Hearing Meter from Different Angles:
Interactive Vocal Meter and Hypermeter in Selected Songs and Their Covers

by

Kristi Dawn Hardman

B. Mus., University of Manitoba, 2013
B. Ed., University of Manitoba, 2013

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF ARTS

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES
(Music)

THE UNIVERSITY OF BRITISH COLUMBIA
(Vancouver)

March 2016

© Kristi Dawn Hardman, 2016
Abstract

A vocal melody is a setting of poetry to musical rhythms and pitches. The poetry and the musical melody have distinct accentuation patterns, yet as musicians we too often only analyse the musical events of a vocal melody in order to determine its rhythmic structure and meter, while ignoring the meter of the poetic text. This thesis examines how the meter of the poetic text interacts with the meter of the musical melody to inform our overall perception of the vocal melody’s meter. Through comparison of popular songs with cover versions that adopt a different meter, it investigates how the same poetic meter interacts with different musical meters, and studies the resulting effects on vocal meter and hypermeter. The methodology can be applied to a wide range of popular music genres, so each chapter examines an original song and cover versions representing different genres.

The first chapter establishes the new methodology developed in this thesis. The concepts of poetic meter, melodic meter, and the resulting “interactive vocal meter” are introduced and applied in the analysis of three versions of Hank Williams’s “I’m So Lonesome I Could Cry.” This chapter also explores some novel ways in which we can interpret syncopations and hypermeter.

Interactive vocal meter is further explored in chapter 2 through the analysis of two versions of the Beatles’ “I’ll Be Back.” The change in meter, from the 6/8 of the demo to the 4/4 of the single, offers a fascinating opportunity to study the rhetorical and musical impact of subtle changes in accentuation. The complex phrase structure of “I’ll Be Back” also introduces interesting issues and questions regarding our perception of hypermeter.
The third chapter focuses on Billie Holiday’s “Strange Fruit.” Holiday’s transformations of the poem’s unusual metric contours provide a vivid demonstration of her uniquely eloquent idiom. The vocal metric interpretation of “Strange Fruit” challenges the view that beats 1 and 3 are always strongly accentuated beats in 4/4 measures. This chapter also explores issues of rhythmic and metric transcription in connection with Lori Burn’s recent study of Tori Amos’s cover of the song.
Preface

This thesis is original, unpublished, independent work by the author, Kristi Hardman.
Table of Contents

Abstract.. ii
Preface.. iv
Table of Contents .. v
List of Tables .. vii
List of Examples .. viii
List of Symbols .. xi
Acknowledgements ... xii
Dedication .. xiii

Chapter 1: An Introduction to Interactive Vocal Meter and Hypermeter through the
Analysis of Three Versions of “I’m So Lonesome I Could Cry”.. 1
 1.1 Introduction .. 3
 1.2 Poetic Feet as Rhythmic Durations... 5
 1.3 An Introduction to Interactive Vocal Meter and Hypermeter: A Rhythmic and Metric
 Analysis of Hank Williams’s “I’m So Lonesome I Could Cry”.. 9
 1.4 Interactive Vocal Meter and Hypermeter in Two Covers of “I’m So Lonesome I Could
 Cry” .. 39
 1.5 Conclusion ... 60

Chapter 2: Exploring Interactive Vocal Meter and Hypermeter in Two Versions of the
Beatles’ “I’ll Be Back” ... 62
 2.1 The Form of the Beatles’ “I’ll Be Back” ... 62
 2.2 Interactive Vocal Meter in The Beatles’ “I’ll Be Back” ... 64
2.3 Asymmetrical Phrase Structure and Non-Isochronous Hypermeter in “I’ll Be Back”.... 75
2.4 Conclusion ... 91

Chapter 3: Metric Ambiguity and Malleability in “Strange Fruit”................................. 93

3.1 Transforming Poetic Meter into Melodic Meter in Billie Holiday’s “Strange Fruit”..... 94
3.2 Mixed Meters vs. Common Time: Transcription Issues in Tori Amos’s Cover 118
3.3 Interactive Vocal Hypermeter in “Strange Fruit” ... 124
3.4 Conclusion ... 127

Chapter 4: Conclusion.. 129

Bibliography .. 135

Discography .. 139
List of Tables

Table 1.1: Examples of poetic feet ... 8
Table 2.1: Text of “I’ll Be Back,” form and poetic meter .. 65
List of Examples

Example 1.1: Text of “I’m So Lonesome I Could Cry” and poetic meter 11
Example 1.2: Metric analysis of the first strophe of Hank Williams’s original 1949 version..... 18
Example 1.3: Phonological phrase stresses in the first strophe .. 26
Example 1.4: Poetic, melodic and vocal hypermeter using one-bar hyperbeat in Williams’s original ... 30
Example 1.5: Two-, four-, eight-, and sixteen-bar hypermeasures in Williams’s original 34
Example 1.6: Poetic scansion of the first strophe and the placement of strong syllables in the music .. 40
Example 1.7: The second phrase of Green’s version, mm. 7-8 .. 43
Example 1.8: Metric analysis of Al Green’s 1973 cover of “I’m So Lonesome I Could Cry” 49
Example 1.9: Metrical shifts in Green’s version, mm. 11-14 ... 51
Example 1.10: Metric analysis of Ray Bonneville’s 2014 cover of “I’m So Lonesome I Could Cry” ... 53
Example 1.11: Double backbeat ... 53
Example 1.12: 5:1 proportions in the cover versions ... 55
Example 1.13: Hypermetric analysis of the covers of “I’m So Lonesome I Could Cry” 58
Example 2.1: Comparison of stressed syllables in “I’ll Be Back” ... 67
Example 2.2: Analysis of melodic meter and vocal meter of verse in both versions 69
Example 2.3: Analysis of melodic meter and vocal meter of first bridge in both versions 73
Example 2.4: Quatrain versus sestet verse structure of “I’ll Be Back” ... 76
Example 2.5: Motives in “I’ll Be Back” (single) ... 77
<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>Phrase structure in the verse of “I’ll Be Back” (single)</td>
<td>78</td>
</tr>
<tr>
<td>2.7</td>
<td>Phonological phrase stress in the first stanza of “I’ll Be Back”</td>
<td>82</td>
</tr>
<tr>
<td>2.8</td>
<td>Hypermeter in the Verse of “I’ll Be Back” (single)</td>
<td>84</td>
</tr>
<tr>
<td>2.9</td>
<td>Phrase structure and end accents in the first bridge of “I’ll Be Back” (single)</td>
<td>86</td>
</tr>
<tr>
<td>2.10</td>
<td>Hypermeter in Bridge 1 of “I’ll Be Back” (single)</td>
<td>87</td>
</tr>
<tr>
<td>2.11</td>
<td>Phrase structure and end accents in the second bridge of “I’ll Be Back” (single)</td>
<td>89</td>
</tr>
<tr>
<td>2.12</td>
<td>Hypermeter in Bridge 2 of “I’ll Be Back” (single)</td>
<td>90</td>
</tr>
<tr>
<td>3.1</td>
<td>Text of “Strange Fruit” and poetic meter</td>
<td>94</td>
</tr>
<tr>
<td>3.2</td>
<td>Accentuated syllables in the vocal meter of Holiday’s “Strange Fruit” as compared to the poetic meter</td>
<td>99</td>
</tr>
<tr>
<td>3.3</td>
<td>Transcription of Holiday’s “Strange Fruit,” Stanza 1, mm. 1-8</td>
<td>100</td>
</tr>
<tr>
<td>3.4</td>
<td>Normative poetic setting and transformations that lead to Holiday’s “Strange Fruit,” Stanza 1, Line 1, mm. 1-2</td>
<td>103</td>
</tr>
<tr>
<td>3.5</td>
<td>Normative poetic setting and transformations that lead to Holiday’s “Strange Fruit,” Stanza 2, Line 3, mm. 5-6</td>
<td>107</td>
</tr>
<tr>
<td>3.6</td>
<td>Normative poetic setting and transformations that lead to Holiday’s “Strange Fruit,” Stanza 1, Line 2, mm. 3-4</td>
<td>111</td>
</tr>
<tr>
<td>3.7</td>
<td>Inverted dactyl (b), inverted amphibrach (c), Example 39 from Cooper and Meyer</td>
<td>112</td>
</tr>
<tr>
<td>3.8</td>
<td>Pivot tone, Example 78 from Cooper and Meyer</td>
<td>113</td>
</tr>
<tr>
<td>3.9</td>
<td>Analysis of the poetic meter, melodic meter and vocal meter of Holiday’s Stanza 3, Line 3, mm. 5-7</td>
<td>114</td>
</tr>
</tbody>
</table>
Example 3.10: Normative poetic setting and transformations that lead to Holiday’s “Strange Fruit,” Stanza 1, Lines 3-4, mm. 5-8. ... 116

Example 3.11: Comparison of Burn’s mixed meter transcription and my 4/4 transcription of Amos’ version of “Strange Fruit” ... 120

Example 3.12: Phonological phrase stress in the first stanza of “Strange Fruit” 125

Example 3.13: Hypermeter in Holiday’s “Strange Fruit,” Stanza 1, mm. 1-8 126
List of Symbols

| strong accent: beginning accent, middle accent
↓ strong accent: end accent
/ weak accent: anacrusis
\ weak accent: continuation
|→| early syncopation: strong accent preceding its expected arrival point
|←| late syncopation: strong accent following the expected arrival point
Acknowledgements

I offer my sincere gratitude to the faculty, staff and fellow students at the UBC School of Music who have supported me and made UBC such an enjoyable place to complete my studies.

I want to especially thank Richard Kurth for providing invaluable guidance and feedback on my research throughout this thesis project. His detailed notes and our frequent discussions helped organize and extend my thoughts. I am also grateful to John Roeder for his insightful comments that encouraged me to further refine my work.

The research opportunity funded by SSHRC and granted to me by John Roeder and Michael Tenzer has been much appreciated. Not only did it provided me with financial assistance that helped me finish the requirements of this degree, it gave me invaluable experiences.

Thank you to Lori Burns for allowing me to use her transcription of Tori Amos’s “Strange Fruit” and her helpful suggestions regarding my work.

I also thank the organizations that gave me permission to republish material: the University of Chicago Press for two examples from Cooper and Meyer’s The Rhythmic Structure of Music; Hal Leonard Corporation for their transcriptions (with alterations) of Hank Williams’s “I’m So Lonesome I Could Cry” and the Beatles “I’ll Be Back”; and, Casablanca Media Publishing and Carlin America for their transcription (with alterations) of Billie Holiday’s “Strange Fruit.”

A very special thank you to my family who have always supported me in whatever I wished to do and encourage me to continue striving to reach my goals. If it were not for your encouragement, I would not be where I am today.
To Mom, Dad, and Scott
Chapter 1: An Introduction to Interactive Vocal Meter and Hypermeter through the Analysis of Three Versions of “I’m So Lonesome I Could Cry”

Vocal melodies consist of two basic elements, the poetic text and the musical melody, each of which has its own rhythms and meter. Meter in poetry, traditionally and most commonly, is determined by identifying repeating patterns of stressed and unstressed syllables, which are described using poetic feet. For example, Shakespearean plays are written in mostly iambic pentameter, i.e. there is a repeating pattern of an unstressed syllable followed by a stressed syllable that create iambs, and five iambs per line of text. This conception of poetic meter only applies to syllable-stress verse where there are a consistent number of unstressed syllables between stressed syllables and one single poetic foot repeats throughout the poem. Stress verse, syllabic verse, and quantitative verse view the meter of the text differently. According to Derek Attridge, most English popular verse tends to be in stress meter.\(^1\) Stress meter focuses on the number of beats in a line, allowing the number of syllables between beats to vary. Typically, lines in stress verse contain four beats per line.\(^2\)

Meter in music, on the other hand, is determined by patterns of accented and unaccented beats that are entrained. According to Justin London, “metrical entrainment requires a tactus coordinated with one other level of organization.”\(^3\) (A tactus is a time-point that is marked by peaks of attentional energy.\(^4\)) For example, a tactus must be felt at the level indicated by the time signature and at least one other level, such as the subdivision of that tactus or an arrangement of the tactus into measures. London seems to use the terms “beat” and “tactus” interchangeably.

1 Derek Attridge, Poetic Rhythm: An Introduction (Cambridge: Cambridge University Press, 1995), 63.
2 Ibid.
“Accented beats,” as I referred to them earlier, are equivalent to tacti that are felt at multiple levels, whereas “unaccented beats” are equivalent to tacti that are felt at few levels (compared to neighbouring tacti). Rhythm in music concerns patterns of durational proportions. While the occurrence of accented syllables may be irregular in poetic scansion, musical meter can only be determined if the metrical accents occur relatively regularly. Additionally, while the rhythm of poetry derives from the natural stresses of syllables relative to one another (in English, loudness stresses most typically), the rhythm of music is determined by the durations of pitches relative to one another (and is nuanced by additional factors such as consonance and dissonance, and melodic contour).

There is generally a high correlation between the poetically accented syllables in the lyrics of a song and the rhythmically accented events in the vocal melody. That is, poetically accented syllables usually fall on or are syncopated against metrically accented beats. Nonetheless, poetically accented syllables sometimes fall instead on metrically unaccented beats in the musical setting. Other times, the grouping structure of the melodic rhythms—the patterns of strong and weak accent—does not correspond with the poetic scansion. It is these moments of disagreement between the poetic scansion and the melodic rhythms that make the meter of vocal melodies particularly interesting. This thesis explores the idea of “interactive vocal meter,” in which the meter of the text and the meter of the melody work together to generate the vocal melody’s meter and rhythmic structure. It will also look at how rhythms are recombined and fragmented in the context of different meters by comparing cover songs that have been reworked in different meters than their models. The process of determining interactive vocal meter will be introduced and demonstrated in this chapter through the analyses of three versions of a country music standard, Hank Williams’ “I’m So Lonesome I Could Cry.”
1.1 Introduction

This work began as a study of cover songs in which the meter of the newer version was different from the original. I was initially interested in how rhythms can be changed to fit a different meter without losing the basic features that make the song identifiable, but soon became interested in the correlation between text and music. As a result, this work “morphed” progressively into a study of what this thesis calls “interactive vocal meter”—the interaction of poetic meter and melodic meter. I attempt to devise a method to explain how listeners might understand the rhythms and meter of vocal melodies when the text and melody have meters of their own. Combined, the meter of the text and the meter of the melodic durations inform our overall perception of the vocal meter. The rhythmic and metric differences between covers and their original models are still explored, but as a further aspect within the much larger topic of vocal meter.

I hope that the following chapters encourage readers to reconsider how we hear the rhythms and meters of vocal melodies. Interactive vocal meter asks us to examine all parts of a vocal melody—the poetic text, the melodic contours, and the rhythmic durations—in order to achieve a full conception of its meter. Sometimes the accentuation in the text can change our perception of the meter and rhythmic groupings of the melody, or vice versa.

Our understanding of music is coloured by our own biases and previous listening experiences. How we interpret rhythm and meter is incredibly subjective. The analyses presented in this work offer only one interpretation, selected from among alternatives that have been considered, and with the awareness that other interpretations are always possible. I present the interpretations that I hear most readily while reciting the poetry and listening to the recordings. I recognize that the way I hear the meter and rhythms of the songs examined in this
work may not be the same as every reader, but my goal is to introduce a way of thinking about the meter of vocal melodies that takes into consideration the distinct parts of a vocal melody, not to put forth a definitive definition of meter and hypermeter.

The transcriptions featured in this thesis are my own, with the exception of a transcription of Tori Amos’s “Strange Fruit” from chapter 3 that was transcribed by Lori Burns and was published in her article “Authenticity, Appropriation, Signification: Tori Amos on Gender, Race, and Violence in Covers of Billie Holiday and Eminem” (2004). My transcriptions are very similar, however, to previously published transcriptions, so I have obtained permission to publish my transcriptions from the associated publishing companies. The transcriptions in this thesis represent only certain selected features of the musical texture, specifically the vocal melody and harmonic progression. The transcriptions aim to give the clearest perception of the rhythmic patterns. Microtimings, swung eighths, or scoops into notes are not shown, as these reduce the legibility of the written transcriptions. The recordings need to be consulted for a more fully contextualized understanding of the transcriptions.

Many sources were consulted during my research for this project, but I only cite a handful in the course of each chapter. I concentrate on presenting the new ideas and very detailed analyses I have developed, and it is too distracting to draw analogies from every source that I consulted. Instead, I focus on specific sources that have influenced my work the most, such as Grosvenor Cooper and Leonard Meyer (1960), Christopher Hasty (1997), and Fred Lerdahl and Ray Jackendoff (1999). The analytical methods used in this thesis derive from these three sources. The other sources listed in the bibliography have informed my thinking about poetic prosody, issues of transcriptions, meter-text relations, beginning- versus end-accented meter, hypermeter, and syncopations. Although many sources listed in the bibliography are not
directly cited in this thesis, they have all played important indirect roles in the development of its ideas and analyses, and of my thinking about the songs studied here.

1.2 Poetic Feet as Rhythmic Durations

Grosvenor Cooper and Leonard Meyer (1960) were among the first contemporary music theorists to develop an extensive analytic theory using rhythmic patterns conceived in terms of traditional poetic feet. Since the 1960s, scholars such as Raymond Monelle (1989), Fred Lerdahl (2003), Ray Jackendoff (2009), and Yonatan Malin (2010) have explored the rhythmic connections of music and poetry. Throughout this thesis, I will analyse both lyrics and melodic rhythms in terms of poetic feet. The use of poetic feet makes it easier to compare the rhythm and meter of the lyrics to the rhythm and meter of the musical melody.

Table 1.1 summarizes the types of poetic feet used in this thesis, providing simple examples to demonstrate some possible rhythmic translations of the poetic feet. In the poetic examples, accented syllables are denoted with an em dash (—) and unaccented syllables are denoted with a U. Rather than use these symbols for the analysis of the musical rhythms (as Cooper and Meyer did), I use symbols developed by Christopher Hasty in his *Meter as Rhythm* (1997). In my use of these symbols, moments of accentuation are indicated with a vertical line (|) and unaccented moments are indicated by slashes—a forward slash (/) indicates an anacrusis while a backward slash (\) indicates a continuation.\(^5\) Throughout this work, we will frequently discuss accented and unaccented moments in terms of the rhythmic durations that are associated with these moments. Accent highlights the event that begins at a certain moment, but durations are not events. An event’s duration may create accent that marks a moment, and the event that

\(^5\) Hasty (1997) uses the vertical line (|) for beginnings. Here, they represent all moments of accent because the accented moments will not always be beginnings of groupings. They may be middles or endings, as well.
begins then, for attention. A moment of accent often, but not always, occurs at the onset of the rhythmic duration.

Moments of accent can be caused by a variety of changes in the music. Lerdahl and Jackendoff eloquently define three types of accent—phenomenal, structural, and metrical—in *A Generative Theory of Tonal Music* (1999). Phenomenal accent “gives emphasis or stress to a moment in the musical flow” and arises because of events such as “szforzandi, sudden changes in dynamics or timbre, long notes, leaps to relatively high or low notes, harmonic changes, and so forth.” Structural accents are “caused by melodic/harmonic points of gravity in a phrase or section—especially by a cadence.” Metrical accents occur when a beat is “relatively strong in its metrical context.”

In this thesis, we will consider all of these types of accents, but I do not typically explicitly state which type of accent is being considered in the discussion because I, like Christopher Hasty, consider these accents complimentary to each other. They work together to give us a full-conception of the metrical structure in the music. Consequently, moments of accent will be designated in the analyses using only two symbols—either a vertical line (\(\mid\)) or a downward arrow (\(\downarrow\)). (These symbols and the appropriate moments to use them will be discussed later in this chapter when they appear in the analyses.) Typically, accentuated syllables in the song’s lyrics correspond to metrical accents in the song’s melody (this is not always the case, as we will see in chapter 3). Additionally, metrical accents are often further emphasized by phenomenal or structural accents. The following discussions regarding meter focus on phenomenal accents, in particular long durations and changes in melodic contour, as

7 Ibid.
8 Ibid.
they pertain to metrical accents. We will also see later in this and the subsequent chapters that structural accents primarily inform the discussions and accompanying analyses of hypermeter throughout this work.

Using Hasty’s three symbols as outlined above and the downward arrow allows us to more precisely indicate the profile and function of the rhythms and understand how the unaccented moments relate to the accented ones. The way in which these symbols are used in this work is rather different than the way Hasty uses these symbols. In his system, continuation and anacrusis are not conceived of as qualities of accent or as indications of grouping structure, but as different qualities of contribution to the becoming of longer durations. Hasty never shows two adjacent continuation symbols unless the analysis indicates triple meter, in which case he uses a deferral (| \ — \). He also never shows two consecutive anacuses on the same level. Instead, he would place a bracket with a single anacrusis symbol over two eighth notes that were heard as anacuses. Here, I am interested in connecting musical rhythms with poetic rhythms, so to make the analogies more easily apparent, I place a symbol over each newly articulated rhythmic duration at the surface level because they are usually connected to distinct syllables, and therefore need analysis in terms of poetic accentuation.
Table 1.1: Examples of poetic feet

<table>
<thead>
<tr>
<th>Name of Foot</th>
<th>Poetic Examples</th>
<th>Musical Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monosyllable</td>
<td>low</td>
<td></td>
</tr>
<tr>
<td>Trochee</td>
<td>lone-some</td>
<td></td>
</tr>
<tr>
<td>Dactyl</td>
<td>pas-tor-al</td>
<td></td>
</tr>
<tr>
<td>Iamb</td>
<td>be-gin</td>
<td></td>
</tr>
<tr>
<td>Anapest</td>
<td>if you break</td>
<td></td>
</tr>
<tr>
<td>Amphibrach</td>
<td>the mid-night</td>
<td></td>
</tr>
<tr>
<td>Amphibrach with Compound Anacrusis</td>
<td>I'm so lone-some</td>
<td></td>
</tr>
</tbody>
</table>

Generally, the poetic feet used in this work are standard poetic feet, but in this chapter and chapter 3, (what is referred to in this thesis as) the amphibrach-with-compound-anacrusis also appears in the scansion. Standard poetic feet are disyllabic or trisyllabic. Tetrasyllabic feet are possible but are much less common than disyllabic and trisyllabic feet. The tetrasyllabic foot that appears at several points in this thesis (because it arises in the song lyrics) is called a “third paeon”—comprising two unstressed syllables followed by one stressed syllable and another unstressed syllable (UU—U). Here, however, this combination of stressed and unstressed syllables will be referred to as an “amphibrach-with-compound-anacrusis,” which better

describes the effect of this foot in the musical texture. Rhythmically and melodically, it can read as two short durations that function as a compound anacrusis to the more accented beginning of a duration, which in turn is followed by a duration that acts as a continuation of the accented moment.

Normally, the rhythmic duration associated with the moment of accentuation is longer (or at least as long) as the rhythmic durations associated with the unaccented moments (as in the examples on Table 1.1). On the other hand, it is also possible for the rhythmic duration associated with the accented event to be shorter than any or all of the rhythmic durations associated with the unaccented events, but if the rhythmic duration associated with the accented event is shorter, the foot is considered inverted. The moment of accentuation would then need to be accented through other means, such as dynamics, melodic contour, metric position, etc. The amphibrach-with-compound-anacrusis will be discussed later in this chapter and more thoroughly in chapter 3. Table 1.1 will be useful as a reference for the analytical examples in this thesis.

1.3 An Introduction to Interactive Vocal Meter and Hypermeter: A Rhythmic and Metric Analysis of Hank Williams’s “I’m So Lonesome I Could Cry”

In 1949, Hank Williams wrote and recorded “I’m So Lonesome I Could Cry” in a relatively straightforward waltz rhythm and tempo. Despite its surface simplicity, this song is in fact highly nuanced and has become a staple of country repertoire that has been covered by a number of other musicians. And despite the simple triple meter of the original, at least two musicians have created rather different covers of the original song by changing its meter and

10 Cooper and Meyer (1960, 62-63) refer to this type of foot—a group of two unaccented syllables followed by an accented syllable and an unaccented syllable—as an anapest-amphibrach combination.
genre. Al Green transformed the lilting 3/4 of the original into a 4/4 soul ballad on his 1973 album *Call Me*, while Ray Bonneville recorded a bluesy version in 2/2 for his 2014 album *Easy Gone*. The respective genres, in large part, dictate the choices of musical meter. Prior to the mid-1950s and the emergence of rock ‘n’ roll, country songs in triple meter were relatively common, as were a variety of dance steps in 3/4. On the other hand, it is extremely difficult (and perhaps impossible) to find a 3/4 soul or blues song. The changes in meter and genre are indeed associated with different dance practices and social cultures, and a larger perspective on these covers would take those changing contexts into account. Here, we will focus our study more strictly on a close analysis of the metric changes and vocal rhythms.

