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Abstract

Due to the proliferation of social networks and their significant effects on our day-to-day activities,

there has been a growing interest in modeling and analyzing behavior of agents in social networks

over the past decade. The unifying theme of this thesis is to develop a set of mathematical theories

and algorithmic tools for different estimation and sensing problems over graphs with applications

to social networks.

The first part of this dissertation is devoted to multi-agent Bayesian estimation and learning

problem in social networks. We consider a set of agents that interact over a network to estimate an

unknown parameter called state of nature. As a result of the recursive nature of Bayesian models

and the correlation introduced by the structure of the underlying communication graph, information

collected by one agent can be mistakenly considered independent, that is, mis-information prop-

agation, also known as data incest arises. This part presents data incest removal algorithms that

ensure complete mitigation of the mis-information associated with the estimates of agents in two

different information exchange patterns: First, a scenario where beliefs (posterior distribution of

state of nature) are transmitted over the network. Second, a social learning context where agents

map their local beliefs into a finite set of actions and broadcast their actions to other agents. We also

present a necessary and sufficient condition on the structure of information flow graph to mitigate

mis-information propagation.

The second part of the thesis considers a Markov-modulated duplication-deletion random graph

where at each time instant, one node can either join or leave the network; the probabilities of joining

or leaving evolve according to the realization of a finite state Markov chain. This part presents two

results. First, motivated by social network applications, the asymptotic behavior of the degree dis-

tribution is analyzed. Second, a stochastic approximation algorithm is presented to track empirical

degree distribution as it evolves over time. The tracking performance of the algorithm is analyzed

in terms of mean square error and a functional central limit theorem is presented for the asymptotic

tracking error.
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Introduction

1.1 Overview

Social networks are crucial to the modern society: they permeate our social, personal, and economic

lives. They have changed the way that people connect and communicate, vote, select items to pur-

chase, pick hotels to stay in, and adapt a new technology or behavior. For example, in the new

“social media” era, Angry Birds1 required only 35 days to obtain 50 million users. For comparison

purposes and to get a better idea, radio reached the same milestone in 38 years, telephone in 75 years

[5]. Social networks facilitate transmission of information, communication, and interaction among

people and have grown steadily in size, complexity, and importance [28, 80]. One of the reasons be-

hind this huge growth of social networks, both in science and society, is the concept of a “network”

as a structural pattern of interactions among social actors. Such a social structure appears on a wide

range of contexts in sociology, biology, economics, computer science and electrical engineering,

whenever a set of dyadic ties between objects are observed. In all these topics, an ability to model

and analyze those–often huge and complex–social structures, is fundamental for the computational

purposes and it answers questions about the behavior of the social actors–individually as an agent

or collectively as a team–in a data-driven manner.

As a result of the enormous effects and applications of social networks in community and in

science, there has been a growing interest in modeling and analysis of social networks over the

past decade. Due to the constraints imposed by the structure of networks and the nature of humans

(as interacting sensors), research in social networks requires borrowing techniques from complex

networks (dynamics of random graphs) and social analysis (mostly used in the areas of economics

and sociology)[80, 146]. Statistical inference using social networks is an area that has witnessed

marvelous progress recently. Such systems comprising of humans acting as sensors, also called

participatory sensing, has received wide attention recently in the research communities of com-

puter science, economics, marketing, social sciences and electrical engineering. The proliferation

of social media such as real-time microblogging services (Twitter2) and online rating and review

systems (Yelp) make real time sensing of social activities, social patterns, and behavior easier. In

1https://www.angrybirds.com.
2About 6 thousand tweets are sent on average in a second. The tweet-per-second number on US Presidential election

day in 2012, was 15 thousand tweets per second resulting in 500 million tweets in the day. Twitter can be considered as

a real-time human-based sensor of social situations.
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signal processing community, the term social sensor is used to denote an agent (or a group of agents)

that provides information about its environment (state of nature) to others (possibly via social me-

dia channel) after interaction with other agents in a social network. Examples of such social media

channels include Twitter, Facebook, online rating and review systems like Yelp and Tripadvisor,

e-commerce platforms such as Amazon. The ability of social sensors in sensing social activities,

patterns and behaviors is beyond physical sensors. For example, level of satisfaction of attendees of

a concert revealed by sentiment analysis on Facebook statuses and tweets are impossible to predict

using physical sensors, or as opposed to physical sensors, social sensors can be used to find out how

the quality of food is in a restaurant from the reviews on online rating system such as Yelp [91, 92].

Statistical signal processing in social networks (inference using social sensors) appears in enor-

mous range of applications across different industry sectors including marketing and advertisement,

health and medicine, and financial technology. For example, [38, 101] used content of tweets to

provide Geo-location services which are useful in targeting and event advertising. Other examples

include detecting influential users with applications in marketing [144], localization of natural dis-

asters [132], and predicting stock markets [26]. It is shown in [11] that a simple model built from

the rate of tweets casted about particular topics can outperform market-based predictors.

With the above applications of social sensors, there is a strong motivation to develop a set of

mathematical models and algorithmic tools to understand the effects of interactions among social

sensors on estimation problem (interactive sensing). The majority of this thesis is devoted to de-

velopment of algorithms and procedures that are aimed at multi-agent estimation, tracking, and

decision making where agents acts as social sensors of an underlying state of nature in the pres-

ence of uncertainty. Such problems are non-standard in two ways: First, in social networks, agents

interact with and influence other agents. For example, ratings posted on online rating and review

systems strongly influence the behavior of individuals3 . Such interactions can result in non-standard

information patterns as a results of constraints imposed and correlations introduced by the structure

of the underlying social network (communication topology among social sensors). Second, due to

privacy reasons and time constraints, social sensors typically do not reveal raw observations of the

underlying state of nature. Instead, they reveal their beliefs (opinions), or actions (tweet/re-tweet

of common trends, thumbs-up on rating and review systems, purchase an item on e-commerce plat-

forms) which can be viewed as a quantized version of their knowledge about state of nature formed

by raw measurements and interactions with other social sensors. These together with the uncertainty

involved in observations of state of nature, result in non-standard estimation and tracking problem

which are the major topics of this thesis. The unifying theme of this thesis is to develop a set of the-

ory and methods for statistical signal processing on graphs (social sensors) which involves adaptive

filtering and stochastic approximation, dynamics of random graphs, multi-agent Bayesian estima-

3It is reported in [79] that 81% of hotel managers regularly check Tripadvisor reviews. It is reported in [109] that a

one-star increase in the Yelp rating maps to 5-9 % revenue increase.
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tion, and social learning to understand how sensors interact. We employ social learning [16, 24, 35],

graph theoretic tools, and stochastic approximation [99, 157] as useful mathematical abstractions

for modeling the interaction of social sensors. The rest of this section is devoted to an overview of

these topics along with motivation and research goals that have been addressed in this thesis.

1.1.1 Bayesian Estimation over Social Networks

Bayesian filtering, which is a recursive form of the famous Bayes’ rule, has been used extensively

in the traditional signal processing literature for logical inference on uncertain parameters from a

prior knowledge and new observations[21]. What statisticians and mathematicians call “Bayesian

theory” was originally developed by Thomas Bayes in a famous paper which was presented at a

meeting of the Royal Society of London [18, 138]. The well-known Bayes theorem describes the

fundamental probability law in order to perform logical inference. He states[138]

“If there be two subsequent events, the probability of the second b
N and the probability

of both together P
N , and it being first discovered that the second event has also hap-

pened, from hence I guess that the first event has also happened, the probability I am

right is P
b .”

Bayesian inference is devoted to applying Bayes’ rule to statistical inference in order to update the

probability of a hypothesis as new observations are obtained [21, 125, 130]. Bayesian models for

inference have been applied in decision theory, detection and estimation, communications theory,

pattern recognition, machine learning and artificial intelligence, and filtering and parameter estima-

tion [39, 64, 75, 105, 112].

Chapter 2 of this dissertation considers a multi-agent sensing problem where agents (social

sensors) interact over a random graph and evaluate their belief (opinion) about an economic or a

social parameter, namely state of nature. This state of nature can be, for example, quality of food in

a restaurant, occurrence of earthquake, or Geo-location of a target. The evaluation of belief about

state of nature can be made using Bayesian [1, 64] or non-Bayesian models [57, 81]. In this work,

we focus on Bayesian inference in social networks. In the setup considered in Chapter 2, each agent

acts a social sensor: (i) she records her observation about state of nature in uncertainty (by sampling

from a conditional probability distribution), (ii) interact with other agents and receives estimates

from other agents, (iii) updates her belief using recursive Baysian models and transmits her updated

belief over the network, and this repeats on.

As a result of the recursive nature of the Bayesian models and the correlation introduced by the

structure of the communication graph between agents, “mis-information propagation” also known

as data incest4 arises in such networks. In a general sense, mis-information propagation involves in-

4These terms are used interchangeably throughout this dissertation.
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advertent re-use of identical information (which are naively considered to be independent) in forma-

tion of belief about state of nature [71, 89]. The following example illustrates how mis-information

can propagate and affect the estimates of social sensors in the multi-agent state estimation over

graphs.

Example to Illustrate Mis-information Propagation:

Consider six social sensors that aim to estimate an underlying state of nature interactively with their

communication topology illustrated in Figure 1.1. The graph in Figure 1.1 shows the information

exchange protocol among social sensors, for example, the link between node 1 and node 3 shows

that the estimation of node 1 is available at node 3. Each node records its own observation and com-

bines it with the available estimates received from other nodes in the network (which are available

due to the network structure) in order to form its estimates of state of nature. Then, the updated

estimates are broadcasted over the network.

1

2

3

4

5

6

Figure 1.1: Example of a network of six agents (social sensors) aims to estimate a parameter (state

of nature) interactively; each edge depicts a communication link between two sensors.

To understand what can go wrong with the above example, note that the estimate of node 1 is

used at nodes 3 and 4, therefore, the estimates of these nodes are both functions of the estimate of

node 1. Thus, if node 5 naively combines the information received from node 3 and 4, it would have

double counted the estimate of node 1; this results in mis-information propagation.

Research Goals

As illustrated with the above example, mis-information propagation (also called data incest) arises in

interactive sensing over networks due to the recursive nature of Bayesian estimators and the correla-

tion imposed by the structure of the underlying communication graph among agents (social sensors).

Mis-information propagation results in a bias in estimates of agents and over-confidence phenom-

ena, i.e., the variance is underestimated. Therefore, in the presence of mis-information propagation,

Bayesian estimators require careful design. Chapter 2 is devoted to design and development of al-

gorithms that mitigate the effect of mis-information propagation in multi-agent estimation problem

over the networks.
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Remark 1.1.1. Our implicit assumption throughout Chapter 2 is that, agents do not directly broad-

cast their raw observations over the network. First, (private) raw observations of the other individu-

als are not typically available because of the privacy concerns or time constraints. For example, let

x ∈ ({1,2, . . . ,5}×{1,2, . . . ,5}) denote quality and affordability of a restaurant (x is a two dimen-

sional vector). Assume that an individual in social network (social sensor) checks out the restaurant

and based on her observations, she estimates the quality and cost of that restaurant (the estimated

value of x). But at the time of her future social interactions, she usually does not provide (or even

does not remember) details of the “raw” observations and she only shares her belief with others.

Second, the dimension of observations, is typically much larger than the dimension of the state of

nature. In the example of restaurant, the observation vector can include many elements such as

quality of food, music, lighting, price of food, staff, neighborhood, cost of beverages, etc. Instead

of broadcasting all these raw observations, it is more common in social networks to share only the

beliefs about quality and cost of that restaurants.

1.1.2 Interactive Social Learning over Networks

Social learning which has been applied to understand, model, and predict the behavior of agents

in economics, financial markets, political sciences, and social networks [16, 35, 36, 100] seeks

to answer the following question: How do actions (decisions) of other agents affect actions of

subsequent agents? Social learning model comprises of a set of agents seeking to estimate the

underlying state of nature not only from their private observations, but also from the actions of

previous agents. All agents know the structure of the model, they know that the action of each agent

is a rational response to its private observations, and thus, convey information about state of nature.

Social learning can be considered as the diffusion of (private) information about state of nature to

all agents through the intercommunication of actions in a set of (finite, or infinite) agents [35].

When a human learns form another person’s behavior, decision, or action, social learning occurs.

In social learning, the actions of one agent affects the behavior of others, since they know that those

actions are motivated by some type of information that other agents have about the state of nature.

To better understand this, let’s borrow the umbrella example from [35]. When someone sees other

people going out with an umbrella, she also takes an umbrella without checking the weather forecast.

That happens because people know that the actions or behavior of others have some information

about the state of nature; this results in rational herding. Social learning is a useful approximation

to ordinal human behavior. Classical social learning is used to model the behavior of expected cost

minimizer agents. Also, social learning can be generalized to of risk averse minimizers, see [95, 96].

Chapter 3 considers a social learning model comprising of a set of agents (social sensors) that

are interacting over a network to estimate an underlying state of nature. As opposed to the classical

social learning model (where agents act once in a pre-determined order), in the social learning

model considered in Chapter 3, the structure of social network dictates who interacts with whom.
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We use social learning as a mathematical abstraction to model interactions between agents (social

sensors) in interactive sensing problem. From a statistical signal processing point of view, the

interactive sensing using social learning models–estimating state of nature via social sensors–is

non-standard in two ways: First, agents are influenced by the rating of other agents, this can result

in interesting phenomenon where rational agents can all end up making the same decision (herding

and information cascades; [35]). Second, (and this effect is more complex), an agent might be

influenced by his own rating leading to data incest (mis-information propagation). In the following,

the main results of Chapter 3 is described briefly.

Research Goals

As is apparent from the above discussion, mis-information can propagate in interactive sensing with

social learning due to the correlations imposed by the structure of the underlying social networks

(existence of multiple paths between agents in the graph which represents the underlying social

network) and the recursive nature of Bayesian inference, see Section 1.1.1. To give an example,

suppose an agent wrote a poor rating of the restaurant on a rating and review site. Another agent is

influenced by this rating and also gives the restaurant a poor rating. The first agent visits the rating

and review again and finds out that another agent has also given the restaurant a poor rating–this

double confirms his rating and he enters another poor rating. In a fair system, the first agent should

have been aware that the rating of the second agent was influenced by his rating–so that first agent

has effectively double counted his first rating by casting the second poor rating. Mis-information

propagation cause the over-confidence problem and results in a bias in the estimate of state of nature.

Motivated by online rating and review systems, our aim is to manage mis-information propaga-

tion problems associated with interactive sensing using social learning. In particular, our goal is to

design and develop a protocol for the administrator of a rating and review system such that it can

automatically maintain a fair (data incest free) rating and review system which results in a system

with a higher trust rating.

1.1.3 Tracking Degree Distribution of Social Networks

Tracking a time-varying parameter that evolves according to a finite-state Markov chain (state of

nature) is a problem of much interest in signal processing [20, 63, 153]. In the context of social

networks, this parameter can be, for example, the level of happiness in a community, the tendency

of individuals to expand their networks, the strength of social links between individuals, or search-

ability of network which cannot be sensed by physical sensors. In such cases, social sensors can

go beyond physical sensors and can be used to track those parameters of social networks. A social

network with a large number of individuals can be viewed as an interactive sensing tool to obtain

information about individuals or state of nature; this is a social sensor. Motivated by social network
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applications, a social sensor based framework is presented in Chapter 4 to track the degree distri-

bution of Markov-modulated dynamic networks whose dynamics evolve over time according to a

finite-state Markov chain.

The question that may arise here is: “What is the importance of degree distribution of a social

network?” The most important parameter of a network that characterizes its structure is the degree

distribution. It yields useful information about the connectivity of the random graph [10, 86, 116].

For example, if a majority of nodes in the random graph have relatively high degrees, the graph is

highly connected and a message can be transferred between two arbitrary nodes with shorter paths.

However, if a majority of nodes have smaller degrees then for transmitting a message throughout the

network, longer paths are needed, see [80]. The degree distribution can further be used to investigate

the diffusion of information or disease through social networks [108, 146]. The existence of a “giant

component”5 in complex networks can be studied using the degree distribution of the graph that

models that social network. The size and existence of a giant component has important implications

in social networks in terms of modeling information propagation and spread of human disease,

see [62, 115, 118]. The degree distribution is also used to analyze the “searchability” of a network.

The “search” problem arises when a specific node in a network faces a problem (request) whose

solution is at other node, namely, destination (e.g., delivering a letter to a specific person, or finding

a web page with specific information) [4, 146]. The searchability of a social network [146] is the

average number of nodes that need to be accessed to reach the destination. Degree distribution is also

used to investigate the robustness and vulnerability of a network in terms of the network response

to attacks on its nodes or links [33, 76]. The papers [148, 149] further use degree-dependent tools

for classification of social networks.

Chapter 4 considers a dynamic social network where the interactions between nodes evolve

over time according to a Markov process that undergoes infrequent jumps (the state of nature). An

example of such social networks is the friendship network among residents of a city, where the

dynamics of the network change in the event of a large festival. In this chapter, we propose Markov-

modulated random graphs to mimic social networks where the interactions among nodes evolve

over time due to the underlying dynamics (state of nature). For example, state of nature can be level

of happiness in the society which is impossible to measure using participatory sensors. Here, social

networks can be used as social sensors for tracking the underlying state of nature. That is, using

noisy measurements of the degree distribution of the network, the jumps in the underlying state of

nature can be tracked.

5A giant component is a connected component with size O(n), where n is the total number of vertices in the graph.

If the average degree of a random graph is strictly greater than one, then there exists a unique giant component with

probability one [41], and the size of this component can be computed from the expected degree sequence.
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Figure 1.2: Tracking the underlying state of nature using a Markov-modulated random graph as a

social sensor.

Research Goals

Chapter 4 considers a Markov-modulated duplication-deletion random graph where, at each time

instant, one node can either join or leave the network with probabilities that evolve according to the

realization of a finite state Markov chain (state of nature). This chapter deals with the following

questions: How can one estimate the state of nature using noisy observations of nodes’ degrees

in a social network? and How good are these estimates? By tracking the degree distribution of

a Markov-modulated random graph, we can design a social sensor to track the underlying state of

nature using the noisy measurements of nodes’ connectivity; see Figure 3.20.

Chapter 4 comprises of two results. First, motivated by social network applications, we analyze

the asymptotic behavior of the degree distribution of the Markov-modulated random graph. From

this degree distribution analysis, we can study the connectivity of the network, the size and the ex-

istence of a large connected component, the delay in searching such graphs, etc. [62, 80, 115, 118].

Second, a stochastic approximation algorithm is presented to track the empirical degree distribution

as it evolves over time. We further show that the stationary degree distribution of Markov-modulated

duplication-deletion random graphs depends on the dynamics of such graphs and, thus, on the state

of nature. This means that, by tracking the empirical degree distribution, the social network can be

viewed as a social sensor to track the state of nature. The tracking performance of the proposed

stochastic approximation algorithm is analyzed in terms of mean square error. A functional central

limit theorem is further presented for the asymptotic tracking error.
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1.2 Main Contributions

In the subsequent sections, a brief summary of major novel contributions of the chapters that con-

stitute this thesis is provided in order that they appear in the thesis. More detailed description of the

contributions and findings of each chapter is provided in individual chapters.

1.2.1 Bayesian Estimation over Social Networks

As briefly described in Section 1.1.1, Chapter 2 considers multi-agent Bayesian estimation problem

with constraints imposed by the structure of the underlying social network. In such problems, as a

result of the recursive nature of Bayesian estimators and the correlation imposed by the communi-

cation topology of social sensors, mis-information propagation arises.

The main contributions of Chapter 2 are summarized below:

1. Mis-information propagation problem in interactive-sensing problem over social networks–

where agents transmit their beliefs about state of nature instead of raw observations over the

network–is mathematically formulated using a family of directed acyclic graphs.

2. A necessary and sufficient condition on the information flow graph6 is presented for the exact

mis-information removal problem. It is shown in Section 2.3 that under Constraint 2.3.1,

mis-information associated with estimates of agents can be completely removed.

3. An optimal information aggregation algorithm is proposed for multi-agent estimation problem

over networks which mitigates the mis-information associated with estimates of agents (social

sensors) when the information flow graph is known.

4. A sub-optimal mis-information removal algorithm is presented for scenarios where the the

information flow graph is not completely known.

1.2.2 Interactive Social Learning over Networks

Motivated by online rating and review systems, Chapter 3 considers social learning as a mathemat-

ical abstraction to model the interactions among agents (social sensors) in state estimation problem

using interactive sensing. Agents record their own private observations, then, update their private

beliefs about the state of nature using Bayes’ rule. Based on their belief each agent, then, chooses

an action (rating) from a finite set and transmits this action over the social network. An important

consequence of such social learning over a network is the ruinous multiple re-use of information

6Information flow graph is a directed acyclic graph that models the flow of information among social sensors, for

example, a directed edge from Sensor 1 to Sensor 2 means that the information– or beliefs in the context of Chapter 2–of

Sensor 1 is available at Sensor 2, see Section 2.2 for more details.
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known as data incest (or mis-information propagation). In this chapter, the data incest management

problem in social learning context is formulated on a family directed acyclic graphs.

The main contributions of Chapter 3 are summarized below:

1. A social learning model is presented to mimic the behavior of agents in online rating and

review systems that aim to estimate a state of nature (for example quality of a restaurant on

Yelp).

2. A fair rating and review protocol is presented and the criterion for achieving a fair rating is

defined. This protocol is used as a benchmark in the data incest management problem in

social learning over social networks.

3. An automated incest removal protocol is developed for the administrator of online rating and

review system, to deploy such that the system maintains a fair rating of its entities. Such

algorithm can easily be applied to any interactive-sensing system that involves transmission

of actions and Bayesian inference.

4. Necessary and sufficient conditions on the graph topology of social interactions between so-

cial sensors are presented to eliminate data incest.

1.2.3 Tracking Degree Distribution of Social Networks

Chapter 4 considers dynamical random graphs. The most important measure that characterizes

the structure of a network (specially when the size of the network is large and the connections—

adjacency matrix of the underlying graph—are not given) is the degree distribution of that network.

The degree of a node in a network (also known as the connectivity) is the number of connections

the node has in that network. In this chapter, motivated by social network applications, we consider

a class of stochastic approximation algorithms to track a time-varying probability mass function

that evolves according to a finite-state Markov chain whose transition matrix is close to identity. In

the context of social network analysis, the time-varying probability mass function which we aim to

track is the expected degree distribution of a dynamic random graph.

The main contributions of Chapter 4 are summarized below:

1. A family of Markov-modulated duplication-deletion random graphs are introduced in Chap-

ter 4 that mimic social networks where interaction among agents are varying over time ac-

cording to realization of a finite-state Markov chain. We consider two categories of such

graphs: (i) fixed size duplication-deletion random graph, and (ii) infinite duplication-deletion

random graph.

2. An asymptotic degree distribution analysis is presented for the fixed size Markov-modulated

random graph. In particular, it is shown that the expected degree distribution of such graphs
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at each time can be computed in terms of the expected degree distribution at the previous time

and the dynamics of the graph via a recursive equation.

3. We extend the degree distribution analysis to infinite random graphs and prove that the degree

distribution of such graphs satisfy a power law with the exponent depending on the dynamics

of the graph. An expression is presented to compute the power law exponent in terms of the

dynamics of the duplication-deletion model.

4. Chapter 4, further, considers the adaptive estimation problem of degree distribution for a

fixed size Markov-modulated duplication-deletion random graph given noisy observations.

A stochastic approximation algorithm is presented for tracking the degree distribution as it

evolves over time. In the following, the results related to the tracking performance of stochas-

tic approximation algorithm are presented.

• Mean square error analysis: Using error bounds on two-time scale Markov chains and

perturbed Lyapunov function methods, the asymptotic mean square error between the

expected degree distribution and the estimates obtained via the stochastic approximation

algorithm is computed.

• Weak convergence analysis: We show that the asymptotic behavior of the stochastic

approximation algorithm converges weakly to the solution of a switched Markovian

ordinary differential equation.

• Functional central limit theorem for scaled tracking error: Finally, Chapter 4 investi-

gates the asymptotic behavior of the scaled tracking error of stochastic approximation

algorithm. Similar to [94], it is shown that the interpolated scaled tracking error con-

verges weakly to the solution of a switching diffusion process.

5. Chapter 4, further, investigates infinite (denumerable) duplication-deletion random graphs

where the number of nodes in the graph (and so the support of degree distribution) is no longer

fixed and increases over time. A Hilbert-space-valued stochastic approximation algorithm

is proposed to track the degree distribution of the infinite graph with support on the set of

non-negative integers. To study the tracking performance of such a Hilbert-space-valued

stochastic approximation algorithm, limit system characterization and asymptotic analysis of

scaled tracking error are provided.

1.3 Related Works

This section is devoted to the literature review of topics and advances in the fields related to this

dissertation.
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1.3.1 Bayesian Estimation over Social Networks

Bayesian inference deals with the problem of inferring knowledge about unknown parameters using

Bayes’ rule [21, 125, 130]. Bayesian theory has many application in decision theory, detection and

estimation, communications theory, pattern recognition, machine learning and artificial intelligence,

and filtering and parameter estimation [39, 58, 64, 75, 77, 105, 112]. For a comprehensive survey on

Bayesian inference and estimation theory, we refer the interested reader to books [130, 133, 141].

Bayesian networks and different inference methods in Bayesian networks are investigated in [120].

A model of Bayesian social learning where agents receive a private information about state of nature

and observe the actions of their neighbors is investigated in [83]. They proposed an algorithm to

compute actions of agents on tree-based social networks and analyzed their algorithm in terms of

efficiency and convergence.

There are several papers discussing the spread of information in social networks, see [7, 31, 36]

for a comprehensive survey and tutorial on different methods for diffusion of information in social

networks. Applications of gossip algorithms, which is a protocol based on communication of agents

with their local neighbors, in signal processing are studied in [65]. A type of mis-information prop-

agation in social networks caused by “influential” or “ forceful” agents is investigated in [3]. Viral

propagation of faulty information (for example, mis-information of swine flu) through social media

channels is studied in [30, 119]. For the motivation of the mis-information problem addressed in

this work, we refer to [29, 49, 78, 106, 128] in sensor networks. Data incest in sensor network con-

text happens in distributed tracking systems where sensors locally integrate the estimates received

from other sensors through a (possibly loopy) communication graph with random delays. The key

requirement is to fuse estimates that share a common information set. An optimal solution for the

case of connected tree networks by combining a decentralized information filter and a channel filter

is presented in [49].

In this thesis, we consider mis-information propagation through a social network with arbitrary

network topologies. Each agent records its observation of state of nature in presence of noise. We

used a combination of graph theoretic tools and Bayesian estimation to remove the mis-information

removal generated by different delays in links.

1.3.2 Interactive Social Learning over Networks

Social learning theory is used to investigate the learning behavior of agents in social and economic

networks [2]. There are several papers in the literature discussing Bayesian models [1, 43, 92, 120]

and non-Bayesian models [14, 48, 56, 57, 81] for social learning. Different models for diffusion of

beliefs in social networks are presented in [36]. For a comprehensive survey on herding and infor-

mation cascade in social learning, see [37]. Stochastic control with social learning for sequential

change detection problems is considered in [87].
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Mis-information in the signal processing literature refers to faulty or inaccurate information

which is broadcasted unintentionally. A brief summary of works related to misinformation prop-

agation and removal is presented in Section 1.3.1. Mis-information in the context of this chapter

is motivated by sensor networks where the term “data incest” is used [89]. In multi-agent social

learning in networks, data incest occurs when information (action) of one agent is double-counted

by other agents (due to the lack of information about the topology of the communication graph);

this yields to overconfidence. The overconfidence phenomena (caused by data incest) also arises in

Belief Propagation (BP) algorithms [113, 123] which are used in various fields such as graphical

models for learning, computer vision, and error-correcting coding theory. The aim of BP algorithms

is to solve inference problems over graphical models such as Bayesian networks (where nodes rep-

resent random variables and edges depict dependencies among them) by computing a marginal

distribution. BP algorithms require passing local messages over the graph (Bayesian network) at

each iteration. These algorithms converge to the exact marginal distribution when the factor graph

is a tree (loop free). But for graphical models with loops, BP algorithms are only approximate due

to the over-counting of local messages [113, 152] (which is similar to data incest in multi-agent

social learning)7.

In Chapter 2 and papers [89, 90], data incest is considered in a network where agents exchange

their private belief states—that is, no social learning is considered. In a social network, agents rarely

exchange private beliefs, they typically broadcast actions (votes) over the network. Motivated by

trustable online rating and review systems, we consider data incest in a social learning context

with social network structure where actions (or equivalently public belief of the social learning)

are transmitted over the network. This is quite different from private belief propagation in social

networks. Simpler versions of this information exchange process and estimation were investigated

by Aumann [12] and Geanakoplosand and Polemarchakis [66]. The results derived in this chapter

extend theirs.

Finally, the methodology of Chapter 3 can be interpreted in terms of the recent Time magazine

article [145] which provides interesting rules for online rating and review systems. These include:

(i) review the reviewers, (ii) censor fake (malicious) reviewers. The data incest removal algorithm

proposed in this chapter can be viewed as “reviewing the reviews” of other agents to see if they are

associated with data incest or not.

7There exists some similarities between BP and social learning in the sense that they are both systematic structures

to perform Bayesian inference over graphs. However, they are not related in principle. While graphs represent social

interactions among agents in social learning, graphical models in BP depict the conditional dependency between nodes

(random variables)– they do not imply the actual communications, for more detail see[36].
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1.3.3 Tracking Degree Distribution of Social Networks

With a large number of rational agents, social networks can be viewed as social sensors for extract-

ing information about the world or people. For example, the paper [132] presents a social sensor

(based on Twitter) for real-time event detection of earthquakes in Japan, namely, the target event.

They perform semantic analysis on tweets (which are related to the target event) in order to detect

the occurrence and the location of the target event (earthquake). Another example is the use of

the social network as a sensor for early detection of contagious outbreaks [40]. Using the fact that

central individuals in a social network are likely to be infected sooner than others, a social sensor

is designed for the early detection of contagious outbreaks in [40]. The performance of this social

sensor was verified during a flu outbreak at Harvard College in 2009—the experimental studies

showed that this social sensor provides a significant additional time to react to epidemics in the

society. Social sensing in the context where physical sensors present in mobile devices such as GPS

or Bluetooth are used to infer social interactions is studied in [6, 32, 34, 54] . Here, we consider

a scenario that a social network considered as a sensor of social interactions, human activities, or

behavior and aims to track the degree distribution of a random graph via stochastic approximation

algorithms.

Stochastic approximation algorithms have several applications in diverse areas such as system

identification, control theory, adaptive filtering, state estimation, wireless communications, target

tracking, change detection, and economics [20, 50–52, 93, 99, 110, 111, 150, 153]. The ubiquitous

use of stochastic approximation algorithms is mainly due to their ability to track a time-varying

unknown parameter of a system; this is called “tracking capability”, see [20]. Tracking a time-

varying parameter that evolves according to a finite-state Markov chain has several applications

in target tracking [63], change detection [20], multi-user detection in wireless systems [153], and

economics [93]. Tracking capability of regime switching stochastic approximation algorithms is

further investigated in [154] in terms of the mean squared error. The interested reader is referred

to [99] for a comprehensive development of stochastic approximation algorithms.

For the background and fundamentals on social and economic networks, we refer to [80]. Here,

the related literature on dynamic social networks is reviewed briefly. The book [53] provides a

detailed exposition of random graphs. The dynamics of random graphs are investigated in the math-

ematics literature, for example, see [41, 60, 104] and the reference therein. In [121], a duplication

model is proposed where at each time step a new node joins the network. However, the dynamics of

this model do not evolve over time. In [41], it is shown that the degree distribution of such networks

satisfies a power law. In random graphs which satisfy the power law, the number of nodes with

a specific degree depends on a parameter called “power law exponent” [82, 147]. A generalized

Markov graph model for dynamic social networks along with its application in social network syn-

thesis and classification is also presented in [149]. The degree distribution analysis of real-world
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networks has attracted much attention recently, [8, 45, 55, 67, 85, 114, 118]. A large network

dataset collection can be found in [103], which includes datasets from social networks, web graphs,

road, internet, citation, collaboration, and communication networks. The paper [114] investigates

the structure of scientific collaboration networks in terms of degree distribution, existence of giant

component, and the average degree of separation. In the scientific collaboration networks, two sci-

entists are connected if they have co-authored a paper. Another example is the degree distribution

of the affiliation network of actors8, which is studied in [118] based on real data from IMDb. In [8],

the structure and characteristics of three different online social networks (Cywork, Myspace, and

Orkut) are investigated. The authors use snowball sampling method9 [22, 102] to estimate the de-

gree distribution of the network when it is not possible to access all nodes in the network (specially

when the size of the network is large). It is further shown in [55] that the degree distribution of

email networks satisfies a power law.

Finally, different applications of social sensors in detection and estimation are investigated in [9,

40, 132]. The differences between social sensors, social sensing, and pervasive sensors along with

challenges and open areas in social sensors are further presented in [88, 131].

