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Abstract

Improving our understanding of intra-tumour heterogeneity in cancer has important

clinical implications, including an opportunity to understand mechanisms behind

relapses and drug resistance. Next generation bulk sequencing is a mature tech-

nology that has been used to study subclonal tumour populations at an aggregate

level. Inference of populations from bulk sequencing requires sophisticated com-

putational deconvolution methods. An alternative is to identify populations directly

with single cell sequencing. However, single cell sequencing is a very error-prone

process, and this impedes its ability to completely replace bulk sequencing for now.

In this work we present dd-PyClone, a statistical model to combine single cell

and bulk sequencing data to study clonal subpopulation architecture and improve

clustering assignment and cellular prevalence estimates of a set of genomic loci.

We introduce a single nucleotide variant and copy number aberration aware

genotype simulation scheme based on a phylogenetic tree, termed the Generalized

Dollo model. This model is an improvement over previous genotype generator

models in that it also accounts for the evolutionary process before a rare event

(here the single nucleotide variant) occurs.

We show that incorporating genomic loci co-occurrence patterns from single

cell sequencing studies in inferring clonal subpopulation structure from bulk se-

quencing data is beneficial. Our method outperforms existing methods in simula-

tion studies and performs comparably in real dataset benchmarking. We also show

that our method is fairly robust as to the choice of hyperparameters and performs

reasonably in presence of noise. We hope that our method will further the under-

standing of the evolutionary basis of cancer.

ii



Preface

The project idea was conceived by Prof. Shah. The application of a distance depen-

dent Chinese restaurant process to solve this problem was my idea. The generalized

Dollo model in Chapter 7 is Prof. Bouchard-Côté’s idea. The real datasets used in

Chapter 7 was used with permission from authors.

The implementation of ddCRP inference algorithm is based on that in [2]. I

have extended it to support the non-conjugate case relevant to this work.

There are no publications based on this work so far.
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Chapter 1

Introduction

In this chapter, we first introduce cancer as an evolutionary phenomenon. Next gen-

eration bulk and single cell sequencing and their associated computational methods

are reviewed as the tools for quantifying the properties of this evolutionary system,

including SNVs as genetic markers. We continue with a review of existing meth-

ods that infer clonal subpopulation structure from bulk sequencing SNV data. We

then state our hypothesis in this work as follows: Combining single cell and bulk

data in a unified statistical framework improves clustering and cellular prevalence

estimates. Our main contribution is a computational method to implement, test,

and verify our hypothesis.

1.1 Cancer as an evolutionary phenomenon
Cancer is an evolutionary phenomenon [23]. Cells accrue mutations in time, some

of which confer a selective advantage on the bearer. This process leads to multiple

cell subpopulations, each with unique genomic aberrations. This intra-tumour het-

erogeneity results in clinical complications, including relapses and drug resistance

[36].

To find an optimal therapeutic intervention we first need to address a fundamen-

tal question, ”How does a tumour population respond to a specific perturbation?”,

where a perturbation is any treatment policy, including surgery and chemotherapy.

The first step toward understanding this problem is to identify subpopulations
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or subclones present in a tumour sample as well as their prevalences. Somatic ge-

netic markers, particularly single nucleotide variants (SNVs) are used to identify

subclones [29]. Cells in the human body inherit their genomes from their par-

ents. These inherited genomes harbour differences to other individuals that are

called germline mutations. On the other hand, both normal and cancerous cells, all

descendants of the initial zygote cell, accrue novel mutations not present in their

common ancestor. These are somatic mutations [33].

Next generation sequencing has made measurement of these markers fast and

cost-efficient [22]. Somatic mutations are essentially inferred by comparing DNA

extracted from tumour tissue to the DNA from normal tissue from the same patient.

Here we focus on next generation sequencing methods to measure SNVs.

1.2 Next generation sequencing
Briefly, first DNA molecules from millions of cells from a tissue sample are col-

lected. This involves cell lysis through which we lose the assignment of genomes

to cells, and consequently the mutation co-occurrence patterns. In a library prepa-

ration step, DNA molecules are fragmented and then are ligated by adapter se-

quences. This is often proceeded by an amplification phase where fragmented

DNA sequences (templates), are amplified in a process called polymerase chain

reaction (PCR). The amplified templates are sequenced in a sequencer and then

analyzed to obtain their nucleic acid sequence in what is called the base calling

step [15].

Then, base-called reads are mapped to a reference genome. At this point, sev-

eral post-processing steps may be required. For example, the identification and

removal of adapter sequences, reads of low quality, and contamination from for-

eign DNA [16].

1.2.1 Somatic single nucleotide variants

Methods such as [4, 7, 28, 30] are used to detect somatic SNVs. This is a challeng-

ing task, since many variants are either germline mutations or some artifact of the

sequencing process. This is further complicated by the fact that in some cancers

germline variations outnumber somatic variations by orders of magnitude. Se-
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quencing artifacts are also prevalent and come from a number of different sources,

including normal DNA contamination, strand bias, and low mapping quality.

Somatic variant calling methods work by essentially modelling the allelic dis-

tribution, taking into account various sources of error. They may involve prepro-

cessing steps, or filters, such as removal of low quality reads and local realign-

ments. Some post processing may also be applied to acquire higher confidence

candidate variants, for instance, filtering the variants against a database of normal

patients [4].

1.2.2 Targeted deep sequencing

A technique used to validate these mutation calls is targeted deep sequencing [31].

To ensure that the called SNVs are not an artifact of sequencing error, limited sec-

tions of the genome that contain selected SNVs are chosen and highly amplified

and sequenced. This very high read coverage (number of reads covering each ge-

nomic locus) increases confidence in the validity of the called SNVs. This data

is then used to generate allele counts. That is, at each genomic locus, how many

reads map to the reference allele and how many reads map to the alternative allele.

1.2.3 Copy number aberrations

Another important genomic feature of cancer cells is their copy number state. Am-

plification and Loss of Heterozygosity (LOH) events have been shown to play a

role in tumour progression [32].

NGS data can be used to identify Copy Number Aberration (CNA) events [24].

Computational methods based on NGS data mostly work by dividing the genome

into different segments (bins) and use mean change in read coverage in each seg-

ment to assign an average copy number to the whole region. In tumour samples

that contain multiple heterogeneous subpopulations, traditional CNA calling meth-

ods may fail to assign an integer copy number to a region. This is due to each

subpopulation having potentially a different copy number state at the same region.

Methods such as [14] take tumour cellularity and different CN states for each

subpopulation genotype into account, and they assign the most probable copy num-

ber state to each region based on a Hidden Markov Model.
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1.2.4 Measuring clonal parameters

In NGS data we can only directly measure allele counts. Due to fragmentation and

short read lengths, patterns of co-occurrence (phasing) are lost and direct obser-

vation of number of subpopulations, their genotypes, and prevalences (collectively

called subclonal structure) is not possible.

To address this problem, computational methods have been developed to es-

timate these quantities or their surrogates. Since in general there is no bijection

between allelic ratios and subclonal structures, it is often easier to estimate surro-

gate quantities for subclonal structure parameters.

Mutational cellular prevalence is a compound measure for genotype preva-

lence. It is defined as the fraction of cells that harbour a mutation at a specific

genomic locus.

To infer cellular prevalence, methods such as PyClone [29] correct allele counts

for CNVs and LOH events, and tumour cellularity to cluster genomic loci into

groups with similar cellular prevalences. One of the main hypothesis in these meth-

ods is that there are no subclones with identical prevalences in the tumour, and thus

a difference in cellular prevalence is due to belonging to different subclones. If this

assumption is violated in the data, such subclones would get merged into a single

group in the bulk deconvolution (over-clustering).

These mutation clusters could be considered as surrogate measures for sub-

clonal genotypes, where we would expect that two mutations in the same cluster to

co-occur in a genotype. In section 1.3 we review in more detail methods that infer

subclonal structure from next generation sequencing SNV data.

1.3 Existing methods
Here we briefly review some of the existing methods that infer sub-clonal popula-

tion composition from bulk next generation sequencing data.