“I’m So Lonesome I Could Cry” is a strophic song and the fourth line of each strophe is an embedded refrain of the song’s title – with the exception of the second strophe. Lines 1 and 3 of each strophe contain four poetic feet, while Lines 2 and 4 have only three feet. Example 1.1 shows the lyrics and uses boldface type to indicate the accented syllables (to suggest the poetic scansion and feet, which we will soon discuss in some detail as we proceed). As with similar examples of this type in this thesis, it examines the poetic scansion of the words apart from any of their specific musical renderings, so that we can better assess how the word rhythms are affirmed (and perhaps distorted) in each musical setting. Later, the meter of the melody will be examined and the interaction of the poetic meter and the melodic meter will provide reasoning for how the meter and rhythmic groupings of the vocal meter—the combination of the poetry and melody—may be interpreted. Admittedly the music and poetry of popular songs are rarely

11 My transcriptions in this chapter and the subsequent chapters represent only certain selected features of the musical texture. The recordings should be consulted for a more fully contextualized understanding of details shown in the transcriptions.
12 My rationale for transcribing the cover versions in these meters will be discussed later.
13 All of the stanzas in Green’s version contain the refrain as the last line.
composed separately, but I am interested in the ways in which the poetry and the melody influence one another, and by separating the constituent parts of a vocal melody—the poetry and the musical melody—it becomes clearer how those parts interact to inform our overall perception of the rhythms and meter of that vocal melody, as a whole.

Example 1.1: Text of “I’m So Lonesome I Could Cry” and poetic meter

<table>
<thead>
<tr>
<th>Hear the lonesome whippoorwill.</th>
<th>T • T • T ♦ M OR M • AMP • T ♦ M</th>
</tr>
</thead>
<tbody>
<tr>
<td>He sounds too blue to fly.</td>
<td>I • I • I</td>
</tr>
<tr>
<td>The midnight train is whining low.</td>
<td>AMP • M • AMP • M</td>
</tr>
<tr>
<td>I’m so lonesome I could cry.</td>
<td>T • T • M • I OR ACA • M • I</td>
</tr>
</tbody>
</table>

I’ve never seen a night so long	AMP • M • I • I
When time goes crawling by.	I • AMP • M
The moon just went behind the clouds	I • I • I • I
To hide its face and cry.	I • I • I

Did you ever see a robin weep	ACA • M • AMP • M
When leaves begin to die?	I • I • I
Like me, he’s lost the will to live.	I • I • I • I
I’m so lonesome I could cry.	T • T • M • I OR ACA • M • I

The silence of a falling star	AMP • M • AMP • M
Lights up a purple sky.	I • AMP • M
And as I wonder where you are,	I • AMP • M • I
I’m so lonesome I could cry.	T • T • M • I OR ACA • M • I

<table>
<thead>
<tr>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>- divides text into poetic feet</td>
</tr>
<tr>
<td>♦ - divides single word into two poetic feet</td>
</tr>
<tr>
<td>M – monosyllable</td>
</tr>
<tr>
<td>T – trochee</td>
</tr>
<tr>
<td>I – iamb</td>
</tr>
<tr>
<td>AMP – amphibrach</td>
</tr>
<tr>
<td>ACA – amphibrach-with-compound-anacrusis</td>
</tr>
</tbody>
</table>

Here and in the other chapters, the lyrics of songs are analysed using strong-stress meter since the number of syllables between beats often varies, but the unstressed and stressed
syllables will be grouped and described in terms of poetic feet, as they are traditionally described in syllable-stress meter. The analyses in this thesis look at what Attridge (1995) refers to as stress groups—the grouping of a single full stress and unstressed syllables. For Attridge, “the linkages [connecting unstressed syllables to stressed syllables] are syntactic and semantic, and correspond to the speaker’s sense of how the language is divided up.”¹⁴ He carefully distinguishes between stress groupings and poetic feet, reserving poetic feet for syllable-stress meter. Instead of using poetic feet, he describes the groups as rising, falling or mixed rhythms, depending on the location of the unstressed syllables in relation to the stressed syllable.

Attridge’s conception of stress groups identifies the function of unstressed syllables as either “build up to the burst of energy that produces a full stress [or] to subside into a relaxed condition after it.”¹⁵ Additionally, Attridge believes that prose and verse typically contain a mixture of rising, falling, mixed, and monosyllabic groups.¹⁶ While Attridge’s conception of stress groups is very helpful in understanding the function of rhythms in both the lyrics and the vocal melody of a song, for the analytic discussion in this chapter and subsequent chapters, there is a necessity for a more detailed description of the stress groups; therefore, the analyses in this thesis adopt the poetic feet that are used when describing syllable-stress meter and use them in a relatively unorthodox way.

Example 1.1 examines the poetic meter, i.e. the pattern of stressed and unstressed syllables in the poetry. Bullets are inserted to show a scansion of the prosody into constituent poetic feet. One can see from Example 1.1 that the feet are mostly disyllabic; i.e. most groupings contain one unstressed syllable and one stressed syllable. The number of stressed

¹⁴ Attridge, Poetic Rhythm, 38.
¹⁵ Ibid.
¹⁶ Ibid.
syllables in a couplet is consistent but the number of unstressed syllables between the stressed syllables varies. Aside from the alternation of 4-foot and 3-foot lines, noted above, the feet are not organized into a consistent metric pattern. Some lines are mostly iambic, others mostly trochaic, and some involve a mixture of iambs, trochees, and monosyllabic feet. And there are a few spots where trisyllabic amphibrachs result because of the interaction of syllables. Line 1, for instance, can be scanned as three trochees and a monosyllable, while Line 2 has three iambs. Abbreviations to the right of each line summarize the scansion, and highlight the variability from line to line.

At first glance, because there is a clear alternation of strong and weak syllables throughout most of the text, one might assume that the poetic meter uses only trochees and iambics, but in order to interpret the poetic rhythms accurately, the interaction of the syllables needs to be taken into consideration. The first line of the text can be scanned as three trochees followed by a monosyllable (as stated above), but another interpretation hears the same line as monosyllable • amphibrach • trochee • monosyllable. The latter reading reflects the way that I hear the poetry, but it is most certainly possible to hear both interpretations (and perhaps other variants). Similar to Attridge, my hearing of stress groups in poetry is governed by both syntax and semantics. Ultimately, three principles underlie my hearings of the poetic meter and rhythms. Two- or three-syllable feet are preferred, but tetrasyllabic feet are possible if deemed necessary. Typically, syllables that form a word should not be separated into different poetic feet. As Stein and Spillman suggest, in cases of ambiguity, one should choose the meter that “most preserves the integrity of the words.”17 But, in cases where there are two strong syllables in one word, such as “whippoorwill,” the word will need to be separated into different poetic feet

because there can never be two strong syllables in one foot. (A diamond shaped bullet is used on Example 1.1 to indicate the division of a single word into two poetic feet.) I prefer to read the word as “whippoor ♦ will” rather than “whip ♦ poorwill” because of the common sound linking “whip-” and “-poor-.” I acknowledge, though, that the more conventional way of dividing the word is “whip ♦ poorwill.” By dividing “whippoor ♦ will” as such, it also has implications for the phonological phrase stress of the first line, which we will see later in this chapter.

The third line of Stanza 1 could also be read in numerous ways. While “the midnight train is whining low” could be scanned as a chain of four iambs, or as a mixture of trochees and monosyllables, it is more appropriately scanned as “the midnight • train • is whining • low,” (i.e. as amphibrach • monosyllable • amphibrach • monosyllable). "The midnight train" constitutes the subject of the clause, and "is" begins the predicate. "Train is" should not be read as a trochee, even though it is followed by the trochaic "whining" because of the syntactic relationship of “train” to “the midnight.” On the other hand, semantic reasons can also aid in determining the poetic groupings when there is ambiguity. The words “midnight” and “whining” cannot be split into separate poetic feet because they form words. If this line was to be interpreted as four iambs, i.e. “the mid • -night train • is whin • -ing low,” the second syllable in “midnight” would be more closely associated with “train” than the word of which it is a part, and the second syllable of “whining” would be more closely related to “low.”

Notations to the right of each line on Example 1.1 show an interpretation of the poetic meter of the entire song. Of course, this is only one interpretation of the poetic meter; other hearings may interpret the feet differently. Two equally possible interpretations of Line 1 have been suggested. There is no question as to which syllables are strong, but the combination of strong and weak syllables into poetic feet can sometimes be interpreted differently. In analysing
the poetic meter of the text, I imagine reciting the syllables with approximately equal durations so as not to give special emphasis to certain syllables. If one were to lengthen certain syllables, the poetic meter could be reinterpreted in a number of ways. Bruce Hayes (1995), in discussing studies by Fry (1955, 1958), Bolinger (1958), Morton and Jassem (1965), and Nakatani and Aston (1978), acknowledges that stress perception can be affected by changes in pitch, duration, and dynamics. A change in pitch contour or a lengthening of a syllable can affect how the stress is perceived. For instance, a syllable that is lengthened is more likely to be perceived as stressed. These studies found that pitch and duration were the primary perceptual cues, over loudness.

As the analysis shows in Example 1.1, none of the strophes have the same order of poetic feet. The text features only iambics, trochees, amphibrachs and monosyllables, but there is no regularity as to how they are used. Observations such as these indicate that the word rhythms are in fact anything but simple or repetitive. Instead they have a certain prosaic flexibility that adds to the projection of unpretentious “authenticity” in the song. As we will see, Hank Williams’s 3/4 waltz rhythms tend to superimpose an iambic lilt onto the much more varied (i.e. prosaic) rhythms of words on their own. The 4/4 and 2/2 treatments by Green and Bonneville perhaps provide more opportunities for rendering the prosaic variety of the lyrics, and we will attend to such possibilities later in this chapter. Although Williams most likely composed the lyrics of his song in conjunction with the melody, examining the poetic scansion of the words first is useful because it will assist us when comparing the rhythms and meters of different settings of the same lyrics—the cover songs—more easily later.

19 Ibid., 6.
The last line of each strophe is the song’s titular refrain – with exception of the second strophe. The possibility of performing the refrain’s initial “I’m” as either stressed or unstressed causes ambiguity in the number of feet in this concluding line, since it can be analysed as either a four- or three-foot line. (“I’m” is underlined in Example 1.1 to signal this ambiguity.) In cases of ambiguity, the performative durations of the syllables can alter our perception of the stresses. The fourth line of the second strophe – the only one without the refrain – is clearly three feet, which suggests by parallelism that the refrain should also be scanned as three feet. Moreover, the second lines of each strophe are also consistently and unambiguously scanned as three feet. The fact that the second and fourth lines of each strophe always rhyme provides an additional compelling reason to scan them in parallel. We are therefore encouraged to hear each strophe as an alternation of four-foot and three-foot lines, and we will see that Williams’s melody corresponds nicely with this interpretation. Consequently, I prefer to scan this repeated line as three feet: amphibrach-with-compound-anacrusis • monosyllable • iamb, i.e. “I’m so lonesome • I • could cry.” This deemphasizes the “I’m” at the beginning of the refrain, but by doing so, it puts more stress on “lonesome” and also on the more emphatic use of the personal pronoun and the immediate rhyming verb participle in “I • could cry,” at the concluding climax of the line and strophe.

Williams’s sung melody in “I’m So Lonesome I Could Cry” features parallelism in an interesting way. In terms of poetic meter and the abcb rhyme scheme, Lines 2 and 4 are parallel, but the strophe’s two constituent couplets are nonetheless each strongly integrated. As Example 1.2 shows (beginning in m. 5 with the voice entry, following a 4-measure intro), in Williams’s original version the music of the first two lines reinforces this connection by using the same

20 The first and third lines rhyme only in the last verse.
rhythm and descending leap of a major third. The second line is a truncated version of the first line with one fewer G#-to-E motive, so that the final word of Line 2 lands one bar early relative to the model of Line 1. The last word of Lines 2 and 4 appears one bar earlier in the four-bar hypermeter than the end of Lines 1 and 3 in order to retain the alternation of four-foot and three-foot lines.
Example 1.2: Metric analysis of the first strophe of Hank Williams’s original 1949 version \(^{21,22}\)

The simple rhythms in Williams’s melody do not register the flexible poetic meter of the text, but they sometimes highlight it. Just as the *poetic meter* is shaped by the rhythm of the text

\(^{21}\) Transcription from © Hank Williams, “I’m So Lonesome I Could Cry,” (Nashville: Sony/ATV Music Publishing LLC, 1949). Adapted with permission from publisher.

(i.e. the groupings of stressed and unstressed syllables in a series), the *melodic meter* is shaped
by the rhythm of the melody (i.e. the durational series) and the melodic contour—but *not* the
words. In terms of poetic meter, we scanned the first line of text as three trochees and a
monosyllable (or as monosyllable • amphibrach • trochee • monosyllable), and the second line as
three iambs, but the parallelism of the melody in the first two phrases encourages us to hear mm.
5-12 as (mostly) one repeating type of foot. In the first eight bars of the melody, the eighth notes
always lead into the following longer note (which is also often higher in pitch), producing a
consistent iambic feel (with the exception of the first word, “Hear,” as a monosyllabic foot).
Specifically, using proportional nomenclature and taking the eighth as the shortest duration, we
can describe these melodic units as 1:5 iambs. (As with our depiction of poetic feet, bold type is
used here to identify the duration with stressed onset.) The regular repetition of the same two-
note motive—the E to G# iamb—also suggests the repetition of iambic feet. The melodic iambs
mostly have ascending contour, except the last two syllables of each line, which feature a
descending leap that creates a sense of closure. The melodic iambs in mm. 5-12 are shown in
Example 1.2 using Christopher Hasty’s metrical symbols for anacruses and beginnings. Here,
the vertical lines simply represent moments of accentuation. Since grouping structure—the
patterns of strong and weak accent—is being considered in combination with metric structure,
this symbol needs to be able to represent beginnings, middles, and endings of feet.

When we examine poetic meter and melodic meter in combination, the result is what will
be called *interactive vocal meter*. Independently, our interpretation of the poetic meter and the
melodic meter remains the same as before, but in combination, one or both of them may be
reinterpreted in the resulting vocal meter. The interactive vocal meter—the combination of
melodic meter and poetic meter—reflects the dynamic interaction between melodic meter and
poetic meter, i.e. sometimes melodic meter overrides the poetic meter, while other times the poetic meter overrides the melodic meter. By “melodic meter overriding the poetic meter,” I mean that the musical rhythm, with musical meter and grouping, may in some circumstances simulate poetic feet so that a vocal melody may simulate groupings different from the actual poetic meter. Musical metrical accent may emphasize unstressed syllables, and stressed syllables may fall on weak musical beats. In cases where the “melodic meter overrides the poetic meter,” the poetic meter simulated by the melody is so strongly heard that it “overrides” the poetic meter in our perception of the vocal melody’s rhythmic groupings. By “poetic meter overriding the melodic meter,” I mean that the poetic meter is so strongly heard that it “overrides” the simulated poetic meter created by the melody’s rhythmic durations. In these cases, the melody’s rhythmic durations can usually be interpreted in a few ways, i.e. the melody’s rhythmic durations do not suggest a strong anacrusis function or continuation function, which allows a stronger poetic meter to override the melodic meter in our perception of the vocal melody’s rhythmic groupings.

As indicated in Example 1.2 by the blue text, the strong syllables in the poetry always fall on downbeats in Williams’s melody. (The blue text may seem redundant in this example, but we will soon see that stressed syllables are sometimes syncopated; different colours will be used when this phenomenon occurs.) It is in this sense that the poetic meter and the melodic meter align, although they definitely do not involve the same patterns of feet.

Musical stress arises in many different and sometimes conflicting parameters. Some may argue that poetic feet are not comprehensive enough to cover the more variegated patterns of musical stress and that musical grouping is more complex than the grouping of syllables according to syntax and semantics, which is true with respect to a musical piece as a whole with its multiple interacting parts (i.e. the vocal melody, guitar, bass, drums, keyboards, etc.). Here,
only the vocal melody is of concern. And while the accentual patterns in a vocal melody can be very complex, featuring metric accents, structural accents and phenomenal accents, it is possible to associate onsets of rhythmic durations with three functions: accented, anacrusis, and continuation. In conjunction with these functions, grouping can be determined and assigned a type of poetic foot since poetic feet also feature these functions in their grouping of syllables (although linguists do not use the terms “anacrusis” and “continuation”). This thesis attempts to show the complexity of musical stress and grouping in vocal melodies by examining its interactive vocal meter.

In the case of this song, there is an incongruity of grouping structure between the melodic meter (conceived in terms of feet, as described above) and poetic meter. The consistent iambs of the melodic meter contradict the trochees of the poetic meter in the first line of text. In order to perceive one coherent interpretation of the meter and rhythmic groupings in the vocal melody (which again is a combination of poetry and music), one must override the other in the interactive vocal meter. Separately, the melodic meter and poetic meter continue to exist. It is only when hearing the vocal melody, as a combination of poetry and music, that one overrides the other. For example, the strong durational proportions of 1:5 melodic iambs override the poetic trochees in the first line of the text, so that when the different poetic and melodic meters interact together in the song, they produce consistent vocal iambs. (To be clear, duration does not create poetic meter. It is simply a factor that can affect our perception of the poetic meter. Thus, durational patterns (along with pitch contour and dynamics) can override the poetic meter of stress patterns in the context of the vocal meter.)23 The melodic meter must override the poetic meter in this case because the 1:5 iambs are difficult to re-imagine as 5:1 trochees in any

23 Bruce Hayes discusses the affects of pitch contour, durations, and loudness on stress perception in his Metrical Stress Theory (1995, 5-8).
circumstance. In this case, the short duration always feels like it leads to the following long duration, creating an iamb, rather than continuing the preceding long duration, which would create a trochee. On the other hand, if the long and the following short belong to the same harmony, and the harmony changes on each long note (not the case here), one might prefer to hear a series of trochees, instead. Even though we are focusing on the single-line vocal melody, it is important to note that musical grouping boundaries are not simply a matter of durational proportion and changes in pitch. A grouping boundary can be caused by a number of factors, including changes in pitch, duration, harmony, articulation, and dynamics.

As with Hasty’s *Meter as Rhythm*, I do not conceive of anacruses as beginnings of metric projections. Anacruses can be the beginnings of feet, but not the beginnings of metric projections, whereas accents are beginnings of metric projections, but not necessarily the beginnings of rhythmic groupings. Accent can appear at the first, middle, or final onset of a foot. For instance, the moment of accent in a trochee is a beginning, the moment of accent in an amphibrach is a middle and the moment of accent in an iamb is an ending. Moments of accentuation initiate (generalized) measures, just as they do in Hasty’s conception of meter, but the terms “beginning,” “middle,” and “ending” refer to the placement of the accented event within the rhythmic grouping.

In mm. 5-12, the 1:5 iamb of the melodic meter override the poetic meter, but in the last eight bars of the melody, the vocal meter is affected more profoundly by the poetic meter than the melodic meter because the rhythmic proportions are 4:2 (trochee) or 2:4 (iamb) creating less distinction between the poetic and melodic meters. This gives the interactive vocal meter more flexibility, in the sense that melodic meter and poetic meter can coexist and interact without one

24 It is important to note that Hasty does not define “beginning” or other projective functions in terms of accent.
consistently overriding the other. Of course, one could still interpret these measures as consistent 2:4 melodic iambic, but the quarter note does not generate such a strong sense of beginning a new rhythmic group (with a moment of accent on the second event) as did the eighth notes in the first eight measures of the melody. In fact, it is possible to analyse the last eight bars, in terms of melodic meter, as a series of trochees, instead of iambics. The pitch repetitions reinforce this hearing of the melodic meter. The ascending major third of the E-G# motive in mm. 5-12 reinforced the 1:5 melodic iambics, but mm. 13-20 do not feature this motive. For instance, the repeated pitches in mm. 13-14 make the short durations sound like continuations of the previous long duration, i.e. as Lerdahl and Jackendoff might say, there is no change to create a grouping boundary. Thus mm. 13-14 may be better scanned as two trochees, as opposed to two iambics, because of the repeated pitches. If the poetic meter of the text is taken into consideration, some of the quarter notes can be understood as continuations of the longer duration, while others can be anacruses to the following note. The upper metric analysis of mm. 13-20 on Example 1.2 shows the repeating 2:4 iambics suggested by the melodic meter. The lower metric analysis shows the vocal meter, which takes into consideration both the melodic meter and poetic meter. Here, the poetic meter overrides the melodic meter. The vocal meter, therefore, adheres to the poetic meter of these lines (see Example 1.1 for the analysis of the poetic meter); for instance, mm. 13-16 show an amphibrach, monosyllable, amphibrach, and monosyllable, which are taken directly from Lines 3 and 4 of the first strophe in the poetic meter. The analysis of the vocal meter in Example 1.2 only illustrates that of Lines 3 and 4 in the first strophe. The poetic meter of the other strophes can be superimposed on mm. 13-20 to give this passage a different vocal meter, but they have not been illustrated in Example 1.2.25

25 Microtiming may also affect how we hear the vocal meter in mm. 13-20. If the short duration in the melody is
Williams creates interest in his song by varying the placement within the four-bar phrases of important words, such as “lonesome” and the numerous words throughout the song that rhyme with “I” and “cry.” In the first strophe, “lonesome” first appears on downbeat 2 of the first phrase, but it moves to downbeat 1 in the final phrase. Williams also varies the position of the “I” rhyming sounds within the first strophe. “Fly” appears on downbeat 3 of the second phrase, “I’m” leads anacrustically into downbeat 1 of the fourth phrase, “I” then appears on downbeat 2, and “cry” ends the strophe on downbeat 3 in the last phrase. The shifting placement of the rhyming “I” sounds makes this simple song unpredictable and adds interest. These varied placements of words are, in part, a result of the syntactic structure of the lines, but in the case of the “lonesome” in the final phrase of the first strophe, Williams seems to have consciously placed it one measure earlier than in the first phrase. Because the “I’m” in the final line of the strophe could be a strong syllable, Williams could have begun the final phrase with “I’m” on the downbeat of the first bar, which would have shifted “lonesome” to the second bar of the phrase. By treating “I’m” as a weak-syllable anacrusis and putting the first syllable of “lonesome” on the first downbeat of the final phrase, Williams emphasizes one of the most important words in the song.

Another important metric phenomenon to consider is hypermeter. Hypermeter generally refers to “the combination of measures on a metrical basis… including both the recurrence of equal-sized measure groups and a definite pattern of alternation between strong and weak measures.”26 Each “equal-sized measure group” articulates a pattern of hyperbeats and constitutes a hypermeasure, analogous to beats in a measure. In other words, while meter is the

organization of beats into metrical patterns, hypermeter is the organization of metrical units containing a set number of measures into metrical patterns. Like meter, hypermeter is generally conceptualized as beginning-oriented. For example, a four-bar hypermeter with a one-bar hyperbeat, like a 4/4 measure, has a strong-weak-weak-strong pattern, with strong first and third hyperbeats. But, as we will see, this idea does not always fully describe the sensations generated by the music. In fact, hypermeter may be more closely related to phrase structure than the patterns of strong and weak beats in a single measure, at least in the context of North American popular song. This question will be explored in the context of Williams’s song and in the subsequent chapters.

Let us first examine “hypermeter” in the text alone. Example 1.3 shows the poetic hypermeter, i.e. the pattern of the most stressed and unstressed syllables in the phonological phrases, of the first strophe of the lyrics. Bold text indicates stressed syllables in the foreground, while the Xs directly above syllables indicate the most stressed syllables in the phonological phrases.

