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Abstract

A common attack point in a program is the input exposed to the user. The
adversary crafts a malicious input that alters some internal state of the
program, in order to acquire sensitive data, or gain control of the program’s
execution.

One can say that the input exerts a degree of influence over specific
program outputs. Although a low degree of influence does not guarantee
the program’s resistance to attacks, previous work has argued that a greater
degree of influence tends to provide an adversary with an easier avenue of
attack, indicating a potential security vulnerability.

Quantitative information flow is a framework that has been used to de-
tect a class of security flaws in programs, by measuring an attacker’s in-
fluence. Programs may be considered as communication channels between
program inputs and outputs, and information-theoretic definitions of infor-
mation leakage may be used in order to measure the degree of influence
which a program’s inputs can have over its outputs, if the inputs are al-
lowed to vary. Unfortunately, the precise information flow measured by this
definition is difficult to compute, and prior work has sacrificed precision,
scalability, and/or automation.

In this thesis, I show how to compute this information flow (specifically,
channel capacity) in a highly precise and automatic manner, and scale to
much larger programs than previously possible. I present a tool, nsqflow,
that is built on recent advances in symbolic execution and SAT solving. I
use this tool to discover two previously-unknown buffer overflows. Exper-
imentally, I demonstrate that this approach can scale to over 10K lines of
real C code, including code that is typically difficult for program analysis
tools to analyze, such as code using pointers.
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Preface

The work I describe in this thesis is mostly my own, with the exception of
the subSAT solver which was designed by Sam Bayless.

I have based much of the text on a paper due to appear and to be
presented at the European Symposium on Security and Privacy 2016, titled
“Precisely Measuring Quantitative Information Flow: 10K Lines of Code
and Beyond”, which was written in collaboration with Celina Val, Sam
Bayless, Alan Hu, and William Aiello.

I have based some of the writing on previous (but unpublished) submis-
sions to the USENIX Security Symposium 2015, and the IEEE Symposium
on Security and Privacy 2015, with the same co-authors.
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Chapter 1

Introduction

In this thesis, I address the problem of measuring the degree of influence of a
program’s inputs over its outputs. I first motivate this problem by providing
examples of its economic cost. I then introduce previous related problems
and outline their existing solutions, providing examples that demonstrate
their shortcomings, demonstrating the importance of the problem addressed
by this thesis.

In a vulnerable software system, a malicious adversary can construct
a user input that triggers a bug in an executing program that will either
grant the adversary control over program execution, or allow the adversary
to extract sensitive information.

SQL injection attacks are a well-known example where the adversary ex-
ploits errors in the code to illicitly obtain sensitive information [11]. In 2014,
the NTT Group estimated that an organization can incur costs of $196, 000
for a single SQL injection attack [14]. Such attacks are commonplace, and
a list of well-known attacks since 2002 is maintained by Hicken [13], who
lists attacks such as the 2011 theft of 7 million private customer details
from the Sony PlayStation Network, and the 2012 theft of account details
for 1.6 million records belonging to U.S. government agencies. Furthermore,
Hicken also lists many smaller attacks which obtained credentials used to
gain control of web servers and other systems.

However, the crafting of malicious input is not limited to SQL injection.
Indeed, the economic and social impact of malicious input attacks far exceeds
the numbers I have just presented.

Such a malicious input attack can be described as follows. By varying
the public program input, an adversary exerts a degree of influence on a
specific program output. One of the oldest methods of quantifying influence
is taint analysis, which has long been used1 to determine whether untrusted
input data can inadvertently influence the value of trusted or sensitive data.
Values in a program that are directly computed on the basis of the untrusted

1 The earliest published use of the term that I have found is the original Perl book [40].
Schwartz et al. [33] provide a fairly recent survey of the large literature on taint analysis
and its applications.
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Chapter 1. Introduction

function InputSanitizer1(input)
if input is in legal range then

return input
else

return ERROR

function InputSanitizer2(input)
return input

Figure 1.1: This simple example contrasts a stylized input sanitizer with
a function that simply passes the input unchecked. Taint analysis does not
distinguish between the two.

input are considered “tainted”. Subsequently, a taint policy determines
how taint is propagated dynamically through runtime operations. As a
very coarse, conservative abstraction, taint analysis is efficient but suffers
from excessive false positives leading to an overestimate of the influence of
untrusted inputs on sensitive data. Taint analysis also typically addresses
the problem of confidentiality (detecting sensitive data leaks), rather than
program integrity (measuring the degree of an adversary’s control).

For a simple example, consider the two functions in Figure 1.1. The
first is a stylized input sanitizer. The second skips all checks. Evidently,
the former is correct and the latter is not, but taint analysis would label
both functions’ return values equally tainted. Furthermore, as typically
implemented, taint analysis can produce false negatives (underestimates of
leaked information) as well. These result from a desire to improve efficiency
(e.g., a dynamic analysis that considers only a small number of program
paths) or reduce false positives (e.g., by ignoring implicit information flow
when tainted information affects control flow). Newsome et al. [25] give
several real-life examples (drawn from common Unix utilities, the Windows
keyboard driver, and how GCC compiles switch statements) of coding pat-
terns that cause typical taint analyses to produce both false positives and
false negatives.

A quantitative measure of information flow is an elegant solution to the
shortcomings of taint analysis, and considerable research has pursued this
direction. Returning to Fig. 1.1, two reasonable questions to ask would
be whether or not InputSanitizer2 gives the input full control of the re-
turn value, and whether or not InputSanitizer1 limits the influence to
log2(|legal range|+ 1) bits of information.

2



Chapter 1. Introduction

In this thesis, I am primarily concerned with program integrity. At a high
level, the goal of program integrity is to ensure that inputs from untrusted
sources cannot cause a system to perform unsafe actions, according to some
specification of safety. This work, in particular, was inspired by Newsome
et al. [25], whose goal was to statically compute a measure for program
integrity. They define the influence that a (potentially untrusted) program
input can have over a specified program variable in two steps. First, they
consider the number of distinct values of the specified variable that the
program can be forced to compute by ranging over all possible input values.
They define the bits of influence of the input over the specified variable as
the log2 of this number. For example, if the specified variable is 32 bits
and is sensitive, a large number of bits of influence should flag a potential
problem.

As stated, this definition of influence given by Newsome et al. [25] is
equivalent to the channel capacity. The number of bits of influence is equal
to the maximum number of bits of uncertainty of the output value, over all
possible input distributions. Even without the connection to information
theory, influence is a natural worst-case notion in a security context for
capturing in a single value the amount of control an adversary may have
over a specified program variable. In Chapter 6, I consider a generalization
of the worst-case role that auxiliary inputs (i.e., not under the adversary’s
control) can have on the adversary’s influence on a specified program
variable.

In this thesis, I address the same influence computation given by New-
some et al.: given a deterministic program, an exit point where information
flow is measured, and a specified set of output variables, compute the car-
dinality of the set of all possible values of the output variables after all
executions from the program’s inputs to its outputs at the exit point. I
treat all inputs as non-deterministic, e.g., under the control of the attacker.
My goal is to compute this cardinality precisely.

Prior work has sacrificed scalability, precision, and/or automation. Most
publications that attempt precise (or close approximations of) channel ca-
pacity give results only for small examples of around a dozen lines of code
or less (e.g., [2, 22, 25, 27]). On the other hand, Newsome, McCamant, and
Song [25] also report impressive scalability in analyzing known vulnerabili-
ties on real systems code (RPC DCOM, SQL Server, ATPhttpd), but these
results are based on analyzing only a single execution trace (thereby ignoring
many possible information flows), and on these examples, their computation
yielded lower bounds of fractionally above 6 bits and upper bounds of 32

3



Chapter 1. Introduction

bits or slightly less for a 32-bit output. The lower bounds were sufficient to
suggest the presence of an attack, but these are clearly not precise informa-
tion flow bounds. My work was directly inspired by theirs — my goal is also
to handle real system code, but with much greater precision on the chan-
nel capacity measurement. Similarly, McCamant and Ernst [21] presented
an analysis that scaled to over 500KLoC, but based on rough, conservative
tracking of the bit-widths (not information content) of data flows and some
manual program annotations. Most similar to my work is a recent paper by
Phan and Malacaria [26], who compute precise quantitative information flow
and report scaling on three examples to over 200 lines of code. Like them,
I am also using symbolic execution and modern SAT/SMT techniques. As
I will show in Section 4.3, nsqflow is far more scalable.

Contributions:

• I demonstrate for the first time that highly precise quantitative infor-
mation flow computation can scale to real, medium-sized programs.
Specifically, I present nsqflow, an automated static analysis tool for C
source code that measures the channel capacity between a program’s
inputs and user-selected outputs. nsqflow is both precise (subject to
the limitations below), and able to scale to 20K lines of real C code.
In my experiments, nsqflow flagged two previously-undisclosed buffer
overflows in real, open-source programs.
• To facilitate the analysis of real C source, I make extensions to Kite, a

state-of-the-art symbolic execution tool, in order to efficiently analyze
code with pointers.

4



Chapter 2

Background

2.1 Quantitative Information Flow

Quantitative information flow (QIF) is a framework that has been used in
detecting a class of security flaws in programs. In QIF, programs are consid-
ered communication channels between inputs and outputs, and information-
theoretic definitions of information leakage may be used in order to measure
the degree of influence which a program’s inputs can have over its outputs,
if the inputs are allowed to vary.

Not surprisingly, this is a difficult problem. Intuitively, there is the chal-
lenge of analyzing an explosion of possible program paths to the specified
exit points, as well as the #P-complete problem of enumerating satisfying
assignments that generate possible output values. Formally, Černý, Chat-
terjee, and Henzinger [39] show that merely bounding the cardinality is
PSPACE-complete. Furthermore, this complexity is in terms of the explicit
state space of a finite-state program (the set of all possible valuations of all
possible program states), not just in terms of program size. Even in the
simple case of loop-free Boolean programs, Yasuoka and Terauchi [42] show
that the problem is coNP-complete.

