

sistencies automatically.

Mesbah and Prasad [161] propose a functional consistency check of web appli-

cation behaviour across different browsers. Their approach automatically analyzes

the given web application, captures the behaviour as a finite-state machine and

formally compares the generated models for equivalence to expose discrepancies.

Their model generation [163] and mapping technique is based on DOM states of

a web application while CHECKCAMP deals with native iOS and Android states

and mappable code-based and GUI related metrics of the two mobile platforms.

Choudhary et al. [74] propose a technique to analyze the client-server commu-

nication and network traces of different versions of a web application to match

features across platforms.

In the mobile domain, Rosetta [100] infers likely mappings between the JavaME

and Android graphics APIs. They execute application pairs with similar inputs to

exercise similar functionality and logged traces of API calls invoked by the appli-

cations to generate a database of functionally equivalent trace pairs. Its output is

a ranked list of target API methods that likely map to each source API method.

Cloud Twin [117] natively executes the functionality of a mobile app written for

another platform. It emulates the behaviour of Android apps on a Windows Phone

where it transmits the UI actions performed on the Windows Phone to the cloud

server, which then mimics the received actions on the Android emulator. To our

best knowledge, none of the related work addresses inconsistency detection across

iOS and Android mobile platforms.

6.8 Conclusions
This work is motivated by the fact that implementation of mobile apps for multi-

ple platforms – iOS and Android – has become an increasingly common industry

practice. As a result, a challenge for mobile developers and testers is to keep the

app consistent, and ensure that the behaviour is the same across multiple platforms.

In this work, we proposed CHECKCAMP, a technique to automatically detect and

visualize inconsistencies between iOS and Android versions of the same mobile

app. Our empirical evaluation on 14 app-pairs shows that the GUI model-based ap-

proach can provide an effective solution; CHECKCAMP can correctly infer mod-

163

els, and map them with a high precision and recall rate. Further, CHECKCAMP

was able to detect 32 valid functional and data inconsistencies between app ver-

sions.

While we are encouraged by the evaluation results of CHECKCAMP, there

are several opportunities in which our approach can be enhanced and extended for

future research. The immediate step would be to conduct an in-depth case study,

carried out in an industrial setting with a number of developers using CHECK-

CAMP. This would help validate the efficiency of the mapping and the visualiza-

tions. Additionally, the execution of consistent scenarios can be enhanced by the

use of mobile apps that have test suites such as CALABASH [26] scripts. The traces

generated by test suites can be leveraged in the mapping engine to enhance the

approach.

Systematically crawling to recover models is also an alternative to using scenar-

ios. While there are limitations of automated model recovery, it could complement

human-provided scenarios, to ensure better coverage. We have taken the first re-

quired steps for automatically generating state models of iPhone apps [85] through

a reverse engineering technique. There have been similar techniques for Android

apps [55, 73, 102, 217].

Another direction is to improve the current dynamic analyzers to capture infor-

mation regarding each device’s network communication (client-server communi-

cation of platform-specific versions of a mobile app), as well as the API calls made

to utilize the device’s native functionality such as GPS, SMS, Calendar, Camera,

and Gallery.

164

Chapter 7

Conclusions and Future Work

Mobile app development on platforms such as Android and iOS has gained tremen-

dous popularity recently. This dissertation aims at advancing the state-of-the-art by

1) obtaining insights regarding current practices, real challenges and concerns in

mobile app development as well as 2) proposing a new set of techniques and tools

based on the identified challenges. To this end, we designed five research questions.

The first three research questions addressed the first part of our goal, in particular,

each responded to a gap in the current state-of-the-art. The last two research ques-

tions are follow-up studies, which address the identified challenges by proposing

techniques and tools. We believe that our primary contributions and publications,

presented in this dissertation, have addressed our goal and research questions.

7.1 Revisiting Research Questions
RQ1. What are the main challenges developers face in practice when they build

mobile apps?

Chapter 2. We presented the first qualitative field study [86] targeting mobile app

development practices and challenges, which is considered “a very strong and in-

fluential contribution to the whole SE community” by our reviewers. We started by

conducting and analyzing interviews with 12 senior mobile app developers, from

nine different industrial companies. We followed a Grounded Theory approach to

analyze our interviews. Based on the outcome of these interviews, we designed and

distributed an online survey, targeted the popular Mobile Development Meetup and

LinkedIn groups related to native mobile development. We kept the survey live for

165

two and a half months, which was fully completed by 188 mobile app developers

worldwide.

However, similar to quantitative research, qualitative studies could suffer from

threats to validity, which is challenging to assess as outlined by Onwuegbuzie et

al. [179]. For instance, in codification, the researcher bias can be troublesome,

skewing results on data analysis [132]. We tried to mitigate this threat through

triangulation; The codification process was conducted by two researchers, one of

whom had not participated in the interviews, to ensure minimal interference of per-

sonal opinions or individual preferences. Additionally, we conducted a survey to

challenge the results emerging from the interviews. Both the interview and survey

questionnaire were designed by a group of three researchers, with feedback from

four external people – one senior Ph.D. student and three industrial mobile app de-

velopers – in order to ensure that all the questions were appropriate and easily com-

prehensible. Another concern was a degree of generalizability. We tried to draw

representative mobile developer samples from nine different companies. Thus, the

distribution of participants includes different companies, development team sizes,

platforms, application domains, and programming languages – representing a wide

range of potential participants. Of course, the participants in the survey also have

a wide range of background and expertise. All this gives us some confidence that

the results have a degree of generalizability. One risk within Grounded Theory

is that the resulting findings might not fit with the data or the participants [99].

To mitigate this risk, we challenged the findings from the interviews with an on-

line survey, filled out by 188 practitioners worldwide. The results of the survey

confirmed that the main concepts and codes, generated by the Grounded Theory

approach, are in line with what the majority of the mobile development commu-

nity believes. Lastly, in order to make sure that the right participants would take

part in the survey, we shared the survey link with some of the popular Mobile De-

velopment Meetup and LinkedIn groups related to native mobile app development.

Furthermore, we did not offer any financial incentives nor any special bonuses or

prizes to increase response rate.

RQ2. What are the characteristics of non-reproducible bug reports and the

challenges developers deal with?

Chapter 3. To obtain better insights of issues and concerns in software develop-

166

ment, in general, it is a very common practice that researchers investigate other

sources of software development data. In particular, bug repository systems have

become an integral component of software development activities. Ideally, each

bug report should help developers find and fix a software fault. However, there

is a subset of reported bugs that is not (easily) reproducible, on which develop-

ers spend considerable amounts of time and effort. While we started with mobile

non-reproducible (NR) bugs, we noticed that none of the related work investigates

non-reproducible bug reports in isolation. Thus, we expanded the study to other

software environment and domains (desktop, web, and mobile). In this work [87],

we presented the first empirical study on the frequency, nature, and root cause cat-

egories of non-reproducible bug reports. We mined six bug tracking repositories

from three different domains and found that 17% of all bug reports are resolved

as non-reproducible at least once in their life-cycles. Non-reproducible bug re-

ports, on average, remain active around three months longer than other resolution

types while they are treated similarly in terms of the extent to which they are dis-

cussed or the number of developers involved. Furthermore, we manually examined

and classified six common root cause categories. Our classification indicated that

“Interbug Dependencies” forms the most common category (45%), followed by

“Environmental Differences” (24%), “Insufficient Information” (14%), “Conflict-

ing Expectations” (12%), and “Non-deterministic Behaviour” (3%).

However, our manual classification of the bug reports could be a source of

internal threats to validity. In order to mitigate errors and possibilities of bias,

we performed our manual classification in two phases where (1) the inference of

rules was initially done by the first author; the rules were cross-validated and un-

certainties were resolved through extensive discussions and refinements between

two researchers; the generated categories were discussed and refined by a group

of three researchers, (2) the actual distribution of bug reports into the six inferred

categories was subsequently conducted by myself following the classification rules

inferred in the first step. In addition, since this is the first study classifying NR

bug reports, we had to infer new classification rules and categories. Thus, one

might argue that our NR rules and categories are subjective with blurry edges and

boundaries. By following a systematic approach and triangulation we tried to mit-

igate this threat. Another threat in our study is the selection and use of these bug

167

repositories as the main source of data. However, we tried to mitigate this threat

by selecting various large repositories and randomly selecting NR bug reports for

analysis. In terms of external threats, we tried our best to choose bug reposito-

ries from a representative sample of popular and actively developed applications in

three different domains (desktop, web, and mobile). With respect to bug tracking

systems, JIRA and BUGZILLA are well-known popular systems, although bug re-

ports in projects using other bug tracking systems could behave differently. Thus,

regarding a degree of generalizability, replication of such studies within different

domains and environments (in particular for industrial cases) would help to gener-

alize the results and create a larger body of knowledge.

RQ3. What are the app-store characteristics of the same mobile app, published

in different marketplaces? How are the major concerns or complaints different on

each platform?

Chapter 4. Online app stores are the primary medium for the distribution of mo-

bile apps. Through app stores, users can download and install apps on their mobile

devices and subsequently rate the apps. As such, app stores provide an important

channel for app developers to collect user feedback such as the overall rating of

their app, issues or bugs detected and new feature requests. To attract as many

users as possible, developers often implement the same app for multiple mobile

platforms [86]. We presented the first large-scale study on mobile app-pairs, i.e.,

the same app implemented for iOS and Android platforms, in order to analyze and

compare their various attributes, user reviews, and root causes of user complaints

at multiple levels of granularity. We mined the two most popular app stores and

employ a mixed-methods approach using both quantitative and qualitative analysis.

Our results show that on average the stars and prices are similar on both platforms,

with some fluctuations in price. Reasons for price fluctuations include different

monetizing strategies, offering different features and different efforts and costs re-

quired to maintain the app. The number of ratings is greatly in favour of Android

where in 63% of the app-pairs it has 4,821 more ratings than the iOS platform.

