
Numerical Holographic Condensed Matter

by

Darren Smyth

B.Sc., National University of Ireland, Galway, 2009

M.Sc., University of Waterloo, 2010

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Physics)

The University of British Columbia

(Vancouver)

February 2016

© Darren Smyth, 2016



Abstract

This thesis studies strongly coupled phases of condensed matter physics using a

combination of gauge-gravity correspondence and numerical methods. We exam-

ine holographic models of the condensed matter phenomena of: vortex formation in

the spontaneously broken phase of gauge theories, spontaneous breaking of trans-

lational invariance by periodic modulation, properties of (non-)Fermi liquids, and

metal-insulator transitions in systems with sourced periodic modulation.

In Chapter 2, we formulate a criterion for the existence of a Higgs phase based

on the existence of bulk solitons. This criteria is applicable when the microscopic

details of the gauge theory are unknown. We demonstrate the existence of such

solitons in both top-down and bottom-up examples of holographic theories and

examine their thermodynamics.

In Chapter 3, we construct inhomogeneous, asymptotically Anti-deSitter Space

(ADS) black hole solutions in Einstein-Maxwell-axion theory corresponding to the

spontaneous breaking of translational invariance and the formation of striped order

in the dual 2+ 1 dimensional Quantum Field Theory (QFT). We investigate the

phase structure as function of parameters.

In Chapter 4, we continue the study begun in Chapter 3. On domains of both

fixed and variable wavenumber, we find a second order phase transition to the

striped solution in each of the grand canonical, canonical and microcanonical en-

sembles. We also examine the properties of the bulk black hole solutions.

In Chapter 5, we consider a phenomenological model whose bosonic sector

is governed by the DBI action, and whose charged sector is purely fermionic. In

this model, we demonstrate the existence of a compact worldvolume embedding,

stabilized by a Fermi surface on a D-brane. We study the bulk and dual QFT ther-
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modynamic and transport properties.

In Chapter 6, we analyze low energy thermo-electric transport in a class of

bottom-up, holographic models in which translation invariance has been broken.

As a function of our choice of couplings, which parameterize this class of theo-

ries, we obtain (i) coherent metallic, or (ii) insulating, or (iii) incoherent metallic

phases. We use a combination of analytical and numerical techniques to study

the Alternating Current (AC) and Direct Current (DC) transport properties of these

phases.
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Glossary

A list and explanation of a selection of contractions used throughout this thesis.

QFT Quantum Field Theory

CFT Conformal Field Theory: A conformally invariant QFT.

N=4 SYM N = 4 Supersymmetric Yang-Mills: A superconformal quantum field

theory in 4 dimensions with 4 supercharges

ADS Anti-deSitter Space: A vacuum solution to the Einstein equations of con-

stant negative curvature in D dimensions. In all cases in this thesis, unless

otherwise specified, we will be interested in D = 4.

ADS/CFT The first example of the gauge-gravity duality. A duality between AdS5×
S5 and N = 4 SY M.

UV Ultraviolet: The high energy behaviour of a quantum field theory as under-

stood within the context of the Wilsonian picture of renormalization group

flow. When used in the context of the dual supergravity theory commonly

refers to the asymptotically AdS region near the conformal boundary.

IR Infrared: The low energy behaviour of a quantum field theory as understood

within the context of the Wilsonian picture of renormalization group flow.

When used in the context of the dual supergravity theory commonly refers

to the deep interior of the spacetime.

PDE Partial Differential Equation: A differential equation involving partial deriva-

tives of the dependent quantities by more then one independent variable.
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ODE Ordinary Differential Equation : A differential equation involving differenti-

ation of the dependent quantities by a single independent variable.

D-BRANES Dirichlet branes: Solitonic excitations within string theory localized

in p dimensions and with coupling proportional to the inverse of gs. They

are the start and end points for open strings.

P-BRANES The manifestation of D-branes within the classical theory of super-

gravity.

RG Renormalization Group: The flow of couplings and operators with energy

scales as described by the Wilsonian view of renormalization.

SOR Successive Over Relaxation: A robust but slow and numerically intensive

process for solving non-linear PDEs.

DC Direct Current: In the dual QFT studying the DC transport properties involves

perturbing the theory by a constant external field orientated in one of the

spatial directions and measuring the response.

AC Alternating Current: As for the DC transport properties except the external

field now has a frequency dependence.

RN Reissner-Nordström-AdS: A charged black hole solution of Einstein-Maxwell

theory with asymptotically AdS geometry in D dimensions. In all contexts

in which it is used in this thesis this refers to the planar solution found in

Poincaré coordinates with D = 4.
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Chapter 1

Introduction

This thesis aims to provide an organized collection of published research projects

in which I participated during the course of my graduate studies at UBC. It is my

hope that this may be useful to future graduate students interested in the increas-

ingly relevant and sophisticated applications of numerical methods to holographic

systems. I will start by describing the motivation behind his line of study from both

a condensed matter and string theory perspective. I will then attempt to place each

of the research projects in context, both from the point of view of the applied string

theory community and from the perspective of my own evolving research interests

as a graduate student in string theory.

1.1 Motivating Holographic Physics
The holographic correspondence aims to map difficult problems of strongly cou-

pled physics to more manageable gravitational problems in higher dimensions.

Most conventional approaches to solving quantum mechanical problems involve

modifying (or perturbing) the energy function(al) of one of a handful of exactly

solvable problems. The new problem is then treated order by order in a perturbation

expansion which is controlled by a small, dimensionless parameter. If this parame-

ter is not small but instead large the new theory cannot be treated as a modification

of the known solution. Such theories are known as strongly coupled theories and

are difficult to study.
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Holographic physics allows us to map such problems, via the tools of string

theory, to theories of classical gravity in higher dimensions. In this formulation

the quantum mechanical description of the theory, with its inherent strong coupling

difficulties, has been replaced by a description in terms of classical Einstein gravity.

The puzzle of how to calculate scattering rates and correlation functions without the

benefit of perturbation theory is replaced by the challenge of solving the Einstein

and matter equations of motions in a higher dimensional spacetime. While this is

not an easy problem, significantly more progress can be made than when working

within the quantum mechanical formulation of the theory.

The greatest major obstacle in the modelling process is discovering how to map

the physics we are interested in from the quantum formulation of the theory to the

gravitational formulation. A common approach, known as bottom up holography,

is to pick a gravity Lagrangian which we believe will correspond to the quantum

mechanical physics of interest. This is done in the understanding that the gravity

Lagrangian we choose will be included in many larger Lagrangians for which the

exact mapping can be derived. This approach is also motivated by the desire to

model aspects of quantum physics which are common to many strongly coupled

quantum theories as opposed to any particular one.

This thesis applies this approach to the study of condensed matter phenom-

ena such as, spontaneous symmetry breaking, non-Fermi liquids, metal insulator

phase transitions and high temperature superconductors. We do this by deriving

and solving the equations of motion in the classical gravity scenario, and from the

solutions, extracting information about the thermodynamic and transport properties

of the quantum mechanical theory. This process entailed a mixture of analytic and

numeric work. The analytic components included the derivation and processing

of the equations of motion, boundary conditions, and gauge conditions associated

with classical supergravity. The numeric work involved solving these equations

for a variety of parameter settings and processing the results to extract information

about the dual quantum theory.

In the rest of this introduction we will examine the evolution of numerical

holography and the details of the modelling process in more depth. We will then

give a brief overview of each of the projects which will be described in detail in

later chapters, and provide some context of their place within the evolution of the
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field.

1.2 AdS/CFT and Gauge-Gravity Correspondence
The development of ADS/CFT correspondence, now almost two decades old, marked

the beginning of a rapid shift of research interests within the string theory commu-

nity. This was one of the first explicit examples of a duality between a quantum

field theory and a higher dimensional theory of classical gravity. A good intro-

duction to the initial steps of formulating this correspondence can be found in the

classic papers of [135] and [98]. In addition a very thorough review encompass-

ing the initial stages of derivation, justification and exploration of this duality is

provided in [2]. Other excellent introductions to the correspondence may be found

in [102], [111], [70], [99] and [122]. Here we restrict ourselves to giving a brief

overview of how the original (ADS/CFT) correspondence was derived, following

closely the arguments of [2]. We then, again very briefly, outline how this the-

ory may be adapted to explore less symmetric theories including those that are of

interest in condensed matter and particle physics applications.

The original ADS/CFT correspondence stated that there is an exact correspon-

dence between the apparently disparate theories of N = 4 Supersymmetric Yang-

Mills (N=4 SYM) and AdS5× S5 at least in the limit where the number of colors,

N , and the effective coupling, λ are large. This means that any physical observ-

able in one theory has a corresponding quantity in the other. The fact that the

duality is between a strongly coupled Quantum Field Theory (QFT) and weakly

coupled classical gravity in one higher dimension make it both difficult to prove

and explore and a very useful tool. One side of the duality may always be explored

perturbatively however calculating, or even defining, the corresponding quantity in

the dual theory may be very difficult. However, given the large amount of both

circumstantial and indirect evidence for the duality and the successful matching of

calculations between both theories in cases where they can be made, it is generally

accepted that the duality is valid. This is the perspective we will take throughout

this thesis. One may then use the duality to explore strongly coupled physics which

is inaccessible to conventional perturbative approaches.

We now reproduce one argument for the correspondence- following closely the
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description given in [2]. The argument proceeds by comparing the behaviour of the

massive, extended objects which exist within both string theory and classical grav-

ity. These are the Dirichlet branes (D-BRANES) and (P-BRANES) respectively and

may be viewed as complementary representations of the same object. By exam-

ining the behaviour of the two representations when a particular limit is taken the

existence of the duality may be inferred. Below we consider each representation

separately before combining our observations.

P-BRANES interpretation: We search for classical black hole solutions formed by a stack of N P-BRANES

with p = 3 embedded in flat 9+ 1 dimensional spacetime when N >> 1.

These solutions may be constructed and are found to be valid when R >> ls.

Here ls is the string length scale which is related to the Planck length as

lp = g
1
4
s ls where gs is the string coupling1. R is the radius of curvature of

the spacetime which, in the class of solutions in which we are interested,

is found to be R4 ∝ gsl4
s N . In addition we require lp < ls so that string

loop corrections are suppressed. These considerations together mean that

our supergravity black hole is a good description of the physics provided

that: gsN ∼ R4

l4
s
>> 1. We now observe that, from the point of view of an

observer at infinity, there are two forms of low energy excitation for this sys-

tem. These are: any excitation taken sufficiently far down the gravitational

well associated with the near horizon geometry of the black hole horizon,

and massless excitations in the bulk spacetime away from the gravity well.

Furthermore we note that in the large N (large R) limit the two sectors de-

couple from each other. In this limit near horizon excitations cannot climb

up the well to reach an observer at infinity. Likewise it may be checked that

the massless modes of the bulk do not interact with (or “scatter” from) the

black hole horizon geometry. Crucially it may also be checked that the near

horizon geometry has the form of AdS5×S5.

D-BRANES interpretation: We consider a stack of N D3-branes embedded in the same 9+ 1 dimen-

sional spacetime where again we take N to be large. The energy scale

for this system is set by 1/ls. We are interested in the low energy, long

1We remind the reader that the sting coupling is not a fixed constant but is set dynamically by the
theory as a function of the dilaton configuration.

4



distance limit realized by ls → 0 with all other dimensionless parameters

held fixed. We therefore integrate out all massive modes to acquire a non-

renormalizable, effective action of the form S = Sbulk + Sbrane + Sint . Here

Sbulk, Sbrane and Sint are, respectively, the action contributions coming from

the closed string modes in the bulk, the open string modes stretching between

the branes, and the interaction between these two sectors. It can be checked

that Sint is proportional to positive powers of ls and therefore vanishes in this

limit. We are therefore left with two decoupled low energy actions. These

take the form of N=4 SYM on the brane worldvolume and a classical the-

ory of gravity in 9+ 1 dimensions. This approximation is valid in the limit

where gsN ∼ g2
Y MN ∼ R4

l4
s
<< 12. The first two parts of the inequality are

equivelant statements that the open string interactions are suppressed and

the N=4 SYM interpretation remains valid. The last part of the inequality is

a combination of the gsN << 1 and ls→ 0 statements applied to the radius

of curvature object, R, which was defined during the p-brane analysis above.

Putting things together we see that, by interpreting the large N limit in two dif-

ferent ways, we obtain the same theory of low energy bulk supergravity together

with either i) AdS5× S5 classical gravity or ii) N=4 SYM at strong coupling. It is

natural to associate the the two interpretations with each other. This interpretation

is borne out by many other similarities and the matching of quantities which may

be calculated in both theories. For details of these explorations we refer the reader

to the references mentioned above.

The prototypical duality described above has since developed into the field

of study known as the gauge-gravity duality. This research program explores the

duality between strongly coupled QFTs with an Ultraviolet (UV) conformal fixed

point and asymptotically Anti-deSitter Space (ADS) spacetimes. This generaliza-

tion upon the ADS/CFT correspondence is necessary as most QFTs in which we are

interested in the context of particle or condensed matter physics do not possess the

same high degrees of symmetry as the prototypical N=4 SYM. In condensed matter

applications, such as those discussed in this thesis, we are interested in exploring

2In writing the second part of the equality we have used the fact that the string coupling may be
related to the Yang-Mills coupling of the low energy effective theory as gs ∝ g2

Y M
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emergent, strongly coupled behaviour in the Infrared (IR) of the QFT. To model this

behaviour we deform the UV fixed point by relevant operators which will cause the

theory to flow to some non-trivial IR fixed point. From the bulk spacetime point of

view, where the radial coordinate corresponds to the QFT energy scale, this corre-

sponds to Cauchy evolution from the asymptotically ADS spacetime near the con-

formal boundary to a non-trivial spacetime configuration deep in the bulk. This

spacetime encodes the thermodynamic and transport properties of the new con-

densed matter phase. Constructing these spacetimes and extracting and analysing

their properties for a variety of condensed matter phases will be the main goal of

this thesis.

1.3 The Challenges of Condensed Matter and the
Promise of Holography

Given string theory’s long-standing close association with particle physics, the con-

struction of holographic models of particle physics was amongst the first uses of

the gauge-gravity duality. It was not until the end of the first decade of develop-

ment that the increasing sophistication of the tools available and a greater aware-

ness amongst the high energy community of the types of strongly coupled field

theory phenomena which may be created in a lab setting led to a greater focus on

exploring condensed matter phenomena within a holographic setting.

This new research direction offered both potential of insights into long standing

theoretical challenges in condensed matter and, from a condensed matter physicists

perspective, an additional tool to aid in the construction of other theoretical phases

of matter. Excellent lectures on the initial progress made in understanding the ther-

modynamic and transport properties of holographic superconductors, (non-)Fermi

liquids, and quantum critical phases can be found in [54], [65], and [92]. These

efforts were successful in reproducing many of the qualitative features of these

condensed matter systems; for example the order of the phase transition and values

of the critical exponents of the superconductivity transition. The fact that qualita-

tive similarity was achieved with real world condensed matter systems is indicative

of a general trend within holographic condensed matter systems. The nature of the

modelling process suggests that the qualitative results obtained are those which are
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most likely to be generic to a class of quantum field theories. As such, these holo-

graphic condensed matter models can be seen as representative of a broad class of

field theories displaying certain strongly coupled quantum properties.

In order to gain some intuition into this universal 3 nature of holographic con-

densed matter models it is helpful to briefly consider the mechanics of the mod-

elling process. An applied string theorist attempting to investigate some aspects of

a strongly coupled condensed matter system must find the bulk spacetime which

encodes these features, via the mechanics of the gauge-gravity duality, in its mat-

ter and metric fields. One could attempt to generalize the process by which the

ADS/CFT correspondence was motivated earlier in this introduction and construct

the low energy physics as a consistent reduction of a known string theory. Such

a process would, however, be very difficult and liable to yield fields whose pres-

ence and configuration was incidental to the physics under exploration. Therefore

it is an accepted practice to use only the minimum number of bulk components

necessary to capture the physics under consideration. This is done with the un-

derstanding that these theories, together with various ancillary components, might

be embedded within a suitable string theory reduction. From the point of view of

the dual Conformal Field Theory (CFT) this approach corresponds to deforming

the UV of the theory by operators which are both relevant (in the Wilsonian sense)

and important to the macroscopic physics we wish to investigate. The hope is

that the resulting IR physics should be representative of aspects of the qualitative

behaviour of many quantum field theories formed by the inclusion of additional

relevant deformations.

Given the initial success achieved in using holographic methods to explore the

physics of homogeneous condensed matter systems, a natural next step was to con-

sider systems with reduced degrees of symmetry. In particular, one may consider

the breaking of translational invariance. Such non-translationally invariant sys-

tems are widespread in the real world. Examples include diverse behaviour from

electron-lattice interactions to the spontaneous breaking of translational invariance

via the formation of charge or spin density waves. Unfortunately, describing these

systems from a holographic perspective is significantly more challenging than ho-

3The use of the word universal here is intentional and intended to draw attention to the parallels
with renormalisation group flow.
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mogeneous systems. The bulk equations governing the spacetime configuration,

and therefore encoding the information about the dual strongly coupled QFT, are

now PDEs, as opposed to ODEs. While much progress had been made in extract-

ing information from the ODEs via analytic and numerical methods, the solving of

PDEs requires a much greater degree of numerical and computational sophistica-

tion. This thesis is written in the context of the growing usage of these techniques

within the string theory community. In the next section I provide an overview of

some of the considerations and steps common to many applied numerical hologra-

phy projects. I then provide a brief discussion of the motivation, goals and context

behind each of the research projects in which I participated before examining them

in detail in the body of this thesis.

1.4 The Mechanics of Numerical Holography
The use of sophisticated numerical methods within string theory has been confined,

with several notable exceptions (see for example [131] and the author thereof), to

the last decade. The utilization of these techniques to solve otherwise intractable

PDEs has drawn heavily on the wide body of existing knowledge within the numeri-

cal general relativity community. As will hopefully be demonstrated in the body of

this thesis numerical approaches can form a very useful tool for extracting informa-

tion about thermodynamic and transport properties of strongly coupled QFT with

reduced degrees of symmetry. It should however be noted that experience, both

personal and of the community as a whole, has shown that accurately modelling

the sophisticated mathematical machinery of gauge-gravity duality using numer-

ically techniques is a difficult task. The removal of analytic control compounds

the long standing lack of any experimental probes of string theory phenomena to

the point that great numerical care must be taken in order to avoid misleading or

incorrect conclusions.

Ultimately the role of numerical methods in holography, much like the role

of holography in condensed matter physics, is in the opinion of the author not

yet fully decided. Whether these approaches will prove fruitful in providing the

crucial insights needed to understand strongly coupled phases of condensed matter

remains to be determined. With this in mind we proceed to give a brief overview
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of the procedure for formulating and solving a problem in numerical, holographic

condensed matter problem.

1.4.1 Formulating the Lagrangian

The applied string theorist attempts to capture strongly coupled physics of QFT via

“geometrizing” it within an asymptotically ADS spacetime. To find this dual space-

time from first principals would require repeating the decoupling limit procedure

by which the ADS/CFT was initially discovered, and which is described in detail in

[2]. Compared to this prototypical case which is formulated for the highly symmet-

ric N=4 SYM theory, the QFT will generically have a variety of additional fields,

couplings and broken symmetries which are relevant for describing the strongly

coupled physics of interest. While this form of derivation is possible in a limited

set of cases it is often preferable to simply conjecture a Lagrangian which one can

argue must be embedded within some string theory. This approach is motivated

not only by a desire to reduce calculational complexity but also from the intuition

that we wish to study strongly coupled physics generic to a large class of QFT. The

supergravity duals of these QFTs should therefore have universal components in

their Lagrangians which encapsulate this physics. Indeed given the current preci-

sion of holographic techniques it is essentially only such universal physics which

we can reliably probe. This approach is known as “bottom-up” or “applied” holog-

raphy and has had considerable success in modelling aspects of condensed matter

physics such as topological insulators [74, 84], superconductivity [31, 59, 103] ,

non-Fermi liquids [5, 47, 119], inhomogeneous phases [11, 34, 73, 87], and metal-

insulator transitions [43].

A commonly used alternative approach to constructing a new bulk Lagrangian

from scratch is to work in a well understood holographic model— for example the

original ADS/CFT model— and to introduce additional stringy degrees of freedom,

known as D-BRANES, to construct phenomenological models of the physics of

interest. These objects are dynamical soliton solutions within string theory which

act as end points for extended strings. They are useful in this context as in the

classical supergravity limit the D-BRANES may be introduced as “probe branes”

which do not backreact on the geometry. The low energy modes of the strings
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stretching between the D-BRANES introduce additional matter field content into

the theory. Therefore one can, by choosing an appropriate number and a stable

arrangement of D-BRANES, effect precision control over the fields and couplings

appearing in the Lagrangian. D-BRANES will be used extensively in two chapters

of this thesis— see Chapter 2 and Chapter 5.

1.4.2 Formulating the equations of motion and boundary conditions

Once one has specified the Lagrangian one may take the appropriate variational

derivatives to derive the equations of motion. If the Lagrangian is for the bulk

spacetime then these will consist of Einstein and matter field equations. If one

has utilized probe D-BRANES to construct the Lagrangian the Einstein equations

will be replaced by equations describing D-brane embeddings in the bulk space-

time. In all projects considered in this thesis we will be interested in finding static

or stationary solutions to these equations of motion. This corresponds to study-

ing a dual QFT in equilibrium4. If, in addition, the QFT is spatially homogenous

then the equations reduce to coupled, non-linear ODEs. Generically, however, for

non-translationally invariant systems the equations will be PDEs5. In order for

these PDEs to have unique solutions, and therefore to be numerically solvable, one

must specify appropriate boundary conditions. These must be imposed in the deep

interior of space-time, at its asymptotic boundary and in the transverse spatial di-

rections.

The choice of boundary conditions is important as it is these that encode the

state we wish to probe in the dual QFT. This may be understood as follows: the

radial direction of the space-time encapsulates the renormalisation group flow of

the dual QFT. The degrees of freedom near the space-time boundary correspond to

the UV degrees of freedom in the QFT and the boundary conditions imposed there

correspond to the form of the relevant deformations introduced into the CFT which

exists at the UV critical point. Similarly the IR behaviour of the QFT is captured

by the behaviour of metric and matter fields in the deep interior of the space-time.

4See [76],[22] for examples of non-equilibrium, time dependent holographic constructions.
5As will be discussed in Chapter 6, a highly profitable research program exists for exploring trans-

lational invariance while maintaining the ODEs nature of the equations of motion; see for example
[33, 35–37, 41].
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The fact that the solutions of the bulk equations of motion take into account all

radial positions is an intuitive way of grasping how the classical gravity solutions

give a non-perturbative description of the strongly coupled QFT physics. It is in

principal, and sometimes in practice [48], possible to construct the IR bulk space-

time via inward radial evolution from the boundary in a geometrical equivalent of

Renormalization Group (RG) flow. Frequently however it is mechanically neces-

sary to impose some smoothness or regularity conditions in the IR which encode

some knowledge or ansatz regarding the form of the IR physics in which we are

interested.

This intuition regarding RG flow from the boundary to the interior of the space-

time does however provide us with a guiding principle in the formulation of bound-

ary conditions. In the UV all metric and matter fields decouple and the equations

of motion linearize. The fields then obey falloff conditions which depend only on

the dimensionality of the space-time and the mass and spin of the matter fields.

The dual QFT statement is that we are near the conformally invariant critical point

where field operator scaling is simple and governed by critical exponents. The im-

position of boundary conditions in the interior is more subtle and is governed by

the type of macroscopic physics we wish to study in the QFT. If one wishes to

work at a finite temperature the interior boundary becomes a black hole horizon.

This is a sensible thing to do given that, unlike in flat space, it is possible to have

stable/eternal, positive-specific-heat, black hole solutions in AdS [63]. The radial

position of the horizon then has the interpretation in the dual QFT as the energy

scale below which quantum effects are masked by thermal fluctuations. Different

forms of metric and matter functions in the near horizon limit correspond to dif-

ferent classes of IR behaviour in the QFT. The art of specifying the appropriate

ansatz in the IR in order to find the behaviour of interest in the QFT is one of the

most challenging aspects of any project. If one is working at zero temperature

and on the Poincaré patch (or with an extremal black hole) a similar situation will

apply- one must impose self consistent boundary conditions on the fields that in-

corporate the IR physics. However finding zero temperature holographic models of

condensed matter systems is a difficult problem and all projects discussed in this

thesis deal with systems at finite temperature. The numerical difficulties associated

with examining the very low temperature behaviour of holographic models will be
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discussed in Chapter 4 and Chapter 6 and the appendices thereof.

1.4.3 Solving the equations

Once one has equations and boundary conditions one can proceed to find a solution.

As the equations in question are non-linear ODEs or PDEs the solution technique is

invariably numeric. Various options are available depending on the nature of the

problem:

Shooting methods: Useful for solving problems involving nonlinear ODEs provided the number

of free parameters is small. This method utilizes the powerful integration

routines available for initial value problems to integrate the equations from

the IR to the UV6. Under the supervision of a root-finding algorithm, free

parameters in the IR7, such as the gradient of the fields, are adjusted and the

integration iterated until the UV boundary conditions are satisfied to within a

prescribed tolerance. A technical complication results from the singular be-

haviour of some terms in the equations near any black hole horizon in the IR

and the conformal boundary in the UV. This singular behaviour results from

the common choice of coordinate system near the horizon, and the diver-

gence of the volume element near the boundary, respectively. It is therefore

necessary to solve the equations locally via power series expansion in the IR

and UV. Boundary conditions may be set and solution information extracted

via appropriate matching of the region of integration onto these local solu-

tion patches. This method is useful due to its ease of implementation- there

are high quality, inbuilt initial value routines in Mathematica for example.

It is however ’unnatural’ in the sense that it treats a boundary value prob-

lem as an initial value problem and relies on the efficiency of initial value

integration to compensate for the amount of repetition involved. In the case

where multiple shooting parameters are required the use of spectral methods

[17, 126] is recommended as an alternative.

Finite Difference: A conceptually simple and robust approach for solving PDEs. A rectangular

mesh of grid points is defined over the domain of solution. The equations of

6It turns out attempting to integrate in the opposite direction tends to be numerically unstable.
7These free parameters are known as shooting parameters.
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motion and boundary conditions are then written as finite difference equa-

tions with values defined on these grid points. This is done via approximat-

ing derivatives via differentials using a set of neighbouring points known as

stencils (see [1] for an explicit forms of the different types of stencils to vari-

ous orders of approximation). The solution of the system of finite difference

equations should then be the solution of the system of PDEs up to corrections

given by the accuracy of the discretization process. Therefore the numeric

solution should converge to the true solution as the grid size goes to zero. For

the non-linear systems of equations described in this thesis the solution can-

not be found in one step via simple matrix inversion. Instead the equations

must be linearized and solved iteratively via methods such as Successive

Over Relaxation (SOR) [109]. In these methods a series of “sweeps” over

the grid is carried out with the values of the fields at each grid point being

updated based on those of their neighbours until convergence is obtained.

While simple, this method has a number of disadvantages which mean that it

is generally worth investing in more sophisticated methods. These include:

• Even in ideal conditions the convergence to the continuum as a function

of the number of grid points is not particularly fast- it is a power law

dependent on the number of points used in the discretization of the

derivatives (for a basic three point stencil the convergence is of order

N2). The addition of nonlinearities and/or additional constraints may

reduce this convergence rate significantly.

• Since the basic stencils of the discretization are local objects they are

not particularly well suited to accurately capturing behaviours like asymp-

totic falloffs. This is of particular relevance in our applications. In or-

der to compensate for this one may have to go to quite large N which

places corresponding demands on computational memory.

• Iterative methods such as SOR converge slowly for large systems of

non-linear equations, particularly when the number of grid-points is

taken to be large and additional complications such as constraint equa-

tions are introduced.

All of the above considerations were relevant in the work done in Chapter 2,

13



Chapter 3 and Chapter 4 where these issues arose. Reasons to use finite dif-

ference approaches include non-analytic or very rapidly changing behaviour

in the solutions which is not well captured by more global methods, such as

spectral methods.

Spectral methods: A very efficient technique for solving non-linear equations provided the so-

lutions can be effectively represented by polynomials and are not too rapidly

changing. Instead of discretizing based on grid points one expands the equa-

tions in a polynomial basis. In this thesis we have used the popular Cheby-

shev polynomials. It can be shown that knowledge of the solution up to

order N in the Chebyshev expansion is equivalent to knowing the value of

the solution at the first N+1 Gauss-Chebyshev points known as nodal points

(the roots of the Chebyshev polynomials). In our implementations it is the

value of the solution at these nodal points that is solved for. This method has

the advantage that it convergence to the continuum solution is exponential

in N for linear equations. Non-linear equations can be handled via a simple

generalization of Newtonian or quasi-Newtonian methods which converge

much more quickly than methods like SOR. In addition it can be shown that

for any given N the Chebyshev polynomials give the best resolution near the

boundary for a finite domain [17, 126]. This is ideal for the purposes of ex-

tracting information from the bulk space-time solutions. Spectral methods

may also be used with a Fourier basis. This approach is useful for discretiz-

ing periodic domains such as the transverse/ spatial directions of many of the

models discussed in this thesis Chapter 6.

1.4.4 Processing the solutions

Once solutions have been found, information regarding the state of the QFT may be

extracted. We now describe in more detail how quantities are translated between

the bulk and the dual QFT. From the point of view of the QFT the imposition of

values on coefficients of the leading asymptotic falloffs as boundary conditions

corresponds to turning on sources for relevant operators with a particular ampli-

tude. In effect we add variable/conjugate variable pairs to the QFT path integral

in order to specify the state of the theory. These coefficients encode our control
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parameters, such as temperature or chemical potential, which can be used to pa-

rameterize the spacetime solutions8. Once we have solved the bulk equations of

motion we have the required information to extract information about the expecta-

tion values of operators in the dual QFT. To do so, we make use of a key feature of

the correspondence which states that the generating function in the QFT is dual to

the Euclidean, on-shell bulk action. We therefore vary this onshell bulk action with

respect to the leading falloffs of the fields and take the limit where by the resulting

quantity approaches the spacetime conformal boundary [10, 135]. Unfortunately

the resultant quantity is in many cases divergent. In order to extract finite answers

we must employ the methods of holographic renormalisation [107, 108] to regulate

and renormalize these quantities via addition of appropriate boundary terms to the

bulk action. The end result is usually that the expectation value is given by the

subleading asymptotic falloff of the field in question9.

One can also extract information about the QFT Green’s functions from the

bulk solution. Generally, we are interested in the retarded Green’s function as this

characterizes the response of the system to an external probe. As we are interested

in the response of the system to infinitesimal perturbations the problem is one of

linear response theory in the QFT and therefore the Green’s function is the ratio of

the response to the source of a perturbation. Holographically this involves solving

the linearized bulk equations around a known background solution. The lectures

in [65] offer a particularly good pedagogical treatment of this topic. Mechanically,

we introduce a frequency modulated perturbation of the background and solve the

linearized equations which result. The Green’s function may then be extracted via

comparing the source and response, as given by the leading and subleading falloffs

respectively as described in [59, 65, 81]. In the case where the original bulk sys-

tem is described by ODEs the linearization about the on-shell solution results in

8It is almost always more convenient to obtain some physical parameters, such as entropy and
temperature, from the horizon geometry of the black hole.

9There is the additional, logically distinct though operationally similar, restriction of ensuring
the consistency of the variational problem which from which the bulk equations of motion are de-
rived. The criteria may be expressed as the conversation at the conformal boundary of an appropriate
symplectic norm constructed from the bulk fields [90]. If this is not the case then one is required to
add additional boundary terms to the action to ensure that the variational problem is well defined.
Perhaps the most well know of such terms is the Gibbons-Hawking boundary term which must be
added to the Einstein Hilbert action when varying on space times with boundaries.
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linear ODEs which may be solved via shooting or spectral methods as described in

Section 1.4.3. If the behaviour of the bulk system is governed by PDEs, the solu-

tion of the linearized PDEs around a numerical background can be a challenging

endeavour— see Chapter 6.

Another key feature of the solutions which we may wish to examine is their

thermodynamic properties. This is particularly relevant in Chapter 3 and Chapter 4

of this thesis where we are interested in examining whether the inhomogeneous

or homogeneous solutions are thermodynamically dominant within a variety of

thermodynamic ensembles. Additionally in cases where we find a phase tradition

we wish to determine the scaling of thermodynamic quantities, such as the free

energy, near the critical point in order to determine the order of the transition- see

also Chapter 2. Thermodynamic quantities may be computed as follows:

• The free energy of the QFT is known to be equal to the value of the Eu-

clidean on-shell bulk action. Again this quantity will require normalization

via appropriate boundary terms in the bulk action.

• In the case where a black hole is present the surface of the horizon is known

to be a measure of the entropy of the system. In addition the Hawking tem-

perature of the black hole of the system is equal to the temperature of the

system in thermal equilibrium.

• The asymptotic value of the time component of the gauge field dictates the

chemical potential of the system10. Likewise the charge density is given

by the subleading falloff of the time component of the gauge field. This is

in accordance with the argument presented above relating the leading and

subleading components of the asymptotic falloff of a bulk field with the con-

jugate thermodynamic variable in the dual QFT path integral.

• The expectation values the components of the stress energy tensor of the QFT

may be found via the appropriate falloffs of the corresponding components

of the bulk metric. The extraction of these expectation values is most easily

10This of course implicitly implies we have chosen a gauge where the time component of the
gauge field, A0, is finite. This is the case for all projects described in this thesis.
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derived and understood in Fefferman-Graham coordinates as described in

[107, 108].

1.5 Holographic Higgs Phases
In Chapter 2 of this thesis we study the characterization of the Higg’s mechanism

from the point of view of bottom up holography. The project motivation was to

provide a diagnostic for spontaneous symmetry breaking when the microscopic

degrees of freedom of the QFT are not well known. The first step was to understand

how the phases of a gauge theory may be characterized in a gauge invariant way.

This is done via the Wilson loop

W (C) = Tr(ei
∫

C A) (1.5.1)

and its electromagnetic dual, the ’tHooft loop, [67, 68]. Whether these quantities

scale as the area or perimeter of the loop as its perimeter increases characterizes

the phase of a gauge theory:

• Confinement: W (C)∼ e−A(C) and T (C)∼ e−L(C)

• Higgs Phase: W (C)∼ e−L(C) and T (C)∼ e−A(C)

A gauge invariant diagnostic was necessary as gauge dependent quantities are not

easily translated across the duality. Holographically, the Wilson and ’tHooft loops

are computed via calculating the minimum surfaces of D(or F)-branes with bound-

ary conditions prescribed by the loop in the QFT [97]. It emerges that holographi-

cally the Higgs mechanism may be realized via the the formation of a vortex from

the dissolution of a D1-brane within the worldvolume of D3-brane.

This led us to propose that a suitable diagnostic of the Higgs mechanism in

bottom-up models is the existence of vortex solutions for the bulk matter fields. In

support of this idea, numerical vortex solutions were constructed within the holo-

graphic model of superconductivity of [59] and building on the work of [87, 103].

An additional complication was the requirement that these vortices be constructed

in theories where the dual QFT has a genuine, dynamic gauge field. 11 This required

11Dynamic in this context refers to the presence of an appropriate kinetic term in the action. The
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the use of the techniques of [31, 100], which allow us to implement alternative

boundary conditions for the gauge field via the inclusion of additional boundary

terms in the bulk action. The result of these additions is the the formation of an

emergent, weakly coupled sector within the strongly coupled QFT and a direct re-

lation between the bulk and QFT gauge fields. Thermodynamic quantities were

also explored. This yielded some intriguing results such as the fact that the free

energy of the vortex solutions continues to obey weakly coupled Landau-Ginzburg

type behaviour despite the fact that these vortices are embedded within a strongly

coupled gauge theory.

This work was significant from my personal academic development as it marked

my first exposure to solving PDEs in the context of the gauge-gravity duality and

using the techniques of the correspondence to extract thermodynamic and transport

properties from these numeric solutions. The lessons learned in terms of analytic

and numerical technology and best practice, and the insight gained into the holo-

graphic dictionary were important preparation for more extensive projects under-

taken later.

From the perspective of the applied string community this work was signifi-

cant as it both demonstrated the existence of, and explored the properties of, vortex

solutions within an emergent, weakly coupled sector of a strongly coupled gauge

theory. In addition it provided a mechanism for the identification of Higgs mech-

anism in spacetimes where the microscopic details of the theory are not known: if

one can construct a bulk vortex solution for a range of control parameters the dual

QFT is in the Higgs phase for that range of parameters.