1.4 Thesis Outline

In this section, we present the organization of this dissertation which is illustrated in Figure 1.3. The

rest of this thesis is divided into two parts and four chapters as outlined below:

Motivated by different information diffusion patterns in interactive sensing over social networks,

Part I considers multi-agent state estimation and learning problem over directed acyclic graphs in

social networks and comprises of two chapters:

• Chapter 2 considers Bayesian estimation over directed acyclic graphs where agents transmit

their beliefs about state of nature (the posterior distribution of state of nature given private ob-

servations and beliefs of other agents which are available due to the structure of the underlying

social networks) instead of raw observations. It then formulates data incest (also known as

mis-information propagation) that arises in such estimation problems using a graph-theoretic

setup. It is, then, shown that under some necessary and sufficient conditions on the topol-

ogy of the communication graph among agents, mis-information can completely be removed

from the estimates of agents. Assuming that the communication graph is known, an optimal

mis-information removal algorithm is proposed. We also provide a sub-optimal algorithm

for reducing the effect of mis-information when the communication graph is not completely

8Collaboration network of movie actors.
9There are different methods of sampling a network, for example, link sampling, node sampling, and snowball sam-

pling. For a complete survey, we refer to [102]. In link or node sampling, a given fraction of links or nodes are sampled.

In snowball sampling method, one node is chosen randomly and the next samples are chosen from its neighbors.
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Signal Processing Methods for Interactive Sensing Using  Social Sensors

Part II: Tracking the Degree 
Distribution in Dynamic Social 
Networks:

Degree distribution analysis of 
Markov-modulated graphs
 Social sensor of Markovian 
dynamics (state of nature)

Part I: Estimation and  Learning 
Over Directed Acyclic Graphs:

Bayesian estimation  for interactive    
sensing

Multi-agent social learning
Data incest in social learning

Algorithmic Tools: Stochastic Approximation, Bayesian Filtering
Analysis Tools:  Weak Convergence analysis, Graph Theory

Figure 1.3: Main results and organization of thesis.

known. This chapter is concluded with a numerical study that illustrates the excellent perfor-

mance of the proposed algorithms.

• Motivated by online rating and review systems, Chapter 3 employs social learning to model

the interactions among agents in a multi-agent estimation problem where the actions of agents

are transmitted over the network (instead of raw observations or private beliefs). In such a

setup, each agent—in order to estimate an underlying state of nature—chooses an action from

a finite set of actions to minimize a local cost function and then transmits this action over the

network. We give necessary and sufficient conditions on the graph topology of social inter-

actions to eliminate data incest. A data incest removal algorithm is, then, proposed in this

chapter such that the public belief of social learning (and, hence, the actions of agents) is

not affected by data incest propagation. This results in an online rating and review system

with a higher trust rating. This chapter then presents an actual psychology experiment that

was conducted by our colleagues at the Department of Psychology of University of British

Columbia in September and October, 2013, to illustrate social learning, data incest and so-

cial influence. Finally, numerical examples are provided to illustrate the performance of the

proposed optimal data incest removal algorithm.

Motivated by applications of degree distribution in social network analysis and tracking a Marko-

vian dynamics of graphs, Part II considers Markov modulated duplication-deletion random graphs
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and is comprised of one chapter:

• Chapter 4 considers a Markov-modulated duplication-deletion random graph where at each

time instant, one node can either join or leave the network; the probabilities of joining or leav-

ing evolve according to the realization of a finite state Markov chain. This chapter comprises

of two inter-related research problems. First, motivated by social network applications, the

asymptotic behavior of the degree distribution is analyzed. Second, a stochastic approxima-

tion algorithm is presented to track empirical degree distribution as it evolves over time. The

tracking performance of the algorithm is analyzed in terms of mean square error and a func-

tional central limit theorem is presented for the asymptotic tracking error. Chapter 4, then,

presents a Hilbert-space-valued stochastic approximation algorithm that tracks a Markov-

modulated probability mass function with support on the set of nonnegative integers. Finally,

this chapter is concluded with some numerical example that illustrates the performance of

tracking algorithms and corroborate the findings of this chapter.

Chapter 5 briefly outlines a summary of findings in these two parts and provides a direction for

future research and development in the fields related to this dissertation.

A brief review of some graph theoretic definitions and tools that have been used throughout this

dissertation is presented in Appendix A.

An important associated problem to numerical studies of social networks is how to actually

construct random graphs via simulation algorithms. In particular, for large social networks, only

the degree sequence is available, and not the adjacency matrix. (The degree sequence is a non-

increasing sequence of vertex degrees.) Does a simple graph exist that realizes a particular degree

sequence? How can all graphs that realize a degree sequence be constructed? Appendix B presents

a discussion of these issues.
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Part I

Estimation and Learning Over Directed

Acyclic Graphs
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2

Constrained Estimation Over Random

Graphs

2.1 Introduction

This chapter deals with Bayesian estimation problem over networks and considers a social network

where each group of individuals use received information from the other social groups and employs

Bayesian models of information aggregation to evaluate their belief about state of nature. In this

context, each group of individuals form a social sensor of a an economic or a social parameter.

The process of exchanging information between social groups is crucial for individuals to evaluate

their beliefs. An important parameter that characterizes how the belief evolves is the delay in this

information exchange. This delay can be extrinsic - individuals take different amounts of time to

form beliefs and communicate them, or intrinsic to the network; highly connected nodes exchange

information faster compared to nodes that have fewer connections. The most important consequence

of this delay is mis-information (or incest) propagation as we will explain shortly. Let us first

formulate the observation and information exchange using a graph-theoretic notation.

State of Nature: Let x represent a state of nature that individuals in the social network aim to

estimate such as quality of a restaurant. Assume that x belongs to a finite set X = {x1,x2, . . . ,xN}.

Here, xi (for 1 ≤ i ≤ N) is in Rd or R
+d or Nd where d is a positive integer number. Assume that x

has prior distribution π0.

Observation Protocol: To estimate x, each individual in the social network obtains an M-

dimensional observation vector where M is a positive integer number. To simplify the analysis,

we assume that the set of individuals in the social network is partitioned into S social groups such

that within each social group individuals record the same observations. At time k, the noisy obser-

vation of social group s, z⌊s,k⌋ has conditional probability distribution

p(z⌊s,k⌋ ≤ z|x = xi) = ∑
z≤z

Biz, 1≤ i≤ N. (2.1)

Here ∑z denotes integration with respect to Lebesgue measure (in which case Biz is the conditional

probability distribution function) or the counting measure (in which case Biz is the conditional prob-

ability mass function). Assume that zn given x for different values of “s” and “k” are independent
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random variables with respect to s and k. Each social group s combines its private observation z⌊s,k⌋,

with information received from other groups in social network to update its belief about state of

nature x. Then, it communicates this updated belief to other groups in the social network.

Information Exchange Protocol: Let G⌊s,k⌋ = (V⌊s,k⌋,E⌊s,k⌋), k = 1,2, , . . ., s = 1,2, . . . ,S denote

a sequence of time-dependent directed graphs of information flow in the social network until and

including time k. Here V⌊s,k⌋ denotes the set of vertices,

V⌊s,k⌋ = {(s,k′)|k′ ≤ k,s ∈ {1,2, . . . ,S}} (2.2)

and E⌊s,k⌋ ⊆V⌊s,k⌋×V⌊s,k⌋ is the set of edges which depicts the connections between vertices in G⌊s,k⌋.

For example if ((s,k′),(s′,k′′)) ∈ E⌊s,k⌋, it means that the information from social group s at time k′

is available at social group s′ at time k′′ (k′ ≤ k′′ ≤ k). Each social group uses Bayesian model to

estimate the underlying state of nature x.

As a result of the recursive nature of Bayesian estimators, mis-information propagation can

arise in a social network with the above information exchange protocol. For example, assume that

the estimates of social group 1 at time 1, θ⌊1,1⌋, reach social group 2 at time 2. Also suppose the

estimates from social group 2, θ⌊2,2⌋, reach social group 1 at time 3. Since social group 2 used

θ⌊1,1⌋, the estimate generated by social group 2 is a function of the θ⌊1,1⌋. Therefore, if social group

1 naively combines the estimate of social group 2 received at time 3, θ⌊2,2⌋, with its own private

estimates, it would have double counted its estimate at time 1, θ⌊1,1⌋. In the above graph theoretic

notation, we can depict graph G⌊2,3⌋ as

(1,1) → (1,2) → (1,3)

↘ ↗
(2,1) → (2,2) → (2,3)

(2.3)

where the two-tuples denote vertices defined in (2.2) and the arrows denote edges of directed acyclic

graph. The fact that there exists two distinct paths between (1,1) and (1,3) in the graph of (2.3) shows

that information in (1,1) is double counted leading to mis-information propagation. As the above

example shows, the mis-information (rumor) propagation can be viewed as the destructive re-use

of observation information. It leads to an overconfidence phenomenon i.e the variance is under-

estimated. The recursive nature of Bayesian estimation requires careful design to cope with the

possible ruinous re-use of information. In more realistic problems considered in this chapter, there

are multiple groups in social network (and thus an arbitrarily complex network topology) together

with random delays in the network. For such cases, mis-information management is a non-trivial

problem.
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2.1.1 Chapter Goals

A network of social groups is considered in this chapter that aim to estimate the underlying state of

nature x. Before proceeding, let us introduce the following scalar index n instead of ⌊s,k⌋ for the

sake of notational simplicity:

n ! s+S(k−1), s ∈ {1, . . . ,S}, k ∈ {1,2,3, . . .} . (2.4)

Notice that n is a composite of time k and social group s. Subsequently, we will refer to n as a

“node” of a time dependent graph namely information flow graph. This estimation problem can be

expressed in the following abstract form:

Estimate x with prior π0 subject to:
⎧
⎪⎨

⎪⎩

Gn = (Vn,En) is given.

zn ∼ Biz, x = xi, (observation process)

θn = A (Θn,zn), (filter constraint)

(2.5)

Here, Θn denotes the set of beliefs from nodes (social groups at previous times) available at node

n (social group s at time k) which depends on the information flow network Gn. Let θn denote

the posterior distribution10 of x given Θn and zn. In 2.5, A denotes the algorithm used by each

node to update the belief θn. The aim of this chapter is to construct the information aggregation

algorithm A such that estimates θn are not affected by mis-information propagation. If A is not

constructed properly, then mis-information can propagate in social network as explained earlier in

this chapter. Thus, from an abstract point of view, mis-information removal can be interpreted as

optimal Bayesian estimation on a directed acyclic graph with information exchange constraints.

This chapter aims to address the following questions:

1. Existence Problem: Under what constraints on the information flow, is complete mis-information

removal possible?

2. Design Problem: Synthesize an algorithm A such that mis-information propagation is pre-

vented.

3. Reconstruction Problem: If the information flow graph, Gn, is not completely known at each

time, design an algorithm to mitigate the mis-information propagation.

10For some distributions, instead of transmitting the posterior distribution, it is sufficient to broadcast the sufficient

statistic. In the finite case, the sufficient statistic and posterior distribution are similar.
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2.1.2 Main Results and Organization of Chapter

This chapter considers mis-information propagation through a social network with arbitrary net-

work topologies. Each social group records their observation of state of nature with any arbitrary

aposteriori probability distribution and any arbitrary observation noise. The recursive nature of

Bayesian estimation in decentralized fusion requires careful design to cope with the possible re-use

of information such that the estimates θn are equal to mis-information free estimates of the optimal

scenario which is described in more detail in Section 2.2.2. In more realistic problems considered

in this chapter, there are multiple groups together with random delays in the network. For such

cases, mis-information management is a non-trivial problem. A combination of graph theory and

Bayesian estimation is employed to remove the mis-information removal generated by different de-

lays in links. The rest of the chapter is organized as follows:

• We represent information flow in a social network by a family of directed acyclic graphs in

Section 2.2. The communication among social groups is modeled by information exchange

Protocol 2.1 where mis-information propagation may arise. Information exchange Proto-

col 2.2 is introduced to benchmark against Protocol 2.1. From the benchmark Protocol 2.2,

the mis-information removal algorithm can be specified.

• Section 2.3 presents a necessary and sufficient condition (called Constraint 2.3.1) on topology

of the network that guarantees optimal, mis-information free estimates. It is shown that with

the full knowledge of information flow graph, Constraint 2.3.1 leads to an algorithm for exact

mis-information removal using optimal Bayesian estimation defined in Section 2.3.

• A sub-optimal algorithm is proposed in Section 2.4 to remove the mis-information associated

with estimates of social groups when the information flow graph is not completely known at

each time.

• Numerical results that show the effect of mis-information propagation and also the excel-

lent performance of the proposed mis-information removal algorithms are presented in Sec-

tion 2.5.

2.2 Modeling Information Flow in Social Networks

Section 2.1 outlined the goals and main results of this chapter and informally described constrained

estimation over social networks. In this section, first, using a graph-theoretic notation, the following

types of communication protocols are presented:

• Constrained information flow protocol: This protocol mimics information exchange, and in-

ference in a social network where beliefs are communicated among groups (nodes). As stated
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in Section 2.1, mis-information propagation arises in this protocol due to the abusive repeti-

tion of information.

• Full information flow protocol: This protocol is an ideal (and, thus, impractical) communica-

tion protocol that prevents mis-information propagation. To devise an algorithm to mitigate

mis-information propagation, this protocol is used as a benchmark against the constrained

information flow protocol, as we explain shortly.

Then, we assert via Theorem 2.2.1 that the flow of information in a social network can be rep-

resented by a family of time dependent Directed Acyclic Graphs (DAGs). Some essential graph

theoretic tools that will be used to formulate the mis-information propagation problem are outlined

in Appendix A.

2.2.1 Constrained Information Flow Protocol

This protocol refers to a social network where nodes aim to estimate an underlying state of nature

As described in Section 2.1, instead of raw observations, the posterior distribution of state of nature

(beliefs) are broadcasted over the network. Due to the information exchange constraint in this

protocol, the complete history of beliefs are not available at each node. It is in such a constrained

information flow network that mis-information propagation arises.

The information exchange protocol in constrained estimation over social networks described in

Section 2.1 can be summarized as following:

Protocol 2.1 Constrained Information Flow Network Protocol at each node n
Step 1. Observation: Node n (social group s at time k) records its private observation vector zn

according to (2.1), that is,

zn ∼ Biz, x = xi,

where n = s+S(k−1), see (2.4).

Step 2. Interaction with other social groups: Node n, then, accesses the network for beliefs from

other social groups at previous time instants Θn.

Step 3. Mis-information removal and Bayesian data fusion: Node n uses mis-information removal

algorithm together with Bayesian data fusion to combine Θn with its private observation zn and

updates its belief θn.

Step 4. Transmit the updated belief: Node n, then, broadcasts the updated belief over the network.

Remarks: We assume a reasonable degree of flexibility that each node deploys for broadcasting

its information over the network. In Step 2 above we assumed for simplicity (to avoid collision of

information) that only one social group is allowed to transmit information at each time instant.
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2.2.2 Benchmark Full Information Flow Protocol

The goal of this chapter is to solve estimation problem (2.5) subject to the information exchange

Protocol 2.1. We now describe an idealized (and therefore impractical) Protocol 2.2 that will be

used as a benchmark against Protocol 2.1. In the benchmark protocol, we assume that instead of

transmitting posterior distribution θn, each node transmits its own private observations zn and all raw

observations received over the network. In this protocol, since each node has the entire available

observation history from previous nodes, there is no room for mis-information propagation, i.e.,

there is no chance for inadvertent re-use of private observations by any node. Let Zn be the set

of observations from previous nodes (recorded or received until time k at social group s where

n = s+S(k−1))11. The benchmark protocol proceeds as follows:

Protocol 2.2 Benchmark Full Information Flow Network Protocol at each node n
Step 1. Observation: Node n records its private observation vector zn according to (2.1).

Step 2. Interaction with other social groups: Node n then accesses the network and receives the

private observations from other nodes, Zn.

Step 3. Information aggregation and Bayesian data fusion: Node n uses zn, Zn to compute it’s belief

yn = p(x|zn,Zn).
Step 4. Transmit augmented data: Node n, then, broadcasts the set of observations Zn∪ {zn} over

the network.

Since Protocol 2.2 serves as an idealized benchmark for designing mis-information removal al-

gorithms, its efficiency is irrelevant. However, it can be made more efficient by requiring each node

to only broadcast the observations which have not been already integrated in the belief computed

by the other nodes in the network. By comparing the posterior distribution of state of nature in Pro-

tocol 2.1 with the same in benchmark Protocol 2.2, mis-information removal algorithm is specified

in Section 2.3.

With Protocol 2.2 defined above, the benchmark estimation problem can be summarized as:

Estimate x with prior π0 subject to:
⎧
⎪⎨

⎪⎩

Gn = (Vn,En) is given.

zn ∼ Biz, x = xi, (observation process)

yn = F (Zn,zn), (standard estimation problem)

(2.6)

The estimates yn are free of mis-information because node n uses all available raw observations

(and not estimates) form other previous nodes. Note that estimation problem (2.5) is a dynamic

constrained estimation on the directed acyclic graphs. One set of constraints are on the topology

of the information flow graph (which are also valid for the estimation problem (2.6) in benchmark

protocol). However, there exists another constraint on the algorithm A (which does not hold for

11In the example (3) in Section 2.1, Z⌊1,3⌋ = {z⌊1,2⌋,z⌊2,2⌋,z⌊1,1⌋,z⌊2,1⌋}.
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the benchmark scenario). As will show in Section 2.3, the algorithm A has a specific linear form

which is depicted by (2.11) in Section 2.3.1.

2.2.3 Modeling Time Evolution of the Information Flow

Before proceeding, we refer the interested reader to Appendix A for a summary of graph theoretic

definitions that will be used to model information flow graph in Protocols 2.1 and 2.2. Recall from

Section 2.1, Gn denotes the time-dependent information flow graph of the social network. Each

node n′ in Gn represent a social group s′ at time k′ such that n′ = s′+ S(k′ − 1), see (2.4). Each

directed edge of Gn between node i and node j shows that the information (belief in Protocol 2.1

or observation in Protocol 2.2) of node i is available at node j in the social network represented by

Gn. Note that Gn is always a sub-graph of Gn+1. Therefore we can use a family of time dependent

Directed Acyclic Graphs (DAGs)12 to model the time evolution of the information flow in the social

network. Indeed, the following proposition shows that information flow in a (group-based) social

network can always be represented by a family of DAGs.

Theorem 2.2.1. The information flow in a social network defined in Protocol 2.1 and Proto-

col 2.2 comprising of S groups up and until time k can be represented by a family of DAGs G =

{Gn}n∈{1,...,N} where N = Sk. Each DAG Gn = (Vn,En) represents the information flow between the

n first nodes, where the generic node n is defined by (2.4).

Proof. The proof is presented in in Section 2.7.1.

The Adjacency and the Transitive Closure matrices of Gn are denoted by An and Tn, respectively

(see Appendix A for detail). Because of the fact that the information of each node cannot travel

backwards in time, An and Tn are upper triangular matrices.

Memory Requirement: In this chapter, we assume that beliefs are valid for duration of K time-

instants, where K is a positive integer, i.e., social groups at time k do not remember beliefs generated

before time k−K. This means that the size of the adjacency and transitive closure matrices of each

graph in G is limited to N = SK.

2.3 Optimal Mis-information Propagation Removal Algorithm

This section considers the estimation problem (2.5) with constrained information flow Protocol 2.1

in Section 2.2. The aim is to devise the information aggregation algorithm A in (2.5) such that the

estimates of (2.5) with Protocol 2.1 are equal to those of (2.6) with the benchmark Protocol 2.2, i.e.,

yn = θn. Also, we provide necessary and sufficient conditions on the information flow graph under

which the mis-information removal is possible.

12see Appendix A
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2.3.1 Optimal Combination Scheme in Constrained Information Flow Protocol

Consider the estimation problem (2.5) on directed acyclic graphs where social groups deploy Proto-

col 2.1. In this section, we address the following question: How should each social group combine

its private observation with the received information (beliefs) from the network so that its updated

belief is misinformation free?

To answer this question, consider estimation problem (2.6) with the idealized benchmark Proto-

col 2.2, where the set of raw observations are transmitted over the network and, thus, the estimates

are mis-information free. In this scenario, since the history of all observations are available at each

node and these observations are independent, the standard Bayesian update is used to evaluate

yn = p(x|Zn,zn).

Estimates yn are free of mis-information, therefore, to prevent mis-information propagation in con-

strained information flow Protocol 2.1, the information aggregation algorithm A should devised

such that

p(x|Θu(Gn),zn) = p(x|Zv(Gn),zn), for n = 1,2, . . . . (2.7)

So, the first step in building the optimal information aggregation algorithm is to compute the

estimates yn of the benchmark protocol in terms of raw observations and the information flow graph.

Before proceeding, let us define

ŷ f ull
n = log(yn) = log(p(x|Zn,zn)) for n = 1,2, . . . . (2.8)

Since the logarithm is monotonically increasing, surjective function, we can work with logarithm of

estimates ŷ
f ull
n instead of yn

13. The following proposition gives an expression for the estimates ŷ
f ull
n

in full information flow network.

Theorem 2.3.1. Consider estimation problem (2.6) with information exchange Protocol 2.2 of Sec-

tion 2.2. The mis-information free estimate at node n is:

ŷ f ull
n = (tn⊗ Id)ι1:n−1 + ιn, (2.9)

where ιn denotes log(p(zn|x)) and ι1:n−1 ! [ι ′1, . . . , ι
′
n−1]

′ ∈ R(n−1)d×1. Here ⊗ denotes Kronecker

(tensor) product and Id denotes the d×d identity matrix. Recall that tn defined in (A.6) as the first

n−1 elements of the nth column of Tn.

Proof. The proof is in Section 2.7.2

13Because the logarithm of product is the sum of individual logarithms, it is more convenient to use logarithm of

estimates in Bayesian estimation context.
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According to Theorem 2.3.1, the optimal mis-information free estimates can be expressed as

a linear combinations of ιi = log(p(zi|x)) in terms of Transitive Closure Matrix Tn of graph Gn.

Eq. (2.9) is quite intuitive. In information exchange Protocol 2.2, a node broadcasts its own raw

observations and also passes the observations received from others nodes so that each node has

the entire history of all possible observations, i.e., if there exists a path from node i to node n, the

observation of node i, zi, is available at node n. Therefore, the estimate ŷ
f ull
n of node n is sum of

the information from all nodes that are connected to node n (by single-hop or multi-hop paths) in

information flow graph Gn.

Evaluating the estimates of benchmark Protocol 2.2, we are now ready to tackle the algorithm

design problem. Consider the estimation problem (2.5) with information exchange Protocol 2.1 of

Section 2.2. The aim is to devise algorithm A such that (2.7) holds. Define

ŷn = log θn and ŷ1:n−1 ! [ŷ′1, . . . , ŷ
′
n−1]

′. (2.10)

With the n−1 dimensional vector wn below denoting a weight vector (a more precise construction

is given in Eq. (2.11) below), and ιn defined in (2.9), we propose the following optimal combination

scheme:

ŷn = (wn⊗ Id)ŷ1:n−1 + ιn, (2.11)

Before describing why estimations ŷn in (2.11) are free of mis-information, we introduce the

following constraints on the n−1 dimensional weight vector wn.

Constraint 2.3.1. Consider the estimation problem (2.5) with information exchange Protocol 2.1.

Then the set of weights {wn}n∈{1,...,N} in (2.11) satisfies the topological constraint for constrained

flow network if ∀ j ∈ {1, . . . ,n−1} and ∀n ∈ {1, . . . ,N}

an( j) = 0 =⇒ wn( j) = 0, (2.12)

where an is defined in (A.6).

Constraint 2.3.1 imposes a topological condition on the weight vector wn Assuming that Con-

straint 2.3.1 holds, Theorem 2.3.2 below asserts that estimates computed from (2.3.1) are identical

to the optimal, mis-information free estimates of information exchange Protocol 2.2.

Theorem 2.3.2. Consider estimation problem (2.5) with information exchange Protocol 2.1 of Sec-

tion 2.2. Then the set of weights {wn}n∈{1,...,N} in (2.11) satisfies the topological constraint for

constrained flow network if ∀ j ∈ {1, . . . ,n−1} and ∀n ∈ {1, . . . ,N}. Then the following optimality
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property holds for the estimates ŷn in the constrained information flow network:

ŷn = ŷ
f ull
n ⇐⇒

{
wn = tn

(
(Tn−1)

′)−1

and wn satisfy Constraint 2.3.1,
(2.13)

where ŷn and ŷ
f ull
n are defined in (2.10) and (2.8) respectively. Recall that tn defined in (A.6) as the

first n−1 elements of the nth column of Tn.

Proof. The proof is presented in Appendix 2.7.3

In words: A necessary and sufficient condition for ŷn = ŷ
f ull
n to be held is that the weight vector

wn satisfies wn = tn
(
(Tn−1)

′)−1
. As a result of constrained information flow, wn should simultane-

ously satisfy topological constraint (2.12) to ensure that required information for mis-information

removal is available at node n.

Discussion: According to Theorem 2.3.1, the mis-information free estimates of full information

flow protocol at node n is linear in the estimates computed by the previous nodes i.e. ι1:n−1 and the

information collected ιn at node n. This linearity enables us to remove the mis-information in the

constrained information flow protocol by employing the optimal combination scheme (2.11) with

n−1 dimensional weight vector wn defined in Theorem 2.3.2 . However, according to the commu-

nication topology described by Adjacency Matrix An, some nodes do not transmit their estimates

to node n. Consequently, the estimates of those nodes are not available at node n and must not be

used to compute the estimate ŷn. An obvious way to introduce this constraint in the estimation of ŷn

is to set the weight related to an unavailable estimate to zero. This is Constraint 2.3.1. Therefore,

it is also clear that (2.12) is a necessary condition for exact mis-information removal. Now, as-

suming that all the estimates of the n−1 latest nodes are optimal estimates free of mis-information

i.e. ŷ1:n−1 = ŷ
f ull
1:n−1 and are available at node n, is it possible to find a vector wn so that ŷn is equal

to the optimal estimates free of mis-information i.e. ŷ
f ull
n ? Theorem 2.3.2 provides the answer,

with wn = tn
(
(Tn−1)

′)−1
. The non-zero elements of wn show the nodes whose estimates should be

available at node n to remove the mis-information. But we know that due to the topology of the

graph some of the estimates form previous n−1 nodes are not available at node n. Constraint 2.3.1

basically ensures that the essential estimates (to remove the mis-information) from previous nodes

are available at node n and gives a necessary and sufficient condition on the topology of the graph

for ŷn = ŷ
f ull
n . In Section 2.5.1, we give more intuition on Constraint 2.3.1 by a simple example.
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2.4 Sub-optimal Mis-information Removal Algorithm Without

Complete Knowledge of Information Flow Graph

So far in this chapter, an optimal information aggregation scheme is proposed for estimation prob-

lem (2.5) with Protocol 2.1. Theorem 2.3.2 asserts that the estimates obtained via optimal aggrega-

tion scheme (2.11) are equal to those of the benchmark Protocol 2.2. Recall that mis-information

propagation arises due to the abusive repetition of information received from other nodes. This hap-

pens at one node, for example node n, when there exists a node in information flow graph Gn with

two or more links to node n. When, the information flow graph is known, each node can identify

the origin of mis-information propagation and, thus, remove that (under the assumptions of Con-

straint 2.3.1) via optimal information aggregation scheme (2.11). However, this scheme requires

the full knowledge of the information flow graph Gn. In this section, we relax that assumption and

propose a mis-information removal algorithm for the arbitrary case that each node does not know

the path of the received message. Instead, the ‘expected adjacency matrix’ of the information flow

graph is known at all nodes. Our goal here, is to devise a sub-optimal information aggregation

scheme based on (2.11) to reduce the effect of mis-information propagation where the informa-

tion flow graph is unknown. Before presenting the estimation problem when information flow is

unknown, let’s take a closer look into the expected adjacency matrix of a graph. Recall that the ad-

jacency (or connectivity) matrix of a graph shows the connections among nodes in a graph, i.e., the

element on row i and column j of the adjacency matrix is equal to one if there exists a (single-hop)

link from node i to node j, otherwise, it is zero. Similarly, the expected adjacency matrix of a graph

is defined as follows:

Ãn = [ãi,i] for 1≤ i, j ≤ n,

where ãi, j denotes the probability of having a link from node i to node j. We assume that instead

of adjacency matrix, Ãn is known at node n. The estimation problem when Gn is unknown can be

summarized in the following abstract form:

Estimate x with prior π0 subject to:
⎧
⎪⎨

⎪⎩

Ãn is given,

zn ∼ Biz, x = xi,

θn = p(x|Θn,zn, Ãn) = B(Θn,zn, Ãn),

(2.14)

The aim is to devise an algorithm to reduce the effect of mis-information propagation in estimation

problem (2.14). Knowing Ãn, nodes which are more likely to have multiple paths to node n can be

identified. Note that in the optimal information aggregation scheme (2.11), the weight vector wn

is the only term which depends on the information flow graph. More specifically, Theorem 2.3.2

computes the optimal weight vector in terms of the transitive closure matrix of the information flow
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graph Tn. In estimation problem (2.14), Gn (and consequently Tn) is unknown as opposed to the

estimation problem (2.5). Therefore, the main challenge in the scenario where Gn is unknown, is to

approximate Tn and, then, compute wn in terms of the expected transitive closure matrix.

2.4.1 Sub-optimal Combination Scheme

Having known the expected adjacency matrix, our sub-optimal approach to reduce the effect of

mis-information at each node, for example node n, consists of three steps:

• First, we approximate the transitive closure matrix (probability of having a path between each

pair of nodes in the graph) from the expected adjacency matrix Ãn, that is,

T̃n(i, j) = p(Tn(i, j) = 1), 1≤ i, j ≤ n,

where p(·) is used to denote probability of an event.

• Second, From T̃n, nodes that are more likely to have a path to node n can be identified. From

this, the hard estimation of the transitive closure matrix can be constructed, that is,

T n(i, j) =

{
1 T̃n(i, j) > λth

0 otherwise
, (2.15)

where λth is threshold and T n is the hard estimate of transitive closure matrix of Gn.

• Having computed T n, Algorithm A , (in the estimation problem (2.5)) is used to reduce effect

of the mis-information propagation.

yn = (wn⊗ Id)y1:n−1 + ιn, (2.16)

where weight vector wn satisfies wn = tn

((
T n−1

)′)−1
and simultaneously satisfies topolog-

ical Constraint 2.3.1. Here, T n is defined in (2.15) and tn is the first n− 1 elements of “n”th

column of T n and ιn = log(p(zn|x)).

Algorithm 2.3 summarizes the sub-optimal mis-information removal problem without knowledge

of information flow network.

2.5 Numerical Examples

In this section, we first provide an example to give more intuition on the topological Constraint 2.3.1

which is required for exact mis-information removal. Then, the performance of the optimal mis-

information removal algorithm presented in Theorem 2.3.2 is compared with that of the full infor-
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Algorithm 2.3 Algorithm for mis-information removal in step 3 of Protocol. 2.1

For n = 1,2, . . .

1. Reconstruct the weighted adjacency matrix of the information flow, Ãn.

2. Compute T̃n (2.4.1) and T n using threshold, λth (2.15).

3. Using tn, compute wn = tn

((
T n−1

)′)−1
.

4. Update the estimates yn = (wn⊗ Id)y1:n−1 + ιn.

mation flow communication protocol where instead of the beliefs about the state of nature, all raw

observations are transmitted over the network. Finally, the performance of the sub-optimal mis-

information removal algorithm (Algorithm 2.3) is investigated in two scenarios: (i) accurate and (ii)

inaccurate estimation of the information flow graph.

2.5.1 Example and Intuition on Theorems 2.2.1 and 2.3.2

In this subsection, we provide an example that shows the propagation of mis-information in a simple

social network and the mis-information removal algorithm proposed in Section 2.3 to prevent that.

Consider a social network consisting of two groups with the following information flow graph until

time K = 3

1

2

3

4

5

6

Figure 2.1: Example of constrained information flow network, S = 2 and K = 3. Circles represent

a social group at a specific time indexed by (2.4) in the social network and each edge depicts a

communication link between two nodes.

There are S = 2 groups and the total time duration K = 3. From (2.4), the element indexed

by n = s+ 2(k− 1) in Fig.2.1, represents node s at time k. According to Theorem 2.2.1, we can

build the family of N = SK = 6 DAGs, namely, {G1,G2,G3,G4,G5,G6}. Based on the information

flow in Fig.2.1, since nodes 1 and 2 do not communicate (see Fig.2.1), clearly A1 and A2 are zero

matrices. Nodes 1 and 3 and Nodes 2 and 3 communicate, hence A3 has two ones; and so on. The

adjacency matrix associated with graphs G1, G2, G3, G4 and G5 are:
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A1 =
[
0
]
, A2 =

[
0 0

0 0

]

, A3 =

⎡

⎢⎣
0 0 1

0 0 1

0 0 0

⎤

⎥⎦, A4 =

⎡

⎢⎢⎢⎢⎣

0 0 1 1

0 0 1 1

0 0 0 0

0 0 0 0

⎤

⎥⎥⎥⎥⎦
, A5 =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 1

0 0 1 1 1

0 0 0 0 1

0 0 0 0 1

0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎦
.