Further, some top rated apps only exist on one platform, reasons for this include

lack of resources, platform restrictions and revenue per platform. We combined

the stars, ratings, and user reviews to measure apps’ success on the Android and

iOS platforms for 2K app-pairs and found that 17.4% have a difference of 25% or

168

more in their success rate between the two platforms. Finally, we looked closely at

user complaints and concerns. We found that, on average, iOS apps have more crit-

ical and post-update problems while Android apps have more complaints related

to compatibility, usability, performance, security or functionality. It connects the

developers comments to our findings as they mentioned, “Apple forces the devel-

opers to constantly migrate the apps to their latest OS and tool versions.” On the

other hand, there is more device fragmentation on Android and the compatibility,

usability, performance, and functionality are more related to dealing with a variety

of devices.

However, our manual labelling of the reviews to train the classifiers could be

a source of internal threat to validity. In order to mitigate this threat, uncertainties

were cross-validated and resolved through discussions and refinements between the

authors. With respect to the detection of app-pairs, our technique cannot retrieve

all the possible app-pairs since it only considers two apps a pair if their app name

and developer name start with the same root word. For instance, an app named The

Wonder Weeks43 on iOS has a pair on the Android platform with the name Baby

Wonder Weeks Milestones.44 Such a pair would not be retrieved by our technique

since it does not start with the same root word. Thus, as shown in Figure 4.4, the

app-pairs detected in our study are a subset of all possible app-pairs. In terms of

external threats, we tried our best to choose app-pairs from a representative sample

of popular mobile apps and categories. With respect to app store systems, iTunes

and Google Play are the most popular systems currently, although apps in other

app stores could have other characteristics. Regarding generalizability, replication

of such studies within different app stores would help to generalize the results and

create a larger body of knowledge. Additionally, the classifiers alone could be

useful to group the reviews for developers.

RQ4. How can we help developers to better understand their mobile apps?

Chapter 5. Many developers interact with the graphical user interface (GUI) to

comprehend the software by creating a mental model of the application [192]. For

traditional desktop applications, an average of 48% of the application’s code is

devoted to GUI [170]. Because of their highly interactive nature, we believe the

43 https://goo.gl/ofLWim
44 https://goo.gl/tMKWTx

169

https://goo.gl/ofLWim
https://goo.gl/tMKWTx

amount of GUI-related code is typically higher in mobile apps. To support mobile

developers in their program comprehension and analysis tasks, we presented the

first reverse engineering technique to automatically navigate a given iPhone app

and infer a model of its user interface states [85]. We implemented our approach in

ICRAWLER, which is capable of exercising and analyzing UI changes and generate

a state model of the application. The results of our evaluation, on six open source

iPhone apps, point to the efficacy of the approach in automatically detecting unique

UI states, with a minimum level of manual effort required from the user. We be-

lieve our approach and techniques have the potential to help mobile app developers

increase the quality of iOS apps.

However, there are some limitations within our current implementation of the

approach. Although it is minimal, the users still need to complete a few tasks to

set up ICRAWLER within their applications manually. There are also some UI el-

ements such as the tool bar, slider, page control, and search bar, which are not

supported currently. In addition, while ICRAWLER at the moment supports the

most common gestures in iOS apps such as tapping on a UI element, inserting text,

and scrolling views, still there is no support for other advanced gestures such as

swiping pages and pinching (e.g., zooming in and out images). Furthermore, the

fact that we form the comparison baselines manually could be a threat to inter-

nal validity. We did look for other tools to compare our results against, without

success. Manually going through the different applications to create baselines is

labour intensive and potentially subject to errors and author’s bias. We tried to mit-

igate this threat by asking two other students to create the comparison baselines.

Further, in our attempt to gather the experimental objects, we noticed that there is a

small collection of open-source iPhone apps available online – note that we could

not use applications available in AppStore for our experiment since we needed ac-

cess to their source code. Even though, this made it difficult to select applications

that reflect the whole spectrum of different UI elements in iPhone apps, we believe

the selected objects are representative of the type of applications ICRAWLER can

reverse engineer. However, we acknowledge the fact that, in order to draw more

general conclusions, more mobile apps are required.

RQ5. How can we help developers to automatically detect inconsistencies in

their same mobile app across multiple platforms?

170

Chapter 6. This work [88] is motivated by the fact that implementation of mobile

apps for multiple platforms – iOS and Android – has become an increasingly com-

mon industry practice. Therefore, as we identified in our initial field study [86], a

major challenge for mobile developers and testers is to keep the app consistent and

ensure that the behaviour is the same across multiple platforms. We also found that

developers currently treat the mobile app for each platform separately and manu-

ally perform screen-by-screen comparisons, often detecting many cross-platform

inconsistencies [86]. This manual process is, however, tedious, time-consuming,

and error-prone. Thus, we proposed [88] the first automated technique, called

CHECKCAMP (Checking Compatibility Across Mobile Platforms), which auto-

matically detect and visualize inconsistencies between iOS and Android versions

of the same mobile app.

However, there are some limitations to our current implementation. First, de-

ciding what constitutes a UI state is not always straightforward. For instance, con-

sider two screens with a list of different items. In the Android version of an app

the same Activity is used to implement the two screens while on the iPhone ver-

sion separate View Controllers exist and currently as shown in Algorithm 3, the

type of the class (either Activity in Android or View Controllers in iOS) is checked

(line 8) for identifying a state and thus (mistakenly) separate states are captured in

iPhone. Next, the low rate of false positives in RQ2 include examples where even

considering our selected properties all together, CHECKCAMP still lacks enough

information to conclude correct mappings. For instance, if an ImageButton

which contains an image as a background is exercised, there would be no text/label

to be compared. Another limitation is with respect to the string edit distance used

in Algorithm 4 for mapping two classnames based on their distance. This means if

the outgoing edges can not be mapped correctly, CHECKCAMP halts and cannot

go any further. Backtracking-based approaches can be considered to recover if it

performs incorrect matches. Another limitation is related to the high false-positive

rate in the reported data inconsistencies in RQ3. In states with multiple elements

of the same type, e.g., buttons with images or text properties, our programmatic

approach in CHECKCAMP cannot map them correctly. Another reason, occurred

in some cases, is the UI structure of a state-pair is implemented differently. For

instance, in an Android state, buttons exist with text properties whereas in the cor-

171

responding iPhone state, those texts are implemented through labels along with

buttons. However, this limitation could be addressed through image-processing

techniques [69, 205] on the iPhone and Android screenshots collected by the dy-

namic analyzers. This could enable the detection of other types of inconsistencies

between app-pairs including image-related data, layout, or style. Additionally, the

fact that we form the comparison baselines manually could be a threat to internal

validity. We tried to mitigate this threat by asking two researchers to create the

comparison baselines together before conducting the experiment. Additionally, we

had a small number of scenarios in particular for the open source apps. We tried to

mitigate this threat by assuring that these scenarios covered the app screens/states

fully. A threat to the external validity of our experiment is with regard to the gen-

eralization of the results to other mobile apps. To mitigate this threat, we selected

our experimental objects from industrial and open-source domains with variations

in functionality, structure and size.

7.2 Future Work and Concluding Remarks
To summarize, we have identified the practices and challenges in software devel-

opment for mobile devices, that go beyond the anecdotic evidence. We started

with a qualitative field study. We provided a list of important software engineering

research issues related to mobile development. We also conducted two empiri-

cal studies on software development data for mobile apps. After our qualitative

studies, in order to address the identified challenges, we conducted follow-up re-

search and proposed automated model-based techniques for generating a model of

a mobile app through ICRAWLER approach as well as detecting inconsistencies of

a mobile app across multiple platforms through CHECKCAMP approach. Over-

all, our findings showed the effectiveness of the proposed model generation and

mapping techniques in terms of accuracy and inconsistency detection capability.

Future work on non-reproducible bug reports can focus on (1) bug reports in

the “Interbug Dependencies” category to design techniques that would facilitate

identifying, linking, and clustering them upfront so that developers would not have

to waste time on them, (2) incorporating better collaboration tools into bug track-

ing systems to facilitate better communication between different stakeholders to

172

address the problem with the other NR categories. Future work regarding the app-

pairs study can focus on the release dates of the app-pairs to understand which

platform developers will target first when they release a new app. Further, app de-

scriptions can be used to compare the app features provided on different platforms.

Additionally, there are several opportunities in which ICRAWLER approach can

be enhanced and extended for future research. The immediate step would be to ex-

tend the current version of ICRAWLER to support the remaining set of UI elements

within UIKIT such as date picker, action sheet, alert view, the tool bar, slider, page

control, and search bar. Other directions we will pursue are using ICRAWLER tech-

nique for smoke testing of iPhone apps as well as generating test cases from the

inferred state model. Furthermore, ICRAWLER can be expanded to support iPad

apps. Additionally, ICRAWLER can be extended with reverse engineering analysis

at the binary level. It would be beneficial as Apple app store distributes binary code

of the applications, and this would be interesting to apply automated testing to any

application disregarding having accessibility to its source code. It also would re-

duce/omit the users manual effort to set up the analysis environment. Similarly,

there are various opportunities in which CHECKCAMP approach can be improved

and extended for future research. The immediate step would be to conduct an in-

depth case study, carried out in an industrial setting with a number of developers

using CHECKCAMP. Additionally, the execution of consistent scenarios can be

enhanced by the use of mobile apps that have test suites such as CALABASH [26]

scripts. The traces generated by test suites can be leveraged in the mapping en-

gine to enhance the approach. Systematically crawling to recover models is also an

alternative to using scenarios. While there are limitations of automated model re-

covery, it could complement human-provided scenarios, to ensure better coverage.

We have taken the first required steps for automatically generating state models of

iPhone apps through ICRAWLER reverse engineering technique [85]. There have

been similar techniques for Android apps [55, 73, 102, 217]. Another direction is to

improve the current dynamic analyzers to capture information regarding each de-

vice’s network communication (client-server communication of platform-specific

versions of a mobile app), as well as the API calls made to utilize the device’s

native functionality such as GPS, SMS, Address Book, E-mail, Calendar, Camera,

and Gallery. Finally, CHECKCAMP approach can be extended to support third-

173

party testing, where no source code is available, as well as other mobile platforms

such as Windows Phone and Blackberry.