1.3.1 Clomial

Clomial [37] accepts reference and variant allele counts from multiple subsections

of a tumour as input. Number of genotypes should be set a priori. From this, it es-

timates both a genotype matrix, which indicates which genomic loci are mutated in
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each genotype, and a genotype prevalence matrix that shows what fraction of cells

in a subsample belong to a particular genotype. The estimation problem is for-

mulated as a variation of the Matrix Factorization problem where the allele counts

matrix is factored into genotypes and genotype frequencies matrices. Inference is

done using an Expectation Maximization algorithm.

It infers tumour cellularity, the fraction of cancerous cells in the tumour sample,

from the data. Tumour cellularity is a measure of normal DNA contamination in

the sample.

On the other hand, it assumes a diploid genotype and does not correct allele

counts for copy number variations, nor does it take sequencing errors into account

in its Binomial likelihood model. It is limited to situations where the number of

clones are less than or equal to the number of samples (subsections of the tumour),

since otherwise, the inference problem is under-constrained.

A major problem with Clomial is that it needs the number of genotypes to be

set a priori. To mitigate this, Clomial poses the choice of the number of genotypes

C as a model selection problem and suggests running the method with different

values of C, selecting the one with the best Bayesian Information Criterion (BIC).

Furthermore, to increase the chance of finding the global extremum, the authors

suggest multiple restarts from different starting positions.

1.3.2 PyClone

The PyClone model has inspired our current work. As input, it accepts a fixed set

of genomic loci with their allele counts and copy number states, as well as tumour

cellularity. It uses a Dirichlet process mixture model [34] to jointly infer cellu-

lar prevalences and cluster assignments. PyClone assumes that at each genomic

locus, the tumour has 3 subpopulations, namely, normal, reference, and variant

subpopulations. Each subpopulation has a fixed copy number state with respect to

a particular genomic locus.

It accounts for copy number states by defining a prior probability distribution

over possible genotypes in each subpopulation at each genomic locus, and sum-

ming over these genotypes in the likelihood calculation. It uses a Beta-Binomial

likelihood (emission) distribution to account for overdispersion in the sequencing
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data. PyClone’s inference is based on a Markov chain Monte Carlo (MCMC) sam-

pling scheme.

It also supports a multi-sample mode where it accepts as input sample specific

tumour cellularity, copy number state, and allele count data. In multisample mode,

PyClone will output one clustering result for mutations over all samples, and a per

sample cellular prevalence estimate.

1.3.3 PhyloSub and PhyloWGS

PhyloSub [17] tries to infer cellular prevalences and cluster assignments of SNVs

as well as their phylogenetic history. Its inputs are allele counts of a fixed set of

SNVs, as well as associated copy number state estimates. It outputs clusters of

SNVs and their cellular prevalences, in addition to a set of most likely phyloge-

netic trees. It achieves this by using a tree-structured stick breaking process [12].

This is a Bayesian non-parametric prior over partitions that has a hierarchical tree

topology, where data points can be assigned to any node on the tree.

Heuristic rules are used to limit the space of possible phylogenetic trees. These

rules come from a perfect and persistence phylogeny assumption [29]. That is, a

mutation is only gained once over a tree, and when its gained, it cannot be lost or

reverted.

In PhyloSub, phylogenetic trees are directed acyclic graphs (DAG) where nodes

are SNV clusters and edges connect parental clusters to their immediate child clus-

ters. PhyloWGS [6] is a successor to PhyloSub. It improves on PhyloSub in two

respects. First, it handles CNAs differently by modelling them as a pseudo-SNV

and thus inferring at what point on the phylogenetic tree they have occurred. Sec-

ond, the authors claim that it is much faster than PhyloSub and therefore could

be used to infer tumour subpopulation structure form whole genome sequencing

data. Both models use a Binomial likelihood model and a MCMC algorithm for

inference.

1.3.4 SciClone

SciClone’s [18] input consists in variant allele frequencies (VAF) as well as copy

number variations. It operates over genomic loci in copy neutral regions. The
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maximum number of clusters is another input of this model.

SciClone clusters genomic loci with similar VAFs. Similar to PyClone, it out-

puts cluster assignments for genomic loci and frequencies for mutational groups.

It models VAFs as a mixture of Beta distributions. Its inference framework is

based on the variational Bayesian mixture modelling. To approximate the posterior

distribution, it uses Gamma distributions with a Dirichlet distribution for mixture

parameters.

It does not take into account copy number variations, nor does it correct for

tumour cellularity. Variational Bayes methods will generally never converge to the

true posterior (it could not even represent it).

1.4 Single cell sequencing
In general, bulk methods are limited. The fact that association of genotypes to cells

is lost at cell lysis results in complications such as the phasing and over-clustering

issues mentioned earlier. A potential solution to these problems is sequencing

the genome of individual cells. Single cell sequencing (SCS) involves isolating a

cell, amplifying its genome followed by base calling, and mapping to a reference

genome [20].

SCS is still in its infancy and suffers from a number of problems [20, 35].

First, it is very error-prone. Sources of error include allele dropout and uneven

genome coverage that may result from a biased amplification step. Second, it is

prohibitively expensive. Third is the issue of undersampling.

In SCS studies, single cells analyzed number in the lower hundreds [8, 19].

The probability of observing a representative cell from a very rare clone (cellular

prevalence of less than 0.01%) is only about 0.01. Concretely, considering the

above numbers and assuming a uniform sampling procedure and that the clones

are uniformly distributed throughout the tumour, the power of the SCS experiment

to test the existence of a very rare clone would be:

p(observing at least a single cell from a very rare clone|that clone exists in the tumour)=

1−p(not observing any cells from the very rare clone|that clone exists)= 1−(1−
0.0001)100 ≈ 0.01.
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1.5 Main hypothesis, combining bulk data and SCS data
Our main hypothesis is ”Combining single cell and bulk data in a unified statisti-

cal framework improves clustering and cellular prevalence estimates.” Figure 1.1

shows the main components and workflow of our method. This work has the po-

tential to overcome the limitations of both bulk and single cell methods. This is

made more precise in chapter 2. We will experimentally validate our hypothesis in

chapter 3 and demonstrate that if the majority of genotypes present in the tumour

are observed, using them to guide clustering in bulk data will result in improved

estimates.
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Figure 1.1: This figure shows the workflow of our method, dd-PyClone. In-
puts are genotypes from single cell genotyping experiment, tumour cel-
lularity, and allele count estimates. As output, we infer clusters of ge-
nomic loci (mutation clusters) and their cellular prevalences. The details
of the model, including definitions of ddCRP, distance matrix calcula-
tion, clustering, and inference routines are given in Chapter 2.
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1.6 Summary
In this chapter we introduced cancer as an evolutionary system. We discussed

strengths and limitations of next generation and single cell sequencing technologies

and associated computational methods in quantifying intra tumour heterogeneity.

We stated combination of bulk NGS and SCS as our objective in this work.

The rest of this document is organized as follows: Chapter 2 describes the

assumptions of the model, its mathematical formulation, and the computational

model to solve it. Chapter 3 introduces a simulator to generate SNV and CNA

aware genotypes and reports our simulation studies as well as experiments on a

real primary triple negative breast cancer dataset. Finally, Chapter 4 discusses a

summary of the work as well as potential future research directions.
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Chapter 2

Methods

In this chapter we formulate our hypothesis and establish relevant notations. We

then introduce our modelling procedure in the context of a simplified problem. We

then describe our main modelling method, the ddCRP that is a generalization of

the traditional CRP. Using ddCRP, we construct an informed prior over partitions

that encourage co-occurring genomic loci to cluster together. We proceed with de-

scribing our full model, dd-PyClone. We then introduce our inference procedure,

a MCMC sampling scheme that uses Gibbs moves to update clustering and param-

eter assignments. Finally, we discuss limitations of our model and possible future

extensions.
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2.1 Problem statement
Here, we first establish relevant terms, notations, inputs, and outputs of our model.

Then we formulate our problem in a mixture modelling framework.

2.1.1 Main hypothesis

We reiterate our main hypothesis here: Combining single cell and bulk data in a

unified statistical framework improves clustering and cellular prevalence estimates.