27 Elizabeth Selkirk (1980, 1984) describes larger prosodic categories, such as intonational phrase and utterance, but for this thesis, levels of accent above the word level will all be referred to as phonological phrases.
Example 1.3: Phonological phrase stresses in the first strophe

<table>
<thead>
<tr>
<th>Hear that</th>
<th>some whip - poor - will.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>He sounds too</th>
<th>blue to fly.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>The mid - night train is</th>
<th>whin - ing low.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>I’m so lone - some</th>
<th>I could cry.</th>
</tr>
</thead>
</table>

English is generally considered an end-directed language, i.e. the most stressed syllable tends to appear at or near the end of a phrase. Of course, there are exceptions to this idea, and there is even a lot of disagreement among linguists regarding this idea. English is commonly understood as a subject-verb-object (SVO) language, and according to Kahnemuyipour (2009), the strongest stress in any language generally happens on the object of the statement.\(^{28}\) Chomsky and Halle (1968), as part of their Nuclear Stress Rule, assign the main stress to the last word in an English phrase/sentence. Halle and Vergnaud (1987) maintain the premise that the main stress in an English phrase/sentence occurs on the last word, but they show this phenomenon using a metrical stress grid. In 1975, Mark Liberman proposed his Stress Shift Rule. This rule does not seem to shift the main stress of the utterance to the left, but rather “shifts a stress leftward when a stronger stress follows, creating alternations,” as indicated by Bruce Hayes.\(^{29}\) The important part of this quote is “when a stronger stress follows,” which indicates that the

main stress of the utterance remains in the right-most position. One example that Liberman uses when describing how this rule works is “thirteen men.” Usually, we put emphasis on the second syllable of thirteen, but in “thirteen men” it would feel strange to put hierarchically strong stresses on adjacent syllables, so the stress on “-teen” is shifted left to “thir-.” The stresses in “thirteen men” are read with the primary stress on the third syllable of the utterance. Ultimately the stronger stress (and strongest in this utterance) is “men,” which allows the stress in “thirteen” to be shifted left. Expanding Liberman’s Stress Shift Rule, Bruce Hayes (1995) recognizes the possibility for the primary stress in a phrase to be at the beginning of the phrase or the end of the phrase; however, most of his English examples still seem to favour what he refers to as End Rule Right, rather than End Rule Left. Hayes’s examples where the primary stress occurs on the first stressed syllable in the phrase seem to usually be a series of nouns and adjectives. They do not contain a verb or object. In cases where there is a subject, verb, and object, Hayes usually puts the primary stress near the end of the phrase. Noticeably, many of these sources seem to suggest that the primary stress of an English utterance happens near the end of it, but not necessarily on the last syllable (and not even necessarily the last word in the case of Kahnemuyipour’s SVO theory).

In Example 1.3, the hierarchical level directly above the foreground scansion indicates that two syllables are stressed in each line (at this higher level), with the exception of the second line. The scansion at this level, organizing the stressed (boldface) syllables into “hyperfeet,” is mostly iambic. The top level indicates the syllable that receives the most stress in the line.

30 “Hyperfeet” is not a term that is used by linguists. Most linguists that use metrical grids do not conceive of prose or verse in terms of feet. Marina Nespor, in her article “Squib: On Phonology and Prelexical Mechanisms of Language Acquisition” (2015, 3), discusses phonological phrases in terms of feet, suggesting that “SOV languages have trochaic phonological phrase prominence mainly marked by pitch,” and “SVO languages have iambic phonological phrase prominence marked mainly by duration.”
When the text is recited, I tend to place the greatest emphasis on “lone-,” “blue,” “low,” and “cry,” which are all syllables that emphasize the sorrowful images in the song’s lyrics. This hearing involves a shift from middle accentuation in the first two lines to end accentuation in the next two. In terms of poetic feet, the first two lines in Stanza 1 are middle-accented large units, effectively extended and enlarged amphibrachs, while the last two lines in Stanza 1 are end-accented large units, effectively extended and enlarged iambbs. That is, the first two lines begin with weaker material that leads into the phonological phrase stress, which is followed by weaker material, while the last two lines begin with weaker material that leads into the phonological phrase stress at the end of the line.

At the large-scale level, it is impossible to distinguish between similar poetic feet. What is the difference between an iamb and an anapest at the large-scale level? Both are rising groups and are distinguished by the number of unstressed syllables found before the stressed syllable. At the large-scale level, however, the number of unstressed syllables is almost always greater than two, making the distinction between a large-scale iamb and large-scale anapest very difficult. Therefore, in terms of large-scale feet, the only possibilities will be iambbs, trochees, amphibrachs, or monosyllables. This encompasses all of the types of rhythmic groupings: rising, falling, mixed, and monosyllables. In these discussions, the unstressed/unaccented material will be grouped together in order to correspond to these feet.

Of course, the scansion shown in Example 1.4 is not the only valid hearing. It may be difficult for some to hear “hear” as a weak syllable at higher levels of the poetic metric structure since it is an imperative. But I wonder if, in this instance, it becomes difficult to separate the text from its musical setting, and if the musical setting influences our judgement of poetic metric structure. Let us examine a similar example that is separate from a musical context, “put the gun
on the ground.” In this case, the person saying this phrase will most likely emphasize “ground” in order to emphasize where the person should put the gun and “gun” in order to emphasize what should be put on the ground. Of course, putting a primary stress on “gun” does not mean that “put” is weak, but hierarchically, “gun” would receive greater stress than “put” at more background levels, making “gun” a primary stress rather than a secondary or tertiary stress. In the case of the first line of “I’m So Lonesome I Could Cry,” one has a choice in how it is read. The reader could emphasize “hear” and “whip-” as primary stresses of the phrase since “hear” is syntactically emphasized as an imperative and “whip-” is the strongest stress in the final word of the line, but the reader could also choose to emphasize “lone-” and “-will” from “whippoorwill” as the primary stresses, if the reader wishes to emphasize the depressive word in the utterance and what the person is to listen to. Hearing “lone-” as the primary stress in the phrase allows us to hear “-will” as the next most stressed syllable in the phrase, even though it is not conventionally the strongest syllable in “whippoorwill” because there needs to be an alternation of strong and weak stresses at progressively higher levels of stress.

In Example 1.4, the poetic analysis reproduces the bottom level of phonological phrase stress from Example 1.3 using Hasty symbols. Hasty’s beginning symbol (|), which in this case is used to represent a stress rather than a beginning, appears over “lone-,” “-will,” “blue,” “train,” and “lone-.” The weaker text is designated with an anacrusis symbol (/) or continuation symbol (\) to show the interpretation of the poetic hypermeter discussed above. The downward arrow (↓) represents accented material at the end of a phrase and is referred to as an end-accented symbol in this thesis (this symbol will be discussed further in the next paragraph).
Example 1.4: Poetic, melodic and vocal hypermeter using one-bar hyperbeat in Williams’s original

Poetic: / | / | / | / | / | / |
Melodic: | \ / / ↓ | / / ↓ \
Vocal: / | / | / ↓ | / / ↓ \

1. Hear ___ that lone - some whip - poor - will. He sounds ___ too blue ___ to fly. The

Poetic: / | / | ↓ | / | / | ↓
Melodic: | \ / / ↓ | / / ↓ \
Vocal: / | / | ↓ | / / ↓ \

mid - night train is whin - ing low. I’m so lone - some I could cry. I’ve
It is imperative in this discussion of the hypermetric analysis shown in Example 1.4 that we maintain a distinction between the poetic reading of the lines, the melodic reading, and the vocal reading (which combines the hypermeters of the poetry and the melody). The *melodic hypermeter*—the large-scale metric processes of the melody—is rather different from the poetic hypermeter at the two-bar hypermetric level. The first and third four-bar phrases scan (at the two-bar level) as melodic trochee • iamb, while the second and fourth phrases scan as melodic monosyllable • amphibrach. This goes against the widely accepted notion of hypermeter, which imagines a strictly trochaic reading of hypermeter, in which the first bar of every two-bar hypermeter is accented.\(^{31}\) This view relies on the assumption that hypermeter and meter are similar, in that they have the same alternation of strong and weak beats, which is very generic and does not always describe what is happening in the music. If hypermeter is conceived as strictly analogous to the alternating accented and unaccented beats in a measure, it sometimes ends up distorting the vocal melody’s natural phrase structure, which in this case, is defined as the coherence of the vocal melody.\(^{32}\) Melodic hypermeter, in actuality, may be better understood as a combination of meter and phrase structure. On the one hand, hypermeter requires regularity; it is periodic like meter. Places of accentuation need to appear at regularly spaced intervals in order to determine a hypermeter. But, hypermeter may often be end-directed, which makes it analogous to phrase structure. Thus, perhaps, in the context of hypermeter, it is better to

\(^{31}\) One measure equals one hyperbeat in this two-bar hypermeter.

\(^{32}\) Rothstein (1989, 13) defines phrase structure as “the coherence of musical passages on the basis of their total musical content—melodic, harmonic, and rhythmic.” But, here, we are only interested in the vocal melody and how it is structured, aside from harmonic considerations of the music.
examine arrival points, rather than beginnings. Example 1.4 uses the end-accented symbol—a downward arrow (↓)—to indicate an arrival.

The lowest stream of accentuation symbols on Example 1.4 shows the vocal hypermeter—the interaction between poetic hypermeter and melodic hypermeter. The poetic hypermeter and the melodic hypermeter remain the same as before, but one or both of them may be reinterpreted in the resulting vocal hypermeter. Vocal hypermeter is, therefore, analogous to the concept of vocal meter, discussed earlier. In Williams’s original, the poetic hypermeter and melodic hypermeter afford diverging interpretations, and as a result, the vocal hypermeter is an amalgam of the poetic hypermeter and melodic hypermeter at the two-bar hypermetric level. The vocal hypermeter of the first and third four-bar phrases corresponds to both the poetic meter and melodic meter, while the vocal meter of the second and fourth four-bar phrases corresponds more closely to the melodic hypermeter. Here, Hasty’s beginning symbol (|) is used to show an accentuated measure that is not an arrival, regardless of whether it is actually a beginning; a downward arrow (↓) indicates an arrival/end. The first and third four-bar phrases comprise iambs, while the second and fourth phrases have a monosyllable followed by an amphibrach.

The arrival points of the first and third phrases are on the downbeat of their fourth bars, whereas the arrival points of the second and fourth phrases are on the downbeat of their third bars. Here, the melodic contour dictates the arrival points. The melody always descends to the lowest note in each phrase. While the melodic contour can suggest arrival points, other factors such as harmony, contrapuntal framework, and cadential formulas could also contribute to the

33 The question of whether meter is beginning-accented or end-accented is not new. Scholars have been debating this since the 1800s. Roger Matthew Grant gives an interesting account of nineteenth-century theories by Jérôme-Joseph Momigny and Gottfried Weber about meter and hypermeter in “The Persistent Question of Meter,” chapter 8, from his book Beating Time and Measuring Music in the Early Modern Era (2014). According to Grant (2014, 10), for Momigny, “cadences [in French vocal music] were not only harmonic arrival points with textual emphasis, they were also peaks of our metric attention” (similar to the way in which hypermeter is viewed here).

34 Williams creates irony by associating “fly” with the lowest pitch in the melody.
sensation of an arrival. It is important to note that an “arrival” is not the same as a “cadence.” A “cadence” will most likely feel like an “arrival,” but an “arrival” does not have to be a “cadence.” The arrival point comes early in the second and fourth lines because the music adheres to the scansion of the text (the alternation of four-foot and three-foot lines). The changes in the arrival points account for the differences in the two-bar hypermeter (with a one-bar hyperbeat). The vocal hypermeter at the two-bar level effectively switches between end-accented hypermeasures (accents on even-numbered measures) and beginning-accented hypermeasures (accents on odd-numbered measures) every four bars. Because the difference in arrival points for the four phrases results in irregular spacing of accented hyperbeats, there is no recurring accentuation pattern at the two-bar hypermetric level. This means that, even though we have gone through this lengthy discussion of hypermeter at the two-bar hypermetric level, there is actually no (strictly regular) hypermeter established at the level directly above meter.\footnote{35 I continue to refer to the level of hypermeter directly above meter as a two-bar hypermeter because, if a hypermeter could be determined at this level, there would be an accented hyperbeat every second measure.} In order to see a periodic hypermetric interpretation, the larger-level hypermeters need to be examined in this case. Example 1.5 shows vocal hypermeters at the level of the four-, eight- and sixteen-bar hypermeasure. For reference, it also reproduces the two-bar vocal hypermetric interpretation from Example 1.4.
Example 1.5: Two-, four-, eight-, and sixteen-bar hypermeasures in Williams’s original

Hear that lonesome whippoorwill. He sounds too blue to fly. The midnight train is whining low. I'm so lonesome I could cry. I've
The analytical method used in Example 1.5 combines features from the analytical tools developed by Cooper and Meyer (1960), Hasty (1997), and Lerdahl and Jackendoff (1999). Cooper and Meyer believed in the possibility of end-accented groups, a prominent feature of this hypermetric analysis. The solid brackets, appropriated from Cooper and Meyer’s book *The Rhythmic Structure of Music*, group accented and unaccented material into feet, and in this case, hypermeasures. The dotted brackets—a feature not found in Cooper and Meyer—allow us to more precisely indicate the boundaries of unaccented and accented material. As in Cooper and Meyer, the brackets are not bound by barlines; they account for groupings slightly longer or shorter than a full measure or group of measures. Even though certain features have been influenced by Cooper and Meyer’s 1960 work, Cooper and Meyer do not show the kind of structure introduced in Example 1.5 (refer to Example 3.8 for a typical metrical analysis by Cooper and Meyer). Rather than assigning stress to a single event as is shown in Example 1.5, Cooper and Meyer designate the longer group (to which the stressed event belongs) as a stress at the large-scale levels. In Cooper and Meyer’s analyses, a bracket is shown at the next level as one symbol, either weak or strong. In the type of analysis shown here, the grouping at the lower levels does not determine the grouping at higher levels. The placement of the accented event at higher levels determines the grouping structure. With each higher level, the secondary stress in the level below becomes unaccented and is subsumed into the unaccented group. (The grouping structure of the two-bar hypermeter is based on the vocal meter shown in Example 1.2.) The accentuation symbols used in Example 1.5 are the same as previous examples and, as discussed above, derive from Christopher Hasty’s *Meter as Rhythm*. At first sight, the analysis shown in Example 1.5 appears to be nothing like Lerdahl and Jackendoff’s metrical grids. Lerdahl and Jackendoff used dots to indicate the strength of a beat, and their analyses typically show
beginning-accented meter and hypermeter. For Lerdahl and Jackendoff, the beginning of a metric timespan has to be marked by something, and if a timepoint functions as a beginning of multiple levels of metric timepoints, it is a strong beat. But Lerdahl and Jackendoff recognize the possibility of strong phenomenal or structural accents occurring late in a timespan too. The analysis in Example 1.5, contrary to Lerdahl and Jackendoff, uses symbols to indicate the function of a measure or multiple measures, and it shows end-accented hypermeasures. In these respects, the analysis in Example 1.5 is very different from those found in Lerdahl and Jackendoff’s *A Generative Theory of Tonal Music*. But as in Lerdahl and Jackendoff, the number of end accent symbols in a vertical column indicates the strength of a particular bar or bars. In Lerdahl and Jackendoff’s dot analysis, the more dots above a beat or bar means that it is more accentuated in relation to neighbouring beats or bars. Likewise, in Example 1.5, the more end accents placed above a bar or group of bars, the stronger the accentuation of the bar(s). The hypermetric analysis that I propose in Example 1.5 requires that accented events be accented at all lower levels. Additionally, there must also be a periodic alternation of accented and unaccented material.

Looking at Example 1.5, one probably immediately notices the differences in length between unaccentuated and accentuated material. As stated above, hypermeter is usually defined as the regularly occurring patterns of strong and weak equal-sized measure groups, otherwise known as hyperbeats. This idea is analogous to meter, but here, hypermeter is considered a combination of meter and phrase structure. (This is precisely the way that Rothstein defines “phrase rhythm,” as the interaction of (hyper)meter and grouping structure.)\(^{36}\) The need to force the music into hyperbeats of equal-sized measure groups is not present in these analyses. This

\(^{36}\) Rothstein (1989, 12) considers hypermeter and phrase structure analogous but distinct components of musical rhythm at levels larger than the measure.
often results in unaccented material (grouped together into a larger unit) that is longer in duration than the rhythm associated with the moment of accentuation. Because the unaccented and accentuated material is unequal, henceforth I will not use the term “hyperbeats.”

The four-, eight-, and sixteen-bar hypermeasures are each comprised of recurring iambs. These readings are suggested by the phrase structure and the contour of the melody. Continuous repetitions of the same melodic fragment give the feeling of anacrusis—that is, that the music has to go somewhere and is leading to something new. The (extended) unaccented anacruses build up to the arrivals in the hypermeasures. In the first and third four-bar hypermeasures, the first three bars of the hypermeasures act as anacruses, whereas in the second and third four-bar hypermeasures, only the first two bars of the hypermeasures act as anacruses. This difference is a result of the changing arrival points of the four-bar phrases, discussed earlier. The changing arrival points made a two-bar hypermeter impossible because two accented measures appeared adjacent, disrupting the regular spacing of accented material. The spacing of the accentuated measures in the four-bar hypermeter is also irregular: in the first and third hypermeasures, the accentuated part of the hypermeasure begins in the fourth measure and lasts only one bar, while in the second and fourth hypermeasures, the accentuated part of the hypermeasure begins in the third measure and lasts two measures. The periodicity of the four-bar groupings and the regular alternations of weak-strong (or anacrusis-end accented) material allow us to entrain a hypermeter at the four-bar level, even though the spacing of the accented measures is slightly irregular. The first bars in the four-bar hypermeasure act as an anacrusis to the last one or two bars because the melody wants to descend to the low B (or E in the last four-bar hypermeasure). The poetry also plays a role in our understanding of the hypermeter. Our ear tends to be drawn to the last word in each phrase, which helps us hear the hypermeter as end-directed, as well.
The eight-bar hypermeasure is also iambic. Measures 5-10 lead to “fly” in mm. 11-12 and mm. 13-18 lead to “cry” in mm.19-20. The rhyme at the end of the second and fourth lines of each strophe and the repetitive strophic form allow us to hear a sixteen-bar hypermeasure where mm. 5-18 lead into mm. 19-20. Admittedly, it not as easy to hear the sixteen-bar hypermeasure as it is the more surface level hierarchies. The 14:2 iamb can only be heard because of the strophic form of the song. The melody repeats for each stanza, allowing us to predict the arrival of the next sixteen-bar hypermeasure. The arrival of this sixteen-bar hypermeasure happens in m. 19. There is a secondary arrival in m. 11 on the B, but this is much less stable than the tonic E in m. 19. In fact, all of the four-bar phrases end on B in the vocal melody, except the last one, which suggests that the melody from mm. 5-18 is building up to the E in m. 19. The accented measures in the eight- and sixteen-bar hypermeasures, unlike the lower levels of hypermeter, occur at regularly spaced intervals.

It is important to note that we have only been looking at the hypermeter of the vocal melody. The instrumental accompaniment and harmonic progression are not considered in these analyses. If we were to take the harmony into consideration, much of the analyses in Example 1.5 would require adjustment. One such example is the four-bar hypermetric analysis of mm. 13-16. The subdominant in mm. 13-14 leads into the tonic in mm. 15-16. If we were taking the harmonic rhythm into consideration in our hypermetric analysis, mm. 13-14 would act as an anacrusis and all of mm. 15-16 could be considered end-accented, rather than the portion of m. 16 that is currently considered end-accented in Example 1.5. The hypermetric analysis of the harmony at the eight- and sixteen-bar level would likewise be different than the proposed interpretation of the vocal hypermeter seen in Example 1.5.
The vocal hypermetric interpretations in Example 1.5 are a combination of meter and phrase structure. Like meter, there is a periodic pattern of strong and weak accentuation that informs our expectations and the strong accentuation occurs at relatively regularly spaced intervals. But, it is end-directed like phrase structure. The strong accentuation always appears at the end of the hypermeasure.

The goal of this discussion has not been to achieve a definitive analysis of the hypermeter, but rather to show a different interpretation of hypermeter with regards to a vocal melody. As we have seen, hypermeter does not always arise at the level directly above meter. In this case, hypermeter is identifiable at the four-, eight-, and sixteen-bar hypermetric level as recurring iambs. The traditional conception of hypermeter, which is normally analysed as recurring trochees, is too limiting to apply to all music. Perhaps we need to seek further for the best fit.

1.4 Interactive Vocal Meter and Hypermeter in Two Covers of “I’m So Lonesome I Could Cry”

Before we study the specific rhythms and meters of the cover versions, Example 1.6 helps us compare the vocal-meter accentuation of all three versions in the context of the words alone, by comparing how each singer accentuates the syllables of the first strophe.
Example 1.6: Poetic scansion of the first strophe and the placement of strong syllables in the music

Abstract Poetic Scansion

<table>
<thead>
<tr>
<th>Hear that lonesome whippoorwill</th>
</tr>
</thead>
<tbody>
<tr>
<td>He sounds too blue to fly</td>
</tr>
<tr>
<td>The midnight train is whining low</td>
</tr>
<tr>
<td>I'm so lonesome I could cry</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hank Williams</th>
<th>Al Green</th>
<th>Ray Bonneville</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hear that lonesome whippoorwill</td>
<td>(Did you) Hear that lonesome whippoorwill</td>
<td>Hear that lonesome whippoorwill</td>
</tr>
<tr>
<td>He sounds too blue to fly</td>
<td>He sounds too good” to fly</td>
<td>He sounds too blue to fly</td>
</tr>
<tr>
<td>The midnight train is whining low</td>
<td>That midnight train is whining low</td>
<td>The midnight train is whining low</td>
</tr>
<tr>
<td>I'm so lonesome I could cry</td>
<td>I'm so lonesome I could cry</td>
<td>I'm so lonesome I could cry</td>
</tr>
</tbody>
</table>

Key

- **Blue** – syllables appear on the beat
- **Red** – early syncopations
- **Violet** – late syncopations
- **Green** – poetically unaccented syllables that receive unexpected rhythmic accentuation
- **Underline** – syllables appear on downbeats, or syncopated against the downbeat

37 Green sings “good” instead of “blue.” This may be a strange, perhaps mistaken, twist on the meaning of the line that removes the rhyme of “too,” “blue,” and “to” that occurs in the original version and Bonneville’s.
As discussed earlier in this chapter, the text features an alternation of strong and weak syllables. Williams stays true to the poetry by keeping this alternation in his musical setting and by putting every strong syllable directly on the downbeat. As on Example 1.2, blue text on Example 1.6 signifies that a syllable falls directly on the beat; underlining signifies downbeats; black text signifies unaccentuated syllables in general. Williams’s rendition is entirely blue and black, since the vocal rhythms contain no syncopations or other displaced accents relative to the musical meter. (We have already noted above that Williams’s performance does involve accentuation at odds with the poetic scansion, but it is not at odds with the musical meter.)

In their cover versions, Green and Bonneville also emphasize the strong syllables in the text, but not as regularly as Williams’s original recording. In both covers, their stressed syllables do not necessarily fall on downbeats: sometimes they are syncopated relative to the downbeat, arriving an eighth or sixteenth early or late; and they sometimes fall on (or near) other beats. For instance, “lone-” and “-will” in Green’s recording appear late in relation to the beat but are not heard in relation to the downbeat, while “sounds” is syncopated to arrive one sixteenth after the downbeat. (It articulates the downbeat metrically, but is not strictly “on” the downbeat chronometrically.) The reason for these differences has to do with the listener’s interpretation of the meter.

The following examples show a transcription of Green’s version in common time, with two bar phrases. Of course, if you decide to hear Williams’s version in 6/4 rather than 3/4 or Green’s version in 2/4 rather than 4/4, there would be stronger parallels between the two versions of “I’m So Lonesome I Could Cry.” The stressed words would appear in similar locations within the bars. On the other hand, it is a bit unusual to hear a country song from the 1950s in 6/4, and to my ear, there is very little to indicate that the song should be heard in 6/4 other than perhaps
the harmonic rhythm. It is much more plausible to transcribe Green’s version in 2/4 since the harmonies change every half note. If Green’s version is instead notated in 2/4, the phrase structure remains the same as Williams’s original, with exception of the repeated “cry” at the end of the refrain that would be considered extra measures. Nevertheless, common time is still more convincing because of the strong backbeat heard in the drums. The backbeat in Green’s recording uses the snare drum, which is a change of timbre, and it is played louder than the other beats. The tempo of Green’s song also allows for the song to be felt in a quadruple meter. Therefore, I have notated Green’s version in 4/4, but I have also included ticks to show the 2/4 possibility, which allows for easier comparison between Green’s rendition and the original.