The transitive closure matrices Tn are obtained using (A.4). Using (A.4), we derive the transitive

closure matrices from the adjacency matrices associated with graph G1, G2, G3, G4 and G5:

T−1
1 =

[
1
]
,T−1

2 =

[
1 0

0 1

]

,T−1
3 =

⎡

⎢⎣
1 0 −1

0 1 −1

0 0 1

⎤

⎥⎦ ,T−1
4 =

⎡

⎢⎢⎢⎣

1 0 −1 −1

0 1 −1 −1

0 0 1 0

0 0 0 1

⎤

⎥⎥⎥⎦
,T−1

5 =

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 −1 −1 1

0 1 −1 −1 1

0 0 1 0 −1

0 0 0 1 −1

0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
.

Note that Tn(i, j) is non-zero only for i≥ j due to the causality—since information sent by a social

group can only arrive at another social group at a later time instant. Also note that since Gn is the

subgraph of Gn+1 with node n+1 removed, the adjacency matrix and transitive closure matrix An+1

and Tn+1 contain An and Tn, respectively. Also, they are upper left n×n matrices, see Remark A.2

in Section A. The weight vectors are derived from the Transitive Closure Matrices via (2.13):

w2 =
[
0
]
,

w3 =
[
1 1

]
,

w4 =
[
1 1 0

]
,

w5 =
[
−1 −1 1 1

]
.

Let us examine these weight vectors. w2 means that node 2 does not use estimate from node 1.

This formula is consistent with the constraint information flow because estimate from node 1 is not

available to node 2; see Fig.2.1. w3 means that node 3 uses estimates from node 1 and 2; w4 means

that node 4 only uses estimates from node 1 and node 2. The estimate from node 3 is not available at

node 4. As shown in Fig.2.1, the mis-information propagation occurs at node 5. The vector w5 says

that node 5 adds estimates from nodes 3 and 4 and removes estimates from nodes 1 and 2 to avoid

double counting of these estimates already integrated in estimates from node 3 and 4. Indeed, using

the algorithm and the weight vector proposed in Theorem 2.3.2, the mis-information propagation

is completely prevented in this example. Now consider the case that the edge between node 3 and

node 5 does not exist. In this scenario a5(2) = 0 while w5(2) ̸= 0, therefore Constraint 2.3.1 does

not hold and exact mis-information removal is not possible.

2.5.2 Numerical Examples Illustrating Algorithm A in Estimation Problem (2.5)

In this section, numerical results are given to illustrate the effect of mis-information propagation

on the performance of multi-agent Bayesian estimation. The excellent efficacy of the optimal mis-

information removal algorithm proposed in Section 2.3 is also corroborated in this section. We con-
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sider a social network consisting of S= 2 different groups that aim to estimate a scalar state of nature

x in the network with a given prior distribution. We simulate a social network with communication

delays between different groups chosen randomly from {1,2, . . . ,10}. The prior distribution of x is

uniform distribution U [0,4] and the observation noise is zero-mean normal distribution N(0,1). The

sample of state of nature is x∗ = 2.78. The simulation is repeated M = 100 times. At each iteration

i, estimated value of state of nature for node n is computed via

xi
n =

N

∑
j=1

x j p(x = x j|Θn,zn). (2.17)

Then, the results of all 100 iterations xl
n are averaged to find the conditional mean of the state of

nature x for node n as 1
M ∑M

l=1 xl
n.
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Figure 2.2: The conditional mean of the state of nature given the observation in estimation with

optimal mis-information removal algorithm compared to the full information network.

Fig.2.2 illustrates the effect of mis-information propagation in the Bayesian estimators. We con-

sider three scenarios:

(i) Full information flow protocol which is free of mis-information as discussed in Section 2.2,
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(ii) Constrained information flow protocol with standard Bayesian filter (naive mixing of observa-

tions and received information) which may contain mis-information,

(iii) Constrained information flow protocol with optimal mis-information removal algorithm pro-

posed in Section 2.3.

As can be seen in this figure, the performance of the Bayesian estimator is ruined in the existence

of the mis-information propagation. The dash-dash line, which represents the standard Bayesian

estimation without mis-information removal algorithm, converges to a slightly different value than

2.78. Fig.2.2 also shows the excellent performance of the mis-information removal algorithm pre-

sented in Theorem 2.3.2. This figure shows that, the expected value of x (unknown state of nature)

given estimates obtained by the optimal information aggregation scheme (2.11)–depicted with dash-

dot line marked with “♦”–is similar to that of the optimal mis-information free estimate of the full

information flow protocol depicted by the solid line. This verifies the results of Theorem 2.3.2. We

also investigate the performance of the mis-information removal algorithm in terms of the mean

squared error in estimation of state of nature, namely σn = 1
M ∑M

l=1(x
l
n− x∗)2 where x∗ is the true

state of nature and xl
n is the estimates of node n at iteration l as in (2.17).

We can see in Fig.2.3 that mean squared error associated with the estimates obtained by mis-

information removal algorithm proposed in Section 2.3 (dash-dot line marked with “♦”) is lower

than that of the constrained information flow protocol without mis-information removal proposal

(dash-dash line ).

2.5.3 Numerical Examples Illustrating Algorithm B in Estimation Problem (2.14)

Performance of sub-optimal Algorithm 2.3 is studied in a social network consisting of two groups

S = 2 over a duration of K = 25 instants. From (2.4), social group s at time k is represented by

node n = s+ 2(k− 1) in information flow graph. Information from one social group reaches the

others after a random delay. In our numerical study, the prior of x is uniform distribution U [0,4].

Furthermore, the observation noise is zero-mean normal distribution N(0,1). The sample of state

of the nature is x = 2.78. In this study, we assume that information flow graph is not known at each

node, but a weighted adjacency matrix (which can be considered as a noisy version of true adjacency

matrix) is available at each node. This is motivated by the fact that nodes are able to construct the

adjacency matrix An from the additional information they have about communication topology.

This information can be, for example, the distribution of communication delays. Therefore, each

node can construct the weighted adjacency matrix of the information flow graph with elements

(i, j) which depicts the probability that the information of a node i reaches node j. To investigate

the performance of the sub-optimal information removal algorithm, we choose the elements of the
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Figure 2.3: Comparison of the the mean squared errors of the estimates obtained by optimal mis-

information removal algorithm, Bayesian estimator in full information flow network (free of mis-

information), and standard Bayesian estimator in constrained information flow network (with mis-

information propagation).

weighted adjacency matrix, Ãn as follows:

ãi j =

{
ai j−βui j, ai j ̸= 0

0, ai j = 0
(2.18)

where ui j has a uniform distribution U [0,1] and β is a positive real number in (0,1). We choose

β = 0.2 for the “accurate estimation” and β = 0.8 for the “inaccurate estimation” of the informa-

tion flow graph. The estimation problem (2.14) is investigated in the following four cases:

(i) Full information flow network with full knowledge of information flow graph at each time (opti-

mal mis-information free scenario) which is shown by the solid line.

(ii) Standard (naive in this context) Bayesian estimation in constrained information flow network

with full knowledge of information flow graph at each time which is depicted by the dash-dash line.

(iii) Optimal mis-information removal algorithm in constrained information flow network with full

knowledge of the information flow graph at each time which is shown via the dotted line marked

with “♦”.
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(iv) Sub-optimal mis-information removal algorithm in constrained information flow network with-

out knowledge of the information flow graph (using the weighted adjacency matrix with λth = 0.6)

which is shown by the dash-dot line marked with “×”.

Fig.2.4 illustrates the expected value of state of nature in the above four scenarios. Similar to
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Figure 2.4: Comparison of the conditional mean of the state of nature x given the observations

obtained by sub-optimal mis-information removal algorithm, optimal mis-information removal al-

gorithm (knowing the exact information flow graph), Bayesian estimator in full information flow

network (free of mis-information), and standard Bayesian estimator in constrained information flow

network (with mis-information propagation) in “accurate estimation” scenario (β = 0.2).

Section 2.5.2, the estimates are found by means of the Monte-Carlo simulations with M = 100

iterations. As can be seen in this figure, the estimations of the state of nature with employing sub-

optimal mis-information removal algorithm in “good estimation” scenario (β = 0.2 in (2.18)) is

very close to the mis-information free estimates in full information flow network and those obtained

by the optimal mis-information removal, knowing the exact adjacency matrix of information flow

graph.

Mean squared errors associated with four scenarios studied in this section, are compared in

Fig.2.5. As can be seen in the figure, the mean squared error of estimates obtained by the sub-

optimal mis-information removal algorithm is lower than the mean squared error of the estimates
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Figure 2.5: Comparison of the mean squared errors of the estimates obtained by sub-optimal

mis-information removal algorithm, optimal mis-information removal algorithm (knowing the ex-

act information flow graph), Bayesian estimator in full information flow network (free of mis-

information), and standard Bayesian estimator in constrained information flow network (with mis-

information propagation) in “accurate estimation” scenario (β = 0.2).

obtained by the standard Bayesian estimation without mis-information removal algorithm. Figures

2.4 and 2.5 show the excellent performance of the proposed sub-optimal algorithm when the in-

formation flow graph is not completely known but a good approximation of it is available at each

time.

To study the effect of the estimated adjacency matrix of the information flow graph on the

performance of the sub-optimal algorithm for mitigating the mis-information propagation, we repeat

the simulation for β = 0.8 in (2.18) (inaccurate estimation scenario). The expected value of the state

of nature given the available information in four different scenarios described above are depicted in

Fig.2.6.

Fig.2.7 shows the means squared errors of estimates for state of nature in four scenarios under

investigation with β = 0.8 in (2.18). As can be inferred from Figures 2.6 and 2.7, the performance

of the sub-optimal depends on the estimated adjacency matrix of information flow graph. When

an accurate approximation is available the performance of the sub-optimal algorithm is very close
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Figure 2.6: Comparison of the conditional mean of the state of nature x given the observations

obtained by sub-optimal mis-information removal algorithm, optimal mis-information removal al-

gorithm (knowing the exact information flow graph), Bayesian estimator in full information flow

network (free of mis-information), and standard Bayesian estimator in constrained information flow

network (with mis-information propagation) in “inaccurate estimation” scenario (β = 0.8).

to the performance of the optimal mis-information removal algorithm. However, in the presence

of high variance noise in the estimation of the adjacency matrix of the information flow graph, the

performance of the sub-optimal algorithm for mitigation mis-information drops.

2.6 Closing Remarks

In this chapter, the problem of mis-information propagation among different groups in social net-

works is addressed. We considered the most general scenario with arbitrary observation noise and

any priori distribution of state of nature. A sufficient and necessary condition for mis-information

removal problem is derived based on the topology of the information flow network. Also the perfor-

mance of the proposed mis-information removal algorithm is illustrated in numerical examples. We

also proposed a sub-optimal algorithm to mitigate the mis-information propagation when the infor-

mation flow network is not known. Numerical results are presented to illustrate the performance of
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0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Node n

M
e
a
n

sq
u
a
re

d
e
rr

o
r

 

 
Ful l i n formati on flow
Standard Baye si an e st imat i on wi th mi s-i n formati on

Optimal mi s-i nformati on removal al gor i thm

Sub-opt imal mi s-i nformati on removal al gor i thm

Figure 2.7: Comparison of the the mean squared errors of the estimates obtained by sub-optimal

mis-information removal algorithm, optimal mis-information removal algorithm (knowing the ex-

act information flow graph), Bayesian estimator in full information flow network (free of mis-

information), and standard Bayesian estimator in constrained information flow network (with mis-

information propagation) “inaccurate estimation” scenario (β = 0.8).

the proposed algorithms.

Note that data incest considered in this chapter may also arise in any set of sensors that interact

over graphs (possibly with random communication delays) and employ Bayesian models for infor-

mation aggregation. Examples of such sensor network setup includes decentralized target tracking,

localization, and fault detection. Although this chapter is motivated by social networks, but the

data incest removal algorithm presented in Section 2.3 can applied to remove the mis-information

associated with estimates of sensors in such setups.

2.7 Proof of Theorems

Here, we present proof for propositions and results of this chapter in the order they appeared.
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2.7.1 Proof of Theorem 2.2.1

To prove that the graph Gn = (Vn,En) from family Gn is a directed acyclic graph, we only need to

show that the adjacency matrix of Gn is an upper triangular matrix. Then from Lemma A.1, the

graph Gn is a directed acyclic graph. Suppose that vi and v j are two vertices of Gn, that is vi,v j ∈Vn.

From re-indexing scheme (3.7), vi and v j represents agents si and s j at time instants ki and k j,

respectively. We have vi = si +S(ki−1) and v j = s j +S(k j−1). Because of the information flow,

information of each agent may become available at other agents at later time instants, a message

cannot travel back in the time! This means that if ki < k j, there should not be an edge from v j to vi,

(v j,vi) /∈ En. Using re-indexing scheme if ki < k j, then vi < v j (because ki and k j are integers and

si,s j ≤ S). Therefore, we deduce that

i < j⇒ (v j,vi) /∈ En. (2.19)

Consequently, the adjacency Matrix is a strictly upper triangular matrix so that Gn is a DAG. Then

it follows from the construction of the DAGs that GN is a family of DAGs.

2.7.2 Proof of Theorem 2.3.1

In the full information flow protocol, each node uses Bayesian estimation to update the probability

distribution of x given the set of available observations. The following recursive equation is used at

each node to update the estimation of the probability distribution at node n+1:

p(x|Zv(Gn+1),zn+1) = π0 p(zn+1|x) ∏
i∈Zv(Gn+1 )

p(zi|x) (2.20)

There is a path from each node j ∈ v(Gn) to node n, therefore from (A.6), tn( j) = 1. Thus,

(tn⊗ Id)ι1:n−1 can be written as

(tn⊗ Id)ι1:n−1 = ∑
j∈v(Gn)

ι j = ∑
j∈v(Gn)

log (p(z j|x)) = ∑
j∈v(Gn)

log(p(z j|x)) . (2.21)

Taking logarithms of (2.20), yields:

log
(

p(x|Zv(Gn),zn)
)
= ∑

j∈v(Gn)

log (p(z j)|x)) . (2.22)

Using (2.22) and (2.21), we can rewrite ŷ
f ull
n and complete the proof,

ŷ f ull
n = ∑

j∈v(Gn)

log(p(z j)|x)) = ∑
j∈v(Gn)

log(p(z j)|x))+ log(p(zn)|x)) = (tn⊗ Id)ι1:n−1 + ιn. (2.23)
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(Note that we omit logπ0 which is the same for both full and constrained information flow protocols

for simplicity.)

2.7.3 Proof of Theorem 2.3.2

We, first, show that the left hand side of (2.13) (i.e., ŷn = ŷ
f ull
n ) implies the right hand side of (2.13).

Start with (2.11) for ŷn and replacing ŷn with ŷ
f ull
n yields

ŷ f ull
n = (wn⊗ Id)ŷ

f ull
1:n−1 + ιn . (2.24)

Using Theorem 2.3.1 it follows that y
f ull
1:n−1 = (T ′n−1⊗ Id)ι1:n−1. Then, incorporating this into (2.24)

yields

ŷ f ull
n = (wn⊗ Id)(T

′
n−1⊗ Id)ι1:n−1 + ιn . (2.25)

From Theorem 2.3.1, we have ŷ
f ull
n = (tn⊗ Id)ι1:n−1 + ιn. Equating the right hand sides of this

equation and (2.25) yields

(tn⊗ Id)ι1:n−1 = (wn⊗ Id)(T
′

n−1⊗ Id)ι1:n−1 =
(
(wnT ′n−1)⊗ Id)

)
ι1:n−1 . (2.26)

The last equality above follows from the distributive property of tensor products. (2.26) is true for

any information vector ι1:n−1. This implies tn = wnT ′n−1 =⇒ wn = tn
(
T ′n−1

)−1
, since Tn is an upper

triangular matrix with ones on the diagonal14 and so invertible. To complete the proof that the left

hand side of (2.13) implies the right hand side, recall that the information structure for constrained

flow is such that if an( j) = 0 then certain components of the vector ŷ1:n−1 are not available to node n.

If the corresponding weight wn( j) is non-zero it is impossible to reconstruct ŷn according to (2.11)

to be equal to ŷ
f ull
n . This is simply the topological constraint (2.12). Showing that the right hand

side of (2.13) implies the left hand side is very similar to the above proof and is omitted.

14See Appendix A.
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3

Mis-information Management Problem

in Social Learning Over Directed

Acyclic Graphs

3.1 Introduction

Motivated by online rating and review systems, we investigate social learning in a network where

agents interact on a time dependent graph to estimate an underlying state of nature. Agents record

their own private observations, then update their private beliefs about the state of nature using Bayes’

rule. Based on their belief, each agent, then, chooses an action (rating) from a finite set and trans-

mits this action over the social network. An important consequence of such social learning over

a network is the ruinous multiple re-use of information known as data incest (or mis-information

propagation). In this chapter, the data incest management problem in social learning context is

formulated on a directed acyclic graph. We give necessary and sufficient conditions on the graph

topology of social interactions to eliminate data incest. A data incest removal algorithm is proposed

such that the public belief of social learning (and hence the actions of agents) is not affected by data

incest propagation. This results in an online rating and review system with a higher trust rating.

Numerical examples are provided to illustrate the performance of the proposed optimal data incest

removal algorithm.

In social learning, agents aim to estimate the state of nature using their private observations and

actions from other agents [2]. The process of updating belief by agents can be done using Bayesian

models [1, 64] or non-Bayesian models [56, 57]. Classical social learning is used to model the

behavior of expected cost minimizer agents. Also, social learning can be generalized to of risk

averse minimizers. The resulting risk-averse social learning filter is studied in [95].

In this chapter, we consider Bayesian social learning that models expected cost minimizers along

with data incest (mis-information propagation). This results in a non-standard information pattern

for Bayesian estimation. Before proceeding to the formal definition of data incest in learning over

social networks, let us describe the social learning model.
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3.1. Introduction

3.1.1 Social Learning Protocol on Network

Consider a social network comprising of S agents that aim to estimate (localize) an underlying state

of nature (a random variable). Let x ∈ {x1,x2, · · · ,xX} represent a state of nature (such as quality

of a hotel) with known prior distribution π0 where X denotes the dimension of the state space. Let

k = 1,2,3, . . . depict epochs at which events occur. These events comprise of taking observations,

evaluating beliefs and choosing actions as described below. The index k depicts the historical order

of events and not necessarily absolute time. However, for simplicity, we refer to k as “time” in the

rest of this chapter. Assume that there exists a network administrator who provides the network

belief π−⌊s,k⌋ defined in Step 5 to node s at time k. Network belief can be considered as a summary

of information received from nodes whose actions are available at node [s,k] due to the constraints

imposed by the structure of social network. The agents use the following Bayesian social learning

protocol to estimate the state of nature:

Step 1. Private observations: To estimate the state of nature x, each agent records its M-

dimensional private observation vector. At each time k = 1,2,3, . . ., each agent s (1≤ s≤ S) obtains

a noisy private observation z[s,k] from the finite set15 Z = {z1,z2, . . . ,zZ} with conditional probability

Bi j = p(z[s,k] = z j|x = xi). (3.1)

It is assumed that the observations z[s,k] are independent random variables with respect to agent s

and time k16.

Step 2. Private belief: After obtaining its private observation, each agent combines its private

observation with the network belief to evaluate its private belief about state of nature. Each agent

s combines its private observation z[s,k] with the network belief (which is provided by the network

administrator) and evaluates its private belief of state of nature17. Private belief, µ[s,k], is evaluated

via Bayesian models from the network belief and private observations, that is

µ[s,k] = (µ[s,k](i),1 ≤ i≤ X),where µ[s,k](i) = p
(
x = xi|π−[s,k],z[s,k]

)
. (3.2)

Note that private belief of each agent is only available to herself and not to the other agents or the

network administrator, (that is why the term “private” is used).

15The results of this chapter also apply to continuous-valued observations. We consider discrete-valued observations

since humans typically record discrete observations.
16It is not necessary for agents to record observations at each time k and this does not interfere with the common

knowledge assumption in social learning where agents all know about the structure of social learning model. Agents at

different time instants are treated as different nodes in our graphical model. The assumption that agents record observation

at each time k simplifies notation.
17The scenario where agents choose their actions according to the network belief is similar to the classical social

learning formulation [35] where actions are transmitted over the network.

43



3.1. Introduction

Step 3. Myopic action: Based on its private belief µ[s,k], agent s at time k chooses an action

a[s,k] from a finite set A = {1,2, . . . ,A} to minimize its expected cost function (based on the current

information available on the network). That is

a[s,k] = argmin
a∈A

E{C(x,a)|µ[s,k]}. (3.3)

Here E denotes expectation and C(x,a) denotes the cost incurred by the agent if action a is chosen

when the state of nature is x. In the context of rating and review systems, cost function can be

considered as the cost of loosing reputation in that review system. For example, if one under-rate

a good restaurant, her reputation will be affected negatively and this is costly for her. After agent

s at time k records its action a[s,k], the network administrator automatically computes the updated

“public belief” at this node by combining action a[s,k] with network belief π−[s,k]; that is, the public

belief π[s,k] is

π[s,k] = (π[s,k](i),1 ≤ i≤ X),where π[s,k](i) = p
(
x = xi|π−[s,k],a[s,k]

)
. (3.4)

Step 4. Social network: Unlike private beliefs, public beliefs are visible to the other agents and

are broadcasted over the social network18. These public beliefs are observed by other agents after

a random delay (communication delay). We model this information exchange using a family of

directed acyclic graphs. Let

G[s,k] = (V[s,k],E[s,k]), k = 1,2,3, . . . ,s = 1,2, . . . ,S, (3.5)

denote a sequence of time-dependent graphs of information flow in the social network until and

including time k. Each vertex in V[s,k] represents an agent s in the social network at time k and each

edge ([s′,k′], [s′′,k′′]) in E[s,k] ⊆ V[s,k] ×V[s,k] shows that the public belief (or action) of agent s′ at

time k′ reaches agent s′′ at time k′′.

Step 5. Network belief: For the past actions (those from other agents at previous time instants),

the network administrator has already computed the public beliefs, see Step 3. Define

Θ[s,k] = {π[i, j]; for all [i, j] ∈V[s,k] where ([i, j], [s,k]) ∈ E[s,k]}.

18We assume that multiple agents can transmit simultaneously over the network without interfering with each other.

This is realistic in a social network, since the time required to exchange (broadcast) information is substantially smaller

than the time to record observations, update beliefs or take actions.
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At each node, the automated network administrator fuses all the available public beliefs (for example

Θ[s,k]) into a single network belief; that is, the network belief is

π−[s,k] = p(x|Θ[s,k]) = A (Θ[s,k]), (3.6)

where A denotes the information fusion algorithm used to aggregate the public beliefs received

from the network. If algorithm A is not constructed properly, mis-information propagation (data

incest) occurs.

As we will see shortly, a major issue with the above protocol with naive information aggregation

in Step 5, is the inadvertent reuse of information (actions of previous agents) which makes the

estimates of state of nature biased; that is data incest.

3.1.2 Chapter Goals

The above protocol models the interaction of agents in a social network that aim to estimate the

underlying state of nature x. An example is where users aim to localize a target event by tweeting

the location of the detected “target” on Twitter [132]. Another example is where the state of nature

is the true quality of a social unit (such as restaurant). Online rating and review systems such as Yelp

or Tripadvisor maintain logs of votes by agents (customers). Each agent visits a restaurant based on

reviews on a review website such as Yelp. The agent then obtains private noisy measurement of the

state (quality of food in a restaurant). The agent then reviews the restaurant on that review website.

Such a review typically is a quantized version (for example, rating) of the total information (private

belief) gathered by the agent19. With such a protocol, how can agents obtain a fair (unbiased)

estimate of the underlying state?20. The aim of this chapter is for the network administrator to

maintain an unbiased rating and review system, or alternatively modify the actions of agents, to

avoid incest.

From a statistical signal processing point of view, estimating the state of nature x using the above

five-step protocol is non-standard in two ways: First, agents are influenced by the rating of other

agents, this is prior influences their posterior and hence their rating. This effect of agents learning

from the actions (ratings) of other agents along with their own private observation is termed “social

learning” in the economics literature. Social learning can result in an interesting phenomenon where

rational agents can all end up making the same decision (herding and information cascades; [35]).

Second, (and this effect is more complex), an agent might be influenced by his own rating leading

19The dimension of private beliefs is typically larger than that of actions. Also, individuals tend not to provide their

private beliefs at the time of their further social interactions. Therefore, agents map their beliefs to a finite set of actions

which are easier to broadcast.
20Having fair estimates of quality of a social unit is a problem of much interest in business. Most of hotel managers

(81%) regularly check the reviews on Tripadvisor [79]. In [109], it is found that a one-star increase in the average rating

of users in Yelp is mapped to about 5-9 % revenue increase.
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Examples of Social Learning in Social Networks

Target Localization Online Rating and Review System

:x  Geographical coordinates of the target

:na (action) region of detected target

Aim: To estimate location of a target

(action) rating of the social unit

:x (State of nature) quality of the social unit

:na

Aim: To estimate quality of a social unit

Figure 3.1: Two examples of multi-agent social learning in social networks: (i) target localization,

and (ii) online rating and review systems.

to data incest.

To explain what can go wrong with the above protocol, suppose an agent wrote a poor rating

of the restaurant on a social media site at time 1. Another agent is influenced by this rating and

also gives the restaurant a poor rating at time 2. Assume that the information exchange is modeled

by the graph depicted in Fig.3.2. The first agent visits the social media site at time 3 and sees that

another agent has also given the restaurant a poor rating - this double confirms his rating and he

enters another poor rating. In a fair system, the first agent should have been aware that the rating of

the second agent was influenced by his rating - so that first agent has effectively double counted his

first rating by casting the second poor rating. Data incest is a consequence of the recursive nature

of Bayesian social learning and the communication graph. The data incest in a social network is

defined as the naive re-use of actions of other agents in the formation of the belief of an agent when

these actions could have been initiated by the agent. In Figure 3.2, the fact that there exist two

distinct paths between Agent 1 at time 1 and Agent 1 at time 3 (depicted in red) implies that the

information of Agent 1 at time 1 is double counted, thereby leading to a data incest event.

The twin effects of social learning and data incest lead to non-standard information patterns in

state estimation. Herd occurs when the public belief overrides the private observations and thus

actions of agents are independent of their private observations. An extreme case of this is an infor-

mation cascade when the public belief of social learning hits a fixed point and does not evolve any

longer. Each agent in a cascade acts according to the fixed public belief and social learning stops

[35]21. Data incest results in bias in the public belief as a consequence of the unintentional re-use

of identical actions in the formation of public belief of social learning; the information gathered by

21There are subtle differences between an individual agent herding, a herd of agents and an information cascade; see

for example [35, 91].
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Figure 3.2: Example of communication graph, with two agents (S = 2) and over three event epochs

(K = 3). The arrows represent exchange of information regarding actions taken by agents.

each agent is mistakenly considered to be independent. This results in over confidence and bias in

estimates of state of nature. Due to the lack of information about the topology of the communica-

tion graph, data incest arises in Bayesian social learning in social networks. Therefore, the Bayesian

social learning protocol requires a careful design to ensure that data incest is mitigated. The aim

of this chapter is to modify the five-step protocol presented in Section 3.1.1 such that data incest

does not arise. As we will see in Section 3.3.4, the proposed data incest removal algorithm can be

applied to the state estimation problems shown in Fig.3.1.

3.1.3 Main Results and Organization of Chapter

With the above five-step social learning protocol in social networks, we are now ready to outline the

main results of this chapter:

1. In Section 3.2, the data incest problem is formulated on a family of time dependent directed

acyclic graphs

2. In Section 3.3, a necessary and sufficient condition on the graph is provided for exact data

incest removal. This constraint is on the topology of communication delays (communication

graph). Also examples where exact incest removal is not possible, are illustrated.

3. A data incest removal algorithm is proposed for the five-step social learning protocol in Sec-

tion 3.3. The data incest removal algorithm is employed by the network administrator to

update the network belief in Step 5 of the social learning protocol of Section 3.1.122.

22In this chapter we consider Bayesian estimation over a finite time horizon. We do not consider the asymptotic

agreement of social learning or consensus formation in social networks. Consensus formation is asymptotic and typically

non-Bayesian. From a practical point of view, information exchange in a social network is typically over a finite horizon.
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Finally in Section 3.4, numerical examples are provided which illustrate the data incest removal

algorithm.

3.2 Social Learning Over Social Networks

The five-step social learning protocol is introduced in Section 3.1.1. We also discussed that as a

result of the loopy information exchange graph, data incest (or mis-information propagation) arises

because of the abusive re-use of information of the other agents. Here, with the graph theoretic

definitions provided in Appendix A, we discuss the diffusion of information in the social network

in more details. Before proceeding, for notational simplicity, instead of [s,k], the following scalar

index n is used:

n ! s+S(k−1), s ∈ {1, . . . ,S}, k ∈ {1,2,3, . . .} . (3.7)

Note that, in the social learning model considered in this chapter, the historical order of events is

important and k is used to denote the order of occurrence of events in real time. Subsequently, we

will refer to n as a “node” of the time dependent communication graph Gn. Recall from Section 3.1,

Gn = (Vn,En) denotes the time-dependent communication graph of the social network. Each node

n′ in Gn represents an agent s′ at time k′ such that n′ = s′+S(k′ −1), see (3.7). Each directed edge

of Gn shows a communication link in the social network represented by Gn. This means that if

(n,n′) ∈ En, agent s′ at time k′ uses the information of agent s at time k to update his private belief

about the underlying state of nature x. Note that with the way we defined the communication graph,

Gn is always a sub-graph of Gn+1. Therefore, as the following theorem proves, diffusion of actions

can be modeled via a family of time-dependent Directed Acyclic Graphs (DAGs)23.

Theorem 3.2.1. The information flow in a social learning over social networks comprising of S

agents for k = 1,2,3, . . . ,K can be represented by a family of DAGs G = {Gn}n∈{1,...,N} where

N = SK. Each DAG Gn = (Vn,En) represents the information flow between the n first nodes, where

the generic node n is defined by (3.7).

Proof. The proof is similar to that presented in Section 2.7.1.

The adjacency and the transitive closure matrices of Gn are denoted by An and Tn, respectively

(see Appendix A). Using the adjacency and transitive closure matrices of Gn, the following two

sets which have involved in formulation of data incest problem in social learning over networks, are

introduced:

Fn = {k, An(k,n) = 1},

Hn = {k, Tn(k,n) = 1}. (3.8)

23See (A.3) in Appendix A.

48



3.2. Social Learning Over Social Networks

Protocol 1: Constrained Social Learning in Social Networks

Observation Process 

Bayesian Belief Update

Choosing Local Action
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Figure 3.3: Protocol 1: Constrained social learning in social networks described in Section 3.1.1.

As a result of random (unknown) communication delays, data incest arises.

In words, Fn consists of all nodes who have a single-hop link (edge) to node n and Hn includes the

ones with either a single-hop or multi-hop (path) link to node n.

3.2.1 Constrained Social Learning in Social Networks

The five-step constrained social learning protocol introduced in Section 3.1.1, is illustrated in Fig.3.3.

Note that in the constrained social learning problem, agents do not have information about the com-

munication graph. This is why the term “constrained” is used. The constrained social learning in

social networks can be summarized in an abstract form as

Choose action an = argmin
a∈A

E{C′aµn} subject to: (3.9)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

zn ∼ Biz, x = i, (observation process)

Θn = {πi; i ∈Fn}, (network constraint)

π−n = A (Θn), (network belief formation)

µn = p(x|π−n,zn), (private belief evaluation)

In (3.9) Algorithm A is the automated information fusion algorithm employed by the network ad-

ministrator to compute the network belief. Due to the loopy communication graph and the recursive

nature of Bayesian models, data incest (mis-information propagation) arises in constrained social

learning if algorithm A is not designed properly. The aim of this chapter is to devise the algorithm

A such that the public belief of social learning (and consequently, actions an for all n = 1,2, . . .)

are not affected by data incest.

The following lemma summarizes the social learning filters in (3.9).
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Lemma 3.2.1. Consider the five-step social learning protocol presented in Section 3.1.1 with S

agents and the communication graph Gn. Let π−n denote the network belief of social network at this

node. Then, the social learning elements (private belief, action, and public belief) of node n with

observation vector zn = zl can be computed from (1≤ m≤ X)

µn(m) = p(x = xm|Θn,zn) ∝ cπ−n(m)Bml,

an = argmin
a∈A

E{C(x,a)|Θn,zn}= argmin
a∈A

E{C′aµn},

πn(m) ∝ cπ−n(m)
Z

∑
j=1

[

∏
â∈A−{an}

I(C′an
B jπ−n <C′âB jπ−n)

]

Bm j, (3.10)

where c is a generic normalizing constant, B j = diag(B1 j, . . . ,BX j), and I(·) is indicator function.