Nonetheless, our research is only scratching the surface of mobile development

domain with its fast paced and highly frequent changes. We open sourced all of our

empirical data and tools, making our techniques and findings applicable in future

research.

174

Bibliography

[1] The developer’s guide - Android developers.
https://developer.android.com/guide/index.html. Accessed: 2015-12-15. →
pages 144

[2] Eclipse Bugzilla. https://bugs.eclipse.org/bugs/, . Accessed: 2015-12-15.
→ pages 63

[3] MediaWiki Bugzilla. https://bugzilla.wikimedia.org/, . Accessed:
2015-12-15. → pages 63

[4] Bugzilla@Mozilla. https://bugzilla.mozilla.org, . Accessed: 2015-12-15.
→ pages 63

[5] Eclipse Metrics plugin. http://metrics2.sourceforge.net/. Accessed:
2015-12-15. → pages 153

[6] Family App for iPhone and Android. https://github.com/FamilyLab/Family.
Accessed: 2015-12-15. → pages 154

[7] JIRA.
https://confluence.atlassian.com/display/JIRA050/JIRA+Documentation.
Accessed: 2015-12-15. → pages 58, 60

[8] MTGJudge App for iPhone and Android.
https://github.com/numegil/MTG-Judge. Accessed: 2015-12-15. → pages
154

[9] Non-reproducible bug report analyser and empirical data.
https://github.com/saltlab/NR-bug-analyzer. Accessed: 2015-12-15. →
pages 60, 64, 65

[10] Moodle Tracker! https://tracker.moodle.org/issues/?jql=. Accessed:
2015-12-15. → pages 63

175

https://developer.android.com/guide/index.html
https://bugs.eclipse.org/bugs/
https://bugzilla.wikimedia.org/
https://bugzilla.mozilla.org
http://metrics2.sourceforge.net/
https://github.com/FamilyLab/Family
https://confluence.atlassian.com/display/JIRA050/JIRA+Documentation
https://github.com/numegil/MTG-Judge
https://github.com/saltlab/NR-bug-analyzer
https://tracker.moodle.org/issues/?jql=

[11] PortKit: UX Metaphor Equivalents for iOS & Android. http://kintek.com.
au/blog/portkit-ux-metaphor-equivalents-for-ios-and-android/. Accessed:
2015-12-15. → pages 149

[12] Redmine App for iPhone and Android.
https://github.com/webguild/RedmineMobile. Accessed: 2015-12-15. →
pages 154

[13] UIKit Framework Reference. https://developer.apple.com/library/ios/
documentation/UIKit/Reference/UIKit Framework/. Accessed: 2015-12-15.
→ pages 149

[14] Whistle App for iPhone and Android. https://github.com/yasulab/whistle.
Accessed: 2015-12-15. → pages 154

[15] Xcode Statistician.
http://www.alexcurylo.com/blog/2010/11/01/xcode-statistician/. Accessed:
2015-12-15. → pages 153

[16] YDP App for iPhone and Android. https://github.com/alakinfotech/YDP.
Accessed: 2015-12-15. → pages 154

[17] The Android version of Chirpradio.
https://github.com/chirpradio/chirpradio-android. Accessed: 2015-12-15.
→ pages 154

[18] The Android version of Roadkill Reporter.
https://github.com/calebgomer/Roadkill Reporter Android. Accessed:
2015-12-15. → pages 154

[19] Android Market Stats. http://www.appbrain.com/stats/, . Accessed:
2015-12-15. → pages 85, 115, 138

[20] android.widget Package. https:
//developer.android.com/reference/android/widget/package-summary.html,
. Accessed: 2015-12-15. → pages 149

[21] App Store Metrics. http://148apps.biz/app-store-metrics/. Accessed:
2015-12-15. → pages 85, 114, 138

[22] Aspects. https://github.com/steipete/Aspects. Accessed: 2015-12-15. →
pages 152

176

http://kintek.com.au/blog/portkit-ux-metaphor-equivalents-for-ios-and-android/
http://kintek.com.au/blog/portkit-ux-metaphor-equivalents-for-ios-and-android/
https://github.com/webguild/RedmineMobile
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIKit_Framework/
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIKit_Framework/
https://github.com/yasulab/whistle
http://www.alexcurylo.com/blog/2010/11/01/xcode-statistician/
https://github.com/alakinfotech/YDP
https://github.com/chirpradio/chirpradio-android
https://github.com/calebgomer/Roadkill_Reporter_Android
http://www.appbrain.com/stats/
https://developer.android.com/reference/android/widget/package-summary.html
https://developer.android.com/reference/android/widget/package-summary.html
http://148apps.biz/app-store-metrics/
https://github.com/steipete/Aspects

[23] Bugzilla: Eclipse Bug #106396.
https://bugs.eclipse.org/bugs/show bug.cgi?id=106396, . Accessed:
2015-12-15. → pages 60

[24] Bugzilla. http://www.bugzilla.org/docs/, . Accessed: 2015-12-15. → pages
58, 60, 77

[25] Bugzilla Severity Definitions.
https://wiki.documentfoundation.org/QA/Bugzilla/Fields/Severity, .
Accessed: 2015-12-15. → pages 158

[26] Calabash. http://calaba.sh/. Accessed: 2015-12-15. → pages 164, 173

[27] iOS and Android Dynamic Analyzers, Mapping and Visualization Engine
together with Open-source Experimental Scenarios and Results.
https://github.com/saltlab/camp. Accessed: 2015-12-15. → pages 139,
150, 152, 155, 162

[28] What is an issue?
https://confluence.atlassian.com/display/JIRA/What+is+an+Issue.
Accessed: 2015-12-15. → pages 60

[29] Graph theory (a.k.a. network) library for analysis and visualisation.
http://js.cytoscape.org/. Accessed: 2015-12-15. → pages 152

[30] DCIntrospect. https://github.com/domesticcatsoftware/DCIntrospect.
Accessed: 2015-12-15. → pages 129, 152

[31] Frank: Automated Acceptance Tests for iPhone and iPad.
http://www.testingwithfrank.com/. Accessed: 2015-12-15. → pages 117

[32] The iOS version of Chirpradio.
https://github.com/chirpradio/chirpradio-ios. Accessed: 2015-12-15. →
pages 154

[33] The iOS version of Roadkill Reporter.
https://github.com/calebgomer/Roadkill Reporter iOS. Accessed:
2015-12-15. → pages 154

[34] KIF iOS Integration Testing Framework. https://github.com/square/KIF.
Accessed: 2015-12-15. → pages 117, 129

[35] UI/Application Exerciser Monkey.
http://developer.android.com/tools/help/monkey.html, . Accessed:
2015-12-15. → pages 118

177

https://bugs.eclipse.org/bugs/show_bug.cgi?id=106396
http://www.bugzilla.org/docs/
https://wiki.documentfoundation.org/QA/Bugzilla/Fields/Severity
http://calaba.sh/
https://github.com/saltlab/camp
https://confluence.atlassian.com/display/JIRA/What+is+an+Issue
http://js.cytoscape.org/
https://github.com/domesticcatsoftware/DCIntrospect
http://www.testingwithfrank.com/
https://github.com/chirpradio/chirpradio-ios
https://github.com/calebgomer/Roadkill_Reporter_iOS
https://github.com/square/KIF
http://developer.android.com/tools/help/monkey.html

[36] MonkeyTalk for iOS & Android.
http://www.gorillalogic.com/testing-tools/monkeytalk, . Accessed:
2015-12-15. → pages 117

[37] NSKeyValueCoding Protocol Reference.
https://developer.apple.com/library/ios/navigation/, . Accessed:
2015-12-15. → pages 124

[38] Objective-C Runtime Reference.
https://developer.apple.com/library/ios/navigation/, . Accessed:
2015-12-15. → pages 123

[39] Project SIKULI. http://sikuli.org. Accessed: 2015-12-15. → pages 117

[40] Works on my machine - How to fix non-reproducible bugs?
http://stackoverflow.com/questions/1102716/
works-on-my-machine-how-to-fix-non-reproducible-bugs. Accessed:
2015-12-15. → pages 58, 60

[41] Bug fields. https://bugzilla.mozilla.org/page.cgi?id=fields.html. Accessed:
2015-12-15. → pages 60

[42] XSWI: XML stream writer for iOS. http://skjolber.github.io/xswi/.
Accessed: 2015-12-15. → pages 129

[43] C. Q. Adamsen, G. Mezzetti, and A. Møller. Systematic execution of
android test suites in adverse conditions. In Proceedings of the 2015
International Symposium on Software Testing and Analysis, ISSTA 2015,
pages 83–93. ACM, 2015. → pages 47, 49

[44] S. Adolph, W. Hall, and P. Kruchten. Using grounded theory to study the
experience of software development. Empirical Softw. Engg., 16(4):
487–513, 2011. → pages 3, 11, 12, 54

[45] S. Adolph, P. Kruchten, and W. Hall. Reconciling perspectives: A
grounded theory of how people manage the process of software
development. J. Syst. Softw., 85(6):1269–1286, 2012. → pages 12, 54

[46] S. Agarwal, R. Mahajan, A. Zheng, and V. Bahl. Diagnosing mobile
applications in the wild. In Proceedings of the 9th ACM SIGCOMM
Workshop on Hot Topics in Networks, Hotnets-IX, pages 22:1–22:6. ACM,
2010. → pages 11, 50, 51

178

http://www.gorillalogic.com/testing-tools/monkeytalk
https://developer.apple.com/library/ios/navigation/
https://developer.apple.com/library/ios/navigation/
http://sikuli.org
http://stackoverflow.com/questions/1102716/works-on-my-machine-how-to-fix-non-reproducible-bugs
http://stackoverflow.com/questions/1102716/works-on-my-machine-how-to-fix-non-reproducible-bugs
https://bugzilla.mozilla.org/page.cgi?id=fields.html
http://skjolber.github.io/xswi/