Sabelfeld and Myers [31] provide an extensive survey of earlier work on
information flow, and Smith [35] provide a full treatment of the theoretical
foundations of quantitative information flow in programs.

Moreover, there has been work in practically measuring QIF. In [2], the
authors show how to compute a precise measure of information flow for
small programs for a variety of information-theoretic measures by counting
the number of equivalence classes in an equivalence relation over program
variables. However, the tool they present scales only to small programs on
the order of a dozen lines.

Meng and Smith [22] present a way to compute Renyi’s min-entropy by
analyzing relations between pairs of bits in a program’s outputs, but only
present results for small programs on the order of 10-20 lines of code (includ-
ing many of the smaller examples from [25]), and show a rapid exponential
blowup as they scale up the number of program paths (15 hours for 232
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2.2. Kite: Conflict-Driven Symbolic Execution

program paths).
Newsome, McCamant, and Song [25] define a program input’s influence

over the program output as the the log2 logarithm of the number of solu-
tions to the outputs, given that the inputs are allowed to vary. They argue
that if the influence is large relative to the output width (for instance 32
bits for a 32-bit output), this is somewhere that a problem is likely to be
present. Their measurement is equivalent to channel capacity, which repre-
sents a worst-case over all possible distributions of the input variables, of the
number of bits of uncertainty. Their approach, based on symbolic execution,
is able to scale to large programs at the cost of precision. A more complete
comparison of nsqflow with [25] is presented in Section 5.2

Phan and Malacaria [26] compute precise QIF based on a symbolic exe-
cution engine that counts the number of solutions while performing symbolic
executing, in order to arrive at a precise measurement. They scale to pro-
grams on the order of 200 lines of code. A more complete comparison of
nsqflow with [26] is presented in Section 5.2.

2.2 Kite: Conflict-Driven Symbolic Execution

I implement nsqflow as an extension to Kite, a tool that implements a state-
of-the-art symbolic execution algorithm known as conflict-driven symbolic
execution [37]. The reader is assumed to be familiar with symbolic execution
and SAT solvers based on conflict-driven clause learning (CDCL). Please
refer to [3, 12, 15] for a fuller treatment of symbolic execution, and [1, 9, 24]
for background on CDCL SAT solvers.

A symbolic execution engine operates on symbolic values (sets of concrete
values), executing instructions sequentially in order to prove or disprove a
property about the program (typically assertion statements). Every time
there is a branch point in the program, the symbolic execution must consider
(but not necessarily explore) both program paths. Symbolic execution will
simulate a fork in the program execution. If a branch is infeasible, the
symbolic execution does not need to explore this path, and will continue
executing only along feasible paths. Eventually, all paths in the program
will be covered as long as the path length is finite.

Conflict-driven symbolic execution (CDSE) [37], is a symbolic execution
algorithm that is able to learn from infeasible paths. CDSE initially encodes
the program’s control flow graph (CFG) as a CNF formula (in a separate
formula from the path constraints). It then augments this formula with
further constraints each time a path is proven to be infeasible by the path

6



2.2. Kite: Conflict-Driven Symbolic Execution

constraint solver, to exclude the infeasible path, along with potentially many
others, from the solution space of the CFG formula.

1 int main ( ) {
2 symbol ic int x , y ;
3 i f ( x < 0)
4 x = −x ;
5 int r e s u l t = x − y ;
6 i f ( x < y )
7 r e s u l t = y − x ;
8 a s s e r t ( r e s u l t >= 0 ) ;
9 }

Listing 2.1: An example (adapted from Listing 1.1 of [37]) to il-
lustrate that not all paths are needed to prove a property. In this
example, the property to be proven is an assertion statement embed-
ded in the code. In this example, this assertion always holds.

For a demonstration of path learning in Kite, consider the small program
given in Listing 2.1. A corresponding execution tree encoding each program
statement and branch as a node is shown in Figure 2.1. The transitions
following each node are annotated with the full path condition that Kite
has learned following the program statement. Although there are 4 distinct
execution paths that reach the target assertion, Kite need not explore each
distinct path, unlike traditional symbolic execution engines. For the case
when Kite evaluates the (x < y) branch to True, the conjuncts in the path
condition that are shown in red, specifically (x < y) and (result= y − x)
are sufficient to prove the assertion. These conjuncts correspond to lines 6
and 7 in the code. After Kite has explored the first (leftmost) path, it need
not evaluate the assertion again in the third path from the left, as it has
learned a clause that any time these conjuncts are present, the assertion
will evaluate to false. Similar reasoning can be applied to the second and
fourth paths, and Kite only needs to fully explore 2 of the 4 program paths
in order to prove the assertion. Specifically, Kite will exclude paths that
reach the assertion in Line 8 with !(result >= 0) in the path condition.
Any future paths that have this clause in the path condition will be refuted.
As a result, Kite need not explore all the paths through the program.

Each time that a path constraint is proven to be unsatisfiable, it follows
that at least one different branch in the path must be taken in order to
reach the output of the program, and in principle, it would be sufficient to
refine the CFG formula with this clause. However, on unsatisfiable instances,

7



2.2. Kite: Conflict-Driven Symbolic Execution

symbolic int x, y;

if (x < 0)

x = -x;

(x<0)       
         

True           

result = x-y;

if (x < y)

(-x<0)            

(-x<0) and                     
(result = -x-y)                      

(-x<0) and                         
(result = -x-y) and                          

(-x<y)                        

result = y-x;

assert
(result≥0);

(-x<0) and                    
(-x<y) and                    

(result=y+x)                     

  (-x<0) and                
(result = -x-y) and          

(-x≥y)          

result = x-y;

(x≥0)          

if (x < y)

(x≥0) and                    
(result = x-y)                    

result = y-x;

(x≥0) and               
(result = x-y) and              

(x<y)               

assert
(result≥0);

assert
(result≥0);

assert
(result≥0);

                         (x≥0) and
                           (result = x-y) and

                         (x≥y)

(-x>0) and                    
(x<y) and                    

(result = y-x)                    

True True True True

Figure 2.1: The full execution tree corresponding to the code in List-
ing 2.1. The path condition following each program statement is labeled on
the transition following each statement. Each path condition is expressed in
terms of the initial values of the variables appearing in the path condition
(the initial symbolic values given in line 2). I have shown path conditions
as linear arithmetic constraints for ease of reading, but it should noted that
such constraints would need an SMT solver — not just a SAT solver.

8



2.2. Kite: Conflict-Driven Symbolic Execution

modern SAT and SMT solvers can derive a conflict clause, which in this case
will describe a sufficient subset of the branches in the infeasible path such
that at least one of the branches in that subset must differ in any feasible
path to the output — and in many cases, this subset may be much smaller
than the full set of branches in the path.

Analogously to clause learning in a CDCL SAT solver, after each infea-
sible path, Kite adds these conflict clauses to the CFG formula, potentially
blocking many previously unexplored (but provably infeasible) paths, with-
out giving up completeness. Each satisfying solution to this CFG formula
describes a potentially feasible path in the program; decisions on which path
to explore next are made by repeatedly finding satisfying solutions to this
formula.

By maintaining this CFG formula and using it to direct the sequence of
path explorations, CDSE takes advantage of two features responsible for the
recent success of CDCL SAT solvers: conflict analysis and non-chronological
backtracking. This allows Kite to perform complete symbolic execution
while mitigating the path explosion problem.

9



Chapter 3

nsqflow

I have developed a tool, nsqflow, to measure QIF (specifically, channel ca-
pacity) through programs. In this chapter I describe the architecture of my
tool. Figure 3.1 presents a high-level overview of my approach, showing the
various components of the toolchain.

As part of this process, the user must select a variable along with a
location in the code over which they wish to measure influence. Currently, I
achieve this with a simple annotation, but in principle this could be applied
to unaltered code, for example using a GUI to select the variable in question.

This program is symbolically executed using the symbolic execution en-
gine Kite [37] to produce a representation of the program as a Boolean Sat-
isfiability (SAT) instance in conjunctive normal form (CNF). During this
step, Kite forms a path condition for each path that it explores, and em-
ploys a constraint solver to both simplify and solve each path condition. I
describe this procedure more closely in Section 3.1.

In addition to being solved, nsqflow stores the CNF representations of
each path condition encountered during symbolic execution. Finally, once
all paths have been explored, the CNFs for each path condition are com-
bined and handed to a model counter, which counts the number of distinct2

satisfying assignments to just the output variables in the resulting CNF. Fi-
nally, the reported measurement is the base-2 logarithm of the number of
such satisfying assignments.

In the following sections, I describe the various components of nsqflow.

3.1 Architecture of nsqflow

I have implemented nsqflow using the symbolic execution engine Kite, which
implements the CDSE algorithm [37] and was developed primarily to verify
embedded assertions in sequential programs. Consequently, nsqflow inherits
many components from Kite. Kite verifies programs described in the LLVM

2 By distinct, I mean that any set of solutions that share the exact same values on the
output variables are counted only once.

10



3.1. Architecture of nsqflow

Kite
Symbolic execution

engine

 SharpSubSAT 
Subset model

counter

C Source
with output variable

annotation

Input to nsqflow

Influence
in bits (QIF)

  Output from nsqflow

nsqflow
QIF measurement tool

Figure 3.1: The architecture of nsqflow. Note that Kite outputs a CNF
formula encoding the feasible paths of the source program. This CNF is fed
as input to SharpSubSAT to compute the subset model count. The influence
is the base-2 logarithm of this count.

assembly language [18], known as LLVM-IR, which can be obtained by com-
piling C files using the LLVM C front-end. nsqflow has inherited LLVM as
its underlying compiler suite, and internally uses LLVM-IR during its com-
putation of QIF. nsqflow has also inherited Kite’s internal constraint (SMT)
solver and SAT solver (STP [3], and MiniSat 2 [9], respectively).

Kite is able to generate CNFs representing the set of all feasible paths
leading to a desired target property, and nsqflow leverages this feature in
generating a final CNF to be model-counted. Unfortunately, Kite does not
implement pointer analysis, treating symbolic pointers conservatively. This
leads to unacceptable running times for pointer-heavy C code, and I discuss
how I address with this issue in section 3.1.1, adding pointer analysis to
Kite.