Here, Ca is the cost vector defined as Ca = [C(1,a) C(2,a) . . . C(X ,a)]. Using a matrix notation,

µn =
Bzl

π−n

1′.Bzl
π−n

,

where 1 denotes a all-one vector. Also, the public belief πn can be written as

πn =
R

π−n
an π−n

1′.Rπ−n
an π−n

.

Here, R
π−n
an = diag(r1, . . . ,rX), where rm = ∑Z

j=1

[
∏â∈A−{an} I(C

′
an

B jπ−n <C′âB jπ−n)
]

Bm j.

Proof. The proof is presented in Section 3.7.1.

Lemma 3.2.1 summarizes the social learning problem considered in this chapter. Each node

combines the network belief with its private observation to evaluate its private belief. Based on this

private belief, action an is chosen such that a local cost function is minimized. Action an is used

by the network administrator to automatically update the public belief of social learning. Then, the

public belief is transmitted over the network. As described in Section 3.1, a major issue with the

above protocol is data incest. The aim of this chapter is to devise a data incest removal algorithm

for the network administrator to deploy such that the estimates of agents are unbiased.

Remark 3.2.1. In order to choose an action from the finite set of all possible actions, agents min-

imize a cost function. This cost function can be interpreted in terms of the reputation of agents

in online rating and review systems. For example if the quality of a restaurant is good and an

agent wrote a bad review for it in Yelp and he continues to do so for other restaurants, his repu-

tation becomes lower among the users of Yelp. Consequently, other people ignore reviews of that

(low-reputation) agent in evaluation of their opinion about the social unit under study (restaurant).
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Therefore, agents minimize the penalty of writing inaccurate reviews (or equivalently increase their

reputations) by choosing proper actions. This behavior is modeled by minimizing a cost function in

our social learning model.

Remark 3.2.2. In comparison to the public belief which can be computed by the network admin-

istrator (who monitors the agents’ actions and communication graph), the agents’ private beliefs

cannot be computed by the network administrator. The private belief depends on the local obser-

vation which is not available to the network. Note that in Step 2 of the constrained social learning

Protocol 1, the results of Lemma 3.2.1 are used to compute µn using zn and π−n.

Remark 3.2.3. The constrained social learning protocol is practiced in many online rating and

review systems such as Yelp or Tripadvisor24

3.3 Data Incest Removal Algorithm

So far in this chapter, Bayesian social learning model and communication amongst agents in social

networks have been described. This section presents the main result of this chapter, namely the so-

lution to the constrained social learning problem (3.9). We propose a data incest removal algorithm

such that the public belief of social learning (and consequently the chosen action) is not affected by

data incest. To devise the data incest removal algorithm, an idealized framework is presented that

prevents data incest as we will describe shortly. Comparing the public belief of the idealized frame-

work with the same of the constrained social learning, the data incest removal algorithm is specified.

This data incest removal algorithm is used by the network administrator and replaces Step 5 of the

social learning protocol presented in Section 3.1.1. A necessary and sufficient condition for the data

incest removal problem is also presented in this section.

3.3.1 The Idealized Benchmark for Data Incest Free Social Learning in Social

Networks

In this subsection, an idealized (and therefore impractical) framework that will be used as a bench-

mark to derive the constrained social learning protocol, is described. In the idealized protocol, it

is assumed that the entire history of actions along with the communication graph are known at

each node. Due to the knowledge about the entire history of actions and the communication graph

(dependencies among actions) in the idealized framework, data incest does not arise25. Define

Θfull
n = {ai; i ∈Hn}, (3.11)

24In Section 3.3, a discussion is presented on the data incest removal algorithms in consumer rating web sites such as

Yelp" – www.yelp.com.
25In the constrained social learning algorithm, each node receives the most recent public beliefs of its neighbors or

equivalently the updated public belief.
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Protocol 2: Idealized Social Learning in Social Networks

Observation Process

Bayesian Belief Update

Choosing Local Action
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! Topology of the communication graph is known at each nodeIdeal Bayesian Social Learning 

nGfull
nm

nG,
Social Network

(communication delays
 modeled via         with 

transitive closure matrix        )

}1),(;{ ==Q niTa ni
full
n

Observation

Private belief

action

Actions of all nodes who have path to 
node n along with dependencies among 

these actions 
nT

Figure 3.4: Protocol 2: Idealized benchmark social learning in social networks. In this protocol,

the complete history of actions chosen by agents and the communication graph are known. Hence,

data incest does not arise. This benchmark protocol will be used to design the data incest removal

protocol.

where, Hn is defined in (3.8). In the idealized framework, the network belief can be written as

π full
−n = p(x|Θfull

n ) ∝ π0 ∏
ai∈Θfull

n

p(ai|x,Si), (3.12)

where Si ⊂Θfull
n denotes the set of actions that ai depends on them. The public belief in the idealized

social learning is free of data incest, as it can be inferred from (4.37). The idealized social learning

in social networks (Protocol 2) is illustrated in Fig.3.4. The private belief of node n in the idealized

social learning is denoted by µ̂n.

Note that if there exists a path between node i and node n, then action ai ∈ Θfull
n . Since the

history of actions and the dependencies among them (communication topology) are available in the

idealized social learning, π full
−n is free of data incest.

3.3.2 The Data Incest Free Belief in the Idealized Social Learning Protocol 2

The goal of this chapter is to replace Step 5 of the five-step constrained social learning protocol with

an algorithm that mitigates data incest. As described earlier, to solve the data incest management

problem, we introduced the idealized social learning that prevents data incest. By comparing the

network belief (or equivalently the public beliefs of agents) in the idealized social learning with

that in the constrained social learning Protocol 1, the data incest removal algorithm can be invented.

Our aim is to devise algorithm A in (3.9)–also in Step 5 of the five-step social learning protocol in
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Section 3.1– such that

p(x|Θfull
n ) = π−n. (3.13)

Here, first, an expression is derived for the public beliefs of agents in the idealized social learning

Protocol 2. Then, using that, algorithm A is constructed such that (3.13) holds; that is, data incest

is mitigated. Let θ full
n denote the logarithm of public belief of node n in the idealized social learning

Protocol 2, that is

θ full
n = log

(
p(x|Θfull

n ,an)
)
. (3.14)

Theorem 3.3.1 below gives an expression for θ full
n in the idealized social learning Protocol 2.

Theorem 3.3.1. Consider problem (2.6) with the idealized social learning Protocol 2. The data

incest free public belief of node n (which represents agent s at time k according to re-indexing

equation (3.7)) is:

θ full
n =

n−1

∑
i=1

tn(i)νi +νn, (3.15)

where νk denotes log(p(ak|x,Sk)).Recall that tn defined in (A.6) in Appendix A as the first n− 1

elements of the nth column of Tn.

Proof. The proof is presented in Section 3.7.2.

As can be seen in (3.15), the (logarithm of the) public belief of node n can be written as a linear

function in terms of νi using tn. Due to this linearity, the data incest removal algorithm can be

constructed as we will explain later in this section. Also (3.15) implies that the optimal data incest

free public beliefs of agents in the idealized social learning Protocol 2 depend on the communication

graph explicitly in terms of the transitive closure matrix26. Basically the non-zero elements of tn

show all nodes who have a path to node n and thus their actions contribute in the formation of

the private belief of node n. Eq. (3.15) is quite intuitive from the fact that each agent employs a

recursive Bayesian filter to combine its private observation with the information received from the

network.

3.3.3 Data Incest Removal Algorithm for Problem (3.9) With Constrained Social

Learning Protocol 1

Given the expression for the public belief of the idealized social learning Protocol 2, the aim here

is to propose an optimal information aggregation scheme (that replaces Step 5) such that the public

belief of the constrained social learning Protocol 1 is equal to the same of the idealized social

26See (A.3) in Appendix A.
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learning Protocol 2 (which is free of data incest). That is, (3.13) holds or equivalently

p(x|ai; i ∈Hn) = p(x|πi; i ∈Fn). (3.16)

Similar to θ full
n , let θ̂n denote the logarithm of the after action public belief of node n,

θ̂n = log(p(x|Θn,an)) . (3.17)

We propose the following optimal information aggregation scheme to evaluate the public belief

using a n−1 dimensional weight vector wn as follows,

θ̂n =
n−1

∑
i=1

wn(i)θ̂i +νn, (3.18)

where wn with elements wn(i) (1 ≤ i ≤ n− 1) is defined more precisely in (3.20). Using optimal

information aggregation scheme (3.18) and (3.10) in Lemma 3.2.1, algorithm A in (3.9) can be

specified.

Remark 3.3.1. The optimal information aggregation scheme (3.18) is deployed by the automated

network administrator in Step 5 of the social learning protocol presented in Section 3.1.1 to combine

the received information (beliefs or equivalently actions) form other nodes and compute ∑n−1
i=1 wn(i)θ̂i,

this is the network belief at node n. Then, node n updates its private belief based on the most up-

dated network belief (provided by the network administrator) and chooses its action an accordingly

and then transmits it over the network. Then, the network administrator automatically evaluates νn

and updates public belief by computing θ̂n = ∑n−1
i=1 wn(i)θ̂i +νn.

The weight vector wn depends on the communication graph and can be computed simply by

(3.20). Theorem 3.3.2 below asserts that by using the optimal information aggregation scheme

(3.18) with wn defined in (3.20), data incest can be completely mitigated. However, for some

network topologies, it is not possible to remove data incest completely. The following constraint

presents the necessary and sufficient condition on the network for the exact data incest removal.

Constraint 3.3.1. Consider the constrained social learning problem (3.9) with Protocol 1. Then,

the weight vector wn used in optimal information aggregation scheme (3.18) satisfies the topological

constraints if ∀ j ∈ {1, . . . ,n−1} and ∀n ∈ {1, . . . ,N}

bn( j) = 0 =⇒ wn( j) = 0, (3.19)

where bn is defined in (A.6) and denotes the n-th column of the adjacency matrix of Gn. Basically
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Constraint 3.3.1 puts the “availability constraint” on the communication graph.

This means that if information of node j is required at node n (wn( j) ̸= 0), there should be a

communication link between node j and node n (bn( j) ̸= 0). Assuming that Constraint 1 holds,

Theorem 3.3.2 below ensures that the public belief of nodes in problem (3.9) with the constrained

social learning Protocol 1 is identical to the same of the problem (2.6) with the idealized social

learning Protocol 2.

Theorem 3.3.2. Consider problem (3.9) with the constrained social learning Protocol 1 of Sec-

tion 3.2. Then using the optimal information aggregation scheme (3.18), data incest can be miti-

gated by using the optimal set of weights {wn}n∈{1,...,N} given that the topological Constraint 3.3.1

is satisfied. The optimal weight vector is

wn = tn
(
(Tn−1)

′)−1
. (3.20)

By using the optimal combination scheme (3.18) and optimal weight vector defined in (3.20), the

data incest in social learning problem (3.9) is completely mitigated, that is θ̂n = θ full
n if wn satisfies

topological Constraint 3.3.1 where θ̂n and θ full
n are defined in (3.17) and (3.14) respectively. Recall

that tn is defined in (A.6) as the first n−1 elements of the nth column of Tn.

Proof. The proof is presented in Section 3.7.3.

Theorem 3.3.2 proves that if wn = tn
(
(Tn−1)

′)−1
then θ̂n = θ full

n , that is, data incest (mis-

information propagation mitigated).

Using the optimal information aggregation scheme (3.18), the five-step Bayesian social learning

protocol in Section 3.1.1 with data incest removal algorithm can be summarized as
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Algorithm 3.4 Constrained Bayesian social learning with data incest removal algorithm at each

node n
Step 1. Observation process: Private observation vector zn is obtained according to (3.1).

Step 2. Private belief: Node n accesses the network and evaluates its private belief according to

(3.2) using the most recent network belief at node n,

µn =
Bzl

π−n

1′.Bzl
π−n

.

Step 3. Myopic action: Action an is chosen via (3.3), that is

an = argmin
a∈A

E{C′aµn}.

Then, the automated network administrator compute the public belief at node n which is defined in

(3.4), that is

πn =
R

π−n
an π−n

1′.Rπ−n
an π−n

.

Step 4. Social network: Social network model is similar to the same in Step 4 of the protocol

presented in Section 3.1.1.

Step 5. Network belief update: The automated network administrator evaluates the network belief

using Θn = {πi, i ∈Hn} and the optimal weight vector

wn = tn
(
(Tn−1)

′)−1
.

Discussion of topological constraint (3.19): The non-zero elements of wn are corresponding

to the nodes whose information are required at node n to remove data incest. This imposes a topo-

logical constraint on the communication graph. If wn( j) is non-zero, this means that information of

node j is needed at node n and there should be an edge in Gn that connects node j to node n, this is

the topological Constraint 3.3.1. Constraint 3.3.1 ensures that the essential elements for data incest

removal are available at node n and Theorem 3.3.2 specifies the exact data incest removal algorithm.

From Theorem 3.3.2, it is simple to show that Constraint 3.3.1 is a necessary and sufficient condi-

tion for data incest removal in learning problem (3.9). Consider two examples of communication

graph shown in Figure 3.5.

The optimal weight vector at node 5 for both networks of Fig.3.5 computed from (3.20) is

w5 = [−1,−1,1,1]. This means that there should be a link between node 2 and node 5 for exact

data incest removal according to the topological constraint (3.19). Hence, Constraint 3.3.1 does

not hold for the network of Figure 3.5b, while the topological constraint is satisfied in network

depicted in Fig.3.5a. Also as it is clear from the network shown in Fig.3.5a, there is no need for the

communication graph to be a tree.
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Figure 3.5: Two examples of networks: (a) satisfies the topological constraint, and (b) does not

satisfy the topological constraint.

3.3.4 Discussion of Data Incest Removal in Social Learning

Here, we discuss the application of data incest removal Algorithm 3.4 (presented in Theorem 3.3.2)

in two examples of multi-agent state estimation problem which are presented in the introductory

part of this chapter (i) online rating and review systems, and (ii) target localization using social net-

works, see Fig.3.1. Both problems can be formulated using the five-step constrained social learning

protocol presented in Section 3.1.1. As illustrated in Fig.3.6, agents observe the underlying state

of nature in noise and practice social learning to choose an action such that a local cost function is

minimized. But as a result of unknown communication graph and the recursive nature of Bayesian

estimators, data incest or abusive re-use of information occurs. To mitigate data incest, the net-

work administrator plays an intermediating role. Instead of transmitting the communication graph

and complete history of actions, the network administrator monitors all the information exchanges

and provides the data incest free network belief of social learning at each node. To compute the

data incest free public belief, the network administrator uses the optimal information aggregation

scheme (3.18) with the optimal weight vector wn, see (3.20). Using the most updated public belief

and its own private observation zn, node n evaluates its private belief. Based on this private belief

(which is free of data incest), action an is chosen and transmitted it over the network. Given that the

communication graph satisfies the topological Constraint 1, Theorem 3.3.2 ensures that by means
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Figure 3.6: Data incest removal algorithm employed by network administrator in the state estimation

problem over social network. The underlying state of nature could be geographical coordinates of an

event (target localization problem) or reputation of a social unit (online rating and review systems).

of the optimal weight vector wn, action an is not affected by data incest and, therefore, performance

of state estimation process is improved.

3.4 Numerical Examples

In this section, numerical examples are given to illustrate the performance of data incest removal

Algorithm 3.4 presented in Section 3.3. As described in the five-step protocol of Section 3.1, agents

interact on a graph to estimate an underlying state of nature (which represents the location of a

target event in target localization problem, or the reputation of a social unit in online rating and

review systems). The underlying state of nature x is a random variable uniformly chosen from

X = {1,2, · · · ,20}, and actions are chosen from A = {1,2, . . .10}. We consider the following three

scenarios for each of four different types of social networks:

1. Constrained social learning without data incest removal algorithm (data incest occurs) de-

picted with dash-dot line

2. Constrained social learning with Protocol 1 with data incest removal algorithm depicted with

dashed line

3. Idealized framework where each node has the entire history of raw observations and thus

data incest cannot propagate. This scenario is only simulated for comparison purposes and is

depicted by solid line.

The effect of data incest on estimation problem and the performance of the data incest removal

algorithm, proposed in Section 3.3, is investigated for the networks shown in Fig.3.7.
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We first consider a communication graph with 41 nodes. The communication graph under study,

which is shown in Fig.3.7a, satisfies the topological constraint (3.19). The action of node 1 reaches

all other nodes and node 41 receives all actions of previous 40 nodes (some edges are omitted from

the figure to make it more clear).

(a) (b)

(c)

Figure 3.7: Three different communication topologies: (a) the communication graph with 41 nodes,

(b) agents interact on a fully interconnected graph and the information from one agent reach other

agents after a delay chosen randomly from {1,2} with the same probabilities, (c) star-shaped com-

munication topology with random delay chosen from {1,2}.

As can be seen in Fig.3.8, data incest makes agents’ actions in the constrained social learning

without data incest removal different from the same in the idealized framework. Also Fig.3.8 cor-

roborates the excellent performance of data incest removal Algorithm 3.4. As illustrated in Fig.3.8,

the actions of agents in social learning with data incest removal algorithm are exactly similar to

those of the idealized framework without data incest. The social learning problem over the graph

shown in Fig.3.7a is simulated 100 times to investigate the difference between the estimated state

of nature with the true one (x = 10). The estimates of state of nature (obtained in three different

scenarios discussed in the beginning of the section) are depicted in Fig.3.9. As can be seen from

the figure, the estimates obtained with data incest removal algorithm are very close to data incest
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free estimates of Scenario (iii). The bias in estimates in presence of data incest is also clear in this

figure.

In the next simulation, a different communication topology is considered. We repeat the simu-

lation for a star-shaped communication graph comprising of six agents (S = 6) at four time instants,

K = 4, so the total number of nodes in the communication graph is 24, see Fig.3.7c. The commu-

nication delay is randomly chosen from {1,2} with the same probabilities. We simulated the social

learning in three different scenarios discussed above, to investigate the effect of data incest on the

actions and the estimates of agents in the star-shaped social network. The actions chosen by nodes

are depicted in Fig.3.10. As can be seen from Fig.3.10, using the data incest removal algorithm,

the agents’ actions in the constrained social learning with Protocol 1 are very close to those of the

idealized social learning with Protocol 2 which are free of data incest. Also the estimates of state of

nature are very close to the true value of state of nature compared to the constrained social learning

without data incest removal algorithm. Also note that the effect of data incest, as expected, in this

communication topology is different for each agent; the agent who communicates with all other

nodes is affected more by data incest. This fact is verified in Figures 3.10 and 3.11.

In the third example, a complete fully interconnected graph (where agents communicate with

all other agents) is considered. In this example, action of each agent becomes available at all other

agents after a random delay chosen from {1,2} with the same probabilities. The agents’ actions

are shown in Fig.3.12. Similar to the star-shaped graph, using data incest removal Algorithm 3.4

makes the agents’ actions in the constrained social learning very similar to those of the idealized

(data incest free) framework. Also, the excellent performance of data incest removal Algorithm 3.4

in the estimation problem is depicted in Fig.3.13.

We also extend our numerical studies to an arbitrary random network with five agents, S =

5,K = 4. We consider a fully connected network and assume that the interaction between two

arbitrary agents (say agent i and agent j) at time k has four (equiprobable) possible statuses: (i)

connected with delay 1, (ii) connected with delay 2, (iii) connected with delay 3, and (iv) not con-

nected. If the link is connected with delay τ , this means that the information from agent (i) at time k

becomes available at agent j at time k+ τ . If the link is not connected, the information of agent i at

time k never reaches agent j. We verify that the underlying communication graph, Gn, satisfies the

topological Constraint 3.3.1. Fig.3.14 depicts the agents’ actions in three different scenarios (with

data incest, without data incest, and with data incest removal algorithm). The simulation results

show that, even in this case with arbitrary network (that satisfies topological constraint), the actions

obtained by the constrained social learning with data incest removal algorithm is very close to those

in the idealized social learning. As expected, using the data incest removal algorithm, the data incest

associated with the estimates of agents can be mitigated completely, as shown in Fig.3.15.

Here, we also present numerical studies to investigate the accuracy of the state estimation con-

sidered in this chapter in terms of mean squared error. The mean squared error of estimates obtained
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Figure 3.8: Actions of agents obtained with social learning over social networks in three different

scenarios described in Section 3.4 with communication graph depicted in Fig.3.7a.
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Figure 3.9: Mean of the estimated state of nature in the state estimation problem with social learning

over social networks in three different scenarios described in Section 3.4 with communication graph

depicted in Fig.3.7a.

61



3.4. Numerical Examples

0 5 10 15 20 25
4

5

6

7

8

9

10

Node n

A
ct
io
ns

 

 

Scenario (i) with data incest

Scenario (ii) with data incest removal algorithm

Scenario (iii) without data incest

Figure 3.10: Actions of agents obtained with social learning over social networks in three different

scenarios described in Section 3.4 with communication graph depicted in Fig.3.7c.
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Figure 3.11: Mean of the estimated state of nature in the state estimation with social learning over

social networks in three different scenarios described in Section 3.4 with communication graph

depicted in Fig.3.7c.
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Figure 3.12: Actions of agents obtained with social learning over social networks in three different

scenarios described in Section 3.4 with communication graph depicted in Fig.3.7b.
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Figure 3.13: Mean of the estimated state of nature in the state estimation problem with social learn-

ing over social networks in three different scenarios described in Section 3.4 with communication

graph depicted in Fig.3.7b.
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Figure 3.14: Actions of agents obtained with social learning over social networks in three different

scenarios described in Section 3.4 with arbitrary communication graph.
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Figure 3.15: Mean of the estimated state of nature in the state estimation problem with social

learning over social networks in three different scenarios described in Section 3.4 with arbitrary

communication graph.
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in social learning with three different scenarios discussed in the beginning of this section (with data

incest, with data incest removal algorithm, and the idealized framework) is computed for each of

four scenarios considered in our numerical studies. Fig. 3.16 depicts the mean squared error of esti-

mates obtained in the first example with social learning over the communication graph of Fig. 3.7a.

As can be seen from this figure, the mean squared error associated with the estimates of the con-

strained social learning with data incest removal Algorithm 3.4 are lower than the those of the

constrained social learning in presence of data incest. This means that the performance of estima-

tion problem with social learning is improved using data incest removal algorithm proposed in this

chapter.

Figures 3.17 and 3.18 show the mean squared error of estimation with communication graphs

presented in Figures 3.7b and 3.7c, respectively, and Figure 3.19 depicts the same for the arbitrary

random network with five agents and random communication delays described earlier in this section.

As can be seen in these figure, as a result of herding, in star shaped and random communication

topologies, the mean squared error of estimates is slightly (compared to the scenario without data

incest removal algorithm) more than the idealized framework at each time.

3.5 Psychology Experiment

This section presents an experimental study to investigate the learning and decision making behav-

ior of individuals in a human society. Social learning is used as the mathematical basis for modeling

interaction of individuals that aim to perform a perceptual task interactively. A psychology exper-

iment was conducted on a group of undergraduate students at the University of British Columbia

to examine whether the decision (action) of one individual affects the decision of the subsequent

individuals. The major experimental observation that stands out here is that the participants of the

experiment (agents) were affected by decisions of their partners in a relatively large fraction (60%)

of trials. We fit a social learning model that mimics the interactions between participants of the psy-

chology experiment. Mis-information propagation (also known as data incest) within the society

under study is further investigated in this experiment.

3.5.1 Experiment Setup

Here, a detailed description of the psychology experiment we carried out to study the learning

behavior of individuals in a human society is presented:

• Experiment Date: The psychology experiment was conducted in September and October

2013.

• Society under study: The participants were 36 undergraduate students of the department of

Psychology of the University of British Columbia who completed the experiment for course
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Figure 3.16: Mean squared error of estimates (of state of nature) obtained with social learning with

communication graph depicted in Fig.3.7a.
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Figure 3.17: Mean squared error of estimates (of state of nature) obtained with social learning with

communication graph depicted in Fig.3.7b (complete fully interconnected graph).
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Figure 3.18: Mean squared error of estimates (of state of nature) obtained with social learning with

communication graph depicted in Fig.3.7c (star-shaped communication graph).
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Figure 3.19: Mean squared error of estimates (of state of nature) obtained with social learning with

arbitrary communication graph.
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credit.

• Experiment Setup: Participants were asked to perform a perceptual task interactively. Two

arrays of circles were given to each pair of participants, then, they were asked to judge which

array had the larger average diameter; that is, picking their actions. On each trial, two 4× 4

grids of circles were generated by randomly drawing from the radii: {20,24,29,35,42} (in

pixels). The average diameter of each grid was computed, and if the means differed by more

than 8% or less than 4%, new grids were made, i.e., each trial had arrays of circles differing in

the average diameter length by 4-8%27. One participant was chosen randomly and started the

experiment by choosing an action according to his observation. Thereafter, each member saw

their partner’s previous response (action) and his own previous action prior to making their

own judgment; this is social learning. The participants continued choosing actions until their

responses stabilized for a run of at least three (two participants did not necessarily agree, but

each was fixed in her responses). In this experimental study, each participant chose an action

in A = {0,1}; a = 0 when she judged that the left array of circles had the larger diameter

and a = 1 when her judgments was that the right array of circles had the larger diameter. In

each experiment, judgments (actions) of participants are recorded along with the amount of

time taken to make that judgment. Fig. 3.24 shows the judgments of two participants within

a group at different trials in one experiment. In this experiment, the average diameter of the

left array of circles was 32.1875 and the right array was 30.5625 (in pixels).

3.5.2 Experimental Results

The results of our experimental study, which are summarized in Fig.3.23, are as follows:

• Social learning Model: As mentioned above, the experiment for each pair of participants was

continued until both participants’ responses stabilized. A question that may arise here is: In

what percentage of these experiments, an agreement is made between two participants? The

answer to this question unveils that whether in our experiments “herding” occurred or not.

In other words, it reveals that if participants exercised a social learning (influenced by their

partners) or not. Interestingly, our experimental study shows that in 66% of total experiments

(1102 among 1658), participants reached an agreement; that is herding occurred. Further,

our experimental studies show that in 32% of experiments, the social learning was successful

and both participants made the right judgment after few interactions. To find a proper social

learning model, we focus on the experiments where both participants reached an agreement.

Define the social learning (SL) success rate as

SL Success Rate:
No. of experiments where both participants chose the correct side

No. of experiments where both participants reached an agreement
·

27These numbers are based on the work in Treisman et. al. paper [142].
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Figure 3.20: Two arrays of circles were given to each pair of participants on a screen. Their task

is to interactively determine which side (either left or right) had the larger average diameter. The

partner’s previous decision was displayed on screen prior to the stimulus.

In this experimental study, the state of nature belongs to x ∈ {0,1} where x = 0, when the left

array of circles has the larger diameter and x = 1, when the right array has the larger diameter.

The initial belief for both participants is considered to be π0 = [0.5,0.5]. The observation

state is assumed to be z ∈ {0,1}. We fit a social learning model to our experimental data

which gives the same success rate as the experimental study. The social learning parameters

(probability observations, Biz = p(zk = z|x = i), i ∈ {0,1},z ∈ {0,1} and the cost function

C(i,a), i ∈ {0,1},a ∈ A), obtained by exhaustive search, are as follows:

Biy =

[
0.61 0.39

0.41 0.59

]

,

C(i,a) =

[
0 2

2 0

]

.

• Data incest: Here, we study the effect of data incest on the judgments of participants in our

experimental study. Since we do not have access to the private observations of individuals

(almost no one has such information!), we cannot exactly verify that whether data incest

changed the judgment of an individual in each trial of the experiment. However, two scenarios

which are depicted in Fig.3.22 are used to find data incest events in the experiments. In these
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Figure 3.21: Actions of two participants in a group at different trials in one experiment.

two events, as can be seen in Fig.3.22, the action of the first participant at time k influences

the action of the second participant at time k + 1, and thus, is double counted by the first

participant at time k + 2. As discussed above, since we do not have access to the private

observations of participant, we cannot exactly say that data incest affects the action of the first

participant at time k+ 2 or not. However, it is clear that in these events, data incest occurs.

As we expect from the communication topology between partners, data incest occurred in

relatively large percentage of trials in the experiment. More precisely, in 79% of experiments

one of the data incest events shown in Fig.3.22 occurred (1303 experiments with data incest

among 1658 experiments). Our experimental study further shows that in 21% of experiments,

data incest resulted in changing the decision of one of the participants in the group, i.e., the

judgment of participant at time k+ 1 differed from her judgments at time k+ 2 and k in the

events shown in Fig.3.22. This experimental study reveals that data incest is quite common

in social learning in human societies (happened frequently even in our simple social learning

setup) and, therefore, social learning protocols require a careful design to handle and mitigate

data incest.

• Discussion: Among 3316 (non-unique) participants of this experiment, 1336 participants

(around 40%) did not change their judgments after observing the action of their partners,

while the other 60% changed their initial judgment and were influenced by the action of

their partners. An experimental observation that stands out here is that the individuals can be

divided into two types: (i) boundary agents who stand firm on their decisions during the trial,
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Figure 3.22: Two scenarios where data incest arose in our experimental studies.

i.e., their decisions are independent of decisions of the other agents and (ii) internal agents

who are affected by decisions of the other agents. Fig. 3.24 shows the sample path of two

participants in a group, Participant 1 is an internal node while Participant 2 is a boundary

node.

To study the decision making behavior of individuals of each type, we investigate the time

taken by each participant to make his judgment. Let µjudg. and σjudg. denote the mean and the

standard deviation of the time taken by participants to make their judgments in milliseconds.

The results of our experimental study, which are presented in Table I, show that the internal

nodes, in average, required more time to make their judgments compared to the boundary

nodes; this is quite intuitive from the fact that the boundary nodes stood firm on their deci-

sions and ignored the judgment of their partners and thus required less time to make their

judgments.

Type of nodes relative frequency µjudg. σjudg.

Internal 40 % 1058 ms 315 ms

Boundary 60 % 861 ms 403 ms

Table 3.1: The frequency of the internal and the boundary nodes in a community of 3316 under-

graduate students of the University of British Columbia along with the statistics of the time required

by participants (of both types) to make their judgments in milliseconds.

3.6 Closing Remarks

In this chapter, the state estimation problem in social networks with social learning is investigated.

State of nature could be geographical coordinates of an event (target localization problem) or quality

71



3.6. Closing Remarks

1 2
0

10

20

30

40

50

60

70

80

90

100

P
er

ce
n
ta

ge
of

ex
p
er

im
en

ts

 

 

Succesful
social
learning

Data
incest
resulted
in
changing
decision

Data
incest

Herding

Figure 3.23: Social learning with data incest that is exercised by groups of students who were asked

to perform a conceptual task in our experimental study.

of a social unit (online rating and review system). In online rating and review systems, privacy

concerns impose a constraint on the resolution of information that users reveal to other people.

People are more likely to share a lower resolution action to others rather than their detailed private

observations28 .

As discussed in the chapter, data incest arises in this setup as a result of the recursive nature

of Bayesian estimation and random communication delays in social networks. We proposed a data

incest removal algorithm for the multi-agent social learning in social networks in this chapter along

with a topological necessary and sufficient condition for data incest free estimation. The main

difference of this work with the data incest removal algorithms in Chapter 2 is that in this chapter

we considered a social learning context where only public belief of agents (which can be computed

directly from actions) is transmitted over the network while in the previous chapter, the private belief

of agents which depends on their private observations are transmitted through the network.

The results of this chapter can be applied to a scenario where the network administrator provides

the public beliefs to agents (instead of the updated network belief). In this scenario, agents combine

the received public beliefs using the optimal weight vector wn to compute the updated public belief

28One of the issues that comes with proliferation of online social networks (especially content-aware recommender

systems), due to the astronomical amounts of information that these sites have about their users, is privacy. People are not

usually willing to disclose their private information to a large group of audience. That’s the reason why finding a trade-off

between accuracy and privacy of the users have been studied widely in the literature of recommender systems [47, 126,

129, 151].
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Figure 3.24: Actions of two participants in a group at different epochs. Participant 1 can be consid-

ered as an internal node and Participant 2 can be viewed as a boundary node.

and then evaluate their private belief accordingly. Optimal weights (which depends on the topology

of the communication graph) and set of available public beliefs are the essential ingredients that one

needs in order to compute the network belief. As can be seen in Figure 3.25, these ingredients can

be computed by separate units (that do not communicate with each other) and the user can aggregate

these two and compute the most updated network belief. This mean that only he has access to the

updated network belief and, thus, his privacy is preserved29.

3.7 Proof of Results

Here, we present proof for propositions and results of this chapter in the order of their appearance.