1.6 Striped Order in AdS/CFT
Chapter 3 and Chapter 4 of this thesis stem from work done as part of a collabo-

ration studying the formation of holographic striped phases. This was motivated

by the linear perturbation calculations of [34] which showed that the inclusion of

an axion term in the action meant that the Reissner-Nordström black hole is dy-

namically unstable to the formation of spatially modulated phases below a critical

”genuine” refers to the requirement that the relevant symmetry group indeed be a gauge redundancy
of the QFT.
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temperature. Our goal was to construct a full, non-linearly backreacted solution

for this system with an ansatz which would break translational invariance and al-

low the formation of inhomogeneous phases in one of the QFT spatial directions.

From a condensed matter perspective the ability to study such strongly coupled

inhomogeneous phases would be significant as the emergence of quasi-one dimen-

sional structures is thought to be important in the onset of superconductivity within

some cuprate superconductors [19]. The system to be solved was complicated- in-

volving 7 dynamical and 2 constraint equations. The identification of appropriate

metric ansatz, the implementation of the constraints, and the appropriate choice of

coordinates and boundary conditions in the UV and IR regions posed significant

theoretical and computational challenges. In the end however solutions were ob-

tained and their thermodynamic properties probed. Some of the key results found

are:

• The existence of striped phases which spontaneously break translational in-

variance and in which the stripes have momentum, electric current and mod-

ulations in charge and mass density in the boundary theory. In the bulk a

modulated horizon was seen be be present with interesting curvature effects

observed. These include the growth of the volume element in the near hori-

zon region and the fact that the curvature was seen to be greatest at the bulge

in the horizon. Naively one might expect the curvature to be maximized at

the horizon neck however the planar extent of the horizon in the directions

where symmetry is not broken mean that this is not the case.

• A second order phase transition to striped phases in all ensembles (micro-

canonical, canonical and grand canonical) below the critical temperature.

This was found to be true for both the finite length and infinite system. The

distinction between finite and infinite systems is significant as it corresponds

to fixing either the periodicity or the length in ones choice of ensemble.

Agreement between the three ensembles was important as it agrees with the

general theory of phase transitions as viewed from different ensembles. In

addition it was seen that violation of this agreement could lead to possible

violations of cosmic censorship 12.
12A striped solution which is thermodynamically preferred by the grand canonical and canonical
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• The entropy of the system was seen to tend to a finite value as the temper-

ature was taken towards zero, in apparent contradiction with the results of

[132, 133]. This result suggests that either entropy is shed by the system

very quickly at a very low temperature, or an additional low temperature

instability may be present which would change the horizon geometry and

remove the residual entropy. It is possible that such a solution, if it exists,

might require the breaking of additional symmetries.

This project was significant as it provided the opportunity to work as part of

a multidisciplinary team on complicated numerical and analytic problem. The

lessons learned in terms of the gauge and constraint structure of Einstein equations

in ADS, numerical methods of solving PDEs, and thermodynamics in the context

of holography and black hole were all important lessons which would be carried

forward to future projects.

From the perspective of the field, this project was important as it provided

the first full, cohomogeneity 2 solution with spontaneous symmetry breaking in

ADS. It proceeded to provide a thorough exploration of the thermodynamics of the

system- discussing its behaviour in 6 ensembles and demonstrating the existence of

second order phase transitions. As such it represented an important step in the go-

ing research program to understand the spontaneous breaking of global symmetries

of strongly coupled systems via the gauge-gravity correspondence.

1.7 Fermi Liquids from D-branes
Chapter 5 involves the holographic investigation of Fermi liquids with the goal

of better understanding holographic mechanisms to generate non-Fermi liquid be-

haviour. These substances are of particular interest in condensed matter physics

for their unusual thermodynamic and transport properties which violate expected

Landau Fermi liquid behaviour. This anomalous behaviour results from a lack of

a weakly interacting, quasiparticle description of the excitations of the Fermi sur-

face as postulated by Landau theory. In addition, understanding non-Fermi liquid

phases may provide clues to the origin of the high temperature superconductor

ensembles and yet dynamically unstable (not preferred microcanonically) cannot be the end point of
the evolution. and would suggest discontinuous behaviour in the horizon topology.
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instabilities to which they are known to be susceptible [19]. Previous work on

this topic produced non-Fermi liquid behaviour by coupling the Dirac action to

Einstein-Maxwell action in the probe limit, such that the fermions did not back-

react on the spacetime. The solution was found to be black hole with non-trivial

fermonic hair [47]. In these solutions, the fact that proper length diverged as the

black hole horizon is approached served to act as a means of introducing large

amounts of dissipation into the system. Such an effect mirrors many toy models

of condensed matter physics where non-Fermi liquid behaviour is realized by cou-

pling the fermions to a very large number of gapless bosonic excitations. From a

bulk perspective these bosonic modes correspond to the metric fluctuations in the

deep IR, in the near horizon region of the black hole. This bosonic sector acts as a

dissipative bath and serves to give the quasi-particles a very short lifetime. How-

ever this solution was found to be pathological as together with the ”genuine” fermi

surface of interest it was found to contain O(N) Fermi surfaces in the deep IR, one

for every species of gluon present in the dual QFT. When filled in the Thomas-

Fermi approximation and projected onto the boundary this lead to a continuum of

Fermi surfaces in the QFT.

In order to try and move beyond the Thomas-Fermi approximation it was de-

cided to follow up on the work of [5, 6, 119] while taking additional inspiration

from results on Minkowski brane embeddings in [50, 88, 101]. The idea was to

construct backreacted solutions for a quantum bulk fermi liquid on the worldvol-

umes of D-BRANES. Such a solution could form a suitable starting point from

which the formation of a non-Fermi liquid could emerge naturally, as function

of parameters. In order to avoid the previous pathologies it was important that

the non-Fermi liquid behaviour emerge naturally from IR interactions between the

fermionic and bosonic degrees of freedom provided by the D-brane embedding

function. The choice to work on a probe D-brane was made in an effort to avoid

the significant complications associated with the full gravity system as investigated

in [5]. The numerics of this project involved the solution of integro-differential

equations as the fermionic charge density couples to the bosonic embedding in a

non-local fashion. The derivation of an iterative numerical scheme to successfully

solve these equations for a range of densities was non-trivial and required signifi-

cant analytic and numeric experimentation. Some of the key of the solutions that
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were found were:

• Successful construction of fully backreacting, finite density fermionic solu-

tions on the worldvolume of a probe D-brane in the Minkowski embedding.

These geometries are supported against collapse by the Fermi pressure asso-

ciated with a finite fermionic charge density.

• The dual QFT is seen to possess O(1) Fermi surfaces and therefore these

solutions overcome the difficulties associated with the Reissner-Nordström-

AdS (RN) based constructions of [47, 92].

• In the spirit of bottom up holography, a study was undertaken of the ther-

modynamic and transport properties of this phase of matter as a function of

the various control parameters in the theory. This confirmed the presence, in

the dual QFT of a gapped, compressive Fermi liquid with completely stable

quasi-particle excitations in the vicinity of a finite number of Fermi surfaces.

• It was found to signal that for the system to exhibit non-Fermi liquid be-

haviour would require some manner of discontinuous change in the system

which would introduce dissipation at leading order in the 1
N expansion . Sug-

gestions were found that a potential source for such behaviour would be the

worldvolume of the D-brane tending towards non-compactness in the IR in

the limit of high densities.

This project allowed me to develop a thorough understanding of (non-)Fermi

liquid physics and the machinery associated with treating fermions holography—

in particular the subtle IR and large N issues associated with generating non-Fermi

liquid behaviour in these models. From a numerical and computational perspective

solving the integro-differential system and appropriately processing the solutions

required the development of a more sophisticated and efficient numerical frame-

work then I had previously attempted. In addition scanning over large areas of

parameter space meant extensive use of Westgrid and the organizational overhead

this entails. These numerical and computational techniques were important in my

final project, Chapter 6.

From the perspective of the field this project successfully produced a novel,

backreacted, holographic model of a Fermi liquid. This complements well the
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existing work in the field. The works of pioneered in [47, 92] exhibit non-Fermi

behaviour but suffer from large N artifacts. The Fermi liquid behaviour described

in [119] is free of large N artifacts but it is not clear how to begin to generalize

the setup to generate non-Fermi liquid behaviour. The efforts to create a fully

backreacted non-Fermi liquid in the bulk spacetime described in [5, 6] were very

ambitious and while much progress was made the desired state was found to be

inaccessible as a result of an apparent phase transition. An additional benefit of

this project is that it shows that Minkowski D-brane embeddings can exist at finite

densities provided the matter content is fermionic. This addition to the probe D-

brane toolkit will hopefully be useful in a variety of other contexts.

1.8 Spatial Modulation and Conductivities in Effective
Holographic Theories

This project was motivated by the desire to advance the understanding of holo-

graphic models of inhomogeneity mediated, metal-insulator transitions 13. These

finite, but low, temperature transitions are controlled by parameters other then the

temperature (for example the periodicity of the sourced inhomogeneity) and repre-

sent the finite temperature signatures of a quantum phase transition. An improved

understanding of the finite temperature behaviour would grant further insight into

the nature of the quantum phase transition, and indeed, the zero temperature ground

states themselves. The study of the PDEs governing such systems began in [72, 73].

Here it was shown that the introduction of a sourced, ”lattice” inhomogeneity in

one of the spatial directions via modulation of the chemical potential meant that

the RN black hole could be generalized to include striped solutions. Once these

background solutions were known numerically the linearized perturbation equa-

tions were derived and numerically solved in order to extract the Alternating Cur-

rent (AC) electrical conductivity. The Direct Current (DC) conductivity was shown

to be finite, unlike in the homogeneous case- see [54], and the low frequency AC

behaviour was seen to be well approximated by the Drude model of conductivity.

In addition, an unusual scaling regime was seen to exist for a frequency range in the

13As we explain the use of the word ”transition” here is heuristic. At finite temperature the behav-
ior is a crossover with the true phase transition occurring only at zero temperature.
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mid-IR which was reminiscent of the scaling regimes found in cuperate supercon-

ductors. In [91] the exploration was extended to Einstein-Maxwell-Dilaton theory,

again with inhomogeneity imposed by a modulated chemical potential, and again

a mid-IR scaling regime for the AC conductivity was observed. Further analytic

development in the Einstein-Maxwell theory model was undertaken in [39, 40].

Their results allowed for the calculation of additional transport quantities- the ther-

moelectric, electric and thermal conductivities as well as the electric conductivity,

as a function of the near horizon behaviour of background solution. In addition

very high resolution and low temperature numerical calculations in these papers

found no evidence of any IR scaling regime.

In our project we sought to extend the study of such transitions to the class of

Einstein-Maxwell-Dilaton theories considered in [20]. In these theories the gauge

coupling and potential function both have a free parameter which strongly influ-

ences the IR behaviour of the solutions. In our study we chose to reduce the di-

mension of our parameter space by choosing a particular linear relation between

these two parameters. This results in a single parameter which we label, υ . 14 It

was shown in [20] that the range of IR profiles these functions exhibit in the ho-

mogeneous case strongly suggests that both metallic and insulating phases should

be present once translational invariance is broken. Our goal was to generalize the

methods used in [72, 73] and [39, 40] to numerically find these background solu-

tions and to probe their transport properties.

This undertaking required the derivation of the equations, and boundary and

gauge conditions for the gravitational background and linearized perturbation equa-

tions. In addition it was necessary to adopt the horizon paradigm of[39] to our

purposes and to analyze the analytic properties of the resulting expressions. Nu-

merical solution of these equations over large regions of parameter space and the

efficient processing of the results required the implementation of efficient numeri-

cal and data management techniques. This was achieved using the construction of

code within, and interfaces between, Mathematica, Matlab and C++ libraries, and

extensive use of the Westgrid computational facilities.

14In their work Ling:2013nxa worked with a form of the potential and gauge coupling similar to
ours. Their functions, however, did not have any free parameters and they did not study the behavior
of this class of theories.
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The results generated by this project include:

• Using two distinct numerical techniques, involving solving both the back-

ground and linearized perturbation equations in the bulk, we discover qual-

itative changes in the DC electrical conductivity in the IR as a function of

the period of the sourced inhomogeneity, k, and the parameter, υ . These

changes are strongly suggestive of the presence of metal insulator transition

in the zero temperature limit.

• Using the solutions of the background equations and the horizon paradigm

we also show that this qualitative change in the physics can be seen in the

thermoelectric conductivity and Lorenz factors but, curiously, not in the ther-

mal conductivity.

• We examine the presence of such a transition as a function of k and υ and

observe the existence of a non-trivial phase boundary with the possible exis-

tence of incoherent metallic behaviour at the junction. In addition we illus-

trate how the critical temperature for the onset of this qualitative change in

physics depends non-trivially on these two parameters and how the presence

of such a critical temperature is indicative of the redistribution of the spectral

weight associated with the transition.

• We probe the AC conductivity of the system using the solutions of the lin-

earized perturbation equations and explicitly confirm this shift in the spectral

weight in the regime where the transition occurs. In addition we illustrate

that the mid-IR scaling observed in [73, 91] can exist as a function of param-

eters but appears to be a fine-tuned and non-generic phenomena.

From the point of view of the string theory community it is hoped that this

project will aid in the continued effort to understand strongly coupled phase transi-

tions from a holographic context. In particular, it is hoped that these finite temper-

ature results will be useful in constructing the geometry describing to the metal-

insulator quantum phase transition at zero temperature. The ability to construct

such a solution would be a major step in confirming the value of holographic con-

densed matter physics as an exploratory tool for identifying interesting new phases

of matter.
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Chapter 2

Holographic Higgs Phases

2.1 Introduction and Conclusions
In this chapter we examine the “spontaneous breaking of gauge invariance” from

the perspective of the gauge-gravity duality. The duality has been utilized in con-

texts in which we expect this phenomena to occur such as holographic supercon-

ductivity (for a review see[69]) or color superconducting phases in QCD (for recent

attempts to model such phases see [13, 21]).

Of course, the expression “gauge symmetry” and its breaking is a misnomer,

or more precisely relies on specific classical limit for its definition. In a specific

weak coupling limit it makes sense to speak of gauge redundancies as approxi-

mate global symmetries and use the machinery and language of global symmetry

breaking in this context. However, in an inherently non-perturbative context such

as holographic dualities one needs to stick to more precise and gauge-invariant def-

initions. Such characterization of massive phases of gauge theories was given by

’tHooft [67, 68], and we review this classification in Section 2.2.

This classification of gauge theory phases is gauge invariant and non-perturbative,

relying on the response of the gauge theory vacuum to massive external sources.

This could be best used in the holographic context whenever we have an idea of the

gauge theoretic microscopic definition of the system, and use the holographic con-

text merely to perform calculations in the strongly coupled regime. This situation

is demonstrated in Section 2.3, using one particularly simple such “top-down” con-
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text, namely that of the Coulomb branch of the maximally supersymmetric SU(N)

theory in four dimensions. We demonstrate that the phase structure of the theory is

manifested in certain geometrical features of the bulk theory which reproduce the

expected results.

The purpose of this exercise is to extract a purely bulk criterion for the existence

of a Higgs phase interpretation of the theory, which we can then use in situations

where the microscopic definition of the bulk theory is less well-understood. Indeed,

we see that the expected behavior of the ’tHooft loop operator in the Higgs phase

implies the existence of certain type of solitonic strings localized in the IR region of

the bulk theory, representing a narrow magnetic flux tube in the boundary theory1.

In the holographic context, this can be taken as the definition of such phases, since

it implies much of the phenomenology we associate with the Higgs mechanism.

Since our criterion depends only on the bulk geometry, it is ideal in the bottom-

up approach to holographic duality, where the microscopic definition of the theory

is lacking. In Section 2.4 we demonstrate this criteria in the context of holographic

superconductors, namely holographic theories with the Marolf-Ross prescription

[100] (see also [136]) for obtaining boundary dynamical gauge fields (with finite

gauge coupling). Such theories, in the broken phase, model genuine supercon-

ductors rather than superfluids. We study the bulk and boundary properties of the

superconducting vortices, and demonstrate their role in characterizing the phase

structure of the holographic theory.

To this end, we construct new solitonic solutions in AdS4 black hole back-

ground (in the probe limit), for various values of the boundary gauge coupling (the

parameter α we introduce in Equation 2.4.6, by solving numerically the bulk equa-

tion of motion – a set of coupled non-linear partial differential equation. Section 2.4

is devoted to setting up the equations and boundary conditions, and describing the

properties of the solutions. Essential to our solutions is the use of dynamical bound-

ary conditions for the gauge fields (introduced in [100]), which are necessary for

obtaining finite energy solutions, corresponding to superconducting vortices2. We

1The precise interpretation of this flux tube depends on the microscopic interpretation of the
theory, and in particular on the UV region of the geometry.

2Superfluid vortices were constructed in [87]. Superconducting vortices, with infinite bound-
ary gauge couplings, were constructed in [31]. We compare and contrast our solutions with those
solutions below. See also [103] for a related construction.
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describe in detail the bulk and boundary properties of our solution, and find a few

intriguing patterns in the dependence of their free energy on temperature and on

the boundary gauge coupling.

We are hopeful that the criterion discussed here, and the role it plays in models

of holographic superconductivity, will assist in formulating the problem of holo-

graphic color superconductivity, and in constructing holographic models along the

lines of [13]. We hope to return to this problem, one of the original motivations of

the present note, in the near future.

2.2 Characterization of Gauge Theory Phases
In [67, 68] ’tHooft introduced a classification of phases of gauge theory based on its

response to electric and magnetic sources. For the characterization to be a precise

definition of the associated phases, we restrict ourselves for now to theories with

gauge group SU(N)/ZN , such as gauge theories based on unitary groups in which

all matter fields are in the adjoint representation. In such theories the centre of the

gauge group ZN is a global symmetry which aids in providing order and disorder

parameters to characterize the different phases.

The response of the theory to electric sources is measured by the Wilson loop

W (C) = Tr(ei
∫

C A) (2.2.1)

where we take the trace in the fundamental representation. The curve C is taken to

represent the world line of two static external sources separated by distance L , and

the Wilson line then computes the static potential between these sources.

The response to magnetic sources is similarly represented by a ’tHooft loop

T (C), which plays a role of a disorder parameter in the theory. The ’tHooft loop

operator is defined in the path integral language as an integral over all gauge field

configurations with a prescribed singularity along the curve C. The singularity

represents the presence of an external magnetic sources. For the curve C which

represents the world line of two well-separated static sources, this operator probes

the theory in a way which is similar to the Wilson loop. Indeed, as is well-known,

these two observables are exchanged under electric-magnetic duality (see for ex-

ample [51] or section 10 of Witten’s lectures in [27]).
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We can then distinguish the different phases3 of gauge theories by following

asymptotic behavior for large loops C:

• Confinement W (C)∼ e−A(C) and T (C)∼ e−L(C)

• Higgs Phase W (C)∼ e−L(C) and T (C)∼ e−A(C)

We denote the area enclosed within the curve C by A(C) and the corresponding be-

havior of the loop operator is called the area law. This encodes the linear potential

between the corresponding (electric or magnetic) sources. The linear potential has

an intuitive picture in terms of the existence of flux tubes connecting the sources

(confining strings) which in turn exist because the corresponding (electric or mag-

netic) flux lines emanating from the sources form narrow flux tubes and do not

spread (the Meissner effect). Similarly, the length of the curve C is denoted by

L(C), and the corresponding behavior for the loop operator is called the perimeter

law. Such behavior encodes the fact that the fields generated by the correspond-

ing source are short ranged (screened) and influence only the close vicinity of the

source location.

In the Coulomb phase, or in a conformal field theory, the behavior of both the

Wilson and ’tHooft operators is dictated by conformal invariance. For the loops

corresponding to static sources separated by distance L, we have the behavior

W (C)∼ T (C)∼ e−
aT
L = e−TV (L) (2.2.2)

where T is a large time cutoff, and a is a constant (which can depend on coupling

constants of the theory). Note that while formally this is classified as a perimeter

law for both Wilson and ’tHooft loops, the behavior of the static potential V (L)

in a massive (screened) phase is different V (L) ∼ e−
L

L0 where L0 is the screening

length.

The prescription of calculating the Wilson and ’tHooft loops in ADS/CFT is

simple and well-known4. The expectation value of Wilson and ’tHooft loop re-

spectively, in the fundamental representation and when working in the saddle point
3This is not a complete classification of such phases. For example, there could be critical points

and oblique confinement phases distinguished by the behavior of dyonic loop operators. We will not
discuss such phases here.

4We use in our holographic discussion the BPS loops, the so-called Wilson-Maldacena loop and
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approximation, is of the form e−S. The action S is the minimal action of the world-

sheet of fundamental string or D-strings respectively, in a configuration which end

on the prescribed curve C on the boundary. As quantum operators the Wilson and

’tHooft loops obey an interesting algebra which constrains the possible phases of

gauge theory, which was discussed in the context of ADS/CFT by Witten (section 5

of [134]).

The qualitative behavior of the Wilson loops in confining theories is also well-

known. The electric flux tube connecting external sources is mapped into a string

worldsheet dipping into the bulk. In the confining phase the electric flux lines are

confined to narrow flux tubes. The dual statement is that the string worldsheet

localizes in the bulk radial direction, oftentimes for clear geometrical reasons (e.g.

the “end” of the IR geometry in some sense). In the next two sections we provide

an analogous statement for magnetic flux tubes in holographic theories in the Higgs

phase5.

2.3 Top Down Model
Consider k flat probe D3 branes in AdS5× S5 located at r = v (in Poincare coor-

dinates), and smeared over the sphere S5. Here v is proportional to the VEV of

the adjoint Higgs field giving rise to the Higgs mechanism in the N = 4 SYM

theory. This corresponds to the pattern of symmetry breaking SU(N)→ SU(N−
k)×SU(k), in the large N limit, while k is kept finite6. In this example we have the

power of large N as an organizing principle, and we’ll see that it aids us in separat-

ing the effects of symmetry breaking on the electric and magnetic loop operators.

2.3.1 Electric flux lines

We are mainly interested in magnetic flux tubes, but we start with a brief discus-

sion of the Wilson loop. In the broken phase, with the above breaking pattern,

the static potential between electric sources in the fundamental representation is

its magnetic dual [97, 113]. The asymptotic behavior for the loops we consider is unaffected by the
presence of the scalar fields. For suggestions on calculating the Wilson loop itself see [4].

5For previous discussion of these flux tubes, see [75].
6This is conventionally called to Coulomb phase, and indeed the leading order interaction be-

tween electric sources will be Coulomb-like. Nevertheless we’ll use the term Higgs or broken phase.
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schematically of the form

V (L) =
a
L
+b

k
N

e−cvL

L

where a,b,c are constants. The leading order potential is still Coulomb-like, but

since k gauge bosons are now massive we have a 1
N correction involving exchange

of those massive gauge bosons. This can be seen, for example, if we repeat the

calculations of [44, 45] in the broken phase.

In the bulk this modification can be explained simply, as follows. The Wil-

son loop calculation corresponds, in the saddle point approximation, to finding the

area of a fundamental string worldsheet whose boundary ends on the prescribed

curve C. The leading order term in the 1
N expansion contributing to Equation 2.3.1

corresponds to the calculation in pure ADS [97, 113]. The form of the leading
1
N correction in Equation 2.3.1 suggests a modification of the action of the same

saddle point.

The required modification arises when considering the worldvolume theory

on the probe D3 branes. Consider the worldsheet of the fundamental string for

well separated electric sources, in the broken phase, a situation which is depicted

in Figure 2.1. The leading order contribution for the Wilson line corresponds to

the worldsheet area, and 1
N corrections come from interactions between the part

of the worldvolume intersecting the probe branes (two lines on the probe branes,

represented by two points in Figure 2.1 . Since the radial fluctuations of the probe

branes are massive – those correspond to the longitudinal modes of the W-bosons

– it is easy to see that exchange of the massive scalar fields corresponding to these

brane fluctuations reproduce the form of the leading 1
N correction in Figure 2.1.

2.3.2 Magnetic flux lines

In contrast to the calculation of the Wilson loop outlined above, the ‘tHooft loop

expectation value changes character from perimeter to area law, already in the lead-

ing order in the 1
N expansion. This corresponds to the existence of a new type of

saddle point, rather than a modification of the action of the existing worldsheet.

The new saddle point is similar to that of the Wilson loop in confining theories.

Indeed, in such case the geometry of the bulk provides an IR cutoff, such as a soft
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BoundaryProbe Branes

Figure 2.1: Wilson loop stretched between widely separated sources on the
boundary. The leading order correction in the 1

N expansion comes from
exchange of massive scalar representing the radial fluctuations of the
probe branes.

or hard wall, or cap to the geometry. The area law is realized geometrically as the

Wilson line for widely separated electric sources receives contributions predom-

inantly from the vicinity of the IR geometry. This is the holographic dual to the

statement that the flux lines connecting two electric sources do not spread out in

the confining vacuum.

In our case the magnetic dual to that statement cannot be explained in terms

of the bulk geometry alone. Indeed, the area law for the D1 brane has to arise

from differences between the worldvolume theory of such brane and that of a fun-

damental string (for example the different dilaton coupling [75]). In our simple

model this is easy to identify: in the presence of the probe branes the worldvolume

of the D1 branes can take a detour through the probe D-branes which, for widely
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BoundaryProbe Branes

Figure 2.2: World volume of D1 brane stretched between widely separated
magnetic sources on the boundary. The area law for the ’tHooft loop
results from the existence of a string-like object localized in the radial
direction. In this model such object can be represented as soliton on the
worldvolume of the probe branes, drawn in a thick red line along the
worldvolume of the probe brane.

separated magnetic sources, will minimize the action. This is due to the fact that

on the worldvolume of the probe branes, the D1 brane can be transformed into a

solitonic string of finite tension. Therefore asymptotically in such separation, the

minimum action configuration would be the one depicted in Figure 2.2 in which the

D-string worldvolume stretches mostly along the worldvolume of the probe branes.

Note that this is qualitatively similar to the Wilson line in a confining theory, in that

the radial location of the loop is stabilized at some fixed radial location for widely

separated sources.

The interpretation of the flux lines in this simple example depends in various

ways on understanding the full gauge-gravity duality. In particular, we have used
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large N scaling to distinguish electric from magnetic flux tubes, and correspond-

ingly confinement from the Higgs mechanism. Furthermore, the microscopic in-

terpretation of the theory helped identify the type of charges available in the gauge

theory, and which can be connected by those flux tubes. Nevertheless, we have

identified a necessary condition for the existence of Higgs phase interpretation of

the theory: the bulk spacetime should support a finite tension solitonic object which

is approximately localized in the radial direction. The existence of this object, dual

to a narrow magnetic flux tube, is necessary for the ‘tHooft loop of the boundary

theory to obey an area law. In the next section we demonstrate the existence of

such solutions in a simple bottom-up model of holographic superconductivity.

2.4 Application to Holographic Superconductivity
In this section we discuss a specific 2+1 dimensional bottom-up model of holo-

graphic superconductivity [58]. As argued above, an area law for the ’tHooft loop

is guaranteed by a finite energy vortex solution of the bulk fields localized in the

radial direction, representing magnetic flux tube in the boundary theory. When we

do not have a microscopic definition of the theory, we take the existence of such

soliton as the definition of the Higgs phase in the bottom-up holographic context.

We demonstrate below the existence of such finite energy solitons in the present

context.

Crucial to the analysis is the prescription given in [100] (see also [136]) for

obtaining dynamical gauge fields in the boundary theory, by requiring the bulk

gauge fields to obey a specific type of boundary conditions in the UV, which we will

refer to as “dynamical“ boundary conditions. We show that with these boundary

conditions the required vortex solutions exist, and furthermore have finite energy

per unit length. This indicates that the model, in the broken phase, describes a

genuine superconductor.

We then discuss the bulk and boundary properties of the solutions, including

the dependence of their tension on the temperature and the boundary gauge cou-

pling. Finally, the Higgs phase is characterized by electric screening, which we

demonstrate by examining the two point function of the boundary gauge field.
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2.4.1 The model

We work in the context of the bottom-up model of [58]. The action is:

S =
1

2κ

∫
d4x
√−g

[
R− 1

4
F2

µν −|(∂µ − iqAµ)ψ|2−V (ψ,ψ∗)
]

V (ψ,ψ∗) =
6
L2 +m2

ψψ
∗ (2.4.1)

where m2 < 0, and q is the charge of the scalar field. We work in the probe limit

[58], defined as:

q ∝ ε
−1 Aµ ,φ ∝ ε ε → 0 (2.4.2)

In this limit the matter energy momentum tensor scales as ε2 and drops out of

the Einstein equation, and the metric is unaffected by the matter fields, while the

Maxwell and scalar equations remain unchanged. The background solution fea-

tures an ADS Schwarzschild black hole geometry which, for certain values of the

thermodynamic variables (the chemical potential µ , or equivalently the tempera-

ture T ) develops a profile for the scalar condensate and the temporal component

of the gauge field. This signals the onset of symmetry breaking below the critical

temperature.

We choose to work in cylindrical coordinates (t,ρ,θ ,w) with the conformal

boundary located at w = 0. Our background metric is then:

ds2 =
L2

w2 (− f (w)dt2 + f (w)−1dw2 +dρ
2 +ρ

2dθ
2) (2.4.3)

In addition we make use of the scaling symmetries of our action to scale the horizon

to w+ = 1 and we take the AdS radius of curvature to be L= 1. This fixes the metric

function to be f (w) = 1
w2 −w. By dimensional analysis we expect all physical

quantities to be proportional to the ratio of T/µ . In what follows we fix µ = 1 and

examine the behavior of the various quantities as a function of T .

2.4.2 Ansatz and boundary conditions

We now discuss matter excitations to the homogeneous background. Guided by

the known vortex solutions of the Abelian Higgs model in flat spacetime (reviewed
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in appendix A), we propose the following ansatz for the solutions we seek:

Aµ → (A0(w,ρ),0,Aθ (w,ρ),0)

ψ → ψ(w,ρ)exp(isθ) (2.4.4)

where s is the topological number associated with the vortex solution7.

The equations of motion consist of the two Maxwell and one scalar equation:

R2
(

qs
w2 f
− q2Aθ

w2 f

)
+

(
f ′

f
+

2
w

)
∂wAθ −

∂ρAθ

w2ρ f
+

∂ 2
ρ Aθ

w2 f
+∂

2
wAθ = 0

− q2A0R2

w2 f
+

∂ρA0

w2ρ f
+

∂ 2
ρ A0

w2 f
+∂

2
wA0 = 0

R
(

q2A0
2

w4 f 2 −
(s−qAθ )

2

w2ρ2 f
+

f ′

w f
− m2

w4 f

)
+

(
f ′

f
+

2
w

)
∂wR+

∂ρR
w2ρ f

+
∂ 2

ρ R
w2 f

+∂
2
wR = 0

(2.4.5)

where we rescaled the scalar field as ψ(w,ρ)→wR(w,ρ), for reasons of numerical

stability. It can be seen that in the probe limit described above there is a scaling

symmetry of the equations Equation 2.4.5, implying that if a solution is found for a

given value of q it is known for all q via an appropriate rescaling of the fields. This

property is convenient for numerical purposes as it allows us to choose a scale for

the matter fields which is numerically tractable.

We wish to solve our system of PDEs on the domain defined by w0 ≤ w ≤ w+

and 0 ≤ ρ ≤ ∞, where w0 is a UV cutoff. For the problem to be well posed we

must choose self consistent boundary conditions which are also compatible with

the bulk equations of motion. We choose the following boundary conditions on the

four different segments of the boundary:

• ρ→∞: In flat space it is known that the vortex fields decay exponentially to-

wards asymptotic values for the gauge and scalar fields as ρ goes to infinity.

Anticipating similar behavior, in our numerical implementation we impose

a Neumann boundary conditions at some finite and large value, ρcut , since in

7Of course, this number is not conserved in the full geometry, and indeed as we will see it “un-
winds“ as function of the bulk radial coordinate w.
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that region the solution should tend to the homogeneous ground state8.

• ρ → 0: To determine the boundary conditions at the vortex core we require

that all components of the bulk magnetic field be finite. The radial and

transverse components of the magnetic field are given by Bw = ∂ρAθ/ρ , and

Bρ = ∂wAθ/ρ , respectively. Finiteness of the radial component implies that

∂ρAθ → 0 as ρ → 0. Regularity of the transverse component then restricts

the Aθ component to obey (in this limit) ∂wAθ → 0. Therefore we conclude

that Aθ (w,ρ = 0) must be a constant. If we were to impose a Dirichlet con-

ditions at the conformal boundary this would fix this constant to be zero. In

our case we have a residual gauge freedom9, consistent with the boundary

conditions, which we use to set Aθ (w,ρ = 0) = 0 at the core of the soliton.

• w→ w0 : On the conformal boundary we impose Dirichlet conditions on the

scalar and A0 fields — the scalar field must be normalizable and A0 must

asymptote to the chemical potential µ . Crucially, on the Aθ field we impose

the following boundary condition

∂Aθ

∂w
= α ρ

∂

∂ρ
(

1
ρ

∂Aθ

∂ρ
) (2.4.6)

at the conformal boundary. This corresponds to having a theory in which the

boundary value of the bulk gauge field corresponds to a gauge field [100] in

the boundary theory10. The parameter α determines the gauge coupling e2

of the boundary gauge field, e2 = g2
bulk/α . Indeed, having a consistent varia-

tional principle requires the addition of the boundary action to Equation 2.4.1

:

Sbdy =
1
e2

∫
d3x
√
−hF2 (2.4.7)

where the integration is over the boundary whose induced metric is denoted

8ρcut is chosen such that our solutions vary by less than 0.01% if it is increased.
9The dynamical boundary conditions at the conformal boundary allow for gauge transformations

whose parameter is independent of the radial coordinate w.
10We choose to make dynamical only the component Aθ of the gauge field, for the sake of sim-

plicity, we do not expect the features of the solution to change much if A0 is made dynamical as
well, since it already has nearly vanishing radial derivative near the conformal boundary, in all the
solutions we are interested in.
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by h. F is the field strength for the boundary gauge field. We refer to these

boundary conditions as the “dynamical” boundary conditions in what fol-

lows.

• w→ w+: Regularity conditions at the horizon are necessary since the equa-

tions degenerate there. Choosing the solutions which are regular at the hori-

zon means that the coefficients of the divergent terms in a power series ex-

pansion of the equations near the horizon have to vanish. This prescription

yields the following constraints in our case:

A0 = 0

R
(
−q2Aθ

2

ρ2 +
2qsAθ

ρ2 −m2− s2

ρ2 −3
)
−3∂wR+

∂ρR
ρ

+∂
2
ρ R = 0 (2.4.8)

R2q (s−qAθ )−3∂wR− ∂ρAθ

ρ
+∂

2
ρ Aθ = 0

We numerically solve the equations with these boundary conditions using suc-

cessive over-relaxation (SOR) in the domain w0 ≤w≤w+ and 0≤ ρ ≤ ρcut , where

the truncation radius ρcut is large but finite. In this approach the equations are dis-

cretized on a lattice covering the domain of integration. We use a second order

finite differencing approximation in which the derivatives are replaced with their

finite differencing counterparts. An initial guess for the value of the scalar and

gauge fields is then assigned to each grid point. Dirichlet boundary conditions

are implemented by insisting that the initial values assigned to the fields at the

boundary grid points are maintained throughout the relaxation procedure, whereas

Neumann or Robin boundary conditions must be imposed after each iteration. This

is done by using the discrete form of the derivative operators to update the bound-

ary grid points based on the values calculated for the interior points. The SOR

algorithm then provides an iterative method of finding numerical solutions to this

finite difference system to within a prescribed tolerance. Once the solutions are

available other quantities of interest such as the energy density are calculated via

insertion of these solutions into the suitably discretized action. Further details of

our implementation are found in Appendix B.
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2.4.3 Free energy

Before presenting the numerical solution and discussing its properties, we explain

the reason we expect the energy (per unit length) to be finite in our case. The

discussion parallels that of [87].

The Lagrangian density of the bulk fields is:

L = q2ρA0
2R2

2 f −R2
(
(s−qAθ )

2

2ρ
+ 1

2 w2ρ f + m2ρ

2

)
− 1

2 w4ρ f (∂wR)2−w3ρ f R∂wR

−1
2 w2ρ(∂ρR)2 +

ρ(∂ρ A0)
2

2w2 f + 1
2 ρ(∂wA0)

2− w2 f (∂wAθ )
2

2ρ
− (∂ρ Aθ )

2

2ρ
(2.4.9)

Since the resulting action diverges near the boundary, we regularize it by sub-

tracting the action of the translationally invariant hairy black hole solutions from

the on-shell vortex action. Such subtraction automatically removes the divergences

which occur due to integration in the w direction. Therefore divergences, if they

exist, can occur only as a result of ρ integration. In the region of large ρ the scalar

and A0 fields asymptote to their values in the translationally invariant ground state.