2.1.2 Concepts and definitions

Given (i) variant allele counts and (ii) copy number state at each genomic locus,

(iii) tumour cellularity, and (iv) single cell genotype data, our method infers (i)

cellular prevalences and (ii) cluster assignments for those genomic loci. We define

these terms below.

Inputs

Variant allele counts is the first input to the model. We assume that at each ge-

nomic locus i, a total of di reads map to the variant and normal alleles out of which

bi reads map to the variant allele. A related notion is the variant allelic preva-
lence, ξ , that is the expected fraction of reads that harbour the variant allele. This

is computed as the number of mutated alleles in the variant subpopulations divided

by the total number of alleles in all cells.

The second input to the model is the copy number state at each genomic lo-

cus. Note that copy number variations affect ξ . For instance in Figure 2.4, ξ =
2×5

2×1+3×3+3×5 = 5
13 .

The third input to the model is the tumour cellularity t, as the fraction of

cancer cells in the sample. Hence the fraction of normal cells would be 1− t. We

assume it is estimated independently from our model.

The last input to our model is the genotype data. Let M denote the number

of genotypes in the tumour sample and N be the number of genomic loci in our

model. Genotype data is modelled as a binary matrix ∆ ∈ {0,1}M×N with rows

corresponding to genotypes and columns to genomic loci. Each entry ∆m,n is equal

to one if the genotype m is mutated at locus n. We assume in this work that geno-
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type data is derived from single cell sequencing studies. Figure 2.1 illustrates our

assumption about the relation between the genomic loci co-occurrence patterns and

the underlying phylogenetic tree.

G1
G2

G3 G4

G1

x

x

Mut 3

Mut 5

Mut 7

x

Mut 4

Mut 1

Mut 2

G4

x

x

x

xMut 4

Figure 2.1: A hypothetical phylogenetic tree with genotypes at leaves (top).
The green and blue bars on the tree denote mutations that have hap-
pened together. A subset of the corresponding mutation co-occurrence
patterns (bottom). Note that the bottom matrix shows a transposed ver-
sion of the genotype matrix. While it always holds that if mutations
are gained at the same site on the phylogenetic tree, then they will co-
appear in the genotype matrix (the top-to-bottom arrow), the opposite is
not always true (the bottom-to-top arrow). We are making the simpli-
fying assumption that if mutations co-occur in a genotype matrix, then
they have co-occurred in the underlying phylogenetic tree as well.
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Outputs

The desired outputs are cluster assignments of genomic loci and their cellular
prevalences. Cellular prevalence φi for a particular genomic locus i is defined as

the fraction of cells in the sample that harbour a mutation at that genomic locus.

For example, in Figure 2.4 cellular prevalence for the depicted genomic locus is 5
8 .

Thus 1−φi, the fraction of cancer cells from the reference population, is 1− 5
8 =

3
8 .

We define the clonal prevalence of a genotype to be the fraction of cells in the

tumour sample that match that genotype.

2.1.3 Notations

Let X = {x1,x2, ...,xN} be the set of our N genomic loci, indexed by ϖ = {1,2, ...,N}.
We adopt the notation j : i for j ≤ i, j, i ∈ N to denote { j, j+ 1, j+ 2, ..., i}, a

subset of successive integers.

We define a clustering of X as a partition T of its index set ϖ , that is T =

{T1,T2, ...,TK} such that tk∈1:KTk = ϖ where K is the number of partitions and t
denotes the disjoint union operator and each subset Tk is called a cluster.

We define xA for A ⊂ ϖ to be {xi|i ∈ A}. For example xTk is the set of data

points in cluster Tk and xi: j = {xi,xi+1,xi+2, ...,x j}.
Furthermore, let T (.) : N→ N map data point indices to their clusters, that is

T (i) = k iff i ∈ Tk.

Partitions in a graph

Let G(V ,E) denote an undirected graph G where V is the set of vertices and E is

the set edges, i.e., a set of unordered pairs {u,v} ⊂ V .

The set of edges E induces a partitioning on V , where each connected com-

ponent of V corresponds to a cluster. With a slight abuse of notation, let T (E) =
T (G(V ,E)) denote this partitioning and T k

E denote its k-th cluster.

A directed graph G (V ,E ) consists in a set of vertices V and a set of directed

edges E where each edge is an ordered pair of vertices.

For a directed graph G , we define its underlying undirected graph U(G ) to be

the graph obtained by replacing all directed edges in G with undirected ones.

Let T (E ) be the partitioning induced by U(G ), the underlying undirected graph
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of G . Throughout this document the G corresponding to E is always apparent from

the context, with V always being the set of our data points.

Let TE : N→N map vertex indices to their clusters, that is TE (i) = k iff i ∈ T k
E .

2.1.4 Simplified generative model

For exposition, we start with a simplified generative model in which we describe

the relationship between inputs and the outputs of our method. Assume we have

a heterogeneous tumour that contains subpopulations from two distinct haploid

genotypes, g1 and g2 with clonal prevalences of 30% and 70%, respectively. For

simplicity we set the tumour cellularity in our sample to one (t = 1). Since this

implies that the expected fraction of variant allele reads is equal to cellular preva-

lence at each genomic locus (ξ = φ ), we will ignore ξ and directly use φ in this

subsection.

The possible cellular prevalences for any genomic locus i in this tumour are

φi = {φ 1
i = 0.0,φ 2

i = 0.3,φ 3
i = 0.7,φ 4

i = 1.0}. Since locus i is either not mutated

in any of the genotypes (hence φ1), only mutated in g1 (corresponding to φ2), only

mutated in g2 (therefore φ3), or mutated in both g1 and g2 (meaning φ4). These

four cases represent our possible clusters.

To simulate the sequencing process for genomic locus i, we first pick its cluster.

We use an auxiliary variable zi as follows: zi ∼ Categorical(w) where w = w1:4

denotes the mixing weights, the proportion of clusters such that ∑
4
i=1 wi = 1.

The cellular prevalence for genomic locus i is now φzi . In the inference pro-
cedure, zis and φzis constitute our desired outputs. Next we simulate the num-

ber of variant alleles. Since according to our assumptions φzi also denotes the

expected proportion of variant reads in the sequencing experiment, we can re-

late it to the variant read counts bi via a Binomial likelihood function as follows:

bi ∼ Binom(di,φzi) where for now, we fix di, the total number of reads, to some

appropriate constant value 1. In the inference procedure, we observe bi and di and

1It could vary from about 10× in a whole genomic sequencing to about 10,000× in an ultra deep
sequencing experiment [31].
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they are the inputs to our model. Put together, we have:

zi ∼ Categorical(w)

bi ∼ Binom(di,φzi)
(2.1)

The two step process we described in equation 2.1 defines a mixture distribu-

tion as follows:

p(bi) =
4

∑
j=1

w jBinom(di,φ j) (2.2)

Here we have four possible mixture components or clusters. Cluster assign-

ments for each datapoint (a genomic locus in our model), are determined by the

indicator variables zi-s that are sampled from a categorical distribution, our prior

over partitions, since we assumed that (i) the possible values for the φi-s were finite

and (ii) known. Neither of these assumptions hold in general, that is, the φi-s could

be any real-valued number in [0,1]. To address this issue in a principled way, we

introduce the Chinese Restaurant Process (CRP) in subsection 2.2.2.

Furthermore, co-occurrence patterns in g1 and g2 could be used to construct an

informed prior over partitions of genomic loci. This can be done via a generaliza-

tion of CRP, called ddCRP, that we introduce in subsection 2.2.1. Before describing

our model, dd-PyClone, in section 2.3, we present an updated generative process

for the simplified example that we considered here in subsection 2.2.3.
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2.2 Distance dependent Chinese Restaurant Process
This section introduces the distance dependent Chinese Restaurant Process (dd-

CRP), the method we use to incorporate single cell genotyping data to construct an

informed prior over partitions that encourages co-occurring genomic loci to cluster

together. We begin by presenting the traditional CRP, a special case of ddCRP that

is agnostic to the co-occurrence pattern of genomic loci.