3.7.1 Proof of Lemma 3.2.1

Proof. We assume that each node has the most up-to-date public belief of social learning, π−n =

p(x|Θn). This node records its own private observation zn = zl . The private belief is

µn(m) = p(x = xm|Θn,zn). (3.21)

29Another type of privacy concerns that may arise here is the fact that the network administrator can compute the

network belief for users, and thus, can predict the actions that users are about to make.
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Figure 3.25: Optimal weights (which depends on the topology of the communication graph) and

set of available public belief are computed in separate units. The user, then, can compute the most

updated data-incest free network belief.

Using Bayes’ theorem, (3.22) can be written as

µn(m) = p(x = xm|Θn,zn) = cp(zn|x)p(x|Θn)

= cπ−n(m)Bml. (3.22)

The normalizing factor c is used to make µn a true probability mass function, that is ∑X
m=1 µn(m)= 1.

Expected cost given µn is equal to C′aµn thus the action an is an = argmina∈A{C′aµn}. To complete

the proof, we need to compute the public belief, π+n = p(x|Θn,an). Applying Bayes’ theorem, the

after action public belief can be written as

π+n(m) = p(x = xm|Θn,an) = cp(an|Θn,x)p(x = xm|Θn)

= cp(an|x,π−n)π−n(m) = c
Z

∑
j=1

p(an|x,z = z j,π−n)p(z = z j). (3.23)

Knowing observations and public belief, the private belief can be computed. From the private belief,

the action an is speified. Thus

p(an|x,z = z j,π−n) =

{
1 if an = argmina∈A{C′aB jπ−n}
0 if an ̸= argmina∈A{C′aB jπ−n}

(3.24)
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where B j = diag(B1 j, . . . ,BX j). Using indicator function I(·), Eq. (3.24) can be reorganized as

p(an|x,z = z j,π−n) = ∏
â∈A−{an}

I(C′an
B jπ−n <C′âB jπ−n) (3.25)

Substituting (3.25) in (3.23) completes the proof as follows

π+n(m) = cπ−n(m)
Z

∑
j=1

[

∏
â∈A−{an}

I(C′an
B jπ−n <C′âB jπ−n)

]

Bm j (3.26)

3.7.2 Proof of Theorem 3.3.1

Proof. The logarithm of the public belief of learning problem (2.6) with benchmark information

exchange Protocol 2, θ full
n , is log

(
p(x|Θfull

n ,Gn)
)
. Recall that Θfull

n denotes the entire history of

actions from previous nodes who have a path to node n and Si denotes the set of all actions that ai

depends on them. Also from definition of the transitive closure matrix (A.3) and tn in (A.6), the

nodes who have a path to node n are corresponding to non-zero elements of tn. Because if tn(i) = 1,

then there exists a path from node i to node n. Therefore, the public belief can be written as

p(x|Θfull
n ,an,Gn) =cp(an|Sn,x)p(x|{ai;ai ∈ Θfull

n })

=cπ0 p(an|Sn,x) ∏
ai∈Θfull

n

p(ai|Si,x). (3.27)

Note that Bayes’ theorem is used recursively to expand p(x|{ai;ai ∈ Θfull
n }) and Si includes ac-

tions(from Θfull
n ) into account that ai depends on them. Taking the logarithm of both sides of (3.27)

yields

θ full
n = log

(
p(x|Θfull

n ,an,Gn)
)

= log

(

cπ0 p(an|Sn,x) ∏
ai∈Θfull

n

p(ai|Si,x)

)

= log(p(an|Sn,x))+ ∑
tn(i) ̸=0

log(p(ai|Si,x)) ,

=
n−1

∑
i=1

tn(i)νi +νn, (3.28)

where νi denotes log(p(ai|x,Si)). Note that the normalizing constant c and π0 are omitted for the

sake of simplicity as they are the same for both learning problems (3.9) with the constrained social

learning Protocol 1 and (2.6) with the benchmark Protocol 2.
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3.7.3 Proof of Theorem 3.3.2

Proof. The aim here is to show that if wn = tn
(
T ′n−1

)−1
then θ̂n defined in (3.18) is exactly equal to

θ full
n in (3.14). Before proceeding, let us first rewrite (3.18) and (3.14) using the following notations

θ full
n = νn +(tn⊗ Id)ν1:n−1,

θ̂n = νn +(wn⊗ Id)θ̂1:n−1, (3.29)

where θ̂1:n−1 ! [θ̂ ′1, . . . , θ̂
′
n−1]

′, ν1:n−1 ! [ν ′1, . . . ,ν
′
n−1]

′ ∈ R(n−1)d×1. Here ⊗ denotes Kronecker

(tensor) product and Id denotes the d×d identity matrix.

To prove Theorem 3.3.2, we first start from

θ̂n = θ full
n . (3.30)

Assume that (3.30) holds for all i where 1 ≤ i ≤ n. From (3.18), θ full
n can be written as (given that

Eq. (3.30) holds)

θ full
n = θ̂n = (wn⊗ Id)θ̂1:n−1 +νn

= (wn⊗ Id)θ
full
1:n−1 +νn. (3.31)

Eq. (3.30) holds for all i where 1≤ i≤ n. Therefore, θ̂1:n−1 = θ full
1:n−1. From (3.14) in Theorem 3.3.1,

θ full
1:n−1 can be expressed as

θ full
1:n−1 =

(
T ′n−1

)
ν1:n−1. (3.32)

Note that in the derivation of (3.32), we use the definition of tn−1 in (A.6) as the first n−2 elements

of Tn−1 and so on. Using (3.32), (3.31) can be written as

θ full
n = (wn⊗ Id)

(
T ′n−1

)
ν1:n−1 +νn. (3.33)

From (3.14) in Theorem 3.3.1, we have another expression for θ full
n . Comparing (3.33) and (3.14)

yields

(tn⊗ Id)ν1:n−1 = (wn⊗ Id)
(
T ′n−1

)
ν1:n−1

=
(
(wnT ′n−1)⊗ Id

)
ν1:n−1. (3.34)

Note that in going from the first line to the second line in (3.34), the distributive property of tensor

products is used. From (3.34) it can be inferred that tn = wnT ′n−1. As presented in Appendix A, Tn is

upper triangular matrix with ones in the diagonal. Therefore Tn is invertible and wn =
(
tnT ′n−1

)−1
. To

complete the proof we need to start from wn =
(
tnT ′n−1

)−1
and obtain θ̂n = θ full

n . This part of proof
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is straightforward and thus omitted from the chapter. Note that the topological Constraint 3.3.1

says that if bn( j) = 0 then the j−th entry of ν1:n−1 is not available to the node n and thus the

corresponding element of the weight vector wn( j) should be equal to zero as well. Also note that νn

is computed by the network administrator and the data incest free public belief, π−n, is available to

the network administrator.
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Tracking Degree Distribution in

Dynamic Social Networks
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4

Tracking a Markov Modulated Degree

Distribution

4.1 Introduction

Dynamic random graphs have been widely used to model social networks, biological networks [42]

and Internet graphs [41]. Such dynamic models can be viewed as a sequence of graphs where the

random graph at each time may depend on all the earlier graphs (snapshots of the evolving graph

at earlier times) [41]. Motivated by analyzing social networks, we introduce Markov-modulated

duplication-deletion random graphs30 where at each time instant, nodes can either be added to or

eliminated from the graph with probabilities that change according to a finite-state Markov chain.

Such graphs mimic social networks where the interactions between nodes evolve over time accord-

ing to a Markov process that undergoes infrequent jumps. An example of such a social network is

the friendship network among residents of a city, where the dynamics of the network change in the

event of a large festival.

Social networks can be viewed as complex sensors that provide information about interacting

individuals and an underlying state of nature31. In this chapter, we consider a dynamic social net-

work where at each time instant one node can join or leave the network. The probabilities of joining

or leaving evolve according to the realization of a finite state Markov chain that represents the state

of nature. This chapter presents two results. First, motivated by social network applications, the

asymptotic behavior of the degree distribution of the Markov-modulated random graph is analyzed.

Second, using noisy observations of nodes’ connectivity, a “social sensor” is designed for tracking

the underlying state of nature as it evolves over time.

4.1.1 Chapter Goals

As explained above, in this chapter, Markov-modulated dynamic random graphs are introduced to

mimic social networks where the evolution of the network is varying over time. The most important

parameter of a network that characterizes its structure is the degree distribution. It yields useful

30The duplication-deletion procedure for Markov-modulated random graphs is described in Section 4.2.
31For example, real-time event detection from Twitter posts is investigated in [132] or the early detection of contagious

outbreaks via social networks is studied in [40].
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information about the connectivity of the random graph [10, 86, 116]. For example, if a majority

of nodes in the random graph have relatively high degrees, the graph is highly connected and a

message can be transferred between two arbitrary nodes with shorter paths. However, if a majority

of nodes have smaller degrees then for transmitting a message throughout the network, longer paths

are needed, see [80]. The degree distribution can further be used to investigate the diffusion of

information or disease through social networks [108, 146]. The existence of a “giant component”32

in complex networks can be studied using the degree distribution. The size and existence of a giant

component has important implications in social networks in terms of modeling information propa-

gation and spread of human disease [62, 115, 118]. The degree distribution is also used to analyze

the “searchability” of a network. The “search” problem arises when a specific node in a network

faces a problem (request) whose solution is at other node, namely, destination (e.g., delivering a let-

ter to a specific person, or finding a web page with specific information) [4, 146]. The searchability

of a social network [146] is the average number of nodes that need to be accessed to reach the desti-

nation. Degree distribution is also used to investigate the robustness and vulnerability of a network

in terms of the network response to attacks on its nodes or links [33, 76]. The papers [148, 149]

further use degree-dependent tools for classification of social networks.

The fist goal of this chapter is to provide a degree distribution analysis that allows us to deter-

mine the relation between the structure of the network (in terms of connectivity) and the underlying

state of nature. Indeed, it will be shown in Section 4.3 that there exists a unique stationary degree

distribution for the Markov-modulated graph for each state of the underlying Markov chain. It thus

suffices to estimate the degree distribution in order to track the underlying state of nature. The sec-

ond goal of the chapter is to propose a stochastic approximation algorithm to track the empirical

degree distribution of the Markov-modulated random graph. In particular, our goals are to address

the following two questions in Section 4.4:

• How can a social sensor estimate (track) the empirical degree distribution using a stochastic

approximation algorithm with no knowledge of the Markovian dynamics?

• How accurate are the estimates generated by the stochastic approximation algorithm when

the random graph evolves according to the duplication-deletion model with Markovian switch-

ing?

By tracking the degree distribution of a Markov-modulated random graph, we can design a social

sensor to track the underlying state of nature using the noisy measurements of nodes’ connectivity.

32A giant component is a connected component with size O(n), where n is the total number of vertices in the graph.

If the average degree of a random graph is strictly greater than one, then there exists a unique giant component with

probability one [41], and the size of this component can be computed from the expected degree sequence.
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4.1.2 Main Results and Organization of Chapter

Section 4.2 describes the construction of Markov-modulated duplication-deletion random graphs.

Section 4.3 provides an asymptotic degree distribution analysis for the non-Markov modulated

case of two different scenarios: (i) fixed size duplication-deletion random graph, and (ii) infinite

duplication-deletion random graph. Theorem 4.3.1 in Section 4.3.1 asserts that the expected de-

gree distribution of the fixed size Markov-modulated random graph at each time can be computed

in terms of the expected degree distribution of the graph at the previous time and the dynamics of

the graph via recursive equation (4.9). Section 4.3.2 extends the results of Section 4.3.1 to infinite

random graphs. Theorem 4.3.2 parameterizes the degree distribution of such a graph by the power

law exponent which depends on the dynamics of the graph.

Section 4.4 considers the problem of adaptively estimating the degree distribution of a fixed size

Markov-modulated duplication-deletion random graph given observations of the degree distribution.

A stochastic approximation algorithm is presented for tracking the degree distribution as it evolves

over time. In particular, Section 4.4 presents three results regarding the tracking performance of the

stochastic approximation algorithm:

• Mean square error analysis: Theorem 4.4.1 analyzes the asymptotic mean square error be-

tween the expected degree distribution and the estimate obtained via the stochastic approx-

imation algorithm. Deriving this result uses error bounds on two-time scale Markov chains

and perturbed Lyapunov function methods.

• Weak convergence analysis: Theorem 4.4.2 shows that the asymptotic behavior of the stochas-

tic approximation algorithm converges weakly to the solution of a switched Markovian ordi-

nary differential equation.

• Functional central limit theorem for scaled tracking error: Finally, Theorem 4.4.3 investi-

gates the asymptotic behavior of the scaled tracking error. Similar to [94], it is shown that the

interpolated scaled tracking error converges weakly to the solution of a switching diffusion

process.

Section 4.5 extends the results of Section 4.4 to infinite (denumerable) duplication-deletion

random graphs where the number of nodes in the graph (and so the support of degree distribution) is

no longer fixed and increases over time. A Hilbert-space-valued stochastic approximation algorithm

is proposed to track the degree distribution of the infinite graph with support on the set of non-

negative integers. To study the tracking performance of such a Hilbert-space-valued stochastic

approximation algorithm, limit system characterization and asymptotic analysis of scaled tracking

error are provided. Numerical examples are presented in Section 4.6.
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4.2 Markov-modulated Dynamic Random Graph of

Duplication-deletion Type

This section outlines the construction of Markov-modulated dynamic random graphs of duplication-

deletion type. Let n = 0,1,2, . . . denote discrete time. Denote by θn a discrete-time Markov chain

with state space

M = {1,2, ...,M}, (4.1)

and initial probability distribution π0.

Assumption 4.2.1. The Markov chain θn evolves according to the transition matrix

Aρ = I+ρQ. (4.2)

Here, I is an M×M identity matrix, ρ is a small positive real number, and Q = [qi j] is an irre-

ducible33 generator of a continues-time Markov chain satisfying

qi j > 0 for i ̸= j, and Q1 = 0, (4.3)

where 1 and 0 represent column vectors of ones and zeros, respectively. The transition probability

matrix Aρ is therefore close to identity matrix. Here and henceforth, we refer to such a Markov

chain θn as a “slow” Markov chain. The initial distribution π0 is assumed independent of ρ .

A Markov-modulated duplication-deletion dynamic random graph is parameterized by the 7-

tuple (M,Aρ ,π0,r, p,q,G0). Here, p and q are M-dimensional vectors with elements p(i) and q(i) ∈
[0,1], i = 1, . . . ,M, where p(i) denotes the connection probability, and q(i) denotes the deletion

probability. Also, r ∈ [0,1] denotes the probability of the duplication step, and G0 denotes the initial

graph at time 0. In general, G0 can be any finite simple connected graph. For simplicity, assume that

G0 is a simple connected graph with size N0. The duplication-deletion random graph is constructed

via the duplication-deletion Procedure 4.534.

The Markov-modulated random graph generated by the duplication-deletion Procedure 4.5 mim-

ics social networks where the interactions between nodes evolve over time due to the underlying dy-

namics (state of nature) such as seasonal variations (e.g., the high school friendship social network

evolving over time with different winter/summer dynamics). In such cases, the connection/deletion

33The irreducibility assumption implies that there exists a unique stationary distribution π ∈ RM×1 for this Markov

chain such that π ′ = π ′Aρ .
34In Procedure 4.5, Step 1 is executed with probability r. Then, regardless of execution of Step 1, Step 2 is imple-

mented. For convenience in the analysis, assume that a node generated in the duplication step cannot be eliminated in

the deletion step immediately after its generation. Also, nodes whose degrees change in the edge-deletion part of Step 2,

remain unchanged in the duplication part of Step 2 at that time instant. Finally, to prevent formation of isolated nodes, as-

sume that the neighbor of a node with degree one cannot be eliminated in the deletion step. Note also that the duplication

step in Step 2 ensures that the graph size does not decrease.

82



4.2. Markov-modulated Dynamic Random Graph of Duplication-deletion Type

Procedure 4.5 Markov-modulated Graph parameterized by (M,Aρ ,π0,r, p,q,G0)

At time n, given the graph Gn and Markov chain state θn, simulate the following events:

Step 1: Duplication step: With probability r implement the following steps:

• Choose node u from graph Gn randomly with uniform distribution.

• Vertex-duplication: Generate a new node v.

• Edge-duplication:

– Connect node u to node v. (A new edge between u and v is added to the graph.)

– Connect each neighbor of node u with probability p(θn) to node v. These connection

events are statistically independent.

Step 2: Deletion Step: With probability q(θn) implement the following steps:

• Edge-deletion: Choose node w randomly from Gn with uniform distribution. Delete node w

along with the connected edges in graph Gn.

• Duplication Step: Choose a node from graph x from Gn randomly and implement Vertex-

duplication and Edge-duplication processes as described in Step 1.

Step 3: Denote the resulting graph by Gn+1. Generate θn+1 (Markov chain) using transition matrix

Aρ . Set n→ n+1 and go to Step 1.

probabilities p,q evolve with time. Procedure 4.5 models these time variations as a finite state

Markov chain θn with transition matrix Aρ .

The Markov-modulated random graph generated by Procedure 4.5 mimics social networks

where the interactions between nodes evolve over time due to the underlying dynamics (state of

nature) such as seasonal variations (e.g., the high school friendship social network evolving over

time with different winter/summer dynamics). In such cases, the connection/deletion probabilities

p,q depend on the state of nature and evolve with time. Procedure 4.5 models these time variations

as a finite state Markov chain θn with transition matrix Aρ .

Discussion:

The connection/deletion probabilities p,q can be determined by the solution of a utility maximiza-

tion problem. Let U join : [0,1]×M → R denote a utility function that gives payoff to an individual

who considers to expand his neighbors in “Edge-duplication step” of Procedure 4.5 as a function of

(p,θ). Similarly, let U leave : [0,1]×M → R denote a utility function that pays off to an individual

who considers to leave the network in “Deletion step” of Procedure 4.5 as a function of (q,θ). With

the above utility functions, the probabilities of connection/deletion when the state of nature is θ can
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be viewed as the solutions of the following maximization problems:

p(θ) = argmax
p

{
U join(p,θ)

}
,

q(θ) = argmax
q

{
U leave(q,θ)

}
.

(4.4)

These utility functions can be interpreted in terms of mutual benefits and privacy concerns. One

example could be U join(p,θ) = bjoin(p,θ)− v, where bjoin(p,θ) is the benefit one obtains by ex-

panding his network with probability p when the underlying state of nature is θ , and v is the cost

incurred by sacrificing his “privacy”. In this example, when an individual decides to leave the net-

work, the utility he obtains will be U leave(q,θ) = bleave(q,v)− c(θ), where bleave(q,v) is the benefit

he earns by preserving privacy and c(θ) is the benefit he loses by leaving the network when the

underlying state of nature is θ .

4.3 Asymptotic Degree Distribution Analysis for Non-Markov

Modulated case

This section presents degree distribution analysis for duplication-deletion random graphs generated

according Procedure 4.5 for the non-Markov modulated case, i.e., M = 1. The stationary degree

distribution obtained in Section 4.3.1 below will be used in the Markov modulated case. The results

in this section constitute a minor extension of [41] to the duplication-deletion random graphs.

Notation At each time n, let Nn denote the number of nodes of graph Gn. Also, let fn be a Nn

dimensional vector such that its i-th element, f i
n, denotes the number of vertices of graph Gn with

degree i. Clearly f ′n1=Nn where 1 denotes the vector of ones. Here, ′ is used to denote the transpose

of a vector or matrix. Define the “empirical vertex degree distribution” as

gn = (gi
n, i = 1,2, . . .), where gi

n =
f i
n

Nn
. (4.5)

Note that gn can be viewed as a probability mass function since all of its elements are non-negative

and g′n1 = 1.

4.3.1 Fixed Size Random Graph

This subsection analyzes the evolution of the expected degree distribution for a fixed size duplication-

deletion random graph generated according to Procedure 4.5 with r = 0, M = 1. (Recall r denotes

the probability of Step 1 in Procedure 4.5.) Therefore, the number of vertices in the graph remains
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fixed, i.e., Nn =N0 for n= 0,1,2, . . .. Theorem 4.3.1 below gives a recursion for the expected degree

distribution of the fixed size Markov-modulated duplication-deletion random graph.

Theorem 4.3.1. Consider the fixed size duplication-deletion random graph generated according to

Procedure 4.5, where r = 0, M = 1. Let gn denote the expected degree distribution of nodes at time

n. Then, gn satisfies the recursion

gn+1 = (I +
1

N0
L′)gn, (4.6)

where L is a generator matrix35 with elements (for 1≤ i, j ≤ N0):

l ji =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, j < i−1,

qpi−1 +q
(
1+ p(i−1)

)
, j = i−1,

iqpi−1(1− p)−q
(
i+2+ pi

)
, j = i,

q
(

i+1
i−1

)
pi−1(1− p)2 +q(i+1), j = i+1,

q
(

j
i−1

)
pi−1(1− p) j−i+1, j > i+1.

(4.7)

Proof. The proof is presented in Appendix 4.8.1.

Theorem 4.3.1 shows that evolution of the expected degree distribution in a fixed size Markov-

modulated duplication-deletion random graph satisfies (4.6). One can rewrite (4.6) as

gn+1 = B′N0
gn, where BN0 = I+

1

N0
L. (4.8)

Since L is a generator matrix, BN0 can be considered as the transition matrix of a slow Markov

chain. It is also straightforward to show that BN0 is irreducible and aperiodic36. Hence, there exists

a unique stationary distribution g = (gi, i = 1,2, . . .) such that

g = B′N0
g. (4.9)

The stationary distribution g is the stationary expected degree distribution of a fixed size duplication-

deletion random graph generated according to Procedure 4.5 where r = 0. Note that the underlying

Markov chain {θn} depends on the small parameter ρ . The main idea is that, although θn is time-

varying but it is piecewise constant (since ρ is small parameter)—it changes slowly over time.

Further, in light of (4.6), the evolution of gn depends on 1
N0

. Our assumption throughout this chapter

is that ρ≪ 1
N0

. Therefore, the evolution of gn is faster than the evolution of θn. That is, gn reaches its

stationary distribution g before the state of θn changes. From (4.9), the expected degree distribution

35That is, each row adds to zero and each non-diagonal element of L is positive.
36It is straightforward to show that all elements of (BN0

)N0 are strictly greater than zero. Therefore, BN0
is irreducible

and aperiodic.
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of the fixed size Markov-modulated duplication-deletion random graph can be uniquely computed

for each state of the underlying Markov chain θn = θ .

Example: Searchability of a Network

So far in this section, an asymptotic analysis of the degree distribution was presented for a random

graph generated according to Procedure 4.5. We now comment briefly on how the degree distribu-

tion can be used to investigate the searchability of the network. This also motivates the stochastic

approximation algorithm presented in Section 4.4 as will be described below. The search prob-

lem arises in a network when a specific node faces a problem (request) whose solution is at other

node (e.g., delivering a letter to a specific person or finding a web page with specific information).

Assume [146] that on receiving a search request, each node follows the following protocol: (a) It

address the request if it or its neighbors have the solution; otherwise (b) it relays the request to one

of its neighbors chosen uniformly. The objective is to find the expected search delay, that is, the

expected number of steps until the request is addressed.

Lemma 4.3.1. Consider the sequence of fixed size Markov-modulated duplication-deletion random

graph obtained by Procedure 4.5, {Gn}, with (M,Aρ ,π0, ′,q, p,G0) where Aρ = I +ρQ and p = 0

and expected degree distribution gn. The expected search delay is

λ (N0) = O

(
N0δ

d2−δ

)
, (4.10)

as n→ ∞ where δ = ∑
N0
i=1 ign(i) and d2 = ∑

N0
i=1 i2gn(i).

Proof. See Chapter 5 of [146] and recall that size of the considered random graph is N0.

Lemma 4.3.1 implies that, if the empirical degree distribution of the possibly time-varying net-

work can tracked accurately, then such an estimate can be used to track the searchability of the

network. Also, using the estimated degree distribution and Lemma 4.3.1, we can address the fol-

lowing design problem as: How can p and q in Algorithm 4.5 be chosen so that the average delay

does not exceed a threshold?

Using the stochastic approximation algorithm in (4.14) (see Section 4.4 below for the convergence

proof), we can estimate the expected degree distribution, ĝn, and from that, we can compute δ and

d2. Then, from Lemma 4.3.1 we can find the measure of searchability and compare it with the

maximum acceptable average delay and modify the parameters of Procedure 4.5 accordingly. We

illustrate searchability in numerical examples given in Section 4.6.
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4.3.2 Power Law Exponent for Infinite Duplication-deletion Random Graph

The degree distribution analysis provided in the previous subsection was for a fixed size random

graph generated according to the duplication-deletion Procedure 4.5 with r = 0. This section extends

this analysis to infinite duplication-deletion random graphs (obtained by choosing r = 1). Assume

that G0 is an empty set. Since r = 1, at time n, the graph Gn has n nodes. By employing the same

approach as in the proof of Theorem 4.3.1, it will be shown that the infinite duplication-deletion

random graph without Markovian dynamics satisfies a power law. An expression is further derived

for the power law exponent.

Definition 4.3.1 (Power Law Distribution). The degree distribution g = (gi, i = 1,2, . . .), of a graph

G has a power law distribution37 if there exists an integer i∗ such that for all i≥ i∗,

loggi = α−β log i

where α is a constant38 and β > 1. Parameter β is called the power law exponent.

The power law is satisfied in many networks such as WWW-graphs, peer-to-peer networks,

phone call graphs, co-authorship graph and various massive online social networks (e.g. Yahoo,

MSN, Facebook) [17, 27, 44, 135, 139]. The following theorem states that the graph generated

according to Procedure 4.5 with r = 1 and M = 1 satisfies a power law.

Theorem 4.3.2. Consider the infinite random graph with Markovian dynamics Gn obtained by

Procedure 4.5 with 7-tuple (1,1,1,1, p,q,G0) with the expected degree distribution gn. Then, if

log p+ p < q
1+q < p, the expected degree of nodes in Gn has a power law distribution with exponent

β > 1. The power law exponent is computed from

(1+q)(pβ−1 + pβ − p) = 1+βq. (4.11)

Here, p and q are the probabilities defined in duplication and deletion steps, respectively.

Proof. The proof is similar to that of Theorem 4.3.1 with some modifications, see [72]. Here, we

only present an outline of the proof which is comprised of two steps: (i) finding the power law

exponent, and (ii) showing that the degree distribution converges to a power law with the computed

exponent as n→ ∞. To find the power law exponent, we derive a recursive equation for the number

of nodes with degree i+ 1 at time n+ 1, denoted by f i+1
n+1, in terms of the degrees of nodes in

37There is a difference between “power law” and “power law distribution”. Power law is a functional relationship

between two parameters where one parameter is proportional to the power of another, i.e., x ∝ y−β , where β can be any

real number. In comparison, the exponent of a power law distribution is strictly greater that one [117]. Otherwise, the

probability distribution does not add up to one.
38The normalization constant α is computed from α =− log[ζ (β , i∗)], where ζ (β , i∗) =∑∞

k=i∗ k−β denotes the incom-

plete Riemann ζ -function.
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graph Gn. Then, rearranging this recursive equation yields an equation for the power law exponent.

To prove that the degree distribution satisfies a power law, we show that limn→∞ ∑i
k=1 E{ f k

n} =

∑i
k=1 ck−β , where β > 1 is the power law exponent computed in the first step and f k

n is the k-th

element of fn.

Theorem 4.3.2 asserts that the infinite duplication-deletion random graph without Markovian

dynamics generated by Procedure 4.5 satisfies a power law and provides an expression for the power

law exponent. The significance of this theorem is that it ensures, with use of one single parameter

(the power law exponent), we can describe the degree distribution of graphs with relatively large

number of nodes. The above result slightly extends [42, 121], where only a duplication model was

considered. Theorem 4.3.2 allows us to explore characteristics (such as searchability, diffusion, and

existence/size of the giant component) of large networks which can be modeled with the infinite

duplication-deletion random graphs. Remark 1. Outline of Proof: The proof of Theorem 4.3.2,

which is presented in Appendix 4.8.2, consists of two steps: (i) finding the power law component

and (ii) showing that the degree distribution converges to a power law as n→ ∞. To find the power

law component, we derive a recursive equation for the number of nodes with degree i+1 at time n+

1, fn+1(i+1), in terms of degree of nodes in graph Gn. Then, this recursive equation is rearranged

to equation for the power law component. To prove that the degree distribution satisfies a power law,

we define a new parameter hn(i) =
1
n ∑i

k=1 E{ fn(k)} and we show that limn→∞ hn(i) = ∑i
k=1Ck−β

where β is the power law component computed by the solving the recursive equation. Theorem 4.3.2

asserts that the infinite duplication-deletion random graph without Markovian dynamics generated

by Procedure 4.5 satisfies a power law and provides an expression for the power law component.

The significance of this theorem is that it ensures that with use of one single parameter (the power

law component), we can describe the degree distribution of large numbers of nodes in graphs that

model social networks.

Remark 2. Power Law Component: Let β ∗ denote the solution of (4.11). Then the power law

component is defined as β = max{1,β ∗}. Fig.4.1 shows the the power law component and β ∗

versus p for different values of probability of deletion, q. As can be seen in Fig.4.1, the power law

component is increasing in q and decreasing in p.

4.4 Estimating (Tracking) the Degree Distribution of the Fixed Size

Markov-modulated Duplication-deletion Random Graph

In Section 4.2, an expression was given for the unique stationary degree distribution g for the non-

Markov modulated case, see (4.9). In this section, we consider fixed size Markov modulated du-

plication deletion random graphs. Consider Procedure 4.5 and assume that there are M possible

stationary degree distributions, namely g = {g(1),g(2), . . . ,g(M)} corresponding to the M states
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Figure 4.1: The power law component for the non-Markovian random graph generated according to

Procedure 4.5 obtained by (4.11) for different values of p and q in Procedure 4.5.

of a Markov chain. Here each g(i) is computed using (4.9) where the corresponding parameters

p(i),q(i) are used. At each time n, a stationary distribution g(θn) ∈ g is chosen where θn evolves

according to an M-state Markov chain as described in Section 4.2. We assume that the stationary

degree distribution of the graph is sampled by a network administrator. How can the network ad-

ministrator track the expected degree distribution of the fixed size Markov-modulated duplication

deletion random graph without knowing the dynamics of the graph? The motivation for tracking the

stationary degree distribution stems from social networks where the dynamics of the degree distri-

bution evolve on a faster time scale than the Markov chain θn. Therefore, it suffices to track g(θn)

given observations.

At each time n, the network administrator samples a node from the graph based on degree

distribution g(θn) and records its degree yn(θn). Let zn(θn) = eyn(θn) denote the observation vector

where ei ∈RN0×1 is the i-th standard unit vector. Such a sampling procedure can be time correlated.

Therefore, we allow zn(θn) to be a mixing process with thee following assumption:

Assumption 4.4.1. For each θ ∈M , the sequence {yn(θ)} is stationary φ -mixing with sufficiently

fast mixing rate such that the sequence {yn(1), . . . ,yn(M)} is independent of {θn} and that for each

θ ∈M , {zn(θ)} is a stationary φ -mixing sequence with mixing rate ψn satisfying ∑∞
j=0 ψ1/2

j < ∞.

Remark 4.4.1. Because {yn(θ)} is a stationary φ -mixing sequence for each θ ∈M , {zn(θ)} is
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a bounded sequence of φ -mixing process for each θ ∈M [97, p. 82] (see also [25, p.170]). The

stationarity implies that

Ezn(θ) = Ez1(θ) =
∞

∑
i=0

eiP(y1(θ) = i) =
∞

∑
i=0

gi(θ)ei = g(θ) (4.12)

The mixing rate given requires that for any positive integers i and j,

∥EkI{yn(θ) = i}−gi(θ)∥ ≤ ψn−k for n≥ k,

∥E[I{yl(θ) = j}−gj(θ)][I{yn=i}−gi(θ)]∥ ≤ ψ
1/2
n−lψ

1/2
l−k for any k < l < n,

(4.13)

where Ek denotes the conditional expectation on the past data up to time k (i.e., condition on the

σ -algebra Fk generated by {z j(θ) : j ≤ k}) and I{·} denotes the indicator function. Here, ∥ · ∥ is

used to denote the Euclidean norm.

The analysis in this chapter can be generalized to include certain non-stationary cases for

the observation process {yn(θ)}. For example, for each θ ∈M , suppose {ζn(θ)} is an ergodic

finite state Markov chain39 . Let yn(θ) = f̃ (ζn(θ)). The n-step transition probability matrix of the

Markov chain converges to a matrix (with identical rows consisting of its stationary distribution)

with exponential rate. Then it can be verified similar to [25, pp.178] that yn(θ) is mixing. Although

(4.12) does not hold, the analysis using mixing inequalities can still be obtained.