Therefore the only terms in the (asymptotic) Lagrangian density to survive the sub-

traction procedure are:

−2π

∫
dt
∫ 1

0
dw
∫

ρcut

0
dρ

[
R2(s−qAθ )

2

2ρ
+

w2 f (∂wAθ )
2

2ρ

]
(2.4.10)

where all fields are understood to be functions of w only. Here we have introduced

the cutoff ρcut in order to regulate potential divergences in the ρ integration.

If we now use the Aθ equation of motion to make the substitution:

−1
2

R2(s−qAθ ) =
w(w f ′+2 f )∂wAθ

2q
+

w2 f ∂ 2
wAθ

2q
(2.4.11)

and integrate by parts, using the fact that f vanishes on the horizon, we obtain the

logarithmically divergent term:

π log
(

ρcut

γ

)∫
dt
(

w2 f Aθ ∂wAθ |w=0 +

(
s
q

)∫ 1

0
dw∂w(w2 f ∂wAθ )

)
= π log

(
ρcut

γ

)∫
dt
(

w2 f Aθ ∂wAθ −
s
q

w2 f ∂wAθ

)
|w=0 (2.4.12)
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In integrating by parts we have introduced the length scale γ which is a measure of

the size of the vortex core.

This reasoning led the authors of [87] to conclude that their vortex solution

is logarithmically divergent, as expected from vortices in a superfluid. We see

that if we instead consider dynamical boundary conditions for the Aθ field, then

∂wAθ |w=0 = 0 outside the core of the soliton. Then, provided an appropriate vortex

solution exists, the coefficient of the logarithmic divergence will vanish. We see

below that indeed such vortex solutions (whose profile significantly differs from

the superfluid vortices found in [87]) do exist and we calculate their finite energy

(per unit length). This demonstrates that our model describes a genuine supercon-

ductor11.

2.4.4 Bulk properties of the solutions

We are now ready to present our numerical solutions for the bulk fields and discuss

their properties for different values of the parameter α . We leave discussion of our

numerical solution to appendix B.

The system has a critical temperature Tc, below which it is in the condensed

phase (i.e. the scalar field develops a normalizable background). Below that critical

temperature vortex solutions start appearing, in Figure 2.3 we show the profile

of the fields for a typical vortex solution for α = 0. The form of the solutions

may be understood as follows: far from the vortex core the fields tend to their

homogeneous profiles and the PDEs reduce to ODEs. When solving these ODEs

numerically one finds that the solution for the Aθ field is a constant, given by
s
q . Together with our previous discussion of the ρ → 0 boundary conditions, this

means that Aθ asymptotes to a constant, independent of the radial coordinate, both

as ρ→ 0 and as ρ→∞. Since we are also demanding vanishing radial derivative at

the conformal boundary, a reasonable guess is that the global Aθ solution depends

only on ρ , i.e. Aθ (w,ρ)→ Aθ (ρ). This is indeed what we find numerically. As

seen in Equation 2.4.12 above, the asymptotic form of Aθ is directly responsible

for the finiteness of the vortex energy.

We have also obtained the solution with α 6= 0, in other words with dynamical

11This was shown for α = 0 in [31].
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Figure 2.3: The matter field profiles at a temperature of ' 0.89Tc In order
to aid in visualization the background translationally invariant solution
has been subtracted from the A0 gauge field. Note the asymptotic ap-
proach of the scalar and A0 fields to their translationally invariant pro-
files and the fact that Aθ field is independent of the radial coordinate w,
and asymptotes to s

q as ρ → ∞.

boundary gauge fields. In Figure 2.4 we demonstrate the effect of the boundary

action by displaying the differences in bulk fields (relative to the α = 0 case) for

the specific case of α = 3. It can be seen that the profile of the fields is no longer

homogeneous in the w direction near the core of the vortex. The greatest inho-

mogeneity is seen in the Aθ and A0 fields while the changes in the R field, while

substantial in magnitude, are largely homogeneous in w.

Once we obtain the numerical solutions for the matter fields, their on-shell

action can be evaluated. In Figure 2.5 we illustrate the profile of the free energy
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Figure 2.4: The additional contribution to the bulk fields resulting from the
addition of a boundary action with α = 3. The plots are normalized
with respect to the α = 0 profiles. It can be seen that, as expected, the
greatest variation is seen in the Aθ field.

density of both the translationally invariant and vortex solutions for α = 0, and their

difference. We note that the bulk free energy density of the vortex solution, in the

vicinity of the core of the soliton, dips below that of the homogeneous ground state

near the conformal boundary. Nevertheless, as we will see below the boundary free

energy density of the vortex (relative to the background) is everywhere positive.

We next turn to solutions with α 6= 0. In Figure 2.6 we plot the profile of

the bulk energy density (with the homogeneous background subtracted) for the

α = 3 solution, and the difference between that solution and the α = 0 solution.

We see that the change in the free energy density can be significant and is heavily

localized near the conformal boundary and the core of the vortex. We also note
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Figure 2.5: Free energy density profiles for the translationally invariant back-
ground and vortex solution, and their difference for α = 0 and a tem-
perature of ' 0.91Tc. Note for ease of visualization we have included
the w factors coming from the measure.

that, as expected, increasing α has the effect of shifting more of the contribution

of the action to the vicinity of the conformal boundary at the expense of the bulk.

2.4.5 Boundary properties of the solutions

The boundary free energy density can be found by the standard procedure of inte-

grating radially the Euclidean on-shell action, and including both the counterterm

action and the boundary Maxwell term (whose coefficient is α). We now discuss

the boundary free energy and its dependence on various parameters.

In Figure 2.7 we display the boundary free energy density for several values
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Figure 2.6: Bulk free energy for the vortex solution with α = 0, and the
difference between this and the α = 3 solution at a temperature of
' 0.91Tc. We note the increased energy density near the conformal
boundary relative to the α = 0 case.

of the temperature (at α = 0.001). At low temperatures (relative to the critical

temperature) one sees that the vortex energy profiles are sharply peaked near ρ = 0

and that, as one approaches the critical temperature, they flatten and broaden as

the vortices begin to disperse. The vortex solutions merge with the homogeneous

background at the critical temperature Tc.

Once we make the boundary gauge fields dynamical (i.e. turn on α), the so-

lutions significantly change and the free energy receives additional contributions

from the boundary Maxwell action. In Figure 2.8 we plot the total boundary free

energy for various values of the coupling α . We see that the energy density is that

of a finite size lump, as expected, and that turning on α can be quite significant at

the core of the vortex, for the range of couplings displayed.

2.4.6 Dependence on parameters

In order to display the dependence of the total boundary free energy on temper-

ature, in Figure 2.9 we show the decrease in the free energy as we approached

the critical temperature Tc (found from examining the onset of the translationally

invariant condensate). Fitting the curve to a function of the form

F = α(1−T/T c)β (2.4.13)
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Figure 2.7: Boundary free energy density of the soliton for several values
of the temperature relative to the critical temperature, Tc. Notice the
changes in the vortex profile as a function of temperature — at low
temperatures it is peaked near the vortex core while as the temperature
increases it tends to become wider and more diffuse, tending to the ho-
mogeneous background at Tc.

yields approximately α = 0.0529,β = 1.0637. In other words, up to numerical in-

accuracies, the free energy of the soliton coincides with that of the translationally

invariant (uncondensed) background at the critical point, and depends on tempera-

ture approximately linearly in the low temperature phase.

It is also interesting to examine the string tension (which corresponds to the in-

ternal energy), which quantifies the strength of magnetic confinement, as function

of temperature. We exhibit that dependence in Figure 2.9 as well, we see that the

qualitative behavior is similar to that of the free energy. We note that the fact that

the free energy goes to zero in an (approximately) linear fashion as one approaches

the critical temperature ensures that the vortex solutions appear initially with some

finite internal energy.

In Figure 2.10 we display the dependence of the total boundary free energy on

the parameter α . The dependence we find is intriguing: as we increase α (corre-
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Figure 2.8: Profile of the boundary free energy density of the vortex, for
various values of the boundary gauge coupling α , at a temperature of
' 0.91Tc. We note that the energy density as a function of α quickly
begins to saturate.

sponding to decreasing the boundary gauge coupling) the free energy rises rapidly

and eventually saturates, resulting in finite free energy difference between α = 0

and α → ∞. Fitting to a function of the form12

F = Aexp(−B/α)+C (2.4.14)

yields approximately A = 0.009,B = 0.257,C = 0.004. The exact interpretation of

this result is unclear. We note that the large α limit corresponds to taking e2 to zero

(as the bulk coupling must be kept small in order for classical gravity to be valid.)

Naively this would lead one to believe that the boundary term in the bulk gravity

action, and the corresponding term in the field theory partition function, become

free Maxwell theories. However as the boundary action serves to implement the

boundary conditions for the bulk equations of motion and the gauge field in the field

12This form is consistent with the existence of a perturbative expansion in the boundary gauge
coupling.
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theory is an emergent component of a strongly coupled system this interpretation

is probably incorrect. It would be interesting to investigate this issue further.

2.4.7 Electric screening

Finally, for the sake of completeness we comment on the behavior of the vac-

uum in the presence of electric sources. Instead of probing the response to those

sources by calculating the Wilson line, it is simpler in our case to concentrate on

the Green’s function of the boundary gauge field. While in the case of Dirichlet

boundary condition the Green’s function encodes the optical conductivity, in the

case of dynamical boundary conditions this encodes the electric response of the

system. In order to demonstrate the expected behavior of electric screening, we

have to show that the static (zero frequency) long distance limit of the Green’s

function is gapped. We demonstrate the gap in 2.11 by displaying the low momen-

tum limit of the zero frequency Green’s function. This clearly stays bounded as we

take the zero momentum (long distance) limit.

2.5 Conclusion
In conclusion, in this chapter we constructed vortex solutions in the context of the

holographic models of [58], for various values of the bulk and boundary parame-

ters. These vortices signify the onset of local symmetry breaking. The imposition

of the dynamical boundary conditions corresponds, via the prescription of [100], to

a dual field theory with dynamical gauge field, with varying values of the bound-

ary gauge coupling. This is evidenced, for example, by the fact that any boundary

gauge transformation which is only a function of the boundary coordinates re-

spects the dynamical boundary conditions on the bulk gauge field. We find that

in the spontaneously broken phase, the symmetry breaking is manifested by the

existence of bulk vortex solutions with the expected properties of superconducting

vortices: there is no operator corresponding to a superfluid current on the boundary,

and the vortex boundary energy is finite. In contrast, as found at [87], the impo-

sition of Dirichlet boundary conditions leads to a theory which exhibits a global

symmetry breaking and vortices with diverging energy, as expected in a superfluid.

We expect that the criteria developed here for characterizing local and global
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symmetry breaking will have applications in other bottom-up holographic models.

In particular it would be interesting to explore the applicability of these techniques

to models of finite density QCD and color superconductivity.
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Chapter 3

Holographic Stripes

3.1 Introduction and Summary
In this chapter we apply gauge-gravity duality to study the spontaneous breaking

of translation invariance and the formation of striped order. Stripes are known to

form in a variety of strongly coupled systems, from large N QCD [30, 121] to

systems of strongly correlated electrons (for a review see [129]). The formation

of stripes and the associated reduced dimensionality are speculated to be related to

the mechanism of superconductivity in the Cuprates [19]. It is therefore useful to

study striped phases in the holographic context.

Besides its interest in the boundary theory, this study has an intrinsic interest

in the bulk gravitational context1. We describe striking bulk and boundary prop-

erties of our bulk solutions, including frame dragging effects, the magnetic field,

the curvature and the geometry. Some of the features can be understood as the

emergence of a near horizon region which acts as a bulk topological insulator. The

magnetoelectric effect is then responsible for the patterns we observe for the bulk

magnetic field and vorticity.

Our study is facilitated by a numerical solution of the set of coupled non-linear

Einstein and matter equations in the bulk, which exhibit a normalizable inhomoge-

1Our model describes a black hole whose instability to the formation of inhomogeneous structures
resembles the black string instability [53] which is known to be of the second order for high enough
dimensions [123].
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neous mode. Previous studies of inhomogeneous solutions in asymptotically ADS

spacetimes concentrated on non-normalizable modes [49] (i.e. explicit rather than

spontaneous breaking of translation invariance) or the study of co-homogeneity

one solutions [35, 36, 78, 104], where one of the translational Killing vectors is re-

placed by a helical Killing vector. More recently, such spontaneous breaking was

exhibited in a probe model, which was shown to have a magnetic field induced lat-

tice ground state [18]. In contrast to the above, our solutions are co-homogeneity

two, they backreact on the geometry, and exhibit spontaneous breaking of transla-

tion invariance below a critical temperature.

These features are analyzed as a function of temperature. In particular, we find

that the horizon of the black hole develops a “neck” and a “bulge” in the transverse

direction which shrink with temperature, such that the ratio of their sizes contracts

as fast as∼ T σ , with an order σ ∼ 0.1 exponent. Simultaneously, the proper length

of the horizon in the transverse direction grows at a rate ∼ 1/T 0.1. However, the

curvature remains finite, and its maximal value, occurring at the bulge, tends to a

constant in the limit T → 0.

The bulk black hole solutions give rise to the holographic stripes on the bound-

ary, characterized by non vanishing momentum and electric current and modula-

tions in charge and mass density. Starting small near Tc, the amplitudes of the mod-

ulations grow steadily at lower temperatures, approaching finite values at T → 0.

Finally, we study the thermodynamics of the system by constructing phase dia-

grams in various ensembles. For small values of the axion coupling, where the ther-

modynamic potentials in both phases are nearly degenerate, our numerical method

is not accurate enough to sharply distinguish between weak first order and second

order transitions 2. However, for sufficiently large values of the axion coupling we

discover a clear second order phase transition in the canonical (fixed charge), the

grand canonical (fixed chemical potential) and the micro-canonical ensembles. We

describe both the finite system (of fixed length) and the infinite system, where we

find that the dominant stripe width changes as function of temperature.

2When the revised version of this Letter was nearly ready to be submitted the preprints [32] ap-
peared, investigating this model using different methods. These preprints also indicate the existence
of a second order phase transition for sufficiently large axion coupling.
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3.2 The Holographic Setup
The Lagrangian describing our coupled system is [34]

L =
1
2

R− 1
2

∂
µ

ψ∂µψ− 1
4

FµνFµν − V (ψ)−Lint ,

V (ψ) = −6+
1
2

m2
ψ

2,

Lint =
1√−g

c1

16
√

3
ψ ε

µνρσ FµνFρσ , (3.2.1)

where R is the Ricci scalar, Fµν is the Faraday tensor, Lint describes the axion

coupling and g is the determinant of the metric. We use units in which the ADS

radius l2 = 1/2, Newton’s constant 8πGN = 1, and c = h̄ = 1, and choose m2 =−4

and several values of c1.

Perturbative instabilities towards the formation of charge and current density

waves were identified in [34] for a range of wave numbers and temperatures3. We

note the appearance of axion electrodynamics in the bulk theory. It is curious

that inhomogeneous instabilities (see also [104]) seem to involve the topology of

the bulk fields in an essential way, though the analysis performed to discover the

instability is local in nature. We leave this mystery for future work.

In this Letter we investigate the end-point of the instability. Part of the bound-

ary data is the spatial periodicity, and we focus mostly on the wave number with

the largest critical temperature Tc [34]4. This state is a co-homogeneity two so-

lution, thus we construct the family of stationary solutions that emerge from the

critical point, assuming all the fields to be functions of the radial coordinate r and

one spatial coordinate x.

Our ansatz includes the scalar field ψ(r,x), the gauge field components At(r,x)

3 An interesting application of the instability in this model has appeared very recently [42].
4Alternatively one can work in the conjugate ensemble where the tension in the spatial direction

is fixed. We found that the order of the phase transition does not change in this case, details will
appear elsewhere [118].
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and Ay(r,x) and the metric

ds2 = −2r2 f (r)e2A(r,x)dt2 +2r2e2C(r,x)(dy−W (r,x)dt)2

+ e2B(r,x)
(

dr2

2r2 f (r)
+2r2dx2

)
, (3.2.2)

where for the sake of convenience we included in the definition of the metric func-

tions the factor f (r) characterizing the metric of the RN solution, with horizon at

r = r0:

f (r) = 1−
(

1+
µ2

4r2
0

)(r0

r

)3
+

µ2

4r2
0

(r0

r

)4
.

The inhomogeneous solutions reduce to the RN solution above the critical temper-

ature.

The conformal in r,x plane ansatz (3.2.2) is convenient in constructing co-

homogeneity two solutions. With this ansatz, the Einstein and matter equations

reduce to seven coupled elliptic equations and two constraint equations. More-

over, the constraint system can be solved elegantly using its similarity to a Cauchy-

Riemann problem [131].

The boundary conditions we impose correspond to regularity conditions at the

horizon and asymptotically ADS conditions at the conformal boundary. With these

boundary conditions, the set of solutions we find depend on three parameters: the

temperature T , the chemical potential µ and the periodicity in the x direction L.

Using the conformal symmetry inherent in asymptotically ADS spaces, the moduli

space of solution depends only on the two dimensionless combinations of these

parameters. To focus on the dominant critical mode that becomes unstable at the

largest temperature Tc we choose L = 2π/kc.

On the spatial boundaries it is useful to impose “staggered” periodicity con-

ditions. Using two reflection symmetries which are preserved by the form of the

unstable perturbation, one can reduce the numerical domain to a quarter period and

impose5 ∂xψ(x = 0) = 0, ψ(x = L/4) = 0, h(x = 0) = 0, ∂xh(x = L/4) = 0 and

∂xg(x = 0) = 0, ∂xg(x = L/4) = 0, where h represents the fields Ay and W , and g

5Our boundary conditions do not exclude the homogeneous solution, but since that solution is
unstable we find that in practice our numerical procedure converges to the inhomogeneous solution
unless we are very close to the critical point.
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Figure 3.1: Metric functions for θ ' 0.11 and c1 = 4.5. Note that the metric
functions A,B and C have half the period of W . The variation is maxi-
mal near the horizon, located at ρ = 0, and it decays as the conformal
boundary is approached, when ρ → ∞. The matter fields (not shown)
behave in a qualitatively similar manner.

refers collectively to A,B,C and At .

The elliptic equations derived from (3.2.1) are discretized using finite differ-

ence methods and are solved numerically by a straightforward relaxation with the

specified boundary conditions. In this method the equations are iterated starting

with an initial guess for all fields, until successive changes in the functions drop

below the desired tolerance. We verify that the remaining two constraints are sat-

isfied by those solutions. Full details of our procedure are given in the upcoming

[118].
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3.3 The Solutions
A convenient way to parametrize our inhomogeneous solutions is by the dimen-

sionless temperature θ = T/Tc, relative to the critical temperature Tc. Our method

allows us to find solutions in the range 0.003 . θ . 0.9 for c1 = 4.5 and the range

0.00016 . θ . 0.96 for c1 = 8, for fixed µ .

Bulk Geometry. For subcritical temperatures, as we descend into the inhomoge-

neous regime, the metric and the matter fields start developing increasing variation

in x. Fig. 3.1 displays the metric functions for θ ' 0.11, over a full period in the

x direction, in the case c1 = 4.5. The matter fields have qualitatively similar be-

haviour. The variation of all fields is maximal near the horizon of the black hole

at ρ ≡
√

r2− r2
0 = 0, and it gradually decreases toward the conformal boundary,

ρ → ∞.

Many of the special features of the solutions we find are related to the presence

of axion electrodynamics, the effective description of the electromagnetic response

of a topological insulator, in the gravity action. In the broken phase we have an

axion gradient in the near horizon geometry, which therefore realizes a topological

insulator interface6. The presence and the pattern of a near horizon magnetic field,

summarized in the field Ay, can be related to the magnetoelectric effect in such

interfaces.

In curved space the magnetic field is accompanied by vorticity, which is man-

ifested by the function W . This causes frame dragging effects in the y direction.

Test particles will be pushed along y with speeds W (r,x), in particular the direction

of the flow reverses every half the period along x. The drag vanishes at the hori-

zon and at the location of the nodes of W where x = Ln/2, for integer n (see Fig.

3.1). In general, the dragging effect remains bounded, the vector ∂t is everywhere

timelike, and no ergoregion forms.

The Ricci scalar of the RN solution is RRN =−24, constant in r and independent

of the parameters of the black hole. This is no longer true for the inhomogeneous

phases, where the Ricci scalar becomes position dependent. The right panel of

6It would be interesting to discuss localized matter excitations on the interface, especially
fermions, along the lines of [114].
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Figure 3.2: Left panel: The variation along x of the size of the horizon in
the y direction includes alternating “necks” and “bulges”. Right panel:
Ricci scalar relative to that of RN black hole, R/RRN −1 for θ ' 0.003
over half the period. The scalar curvature is maximal along the horizon
at the bulge x = nL/2 for integer n. The axion coupling here is c1 = 4.5
and similar results appear for other c1’s.

Fig. 3.2 illustrates the spatial variation of the Ricci scalar, relative to the RRN for

θ ' 0.003. The plot corresponds to c1 = 4.5, however we observe qualitatively

similar results for other values of the coupling.

The maximal curvature is always along the horizon at x = nL/2 for integer n. It

grows when the temperature decreases and approaches the finite value of R'−94

in the small temperature limit.

The left panel in Fig. 3.2 shows the variation of transverse extent of the horizon

in the y direction, ry(x) ≡
√

2r0 exp[C(r0,x)], along x for θ ' 0.003. Typically

there is a “bulge” occurring at x = nL/2 and a “neck” at x = (2n+ 1)L/4, for

integer n. Note that Ricci scalar curvature is maximal at the bulge and not at the
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neck as would happen, for instance, in the spherically symmetric black string case.

The size of both the neck and the bulge monotonically decrease with temperature,

however, the neck is shrinking faster. We find that the ratio scales as a power

law rneck
y /rbulge

y ∼ θ σ near the lower end of the range of θ ’s that we investigated.

The exponent σ depends on the coupling, ranging from about 0.5 for c1 = 4.5 to

approximately 0.1 for c1 = 8.

Another aspect of the geometry is the proper size of the stripe in the x direc-

tion at fixed r, lx(r)≡
∫ L

0 exp[B(r,x)]dx. The proper length tends to the coordinate

length as 1/r3 asymptotically as r→ ∞, but it exceeds that as the horizon is ap-

proached. Namely, the inhomogeneous phase “pushes space” around it along x,

resembling the “Archimedes effect”. The proper length of the horizon is maximal

and it grows as the temperature decreases. We find that at small θ the proper length

of the horizon diverges approximately as ∼ θ−0.1.

Boundary Observables. Near the conformal boundary the fields decay to their

ADS values, and the subleading terms in their variation are used to define the

asymptotic charge densities of our solutions. The subleading fall-offs of the metric

functions in our ansatz determine the boundary stress-energy tensor, whereas the

fall-offs of the gauge field determine the charge and current densities of the bound-

ary theory. Finally, the subleading term of the scalar field near infinity determines

the scalar condensate.

For our inhomogeneous solutions we find that all charge and current densi-

ties are spatially modulated, except for 〈Txx〉, which is constant, consistent with

the conservation of boundary energy-momentum. We define the total charges of a

single stripe by integrating the charge densities over the full period L. These inte-

grated quantities are charge densities per unit length in the translationally invariant

direction y.

3.4 Thermodynamics
We demonstrated that below the critical temperature Tc there exists a new branch

of solutions which are spatially inhomogeneous. The question of which solution

dominates the thermodynamics depends on the ensemble used. We start our dis-
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Figure 3.3: Difference in the thermodynamic potentials between the inhomo-
geneous phase and the RN solution for c1 = 8, plotted against the tem-
perature. In both ensembles there is a second order phase transition,
with the inhomogeneous solution dominating below the critical temper-
ature.

cussion by fixing the boundary periodicity, corresponding to working in a finite

system of length L7 . We discuss the system with infinite length in the inhomoge-

neous x-direction below.

The canonical ensemble corresponds to fixing the temperature and the total

charge. This describes the physical situation in which the system is immersed in

a heat bath consisting of uncharged particles. In the upper panel of Fig. 3.3 we

plot the difference of the normalized total free energy, F = M−T S, between the

two classical solutions as function of the temperature T , for c1 = 8. In our ensem-

ble the total charge N is fixed, and we use the scaling symmetry of the boundary

theory to set N = 1, or in other words measure all quantities in terms of N. As

a result the free energy is a function of one parameter, the temperature T . The

7We mostly discuss the case L = 2π

kc
, where kc is the wavelength of the dominant instability, that

with the highest critical temperature. Results for other values of L will appear elsewhere [118], and
are qualitatively similar.
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Figure 3.4: The entropy of the inhomogeneous solution for c1 = 8 (points
with dotted line) and of the RN solution (solid line). Below the critical
temperature, the striped solution has higher entropy than the RN. The
RN branch terminates at the extremal RN black hole, while the striped
solution persists to smaller energies.

figure displays a second order phase transition, where the inhomogeneous solution

dominates the thermodynamics below the critical temperature Tc, the temperature

at which inhomogeneities first develop.

If we fix the chemical potential instead of the charge, we discuss a situation

where the system is immersed in a plasma made of charged particles. To study

the thermodynamics we use the grand canonical free energy Ω = M−T S− µN,

displayed in the lower panel of Fig. 3.3. In this ensemble it is convenient to mea-

sure all quantities in units of the fixed chemical potential µ . Then, again, the free

energy is a function of only the temperature T . In the fixed chemical potential en-

semble we find a similar second order transition, where the inhomogeneous charge

distribution starts dominating the thermodynamics at the temperature where the

inhomogeneous instability develops.

The physical situation relevant to the study of the real time dynamics of the
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instability corresponds to fixing the mass and the charge. This is the microcanon-

ical ensemble, describing an isolated system in which all conserved quantities are

fixed. In this ensemble it is convenient to measure all quantities in terms of the

(fixed) charge, and the remaining control parameter is then the mass M. We find

that in this ensemble as well, the striped solutions dominate the thermodynamics

(have higher entropy) for all temperature below the critical temperature Tc, at least

when the axion coupling c1 is sufficiently large. This is shown in Fig. 3.4.

Finally, we can also study the infinite system in the inhomogeneous x-direction,

which we choose to look at in the canonical ensemble. In this case we are in a

position to compare the free energy density of different stripes, of different lengths

in the x-direction. This comparison is shown in Fig. 3.5, where we see that the

qualitative picture is the same as in the finite system – a second order transition with

striped solutions dominating at every temperature below the critical temperature.

Just below the critical temperature, the dominant stripe is that corresponding to

the critical wavelength kc. However, for lower temperature different stripes will

dominate, in fact we see in Fig. 3.5 that the dominant stripe width tends to increase

with decreasing temperature.
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width as function of the temperature for c1 = 8.
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Chapter 4

Striped Order in AdS/CFT

4.1 Introduction and Summary
As described in Chapter 1 the gauge-gravity duality has shone new light on many

condensed matter systems - see [54, 65, 102, 120] for reviews. Early models in

this area, such as the holographic superconductor [59], focused on homogeneous

phases of field theories. In this case, the fields on the gravity side depend only

on the radial coordinate in the bulk and the problem reduces to the solution of

ODEs. However, many interesting phenomena occur in less symmetric situations.

Generically, the problem of finding the gravity dual to an inhomogeneous bound-

ary system will necessitate solving relatively more difficult PDEs, almost always

resulting in the need for numerical methods. While these become technically hard

problems, there exist established numerical approaches. Due to the success of the

holographic method in studying homogeneous situations, it is worthwhile to push

the correspondence to these less symmetric situations in order to describe more

general phenomena in this context.

One particular area of condensed matter that appears to be amenable to a holo-

graphic description is the appearance of striped phases in certain materials.1 These

phases are characterized by the spontaneous breaking of translational invariance

in the system. Examples include charge density waves and spin density waves in

strongly correlated electron systems, where either the charge and/or the spin densi-

1Stripes are also known to form in large N QCD [30, 121].
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ties become spatially modulated (for a review see [129]). The formation of stripes

is conjectured to be related to the mechanism of superconductivity in the cuprates

[19]. To approach this striking phenomenon from the holographic perspective, one

would look for an asymptotically ADS gravity system which allows a spontaneous

transition to a modulated phase.

Recently, several interesting spatially modulated holographic systems have been

studied. One way to study stripes on the boundary is to source them by imposing

spatial modulation in the non-normalizable modes of some fields, explicitly break-

ing the translation invariance, as in [49, 77].2 However, if one wishes to make

contact with the context described above, it is important that the inhomogeneity

emerges spontaneously rather than be introduced explicitly.

In some cases, the spatially modulated phase has an extra symmetry, allowing

the situation to be posed as a co-homogeneity one problem on the gravity side. Ex-

amples include systems in which one of the translational Killing vectors is replaced

by a helical Killing vector [33, 35, 36, 104–106]. More general inhomogeneous in-

stabilities, in which one of the translation symmetries is fully broken, have been

described in a phenomenological model [34] and in certain #ND= 6 brane systems

[14, 82, 83].3

In this work, we study the full non-linear co-homogeneity two striped solu-

tions to the Einstein-Maxwell-axion model that stem from the normalizable, in-

homogeneous modes of the RN solution detailed in [34]. In this model, below a

critical temperature, stripes spontaneously form in the bulk and on the boundary.

We study the properties of the stripes in both the fixed length system, in which the

wavenumber is set by the size of the domain and charges are integrated over the

stripe, and the infinite system, in which the corresponding thermodynamic densi-

ties are studied. For the black hole at fixed length, we examine the behavior in

different thermodynamic ensembles as we vary the temperature and wavenumber.

The study is facilitated by a numerical solution to the set of coupled Einstein

and matter equations in the bulk. Inspired by the black string case [124, 131], we

fix the metric in the conformal gauge, resulting in a set of field equations and a

2In a similar vein, more recently, lattice-deformed black branes have been of interest in studies
of conductivity in holographic models [42, 71–73].

3Other studies of inhomogeneity in the context of holography include [11, 18, 79, 114].
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set of constraint equations. Then, as described in [131], the resulting constraint

equations can be solved by imposing particular boundary conditions on the fields.

As well as being of interest from the holographic perspective these numerical

solutions are important as they represent new inhomogeneous black hole solutions

in Ads. We find strong evidence that the unstable homogeneous branes transition

smoothly to the striped state below the critical temperature.4 As we approach zero

temperature the relative inhomogeneity is seen to grow without bound and the black

hole horizon tends to pinch off, signalling the formation of a spacetime singularity

in this limit.

A subset of our results has already been announced in [117], in this paper we

provide full details. The summary of the results follow:

Boundary field theory

• We calculate the fully back-reacted normalizable inhomogeneous modes.

• The stripes have momentum, electric current and modulations in charge and

mass density (see [93] for a recent study of angular momentum generation).

• As a function of temperature, the modulations start small, then grow and

saturate as T → 0.

• We study the stripe of fixed length in various ensembles, finding a second

order phase transition, for sufficiently large axion coupling, in each of the

grand canonical (temperature T , chemical potential µ fixed), canonical (T ,

charge N fixed) and microcanonical (mass M, N fixed) ensembles. We com-

pute corresponding critical exponents.

• For the infinite length system, there is a second order transition to a striped

phase. The width of the dominant stripe grows as the temperature is de-

creased.

• In the zero temperature limit, within the accuracy of our numerics, the en-

tropy appears to approach a non-zero value.
4 The instability to the formation of the striped black branes resembles the black string instability

[53] which is known to be of the second order for high enough dimensions [89, 123].
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Bulk geometry

The new inhomogeneous black brane solutions that we find have peculiar features,

including

• The inhomogeneities are localized near the horizon, and die off asymptoti-

cally following a power law decay.

• The phenomena of vorticity, frame dragging and the magneto-electric effect

similar to one produced by a near horizon topological insulator are observed.

• The inhomogeneous black brane has a neck and a bulge. In the curvature at

the horizon, the maximum is at the bulge. In the limit of small temperatures,

the neck shrinks to zero size.

• The proper length of the horizon grows when temperature is decreasing, and

diverges as 1/T 0.1 in the limit T → 0. The proper length in the stripe direc-

tion increases from the boundary to the horizon, which can be thought of as

a manifestation of an “Archimedes effect”.

In §4.2, we define our model and set up our numerical approach, describing

our ansatz, boundary conditions and solving procedure. Then, in §4.3, we report

on interesting geometrical features of the bulk solutions. §4.4 studies the solutions

at fixed length from the point of view of the boundary theory. There, we make

the comparison to the homogeneous solution and find a second order transition, in

addition to describing the observables in the theory. In §4.5, we relax the fixed

length condition and find the striped solution that dominates the thermodynamics

for the infinite system. Appendix B.1 provides details about computing the observ-

ables of the inhomogeneous solutions while appendix B.2 gives more details on

the numerics, including checks of the solutions and validations of our numerical

method.

Note added: As this manuscript was being completed, [32] and [132, 133]

appeared, which use a different method and have some overlap with this work.
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4.2 Numerical Setup: Einstein-Maxwell-Axion Model
In [34], perturbative instabilities of the RN black brane were found within the

Einstein-Maxwell-axion model. In [117] and here, we construct the full non-linear

branch of stationary solutions following this zero mode.

4.2.1 The model and ansatz

The Lagrangian describing our coupled system can be written as [34]

L =
1
2
(R+12)− 1

2
∂

µ
ψ∂µψ− 1

2
m2

ψ
2− 1

4
FµνFµν−

1√−g
c1

16
√

3
ψ ε

µνρσ FµνFρσ ,

(4.2.1)

where R is the Ricci scalar, Fµν is the Faraday tensor, ψ is a pseudo-scalar field and

g is the determinant of the metric. We use units in which the ADS radius l2 = 1/2,

Newton’s constant 8πGN = 1 and c = h̄ = 1, and choose m2 = −4. The constant

c1 controls the strength of the axion coupling.

For this choice of scalar field mass, instabilities exist for all choices of c1. For

c1 = 0, the instability is towards a black hole with neutral scalar hair. For c1 > 0,

inhomogeneous instabilities along one field theory direction exist for a range of

wavenumbers k. The critical temperature at which each mode becomes unstable

depends on the wavenumber: Tc(k). For a given c1, there is a maximum critical

temperature, above which there are no unstable modes. As one increases c1, the

critical temperature of a given mode k increases, such that for a fixed temperature a

larger range of wavenumbers will be unstable. See appendix B.2.1 for more details

on the perturbative analysis.

One may consider generalizations of this action, including higher order cou-

plings between the scalar field and the gauge field. In particular, as discussed in

[34], generalizing the Maxwell term as − τ(ψ)
4 FµνFµν , where τ(ψ) is a function

of the scalar field, results in a model that can be uplifted to a D = 11 supergrav-

ity solution (for particular choices of c1, m, and the parameters in τ(ψ)). In this

study, we wish to study the formation of holographic stripes phenomenologically.

The existence of the axion-coupling term (c1 6= 0) is a sufficient condition for the

inhomogeneous solutions and so we set τ(ψ) = 1 here.

We are looking for stationary black hole solutions that can be described by an
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ansatz of the form

ds2 =−2r2 f (r)e2A(r,x)dt2+e2B(r,x)
(

dr2

2r2 f (r)
+2r2dx2

)
+2r2e2C(r,x)(dy−W (r,x)dt)2,

ψ = ψ(r,x), A = At(r,x)dt +Ay(r,x)dy, (4.2.2)

where r is the radial direction in ADS and x is the field theory direction along which

inhomogeneities form. We term the scalar field and gauge fields collectively as the

matter fields. f (r) is a given function whose zero defines the black brane horizon.

We take f (r) to be that of the RN solution,

f (r) = 1−
(

1+
µ2

4r2
0

)(r0

r

)3
+

µ2

4r2
0

(r0

r

)4
, (4.2.3)

so that the horizon is located at r = r0. The homogeneous solution is the RN black

brane, given by

A = B =C =W = ψ = Ay = 0, At(r) = µ(1− r0/r), (4.2.4)

where µ is the chemical potential. Above the maximum critical temperature, this

is the only solution to the system.

To find the non-linear inhomogeneous solutions, we numerically solve the

equations of motion derived from the ansatz (4.2.2). The Einstein equation results

in four second order elliptic equations, formed from combinations of Gt
t −T t

t = 0,

Gt
y−T t

y = 0, Gy
y−T y

y = 0, and Gr
r +Gx

x− (T r
r +T x

x ) = 0, and two hyperbolic con-

straint equations, Gr
x−T r

x = 0 and Gr
r−Gx

x− (T r
r −T x

x ) = 0, for the metric func-

tions. The gauge field equations and scalar field equation give second order elliptic

equations for the matter fields. For completeness, the full equations are given in

appendix B.2.2. Our strategy will be to solve these seven elliptic equations subject

to boundary conditions that ensure that the constraint equations will be satisfied on

a solution. Below, we describe the constraint system and our boundary conditions.