[47] Y. Agarwal and M. Hall. Protectmyprivacy: Detecting and mitigating
privacy leaks on ios devices using crowdsourcing. In Proceeding of the
11th Annual International Conference on Mobile Systems, Applications,
and Services, MobiSys ’13, pages 97–110. ACM, 2013. → pages 47

[48] M. Ahmad, N. Musa, R. Nadarajah, R. Hassan, and N. Othman.
Comparison between android and iOS operating system in terms of
security. In Information Technology in Asia (CITA), 2013 8th International
Conference on, pages 1–4. IEEE, 2013. → pages 35

[49] D. Amalfitano, A. R. Fasolino, and P. Tramontana. A GUI crawling-based
technique for Android mobile application testing. In Proceedings of the
Workshops at IEEE Fourth International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), pages 252–261. IEEE
Computer Society, 2011. → pages 4, 47, 117

[50] Appcelerator. Appcelerator / IDC Q3 2014 Mobile Trends Report.
http://www.appcelerator.com/enterprise/resource-center/research/
appcelerator-2014-q3-mobile-report/, . Accessed: 2015-12-15. → pages 1,
138

[51] Appcelerator. Appcelerator / IDC Q4 2013 Mobile Trends Report. http:
//www.appcelerator.com.s3.amazonaws.com/pdf/q4-2013-devsurvey.pdf, .
Accessed: 2015-12-15. → pages 1, 138

[52] Apple Store Crawler.
https://github.com/MarcelloLins/Apple-Store-Crawler. Accessed:
2015-12-15. → pages 87

[53] J. Aranda and G. Venolia. The secret life of bugs: Going past the errors and
omissions in software repositories. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 298–308. IEEE
Computer Society, 2009. → pages 58, 81

[54] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer, and
E. Bodden. Mining apps for abnormal usage of sensitive data. In
Proceedings of the 37th International Conference on Software
Engineering, ICSE 2015. ACM, 2015. → pages 2, 47, 50, 52, 85, 112

[55] T. Azim and I. Neamtiu. Targeted and depth-first exploration for systematic
testing of Android apps. SIGPLAN Not., 48(10):641–660, Oct. 2013. →
pages 164, 173

179

http://www.appcelerator.com/enterprise/resource-center/research/appcelerator-2014-q3-mobile-report/
http://www.appcelerator.com/enterprise/resource-center/research/appcelerator-2014-q3-mobile-report/
http://www.appcelerator.com.s3.amazonaws.com/pdf/q4-2013-devsurvey.pdf
http://www.appcelerator.com.s3.amazonaws.com/pdf/q4-2013-devsurvey.pdf
https://github.com/MarcelloLins/Apple-Store-Crawler

[56] K. Bajaj, K. Pattabiraman, and A. Mesbah. Mining questions asked by web
developers. In Proceedings of the Working Conference on Mining Software
Repositories (MSR), pages 112–121. ACM, 2014. → pages 52

[57] A. Banerjee, L. K. Chong, S. Chattopadhyay, and A. Roychoudhury.
Detecting energy bugs and hotspots in mobile apps. In Proceedings of the
22Nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2014, pages 588–598. ACM, 2014. → pages 47

[58] G. Bavota, M. Linares-Vasquez, C. Bernal-Cardenas, M. D. Penta,
R. Oliveto, and D. Poshyvanyk. The impact of api change- and
fault-proneness on the user ratings of Android apps. IEEE Transactions on
Software Engineering, 99(PrePrints):1, 2015. → pages 47, 53

[59] J. Bell, N. Sarda, and G. Kaiser. Chronicler: Lightweight recording to
reproduce field failures. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13, pages 362–371. IEEE
Press, 2013. → pages 79, 82

[60] C. Bernal-Cárdenas. Improving energy consumption in android apps. In
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, pages 1048–1050. ACM, 2015. → pages 47

[61] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and
T. Zimmermann. What makes a good bug report? In Proceedings of the
16th ACM SIGSOFT International Symposium on Foundations of software
engineering, pages 308–318. ACM, 2008. → pages 58, 80

[62] S. Beyer and M. Pinzger. A manual categorization of Android app
development issues on Stack Overflow. In Software Maintenance and
Evolution (ICSME), 2014 IEEE International Conference on, pages
531–535. IEEE, Sept 2014. → pages 2, 50, 51

[63] P. Bhattacharya, L. Ulanova, I. Neamtiu, and S. Koduru. An empirical
analysis of bug reports and bug fixing in open source Android apps. In
Software Maintenance and Reengineering (CSMR), 2013 17th European
Conference on, pages 133–143. IEEE, March 2013. → pages 2, 35, 47, 50

[64] P. Bhattacharya, L. Ulanova, I. Neamtiu, and S. C. Koduru. An empirical
analysis of bug reports and bug fixing in open source Android apps. In
Proceedings of the European Conference on Software Maintenance and
Reengineering (CSMR), pages 133–143. IEEE Computer Society, 2013. →
pages 2, 80

180

[65] Categories and Extensions.
https://developer.apple.com/library/ios/navigation/. Accessed: 2015-12-15.
→ pages 125, 142

[66] R. Chandra, B. F. Karlsson, N. D. Lane, C.-J. M. Liang, S. Nath, J. Padhye,
L. Ravindranath, and F. Zhao. How to smash the next billion mobile app
bugs? GetMobile: Mobile Computing and Communications, 19(1), 2015.
→ pages 47, 49

[67] M. Chandramohan and H. B. K. Tan. Detection of mobile malware in the
wild. Computer, 99, 2012. → pages 35, 47, 116

[68] R. Chandy and H. Gu. Identifying spam in the iOS app store. In
Proceedings of the Joint WICOW/AIRWeb Workshop on Web Quality,
WebQuality ’12, pages 56–59. ACM, 2012. → pages 50, 112

[69] T.-H. Chang, T. Yeh, and R. C. Miller. GUI testing using computer vision.
In Proceedings of the 28th international conference on Human factors in
computing systems, CHI ’10, pages 1535–1544. ACM, 2010. → pages 118,
126, 161, 172

[70] L. Chen, M. AliBabar, and B. Nuseibeh. Characterizing architecturally
significant requirements. IEEE Softw., 30(2):38–45, 2013. → pages 12, 54

[71] N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang. Ar-miner: Mining
informative reviews for developers from mobile app marketplace. In
Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, pages 767–778. ACM, 2014. → pages 2, 4, 47,
50, 85, 92, 103, 112

[72] Y. Chen, H. Xu, Y. Zhou, and S. Zhu. Is this app safe for children?: A
comparison study of maturity ratings on android and iOS applications. In
Proceedings of the International Conference on World Wide Web, WWW
’13, pages 201–212. ACM, 2013. → pages 112, 113

[73] W. Choi, G. Necula, and K. Sen. Guided GUI testing of Android apps with
minimal restart and approximate learning. SIGPLAN Not., 48(10):
623–640, 2013. → pages 47, 164, 173

[74] S. R. Choudhary, M. Prasad, and A. Orso. Cross-platform feature matching
for web applications. In Proceedings of the 2014 International Symposium
on Software Testing and Analysis, ISSTA 2014. ACM, 2014. → pages 4,
48, 163

181

https://developer.apple.com/library/ios/navigation/

[75] CNET. Researcher posts Facebook bug report to Mark Zuckerberg’s wall.
http://news.cnet.com/8301-1023 3-57599043-93/
researcher-posts-facebook-bug-report-to-mark-zuckerbergs-wall/.
Accessed: 2015-12-15. → pages 58

[76] Cocoa developer community. Method Swizzling.
https://developer.apple.com/library/ios/navigation/. Accessed: 2015-12-15.
→ pages 125, 142

[77] G. Coleman and R. O’Connor. Using grounded theory to understand
software process improvement: A study of Irish software product
companies. Inf. Softw. Technol., 49(6):654–667, 2007. → pages 13, 54, 55

[78] G. Coleman and R. O’Connor. Investigating software process in practice:
A grounded theory perspective. J. Syst. Softw., 81(5):772–784, 2008. →
pages 12, 54, 55

[79] J. W. Creswell. Qualitative inquiry and research design : choosing among
five approaches (2nd edition). Thousand Oaks, CA: SAGE, 2007. → pages
12

[80] J. W. Creswell. Research design: Qualitative, quantitative, and mixed
methods approaches. Sage Publications, Incorporated, 2013. → pages 60,
86

[81] I. Dalmasso, S. Datta, C. Bonnet, and N. Nikaein. Survey, comparison and
evaluation of cross platform mobile application development tools. In
Wireless Communications and Mobile Computing Conference (IWCMC),
2013 9th International, pages 323–328. IEEE, July 2013. → pages 53

[82] J. Dehlinger and J. Dixon. Mobile application software engineering:
Challenges and research directions. In Proceedings of the Workshop on
Mobile Software Engineering, pages 29–32. Springer, 2011. → pages 2,
11, 50, 51, 115

[83] S. Diewald, L. Roalter, A. Möller, and M. Kranz. Towards a holistic
approach for mobile application development in intelligent environments.
In Proceedings of the 10th International Conference on Mobile and
Ubiquitous Multimedia, MUM ’11, pages 73–80. ACM, 2011. → pages 53

[84] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS: Detecting Privacy
Leaks in iOS Applications. In 18th Annual Network and Distributed
System Security Symposium (NDSS). The Internet Society, 2011. → pages
35, 47, 116

182

http://news.cnet.com/8301-1023_3-57599043-93/researcher-posts-facebook-bug-report-to-mark-zuckerbergs-wall/
http://news.cnet.com/8301-1023_3-57599043-93/researcher-posts-facebook-bug-report-to-mark-zuckerbergs-wall/
https://developer.apple.com/library/ios/navigation/