2.2.1 Traditional CRP

ddCRP can be explained through an alternative representation of the Chinese Restau-

rant Process (CRP). We follow the notation in [2]. In the traditional CRP, customers

enter a Chinese restaurant and opt to sit at a table where the probability of joining

a table is proportional to the number of customers already sitting at that table.

Customers may also choose to sit at a new table with probability proportional

to α , a model parameter. In the Chinese restaurant metaphor, customers rep-
resent the genomic loci and tables represent clusters.

Let zi denote the table assignment for customer i and assume that customers

1 : i−1 have occupied tables 1 : K and let nk be the number of customers sitting at

table k. Customer sitting configuration induces a partitioning of customer indices.

CRP draws zi as in equation 2.3.

p(zi = k|z1:(i−1),α) ∝

{
nk for k ≤ K

α for k = K +1
(2.3)

The CRP is an exchangeable process, that is, the order in which customers

enter the restaurant does not affect the probability of a certain partition [34].

2.2.2 Alternative representation of Traditional CRP

Traditional CRP can equivalently be viewed as customers joining other customers

instead of joining other tables. Let ci denote the customer index with whom cus-

tomer i is sitting and C = c1:N . This defines a directed graph G (V ,E ) with V the

set of customer indices and E the set of ordered pairs (i,ci).

As described in subsection 2.1.3, this induces TE = T (C) a partitioning of cus-

tomer indices. Each cluster corresponds to a table in the traditional representation.
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Figure 2.2 shows an example C and its corresponding T (C).

34

1

26

5

7

…

…

Customers

Tables

1 3 4 5 62 7

Figure 2.2: Induced table sitting T (C) by a particular customer connection
configuration C . Bold arrows show customer connections and dotted
arrows point to equivalent table sittings. Customer 7 has a self loop and
since she is not connected to any other customers, the corresponding
table has only one customer.

In a generalization of this model, the probability for a customer i to connect

to a customer j is proportional to a function of the distance between them. The

distance matrix D encodes our knowledge about the data point’s dissimilarity from

a secondary source. In this work, this distance matrix is computed from the geno-

types derived from single cell genotyping experiments (more details in subsection

2.3.1). The non-increasing decay function f takes non-negative finite values. This

is summarized in equation 2.4.

p(ci = j|D,α) ∝

{
f (di, j) for i 6= j

α for i = j
(2.4)

This defines the ddCRP model. We note that picking a constant decay function

f (x) = 1 reduces ddCRP to traditional CRP, since in that case, equation 2.4 is

identical to equation 2.3.

Unlike traditional CRP, ddCRP is not an exchangeable process. This means

that the order in which customers enter the restaurant changes the probability of
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a particular partition. In our implementation, we randomly shuffle the order of

customers at each iteration of the sampling algorithm. To investigate the effects of

non-exchangeability, we ran our method over synthetic and real datasets with and

without random reordering of customers in chapter 3, subsection 3.4.4.

We found that the method performs nearly identically with or without random

customer reordering. This may imply that our method is not very sensitive to the

order of customers.

2.2.3 Generative process for ddCRP mixture modelling

Now that we have seen how ddCRP can be used to construct an informed prior

over partitions, we present the high level forward simulation algorithm for mixture

modelling in ddCRP for the simplified example we considered in subsection 2.1.4:

1. For i ∈ [1,N], draw ci ∼ ddCRP(α, f ,D).

From this, derive T (C), the corresponding table assignment.

2. For i ∈ [1,K],draw φi ∼ G0.

3. For i ∈ [1,N], draw bi ∼ Fi(φTC(i)).

where α is a model parameter, f is a decay function, G0 is the base distribution

for the φi-s, Fi is the likelihood function relating expected number of reads to bi to

cellular prevalence φi as in equation 2.1, and TC(i) is the index of the table at which

customer i is sitting.

Formally, in our simplified model, for each genomic locus i ∈ [1,N], we
want to infer φi and TC(i), given the model observations bi and di. In section

2.3 we report a complete set of expected model inputs and outputs.
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2.3 The dd-PyClone model
Here we introduce our model, dd-PyClone. Figure 2.3 summarizes dependency

and distributional assumptions in dd-PyClone’s model. Table 2.1 explains random

variables used in this model.

aa

ddCRP

↵↵ H0H0

↵↵, �↵↵↵, �↵

ss

↵s, �s↵s, �s

�i�i

bibididi

tt

A0A0

 i i ⇡i⇡i

DD

i 2 {1 : N}i 2 {1 : N}

(a) Probabilistic Graphical Model (PGM) of dd-PyClone
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↵ ⇠ Gamma(a↵, b↵)

H0 = Uniform([0, 1])

A0 = Uniform([0, 1])

a ⇠ A0

D = {di,j}, di,j = JaccardDist(i, j), i, j 2 {1 : N}

fa = exp(�di,j/a)

�i|fa, D, H0, ↵ ⇠ ddCRP(fa, D, H0, ↵)

 i|⇡i ⇠ Categorical(⇡i)

s|as, bs ⇠ Gamma(as, bs)

bi|di,  i, �i, t, s ⇠ BetaBinomial(di, ⇠( i, �i, t), s)

⇠( , �, t) =
(1� t)⇣(gN )

Z
µ(gN ) +

t(1� �)⇣(gR)

Z
µ(gR) +

t�⇣(gV )

Z
µ(gV )

Z = (1� t)⇣(gN ) + t(1� �)⇣(gR) + t�⇣(gV )

1

(b) Distributional assumptions of dd-PyClone

Figure 2.3: The complete dd-PyClone model. In the graphical model, the
shaded nodes are observed and the rest of the nodes are not observed.
In the inference step, the unobserved nodes will be inferred via Gibbs
sampling. In particular, we are interested in inferring φi-s, the cellular
prevalences for genomic loci and the induced clustering by the ddCRP.
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Table 2.1: Notation reference for dd-PyClone’s probabilistic graphical
model.

[Notation reference for dd-PyClone]

Variable Description Observed
A0 Prior distribution over decay function’s parameter a. Yes

αα Shape hyperparameter over ddCRP distribution’s α parameter. Yes

βα Rate hyperparameter over ddCRP distribution’s α parameter. Yes

a Decay function’s parameter. No

α Model parameter for the ddCRP model. No

H0 Base measure for the ddCRP used to sample cellular preva-

lences for genomic loci.

Yes

αs Shape hyperparameter for the Beta-Bionomial precision param-

eter s.

Yes

βs Rate hyperparameter for the Beta-Bionomial precision parame-

ter s.

Yes

D Distance matrix over genomic loci. In this work, this is com-

puted from single cell genotype analysis.

Yes

ddCRP The distance dependent Chinese restaurant process with decay

function f , distance matrix D, base measure H0, and model pa-

rameter α .

No

s Precision parameter for the Beta-Binomial emission model. No

φi Cellular prevalence for the genomic locus i. No

di Total number of reads that map to genome locus i. Yes

bi Number of reads that map to variant allele at genomic locus i. Yes

ψi A vector (gi
N ,g

i
R,g

i
V ) denoting genotype state at genomic locus

i.

No

πi Prior over the genotype state for the genomic locus i. Yes

t Tumour cellularity. Yes

N Number of genomic loci. Yes

M Number of genotypes. Yes
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We assign each genomic locus to a customer. Throughout this document, we

use genotype data from single cell genotyping studies to compute the distance be-

tween genomic loci. We note that this is not a requirement of the model, and other

sources could be used to define dissimilarity between genomic loci.

2.3.1 Distance matrix

We have used the Jaccard distance to form the distance matrix D ∈ [0,1]N×N be-

tween genomic loci. Jaccard distance is computed as 1− JaccardIndex that is:

JaccardDist(A,B) = 1− |A∩B|
|A∪B|

|A∩B|=
M

∑
i=1

(Ai×Bi)

|A∪B|=
M

∑
i=1

(Ai +Bi)

(2.5)

where AM×1 and BM×1 are binary column vectors, each representing a genomic

locus. Intuitively, this assigns a higher distance to genomic loci that co-occur less

often in the single cell genotypes and vice versa. We note that our use of the Jaccard

index to compute distances between genomic loci is related to the distance-based

phylogenetic inference methods [9].