For more details about the numerical approach, we refer to appendix B.2.
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4.2.2 The constraints

The two equations Gr
x− T r

x = 0 and Gr
r −Gx

x− (T r
r − T x

x ) = 0, which we do not

explicitly solve, are the constraint equations. Using the Bianchi identities [131],

we see that the constraints satisfy

∂x
(√−g(Gr

x−T r
x )
)
+2r2

√
f ∂r

(
r2
√

f
√−g(Gr

r−Gx
x− (T r

r −T x
x ))
)
= 0,

(4.2.5)

2r2
√

f ∂r
(√−g(Gr

x−T r
x )
)
−∂x

(
r2
√

f
√−g(Gr

r−Gx
x− (T r

r −T x
x ))
)
= 0.

(4.2.6)

Defining r̂ by ∂r̂ = 2r2√ f ∂r gives Cauchy-Riemann relations

∂x
(√−g(Gr

x−T r
x )
)
+∂r̂

(
r2
√

f
√−g(Gr

r−Gx
x− (T r

r −T x
x ))
)
= 0, (4.2.7)

∂r̂
(√−g(Gr

x−T r
x )
)
−∂x

(
r2
√

f
√−g(Gr

r−Gx
x− (T r

r −T x
x ))
)
= 0, (4.2.8)

showing that the weighted constraints satisfy Laplace equations. Then, satisfying

one constraint on the entire boundary and the other at one point on the boundary

implies that they will both vanish on the entire domain. In practice we will take ei-

ther zero data or Neumann boundary conditions at the boundaries in the x-direction.

The unique solution to Laplace’s equation with zero data on the horizon and the

boundary at infinity and these conditions in the x-direction is zero. Therefore,

as long as we fulfill one constraint at the horizon and the asymptotic boundary

and the other at one point (on the horizon or boundary), the constraints will be

satisfied if the elliptic equations are. Our boundary conditions will be such that
√−g(Gr

x−T r
x ) = 0 at the horizon and conformal infinity and that r2√ f

√−g(Gr
r−

Gx
x− (T r

r −T x
x )) = 0 at one point on the horizon.
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regularity,
√−gGr

x = 0

A,B,C,W ∝
1
r3 ,

At −µ,Ay ∝
1
r ,

ψ ∝
1
r2 ,

√−gGr
x = 0

ψ = ∂xAy = ∂xgty = ∂xh = 0

∂xψ = Ay = gty = ∂xh = 0

rr = rcutr = r0

x

x = L
4

x = 0

Figure 4.1: A summary of the boundary conditions on our domain. At the
horizon, r = r0, we impose regularity conditions. At the conformal
boundary, r → ∞, we have fall off conditions on the fields (imposed
at large but finite r = rcut) such that we do not source the inhomo-
geneity. In the x-direction, we use symmetries to reduce the domain
to a quarter period L/4. Then, we impose either periodic or zero con-
ditions on the fields, according to their behavior under the discrete
symmetries discussed in the text. (h collectively denotes the fields
{gtt ,gxx,gyy,At}.) In addition to these, we explicitly satisfy the con-
straint equation

√−gGr
x = 0 on the horizon and the conformal bound-

ary.

4.2.3 Boundary conditions

The elliptic equations to be solved are subject to physical boundary conditions.

There are four boundaries of our domain (see Fig. 4.1): the horizon, the conformal

boundary, and the periodic boundaries in the x-direction, which are described next.

Staggered periodicity

To specify the boundary conditions in the x direction we look at the form of the

linearized perturbation which becomes unstable (see appendix B.2.1). To leading
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order in the perturbation parameter λ , they are of the form:

ψ(x) ∼ λ cos(kx),

Ay(x) ∼ λ sin(kx),

gty(x) ∼ λ sin(kx), (4.2.9)

where k is the wavenumber of the unstable mode. To second order in the perturba-

tion parameter, the functions gtt ,gxx,gyy and At (which we denote collectively as h)

are turned on, with the schematic behavior

h(x)∼ λ
2(cos(2kx)+C), (4.2.10)

where C are independent of x.

All these functions are periodic with period L = 2π

k . However, they are not

the most general periodic functions with period L. For numerical stability it is

worthwhile to specify their properties further and encode those properties in the

boundary conditions we impose on the full solution. We concentrate on the behav-

ior of the perturbation with respect to two independent Z2 reflection symmetries.

The first Z2 symmetry is that of x→−x, y→−y, which is a rotation in the x,y

plane. This is a symmetry of the action and of the linearized perturbation (keeping

in mind that Ay and gty change sign under reflection of the y coordinate). We

conclude therefore that this is a symmetry of the full solution.

Similarly, the Z2 operation x→ L
2 − x, y→ −y is a symmetry of the action,

which is also a symmetry of the linearized system when accompanied by λ →−λ .

In other words the functions ψ,Ay,gty are restricted to be odd with respect to this

Z2 operation, while the rest of the functions, which we collectively denoted as h,

are even.

The two symmetries defined here restrict the form of the functions that can

appear in the perturbative expansions for each of the functions above. For example,

it is easy to see that the function ψ(x) gets corrected only in odd powers of λ and

the most general form of the harmonic that can appear in the perturbative expansion

is cos(nkx), for n odd. Similar comments apply to the other functions above.

We restrict ourselves to those harmonics which may appear in the full solution.
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The most efficient way to do so is to work with a quarter of the full period L

(reconstructing the full periodic solution using the known behavior of each function

with respect to the two Z2 operations defined above). The specific properties of

each function appearing in our solutions are imposed by demanding the following

boundary conditions:

∂xψ(x = 0) = 0, ψ(x =
L
4
) = 0,

Ay(x = 0) = 0, ∂xAy(x =
L
4
) = 0,

gty(x = 0) = 0, ∂xgty(x =
L
4
) = 0,

∂xh(x = 0) = 0, ∂xh(x =
L
4
) = 0. (4.2.11)

At the horizon

In our coordinates (4.2.2) the horizon is at fixed r = r0. For numerical convenience

we introduce another radial coordinate ρ =
√

r2− r2
0, such that the horizon is at

ρ = 0.5 Expanding the equations of motion around ρ = 0 yields a set of Neumann

regularity conditions,

∂ρA = ∂ρC = ∂ρW = ∂ρψ = ∂ρAt = ∂ρAy = 0, (4.2.12)

and two conditions in the inhomogeneous direction along the horizon,

∂xW = ∂x(At +WAy) = 0. (4.2.13)

Thus, both W and the combination At +WAy are constant along the horizon. The

boundary conditions in the x direction (4.2.11) imply that W = 0. Then, the second

condition together with regularity of the vector field A on the Euclidean section

give that At = 0 on the horizon.

The regularity conditions give eight conditions for the six functions A,C,W,ψ,At

and Ay. In principle, we would choose any six of these to impose at the horizon.

5In the rest of the paper, we use r and ρ interchangeably as our radial coordinate. We use the
coordinate ρ in the numerics.

72



If we find a non-singular solution to the equations, then the other two conditions

should also be satisfied. In practice, some of these conditions work better than

others for finding the numerical solution. We find that using Neumann conditions

for A,C,ψ , and Ay and Dirichlet conditions for W and At results in a more stable

relaxation.6

The conditions for B are determined using the constraint equations. Expanding

the weighted constraints at the horizon, we find

√−g(Gr
x−T r

x ) ∝ ∂x(A−B)+O(ρ), (4.2.14)

r2
√

f
√−g(Gr

r−Gx
x− (T r

r −T x
x )) ∝ ∂ρB+O(ρ). (4.2.15)

The first condition gives constant surface gravity (or temperature) along the hori-

zon. As discussed above, we will impose one constraint at the horizon and the

boundary, and the other at one point. In practice, we will satisfy r2√ f
√−g(Gr

r−
Gx

x− (T r
r −T x

x )) at (ρ,x) = (0,0), updating the value of B at this point using the

Neumann condition ∂ρB = 0. This will set the difference (B−A)|(ρ,x)=(0,0) ≡ d0,

which we will then use to update B using a Dirichlet condition along the rest of the

horizon, satisfying
√−g(Gr

x−T r
x ) = 0.

At the conformal boundary

In our coordinates, the boundary is at r = ∞. Since we are looking for spontaneous

breaking of homogeneities, our boundary conditions will be such that the field

theory sources are homogeneous. This implies that the non-normalizable modes

of the bulk fields are homogeneous. The inhomogeneity of the striped solutions

will be imprinted on the normalizable modes of the fields, or the coefficient of the

next-to-leading fall-off term in the asymptotic expansions.

The form of our metric ansatz is such that the metric functions A,B,C and W

represent the normalizable modes of the metric. Imposing that the geometry is

asymptotically ADS with Minkowski space on the boundary implies that these four

metric perturbations must vanish as r→ ∞. By expanding the equations of motion

near the boundary, one can show that A,B,C and W fall off as 1/r3. In practice,

6Using Neumann conditions at the horizon for W and At results in values at the horizon that
converge to zero with step-size, consistent with the above analysis.
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we place the outer boundary of our domain at large but finite rcut and impose the

fall-off conditions there.

As in the RN solution, we source the field theory charge density with a homo-

geneous chemical potential, corresponding to a Dirichlet condition for the gauge

field At at the boundary. In the inhomogeneous solutions, we expect the sponta-

neous generation of a modulated field theory current jy(x), dual to the normalizable

mode of Ay. Solving the equations near the boundary with these conditions reveals

the expansions At = µ +O(1/r) and Ay = O(1/r), which we impose numerically

at rcut .

The scalar field equation of motion gives the asymptotic solution

ψ =
ψ(1)

rλ−
+

ψ(2)

rλ+
+ . . . , (4.2.16)

where

λ± =
1
2

(
3±
√

9+4(lm)2

)
. (4.2.17)

For the range of scalar field masses−9/2≤m2 ≤−5/2, both modes are normaliz-

able, and fixing one mode gives a source for the other. In our study we will choose

m2 =−4, giving λ− = 1, λ+ = 2. Since we are looking for spontaneous symmetry

breaking, in this case we must choose either ψ(1) = 0 or ψ(2) = 0. We choose the

former, so that ψ falls off as 1/r2.

Now, consider the weighted constraint
√−gGr

x. As discussed above, in order to

solve the constraint system, we require this to disappear at the conformal boundary.

Near the boundary,
√−g ∝ r2 + . . . , so for

√−gGr
x to disappear we must have

Gr
x = O(1/r3). Expanding the equations near the boundary we have

Gr
x−T r

x ∝
3∂xA(3)(x)+2∂xB(3)(x)+3∂xC(3)(x)

r2 +O
(

1
r3

)
, (4.2.18)

where X = X (3)(x)/r3+ . . . for X = {A,B,C}. Therefore, in addition to the bound-

ary conditions mentioned above, for
√−gGr

x = 0 to be satisfied at r = ∞, it appears

that we should have that 3A(3)(x)+2B(3)(x)+3C(3)(x) = const. The means to im-

pose this addition condition comes from the fact that our metric (4.2.2) has an un-

fixed residual gauge freedom [3], allowing one to transform to new r̃ = r̃(r,x), x̃ =
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x̃(r,x) coordinates which are harmonic functions of r and x. Performing such a

transformation generates an additional function in (4.2.18), which can then be cho-

sen to ensure that the constraint is satisfied (in appendix B.2 we describe how).

This condition implies the conservation of the boundary energy momentum tensor,

see appendix B.1.

4.2.4 Parameters and algorithm

The physical data specifying each solution is the chemical potential µ , the tem-

perature T , and the periodicity L.7 Since the boundary theory is conformal, it will

only depend on dimensionless ratios of these parameters. This manifests itself in

the following scaling symmetry of the equations:

r→ λ r, (t,x,y)→ 1
λ
(t,x,y), Aµ → λAµ . (4.2.19)

We use this to select µ = 1. Then, our results are functions of the dimensionless

temperature T/µ and the dimensionless periodicity Lµ .

The temperature is controlled by the coordinate location of the horizon. For

a given r0, the temperature of the RN phase is T0 = (1/8πr0)(12r2
0− 1) while the

temperature of the inhomogeneous solution is T = e−d0T0. Recall that (B−A)|r0 =

d0 is dynamically generated by satisfying the constraints at the horizon. From

our numerical solutions, we find that d0 monotonically increases as we lower the

temperature, so that T0 gives a reliable parametrization of the physical temperature

T . In practice, we generate solutions by choosing values of T0 below the critical

temperature Tc(k).

We solve the equations by finite-difference approximation (FDA) techniques.

We use second order FDA on the equations (B.2.6) - (B.2.12) before using a point-

wise Gauss-Seidel relaxation method on the resulting algebraic equations. For the

results in this paper, for c1 = 4.5, a cutoff of ρcut = {6,8} was used while for

c1 = 5.5 and c1 = 8, for which the modulations were larger, a cutoffs of ρcut =

10 and ρcut = 12 correspondingly were used. Grid spacings used for the FDA

7Fixing µ , T and L gives the system in the grand canonical ensemble. Once the phase space has
been mapped in one ensemble other ensembles can be considered via appropriate reinterpretation of
the numerical data. See §4.4 for a description of this process.
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scheme were in the range dρ,dx = 0.04− 0.005. Neumann boundary conditions

are differenced to second order using one-sided FDA stencils in order to update

the boundary values at each step. At the asymptotic boundary ρcut we impose the

boundary conditions by second order differencing a differential equation based on

the fall-off (for example, ∂rA = −3A/r) to obtain an update rule for the boundary

value. As a result we find quadratic convergence as a function of grid-spacing for

our method, see appendix B.2.5.

4.3 The Solutions
The system of equations (B.2.6-B.2.12) is solved subject to boundary condition

described in the previous sections. The details of our numerical algorithm are

found in appendix B.2. Here we focus on the properties of the solutions and their

geometry.

Unless otherwise specified the following plots were obtained using the axion

coupling of c1 = 4.5. In this section, we consider solutions for which the periodic-

ity is determined by the dominant critical wavenumber kc; for c1 = 4.5, this gives

Lµ/4 ' 2.08, see Table B.1. We found that the geometry and most of the other

features are qualitatively similar for the couplings c1 = 5.5 and c1 = 8. A con-

venient way to parametrize our inhomogeneous solutions is by the dimensionless

temperature T/Tc, relative to the critical temperature Tc, below which the transla-

tion invariance along x is broken. For c1 = 4.5, our method allows us find solutions

in the range 0.003 . T/Tc . 0.9.

4.3.1 Metric and fields

For subcritical temperatures, as we descend into inhomogeneous regime, the metric

and the matter fields start developing increasing variation in x. Fig. 4.2 displays the

metric functions, and Fig. 4.3 shows the non vanishing components of the vector

potential field and of the scalar field for T/Tc ' 0.11 over a full period in the x

direction. The variation of all fields is maximal near the horizon of the black hole

at ρ =
√

r2− r2
0 = 0, and it gradually decreases toward the conformal boundary,

ρ → ∞.

Many of the special features of the solutions we find may be explained via
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Figure 4.2: Metric functions for T/Tc ' 0.11. Note the metric functions A,B
and C have half the period of W . The variation is maximal near the
horizon, located at ρ = 0, and it decays as the conformal boundary is
approached, when ρ → ∞.

axion electrodynamics as seen in the effective description of the electromagnetic

response of a topological insulator. This effect is mediated by the interaction term

in our Lagrangian (4.2.1). In the broken phase we have an axion gradient in the near

horizon geometry, which realizes a topological insulator interface, see Fig. 4.3.

The characteristic patterning of the near horizon magnetic field, B = ∇×A, shown

in Fig. 4.4, is reminiscent of the magnetoelectric effect at such interfaces. The

magnetic vortices are localized near the black hole horizon and have alternating

direction of magnetic field lines.

In curved space the magnetic field is accompanied by vorticity, which is man-

ifested by the function W . This causes frame dragging effects in the y direction.
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Figure 4.3: At relative to the corresponding RN solutions, Ay and ψ for
T/Tc ' 0.11. The period of At is twice that of ψ and Ay. The x-
dependence dies off gradually as the conformal boundary is approached,
at ρ → ∞.

Test particles will be pushed along y with speeds W (r,x), in particular the direction

of the flow reverses every half the period along x. The drag vanishes at the horizon

and at the location of the nodes of W where x = nL/2, for integer n, see Fig. 4.2.

In general, the dragging effect remains bounded, and no ergoregion forms, where

the vector ∂t becomes spacelike.

4.3.2 The geometry

There are several ways to envisage the geometry of our solutions, we discuss them

in turn.

The Ricci scalar of the RN solution is RRN =−24, constant in r and independent

of the parameters of the black hole. This is no longer true for the inhomogeneous
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Figure 4.4: Magnetic field lines for solution with T/Tc ' 0.07. The pattern
of vortices of alternating field directions form at the horizon (located at
ρ = 0).

phases, where the Ricci scalar becomes position dependent. Fig. 4.5 illustrates

the spatial variation of the Ricci scalar, relative to the RRN for T/Tc ' 0.054. The

maximal curvature is always along the horizon at x = nL/2 for integer n. It grows

when the temperature decreases and approaches the finite value of R'−94 in the

small temperature limit.

Embedding in a given background space is a convenient way to illustrate curved

geometry. We consider the embedding of 2-dimensional spatial slices of constant

x of the full geometry (4.2.2)

ds2
2 =

e2B(r,x)

2r2 f (r)
dr2 +2r2 e2C(r,x)dy2 (4.3.1)

as a surface in 3-dimensional ADS space

ds2
3 = 2 r̃2 dz2 +

dr̃2

2 r̃2 +2 r̃2dy2. (4.3.2)

We are looking for a hypersurface parametrized by z = z(r̃). Then the metric on
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Figure 4.5: Ricci scalar relative to that of RN black hole, R/RRN −1, RRN =
−24, for T/Tc ' 0.054 over half the period. The scalar curvature is
maximal along the horizon at x = nL/2 for integer n.

such a hypersurface reads

ds2
2 =

[
1+2 r̃2

(
dz
dr̃

)2
]

dr̃2

2 r̃2 +2 r̃2dy2. (4.3.3)

Comparing (4.3.3) and (4.3.1) we obtain set of the relations

r̃ = r eC,[
1

2 r̃2 +2 r̃2
(

dz
dr̃

)2
](

dr̃
dr

)2

=
e2B(r,x)

2r2 f (r)
, (4.3.4)
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Figure 4.6: The embedding diagram of constant x spatial slices, as a function
of x at given y for T/Tc ' 0.035. The geometry of ρ = const slices is
maximally curved at x = nL/2 for integer n.

resulting in the embedding equation

dz
dr

=
1

2r2

√
f (r)−1 e2B(r,x)−2C(r,x)− (1+ r ∂rC(r,x))2. (4.3.5)

We integrate this equation for a given x, and in Fig. 4.6 show the embedding at

constant y. The maximal curvature along ρ = const slices occurs at x = nL/2 for

integer n, which is consistent with Fig. 4.5.

The proper length of the stripe along x relative to the background ADS space-

time at given r is

lx(r)/lx(r = ∞) =
∫ L/4

0
eB(r,x)dx. (4.3.6)

Fig. 4.7 shows the dependence of the normalized proper length on the radial dis-

tance from the horizon. The proper length tends to the coordinate length as 1/r3

asymptotically as r→∞, but it exceeds that as the horizon is approached. Namely,

the inhomogeneous black brane “pushes space” around it along x, in a manner

resembling the “Archimedes effect”.

81



10−2 10−1 100
0

0.1

0.2

0.3

0.4

0.5

log(ρ)

l x
(ρ

)/
l x

(∞
)
−

1

Figure 4.7: Radial dependence of the normalized proper length along x for
T/Tc ' 0.054. While asymptotically the proper length coincides with
the coordinate size of the strip, it grows as the horizon is approached.
This is a manifestation of the “Archimedes effect”.

The proper length of the horizon in x direction is obtained calculating (4.3.6) at

r0. Fig. 4.8 demonstrates the dependence of this quantity on the temperature. For

high temperatures the length of the horizon resembles that of the homogeneous

RN solution, however, it grows when temperature decreases. We find that at small

T/Tc the proper length of the horizon diverges approximately as (T/Tc)
−0.1.

The transverse extent of the horizon, per unit coordinate length y, is given by

ry(x) =
√

2r0 eC(r0,x). (4.3.7)

Fig. 4.9 shows the variation of ry(x) along the horizon for T/Tc ' 0.054. Typically

there is a “bulge” occurring at x = nL/2 and a “neck” at x = (2n+ 1)L/4, for

integer n. Comparing this with Fig. 4.5 we note that Ricci scalar curvature is

maximal at the bulge and not at the neck as would happen, for instance, in the

cylindrical geometry in black string case [124]. Fig. 4.10 displays the dependence

of the sizes of the neck and bulge on T/Tc. Both sizes monotonically decrease

with temperature, however the rate at which the neck is shrinking exceeds that of
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Figure 4.8: Temperature dependence of the proper length of the horizon
along the stripe. Starting from as low as L at high temperatures, the
proper length grows monotonically and for small T/Tc the growth is
well approximated by the power-law dependence ∼ (T/Tc)

−0.1.
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Figure 4.9: The extent of the horizon in the transverse direction, ry, as a func-
tion of x for T/Tc ' 0.054 in x∈ [−L/2,L/2]. The characteristic pattern
of alternating “necks” and “bulges” forms along x.

the bulge. This is demonstrated in Fig. 4.11. In fact, we find that for c1 = 4.5,

rneck
y /rbulge

y ∼ (T/Tc)
1/2 near the lower end of the range of temperatures that we

investigated. For other values of the axion coupling the scaling of the ratio is again

power-law, with an exponent of the same order of magnitude, e.g. for c1 = 8, the

exponent is about 0.12. This signals a pinch-off of the horizon in the limit T → 0.
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4.4 Thermodynamics at Finite Length
In this section we consider the thermodynamics and phase transitions in the system,

assuming that the stripe length is kept fixed. For the finite system the length of

the interval is part of the specification of the ensemble and is kept fixed. In the

next section we discuss the infinite system, for which the stripe width can adjust

dynamically.

4.4.1 The first law

We demonstrated that below the critical temperature there exists a new branch of

solutions which are spatially inhomogeneous. In the microcanonical ensemble the

control variables of the field theory are the entropy S, the charge density N, and

the length of the x-direction L, with corresponding conjugate variables temperature

T , chemical potential µ , and tension in the x-direction τx
8. The usual first law

is augmented by a term corresponding to expansions and contractions in the x-

direction and is given by

dM = T dS+µdN + τxdL. (4.4.1)

where M, S, and N are quantities per unit length in the trivial y direction, but are

integrated over the stripe.

Our system has a scaling symmetry given by (4.2.19). In the field theory, this

corresponds to a change of energy scale. Under this transformation, the thermody-

namic quantities scale as

M→ λ
2M, T → λT, S→ λS, µ → λ µ,

N→ λN, τx→ λ
3
τx, L→ 1

λ
L. (4.4.2)

Using these in (4.4.1) with λ = 1+ ε , for ε small, yields

2M = T S+µN− τxL, (4.4.3)

the Smarr’s-like expression that our solutions must satisfy and that can be used as

8Explicit expressions for these quantities in terms of our ansatz are given in appendix B.1.

85



a check of our numerics. For all of our solutions, we have verified that this identity

is satisfied to one percent.

4.4.2 Phase transitions

The question of which solution dominates the thermodynamics depends on the

ensemble considered. In the holographic context the choice of thermodynamic en-

semble is expressed through the choice of boundary conditions. The corresponding

thermodynamic potential is computed as the on-shell bulk action, appropriately

renormalized and with boundary terms rendering the variational problem well-

defined. We examine each ensemble in turn.

The grand canonical ensemble

In our numerical approach, the natural ensemble to consider is the grand canonical

ensemble, fixing the temperature T , the chemical potential µ , and the periodicity

of the asymptotic x direction as L. The corresponding thermodynamic potential is

the grand free energy density

Ω(T,µ,L) = M−T S−µN. (4.4.4)

Different solutions of the bulk equations with the same values of T,µ,L correspond

to different saddle point contributions to the partition function. The solution with

smallest grand free energy Ω is the dominant configuration, determining the ther-

modynamics in the fixed T,µ,L ensemble. In our case we have two solutions for

each choice of T,µ,L, one homogeneous and one striped. Exactly how one one

saddle point comes to dominate over the other at temperatures below the critical

temperature determines the order of the phase transition.

In this ensemble it is convenient to measure all quantities in units of the fixed

chemical potential µ . Then, after fixing L from the critical mode appearing at the

highest Tc (see Fig. B.1 and Table B.1 in appendix B.2.1), we have that Ω/µ2 is a

function only of the dimensionless temperature T/µ . In the fixed chemical poten-

tial ensemble for large enough axion coupling we find a second order transition,

where the inhomogeneous charge distribution starts dominating the thermodynam-

ics immediately below the temperature at which the inhomogeneous instability de-
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Figure 4.12: The grand free energy relative to the RN solution for several
solutions of different fixed lengths at c1 = 8. In all cases shown we
observe a second order phase transition. The critical exponents de-
termined near the critical points in each case are consistent with the
quadratic behavior (Ω−ΩRN)/µ2 ∝ (1−T/Tc)

2.

velops. Near the critical temperature, the behavior of the grand free energy differ-

ence is consistent with (Ω−ΩRN)/µ2 ∝ (1−T/Tc)
2, while the entropy difference

goes as (S− SRN)/µ ∝ T/Tc− 1. This is as expected from a second order transi-

tion. As can be seen in Fig. 4.12 and Fig. 4.13, we find this second order transition

for a range of lengths, L, and for a variety of values of the axion coupling c1. With

the current accuracy of our numerical procedure, we find it increasingly difficult

to resolve the order of the phase transition for smaller values of c1. In fact, for

c1 = 4.5 the grand free energies of the homogeneous and inhomogeneous phases

are nearly degenerate but still allow us to determine the phase transition as second

order. It would be interesting to see if the phase transition remains of second order

or changes to the first order for smaller values of the axion coupling.

To examine the observables in the striped phase further, we focus on c1 = 8 and

the corresponding dominant critical mode, Lµ/4' 1.21, and consider solutions for
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Figure 4.13: The grand free energy relative to the RN solution for c1 = 4.5
and fixed Lµ/4 = 2.08. The grand free energies of the homogeneous
and inhomogeneous phases are nearly degenerate, such that their max-
imal fractional difference is about 1%.

the temperatures 0.00016 . T/Tc . 0.96. Various quantities are plotted with the

corresponding homogeneous results in Fig. 4.14. Along this branch of solutions,

the mass of the stripes is more than the RN solution and the entropy is always less.

We plot the maximum of the boundary current density 〈 jy〉, momentum density

〈Ty0〉 and pseudoscalar operator vev 〈Oψ〉. Fitting the data near the critical point to

the function (1−T/Tc)
α , we find the approximate critical exponents α jy = 0.40,

αTy0 = 0.41 and αOψ
= 0.38 with relative fitting error of about 10%.

We find evidence that the entropy of the striped black branes does not tend to

zero in the small temperature limit, see Fig. 4.14. This is further supported by

the behavior of the transverse size of the horizon (4.3.7). Here the bulge seems

to contract at a much slower rate than the neck, which evidently shrinks to zero

size in the limit T → 0. However, strictly speaking, this conclusion is based on

extrapolation of the finite temperature data to T = 0. Checking whether the entropy

asymptotes to a finite value or goes to zero in this limit, as suggested in [132, 133],

will require further investigation with a method of higher numerical accuracy.
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Figure 4.14: The observables in the grand canonical ensemble for c1 = 8 and
Lµ/4 = 1.21 (points with dotted line) plotted with the corresponding
quantities for the RN black hole (solid line). Fitting the data near the
critical point to the function (1− T/Tc)

α , we find the approximate
critical exponents α jy = 0.40, αTy0 = 0.41 and αOψ

= 0.38 with relative
fitting error of about 10%.
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The canonical ensemble

To study the system in the canonical ensemble we fix the temperature, total charge

and length of the system. This describes the physical situation in which the sys-

tem is immersed in a heat bath consisting of uncharged particles. The relevant

thermodynamic potential in this ensemble is the free energy density

F(T,N,L) = M−T S. (4.4.5)

If we measure all quantities in units of the fixed charge N, then, again, the free

energy F/N2 is only a function of the dimensionless temperature T/N.

To solve our system with a fixed charge, we would need to fix the integral in x

of the coefficient of the 1/r term in the asymptotic expansion of the gauge field At .

Numerically, it is much easier to fix the chemical potential, as this gives a Dirich-

let condition on At at the boundary. In the grand canonical ensemble, we solved

for one-parameter families of solutions at fixed Lµ , labelled by the dimensionless

temperature T/µ . Equivalently, in the (Lµ,T/µ) plane, we solve along the line of

fixed Lµ . Translated to the situation in which we measure quantities in terms of

the charge density N, these solutions become one-parameter families of solutions

with varying LN, or a curve in the (LN,T/N) plane with LN a function of T/N.

By varying the length Lµ (or solving with µ = 1 and varying L), we can find a col-

lection of solutions that intersect the desired fixed LN line. By interpolating these

solutions and evaluating the interpolants at fixed LN, we can study the stripes in

the canonical ensemble.

In this ensemble we find a similar second order transition, in which the inho-

mogeneous solution dominates the thermodynamics below the critical temperature

(Fig. 4.15). The scaling of the relative free energy density slightly below the criti-

cal temperature appears to fit a linear scaling, however using more points at lower

temperatures in the fit increases the critical exponent towards a quadratic scaling,

as expected in a second order transition.

The microcanonical ensemble

The microcanonical ensemble describes an isolated system in which all conserved

charges (in this case the mass and the charge) are fixed. This ensemble describes
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Figure 4.15: The difference in canonical free energy, at c1 = 8 and fixed
LN/4 = 1.25, between the striped solution and the RN black hole. The
striped solution dominates immediately below the critical temperature,
signalling a second order phase transition.

the physical situation relevant to the study of the real time dynamics of an isolated

black brane at fixed length. In this case, the state that maximizes entropy is the

dominant solution. As shown in Fig. 4.16, we find that the entropy of our inhomo-

geneous solutions is always greater than that of the RN black hole of the same mass.

Furthermore, the mass of the inhomogeneous solutions is always smaller than that

of the critical RN black hole. Therefore, at fixed LN, the unstable RN black holes

below critical temperature are expected to decay smoothly to our inhomogeneous

solution.

Fixing the tension

Alternatively, one could attempt to compare solutions with different values of L.

The meaningful comparison is in an ensemble fixing the tension τx. For example,
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Figure 4.16: The entropy of the inhomogeneous solution for c1 = 8 (points
with dotted line) and of the RN solution (solid line). Below the critical
temperature, the striped solution has higher entropy than the RN. The
RN branch terminates at the extremal RN black hole, while the striped
solution persists to smaller energies.

one could compare the Legendre transformed grand free energy

G(T,µ,τx) = M−T S−µN− τxL (4.4.6)

where the additional terms comes from boundary terms in the action rendering the

new variational problem (fixing τx) well-defined. The candidate saddle points are

the solutions we find with various periodicities L, and their relative importance in

the thermodynamic limit is determined by G(T,µ,τx). In particular the solution

which is thermodynamically dominant depends on the value of τx we hold fixed.

In this study we concentrate on the thermodynamics in the fixed L ensemble and

we leave the study of the fixed τx ensemble to future work.
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4.5 Thermodynamics for the Infinite System
In this section we lift the assumption of the finite extent of the system in the x-

direction and consider the thermodynamics of the formation of the stripes below

the critical temperature. For the infinite system we can define densities of thermo-

dynamic quantities along x:

m =
M
L
, s =

S
L
, n =

N
L
. (4.5.1)

In terms of these, the first law for the system becomes

dm = T ds+µdn (4.5.2)

and the conformal identity is

3m = 2(T s+µn). (4.5.3)

In the infinite system, we compare stripes of different lengths, at fixed T/µ ,

to each other and to the homogeneous solution. The solution that dominates the

thermodynamics is the one with the smallest free energy density ω , where

ω = m−T s−µn. (4.5.4)

This comparison is shown in Fig. 4.17 for c1 = 8, where we see that the free en-

ergy density of the stripes is negative relative to the RN black hole, indicating that

the striped phase is preferred at every temperature below the critical temperature.9

Very close to the critical temperature, the dominant stripe is that with the critical

wavelength kc. As we lower the temperature, the minimum of the free energy den-

sity traces out a curve in the (Lµ,T ) plane, and the dominant stripe width increases

to Lµ/4≈ 2.

One can also study the observables of the system along this line of minimum

free energy density. The results are qualitatively similar to those for the fixed L

system (Fig. 4.14). In particular, the free energy density scales as (ω−ωRN)/µ3 ∝

(1−T/Tc)
2 near the critical point, indicating a second order transition in the infi-

9In appendix B.2.4, we describe the generation of Fig. 4.17.
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nite system as well.
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Chapter 5

Fermi Liquids from D-Branes

5.1 Introduction and Outline
In this chapter we explore the application of gauge-gravity duality to models of

Fermi liquids. It has previously been shown that probe fermions in the RN black

hole or Lifshitz backgrounds exhibit features characteristic of a non-Fermi liquid

[24, 92]. Much follow up effort was been devoted to the difficult tasks of intro-

ducing quantum mechanical fermions into the bulk and to going beyond the probe

limit. See in particular [5, 6, 119] for works most relevant to our current endeavour.

While the above gravity duals utilize the bulk closed-string sector, many holo-

graphic models also utilize open string sectors, i.e. probe D-BRANES [85] which

may be embedded in an ambient space-time without back-reacting on the geome-

try. In this work we use such D-brane constructions to study a new class of holo-

graphic matter resulting from the inclusion of worldvolume fermions. In the spirit

of bottom-up holography we consider a model which includes the minimal set of

ingredients needed to construct the state we are interested in. Our bosonic fields are

then a gauge field and an embedding function, governed by the Dirac-Born-Infeld

(DBI) action. These are accompanied by charged world-volume fermionic matter,

which for the sake of simplicity we choose to be a massive Dirac fermion on the

D-brane.

The bulk solutions in our model consist of a compact (“Minkowski”) brane em-

beddings whose gauge field and embedding function are coupled to a finite density
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of charged fermions on the world-volume. Such compact embeddings are known

to be unstable if the charged matter is bosonic. This instability can be understood

as a result of Bose-Einstein condensation of the charged bosons at the point of the

brane cap off. This will manifest itself geometrically in the brane embedding be-

ing pulled towards the interior of the geometry [88]. The new ingredient for us

is Fermi statistics, resulting in an additional effective pressure, the Fermi pressure

of the worldvolume Fermi surface. By constructing the state numerically, we ex-

plicitly show that for sufficiently dense fermions, such pressure can stabilize the

compact brane embedding.

The state in the dual field theory is shown to be a Fermi liquid, in that it has a

sharp Fermi surface (at zero temperature), and the low energy fermionic degrees of

freedom have a quasiparticle description. The resulting Fermi-like liquid is similar

to that constructed in [119]. We demonstrate the existence of a Fermi surface and

discuss some qualitative features of the quasiparticle scattering rate. We also iden-

tify limits of parameter space where perturbation theory is likely to break down,

resulting in a qualitative change in the nature of the fermionic state. We there-

fore propose that this state may provide a useful starting point for the construction

of non-Fermi liquids. Such a construction will need to tackle the difficult issues

addressed in [5, 6] in the gravitational context.

The layout of this paper is as follows. In Section 5.2 we introduce the bosonic

and fermionic components of our action and derive the equations of motion and

boundary conditions. We also take this opportunity to discuss the various param-

eters and couplings in our phenomenological probe brane action. In Section 5.3

we explain our numerical process, especially the unique features associated with

imposing Fermi statistics, following the discussion of [119]. We then present our

solutions for the bulk fields, first in the probe limit and then including the backre-

action of the fermions on the brane embedding. We focus especially on identifying

limits where the perturbative expansion in 1
N , utilized here, is likely to break

down. In Section 5.4 we analyze the state of the dual QFT. We demonstrate the

existence of a Fermi surface via examination of the retarded Green’s function and

discuss the equation of state. We conclude with some remarks on potential avenues

for future research.
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5.2 Setup: Equations and Boundary Conditions
We take a phenomenological, bottom-up approach to the problem of constructing

finite density fermionic states on probe D-BRANES. Thus, in constructing our fi-

nite density state we do not commit to the matter content and full set of couplings

resulting from any specific brane configuration. Rather, we take the minimal set of

ingredients necessary to construct the state we are interested in. Here we enumer-

ate those basic ingredients needed for the construction. We comment below on the

expected impact of varying the matter content and couplings of our phenomeno-

logical model.