[85] M. Erfani Joorabchi and A. Mesbah. Reverse engineering iOS mobile
applications. In Proceedings of the Working Conference on Reverse
Engineering (WCRE), pages 177–186. IEEE Computer Society, 2012. →
pages iii, 9, 47, 48, 114, 164, 170, 173

[86] M. Erfani Joorabchi, A. Mesbah, and P. Kruchten. Real challenges in
mobile app development. In Proceedings of the ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement,
ESEM’13, pages 15–24. IEEE, 2013. → pages iii, 3, 4, 5, 6, 7, 8, 10, 85,
109, 138, 139, 165, 168, 171

[87] M. Erfani Joorabchi, M. Mirzaaghaei, and A. Mesbah. Works for me!
characterizing non-reproducible bug reports. In The 11th Working
Conference on Mining Software Repositories, MSR’14, pages 62–71.
ACM, 2014. → pages iii, 8, 57, 167

[88] M. Erfani Joorabchi, M. Ali, and A. Mesbah. Detecting inconsistencies in
multi-platform mobile apps. In Proceedings of the 26th International
Symposium on Software Reliability Engineering, ISSRE, pages 450–460.
IEEE Computer Society, 2015. → pages iv, 9, 47, 48, 85, 113, 137, 171

[89] D. Falessi, M. A. Babar, G. Cantone, and P. Kruchten. Applying empirical
software engineering to software architecture: challenges and lessons
learned. Empirical Softw. Engg., 15(3):250–276, 2010. → pages 54

[90] A. C. C. Franca, D. E. S. Carneiro, and F. Q. B. da Silva. Towards an
explanatory theory of motivation in software engineering: A qualitative
case study of a small software company. 2012 26th Brazilian Symposium
on Software Engineering, 0:61–70, 2012. → pages 54

[91] D. Franke and C. Weise. Providing a Software Quality Framework for
Testing of Mobile Applications. In Proceedings of the International
Conference on Software Testing, Verification and Validation (ICST), pages
431–434. IEEE Computer Society, 2011. → pages 115

[92] D. Franke, C. Elsemann, S. Kowalewski, and C. Weise. Reverse
engineering of mobile application lifecycles. In 18th Working Conference
on Reverse Engineering (WCRE), 2011. → pages 11, 50, 51

[93] B. Fu, J. Lin, L. Li, C. Faloutsos, J. Hong, and N. Sadeh. Why people hate
your app: Making sense of user feedback in a mobile app store. In
Proceedings of the 19th ACM SIGKDD International Conference on

183

Knowledge Discovery and Data Mining, KDD ’13, pages 1276–1284.
ACM, 2013. → pages 112

[94] R. Gallo, P. Hongo, R. Dahab, L. C. Navarro, H. Kawakami, K. Galvão,
G. Junqueira, and L. Ribeiro. Security and system architecture:
Comparison of Android customizations. In Proceedings of the 8th ACM
Conference on Security & Privacy in Wireless and Mobile Networks,
WiSec ’15, pages 12:1–12:6. ACM, 2015. → pages 109

[95] L. Galvis Carreno and K. Winbladh. Analysis of user comments: An
approach for software requirements evolution. In Software Engineering
(ICSE), 2013 35th International Conference on, pages 582–591. IEEE
Computer Society, 2013. → pages 50, 112

[96] E. Giger, M. D’Ambros, M. Pinzger, and H. C. Gall. Method-level bug
prediction. In Proceedings of the International Symposium on Empirical
Software Engineering and Measurement, ESEM, pages 171–180. ACM,
2012. → pages 80

[97] A. Gimblett and H. Thimbleby. User interface model discovery: towards a
generic approach. In Proceedings of the 2nd ACM SIGCHI symposium on
Engineering interactive computing systems, EICS ’10, pages 145–154.
ACM, 2010. → pages 4, 117

[98] B. Glaser. Doing Grounded Theory: Issues and Discussions. Sociology
Press, 1998. → pages 13

[99] B. Glaser and A. Strauss. The discovery of Grounded Theory: Strategies
for Qualitative Research. Aldine Transaction, 1967. → pages 3, 11, 12, 13,
45, 166

[100] A. Gokhale, V. Ganapathy, and Y. Padmanaban. Inferring likely mappings
between APIs. In Proceedings of the 2013 International Conference on
Software Engineering, ICSE ’13, pages 82–91. IEEE Press, 2013. → pages
4, 47, 163

[101] P. Gokhale and S. Singh. Multi-platform strategies, approaches and
challenges for developing mobile applications. In Circuits, Systems,
Communication and Information Technology Applications (CSCITA), 2014
International Conference on, pages 289–293. IEEE, April 2014. → pages
47, 53, 54

184

[102] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein. Reran: Timing- and
touch-sensitive record and replay for Android. In Proceedings of the 2013
International Conference on Software Engineering, ICSE ’13, pages
72–81. IEEE Press, 2013. → pages 47, 164, 173

[103] Google Play Store Crawler.
https://github.com/MarcelloLins/GooglePlayAppsCrawler. Accessed:
2015-12-15. → pages 87

[104] Goole Play Store Review scraper.
https://github.com/jkao/GooglePlayScraper. Accessed: 2015-12-15. →
pages 92

[105] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller. Checking app behavior
against app descriptions. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, pages 1025–1035. ACM,
2014. → pages 2, 47, 50, 52, 85, 112

[106] M. Greiler, A. van Deursen, and M.-A. Storey. Test confessions: a study of
testing practices for plug-in systems. In Proceedings of the International
Conference on Software Engineering (ICSE), pages 244–254. IEEE
Computer Society, 2012. → pages 2, 12, 54

[107] J. Gui, S. Mcilroy, M. Nagappan, and W. G. J. Halfond. Truth in
advertising: The hidden cost of mobile ads for software developers. In
Proceedings of the 37th International Conference on Software Engineering
- Volume 1, ICSE ’15, pages 100–110. IEEE Press, 2015. → pages 47

[108] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy. Characterizing
and predicting which bugs get fixed: an empirical study of Microsoft
Windows. In Proceedings of the International Conference on Software
Engineering (ICSE), pages 495–504. ACM, 2010. → pages 58, 80

[109] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy. ‘not my bug!’
and other reasons for software bug report reassignments. In Proceedings of
the Conference on Computer Supported Cooperative Work, CSCW, pages
395–404. ACM, 2011. → pages 58, 80, 81

[110] E. Guzman and W. Maalej. How do users like this feature? a fine grained
sentiment analysis of app reviews. In Requirements Engineering
Conference (RE), 2014 IEEE 22nd International, pages 153–162, 2014. →
pages 47, 112

185

https://github.com/MarcelloLins/GooglePlayAppsCrawler
https://github.com/jkao/GooglePlayScraper

[111] D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and E. Stroulia.
Understanding Android fragmentation with topic analysis of
vendor-specific bugs. In 19th Working Conference on Reverse Engineering
(WCRE), 2012, pages 83–92. IEEE, 2012. → pages 109

[112] D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and E. Stroulia.
Understanding Android fragmentation with topic analysis of
vendor-specific bugs. In 19th Working Conference on Reverse Engineering
(WCRE), pages 83–92. IEEE, Oct 2012. → pages 2, 47, 50, 53

[113] M. Harman, Y. Jia, and Y. Zhang. App store mining and analysis: MSR for
app stores. In 9th IEEE Working Conference on Mining Software
Repositories (MSR), pages 108–111. IEEE, June 2012. → pages 50, 112

[114] Z. Hemel and E. Visser. Declaratively programming the mobile web with
Mobl. In Proceedings of Intl. Conf. on Object oriented programming
systems languages and applications (OOPSLA), pages 695–712. ACM,
2011. → pages 48

[115] S. Herbold, J. Grabowski, S. Waack, and U. Bünting. Improved bug
reporting and reproduction through non-intrusive gui usage monitoring and
automated replaying. In Proceedings of the 2011 IEEE Fourth
International Conference on Software Testing, Verification and Validation
Workshops, ICSTW ’11, pages 232–241. IEEE Computer Society, 2011. →
pages 79, 82

[116] K. Herzig, S. Just, and A. Zeller. It’s not a bug, it’s a feature: how
misclassification impacts bug prediction. In Proceedings of the
International Conference on Software Engineering (ICSE), pages 392–401.
IEEE Computer Society, 2013. → pages 58, 66, 79, 80, 81

[117] E. Holder, E. Shah, M. Davoodi, and E. Tilevich. Cloud twin: Native
execution of Android applications on the Windows Phone. In Automated
Software Engineering (ASE), 2013 IEEE/ACM 28th International
Conference on, pages 598–603. IEEE, 2013. → pages 47, 163

[118] P. Hooimeijer and W. Weimer. Modeling bug report quality. In
Proceedings of the International Conference on Automated Software
Engineering (ASE), pages 34–43. ACM, 2007. → pages 80

[119] C. Hu and I. Neamtiu. Automating GUI testing for Android applications.
In Proceedings of the 6th International Workshop on Automation of
Software Test, AST ’11, pages 77–83. ACM, 2011. → pages 4, 47, 48, 118

186

[120] G. Hu, X. Yuan, Y. Tang, and J. Yang. Efficiently, effectively detecting
mobile app bugs with appdoctor. In Proceedings of the Ninth European
Conference on Computer Systems, EuroSys ’14, pages 18:1–18:15. ACM,
2014. → pages 47, 49

[121] N. P. Huy and D. vanThanh. Evaluation of mobile app paradigms. In
Proceedings of the International Conference on Advances in Mobile
Computing and Multimedia, MoMM, pages 25–30. ACM, 2012. → pages
53, 54

[122] C. Iacob and R. Harrison. Retrieving and analyzing mobile apps feature
requests from online reviews. In Proceedings of the 10th Working
Conference on Mining Software Repositories, MSR ’13, pages 41–44.
IEEE Press, 2013. → pages 112

[123] C. Iacob and R. Harrison. Retrieving and analyzing mobile apps feature
requests from online reviews. In Proceedings of the 10th Working
Conference on Mining Software Repositories, MSR ’13, pages 41–44.
IEEE Press, 2013. → pages 47