Example 1.6 features colour-coding on certain syllables. The colour-coding indicates the placement of accented syllables in the musical meter. Violet text on Example 1.6 (e.g. “sounds”) indicates that the accented syllable appears syncopated shortly after the beat (which may be underlined if a downbeat); red text means that the accented syllable is syncopated shortly before the beat (which again may be underlined if a downbeat). The colour-coding on Example 1.6 allows us to see immediately some of the stylistic and performative differences between the three versions: Williams uses no syncopation whatsoever; Al Green characterizes Lines 1 and 2 with instances of “late” syncopation, and switches to “early” syncopation at the end of Line 3, three times in all; Ray Bonneville never uses late syncopation, but uses early syncopation five times. Green and Bonneville’s renditions are clearly distinct in these respects—in addition to the different meters and genres—although they both use early syncopation at the ends of Lines 3 and

38 The choice of meter for the covers was primarily determined by the treatment of the backbeat. A number of factors need to be examined when determining whether a song with a backbeat is in common time or cut time. The dynamic level, timbre, and rhythm of the backbeat as well as the strength of the other voices and the tempo contribute to how one perceives the meter of the song.
4. For reference, transcriptions of the covers’ vocal lines are included below in Example 1.8 and Example 1.10.

The colour coding on Example 1.6 also includes green text, which is used to indicate poetically unaccented syllables that receive unexpected rhythmic accentuation, usually in the form of syncopation that extends the unaccented syllable into an accented beat. (This is not the same as the syncopations marked with red or violet text as these colour-codings apply only to accented syllables.) Despite the fact that in the melodic meter green text might be considered or at least confused as an early syncopation of the beat, in the vocal meter, green text does not take on an accented position within the bar. Often, it acts as an anacrusis in the vocal melody, as we will see below. A good example occurs in the second phrase of Al Green’s version, transcribed below in Example 1.7. We will discuss this example in some detail, drawing on ideas in the work of David Temperley and Matthew Butterfield. The upper staff transcribes Green’s version, while the lower staff shows a simpler normative rhythm from which it could be derived.

Example 1.7: The second phrase of Green’s version, mm. 7-8

“Sounds” and “good” are stressed syllables in the poetic meter, and both occur syncopated after the beat in this musical setting: they are therefore shown in violet on Example 1.6, and their specific rhythms can be seen in Example 1.7.

David Temperley, in his “Syncopation in Rock: a Perceptual Perspective” (1999), suggests that syncopations in text-settings of popular songs can be shifted (analytically) so that they appear on the beat in metrically stressed positions. Based on his examples, Temperley seems to believe that syncopations always appear early in relation to the appropriate beat and should always be normalized to the following beat timepoint. Matthew Butterfield (2006) seems to concur with Temperley’s belief that all syncopations appear early in relation to the beat, since he only uses the symbol /→| to indicate syncopation. This symbol is useful when syncopations appear early but it does not allow for syncopations that appear late in relation to the beat.

Temperley and Butterfield’s conception of syncopations corresponds to the way that most theorists view syncopation. Traditionally, syncopation is seen as preceding the beat, keeping with the view of meter as primarily an anticipative sensation, not a reactive one. Here, I propose that late syncopations are a possibility in the vocal meter, based on the interaction of the poetic meter with the melodic meter.

Butterfield’s (and Hasty’s) symbol also suggests that the early note acts as an anacrusis to the downbeat, when in actuality the event that would be on the downbeat occurs earlier than expected, and accordingly it does not have the function of an anacrusis (as if to its own accentuated beat). That is, an accented event appears where we might expect an anacrusis, but it is not followed by a subsequent articulated ictus; as an accentuated event, it is still stressed, but metrically destabilized. In many cases, the phenomenal accent anticipated on the beat or
downbeat is articulated early, creating a syncopation. Drawing an analogy between syncopation and anacrusis, as Butterfield does, is in fact confusing.

In cases where we can clearly argue that a syncopated note is a displaced beat or downbeat, I will instead use the following symbols: |→| and |←|. I use the symbol |→| when the syncopation appears early in relation to the beat. I use the symbol |←| when the syncopation appears late in relation to the beat. The broken vertical line represents the metric expectation of an onset at a certain beat location that is not realized. These very often are downbeats, or a beat that is more highly articulated than beats around it, e.g. beat 3 in 4/4. The solid vertical line represents the onset of the sound that we would expect to appear on the beat. The arrow shows whether the onset appears early (→) or late (←) in relation to its corresponding normative metric location. It is worth noting that the direction of the arrow always represents a retrospective understanding. When an event comes early, the arrow points (retrospectively) “forward” to its “proper” later location, an understanding that arises (or is confirmed) only when that later timepoint occurs but is not articulated by an attack: |→|. Similarly, when an event that was expected earlier comes late, the arrow points (retrospectively) “backward” from the actual event to its expected “proper” earlier location that was not articulated by an attack: |←|. This reflects an understanding that again arises only when the later of the two timepoints occurs. The direction of the arrows expresses an unfolding experiential hearing of accentuation and metric alignment.

As noted above, in Green’s cover of “I’m So Lonesome,” it is clear that “sounds” and “good” appear late in relation to the beat (as shown in violet on Example 1.6 and Example 1.7). While “sounds and “good” are both rendered with late syncopations and share a similar character in that respect, they are performatively nuanced. “Sounds” occurs one sixteenth after the
downbeat, and lasts a dotted quarter in total (interonset) duration; “good” occurs one eighth after the downbeat, and lasts a quarter. “Sounds” is in these two respects more disruptive and more emphasized than “good,” and the tension level drops a bit as the line continues to “good.” At the beginning of m. 7, Green is subdividing the beat into sixteenths, but towards the latter half of the measure, he starts subdividing the beat into eighths. The onset of “sounds” only one sixteenth after its rightful position on the downbeat of the bar is very unstable, making “sounds” more disruptive to the rhythm and meter than “good.” “Good,” while late in relation to its proper position within the bar, feels much more natural and less disruptive because its initial onset happens an eighth after its rightful position (on a more stable subdivision of the beat).

Between “sounds” and “good,” “too” also receives rhythmic accentuation since it is extended through the next beat. This creates some ambiguity as to whether “too” or “good” is the truly strong syllable in the setting. The syncopation of “too” is different from both “sounds” and “good,” and this fact renders the performance of Line 2 very fluid and unpredictable. In fact, “too” is not syncopated at all, in either way defined above; it is an anacrusis to “good,” but its duration is extended because “good” arrives later than expected. (To be syncopated, a duration needs to be heard early or late in relation to its normative metric position—on a beat—but in this case, “too” is not expected to be on a beat, but as an anacrusis to “good,” which is subsequently heard as being late in relation to its normative metric position on beat 3 of m. 7.) In Example 1.7, I have analysed “too” both poetically and musically as an anacrusis leading to the syncopated “good” that arrives one eighth-note late. At first glance, one might think that “too” is the strong syllable, appearing one sixteenth before the third beat of the bar, and that “good,” appearing one eighth after beat 3 is in the slightly weaker position. This hearing is emphasized, not only because “too” extends into the next downbeat, but also because the 2:6 melodic iamb in
the normative setting becomes a 3:4 proportion in Green’s version, which could be read as a 3:4 iamb or a 3:4 trochee. Hearing “too” as the stronger syllable does not comport with the poetic scansion, however, which gives “good” precedence, i.e. “too good” (the equivalent of “too blue” in Williams’s original) is a poetic iamb as determined in Example 1.1. (The alternation of one weak syllable followed by one strong syllable in the second line of the text allows us to scan this line poetically as a series of iambs.) This forces us to want to hear “good” as a strong syllable that appears in a strong metric position within the bar. Therefore, we hear “good” as a late syncopation of beat 3. The normative setting, shown below Green’s setting on Example 1.7, further elucidates this interpretation. The normative setting removes the syncopations to show the “proper” location of the syllables. To create his rhythmic setting of the text, Green positionally shifted and durationally extended the anacrusis “too,” causing the (late) syncopation of “good.” On Example 1.6 and Example 1.7, “too” is consequently rendered in green: it is an unaccented syllable (poetically) that receives performative accentuation in the vocal rhythm.

“He” is also rendered in green. There is less debate than “too” and “good” about which syllable, “he” or “sounds,” is accented in the musical setting, but “he” nevertheless receives unexpected accentuation because it is shifted so that it extends through the downbeat. Like “too,” “he” is an anacrusis rather than a syncopation. Although “he” is shifted so that it extends into the downbeat (receiving unexpected accentuation in the melodic meter), it is not expected to be heard on the downbeat in the vocal meter, so it is not a syncopation. Again, examining the normative version, without syncopations, we see that “he” is shifted one sixteenth late in Green’s

40 The 3:4 trochee is an inverted trochee. Typically, but not necessarily, the rhythmic durations associated with accented events are longer than the rhythmic durations associated with unaccented events. An inverted rhythmic group occurs when the rhythmic durations associated with unaccented events are longer than the rhythmic durations associated with the accented events. Cooper and Meyer first introduced the concept of inverted metric groups in their book *The Rhythmic Structure of Music* (1960, 29-32).
version, causing “sounds” to also appear late by one sixteenth. “He” retains its function as an anacrusis, and because “sounds” appears on the beat in the normative setting, its late arrival in Green’s recording makes it a late syncopation.

The methodology established in this discussion of syncopation in Green’s version will be used throughout this thesis. Both prosodic and agogic stresses are taken into consideration when the stressed syllable is unclear in the musical setting. “Sounds” and “good” are prosodically and agogically stressed making them the truly strong syllables in mm. 7-8 of Green’s setting. And, because of their position within the bar, they are late syncopations.

As we saw, the first two phrases in Williams’s original feature parallelism in the melody and its melodic meter. In contrast, Green deemphasizes the parallelism of the first two phrases in his version by altering the rhythm of the ascending major third motive. Example 1.8 shows a metric analysis of Green’s cover that allows for comparison of the musical parallelism found in Williams's version and its de-emphasis in this rendition.
Example 1.8: Metric analysis of Al Green’s 1973 cover of “I’m So Lonesome I Could Cry”

By altering the rhythms and meter of Williams’s “I’m So Lonesome I Could Cry,” Green alters our perception of the melodic meter and vocal meter. As discussed above, Williams forced melodic iambs on poetic trochees in the first line of his original. In the covers, we no longer hear the first two phrases as melodic and vocal iambs, as we do in the original. In Green’s rendition
(Example 1.8), the first line of text (first two measures) can be heard melodically and vocally as amphibrach-with-compound-anacrusis • trochee • monosyllable • iamb. The addition of “did you” at the beginning of the song and the brief, but important, pause in between “that” and “lone-” creates an amphibrach-with-compound-anacrusis. The early appearance and resultant lengthening of “-some” by one sixteenth-note encourages us to hear “-some” as a continuation of “lone-” rather than an anacrusis to “whip-.” Because of the rhythmic setting of the melody on “whippoorwill,” “whip” is a monosyllable, while “-poorwill” is a 4:5 iamb. (Durations are measured in sixteenths.)

The reading of the second phrase is mostly in alignment with the poetic meter, which was interpreted as three iambs. The non-syllabic setting of “fly” makes “to fly” an amphibrach—the combination of an iamb and a trochee—in the melodic meter. The melodic meter of the third phrase also retains certain features of the poetic meter.41 “That midnight train” is set as melodic iamb rather than as amphibrach • monosyllable, but Green realigns with the poetic meter in m. 10 by suggesting a melodic amphibrach in his 2:4:2 rhythmic setting of “is whining” that is followed by the monosyllable “low.” The amphibrach’s duration and alignment in turn forces the monosyllabic foot “low” to arrive one eighth before the third beat as an early syncopation. (The following descending minor third portato does articulate the downbeat, but it does not undermine the early syncopation that essentially characterizes “low.” One might say that the portato re-establishes a degree of metric stability at the end of the phrase, without reducing the effect of the syncopated arrival.)

Green uses much syncopation in his version. These syncopations can greatly affect the way we perceive the melodic meter and the vocal meter. The fourth phrase of Green’s version

41 The poetic meter of the third line of text is amphibrach • monosyllable • amphibrach • monosyllable.
exemplifies this idea. Example 1.9 shows the metrical shifts that create the syncopations in mm. 11-14 in the Green. It also shows the melodic meter of the recording and of a hypothetical unsyncopated, normative version.

Example 1.9: Metrical shifts in Green’s version, mm. 11-14

![Diagram showing metrical shifts in Green’s version, mm. 11-14.](image)

The overall reading of the passage is similar: the syncopated version can be heard as an amphibrach-with-compound-anacrusis • monosyllable • iamb • monosyllable, while the unsyncopated version can be heard as an amphibrach • trochee • monosyllable • monosyllable. By syncopating the rhythms so that they appear either a sixteenth or an eighth before the beat, the rhythmic proportions change and the setting aligns with the poetic meter of the text. In the syncopated version, “could” is much shorter than the other syllables around it. This allows us to group “could” with “cry” in the syncopated recorded version, rather than with “I” as it is in the unsyncopated representation. We typically hear 1:1 proportions, such as “I could” in the unsyncopated rendering, as trochees or the second half of an amphibrach because, unless there is another factor, such as dynamics, contour or musical accent, that suggests that the second duration acts as an anacrusis to the following duration, it will more typically be heard as a continuation of the previous duration.
The rhythmic setting of Bonneville’s version (Example 1.10) also avoids repetitive melodic iambs. Bonneville’s version could easily be notated in common time, but I have chosen to transcribe it in cut time to reflect its laidback feel. Unlike Green’s version, the backbeat in Bonneville’s recording does not sound stronger than the other beats around it. There is also no change in timbre and only a slight change in dynamic. Additionally, the rhythm of the backbeat, which is sometimes referred to as a double backbeat (reproduced in Example 1.11) gives the song a feeling of cut time. By notating the rendition in cut time, the parallelisms between its rhythms and the original also become clearer.

42 The backbeat does not have a “stopped” feeling; it instead continues to the next beat.
Example 1.10: Metric analysis of Ray Bonneville’s 2014 cover of “I’m So Lonesome I Could Cry”

Example 1.11: Double backbeat

The first phrase of Bonneville’s version adheres to the other possible reading of the poetic meter of the first line; the melodic meter, like the poetic meter, can be interpreted as three trochees and a monosyllable. This hearing is due to the 5:3 interonset durational proportions in the first two measures of the vocal melody. The extended length of the rhythmic duration associated with the unaccented event causes it to be closer associated with the preceding accented event than the following one. The rests certainly aid this hearing since they physically segment the feet, but even if the rests were not present, the trochees would still be heard due to the length of the rhythmic duration associated with the unaccented event. The fourth phrase also aligns with the poetic meter and is interpreted as amphibrach-with-compound-anacrusis • monosyllable • iamb.

The second phrase and third phrases, on the other hand, are in conflict with the poetic meter. The melodic meter of the second phrase features a monosyllable, amphibrach and another monosyllable, but the poetic meter wants us to hear it as three iambics. The proportion of “too blue to” is 2:4:3. The extended length and metrically strong position of “to” causes it to be heard as a continuation of “blue” rather than an anacrusis to “fly.” The third phrase adheres to the poetic meter of the second half of the line, “is whining low,” but the musical setting of the first half, “the midnight train,” does not. The 4:7:7:14 proportions of “the midnight train” make it difficult to interpret mm. 17-18 in terms of feet. The syllable “-night” could be considered a continuation of “mid-,” but it could also be seen as an anacrusis to “train.” In Example 1.10, I have analysed “-night” as a syncopation to the following strong metrical position, beat 2. In this analysis, “the midnight train” is read as iamb • monosyllable • monosyllable. The rhythmic setting of “-night” blurs its function in the melodic meter.
Despite the fact that these versions are very different, Green and Bonneville’s rhythms are not entirely different from those in the original. As Example 1.12 shows, both incorporate the 1:5 (or a variation of such) proportions from Williams’s recording, but in very different ways. Green varies the 1:5 proportion using 2:6, 3:4, and 2:8 melodic iambics, while Bonneville changes the interpretation of the 1:5 proportions by making them literal 5:1 trochees (5:3 interonset durations).

Example 1.12: 5:1 proportions in the cover versions

a) Green, altered 1:5 iambics, mm. 6-8

```
whip - poor - will____ He___ sounds____ too____ good to fly. That
```

b) Bonneville, 5:1 trochees, mm. 9-10

```
Hear____ that lone - some
```

As discussed above, “he” and “too” in Green’s rendition lead into the following longer durations, which creates 2:6, 3:4, and 2:8 melodic iambics. These proportions are varied versions of Williams’s 1:5 iambics. Thus, mm. 7-8 read as irregularly proportioned iambics. By using frequent syncopations in his setting, Green gives his melody a characteristic soul feel.44

44 Stuessy and Lipscomb (2006, 196) regard soul music as a combination of R&B and gospel characteristics with a free vocal style. Soul music typically features short vocal phrases, call and response, frequent syncopations, melisma blue notes, and a wide variety of vocal timbres.
Interestingly, Bonneville uses the same literal proportion as the original at the beginning of his version, but our sensation of the rhythmic proportion is not the same as those in the original because the context of the rhythm is different. (Of course, the 5:3 interonset durations are ultimately what is audible and gives the trochee effect, but for the sake of comparing the two versions—Bonneville’s and Williams’s—the 5:1 literal duration is referenced. It is important to keep in mind that the 5:1 proportion in the Bonneville on “hear that” in m. 9 is a literal duration rather than an interonset interval (IOI).) Bonneville situates the 5:1 literal duration in a 2/2 measure so that it becomes a 5:3 IOI duration, and as a result, the character of the proportion changes. In the original, it was difficult to imagine the 1:5 proportions as anything but iambic; the short duration always wanted to lead to the following long duration. The 1:5 vocal iambics in the Williams produces a stuttering effect with the word “lonesome,” by breaking the syllables of the word up into two different feet. Bonneville changes this by performing the song in 2/2, which requires a change to the 1:5 rhythms from the original. He may retain the literal proportion from the original but the rest (and subsequent lengthening of the IOI of the shorter duration) causes the short duration to function as a continuation of the previous longer duration, which also forces the 5:1 literal proportion to be a melodic trochee. The extended length of the rhythm associated with the unaccented moment, which is aided by the separation created by the rest, does not allow the short duration to act as an anacrusis to the following longer duration. Bonneville thus aligns the poetic meter and melodic meter, allowing us to unquestionably interpret the vocal meter as trochees.

Cover songs can change the original in minor or major ways, but in order for a listener to recognize a song as a cover, there must be an earlier recording of the song to which the newer version is compared, and the newer version must have some resemblance to the original one in
terms of lyrics, instrumental timbres, rhythms, and/or melodic contour.\(^{45}\) Despite their syncopations (indicated by colour-coding), Green and Bonneville’s versions nonetheless generally retain the characteristic long-short durational pattern from Williams’s original for most of the arrangements. This assists a listener to recognize the later versions as cover songs of the original. The identity of the original song remains in the covers because certain characteristic features, such as the long-short durational pattern, the contour of the melody and the 5:1 proportions are retained in Green and Bonneville’s arrangements despite the metric changes.\(^{46}\)

The covers also share certain similarities with regards to the hypermeter of Williams’s original. Like the original, the hypermeters in the covers are iambic, but the level at which they occur is different in the Green version, as we will see. Example 1.13 shows the hypermetric analysis of the cover versions.

\(^{45}\) If the listener cannot hear a resemblance to the entire original song, the newer version would not be referred to as a cover. In this case, however, every aspect of the song, the melody, harmonies, rhythmic structure, instrumental timbres, and possibly even the lyrics would need to be changed. This type of song, though rare, would be regarded as distinct from the original. For example, Coolio’s “Gangsta’s Paradise” features the chorus from Stevie Wonder’s “Pastime Paradise” but the verses are very different. Thus, “Gangsta’s Paradise” is a distinct song, and not a cover of Wonder’s song. Coolio’s song samples Wonder’s song.

\(^{46}\) Kurt Mosser (2014) provides a more in-depth discussion of what makes a song a cover in his article “‘Cover Songs’: Ambiguity, Multivalence, Polysemy.” He also postulates categories of cover songs, suggesting that not all cover songs relate to the original in the same way.
Example 1.13: Hypermetric analysis of the covers of “I’m So Lonesome I Could Cry”

a) Al Green’s 1973 version

Did you hear that lonesome whippoorwill He sounds too good to fly

midnight train is whining low I’m so lonesome I could cry

Did you
Example 1.13 continued

b) Ray Bonneville’s 2014 version

Hear that lone - some whip-poor-will. Sounds too blue to fly.

mid-night train is whining low. I'm so lone - some I could cry.

I've
As noted earlier, a two-bar hypermetric level of the Williams is impossible because the phenomenal and prosodic accents do not appear regularly on the hyperbeats. In Green’s version, one transcribed-measure is equal to two transcribed-measures in the Williams. As a result, a two-bar hypermeter can be established in Green’s cover. Also, the early arrival of "low" here and Green’s tendency to fade away at the end of phrases suggest that the climax "whin-" is being conceived as having the main stress of the line, not "low." The two-bar hypermeter reads as recurring iambs. A hypermeter can also be established at the next level, although it will be a non-isochronous hypermeter. The first four bars read as an iamb, while the last six bars are interpreted as an amphibrach. The extension of m. 12 creates this non-isochrony. Because the song is strophic and therefore repetitive, it is possible to hear this non-isochronous hypermeter. Focusing our attention on the rhymes at the ends of the four-bar phrases allows us to hear the non-isochronous hypermeter at this level. The last two bars are heard as an extension, an interruption of the regular four-bar hypermeter. Higher levels of hypermeter are impossible because of the irregular phrase structure. The slow tempo of Green’s version also plays a role in our inability to internalize higher levels of hypermeter. Bonneville, on the other hand, retains the hypermeter of Williams’s original verbatim (Example 1.13b). The only difference between the two recordings is that Bonneville’s version syncopates the arrivals.

1.5 Conclusion

The purpose of this chapter was to introduce larger questions that arise when analysing the vocal melody of similar, yet different songs, and to introduce and deploy the methodology that will be used throughout the rest of this thesis. The issues explored here, such as the difference between poetic meter, melodic meter and vocal meter, and the associated hypermeters, have led us to contemplate larger issues requiring further thought. In the following chapters, the
methodological ideas developed in this chapter, such as the analytical techniques and the use of
durational proportions, will be used analytically to compare other cover songs to their originals
when the cover is in a different meter than its counterpart.
Chapter 2: Exploring Interactive Vocal Meter and Hypermeter in Two

Versions of the Beatles’ “I’ll Be Back”

The Beatles recorded many takes of “I’ll Be Back” before creating the version that ultimately appeared on the soundtrack LP *A Hard Day’s Night* (1964). In 1995, two of the takes from the studio sessions in 1964 were released in *Anthology 1*, one of which was rather different from the known 4/4 version found on the soundtrack LP. The demo version in this anthology reveals that at one time the Beatles may have intended to record the song in 6/8.\(^{47}\) Ultimately, the song was awkward to sing in compound meter (as Lennon bemoans towards the end of the demo), so the band recorded the final version in 4/4. John Lennon and Paul McCartney share songwriting credit for most of the Beatles’ songs, but “I’ll Be Back” was written by Lennon. Therefore, while discussing the composition of this song, I will refer primarily to Lennon’s contributions.

2.1 The Form of the Beatles’ “I’ll Be Back”

The form of “I’ll Be Back” is slightly unusual for a popular song. Walter Everett refers to the song as a rondo (A-B-A-C-A-B-1/2A-Coda) with verse-refrain A sections and bridge-like episodes for the B and C sections.\(^{48}\) Everett’s analysis of the form has merit since he seems to be making an analogy with art-music rondos, but I prefer to analyse it slightly differently, in a way that relates more directly with popular songs.

\(^{47}\) John Lennon counts in the band in 3, but it makes better sense to put the song in compound duple meter. The chords change every six beats. Transcribing the demo in 6/8 allows for easier comparison with the 4/4 version from the soundtrack LP.

Everett acknowledges the chorus-like quality of the verses by referring to the A sections as verse-refrains, but I prefer to refer to the A sections as simply verses.\(^4^9\) A refrain is similar to a chorus, but it is usually shorter (one or two lines of text), makes reference to the title of the song, and cannot stand alone as its own section. The title line, “I’ll be back again,” only appears in the first verse and the shortened verse at the end of the song. If this line were truly a refrain, as Everett claims, it would return in each A section. Because it does not do so, I believe it is best to simply refer to the A sections as verses.