5.2.1 Bosonic sector

The starting point for our phenomenological model is a Dp-Dq system in the holo-

graphic decoupling limit: a single (or a few) Dq-probe branes in the near-horizon

geometry of a stack of Dp-branes. Since we would like to study a 2+1 dimensional

QFT, we choose p = 2. The simplest type of probe brane is q = p+ 4, a system

that has been extensively studied starting with [85]. We choose therefore to study

the worldvolume dynamics of a single D6 brane in the near horizon geometry of

a stack of D2-branes1. This brane configuration was discussed in the holographic

context, e.g. in [86, 88, 101].

This construction provides the basic elements needed to study holographic fi-

nite density matter: a world volume gauge field which can be sourced by a chemi-

cal potential, and an embedding function which can adjust to the presence of finite

density matter. These are analogous to the metric and bulk gauge field in holo-

graphic constructions utilizing the bulk closed string sector, the main difference

being the DBI action controlling their couplings. Here we explore consequences

of these differences.

Finite density holographic matter on D-BRANES, in the absence of charged

fermions, was discussed in [88]. In the presence of non-zero density only the

“black hole” embedding exists. This is an embedding for which the probe brane is

extended through the horizon of the bulk black hole (or the Poincare horizon if zero

1We will be interested in the region of parameter space for which the resulting geometry is well-
described by type IIA supergravity in ten dimensions.
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temperature is considered). The instability of a compact, “Minkowski” embed-

ding is intuitive: In the presence of finite density, and therefore finite electric flux,

sources for the electric field are needed for a compact embedding. The analysis in

[88] then shows that the available (bosonic) charged sources are strings connecting

the brane to the horizon, which inevitably pull the brane embedding towards the

horizon. One of the consequences of our construction is that this outcome may

be avoided in the presence of charged fermion sources. The reasoning behind this

is also intuitive: if the charged sources are fermions, the Pauli exclusion principle

dictates they form a Fermi surface. The resulting Fermi pressure counteracts the

pull towards the horizon, potentially resulting in a stable configuration. Here we

give an example of such a configuration.

The near horizon geometry of the D2-brane stack, at zero temperature, is:

ds2 =
−dt2 +dx2 +dy2

u5/2 +
du2

u3/2 +u1/2 (dS 2
3 + sin2(θ)dS̃ 2

3
)

(5.2.1)

where we use the function 0 < u < ∞ as the holographic radial coordinate with the

boundary located at u = 0, and we set the spacetime radius of curvature to unity.

The coordinates t,x,y parametrize the boundary field theory directions. In addition

to the curved metric, the spacetime has a non-trivial dilaton profile and RR flux.

The D6-brane is extended in the field theory and holographic radial directions,

and wraps three of the six compact directions. It is convenient then to introduce

coordinates such that the sphere wrapped by the D6-brane is S̃3. This sphere is

fibered over the sphere S3 on which the brane is localized. The location of the

brane is specified by an angle2 θ , and the volume of S̃3 depends on that location

as indicated.

The embedding of the D6-brane may then be specified by giving its location θ

as function of the holographic radial coordinate u. As explained in [50], for branes

that do not cross the horizon a more natural parametrization near the cap-off point

is provided by u(θ). Here we choose this parametrization globally, resulting in a

somewhat unusual form of the DBI action. The coordinate θ ranges between its

value at the cap-off point θ = 0 and its asymptotic value θ = π

2 as u→ 0. In this

2In the least action solution we expect the brane location in the other angular directions on S3 to
stay constant.
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parametrization the induced metric on the brane is:

ds2
induced =

−dt2 +dx2 +dy2

u5/2 +du2u5/2
(

u2

u′2
+1
)
+ sin2(θ)

√
udS̃ 2

3 (5.2.2)

From this one can determine [50] that the worldvolume caps off smoothly at

finite value of the radial coordinate if u(θ = 0) = u0 and u′(θ = 0) = 0, and that

this point is reached when the radius of the S3 goes to zero, i.e. when θ = 0,

as indicated. Near the boundary, u(π

2 ) = 0, the embedding function has the near

boundary expansion:

u(θ)' m0

(
π

2
−θ

)
+χ

(
π

2
−θ

)3
+ ... (5.2.3)

where m0 and χ are constants. For a constant worldvolume gauge field, a solution

for the embedding equation with the desired properties is u(θ) = m0 cosθ .

In addition to the embedding function, we will need to turn on the gauge po-

tential on the D6-brane, which we denote by G(θ). The action for the two bosonic

fields is then proportional to the DBI action:

L =
sin3(θ)

√
u′(θ)2 +u(θ)2−u(θ)4G′(θ)2

L3u(θ)5 (5.2.4)

where we have chosen α ′ = 1
2π

. Near the cap-off point smoothness requires that

G′(0) = 0, while near the boundary:

G(θ)' µ +ρ

(
π

2
−θ

)2
+ ... (5.2.5)

Our boundary conditions near the asymptotic boundary are therefore G(π

2 ) = µ

and u′(π

2 ) = m0 where m0 and µ are parameters of our solution.

5.2.2 Fermionic sector

We now turn our attention to the fermionic sector. We work with fermions localized

in the field theory and radial directions, described by the Dirac action coupled to

the bosonic sector in a manner described below. In a “top-down” context, charged
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fermions can arise when considering multiple probe D-BRANES. Consider for ex-

ample an additional D6-brane with the same configuration as above, but localized

at θ = 0 . When the two D6-branes are separated we have a massless Abelian gauge

field (the “relative” gauge group) and charged fermions with respect to that gauge

field. In this setup, however, there are additional fields, including charged bosons.

The presence of light charged bosons is likely to result in Bose-Einstein condensate

being the dominant phase at low temperatures. However, this conclusion can be

avoided by various additional couplings or other complications. As such couplings

will unnecessarily complicate our analysis, we take a phenomenological approach

(commonly used in constructing gravity duals) and use the minimal matter content

and couplings required to construct the state we are interested in. We keep the

above “top-down” context only as a motivation for our construction.

Our fermionic action is then as follows

S =−iβ
√−γ(ψ̄Γ

MDMψ−m(θ)ψ̄ψ) (5.2.6)

DM = ∂M +
1
4

ωabMΓ
ab− iqAM

Γ
M = Γ

aeM
a

m(θ) = mψ +u(θ)
1
4 sin(θ)

where M refers to bulk space-time indices and a,b to tangent space indices. Here q

is the electric charge, γ is the determinant of the induced metric, and ω is the spin

connection. The coupling to the induced metric γab and gauge field follows from

symmetries, which determine the form of the covariant derivative we use, DM. In

addition to the bare Dirac mass mψ , we choose to add a Yukawa coupling giving

the fermions an effective mass proportional to the radius of the S̃3. This coupling

is motivated by the “top-down” context described above. The tuneable parameter

β controls the backreaction of the fermions on the bosonic sector3, and is typically

take to be fairly small. Note that in the brane setup β ∝ gstr since it arises as the

ratio of the coefficient of the Dirac action to the brane tension (which we chose to

normalize to unity in the bosonic action Equation 5.2.4.

3The parameter β is defined only with respect to a specific normalization of the fermionic fields,
which we choose as

∫ π/2
0 dθψ̄ψ = 1.
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To solve the fermionic equations we follow the procedure first outlined in [81,

92], but using the notations of [47, 80, 119]. First, it is convenient to rescale the

fermions in order to remove the spin connection from the Dirac equation:

ψ = (−γγ
uu)−

1
4 e−iωt+ikixi

Φ (5.2.7)

where γuu refers to the radial component of the induced metric given in equation

Equation 5.2.2 and w,ki are the frequency and spatial momenta, respectively (with

i = x,y). We then divide the four components of the Dirac spinor to normalizable

and non-normalizable modes. Specifically, if we define4 P± = 1
2(1±Γu) then

φ± ≡ P±Φ≡
(

y±
z±

)
(5.2.8)

are normalizable and non-normalizable modes of the Dirac fermion. Furthermore,

we can use rotational invariance in the boundary directions to choose the momen-

tum kx = k,ky = 0. This choice allows us to organize the four Dirac equations

as a decoupled pair of two ordinary differential equations. Choosing real gamma

matrices as in [47, 80, 119], the decoupled components can be organized into

Φ1 =

(
iy−
z+

)
, Φ2 =

(
−iz−
y+

)
(5.2.9)

It is therefore sufficient to consider only one of Φ1 and Φ2 when construct-

ing our state and calculating correlation functions. Information regarding the other

spinor may be extracted using rotational invariance as in [47, 80]. We therefore

choose to work with, in a slight change of notation, f̄ = ( f1, f2)≡ (z−,y+), reduc-

ing the fermionic problem to the solution of two ordinary differential equations.

We now consider the boundary conditions for the fermionic fields ( f1, f2). Near

the asymptotic boundary there are two independent modes, normalizable and non-

normalizable. For the former, the component f1 is constant near the boundary at

θ = π

2 , and f2 is then determined by the equations of motion. For the latter, non-

normalizable mode, the roles of f1 and f2 are interchanged. As we are seeking

4Underlined indices for the gamma matrices are tangent space indices.
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normalizable solutions we require f2(
π

2 ) = 0.

Turning to the behaviour of the fermions in the IR: Conservation of the sym-

plectic norm requires that either f1 or f2 must be zero at the cap-off. This statement

can be verified by integrating the symplectic flux ψ†Γ0Γµψnµ over the hypersur-

face located at u = u0. To obtain a non-trivial solution we then set f1(0) = 0 for

regularity in the interior. Since we have two first-order ordinary differential equa-

tions, our boundary value problem is then well-posed.

5.2.3 Parameters and limits

Our equations and boundary conditions have the following parameters:

• The chemical potential, µ .

• The source term for the scalar field dual to the embedding function, m0.

• The fermion bare mass mψ .

• The electric charge q.

• The relative strength of the contribution of the Dirac and DBI actions to the

total action. This is determined by the parameter β .

In our numerical construction, described below, we vary all five parameters

independently. We divide these into two groups- the thermodynamic variables,

(µ,m0), and the mass and coupling terms which define our theory, (β ,m0,mψ).

The physical significance of these parameters is as follows:

• Varying the chemical potential controls the fermionic density on the brane.

As we are working at zero temperature the chemical potential sets the bulk

Fermi energy.

• Varying m0 controls how far the embedding proceeds into the bulk before

capping off. Increasing m0 moves the the cap-off point further into the IR.

As such embeddings require larger charge densities to support them we will

see that increasing m0 also has the effect of increasing the charge density.
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• The parameter β controls the backreaction of the fermionic charge density

on the bosonic fields, i.e. β = 0 corresponds to decoupled fermions5. Here

we work with a finite but small β .

• It is convenient to rescale the matter fields and charge as H̄ →H ε , q→ e
ε
,

where H represents the gauge field or fermion fields and e is fixed. We then

trade the charge q for the parameter ε , small ε corresponds to large charge.

The limit ε → 0 is the commonly used probe limit, as used for example in

constructing holographic superconductors [59]. Setting ε = 0 decouples the

embedding function from the Maxwell-Dirac sector. Here we work with

small but finite ε .

• Varying the bare mass terms of the fermions mψ corresponds to setting their

mass at the cap-off point.

We comment further below on the parameter dependence of the state we con-

struct, and the limits and range of values of these parameters in our numerical

simulations.

5.3 Bulk Fermi Surface

5.3.1 Iteration procedure

The main novelty in solving the equations of our setup is the implementation of

Fermi statistics. The requirement that the fermions form a Fermi surface is a non-

local constraint, effectively rendering the problem an integro-differential system of

equations, instead of a set of local ordinary differential equations. We therefore

solve our system, as in [119], by an iterative process we now describe. Further

details of our implementation are found in Section C.2.

For every step in the iteration process, the fermion equations are formulated in

a background of the bosonic fields. One solves the Dirac equation in that back-

ground to find the complete set of eigenstates of the Dirac operator. The state of

the fermions in a fixed chemical potential (and zero temperature) is a filled Fermi

5This is similar to [47] where the Dirac equation was considered on a RN black hole background.
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surface: all states with energy below µ are filled. These eigenstates come in bands;

we work with parameter ranges such that only a small number of these bands (ap-

proximately 1 to 10) are filled. This has the interpretation of multiple (but order

one in the large N limit) Fermi surfaces in the dual QFT. The inclusion of several

bands is necessary when one tunes parameters towards states of larger charge den-

sities. The state of the fermions is iteratively adjusted mainly through the change

in the eigenstates of the Dirac operator.

Given the state of the fermions, the bosonic equations are sourced by specific

fermion bilinears, obtained from varying the action Equation 5.2.6 with respect to

the bosonic fields (the specific form of these bilinears and further details regarding

their properties can be found in Section C.1). Briefly, we identify these sources as

the charge density, Q, which sources the gauge equation and embedding equation.

In addition the embedding equation is sourced via effective stress energy terms Tr,

and TM which we label as the “radial” and “Minkowski” stresses. As in [119], we

evaluate these sources at leading order in 1
N , i.e. in the classical limit in the bulk.

This approximation does not include the higher order (and much more complex)

renormalization of the coupling constants in the brane action. We comment below

on regimes of solutions where such higher order effects may become relevant and

their potential implications for the iterative solution.

Once the adjusted bosonic background is obtained, we turn back to the fermion

eigenvalue problem, and iterate to convergence. Details of our numerical algo-

rithm can be found in Section C.2: both the fermionic eigenvalue problem and

the bosonic boundary value problem were discretized using pseudo-spectral col-

location methods on a Chebyshev grid. The iterative procedure described above

was repeated until the residuals for the bosonic system were driven to sufficiently

low values and the change in solution between successive steps, for the gauge and

embedding functions, was sufficiently small.

This solution method was found to converge for regions of parameter space

where the backreaction was small relative to the radial scale of the probe limit em-

bedding. We will therefore restrict our investigations to regimes of small densities,

leaving investigation of higher density regimes for future work.
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5.3.2 Solutions in the probe limit

In this section we examine the behaviour of the system in the probe limit, corre-

sponding to taking ε = 0. This decouples the gauge and embedding equations and

freezes the embedding function to be u(θ) = m0 cos(θ). Allowing for the probe

limit, our model still has four tuneable parameters- namely β , m0, mψ and µ . To

study the effect of these parameters, we vary individual parameters while leaving

the others fixed. In order to visualize the bulk solutions we display the gauge field,

the fermionic dispersion relationship, and the charge Q, for each of the parameter

variations.

We start by varying the chemical potential µ . Plots for bulk quantities for var-

ious values of µ are displayed inFigure 5.1. We note that, as expected, increasing

µ results in larger charge densities. Note that the charge density is finite at the

cap-off (unlike the case with bosonic charge carriers, where the cap-off point sup-

ports all of the charge). This is an indication that such a charge density may be

able support the compact embedding once we include backreaction. As expected

the number of bands increases with µ , for large µ up to 10 bands may be filled. As

these higher bands correspond to higher modes of the bulk fermion eigenfunctions

they contribute a modulated component to the charge density. This may be seen in

the above figures.

We now examine the effects of moving within our parameter space of theories,

defined by (mψ ,m0,β ). The results for variations of the bare mass term, mψ , are

shown in Figure 5.2. We see that decreasing the bare mass has the effect of pushing

us towards a regime of higher fermion density. A reduction of mψ from an initial

high value results in a rapid increase in the peak amplitude of the bulk charge

density. However for sufficiently low values of mψ the charge density profile is

seen to broaden and shift towards the UV geometry. This results in an enhancement

of the charge density of the dual QFT at low mψ .

We can look at the effects of adjusting our (frozen) embedding cap off point

by changing m0. This simulates the expected adjustment in the position of the

embedding cap-off in response to the finite charge density, once backreaction is

included. From Figure 5.3 we see that larger values of m0 correspond to larger

fermion densities, and electric field strengths.
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Figure 5.1: Bulk field profiles resulting from varying µ with m0 = 1, β =
−0.01 and mψ = 10. We note that the shape of the gauge field profile
does not change greatly relative to the scale set by the chemical poten-
tial, as µ is increased. This is illustrated by subtracting the value of the
chemical potential in each case. The dispersion relationship curves are
for filled states lying below the Fermi surface.
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Figure 5.2: Bulk field profiles resulting from varying mψ with m0 = 1, µ =
−15.7154, and β = −0.001. We see that increasing the bare mass has
the effect of reducing the number of filled states, the amplitude of the
gauge field and the contributions to the bulk charge. We also note that as
mψ decreases the ratio of width to amplitude of the bulk charge density
increases. This results in amplification of the charge densities in the
dual QFT.
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Figure 5.3: The bulk field profiles resulting from varying m0 with β =
−0.001, µ = −15.7154 and mψ = 10. We note that increasing m0 has
the opposite effect to increasing mφ as it pushes the solution to regimes
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field and charge density under the variation of µ and m0 is qualitatively
similar. This is reflected in the behaviour of QFT quantities.
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Figure 5.4: Varying β with m0 = 1, mψ = 10, µ =−15.7154. We see that in-
creasing the magnitude of β has the effect of the increasing the bulk
charge density and correspondingly the strength of the bulk electric
field.

Finally, turning our attention to β we examine the influence of the strength of

the fermion-boson coupling in Figure 5.4. Increasing the magnitude of β produces

larger bulk charge densities and electric fields.

5.3.3 Including backreaction

We now consider the effects of backreaction in our system via tuning ε to non-

zero values. We now have a five parameter family of solutions characterized by

(µ,m0,mψ ,β ,ε). In analogy to the previous section we investigate the influence
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Figure 5.5: Varying µ with backreaction included, and normalizing our solu-
tions with respect to the probe limit. The other parameters were set as
β =−0.01, ε = 0.1, m0 = 1, mψ = 10. Electric field strength and charge
density are shifted further away from the embedding cap-off relative to
the probe limit. 110



of each individual parameter on the bulk solutions when the others are kept fixed.

In order to determine the significance of backreaction we normalize our solutions

where appropriate by subtracting off the probe limit background.

We are particularly interested in examining whether the embedding tends to

evolve, when changing parameters, in a direction where the volume in the IR in-

creases significantly. If, in a limiting case, the IR geometry were to tend towards

becoming non-compact, it may signify the breakdown of bulk perturbation theory.

In the dual QFT this phenomena would signal the breakdown of the large N expan-

sion. We will illustrate in Section 5.4.2 below that such a breakdown is necessary

for large quasiparticle scattering rates.

As in the previous section, we first consider changes in our thermodynamic

variables. Our ensemble is now defined via (µ,m0), as encoded in the boundary

conditions for the relevant bulk fields. In Figure 5.5 we plot the change in the

bulk fields displayed in Figure 5.1 once backreaction is included. We note that the

charge density decreases slightly in the vicinity of the cap-off once backreaction is

included. This has the effect of decreasing the electric field strength in the cap-off

region and allowing it to retract slightly towards the UV. This change is sourced by

Tr and TM which we also display below. These effects become more pronounced

as |µ| increases. The net result is that the transverse sphere collapses to a point

slightly sooner then in the probe limit case, but still does so at a finite value as a

result of support provided by the Fermi pressure. We also note that the energy of

the filled states is decreased relative to the probe limit. A similar story emerges

as we follow the branch of solutions parameterized by m0, as seen in Figure 5.6.

Electric field and charge density profiles are shifted slightly towards the mid-region

of the geometry while the cap off itself retracts towards the conformal boundary.

Turning to mψ we see that, for sufficiently large values of this parameter,

changes to the bulk fields due to backreaction are suppressed. Initially, decreasing

mψ has a similar effect on the sources for the embedding function, charge density

and electric fields as increasing m0 or µ . However at a critical value (for the choice

of parameters in Figure 5.7 this occurs at mψ ' 6) a qualitative change in behaviour

occurs. The rate of change of the peak modulation relative to the probe limit slows

down and saturates. Past this point the effects of backreaction are seen to extend

further and further towards the UV boundary while their magnitude decreases.
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Figure 5.6: Varying m0 with backreaction included, and normalizing our
solutions with respect to the probe limit. The couplings are set as
µ = −15.7154,ε = 0.1,β = −0.001,mψ = 10. We note the qualita-
tive similarity to the changes observed in the profiles at fixed µ as seen
in Figure 5.5.
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Figure 5.7: Varying mψ with µ = −15.7154, m0 = 1, β = −0.001, ε = 0.1.
Here we plot the change in the embedding function, gauge field and
charge density relative to the probe limit. We also plot the the un-
subtracted components of the sources for the embedding function, Tr

and TM.
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Next, in Figure 5.8 and Figure 5.9 we examine the effects of backreaction for

variations of β and ε, respectively. As these control the coupling of the matter sec-

tor fields to the embedding function, increasing the magnitude of either parameter

serves to accentuate the effects of backreaction. The qualitative nature of this be-

haviour is similar to that that observed for the other parameter variations described

previously. In the case of Figure 5.8 it is interesting to note the relative lack of

modulation of the profiles of the embedding sources or the charge density, in com-

parison to variations involving m0, µ or mψ . This may be attributed to the relatively

minor changes which occur in the spectrum of filled states. The energy of the filled

bands changes as β is varied however their number and qualitative shape does not.

A similar pattern may be observed for ε variations in Figure 5.9.

From the above analysis we conclude that the incorporation of backreaction in

the model has two principle consequences:

• Due to the finite charge density at the cap-off and the associated Fermi pres-

sure Minkowski embedding are now possible. The effect of backreaction is

modify the geometry in the region near where the geometry caps off.

• While backreaction remains small its effect on the bulk fields is to shift the

charge density distribution and associated electric field slightly in the direc-

tion of the conformal boundary. The fermions are less tightly bound then in

the probe limit.

Finally, in Figure 5.10 we examine the change in the volume element from its

the probe limit value, for the parameter variations described previously. We see

that generically the inclusion of backreaction leads to an increase in the volume

element near the cap-off. This difference increases for increasing |µ|, m0, |β |
and |ε| corresponding to states of larger charge density. For variations of mψ the

change of the volume element is maximized when the change in the embedding

itself is greatest (low mψ ). These results provide a tentative indication that the high

density limit may be an interesting regime to probe for possible non-Fermi liquid

behaviour.
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Figure 5.8: Varying β , with µ =−15.7154, m0 = 1, mψ = 10, ε = 0.1.
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Figure 5.9: Varying ε with β =−0.001, m0 = 1, mψ = 10 and µ =−15.7154.
Increasing the value of ε has a similar effect to increasing the magnitude
of m0 or µ, resulting in lower charge densities near the cap off and a
slight movement of this cap-off towards the IR.
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5.4 Boundary Fermions
With the above constructed bulk solutions, we can proceed to probe the behaviour

of the dual QFT in the state we constructed. Our principle aim in this section is

to demonstrate that the states we are considering are those of a Fermi liquid. We

also wish to keep in mind future generalizations which could produce non-Fermi

liquid behaviour. To this end we study the equation of state as a function of various

parameters and examine the analytic properties of the fermion Green’s function.

5.4.1 Fermion density

In Figure 5.11 we examine the fermion density of the boundary theory as a function

of the various parameters discussed previously. We start by discussing the equation

of state: the dependence of the density on the chemical potential. Plotting |ρ|
versus |µ| we see that the system is gapped, with the mass of boundary fermions

determined by the intercept of that plot. For the parameters chosen in Figure 5.11

mQFT ' 12.2173.

One of the basic signals of a Fermi surface is that the state is compressible, i.e

that dρ

dµ
6= 0 for all µ for which the Fermi surface exists (i.e. for chemical potential

above the gap). Our plot demonstrate that our model indeed has this feature. We

also fit the asymptotic behaviour of the curve to the form |ρ| ∝ b|µ|a , with b =

5.945e−5 and a = 3.064 for the choice of parameters plotted. Note that for a single

species of fermions in 2+1 dimensions, the exponent a ranges between one (non-

relativistic fermion) to two (relativistic fermion), in the regime of asymptotically

large |µ|. The asymptotic scaling we find is a result of the multiple species of

fermions which exist in our model due to the presence of multiple bulk bands. At

asymptotically large chemical potential large number of these bands are occupied.

Examining the density as a function of other parameters is also interesting. We

find that the density decreases with mψ and increases with m0. This is in line with

our expectations from the observed behaviour of the bulk fields in Figure 5.2 and

Figure 5.3. Zero density was found to occur at a finite value of m0 which we label

as mcritical
0 (in the case plotted in Figure 5.11 mcritical

0 ' 0.701). This indicates that

compact embedding solutions only exist for solutions which penetrate sufficiently

far into the bulk. Fitting the density to the form d(m0−mcritical
0 )c we find c =
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0.05791, d = 3.77. Similarly mcritical
ψ was found to be ' 13.9981 in our current

case.

The last two graphs indicate that |ρ| increases with |β | and |ε| in some non-

trivial manner. Again this is to be expected from the plots of the bulk fields in

Figure 5.4 and Figure 5.9.

5.4.2 Retarded Green’s function

The retarded Green’s function in the vicinity of the Fermi surface has the form

GR(ω,k) =
Z

ω− vF(k− kF)+Σ(ω,k)
(5.4.1)

The quasiparticle decay rate is determined by the self-energy Σ. In the case of a

Landau-Fermi liquid it is known to universally scale as Σ = iΓ
2 ∼ iw2, and therefore

the quasiparticle lifetime diverges as the Fermi surface is approached. In the case

of non-Fermi liquids Σ scales faster than ω6 at low frequencies. This indicates that

a quasiparticles are not a good description of the physics close to the Fermi surface.

The first step is to identity the presence of a Fermi surface in the dual QFT. As

we noted previously there are two distinct fermion modes as u→ 0:

1. limθ→ π

2
( f1, f2) = (c0,0)

2. limθ→ π

2
( f1, f2) = (0,d0).

A priori both quantizations of the fermions are possible, however in constructing

our background we picked the first by setting f2(π/2) = 0. As our background

should be constructed from purely normalizable modes we label mode (1) as the

normalizable mode. Mode (2) should then be considered as the source which we

turn on to perturb the system.

As the retarded Green’s function is proportional to the ratio of response to

source, we wish to calculate the ratio of the asymptotic values of the linearized per-

turbations δ f1 and δ f2. For the purpose of identifying the location of the boundary

Fermi surface it is sufficient to consider only the linearized fermionic equations.

6There will be an additional logarithmic term in the case of a Marginal Fermi Liquid.
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In order to identify the singularity in the Green’s function it is convenient to use

shooting techniques. Once the singularity in the Green’s function was identified,

the behaviour in the vicinity of the pole in the k,w plane can be seen inFigure 5.12.

We note immediately that our Green’s function is purely real and therefore lacks

any information about the quasiparticle decay rate. Mechanically this is the result

of the fact that our Dirac equation, Γ matrix algebra and eigenfunctions are purely

real. This, together with the fact that our boundary conditions in IR are simple

regularity conditions, ensures that our Green’s function is real7. Less mechanically,

the fact that we lack a black hole horizon means we do not have a mechanism for

dissipation at leading order in the 1
N expansion. In order to calculate the decay rate

it would be necessary to calculate 1-loop diagram (for references with such 1-loop

calculations, see [28, 29, 46]). The fact that the decay rate will be parametrically

small indicates that this phase is a Fermi-like liquid, as long as perturbation theory

is valid.

Indeed, one of the motivations for the present work is identifying potential

sources for such a breakdown, for example the geometry becoming non-compact

in the IR. This intuition ties in with [47] where the infinite proper distance of the

AdS2×R2 throat geometry is dual to the low energy bosonic modes necessary to

provide fermionic quasi-particle dissipation. We hope to return to this direction in

the future.

5.5 Concluding Remarks
In this study we have constructed a phase of holographic matter with Fermi liquid

like behaviour, by solving for finite density fermion configurations on Minkowski

embedding of a probe D-brane.

Possible generalizations of this setup may be useful in the study of non-Fermi

liquids. We hope that our study will help identify the regimes of parameter space

where such behaviour may be expected. For example, a sufficiently large defor-

mation of the embedding may introduce large renormalization effects, invalidating

the purely classical approximation used here. In such regime a more careful study,

7In other works such as [46, 47] the ingoing boundary conditions associated with a black hole
horizon render the solution complex.
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along the lines of [5, 6], would be needed to determine the nature of the fermionic

state on the D-brane.

More generality, the ability to construct a finite density Minkowski brane con-

figurations could be useful in a range of holographic models, as those are expected

to be qualitatively different than the finite density black hole embeddings. For

example, the compact nature of the world volume geometry means the charged de-

grees of freedom lack an efficient mechanism of dissipation, therefore such phases

can be useful in exploring the physics of holographic insulators.
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Figure 5.10: The change in volume near the embedding cap off. Higher
fermion densities tend to increase the volume element, relative to the
probe limit.
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Chapter 6

Spatial Modulation and
Conductivities in Effective
Holographic Theories

6.1 Introduction and Outline
In this chapter we resume our exploration of non-translationally invariant phases

of condensed matter with the goal of illuminating aspects of metallic, incoherent-

metallic, and insulating phases within the quantum critical regime. To examine

the properties of, and transitions between, these phases we will need to probe the

transport properties of the system. As such, consider the linear response functions

which may be efficiently computed in the holographic context. In the absence of

dissipation the low frequency behaviour of correlation functions often display IR

divergences. While some of these can be cured by examining the theory at finite

temperature (effectively using a thermal IR regulator), there are some issues that

are incurable by this simple approach.

A simple case in point is the physics of electrical conductivity. Naively, we

might try to compute this quantity in a translationally invariant system by monitor-

ing the response to turning on an external, time dependent electric field. Using the

Kronig-Kramers relations one would then find that momentum conservation results

124



in a divergent zero frequency value of the imaginary part of the conductivity. As

a consequence recent efforts have been focused on constructing models with more

realistic conductivity behaviour. This in turn is motivated by the need to better

understand the experimental observation of metal/incoherent-metal/insulator tran-

sitions in the phase diagram of high temperature superconductor materials [12].1

The first models for realistic behaviour of (thermo)-electrical conductivities

in holography was accomplished in [72, 73]. These authors considered situa-

tions where the spatial homogeneity is explicitly broken by a background lattice

of sources, and studied thermo-electric transport in the resulting holographic dual

background. By use of the lattice, they were able to demonstrate that the low fre-

quency conductivity was finite, and well fitted in their set-up by the Drude form.

More curiously, their analysis revealed a mid-range scaling of the AC conductiv-

ity with frequency, which furthermore agreed with experimental results in cuprate

systems [127].

Since this seminal work, various groups have attempted to understand the

thermo-electric properties of holographic systems. One of the key aspects to un-

derstanding this phenomenon is to ascertain the potential low energy behaviour of

strongly coupled systems subjected to inhomogeneous sources for relevant opera-

tors. A classification of emergent IR phases crucially provides one with a picture

of what to expect for the transport properties of the system at low energies. Ex-

tensive work has already been carried out in characterizing the possible IR geome-

tries which may emerge when translational invariance is relaxed; see for example

[26, 43] where the IR flow of perturbative inhomogeneous modes was analyzed.

We now have a reasonable understanding for the spectrum of possibilities that can

occur in holographic systems, with low energy behaviour ranging from metallic

(with various dressing) to insulating. Part of the motivation for the present work

was to get a better picture of the landscape of possibilities within the framework of

bottom-up holography.

We should also note other innovative approaches towards modelling aspects of

inhomogeneous systems. These include the techniques of massive gravity [7, 15,

16, 25, 128] and Q-lattices [8, 37–39, 41, 52] (cf., also the memory function ap-

1 A nice summary of the issues involved in characterizing such behaviour in many-body systems
can be found in [55].
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proach [94, 95]). The Q-lattices are particularly appealing as, though translational

invariance is broken, the metric remains homogeneous and the equations of mo-

tion remain relatively tractable ODEs. Unfortunately the fine tuned nature of this

symmetry raises the possibility that some of the behaviour observed in the result-

ing solutions may be equally non-generic. Likewise while much progress has been

made using the massive gravity approach, questions remain about the interpretation

of such models in the dual field theory.

With these issues in mind let us turn back to explicit breaking of translational

invariance in one of the spatial directions of the dual field theory, as described in

[72, 73] (see also [91]). As mentioned above, the introduction of the holographic

lattice and solutions of the resulting PDEs mitigates the zero frequency delta func-

tion in the conductivity, leading to a conventional Drude form for low frequencies.

An extremely thorough examination of the subject in [40] combines technology

gained from Q-lattice calculations with the numerical approach of [72, 73, 91] to

examine the electric, thermoelectric and thermal conductivity. Among the results

of this analysis were the confirmation of the Drude regime for the AC conductivity

and the existence intermediate resonance peaks. It was also noted that in the model

under consideration no evidence of a mid-IR scaling regime was discovered.

In this note we aim to build on the work of [40, 73, 91] by exploring a par-

ticular class of Einstein-Maxwell-Dilaton models. These models are characterized

by two functions of the scalar dilaton field Φ – these parameterize the scalar self-

interaction through a scalar potential and a gauge coupling function, V (Φ) and

Z(Φ) respectively. This parameterization allows us to access a range of effective

field theories which are of interest in various condensed matter applications. For

example, examination of the homogeneous solutions has shown that these models

are good candidates for metal/insulator transitions upon breaking of translational

invariance [20]. The range of allowed IR phases can be understood in terms of an

effective near horizon potential, obtained by approximating V (Φ). One finds that

this potential modulates the spectrum of ingoing excitations near the horizon from

continuous (metallic) to discrete (insulating) as a function of parameters. Qual-

itatively, the physical features of these models can be understood by noting that

scalar potential interpolates between zero at the conformal boundary and a run-

away behaviour in the near-horizon region. Similarly the gauge coupling starts at
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some finite value near the conformal boundary and undergoes exponential growth

or decay towards the horizon.

We will examine the electric conductivity of these models as a function of pa-

rameters. We employ two lines of attack, both of which involve first numerically

finding the bulk solution to sourced inhomogeneities in the UV. This holographic

lattice solution can then be explored for transport. The simplest analysis is then to

extract the DC conductivities via a membrane paradigme-esque formula using the

techniques of [40] (cf., Section 6.3). This approach has the advantage that we only

need knowledge of the bulk solution and therefore gives us a simple way to probe

the IR phase by analyzing the DC conductivity [73]. Computing the AC conductiv-

ity however requires that we also have the solution of the linearized perturbation

equations around the numerically constructed background [73]. We carry out this

exercise to obtain the full frequency dependent transport, in the process using the

aforementioned DC conductivity as a non-trivial check on the results we obtain. We

discover the existence of metal-insulator transitions as a function of parameters and

also, in finely tuned cases, the potential presence of a mid-IR scaling regime. We

then examine the persistence of these behaviours as a function of parameters. We

find that that the phase changes we discover via monitoring the behaviour of the

response functions correspond to inhomogeneity mediated changes in the form of

the scalar potential in the IR.

The outline of the paper is as follows. In Section 6.2 we present a basic review

of the holographic set-up, pausing to note the ingredients we pick in our model

and their potential effects on the low energy dynamics of the system. We also

give a short synopsis of the numerical scheme we employ to study the physical

transport. In Section 6.3 we revisit the arguments of [40] to directly extract the

zero frequency conductivities in terms of horizon data. In course of this analysis

we take the opportunity to explain the relation between the various conductivities in

the hydrodynamic limit (which corresponds to ω� T and a suitably dilute lattice).

We illustrate that in this regime there is a single transport coefficient which can

be taken to be the electrical conductivity. In Section 6.4 we present our results

for the various transport coefficients. We also comment on the various phases

and scaling regimes which we observe as we explore a representative subspace of

configurations for the scalar potential and Maxwell coupling. We conclude with

127



some discussion in Section 6.5. Some technical points about our numerics are

collated in Section D.1.

6.2 Setup
We start by outlining the holographic set-up we use to explore the physics of con-

ductivity in 2+1 dimensional quantum critical systems. We explain the basic in-

gredients we employ in our phenomenological modelling as well as the salient

features of the control functions we introduce in parameterizing the holographic

system. Following this discussion we go on to describe the numerical scheme used

to construct the gravitational solutions of interest and the computation of the phys-

ical conductivities therein.