To achieve a precise measure of information flow, nsqflow symbolically
executes all the relevant (feasible) paths to the output variables of the (finite)
program being analyzed, and then forms the disjunction of those paths into
a single CNF for model counting (as described below). However, naively
attempting to symbolically execute all program paths scales very poorly
in practice, as the number of paths to execute may be exponential in the
number of branches — and many of those paths might be irrelevant to the
information flow currently being analyzed.

In order to support model counting in this paper, I implement as part of

11



3.1. Architecture of nsqflow

nsqflow two further changes to Kite: First, nsqflow adds a blocking clause to
the CFG formula each time a feasible path to the output variable is found,
to prevent that complete path from being explored again (this forces Kite
to continue symbolically executing all feasible paths to the output, rather
than just halting after the first path is found). Secondly, nsqflow stores
the formulas for each feasible path constraint, and forms their disjunction
as one monolithic output CNF to be passed to the subset model counter
(described below). Only the feasible path constraints must be included in
this disjunction; infeasible path conditions need not be stored, reducing the
size and difficulty of the resulting CNF.

During symbolic execution, the accumulated path constraints from root
to leaf in the program’s execution tree (for feasible paths) represent the
branch decisions leading from specific concrete inputs to the output value. A
disjunction of the constraints over all feasible paths represents a full formula
for a finite program. While the number of paths is exponentially large,
Kite is able to prune large parts of the search space and make possible an
incrementally-updated disjunction.

The basic implementation details of forming the incremental path
disjunction are as follows. Initially, nsqflow requires a user-provided flow
declaration as a way to mark the output variables at a specific point
in the program. This is implemented as a special function call in the
program: DECLARE OUTPUT(varname). Conceptually, this function call is
translated into a pair of assertions in the code: assert(varname != 0)

and assert(varname == 0), which comprise the target property for the
symbolic execution engine to check. To support an incremental update to
the CNF, nsqflow keeps track of program-variable-to-STP, and STP-to-SAT
variable mappings, performing CNF variable renaming to avoid any name
collisions. nsqflow also imposes equality constraints on the CNF variables
corresponding to the same program variable across different paths, in order
to keep the CNF correctly constrained in the number of admitted solutions.
The implementation is memory-efficient, in that at any given time, nsqflow
need maintain only these constraints for the previous path and the current
path.

3.1.1 Memory Handling

Due to Kite’s lack of pointer analysis, it would be impossible to analyze
real C code containing pointers. Because Kite assumes that all pointers
are 32 bits, Kite branches on all 232 possible memory addresses when there
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3.1. Architecture of nsqflow

is a symbolic pointer dereference. While this is a sound upper bound on
the number of feasible execution paths, it is an infeasible approach. Con-
sequently, I have implemented a method to better handle memory access,
a facility necessary for nsqflow to scale to real code. Below, I describe how
symbolic pointers are handled in nsqflow.

Every time Kite makes a decision on a CFG branch, nsqflow makes a
query to the pointer analysis provided by LLVM (called Data Structure
Analysis (DSA) [19]) under the current path condition, in order to learn
aliasing information. For pointers that DSA finds to be definitely equal or
definitely not equal, nsqflow extends the path condition at the time of the
previous CFG branch decision with this information. Thus, further explo-
ration extending that path condition will be augmented with the returned
pointer comparison (aliasing) information.

DSA itself works by first constructing a directed graph for each function
in the program, with each graph consisting of a set of nodes that correspond
to the memory objects named in the function (stack, heap, and global objects
allocated or named in the function, including basic integer and floating-point
types, arrays, structures, pointers, and functions), edges between the fields
of nodes when corresponding objects name each other in the program, a
set of edges mapping these names to the fields they name, and a set of all
function calls made by the function. This information is enough for DSA
to simplify the graph, removing duplicate call sites when calls are made to
the same function with the same arguments and return types. Once DSA
has finished constructing directed graphs for each function in the program
using local information as just described, it copies the local graphs of each
callee into the calling function’s local graph, detecting strongly-connected
components (SCCs) in order to avoid visiting each SCC more than once (in
order to avoid infinite cycles), eliminating duplicate calls in the same manner
as during the local graph construction. The result of this interprocedural
copying is a full call graph for the program. Finally, each graph is traversed
again, with the calling function’s graph being copied into the graph of each
potential callee. In this manner, DSA is able to scale efficiently, requiring
only seconds for programs spanning hundreds of thousands of lines of code,
with a worst-case time complexity of Θ(nα(n) + kα(k)e) and a worst-case
space complexity of Θ(fk), for a program with n instructions, k as the
maximum size of a graph for a single function, e edges in the program’s call
graph, f functions in the program, and where α is the inverse Ackermann
function. Due to this low computational overhead and excellent scalability,
nsqflow is able to make a pointer query every time Kite makes a CFG branch
decision, and explores a new path under the path constraint at the time of
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3.1. Architecture of nsqflow

Kite’s branch decision.
In addition to being an alias analysis, DSA is a points-to set memory

analysis [7, 19]. Unlike alias analysis, which returns equality and disequality
relations between pairs of pointer variables, a points-to analysis for a pointer
variable will yield a set containing memory objects which each pointer may
reference. I extend Kite to use this information as part of its search decisions
when the result of a conditional expression depends on a symbolic pointer.
When the points-to analysis is successful, nsqflow need only consider a num-
ber of branches corresponding to the memory locations from the points-to
set, instead of the potential 232 memory addresses. The astute reader will
observe that even this conservative treatment of symbolic pointers when
unable to learn anything from DSA does not affect the precision of the re-
sulting influence measurement. As the symbolic execution engine considers
each possible memory address assigned to the pointer, it will determine that
the paths along memory addresses which cannot be assigned are infeasible,
and therefore cannot reach the target property. Thus, although it can have
a dramatic impact on performance, it does not sacrifice precision.

One drawback of this alias analysis approach, however, is the increase in
the size of the resulting CNFs by inserting clauses. Although these clauses
provide additional constraints, which intuitively should make the intermit-
tent SAT solving (as well as the final model counting) easier, it is not guar-
anteed to do so and can in some cases increase the difficulty of the problem
given to the solvers.

3.1.2 Library Calls

A limitation of nsqflow is one that static analysis tools fundamentally suffer
— that of library and system calls, or to functions for which we possess
headers, but not the source implementation. Although nsqflow is a source
analysis tool, real C code makes use of included header files for which the
source is not available, and makes heavy use of system calls (in my exper-
iments in chapter 4, the code analyzed makes heavy use of network reads,
for instance). The default way in which nsqflow deals with the complexity
of calls to such code is to implement stub libraries marking these functions
as behaving nondeterministically, and potentially returning any value. Kite
provides the facility to include these “fake” library calls. Furthermore, for
commonly used functions, the user of the tool can implement models for
the functions to account for the behavior of these calls. A model will help
the symbolic execution engine prune many paths from its search, but if the
model is incorrect, precision will also suffer.
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3.2. Subset Model Counter

3.1.3 Relaxing Precision

Although my goal is to measure influence precisely, one advantage of
nsqflow’s incremental, path-by-path nature is that it facilitates the early
termination of its execution to obtain a lower bound on the true channel ca-
pacity. This may be useful to implement policies such as “the inputs should
have no more than m bits of influence over the output”. This formulation
can be useful to verify programs for which a low influence measurement is
expected (for instance, string sanitizers on untrusted user inputs) — a large
output set may be a sign of an integrity violation. For instance, consider a
program that is intended to output a small set of values, but nsqflow dis-
covers a large (but not exhaustive) number of solutions to the output set,
such as a buggy piece of code that is expected to return one of only 3 or 4
possible values (e.g. return codes) for an output of width 32 bits. In this
case, observing a measurement of 10 bits (for instance), is enough to alert
the user to the issue, without requiring a full exploration of all 232 possible
outputs.

There are two potential points at which nsqflow may be terminated early
to obtain this bound. In the first, symbolic execution may be stopped early
to obtain a CNF that represents only a subset of the paths explored at that
point. Because nsqflow maintains a CNF that is incrementally-updated as
Kite explores new paths, terminating symbolic execution early will yield a
CNF with a number of solutions that is a sound lower bound on the total
number of solutions. Thus, model counting this CNF will yield a sound
lower bound on the influence measurement.

In the second, the model counting step may also be terminated early.
Due to the incremental nature of the model counter used in nsqflow, it can
be stopped at any point to obtain a lower bound on the total number of
solutions to the CNF.

When exact precision is not required, as in the case of the aforementioned
minimum-threshold policy, the savings in running time can be dramatic. In-
deed, early termination of either of these steps may lead to an exponentially
lower number of paths to consider for the symbolic execution engine.

3.2 Subset Model Counter

In the final step of my approach, nsqflow counts the number of different
satisfying assignments that the output variables can be assigned in the CNF
representation of the program, which corresponds to the size of the feasible
set of values of the output variables. In order to compute the size of the
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feasible value set for just the output variables (as opposed to the poten-
tially much larger count of all possible satisfying assignments to the CNF,
which may include many assignments which differ only in other variables),
I use a variant of model counting, which I call subset model counting, or
(#SubSAT), as the basis for computing the size of the feasible value set.
Whereas in exact model counting, one must count the number of unique
satisfying assignments to CNF formula φ, in #SubSAT one must count the
number of unique assignments to a subset S of the variables of φ that can
be extended into satisfying assignments of φ.

A typical CDCL-based model counter [32] can be easily adapted to sub-
set model counting by simply removing all literals from the blocking clause
that are not elements of the subset S. Such an algorithm is described in Al-
gorithm 3.1. Correctness of this algorithm follows from the correctness of
the very similar 2QBF algorithm (Alg. 1) described in [29].