Everett describes his B and C sections as having a bridge-like quality. These sections unquestionably sound like bridges since they begin off tonic (the first and third iterations begin with vi while the second one begins with ii) and end with a dominant retransition, exemplifying bridge section traits noted by Drew Nobile.\(^5^0\) The similarities between the bridge sections seem to be overlooked in Everett’s analysis of the form. The second bridge, while different from the first, still relates to it in many ways. All of the bridges feature “you” rhymes and an abba rhyme scheme (the second bridge adds a fifth line which gives it an overall rhyme scheme of abbac). Additionally, each bridge ends with the tag “oh ho oh ho…” And while the verses move from A minor to A major, the bridges are all in A major. The bridges also share motivic material; all of the bridges feature a descending third filled in with a step. Because of these similarities, I prefer to identify these sections as bridges, rather than bridge-like episodes (Everett). I therefore prefer to represent the form of “I’ll Be Back” by ABAB’ABA’, where Everett’s B and C sections are indicated by the same letter since these sections are too similar to earn their own letter

\(^{4^9}\) In the A sections, the music of the A sections returns nearly verbatim each time, with the final instance shortened to just two lines of text (or 5 bars of written music), there is text repetition between some of the sections, and there is a greater emphasis on “you.” These characteristics give the A sections a chorus-like quality.

\(^{5^0}\) Drew Nobile (2011) discusses characteristic harmonies of bridge sections in his article “Form and Voice Leading in Early Beatles Songs.”
designations. Table 2.1, shown below, summarizes the subtle, but important, distinctions between Everett’s interpretation of the form and mine against the text. For the rest of the chapter, I will refer to the sections of “I’ll Be Back” as verses or bridges as outlined in the third column of Table 2.1.

2.2 Interactive Vocal Meter in The Beatles’ “I’ll Be Back”

Following the methodology set up in chapter 1, we will begin our discussion of vocal meter in the 4/4 version from the soundtrack LP and 6/8 demo versions of “I’ll Be Back” by examining the poetic meter of the song’s lyrics and the melodic meter of the melodies’ durations. Once the poetic meter and melodic meter have been established, we will examine the vocal meter—the interaction of the poetic meter and melodic meter. Not only does Table 2.1 outline the differences between Everett’s analysis of the form and my analysis, it also gives one possible interpretation of the poetic meter of “I’ll Be Back.”
Table 2.1: Text of “I’ll Be Back,” form and poetic meter

<table>
<thead>
<tr>
<th>Everett’s Form</th>
<th>My Form</th>
<th>Text</th>
<th>Poetic Meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>Verse 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>You know</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If you break • my heart • I'll go</td>
<td>ANA • I • I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>But I'll • be back • again</td>
<td>I • I • I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cause I</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Told you once • before • goodbye</td>
<td>ANA • I • I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>But I • came back • again</td>
<td>I • I • I</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>Bridge 1</td>
<td>I • I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I love • you so</td>
<td>ANA • M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I'm the one • who wants you</td>
<td>M • ANA • AMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes, • I'm the one • who wants you</td>
<td>T • T • T • T • M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oh ho • oh ho, • oh ho • oh ho, • oh</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>Verse 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>You</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Could • find better • things • to do</td>
<td>M • AMP • M • I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Than to break • my heart • again</td>
<td>ANA • I • I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This time</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I will try • to show • that I'm</td>
<td>ANA • I • I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Not trying • to • pretend</td>
<td>AMP • M • I</td>
</tr>
<tr>
<td>C</td>
<td>B’</td>
<td>Bridge 2</td>
<td>I • I • I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I thought • that you • would realize</td>
<td>I • I • I • I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>That if • I ran • away • from you</td>
<td>I • I • I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>That you • would want • me too</td>
<td>I • I • I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>But I • got a big • surprise</td>
<td>I • ANA • I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oh ho • oh ho, • oh ho • oh ho, • oh</td>
<td>T • T • T • T • M</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>Verse 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Repeat of Verse 2(3rd stanza of text)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>Bridge 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>I wanna • go</td>
<td>AMP • M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>But I hate • to leave you,</td>
<td>ANA • AMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>You know • I hate • to leave you,</td>
<td>I • I • AMP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oh ho • oh ho, • oh ho • oh ho, • oh</td>
<td>T • T • T • T • M</td>
</tr>
<tr>
<td>1/2A</td>
<td>A’</td>
<td>Verse 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>You,</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If you break • my heart • I'll go</td>
<td>ANA • I • I</td>
</tr>
<tr>
<td></td>
<td></td>
<td>But I'll • be back • again</td>
<td>I • I • I</td>
</tr>
</tbody>
</table>

Key

- • divides text into poetic feet
- ♦ divides single word into two poetic feet
- M – monosyllable
- T – trochee
- I – iamb
- AMP – amphibrach
- ANA – anapest
Similar to “I’m So Lonesome I Could Cry” (examined in chapter 1), the lyrics of “I’ll Be Back” mostly involve disyllabic feet, with the occasional monosyllable and trisyllabic foot. The text of “I’ll Be Back” scans mostly as feet that begin with unstressed syllables – iambs, anapests and amphibrachs. Monosyllables occasionally fill in gaps between these three types of feet. Trochees only appear at the end of the bridges on “oh ho oh ho.” It is best to interpret these nonsense syllables as trochees because they are devoid of meaning and as a result we automatically typically put the most accentuation on the first part of “oh ho.”

The poetic scansion shown in Table 2.1 is of course only one interpretation; others are certainly possible if one adopts different criteria for analysing the text. As Derek Attridge points out, groupings are determined by the “speaker’s sense of how language is divided up.”51 The three criteria established in chapter 1 put limitations on the possible ways of interpreting the text in this thesis: 1) two- and three-syllable feet are preferred but four-syllable feet are possible if deemed necessary by the following two stipulations, 2) a foot cannot have two strong syllables, and 3) a word cannot be split into different feet, unless the word contains two strong syllables. Interestingly, even though the verses are set to the same music, as are the first and third bridge, the poetic scansion of each stanza (verse or bridge) is entirely different—with exception of the verse that is repeated verbatim. As we will see, this has a bearing on the vocal meter of the melodies.

Example 2.1 shows the stressed syllables in the poetic meter and those in the musical setting of the text in the two versions of “I’ll Be Back.” The colour coding and underlining shows the position of the accentuated syllables in the melodic setting. A key that explains the annotations accompanies the table; it employs the same method that was used in chapter 1.

51 Attridge, Poetic Rhythm, 38.
Example 2.1: Comparison of stressed syllables in “I’ll Be Back”

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>You know</td>
<td>You know.</td>
<td>You know.</td>
</tr>
<tr>
<td>If you break my heart I'll go</td>
<td>If you break my heart I'll go</td>
<td>If you break my heart I'll go</td>
</tr>
<tr>
<td>But I'll be back again</td>
<td>But I'll be back again</td>
<td>But I'll be back again</td>
</tr>
<tr>
<td>Cause I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Told you once before goodbye</td>
<td>Told you once before goodbye</td>
<td>Told you once before goodbye</td>
</tr>
<tr>
<td>But I came back again</td>
<td>But I came back again</td>
<td>But I came back again</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I love you so</td>
<td>I love you so</td>
<td></td>
</tr>
<tr>
<td>I'm the one who wants you</td>
<td>I'm the one who wants you</td>
<td></td>
</tr>
<tr>
<td>Yes, I'm the one who wants you</td>
<td>Yes, I'm the one who wants you</td>
<td></td>
</tr>
<tr>
<td>You,</td>
<td>You,</td>
<td>You,</td>
</tr>
<tr>
<td>Could find better things to do</td>
<td>Could find better things to do</td>
<td>Could find better things to do</td>
</tr>
<tr>
<td>Than to break my heart again</td>
<td>Than to break my heart again</td>
<td>Than to break my heart again</td>
</tr>
<tr>
<td>This time</td>
<td>This time,</td>
<td>This time,</td>
</tr>
<tr>
<td>I will try to show that I'm</td>
<td>I will try to show that I'm</td>
<td>I will try to show that I'm</td>
</tr>
<tr>
<td>Not trying to pretend</td>
<td>Not trying to pretend</td>
<td>Not trying to pretend</td>
</tr>
<tr>
<td>I thought that you would realize</td>
<td>I thought that you would realize</td>
<td>I thought that you would realize</td>
</tr>
<tr>
<td>That if I ran away from you</td>
<td>That if I ran away from you</td>
<td>That if I ran away from you</td>
</tr>
<tr>
<td>That you would want me too</td>
<td>That you would want me too</td>
<td>That you would want me too</td>
</tr>
<tr>
<td>But I got a big surprise</td>
<td>But I got a big surprise</td>
<td>But I got a big surprise</td>
</tr>
<tr>
<td>Repeat of Verse 2(3rd stanza of text)</td>
<td>Repeat of Verse 2(3rd stanza of text)</td>
<td>Repeat of Verse 2(3rd stanza of text)</td>
</tr>
</tbody>
</table>

I wanna go	I wanna go	I wanna go
But I hate to leave you,	But I hate to leave you,	But I hate to leave you,
You know I hate to leave you,	You know I hate to leave you,	You know I hate to leave you,
You,	You,	You,
If you break my heart I'll go	If you break my heart I'll go	If you break my heart I'll go
But I'll be back again	But I'll be back again	But I'll be back again

Key

- **Blue** – syllables appear on the beat
- **Red** – early syncopations
- **Violet** – late syncopations
- **Green** – poetically unaccented syllables that receive unexpected rhythmic accentuation
- **Underline** – syllables appear on downbeats, or syncopated against the downbeat

There are many noticeable similarities and differences between the 6/8 demo and 4/4 version of “I’ll Be Back.” The main difference is the treatment of downbeats. In the 6/8 demo
version, the downbeats always retain their metric position, as indicated by the prevalence of blue
text, whereas the 4/4 single version features many syncopated downbeats, which are noticeable
by the increased amount of red text. Syncopation is a common feature in rock songs that are in
4/4, but it is perhaps less common when popular songs use meters that are not as conventional
for the style. The rhythm and accent patterns of the 6/8 demo version are relatively traditional
compared to the highly syncopated 4/4 version from the soundtrack LP. Common time is very
square, unless the eighths are swung or beats are syncopated. Perhaps, 6/8 meters in popular
music do not need as much syncopation as common time since there is already a lilting, uneven
feel inherent in 6/8.

The stressed syllables in the poetic meter and the metric position of the words in the
musical setting are (for the most part) similar. The accentuated syllables in the poetic meter are
generally accentuated in the musical setting by being on or syncopated in relation to a strong beat
in the measure. There are some interesting differences, however, which can be seen in Example
2.1. The third and sixth lines of the first verse are especially intriguing. The poetic meter of
these lines is iambic. In the 6/8 demo version, the Beatles deemphasize the normative
accentuation of “back” suggested by the poetic meter, and place unexpected accentuation on
“be” and “came.” (Of course, one could hear these as weak (as part of a hemiola), but because
Lennon counts the group in using “1, 2, 3, 1, 2,” the fourth eighth note in the 6/8 bar can be felt
as a relatively strong beat in relation to the other eighth-note beats around it. If heard this way,
we can identify “back” as a late syncopation of the fourth eighth in the bar, as has been done
here.) In contrast, the Beatles accentuate “back” in the 4/4 version by placing it on beat three of
the measure, but they give special emphasis to the first syllable in “again” by making it a longer
duration than “back.” Example 2.2 shows the first six measures of the 6/8 demo and the 4/4
According to Tony Barrow, the Beatles’ publicist, Lennon sings the lead vocal (to me, his vocal sounds double-tracked), while McCartney and Harrison sing harmonies above Lennon’s vocals. In the following transcriptions, I chose to notate Lennon’s lead vocal part, as the harmonies are not essential to the following discussion. The poetic meter, melodic meter, and vocal meter interpretations shown in Example 2.2 use Hasty symbols, and the end-accent symbol (↓) and syncopation symbols (→| or ←|) already discussed in chapter 1. The blue and red text in the metric analysis highlights places where the poetic meter, melodic meter and vocal meter do not match. The blue text shows that two of the analyses correspond.

Example 2.2: Analysis of melodic meter and vocal meter of verse in both versions

a) **Demo**

The second half of the melody in the verses is the same as the first half, so only the first six bars of the verse are shown in Example 2.2. Also, the two-measure introduction in the 4/4 version is omitted in this and the following examples. This discussion is only interested in the vocal melody, and by beginning the 4/4 version with a quarter-note anacrusis, the measures of the 4/4 recording and the 6/8 demo align. Thus, measure numbers refer to the transcription in the example, not the recording.

52 The second half of the melody in the verses is the same as the first half, so only the first six bars of the verse are shown in Example 2.2. Also, the two-measure introduction in the 4/4 version is omitted in this and the following examples. This discussion is only interested in the vocal melody, and by beginning the 4/4 version with a quarter-note anacrusis, the measures of the 4/4 recording and the 6/8 demo align. Thus, measure numbers refer to the transcription in the example, not the recording.

Example 2.2 continued

b) Single

As Example 2.2a illustrates, the melodic meter of the third and sixth lines of verse 1 (mm. 4-6) in the 6/8 demo reads as iamb • monosyllable • anapest. The vocal meter of these lines, which takes into consideration the poetic prosody and melodic meter, reinterprets our hearing of the melody. The vocal meter of lines 3 and 6 of the first verse (mm. 4-6) read as iambics because the relationship of words in the text (the poetic meter) overrides the simulated poetic feet in the melody (the melodic meter). In the melodic meter of the 6/8 demo version, “be” is interpreted as an early syncopation and “back” as part of an anacrusis to “-gain.” The vocal meter reinterprets these syllables, however. “Be” becomes an anacrusis to “back” that is extended into the next strong beat, which as a result, displaces the strong syllable “back” from its

__

57 Keep in mind that melodic meter only examines the melody, i.e. pitches, contour, and durations. It does not take into account the relationships of words in the text.
rightful accentuated position in the measure. Thus, in the vocal meter, “back” is interpreted as a late syncopation. The unexpected accentuation of “be” that is created by its unusual length and extends it into a metrically strong position in the measure allows us to hear this moment in two different ways. This is similar to the late syncopations in the second phrase of Al Green’s cover of “I’m So Lonesome I Could Cry,” which was discussed in chapter 1. The difference between these examples is the proportions of the iambs. The late syncopations in Al Green’s recording are longer durations than their anacruses, whereas in the 6/8 demo version of “I’ll Be Back,” “be” is double the length of “back,” creating an inverted vocal iamb with a proportion of 2:1 where the rhythmic duration of the unaccented moment is longer than the rhythmic duration of the accented moment. In this case, it is purely the poetic meter that allows us to hear the vocal meter as three iambs with a late syncopation of “back.”

In the 4/4 version, Example 2.2b, the melodic meter of the third and sixth lines of verse 1 reads as amphibrach • trochee • monosyllable. The Beatles place unexpected accentuation on the weak syllable “a-” from “again” by making it longer than “back” and syncopating it relative to the fourth beat of the bar. (“A-” is syncopated against the quarter-note beat and “gain” is against the whole-note beat. “Gain” receives the primary accent because it is syncopated against a higher-level metric position.) This creates an inverted melodic trochee with a proportion of 1:2 for the syllables “back” and “a-.” Although we may feel the “a-” as a continuation of “back” in the melodic meter, we reinterpret our hearing of this syllable in the vocal meter because of the strong association of “a-” to its counterpart “-gain.” “A-” becomes an anacrusis in the vocal meter. Likewise, “be” is reinterpreted in the vocal meter. In the melodic meter, we tend to hear 1:1 proportions like the two quarter notes that begin m. 4 as trochees, but the association of “be” to “back” in the poetic meter allows us to reinterpret our hearing of the melody in the vocal
meter. Thus, while the melodic meter of the third and sixth lines of the verse read as amphibrach • trochee • monosyllable, the vocal meter corresponds to the poetic meter’s recurring iamb. A similar phenomenon happens with the 1:1 rhythms of “break my” in m. 2 of the 4/4 version. In the melodic meter, “my” functions as a continuation of “break” but the strong connection of “my” to “heart” in the poetic meter forces a reinterpretation of “my” in the vocal meter. The poetic meter overrides the melodic meter, in this case, and so “my” acts as an anacrusis to “heart” in the vocal meter, when both the poetic meter and melodic meter are considered.

Although many of the stressed syllables in the lyrics correspond to accentuated melody notes, Lennon puts emphasis on the personal pronouns “I” and “you” in the bridge sections, even when these words are not stressed in the poetic meter, as Example 2.1 shows. For example, when spoken, “love” in the first line of the first bridge is stronger than the preceding “I,” but Lennon chose to accent “I” rather than “love” in both versions of “I’ll Be Back.” Example 2.3 shows analysis of the poetic meter, melodic meter and vocal meter of the first bridge of both versions. The vocal meter corresponds directly to the melodic meter, i.e. the melodic meter overrides the poetic meter, in this case. The melodic meter and the vocal meter of the first line “I love you so” are interpreted as monosyllable • anapest, rather than as two iamb like the poetic meter. Example 2.1 shows that “I” is melodically accentuated in the other bridge sections as well, even though it is not a stressed syllable in the poetic meter.
Example 2.3: Analysis of melodic meter and vocal meter of first bridge in both versions

a) Demo

Poetic Meter:
Melodic Meter:
Vocal Meter:

I love you so... I'm the one who wants you.

PM:
MM:
VM:

b) Single

Poetic Meter:
Melodic Meter:
Vocal Meter:

I love you so... I'm the one who wants you.

PM:
MM:
VM:

Yes, I'm the one who wants you. Oh ho oh ho, oh ho oh ho. Oh.
In the 6/8 demo, the Beatles also place unexpected accentuation on “you” in the “wants you” of the first bridge. The length of “you” in relation to “wants” in the 6/8 demo makes the listener question which word is truly meant to be stressed, if only for a moment. Of course, “wants” and “leave” appear in the strong position on the downbeat of the measure, but because of the duration of “you,” “you” seems to have greater emphasis. Typically, the accentuated note in a melodic trochee is durationally longer than the unaccented note. If “you” is interpreted as being the stronger syllable in this case, “wants” and “leave” take on a kind of anacrustic function. But, because “wants” and “leave” appear on the downbeat and are accentuated in the poetic meter, both the melodic meter and the vocal meter of “wants you” read as inverted trochees with literal proportions of 1:5 or 1:2.

While the metric analysis of the verses suggests that the two versions are quite dissimilar because of the treatment of the downbeats, the first bridge section exudes many similarities, as can be seen in Example 2.3. In the 6/8 demo version, the “I’m the one who wants you” lines suggest a duple meter. Lennon creates a hemiola by singing four syllables in the span of three eighth notes. These rhythms are so quick and “one” is heard against a weak beat (the sixth eighth-note), so it is better to understand the rhythms in mm. 14 and 16 as hemiolas, rather than understanding “one” as a syncopation. In the 6/8 demo version, these four syllables have a swing feel with 2:1 proportions. When the Beatles rearranged “I’ll Be Back” into common time, they retained the general rhythm and placement of “I’m the one who” within the bar. Example 2.3 allows comparison of “I’m the one who” from both versions. This line always begins half way through the bar and each note is relatively equal in duration (2:1 proportions). The melodic meter and the vocal meter are analysed as dactyl (with extended continuation) • trochee.

58 The eighth notes in the 4/4 version are swung, i.e. two written eighths equal a triplet quarter and triplet eighth aurally. The transcription uses straight eighths for easier reading.
When “yes” is added at the beginning of the next line, the melodic meter and vocal meter become amphibrach (with extended continuation) • trochee. The last line of the bridges “oh ho oh ho…” are also treated similarly in both recordings. In both versions, the Beatles stress the first, fourth, fifth, and eighth syllables, giving the line a triple feel. Singing the “oh ho…” line with a triple subdivision fit the compound meter well, and they must have liked the way that it sounded because, when they changed the song to simple meter, they kept the triple division of the 6/8 version for this line. In order to adhere to the simple meter, however, the downbeats need to be syncopated in the 4/4 version. The placement of “so” (in the first line of the bridge) and the second and fourth “ho” syllables are the only differences in the metric analysis of the first bridge in the two recordings.

2.3 Asymmetrical Phrase Structure and Non-Isochronous Hypermeter in “I’ll Be Back”

Before examining the hypermeter of “I’ll Be Back,” we must look at its interesting phrase structure. There are a number of ways to interpret the phrase structure of “I’ll Be Back” depending on how we understand the segmentation of the verse’s text into lines and the motives of the vocal melody.

Based on the online lyrics databases consulted, the verse of “I’ll Be Back” seems to normally be written as a quatrain, but it can also be written as a sestet, as shown in Example 2.4. The verse has much more balanced lines of 9-6-9-6 syllables if it is written as a quatrain, however, the rhyming of “know” and “go,” and “I” and “bye” suggest a sestet structure of 2-7-6-2-7-6 syllables, with extremely short first and third lines. When written as a quatrain, the internal rhyme structure of the first and third lines of the quatrain is not easy to see. Additionally, the rhyme scheme of the sestet is aabaab, a very common rhyme scheme in popular music, especially the blues.
Example 2.4: Quatrain versus sestet verse structure of “I’ll Be Back”

<table>
<thead>
<tr>
<th>Quatrain</th>
<th>Sestet</th>
</tr>
</thead>
</table>
| You **know** if you break my heart I'll go, | You **know**,
| But I'll be back **again**. | If you break my heart I'll go,
| Cause I told you once before goodbye, | But I'll be back **again**.
| But I came back **again**. | Cause I,
| | Told you once before goodbye,
| | But I came back **again**. |

Lennon emphasizes the sestet structure with his vocal melody. Using blue circles, Example 2.5 highlights the motive that determines phrase endings and beginnings in the vocal melody of “I’ll Be Back."

The motive comprises a held A-natural and the note (usually an eighth note) that directly precedes it. Lennon develops this motive slightly, mostly by adding ornaments, but also by approaching it by decreasing intervals — first by perfect fourth, then by whole-tone, and finally by semitone. Interestingly and significantly, every time Lennon sings “again,” the melody returns (again) to the unornamented A-natural heard in the opening statement of the motive. Lennon’s intriguingly nuanced use of this “motive” indicates that the lyrics of the verse should be separated into six lines since the motive happens six times in the verse. The structure of the poetic stanza and the function of the motives—as a beginning or an ending—affect the phrase structure of the melody.
Example 2.5: Motives in “I’ll Be Back” (single)

1. You know if you break my heart I’ll go,
2. You could find better things to do

But I’ll be back again

Cause I

This time
Example 2.6: Phrase structure in the verse of “I’ll Be Back” (single)
Example 2.6 illustrates the various possible interpretations of the verse’s grouping structure. The first six bars of the verse are identical to the last six bars, so again only the first half of the verse is shown in this example.

Walter Everett understands the verse as a quatrain and analyses the phrase structure as a repeated 4+2 bar grouping (what is possibly meant by this grouping is indicated in green on Example 2.6). Everett does not explicitly define the beginning and endings of the phrases, so Example 2.6 offers two possible interpretations of this grouping structure. The light green rendering shows the four-bar phrase beginning on the Am chord and the two-bar phrase on the A major chord. If this is the way that Everett intended for the phrases to be segmented, he may have been focusing on the chord changes, since there is nothing in the melody to suggest a phrase beginning in m. 7. On the other hand, if Everett was responding to the difference in the lengths of the text (the first line of the quatrain is 9 syllables while the second is 6 syllables, suggesting that the first phrase should be longer than the second), he may have intended for the phrases to be structured as shown with the dark green phrases in Example 2.6. The 4/4 version begins with a two-bar introduction, as shown in Example 2.6. But this phrase structure is not entirely convincing either. In this case, “you know” cannot be understood as anacrustic, and the first phrase must count the second bar of the introduction as the first full measure in the first phrase of the vocal melody in order to have a 4+2 bar structure. We typically begin counting the measures in a phrase on the downbeat of the first full bar and continue until the last downbeat of the phrase. That is, phrase groups should be counted by the number of downbeats included in

59 When the Beatles changed the song from 6/8 to 4/4, many aspects changed, but the phrase rhythm remained the same (the phrase structure of the demo version is, therefore, not included in the example).
62 It is important to note that Everett does not specifically indicate the beginnings and endings of his 4+2 bar phrase groupings in his discussion, so this is my interpretation of his analysis. The only way to conceive a 4+2 bar phrase structure is to begin the first phrase on the downbeat of m. 2 since there is clearly a phrase ending in m. 5.
the phrase. The end of the phrase is indicated by a break in the continuity, often created by a rest or a cadential progression. The only way that the full m. 2, containing the words “you know,” could be considered the start of the phrase is if it is heard as a beginning. This bar cannot be understood as a beginning, however, because nothing in the instrumental accompaniment suggests the start of something new until the second bar of the 4+2 phrase structure in Example 2.6. The two bar introduction of “I’ll Be Back” uses solely A major harmony. In m. 3, the change to Am is heard as a beginning, suggesting that the previous bar should not be counted in the first phrase length. Therefore, assuming that the verse is a quatrain, the verses should be grouped in a repeated 3+3 measure structure (shown in red on Example 2.6), which takes account of the anacrases. The 3+3 grouping begins two eighth notes before m. 3 and ends with the first three beats in m. 8.