Let λ = {s,α,a} be the collection of hyperparameters in our model. For

brevity, we first assume that these hyperparameters are fixed, and later we discuss

their resampling scheme.

2.3.2 Bulk population assumptions

Similar to PyClone, we make the simplifying assumption that the clonal population

in the bulk data comprises three subpopulations, namely, the normal, the reference,

and the variant subpopulations. Figure 2.4 illustrates this assumption. To avoid

confusion with the genotype states coming from the single cell sequencing study,

we refer to the assumed copy number state of the subpopulations in the bulk data as

pseudo-genotypes. This data is usually not available directly from the bulk data,

and has to be inferred or accounted for in the inference procedure.
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Tumour Sample

Chromosome
Mutation

Variant Subpopulation

Normal Subpopulation Reference Subpopulation

Figure 2.4: Our assumption about clonal architecture in the tumour, with re-
spect to a particular genomic locus. In this example, normal subpop-
ulation represents a collection of un-mutated diploid cells. Reference
subpopulation comprises cells that have a copy number amplification
event, but no single nucleotide mutations. Variant subpopulation is a
collection of cells that have a SNV at the particular genomic locus.

2.3.3 Pseudo-genotype state priors

Let ψi = (gi
N ,g

i
R,g

i
V ) ∈ (N0×N0)

3 represent the assumed pseudo-genotype state
at each genomic locus i in the bulk data where N0 = N∪{0}. Let gi

N represent the

normal pseudo-genotype N, gi
R represent the reference pseudo-genotype R, and gi

V
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represent the variant pseudo-genotype V . Each gi
S is a pair of non-negative integers

that denote the copy number state for the pseudo-genotype S ∈ {N,R,V} at the

genomic locus i. For example, gi
N = (2,3) means that the normal pseudo-genotype

in the bulk tumour sample has two copies of the reference allele and three copies

of the variant allele at genomic locus i. Here (0,0) denotes a homozygous deletion.

For g ∈ G = N0×N0, let ζ : G → N0 be the total copy number of pseudo-

genotype g, We define µ(g), the probability of sampling a variant allele from a

subpopulation with pseudo-genotype g as follows:

µ(g) =


ε for b(g) = 0

1− ε for b(g) = ζ (g)
b(g)
ζ (g) otherwise

(2.6)

where ε is the sequencing error probability, the probability of observing a vari-

ant allele when sequencing a true reference allele.

We define the function ξ (ψ,φ , t) to capture the effects of pseudo-genotypes,

cellular prevalence, and tumour cellularity as follows:

ξ (ψ,φ , t) =
(1− t)ζ (gN)

Z
µ(gN)+

t(1−φ)ζ (gR)

Z
µ(gR)+

tφζ (gV )

Z
µ(gV ) (2.7)

where Z =(1−t)ζ (gN)+t(1−φ)ζ (gR)+tφζ (gV ) is the normalizing constant.

To compute the likelihood, we sum over possible values of ψi. Since the dis-

crete space of Ψ values quickly becomes intractable, we only consider a limited

number of pseudo-genotypes. This could be done via defining a prior πi over ψi.

2.3.4 The Parental Copy Number (PCN) prior

Following [29], when copy number variation data in form of major and minor copy

numbers is available, we have implemented a number of methods to elicit priors

over pseudo-genotypes. We assume that copy number state at each genomic locus

is reported as a pair of integers (ζ̄1, ζ̄2), where the major copy number ζ̄1, refers to

the maximum of the two said integers and the minor copy number ζ̄2 refers to the

minimum of the pair and ζ̄ = ζ̄1 + ζ̄2 is the total copy number. Here we describe

the Parental Copy Number (PCN) strategy that is used in our experiments.
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Let P denote the set of pseudo-genotype states that PCN scheme describes.

We assign equal weight to the pseudo-genotype states in P and zero weight to any

other pseudo-genotype state that is not a member of P , that is a pseudo-genotype

state ψi ∈P has a weight equal to 1
|P| . The pseudo-genotype states with non-zero

weights are P = {ψ1,ψ2,ψ3,ψ4} where

• ψ1 = (gN = (2,0),gR = (2,0),gV = (ζ̄1, ζ̄2))

• ψ2 = (gN = (2,0),gR = (2,0),gV = (ζ̄2, ζ̄1))

• ψ3 = (gN = (2,0),gR = (2,0),gV = (ζ̄ −1,1))

• ψ4 = (gN = (2,0),gR = (ζ̄ ,0),gV = (ζ̄ −1,1))

These pseudo-genotype states adhere to the following conditions: gN = (2,0)

so that the normal pseudo-genotype is diploid with respect to the reference alleles,

and ζ (gV ) = ζ̄ and b(gV ) ∈ {1, ζ̄1, ζ̄2}. The number of variant alleles b(gV ) is at

least one, in other words we do not consider genomic loci that are not mutated.

When b(gV ) ∈ {ζ̄1, ζ̄2}, we set gR = gN (as in ψ1,ψ2). For b(gV ) = 1, we consider

two scenarios: (i) either the point mutation event has happened before the copy

number event, in which case we set gR = gN (see ψ3), or (ii) the copy number

event preceded the point mutation, where we choose gR such that ζ (gR) = ζ̄ and

b(gR) = 0 (as in ψ4).

We note that for some copy number configurations such as when ζ̄1 = ζ̄2 or

ζ̄2 = 0, some ψi values will be identical. For example, when total copy number

is equal to one, the possible pseudo-genotype states in the PCN scheme are P =

{ψ1 = (gN = (2,0),gR = (2,0),gV = (0,1)),ψ2 = (gN = (2,0),gR = (1,0),gV =

(0,1))}.

2.3.5 The likelihood function

Given the priors over pseudo-genotypes, the likelihood for each data point is:

p(bi|φi,di,πi, t) = ∑
ψi∈G 3

p(bi|φi,di,ψi, t)p(ψi|πi) (2.8)
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To address overdispersion, we have modelled the conditional distribution of

variant allele counts bi with a Beta-Binomial distribution, characterized in terms of

mean and precision as follows:

p(b|d,m,s) =
(

d
b

)
B(b+ sm,d−b+ s(1−m))

B(sm,s(1−m))
(2.9)

where B is the Beta function. To reflect our assumptions over the sample sub-

population structure, we set the mean value to a function of pseudo-genotypes,

cellular prevalence, and cellularity for each data point, that is m = ξ (ψn,φ n, t). All

data points share the same precision s.
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2.4 Inference
The main objective of this procedure is to infer the desired outputs of our model,

namely for genomic locus i, induced cluster assignments by ci and cellular preva-

lences φi. We use a Gibbs sampler to draw samples from the posterior distribution

of the model. We initialize the sampler such that all customers are in their own clus-

ters. Let c−i be the customer connection configuration with customer i’s outgoing

connection removed. Let xi = (bi,di) denote the observed data, namely, variant and

total allele counts.

The full conditional distribution of ci is:

p(ci|c−i,x1:N ,λ ) ∝ p(ci|λ )p(x1:N |ci,c−i,λ ) (2.10)

where p(ci|λ ) is the same as equation 2.4 and λ is the set of all hyperpa-

rameters. Let xTk be the set of customers in cluster Tk or equivalently, the set of

customers sitting at table k, then the likelihood term factors in:

p(x1:N |c−i,ci = j,λ ) = ∏
Tk∈T (C)

p(xTk |λ ) (2.11)

where T (C) is the partitioning induced by current customer connection config-

uration C. The term p(xTk |λ ) further expands as:

p(xTk |λ ) =
∫
(∏

i∈Tk

p(xi|θ ,λ ))p(θ |λ )dθ (2.12)

where the likelihood p(xi|θ ,λ ) = p(bi|φi,di,πi, t) is the same as equation 2.8.

Since our prior over cellular prevalences φi is non-conjugate to the likelihood,

we resolve to a cached version of Griddy Gibbs method [25] to compute the above

integral. At the end of each iteration (i.e., when all customers are reassigned), we

sample φk, for each cluster k as follows:

φk ∼ p(φk|xTk ,πTk , t,λ ) ∝ p(φTk |λ )p(xTk |φTk ,λ ,πTk , t) (2.13)

where p(φTk |λ ) is the probability density function of a uniform distribution.