Algorithm 3.1 SharpSubSAT Model Counter

1: S ⊂ vars(φ) is the subset of Boolean variables in φ to count.
2: num models = 0
3: while φ is SAT do
4: Let assign be a satisfying assignment to φ.
5: Let assign′ ⊂ assign be a prime implicant of φ.
6: assign′S ← {x | x ∈ assign′ ∧ var(x) ∈ S}.
7: num models← num models + 2|S|−|assign

′
S |

8: φ← φ ∧ ¬assign′S

I implement this step in the nsqflow toolchain using the #SubSAT solver
SharpSubSAT [38], a prime-implicant-based CDCL model counter [4, 8,
20, 23] that uses a greedy cover-set approach to deriving prime implicants.
SharpSubSAT implements Algorithm 3.1 with the heuristics of first decid-
ing on the variables of S; and adding variables not from S to the cover set
first (thus potentially reducing the number of literals in S that end up in
the prime implicant and subsequent blocking clause). In my experiments,
solving the subset model counting problem (for small subsets of up to a
few hundred variables) is dramatically faster than complete exact model-
counting, and is an important heuristic for the scalability of the computa-
tionally hard model counting step of nsqflow. When SharpSubSAT has run
to completion, the resulting count is precisely the cardinality of the feasible
value set. Finally, nsqflow takes the base-2 logarithm of the cardinality in
order to obtain the influence in bits.
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3.3 Limitations

It is important to present the limitations of nsqflow, and of this approach
to QIF.

First and foremost, nsqflow attempts to solve a computationally diffi-
cult problem. As nsqflow must fundamentally reason about an exponential
number of paths to the program exit points, the number of satisfying as-
signments that yield possible possible output values is similarly large. As
previously mentioned, multiple steps in the nsqflow toolchain belong to high
complexity classes. As a result, the runtimes obtained from nsqflow are fea-
sible on some subset of real programs, but in the general case, nsqflow may
be unable to run to completion even in the case of finite path lengths. As
presented, nsqflow is sensitive to the choice of program being analyzed.

Second, nsqflow computes only channel capacity. Since channel capacity
represents the worst-case behaviour over input distributions, it can over-
estimate the degree of influence over the program outputs. This can lead
to false positives – even when nsqflow computes a large number of possible
assignments to a set of output variables, this does not necessarily indicate
a problem with the code. Some computations will fundamentally, and cor-
rectly, exert a large degree of influence on their outputs. Such would be
the case, for instance, in cryptographic algorithms based on bit substitution
and permutation. In such a case, channel capacity would not be a use-
ful measure in order to detect errors in the code. More generally, channel
capacity is not always the most appropriate measure of information flow,
when other measures such as Shannon entropy or Renyi’s min-entropy may
be preferable.

Furthermore, nsqfow inherits problems suffered by all symbolic execution
tools. My analysis considers only finite-length execution paths. In particu-
lar, nsqflow has a configurable parameter to bound the loop unrolling; if the
symbolic execution can exceed this bound, the tool warns the user.3 In the-
ory, nsqflow’s bounds are always precise with respect to the set of all paths
explored, are always guaranteed under-approximations with respect to all
paths (i.e., considering extremely long and non-terminating paths as well),
and can be made arbitrarily accurate by extending the symbolic execution
runs to include increasingly longer paths.

In practice, the important challenge is scalability. As I will show
in Chapter 4, nsqflow scales to much larger programs than previous ap-

3 In my experimental results in Chapter 4, the bound is always set high enough to
exhaustively explore all possible execution paths.
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proaches [2, 22, 25, 26], and does so while maintaining a high level of pre-
cision. There remains a theoretical concern that the lower bounds provided
by bounded symbolic simulations could underestimate the influence of a ma-
licious input. However, given the state-of-the-art, I believe that nsqflow’s
emphasis on scalability over completeness is well-justified.

Moreover, nsqflow makes conservative abstractions about the environ-
ment. For example, nsqflow does not model the file system, so a read to a
file is treated as non-deterministic (i.e., under an attacker’s control). Sim-
ilarly, system calls that are not explicitly modeled are treated as returning
non-deterministic values. In a security context, these may be reasonable
assumptions, but they can result in coarse overestimates of the adversary’s
influence.

Finally, my current implementation operates from the source-code level,
so nsqflow cannot quantify information flow to machine-level artifacts, such
as the program counter, as can be done e.g., by Newsome et al. [25]. In
principle, my approach could perform analysis of binaries if provided with
a front-end that could recover the CFG and functionality of the binary.
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Chapter 4

Evaluation

Two key measures of performance for an information flow tool such as
nsqflow are precision and scale. Previous work in the area has demon-
strated a dichotomy between these two extremes, with the ideal being a tool
that can measure flow precisely at scale. I evaluate where nsqflow lies along
this scale-precision spectrum using a set of programs varying in size and
complexity.

Because information flows through programs are difficult to reason about
by a human, and there is a general lack of available precise flow measurement
tools against which I can compare my own measurements, it is inherently
difficult to validate the correctness of my tool. In order to achieve some
validation of correctness, I present two sets of experiments in the following
sections. In the first, I run my tool against a nontrivial program for which
I can analyze the information flow precisely. In the second, I compare the
measurements obtained by nsqflow to the measurements presented by New-
some, McCamant, and Song [25] and by Phan and Malacaria [26]. As I
will demonstrate, nsqflow reports the same value whenever an exact value
is provided in [25] and [26], and falls within the lower and upper bounds
whenever an approximate value is presented in [25].

Finally in Section 4.4, I demonstrate that nsqflow is able to analyze
programs at scale, by running it on a selection of open source software and
reporting my results.

My reported running times take into account a full command-line invoca-
tion of the nsqflow toolchain, from the start of symbolic execution to the end
of model counting. Since there is fixed overhead associated with this pro-
cess (e.g. interprocess communication, internal compilation by LLVM/Kite,
temporary file input/output), the examples that run to completion very
quickly are unfairly penalized. Thus, the reported running times for the
small programs are less meaningful and almost entirely an artifact of my
implementation. However, this effect is negligible for longer-running exper-
iments. I executed all experiments on an Intel Core i5-750 2.66GHz with
8MB of L2 cache and 4GB of RAM running 64-bit Ubuntu Linux.
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4.1 Testing Correctness

In order to test the correctness of nsqflow, I analyze the output QIF
of nsqflow on a nontrivial program for which the influence is known by
construction. The program implements a family of universal hashing
functions and is shown in Listing 4.1. It demonstrates nsqflow’s precise
information flow computation through both explicit data flow and implicit
control flow.

i n t matrix [ROUNDS] ;
. . .
void f i l l m a t r i x ( i n t seed ) {

i n t i ;
srand ( seed ) ;

f o r ( i =0; i < ROUNDS; i++)
matrix [ i ] = rand ( ) &

((1 << OUTPUT WIDTH) − 1 ) ;
}
// p r in t matrix to f i l e
. . .
// matrix has cons tant s hardcoded by f i l l m a t r i x
long hash ( long x ) {

i n t i ;
i n t va lue = 0 ;
f o r ( i =0; i < ROUNDS; i++) {

i f ( x & 0x1 ) value ˆ= matrix [ i ] ;
x >>= 1 ;

}
re turn value ;

}

Listing 4.1: Universal hashing example

The above generates a matrix of bits, with ROUNDS columns, each of
which possesses OUTPUT WIDTH bits by construction (masking the remaining
bits in the bitvector to 0). The matrix is filled with deterministic values set
by initializing the pseudorandom number generator with a particular value
for its seed, resulting in the same sequence of pseudorandom numbers when
fill matrix is passed the same seed.

The hash function consumes one bit at a time from the value to hash
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Figure 4.1: Universal hashing tests. The area of the points is proportional
to the number of times that amount of information flow was measured, of
my 100 runs.

(x), and if the bit’s value is 1, it performs a bitwise xor with the bit in
the next matrix column. In this way, one knows that by construction, at
most ROUNDS bits of the return value may be affected by the input bits of
x, dependent on the matrix values chosen. After a number of rounds (input
bits) equal to OUTPUT WIDTH, one expects to see a limit.

The only input in this case is x, and measurements correspond to
the influence of x over the value returned by the hash function. I fixed
OUTPUT WIDTH to have the value 15 and let ROUNDS vary. In order to avoid
creating specific hardcoded matrices to demonstrate the values, I instead
uniformly sampled the seed value from [0, 231 − 1] and repeated the mea-
surement 100 times for each value of ROUNDS. By construction, the infor-
mation flow is limited by both the number of input and output bits, i.e.,
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min(ROUNDS, OUTPUT WIDTH). In addition, the influence should be exactly
that value, unless the columns of the pseudorandom matrix do not fully
span the space of possible outputs.

Figure 4.1 plots my results. Exactly as predicted, the influ-
ence measurements are limited by (and usually exactly equal to)
min(ROUNDS, OUTPUT WIDTH), with smaller information flow when the ma-
trix columns do not span all possible outputs. For example, the probability
that a 15× 15 binary matrix being full-rank is about 29%, and one can see
that when ROUNDS = OUTPUT WIDTH = 15, a bit less than 1/3 of the 100
pseudorandom matrices produce the full 15 bits of influence.