Given the observation sequence zn(θn), n = 0,1,2, . . ., the aim is to adaptively estimate g(θn)

via the following stochastic approximation algorithm with (small positive) constant step-size ε :

ĝn+1 = ĝn + ε (zn(θn)− ĝn) , ĝ0 = e1 (4.14)

To summarize, the evolution of the slow Markov chain θn and stochastic approximation algo-

rithm (4.14) form a two-time-scale Markovian system as follows when ρ ,ε = o( 1
N0
)

{
True system: g(θn) ∈ {g(1), . . . ,g(M)}, where θn evolves according to Aρ = I+ρQ,

Algorithm: ĝn+1 = ĝn + ε (zn(θn)− ĝn) , zn(θn) = eyn(θn), where yn(θn)∼ g(θn).
(4.15)

Note that the stochastic approximation algorithm (4.14) does not assume any knowledge of the

Markov-modulated dynamics of the graph. The Markov chain assumption for the random graph

dynamics is only used in our convergence and tracking analysis. By means of the stochastic ap-

proximation (4.14), the network administrator can track the stationary expected degree distribution

g(θn).

39Respondent driven sampling (RDS) was introduced in [74] as an approach for sampling from hidden populations

in social networks. RDS has been selected by the U.S. Centers for Disease Control and Prevention as part of the HIV

behavioral surveillance system. RDS can be viewed as a form of Markov Chain Monte Carlo sampling [68].
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4.4.1 Tracking Error of the Stochastic Approximation Algorithm

The goal here is to analyze how well algorithm (4.14) tracks the empirical degree distribution of

the fixed size Markov-modulated duplication-deletion graph. Define the tracking error as g̃n = ĝn−
g(θn). Theorem 4.4.1 below shows that the difference between the sample path and the stationary

degree distribution is small—implying that the stochastic approximation algorithm can successfully

track the Markov-modulated node distribution given the noisy measurements. We again emphasize

that no knowledge of the Markov chain parameters are required in the algorithm. It also finds the

order of this difference in terms of ε and ρ .

Theorem 4.4.1. Consider the random graph (M,Aρ ,π0, p,q,r,G0). Suppose ρ2≪ ε and Assump-

tions 4.2.1 and 4.4.1 hold40. Then, for sufficiently large n, the tracking error of the stochastic

approximation algorithm (4.14) is

E∥g̃n∥2 = O

(
ε +ρ +

ρ2

ε

)
. (4.16)

Proof. The proof uses the perturbed Lyapunov function method and is provided in Appendix 4.8.5.

Remark 4.4.2. Most existing literature analyzes stochastic approximation algorithms for tracking

a parameter that evolves according to a “slowly time-varying” sample path of a continuous-valued

process so that the parameter changes by small amounts over small intervals of time. When the rate

of change of the underlying parameter is slower than the adaptation rate of the stochastic approx-

imation algorithm (e.g., a slow random walk), the mean square tracking error can be analyzed as

in [19, 69, 99, 111, 127, 137]. In comparison, our analysis covers the case where the underlying

parameter evolves with discrete jumps that can be arbitrarily large in magnitude on short intervals

of time. Also, the jumps occur on the same time scale as the speed of adaptation of the stochas-

tic approximation algorithm. We explicitly consider this Markovian time-varying parameter in our

mean square error and weak convergence analysis.

As a corollary of Theorem 4.4.1, we obtain the following mean square error convergence result.

Corollary 4.4.1. Under the conditions of Theorem 4.4.1, if ρ = O(ε),

lim
n→∞

E∥g̃n∥2 = O(ε).

Therefore,

lim
ε→0

lim
n→∞

E∥g̃n∥2 = 0.

40In this work, we assume that ρ = O(ε). Therefore, ρ2≪ ε .

91



4.4. Tracking the Degree Distribution of the Fixed Size Markov-modulated Random Graph

4.4.2 Limit System of Regime-Switching Ordinary Differential Equations

The following theorem asserts that the sequence of estimates generated by the stochastic approxi-

mation algorithm (4.14) follows the dynamics of a Markov-modulated ordinary differential equation

(ODE).

Before proceeding with the main theorem below, let us recall a Definition.

Definition 4.4.1 (Weak Convergence). Let Zk and Z be Rr-valued random vectors. We say Zk

converges weakly to Z (Zk⇒ Z) if for any bounded and continuous function f (·), E f (Zk)→ E f (Z)

as k→ ∞.

Weak convergence is a generalization of convergence in distribution to a function space41.

Theorem 4.4.2. Consider the Markov-modulated random graph generated according to Proce-

dure 4.5, and the sequence of estimates {ĝn}, generated by the stochastic approximation algo-

rithm (4.14). Suppose Assumptions 4.2.1 and 4.4.1 hold and ρ = O(ε). Define the continuous-time

interpolated process

ĝε(t) = ĝn, θε (t) = θn for t ∈ [nε ,(n+1)ε). (4.17)

Then, as ε → 0, (ĝε(·),θε (·)) converges weakly to (ĝ(·),θ(·)), where θ(·) is a continuous-time

Markov chain with generator Q, ĝ(·) satisfies the Markov-modulated ODE

dĝ(t)

dt
=−ĝ(t)+g(θ(t)), ĝ(0) = ĝ0 (4.18)

and g(θ) ∈ g .

The above theorem asserts that the limit system associated with the stochastic approximation

algorithm (4.14) is a Markovian switched ODE (4.18). As mentioned in Section 4.1, this is unusual

since typically in averaging of stochastic approximation algorithms, convergence occurs to a deter-

ministic ODE. The intuition behind this is that the Markov chain evolves on the same time-scale as

the stochastic approximation algorithm. If the Markov chain evolved on a faster time-scale, then

the limiting dynamics would be a deterministic ODE weighed by the stationary distribution of the

Markov chain. If the Markov chain evolved slower than the dynamics of the stochastic approxima-

tion algorithm, then the asymptotic behavior would also be a deterministic ODE with the Markov

chain being a constant.

4.4.3 Scaled Tracking Error

Next, we study the behavior of the scaled tracking error between the estimates generated by the

stochastic approximation algorithm (4.14) and the expected degree distribution. The following the-

orem states that the tracking error should also satisfy a switching diffusion equation and provides a

41We refer the interested reader to [99, Chapter 7] for further details on weak convergence and related matters.
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functional central limit theorem for this scaled tracking error. Let νk =
ĝk−g(θk)√

ε
denote the scaled

tracking error.

Theorem 4.4.3. Suppose Assumptions 4.2.1 and 4.4.1 hold. Define νε(t) = νk for t ∈ [kε ,(k+1)ε).

Then, (νε (·),θε (·)) converges weakly to (ν(·),θ(·)) such that ν(·) is the solution of the following

Markovian switched diffusion process

ν(t) =−
∫ t

0
ν(s)ds+

∫ t

0
Σ

1
2 (θ(τ))dω(τ). (4.19)

Here, ω(·) is an RN0-dimensional standard Brownian motion. The covariance matrix Σ(θ) in (4.19)

can be explicitly computed as

Σ(θ) = Z(θ)′D(θ)+D(θ)Z(θ)−D(θ)−g(θ)g′(θ). (4.20)

Here, D(θ) = diag(g(θ)) and Z(θ) = (I−BN0(θ)+1g′(θ))−1, where g(θ) ∈G. For each θ ∈M ,

BN0(θ) is computed using (4.8) where the corresponding parameters p(i),q(i) are used.

For general switching processes, we refer to [157]. In fact, more complex continuous-state de-

pendent switching rather than Markovian switching are considered there. Equation (4.20) reveals

that the covariance matrix of the tracking error depends on BN0(θ) and g(θ) and, consequently, on

the parameters p and q of the random graph. Recall from Section 4.2 that BN0(θ) is the transi-

tion matrix of the Markov chain which models the evolution of the expected degree distribution in

duplication-deletion random graphs and can be computed from Theorem 4.3.1.

4.5 Estimating the Degree Distribution of Infinite

Duplication-deletion Random Graphs

This section has two results: First, the results of Section 4.4 are extended to infinite random graphs

without Markovian dynamics generated according to Procedure 4.5. Second, we show how this

analysis can be extended to Markov-modulated probability mass functions with denumerable sup-

port. The analysis is non-standard, since it is formulated on a Hilbert space.

4.5.1 Infinite Random Graphs without Markovian Dynamics

Consider the infinite duplication-deletion random graph without Markovian dynamics generated

according to Procedure 4.5 with 7-tuple (1,1,1,1, p,q,G0). In this section, let gn represent the

degree distribution of the infinite graph with support on the set of non-negative integers; its elements

are denoted by gi
n, i = 0,1,2, . . .. Recall from Section 4.3.2 that, the size of such a graph increments

at each time by one and thus the size of the graph at time n is equal to n; that is Nn = n. Therefore,
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the maximum degree of the graph at time n cannot exceed n−1 and g
j
n = 0 for j≥ n. Similar to the

proof of Theorem 4.3.1, the following theorem asserts that the expected degree distribution of the

infinite duplication-deletion random graph satisfies a recursive equation.

Theorem 4.5.1. Consider the infinite duplication-deletion random graph without Markovian dy-

namics generated according to Procedure 4.5 with 7-tuple (1,1,1,1, p,q,G0), Let gn = E{gn} de-

note the expected degree distribution of nodes with support on the set of non-negative integers.

Then, gn satisfies the following recursion

gn+1 = gn +
1

n
L(n)′gn, (4.21)

where L(n) is a generator matrix of infinite size with elements:

l
(n)
ji =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1+q)
(

pi−1 +1+ p(i−1)
)
, j = i−1 and 1≤ i, j ≤ n

(1+q)
(
ipi−1(1− p)+1+ pi

)
−q(i+1), j = i and 1≤ i, j ≤ n

(1+q)
(

i+1
i−1

)
pi−1(1− p)2 +q(i+1), j = i+1 and 1≤ i, j ≤ n

(1+q)
(

j
i−1

)
pi−1(1− p) j−i+1, j > i+1 and 1≤ i, j ≤ n,

0, otherwise

(4.22)

Proof. The proof is similar to the proof of Theorem 4.3.1 and is omitted due to the lack of space.

Remark 4.5.1. Theorem 4.3.2 in Section 4.3.2 asserts that the expected degree distribution con-

verges to a power law probability distribution g with exponent β > 1, if log p+ p < q
1+q < p; that

is limn→∞ gi
n = i−β

ζ (β) . We assume that the dynamics of the degree distribution evolve on a faster

time scale than the stochastic approximation algorithm. Therefore, it suffices to track the stationary

degree distribution g given observations.

At each time n, the network administrator samples from the graph and records the degree of a

randomly chosen vertex of the graph which is denoted by yn. Let zn = eyn
denote the observation

vector. Here, ei is the i-th standard unit vector with support on the set of non-negative integers (i.e.,

ei = (0, . . . ,1, . . .)′ ∈R∞). The following stochastic approximation algorithm is used to estimate the

expected degree distribution of the graph from such samples.

ĝn+1 = ĝn + ε (zn− ĝn) . (4.23)

Here, ε > 0 denote a small positive step size and ĝ0 = e1. Therefore, (4.23) is a Hilbert-space-

valued stochastic approximation algorithms. By means of the stochastic approximation (4.23), the

network administrator can track the expected degree distribution of the infinite graph size increases

over time.
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Define

ĝε(t) = ĝn for t ∈ [nε ,nε + ε).

Then ĝε(·) ∈ D([0,∞) : ℓ2) the space of functions defined on [0,∞) taking values in ℓ2 = {z ∈ R∞ :

∑∞
i=0 ∥zi∥2 < ∞} such that the functions are right continuous and have left limits endowed with the

Skorohod topology. Here, we obtain a weak convergence result of the interpolated sequence of

iterates. Theorem 4.5.2 below asserts that the mean square tracking error is bounded and shows that

the sequnce of estimates obtained by (4.23) converge to the solution of an ODE. Before proceeding

to the main theorem, we shall use the following conditions.

Theorem 4.5.2. Suppose Assumption 4.4.1 holds with the modification that M = 1, i.e., there is

no Markovian dynamics. Define g̃n = g− ĝn Then, limn→∞ E∥g̃n∥2 = O(ε). Also, ĝε(·) is tight in

D([0,∞) : ℓ2). Any convergent subsequence has a limit ĝ(·) that is the solution of the differential

equation
dĝ(t)

dt
= g− ĝ(t), ĝ(0) = e1. (4.24)

Proof. The proof is presented in Appendix 4.8.8. The proof of the theorem is divided into several

steps, which uses techniques in stochastic approximation [99] but with the modification that ℓ2 is a

Hilbert space (see [61, 98]).

The above result concerns n→∞ and ε→ 0, εn remains to be bounded. We next obtain a result

with ε → 0, n→ ∞, εn→ ∞.

Corollary 4.5.1. Consider ĝε(·+tε ), where tε→∞ as ε→ 0. Under the condition of Theorem 4.5.2,

ĝε(·+ tε)→ g in probability as ε → 0.

Proof Note that {ĝk} is tight. Define ĝε ,large(·) = ĝε(·+ tε). Using the same approach, we can

show that {ĝε ,large(·)} is tight. We extract a weakly convergent subsequence of (ĝε ,large(·), ĝε ,large(·−
T )) with limit denoted by (ĝ(·), ĝT (·)). We note that ĝ(0) = ĝT (T ) and that ĝT (0) belongs to a set

that is bounded in probability. Writing it in variational form, we obtain

ĝT (T ) = e−T ĝT (0)+
∫ T

0
e−(T−t)gdt = e−T ĝT (0)+g−

∫ ∞

T
e−tdt

→ g as T → ∞.

The desired result then follows.

To study the rate of variation of estimation error, we define the sequence of scaled estimation

error νn = (ĝn−g)/
√

ε . Theorem 4.5.3 asserts that the scaled estimation error satisfy a differential

equation and provides a weak convergence results for it.
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Theorem 4.5.3. Suppose assumptions of Theorem 4.5.2 hold. Then, for sufficiently small ε there

is an Nε such that E{
〈
νn,νn

〉
} = O(1) for all n > Nε . Define the sequence of continuous-time

interpolation of estimation error as

νε(t) = νn for t ∈ [(n−Nε)ε ,(n−Nε +1)ε).

Under the assumptions of Theorem 4.5.2, {νε(·)} is tight in D([0,∞);ℓ2). Moreover, suppose that

νε(0) converges weakly to ν(0), νε(·) converges weakly to ν(·) such that ν(·) is the solution of the

following stochastic differential equation

dν(t) =−ν(t)dt +dW (t). (4.25)

Here, W (t) = ∑∞
i=0Wi(t)ei and the covariance operator is given by

E
〈
W (t),v

〉〈
W (t),z

〉
= t
〈
z,Γv

〉
= t

∞

∑
i=0

σ 2
i

〈
ei,v
〉〈

ei,z
〉

for v,z ∈ ℓ2, (4.26)

where Wi(·) is a real-valued Wiener process with covariance tσ 2
i and

σ 2
i = E[

〈
z0−g,ei

〉
]2 +2

∞

∑
j=1

E
〈
z0−g,ei

〉〈
z j−g,ei

〉
.

Proof. The proof is presented in Appendix 4.8.9.

Note that the covariance σ 2
i depends on the stationary expected degree distribution g and thus is

a function of the power law exponent β .

4.5.2 Markov-modulated Probability Mass Functions with Denumerable Support

Here, we extend the above results to the problem of tracking a time-varying probability mass func-

tion with infinite support. The aim is to track a probability mass function with support on the set

of non-negative integers that evolves according to a slow Markov chain θn with M states and ini-

tial probability distribution π0. The state space M , and the transition probability matrix Aρ of the

underlying Markov chain θn are defined in (4.1) and (4.2), respectively. For each θ ∈M , let

g(θ) = [g1(θ),g2(θ), . . .]′, (4.27)

be a probability mass function with support on the set of non-negative integers such that ∑∞
i=1 gi(θ)=

1 and gi(θ) ∝ i−βθ , where βθ > 1. When the underlying Markov chain θn jumps from one state to

another within M , g(θn) switches accordingly.
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At each time n, we sample yn(θn) from PMF g(θn); that is yn(θn)∼ g(θn). Let zn(θn) = eyn(θn)

denote the observation vector. To estimate g(θn), the following constant step size stochastic approx-

imation algorithm is deployed

ĝn+1 = ĝn + ε(zn(θn)− ĝn). (4.28)

Here ε > 0 denotes a small positive step size and ĝ0 = e1. We further assume that the Markov chain

is slowly changing in that the rate of changes is an order slower than that of adaptation (4.28); that

is ρ = ε2.

To analyze the asymptotic properties of the stochastic approximation algorithm, we define the

sequence of continuous-time interpolation ĝε (t) = ĝn for t ∈ [nε ,nε + ε). Similar to what have

been obtained thus far for the non-Markovian case, with the details omitted, we obtain the following

weak convergence results. Theorem 4.5.4 states that the sequence of estimates obtained via Hilbert-

space-valued stochastic approximation algorithm (4.28) converges weakly to the solution of an ODE

which depends on the initial distribution of the underlying Markov chain.

Theorem 4.5.4. Suppose Assumptions 4.2.1 and 4.4.1 hold. Then ĝε(·) is tight in D([0,∞) : ℓ2).

Any convergent subsequence has a limit ĝ(·) that is the solution of the differential equation

dĝ(t)

dt
=

M

∑
θ=1

g(θ)pθ − ĝ(t), ĝ(0) = e1, (4.29)

where

g(θ) =
∞

∑
i=0

gi(θ)ei, and (pθ : θ ≤M) = π0

is the initial probability distribution of Markov chain.

Proof. The proof is presented in Appendix 4.8.10.

Furthermore, we can obtain the following corollary. The proof is similar to that of Corol-

lary 4.5.1 and thus omitted.

Corollary 4.5.2. Consider ĝε(·+tε ), where tε→∞ as ε→ 0. Under the condition of Theorem 4.5.4,

ĝε(·+ tε)→ g = ∑M
θ=1 pθ g(θ) in probability as ε→ 0.

Redefine νn = (ĝn−g)/
√

ε . It can be shown that there exists Nε such that the sequence {νn : n≥
Nε} is tight. Next, redefine νε(t) = νn for t ∈ [ε(n−Nε),ε(n−N−ε)+ε).With a little more effort,

we can also obtain the associated rates of convergence result, which is stated in the next theorem.

Theorem 4.5.5. Suppose Assumptions 4.2.1 and 4.4.1 hold. Then, {νε(·)} is tight in D([0,∞);ℓ2).

Moreover, suppose that νε(0) converges weakly to ν(0), then νε(·) converges weakly to ν(·) such
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that ν(·) is the solution of the following stochastic differential equation (SDE)

du(t) =−ν(t)dt +
M

∑
θ=1

pθ dW (θ , t), (4.30)

where for each θ ∈M , W (θ , ·) is a Wiener process as given in Theorem 4.5.3.

Proof. The proof is similar to the proof of Theorem 4.5.3 with modifications similar to those of the

proof of Theorem 4.5.4.

4.6 Numerical Examples

In this section, numerical examples are given to illustrate the results from Section 4.2, and Sec-

tion 4.4.

The main conclusions are:

1. The infinite duplication-deletion random graph without Markovian dynamics generated by

the duplication-deletion Procedure 4.5 satisfies a power law as stated in Theorem 4.3.2; see

Example 4.6.1.

2. The degree distribution of the fixed size duplication-deletion random graph generated by the

duplication-deletion Procedure 4.5 can be computed from Theorem 4.3.1. When N0 (the size

of the random graph) is sufficiently large, numerical results show that the degree distribution

satisfies a power law as well; see Example 4.6.2.

3. The estimates obtained by stochastic approximation algorithm (4.14) follow the expected

probability distribution precisely without information about the Markovian dynamics; see

Example 4.6.3.

4. The larger the trace of the asymptotic covariance of the scaled tracking error, the greater the

average degree of nodes and the searchability of the graph. This is illustrated in Example 4.6.4

below.

Example 4.6.1. Consider an infinite duplication-deletion random graph without Markovian dy-

namics (so M = 1) generated by Procedure 4.5 with p = 0.5 and q = 0.1. Theorem 4.3.2 implies

that the degree sequence of the resulting graph satisfies a power law with exponent computed using

(4.11). Fig.4.2 displays the un-normalized degree distribution on a logarithmic scale. The linear-

ity in Fig.4.2 (excluding the nodes with very small degree), implies that the resulting graph from

duplication-deletion process satisfies a power law. As can be seen in Fig.4.2, the power law is a

better approximation for the middle points compared to both ends.
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Example 4.6.2. Consider the fixed size duplication-deletion random graph generated by Proce-

dure 4.5 with r = 0, N0 = 10, p = 0.4, and q = 0.1. We consider M = 1 (no Markovian dynamics)

to illustrate Theorem 4.3.1. Fig. 4.3 depicts the normalized degree distribution of the fixed size

duplication-deletion random graph obtained by Theorem 4.3.1. As can be seen in Fig. 4.3, the com-

puted degree distribution is close to that obtained by simulation. The numerical results show that

the degree distribution of the fixed size random graph also satisfies a power law for some values

of p when the size of random graph is sufficiently large. Fig. 4.4 shows the number of nodes with

specific degree for the fixed size random graph obtained by Procedure 4.5 with r = 0, N0 = 1000,

p = 0.4, and q = 0.1 on a logarithmic scale for both horizontal and vertical axes.

Example 4.6.3. Consider the fixed size Markov-modulated duplication-deletion random graph gen-

erated by Procedure 4.5 with r = 0 and N0 = 500. Assume that the underlying Markov chain has

three states, M = 3. We choose the following values for probabilities of connection and deletion:

state (1): p = q = 0.05, state (2): p = 0.2 and q = 0.1, and state (3): p = 0.4, q = 0.15. The sample

path of the Markov chain jumps at times n = 3000 from state (1) to state (2) and n = 6000 from state

(2) to state (3). As the state of the Markov chain evolves, the expected degree distribution, g(θ),

obtained by (4.9) evolves over time. The corresponding values for the expected degree distribution

for nodes of degree i= 3 are displayed in Fig.4.5 using a dotted line. The estimated probability mass

function, ĝn, obtained by the stochastic approximation algorithm (4.14) is plotted in Fig.4.5 using

a solid line. The figure shows that the estimates using by the stochastic approximation algorithm

(4.14) follow the expected degree distribution (4.9) satisfactorily even though the algorithm has no

information about the underlying Markovian dynamics.

Example 4.6.4. Consider the fixed size Markov-modulated duplication-deletion random graph ob-

tained by Procedure 4.5 with M = 91 and r = 0 and N0 = 1000. For each value of p(θ) =

0.04+ θ × 0.01,θ ∈ {1,2, . . . ,91} and q ∈ {0.05,0.1,0.15,0.2}, we compute L(θ) from (4.7) and

consequently the stationary distribution, g(θ), from (4.9). As expected, the stationary distribu-

tion does not depend on q because only the deletion step in Procedure 4.5 occurs with probability

q. From g(θ), we compute the average degree of nodes, δ . Fig.4.6 shows the average degree

of nodes versus the probability of the connection in Procedure 4.5. As can be seen in Fig.4.6,

with increasing the probability of connection in Procedure 4.5, the average degree of nodes in the

graph (which is a measure for the connectivity of the graph, see [41]). Then for each value of

p(θ) = 0.04+ θ × 0.01,θ ∈ {1,2, . . . ,91} and q ∈ {0.05,0.1,0.15,0.2}, the covariance matrix is

computed using (4.6). Fig.4.7 depicts the trace of the covariance matrix, trace (Σ(θ)), for each

value of p and q versus the corresponding average degree of nodes (for each value of p). As can

be seen in Fig.4.7, the trace of the covariance matrix is larger when the average degree of nodes is

higher (the graph is highly connected).

Recall from Lemma 4.3.1, the order of delay in the searching problem can be computed by
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Figure 4.2: Degree distribution of the duplication-deletion random graph satisfies a power law. The

parameters are specified in Example 4.6.1 of Section 4.6.

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Degree

P
ro

ba
bi

li
ty

 

 

Degree distribution obtained by simulation

Degree distribution obtained by Theorem 2.1.1

Figure 4.3: Degree distribution of the fixed size duplication-deletion random graph. The parameters

are specified in Example 4.6.2 of Section 4.6.
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Figure 4.4: Degree distribution of the fixed size duplication-deletion random graph satisfies a power

law when N0 is sufficiently large. The parameters are specified in Example 4.6.2 of Section 4.6.
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Figure 4.5: The estimates obtained by SA algorithm (4.14) follows the expected PMF precisely with

no knowledge of the Markovian dynamics. The parameters are specified in Example 4.6.3
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Figure 4.6: The average degree of nodes (as a measure of connectivity) of the fixed size Markov-

modulated duplication-deletion random graph obtained by Procedure 4.5 for different values of the

probability of connection, p, in Algorithm 4.5. The parameters are specified in Example 4.6.4 of

Section 4.6.

λ (N0) = O
(

N0δ
d2−δ

)
. Knowing the degree distribution g(θ), δ and d2 can be computed for each

value of p ∈ {0.05,0.06, . . . ,0.95}. Fig.4.8 shows the trace of the covariance matrix versus
(

δ
d2−δ

)

as a measure of the searchability for each value of q ∈ {0.05,0.1,0.15,0.2}. As can be seen in

Fig.4.8, the trace of covariance matrix is larger when the order of delay in the search problem in

(4.10) is smaller42.

4.7 Closing Remarks

Markov-modulated duplication-deletion random graphs are analyzed in terms of their degree distri-

bution. When the size of graph is fixed (r = 0) and ρ is small, the expected degree distribution of the

Markov-modulated duplication-deletion random graph can be computed from (4.6) for each state of

the underlying Markov chain. This result allows us to express the structure of network (degree distri-

bution) in terms of the dynamics of the model. We also showed that, the infinite duplication-deletion

random graph without Markovian dynamics generated according to Procedure 4.5 (r = 1,M = 1)

satisfies a power law with component computed from (4.11). The importance of this result is that

a single parameter (power law component) characterizes the structure of a possibly very large dy-

42This means that the target node can be found in the search problem with smaller number of steps.
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Figure 4.7: Trace of the covariance matrix of scaled tracking error, trace (Σ(θ)), versus the average

degree of nodes as a measure of connectivity of the network. The parameters are specified in

Example 4.6.3 of Sec.4.6.
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Figure 4.8: Trace of the covariance matrix of the scaled tracking error, trace (Σ(θ)), versus the order

of delay in the searching problem as a measure of searchability of the network. The parameters are

specified in Example 4.6.3 of Sec.4.6.
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namic network.

Also a stochastic approximation algorithm was presented to adaptively estimate the degree dis-

tribution of random graphs. The stochastic approximation algorithm (4.14) does not assume knowl-

edge of the Markov-modulated dynamics of the graph. Theorem 4.4.1 showed that the tracking error

of the stochastic approximation algorithm is small and is in order of O(ε). As a result of this bound,

we showed that the scaled tracking error weakly converges to a diffusion process. Motivated by

the analysis of social networks, we presented a Hilbert-space-valued stochastic approximation algo-

rithm to estimate the expected degree distribution of the infinite duplication-deletion random graph

without Markovian dynamics. The asymptotic behaviour of such an algorithm is analyzed in terms

of the power law degree distribution. Finally, we extended the analysis to a Hilbert-space-valued

stochastic approximation algorithm that aims to track a Markov-modulated probability mass func-

tion with denumerable support. Using weak convergence methods, it was shown that the estimates

obtained via such an algorithm converge weakly to the solution of an ordinary differential equation.

It was also shown that the interpolated sequence of scaled tracking error converges weakly to the

solution of a stochastic differential equation.

4.8 Proof of Results

4.8.1 Proof of Theorem 4.3.1

The proof is based on the proof of Lemma 4.1 in [41, Chapter 4, p79]. To compute the expected

degree distribution of the Markov-modulated random graph, we find a relation between the number

of nodes with specific degree at time n and the degree distribution of the graph at time n−1. Recall

that the i-th element of fn, f i
n, denotes the number of vertices with degree i at time k. Given the

resulting graph at time n, the aim is to find the expected number of nodes with degree i+1 at time

n+1. The following events can occur that result in a node with degree i+1 at time n+1:

• Degree of a node with degree i increments by one in the duplication step (Step 1 of the

duplication-deletion Procedure 4.5) and remains unchanged in the deletion step (Step 2):

– A node with degree i is chosen at the duplication step as a parent node and remains

unchanged in the deletion step. The probability of occurrence of such an event is

r

(
1−

q(i+1)+q(1+ pi)−q(1+ pi)(i+1)/Nn

Nn

)
f i
n

Nn
;

the probability of choosing a node with degree i is
f i
n

Nn
and the probability of the event
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that this node remains unchanged in the deletion step is43

1−
q(i+1)+q(1+ pi)−q(1+ pi)(i+1)/Nn

Nn
.

– One neighbor of a node with degree i is selected as a parent node; the parent node

connects to its neighbors (including the node with degree i) with probability p in the

edge-duplication part of Step 1. The probability of such an event is

r
f i
n pi

Nn

(
1−

q(i+2)+q(1+ p(i+1))−q(1+ p(i+1))(i+2)/Nn

Nn

)
.

Note that the node whose degree is incremented by one in this event should remain

unaffected in Step 2; the probability of being unchanged in Step 2 for such a node is

1−
q(i+2)+q(1+ p(i+1))−q(1+ p(i+1))(i+2)/Nn

Nn
.

• A node with degree i+1 remains unchanged in both Step 1 and Step 2 of Procedure 4.5:

– Using the same argument as above, the probability of such an event is

f i+1
n

(

1−q
i+3+ p(i+1)− (1+p(i+1))(i+2)

Nn

Nn

)(
1− r

p(i+1)+1

Nn

)
.

• A new node with degree i+1 is generated in Step 1:

– The degree of the most recently generated node (in the vertex- duplication part of Step 1)

increments to i+ 1; the new node connects to “i” neighbors of the parent node and

remains unchanged in Step 2. The probability of this scenario is

r

(

1−q
i+3+ p(i+1)− (1+p(i+1))(i+2)

Nn

Nn

)

∑
j≥i

f
j

n

Nn

(
j

i

)
pi(1− p) j−i.

• Degree of a node with degree i+2 decrements by one in Step 2:

43The deletion step (Step 2 of Procedure 4.5) comprises an edge-deletion step and a duplication step. The probability

that the degree of node with degree i changes in the edge-deletion step is
q(i+1)

Nn
; either this node or one of its neighbors

should be selected in the edge-deletion step. Also given that the degree of this node dose not change in the edge-deletion

step, if either this node or one of its neighbor is selected in the duplication step (within Step 2) then the degree of this

node increments by one with probability 1+pi
Nn

. Therefore, the probability that the degree of a node of degree i remains

unchanged in Step 2 is

1−
q(i+1)+q(1+ pi)−q(1+ pi)(i+1)/Nn

Nn
.

Note that for simplicity in our analysis, it is assumed that the nodes whose degrees change in the edge-deletion part of

Step 2, remain unchanged in the duplication part of Step 2 at that time instant. Also, the new node, which is generated in

the vertex-duplication step of Step 1, remains unchanged in Step 2.
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– A node with degree i + 2 remains unchanged in the duplication step and one of its

neighbors is eliminated in the deletion step. The probability of this event is

q

(
i+2

Nn

)(
1−

p(i+2)+1

Nn

)
.

• A node with degree i+1 is generated in Step 2:

– The degree of the node generated in the vertex-duplication part of duplication step

within Step 2 increments to i+1. The probability of this event is

q∑
j≥i

1

Nn
f j
n

(
j

i

)
pi(1− p) j−i.

• Degree of a node with degree i increments by one in Step 2:

– A node with degree i remains unchanged in Step 1 and its degree increments by one in

the duplication part of Step 2. The corresponding probability is

q(1+ pi)

Nn

(
1−

1+ pi

Nn

)
.