This Gibbs sampler potentially displaces more customers at each step, and as
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such might have better mixing properties compared to the traditional CRP Gibbs

sampler [2]. Figure 2.5 shows such a step in ddCRP.

1 3 4 5 62 7
3

1
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5 6
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1 3 4 5 62 7

1 3 4 5 62 7

1

23

4

Figure 2.5: Possible moves by the sampler. Left column shows customer con-
nection and right column shows induced table configuration at each step.
We want to remove the outgoing connection of customer two, i.e., c2 = 6
(top row, the red arrow). When this connection is removed, the second
table is split into two tables, with customers one and two sitting at one
table and customers five and six sitting at a new table (middle row).
Customer three is picked as the new connection for customer two, i.e.,
cnew

i = 3, and this causes their respective tables to merge (bottom row,
the green arrow).

2.5 Resampling hyperparameters
α and a are resampled using methods described in [2]. Briefly, we used the fol-

lowing Gibbs move to update the value of hyperparameter α given the customer

connection configuration C:

p(α|C) ∝ α
K [

N

∏
i=1

(α +∑
j 6=i

f (di j))]
−1 p(α) (2.14)

where K =∑
N
i ci = i, i.e., the number of self-connections, and p(α)∼Gamma(α0,β0)

is the Gamma prior over α with shape and rate parameters α0 and β0.
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The decay function parameter a is updated using the following Gibbs move:

p(a|C,α) ∝ [ ∏
i:ci 6=i

f (di j,a)][
N

∏
i=1

(α +
i−1

∑
j=1

f (di j,a))]−1 p(a|α) (2.15)

where we assume a uniform prior on a independent of α .

Since the decay function is exponential in our model, we use the Griddy-Gibbs

[25] approach to sample approximately from equation 2.15.

We use the method proposed in [21] for resampling s.

Gamma distributed priors are characterized using shape α and rate β parame-

ters. Equation 2.16 shows the corresponding distribution function:

g(x;α,β ) =
β α ,xα−1e−xβ

Γ(α)
(2.16)

where Γ(α) is the Gamma function.

By default, hyperparameter resampling is enabled in our experiments in this

work, unless otherwise specified. We note that to explore the model’s sensitiv-

ity to the value of hyperparameters, in some of our experiments in chapter 3, we

disable hyperparameter resampling. We specify this in the description of those

experiments.

2.6 Implementation
This model is implemented in R programming language and is available upon re-

quest. It is built upon the implementation of ddCRP in [2].

2.7 Limitations and future extensions
We note that our assumptions regarding the pseudo-genotypes in the bulk data

may not agree with the genotype matrix derived from the single cell sequencing

experiment. More specifically, in modelling the bulk data, we assume that the

tumour consists of exactly 3 subpopulations (i.e., pseudo-genotypes). Equivalently,

we assume the existence of three genotypes in the bulk data, where the first two

are un-mutated and the third is mutated across all genomic loci. If the single cell
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sequencing study indicates the existence of a different number of genotypes, then

the bulk and single cell sequencing assumptions about the genotypes do not match.

We intend to explore a number of ways to mitigate this issue, including using the

genotypes observed in the single cell sequencing experiments to inform the prior

on the pseudo-genotypes in the bulk data.

The shortcomings of the single cell sequencing method, especially the gross

undersampling problem may obstruct using genotypes inferred from this type of

data in the likelihood of dd-PyClone. As implemented, our model only works with

a single anatomical/spatial tumour sample. We aim to expand it to use multiple

samples in future implementations. Our method uses a binarized version of the

genotype matrix. It may be possible to use the original genotype matrix in the

copy number space to calculate distances between genomic loci and potentially

improve accuracy of our estimates.

2.8 Conclusion
In this chapter we gave a precise mathematical formulation of the main objective of

this work, that is, how to use a binarized genotype matrix from single cell sequenc-

ing data to improve clustering and cellular prevalence estimation for genomic loci

from bulk sequencing data.

We proposed a solution based on the distance dependent Chinese Restaurant

Process (ddCRP), an infinite clustering framework that enables us to encourage co-

occurring genomic loci to cluster together. We then described an inference method

for our model based on a MCMC sampling scheme.
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Chapter 3

Experiments

In this chapter we report our experimental results over synthetic and real datasets.

We begin by describing methods pertaining to all of our experiments. To estimate

clustering assignment and cellular prevalences from our MCMC samples we use

max PEAR index and the mean over all samples respectively.

We then introduce the Generalized Dollo model, a strategy to generate geno-

types via a stochastic process over a phylogenetic tree that simulates SNV and CNV

events. We use the genotypes generated by this model to simulate the bulk data.

Generating realistic simulated datasets is necessary to test the performance of our

method since it is not yet possible to exactly quantify the CNV and SNV state in

real datasets and therefore we cannot accurately assess the accuracy of our model

using real datasets. We proceed to compare our method against existing methods.

To gauge performance of results we use V-Measure index and mean absolute error.

Real data experiments come next. We introduce a dataset consisting in five

timepoints of a Triple-Negative Breast Cancer (TNBC) xenograft experiment. We

benchmark our method against other existing methods over this dataset and re-

port the results. Finally, we present parameter sensitivity and MCMC convergence

analysis results.
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3.1 General information

3.1.1 Clustering summarization

To cluster genomic loci we first compute the posterior similarity matrix and then

maximize the PEAR index to compute a point estimate [11] as implemented in

the R package mcclust provided by the authors in [10]. We estimate the cellular

prevalence for each genomic locus as the mean of after burn-in MCMC samples.

3.1.2 Clustering evaluation

Clustering performance is measured with respect to the ground truth data in two

respects; first V-measure index that evaluates clustering completeness and homo-

geneity [27], and second, the accuracy of cellular prevalence estimates is reported

as the average absolute error.

3.2 Simulated data
Here we introduce our simulation scheme. We first use the Generalized Dollo

(GD) model to simulate genotypes. We then use these genotypes to simulate the

bulk data. A binarized version of the genotypes is used to inform our prior in

our method, while the bulk data constitutes the main input to our model and the

competing methods. Figure 3.1 shows the high-level data simulation workflow.

3.2.1 Simulating genotypes

Generalized Dollo model

We used a variation of the Stochastic Dollo (SD) model, called Generalized Dollo

Model (GD) to simulate synthetic data accounting for both SNVs and CNVs. SD

is a stochastic process that models evolution of binary features (in our case, point

mutations) along a phylogenetic tree. A feature could only be gained on one point

on the tree, and could be lost multiple times on different branches, but when lost,

it cannot be regained [1].

A limitation of SD is that it is restricted to binary features. For instance, it can
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Genotype data in 
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Binarized genotype 
data

GD model

dd-PyClone

PyClone

SciCloneClomial

PhyloSub/
PhyloWGS

Bulk data

All Inference Methods

Figure 3.1: High-level data simulation workflow. First, the GD model is used
to generate genotype data in copy number state (∆CN). Second, the
genotype data is converted into bulk data. This is given as input to all the
methods tested in this work to be used to infer the clustering assignment
and cellular prevalences of genomic loci. Third, the genotype data in
CN state is converted into a binary genotype matrix and supplied only
to our method, dd-PyClone, whereby it is used to construct an informed
prior over the partitions of genomic loci (the bold arrow).

only model presence and absence of a mutation at a certain genomic locus.

Multi State Stochastic Dollo (MSSD) model [1] relaxes this restriction by ex-

panding the present feature state and allowing transition within this expanded state

space. For example, MSSD allows transition and transversion point mutations in

addition to deletion.

MSSD can only model evolution after a SNV has happened. This is not a

correct assumption when modelling copy number variation events where we would

like to be able to account for copy number changes before a point mutation has

happened.
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To resolve this problem, in addition to expanding the present feature, we also

expand the absence feature and allow transition within these new states. This is the

GD model. Once the system gains the feature, that is, it transits into the present

features state subspace, it can make transitions within this subspace, but cannot go

back to the previous state. Figure 3.2 illustrates SD, MSSD, and GD side by side

on a specific phylogenetic tree for a particular genomic locus.