4.2 Comparison: TEMU

In this section, I compare my results to examples from prior work by
Newsome, McCamant, and Song [25] as an evaluation of their influ-
ence measurement tool, called TEMU4. I show that nsqflow is able
to measure information flow consistent with the findings of Newsome
et al., with higher precision and better running time in about half of
the cases presented. For the reader’s convenience, I have included my
translations into C of the relevant test programs, shown in listings 4.2 to 4.9.

i n t copy ( i n t i ) {
i n t v = i ;
r e turn v ;

}

Listing 4.2: Copy

i n t masked copy ( i n t i ) {
i n t v = i & 0 x0f ;
r e turn v ;

}

Listing 4.3: Masked copy

4Actually, it is an extended tool based on the existing TEMU, the dynamic taint
analysis component of the BitBlaze binary analysis software suite [36]
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i n t base = CONSTANT; // any constant
i n t checked copy ( i n t i ) {

i n t v ;
i f ( i < 16)

v = base + i ;
e l s e

v = base ;
r e turn v ;

}

Listing 4.4: Checked copy

i n t div2 ( i n t i ) {
i n t v = i / 2 ;
r e turn v ;

}

Listing 4.5: Divide by 2

i n t mul2 ( i n t i ) {
i n t v = i ∗ 2 ;
re turn v ;

}

Listing 4.6: Multiply by 2

i n t i m p l i c i t ( i n t input ) {
i n t output = 0 ;
i f ( input == 0) output = 0 ;
e l s e i f ( input == 1) output = 1 ;
e l s e i f ( input == 2) output = 2 ;
/∗ . . . ∗/
e l s e i f ( input == 6) output = 6 ;
e l s e output = 0 ;
re turn output ;

}

Listing 4.7: Implicit flow
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Influence (bits)
Name Fig # in [25] nsqflow TEMU-

sound
TEMU-
sample

TEMU-
approx-
#SAT

Copy Table 1 32 6.04–32 31.8–32 32

Masked Table 1 4 4 - -

Checked Ex. 1 4 4 - -

Div2 Table 1 31 6.58–31 30.8–31 31.7

Mul2 Table 1 31 6.58–32 30.4–31.6 31.5

Implicit Figure 1 2.81 2.81 - -

Popcnt Figure 2 5.04 5.04 - -

MixDup Figure 2 16 6.04–32 0–28.6 15.8

Table 4.1: Information flow for programs given in [25]. The second column
represents the figure number in [25] (which I have reproduced in listings 4.2
to 4.9). Ranges are given as x–y when values from [25] are approximate.

i n t popcnt ( unsigned i n t i ) {
i = ( i & 0x55555555 ) + ( ( i >> 1) & 0x55555555 ) ;
i = ( i & 0x33333333 ) + ( ( i >> 2) & 0x33333333 ) ;
i = ( i & 0 x 0 f 0 f 0 f 0 f ) + ( ( i >> 4) & 0 x 0 f 0 f 0 f 0 f ) ;
i = ( i & 0 x 0 0 f f 0 0 f f ) + ( ( i >> 8) & 0 x 0 0 f f 0 0 f f ) ;
i n t output = ( i + ( i >> 16)) & 0 x f f f f ;
r e turn output ;

}

Listing 4.8: Population count

unsigned i n t mix copy ( unsigned i n t x ) {
unsigned i n t y = ( ( x >> 16) ˆ x ) & 0 x f f f f ;
unsigned i n t output = y | ( y << 1 6 ) ;
r e turn output ;

}

Listing 4.9: Mix and duplicate

I present a comparison of my results for these programs in Table 4.1
and Table 4.2. In each case, I measured the flow of my tool from the in-
put to the listed function’s return value. The columns labeled TEMU-sound,
TEMU-sample, and TEMU-approx-#SAT represent the three different com-
plementary approaches employed by Newsome et al. TEMU-sound is the
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Running time (s)
Name Fig # in [25] nsqflow TEMU-

sound
TEMU-
sample

TEMU-
approx-
#SAT

Copy Table 1 0.16 0.5–3.8 0.5–3.8 <30

Masked Table 1 0.16 0.5–3.8 - -

Checked Ex. 1 0.16 0.5–3.8 - -

Div2 Table 1 0.17 0.5–3.8 0.5–3.8 <30

Mul2 Table 1 0.17 0.5–3.8 0.5–3.8 <30

Implicit Figure 1 0.17 0.5–3.8 - -

Popcnt Figure 2 0.17 0.5–3.8 - -

MixDup Figure 2 0.17 0.5–3.8 0.5–3.8 <30

Table 4.2: Running time for programs given in [25]. The second column
represents the figure number in [25] (which I have reproduced in listings 4.2
to 4.9). Ranges are given as x–y when values from [25] are approximate.

first technique their tool uses, and is able to find sound lower and upper
bounds on the channel capacity. When the lower and upper bounds are
equal, they have found a precise result. However, when their sound tech-
nique fails to find a precise result after several seconds, their tool falls back
to approximation techniques represented by the next two columns, TEMU-
sample and TEMU-approx-#SAT. The column labeled TEMU-sample rep-
resents a probabilistic bound based on sampling the space of possible in-
puts by making queries to a constraint solver. Finally, the column labeled
TEMU-approx-#SAT is their estimate using an approximate model counter
to obtain a probabilistic estimate of the size of the output set. Although
they do not present exact runtimes, they state that for TEMU-sound and
TEMU-sampling, runtimes for the examples varied between 0.5 and 3.8 sec-
onds, while TEMU-approx-#SAT never required more than 30 seconds.

In [25], Newsome et al. also present another set of experiments. Unfortu-
nately, however, I was unable to reproduce these experiments using nsqflow
due to the nature of their tool compared to mine. Specifically, the RPC
DCOM, SQL Server, Samba Filesystem, ATPhttpd, and synthetic switch
statement test cases measure influence over the program counter, which is
beyond the scope of my tool since nsqflow operates on source code.

A limitation of my comparison with respect to running time is that,
despite contacting the authors for assistance with installing and using their
tool, I was unable to compile their TEMU-based tool on my own testing
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machine. The figures I present are taken directly from the experiments by
Newsome, McCamant, and Song [25]. As a result, the figures I present
for running times should not be directly compared. One should, however,
note that the testing machines had similar specifications, although mine was
a slightly newer-generation machine and I also benefit from improvements
made to SAT and SMT solvers since [25] was published.

4.3 Comparison: sqifc

I also compare how nsqflow performs on examples from Phan and
Malacaria [26], contrasting the bounds and running times of nsqflow with
those of their tool, sqifc5. The examples are CRC8, the Grade Protocol,
and the Dining Cryptographers problem, which can be found in Figures 10,
12, 18 in [26], respectively. For convenience, I also provide these listings in
Listings 4.10, 4.11, and 4.12.

As with the experiments from Section 4.2, I contacted the authors
for assistance in installing and using their tool, sqifc. Despite making
a significant effort to install it, along with the guidance of the authors,
sqifc is a research prototype that is not easy to use in a general setting.
As a result, I was unable to run sqifc on my own testbed. Therefore, as
in Section 4.2, I present the figures reported by the authors for comparison
against the values I obtained from nsqflow. Consequently, a direct running
time comparison between nsqflow and sqifc cannot be made on the basis
of the figures I present in this section. For the test cases to which I do
compare, I note that the testing machine used by Phan and Malacaria
was a newer-generation Intel i7 3.4GHz CPU with 8GB of RAM – a
higher-performance machine than my own testbed.

5 Actually, in the same paper, Phan and Malacaria also present another tool for C
programs, which yielded significantly worse computational performance than sqifc in all
the examples they presented. Thus, I compare only against their best tool, sqifc.

26



4.3. Comparison: sqifc

sft 0 1 2 3 4 5 6 7 8

Time (s) 0.21 0.21 0.22 0.20 0.18 0.21 0.20 0.20 0.22

Table 4.3: Running time when running nsqflow on the crc8 program from
[26], for various shift values sft. In [26], Phan and Malacaria presented
results only for sft values of 3 and 5 — 0.475 and 0.289 seconds, respectively.
In all cases, nsqflow correctly reported 28−sft bits of influence.

unsigned char GetCRC8 (
unsigned char check , unsigned char ch )

{
i n t i , s f t ;
f o r ( i = 0 ; i < 8 ; i ++ ) {

i f ( check & 0x80 ) {
check <<=1;
i f ( ch & 0x80 ) { check = check | 0x01 ;}
e l s e { check = check & 0 x f e ; }
check = check ˆ 0x85 ;

} e l s e {
check <<= 1 ;
i f ( ch & 0x80 ) { check = check | 0x01 ;}
e l s e { check = check & 0 x f e ; }

}
ch <<= 1 ;

}
check >>= s f t ;
r e turn check ;

}

Listing 4.10: CRC8

The first example, crc8, computes an 8-bit CRC over an 8-bit value and
shifts the final result by sft significant bits, with the source code presented
in Listing 4.10. Table 4.3 presents nsqflow runtimes for sft values ranging
from 0 to 7. In [26], results were presented only for sft values of 3 and
5, for which their running times using their CBMC-based sqifc tool were
0.475 seconds and 0.289 seconds, respectively. In all cases, my tool correctly
reported 28−sft bits of influence. Thus I omit these figures from the table.
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i n t func ( ) {
s i z e t S = 5 , G = 5 , i = 0 , j = 0 ;
s i z e t n = ( (G −1)∗ S )+1 , sum = 0 ;
s i z e t numbers [ S ] , announcements [ S ] , h [ S ] ;
f o r ( i =0; i<S ; i++) h [ i ] = nondet in t ()%G;
f o r ( i = 0 ; i < S ; i++)

numbers [ i ] = nondet in t ( ) % n ;
whi l e ( i <S) {

j =0;
whi l e ( j <G) {

i f (h [ i ]== j )
announcements [ i ] =

( j+ numbers [ i ]− numbers [ ( i +1)%S ] ) % n ;
j=j +1;

}
i=i +1;

}
f o r ( i = 0 ; i < S ; i ++)

sum += announcements [ i ] ;
r e turn sum % n ;

}

Listing 4.11: Grade protocol

The second example to which I compare is the grade protocol program
given in Section 3.5 of [26] and copied in Listing 4.11. In [26], Phan and
Malacaria vary the number of students in the protocol, and the number of
possible grades, between 2 and 5, presenting sqifc information flow measure-
ments and running times for these values. I ran nsqflow for the same values
of students and grades as Phan and Malacaria, and present the information
flow measurements obtained from nsqflow in Table 4.4 and nsqflow’s running
times, along with sqifc’s running times from [26] in Table 4.5. In addition,
I ran nsqflow for 16 and 24 students, and for 16 and 24 possible grades. Ta-
ble 4.4 and Table 4.5 present nsqflow’s information flow measurement and
running times for these values. The running time measurements demon-
strate the advantage of nsqflow; my tool runs in 10.43 seconds for values
of students=24 and grades=24, whereas the CBMC-based sqifc takes 40.4
seconds for values of students=5 and grades=5. In all the cases in which
both tools ran to completion, the number of bits reported by nsqflow and
sqifc were equal.
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2 3 4 5 16 24

2 1.585 2.0 2.322 2.585 4.087 4.644

3 2.322 2.807 3.17 3.459 5.044 5.615

4 2.807 3.322 3.7 4.0 5.615 6.19

5 3.17 3.7 4.087 4.392 6.022 6.6

16 4.954 5.524 5.931 6.248 7.913 8.496

24 5.555 6.129 6.539 6.858 8.527 9.111

Table 4.4: Grade protocol information flow results. The row index repre-
sents the number of students, and the column index represents the number
of distinct grade values each student can take. nsqflow and sqifc reported
the same figures for all cases in which both tools ran to completion. The two
bottom rows, and the two rightmost columns, represent results computed
by nsqflow for which no equivalent results from sqifc were available.