6.2.1 Background

We take a bottom up, phenomenological approach to holography, and following

[40, 73, 91] we choose a model with the minimal ingredients necessary to calcu-

late conductivities in a 2+1 dimensional quantum critical theory. We assume that

the field theory is holographically dual to gravitational dynamics in an asymptoti-

cally ADS spacetime. The model for the holographic dynamics is simply Einstein-

Maxwell theory, which we couple to an additional neutral scalar field, with poten-

tial term, V (Φ), and a gauge coupling function, Z(Φ). The scalar field allows us

to discuss models with more general behaviour in the IR than the local criticality

characterized by the RN black hole. This results in an action of the form (setting

`AdS = 1):

S =
∫

d4x
√−g

(
R+6− 1

4
Z(Φ)Fab Fab−∇aΦ∇

a
Φ− 1

2
V (Φ)

)
. (6.2.1)

The dynamical equations of motion which we will solve are then simply

∇a (Z(Φ)Fa
b ) = 0 , (6.2.2)

∇a∇
a
Φ−V ′(Φ) = 0 ,

Rab +3gab−
(

∇aΦ∇bΦ+
1
2

[
1
2

gabV (Φ)+Z(Φ)

(
FacF c

b −
1
4

gabFcdFcd
)])

= 0 .
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The field theory will be taken to live in Minkowski spacetime and we shall thus

work with the conventional parameterization of ADS geometry in Poincaré-like co-

ordinates. The radial coordinate is taken to be z ∈R+ and the conformal boundary

located at z = 0.

The potential and the gauge coupling functions are our control functions which

allow us to modulate the IR dynamics. In [20] these were parameterized to be of

the form V (Φ) = e−δΦ, and Z(Φ) = eγΦ respectively. It was argued that these

choices allow for a range of locally critical IR behaviours as one scans over the

parameters {γ,δ}. As we are interested not only in the IR behaviour, but also in

translating the local critical dynamics therein onto the ADS boundary, we need to

ensure that any such IR geometry can be patched to the asymptotically ADS region.

We must therefore generalize the form of these functions. In doing so we choose

to fix the potential to have a Taylor expansion around the origin of field space

of the form V (Φ) = Φ2 + · · · . This choice corresponds to an effective conformal

mass term m2 = −2 for the scalar ensuring that we have simple fall-offs (with

non-normalizable and normalizable being z and z2 respectively asymptotically). A

convenient choice for the functions which respects these constraints turns out to be

V (Φ) =
4

υ2 (1− cosh(υ Φ)) (6.2.3)

Z(Φ) = eυ Φ

where we have chosen to focus on a one-parameter family of theories, parametrized

by υ . This corresponds to the case γ + δ = 0 in the notation of [20]. We leave

exploration of the full parameter space for future study, and focus on this subset

henceforth.

For computational simplicity we introduce inhomogeneity in our model by

choosing to break translational invariance in one-direction of R2,1 as in [40, 73, 91].

We construct a lattice in the x-direction while maintaining translational invariance

in the y-direction.2 The x-translation breaking boundary conditions are imposed by

2 We use the word “lattice” loosely for we choose not to impose any commensurability conditions
between the charge density and the unit cell.
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choosing an inhomogeneous normalizable mode for the scalar field of the form

Φ1(x) =C cos(kx) ,

where C is the amplitude of the inhomogeneity and the k the wavenumber of the

lattice.

The manner in which this sourced inhomogeneity deforms the near horizon

geometry from its homogeneous behaviour, and the effect that this has on the con-

ductivity is the principal focus of this work. From the dual field theory point of

view this corresponds to determining how the UV parameters of the theory change

the trajectory of the renormalization group flow to create different phases of matter

in the IR. As we explain below the presence of radially conserved quantities in the

theory mean that a great deal about the linear response functions, and therefore the

phase of the dual field theory, may be extracted simply from knowledge of the near

horizon geometry.

Given these boundary conditions, a suitable metric ansatz for the investigation

of these inhomogeneous phases is [73]:

ds2 =
1
z2

(
− f (z)Qtt dt2 +

Qzz

f (z)
dz2 +Qxx

(
dx+ z2 Qxz dz

)2
+Qyy dy2

)
(6.2.4)

with the functions Qab(z,x) depending both on z and x, thanks to the inhomogene-

ity. In addition we introduce a redshift factor f (z) which, upon exploiting the

scaling symmetries in the problem to fix the horizon to be at z = 1, can be chosen

to be:

f (z) = (1− z)P(z) = (1− z)(1+ z+ z2−µ1
z3

2
) (6.2.5)

The factor µ1 can be thought of as a convenient parameterization of the tempera-

ture, T ; they are related via

T =
P(1)
4π

=
6−µ2

1
8π

. (6.2.6)

This choice is useful as in the homogeneous limit the standard RN black hole may

be recovered by setting Qtt =Qzz =Qxx =Qyy = 1, Qxz =Φ= 0, A= (1−z)µ , and

µ = µ1. We choose to measure all physical quantities relative to a fixed relation
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between T and µ which we fix by taking µ = µ1 throughout. Also, for convenience,

we choose A = (1− z)A0(z,x)dt ensuring thereby that the timelike component of

the gauge field vanishes at the horizon.

In order to ensure that our problem is well posed we must supply both consis-

tent boundary conditions and an appropriate gauge condition to remove the gauge

redundancy of the Einstein equations. We choose to work in DeTurck (or har-

monic) gauge – this is achieved by modifying the Einstein tensor via the addition

of a new term involving the so-called DeTurck vector field ξ a:

GH
ab = Gab−∇(aξb) (6.2.7)

ξ
a = gcd (Γa

cd(g)−Γ
a
cd(ḡ))

Here Gab is our original Einstein tensor, ξ a is the DeTurck vector, and GH
ab is the

modified tensor appearing in the DeTurck equations. The DeTurck vector is de-

fined using the difference in the Christoffel symbols, Γ, associated with our metric

of interest, g, and a suitably chosen reference metric, ḡ. The reference metric

should have the same asymptotic and conformal structure as the metric we are at-

tempting to solve for. In our case we have found it convenient to use the RN metric

as the reference metric. It can be shown that for the metric ansatz Equation 6.2.4,

the DeTurck equations are elliptic [64] and therefore can be solved as a boundary

value problem.

As we are interested in solving the original Einstein equations, we must ensure

that the DeTurck vector vanishes on-shell. Thus we choose boundary conditions

such that the the DeTurck vector vanishes on the boundary. Provided the solutions

to our problem are unique and smoothly dependent on the choice of boundary

conditions, this should ensure the vanishing of the DeTurck vector. In practice, we

check that the DeTurck vector is zero to a high numerical precision, so we may be

confident in the veracity of our solutions.

After the gauge fixing procedure has been completed we obtain seven inde-

pendent equations in the seven unknowns, (Qtt ,Qzz,Qxx,Qyy,Qxz,Φ,A0). It can

be checked that taking appropriate linear combinations of the equations decouples

their principal parts, and each has an elliptic form.

We next turn to the discussion of the boundary conditions. At each boundary
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we require one boundary condition for each of the seven dynamic fields. We choose

the following conditions at the conformal boundary:

Qtt(0,x) = Qzz(0,x) = Qxx(0,x) = Qyy(0,x) = 1, Qxz(0,x) = 0 (6.2.8)

Φ
′(0,x) = Φ1(x), A0(0,x) = µ

The motivation for the metric boundary conditions is simply that one obtain ADS

spacetime at z = 0. Labeling the Dirichlet boundary condition on A0(0,x) as µ is

consistent with its interpretation as the chemical potential in the dual field theory.

The condition on the scalar field fixes the non-normalizable mode to be inhomoge-

neous and thus sources inhomogeneity in the system.

In the IR we must first impose the regularity of the black hole horizon. This

is done by requiring Qtt(1,x) = Qzz(1,x) which ensures the surface gravity is con-

stant along the horizon. The remaining boundary conditions may then be found

by expanding the equations of motion to leading order in (1− z). As two of the

equation expansions are degenerate at this order we obtain the correct number of

horizon boundary conditions. An intuitive understanding of these conditions can

be found by solving these leading order expansions for the radial derivatives of the

fields at the horizon. We then see that these equations fix the radial derivatives of

the fields in terms of their horizon values, and first and second spatial derivatives

of the same fields. Therefore our horizon conditions consist of one Dirichlet condi-

tion, necessary to define a regular horizon, and six (mixed) Robin-type conditions.

At the spatial directions we impose that all fields are periodic, with period

L = 2π

k . This allows for the sourced inhomogeneity to be a linear combination

of the basic harmonic cos(kx), and any of the higher harmonics cos(nkx) for any

integer n. For example, [40] and, in a different context, [9, 62] have constructed

solutions with sourced inhomogeneity consisting of multiple modes with random

relative phases in order to represent a ‘dirty’ lattice. While such investigations are

interesting we postpone the construction of such solutions and the investigation of

their thermodynamic and transport properties to future work, and focus below on

constructing solutions sourced by the single harmonic cos(kx).
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6.2.2 Perturbations and linear response

We now turn to analysis of linearized perturbations, needed to extract information

about the conductivity of the QFT in the linear response regime. We will primarily

be interested in computing the AC (optical) electrical conductivity as a function of

frequency and temperature. The results have an intrinsic interest, and can also pro-

vide a point of comparison to the DC conductivity formula which we will discuss

in Section 6.3. They thus provide a non-trivial check on our results. Combined

with the DC conductivities, this provides a comprehensive picture of the behaviour

of the theory at the temperature regimes we probe.

The calculation of the conductivity in a holographic theory entails solving the

linearized perturbation equations derived from Equation 6.2.2. To derive these we

perform the following expansion of the fields:

gab = ĝab + ε hab, Aa = Âa + ε ba, Φ = Φ̂+ ε η (6.2.9)

with hab, ba and η being the metric, gauge and scalar perturbations, respectively,

and the hats indicating background fields. We work in leading order in ε and use

as the background the solutions to Equation 6.2.2, subject to the boundary con-

ditions described in Section 6.2.1. The symmetries of our background allow us

to set by,hty,hzy,hxy to zero. Therefore the non-trivial components our metric and

gauge perturbations are restricted to (htt ,hzz,hxx,hyy,htx,htz,hzx,bx,by,bz). In addi-

tion since our background is static we may Fourier decompose the time dependence

of the perturbations:

hab = h̃ab(z,x)e−iω t , ba = b̃a(z,x)e−iω t , η = η̃(z,x)e−iω t (6.2.10)

As our equations are linear the time dependence is encapsulated in the factors of

the frequency ω present in the equations.

In analogy to the background equations we must impose appropriate gauge

constraints on our problem in order to remove spurious degrees of freedom and

obtain a match between the number of fields and independent equations of motion.

In the case of the perturbation equations the gauge redundancy is more complex

as, in addition to the diffeomorphism invariance of the gravity sector, the U(1)
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invariance of the gauge sector must also be taken into account. In order to remove

these gauge redundancies we choose to impose the deDonder and Lorentz gauge

conditions:

τb = ∇
a
(

hab−h
ĝab

2

)
= 0, χ = ∇

aba = 0 (6.2.11)

The procedure we use to impose the gauge conditions is very similar to that used to

form the DeTurck equations in equation Equation 6.2.7. For example, in order to

impose the deDonder gauge we use a gauge fixing term constructed from a gauge

transformation, τb. Using the expression for the variation of the Ricci tensor and

subtracting the gauge fixing term ∇(aτb) = ∇(a∇chc
b)− 1

2 ∇a∇bh gives us:

δRab−∇(aτb) =−
1
2

∇
c
∇chab +

1
2

∇c∇ahc
b +

1
2

∇c∇bhc
a−

1
2

∇b∇chc
a−

1
2

∇a∇chc
b

(6.2.12)

=−1
2

∇
c
∇chab +

1
2
[∇c,∇a]hc

b +
1
2
[∇c,∇b]hc

a

Thus we see that the principal part of the equation is hyperbolic and the goal of

the gauge fixing procedure is achieved. Similarly, in the case of the gauge field

equations we add a gauge fixing term of the form α(z,x)∇bχ . Here α(z,x) is

some combination of the background fields which is determined by requiring that

the principal part of each of the gauge equations takes the appropriate hyperbolic

form.

The end result of the gauge fixing procedure is 11 independent equations in 11

dynamic fields whose principal parts are decoupled and of a hyperbolic form. We

can now consider the boundary conditions. At the conformal boundary, these are

simple – we require bx to source the external external electric field and all other per-

turbations to vanish suitably quickly such that asymptotically ADS is maintained.

Therefore we choose the following:

h̃tt(0,x) = 0, h̃zz(0,x) = 0, h̃xx(0,x) = 0, h̃yy(0,x) = 0, (6.2.13)

h̃tx(0,x) = 0, h̃tz(0,x) = 0, h̃zx(0,x) = 0, b̃t(0,x) = 0,

b̃z(0,x) = 0, b̃x(0,x) = 1
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Here we have used the linearity of the equations to choose a convenient scale for

the magnitude of the external electric field.

The situation at the horizon is more complicated. Physically our boundary

conditions must reflect the fact that all excitations are in-falling at the horizon.

This is most readily observed by passing over to (the regular) ingoing coordi-

nates Eddington-Finkelstein coordinates and ensuring that both the stress-energy

and Einstein tensors are regular at the horizon. This will determine the leading

scalings of the fields at the horizon. Our results, which of course agree with those

of [73], are:

h̃tt(z,x) = P(z) h̃reg
tt (z,x), h̃yy(z,x) = P(z) h̃reg

yy (z,x) (6.2.14)

h̃xx(z,x) = P(z) h̃reg
xx (z,x), h̃tx(z,x) = P(z) h̃reg

tx (z,x)

h̃tz(z,x) =
P(z)
1− z

h̃reg
tz (z,x), h̃xz(z,x) =

P(z)
1− z

h̃reg
xz (z,x)

h̃zz(z,x) =
P(z)
(1− z)2 h̃reg

zz (z,x), b̃z(z,x) =
P(z)
1− z

b̃reg
z (z,x)

b̃t(z,x) = P(z) b̃reg
t (z,x), b̃x(z,x) = P(z) b̃reg

x (z,x)

η̃(z,x) = P(z) η̃
reg(z,x)

where

P(z) = (1− z)−
iw
4π , w=

ω

T
(6.2.15)

captures the leading non-analytic behaviour of the fields near horizon and the re-

maining analytic part is indicated by the superscript “reg”. Those regular fields may

be expanded in a power series in (1− z) near the horizon. Including the leading

and subleading orders in this expansion, one identifies 15 possible non-degenerate

boundary conditions – 4 from the leading order and 11 from the subleading order.

Only 11 of these, chosen for numerical convenience, are imposed. Consistency of

the equations of motion demands that the remaining 4 conditions vanish on-shell.

The vanishing of these constraints provides a non-trivial check on the accuracy

of our numerical solutions. Finally, we will also demand that the solutions obey

appropriate periodicity conditions in the x-direction.
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Once the solutions of the perturbation equations are available the AC conduc-

tivity can be calculated as [40, 73] as:

σ(ω,x) =
jx(x)
iω

, with b̃x(z,x) = 1+ jx(x)z+O(z2) (6.2.16)

From this the DC conductivity may be extracted by taking the ω → 0 limit of the

Re(σ). We now turn to describing an alternative way of extracting the DC conduc-

tivities, involving knowledge of the background solution alone.

6.3 Analytic Expressions for the DC Conductivities
We now describe how to extract information regarding the electric, thermoelectric,

and thermal conductivities from knowledge of the background fields alone. This

discussion closely follows that of [40] (adapted to our coordinates).

We begin by briefly reminding the reader of the form of the linear response

transport equations in a 2+1 dimensional theory. At finite chemical potential, and

therefore finite density, the heat and electric currents may mix. Therefore Ohm’s

Law takes the more general form of:(
J

Q

)
=

(
σ αT

ᾱ T κ̄

)(
E

T

)
(6.3.1)

In our case J = Jx is the electric current and Q = T tx−µJx is the heat current and

T=−∇xT is the thermal gradient. Our approach will be to perturb our holographic

system such that E and T are introduced, consecutively, in the dual field theory.

We will then find that certain radially conserved currents will allow us to read off

the conductivity pairs of (ᾱ,σ) and (κ̄,α) from the near horizon geometry of the

background.

6.3.1 Response from hydrodynamic perspective

At the outset however, we should remark the following. The DC response of the

system comprises of two components: a response due to impurity scattering which

leads to momentum relaxation and Drude peak behaviour and a more primitive

hydrodynamic response present even in translationally invariant systems. Specifi-
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cally, we may write as in [61] the low frequency conductivity in the form

σ(ω) =
Kσ τ

1− iω τ
+σh(T,µ) , (6.3.2)

to emphasize that there is a calculable contribution to transport even when momen-

tum dissipation is swtiched off. Of course, this contribution has to be extracted

after subtracting off the divergent DC conductivity arising from the delta function

contribution at ω = 0 in the τ → ∞ limit.

In the hydrodynamic limit3 there is only a single response coefficient given by

σh. To see this, note that the limit involves frequencies and momenta which are

much smaller than the characteristic thermal scale. The lattice if present is treated

as a spatial long-wavelength perturbation about a homogeneous background. The

hydrodynamic energy-momentum and charge currents to first order in spatio-temporal

gradients take the form

T µν = ε uµ uν + pPµν −2η(T,µ)σ
µν −ζ (T,µ)ΘPµν

Jµ = ρ uµ +σh(T,µ)
(

Eµ −T Pµα
∇α

(
µ

T

))
. (6.3.3)

where Pab = gµν +uµ uν , is the spatial projector, σ µν is the shear tensor and Θ is

the fluid expansion. The thermodynamic data is encoded in the energy density ε ,

pressure p and charge density ρ and we have assumed that the underlying system

is relativistic with Lorentz invariance being only broken by the choice of inertial

frame picked by the fluid (through uµ ).4

The shear and expansion contributions are tensor and scalar modes in the hy-

drodynamic expansion, leaving the contribution coming from the electric field and

the gradient of the chemical potential and temperature to be the only vectorial part

of transport. The existence of a single vectorial transport encoded in σh is related

to the fact that fluids are required to satisfy the second law of thermodynamics.

3 We use the phrase ‘hydrodynamic limit’ to refer to the low energy description of translation-
ally invariant systems which is traditionally well described by relativistic hydrodynamics. Our aim
here is to illustrate the fact that underneath the Drude peak, there is a single frequency independent
‘hydrodynamic conductivity’ captured by σh.

4 In writing this expression we have chosen to fix some field redefinition ambiguity inherent in
hydrodynamics by demanding that uµ be a timelike eigenvector of the stress tensor with eigenvalue
being the energy density (Landau frame).
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Allowing for three independent vector transport coefficients is inconsistent with

the existence of an entropy current with non-negative definite divergence, cf., [61].

Translating this observation we require that in the hydrodynamic limit:5

σ = σh , α = ᾱ =−µ

T
σh , κ̄ =−α µ =

µ2

T
σh (6.3.4)

This can be used to check some aspects of numerics in the high temperature regime

(where all our models exhibit metallic behaviour).

6.3.2 Membrane paradigm for response

Having understood what the relations we expect are, we can now turn to asking

what the holographic modeling has to say about the transport coefficients of inter-

est.

We start by considering the electric and thermoelectric conductivities, σ , and

ᾱ . To extract the DC conductivities we modify the perturbation ansatz: (htt ,hzz,hxx,

hyy,htx,htz,hzx,by,bz,η) are time-independent and bx = bx(z,x)− ε E t . We may

then proceed as described in Section 6.2.2 and derive the corresponding equations

of motion.6 It may then be easily checked that the linearized perturbation equations

for the gauge field imply ∂x(
√−gZ Fxr)= 0 and ∂r(

√−gZ Frx)= 0, and therefore7

J =
√−gZ Fxr = constant. (6.3.5)

As this quantity is a constant it can be evaluated anywhere including at the

horizon. In order to derive an explicit form for such an expression we wish to

extract the leading scaling of the fields near the horizon. This may be done, as

above, by transforming into ingoing coordinates and demanding the regularity of

5 A version of this relation was derived without invoking the second law but using holography in
[57]. They however derive a relation that mixes zeroth and first order in gradients, which is at odds
with interpreting hydrodynamics as a low energy effective theory. Disentangling this leads to the
relation we quote in Equation 6.3.4.

6 For the purpose of the argument that follows the details of gauge-fixing of the equations is
inessential.

7 We will use J and Q to denote the bulk conserved quantities, which will of course agree with
the boundary charge and thermal currents.
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the stress-energy and Einstein tensor. The results are as follows:

htt(z,x)' 4πh0
tt(x)(1− z)+O(1− z)2, htz(z,x)' h0

tz(x)+O(z−1)

htx(z,x)'
√

Qxx(1,x)
Qyy(1,x)

h0
tx(x)+O(1− z), hzx(z,x)'

√
Qxx(1,x)
Qyy(1,x)

4πT (1− z)
h0

rx(x)+O(1− z)

hxx(z,x)' h0
xx(x)+O(1− z), hyy(z,x)' h0

yy(x)+O(1− z)

η(z,x)' η
0(x)+O(1− z), bt(z,x)' b0

t (x)+O(1− z)

bz(z,x)'
1

4πT (1− z)
b0

z (x)+O(1− z), bx(z,x)' log(4πT (1− z))b0
x(x)+O(1− z)

(6.3.6)

and with the restrictions that:

h0
zx(x) = h0

tx(x), h0
zz(x) = 2h0

tz(x)−h0
tz(x), (6.3.7)

b0
x(x) =

E
4πT

, b0
z (x) = b0

t (x)

in order that Einstein and stress energy tensor be regular in this coordinate system.

Note that for convenience we have chosen to include factors of the background

metric fields evaluated at the horizon in our definition of h0
tx,h

0
zx.

Expanding our expression for J and utilizing these near horizon expansions

we obtain the following equation:√
Qxx

Qyy

(
J

Z(φ)
−A0

h0
tx(x)
Qzz

)
+b0′

t (x)−E = 0 (6.3.8)

where all background fields have been evaluated at the horizon.

The next step is derive a similar expression for another conserved quantity

which, as explained in [40], corresponds to the thermoelectric conductivity. To do

so we note that if ξ is a Killing vector satisfying Lξ F = 0 then we may define:

G αβ = ∇
α

ξ
β +

1
2

ξ
[αFβ ]σ Aσ +

1
4
(ψ−2θ)Fαβ (6.3.9)
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with ψ and θ defined as Lξ A= dψ and iξ F = dθ .8 This has the important property

that

∇αG αβ = 3ξ
β (6.3.10)

Choosing the Killing vector, ξ = ∂t and utilizing the above identity and the equa-

tions of motion it can be shown that ∇xG xr = ∂x(
√−gG xr) = 0 and ∇rG rx =

∂r(
√−gG rx) = 0 and that therefore that9

Q =
√−gG rx = constant. (6.3.11)

If we now choose that θ = −(−ε E x+A0(z,x)+ ε bt(z,x)) and ψ = ε E x, and

expand Q around the horizon as we did J , we obtain at leading order:

Q =−4π T h0
tx(x) . (6.3.12)

This indicates that h0
tx(x)= h0

tx is a constant. Working at subleading order we obtain

a constraint expression which, with a little rearranging, can be written as:√
Qxx

Qyy

(
h0

tx

2πT Qzz

(
π T ∂z log

(
Qxx Qzz

Q3
tt Qyy

)
−8π T +6

)
− J A0

4π T Qzz

)
+

∂

∂x
h0

tz(x)
Qzz

= 0

(6.3.13)

where again all background fields are being evaluated at the horizon. Integrating

this expression over one period of the background, the last term vanishes as a total

derivative whose boundary contributions cancel as a result of periodicity. We may

then solve for the only remaining perturbative field, h0
tx, in terms of J . Perform-

ing the same trick with equation Equation 6.3.8 we see that the ∂xb0
t (x) disappears

under integration, and the result gives us J = J (h0
tx,E). Combining these two

results we obtain an expression for the conductivity. To write the expressions com-

8 Here L denotes the Lie derivative along the indicated field and iξ indicated contraction with
the vector field.

9 The derivation of the conserved charges, J , and, Q, is presented in full generality in the
appendix of [39]. We have also explicitly checked that the derivation of the conserved currents and
charges holds for the model we are considering.
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pactly it is useful to introduce some notation; let

I1 =
∫

dx
(

6−8π T +π T ∂z log
(

Qxx Qzz

Q3
tt Qyy

))√
Qxx

Qyy Q2
zz
,

I2 =
∫

dx
1

Z(φ)

√
Qxx

Qyy
,

I3 =
∫

dx
A0

Qzz

√
Qxx

Qyy
.

(6.3.14)

In terms of these integrals we find that the DC electric conductivity and the ther-

moelectric conductivity are given as

σ =
2 I1

2 I1 I2− I2
3
,

ᾱ =
Q

T E
=− 4π I3

2 I1 I2− I2
3
.

(6.3.15)

The calculation of the thermal and thermoelectric conjugate conductivities, κ̄ ,

and α proceeds in a very similar fashion. In this case however our ansatz for the

form of the perturbations contains two time-dependent components bx = bx(z,x)−
ε t τ A(z,x) and htx = htx(z,x)− ε t Qtt(z,x)

f (z)
z2 .10 The restriction of regularity in

ingoing coordinates again determines the leading scalings for the fields. The result

for the htx and bx fields is found to be:

htx(z,x)'
√

Qxx

Qyy

(
h0

tx(x)+4πT hl
tx(x)(1− z) log(4πT (1− z))

)
+O(1− z)

(6.3.16)

bx(z,x)' b0
x(x)+O(z−1)

10 The form of the coupled metric and gauge field perturbation is chosen such that the equations
of motion remain time-independent. In writing the form of the metric perturbation as above we
have tacitly modified our background metric ansatz such that Qxz = 0. This is done to avoid the
more complicated form of the metric perturbation necessary if Qxz 6= 0. It has been checked that the
response function results derived from the near horizon behaviour do not change as a result of this
modification.
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while all other fields exhibit the same scalings and constraints as displayed in equa-

tions Equation 6.3.6. The constraints displayed in Equation 6.3.7 are modified by

the presence of a logarithmic term in the htx expansion and the lack of an external

electric field. The resulting constraints are given by:

h0
zx(x) = h0

tx(x), h0
zz(x) = 2h0

tz(x)−h0
tz(x) (6.3.17)

b0
z (x) = b0

t (x), hl
tx =−

Qttτ

4πT

√
Qzz

Qxx

In order to obtain expressions for the response functions which do not involve

the background fields we expand the conserved quantities of, J , and Q to leading

and subleading order, respectively, near the black hole horizon. The leading order

term in the expansion of Q again indicates that h0
tx(x) is:

Q =−4π T h0
tx(x) (6.3.18)

While the remaining two constraints displayed in equation Equation 6.3.19 may be

integrated over a single period such that they become linear equations in J h0
tx and

τ .√
Qxx

Qyy

(
J

Z(φ)
−A0

h0
tx

Qzz

)
+b0′

t (x) = 0√
Qxx

Qyy

(
h0

tx

2πT Qzz

(
πT ∂z log

(
QxxQzz

Q3
ttQyy

)
−8πT +6

)
− J A0

4πT Qzz

)
+

∂

∂x
h0

tz

Qzz
+ τ = 0

(6.3.19)

This information is sufficient to calculate the thermal and conjugate thermo-electric

conductivities:

κ̄ =
Q

T τ
=

16π2T I2

2 I1 I2− I2
3

α =
J

T τ
=− 4π I3

2 I1 I2− I2
3

(6.3.20)

Once we have an expression for κ̄ we may easily calculate the conjugate ther-
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mal conductivity, κ which corresponds to the the thermal conductivity at zero elec-

tric current. This is done via the relation

κ = κ̄− α2T
σ

=
8π2T

I1
(6.3.21)

It is reassuring to note that the α = ᾱ as it should since our system does not

break time reversal invariance. We may also check that the high temperature limit

of the response functions behaves in the expected fashion. This limit may be ex-

tracted by expanding around T
µ
= T√

6−8πT
→∞. In this limit the solution resembles

that of a Schwarzschild-ADS black hole and so appropriate field substitutions are:

A0→ δε µ, Qzz→ 1+δε ∆Qzz, Qtt → 1+δε ∆Qtt , (6.3.22)

Qxx→ 1+δε ∆Qxx , Qyy→ 1+δε ∆Qyy Qxz→ δε ∆Qzz,

φ → δε ∆φ , µ → δε µ

where we may now expand around δε = 0.11 We find in this limit that α = ᾱ → 0

and κ̄ → ∞ diverges as the effects of momentum dissipation are removed from the

system. The electrical conductivity, σ , asymptotes to Z(0) = 1, the known result

for Schwarzschild-ADS. Furthermore, we can confirm that in the hydrodynamic

regime the relation between the conductivities Equation 6.3.4 is satisfied. In fact,

from Equation 6.3.15 and Equation 6.3.20 we learn that in the hydrodynamic limit

the background geometry should satisfy 2 I1 I2− I2
3 = 0.12

It was shown in [73] and [39] that the breaking of translational invariance

in holographic models produces a low frequency AC conductivity well fit by the

Drude model of conductivity. We confirm that this is true in our model in the ap-

pendix. It will therefore be interesting to test if our model obeys the Wiedemann-

Franz law at any point in its phase diagram. We therefore calculate the Lorenz

11 The high temperature limit may also be accessed by undoing the scalings of the action and equa-
tions of motion which are used to keep the location of the horizon fixed at z = 1 as the temperature is
changed. As the location of the black hole horizon, zp, then approaches the conformal boundary as
T
µ
→ ∞ we may find the high temperature behaviour of the response functions by expanding around

zp = 0. The appropriate expansions of the fields in this limit is determined by their known conformal
behaviour. As expected the results from this approach agree with those presented in the text.

12 Strictly speaking this relation is valid in the translationally invariant case, where the DC con-
ductivity contribution of the Drude peak diverges.
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factors for both κ and κ̄ as follows:

L̄ =
8π2 I2

I1
(6.3.23a)

L =
4π2 (2 I1 I2− I2

3 )

I2
1

(6.3.23b)

In Section 6.4 we will see that the that these expressions are not constant in either

the metallic or insulating phases of our model, confirming departures from the

Wiedemann-Franz law.

6.4 Transport Results for Holographic Systems
We regard the present effort as a first step of exploring the vast phase diagram of

the the effective holographic theories, identifying interesting corners for further

study. In this section we discuss features of the DC conductivities and the optical

conductivity, and qualitative changes in the physics as we vary parameters. We

argue that these changes indicate the existence of metal-insulator quantum phase

transitions at various loci in the phase diagram.13

Let us start with a brief description of the numerical techniques we employ, be-

fore describing our main results. For those interested, much more detail regarding

the development and testing of our numerical methods is provided in Section D.1.

In order to solve our PDEs numerically we discretize them using spectral methods

[17, 126]. A Chebyshev grid was employed in the radial direction and a Fourier

grid in the spatial direction, which imposes spatial periodicity, as discussed above.

The solution of the non-linear background equations uses both Newton and quasi-

Newton methods, whereas the solution of the perturbation equation only necessi-

tates the inversion of a matrix, for which we use direct methods.

6.4.1 DC conductivities

We start by exploring the direct electric and thermoelectric conductivities. These

are calculated using horizon data, as explained in Section 6.3. The electric con-

13 The phrase, phase diagram, here refers to changing both the sources in a given theory (by tuning
the period of the lattice set by k) as well as explorations across theories (by changing Lagrangian
parameter υ).
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ductivity is also calculated as the zero frequency limit of the optical conductivity.

Besides providing a check of the numerics, the low frequency behaviour of the

optical conductivity helps in understanding and elucidating the IR physics.

Since we are working at finite temperature, we cannot probe the metal-insulator

quantum phase transition directly. Nevertheless, by interpolation of our knowl-

edge of both the temperature dependence of the DC and optical conductivities to

sufficiently low temperatures, we can diagnose the presence of such transition as

function of parameters. In our exploration we fix C = 1.5, and discuss the phase

diagram as function of υ as well as the perturbation wavenumber k. Varying these

two parameters we find both metallic and insulating regimes, and transitions be-

tween them.

In Figure 6.1 we show a representative sample of the DC conductivities with

k = 1 and varying υ . We clearly observe the transition from an insulating to metal-

lic behaviour as the value of υ is increased. For low value of υ , which includes the

Einstein-Maxwell model of [73], we find a distinct insulating behaviour: the con-

ductivity decreases at low temperatures and seems to vanish at zero temperature.

On the other hand, for sufficiently large υ the opposite behaviour is manifest: the

conductivity is increasing with temperature and seems to diverge at zero tempera-

ture. In the transition region, the conductivity shows no distinct trend – this is the

region which is a bad or incoherent metal at low temperatures.

A similar trend can be seen in the DC thermoelectric conductivity, which is also

monotonically increasing as we lower the temperature, for small values of υ . As we

increase υ the curve begins to kink downwards at low temperatures until eventually

a well defined turning point is formed. This turning point migrates towards larger

temperatures as we continue to increase our control parameter. We conclude that

the transition between metallic and insulating behaviour exists in this observable

as well.

It is interesting to note that no such transitions occur in the thermal conductiv-

ity, which displays a simple monotonic increase as a function of temperature for all

values of parameters we examined. Thus our theories are all good thermal conduc-

tors. In some sense this is not surprising as the Wiedemann-Franz law is explicitly

violated in our expressions for Lorenz factors in equations Equation 6.3.23a and

Equation 6.3.23b. This is confirmed by the numeric results presented in Figure 6.3.
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Figure 6.1: Plots of the DC electrical and thermoelectric conductivities
against temperature for various theories parameterized by υ , with C =
1.5,k = 1 held fixed. We clearly see the existence of the metallic and
insulating regimes separated by an intermediate region.
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Figure 6.2: Plots of both forms of the thermal conductivity, κ and κ̄ as a func-
tion of T

µ
. We note both the qualitative similarity of the two quantities

and the insensitivity to the variation in the υ parameter. In all cases
that we have examined, including those associated with the data used
to construct Figure 6.4, the thermal conductivities were seen to increase
monotonically with temperature.
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Figure 6.3: Plots of the Lorenz factors associated with L and L̄ as a function
of T

µ
. The fact that these factors are neither constant as a function of

temperature nor υ indicates that the Wiedemann-Franz law is violated.
This is in accord with the lack of a phase transition in the thermal con-
ductivity. 148
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Figure 6.4: The phase plot in the (υ ,k) plane illustrating the metal insula-
tor transition. The green data points correspond to regimes which are
clearly metallic in character with monotonically increasing DC electri-
cal conductivity at low temperatures. Likewise the red data points corre-
spond to insulating phases characterized by a monotonically decreasing
DC electrical conductivity at low temperatures. The intermediate region
between these corresponds to the transition region where a turning point
is still evident in the profile at low temperatures.

6.4.2 Metal-insulator transitions

We have seen that the finite temperature results lend themselves to interpretation

as indicative of a zero temperature metal-insulator transition. We characterize such

a phase transition by a qualitative change in the low temperature behaviour of the

response functions. One can delineate regions of the phase diagram where the

holographic theories we consider describes good metals, bad metals and insulators.

We now search for such transitions as function of υ and k.

The result, displayed in Figure 6.4, separates the parameter space into the

regimes of clear metallic and insulator phases, separated by intermediate regimes
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in which the conductivity is neither monotonically increasing or decreasing. We

see that increasing υ reduces the relevance of the sourced inhomogeneity, such that

the transition to a metallic phase occurs at lower values of k.

The intermediate phase which straddles the phase transition region can be

viewed as one where the competition between metallic and insulating orders is

strong. It is interesting to speculate in analogy with the domain model for mag-

netic phase transitions, that one is encountering pockets of the competing phases.

This leads to incoherence in the transport, reducing for instance the conductivity

from its metallic value.

We note that the phase separation between metallic and insulating behaviour

occurs along a locus k?(υ) which is monotone decreasing – as we increase the lat-

tice wavelength, we encounter a transition at lower values of υ . This suggests that

the efficacy in translating the lattice between UV and IR regions in the geometry is

playing a role in the presence/absence of “charge carriers”.14 The DC conductivity

is effectively a proxy for the weight of the charge carrier spectral function at van-

ishing frequency. The support of this spectral function is localized in the vicinity

of the horizon. This immediately follows from the fact that we have a membrane

paradigmesque formula for the conductivity.

Finally, we specialize to υ = 0 which describes the Einstein-Maxwell model

of [73]. This allows us to probe the existence of a phase transition as a function

of the wavenumber k alone.15 The results for the DC electrical conductivity are

displayed in Figure 6.6 and clearly show the existence of a quantitative change in

the temperature dependence as k is varied. However at temperatures which we may

reliable access the phase is always insulating for our choice of parameters (with

C = 1.5 held fixed). This is in contrast to the metallic phases observed for the

parameters chosen in [73].16 We have seen evidence that the transition may occur

at lower temperatures however these are difficult to probe reliably. The qualitative

shift in behaviour when moving from finite υ to υ = 0 can be illustrated by direct

examination of the background field solutions as seen in Figure 6.5.

14 We use the phrase “charge carriers” somewhat loosely since we are talking about transport in a
strongly interacting system with no obvious quasiparticles.