[124] C. Iacob, V. Veerappa, and R. Harrison. What are you complaining about?:
A study of online reviews of mobile applications. In Proceedings of the
27th International BCS Human Computer Interaction Conference,
BCS-HCI ’13, pages 29:1–29:6. British Computer Society, 2013. → pages
2, 4, 85, 112

[125] iOS Developer Library. Apple’s developer guides.
https://developer.apple.com/library/ios/navigation/. Accessed: 2015-12-15.
→ pages xii, 117, 118, 122

[126] iTunes App Store Review scraper.
https://github.com/grych/AppStoreReviews. Accessed: 2015-12-15. →
pages 92

[127] iTunes RSS Feed Generator. https://rss.itunes.apple.com/ca/. Accessed:
2015-12-15. → pages 91

[128] M. Janicki, M. Katara, and T. Paakkonen. Obstacles and opportunities in
deploying model-based gui testing of mobile software: a survey. Software
Testing, Verification and Reliability, 22(5):313–341, 2012. → pages 47,
115

187

https://developer.apple.com/library/ios/navigation/
https://github.com/grych/AppStoreReviews
https://rss.itunes.apple.com/ca/

[129] Y.-W. Kao, C.-F. Lin, K.-A. Yang, and S.-M. Yuan. A cross-platform
runtime environment for mobile widget-based application. In
Cyber-Enabled Distributed Computing and Knowledge Discovery
(CyberC), 2011 International Conference on, pages 68 –71, 2011. → pages
53

[130] K. Karhu, T. Repo, O. Taipale, and K. Smolander. Empirical observations
on software testing automation. In Proceedings of the International
Conference on Software Testing Verification and Validation (ICST), pages
201–209. IEEE Computer Society, 2009. → pages 12, 54, 55

[131] J. Kasurinen, O. Taipale, and K. Smolander. Software test automation in
practice: empirical observations. Adv. Soft. Eng., 2010:4:1–4:13, 2010. →
pages 54

[132] V. Kettunen, J. Kasurinen, O. Taipale, and K. Smolander. A study on
agility and testing processes in software organizations. In Proceedings of
the International Symposium on Software Testing and Analysis (ISSTA),
pages 231–240. ACM, 2010. → pages 12, 45, 54, 166

[133] R. Khadka, B. V. Batlajery, A. M. Saeidi, S. Jansen, and J. Hage. How do
professionals perceive legacy systems and software modernization? In
Proceedings of the 36th International Conference on Software Engineering,
ICSE 2014, pages 36–47. ACM, 2014. → pages 2, 3, 11, 12, 54

[134] H. Khalid. On identifying user complaints of iOS apps. In Proceedings of
the 2013 International Conference on Software Engineering, ICSE ’13,
pages 1474–1476. IEEE Press, 2013. → pages 50, 52, 112

[135] H. Khalid, M. Nagappan, E. Shihab, and A. E. Hassan. Prioritizing the
devices to test your app on: a case study of Android game apps. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, (FSE-22), Hong Kong, China,
November 16 - 22, 2014, pages 610–620. ACM, 2014. → pages 47, 52

[136] H. Khalid, E. Shihab, M. Nagappan, and A. Hassan. What do mobile app
users complain about? a study on free iOS apps. IEEE Software, 99, 2014.
→ pages 50, 52, 112

[137] H. Kim, B. Choi, and W. Wong. Performance testing of mobile
applications at the unit test level. In Proceedings of the 3rd International
Conference on Secure Software Integration and Reliability Improvement,
pages 171–180. IEEE Computer Society, 2009. → pages 115

188

[138] P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann, and D. Lo.
Understanding the test automation culture of app developers. In
Proceedings of the 8th IEEE International Conference on Software Testing,
Verification, and Validation. IEEE Computer Society, 2015. → pages 2, 11,
50, 51

[139] T. A. Kroeger, N. J. Davidson, and S. C. Cook. Understanding the
characteristics of quality for software engineering processes: A grounded
theory investigation. Inf. Softw. Technol., 56(2):252–271, Feb. 2014. →
pages 12, 54

[140] A. Kumar Maji, K. Hao, S. Sultana, and S. Bagchi. Characterizing failures
in mobile oses: A case study with Android and symbian. In Software
Reliability Engineering (ISSRE), IEEE International Symposium on, pages
249–258. IEEE, Nov 2010. → pages 50, 112

[141] A. Kumar Maji, K. Hao, S. Sultana, and S. Bagchi. Characterizing failures
in mobile OSes: A case study with Android and Symbian. In Proceedings
of the International Symposium on Software Reliability Engineering
(ISSRE), pages 249–258. IEEE Computer Society, 2010. → pages 80

[142] Y. Kwon, S. Lee, H. Yi, D. Kwon, S. Yang, B.-G. Chun, L. Huang,
P. Maniatis, M. Naik, and Y. Paek. Mantis: Automatic performance
prediction for smartphone applications. In Proceedings of the 2013
USENIX Conference on Annual Technical Conference, USENIX ATC’13,
pages 297–308. USENIX Association, 2013. → pages 47

[143] D. Lavid Ben Lulu and T. Kuflik. Functionality-based clustering using
short textual description: Helping users to find apps installed on their
mobile device. In Proceedings of the 2013 International Conference on
Intelligent User Interfaces, IUI ’13, pages 297–306. ACM, 2013. → pages
2, 50, 85, 112

[144] V. L. Levenshtein. Binary codes capable of correcting deletions, insertions,
and reversals. Cybernetics and Control Theory, 10:707–710, 1996. →
pages 149

[145] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. J. Whitehead Jr.
Does bug prediction support human developers? findings from a Google
case study. In Proceedings of the International Conference on Software
Engineering, ICSE, pages 372–381. IEEE Computer Society, 2013. →
pages 80

189

[146] C.-J. M. Liang, N. D. Lane, N. Brouwers, L. Zhang, B. F. Karlsson, H. Liu,
Y. Liu, J. Tang, X. Shan, R. Chandra, and F. Zhao. Caiipa: Automated
large-scale mobile app testing through contextual fuzzing. In Proceedings
of the 20th Annual International Conference on Mobile Computing and
Networking, MobiCom ’14, pages 519–530. ACM, 2014. → pages 47, 49

[147] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk. Api change and fault proneness: A threat
to the success of Android apps. In Proceedings of the International
Symposium on the Foundations of Software Engineering, ESEC/FSE 2013,
pages 477–487. ACM, 2013. → pages 47, 50, 53, 112

[148] M. Linares-Vasquez, B. Dit, and D. Poshyvanyk. An exploratory analysis
of mobile development issues using stack overflow. In 10th IEEE Working
Conference on Mining Software Repositories (MSR), pages 93–96. IEEE,
May 2013. → pages 2, 50, 52

[149] M. Linares-Vásquez, G. Bavota, M. Di Penta, R. Oliveto, and
D. Poshyvanyk. How do api changes trigger stack overflow discussions? a
study on the Android SDK. In Proceedings of the 22Nd International
Conference on Program Comprehension, ICPC 2014, pages 83–94. ACM,
2014. → pages 2, 50, 52

[150] M. Linares-Vásquez, M. White, C. Bernal-Cárdenas, K. Moran, and
D. Poshyvanyk. Mining android app usages for generating actionable
gui-based execution scenarios. In Proceedings of the 12th Working
Conference on Mining Software Repositories, MSR ’15, pages 111–122.
IEEE Press, 2015. → pages 51

[151] M. Linares-Vsquez, C. Vendome, Q. Luo, and D. Poshyvanyk. How
developers detect and fix performance bottlenecks in android apps. In
Proceedings of 31st IEEE International Conference on Software
Maintenance and Evolution, ICSME’15. IEEE, 2015. → pages 47

[152] W. Maalej and H. Nabil. Bug report, feature request, or simply praise? on
automatically classifying app reviews. In IEEE 23rd International
Requirements Engineering Conference (RE), 2015, pages 116–125. IEEE,
2015. → pages 47, 50

[153] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An input generation
system for android apps. In Proceedings of the 2013 9th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2013, pages 224–234.
ACM, 2013. → pages 47

190

[154] R. Mahmood, N. Mirzaei, and S. Malek. Evodroid: Segmented
evolutionary testing of android apps. In Proceedings of the 22Nd ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2014, pages 599–609. ACM, 2014. → pages 47

[155] L. Martie, V. Palepu, H. Sajnani, and C. Lopes. Trendy bugs: Topic trends
in the Android bug reports. In 9th IEEE Working Conference on Mining
Software Repositories (MSR), pages 120–123, June 2012. → pages 2, 47,
50, 53

[156] W. Martin, M. Harman, Y. Jia, F. Sarro, and Y. Zhang. The app sampling
problem for app store mining. In 12th IEEE Working Conference on
Mining Software Repositories (MSR). IEEE, 2015. → pages 50, 112

[157] E. Masi, G. Cantone, M. Mastrofini, G. Calavaro, and P. Subiaco. Mobile
apps development: A framework for technology decision making. In
Proceedings of International Conference on Mobile Computing,
Applications, and Services., MobiCASE’4, pages 64–79, 2012. → pages 1,
47, 53, 54

[158] T. McDonnell, B. Ray, and M. Kim. An empirical study of api stability and
adoption in the Android ecosystem. In Proceedings of the 2013 IEEE
International Conference on Software Maintenance, ICSM ’13, pages
70–79. IEEE Computer Society, 2013. → pages 47, 53

[159] A. M. Memon, I. Banerjee, and A. Nagarajan. GUI Ripping: Reverse
Engineering of Graphical User Interfaces for Testing. In Proceedings of
The 10th Working Conference on Reverse Engineering, pages 260–269.
IEEE, 2003. → pages 4, 117

[160] A. Mesbah and S. Mirshokraie. Automated analysis of CSS rules to
support style maintenance. In Proceedings of the 34th ACM/IEEE
International Conference on Software Engineering (ICSE’12), pages
408–418. IEEE Computer Society, 2012. → pages 117