G
ra

d
e
s Students

2 3 4 5 16 24
nsq sqif nsq sqif nsq sqif nsq sqif nsq sqif nsq sqif

2 0.36 5.66 0.45 7.03 0.61 10.77 0.86 9.47 1.22 - 2.83 -
3 0.34 9.15 0.49 11.60 0.70 17.99 1.17 20.93 2.03 - 3.12 -
4 0.49 10.10 0.60 16.87 0.80 21.87 1.15 18.67 2.43 - 3.10 -
5 0.85 14.64 0.57 20.67 0.82 33.30 1.63 40.40 2.55 - 3.67 -

16 1.24 - 1.53 - 1.79 - 3.12 - 4.14 - 5.42 -
24 1.59 - 1.86 - 1.97 - 3.71 - 5.11 - 9.88 -

Table 4.5: Grade protocol running time results. The columns labeled nsq
present nsqflow’s running times, and the columns labeled sqifc present
sqifc’s running times from [26]. All running times are measured in seconds.
The row index represent the number of students, and the column index
represents the number of distinct grade values that each student can take.
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The third example for comparison is the well-known dining cryptogra-
phers protocol, shown in Listing 4.12 for convenience. I ran nsqflow on the
same C code as given by Phan and Malacaria [26] with the same parameter
values (various values up to 300) for n, the number of cryptographers, and
present the results in Table 4.6. I obtained the same influence measurements
presented by Phan and Malacaria [26]. I found the running time of nsqflow
to be much lower, with nsqflow requiring only 3.12 seconds for n = 300,
compared to the reported 3326.9 seconds for sqifc. I also ran my tool for
larger values of n, specifically n = 1000 and n = 2000. For n = 2000,
nsqflow still required only 167 seconds.

s i z e t func ( ) {
s i z e t N = 5 , output = 0 , i = 0 ;
s i z e t co in [N] , obsco in [ 2 ] , d e c l [N ] ;
s i z e t h ;
h = nondet uchar ( ) % (N+1);
f o r ( i = 0 ; i < N; i++) {

co in [ i ] = nondet uchar ( ) % 2 ;
}
f o r ( i = 0 ; i < N; i++) {

dec l [ i ] = co in [ i ] ˆ co in [ ( i +1)%N ] ;
i f (h == i +1) {

dec l [ i ] = ! dec l [ i ] ;
}
i = i +1;

}
f o r ( i = 0 ; i < N; i++) {

output = output + dec l [ c ] ;
}
re turn output ;

}

Listing 4.12: Dining cryptographers

Phan and Malacaria also presented results for three other experiments,
all of which I was unfortunately unable to reproduce. Specifically, I was
unable to replicate the Tax Record test case as it is implemented in the
Java-like verification language ABS [10], and I was unable to translate it into
equivalent C. Also from Phan and Malacaria’s work [26], I was unable to
replicate the test cases CVE-2011-2208 and CVE-2011-1078, despite being
C code from the Linux kernel. These test cases were modified by the authors,
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n 3 4 5 6 50 100 200 300 1000 2000
Bits 2.0 2.32 2.58∗ 2.81 5.67 6.66 7.65 8.23 9.97 10.97
nsq 0.25 0.27 0.33 0.32 0.75 1.41 1.85 3.01 16.24 166.75
sqif 2.15 3.50 3.63 18.63 46.97 158.52 587.67 3326.92 − −

Table 4.6: Dining cryptographers protocol results. The row labeled Bits
represents the number of bits measured by nsqflow. The row labeled
nsq represents nsqflow’s running time, and the row labeled sqif repre-
sents sqifc’s running time. n is the number of cryptographers, and running
time is measured in seconds. The starred value 2.58 differs from Phan and
Malacaria’s reported 2.59. I attribute this to roundoff error during the fea-
sible set size to information flow calculation.

who employed manual program slicing and system call modeling to reduce
the size of the program. I contacted the authors, but they did not have
ready access to the source code at the time, so I was unable to include these
examples in my experiments.

Because the tools underlying nsqflow make use of randomization in some
of their decisions and heuristics, running times are potentially sensitive to
these choices. Thus, I also measured how tightly clustered the running times
are. I ran all the examples from Section 4.2 and Section 4.3 from 20 to 100
times and measured the interdecile range for the running times. I found that
the running times are tightly clustered, with ranges of 0.01-0.04 seconds for
the tiny examples sensitive to background CPU tasks, and on the order
of 1-5% for the larger experiments of this set. Full results may be found
in Table 4.7.

4.4 Larger Experiments

In this section, I present further experiments on real C code. The experi-
ments range from 1915 to 23759 lines of code, with the output size ranging
from 32 to 32768 bytes, and the measured influence ranging from 0 to 32752
bits, largely depending on the output chosen. Running times ranged from 2
minutes for the 2600-line darkHttpd, to 3 and a half hours for the 20000-line
xinetd. Lines of code are measured as reported by the UNIX wc -l tool on
.c and .h files in the source directories and subdirectories. While this does
not measure the number of included standard library headers or account for
comments, it is the simplest way to get a general idea about the size of the
program. The reader will notice the large proportion of http and ftp servers
and clients. This choice was somewhat accidental, and resulted from my de-
sire to use open-source C programs (found on SourceForge or similar) that
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Test Number
of Runs

Median Running
Time (s)

Interdecile
Range (s)

Copy 100 0.16 0.01
Masked copy 100 0.16 0.01
Checked copy 100 0.16 0.02
Divide by 2 100 0.17 0.02

Multiply by 2 100 0.17 0.02
Implicit flow 100 0.17 0.02

Population count 100 0.17 0.01
Mix and duplicate 100 0.17 0.01

CRC8, sft=0 100 0.21 0.03
CRC8, sft=1 100 0.21 0.02
CRC8, sft=2 100 0.22 0.04
CRC8, sft=3 100 0.20 0.03
CRC8, sft=4 100 0.18 0.02
CRC8, sft=5 100 0.21 0.02
CRC8, sft=6 100 0.20 0.02
CRC8, sft=7 100 0.20 0.02
CRC8, sft=8 100 0.22 0.02

DinCryptos, n=3 100 0.25 0.02
DinCryptos, n=4 100 0.27 0.02
DinCryptos, n=5 100 0.33 0.03
DinCryptos, n=6 100 0.32 0.03
DinCryptos, n=50 100 0.75 0.04
DinCryptos, n=100 100 1.41 0.05
DinCryptos, n=200 100 1.85 0.08
DinCryptos, n=300 100 3.01 0.07
DinCryptos, n=1000 50 16.24 0.60
DinCryptos, n=2000 20 166.75 2.24

Table 4.7: Interdecile range (in seconds) for the comparison programs. The
range is reported as the difference between the 90th and 10th percentiles.
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were of the right scope for nsqflow (roughly 10K LOC or under), and ideally
ones that were web-facing or otherwise interesting from a typical security
point-of-view. My tool, however, is not limited to programs of this nature.
For the full technical details of the experiments, along with results, please
consult Table 4.8. A brief description of each program I tested is found in
the list below.

muHttpd Forking HTTP server with basic sanitizer function. The exit
point/output variable is a buffer to which data from the file system
is copied before it is sent back over the web in order to service the
request. File: request.c; Function: handle_request; Variable:
buf.

awHttpd Forking HTTP server. The exit point is a buffer to write back
following an http request. File: proc.c; Function: procsendfile;
Variable: cn->databuf.

darkHttpd HTTP server. The exit point is a server name (string) pointer
set from the command-line at program start-up, and should not be able
to be modified by its (network) inputs. File: darkhttpd.c; Function:
main; Variable: wwwroot[0].

xinetd The Linux Extended Internet Services Daemon, version 2.3.15. The
exit point is a newly-allocated server object based on an old (input)
one. This test checks whether function side effects can block any pos-
sible values for the output variable (the variable to which the contents
input variables’ addresses are copied). File: server.c; Function:
server_alloc; Variable: <return value>.

FTP Client Command-line FTP client. The exit point is a character
buffer containing a 3-character FTP return code to be interpreted
plus a null character. This experiment tests whether all potential
values are copied to the output buffer and that there is nothing writ-
ten past the end of the array that would replace the null character
(e.g. off-by-1 error or buffer overflow). File: ClientFTP.c; Func-
tion: interpreteReponse; Variable: rep.

thttpd Throttling HTTP server, version 2.26. The exit point is a param-
eter used for throttling connection speed. This experiment verifies
whether the state of the connection, which may be influenced by an
attacker, can affect the throttling parameter to a large degree, or only
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4.5. CoreUtils

restricts it to a small set of possible values. File: thttpd.c; Func-
tion: handle_send; Variable: max_bytes.

Thy Thy HTTP server, version 0.9.4. The output variable is an internal
code representing the result of a parse, of which a small set of values
should be possible. This tests whether an attacker can force this re-
turn code to take on an arbitrary value, rather than the narrowing of
the information flow intended by the code. File: http.c; Function:
http_request_parse; Variable: <return value>.

ftpRelay2 FTPRelay ftp library, version 2. The output variable is a buffer
into which network data is read. This experiment tests whether or
not its simple input sanitizer check constrains the data received. File:
childproc.c; Function: ClientToServer; Variable: RecvBuffer.

httpserver1 Small http server, version 0.3. The output variable is an inter-
nal code depending on data read from the network, as part of a struct.
This experiment aims to test for the presence or absence of a simple
buffer overflow — whether or not adjacent data in the struct is clob-
bered when writing it. File: httpsmain.c; Function: set_incoming;
Variable: sv.rc.

ftpslib1 FTP library, version 0.2. This experiment aims to test for the
presence or absence of a simple buffer overflow - whether or not
adjacent data in the struct is clobbered when writing it (similarly-
structured program to the above httpserver1). File: ftplib.c; Func-
tion: set_mode; Variable: fcode.