Alternatively, if the verse is structured as a sestet, the vocal melody contains six phrases (three phrases in the first half of the verse as shown in Example 2.6). The motive, discussed above in relation to Example 2.5, determines the parsing of the phrases, in this case. If the motive is understood as ending a phrase, the phrase structure becomes 2+2+2, with the first two-bar grouping beginning on the downbeat of m. 2 (shown in violet on Example 2.6). This phrase structure corresponds nicely with the natural division of the text, but like Everett’s analysis of the phrase structure, the beginning of the first phrase is problematic since there is nothing to indicate a beginning on the downbeat of m. 2. In contrast, if the motive is understood as the beginning of a phrase, the phrase structure remains 2+2+2, but the first two-bar phrase begins with the anacrusis to m. 3 (shown in orange on Example 2.6). While this analysis works nicely with the motive as the beginning of each unit and puts special emphasis on “again,” it is also problematic since it invokes an alternative sestet reading relative to Example 2.4. The orange 2+2+2 phrase
structure gives a beginning-rhymed scansion, where the ends of the poetic lines are beginnings in the musical phrase structure: “You know if you break my heart/ I’ll go, but I’ll be back/ Again.”

A better reading of the phrase structure divides the melody into repeated 1+2+3 bar phrases (indicated with blue arches on Example 2.6). This reading of the sestet combines the best features of the previous 2+2+2 phrase structures: the end-accented aspect of the violet analysis and the anacrustic beginning of the first phrase in the orange analysis. It also shows the motive as a cadential figure, a role it retains throughout the song. The beginning accents and the end accents are both inherent in the verse, but because of the rhyme of “know” and “go,” and “I” and “goodbye,” the 1+2+3 phrase structure is preferred. Interestingly, the gradual elongation of the phrase lengths from one bar to two to three does not correspond to the lengths of text. The first line is the shortest with only two syllables, but the longest line of text is the second with 7 syllables. Lennon chose to make the third line the longest phrase, even though it has only six syllables. This gives the third line more structural weight and creates word painting on “I’ll be back again.” The extra measure in A major in the three-bar phrase of the 1+2+3 grouping emphasizes the “back again” idea as this is the first time A major has been heard since the introduction.

The discussion of motives and phrase structure has a bearing on its hypermeter. Example 2.7 shows the phonological phrase stresses of the first stanza of “I’ll Be Back.”
Example 2.7: Phonological phrase stress in the first stanza of “I’ll Be Back”

It has been established that the sestet reading of the verse is more appropriate given the rhyme scheme and the melodic setting; therefore, I have included only the reading of the phonological phrase stresses of the sestet version. The sestet version emphasizes the final syllables of the lines. Because the first and fourth lines are so short—only 2 syllables each—there is no question about which syllable is the strongest syllable in the phrase. Following the rules for creating a metrical grid established by Bruce Hayes in his *Metrical Theory of Stress* (1995), the stresses for the other lines becomes clear. Hayes requires that 1) there is an alternation of weak and strong stresses at each level; 2) if a syllable is considered a rhythmic beat on a given layer, it must also form a rhythmic beat on all lower layers; and 3) only one grid mark can be associated with each syllable. Because strong syllables need to alternate with at least one weak syllable in between them at every level, syllables such as “heart,” “back,” and “-fore” must automatically be weak syllables on the phonological word level (the one just above the metrical
foot). Chomsky and Halle’s Nuclear Stress Rule assigns the main stress of a phonological phrase to the last stressed syllable. Therefore, at the phonological phrase level (the highest level in this analysis), the right-most stressed syllable is chosen. The poetic hypermeter of “I’ll Be Back” is thus made of recurring iambs, weak material that is directed to a stress at their ends. Here, the term “iamb” is used simply to describe the recurring pattern of weak material followed by strong material. Example 2.8 shows the melodic and vocal hypermeter of the verse in the 4/4 single version of “I’ll Be Back.” The only difference between the hypermeter of the 4/4 single and 6/8 demo is the treatment of the end accents. In the 6/8 demo, the end accents always occur on the downbeat of a bar, whereas in the common-time single, the end accents are syncopated early in relation to their normative downbeat accentuation. For this reason, only the 4/4 single version is shown in Example 2.8.
Example 2.8: Hypermeter in the Verse of “I’ll Be Back” (single)

1. You know if you break my heart I’ll go, But I’ll be back again, Cause I.
2. You could find better things to do than to break my heart again, This time.

--

I told you once before goodbye, But I came back again, I love you so.

I will try to show that I’m not trying to pretend.
Like the poetic hypermeter in the sestet verses, the melodic hypermeter is iambic. Because the poetic hypermeter and the melodic hypermeter correspond, the vocal hypermeter is also iambic. Therefore, the analysis given in Example 2.8 represents all three hypermeters: poetic, melodic and vocal. There are, on the other hand, three layers of hypermeter shown in Example 2.8 because of the phrase structure. The foreground phrase rhythm is 1+2+3 bars, corresponding to the lines in the sestet and the favoured interpretation discussed in connection with Example 2.6. The bottom layer of Example 2.8 shows a hypermetric analysis of this phrase rhythm. The middle layer represents the 3+3 bar phrase rhythm in which the end accents happen at the end of each three-bar phrase. The 3+3 bar phrase rhythm corresponds to the quatrain structure of the verse. The top layer in Example 2.8 represents the hypermeter at the six-bar phrase level, in which the first 4 bars act as an anacrusis to the next two bars. Because the first six measures of the version use the same music as the last six bars, we cannot say that there is a twelve-bar hypermeter. This would be an ideal spondee: two equal durations with the same content. The problem with a spondee in the case of hypermeter is that there is no indication of accented and unaccented material since both parts are accented, i.e. there is no indication of one part being directed toward or away from a stress in the other part. There is no indication that the first phrase acts as an anacrusis to the end accent in mm. 11-12.

Only the top layer of the analysis in Example 2.8 is isochronous. The bottom and middle layers are non-isochronous, like the 1+2+3-bar phrase rhythm. The bottom analysis is a direct result of the non-isochronous phrase rhythm, while the non-isochrony in the middle layer is a result of the duration associated with the end accent in the three-bar phrase structure. The middle layer shows a 2:1 iamb followed by a 1:2 iamb, which are repeated in the second
It is possible to hear these non-isochronous hypermeters because of the cadential A-natural in the vocal melody. The expected return to the syncopated, held A allows the listener to sense a kind of periodicity that allows them to “entrain” a hypermetric pulse, even though the pulse is non-isochronous. A similar phenomenon happens in the bridges of “I’ll Be Back.”

Let us now consider the bridge sections, beginning with the first bridge as a representative sample. Example 2.9 outlines the phrase structure of the first bridge (and the third bridge, since they are identical in terms of music) and Example 2.10 shows a hypermetric analysis of the first bridge. The bridge begins with regular two-bar phrases, but the phrase length is shortened to one bar beginning with the line “Yes, I’m the one who wants you.” Overall, the bridge comprises two 2-bar phrases followed by three 1-bar phrases. As Example 2.9 also shows, the sense of acceleration includes truncation, in which m.17 is shortened to a 2/4 measure.

Example 2.9: Phrase structure and end accents in the first bridge of “I’ll Be Back” (single)

63 Proportions in this case are measured in measures. Counting begins with the downbeat of a bar.
Example 2.10: Hypermeter in Bridge 1 of “I’ll Be Back” (single)

The hypermetric analysis of the first bridge in Example 2.10 shows only one layer, and the hypermeter is again non-isochronous due to the inconsistent phrase structure. The regularity of the end accents in each hypermeter allows the listener to hear a hypermeter, despite the fact that the grouping structure of the hypermeters is not identical. The end accents always appear on or early in relation to the downbeat of a bar, and are preceded by three to five anacrustic eighth notes. The periodic return of the eighth notes as anacruses to the end accent also helps the listener anticipate the placement of the strong accentuation in the hypermeter. The strong poetic accentuation on the phonological phrase stresses “so” and “wants” also contribute to the listener’s ability to hear hypermeter in the first bridge. Unlike the verse, larger levels of hypermeter cannot be deduced from the first bridge. This bridge section is seven bars in length, not including the anacrusis in m. 12 of the transcription, so it does not divide into larger (nearly) symmetric groupings, nor does the chord structure or lyric structure suggest higher levels of hypermeter.
Like the first bridge, the 2/4 measure appears just before the “oh ho oh ho” tag in the second bridge.64 Interestingly, the placement of the end accents is different in the second bridge, however. In the first bridge, the final accented syllable in each line of text usually appears on the downbeat—or syncopated in relation to a downbeat—of a measure (with the exception of the “oh ho oh ho” tag at the end), but in the second bridge of the 4/4 version, the final accented syllable in each line usually falls on the third beat of the bar, a conventionally metrically strong position in a quadruple meter, but not nearly as strong as the downbeat.65 The placement of the 2/4 measure in the second bridge allows the final accented syllables in each line to land in relation to beat 3 in the 4/4 measures and allows the listener to retain a sense of periodicity, even though the phrases are different lengths. Example 2.11 shows the phrase structure of the second bridge as 4+1+1+2+1+1 bars.

As a side note, Lennon uses word painting effectively to emphasize the lyrics in the second bridge. The unexpected ending of “But I got a big surprise” on the downbeat of the shortened 2/4 bar creates word painting with “surprise.” Lennon also uses word painting with the line “that if I ran away from you” by drastically shortening the rhythmic values, which evokes the idea of “running” in the text. This is the only place where sixteenth notes get their own syllable. Typically, sixteenth notes embellish a longer more focal pitch, as in the third syllable of “realize” in the third bar of Example 2.11.

Due to the asymmetrical phrase structure of the second bridge, the hypermeter must again be non-isochronous. Example 2.12 shows two levels of hypermeter in the second bridge.

64 There are many other possible locations for the 2/4 measure, of which I have considered, but I prefer to place the 2/4 measure just before the “oh ho oh ho” tag because this is where the harmonic rhythm becomes more active.

65 The 6/8 demo ends shortly after the Beatles begin the second bridge.
Example 2.11: Phrase structure and end accents in the second bridge of “I’ll Be Back” (single)
Example 2.12: Hypermeter in Bridge 2 of “I’ll Be Back” (single)

I thought that you would realize
That if I ran away from you that

you would want me to
But I got a big surprise.

Oh ho oh ho,
Oh ho oh ho
Oh,
Like the previous sections, the hypermeter is iambic. The strong poetic accentuation of the last syllable in each line of text, the duration associated with the end accents in relation to rhythms that precede them and the recurrence of the end accents on or in relation to beat 3 allow listeners to hear a hypermeter, despite the inconsistent length of the hypermeters.

The hypermeters found in “I’ll Be Back” are reminiscent of odd meters, such as 5/4, 7/4, etc., in which the distance between accented beats is non-isochronous. In odd meters, the pattern of beats allows us to establish a sense of meter. Here, the phonological phrase stresses in the text, the duration accents at the end of a phrase, and the recurrence of motivic material helps us establish a sense of hypermeter in “I’ll Be Back.”

2.4 Conclusion

This chapter further explored ideas postulated in the first chapter. Analysing the poetic meter, melodic meter and vocal meter of two versions of the Beatles’ “I’ll Be Back” opened the door to compare the accentuation patterns in 6/8 and 4/4. While there are minor differences in the accentuation patterns of the two versions, they are very similar. Lennon briefly incorporated a duple structure in the first bridge of the 6/8 demo by singing four in the time of three. He also retained elements of the 6/8 melody in his 4/4 version on the “oh ho oh ho” tag at the end of the bridges. The rhythmic overlap between the two versions contributes to very similar accentuation patterns, allowing the Beatles to seamlessly switch from 6/8 in the demo to 4/4 in the single.

“I’ll Be Back” also provided the opportunity to delve deeper into questions about hypermeter that arose in the first chapter. In this chapter, it was suggested that hypermeter can be non-isochronous as long as there are other periodic elements that indicate the boundaries of the hypermeasures, a recurring pattern of strongly accentuated and weakly accentuated material, and an indication of where the strongly accentuated material happens within each hypermeasure.
A recurring motive, a strongly accentuated phonological phrase stress, and durational accents indicating a melodic cadence can allow a listener to hear a non-isochronous hypermeter.

The next chapter will continue to explore poetic meter, melodic meter, and vocal meter, as well as hypermeter, through a discussion of Billie Holiday’s “Strange Fruit.” The complex rhythms of “Strange Fruit” reveal some limitations of the analytic methodology used in the first two chapters, so chapter 3 will suggest some ways to overcome them.
Chapter 3: Metric Ambiguity and Malleability in “Strange Fruit”

In 1937, Abel Meeropol, writing under the pseudonym Lewis Allan, published a poem entitled “Bitter Fruit” in *The New Masses* and *The New York Teacher*. The poem, inspired by a photograph of a lynching, never directly mentions lynching, but the metaphors clearly paint the scene established by the photograph. Meeropol, again writing under the pseudonym Lewis Allan, later set his poem to music, adhering closely to the accentuation patterns of the poem. Unlike the songs in the previous chapters, the lyrics for “Strange Fruit” were conceived completely independently of the musical setting. In 1939, Billie Holiday recorded her own musical setting as the single “Strange Fruit” for the record label Commodore after her original record label Columbia refused to record it. Holiday’s recording of “Strange Fruit” features a complex, multi-layered accentuation structure that is not easily reduced to a single metric interpretation. By examining the poetic meter of the text, the melodic meter of the rhythmic durations, and the vocal meter, we will see that there are numerous metric subtleties and complexities in Holiday’s vocal performance. Additionally, some interesting notions about how we perceive rhythm and meter will be postulated by examining how the text’s poetic meter is translated into rhythmic durations and transformed into Holiday’s performed rhythms.

66 The extent of interaction between Meeropol and Holiday is unclear. In Holiday’s autobiography, she maintained that Meeropol approached her to set his poem to music and they worked together with her accompanist Sonny White to create her version of the song, but Meeropol wrote his own musical setting of his poem long before Holiday was introduced to it. David Margolick sorts through the fascinatingly different accounts of how Holiday’s version of “Strange Fruit” came to be in *Strange Fruit: The Biography of a Song* (2001, 15-52).
3.1 Transforming Poetic Meter into Melodic Meter in Billie Holiday’s “Strange Fruit”

Before we examine Holiday’s version of “Strange Fruit,” let us examine the poetic meter of the text. The poem has three four-line stanzas and a consistent aabb rhyme scheme. Example 3.1 shows a poetic scansion of the text of “Strange Fruit.”

Example 3.1: Text of “Strange Fruit” and poetic meter

Southern • trees • bear a strange • fruit,	T • M • D • M
Blood • on the leaves • and blood • at the root,	M • ANA • I • ANA
Black bodies • swinging • in the southern • breeze,	D • T • ACA • M
Strange fruit • hanging • from the poplar • trees.	T • T • ACA • M
Pastoral • scene • of the gallant • south,	D • M • ACA • M
The bulging • eyes • and the twisted • mouth,	AMP • M • ACA • M
Scent • of magnolias, • sweet • and fresh,	M • ACA • M • I
Then the sudden • smell • of burning • flesh.	ACA • M • AMP • M
Here • is a fruit • for the crows • to pluck,	M • ANA • ANA • I
For the rain • to gather, • for the wind • to suck,	ANA • AMP • ANA • I
For the sun • to rot, • for the trees • to drop.	ANA • I • ANA • I
Here • is a strange • and bitter • crop.	M • ANA • AMP • M

Key

- * - divides text into poetic feet
- M – monosyllable
- T – trochee
- I – iamb
- D – dactyl
- ANA – anapest
- AMP – amphibrach
- ACA – amphibrach-with-compound-anacrusis

Like similar examples from the previous chapters, Example 3.1 only gives one interpretation of the poetic meter of the lyrics, even though there sometimes could be multiple alternative ways of grouping the syllables. The poetic meter of Stanzas 1 and 2 can be particularly equivocal, but the poetic meter of Stanza 3 is less open to multiple interpretations. It features primarily anapests and iambs with a couple of monosyllables and amphibrachs. Of course, one could conceivably regroup the syllables to show a different scansion for the third stanza. For instance, the first line of Stanza 3 could be read as dactyl • dactyl • trochee • monosyllable (or dactyl • dactyl • monosyllable • iamb), but the one provided in Example 3.1 seems most plausible because of the prominence of rising rhythmic groups—groups where the unstressed syllables “build up to the burst of energy that produces a full stress”68—in the second and third lines of the stanza. Although this work focuses on stress meter where the types of feet do not need to be consistent, the poetic meter will be more easily felt if conceived in terms of similar rhythmic groups, i.e. all rising, all falling, or all mixed rhythmic groups. The poetic meter of the first two stanzas, on the other hand, is much more flexible. Rather than inundate the reader with the numerous alternative ways to interpret the poetic meter of the first two stanzas, Example 3.1 gives only one possible interpretation of the poetic meter of “Strange Fruit,” the one that I hear most readily.69 The poetic scansion presented in Example 3.1 is based on the methodology established the first chapter, viz., two- and three-syllable feet are preferred, but four-syllable feet are possible if deemed necessary based on the next two criteria; a foot cannot have two strong syllables; and a word cannot be split into different feet, unless the word contains

68 Attridge, Poetic Rhythm, 38.
69 As stated in the previous chapters, the accentuated syllables will remain the same in most readings, but the syllables might be able to be grouped in different combinations.
two strong syllables. As we saw in the previous chapters, the grammatical function of each syllable (and word) should also be taken into consideration by the interpreted grouping.

In the previous chapters, traditional feet containing only two or three syllables were preferred, but the poetic meter interpretation in Example 3.1 several times features a foot that was briefly mentioned in chapter 1 consisting of four syllables that is not traditionally used in prosody, referred to here as an amphibrach-with-compound-anacrusis. In Example 3.1, Lines 3 and 4 of Stanza 1 contain the first instances of the amphibrach-with-compound-anacrusis (ACA) on the words “in the southern” and “from the poplar.” Of course, the most commonly used poetic feet in English are made up of only two or three syllables. As stated in chapter 1, linguists recognize the possibility of tetrasyllabic feet, and typically refer to a foot with two unaccented syllables followed by an accented syllable and another unaccented syllable as a “third paeon” (referred to here as an amphibrach-with-compound-anacrusis). Although most of the lines in “Strange Fruit” could be scanned alternative ways, the amphibrach-with-compound-anacrusis seems to be a feature of the poem. For instance, Line 3 of Stanza 1 could be alternatively parsed using standard three-syllable feet to read as “black bodies • swinging in • the southern • breeze,” i.e. dactyl • dactyl • amphibrach • monosyllable. But Example 3.1 instead scans the line using the amphibrach-with-compound-anacrusis (ACA) for the grouping “in the southern.” The rhythm of this grouping in fact then becomes a characteristic feature of the poem, occurring in each six consecutive lines. And it participates in a consistent tetrameter that would be disturbed by subdividing the figure into two feet. As it happens, Holiday’s rendition of the poem conforms quite nicely with all six ACA groupings. But as we will see later, she sometimes scans other elements of the poem quite differently from the abstract poetic scansion offered in Example 3.1.
The interpretation in Example 3.1 shows the irregularity of the poem in the first two stanzas; no two lines scan in the same manner. The changing sequence of feet from line to line contributes to the uneasy feeling of the poem in Stanzas 1 and 2. (Stanza 3, on the other hand, contains a strong consistent periodicity in its syntax.) Having discussed the malleability of the amphibrach-with-compound-anacrusis figure, the following discussion highlights the flexibility of the first two lines in Stanza 1.

Typically, I focus on the meaning and grammatical function of the words for my analysis of the poetic meter, but sometimes the surrounding feet can influence the scansion of a particular passage. For example, the first line of text “southern trees bear a strange fruit” can be analysed as trochee • monosyllable • monosyllable • anapest, but I prefer to read the line as trochee • monosyllable • dactyl • monosyllable (as in Example 3.1). “Southern” must be read as a trochee because the syllables form a word. Grammatically, “a strange” modifies “fruit,” which suggests an end-accented reading, but due to the parallel structure of the line, “bear a strange fruit” lends itself more to the beginning-accented reading shown in Example 3.1. The interpretation in Example 3.1 also avoids the appearance of two consecutive monosyllables.

The scansion of the second line of Stanza 1, “blood on the leaves and blood at the root,” while simple on the surface, is much more ambiguous than one might think. On one hand, the line can be scanned as dactyl • monosyllable • amphibrach-with-compound-continuation • monosyllable. This interpretation corresponds to the other lines of Stanza 1 since they feature mostly beginning-accented feet. Also, if scanned this way, all of the lines in Stanza 1 end with a monosyllable. However, this reading does not take into consideration the grammatical function of the words. Grammatically, “on the” modifies “leaves” and “at the” modifies “root,” suggesting that the line scans best as monosyllable • anapest • iamb • anapest, as shown in
Example 3.1. The second line in Stanza 1 is the only line (in this stanza) that contains end-accented feet. Interestingly, while Stanza 1 emphasizes beginning-accented feet in Example 3.1, Stanza 2 features primarily middle-accented feet, and Stanza 3 features end-accented feet.

Even though no two lines of text have the same scansion, there are some similarities worth noting. Regardless of how one interprets the poetic meter, each line contains four accented syllables and four poetic feet. Most lines begin with an accentuated syllable and all lines end with an accentuated syllable, often a monosyllable (in seven of the twelve lines). As we recite the poem, it becomes clear that the ultimate goal of each line is the last syllable of that line. The poem is strongly end-directed.

With the frequency of the monosyllables at the end of each line in Example 3.1, we come to understand them as a kind of cadence for the poetic lines, emphasizing (monosyllabically) the end-accentuated and end-directed character of every line. Although one could feasibly interpret the scansion of the first line of Stanza 3 as dactyl • dactyl • trochee • monosyllable, due to the preponderance of rising rhythmic groups, i.e. anapests and iambics, in lines 2 and 3 of Stanza 3 it feels more natural to scan all of the lines in Stanza 3 using mostly rising rhythmic groups in order to keep continuity in the stanza (as discussed above). Interestingly, scanning Stanza 3 using mostly anapests and iamb results in iambic endings for the first three lines of the stanza. The third stanza is the only part of the poem in which consecutive lines end with a foot other than a monosyllable, based on the scansion presented in Example 3.1. This gives even greater emphasis to the final line of the poem, which ends with the expected (but deferred) monosyllable to culminate and cadence the poem. The end-directed nature of the text is incorporated into Holiday’s musical setting, as we will see below.
Example 3.2 allows us to compare the accentuated syllables in the poetic meter with those in the vocal meter of Holiday’s recording. As in the previous chapters, the colour-coding and underlining indicates the metric position of the syllable within the measure. A key accompanies the table to assist the reader in deciphering the colours and a transcription of Stanza 1 (Example 3.3) follows Example 3.2 to allow for easy comparison.

Example 3.2: Accentuated syllables in the vocal meter of Holiday’s “Strange Fruit” as compared to the poetic meter

<table>
<thead>
<tr>
<th>Abstract Poetic Scansion</th>
<th>Billie Holiday (1939 single version)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southern trees bear a strange fruit, Blood on the leaves and blood at the root, Black bodies swinging in the southern breeze, Strange fruit hanging from the poplar trees. Pastoral scene of the gallant south, The bulging eyes and the twisted mouth, Scent of magnolias, sweet and fresh, Then the sudden smell of burning flesh. Here is fruit for the crows to pluck, For the rain to gather, for the wind to suck, For the sun to rot, for the trees to drop, Here is a strange and bitter crop.</td>
<td>[Intro] Southern trees bear a strange fruit, Blood on the leaves and blood at the root, Black bodies swinging in the southern breeze, Strange fruit hanging from the poplar trees. Pastoral scene of the gallant south, The bulging eyes and the twisted mouth, Scent of magnolia, sweet and fresh, Then the sudden smell of burning flesh. Here is fruit for the crows to pluck, For the rain to gather, for the wind to suck, For the sun to rot, for the trees to drop, Here is a strange and bitter crop.</td>
</tr>
</tbody>
</table>

Key

- **Blue** – syllables appear on the beat
- **Red** – early syncopations
- **Violet** – late syncopations
- **Green** – poetically unaccented syllables that receive unexpected rhythmic accentuation
- **Brown** – vocally accented syllables that appear in relation to beat 2 and 4 in 4/4 meter
- **Underline** – syllables appear on downbeats, or syncopated against the downbeat
The colour coding on Example 3.2 shows that most poetically accentuated syllables are accentuated in the vocal meter, but not all poetically accentuated syllables are heard in relation to

metrically accentuated beats. In some cases, poetically accentuated syllables retain their sense of accentuation in the vocal meter despite being associated with beat 2 or 4 (rather than beat 1 or 3). The brown text on Example 3.2 indicates that a poetically accentuated syllable remains accentuated in the vocal meter, but is heard in relation to the offbeats.