15 Metal-Insulator transitions in Einstein-Maxwell theory deformed by helical lattices were dis-
cussed in [43].

16 We have checked that for the parameters C,k chosen in [73] we also encounter metallic phases.
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Figure 6.5: Setting υ to be strictly zero means that the IR evolution of the
scalar field flattens out. As this behaviour of the scalar controls many
aspects of the IR physics qualitative changes in the response functions
are to be expected. 151
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Figure 6.6: The DC conductivity in the limit υ = 0 for different lattices
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the conductivity is decreasing at low temperatures. As we increase k the
DC conductivity begins to flattens at lower temperatures though for this
choice of amplitude, C = 1.5, for the sourced inhomogeneity the con-
ductivity never transitions into the metallic phase for the temperatures
which we can reliably access.

6.4.3 Optical conductivity

It is interesting to examine the AC electrical conductivity in the vicinity of the

transition between good metals and insulators. We observe that the influence of the

υ parameter on the profile of the real and imaginary parts of the AC conductivity

is minimal until T
µ

is sufficiently small. This is in keeping with the profiles of

the DC electric conductivity shown in Figure 6.1, where the profiles do not begin

to strongly differentiate until values of T
µ
' 0.06 are reached. At lower values of

T
µ

the characteristic profiles associated with Drude behaviour begin to acquire a

distinct spread as a function of υ . This AC conductivity of manifestation of the

metal-insulator transition, cf., Figure 6.7 and Figure 6.8 .

Our testing the zero frequency limit of the optical conductivity, agrees cleanly

with the explicit evaluation of the DC conductivity using the membrane paradigm

formulae. In the real part of σ(w) we observe the characteristic Drude peak. We

can confirm that the intercept σ(w= 0) agrees with the DC result obtained from the
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membrane paradigm, providing us with a nice consistency check of the numerics.

Inspection of the low frequency optical conductivity lends further evidence to

our physical picture of the low temperature transport. In Figure 6.9 and Figure 6.10

we confirm that as the temperature is lowered for parameter choice in the insulating

phase spectral weight is shifted from lower to higher frequencies, as expected.

We also check for potential mid-IR scaling regimes. A convenient way to iden-

tify this behaviour is using the diagnostic quantity which we label F(w) (cf., [40]):

F(w) = 1+w
|σ(w)|′′
|σ(w)|′ (6.4.1)

If |σ(w)| develops a scaling regime such that it behaves as |σ(w)| ∼C1 +C2w
ν ,

the quantity F(w) will be equal to a constant given by the scaling exponent ν .

In Figure 6.11 and Figure 6.12, and Figure 6.13 and Figure 6.14, we plot F(w)

for a variety of values of T
µ

and υ , including those displayed in Figure 6.7 and

Figure 6.8. We observe that as T
µ

is decreased the profiles of the diagnostics F(w)

begin to flatten out and the existence of a scaling regime becomes a real possibility.

However the existence of such a scaling regime requires the fine tuning of υ (or
T
µ

) to a very narrow parameter range. This ranges questions regarding the generic

nature and therefore physical significance of the behaviour. However, even when

scaling regimes do exist, the scaling exponent seem to be generically different than

2/3. Further questions regarding the significance and robustness of this scaling

regime is postponed to future work.17

6.4.4 High temperature limit

As described in Section 6.3 the form of the response functions should exhibit high

temperature behaviour consistent with that of the Schwarzschild-ADS black hole.

In this limit σ → 1, α = ᾱ → 0 and κ̄ → ∞. Therefore both the metallic and insu-

lating low temperature phases must transition to that generic behaviour, determined

by the conformal invariance of the UV theory, as the temperature is increased.

An interesting point to note is that, as seen in Figure 6.1, the DC electrical

conductivity increases to values well above unity in the insulating phase. This can

17 For a discussion of the difficulties involved in working in this frequency regime please see
Section D.2.
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Figure 6.7: We examine the effect of the control parameter υ on the AC con-
ductivity as T

µ
is lowered. As the value of T

µ
is lowered the influence of

υ on the form of the real conductivity curves becomes more apparent.
In this limit the curves for different values of υ can be seen to clearly
differentiate at lower values of w.
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Figure 6.8: A continuation of the sequence of figures begun in Figure 6.7
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Figure 6.9: Examining the real part of the AC conductivity as a function of
ω

T for a variety of T
µ

and υ . At small υ the constant T
µ

curves intercept
and overlap for lower values of w. This can be interpreted as the AC

representation of the incoherent phase. As υ is increased the constant
T
µ

curves separate and differentiate as we transition into a conducting
phase.
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Figure 6.10: A continuation of the sequence of figures begun in Figure 6.9
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Figure 6.11: The behaviour of the diagnostic function F(w) as we scan for
mid-range scaling behaviour as a function of υ . At low temperatures,
and for appropriately chosen values of υ , the existence of a scaling
regime is possible. For example, at temperature of T

µ
= 0.01267 we

observe that the our test function flattens out at υ ' 0.09.
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Figure 6.12: A continuation of the sequence of figures begun in Figure 6.11

be understood as consequence of the sum rule obeyed by the optical conductivity –

the suppressed low frequency spectral weight in the insulating phase has to transfer

to high frequencies, which are still low compared to the scale of the chemical

potential. Therefore for those insulating phases, a turning point must exist when

the sign of the slope of the DC electric conductivity reverses, as the low temperature

physics begins to transition to the generic high temperature behaviour. Conversely,

the existence of such turning point could be another indication of the transition to

an insulating phase.
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Figure 6.13: The behaviour of the diagnostic function F(w) as we scan for
mid-range scaling behaviour as a function of temperature. The reversal
of the slopes of F(w) as a function of temperature, for a fixed υ , imply
that it should be possible to tune to a scaling regime by appropriately
specifying the temperature.
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Figure 6.14: A continuation of the sequence of figures begun in Figure 6.13

In Figure 6.15 we plot the values of Γcrit =
T
µ

at the turning point versus υ

and k. For the DC electrical conductivity it can be seen that the position of this

turning point decreases steadily as one moves from the insulating regime towards

the metallic transition. We also plot the corresponding turning point in the DC

thermoelectric conductivity (right panel). It should be noted however that a further,

higher temperature, change of slope must exist for the thermoelectric conductivity,

as it is expected to go to zero in the high temperature limit.
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Figure 6.15: The DC electric conductivity starts off at a finite value of Γcrit =
T
µ

in the insulating phase and decreases rapidly as we approach the
metal-insulator transition. On the other hand, in the thermoelectric
conductivity, the existence of a turning point sets in as we enter the
metallic phase and steadily increases in T

µ
as we tune υ and k to move

deeper into the metallic phase.
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6.5 Conclusions and Outlook
The main goal of this article has been a preliminary exploration of the large phase

space of effective holographic theories, with a particular focus on understand-

ing the efficiency of low energy transport in these models. More specifically

we focused on the low frequency conductivity in a phenomenologically moti-

vated ADS/CFT set-up and examined the predilection of the system towards metal-

insulator phase transitions. We view our investigation as offering a large set of toy

models, with features that can be dramatically different from those of the much

studied Einstein-Maxwell theory. Our analysis has identified interesting loci in the

phase diagram where qualitative changes of the IR physics take place. The natural

next step is taking a closer look at these locations to get a better understanding of

the physics that drives these transitions in holographic systems.

One of the interesting regimes is that of incoherent, or bad metals which lie at

the interface of the metal-insulator transition. A conjecture was put forward in [56],

that transport in such incoherent metals was to be governed by diffusion processes.

The models studied here provide a natural testing ground for this conjecture.

Additionally, it is interesting to study the low lying quasinormal modes in the

incoherent and insulating phases. The motion of those quasinormal modes in the

complex plane can often elucidate the dominant physics governing the transition

or cross-overs in the qualitative behaviour of the conductivity. In this context, it

would also be interesting to quantify the scaling of the spectral weight and DC

conductivity at low frequencies. In particular, examination of the residue of the

lightest quasinormal mode (the hydrodynamic mode that contributes to charge dif-

fusion), should illuminate whether the reduction in the conductivity as we enter

the regime of incoherent metals (from the metallic side) is caused by the drop in

spectral weight or if some other physics is responsible.

From a gravitational viewpoint it would be useful to know if there is a char-

acteristic feature of the near-horizon geometry which results in this phenomenon.

Our preliminary investigations were inconclusive in ascertaining a sharp feature of

the near-horizon geometry, which could be held responsible for the incoherence

in charge transport. Ideally one would conjure up a geometric observable that is

sensitive to transport. What we can definitely conclude is that for fixed υ varying
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k demonstrates clear changes in the relevance of the inhomogeneity in all the met-

ric components. Since decreasing k increases the relevance of the inhomogeneous

scalar source, this makes it clear that smaller values of k will have a more stronger

impact in the IR transport. Comparing across values of υ is of course more com-

plicated, since we exploring behaviour in the space of theories. Indeed even in the

homogeneous case we see differing IR behaviour as we tune υ .

We have further seen that in certain small regimes of our parameter space in-

termediate frequency scaling may be possible. While our analysis of this effect has

not been comprehensive, it appears that we require a certain amount of fine-tuning

in order to achieve scaling behaviour. Moreover, in most of the cases we looked at

the exponent ν was not 2/3, which was the value seen for the cuprates [127] and in

υ = 0 models [72, 73]. While this is per se not surprising, since our explorations

with υ 6= 0 move us in the space of UV field theories, it is curious that the effect is

rather dramatic in the low frequency conductivity.

In conclusion, we hope that the results presented in this work illustrate that the

class of models considered provides an interesting phenomenological environment

for exploring detailed features of charge transport in holographic systems. We hope

to continue this exploration, and address some of the interesting questions raised

in the course of this work, in the not too distant future.
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Appendix A

Appendix: Holographic Higgs
Phases

A.1 Vortex Solutions in Flat Spacetime
The vortex solutions for the flat space Abelian Higgs model are well known. Here

we provide a brief discussion following [125], for further information see also

[110].

The action of the Abelian Higgs model is:

L =−1
4

FµνFµν +
1
2
(∇µΨ)∗(∇µ

Ψ)− 1
4

λ (|ψ|2−F2)2

The constant F is proportional to the VEV of the charged scalar field Ψ breaking

the U(1) gauge symmetry. Finite energy configurations of the fields require that

they obey the asymptotic conditions:

|Ψ| → ψ0, ∇µΨ = (∂µΨ− iqAµΨ)→ 0, as x→ ∞

Requiring cylindrical symmetry, the form of the scalar and gauge fields at infinity
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are constrained to be:

Ψ(r,θ)→ ψ0 exp(iα(θ))

Aµ →−
i
q

δµψ

ψ
=

1
qr

dα

dθ
, as r→ ∞

The winding of the phase, α , at infinity is an integer, s, which is related to the

quantized magnetic flux through the plane orthogonal to the magnetic vortices:

s =
q

2π

∫ 2π

0
Aθ rdθ =

q
2π

∮
A.dl =

q
2π
×magnetic flux

In order to see explicitly the localized nature of these vortices one is required to

examine the equations of motion. Using the ansatz Ar = A0 = 0, Aθ = A(r) and

Ψ(r,θ) = ψ(r)exp(isθ) we obtain the following equations:

−ψ(r)
[( s

r
−qA(r)

)2
+λ (ψ(r)2−F2)

]
+

ψ ′(r)
r

+ψ
′′(r) = 0

ψ(r)2
(sq

r
−q2A(r)

)
− A(r)

r2 +
A′(r)

r
+A′′(r) = 0

The falloff conditions imply that ψ(r)→ψ0 and A(r)→ s
qr

as r→∞. We may use

this information to linearize the Maxwell equation for large r by setting ψ(r) = ψ0.

Solving the resulting equation yields:

A(r)−−−→
r→∞

s
qr

+
C1√

r
exp(−qFr)

As the scalar and gauge field approach their asymptotic configurations at large r,

we expect the action to be dominated by the potential term. Therefore in order to

find the asymptotic behavior of the scalar field we examine perturbations of the

potential. Requiring that the first derivative of the potential to vanish fixes the

minimum at ψ0 =
F
2 . The fluctuations around this are of the form F2λρ(r) where

ρ(r) is the deviation of the scalar field from ψ0. Using this approximation for the
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potential in the scalar equation and setting A(r) =
s

qr
we obtain:

ψ(r)−−−→
r→∞

ψ0 +C2 exp(−
√

λFr)

The localized nature of the vortex is evident from the exponential decay of the

fields to their asymptotic values for large r. The full solution can be obtained by

solving the equations numerically.

A.2 Details of the Numerics
We solve the equations with the boundary conditions listed in section Section 2.4.2

numerically using successive over-relaxation SOR algorithm. To this end we dis-

cretize the equation on a lattice of finite mesh-size h covering the domain of inte-

gration, such that continuous spatial coordinates (ρ,w) are represented by discrete

pairs (wi,ρ j), where 1 ≤ i ≤ Nw,1 ≤ j ≤ Nρ are integers. We use a second or-

der finite differencing approximation (FDA), where the derivatives are replaced

with their finite differencing counterparts, e.g. ∂wR→ (Ri+1, j−Ri−1, j)/2h,∂ρR→
(Ri, j+1−Ri, j+1)/2h etc. Following discretization, we thus obtain finite difference

equations, at every mesh point, for each field. We iteratively solve the entire sys-

tem of algebraic equations using pointwise SOR starting with an initial guess for

the fields, until a desired precision is achieved. Typically we initialize our scalar

and A0 gauge field with the values of the homogeneous solution (found by solving

the ODEs using shooting) and set the Aθ field to its expected asymptotic value of

s/q. Along the horizon an initial guess is made for the scalar and Aθ fields which

interpolates exponentially between the zero boundary condition at ρ = 0 and the

expected asymptotic values at the ρ → ∞ boundary. We use similar SOR parame-

ters for all fields. These are calculated at each step via Chebyshev iteration. In this

iteration the spectral radius of the Jacobi iteration is chosen, for simplicity, to be

that of the Laplace equation with Dirichlet boundary conditions, see Section 19.5

of [109] for further details and the algorithm.

While Dirichlet boundary conditions are implemented by assigning the fields

their initial values throughout the relaxation procedure, Neumann or Robin bound-
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ary conditions are updated after each iteration. We do this by using the backwards

FDA derivative operators to update the boundary grid points based on the values

calculated at the interior points. It turns out that at the horizon such a straight-

forward implementation of the regularity conditions Equation 2.4.8 is numerically

unstable. As these conditions relate the radial and tangential derivatives of the

fields along the horizon they yield, upon discretization, a pair of coupled polyno-

mial equations which relate the values of the fields at grid points in the near horizon

region. Attempting to solve these polynomial equations to update the values of the

boundary grid points after each iteration resulted in instabilities, which we attribute

to the fact that the linearized scalar equation near the horizon is ill-posed (the effec-

tive mass terms and the elliptic operator have the same sign). The physical reason

of this instability can be traced to the fact that the effective scalar mass in the near

horizon region violates the Breitenlohner-Freedman bound, so that it triggers an

instability and formation of a condensate.

We found that a stable implementation of the constraint equations Equation 2.4.8

is to evaluate all terms in the equation, except for the radial derivative, on the line

of grid points just before the horizon, and to then use the FDA form of the radial

derivative to extrapolate to the values of the fields on the horizon. This approach

is consistent with the bulk equations of motion and identical to implementing the

desired constraint equations when the continuum limit is taken (i.e. the limit in

which the step size is taken to zero).

While our numerical lattice extends all the way from the horizon w = 1 to the

conformal boundary w = 0, it covers only finite domain in the transverse direction

0< ρ < ρcut . The truncation radius ρcut is chosen such that our numerical solutions

are altered by less than 0.01% when ρcut is increased. Typically we use ρcut ∼
100− 120. In addition, we checked that asymptotically our PDE solutions of the

vortex configuration converged to the ODE solutions of the translationally invariant

configuration at the transverse boundary to accuracies of 0.01% or higher.

Finally we discuss convergence of our finite-differencing numerical solutions.

The rate of convergence is assessed based on the assumption that in the continuum

limit, when the grid-size tends to zero, the discrete solution on the mesh h, des-

ignated uh, approaches the continuum solution, u∗, namely uh = u∗+O(hn). The

power n measures the rate of convergence. It can be calculated by running sim-
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ulations with similar parameter settings on a sequence of meshes with decreasing

mesh-spacings h,h/2 and h/4, and computing n = log2(uh− uh/2)/(uh/2− uh/4).

We found that the convergence rate in our case is very close to n = 2 for the scalar

and Aθ fields as expected for second order FDA, provided the numerical lattice is

sufficiently dense to ensure we are in convergent regime. The convergence rate for

for the A0 field was seen to be somewhat lower at, n' 0.7. Typical meshes that use

to obtain results seen in Figure 2.7 are of size Nw×Nρ = 400×1000, which yields

grid spacings of order hw×hρ ' 0.0025×0.1.
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Appendix B

Appendix: Striped Order in
AdS/CFT

B.1 Asymptotic Charges

B.1.1 Deriving the charges

Since our ansatz is inhomogeneous and includes off-diagonal terms in the met-

ric, and our action is not standard (in that it includes the axion coupling) we have

re-derived the expressions for the charges and other observables in our geome-

try. In deriving the asymptotic charges of our spacetime, for the four dimensional

Einstein-Maxwell-Higgs theory we discuss in the main text, we follow the covari-

ant treatment of [107, 108]. We refer the reader to those papers for details of the

method used.

The bulk action has to be supplemented by boundary terms of two types. First,

there are boundary terms needed to ensure that the variational problem is well-

defined. Then there are counter-terms, terms depending only on the boundary val-

ues (leading non-normalizable modes) of fields on the cutoff surface, which are

added to render the on-shell action and the conserved charges finite. Both kinds of

boundary terms are the standard ones for Einstein-Maxwell-Higgs theory; the ad-

ditional axion coupling does not necessitate an additional boundary terms of either
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kind as long as the scalar mass satisfies m2 < 0.

We find it convenient to study the first variation of the on-shell action, which

always reduces to boundary terms. The expression for the regulated first variation

of the on-shell action can be differentiated with respect to the boundary values of

the bulk fields, to give finite expressions for the conserved charges. We write those

expressions below in terms of the asymptotic expansion of the fields occurring in

our ansatz, carefully taking into account the differences between our coordinate

system and the standard Fefferman-Graham form of the asymptotic metric, which

is used to derive the standard expressions in the literature.

Having explained our procedure, we now display the expressions for the ob-

servables used in the main text. We first assume the radial coordinate is in the

standard Fefferman-Graham form, and then discuss additional terms arising from

change of coordinate necessary to bring our asymptotic metric into the standard

form.

For the scalar fields ψ , one can write asymptotically

ψ(x,r) = ψ
(0)(x)r−λ−+ψ

(1)(x)r−λ+ (B.1.1)

with

λ± =
3
2
±
√

9
4
+m2. (B.1.2)

We set ψ(0)(x) = 0 as part of our boundary conditions, then the coefficient ψ(1)(x)

is the spatially modulated VEV of the scalar operator dual to ψ .

Similarly, the gauge field can be expanded near the boundary as

Aµ(x,r) = A(0)
µ (x)− A(1)

µ (x)
r

. (B.1.3)

The functions A(1)
µ (x) correspond to the charge and current density of the boundary

theory.

As for the boundary energy-momentum tensor, the expression is fairly simple

in odd number of boundary dimensions, and we have checked that it is not modified
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by the matter action. With our normalization convention one can write

Ti j = 6g(3)i j , (B.1.4)

where the superscripts of the metric functions denote the order in the asymptotic

expansion.

Since our metric ansatz is not of the Fefferman-Graham form, we need to per-

form a change of coordinate (in the x,r plane, for which we used the conformal

ansatz) to put the metric is such a form. The details of the transformation are

straightforward and the process results in the following shifts in the asymptotic

metric quantities:

∆g(3)i j =
2
3

g(x), (B.1.5)

for every i, j, where g(x) is the leading asymptotic correction to the metric compo-

nent grr. That is, at large r that metric component becomes

grr(r,x)→
1

2r2 +
g(x)
r5 . (B.1.6)

Finally, since the metric becomes diagonal asymptotically, the non-vanishing

time components of the energy-momentum tensor Ttt and Tyt have a simple inter-

pretation as energy and momentum density, respectively. The conserved charges

are given by integrating those densities over a spatial slice.

B.1.2 Explicit expressions for the charges

Homogeneous solution

For reference, in this subsection we give the explicit expressions for the homoge-

neous RN solution in our conventions. The radius of the horizon is given in terms

of the temperature by

r0 =
1
6

(
2πT +

√
3µ2 +4π2T 2

)
. (B.1.7)

182



The mass, entropy and charge of the RN solution of fixed length L are

MRN =
(
4r3

0 +µ
2r0
)

L, (B.1.8)

SRN = 4πr2
0L, (B.1.9)

NRN = 2r0µL. (B.1.10)

The corresponding densities in the infinite system are given by dividing through by

L.

Inhomogeneous solution

Here we list explicit expressions for the thermodynamic quantities in our system

in terms of our solution ansatz. Conserved charges are given by integrating over

the inhomogeneous direction. We define f (3) = −(4r3
0 + µ2r0)/4, the 1/r3 term

from the function f (r) (equation (4.2.3)), and X (3)(x), for X = {R,S,T}, as the

coefficient of the 1/r3 term of the corresponding metric function. The energy-

momentum tensor yields the mass1

M =
∫ L

0
〈T tt(x̃)〉dx̃ = 4

∫ L

0
ξ (x)2(− f (3)+5S(3)(x)+3T (3)(x))dx, (B.1.11)

the tension in the x direction

τx =−
∫ L

0
〈T xx(x̃)〉dx̃ = 2

∫ L

0
ξ (x)2( f (3)+6R(3)(x)+4S(3)(x)+6T (3)(x))dx,

(B.1.12)

and the pressure in the y direction

Py =
∫ L

0
〈T yy(x̃)〉dx̃ =−2

∫ L

0
ξ (x)2( f (3)+6R(3)(x)+10S(3)(x))dx. (B.1.13)

Now, expanding the equations of motion at the asymptotic boundary, we get the

relation R(3)(x)+2S(3)(x)+T (3)(x) = 0. Using this, we see that 〈T µν(z)〉 is trace-

less, as necessary. Conservation of the energy momentum tensor requires ∂xτx = 0.

This is related to the constraint equation (4.2.18) and we explain our strategy to

1See appendix B.2.3 for details about the numerical process, including the definitions of the x̃
coordinate and ξ (x). The functions {R,S,T} are defined on the UV grid; they are analogous to
{A,B,C} in the original ansatz.
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ensure it is satisfied in appendix B.2.3.

The coefficient of the 1/r falloff of the gauge field gives the charge

N =−2
∫ L

0
A(1)

t (x). (B.1.14)

At the horizon, we read the (constant) temperature as

T =
1

8πr0
(12r2

0−µ
2)e−(B−A)|r=r0 (B.1.15)

and the entropy is proportional to the area of the event horizon, given by

S = 4πr2
0

∫ L/4

0
e(B(r0,x)+C(r0,x))dx. (B.1.16)

B.1.3 Consistency of the first laws

Here, we discuss the first laws for both the finite length stripe and the stripe on the

infinite domain.

Finite system

In our system, as described above, we have unequal bulk stresses τx
2 and Py. Then,

if we have a rectangle of side lengths (L,Ly), the work done by the expansion or

compression of this region will differ depending on which direction the stress is in.

The usual −PdV term in the first law is replaced and we have

dM̂ = T dŜ+µdN̂ + τxLydL−PyLdLy, (B.1.17)

where the hatted variables represent thermodynamic quantities integrated over the

entire system. Defining densities (in the trivial y-direction) by

M =
M̂
Ly

, S =
Ŝ
Ly

, N =
N̂
Ly

, (B.1.18)

2We define τx =−Px, where Px is the pressure in the x direction. For our solutions, τx > 0.
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we can write the first law as

dM = T dS+µdN + τxdL+
dLy

Ly
(−M+T S+µN−PyL). (B.1.19)

Tracelessness of the energy-momentum tensor implies M = L(Px +Py), so that the

term proportional to dLy can be rewritten as the conformal identity (4.4.3), which

disappears for a conformal system described by the first law (4.4.1). Therefore, the

first law (4.4.1) and the conformal identity (4.4.3) are consistent.

Infinite system

For the infinite system, we define densities in both the x and y directions as equation

(4.5.1). Under the scaling symmetry (4.2.19), these scale as

m→ λ
3m, s→ λ

2s, n→ λ
2n. (B.1.20)

Using the first law (4.5.2), we derive the conformal identity (4.5.3). Again, we

can see this from the first law for the system with integrated charges. Plugging the

densities m,s,n into the first law of the finite length system (4.4.1), we arrive at

dm = T ds+µdn+
dL
L
(−m+T s+µs+ τx). (B.1.21)

Using the conformal identity of the finite length system (4.4.3), we see that the

term proportional to dL is just the conformal identity for the infinite system, which

is satisfied for a system described by (4.5.2).
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B.2 Further Details about the Numerics

B.2.1 The linearized analysis

Following [34], we look for static normalizable modes around the RN background.

We consider the fluctuation3

δgty = λ

(
(r− r0)

r
w(r)sin(kx)

)
,

δAy = λ (a(r)sin(kx)),

δψ = λ (φ(r)cos(kx)), (B.2.1)

where λ is a small parameter in which we can expand the equations. Putting this

ansatz into (B.2.6) - (B.2.12) and expanding to linear order in λ , we arrive at the

linearized system

w′′(r)− r0a′(r)
r3(r− r0)

+
(4r−2r0)w′(r)

r(r− r0)
+

w(r)
(
2r0
(
4r3 +4r2r0 +4rr0

2− r0
)
− k2r2

)
r2 (4r4− r (4r03 + r0)+ r02)

= 0,

a′′(r)+

(
8r4 + r

(
4r0

3 + r0
)
−2r0

2
)

a′(r)
r (4r4− r (4r03 + r0)+ r02)

−

k2a(r)
4r4− r (4r03 + r0)+ r02 +

c1kr0φ(r)√
3(4r4− r (4r03 + r0)+ r02)

−

4rr0w′(r)
4r3 +4r2r0 +4rr02− r0

− 4r0
2w(r)

4r4− r (4r03 + r0)+ r02 = 0, (B.2.2)

φ
′′(r)+

c1kr0a(r)
2
√

3r2 (4r4− r (4r03 + r0)+ r02)
−

φ(r)
(
k2 +2m2r2

)
4r4− r (4r03 + r0)+ r02 −

(
−16r3 +4r0

3 + r0
)

φ ′(r)
4r4− r (4r03 + r0)+ r02 = 0.

Fixing the scalar field mass as m2 = −4, there are three parameters in these equa-

tions: the temperature of the black brane T0 (equivalently the location of the hori-

3Regularity at the black hole horizon enforces that δgty(r0) = 0.
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zon r0), the wavenumber k, and the strength of the axion coupling c1. In this

analysis, we will choose c1 and k and then use a shooting method to find the T0 at

which normalizable modes appear.

Due to the linearity of the equations, the scale of our solutions is arbitrary. We

use this to fix a Dirichlet condition on w at the horizon. Changing coordinates to

ρ =
√

r2− r2
0, and expanding the equations near ρ = 0 gives regularity conditions

on the fluctuations at the horizon in terms of Neumann boundary conditions. Our

horizon boundary conditions are then

w(ρ)|ρ=0 = 1, w′(ρ)|ρ=0 = a′(ρ)|ρ=0 = φ
′(ρ)|ρ=0 = 0, (B.2.3)

Namely, that the fields are quadratic in ρ near the horizon. In order to search for

normalizable modes, we set the sources in the field theory to zero by imposing

leading order fall-off conditions near the ADS boundary:

w(ρ) =
w3

ρ3 + . . . , a(ρ) =
a1

ρ
+ . . . , φ(ρ) =

φ2

ρ2 + . . . . (B.2.4)

In practice, after fixing c1 and k, we use T0 as a shooting parameter to find the

solution with the correct w fall-off and the corresponding critical temperature Tc.

For each c1, we find a range of unstable momenta. By adjusting the strength

of the axion coupling, one can find a large variation in the size of this unstable

region in the (k/µ,T0/µ) plane (see Fig. B.1). The relationship between c1 and

the maximum critical temperature is well fit by T max
c (c1)/µ = 0.025c1− 0.091.

The wavenumbers for the dominant critical modes, corresponding to T max
c (c1), for

select c1 are found in Table B.1.

c1 T max
c /µ kc/µ Lµ/4 = π/2kc

4.5 0.012 0.75 2.08
5.5 0.037 0.92 1.71
8 0.11 1.3 1.21
18 0.37 2.85 0.55
36 0.80 5.65 0.28

Table B.1: The maximum critical temperatures and corresponding critical
wavenumbers for varying c1.
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Figure B.1: The critical temperatures at which the RN black brane becomes
unstable, for varying axion coupling c1. As the strength of the axion
coupling increases, the size of the unstable region (the area under the
critical temperature curve) also increases.

B.2.2 The equations of motion

For completeness, here we present the equations of motion derived from the La-

grangian (4.2.1). The Einstein equations in our case are four second order elliptic

equations for the metric components and two constraint equations. For the com-

pactness of the expressions, we define

ÔU · ÔV = ∂rU∂rV +
1

4r4 f
∂xU∂xV, Ô2U = ∂

2
r U +

1
4r4 f

∂
2
x U. (B.2.5)

The four elliptic equations, formed from combinations of Gt
t−T t

t = 0, Gt
y−T t

y = 0,

Gy
y−T y

y = 0, and Gr
r +Gx

x− (T r
r +T x

x ) = 0, then take the form
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Ô2A+(ÔA)2 + ÔA · ÔC− e−2A+2C

2 f
(ÔW )2− e−2A

4r2 f
(ÔAt)

2

− 1
4r2

(
e−2AW 2

f
+ e−2C

)
(ÔAy)

2− e−2AW
2r2 f

ÔAt · ÔAy +

(
5
r
+

3 f ′

2 f

)
∂rA

+

(
1
r
+

f ′

2 f

)
∂rC+

3
r2 −

3e2B

r2 f
+

e2Bm2ψ2

4r2 f
+

3 f ′

r f
+

f ′′

2 f
= 0, (B.2.6)

Ô2B+
1
2
(Ôψ)2− e−2A+2C

4 f
(ÔW )2− ÔA · ÔC− 1

r
∂rA

+

(
2
r
+

f ′

2 f

)
∂rB−

(
1
r
+

f ′

2 f

)
∂rC = 0, (B.2.7)

Ô2C+(ÔC)2 + ÔA · ÔC+
e−2A+2C

2 f
(ÔW )2 +

e−2A

4r2 f
(ÔAt)

2

+
1

4r2

(
e−2AW 2

f
+ e−2C

)
(ÔAy)

2 +
e−2AW
2r2 f

ÔAt · ÔAy

+
1
r

∂rA+

(
5
r
+

f ′

f

)
∂rC+

3
r2 −

3e2B

r2 f
+

e2Bm2ψ2

4r2 f
+

f ′

r f
= 0, (B.2.8)

and

Ô2W − ÔA · ÔW +3ÔC · ÔW − e−2CW
r2 (ÔAy)

2

−e−2C

r2 ÔAt · ÔAy +
4
r

∂rW = 0. (B.2.9)

The matter field equations are

Ô2
ψ + ÔA · Ôψ + ÔC · Ôψ +

c1e−A−C

8
√

3r4 f
(∂rAt∂xAy−∂xAt∂rAy)

+

(
4
r
+

f ′

f

)
∂rψ−

e2Bm2ψ

2r2 f
= 0, (B.2.10)
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Ô2At − ÔA · ÔAt + ÔC · ÔAt +
e−2A+2CW

f
ÔW · ÔAt + ÔW · ÔAy

+2WÔC · ÔAy−2WÔA · ÔAy +
e−2A+2CW 2

f
ÔW · ÔAy

+
c1

4
√

3r2

(
eA−C− e−A+CW 2

f

)
(∂rψ∂xAy−∂xψ∂rAy)

−c1e−A+CW
4
√

3r2 f
(∂rψ∂xAt −∂xψ∂rAt)+

2
r

∂rAt −
W f ′

f
∂rAy = 0, (B.2.11)

and

Ô2Ay + ÔA · ÔAy− ÔC · ÔAy−
e−2A+2CW

f
ÔW · ÔAy−

e−2A+2C

f
ÔW · ÔAt

+
c1e−A+C

4
√

3r2 f
(∂rψ∂xAt −∂xψ∂rAt)+

c1e−A+CW
4
√

3r2 f
(∂rψ∂xAy−∂xψ∂rAy)

+

(
2
r
+

f ′

f

)
∂rAy = 0. (B.2.12)

Finally, the constraint equations are

−2e−2B f r2(∂x∂rA+∂x∂rC)+2e−2B f r2
∂rA(∂xB−∂xA)

+2e−2B f r2 (∂xA+∂xC)∂rB+2e−2B f r2 (∂xB−∂xC)∂rC− e−2Br2 f ′∂xA

+e−2B (r2 f ′+4 f r
)

∂xB+ e−2(A+B) (∂xAt +W∂xAy)(∂rAt +W∂rAy)

+r2e−2(A+B−C)
∂xW∂rW − f e−2(B+C)

∂xAy∂rAy−2e−2B f r2
∂xψ∂rψ = 0

(B.2.13)
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and

∂
2
r A+∂

2
r C− 1

4 f r4 (∂
2
x A+∂

2
x C)+

(
1− 1

4 f r4

)
(∂rA)

2 +

(
1− 1

4 f r4

)
(∂rC)2

+
1

2 f r4 (∂xA+∂xC)∂xB−2(∂rA+∂rC)∂rB+

(
3 f ′

2 f
+

2
r

)
∂rA−

(
f ′

f
+

4
r

)
∂rB

+

(
f ′

2 f
+

2
r

)
∂rC+

e−2A

8 f 2r6 (∂xAt +W∂xAy)
2− e−2A

2 f r2 (∂rAt +W∂rAy)
2

−e−2(A−C)

2 f

(
(∂rW )2− 1

4 f r4 (∂xW )2
)
+

e−2C

2r2

(
(∂rAy)

2− 1
4 f r4 (∂xAy)

2
)

+(∂rψ)2− 1
4 f r4 (∂xψ)2 +

f ′′

2 f
+

2 f ′

f r
= 0. (B.2.14)

B.2.3 Constraints

The constraint equations, Gr
x−T r

x = 0 and Gr
r−Gx

x− (T r
r −T x

x ) = 0, are the non-

trivial Einstein equations that are not part of the system of second-order elliptic

equations that we numerically solve. As discussed in §4.2, the weighted constraints

can be shown to solve Laplace equations on the domain. If we satisfy one of

the constraints on all boundaries and the other at one point, they will be satisfied

everywhere. At the black hole horizon, we choose to impose r2√ f
√−g(Gr

r −
Gx

x − (T r
r − T x

x )) = 0 at the point (ρ,x) = (0,0) and
√−g(Gr

x − T r
x ) = 0 across

the horizon. Since we use periodic boundary conditions in the inhomogeneous

direction, the boundaries at x = 0 and x = xmax are trivial if
√−g(Gr

x− T r
x ) = 0

at the horizon and the conformal boundary. Then, we are left with the task of

satisfying
√−g(Gr

x−T r
x ) = 0 at the boundary.

In §4.2, we found the asymptotic expansion of this constraint as

Gr
x−T r

x ∝
3∂xA(3)(x)+2∂xB(3)(x)+3∂xC(3)(x)

r2 +O(r−3), (B.2.15)

where A(3)(x),B(3)(x) and C(3)(x) come from solving the elliptic equations. It ap-

pears that, within our problem, we do not have the ability to make the weighted

constraint disappear. The key lies in an unfixed gauge symmetry in our original
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metric that is related to conformal transformations of the (r,x) plane.4 Essen-

tially, within our metric ansatz, we have the freedom to transform to any plane

(r′,x′) that is conformally related to (r,x). Demanding that the weighted constraint
√−g(Gr

x−T r
x ) vanishes at the conformal boundary uniquely identifies the correct

coordinates (r̃, x̃).