Bugs Found: For two of the experiments, httpserver1 and ftpslib1, the
large influence reported turned out to be actual security vulnerabilities in
the software. In both these cases, a buffer overflow was present when writing
the value adjacent to the measured variable. Both these bugs were previously
undisclosed, but confirmed by the developers.

4.5 CoreUtils

I also selected a subset of the 30 smallest programs, as measured by lines
of code, from the GNU CoreUtils suite, version 8.23. I chose the flow being
from argv[1] to the return code of the main function in all cases, bounding
the size of the argv string to 256 bytes. I selected these examples arbitrarily
to demonstrate nsqflow’s robustness for use as a completely automated tool
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Test LOC Sliced

LOC

Sliced

LOC

Reduc-

tion

Exit

Point

Size

(bits)

Run-

ning

time

Symbo-

lic

execu-

tion

time

(% of

total)

Model

count-

ing

time

(% of

total)

RAM

Usage

(MB)

Influ-

ence

(bits)

mu-

Httpd

2268 1996 12% 32768 7m 84% 16% 258
32752

aw-

Httpd

2257 1602 29% 8192 22m 74% 26% 347 8192

dark-

Httpd

2599 837 68% 32 1m
52s

85% 15% 494 0

xinetd 23759 6320 73% 256 3h
39m

90% 10% 1818 256

FTP-

Client

1915 440 77% 32 2h
54m

81% 19% 449 24

thttpd 11155 3681 67% 32 2h 1m 73% 27% 1330 1
Thy 17134 4968 71% 32 3h

13m
82% 18% 1653 1

ftp-

Relay2

1080 944 13% 8192 timeout 99% 1% ≥1745 ≥3073

http-

server1

1433 978 32% 32 2h
16m

83% 17% 319 32

ftp-

slib1

1611 992 38% 32 1h
28m

84% 16% 336 32

Table 4.8: Larger experiment results for the programs presented in Sec-
tion 4.4. LOC stands for lines of code. The ftpRelay2 entry is included as
an example of my tool’s limitations — although this program is not funda-
mentally different from others in the list, nsqflow is unable to complete its
analysis despite its relatively small size, timing out after 20 hours. Program
slicing effectiveness is measured in LOC before preprocessing. For RAM
usage, the reader should note that nsqflow has a maximum RAM usage of
2000MB that is inherited from Kite.
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rather than one requiring careful and thoughtful developer annotations. I
ran nsqflow on these program once each, with a timeout of 60 minutes for
each program. 20 of the 30 completed in 60 seconds or less, with only 2 of
30 timing out after 60 minutes. Influence measurements ranged from 0 to
2 bits for the instances running to completion. Full details of these results
may be found in Table 4.9.

In addition, I used a uniform random number generator to select a subset
of 30 programs from CoreUtils, and ran nsqflow on them in the same fashion.
This resulted in 9 programs already included in the 30 smallest, leaving us
with 21 new CoreUtils6. 9 of the 21 tests completed in 60 seconds or less,
with only 4 of the 21 timing out after 60 minutes. Influence measurements
were 1 or 1.585 bits for the instances running to completion. For CoreUtils,
I omit RAM figures, as I have found that memory usage has not been a
problem. I present the full details of these results in Table 4.10, with the
ones appearing in the 30-smallest benchmark removed, leaving a total of 21
programs).

4.6 Performance Discussion

In this section, I discuss issues related to performance and optimizations,
recognizing that a reader may wonder which optimizations and components
of nsqflow’s toolchain are necessary for nsqflow to scale well.

Empirically, I have found that my pointer analysis has been crucial to
scale to the size of tests I have presented. I ran the instances described
in Section 4.4 with nsqflow’s pointer analysis disabled, and a timeout of 8
hours. None of these instances managed to run to completion, with all but
muHttpd running into the intrinsic 2000 MB RAM usage limit that nsqflow
has inherited from Kite.

Additionally, the underlying symbolic execution engine’s ability to learn
from infeasible path constraints is one of its defining features. Thus, an
interesting comparison is between nsqflow using Kite with its path learning
enabled, and nsqflow using Kite with path learning disabled. As described
earlier, the pointer analysis I have implemented interacts with the path
learning. As I have just shown above, pointer-heavy code tends to make
nsqflow unable to complete. As a consequence, I am unable to meaningfully
present figures for nsqflow with both path learning and pointer analysis
turned off.

6I chose to stick with the 21 programs left over, so as to maintain an unbiased random
selection.
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Test Lines of Code Influence (bits) Time (seconds)

basename 190 1 21

dirname 137 1 8

echo 273 0 10

env 164 ≥1.585 timed out

groups 141 1 15

hostid 89 1 11

hostname 117 1 4

link 95 1 4

logname 87 1 8

mkdir 307 1 30

mkfifo 182 1 622

mknod 274 1 33

nice 223 2 70

nohup 241 ≥1.585 timed out

nproc 134 1 17

printenv 155 1.585 23

readlink 179 1 65

realpath 278 1 88

rmdir 253 1 546

runcon 267 2 21

sleep 150 1 71

sum 275 1 56

sync 74 1.585 13

tee 221 1 85

true 81 0 3

tty 125 2 4

unlink 90 1 4

users 152 1 61

whoami 95 1 16

yes 89 1 5

Table 4.9: Information flow for the set of the 30 smallest CoreUtils. In-
formation flow is measured to the return value of the main function. Each
program is run with a timeout of 60 minutes.
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Test Lines of Code Influence (bits) Time (seconds)

base64 326 1 39

cat 785 1 214

chmod 571 1 105

chown 331 1 59

comm 450 1 28

cp 1221 1 329

expand 431 1 102

factor 2548 ≥1 timed out

fmt 1042 1 756

install 1047 ≥1 timed out

md5sum 879 ≥1 timed out

nl 617 1 36

numfmt 1523 1.585 81

pathchk 424 1 38

shuf 627 1 238

sort 4751 ≥0 timed out

stat 1580 1 39

touch 438 1 26

truncate 425 1 41

uname 376 1 24

wc 802 1 153

Table 4.10: Information flow for the set of randomly-selected CoreUtils.
Information flow is measured to the return value of the main function. Each
program is run with a timeout of 60 minutes.
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Moreover, the reader may have noticed that not every source line of
a program may be relevant to measuring a specific flow. More generally,
nsqflow is able to effectively avoid analyzing large parts of the input pro-
gram through the technique of program slicing [41]. I leverage the program
slicing implemented in Kite, and also a compound slicer using off-the-shelf
Frama-C [5] and LLVMSlicer [34]. I note that the program slicing per-
formed is entirely automatic, which is in contrast to results presented in,
for instance, Phan and Malacaria’s work [26], which involves manual slic-
ing. For the set of benchmarks I have presented, I have found slicing to be
very effective. I measured the degree of code eliminated through program
slicing as a way to demonstrate that, although the nsqflow toolchain must
solve computationally difficult problems, existing heuristics can often reduce
the size of the problems in practice, thus making them tractable. Indeed,
nsqflow’s ability to complete is sensitive to the effectiveness of the slicing on
a given program. Because the LLVM-based slicing does not produce valid
source, I approximate the number of source lines sliced by measuring the
fraction of LLVM bitcode instructions sliced out. I found that these fig-
ures ranged between 12% to 73% for the programs used in the experiments
presented in Section 4.4. Full details were presented in Table 4.8.

Furthermore, a reasonable question to pose might be where the bottle-
neck is typically found in a run of nsqflow. I have previously hinted at the
surprising result that model counting has not been the most expensive step
in nsqflow’s toolchain, and I present data to support this claim. Although
my initial expectations were that nsqflow would nearly always be limited by
the model counting, I now believe that my particular variant of the more gen-
eral #SAT problem is responsible for the relatively short time spent inside
the model counter. I present a breakdown of the total running time spent
in each component of nsqflow for the experiments from Section 4.4. I found
that for these, the proportion of time spent performing model counting ac-
counts for 10% to 27% of total running time. Table 4.8 lists this information
as a percentage of total running time, to two significant figures.
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Chapter 5

Related Work

There is a large body of literature about quantitative information flow, much
of it more theoretical than the scope of this thesis [2, 16, 17, 31, 35, 39, 42].
In this chapter, I survey work that, like nsqflow, aims to provide a practical
tool to compute QIF. I also survey techniques from software and hardware
verification that are useful in QIF.

5.1 Network-Flow-Based QIF

In [21], McCamant and Ernst present a scalable approach to measuring QIF
using a network flows approach. Unlike the problem I consider in this thesis,
measuring the degree of influence of a program’s inputs over its outputs, they
address a related confidentiality problem, quantifying the information an
attacker can learn about a program’s inputs by observing its outputs. They
model information channels in a program as a network of finite-capacity
pipes and reduce the measurement problem to a network flow computation,
solving it using standard network flow algorithms.

Specifically, they construct a graph in which the edges represent variables
(including inputs) in the program, with weights corresponding to the bit-
widths of the variables, and the nodes represent program instructions on
these variables, with the in-degrees of the nodes representing the number of
arguments needed by the corresponding instructions. The graph is acyclic,
and edges always point from older (in program instruction order) nodes to
newer ones. The set of all secret inputs and the set of all public outputs are
represented by the source and sink nodes, respectively.