Let Ω denote the set of all arbitrary graphs and Fn denote the sigma algebra generated by graphs

Gτ ,τ ≤ n. Considering the above events that result in a node with degree i+ 1 at time n+ 1, the

following recurrence formula can be derived for the conditional expectation of f i+1
n+1:

E{ f i+1
n+1|Fn}=

(

1−q
i+3+ p(i+1)− (1+p(i+1))(i+2)

Nn

Nn

)(
1− r

p(i+1)+1

Nn

)
f i+1
n

+ r

(
1−

q(i+1)+q(1+ pi)−q(1+ pi)(i+1)/Nn

Nn

)(
1+ pi

Nn

)
f i
n

+ r

(

1−q
i+3+ p(i+1)− (1+p(i+1))(i+2)

Nn

Nn

)

∑
j≥i

f
j

n

Nn

(
j

i

)
pi(1− p) j−i

+q∑
j≥i

f
j

n

Nn

(
j

i

)
pi(1− p) j−i +q

(
i+2

Nn

)(
1−

p(i+2)+1

Nn

)
f i+2
n

+
q(1+ pi)

Nn

(
1−

1+ pi

Nn

)
f i
n. (4.31)
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Let f
i
n = E{ fn}. By taking expectation of both sides of (4.31) with respect to trivial sigma algebra

{Ω, /0}, the smoothing property of conditional expectations yields:

f
i+1
n+1 =
(

1−q
i+3+ p(i+1)− (1+p(i+1))(i+2)

Nn

Nn

)(
1− r

p(i+1)+1

Nn

)
f

i+1
n

+ r

(

1−
q(i+1)+q(1+ pi)− q(1+pi)(i+1)

Nn

Nn

)(
1+ pi

Nn

)
f

i
n

+ r

(

1−q
i+3+ p(i+1)− (1+p(i+1))(i+2)

Nn

Nn

)

∑
j≥i

f
j
n

Nn

(
j

i

)
pi(1− p) j−i

+q∑
j≥i

1

Nn
f

j
n

(
j

i

)
pi(1− p) j−i +q

(
i+2

Nn

)(
1−

p(i+2)+1

Nn

)
f

i+2
n

+
q(1+ pi)

Nn

(
1−

1+ pi

Nn

)
f

i
n. (4.32)

Assuming that size of the graph is sufficiently large, each term like
f

i
n

N2
n

can be neglected. Eq. (4.32)

can be written as

f
i+1
n+1 =

(

1−
q(i+2)+

(
r+q

)(
p(i+1)+1

)

Nn

)

f
i+1
n

+

(
(1+ pi)

(
r+q

)

Nn

)

f
i
n +q

(
i+2

Nn

)
f

i+2
n

+q∑
j≥i

1

Nn
f

j
n

(
j

i

)
pi(1− p) j−i. (4.33)

Using (4.32), we can write the following recursion for the (i+1)-th element of gn+1:

gi+1
n+1 =

(
Nn−

(
q(i+2)+

(
r+q

)(
p(i+1)+1

))

Nn+1

)

gi+1
n

+

(
(1+ pi)

(
r+q

)

Nn+1

)

gi
n +q

(
i+2

Nn+1

)
gi+2

n

+q∑
j≥i

1

Nn+1
g j

n

(
j

i

)
pi(1− p) j−i. (4.34)
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Since the probability of duplication step r = 0, the number of vertices does not increase. Thus,

Nn = N0 and (4.34) can be written as

gi+1
n+1 =

(
1−

1

N0

(
q(i+2)+q

(
p(i+1)+1

)))
gi+1

n

+
1

N0

(
(1+ pi)qgi

n +
1

N0
q(i+2)gi+2

n

)

+
1

N0
q∑

j≥i

g j
n

(
j

i

)
pi(1− p) j−i. (4.35)

It is clear in (4.35) that the vector gn+1 depends on elements of gn. Using matrix notation, (4.35)

can be expressed as

gn+1 =

(
I +

1

N0
L′
)

gn (4.36)

where L is defined as (4.7).

To prove that L is a generator, we need to show that lii < 0 and ∑
N0

i=1 lki = 0. Accordingly,

N0

∑
i=1

lki =−(q(k+1)+q(1+ pk))+ (1+ pk)q

+qk+q ∑
k≤i−1

(
k

i−1

)
pi−1(1− p)k−i+1

=−q+q ∑
k≤i−1

(
k

i−1

)
pi−1(1− p)k−i+1. (4.37)

Let m = i−1. Then, (4.37) can be rewritten as

N0

∑
i=1

lik =−q+q
k

∑
m=0

(
k

m

)
pm(1− p)k−m

=−q+q(1− p)k
k

∑
m=0

(
k

m

)(
p

1− p

)m

. (4.38)

Knowing that ∑k
m=0

(
k
m

)
am = (1+a)k, (4.38) can be written as

N0

∑
i=1

lik =−q+q(1− p)k

(
1

1− p

)k

= 0. (4.39)

Also, it can be shown that lii < 0. Since pi−1 ≤ 1, pi−1 < 1+ 2
i + p+ pi. Consequently, iqpi−1(1−

p)−q(i+2+ ip)< 0. Therefore, lii < 0 and the desired result follows.
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4.8.2 Proof of Theorem 4.3.2

Proof. To prove Theorem 4.3.2, we first compute the power law component, β , and then we prove

that the expected degree distribution converges to the power law distribution with component β . Let

f n(i) = E{ fn(i)}. Similar to (4.31), f n(θn, i) can be written as

f n+1(i+1) =

(
1−q

(i+2)+ (1+ p(i+1))

Nn

)(
1−

p(i+1)+1

Nn

)
f n(i+1)

+

(
1−q

(i+1)+ (1+ pi)

Nn

)(
1+ pi

Nn

)
f n(i)

+

(
1−q

(i+2)+ (1+ p(i+1))

Nn

)
∑
j≥i

1

Nn
f n( j)

(
j

i

)
pi(1− p) j−i

+q∑
j≥i

1

Nn
f n( j)

(
j

i

)
pi(1− p) j−i

+q

(
i+2

Nn

)(
1−

p(i+2)+1

Nn

)
f n(i+2)

+
q(1+ pi)

Nn

(
1−

1+ pi

Nn

)
f n(i)

+q

(
i+2

Nn

)(
p((i+1)+1)

Nn

)
f n(i+1). (4.40)

To compute the power law component, we can heuristically assume that f n(i) = ait as Nn = n

goes to infinity (we will prove this precisely later on this section). Therefore, each term like
f n(i

′)
N2

n

can be neglected as n approaches infinity. So (4.40) can be re-written as

f n+1(i+1) =

(

1−
q(i+2)+ (1+q)

(
p(i+1)+1

)

Nn

)

f n(i+1)+

(
(1+ pi)(1+q)

Nn

)
f n(i)

+q

(
i+2

Nn

)
f n(i+2)+ (1+q)∑

j≥i

1

Nn
f n( j)

(
j

i

)
pi(1− p) j−i. (4.41)

Substituting f τ( j) = ajτ and Nn = n in (4.98) yields

ai+1(n+1) =ai+1n−ai+1

((
1+ p(i+1)

)
(1+q)+q(i+2)

)
+(1+q)(1+ pi)ai +q(i+2)ai+2

+(1+q)∑
j≥i

a j

(
j

i

)
pi(1− p) j−i. (4.42)

109



4.8. Proof of Results

Taking all terms with ai+1 to the left hand side, we have

ai+1

(
1+(1+q)

(
1+ p(i+1)

)
+q(i+2))

)
=(1+q)

(

(1+ pi)ai +∑
j≥i

a j

(
j

i

)
pi(1− p) j−i

)

+q(i+2)ai+2. (4.43)

Dividing both sides of (4.43) by ai yields

ai+1

ai

(
1+(1+q)

(
1+ p(i+1)

)
+q(i+2))

)
=(1+q)

(

(1+ pi)+∑
j≥i

a j

ai

(
j

i

)
pi(1− p) j−i

)

+q(i+2)
ai+2

ai
. (4.44)

Solving Equation (4.43) for ai, we can complete the proof of Theorem 4.3.2 The following lemma

whose proof can be found in [42] is used to solve the recurrence relation for ai.

Lemma 4.8.1.

∑
j≥i

a j

ai

(
j

i

)
pi(1− p) j−i = pβ−1 +O

(
1

i

)
. (4.45)

Proof. The proof is presented in Appendix 4.8.3.

To solve (4.43) for ai, we can further assume that ai =Ci−β [41]. Therefore, ai+α
ai

=
(

i+α
i

)−β

(
1−

β

i

)(
1+(1+q)

(
1+ p(i+1)

)
+q(i+2)

)
=(1+q)(1+ pi+ pβ−1)

+O

(
1

i

)
+q(i+2)

(
1−

2β

i

)
. (4.46)

Neglecting the O
(

1
i

)
terms, yields

(1+q)(pβ−1 + pβ − p) = 1+βq. (4.47)

Note that the proof presented above depends on few assumptions. To give a rigorous proof, the

succeeding steps should be followed as described in [41]:

• First, we need to show that the limit limn→∞
1
n
E{ fn(i)} exists.

• Let ai be the solution of (4.43) such that ∑∞
i=1 ai = 1 and a0 = 0, then it is needed to show that

lim
n→∞

1

n
E{ fn(i)}= ai. (4.48)
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• Finally, we should show that ai is proportional to i−β , where β is the root of (4.47).

To complete the proof we define new function as follows hn(i) =
1
n ∑i

k=1 E{ fn(k)} which can be

described as CDF of degree of each node in random graph. It is sufficient to show that for all i > 0,

lim
n→∞

hn(i) =
i

∑
k=1

ak (4.49)

where ai is the solution of (4.43). It is obvious if (4.49) holds, hn(i)−hn(i−1) = ai and thus

lim
n→∞

1

n
E{ fn(i)} = ai

(as presented in (4.48)). The following lemma gives a recurrence formula to compute the value of

h(n+1, i).

Lemma 4.8.2.

hn+1(i) = Dn+1(i)hn(i)+Bn+1(i)hn(i−1)+Cn+1(i)hn(i+1)+
1+q

n+1 ∑
j≥i−1

hn( j)F( j, i−1, p),

(4.50)

where

Dn+1(i) =

⎛

⎝
n−
(

q(i+2)+ (1+q)
(

pi+1
))

n+1

⎞

⎠ ,

Bn+1(i) =
(1+q)(1+ pi)

n+1
,

Cn+1(i) =
q(i+1)

n+1
,

F( j, i, p) =
i

∑
k=0

(
j

k

)
pk(1− p) j−k−

i

∑
k=0

(
j+1

k

)
pk(1− p) j+1−k.

This lemma can be proved by induction. The complete proof can be found in Appendix 4.8.4.

The recursive equation presented in Lemma 4.8.2 is used later to prove that the degree distribution

converges to a power law.

Lemma 4.8.3. Let si = ∑i
k=1 ai and

ω(n) = sup
i≥1

hn(i)

si
, (4.51)
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where hn(i) satisfies (4.50). Then the limit limn→∞ ω(n) exists and we have limn→∞ ω(n) = 1.

Sketch of the proof Knowing that hn(i) satisfies the recurrence formula (4.50), the proof is similar

to [41]. Plugging i = n in (4.51) yields ω(n) ≥ hn(n)
sn
≥ 1

sn
≥ 1. Using the Lemma 4.8.2 and similar

to [41], it can be shown that ω(n+ 1) ≤ ω(n). ω(n) is bounded and decreasing, so the limit of

limn→∞ ω(n) exists. To show limn→∞ ω(n) = 1, we assume that limn→∞ ω(n) = c. It can be shown

that if c ̸= 1, ω(n)≤ 1 is violated. Thus c = 1 and the proof is complete.

4.8.3 Proof of Lemma 4.8.1

Proof.

∑
j≥i

a j

ai

(
j

i

)
pi(1− p) j−i = ∑

j≥i

(
i

j
)β

(
j

i

)
pi(1− p) j−i

= ∑
j≥i

(
i

j
)β

(
j

j− i

)
pi(1− p) j−i

=

(
1+O(

1

i
)

)
∑
j≥i

(
j−β

j− i

)
pi(1− p) j−i

=

(
1+O(

1

i
)

)
pi ∑

k=0

(
k+ i−β

k

)
(1− p)k

=

(
1+O(

1

i
)

)
pi ∑

k=0

(
β − i−1

k

)
(−1)k(1− p)k

=

(
1+O(

1

i
)

)
pi pβ−i−1 =

(
1+O(

1

i
)

)
pβ−1. (4.52)

4.8.4 Proof of Lemma 4.8.2

Proof. We prove the lemma by induction on i:

For i = 1 It is sufficient to show that:

h(n+1,1) = Dn+1(1)h(n,1)+Cn+1(1)h(n,2)+
1

n+1 ∑ j≥1 h(n, j)F( j,0, p). Also using the definition

of F( j, i, p), we can rewrite F( j,0, p) as (1− p) j− (1− p) j+1. The number of nodes with degree
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one at time n+1 can be written as following

E{ f (n+1,1)} =
(

1−
(1+q)(1+ p)+q

n

)
E{ fn(1)}+

2q

n
E{ fn(2)}

+(1+q) ∑
j≥1

1

n
E{ fn( j)}(1− p) j. (4.53)

Note that (4.53) is slightly different from the general equation for each i, (4.98). Because as de-

scribed in Section 4.1, neighbors of a node with degree one cannot be eliminated from the graph to

maintain the connectivity in the graph. Therefore, a node with degree one can change in the deletion

step if that node is selected in the deletion step (with probability q). Using (4.53), h(n+1,1) can be

written as

h(n+1,1) =
1

n+1
E{ f (n+1,1)}

=
1

n+1

((
1−

(1+q)(1+ p)+q

n

)
E{ fn(1)}+

2q

n
E{ fn(2)}

)

+
1

n+1 ∑
j≥1

1+q

n
E{ fn( j)}(1− p) j. (4.54)

We know that h(n,0) = 0 for all n. Using the definition of h(·, ·) and (4.53), (4.54) can be

re-arranged as follows

h(n+1,1) =
1

n+1

((
n−
(
(1+q)(1+ p)+q

))
h(n,1)+

2q

n

(
h(n,2)−h(n,1)

)

+(1+q) ∑
j≥1

(h(n, j)−h(n, j−1))(1− p) j

)

=
1

n+1

((
n−
(
3q+(1+q)(1+ p)

))
h(n,1)+

2q

n
h(n,2)

)

+
1+q

n+1 ∑
j≥1

(h(n, j)−h(n, j−1))(1− p) j (4.55)

∑ j≥1(h(n, j)−h(n, j−1))(1− p) j can be written in terms of the F( j, i, p).

∑
j≥1

(h(n, j)−h(n, j−1))(1− p) j = ∑
j≥1

h(n, j)(1− p) j−∑
j≥1

(h(n, j−1)(1− p) j

= ∑
j≥1

h(n, j)(1− p) j−∑
j≥1

(h(n, j)(1− p) j +1

= ∑
j≥1

h(n, j)
(
(1− p) j− (1− p) j+1

)

= ∑
j≥1

h(n, j)F( j,0, p). (4.56)
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Substituting (4.56) in (4.55) yields

h(n+1,1) =
1

n+1

((
n−
(
(1+q)(1+ p)+3q

))
h(n,1)+

2q

n
h(n,2)+ (1+q) ∑

j≥1

h(n, j)F( j,0, p)

)

= Dn+1(1)h(n,1)+Cn+1(1)h(n,2)+
1+q

n+1 ∑
j≥1

h(n, j)F( j,0, p). (4.57)

Thus (4.50) holds for i = 1. Now it is assumed that (4.50) holds for i = k, we want to show that it

also holds for i = k+1.

E{ f (n+1,k+1)}=

(

1−
q(k+2)+ (1+q)

(
p(k+1)+1

)

n

)

E{ f (n,k+1)}

+

(
(1+q)(1+ pk)

n

)
E{ fn(k)}+

(
q(k+2)

n

)
E{ fn(k+2)}

+(1+q)∑
j≤k

fn( j)

n

(
j

k

)
pk(1− p) j−k. (4.58)

from definition of h(n,k), we have : E{ fn(k)} = n(h(n,k)−h(n,k−1)). Eq. (4.58) can be re-

written as follows

E{ f (n+1,k+1)} =
(

n−
(

q(k+2)+ (1+q)
(

p(k+1)+1
)))(

h(n,k+1)−h(n,k)
)

+(1+q)(1+ pk)
(
h(n,k)−h(n,k−1)

)
+q(k+2)

(
h(n,k+2)−h(n,k+1)

)

+(1+q)∑
j≤k

(
h(n, j)−h(n, j−1)

)( j

k

)
pk(1− p) j−k. (4.59)

Using the Abel summation identity, and knowing that

F( j,k, p) =
k

∑
k=0

(
j

k

)
pk(1− p) j−k−

k

∑
k=0

(
j+1

k

)
pk(1− p) j+1−k,

the last term can be written as

∑
j≤k

(
h(n, j)−h(n, j−1)

)( j

k

)
pk(1− p) j−k (4.60)

= ∑
j≥k

((
j

k

)
pk(1− p) j−k−

(
j+1

k

)
pk(1− p) j+1−k

)
− pkh(n,k−1)

=−pkh(n,k−1)+ ∑
j≥k

h(n, j)
(
F( j,k, p)−F( j,k−1, p)

)
. (4.61)
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Substituting (4.60) in (4.59) yields

E{ f (n+1,k+1)} =h(n,k+2)(q(k+2))+h(n,k+1)

(
n−
(
2q(k+2)+ (1+q)(p(k+1)+1)

))

+h(n,k)
(
(1+q)

(
2+ p(2k+1)

)

+q(k+2)−n
)
+h(n,k−1)(1+q)(−1− pk− pk)

+ (1+q)∑
j≥k

h(n, j)
(
F( j,k, p)−F( j,k−1, p)

)
. (4.62)

The value of h(n+1,k+1) can be computed using h(n,k+1) and E{ fn(k+1)} as follows

h(n+1,k+1) = h(n+1,k)+
1

n+1
E{ f (n+1,k+1)}. (4.63)

Eq.(4.62) gives an expression for E{ f (n+1,k+1)} in terms of the value of h(·, ·) at time n. Sub-

stituting (4.62) in (4.63) gives a recursive equation for computing h(n+1,k+1):

h(n+1,k+1) =h(n+1,k)+
1

n+1
E{ f (n+1,k+1)}

=Dn+1(k)h(n,k)+Bn+1(k)h(n,k−1)+Cn+1h(n,k+1)

+
1+q

n+1 ∑
j≥k−1

h(n, j)F( j,k−1, p)

+
1

n+1

(

h(n,k+2)(q(k+2))+h(n,k+1)

(
n−
(
2q(k+2)+ (1+q)(p(k+1)+1)

))

+h(n,k)
(
(1+q)

(
2+ p(2k+1)

)
+h(n,k−1)(1+q)(−1− pk− pk)

+ (1+q)∑
j≥k

h(n, j)
(
F( j,k, p)−F( j,k−1, p)

)
)

. (4.64)

We assume that (4.98) holds for i = k so substituting the values for Dn+1(k), Bn+1(k), and Cn+1(k)

from (4.98) in (4.64) yields

h(n+1,k+1) =h(n,k+2)

(
q(k+2)

n+1

)
+h(n,k+1)

⎛

⎝
n−
(

q(k+3)+ (1+q)
(

p(k+1)+1
))

n+1

⎞

⎠

+h(n,k)

(
(1+q)

(
1+ p(k+1)

)

n+1

)

+
1+q

n+1 ∑
j≥k

h(n, j)
(
F( j,k, p)

)
. (4.65)
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(4.65)can be written as follows

h(n+1,k+1) =Dn+1(k+1)h(n,k+1)+Bn+1(k+1)h(n,k)+Cn+1(k+1)h(n,k+2)

+
1+q

n+1 ∑
j≥k

h(n, j)F( j,k, p). (4.66)

Thus, (4.98) holds for i = k+1 and the proof is completed by induction.

4.8.5 Proof of Theorem 4.4.1

Proof. Define the Lyapunov function V (x) = (x′x)/2 for x ∈RN0 . Use En to denote the conditional

expectation with respect to the σ -algebra Hn generated by {z j(θ j),θ j, j ≤ n}. Then,

En{V (g̃n+1)−V(g̃n)}= En

{
g̃′n[−ε g̃n + ε (zn(θn)−g(θn))+g(θn)−g(θn+1)]

}

+En

{
∥− ε g̃n + ε (zn(θn)−g(θn))+g(θn)−g(θn+1)∥2

}
(4.67)

where zn(θn) and g(θn) are vectors in RN0 with elements zi
n(θn) and g(θn)i, 1 ≤ i ≤ N0, respec-

tively. Due to the Markovian assumption and the structure of the transition matrix of θn, defined

in (4.2),

En{g(θn)−g(θn+1)}= E{g(θn)−g(θn+1)|θn}=
M

∑
i=1

E{g(i)−g(θn+1)|θn = i}I {θn = i}

=
M

∑
i=1

[

g(i)−
M

∑
j=1

g( j)Aρ
i j

]

I {θn = i}=−ρ
M

∑
i=1

M

∑
j=1

g( j)qi jI {θn = i}= O(ρ) (4.68)

where I {·} denotes the indicator function. Similarly, it is easily seen that

En{∥g(θn)−g(θn+1)∥2}= O(ρ). (4.69)

Using K to denote a generic positive value (with the notation KK =K and K+K =K), a familiar

inequality ab≤ a2+b2

2 yields

O(ερ) = O(ε2 +ρ2). (4.70)

Moreover, we have ∥g̃n∥= ∥g̃n∥ ·1≤ (∥g̃n∥2 +1)/2. Thus,

O(ρ)∥g̃n∥ ≤ O(ρ)(V (g̃n)+1) . (4.71)
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Then, detailed estimates lead to

En

{∥∥∥− ε g̃n + ε (zn(θn)−g(θn))+g(θn)−g(θn+1)
∥∥∥

2}

≤ KEn

{

ε2∥g̃n∥2 + ε2∥(zn(θn)−g(θn)∥2 + ε2
∥∥g̃′n (zn(θn)−g(θn+1))

∥∥

+ ε∥g̃′n (g(θn)−g(θn+1))∥+ ε∥(zn(θn)−g(θn))
′ (g(θn)−g(θn+1))∥

}

+En{∥g(θn)−g(θn+1)∥}2. (4.72)

It follows that

En

{∥∥∥− ε g̃n + ε (zn(θn)−g(θn))+g(θn)−g(θn+1)
∥∥∥

2}
= O(ε2 +ρ2)(V (g̃n)+1). (4.73)

Furthermore,

En{V (g̃n+1)−V (g̃n)}=−2εV (g̃n)+ εEn{g̃′n[zn(θn)−g(θn)]}

+En{g̃′n[g(θn+1)−g(θn)]}+O(ε2 +ρ2)(V (g̃n)+1).
(4.74)

To obtain the desired bound, define V
ρ

1 and V
ρ
2 as follows:

V
ρ

1 (g̃,n) = ε
∞

∑
j=n

g̃′En{z j(θ j)−g(θ j)},

V
ρ

2 (g̃,n) =
∞

∑
j=n

g̃′En{g(θ j)−g(θ j+1)}. (4.75)

It can be shown that
|V ρ

1 (g̃,n)|= O(ε)(V (g̃)+1),

|V ρ
2 (g̃,n)|= O(ρ)(V (g̃)+1).

(4.76)

Define W (g̃,n) as

W (g̃,n) =V (g̃)+V
ρ
1 (g̃,n)+V

ρ
2 (g̃,n). (4.77)

This leads to

En{W (g̃n+1,n+1)−W(g̃n,n)} = En{V
ρ

1 (g̃n+1,n+1)−V
ρ
1 (g̃n,n)}

+En{V (g̃n+1)−V (g̃n)}+En{V
ρ

2 (g̃n+1,n+1)−V
ρ
2 (g̃n,n)}. (4.78)
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Moreover,

En{W (g̃n+1,n+1)−W (g̃n,n)} =−2εV (g̃n)+O(ε2+ρ2)(V (g̃n)+1). (4.79)

Equation (4.79) can be rewritten as

En{W (g̃n+1,n+1)−W (g̃n,n)}≤O(ε2 +ρ2)(W (g̃n,n)+1)−2εW(g̃n,n). (4.80)

If ε and ρ are chosen small enough, then there exists a small λ such that −2ε +O(ρ2)+O(ε2)≤
−λε . Therefore, (4.80) can be rearranged as

En{W (g̃n+1,n+1)}≤ (1−λε)W (g̃n,n)+O(ε2 +ρ2). (4.81)

Taking expectation of both sides yields

E{W (g̃n+1,n+1)}≤ (1−λε)E{W (g̃n,n)}+O(ε2 +ρ2). (4.82)

Iterating on (4.82) then results

E{W (g̃n+1,n+1)}≤ (1−λε)n−Nρ E{W (g̃Nρ ,Nρ)}+
n

∑
j=Nρ

O(ε2 +ρ2)(1−λε) j−Nρ . (4.83)

As the result,

E{W (g̃n+1,n+1)}≤ (1−λε)n−Nρ E{W (g̃Nρ ,Nρ)}+O
(
ε +ρ2/ε

)
. (4.84)

If n is large enough, one can approximate (1−λε)n−Nρ = O(ε). Therefore,

E{W (g̃n+1,n+1)}≤ O

(
ε +

ρ2

ε

)
(4.85)

Finally, using (4.76) and replacing W (g̃n+1,n+1) with V (g̃n+1), we obtain

E{V (g̃n+1)}≤ O

(
ρ + ε +

ρ2

ε

)
. (4.86)

4.8.6 Sketch of the Proof of Theorem 4.4.2

Proof. Since the proof is similar to [154, Theorem 4.5], we only indicate the main steps in what

follows and omit most of the verbatim details.

118



4.8. Proof of Results

Step 1: First, we show that the two component process (ĝε (·),θε (·)) is tight in D([0,T ] : RN0×
M). Using techniques similar to [156, Theorem 4.3], it can be shown that θε(·) converges weakly

to a continuous-time Markov chain generated by Q. Thus, we mainly need to consider ĝε(·). We

show that

lim
∆→0

limsup
ε→0

E

[
sup

0≤s≤∆
Eε

t ∥ĝε (t + s)− ĝε(t)∥2

]
= 0 (4.87)

where Eε
t denotes the conditioning on the past information up to t. Then, the tightness follows from

the criterion [97, p. 47].

Step 2: Since (ĝε(·),θε (·)) is tight, we can extract weakly convergent subsequence according

to the Prohorov theorem; see [99]. To figure out the limit, we show that (ĝε(·),θε (·)) is a solution

of the martingale problem with operator L0. For each i ∈M and continuously differential function

with compact support f (·, i), the operator is given by

L0 f (ĝ, i) = ∇ f ′(ĝ, i)[−ĝ+g(i)]+ ∑
j∈M

qi j f (ĝ, j), i ∈M . (4.88)

We can further demonstrate the martingale problem with operator L0 has a unique solution (in the

sense of in distribution). Thus, the desired convergence property follows.

4.8.7 Sketch of the Proof of Theorem 4.4.3

Proof. The proof comprises of four steps as described below:

Step 1: First, note

νn+1 = νn− ενn +
√

ε(yn+1−Eg(θn))+
E[g(θn)−g(θn+1]√

ε
. (4.89)

The approach is similar to that of [154, Theorem 5.6]. Therefore, we will be brief.

Step 2: Define an operator

L f (ν , i) =−∇ f ′(ν , i)ν +
1

2
tr[∇2 f (ν , i)Σ(i)]+ ∑

j∈M
qi j f (ν , j), i ∈M , (4.90)

for function f (·, i) with compact support that has continuous partial derivatives with respect to ν up

to the second order. It can be shown that the associated martingale problem has a unique solution

(in the sense of in distribution).
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Step 3: It is natural now to work with a truncated process. For a fixed, but otherwise arbitrary

r1 > 0, define a truncation function

qr1(x) =

{
1, if x ∈ Sr1 ,

0, if x ∈ RN0−Sr1 ,

where Sr1 = {x ∈ RN0 : ∥x∥ ≤ r1}. Then, we obtain the truncated iterates

νr1
n+1 = νr1

n − ενr1
n qr1(νr1

n )+
√

ε(yn+1−Eg(θn))+
E[g(θn)−g(θn+1]√

ε
qr1(νr1

n ). (4.91)

Define νε ,r1(t) = νr1
n for t ∈ [εn,εn+ ε). Then, νε ,r1(·) is an r-truncation of νε(·); see [99, p.

284] for a definition. We then show the truncated process (νε ,r1(·),θε (·)) is tight. Moreover, by

Prohorov’s theorem, we can extract a convergent subsequence with limit (νr1(·),θ(·)) such that the

limit (νr1(·),θ(·)) is the solution of the martingale problem with operator L r1 defined by

L r1 f r1(ν , i) =−∇′ f r1(ν , i)ν +
1

2
tr[∇2 f r1(ν , i)Σ(i)]+ ∑

j∈M
qi j f r1(ν , j) (4.92)

for i ∈M , where f r1(ν , i) = f (ν , i)qr1(ν).

Step 4: Letting r1 → ∞, we show that the un-truncated process also converges and the limit,

denoted by (ν(·),θ(·)), is precisely the martingale problem with operator L defined in (4.90). The

limit covariance can further be evaluated as in [154, Lemma 5.2].

4.8.8 Proof of Theorem 4.5.2

Proof. The proof of the theorem is divided into several steps and uses techniques in stochastic

approximation [99] but with the modification that ℓ2 is a Hilbert space (see [61, 98]). Whenever

possible, we only indicate the main idea and refer to the literature of stochastic approximation.

Step 0: Note that (4.24) has a unique solution for each initial condition since it is linear in ĝ(·).
Step 1: Preliminary estimates. From (4.23), we obtain that for 0 < ε < 1, the elements of ĝn are

non-negative and add up to one. Thus, ĝn is bounded.

In addition, define V (ĝ) = 1
2

〈
ĝ− g, ĝ− g

〉
, which can be thought of as a Lyapunov function.

Then using perturbed Lyapunov function argument [99], it can be shown

EV (ĝn) = O(ε). (4.93)

Step 2: Tightness of {ĝε (·)}. Henceforth, we often use t/ε and (t + s)/ε to denote ⌊t/ε⌋ and

⌊(t + s)/ε⌋, the integer parts of t/ε and (t + s)/ε , respectively. By using the boundedness of {ĝn}
established in the first step together with the Hölder inequality, we have for each 0 < T < ∞, any
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t ≥ 0, any 0 < δ , any 0 < s≤ δ , and ε > 0,

Eε
t ∥ĝε (t + s)− ĝε(t)∥2

≤ Eε
t

∣∣∣∣∣ε
(t+s)/ε−1

∑
j=t/ε

[z j− ĝ j]

∣∣∣∣∣

2

≤ Kε

(
t + s

ε
−

t

ε

)
≤ Ks,

where K > 0 is independent of ε and Eε
t denotes the conditional expectation with respect to F ε

t .

Thus
Eε

t ∥ĝε (t + s)− ĝε(t)∥2 ≤ Ks,

lim
δ→0

limsup
ε→0

E[ sup
0<s≤δ

Eε
t ∥ĝε(t + s)− ĝε(t)∥2] = 0. (4.94)

The tightness criterion (see [97, Theorem 3, p. 47] with Rr replaced by ℓ2; see also [61]) enables us

to conclude that {ĝε (·)} is tight in D([0,∞) : ℓ2).

Step 3: Characterization of the limit process. Since {ĝε (·)} is tight, by Prohorov’s theorem,

we can extract a convergent subsequence. Select such a sequence and still denote it by ĝε (·) with

limit denoted by ĝ(·). By using the Skorohod representation, with a slight abuse of notation, we

may assume that ĝε (·) converges to ĝ(·) w.p.1 and the convergence is uniform on any bounded time

interval. We shall show that ĝ(·) is a solution of the martingale problem with operator

L f (ĝ) =
〈
∇ f (ĝ), [g− ĝ]

〉

for any f (·)∈C1
0(ℓ2 :R) (collection of real-valued C1 functions defined on ℓ2 with compact support).

We need to show that

f (ĝ(t))− f (ĝ(0))−
∫ t

0
L f (ĝ(τ))dτ is a marginale.

To prove the martingale property, we pick out any bounded and continuous function h(·) defined

on ℓ2, any T < ∞, any 0 < t,s ≤ T , any positive integer κ , and tl1 ≤ t for any l ≤ κ . To derive the

desired property, we need only show that

Eh(ĝ(tl1) : l1 ≤ κ)

(
f (ĝ(t + s))− f (ĝ(t))−

∫ t+s

t
L f (ĝ(τ))dτ

)
= 0. (4.95)

To prove (4.95), we work with the process indexed by ε . First, by the weak convergence and the

Skorohod representation,

lim
ε→0

Eh(ĝε(tl1) : l1 ≤ κ)[ f (ĝε(t + s))− f (ĝε(t))]

= Eh(ĝ(tl1) : l1 ≤ κ)[ f (ĝ(t + s))− f (ĝ(t))].
(4.96)
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Choose a sequence of integers {mε} such that mε → ∞ as ε → 0 but ∆ε = εmε → 0. Next, we note

f (ĝε(t + s))− f (ĝε(t)) = f (ĝ(t+s)/ε)− f (ĝt/ε)

=
(t+s)/ε−1

∑
lmε=t/ε

[ f (ĝlmε+mε )− f (ĝlmε )]

= ε
(t+s)/ε−1

∑
lmε=t/ε

〈
∇ f (ĝlmε ),

lmε+mε−1

∑
j=lmε

[z j− ĝ j]
〉
+o(1)

=
(t+s)/ε−1

∑
lmε=t/ε

∆ε
〈
∇ f (ĝlmε ),

1

mε

lmε+mε−1

∑
j=lmε

[z j− ĝ j]
〉
+o(1),

where o(1)→ 0 in probability as ε → 0. The stationarity and the mixing condition imply that

1

mε

lmε+mε−1

∑
j=lmε

Elmε z j→ Ez0 =
∞

∑
i=0

eiP(y0 = i) = g in probability.