SNV

GD

(1,0)
(3,1)

(0,2) (3,0)

MSSD

(2,0)
(3,1)

(0,2) (2,0)

SD

0
1

0 0

(2,0) (2,0) 0

Before SNV After SNV Fixed State

SNV SNV

(2,0) (3,0) (1,0) (1,1) (1,2) (0,2) (2,1) (3,1) (2,0) (0) (1)State
Style

Figure 3.2: An instance of Generalized Dollo, Multi state stochastic Dollo
and Stochastic Dollo models over a rooted phylogenetic tree for a single
genomic locus side by side. We assume that a SNV has happened at
the red dot on the tree. Dashed lines represent the GD model’s run
over the subtree before the SNV has happened. The thick solid lines
represent the process after the SNV has happened. The thin solid lines
represent a fixed state, i.e., the process can only handle a fixed state
before the SNV gain event. The numbers and colours represent the state
of the process (CTMC) at that point. GD can model multiple states on
branches where SNV does not appear, while MSSD is forced to be in
a fixed state in those positions. Hence the space of problems that GD
models is a superset of that of SD.
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GD model’s setup

GD uses a Continuous-Time Markov Chain (CTMC) to simulate the evolution of

genomic loci states along the paths of the phylogenetic tree. The state space of

this CTMC consists of pairs (c1,c2) ∈ N0×N0 where N0 = N∪{0} and c1 and

c2 represent reference copy and variant copy numbers respectively. Rate matrix

Q1 controls the CTMC before the occurrence of the rare-event and rate matrix Q2

controls the CTMC after the occurrence of the rare-event.

We design Q1 and Q2 such that a complete deletion, i.e., transitioning to state

(0,0) is not possible. Q1 only allows transition between states that have zero vari-

ant copy number. This simulates the behaviour of the system before a SNV hap-

pens. We assume once a mutation is lost, it cannot be recovered, and enforce this

assumption in Q2 by not allowing transition from states with zero variant copy

number zero to states with non-zero variant copy numbers.
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Figure 3.3: Rate matrices for CTMC used on τ−pSNV (left) and τpSNV (right).
States represent are pairs representing reference and variant allele copy
numbers. In this example, maximum allowed copy number for both ref-
erence and variant alleles is 2. States to which transition is possible are
annotated green. Note that in both rate matrices, first row and column
that represent transitioning from and to the complete deletion state, are
all zero. This means that it is not possible to reach complete deletion in
our model.

Figure 3.3 shows an example Qabove and Qbelow rate matrices. The state space

of the Qabove is a subset of that of Qbelow since we do not allow transition to states

where a SNV has happened.

Simulating from the GD model

To simulate data for each genomic locus from the GD model on a phylogenetic tree,

we randomly pick a point on the tree to designate where the SNV has happened.

We call the subtree rooted at SNV point the below-subtree and the remaining part

of the tree, the above-subtree. We simulate GD on the above-subtree to determine

the copy number state of the SNV point along with other point on this subtree. This

accounts for evolution of the genotypes before a SNV has happened. We continue
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by simulating the GD on the below-subtree to determine the copy number state of

decedents of the SNV point. This accounts for evolution of the genotypes after the

SNV occurs.

To continue we first establish some notation following [3]. We define a phy-

logeny denoted by τ to be a continuous set of points and G (L ,E ) to be its topology

where L are the leaves and E the edges. Let Hi(ν) denote the state of the CTMC

for genomic locus i at point ν . For an edge e ∈ E , let |e| denote its length.

Let τ−x be the tree pruned at point x, that is, the tree with subtree rooted at x,

removed. We write τx for the subtree of τ rooted at node x, and τ−x the subtree

pruned at node x, that is, the subtree with points in τ − τx. Let ρ be a normalized

measure that assigns zero weights to absorbing states and equal weights to non-

absorbing states. Then the state of the CTMC at the root Hi(Ω) is distributed

according to a categorical distribution with parameter ρ .

⌦⌦

x 2 ⌧x 2 ⌧

⌦⌦

x 2 ⌧x 2 ⌧ x 2 ⌧x 2 ⌧

G1
G2

G3 G4 G1 G3 G4
G2

G3

⌧�x⌧�x ⌧x⌧x⌧⌧

Figure 3.4: A rooted tree topology τ with root node Ω and SNV event at
point x (left). G1, G2, G3, and G4 represent genotypes. τ−x is the sub-
tree pruned at x (middle). Subtree rooted at x is denoted by τx(right). To
simulate from the Generalized Dollo model, for a specific genomic lo-
cus i, we first pick the SNV position on the tree, then simulate a CTMC
on the pruned tree, and simulate another CTMC on the subtree.

Algorithm 1 shows the pseudo code to simulate from Generalized Dollo Model.

As input we provide the SimulateGeneralizedDollo procedure with tree topology τ

with M leaves and parameter µ , as well as rate matrices Qabove,Qbelow.
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Algorithm 1 Simulating From Generalized Dollo Model
1: procedure SIMULATEGENERALIZEDDOLLO(τ,µ,QABOVE,QBELOW)
2: for i in 1 : N do
3: Simulate SNV edge eSNV ∼ ν(τ,µ)
4: Simulate SNV point pSNV ∼ Uniform[0, |eSNV|] on eSNV.
5: Simulate state of CTMC at the root node, Hi(Ω)∼ Categorical(ui)
6: aboveStates← sampleTreeCTMC(τ−pSNV ,Qabove)
7: belowStates← sampleTreeCTMC(τpSNV ,Qbelow)
8: allStates← allStates ∪ combine(aboveStates, belowStates)
9: return allStates

where

X ∼ ν(τ,µ)⇔ p(X = x) =
1

||τ||+1/µ
×
{
|x| if x 6= Ω

1/µ otherwise
(3.1)

where sampleTreeCTMC(τ,Q) simulates along a phylogeny, a substitution CTMC

and a substitution-deletion CTMC for rate matrices Q1 and Q2 respectively.

Since ν has a point mass µ on Ω, there is a non-zero probability that a SNV

happens at the root and hence τ−pSNV = /0. In this case sampleTreeCTMC( /0,Q)

returns /0. If a SNV does not happen at the root, then with probability one there are

genotypes in the sample that have no variant allele copy at that genomic locus.

This will give us the copy number state of each genotype at each genomic locus.

We summarize this into copy-number aware genotype matrix ∆CN ∈ (N×N)M×N .

Each element of this matrix ∆CN
m,n is a pair = (CNR,CNV ) where CNR and CNV

represent reference and variant allele copy numbers respectively at genomic locus

n for the m-th genotype. The binary genotype matrix ∆ comes from binarized ∆CN.

An element of ∆ is equal to one if the second element of the corresponding element

in ∆CN is non-zero, and it is zero otherwise. Figure 3.5 shows the phylogeny and

10 genotypes each with 48 genomic loci generated from the GD model.
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3.2.2 Simulating bulk data

We use the generated genotypes ∆CN from the GD model to simulate the bulk

data. This bulk data serves as the input to the competing methods in this work.

Our method additionally takes as input a binarized version of the genotype data to

inform its prior over partitions of genomic loci.

For each genomic locus i, the simulated bulk data consists in (i) variant and

total allele counts (bi,di), (ii) major and minor copy numbers ζ̄ i
1 and ζ̄ i

2, and (iii)

tumour cellularity t. We set t = 1 for simulated experiments in this work.

Let Φ = Φ1:M where Φm is the clonal prevalence for genotype m, that is, the

fraction of cells in the tumour sample that have genotype m and M be the total

number of genotypes. Then φi, the clonal prevalence of genomic locus i in our

sample would be Φ.∆[, i] and φ = Φ.∆. In this work, we set Φm = m
∑

M
j=1 j

.