In order to handle implicit flows, as in the case of a multi-way branch,
McCamant and Ernst use static analysis to infer enclosure regions, which
declare locations that the code enclosed in enclosure regions may write to.
These enclosures become special aggregate nodes in the graph, with weights
on edges in and out of these nodes corresponding to the number of different
executions (implicit flows) through the aggregate nodes, equal to the base-2
logarithm of the number of branches within enclosures.
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To obtain the edge weights, the authors use dynamic tainting at the
level of bits, maintaining which bits are certainly leaked, which are certainly
not leaked, and which bits are unknown. In order to maintain soundness,
unknown bits are treated conservatively and assumed to be leaked. Con-
sequently, the result is typically an overapproximation, which tends to be
cruder as the program size increases. Finally, using standard network flow
algorithms, McCamant and Ernst’s tool arrives at a final QIF measurement.
Their graph construction is efficient, as are the network flow algorithms they
use. As a result, their tool is able to effectively scale to programs consist-
ing of 500K or more lines of code, at the cost of precision — indeed, their
approximation is crude when compared to the QIF reported by nsqflow, as
their approach can only compute an upper bound on the channel capacity.

To the best of my knowledge, the work by McCamant and Ernst has been
the only approach to date, that attempts to measure QIF through programs
based on network flows. While not as precise as nsqflow, the scalability of
their approach is impressive and I believe that further work in this area is a
promising direction for future research in measuring QIF through programs.

5.2 Symbolic-Execution-Based QIF

In [25], Newsome, McCamant, and Song present a way to measure channel
capacity, addressing the same fundamental problem as I do in this thesis. In
a manner somewhat reminiscent of nsqflow’s, they use a symbolic execution
engine to obtain a formula over the program inputs and outputs that rep-
resents the entire program, expressed in first order logic over bitvectors and
arrays. Once this formula is obtained, their tool makes repeated queries to
a constraint solver in order to characterize the set of possible output values
the program can take. Using a heuristic approach, they make queries about
whether certain values are feasible or found within certain value ranges,
until the number of feasible values they have discovered crosses a desired
threshold. Theoretically, this step is precise if run to completion, but is
very computationally expensive, and the tool is typically only able to check
a small number of values (typically 64 or 128) before stopping and reporting
a number of bits (6 or 7) as a lower bound. In order to combat the large
computational cost associated with this step, the authors also implement
an approach based on approximate model counting in order to obtain an
approximation of the number of solutions. However, as I have shown in Sec-
tion 4.2, their precision is quite low even for small examples, whereas nsqflow
reports a precise and exact influence measurement. Unlike nsqflow, which
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exhaustively explores every program path, their approach only operates on
a single path. Therefore, the feasible value set they obtain is only a subset
of the whole program’s, and their resulting influence measurement is only a
lower bound on the channel capacity.

Newsome, McCamant, and Song also adopt a different, but even less
precise, method to scale to much larger program sizes. Specifically, the au-
thors consider a return-oriented attack [30] by tracking the inputs’ influence
over the program counter. Using this program counter technique along with
conservative lower bounds and approximating model counting, their tool
is able to obtain approximate information flow bounds that scales to very
large programs, on the order of a million lines of code. Their technique has
the added benefit of operating on binaries, thus eliminating the need for
the program’s source as nsqflow requires. However, the precision of their
approach is very low for such large programs.

Most similar to my approach is the work by Phan and Malacaria de-
scribed in [26, 27]. As in this thesis, Phan and Malacaria also use an ap-
proach based on symbolic execution and constraint solving to solve the prob-
lem of obtaining the channel capacity between a program’s inputs and its
outputs. Their tool, sqifc, symbolically executes a program, maintaining a
running total of the number of solutions as it executes. This running total is
updated with multiple feasible values when symbolic execution determines a
path to be feasible, and sqifc counts the number of new solutions discovered
as a result, for each possible program path.

In this way, Phan and Malacaria integrate model counting with sym-
bolic execution — the first of two fundamental differences between my work
and theirs. In contrast, my approach uses symbolic execution to produce a
CNF representation of the program, and then subsequently applies an ef-
ficient (subset) model counter to that CNF. To facilitate their integrated
model counting, Phan and Malacaria introduce #DPLL(T ) model counters.
A #DPLL(T ) solver counts the number of distinct satisfying solutions to
the Boolean skeleton of an SMT formula.7 The SMT-based framework they
present is very flexible, allowing them to represent existing model checking
and symbolic execuction engines as theory solvers. However, as the authors
write, #DPLL(T ) model counters must explicitly enumerate each satisfying
solution to the Boolean skeleton individually, as each satisfying assignment
to the Boolean skeleton must also be checked for satisfiability against the

7Note that whereas an SMT formula may in some cases have an unbounded number of
distinct models (for example, if the formula includes unconstrained real numbers), there
are at most a finite number of distinct satisfying assignments to the Boolean skeleton of
any SMT formula.
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theory solvers. In contrast, the #SubSAT solver in nsqflow is able to gen-
eralize individual satisfying assignments, often allowing the model counting
step to complete quickly even for large instances and large, multi-byte out-
put values. Indeed, as I have shown in Chapter 4,in most of my experiments,
symbolic execution was the dominant cost, while the model counting step
completed relatively quickly.

Second, Phan and Malacaria’s work differs from mine in the symbolic
execution step. Like nsqflow, if their symbolic execution runs to comple-
tion, their result will be a sound and complete bound on the total number
of solutions, and therefore be a precise measurement of the channel capacity.
However, their tool does not leverage learning CFG information during sym-
bolic execution, and therefore cannot prune paths as effectively as nsqflow
can.

As a consequence of these key differences in symbolic execution and
model counting, their results, while precise, scale to programs that span only
a few hundred lines of C following manual modeling and program slicing.
As I have shown in Section 4.3, nsqflow is also precise but scales to much
larger programs, and has far lower running times for small programs.

To the best of my knowledge, there has not been other published work
in symbolic-execution-based QIF apart from the work I have cited and de-
scribed here.
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Chapter 6

Conclusion

6.1 Contributions

I have described an approach to measuring the QIF, specifically the chan-
nel capacity, through software. My work is built upon state-of-the-art
symbolic execution techniques and model counting. While previous ap-
proaches either scaled to very large programs but provided coarse approx-
imations to QIF [21, 25], or were precise but only scaled to hundreds of
lines [2, 22, 25, 26], I demonstrate that it is possible to be highly precise and
scale to tens of thousands of lines of real C code.

My implementation of this approach, nsqflow, is fully automatic and
tracks both explicit and implicit information flows through all (finitely
bounded) program paths, with high precision. I show how pointer anal-
ysis can be added to existing symbolic execution engines in order to make
feasible the analysis of code with pointers. I describe a new variant of the ex-
act model counting problem, which I have called #SubSAT, that is tractable
for practical examples compared to the full model counting problem, and
makes feasible model counting specifically for QIF.

6.2 Future Work

There are many directions for future work. A near term possibility would
be to expand the applications of nsqflow. For example, I could extend the
tool to handle C++, which should be straightforward given that LLVM can
handle C++ already. Or, capitalizing on the completely automatic nature
of the tool, one could imagine background application of nsqflow on a mas-
sive scale, similar to fuzz testing or regression testing, to flag suspicious
information flows. One way to implement such an application could be to
use an automatic selection process, perhaps based on static analysis and
heuristics, to automatically select variables over which to measure the in-
fluence. The application could be continuously running nsqflow to measure
influence over these automatically-selected output variables, stopping when
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a minimum threshold policy (similar to the one described in Section 3.1.3)
for the output variables is exceeded (perhaps computed automatically as a
fraction of the output variable’s bit width).

In the opposite direction, it is possible to extend nsqflow to compute
more expensive, but even more valuable information. For example, it might
be possible to explicitly formalize side-channel information [17], and then the
symbolic execution engine would know that calls to functions like time()

must behave in certain ways, thereby capturing side-channel information
via nsqflow’s existing accounting of implicit information flows. For a very
different example, I could extend the model counting to enumerate the in-
put equivalence classes for each possible output value, rather than just the
values. This is a much more expensive computation, but allows precisely
computing alternative information flow metrics based on Shannon entropy,
min-entropy, and guessing entropy, for non-uniform distributions [2], rather
than only channel capacity as nsqflow currently computes.

An interesting theoretical question is how to deal with the distinc-
tion between attacker-controlled and auxillary inputs. Adopting the no-
tation from Newsome, McCamant, and Song [25], consider a computation
P (I, Iaux) → V , where V is the output set, I represents the attacker-
controlled input, and Iaux is the auxiliary input. A reasonable extension
to the channel capacity model would be that the attacker cannot control
the entire set of inputs. Rather, the attacker can only observe the value of
Iaux. With this formulation, one can frame both channel capacity and this
alternative definition in the following manner, respectively:

Count
V

(∃I, Iaux | P (I, Iaux) = V)

max
Iaux

(Count
V

(∃I | P (I, Iaux) = V))

The latter is fundamentally a more precise model than the former, and
is appropriate as it represents the worst-case internal program state to
give the attacker the greatest degree of control over the output vari-
able. Specifically, the former is problematic as it may overcount the
number of output values to which the adversary can purposefully steer
the computation. In contrast, in Newsome et al. [25], Iaux is set to an
arbitrary fixed value, which may undercount the adversary’s influence —
some other fixed value for Iaux may give the adversary more influence.
This motivates the latter definition: It represents the worst-case internal
program state to give the attacker the greatest degree of control over the
output variable. As such, this is a natural definition of influence in a secu-
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rity context when there are auxiliary inputs not under the attacker’s control.

In another direction, nsqflow would benefit greatly from a more robust
pointer analysis. Indeed, in Section 4.4 and Section 4.5, nsqflow was unable
to run to completion on some of the programs largely due to the shortcom-
ings of nsqflow’s current pointer analysis. Specifically, DSA did not return
sufficient information to allow Kite to prune large parts of the search space
that resulted from the heavy use of pointers in the programs. As the current
analysis, based on LLVM’s existing DSA, is simplistic, a promising future
direction is to more efficiently utilize points-to set information, such as the
approach presented in [28].

Finally, while the model counting has not generally been a problem for
the experiments I have presented, model counting is a computationally hard
problem from a theoretical perspective. There is recent work on efficient,
approximate model counting, with provable bounds. [6] In some preliminary
experiments, I have not yet found approximate model counting to be ben-
eficial, but these are recent results and additional progress in this area is
likely.
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