The methodology established in chapter 1 only accounts for syllables which are related to accentuated metric positions—beats 1 and 3 in the 4/4 measure. But Holiday frequently emphasizes the backbeat—beats 2 and 4 in a 4/4 measure—by placing accentuated syllables on these traditionally unaccentuated beats. As we will see below, putting poetically accentuated syllables in traditionally unaccentuated positions within the bar does not necessarily cause these syllables to be unaccentuated in the melodic meter and/or the vocal meter. Other techniques, such as duration, pitch, and performative emphasis, can ensure that these syllables remain accentuated in the vocal melody.

It is clear looking at Example 3.2 that the accentuation and metric hierarchy of Holiday’s rhythms becomes much more conventional as the song progresses. The first two stanzas feature a great deal of poetically accentuated syllables in metrically unaccentuated positions (beats 2 and 4), as shown by the brown text. The third stanza, on the other hand, features primarily red and blue text, indicating that poetically accentuated syllables fall on beat 1 or 3, or are an early syncopation of those beats. Additionally, there are also more underlined syllables in Stanza 3, directing our attention to the fact that there are more syllables in the last stanza that fall on or in relation to downbeats. The analysis of Stanza 3 is in fact rather straightforward, which is why

71 Meeropol’s original setting of his poem is much more conventional than Holiday’s version. Stressed syllables appear on beats 1 or 3, with the exception of a few syncopations that are clearly early syncopations of beat 3. Holiday not only played with Meeropol’s rhythms, she also greatly altered his melody.
the following discussion will focus on the stanza with the most ambiguous metric hierarchy, Stanza 1.

In the poetic scansion, each line of text contains four stressed syllables. As we can see in the transcription (Example 3.3), each line of text lasts for two measures; consistently the first two feet of the line appear in the first bar, while the next two feet of each line (mostly) appear in the second bar. (Some anacrustic syllables may appear at the end of the first bar.) In these senses, the melodic and vocal meters are very regular. But they vary in other ways.

In the first two chapters, our methodology required us to choose one interpretation of the poetic meter, melodic meter, and vocal meter. The complexity of Holiday’s rhythms sometimes makes it difficult to assign just one metric interpretation to the vocal melody, thus the methodology established in the first two chapters cannot be used for this discussion. Instead, most examples below will begin with the poetic meter and a translation of the poetic meter into generic rhythmic durations; subsequent staffs will then show a progressive series of rhythmic transformations that ultimately produce Holiday’s performed rhythms, so that the final transformation in these examples is always a rhythmic transcription of Holiday’s vocal melody. Moving through a series of transformations helps elucidate how our understanding of the poetic, melodic, and vocal meters changes as the rhythms are altered. The following discussion will focus primarily on the first stanza, but it will also draw on shorter passages from the other stanzas where appropriate. (A transcription of the first stanza is given above in Example 3.3).

Let us begin our examination of Holiday’s “Strange Fruit” by isolating Line 1 of Stanza 1. Example 3.4 shows a normative poetic setting of the first line, followed by transformations
that lead to a rhythmic transcription of the first two bars of Holiday’s vocal melody. Again, many of the symbols used for the analysis derive from Christopher Hasty’s *Meter as Rhythm.* The end-accent symbol (↓) and syncopation symbols (|→⟩ or ⟨←|) introduced in chapter 1 are also used here.

Example 3.4: Normative poetic setting and transformations that lead to Holiday’s “Strange Fruit,” Stanza 1, Line 1, mm. 1-2

72 Measure numbers refer to the transcription. The recording begins with a one-minute instrumental introduction and contains an interlude between the first two stanzas. To facilitate comparison, each stanza begins with m. 1 in the transcriptions presented here.
The poetic meter of the text’s first line scans as trochee • monosyllable • dactyl • monosyllable, as indicated at the top of Example 3.4. This scansion is translated into very simple rhythmic durations on the first system using musical notation. It is worth noting that the translation features an inverted dactyl on “bear a strange” in m. 2. (As discussed in the previous chapters, an inverted rhythmic grouping occurs when the rhythmic duration associated with an accented event is shorter than those associated with the unaccented event(s).) Despite the slight accentuation on “strange” in the poetic meter, I avoid interpreting it as a stressed syllable in order to maintain the consistent use of four feet per line. The accentuation on “strange” is secondary to the stress on “bear.”

The successive transformations on Example 3.4 show how the initial rudimentary setting of the poetry can evolve into Holiday’s performed rhythms. Transformation 1 introduces a rest on beat 1 in each measure, to create a delayed entry, forcing a diminution of the rhythms in the first two beats of m. 1 and on “strange” in m. 2. Transformation 2 diminishes the eighth notes in m. 1 to triplet eighths. Transformation 3 late-syncopates the monosyllable at the end of each measure, to result in the rhythms heard in Holiday’s performance.

Moving through the transformational stages posited by Example 3.4, our interpretation of the meter quickly begins to change. The durations of the two syllables in “southern” remain equal in each transformation, but the gradual shortening of the durations creates the need for a modification of the accentuation pattern. By shifting the poetically accented “south-” to beat 2 (a metrically unaccented beat) in Transformation 1, “southern trees” begins to feel like an anapest, rather than a trochee followed by a monosyllable. In the second and third transformations, “south-” perhaps now becomes a late syncopation of beat 2 (shown by the top analysis in
Transformation 3), but while hints of the poetic scansion remain, shifting “south-” later than beat 2 makes the overall anapestic feeling of m. 1 (“southern trees”) even stronger.

The way we interpret m. 2 depends on whether we consider “bear” an early syncopation of beat 2 or a late syncopation of beat 1. If we consider “bear” an early syncopation of beat 2 (the top analysis for Transformation 3), the dactyl • monosyllable reading may be retained from the translation of the poetic meter. On the other hand, if we consider “bear” to be a late syncopation of beat 1 in m. 2, “bear,” in a way, becomes lengthened. The combination of a lengthened “bear” and a shortened “strange” forces a reading of monosyllable • anapest in m. 2 (the bottom analysis for Transformation 3). The further apart the onset of the rhythmic duration that is associated with an accented event and the onsets of the rhythmic durations that are associated with unaccented events are, the more likely the unaccented events are to separate from the preceding accented event and become an anacrusis to the following accented event.

The transformations in Example 3.4 assist us in moving from the poetic meter to an interpretation of the melodic meter based on the Holiday’s rhythms. The two alternative interpretations shown above Transformation 3—the actual transcription of Holiday’s rhythms—are both possible to hear. The top analysis represents the poetic meter that is retained throughout the transformations and the bottom analysis represents one possible interpretation of the melodic meter. As listeners, our hearing will probably be drawn to one interpretation more than the other, but the poetic meter and the melodic meter work together to provide the listener with a complete understanding of the meter of the vocal melody, i.e. the vocal meter.

These are just two possible interpretations of the rhythms and meter of mm. 1-2 of Stanza 1 and they are biased since they derive from a normative setting of the text, which emphasizes beats 1 and 3 as the accentuated beats in a bar. As a brief thought experiment, try to relate the
poetically accented syllables to beats 2 and 4. The resulting interpretation of the meter and rhythm of Holiday’s performance will be quite different from the one presented in Example 3.4. Imagining the poetically accented syllables in mm. 1-2 in relation to beats 2 and 4 forces “trees” and “fruit” to be early syncopations of beat 4. This is in contrast to the previous example where “trees” and “fruit” were considered late syncopations of beat 3. Hearing “trees” and “fruit” as early syncopations of beat 4 may also change the way we hear the rest of the bar. The unaccented moments in Example 3.4 may need to be reinterpreted if “trees and “fruit” are considered early syncopations of beat 4, especially since it would mean that the unaccented “-ern” and “strange” could then be considered early syncopations of beat 3. If these syllables are considered early syncopations of beat 3, the listener might assume that “-ern” and “strange” are the most accentuated moments in mm. 1-2, but this is incorrect since Holiday clearly puts the most performative emphasis on “trees” and “fruit.” In this case, “trees” and “fruit” are best analysed as late syncopations of beat 3 according to the normative setting of the text.

Nonetheless, we will soon see examples that clearly emphasize beat 2 and/or beat 4.

We will return to Stanza 1 shortly, but first it will be useful to examine mm. 5-6 of Stanza 2, since they can elicit comparisons to the first two bars of Stanza 1. Specifically, m. 1 of Stanza 1 is analogous to m. 6 of Stanza 2, while m. 2 of Stanza 1 is similar to m. 5 of Stanza 2. Like Example 3.4, Example 3.5 shows the poetic meter, a translation of the poetry into rhythmic durations and a series of transformations that result in a transcription of Holiday’s rhythms of mm. 5-6 from Stanza 2.
Example 3.5: Normative poetic setting and transformations that lead to Holiday’s “Strange Fruit,” Stanza 2, Line 3, mm. 5-6

The transformations that lead from the translation of the poetry to the transcription of Holiday’s rhythms create interesting changes in the metric interpretation. Transformation 1 inverts the durations of the rhythms by shortening the durations of the poetically accented syllables in m. 5 and lengthening the durations immediately following them. Inverting rhythms often gives rise to a grouping change. Here, inverting the rhythmic durations forces a reinterpretation of the metric structure of m. 5; beginning with Transformation 1, m. 5 reads as an inverted trochee followed by a post-inverted amphibrach. (The amphibrach is post-inverted because the rhythmic duration associated with the unaccented moment following the accented
moment is the only one that is longer than the rhythmic duration associated with the accented one.) Transformation 2 shifts “scent” an eighth note later, so that m. 5 begins with a rest. This results in a diminution of the durations of “scent of.” Transformation 3 incorporates syncopations, and Transformation 4 converts duplets to triplets, where needed, to result in Holiday’s performed rhythms. “Scent” retains its strong accentuation in Holiday’s performance as a late syncopation of beat 1, as shown in the analysis accompanying Transformation 4. Only one transformational level is needed to turn the translation of “sweet and fresh” into Holiday’s performed rhythms. The first two words in m. 6 (“sweet and”) are shifted one dotted-eighth note later than those in the translation of the poetic meter, and the last word (“fresh”) is shifted one eighth note later than that in the translation. The rhythms in m. 6 are shifted so late in comparison to their normative setting that they can no longer be heard as late syncopations. Instead, “sweet” and “fresh” become early syncopations of beats 2 and 4, respectively, and “and” becomes a continuation of “sweet.”

First, let us compare m. 1 in Stanza 1 to m. 6 in Stanza 2. The measures use the same rhythms for the translation of the poetic meter into rhythmic durations, but the poetic meter scans differently. Poetically, “southern • trees” reads as trochee • monosyllable, while “sweet • and fresh” reads as monosyllable • iamb. Ultimately, the melodic meter and vocal meter also read differently. The difference between how we interpret these bars becomes clear in the third transformation of m. 6 from Stanza 2. In Stanza 1, “south-” was shifted so that it appeared late in relation to beat 2. This deemphasized the poetically accentuated “south-” in the melodic and vocal meter, allowing the measure to be understood as an anapest. While m. 1 went through many transformations, m. 6 is simply a syncopated version of the translation of the poetic meter. The durations are syncopated so late that they become early syncopations of the following beat.
“Sweet,” in contrast to “south-” in m.1, firmly retains its accentuated position within the bar. “Sweet” preserves its accentuation because, unlike “south-,” it is nearly as long as the other durations in the bar and the normative rhythms from the translation are still heard in Holiday’s setting, they are simply shifted late. So while m. 1 reads as an anapest in the vocal meter, m. 6 reads as trochee • monosyllable.

Holiday’s rhythms make us question the accentuation patterns in the meter. Measure 6 of Stanza 2 makes it clear that beats 2 and 4 can act as accentuated positions in a 4/4 bar. These accents are, in Lerdahl and Jackendoff’s terms, phenomenal accents. But I argue that the accents in the vocal melody (not in the background instrumentation) may actually be beats shifted to beats 2 and 4 because of the recurring association of stressed syllables with beats 2 and 4, and the lack of a vocal event on beat 1 of m. 6. The analysis of m. 6 in Transformation 4 (which also applies to Transformation 3 since they are identical) shows this unusual interpretation of the meter. Using these sorts of rhythms and by avoiding accentuation of any kind on the downbeat in many lines, Holiday quite often accentuates beat 2 and sometimes beat 4 at strategic moments throughout the song. We will see even clearer examples of this phenomenon below.

Measures 2 and 5 may not appear similar on the surface, but both measures pose problems when it comes to determining the strongly accentuated moments. Measure 2 retains hints of the poetic meter even in the final transformation, but the addition of inverted rhythms to the normative setting of m. 5 irrevocably changes the way the rhythms are interpreted. Above, it was discussed that if “fruit” in m. 2 was interpreted as an early syncopation of beat 4, “strange” may appear to be more accentuated than “fruit.” A similar confusion could happen when interpreting “scent of” in m. 5. If it is assumed that notes are only syncopated early, “scent” has to act as an anacrusis to “of” when it is shifted one eighth note later than in the translation, which
makes “of” more accentuated than “scent.” But if the possibility of late syncopations is accepted (as it has been throughout this thesis), we can consider “scent” to be a late syncopation of beat 1, allowing it to retain its accentuation, and “of” can then be a continuation of “scent.” Of course, longer durations tend to receive greater emphasis, causing them to feel stronger in relation to shorter adjacent durations. Without the additional information provided by the text, it may be assumed that the triplet sixteenth in m. 5 leads into the following longer duration. The poetic strength of “scent” is impossible to ignore, however, and suggests that “scent of” more accurately reads as a melodically and vocally inverted trochee. In this case, Holiday inverts the durational proportions to de-emphasize the poetic accentuation on “scent.” It appears she does this in order to create motion toward accentuation on the second syllable of “magnolias,” which she treats as hierarchically superior to “scent.”

It may also be difficult for the listener to interpret metric function of the first and last syllable of “magnolias.” In the interpretation of the melodic meter shown in Transformation 4 of Example 3.5, “magnolias” retains its amphibrachic grouping, resulting in a reading of inverted trochee • amphibrach for m. 5. Holiday does not put as much performative emphasis on “-lias” as she did on “fruit” in m. 1 of Stanza 1. She may purposely de-emphasize “-lias” in order to continue the forward motion into the end-accentuation on “fresh” in the next measure.

Let us now return to Stanza 1 to examine its continuation. Referring back to Example 3.2, we can see that the rhythms of Line 2 in mm. 3-4 are much simpler than those of Line 1 in mm. 1-2, but interesting questions arise in Line 2 with respect to inverted rhythmic proportions. Example 3.6, like the previous examples in this chapter, shows the poetic meter, rhythmic translation, and transformations that lead to Holiday’s performed rhythms for Line 2 (mm. 3-4).
Example 3.6: Normative poetic setting and transformations that lead to Holiday’s “Strange Fruit,” Stanza 1, Line 2, mm. 3-4

Poetically, Line 2 (mm. 3-4 of Stanza 1) scans best as monosyllable • anapest • iamb • anapest. The first transformation shows that “blood” is shifted to beat 2. “Blood” retains its accentuation even though it is now in a metrically unaccentuated position because it is the first vocal onset heard in m. 3, and the obviously anacrustic “and” emphasizes the strong accentuation of “blood” in m. 4. “Blood” is metrically accented (especially at this tempo) relative to the "on" and "the."

Once the rhythms are inverted in Transformation 2, modifications must be made to the metric interpretation. The inverted rhythms in Transformation 2 make “on” and “at” feel like continuations of “blood” while the short durations of “the” are anacrustic, thus the bottom analysis reads as inverted trochee • iamb • inverted amphibrach • iamb. In this case, the inverted amphibrach is both pre- and post-inverted. The inverted rhythmic accentuation has subtle and complex effects. In The Rhythmic Structure of Music, Cooper and Meyer examine a similar
phenomenon when discussing the complexity of inverting a dactyl. Cooper and Meyer’s Example 39 is reproduced as Example 3.7 here.\footnote{Grosvenor W. Cooper and Leonard B. Meyer, \textit{The Rhythmic Structure of Music} (Chicago: The University of Chicago Press, 1960), 31.}

\textbf{Example 3.7:} Inverted dactyl (b), inverted amphibrach (c), Example 39 from Cooper and Meyer\footnote{Example 39 from © Grosvenor W. Cooper and Leonard B. Meyer, \textit{The Rhythmic Structure of Music} (Chicago: The University of Chicago Press, 1960), 31. By permission from publisher.}

![Example 3.7](image)

The second and third fragments in this example are of particular interest due to their use of the short-long-short rhythm featured in mm. 3-4. In the second fragment, the short-long-short rhythm is analysed as an inverted dactyl because “the first note of the group receives the stress necessary to tie the following beats to it.”\footnote{Cooper and Meyer, \textit{The Rhythmic Structure of Music}, 31.} The tie joining the last two pitches in these bars and the staccato marking over the third pitch also helps make the groupings inverted dactyls. The third fragment suggests that the same rhythm can alternatively be analysed as a trochee followed by post-inverted amphibrachs. In this case, the first note does not receive the necessary stress and the final note of the measure joins the following group.\footnote{Ibid. This is what happens in mm. 3-4 of Holiday’s “Strange Fruit,” where the rhythms within beat 2 split into two different groups, allowing “on” and “at” to act as continuations of “blood.”}

Additionally, mm. 3-4 could also be scanned as dactyl • monosyllable • amphibrach-with-compound-continuation • monosyllable, as shown by the top analysis in Transformation 2. The way in which Holiday performs these rhythms makes the top analysis of Transformation 2 in...
Example 3.6 possible. All of the interpretations of Holiday’s rhythms in mm. 3-4 are equally valid and I do not believe that the listener has to make a definitive choice of one over another.

According to Cooper and Meyer, sometimes a rhythmic duration can belong to two metric groups at the foreground level simultaneously. The final two measures of Cooper and Meyer’s Example 78 (reproduced here as Example 3.8) give a good example of the phenomenon that they refer to as a *rhythmic pivot*.

Example 3.8: Pivot tone, Example 78 from Cooper and Meyer

In Example 3.8, the second beat of measure 4 acts as both a continuation of the previous metric group and an anacrusis to the following group. Interestingly, taking into consideration the text of Cooper and Meyer’s example, we see that it exemplifies the concepts developed in this thesis. The poetic meter of the text and the melodic meter of the melody coexist in the last two bars. Beat 2 of m. 4 is considered a continuation of the previous accentuated note because the syllable “-ken” attaches to “Wolken.” On the other hand, the melody suggests that beat 2 of m. 4 is part of an extended anacrusis of the following accented beat. In “Strange Fruit,” the same sort of thing happens in mm. 3-4 of Stanza 1; the word “the” is a rhythmic pivot in both bars, simultaneously acting as continuations and anacrases. In the vocal meter, the interpretations exist simultaneously.

77 Ibid., 62.
78 Ibid., 63.
Rhythmic pivots also occur in mm. 5-7 of the third stanza of Holiday’s vocal melody. Example 3.9 shows the poetic meter and the melodic meter of mm. 5-7 of Stanza 3.

Example 3.9: Analysis of the poetic meter, melodic meter and vocal meter of Holiday’s Stanza 3, Line 3, mm. 5-7

The poetic meter of “for the sun to rot, • for the trees • to drop” scans as anapest • iamb • anapest • iamb. (The anacrusis to m. 5 is not shown in Example 3.9.) But in Holiday’s performance, the rhythmic durations and the pitches affect our understanding of the meter, forcing “to” to be reinterpreted twice in the melodic meter as the continuations of “sun” and “trees.” The melodic meter scans as trochee • monosyllable • amphibrach-with-compound-anacrusis • iamb. Remember that the melodic meter examines only the melody, i.e. the rhythmic durations and pitches; it ignores the text. Because the pitches attached to “to” in m. 5 repeat those of “sun,” “to” acts as a continuation in the melodic meter. In m. 6, the Gb acts as an anacrusis to the following strongly accentuated Ab. This allows the G-natural attached to “to” to be reinterpreted as a continuation of “trees” in the melodic meter. The poetic meter and the melodic meter are both audible when listening to this passage. In the vocal meter, the poetic meter and melodic meter coexist to allow the listener full comprehension of the metric richness of the performance. The word “to” acts as a rhythmic pivot; it is simultaneously an anacrusis to
the following strongly accentuated syllable and a continuation of the previous strongly
accentuated melodic event.

Let us now return to finish our examination of Stanza 1, by discussing the second half of
the stanza—Lines 3 and 4. Example 3.10 features the poetic meter of the text, one possible
rhythmic translation of the text, and a series of transformations that lead to a transcription of
Holiday’s performed rhythms of mm. 5-8 from Stanza 1.
Example 3.10: Normative poetic setting and transformations that lead to Holiday’s “Strange Fruit,” Stanza 1, Lines 3-4, mm. 5-8
The order of operations used in the transformations follows similar processes found in previous examples of this type. Transformation 1 moves the rhythm found on beat 1 later so that mm. 5 and 7 begin with an eighth-note rest. Transformation 2 inverts certain rhythms so that the unstressed rhythm becomes longer than the stressed rhythm. Transformation 3 syncopates rhythms in manners similar to Holiday’s performance. (Meeropol’s original setting of the poem rhythmicizes “poplar trees” as it is shown in Transformation 3.) Transformation 4 adds triplets in mm. 6 and 7 and diminishes beats 1 and 2 in m. 8, in order to obtain her exact rhythms.

Unlike previous examples, the poetic meter is, for the most part, retained throughout the transformations in Example 3.10. (There is one interesting exception, discussed in the next paragraph.) The rhythmic translation for mm. 6-8 is extremely different from Holiday’s performed rhythms of these bars, but despite all of the transformational alterations made to the rhythmic translation, the poetic meter remains firmly intact throughout all of the transformations (aside from the exception discussed below.) The most common kind of transformation posited in the analyses of these bars is the addition of syncopations, but in these instances, the syncopations do not change our understanding of the grouping structure. Thus, while altering rhythms by shifting and inverting can alter our perception of the meter (as we saw in all of the previous examples), we see here that sometimes the altered rhythms still retain the accentuation patterns of the poetic meter in the melodic meter and the vocal meter.

Measure 5 is the only part of this passage that sees changes to the metric interpretation as the rhythms are transformed. As soon as “black” is shortened and shifted one eighth note later and “bodies” is inverted in Transformation 2, “black bodies” takes on a strongly amphibrachic feeling, permanently altering the interpretation of “black” from an accentuated syllable in the poetic meter to an anacrusis in the melodic and vocal meters. The metrically accentuated
position shifts from beat 1 to beat 2 and the poetically unaccentuated syllable “bod-” becomes an accentuated syllable in m. 5. Where the poetic meter has “black bodies” as a dactyl, Holiday’s rhythms and vocal meter instead present “black bodies” as an amphibrach.

Holiday’s setting of “Strange Fruit” frequently places phenomenal accents on beats 2 and 4 in the 4/4 bar. So much so that phenomenal and structural accents play a stronger role in the vocal melody than the metrical accents which organize the melody into 4/4. Although she sometimes directs the motion of a bar to beat 3, with the strongest accentuation occurring on beat 3, she also highlight beats 2 and 4 as places of accentuation in the melodic and vocal meter. Her diligent avoidance of accentuation of any kind on the downbeat in many lines shifts the strong accentuation from beat 1 to beat 2, or it at least makes the accentuation patterns slightly ambiguous until the poetic meter is taken into consideration. In light of such observations, it is clear that conventional notions of metric hierarchy sometimes provide a poor fit for Holiday’s sophisticated and nuanced sense of rhythm and meter in her vocal melody. Of course, the beats of the 4/4 meter are perfectly clear in the accompaniment, which is necessary to appreciate Holiday’s syncopations and microtiming delays. Examining how the poetic meter is transformed into the melodic meter and vocal meter allows the listener to perceive more accurately the complex rhythmic and metric structures of Holiday’s “Strange Fruit.”