[161] A. Mesbah and M. R. Prasad. Automated cross-browser compatibility
testing. In Proceedings of the 33rd ACM/IEEE International Conference on
Software Engineering (ICSE’11), pages 561–570. ACM, 2011. → pages 4,
136, 163

[162] A. Mesbah and M. R. Prasad. Automated cross-browser compatibility
testing. In Proceedings of the International Conference on Software
Engineering (ICSE), pages 561–570. ACM, 2011. → pages 48

191

[163] A. Mesbah, A. van Deursen, and S. Lenselink. Crawling Ajax-based Web
Applications through Dynamic Analysis of User Interface State Changes.
In ACM Transactions on the Web (TWEB), volume 6, pages 3:1–3:30.
ACM, 2012. → pages 4, 117, 129, 163

[164] A. Mesbah, A. van Deursen, and D. Roest. Invariant-based automatic
testing of modern web applications. IEEE Transactions on Software
Engineering (TSE), 38(1):35 –53, 2012. → pages 117

[165] Mining iOS and Android mobile app-pairs: Toolset and dataset.
https://github.com/saltlab/Minning-App-Stores. Accessed: 2015-12-15. →
pages 85, 87, 96, 111, 112

[166] M. Miranda, R. Ferreira, C. R. B. de Souza, F. Figueira Filho, and
L. Singer. An exploratory study of the adoption of mobile development
platforms by software engineers. In Proceedings of the 1st International
Conference on Mobile Software Engineering and Systems, MOBILESoft
2014, pages 50–53. ACM, 2014. → pages 2, 11, 50, 51

[167] I. Mojica Ruiz, M. Nagappan, B. Adams, T. Berger, S. Dienst, and
A. Hassan. Impact of ad libraries on ratings of android mobile apps.
Software, IEEE, 31(6):86–92, 2014. → pages 47

[168] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, and D. Poshyvanyk.
Auto-completing bug reports for android applications. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2015, pages 673–686. ACM, 2015. → pages 47, 50

[169] H. Muccini, A. D. Francesco, and P. Esposito. Software Testing of Mobile
Applications: Challenges and Future Research Directions. In Proceedings
of the 7th International Workshop on Automation of Software Test (AST).
IEEE Computer Society, 2012. → pages 2, 11, 50, 51, 115

[170] B. A. Myers and M. B. Rosson. Survey On User Interface Programming.
In Proceedings of the SIGCHI conference on Human factors in computing
systems, CHI’92, pages 195–202. ACM, 1992. → pages 115, 162, 169

[171] S. N. Nader Boushehrinejadmoradi, Vinod Ganapathy and L. Iftode.
Testing cross-platform mobile app development frameworks. In
Proceedings of the 30th IEEE/ACM International Conference on
Automated Software Engineering, ASE 2015. ACM, 2015. → pages 47

192

https://github.com/saltlab/Minning-App-Stores

[172] M. Nagappan and E. Shihab. Future trends in software engineering
research for mobile apps. In Proceedings of the IEEE International
Conference on Software Analysis, Evolution, and Reengineering, FoSE,
2016. → pages 111, 113

[173] S. Nath. Madscope: Characterizing mobile in-app targeted ads. In
Proceedings of the 13th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys ’15, pages 59–73. ACM,
2015. → pages 47

[174] S. Nath, F. X. Lin, L. Ravindranath, and J. Padhye. Smartads: Bringing
contextual ads to mobile apps. In Proceeding of the 11th Annual
International Conference on Mobile Systems, Applications, and Services,
MobiSys ’13, pages 111–124. ACM, 2013. → pages 47

[175] S. P. Ng, T. Murnane, K. Reed, D. Grant, and T. Y. Chen. A preliminary
survey on software testing practices in Australia. In Proceedings of the
Australian Software Engineering Conference, pages 116–125. IEEE
Computer Society, 2004. → pages 54

[176] N. Nikzad, O. Chipara, and W. G. Griswold. Ape: An annotation language
and middleware for energy-efficient mobile application development. In
Proceedings of the 36th International Conference on Software
Engineering, ICSE 2014, pages 515–526. ACM, 2014. → pages 47

[177] A. Nistor and L. Ravindranath. Suncat: Helping developers understand and
predict performance problems in smartphone applications. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis,
ISSTA 2014, pages 282–292. ACM, 2014. → pages 47

[178] NPD DisplaySearch. Smartphones to pass 80% of global mobile phone
shipments by 2017. http://en.ofweek.com/news/
Smartphones-to-pass-80-of-global-mobile-phone-shipments-by-2017-3354.
Accessed: 2015-12-15. → pages 114

[179] A. Onwuegbuzie and N. Leech. Validity and qualitative research: An
oxymoron? Quality and Quantity, 41:233–249, 2007. → pages 45, 166

[180] T. Paananen. Smartphone Cross-Platform Frameworks. Bachelor’s Thesis.,
2011. → pages 53

[181] D. Pagano and W. Maalej. User feedback in the appstore: An empirical
study. In Requirements Engineering Conference (RE), 2013 21st IEEE
International, pages 125–134. IEEE, July 2013. → pages 47, 50, 53, 112

193

http://en.ofweek.com/news/Smartphones-to-pass-80-of-global-mobile-phone-shipments-by-2017-3354
http://en.ofweek.com/news/Smartphones-to-pass-80-of-global-mobile-phone-shipments-by-2017-3354

[182] M. Palmieri, I. Singh, and A. Cicchetti. Comparison of cross-platform
mobile development tools. In Intelligence in Next Generation Networks
(ICIN), 2012 16th International Conference on, pages 179 –186, 2012. →
pages 53

[183] F. Palomba, M. Linares-Vasquez, G. Bavota, R. Oliveto, M. D. Penta,
D. Poshyvanyk, and A. D. Lucia. User reviews matter! tracking
crowdsourced reviews to support evolution of successful apps. In IEEE
International Conference on Software Maintenance and Evolution
(ICSME). IEEE, 2015. → pages 112

[184] F. Palomba, M. Linares-Vsquez, G. Bavota, R. Oliveto, M. D. Penta,
D. Poshyvanyk, and A. D. Lucia. User reviews matter! tracking
crowdsourced reviews to support evolution of successful apps. In Proc.
ICSME, pages 291–300. IEEE, 2015. → pages 47, 50

[185] S. Panichella, A. D. Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, and
H. C. Gall. How can i improve my app? classifying user reviews for
software maintenance and evolution. In IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 2015. → pages 2, 4,
85, 92, 103, 112

[186] G. P. Picco, C. Julien, A. L. Murphy, M. Musolesi, and G.-C. Roman.
Software engineering for mobility: Reflecting on the past, peering into the
future. In Proceedings of the on Future of Software Engineering, FOSE
2014, pages 13–28. ACM, 2014. → pages 2

[187] A. Puder and O. Antebi. Cross-compiling Android applications to iOS and
Windows phone 7. Mob. Netw. Appl., 18(1):3–21, Feb. 2013. → pages 47,
53, 54

[188] K. Rasmussen, A. Wilson, and A. Hindle. Green mining: Energy
consumption of advertisement blocking methods. In Proceedings of the 3rd
International Workshop on Green and Sustainable Software, GREENS
2014, pages 38–45. ACM, 2014. → pages 47

[189] V. Rastogi, Y. Chen, and W. Enck. Appsplayground: Automatic security
analysis of smartphone applications. In Proceedings of the Third ACM
Conference on Data and Application Security and Privacy, CODASPY
’13, pages 209–220. ACM, 2013. → pages 35

[190] L. Ravindranath, S. Nath, J. Padhye, and H. Balakrishnan. Automatic and
scalable fault detection for mobile applications. In Proceedings of the 12th

194

Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys ’14, pages 190–203. ACM, 2014. → pages 49

[191] P. C. Rigby and M.-A. Storey. Understanding broadcast based peer review
on open source software projects. In Proceedings of the 33rd International
Conference on Software Engineering, ICSE ’11, pages 541–550. ACM,
2011. → pages 12, 54

[192] T. Roehm, R. Tiarks, R. Koschke, and W. Maalej. How do professional
developers comprehend software? In Proceedings of the International
Conference on Software Engineering (ICSE), pages 255–265. IEEE
Computer Society, 2012. → pages 4, 7, 115, 162, 169

[193] T. Roehm, N. Gurbanova, B. Bruegge, C. Joubert, and W. Maalej.
Monitoring user interactions for supporting failure reproduction. In
International Conference on Program Comprehension (ICPC), pages
73–82. IEEE, 2013. → pages 79, 82

[194] I. Ruiz, M. Nagappan, B. Adams, and A. Hassan. Understanding reuse in
the Android market. In Program Comprehension (ICPC), 2012 IEEE 20th
International Conference on, pages 113–122. IEEE, June 2012. → pages 2,
47, 50, 85, 112

[195] I. M. Ruiz, M. Nagappan, B. Adams, T. Berger, S. Dienst, and A. Hassan.
On the relationship between the number of ad libraries in an android app
and its rating. IEEE Software, 99, 2014. → pages 2, 47, 50, 85, 112

[196] A. Sadeghi, N. Esfahani, and S. Malek. Mining the categorized software
repositories to improve the analysis of security vulnerabilities. In
Proceedings of the 17th International Conference on Fundamental
Approaches to Software Engineering - Volume 8411, pages 155–169.
Springer-Verlag, 2014. → pages 47

[197] F. Sarro, A. Al-Subaihin, M. Harman, Y. Jia, W. Martin, and Y. Zhang.
Feature lifecycles as they spread, migrate, remain, and die in app stores. In
Proc. RE, pages 76–85. IEEE, 2015. → pages 50

[198] Scikit Learn: Machine Learning in Python.
http://scikit-learn.org/stable/index.html. Accessed: 2015-12-15. → pages
93

[199] C. Seaman. Qualitative methods in empirical studies of software
engineering. Software Engineering, IEEE Transactions on, 25(4):557–572,
Jul 1999. → pages 3, 11