Therefore,

Eh(ĝε (tl1) : l1 ≤ κ)

[
(t+s)/ε−1

∑
lmε=t/ε

∆ε

〈
∇ f (ĝlmε ),

1

mε

lmε+mε−1

∑
j=lmε

z j

〉
]

= Eh(ĝε (tl1) : l1 ≤ κ)

[
(t+s)/ε−1

∑
lmε=t/ε

∆ε

〈
∇ f (ĝlmε ),

1

mε

lmε+mε−1

∑
j=lmε

Elmε z j

〉
]

→ Eh(ĝ(tl1) : l1 ≤ κ)

(∫ t+s

t

〈
∇ f (ĝ(τ)),g

〉
dτ

)
as ε → 0.

(4.97)

Likewise,

Eh(ĝε(tl1) : l1 ≤ κ)

[

−
(t+s)/ε−1

∑
lmε=t/ε

∆ε

〈
∇ f (ĝlmε ),

1

mε

lmε+mε−1

∑
j=lmε

ĝ j

〉
]

→ Eh(ĝ(tl1) : l1 ≤ κ)

[

−
∫ t+s

t

〈
∇ f (ĝ(τ)), ĝ(τ)

〉
dτ

]

.

(4.98)

Combing (4.96)–(4.98), (4.95) follows.

4.8.9 Proof of Theorem 4.5.3

Proof. In the proof of Theorem 4.5.3, we use several lemmas and propositions described below.

From (4.23),

νn+1 = νn− ενn +
√

ε(zn−g). (4.99)

Lemma 4.8.1. Under assumption Theorem 4.5.2, for sufficiently small ε , there is an Nε such that

EV (νn) = O(1) for all n≥ Nε .
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Proof The proof uses a perturbed Lyapunov function argument.

To proceed, recall the definition of covariance operator and Wiener process [46, 98] on ℓ2. A

covariance Γ of an ℓ2-valued random variable y is an operator from ℓ2 to ℓ2 defined by Γv=EY
〈
v,y
〉

for any v ∈ ℓ2. A process W (·) is a zero mean (stationary increment) ℓ2-valued Wiener process if

there are mutually independent real-valued, zero mean, Wiener processes {Wi(·)} with covariances

tρi satisfying ∑∞
i=0 ρi < ∞ and there is an orthonormal sequence {βi} with βi ∈ ℓ2 such that W (t) =

∑∞
i=0Wi(t)βi. For v,z ∈ ℓ2, the covariance operator of W (t) is defined by

E
〈
W (t),v

〉〈
W (t),z

〉
= t
〈
z,Γv

〉
= t

∞

∑
i=0

ρi

〈
βi,v

〉〈
βi,z
〉
. (4.100)

Lemma 4.8.2. Assume the conditions of Theorem 4.5.2. For any natural number i ∈ N, define

W ε
i (t) =

√
ε

t/ε−1

∑
j=0

〈
z j−g,ei

〉
.

Then W ε
i (·) converges weakly to a real-valued Wiener process Wi(·) with covariance tσ 2

i , where

σ 2
i = E[

〈
z0−g,ei

〉
]2 +2

∞

∑
j=1

E
〈
z0−g,ei

〉〈
z j−g,ei

〉
. (4.101)

Proof Note that with the use of inner product in ℓ2, {
〈
zn−g,ei

〉
} is a real-valued mixing sequence

with mean 0. The desired convergence follows from the functional invariance principle for mixing

process; see [99, Chapter 7] (see also [25, 61]).

Lemma 4.8.3. Under the conditions of Lemma 4.8.2, for i ̸= l, EW ε
i (t)W

ε
l (t) = 0. As a result, the

limit Wiener processes Wi(·) and Wl(·) are independent.

Proof It is straightforward that

EW ε
i (t)W

ε
l (t) = εE

t/ε−1

∑
k=0

t/ε−1

∑
j=0

〈
z j−g,ei

〉〈
zk−g,el

〉

= εE
t/ε−1

∑
k=0

t/ε−1

∑
j=0

〈
z j−g,eie

′
l(zk−g)

〉

= 0 since eie
′
l = 0 ∈ R

∞×∞.

Since EW ε
i (t) = 0, we conclude that Σ(W ε

i (t),W
ε

l (t)) = 0. Consequently, Σ(Wi(t),Wl(t)) = 0, and

as a result Wi(t) and Wl(t) are independent Wiener processes.
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Proposition 4.8.4. Under the conditions of Lemma 4.8.2, define

W ε(t) =
√

ε
t/ε−1

∑
j=0

[z j−g]. (4.102)

Then W ε(·) converges weakly to W (·) such that

W (t) =
∞

∑
i=0

Wi(t)ei, (4.103)

and the covariance operator is given by

E
〈
W (t),v

〉〈
W (t),z

〉
= t
〈
z,Γv

〉
= t

∞

∑
i=0

σ 2
i

〈
ei,v
〉〈

ei,z
〉

for v,z ∈ ℓ2, (4.104)

where σ 2
i is defined in (4.101).

Proof In view of the definition of (4.102), for any δ > 0, t > 0, 0 < s ≤ δ , with Eε
t denotes the

conditional expectation with respect to F ε
t , using the mixing properties, we can show that

lim
δ→0

limsup
ε→0

[ sup
0≤δ≤s

Eε
t

〈
W ε(t + s)−W ε(t),W ε(t + s)−W ε(t)

〉
] = 0.

Thus W ε(·) is tight in D([0,∞);ℓ2). We can extract any weakly convergent subsequence and denote

the limit by W (·). We next characterize its limit.

Again, using (4.102)

W ε(t) =
∞

∑
i=0

W ε
i (t)ei =

√
ε

∞

∑
i=0

t/ε−1

∑
j=0

〈
z j−g,ei

〉
ei.

Therefore, for each l ∈ N,

E[
〈
W ε(t),el

〉
]2 = E∥W ε

l (t)∥
2 = tσ 2

l .

By virtue of exponential decay property of gi ∝ i−β , ∑∞
l=0 σ 2

l <∞. By Lemma 4.8.2, W ε
i (·) converges

weakly to Wi(·). By virtue of Lemma 4.8.3, Wi(·) are independent Wiener processes. In view of

the definition of Wiener process on ℓ2, we conclude that W ε(·) converges weakly to W (·) such that

(4.103) holds. In addition, the structure of the covariance operator (4.104) is obtained.

We proceed to obtain the desired weak convergence of νε(·). Since the stochastic differential

equation (4.25) is linear, there is a unique solution for each initial condition. The rest of the proof

is similar to the finite dimensional counter part with necessary modifications similar to that of the

proof of Theorem 4.5.2.
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4.8.10 Proof of Theorem 4.5.4

Proof. Before proceeding to the main proof, we first state a preliminary result. The proofs of the

assertions below can be found in [156, Theorem 3.6 and Theorem 4.3, respectively] and are thus

omitted.

Lemma 4.8.5. Under Assumption 4.2.1, the following claims hold:

(a) Denote p
ρ
n = [P(θρ

n = 1), . . . ,P(θρ
n = M)] and the n-step transition probability by (Aρ)n with

Aρ given in (4.2) with ρ = ε2. Then

pρ
n = p(ρn)+O(ρ +ρ−k0t/ρ),

(Aρ)n−n0 = Ξ(ρn,ρn0)+O(ρ + e−k0(t−t0)/ρ),
(4.105)

where p(t) ∈R1×M and Ξ(t, t0)∈RM×M are the continuous-time probability vector and tran-

sition matrix satisfying

d p(t)

dt
= p(t)Q, p(0) = p0,

dΞ(t, t0)

dt
= Ξ(t, t0)Q, Ξ(t0, t0) = I,

(4.106)

with t0 = ρn0 and t = ρn.

(b) θρ(·) converges weakly to θ(·), a continuous-time Markov chain generated by Q.

To analyze the algorithm, the techniques developed in the proof of Theorem 4.5.2 are used

along with the ideas and methods developed in [155]. The developments are similar in the approach

and the results, but are more complex due to the added switching process. For example, with

modifications, Step 1 in the proof of Theorem 4.5.2 can still be carried out. Also Step 2 can be

proved. So the sequence {ĝε (·)} is tight.

To characterize the limit, we still use martingale averaging techniques. We shall only highlight

the main difference here. In carrying out the analysis similar to that of Step 3 in the proof of

Theorem 4.5.2, we will encounter the following term

Eh(ĝε(tl1) : l1 ≤ κ)

[
(t+s)/ε−1

∑
lmε=t/ε

∆ε

〈
∇ f (ĝlmε ),

1

mε

lmε+mε−1

∑
j=lmε

Yj(θ j)
〉
]

= Eh(ĝε (tl1) : l1 ≤ κ)

[
(t+s)/ε−1

∑
lmε=t/ε

∆ε
〈
∇ f (ĝlmε ),

1

mε

lmε+mε−1

∑
j=lmε

ElmεYj(θ j)
〉
]

= Eh(ĝε (tl1) : l1 ≤ κ)

[
(t+s)/ε−1

∑
lmε=t/ε

∆ε

〈
∇ f (ĝlmε ),

1

mε

M

∑
θ=1

lmε+mε−1

∑
j=lmε

ElmεYj(θ)I{θ j=θ}
〉
]

.

(4.107)
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Since Yj(θ) and θ j are independent, we have

1

mε

M

∑
θ=1

lmε+mε−1

∑
j=lmε

ElmεYj(θ)I{θ j=θ}

=
1

mε

M

∑
ι0=1

M

∑
θ=1

lmε+mε−1

∑
j=lmε

ElmεYj(θ)P(θ j = θ |θlmε = ι0)I{θlmε =ι0}.

(4.108)

For each θ ∈M , the averaging of Yj(θ) can be carried out as in Case 1. We concentrate on the term

involving Markov chain. By virtue of Lemma 4.8.5, noting ρ = ε2 and using (4.105), we have

[Aρ ] j−lmε = Ξ(ε2 j,ε2lmε)+O(ε2 + e−k0(ε2 j−ε2lmε )/ε2

).

Because we are working with (4.28) and the stepsize is ε . In the interval [l∆ε , l∆ε + ∆ε) with

∆ε = εmε , it is readily seen that Ξ(ε2 j,ε2lmε)→ Ξ(0,0) = I as ε → 0. As a result,

P(θ j = θ |θlmε = ι0)+oε(1) = δι0,θ +oε(1) =

{
1, if ι0 = θ

0, otherwise
+oε(1),

where o(1)→ 0 as oε(1)→ 0 as ε → 0. Putting the above estimates in (4.108), we obtain the limit

in probability of

1

mε

lmε+mε−1

∑
j=lmε

ElmεYj(θ)P(θ j = θ |θlmε = ι0)I{θlmε =ι0}

is the same as that of
∞

∑
i=1

eiθi(θ)δι0θ I{θ ε2(ε2lmε )=θ0}
.

This further leads to that as ε → 0,

Eh(ĝε (tl1) : l1 ≤ κ)

[
(t+s)/ε−1

∑
lmε=t/ε

∆ε
〈
∇ f (ĝlmε ),

1

mε

lmε+mε−1

∑
j=lmε

Yj(θ j)
〉
]

→ Eh(ĝ(tl1) : l1 ≤ κ)

[∫ t+s

t

〈
∇ f (ĝ(τ)),θi(θ)P(θ(0) = θ)

〉
dτ

]

= Eh(ĝ(tl1) : l1 ≤ κ)

[∫ t+s

t

〈
∇ f (ĝ(τ)),θi(θ)ei pθ

〉
dτ

]

.
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5

Conclusions

The unifying theme of this thesis was to devise a set of theories and methods for statistical sig-

nal processing on graphs (possibly random) which involves multi-agent Bayesian estimation, so-

cial learning, stochastic approximation algorithms and adaptive filtering, and dynamics of random

graphs to understand the effects of the interactions among agents on the estimation/tracking prob-

lem. Part I of this dissertation was devoted to mis-information management problem in multi-agent

state estimation over social networks. Part II of this thesis deals with tracking a time-varying de-

gree distribution of a dynamic social network using noisy observations. This chapter concludes this

work and presents a summary of findings along with some some directions for future research and

development.

5.1 Summary of Findings in Part I

Over the last decade there has been a growing interest in social networks which facilitate our day-

to-day activities such as our decision-makings, social communications, and sharing news or stories.

Many of these activities involve estimation, learning or decision making using social networks such

as rating and review systems, micro-blogging platforms, and online social networks. In these esti-

mation problems, structure of the underlying social network imposes a communication constraint

and dictates who talks to whom. First part of this thesis was motivated by such social networks

that comprises of a set of agents (social sensors) that seek to estimate an underlying state of nature

interactively. Part I dealt with mis-information management problem in two different information

exchange protocols:

• Chapter 2 considered an information exchange protocol where agents broadcast their (private)

beliefs over the network. In such a protocol, each agent records its (private) observations,

then, it combines it with the information received from other agents to form its belief about

state of nature. Finally, it transmits the updated belief over the network. Note that this is not

social learning, since (private) beliefs of agents are transmitted.

• Chapter 3 used social learning to model the interactions among agents. In this model, each

agent computes its private belief using the local observation and the information received

from the network. Then, based on its private belief, it chooses an action from a finite set such
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5.1. Summary of Findings in Part I

that a local cost function is minimized. In the social learning context considered in Chapter 3,

as opposed to the one in Chapter 3, private beliefs of agents which depend on the private

observations are not communicated to other agents. Instead, public beliefs of them, which

can be computed directly from their actions, are broadcasted over the network.

In both of the above protocols, mis-information propagation arises as a result of the correlation

introduced by the loops in the communication graph and the recursive nature of Bayesian models.

In Chapter 2, we present an optimal information aggregation scheme that completely removes the

mis-information associated with estimates of agents under some conditions on the topology of the

communication graph. The optimal mis-information removal algorithm proposed in Chapter 2 re-

quires knowledge of transitive closure matrix of the communication graph. For the scenarios where

due to a random delay in communications among agents the transitive closure matrix is not com-

pletely known, a sub-optimal algorithm is proposed to mitigate “double counting” events which are

more likely to happen.

The social learning model considered in Chapter 3 results in two interesting phenomena: (i)

herding where all rational agents end up choosing the same action and (ii) mis-information propa-

gation which produces a bias in the public belief and results in overconfidence. Inspired by online

rating and review systems, Chapter 3 presented a 5-step protocol to mimic the interactions among

agents (social sensors) that aim to estimate an underlying state of nature. It then introduced a fair

protocol that prevents mis-information propagation and was used as a benchmark. Using that, an

algorithm is invented for the administrator of the rating system to deploy such that it maintains

fair ratings. The results of a psychology experiment on a group which has been conducted by our

colleagues at the University of British Columbia on a group of undergraduate students to study the

learning behavior of humans in a society. The experiment showed that the interactions of the agents

can be modeled using a social learning model. We further showed that, as a result of the information

exchange protocol (between individuals within a group) and the recursive nature of decision making

process, data incest arises in a large fraction of trials in the experiment.

Tools

Graph theory first started 250 years ago with a paper written by Leonhard Eüler on the Seven

Bridges of Knigsberg published in 1763 [23]. Since then, it has became a powerful tool to model

several networks. Each vertex denotes an agent (or group of individuals) in the social network and

each edge depicts a relationship between different agents in the social network. In this work, graph

theoretic tools and definitions are used to model the flow of information through the network. Also,

the necessary and sufficient condition for complete mis-information removal is presented in terms

of adjacency and transitive closure matrices of the underlying communication graph.

Social learning is another mathematical abstraction which is used in this work to model the
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interactions among agents (social sensors) in social networks.

5.2 Summary of Findings in Part II

The second part of this thesis was motivated by the importance of the degree distribution in analysis

of social networks. The interaction between nodes in dynamic social networks is not always fixed

and may evolve over time. An example of such time-varying dynamics is the seasonal variations in

friendships among college students. Chapter 4 considered social networks where dynamics of the

underlying graph is evolving according to realization of a Markov chain. The Markov-modulated

random graph generated by Algorithm 4.5 mimics such networks where the dynamics (the connec-

tion/deletion probabilities p,q) depend on the state of nature and evolve over time. Algorithm 4.5

models these time variations as a finite state Markov chain {θn}. This model forms our basis for

analysis of social networks.

Markov-modulated duplication-deletion random graphs are analyzed in terms of degree distri-

bution. When the size of graph is fixed (r = 0) and ρ is small, the expected degree distribution of

the Markov-modulated duplication-deletion random graph can be uniquely computed from (4.6) for

each state of the underlying Markov chain. This result allows us to express the structure of network

(degree distribution) in terms of the dynamics of the model. We also showed that, when the size of

the graph is fixed and there is no Markovian dynamics, the random graph generated according to

Algorithm 4.5 satisfies a power law with exponent computed from (4.11). The importance of this

result is that a single parameter (power law exponent) characterizes the structure of a possibly very

large dynamic network.

Moreover, a stochastic approximation algorithm is presented to estimate the empirical degree

distribution of the finite duplication-deletion random graph using noisy observations. The pro-

posed stochastic approximation algorithm (4.14) does not assume any knowledge of the Markov-

modulated dynamics of the graph (state of nature). Since the expected degree distribution can be

uniquely computed for each state of underlying Markov chain, a social sensor can be designed based

on (4.14) to track the state of nature using the noisy observations of nodes’ degrees. These noisy

observations can be samples of the degree sequence of each node; that is, some nodes are randomly

chosen and inquired about the number of connections that they have. Using perturbed Lyapunov

function, we showed that the tracking error of the stochastic approximation algorithm is small and

bounded.

Then, in Chapter 4 a Hilbert-space-valued stochastic approximation algorithm is presented to

track the expected degree distribution of the infinite duplication-deletion random graph without

Markovian dynamics. The asymptotic behavior of such an algorithm is analyzed in terms of the

power law degree distribution. Finally, we extended the analysis to a Hilbert-space-valued stochastic

approximation algorithm that aims to track a Markov-modulated probability mass function with
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denumerable support. Using weak convergence methods, it was shown that the estimates obtained

via such an algorithm converge weakly to the solution of an ordinary differential equation. It was

also shown that the interpolated sequence of scaled tracking error converges weakly to the solution

of a stochastic differential equation.

Tools

We borrowed techniques from graph theory to perform the degree distribution analysis provided

in Chapter 4. Such techniques were previously used in analysis of complex networks in the social

and economic networks literature, see [41, 80]. Adaptive filtering, stochastic approximation, and

Markov-switched systems are among the tools which are employed in this chapter in order to esti-

mate the expected degree distribution and consequently the state of underlying Markov chain. Weak

convergence analysis and functional central limit theorem are used as mathematical abstractions to

analyze the performance of such tracking algorithms.

5.3 Directions for Future Research and Development

There is clearly much work to be done in the area of signal processing on complex (and possibly

random) networks to understand the behavior of agents in social networks. In this section we present

some of the immediate extensions of the work presented in this dissertation.

Mis-information removal algorithms in Bayesian quickest-time change detection:

In change detection problem, the objective is to detect a random change time by optimizing the

trade-off between number of observations and delay penalty [124, 134]. This problem is very simi-

lar to the sensing problems that have been considered in the first part of this dissertation and involve

interactive sensing with the goal of detecting a random change in state of nature. Multi-agent

Bayesian change detection involves a set of agents (sensors) where each agent estimates an under-

lying state and then, using Bayesian models, updates the posterior distribution of the change. Then

it sends this updated posterior distribution (or a myopic action obtained based on a local cost opti-

mization [87]) over the network. This process repeats until a global decision maker detects a change

and all agents stops making observations. In other words, using all the local information (decisions

or distributions), the goal in the quickest-time change detection is to detect a change and make a

global decision. Because of the recursive nature of the Bayesian estimators and the information ex-

change protocol, mis-information propagation can arise in such system. One immediate extension

of the work presented in this dissertation is to investigate the effect of mis-information propagation

in such interactive sensing scenarios and possibly to devise a mis-information removal algorithm
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for each agent to employ, such that the decision of the global decision maker is not affected by the

mis-information propagation.

Analyzing spread of contagious disease through network

Diffusion of information and disease through society has been studied extensively in the literature

of social network analysis, see [80, 107, 108, 122, 146]. One of the models that used to model the

diffusion of information in the social network is called the Susceptible-Infected-Susceptible (SIS)

model [122]. Consider a social network where agents interacts with other nodes that are dictated

by the structure of the network. Each agent in such a social network can be in two states: (i)

infected, or (ii) not infected but susceptible to becoming infected. In SIS model, infected nodes

can recover and become susceptible again. In the model considered in [107, 108], the assumption

is that the degree of nodes remain fixed. One extension or the work presented in the second part

of this thesis, is to study the diffusion of information in dynamic graphs (where the graph is not

fixed and is evolving according to Procedure 4.5 presented in Chapter 4). Investigating contagion in

such dynamic networks is non-standard in two ways: First, the spread of disease44 is dynamic and

depends on the number and the distribution of infected nodes over the network. Second, the structure

of the underlying graph (which dictates who talks to whom) is evolving over time. Analyzing

diffusion process in such networks (both in stationary state and in transient phase) can be a possible

avenue for further research and development.

Mis-information removal algorithms in non-Bayesian models

In our work, we addressed mis-information management problem in two scenarios: (i) constrained

filtering and (ii) social learning over social networks. In both of these scenarios, Bayesian models

for information aggregation have been used. There exists a large body of works in the literature

that consider Bayesian models to formulate the learning behavior of humans [1, 13, 16, 24, 136].

On the other hand, a body of social learning literature focuses on non-Bayesian social learning

models, see [3, 14, 15, 56, 81]. In these models, agents use a simple rule-of-thumb to update

their beliefs from their private information about state of nature and those received from other

agents. Similar to the learning problems considered in Part I of this dissertation, as a result of

the recursive nature of the information aggregation schemes and possible loops in communication

graph, mis-information propagation may arise in such non-Bayesian learnings over social networks.

Mis-information management in learning with non-Bayesian models over social networks can be a

possible direction for further research and development.

44Instead of spread of disease or information, we can also consider a scenario where nodes are interactively deciding

whether to adapt a technology (infected) or not (remain susceptible). The aim now is to study the rate of adaptation of

new technology in the network.
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Mis-information propagation mitigation for specific network structures

In the proposed mis-information algorithm presented in this thesis, we used a combination of the

previous estimates in order to completely mitigate data incest. However, the optimality of this

approach demands a topological constraint to hold. An extension to the work presented in this

dissertation is to investigate mis-information management problem in graphs with specific structures

that do not necessarily satisfy such a constraint. An alternative approach is to “censor” the estimates

of some nodes that are most likely to be polluted with mis-information. This can be viewed as

deliberately cutting some edges in order to lower the risk of mis-information propagation. Cutting

these edges can be useful for some specific graph structures (like bi-bipartite graphs) specially

when the topological constraints is not satisfied and, thus, optimal mis-information removal is not

possible.
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Appendix A

Some Graph Theoretic Definitions

Graph, Directed Graph, Path and Directed Acyclic Graph (DAG):

• A graph GN comprising of N nodes is a pair (V,E), where V = {v1, . . . ,vN} is a set of nodes

(also called vertices), and E ⊂V ×V is a set of edges between the nodes.

• Graph GN is an undirected graph if for any (vi,v j) ∈ E then (v j,vi) ∈ E and a graph is said to

be directed if (v j,vi) ∈ E is not a consequence of (vi,v j) ∈ E .

• A path is an alternating sequence of nodes and edges, beginning and ending with an edge, in

which each node is incident to the two edges that precede and follow it in the sequence.

• A Directed Acyclic Graph (DAG) is a directed graph with no path that starts and ends at the

same node.

• A family of DAGs GN is defined as a set of DAGs {G1, . . . ,GN} where Gn is the sub-graph of

Gn+1 such that for n = 1, . . . ,N−1

{
Vn =Vn+1/vn+1 ,

En = En+1/{(vi,vn+1) ∈ En+1|vi ∈Vn+1} .
(A.1)

Adjacency and Transitive Closure matrices:

Let GN = (V,E) denote a graph with N nodes V = {v1, . . . ,vN}.

• The Adjacency Matrix A of GN is an N×N matrix whose elements A(i, j) are given by

A(i, j) =

{
1 if (v j,vi) ∈ E ,

0 otherwise
. A(i, i) = 0. (A.2)

• The Transitive Closure Matrix T of GN is an N×N matrix whose elements T (i, j) are given

by T (i, i) = 1, and

T (i, j) =

{
1 if there is a path between v j and vi ,

0 otherwise
. (A.3)
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The following shows the special form of the adjacency matrix of the directed acyclic graph

and provides a closed form expression to compute the transitive closure matrix from the adjacency

matrix of a directed acyclic graph.

Lemma A.1. A sufficient condition for a graph GN to be a DAG is that the Adjacency matrix A is an

upper triangular matrix. For a DAG GN, the Transitive Closure Matrix T is related to the Adjacency

matrix by

T = Q({IN −A}−1). (A.4)

Here, IN is the N×N identity matrix, and Q denote the matrix valued ”quantization” function

so that for any N×N-matrix B, Q(B) is the N×N matrix with elements

Q(B)(i, j) =

⎧
⎨

⎩
0 if B(i, j) = 0 ,

1 if B(i, j) ̸= 0
. (A.5)

Proof: This result is derived from the classical interpretation of matrix {IN −A}−1. The entry

in row i and column j of this matrix gives the number of paths from node i to node j. #

To deal with information flow in a social network, we now introduce the concept of a family of

DAGs.

Remark A.1. For the sake of simplicity in notations, let us define two vector representatives of

adjacency and transitive closure matrices of directed acyclic graph. For each graph Gn ∈ GN, let

the n×n matrices An and Tn, respectively, denote the adjacency matrix and transitive closure matrix.

Define the following:

{
tn ∈ {0,1}1×(n−1): transpose of first n−1 elements of nth column of Tn,

bn ∈ {0,1}1×(n−1): transpose of first n−1 elements of nth column of An.
(A.6)

Remark A.2. As can be straightforwardly followed from the construction of adjacency and transi-

tive closure matrices in (A.1), for a family of DAGs GN = {G1, . . . ,GN}, for any n ∈ {1, . . . ,N−1},

the adjacency matrix An and transitive closure matrix Tn of graph Gn are respectively the n×n left

upper matrices of the adjacency matrix An+1 and transitive closure matrix Tn+1 of graph Gn+1.
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A Note on Degree-based Graph

Construction

The first step in numerical studies of social networks is the graphical modeling of such networks. A

graph can be uniquely determined by the adjacency matrix (also known as the connectivity matrix)

of the graph. However, in the graphical modeling of social networks (specially when the size of the

network is relatively large), the only available information is the degree sequence of nodes, and not

the adjacency matrix of the network.

Definition B.1. The degree sequence, denoted by d, is a non-increasing sequence comprising of the

vertex degrees of the graph vertices.

The degree sequence, in general, does not specify the graph uniquely; there can be a large

number of graphs that realize a given degree sequence. It is straightforward to show that not all

integer sequences represent a true degree sequence of a graph. For example, sequence d = {2,1,1}
represents a tree with two edges, but d = {3,2,1} cannot be realized as the degree sequence of a

simple graph. Motivated by social network applications, this section addresses the following two

questions given a degree sequence d:

• Existence Problem: Is there any simple graph that realizes d?

• Construction Problem: How can we construct all simple graphs that realize a true degree

sequence d?

There are two well-known results that address the existence problem: (i) the Erdös-Gallai theo-

rem [59] and the Havel-Hakimi theorem [70, 73]. These theorems provide necessary and sufficient

conditions for a sequence of non-negative integers to be a true degree sequence of a simple graph.

Here, we recall these results without proofs.

Theorem B.1 (Erdös-Gallai, [59]). Let d1 ≥ d2 ≥ · · · ≥ dn > 0 be integers. Then, the degree se-

quence d = {d1, · · · ,dn} is graphical if and only if

1. ∑n
i=1 di is even;
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2. for all 1≤ k < n:
k

∑
i=1

di ≤ k(k−1)+
n

∑
i=k+1

min{k,di}. (B.1)

It is shown in [143] that there is no need to check (B.1) for all 1≤ k≤ n−1; it suffices to check

(B.1) for 1≤ k ≤ s, where s is chosen such that ds ≥ s and ds+1 < s+1. Note that, in degree-based

graph construction, we only care about nodes of degree greater than zero; zero-degree nodes are

isolated nodes which can be added to the graph consisting of nodes of degree greater than zero.

The Havel-Hakimi theorem also provides necessary and sufficient conditions for a degree se-

quence to be graphical. It also gives a greedy algorithm to construct a graph from a given graphical

degree sequence.

Theorem B.2 (Havel-Hakimi, [70, 73]). Let d1 ≥ d2 ≥ · · · ≥ dn > 0 be integers. Then, the de-

gree sequence d = {d1, · · · ,dn} is graphical if and only if the degree sequence d′ = {d2− 1,d3−
1, · · · ,dd1+1−1,dd1+2, · · · ,dn} is graphical.

In the following, we provide algorithms to construct a simple graph from a true degree sequence.

In the construction problem, the degree sequence is treated as a collection of half-edges; a node with

degree di has di half-edges. One end of these half-edges are fixed at node i, but the other ends are

free. An edge between node i and node j is formed by connecting a half-edge from node i to a

half-edge from node j. The aim is to connect all these half edges such that no free half-edge is left.

The Havel-Hakimi theorem provides a recursive procedure to construct a graph from a graphical

degree sequence. This procedure is presented in Algorithm B.6

Using Algorithm B.6, one can sample from graphical realizations of a given degree sequence. In

this algorithm, each vertex is first connected to nodes with lower degrees. Therefore, Algorithm B.6

generates graphs where high-degree nodes tend to connect to low-degree nodes; the resulting graph

has assortative property [84, 115]. To overcome this problem, one way is to perform edge swapping

repeatedly such that the final graph looses its assortative property. In the edge swapping method,

two edges (for example (1,2) and (3,4)) can be swapped (to (1,4) and (2,3)) without changing the

degree sequence. Edge swapping method is also used to generate all samples from a given degree

sequence; one sample is generated via Algorithm B.6 and then, by use of Markov chain Monte-

Carlo algorithm based on edge swapping [140], other samples from the graphical realizations of the

degree sequence are obtained.

In [84] a swap-free algorithm is proposed to generate all graphical realizations of a true degree

sequence. Before proceeding to Algorithm B.7, we first provide definitions which will be used in

this algorithm.

Definition B.2. Let d = {d1, · · · ,dn} be a degree sequence of a simple graph and N(i) be the set

of adjacent nodes of node i. Then, the degree sequence reduced by N(i) is denoted by d|N(i) =
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Algorithm B.6 Creating a sample graph from a given degree sequence

Given a graphical sequence d1 ≥ d2 ≥ · · ·≥ dn > 0:

Start from i = 1

(i) Initialize k = n.

(ii) Connect (one half-edge of) node i to (a half-edge of) node k

(iii) Check that the resulting degree sequence is graphical

– if Yes:

1. Let k = k−1.

2. Repeat (i).

– if No:

1. Save the connection between node i and node k

2. If node i has any half-edges left, let k = k−1 and repeat (i)

(iv) If i < n, then, i← i+1 and repeat (i).

{d1|N(i), · · · ,dn|N(i)} with elements defined as follows

dk|N(i) =

{ dk−1, if k ∈ N(i),

0, if k = i,

dk, otherwise.

(B.2)

Definition B.3. Let (a1,a2, . . . ,an) and (b1,b2, . . . ,bn) be two sequences. Then, (a1,a2, . . . ,an)<CR

(b1,b2, . . . ,bn) if and only if there exists an index m such that 1 ≤ m ≤ n and am < bm and ai = bi

for all m < i≤ n.

Let d be a non-increasing graphical degree sequence. In order to construct the graph, we need

to find all possible neighbors N(i) (“allowed set”) of each node i such that if we connect this node

to its allowed set, then the resulting reduced degree sequence d|N(i) is also graphical, i.e., the graph-

icality is preserved. Algorithm B.7 provides a systematic way (swap-free) to generate all graphical

realizations of a true degree sequence (by means of finding all possible neighbors of each node).
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Algorithm B.7 Constructing all graphs from a graphical degree sequence [84]

Given a graphical sequence d1 ≥ d2 ≥ · · ·≥ dn > 0

Start from i = 1

Step 1: Find neighbors with highes index of node i

The aim is to find AR(i):
(i) Initialize k = n.

(ii) Connect node i to node k

(iii) Check that the resulting degree sequence is graphical

– if Yes:

1. Let k = k−1

2. Repeat (i).

– if No:

1. Save the connection between node i and node k

2. If node i has any stubs left, let k = k−1 and repeat (i)

Step 2: Find all possible neighbors of node i

With <CR defined in (B.3), the aim is to find

A (i) = {N(i) = {v1, · · · ,vdi
};N(i)<CR AR(i) and d|N(i) is graphical}

(i) Find all sets of nodes who are colexicographically smaller than AR(1) (prospective neighbor

sets).

(ii) Connect node i to those neighbors and check if the resulting degree sequence is graphical.

Step 3: For every N(i) ∈A (i):

• Connect node i to N(i)

• Discard node i and compute the reduced degree sequence d|N(i)

• Create all graphs from degree sequence d|N(i) using this algorithm
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