3.2 Mixed Meters vs. Common Time: Transcription Issues in Tori Amos’s Cover

Since 1939, numerous artists, including Tori Amos in 1994, have covered “Strange Fruit.” In Lori Burns and Alyssa Woods’s article “Authenticity, Appropriation, Signification: Tori Amos on Gender, Race, and Violence in Covers of Billie Holiday and Eminem,” Burns
compares Amos’s Signifyin(g) practices to Holiday’s performance.80 While Holiday’s performance is clearly in common time, Burns transcribes Amos’s cover in mixed meters, using 4/4, 5/4, and 6/4. This transcription draws out the differences between the two versions, of which there are many, but also downplays the similarities between them. Burns uses a mixture of 4/4, 5/4, and 6/4 meters in order to maintain a (somewhat) chronometric beat, but there is nothing in Amos’s recording to indicate changes in meter. The texture is extremely sparse, with Amos accompanying herself on piano, and the piano rarely assists in locating a beat. Here, I offer an alternative approach to the meter of Amos’s version. I find it more illuminating to transcribe it in common time with fermatas and tenutos to indicate places of rubato (sometimes extreme!), and to show more clearly how much of Holiday’s original Amos preserves.

The manner in which Amos performs “Strange Fruit” affects the way we, as listeners, interpret the metric structure of her version. Amos uses rubato generously, so much so that it is nearly impossible to entrain a beat at numerous points throughout the recording. A transcription needs to represent what we hear but also how we hear it. Not only does Burns’s transcription emphasize the purported metric differences between the two vocal melodies, the way that Amos’s “Strange Fruit” is transcribed, using 4/4, 5/4 and 6/4 meters, also asks us to hear some of the poetically accentuated syllables differently than my 4/4 transcription.81 My transcription of Amos’s cover focuses on the stresses in the poetry, and uses the relationship between the vocal melody and the piano accompaniment as indicators of metric and rhythmic timing. Stresses in the poetry are typically shown as being on (or syncopated against) the beat, unless it is clear from

80 For a fascinating discussion of how an artist can rework a previously recorded song and make it her own, by bringing a new kind of authenticity to the song, see Lori Burns and Alyssa Woods, “Authenticity, Appropriation, Signification: Tori Amos on Gender, Race, and Violence in Covers of Billie Holiday and Eminem,” Music Theory Online 10, no. 2 (2004).

81 Please note that Lori Burns’s analysis of Tori Amos’s “Strange Fruit” does not discuss meter or the function of rhythms in any way. The following metric analysis of Burns’s transcription is mine.
the piano accompaniment that this is not the case. Example 3.11 shows an excerpt from Burns’s transcription of Stanza 1 with my transcription directly below it for easy comparison. Example 3.11a examines mm. 1-2 of Stanza 1, while Example 3.11b shows mm. 3-4 of Stanza 1.

Example 3.11: Comparison of Burn’s mixed meter transcription and my 4/4 transcription of Amos’ version of “Strange Fruit”\(^{82,83}\)

\[\begin{align*}
\text{a) Stanza 1, Line 1, mm. 1-2} \\
&\text{Melodic Meter:} \quad \begin{array}{cccc} \updownarrow & \downarrow & \downarrow & \downarrow \\ \end{array} \\
&\text{Vocal Meter:} \quad \begin{array}{cccc} \updownarrow & \updownarrow & \updownarrow & \updownarrow \\ \end{array} \\
&\text{LB} \quad \begin{array}{cccc} \text{Southern trees} & \text{bear a strange fruit} \\ \end{array} \\
\end{align*}\]

\[\begin{align*}
&\text{Melodic Meter:} \quad \begin{array}{cccc} \updownarrow & \updownarrow & \updownarrow & \updownarrow \\ \end{array} \\
&\text{Vocal Meter:} \quad \begin{array}{cccc} \updownarrow & \updownarrow & \updownarrow & \updownarrow \\ \end{array} \\
&\text{KH} \quad \begin{array}{cccc} \text{Southern trees} & \text{bear a strange fruit} \\ \end{array} \\
\end{align*}\]

\[\begin{align*}
\text{Example 3.11:} \quad \text{Comparison of Burn’s mixed meter transcription and my 4/4 transcription of Amos’ version of “Strange Fruit”}^{82,83} \\
\end{align*}\]

\(^{82}\) Lori Burn’s transcription of Tori Amos’s “Strange Fruit” appeared in Music Theory Online in Vol. 10, no. 2 in June 2004. It was authored by Lori Burns (laburns@uottawa.ca) and Alyssa Woods (alywoods@umich.edu), with whose written permission the transcription is adapted here.

Example 3.11 continued

b) Stanza 1, Line 2, mm. 3-4

Traditionally, beat 1 is considered the most metrically accentuated beat in a 4/4 measure, with beat 3 being the next most metrically accentuated, while beats 2 and 4 are metrically unaccentuated. This is not always the case, as we saw earlier, but it is the way that we typically think of simple quadruple meter. Measures of 6/4 are generally divided in two, with strongly accentuated beats on the first and fourth quarter notes (similar to the more common 6/8 meter, discussed in chapter 2). Measures of 5/4 also usually contain two strongly accentuated beats: beats 1 and 3 can be strongly accentuated or beats 1 and 4 can be strongly accentuated. Example 3.11 marks traditionally accentuated beats with asterisks.

The first measure of Stanza 1 is the same in both transcriptions, and it is rather different from Holiday’s performance. While it is very difficult to determine whether poetically accentuated syllables in Holiday’s version are related to traditionally metrically accentuated beats, it is obvious in m. 1 of Amos’s version that “south” belongs on beat 1. Because of the
lack of accompaniment and the slow tempo, “trees” appears on beat 3 in m. 1, following the prosodic stress. Without a pulse, there is no basis to judge whether it is before, on, or after beat 3, so here it has been notated on the beat.

Measure 2 is much more interesting. Burns transcribes it in 5/4 while I retain common time by using tenutos and a fermata. Our rhythms in m. 2 are not different, but changing the meter affects the way we interpret the rhythms. As we can see from Example 3.11a, the melodic meter of the transcriptions of m. 2 are the same, but the vocal meter is different. This is because we examine the role of each pitch in the melodic meter, whereas, in the vocal meter, we take into consideration both the melodic meter and poetic meter. (The interaction of the rhythmic durations and the stresses in the poetry give us the vocal meter of the vocal melody.) The difference in the vocal meter is a result of the different number of beats in m. 2. In Burns’s transcription, the poetically accented syllables “bear” and “fruit” appear in relation to traditionally metrically accented beats; “bear” falls on beat 1, while “fruit” is an early syncopation of beat 4, both of which are metrically accented beats in 5/4. Because “strange” does not appear in relation to a metrically accented beat, we hear “a strange” as a continuation of “bear” in the vocal meter. In my 4/4 transcription of m. 2, on the other hand, “fruit” appears in relation to a metrically unaccented beat as an early syncopation of beat 4.\(^\text{84}\) Again, there is much rubato in Amos’s performance of line, so the beats are non-isochronous. The piano, here, indicates the meter and the placement of the onsets. The piano starts on beat 2 of m. 2 and gives a basis for the beat. “Fruit” is heard, to my ear, as an early syncopation of beat 4 because the

\(^{84}\) This is analysed differently than Holiday’s version (Example 3.4). In Holiday’s version, “fruit” was sung to a held C-natural, which made it possible to hear it as a late syncopation of beat 3. In my transcription of Amos’s version, the first pitches attached to “strange” and “fruit” lead into the second pitches, which forces these words to be heard as early syncopations of the following beats. Also, the onset of “fruit” is slightly later in Amos’s version, making it sound more like an early syncopation of beat 4 than a late syncopation of beat 3.
piano gives emphasis with a change of harmony at the onset of the D. “Strange,” in this case, appears in relation to the metrically accented beat 3 and is understood as accented, even though “fruit” is also accented. Vocally, “a” is heard as an anacrusis to “strange” in my transcription. With “strange” as an added accent, the first line of Stanza 1 becomes a five-foot line, rather than a four-foot line.

In Example 3.11b, Burn’s transcription of mm. 3-4 of Stanza 1 suggests that Amos’s rhythms are radically different from Holiday’s rhythms (refer to Example 3.6), whereas, my 4/4 transcription suggests that they are nearly the same. Burns’s transcription shifts accentuation from “blood” to “on” and “at.” When listening to Amos’s recording, there is nothing to indicate that a beat begins with “on” or “at.” Instead, I hear “blood” as the stressed syllable in both bars. Because the piano accompaniment is so sparse, we use the poetic meter to help situate us in the melodic and vocal meters. But, without the piano accompaniment, it would be impossible to hear a melodic meter independent of the poetic meter. The two work in conjunction to give us our sense of the rhythm and meter in this passage. Despite the non-isochronous beat, we estimate the duration of the rhythms based on the poetic text and the realized durational projections created by the vocal rhythm and piano. The resulting rhythms bear a striking resemblance to Holiday’s performance. The only difference is that Amos does not vocalize “and” in m. 4. The analysis of my transcription of mm. 3-4 of Stanza 1 matches the analysis from Example 3.6 of Holiday’s rhythms nearly exactly. The sixteenth-eighth-sixteenth rhythm in m. 4 is not heard as precisely as it is notated; there is a very short break between “the” and “root,” so melodically “the” functions as a continuation of “blood.”

Again, the melodic meters of Burns’s and my transcriptions are not drastically different. We see how the changes in the implied number of beats and the interonset intervals between
them affect our metric understanding of the passage when we examine the vocal meter—the interaction between the poetic meter and the melodic meter. Poetically, “on” and “at” are unaccented syllables. In terms of the vocal meter, we cannot understand these words as accented. Therefore, in Burns’s transcription we understand “blood on the” as an anacrusis to “leaves” and “blood at the” as an anacrusis to “root.” In contrast, my transcription shows “blood” on beat 2 in mm. 3-4. As with line 2 from Stanza 1 in Holiday’s version, here, “blood” becomes accentuated even though it is technically in a metrically unaccentuated position because it is the first vocal onset heard in m. 3 and 4. This allows us to hear “blood” as strongly accentuated in the melodic meter and vocal meter in Amos’s version.

Throughout this thesis, it has been shown that poetic meter has a profound effect on our understanding of the rhythms and meter of a vocal melody. As a listener, we use the accentuation patterns of the poetry to help us entrain a (somewhat) isochronous pulse and identify the meter of a song if the song features a lot of rubato and sparse accompaniment, as Amos’s cover does. Transcriptions are a representation of our hearing of a piece of music. The effect of poetic meter on transcription has now also been explored. When transcribing a song with an inconsistent pulse, the poetic meter of the text should be taken into consideration to ensure that poetically accented syllables appear on beats (or possibly in relation to beats as syncopations) in a notated measure. If the poetic meter is not considered, we risk transcribing the melody in such a way that it distorts our hearing of the vocal meter.

3.3 Interactive Vocal Hypermeter in “Strange Fruit”

The hypermeter of “Strange Fruit” corresponds to the hypermeter of “I’m So Lonesome I Could Cry” from chapter 1 and “I’ll Be Back” from chapter 2, in that all of these songs are end-accented. As we saw with regards to the vocal meter of “Strange Fruit,” the goal of each
measure and consequently the most accented word/syllable in the measure is often the last, regardless of the beat to which it relates. Likewise, the vocal hypermeter of “Strange Fruit” is also end-directed. First, let us examine the poetic hypermeter of the first verse of “Strange Fruit.” Example 3.12 shows a metrical grid that elucidates the most salient phonological phrase stresses in the first stanza.

Example 3.12: Phonological phrase stress in the first stanza of “Strange Fruit”

<table>
<thead>
<tr>
<th>South - ern</th>
<th>trees</th>
<th>bear a strange fruit,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood</td>
<td>on the leaves and blood at the root,</td>
<td></td>
</tr>
<tr>
<td>Black bodies</td>
<td>swing - ing in the south - ern breeze,</td>
<td></td>
</tr>
<tr>
<td>Strange fruit</td>
<td>hang - ing from the pop - lar trees.</td>
<td></td>
</tr>
</tbody>
</table>

The bold syllables represent the stresses found in the poetic meter (discussed above in relation to Example 3.1). The bottom line of Xs shows the next level of stress. This line indicates the words that receive the most emphasis within the bar. The top line of Xs shows the strongest syllable in each line of text. As we see from the example, “fruit,” “root,” “breeze,” and “trees” receive the most stress in their respective lines. Because they are the last syllable in each line, this makes the poetry end-directed. The melodic hypermeter and vocal hypermeter of Holiday’s “Strange Fruit,” shown in Example 3.13, are also end-directed.
Example 3.13: Hypermeter in Holiday’s “Strange Fruit,” Stanza 1, mm. 1-8

```
South-ern trees bear a strange fruit, Blood on the leaves and blood at the root,

Black bodies swinging in the southern breeze, Strange fruit hanging from the poplar trees.
```
Using the analytic method established in the first chapter, Example 3.13 illustrates the melodic hypermeter and vocal hypermeter, which in this case are exactly the same, of Stanza 1 in Holiday’s “Strange Fruit.” The melodic hypermeter and the vocal hypermeter directly correspond to the poetic hypermeter. The Xs in Example 3.12 are translated into end-accent symbols (↓) in Example 3.13 and the material before the downward arrow is given an anacrusis symbol (/) since we interpret it as leading into the most stressed point in the music. The bottom two layers of the hypermetric analysis in Example 3.13 directly relate to the two layers of Xs in Example 3.12. (I have not shown Amos’s version because the hypermeter remains the same in her cover. It would be redundant to show both versions, in this case.)

Despite the fact that the rhythms of Holiday’s “Strange Fruit” are much more complicated than the songs examined in the first two chapters, the hypermeter of “Strange Fruit” is much less complicated than “I’m So Lonesome I Could Cry” and “I’ll Be Back.” Example 3.13 features one-, two-, four-, and eight-bar hypermeters. Each level shows regularly, recurring iambics, in which the anacrusis in much longer than the accented material. The accented material usually falls on or in relation to beat 3 or beat 4. Overall, the phrase structure and spacing of the accented material is much more regular than it was for “I’m So Lonesome I Could Cry” or “I’ll Be Back,” which contributes to why the hypermeter of “Strange Fruit” is so consistent.

3.4 Conclusion

The previous chapters attempted to assign one definitive interpretation of the poetic meter, melodic meter, and interactive vocal meter to a song, but this methodology had to be modified in this chapter to account for the complexity of Holiday’s rhythms in “Strange Fruit.” The methodology established in the first chapter was too rigid to allow for the multi-layered rhythms in “Strange Fruit.” When attempting to understand complex rhythms, especially ones
with an abundance of syncopations, we tend to compare the rhythms we hear to a more basic version of them. Depending on what you consider the “normative rhythmic setting” of the poetry, your interpretation of the rhythmic structure may be very different from another’s interpretation. Beginning with a rhythmic translation of the poetic meter made it easier to identify the function of the melodic events in “Strange Fruit.” The transformations also showed how poetic meter gets transformed into melodic meter, and how they interact in the final transformation—Holiday’s performed rhythms—to give a complete interpretation of the vocal meter.

This chapter examined how the accents in the voice are organized. It became clear that the main phenomenal accents do not always align with the metric accents in Holiday’s “Strange Fruit.” The above discussion showed that, for much of Stanza 1 and 2, the vocal melody of “Strange Fruit” emphasizes beat 2 as a strongly accentuated beat in the 4/4 bar by persistently avoiding the onset of a vocal pitch on beat 1. Holiday also sometimes puts more accentuation on the traditionally unaccentuated beat 4 than beat 3. The accentual organisation of Holiday’s vocal melody shows that the main phenomenal or structural accents do not need to occur at places of metrical accent (although if they do, they reinforce expectations). The meter is established through moments of attentional peaks that are set up by certain periodic aspects of the signal, which in this case includes harmonic changes and the rhythm section.
Chapter 4: Conclusion

Fans consider the lyrics of a popular song to be among its most important parts, yet when we analyse these vocal melodies, we tend to focus on the melody’s pitch and durations and to overlook how word accentuation affects the metric sensations created by the vocal melody. In a vocal melody, the text and the music are interactive partners, and one often informs the other. Vocal meter needs to be examined from all angles—including both the poetic meter and the melodic meter—for us to gain a complete understanding of the rhythmic and metric structure of a vocal melody. The poetic meter of the text and the melodic meter of the rhythmic durations interact to give us our overall impression of the vocal meter. Additional kinds of accentuation, specific to the particular singer and performance (or recording), give further character and nuance to the vocal meter.

Most current theories of rhythm and meter focus on Western art music, but rhythms in this style are often very different from popular music. Moreover, those who have looked at popular music have mostly been interested in the meter of grooves—the instrumental accompaniment, rather than the words and vocal meter. This thesis, on the other hand, has focused on text-music relations in the vocal melodies of selected popular songs and their covers. Because most current literature dealing with rhythm and meter examines Western art music, the current tools used to analyse rhythm and meter can sometimes be too limiting when trying to describe what happens in the melody of a popular song. Some new symbols have been developed in this work to complement Christopher Hasty’s analytical tools, adding relevant new categories and allowing for more flexibility in the analyses. The methodology established in chapter 1 also introduced a way of annotating end-accented hypermeter that incorporates ideas from Cooper and Meyer, Lerdahl and Jackendoff, and Hasty. Theoretically, this method of
analysing hypermeter should also work for beginning-accented or middle-accented hypermeters, but further research would be needed to verify this. Indeed, hypermeter is a topic with much potential (and need) for further critical examination and development. (How this thesis engages the concept is also discussed further below.)

The flexibility of the methodology proposed in chapter 1 made it possible to describe what I was hearing in the music. Not only was the methodology flexible in terms of annotating examples, it also acknowledged the flexibility of the poetry and music by examining the three meters of the vocal melody: the poetic meter, melodic meter, and vocal meter. By separating the parts of a vocal melody and realizing that each has its own rhythms and meter, we were able to show how the parts interact to give us a more complete understanding of the vocal meter. It also shows why metric interpretations of the same song can be so diverse.

This thesis alluded to many idiosyncrasies of rhythm, meter and hypermeter in popular songs that are not as frequently found in Western art music. While most literature suggests that syncopations only occur early in relation to their normative or referential beat, the analyses in the previous chapters show that late syncopations can also be possible. It is interesting to note that the main reason certain syncopations could be identified as late was because of the relationship of the text with the music. It is generally understood that strongly accentuated syllables in text appear on or in relation to strongly accentuated metric beats. When the rhythms and meter of a song are altered—such as in the cover versions discussed in this thesis—the poetic setting generally remains the same, and the poetically accentuated syllables should be given appropriate metrically accentuated positions in any chosen musical meter. The knowledge that an accented syllable should appear in relation to a metrically accented beat allows us to determine if a syncopation is early or late, either in relation to expectations based on the poetic meter, or
relative to the original or another version of the song. Admittedly, early syncopations are much more common, but late syncopations are nonetheless a possibility, and have a distinct expressive character. Based on the limited sample of popular songs examined in this work, syncopations seem to be much more common in 4/4 or simple duple meters than in simple triple or compound meters. More research would be needed to determine how generally this initial observation applies to popular music idioms (in which triple and compound triple meters are already much less common than duple and compound duple meters).

Chapter 3 focused on how the accents in Holiday’s “Strange Fruit” are organized and its effect on the meter. Meter and rhythm interact in any given piece of music. The meter informs the rhythms, and the rhythms inform the meter. The rhythms clearly inform the meter of Holiday’s “Strange Fruit” since she often deemphasizes the beat that is traditionally considered the strongest beat of a measure, the downbeat, by beginning most measures with a rest in her vocal melody. As a result, she often emphasizes the traditionally metrically unaccented beat 2. At the half-note level, each bar drives toward beat 3, which is a metrically accented beat in a 4/4 measure, but at the quarter-note level, Holiday sometimes makes the goal of the measure beat 4, normally a metrically unaccentuated beat in 4/4. Rather than begin a measure with the strongest accentuated moment, Holiday always ends each measure with the strongest accentuated moment, on either beat 3 or 4 (or syncopated relative to one or the other). Holiday’s “Strange Fruit” suggests that meter is not always beginning-accented; it may be end-accented or middle-accented, as well.

Historically, hypermeter has always been a debated topic. Many theorists seem to view hypermeter as an enlarged version of meter, similarly structured, and thus believe that hypermeter is beginning-accented. In contrast, some theorists do hear hypermeter as end-
accented. The analyses in this thesis challenge the assumption that hypermeter is analogous to
meter. Hypermeter is considered in this thesis to be a combination of meter and phrase structure.
Many vocal melodies from popular songs seem to feature end-directed phrases, and as a result,
end-accented hypermeters. As we have seen, all the songs examined in this thesis have end-
accented hypermeters. In addition, other specific issues regarding hypermeter arose in the first
two chapters. The first chapter determined that hypermeter is only possible if there is a regular
alternation of accented and unaccented material, while chapter 2 explored the possibility of
asymmetrical hypermeter. Trying to determine the hypermeters of the three songs discussed in
this thesis and their cover versions only led to further questions. For instance, how do we
determine functions such as anacrusis, continuation, and arrival at the hypermetric level, and
how do we articulate the boundaries between these functions? If we can answer such questions,
it may make it easier to definitively answer the long-debated question of whether hypermeter is
beginning-accented, end-accented, or both.

As the research progressed, it became clear that there were some issues with the
methodology put forth in chapter 1. As flexible as the methodology had seemed in the first
chapter, it was still challenged by the complex rhythms and subtle accentuation of Holiday’s
“Strange Fruit.” The original methodology required me to choose one interpretation for each of
the poetic meter, melodic meter, and vocal meter. The rhythms and accentuation in the poem
and in Holiday’s rendition of “Strange Fruit” can be interpreted in many equally valid ways,
making it extremely difficult to narrow the results down to one interpretation for each type of
meter. As a result, adjustments were made to the methodology in chapter 3. Rather than
determine one vocal meter interpretation for a passage, the analytic examples focused on how the
poetic meter might be transformed through hypothetical intermediate stages to become the
melodic meter, while retaining hints of the original poetic meter. (The series of transformations makes more tangible the subtlety and malleability of the accentuation.) In this chapter, the differences between poetic meter and melodic meter were at their greatest, and sometimes both the poetic meter and the melodic meter were equally salient in the analysis of the vocal melody. The analyses were extremely sensitive to subtlety, making every example very detailed and complex.

Chapters 1 and 3 also engaged some issues of transcription. Transcriptions should show what you are hearing, not what you think you should be hearing. Transcription issues were touched on in this thesis with regards to meter. For instance, how do we know whether to transcribe a melody in 4/4, 2/4 or 2/2? And, how does transcribing a popular song in a different duple meter affect how we hear the music? These questions have been briefly explored in relation to the cover versions of Hank Williams’s “I’m So Lonesome I Could Cry” in chapter 1, but further research will be needed to explore these questions more fully. The way we transcribe music should also reflect what we intend to show. As we saw in chapter 3, with the differences between Lori Burns’s transcription of Tori Amos’s “Strange Fruit” and my version of it, transcribing a song in a different meter can affect how we understand the functions of the rhythms.

Ultimately, our understanding of music is coloured by our own biases and previous listening experiences. The way we understand the rhythms and meter of a piece is highly subjective. And our understanding of the poetic meter, melodic meter, and vocal meter can be influenced by outside factors. The poetry usually has a strong meter, but often there is also a strong distortion of this meter by the singer. Sometimes, I found it difficult to separate the poetic meter from the singer’s performance after listening to the musical setting of the poem several
times. The analyses presented in this work are only one possible interpretation of the poetic meter, melodic meter, and vocal meter. They are the interpretations that I hear most readily while reciting the poetry and listening to the recordings. I have suggested some alternative interpretations to show the flexibility and complexity of melodies that first appear to be very simple. The goal of this thesis was not to give a definitive definition of meter or hypermeter, but to propose a theory of how we might understand the meter of vocal melodies. The ideas developed in this thesis are by no means fully formed general theories about meter and rhythm. By taking into consideration the individual rhythms and meters of the different factors that are combined in a vocal melody, we are able to develop a more complete understanding of the vocal meter of vocal melodies. Even though our biases might get in the way sometimes, music needs to be examined as objectively as possible, for what it is, not what we want it to be.
Bibliography

Discography