195

http://scikit-learn.org/stable/index.html

[200] S. Seneviratne, A. Seneviratne, M. A. Kaafar, A. Mahanti, and
P. Mohapatra. Early detection of spam mobile apps. In Proceedings of the
24th International Conference on World Wide Web, WWW, pages 949–959.
ACM, 2015. → pages 2, 85, 112

[201] H. Seo and S. Kim. Predicting recurring crash stacks. In Proceedings of the
International Conference on Automated Software Engineering (ASE),
pages 180–189. ACM, 2012. → pages 80

[202] E. Shihab, A. Ihara, Y. Kamei, W. Ibrahim, M. Ohira, B. Adams,
A. Hassan, and K.-i. Matsumoto. Predicting re-opened bugs: A case study
on the eclipse project. In Proceedings of the Working Conference on
Reverse Engineering (WCRE), pages 249–258. IEEE Computer Society,
2010. → pages 80

[203] I. Steinmacher, T. Uchoa Conte, and M. Gerosa. Understanding and
supporting the choice of an appropriate task to start with in open source
software communities. In 48th Hawaii International Conference on System
Sciences (HICSS), pages 5299–5308. IEEE, 2015. → pages 2, 12, 54

[204] M. Sulayman, C. Urquhart, E. Mendes, and S. Seidel. Software process
improvement success factors for small and medium web companies: A
qualitative study. Inf. Softw. Technol., 54(5):479–500, 2012. → pages 3,
11, 12, 54

[205] M. Szydlowski, M. Egele, C. Kruegel, and G. Vigna. Challenges for
Dynamic Analysis of iOS Applications. In Proceedings of the Workshop on
Open Research Problems in Network Security (iNetSec), pages 65–77,
2011. → pages 47, 116, 120, 126, 161, 172

[206] M. Szydlowski, M. Egele, C. Kruegel, and G. Vigna. Challenges for
dynamic analysis of iOS applications. In Proceedings of the 2011 IFIP WG
11.4 International Conference on Open Problems in Network Security,
iNetSec’11, pages 65–77. Springer-Verlag, 2012. → pages 50

[207] K. Thomas, A. K. Bandara, B. A. Price, and B. Nuseibeh. Distilling
privacy requirements for mobile applications. In Proceedings of the 36th
International Conference on Software Engineering, ICSE 2014, pages
871–882. ACM, 2014. → pages 35

[208] Y. Tian, M. Nagappan, D. Lo, and A. E. Hassan. What are the
characteristics of high-rated apps? a case study on free android

196

applications. In IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 2015. → pages 112

[209] Top Free in Android Apps.
https://play.google.com/store/apps/collection/topselling free?hl=en.
Accessed: 2015-12-15. → pages 91

[210] N. Viennot, E. Garcia, and J. Nieh. A measurement study of google play.
In The 2014 ACM International Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS ’14, pages 221–233. ACM, 2014. →
pages 107

[211] P. M. Vu, T. T. Nguyen, H. V. Pham, and T. T. Nguyen. Mining user
opinions in mobile app reviews: A keyword-based approach. CoRR,
abs/1505.04657, 2015. → pages 112

[212] W. Wang and M. W. Godfrey. Detecting api usage obstacles: A study of
iOS and Android developer questions. In Proceedings of the10th Working
Conference on Mining Software Repositories, MSR ’13, pages 61–64.
IEEE Press, 2013. → pages 2, 50, 52

[213] A. I. Wasserman. Software engineering issues for mobile application
development. In FSE/SDP workshop on Future of software engineering
research, FoSER’10, pages 397–400. ACM, 2010. → pages 1, 11, 50, 51,
115

[214] M. Waterman, J. Noble, and G. Allan. How much up-front? a grounded
theory of agile architecture. In IEEE/ACM 37th IEEE International
Conference on Software Engineering (ICSE), 2015, volume 1, pages
347–357. IEEE, 2015. → pages 54

[215] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang. The impact of vendor
customizations on Android security. In Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security, CCS
’13, pages 623–634. ACM, 2013. → pages 109

[216] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev. Static control-flow
analysis of user-driven callbacks in android applications. In Proceedings of
the 37th International Conference on Software Engineering - Volume 1,
ICSE ’15, pages 89–99. IEEE Press, 2015. → pages 47

[217] W. Yang, M. R. Prasad, and T. Xie. A grey-box approach for automated
GUI-model generation of mobile applications. In Proceedings of the

197

https://play.google.com/store/apps/collection/topselling_free?hl=en

International Conference on Fundamental Approaches to Software
Engineering (FASE), pages 250–265. Springer-Verlag, 2013. → pages 47,
48, 164, 173

[218] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck. Appcontext:
Differentiating malicious and benign mobile app behaviors using context.
In Proceedings of the 37th International Conference on Software
Engineering, ICSE 2015. ACM, 2015. → pages 47, 50, 112

[219] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and L. Bairavasundaram. How do
fixes become bugs? In Proceedings of ESEC/FSE, pages 26–36. ACM,
2011. → pages 58, 80

[220] P. Zhang and S. Elbaum. Amplifying tests to validate exception handling
code. In Proceedings of the International Conference on Software
Engineering (ICSE), pages 595–605. IEEE Computer Society, 2012. →
pages 38

[221] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou.
Smartdroid: an automatic system for revealing ui-based trigger conditions
in android applications. In Proceedings of the second ACM workshop on
Security and privacy in smartphones and mobile devices, SPSM ’12, pages
93–104. ACM, 2012. → pages 47

[222] T. Zimmermann, N. Nagappan, P. J. Guo, and B. Murphy. Characterizing
and predicting which bugs get reopened. In Proceedings of the
International Conference on Software Engineering (ICSE), pages
1074–1083. IEEE Computer Society, 2012. → pages 58, 80, 81

198

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	Dedication
	1 Introduction
	1.1 Research Questions
	1.2 Contributions

	2 Real Challenges in Mobile App Development
	2.1 Introduction
	2.2 Study Design
	2.2.1 Methodology
	2.2.2 Data Collection and Analysis
	2.2.3 Participant Demographics

	2.3 Findings
	2.3.1 General Challenges for Mobile Developers
	2.3.2 Developing for Multiple Platforms
	2.3.3 Current Testing Practices
	2.3.4 Analysis and Testing Challenges

	2.4 What Has (not) Changed since 2012? A Follow-up Study
	2.4.1 Survey Design
	2.4.2 Our Participants
	2.4.3 Analysis and Summary of Survey Findings

	2.5 Threats to Validity
	2.6 Discussion
	2.6.1 Mapping Study
	2.6.2 Same App across Multiple Platforms
	2.6.3 Testing Mobile-Specific Features
	2.6.4 Other Challenging Areas

	2.7 Related Work
	2.8 Conclusions

	3 Works For Me! Characterizing Non-reproducible Bug Reports
	3.1 Introduction
	3.2 Non-Reproducible Bugs
	3.3 Methodology
	3.3.1 Bug Repository Selection
	3.3.2 Mining Non-Reproducible Bug Reports
	3.3.3 Quantitative Analysis
	3.3.4 Qualitative Analysis

	3.4 Results
	3.4.1 Frequency and Comparisons (RQ1)
	3.4.2 Cause Categories (RQ2)
	3.4.3 Common Transition Patterns (RQ3)
	3.4.4 Fixed Non-reproducible Bugs (RQ4)

	3.5 Discussion
	3.5.1 Quantitative Analysis of NR Bug Reports
	3.5.2 Fixing NR Bugs
	3.5.3 Interbug Dependencies
	3.5.4 Mislabelling
	3.5.5 Different Domains and Environments
	3.5.6 Communication Issues
	3.5.7 Threats to Validity

	3.6 Related Work
	3.7 Conclusions

	4 Same App, Two App Stores: A Comparative Study
	4.1 Introduction
	4.2 Methodology
	4.2.1 Data Collection
	4.2.2 Matching Apps to Find App-Pairs
	4.2.3 App-store Attribute Analysis
	4.2.4 User Reviews
	4.2.5 Success Rates
	4.2.6 Datasets and Classifiers

	4.3 Findings
	4.3.1 Prevalence and Attributes (RQ1)
	4.3.2 Top Rated Apps (RQ2)
	4.3.3 Success Rate (RQ3)
	4.3.4 Major Complaints (RQ4)

	4.4 Discussion
	4.4.1 Implications
	4.4.2 Threats to Validity

	4.5 Related Work
	4.6 Conclusions

	5 Reverse Engineering iOS Mobile Applications
	5.1 Introduction
	5.2 Related Work
	5.3 Background and Challenges
	5.4 Our Approach
	5.4.1 Hooking into the Application
	5.4.2 Analyzing UI Elements
	5.4.3 Exercising UI Elements
	5.4.4 Accessing the Next View Controller
	5.4.5 Comparing States
	5.4.6 State Graph Generation

	5.5 Tool Implementation: iCrawler
	5.6 Empirical Evaluation
	5.6.1 Experimental Objects
	5.6.2 Experimental Design
	5.6.3 Results
	5.6.4 Findings

	5.7 Discussion
	5.8 Conclusions

	6 Detecting Inconsistencies in Multi-Platform Mobile Apps
	6.1 Introduction
	6.2 Pervasive Inconsistencies
	6.3 Approach
	6.3.1 Inferring Abstract Models
	6.3.2 Mapping Inferred Models
	6.3.3 Visualizing the Models

	6.4 Tool Implementation
	6.5 Evaluation
	6.5.1 Experimental Objects
	6.5.2 Experimental Procedure
	6.5.3 Results and Findings

	6.6 Discussion
	6.6.1 Comparison Criteria
	6.6.2 Limitations
	6.6.3 Applications
	6.6.4 Threats to Validity

	6.7 Related Work
	6.8 Conclusions

	7 Conclusions and Future Work
	7.1 Revisiting Research Questions
	7.2 Future Work and Concluding Remarks

	Bibliography