Our procedure is to split the domain at some intermediate radial value ρint . On

the IR portion of the grid, 0 < ρ < ρint , the equations are as above. On the UV

portion of the grid, ρint < ρ < ρcut , we use the coordinate freedom to select the

correct asymptotic radial coordinate. We can write the metric in the UV as

ds2 =−2r̃2 f̃ (r̃, x̃)e2Rdt2 + e2S
(

dr̃2

2r̃2 f̃ (r̃, x̃)
+2r̃2dx̃2

)
+2r̃2e2T (dy−Udt)2,(B.2.16)

where f̃ (r̃, x̃) ≡ f (r(r̃, x̃)). Under a transformation in the (r̃, x̃) plane such that r̃

and x̃ satisfy Cauchy-Riemann-like relations

∂ r̃(r,x)
∂ r

=
r̃(r,x)2

r2
∂ x̃(r,x)

∂x
,

∂ x̃(r,x)
∂ r

=− 1
4r2r̃(r,x)2 f (r)

∂ r̃(r,x)
∂x

, (B.2.17)

the metric becomes

ds2 =−2r̃(r,x)2 f (r)e2Rdt2 + e2S|∇r̃(r,x)|2
(

dr2

2r2 f (r)
+2r2dx2

)
+2r̃(r,x)2e2T (dy−Udt)2

(B.2.18)

with

|∇r̃(r,x)|2 = r2

r̃(r,x)2

(
∂ r̃(r,x)

∂ r

)2

+
1

4r2r̃(r,x)2 f (r)

(
∂ r̃(r,x)

∂x

)2

. (B.2.19)

We now have an extra function r̃(r,x) in our system which we may use to satisfy

the constraint and fix the residual gauge freedom, as we will now see. The Cauchy-

Riemann-like conditions give the Laplace-like equation

∂

∂ r

(
r2

r̃(r,x)2
∂ r̃(r,x)

∂ r

)
+

∂

∂x

(
1

4r2r̃(r,x)2 f (r)
∂ r̃(r,x)

∂x

)
= 0. (B.2.20)

4See [3] for a discussion of the same issue in a different context.
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We can solve this asymptotically, finding

r̃(r,x) = ξ (x)r+
2ξ ′(x)2−ξ (x)ξ ′′(x)

24ξ (x)r
+ . . . , (B.2.21)

where ξ (x) is an arbitrary function that encodes the coordinate freedom we have.

Expanding the constraint asymptotically, we have

Gr
x−T r

x ∝
1
r2

(
2(3∂xR(3)(x)+2∂xS(3)(x)+3∂xT (3)(x))ξ (x)

+ 3( f (3)+2R(3)(x)−4S(3)(x)+2T (3)(x))ξ ′(x)
)
+O(r−3),

(B.2.22)

where X = X (3)(x)/r3 + . . . asymptotically, for X = {R,S,T}. Demanding that the

constraint (B.2.22) vanishes at the leading order yields a differential equation we

can solve for ξ (x), giving us a boundary condition for the function r̃(r,x), such that

the weighted constraint will disappear at the conformal boundary. However, we

have found that the code is unstable if we directly use this solution for ξ (x). Instead

of directly integrating the constraint, we use the freedom in ξ (x) to fix the tension

τx to be constant. This enforces the same effect on the tension as if we had used the

explicit solution for ξ (x) but is much more stable numerically. Below, we check

that the constraints are suitably satisfied even though our boundary conditions do

not exactly fix them. To this end, we set

ξ (x) =
K

( f (3)+6R(3)(x)+4S(3)(x)+6T (3)(x))1/3 . (B.2.23)

Expanding the equations asymptotically gives the expression R(3)(x)+ 2S(3)(x)+

T (3)(x) = 0; if this is satisfied on our solutions our definition of ξ (x) coincides with

that found by integrating the constraint (B.2.22).

The constant K appearing in ξ (x) sets the scale of the boundary theory. We

use it to fix the length of the inhomogeneous direction in the field theory to be

Lµ/4. The correct coordinate in the inhomogeneous direction of the field theory

is x̃. From the Cauchy-Riemann conditions, we can find the large r expansion of

193



x̃(r,x) as

x̃(r,x) =
∫ x

0

dx′

ξ (x′)
+

ξ ′(x)
8ξ (x)2r2 + . . . . (B.2.24)

Integrating to find the proper length of one cycle in the boundary, we solve for K

at leading order in r to find

K =
4
L

∫ L/4

0
( f (3)+6R(3)(x)+4S(3)(x)+6T (3)(x))1/3dx′. (B.2.25)

When integrating the charges over the inhomogeneous direction in the field theory,

one must remember to integrate over the correct coordinate, dx̃ = dx/ξ (x).

Our corrected numerical procedure is as follows. On the IR grid, we solve the

elliptic equations (B.2.6) - (B.2.12) for the metric functions A,B,C and W . On

the UV grid, we solve the equivalent elliptic equations from the metric (B.2.18)

in the variables R,S,T and U plus equation (B.2.20) for the new field r̃(r,x). At

the horizon, we enforce the boundary conditions discussed in §4.2. At the inter-

face ρ = ρint , we impose matching conditions on the four metric functions and

that r̃(ρint ,x) = r(ρint). Asymptotically, R,S,T and U all fall off as 1/r̃3. To set

boundary conditions on r̃, we notice that

∂r r̃(r,x)+
r̃(r,x)

r
= 2ξ (x)+O

(
1
r3

)
. (B.2.26)

We truncate this expression at O(r−2) and finite difference to find an update proce-

dure for r̃(ρcut ,x). This boundary condition is updated iteratively as the functions

R,S,T are updated in our solving procedure such that once we find a solution with

small residuals we can be sure that the tension is constant and the constraint is

satisfied.

B.2.4 Generating the action density plot

To generate the relative action density plot, Fig. 4.17, we find the solutions on

a grid of lengths L and temperatures T0, as shown in Fig. B.2. By interpolating

these solutions on the domain, we can map the thermodynamic quantities across

the unstable region and determine the approximate line of minimum free energy,

or the dominant solution in the infinite size system.
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Figure B.2: The data underlying Fig. 4.17. The points represent solutions
we computed. These were interpolated to find the free energy density
over the domain. The solid blue line is the edge of the unstable region
and the thick red line is the approximate line of minimum free energy
density.

B.2.5 Convergence and independence of numerical parameters

Performance of the method and convergence of physical data

As discussed above, to solve the equations numerically, we use a second order

finite differencing approximation (FDA) before using a point-wise Gauss-Seidel,

SOR relaxation method on the resulting algebraic equations. The method, including

the UV procedure described above, performs well for this system.

The UV procedure is unstable for a generic initial guess, resulting in a diver-

gent norm. To find a solution from a generic initial guess, we can run the relaxation

without the UV procedure until the norm is small enough that the result approxi-

mates the true solution, before activating the UV procedure to find the true solution.

Once we have these first solutions, by using these as an initial guess for solutions

nearby in parameter space and by interpolating to a finer grid, we can generate fur-

ther solutions by relaxing with the UV procedure. In Fig. B.3, we plot the L2 norm

of the total residual during the relaxation of the c1 = 8 solution at T0 = 0.04 and
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Figure B.3: The behavior of the L2 norm of the residual during the relaxation
iterations for c1 = 8, T0 = 0.04 and Lµ/4 = 0.75. From top to bottom
(at the left of the plot) the grid spacing is dρ,dx = 0.04,0.02,0.01.
The UV procedure is unstable unless the solution is close enough to
correct solution. For grid spacing dρ,dx = 0.04, the UV procedure was
activated after 3× 105 iterations while for the others, the initial guess
was taken to be a solution with slightly different parameters such that
the UV procedure could be used immediately.

Lµ/4 = 0.75 for the grid spacings dρ,dx = 0.04,0.02,0.01, showing the expected

exponential behavior of the Gauss-Seidel relaxation. The physical data extracted

from our solutions is consistent with the expected second order convergence of our

FDA scheme, see Fig. B.4.

Asymptotic versus first law mass

A useful check of the numerics is to compare the mass of the system read off

from the asymptotics of the metric, equation (B.1.11), to that computed by inte-

grating the first law, equation (4.4.1). Since the temperature and entropy are read

off from the horizon, comparing these two methods of finding the mass provides a

non-trivial global consistency check on our results. We verify that the difference

between the asymptotic mass and the first law mass remains smaller than 0.5%

across our set of trials, indicating consistency of our results.
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Figure B.4: The value of the scalar field condensate for varying grid sizes
for c1 = 8 and Lµ/4 = 0.75. From top to bottom, the grid spacing is
dρ,dx = 0.01,0.02,0.04. The results are consistent with second order
scaling as expected from our numerical approach.

A related check of the numerics is the conformal identity or the Smarr-like

relation, 2M = T S+µN−τxL, derived above from the first law for the finite length

system. To evaluate how well our solutions satisfy this equation, we examine the

ratio
2M f all−o f f −T S−µN + τxL
max(M f all−o f f ,T S,µN,τxL)

, (B.2.27)

since the largest term in the expression sets a scale for the cancellation we expect.

This ratio is very small for our solutions near the critical temperature. As we lower

the temperature, this ratio increases, but stays small. The precise value depends on

the parameters of the solution, but is not larger than order 1%. Moreover, this ratio

decreases as we move the position of the finite cutoff of the conformal boundary to

a larger radius.

Finite ρcut boundary check

For the c1 = 8 trials reported in the paper, we use ρcut = 12 as our conformal

boundary. In Table B.2 we present results for varying ρcut , showing that our choice

is large enough such that the physical results are insensitive to the cutoff. Although

197



the physical results presented in the table appear very stable, at small ρcut , the

results for the mass and charge depend significantly on the fitting procedure for

the asymptotic metric functions and gauge field. By running our simulations at

ρcut = 12, we are both well within the the region where the solutions do not change

with the conformal boundary and within a region where our fitting procedure to the

asymptotics behaves well.

ρcut S M N
1 0.758504 0.305774 0.527406
2 0.767913 0.342327 0.490524
3 0.768211 0.341928 0.490593
4 0.768285 0.342043 0.490583
5 0.768311 0.342136 0.490577
6 0.768322 0.34221 0.490574
7 0.768328 0.342277 0.490572
8 0.768332 0.342324 0.49057
9 0.768334 0.342367 0.490569
10 0.768335 0.342402 0.490568
11 0.768336 0.342434 0.490568
12 0.768336 0.342459 0.490567

Table B.2: Behavior of physical quantities with the cutoff for c1 = 8 and
Lµ/4 = 0.75 and for fixed grid resolution dρ,dx∼ 0.02. The entropy S
is read off at the horizon, while the mass M and the charge N are read
off at the conformal boundary. Both the entropy and the charge are very
robust against the location of the conformal boundary. The mass takes
slightly longer to settle down, but is well within the convergent range for
ρcut = 12.

Behavior of the constraints

One of the most important checks for our numerical solution is the behavior of the

constraints. For numerical homogeneous solutions found with our method, the L2

norm of the constraints is very small, on the order of 10−4. For the inhomogeneous

solutions, the constraints are small near the critical temperature, but grow and sat-

urate as we lower to the temperature, to have a maximum L2 norm on the order

of 10−2: see Fig. B.5. Since our boundary conditions explicitly fix the weighted
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Figure B.5: The weighted constraints for c1 = 8 and Lµ/4 = 1.21. The top
plots are near the critical point, T/Tc = 0.97, while the bottom plots are
at small temperature, T/Tc = 0.00016. By our boundary conditions,
the constraints disappear at the horizon. They approach a finite value as
they approach the asymptotic boundary.

constraints on the horizon, they disappear there. The weighted constraints then

increase towards the conformal boundary, approaching a modulated profile of con-

stant amplitude. The amplitude near the conformal boundary controls the overall

L2 norm of the constraints.

The constraint violation improves marginally with step size and with moving

the interface closer to the horizon, but does not improve as we take the conformal

boundary to a larger radius. To check that the constraints are well satisfied on our

solution, we compare them to the sum of the absolute value of the terms that make

up the constraints. That is, if the constraints are given by ∑i hi, we compare this

199



to ∑i |hi|. This procedure gives us an idea of the scale of the cancellation among

the individual terms hi. We find that the sum ∑i |hi| diverges approximately as r4

towards the asymptotic boundary, such that the approach of the constraint violation

to a constant is a good indicator that the constraints are satisfied on the solution.

In Table B.3, we compare the L2 norm of these two sums on the entire domain,

showing that the constraint violation for the inhomogeneous solutions is generally

about four orders of magnitude less than the scale set by ∑i |hi|. Interestingly, the

relative constraint improves marginally as we go to lower temperatures.

Parameters T0 L2(∑i hi)/L2(∑i |hi|)
c1 = 8,Lµ/4 = 2.00 (RN solution) 0.105 9.12 ·10−7

c1 = 8,Lµ/4 = 1.21 (striped solution) 0.075 2.02 ·10−4

0.05 1.84 ·10−4

0.025 1.58 ·10−4

0.005 1.37 ·10−4

0.001 1.32 ·10−4

Table B.3: Comparison of the constraint violation, measured by the
schematic constraint equation ∑i hi, to the scale set by the individual
terms, ∑i |hi|, for grid size dρ,dx ∼ 0.01. We take the L2 norm of the
measures on the entire domain. The c1 = 8,Lµ/4 = 2.00 solution is a
homogeneous RN solution found numerically with our code, for which
the constraints are very well satisfied. The constraints for the striped so-
lutions are satisfied compared to the scale set by ∑i |hi| by four orders of
magnitude and the relative constraint improves marginally as we lower
the temperature.

The asymptotic equation of motion

Expanding the equations of motion asymptotically gives the relation

R(3)(x)+2S(3)(x)+T (3)(x) = 0, (B.2.28)

which can be used to give another check of the numerics. As explained in B.1.2,

this condition implies the tracelessness of the energy-momentum tensor. For the

inhomogeneous solutions near the critical temperature we find that this expression

is on the order of the individual metric functions X (3), where X = {R,S,T}, but
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generally decreases as we lower the temperature. As well, we find that homoge-

neous solutions found using our numerical techniques satisfy (B.2.28) well. There

seems to be an unidentified systematic error here that may deserve further attention

in the future. Possible problems may occur in the implementation of the UV pro-

cedure or in our procedure to read off the coefficients of the falloffs of the metric

functions. However, our physical results are robust under changes to the boundary

conditions, so that we are confident in our results despite this possible systematic.

In particular, the physical quantities extracted from the horizon are independent

of the different boundary constraint fixing schemes we implemented. Therefore,

we advocate using the mass derived from the integrated first law, which uses no

asymptotic metric functions.

201



Appendix C

Appendix: Fermi Liquids from
D-branes

C.1 Charges and Stress Tensor Components
The sources in the equations of motion correspond to expectation values of fermion

bilinears, with factors of k and ω absorbed into the definition for later numerical

convenience. In combining these Grassmann quantities into bosonic fields it was

important to specify a basis, which we choose to be satisfy gg∗∧gg = 1. Here gg

is taken to be an arbitrary spinor. The definitions of the bilinears are then

Q11 =
∫ k f

0

kdk
π
〈 f ∗1 f1〉, Q22 =

∫ k f

0

kdk
π
〈 f ∗2 f2〉, Q12 =

∫ k f

0

kdk
π
〈 f ∗2 f1〉,

Q21 = Q12, P11 =
∫ k f

0

kdk
π

k〈 f ∗1 f1〉, P22 =
∫ k f

0

kdk
π

k〈 f ∗2 f2〉,

L11 =
∫ k f

0

kdk
π

ω(k)〈 f ∗1 f1〉, L22 =
∫ k f

0

kdk
π

ω(k)〈 f ∗2 f2〉 (C.1.1)

We identify the combinations of Q = (Q11+Q22), Tr = (Q12+Q21), and TM =

(L11+L22+P11−P22) as the charge, and radial and Minkowski “stress-energy”

components, respectively. The current is the source term for the gauge field, while

in analogy to the gravitational case we refer to the sources for the embedding func-
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tion as “stress-energy”. Using the form1 of the fermion contribution to the stress

energy

T MN
f ermi = β

i
2
(ψ̄Γ

(MDN)
ψ−D (M

ψ̄Γ
N)

ψ) (C.1.2)

and the rescaling of the fermions given in Equation 5.2.7, the “radial” and “Minkowski”

stresses are seen to result from this expression by taking the fermion derivatives

with respect to the radial and boundary directions, respectively.

C.2 Numerics
Finding the solutions presented in this paper required the use of Mathematica and

Matlab for symbolic and numerical work, respectively. This appendix outlines

some of the key tools used, pitfalls encountered and presents some convergence

tests.

C.2.1 Numerical techniques

The derivation of the equations was done using Mathematica, utilizing the package

MathTensor [23]. The Grassmann package [96] was useful for consistent manipu-

lation of anti-commuting fields. An efficient way to export the equations to Matlab

is using the freely available ToMatlab package [66]. In Matlab the equations were

solved using the procedure described in Section 5.3. Here there are several points

worthy of note:

• The general setup of the spectral code follows the useful pedagogical ref-

erence [126]. Once the equations were discretized, the fermionic eigen-

value problem was solved using Matlab’s “eigs” function. The source terms

were then calculated via appropriate numerical integration. In calculating the

source terms it was important to normalize the eigenvalues via
∫ π/2

0 dψ̄ψ =

1. This is necessary to ensure a consistent definition of the fermion energy

1We note that without the symmeterization thus is just the usual fermion stress energy tensor, as
calculated via Noether’s theorem. The additional symmeterization makes the stress energy mani-
festly symmetric and is most simply obtained via appropriate variation of the Dirac action in terms
of the metric as in [130]. In our case we must pullback the bulk form of this tensor onto the brane
worldvolume.
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ω(k) and therefore consistent charges, J, Tr, TM. It can be easily checked

that with this normalization
∫

T00 dr = w(k) = E in the limit of a flat in-

duced metric and zero gauge field.

• The discretized bosonic system was solved via a generalization of the New-

ton’s method (see [17] for an a good reference on this and other spectral

methods). It was also necessary to add a line search algorithm to this solver,

as outlined in [109], to improve convergence and stability properties.

• It is well known that spectral methods generally respond poorly to non-

analytic behaviour. Thankfully in our case the simple asymptotic behaviour

of all fields ensures a good convergence of spectral methods.

• It was found that the bosonic and fermionic equations were regular at the

embedding cap-off and at the conformal boundary. Therefore it was not

necessary to impose cutoffs to regulate the problem.

C.2.2 Convergence checks

We now consider the accuracy of our numerical solutions. W present a series

of plots which illustrate that our solutions converge to solutions of the integro-

differential equations in the large N limit (here N is the order of the Chebyshev

approximation not the size of the adjoint gauge group). It was particularly impor-

tant to verify that our solutions for the embedding function are numerically robust.

The key convergence criteria were:

• The stability and accuracy of the eigenvalue routines – this was the easiest

part to check as these were based on built-in Matlab functions. The default

accuracy in using the “eigs” routine is machine precision. Therefore this was

not considered a significant source of error.

• It was necessary to ensure that the both the L 2 norm of the residues of

the bosonic system is and the maximum change in the bosonic fields after a

fermion/boson iteration loop were both driven to numbers of O(10−12).
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Figure C.1: The convergence with N for the embedding function, gauge field,
and charges. The maximum difference between solutions between suc-
cessive values of N is computed, and can be seen to converge to zero as
N is taken large. The convergence tests plotted were run at parameter
values of µ =−15.7154, m0 = 1, mpsi = 10, ε = 0.01, β =−0.01.
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• The solution of the discretized equations converged as N was increased there-

fore indicating that we may be tending to a solution of the original ODE

equations- see figure Figure C.1.

• It was necessary to check that integration procedures used in computing the

charges were sufficiently accurate, and the change in the solutions with in-

creasing tolerance tended to zero.
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Appendix D

Appendix: Spatial Modulation
and Conductivities in Effective
Holographic Theories

In this appendix we provide further information on our numerical methods and ex-

hibit some checks on the results presented in this paper. We first briefly describe our

approach to solving the background and perturbation equations. We then present

our convergence results and other checks of the numerics.

D.1 Numerical Procedure and Implementation Details
The derivation of the equations, boundary conditions and gauge conditions were

done in Mathematica. These expressions, in appropriately discretized form, were

then exported to Matlab which served as the principal platform for equation solving

and post-processing work. Significant portions of the code were transferred to C++

code, which utilized the Armadillo and BLAS linear algebra libraries.

The non-linear nature of the background equations of motion requires an it-

erative process for the solution. This was accomplished using a combination of

Newton method with line search and the quasi-Newton, Broyden method algo-

rithms. The Broyden method was found to be the most efficient approach, as it did

not necessitate the computationally expensive process of assembling the Jacobian
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matrix. As the results presented in this paper rely on knowledge of the tempera-

ture dependence of the conductivity at each point in the υ ,k parameter space, it

was necessary to numerically solve the PDEs many times. As such the utilization

of optimized code and efficient solver algorithms was important in maintaining a

manageable computational load. An example of a useful solver strategy for the

background was:

• First attempt to use the Broyden method. If the initial guess is sufficiently

close to the sought after solution, convergence should be reached rapidly.

• If the Broyden method fails to converge the solver switches to Newton method

augmented with a three-point safeguarded parabolic line search. Once the

norm of the residual has reduced below a safe tolerance, the Broyden method

can once again be utilized to quickly bring about convergence to the required

accuracy.

• Once an initial solution is obtained suitably sized (adiabatic) variations in pa-

rameters allow for the mapping of parameter space, without having to resort

to the Newton method.

The solution of the perturbation equations is in some sense easier as the linear

nature of the equations means that they can be inverted in one step without need

for iteration. An additional complication is introduced by the fact that knowledge

of the temperature dependence of the AC conductivity requires us to scan over both

temperature and frequency at each value of the parameters υ ,k. As the quality of

the numerical convergence is not uniform with temperature or frequency, we must

be careful to establish which regions of the (T,ω,υ ,k) space we can reliably probe

and bear this in mind when analyzing our results. We also must be careful to ensure

that we have sufficiently resolved the background solution relative to the desired

resolution for the perturbation solution.

D.2 Convergence Tests
We now present the following convergence results for the background and pertur-

bation solutions:
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• The background solution:

– Convergence of the solutions to equations Equation 6.2.2 as a function

of the grid size N.

– Convergence of the DeTurck gauge condition to zero as a function of

N.

• The linear perturbation solutions:

– Convergence as function of the grid size Np for the linearized equa-

tions.

– Convergence of the deDonder and Lorentz gauge conditions Equa-

tion 6.2.11 to zero as a function of Np.

– Convergence of the auxiliary (unimposed) horizon boundary condi-

tions, as described below equation Equation 6.2.13, to zero as function

of Np.

In Figure D.1 and Figure D.2, we consider the convergence of the solutions as

a function of N, for various low temperatures and υ . We consider the convergence

properties of the solutions as a function of both the transverse grid size, Nx, and

radial grid size, Nz, separately. This may be done by fixing one of the grid sizes

and running convergence tests on the other. We display the results below for the

convergence of the log of the norm of the difference in solutions for three separate,

low temperatures. In the first set we fix Nx = 45 and vary Nz while in the second we

do the reverse. From these tests we may draw the (perhaps expected) conclusion

that convergence of the solutions depends more strongly on the radial grid.

We note that the asymptotic expansion of the fields near the conformal bound-

ary contain logarithmic terms at high orders of the expansion. Therefore the expo-

nential convergence of the spectral methods we are using is expected to fail for fine

enough grids. However, we find that for the range of parameters we consider here,

this is not an important issue. Similarly, at sufficiently low temperatures we expect

that finite differencing approximation near the horizon is more suitable. It may be

that utilizing such methods together with domain decomposition approaches will

allow us to reach still lower temperatures in future work.
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Figure D.1: Convergence of the log of the norm of the difference of the so-
lutions as a function of Nz for temperatures of (0.0016,0.0021) for a
variety of υ with Nx = 45. These temperatures correspond to T

µ
values

of approximately (6.6e−4,8.6e−4) and therefore can be considered to
be small on the scale set by the chemical potential. We see that we ob-
tain exponential convergence as a function of Nz, and that, while these
plots become noisier for smaller temperatures, the exponential conver-
gence reasserts itself as Nz increases.
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Figure D.2: Convergence of the log of the norm of the difference of the so-
lutions as a function of Nx for the same values of υ and temperature as
the previous plot and with with Nz = 45. We note that the convergence
deviates significantly from exponential and that the small scale of the
y axis indicates that convergence is occurring more slowly than for the
case of increasing Nz.
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In Figure D.3 we perform a similar series of tests for the convergence of the

norm of the gauge condition towards zero. We again find that better convergence

behaviour is achieved by increasing Nz in preference to Nx. We also note that

different scaling regimes may exist in the convergence of the norm of the gauge

condition as a function of the resolution, cf., Figure D.4.

From this series of experiments we conclude that the best resolution for a fixed

number of grid points is obtained when more points are allocated to the radial grid

number, Nz. As a verification of this approach in Figure D.5 we plot the log of the

norm of the residues as above with Nz and Nx both increasing but with Nz =Nx+20.

We now consider convergence results for the perturbation equations. Firstly it

was noted that asymmetric grids are less useful in this case and that the best results

were obtained when Nx and Nz were increased in tandem. In addition it was found

that for smooth convergence to be obtained the background should be available at

a higher resolution then the perturbation resolution. We are now interested in the

convergence as a function of υ , T and ω .

For our purposes there are two w regimes where we must examine the conver-

gence of the AC conductivity. These are w� 1, which is relevant for comparison

to the DC conductivity, and 5∼<w<∼ 10 which is relevant for examining poten-

tial IR scaling regimes. In Figure D.6 and Figure D.7 we display some examples

of the convergence of the norm of the difference of the perturbative solutions, and

the norm of the gauge and auxiliary conditions as a function of N for w = 0.1. In

Figure D.8 and Figure D.9 we plot the analogous results for the real and imaginary

parts of the conductivities themselves. We note that as T
µ

is lowered and υ increased

the convergence of the norm of the gauge and auxiliary conditions becomes more

strained. We have however checked that for the data displayed in Figure 6.1 both

are on the order of 10−5 when the DC data points are read off.

The situation is more complicated in the opposite limit which we examine in

Figure D.10 and Figure D.11, and Figure D.12 and Figure D.13 where w = 7.

We note that while convergence is maintained, the rate of convergence for the

auxiliary horizon constraints becomes problematic as the temperature is lowered.

It is instructive to examine the form of these auxiliary constraints corresponding

to the results displayed Figure 6.11 and Figure 6.12, and Figure 6.13 and Fig-

ure 6.14. This is done in in Figure D.14 and Figure D.15, and Figure D.16 and
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Figure D.3: Examining the convergence of the log of the norm of the gauge
condition as a function of Nz. For the lower temperature (leftmost
graph) we observe exponential convergence with the now expected
noise at lower values of Nz. We note that for the higher temperature
(rightmost graph) larger magnitudes of υ exhibit two distinct scaling
regimes with a crossover occurring at approximately Nz = 55. While
the convergence is exponential in both cases it is markedly faster in one
case. This may mean that it is necessary to go to higher resolutions if
very accurate solutions are required in this region of parameter space.
This issue however was not encountered in the results presented earlier
in the paper.
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Figure D.4: For the same values of υ and temperature as Figure D.3. We see
that the convergence of the log of the norm of the gauge condition is
significantly slower then exponential when Nx is increased for a fixed
Nz.
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Figure D.5: Convergence of the log of the norm of the residues with both Nz

and Nx increasing but with Nx lagging Nz by 20. Again the T
µ

values are
approximately (6.6e−4,8.6e−4) moving from left to right. We see good
exponential convergence even for the lower temperature case.

215



10 15 20 25 30 35 40 45

−24

−22

−20

−18

−16

−14

−12

−10

Norm of the difference at T/µ=0.052109 ω=0.0098 ω/T=0.1

N

L
o

g
 o

f 
n

o
rm

 o
f 

th
e
 d

if
fe

re
n

c
e
 i
n

 s
o

lu
ti

o
n

s

 

 

ν=0.01

ν=0.02

ν=0.03

ν=0.04

ν=0.05

ν=0.06

ν=0.07

ν=0.08

ν=0.09

ν=0.1

10 15 20 25 30 35 40 45

−16

−14

−12

−10

−8

−6

−4

−2

0

Norm of the difference at T/µ=0.0011499 ω=0.00028 ω/T=0.1

N

L
o

g
 o

f 
n

o
rm

 o
f 

th
e
 d

if
fe

re
n

c
e
 i
n

 s
o

lu
ti

o
n

s

 

 

ν=0.01

ν=0.02

ν=0.03

ν=0.04

ν=0.05

ν=0.06

ν=0.07

ν=0.08

ν=0.09

ν=0.1

10 15 20 25 30 35 40 45

−11

−10

−9

−8

−7

−6

−5

−4

Norm of auxiliary conditions at T/µ=0.052109 ω=0.0098 ω/T=0.1

N

L
o

g
 o

f 
a
u

x
il
ia

ry
 c

o
n

d
it

io
n

 n
o

rm

 

 

ν=0.01

ν=0.02

ν=0.03

ν=0.04

ν=0.05

ν=0.06

ν=0.07

ν=0.08

ν=0.09

ν=0.1

Figure D.6: Semi-logarithmic plots of the norm of the difference in solutions,
and the norm of horizon auxiliary conditions and of the gauge condi-
tions versus N at a low and high temperature for w

T = 0.1. We note that
while still convergent, the resolution of the auxiliary conditions must
be monitored closely for small values of T

µ
and larger values of υ .
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Figure D.7: A continuation of the sequence of figures begun in Figure D.6.
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Figure D.8: Plots of the real and imaginary conductivities versus N for the
same choice of parameters as in Figure D.6 and Figure D.7. We note
that, as expected, convergence is slower for larger values of υ . This is
particularly evident for the imaginary part of the conductivity
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Figure D.9: A continuation of the sequence of figures begun in Figure D.8

Figure D.17, respectively. We see that the constraint violation worsens as the tem-

perature is decreased or υ increased, and that the violation is worst in the regime

of 3∼< w<∼ 5. It has been observed that as one adjusts parameters further into

these regimes numerical artifacts appear in both the imaginary conductivity and

the diagnostic function, F(w). However, given that the conditions are under better

control for w> 5, we believe changed that the results displayed in Figure 6.11 and

Figure 6.12, and Figure 6.13 and Figure 6.14 are qualitatively correct. Future work

in this direction may involve the use of alternative numerical methods (for example
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Figure D.10: Semi-logarithmic plots of the norm of the difference in solu-
tions, and the norm of horizon auxiliary conditions and of the gauge
conditions versus N at a low and high temperature for w

T = 7. We note
the unusual dual scaling regimes for the gauge conditions in the higher
temperature case. More importantly we note the slow rate of conver-
gence of the auxiliary conditions as the temperature is decreased.

220



10 15 20 25 30 35 40

−3

−2

−1

0

1

2

3

Norm of auxiliary conditions at T/µ=0.0025647 ω=0.0434 ω/T=7

N

L
o

g
 o

f 
a
u

x
il
ia

ry
 c

o
n

d
it

io
n

 n
o

rm

 

 

ν=0.01

ν=0.02

ν=0.03

ν=0.04

ν=0.05

ν=0.06

ν=0.07

ν=0.08

ν=0.09

ν=0.1

10 15 20 25 30 35 40

−13.5

−13

−12.5

−12

−11.5

−11

−10.5

−10

−9.5

−9

−8.5

Norm of gauge conditions at T/µ=0.027214 ω=0.406 ω/T=7

N

L
o

g
 o

f 
g

a
u

g
e
 c

o
n

d
it

io
n

 n
o

rm

 

 

ν=0.01

ν=0.02

ν=0.03

ν=0.04

ν=0.05

ν=0.06

ν=0.07

ν=0.08

ν=0.09

ν=0.1

10 15 20 25 30 35 40

−13

−12

−11

−10

−9

−8

−7

−6

Norm of gauge conditions at T/µ=0.0025647 ω=0.0434 ω/T=7

N

L
o

g
 o

f 
g

a
u

g
e
 c

o
n

d
it

io
n

 n
o

rm

 

 

ν=0.01

ν=0.02

ν=0.03

ν=0.04

ν=0.05

ν=0.06

ν=0.07

ν=0.08

ν=0.09

ν=0.1

Figure D.11: A continuation of the sequence of figures begun in Figure D.10.
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Figure D.12: Plots of the real and imaginary conductivities versus N for the
same choice of parameters as in Figure D.10 and Figure D.11. Again
we note that increasing υ makes the convergence more difficult. In
this case the effect is most notable in the real part of the conductivity.
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Figure D.13: A continuation of the sequence of figures begun in Figure D.12

finite difference discretization) to tackle these numerically difficult regimes.

D.3 Fit to Drude Form
Another useful test, described in [73], is comparing the low frequency behaviour

of the AC conductivity to the Drude form of the conductivity, expected on general
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Figure D.14: The auxiliary horizon constraints corresponding to Figure 6.11
and Figure 6.12. We see that while very well satisfied in the w→ 0
limit there is a regime of significant constraint violation prior to the
return of greater accuracy in the mid IR.
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Figure D.15: A continuation of the sequence of figures begun in Figure D.14

grounds [60]:

σ(ω) =
K τ

1− iω τ
(D.3.1)

where K is a constant. This test is useful only in the metallic phase or above

the critical temperature for the onset of the insulating phase. Therefore at mod-

erate values of T
µ

the AC conductivity is well modelled by the Drude behaviour

as demonstrated by the examples in Figure D.18 and Figure D.19.This may be in-
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Figure D.16: The auxiliary horizon constraints corresponding to Figure 6.13
and Figure 6.14. Again we observe the non-trivial dependence of the
auxiliary constraints on the temperature, υ and w with greater accu-
racy being obtained at lower and higher values of w.
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Figure D.17: A continuation of the sequence of figures begun in Figure D.16

terpreted as an important additional test of the numerics- the quality of the fit to

the Drude form being indicative of good convergence of the perturbation equations

over the range of ω examined.

An additional important test of the Drude behaviour is that the coefficient, K,

should match with the residue of the zero frequency pole in the imaginary conduc-

tivity obtained in the homogeneous case:

Im(σhom(ω))→ K
ω
, as ω → 0 (D.3.2)
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Figure D.18: The fits of the Drude parameters τ,K to the AC electric conduc-
tivities for two moderate values of T

µ
, corresponding to those listed in

Table D.1, for 0.01 ≥ υ ≤ 0.1. We see that the fits are good, particu-
larly for lower values of the ω where the convergence behaviour of the
perturbation equations, and associated gauge and auxiliary conditions
is best. In both cases the maximum ω

T values plotted are ω

T ∼ 1.25.
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Figure D.19: A continuation of the sequence of figures begun in Figure D.18

In order to perform this calculation we solved the ODEs which govern the homo-

geneous phases of this model at the same point in parameter space as our PDEs

Equation 6.2.2 and extracted the residue of the pole. These ODEs may be derived

from the (gauged) PDEs via the following substitution:

Qxz(z,x)→ 0, Qzz(z,x)→ p1(z), Qtt(z,x)→ p2(z), (D.3.3)

Qyy(z,x)→ Qxx(z,x)→ p3(z) A0(z,x)→ A0(z), Φ(z,x)→Φ(z)

Once the ODEs have been derived the horizon conditions can again be obtained in

the same manner described in Section 6.2 for the PDEs. In this case these boundary

conditions relate the value of the fields and their first radial derivative at the hori-

zon. The conformal boundary conditions can also be written as a simple mixture

of Dirichlet and Neumann conditions as in the PDE case.

p1(0) = 1, p2(0) = 1, p3(0) = 1, Φ
′(0) = A, A0(0) = µ (D.3.4)

The ODEs were solved via a simple adaption of the Chebychev grid spectral

technique described in Section 6.4. The results also provided an additional sanity

check on the solutions of PDE background equations Equation 6.2.2. When these

equations were solved with the sourced inhomogeneity turned off, Φ1(x) =A, good

agreement was obtained with the ODE solutions.
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Considering the linearized perturbation equations around these ODE backgrounds

we find that it is sufficient to restrict ourselves to perturbations of the following

form:

hxt = h̃xt(z)e−iω t , bx = b̃x e−iω t (D.3.5)

Utilizing the background equations of motion it can be checked that there are two

independent equations of motion which can conveniently be decoupled from each

other and written as: (i) a first order equation for h̃xt in terms of the background

fields, and (ii) a second order equation for b̃x. We are only concerned with the

equation for b̃x. Boundary conditions at the conformal boundary consist of b̃x(0) =

1 corresponding to a conveniently normalized external electric field perturbation in

the dual QFT. At the horizon regularity in ingoing coordinates necessitates the

following leading scaling of the field b̃x = P(z) b̃reg
x . A suitable horizon boundary

condition may then be obtained via expanding b̃reg
x to leading order in (1− z).

Once the solutions of the ODE equations were obtained we extracted the coef-

ficient of the pole and calculated a goodness of fit measure given by
(

1− Khom
Klat

)
.

The relevant results are displayed in percentage form in Table Table D.1. Klat is the

result obtained for the inhomogeneous sources.

υ 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.09 0.1
T
µ

=0.052109 0.57 0.26 1.08 1.89 2.69 3.48 4.26 5.78 6.53
T
µ

=0.027214 2.67 3.53 4.36 5.16 5.93 6.67 7.38 8.7 9.32

Table D.1: Testing the fit to the Drude form of the conductivity and checking
agreement between the homogeneous and inhomogeneous solutions.
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