To generate bulk data at genomic locus i, we first simulate di, the total number

of reads mapping to i from a Poisson distribution with parameter 10,000. We then

use the CN state of the most prevalent genotype from ∆CN (here, it would be the

M-th genotype) at locus i to set the major and minor CNs for the bulk. That is we

set ζ̄ i
1 = Maximum(∆CN

M,i) and ζ̄ i
2 = Minimum(∆CN

M,i). To simulate the variant allele

counts bi we have to take into account the aggregate effect of all genotypes at

locus i in ∆CN. This means that the ψi-s will be slightly different from subsection

2.3.3 in chapter 2, that is, instead of containing normal, reference, and variant

subpopulations ψi = (gi
N ,g

i
R,g

i
V ), it should contain normal, and all the genotypes

from ∆CN. With a slight abuse of notation, we denote this by ψ∗i (∆
CN) = ψ∗i =

(gi
N ,g

i
1,g

i
2, ...,g

i
M). We also have to modify the definition of ξ to work with the

new ψ∗ as follows:

ξ
∗(ψ∗i ,Φi, t) =

(1− t)ζ (gN)

Z∗
µ(gN)+ t

M

∑
j=1

Φ jζ (gi
m)

Z∗
µ(gi

m) (3.2)

where Z∗ is the appropriate updated normalizing constant. Finally, we have bi ∼
Beta-Binomial(di,ξ

∗(ψ∗i ,φi, t),s) where we set s= 1000. Algorithm 2 summarizes

the bulk data simulation procedure:
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Algorithm 2 Simulate Bulk Data

1: procedure SIMULATEBULKDATA(Φ,∆CN,s, t)
2: for i in 1 : N do
3: d← d∪ Simulate di ∼ Pois(10,000)
4: ζ̄1← ζ̄1∪Maximum(∆CN

M,i)

5: ζ̄2← ζ̄2∪Minimum(∆CN
M,i)

6: b← b∪ Simulate bi ∼ Beta-Binomial(di,ξ
∗(ψ∗i ,Φi, t),s)

7: return {d,b, ζ̄1, ζ̄2, t}
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Figure 3.5: Transposed binarized simulated genotypes ∆ (right) from Gener-
alized Dollo process over a fixed phylogeny (left). The original geno-
type matrix ∆CN is in copy number space. We binarize it by setting en-
tries with non zero variant allele copy number to one (coloured red) and
setting entries with variant allele copy number of zero to zero (coloured
blue).

3.2.3 Benchmarking against existing methods

We benchmarked our method against existing methods over synthetic data. We

simulated 10 synthetic datasets each with 10 genotypes over 48 genomic loci from

the GD model. Figure 3.5 shows the genotype heat map and phylogeny used in one

of the datasets. The rest of the figures are in the appendix A, section A.1. In these

experiments, dd-PyClone was always supplied with the binarized genotype matrix.

The other methods were given the bulk data simulated from the original genotype

matrix in the copy number state. We refer the reader to Figure 3.1 for a schematic of
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the simulated data generation workflow. Figure 3.6 shows the performance results

of this experiment.

Parameters for synthetic data generation

We used the following setup to generate synthetic data:

t = 1

d = 10 ,000

s = 1000

µ = 100
number o f genotypes = 10

number o f genomic l o c i = 48

Max To ta l Copy Number = 4
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Figure 3.6: Performance results for dd-PyClone and existing methods over
synthetic data. Right panel shows clustering assignments performance.
Left panel shows cellular prevalence mean absolute error. *We were
not able to run Clomial with more than one dataset, since in the rest of
the datasets, the number of clusters are more than 10, and in this case,
Clomial never converged.

Parameter setting in method comparison experiments

We ran PyClone version 0.12.3 for 10,000 iterations with a burn-in of 1000 and

thinning of 1. Remaining parameters were set as follows:

num i te rs :10 ,000

base measure alpha=1

base measure beta=1

concen t ra t i on =1

p r i o r shape = 1

p r i o r ra te = 0.001
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dens i t y = pyc lone be ta b inomia l

be ta b inomia l p rec i son value = 1000

b e t a b i n o m i a l p r i o r shape = 1

b e t a b i n o m i a l p r i o r ra te = 1

be ta b inomia l p rec i son proposal p r e c i s i o n = 0.01

tumour content = 1

e r r o r r a t e = 0.001

We used Clomial version 1.4.0 and provided it with the correct number of

clusters via its c. Remaining arguments were set as follows:

maxIt = 20

binomTryNum=10

c = True Number of Clusters

We downloaded PhyloWGS with git tag smchet1-31-g57294e3 and used

it with the default settings for the following parameters:

−−mcmc−samples = 2500

−−mh−i t e r a t i o n s = 5000

Since this version of PhyloWGS did not output clonal frequencies, we edited

the source code to extract these values. Furthermore, to simplify comparison with

other methods, we provided PhyloWGS with an empty copy number file.

We used SciClone version 1.0.7. We set the maximum number of clusters to

its true value. The remaining parameters are as follows:

minimumDepth = 2

copyNumberMargins = 0.25

maximumClusters = True number of clusters.
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3.3 Real dataset

3.3.1 Triple-negative breast cancer Xenograft data

To test our method over a real dataset, we used a subset of samples from a triple-

negative breast cancer xenograft study [8] where breast cancer tissues from 55 pa-

tients were transplanted into highly immunodeficient mice to generate 30 xenograft

lines. Over 3 years, these lines were passaged up to 16 generations.

Whole genome sequencing was performed over a subsample of this cohort to

identify candidate genomic positions. It was followed by deep targeted amplicon

sequencing of between 100 to 300 SNV positions per sample. 210 cells from five

timepoints that span two samples were chosen for single cell genotyping, and about

48 SNV positions were targeted for each timepoint.

The results were post-processed to remove all positions labeled as non-somatic.

This was further summarized into constituent genotypes. A consensus phyloge-

netic tree was inferred using MrBayes [26]. Cells were grouped into clades con-

sisting of high probability branching splits. For each clade a consensus genotype

was derived by taking the most prevalent genotype at each genomic locus. Figure

3.7 shows the inferred genotype matrix ∆ for each sample. In each timepoint, we

only kept genomic loci that were shared between the bulk and single cell genotype

data. Inferred genotypes from the triple-negative breast cancer xenograft single

cell genotyping study is shown in Figure 3.7.
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Figure 3.7: Binary genotype matrices for sample SA494 over 29 genomic
loci (left) and sample SA501 over 38 genomic loci (right). These are
manually curated from a single cell genotype sequencing experiment
[8]. Briefly, MrBayes was used to infer a consensus phylogenetic tree
over the single nuclei. Then they were grouped into clades according
to high probability branching splits. Finally, each clade was assigned a
consensus genotype by taking the mode genotype of the clade at each
genomic locus.

3.3.2 Establishing the ground truth

Since exact clustering configuration and cellular prevalences of the genomic loci

in the real dataset is unknown, we used multi-sample PyClone’s result over 11

timepoints from sample SA501 and 4 timepoints from sample SA494 as our gold

standard. PyClone in multi-sample mode borrows statistical strength across all

45



timepoints to give better estimates of subclonal structure in individual timepoints.

The following timepoints were used for sample SA501:

SA501T, SA501X1A, SA501X2A, SA501X2B, SA501X3A,

SA501X3B, SA501X4A, SA501X4B, SA501X4C,

SA501X4D, SA501X5A.

The following timepoints were used for sample SA494:

SA494X4, SA494X3, SA494X2, SA494T

PyClone was run for 100,000 iterations with a burn-in period of 50,000 itera-

tions. The rest of the settings were identical to synthetic simulation experiments as

in listing 3.2.3. Cellular prevalence estimates are summarized in Figure 3.8. This

results in an overall clustering and timepoint-based prevalence estimates for each

genomic locus.
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Figure 3.8: Clustering result for multi-sample PyClone over timepoints
SA501 X1, X2, X4, and SA494 T, X4
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Figure 3.9: Clustering result for multi-sample PyClone over timepoints
SA501 X1, X2, X4, and SA494 T, X4 for genomic loci that
overlap with those sequenced in the single genotype analysis.

We ran our method along with competing methods over timepoints SA501

X1, X2, X4, and SA494 T, X4 for which we had matching single genotype

sequencing data. Figure 3.10 shows the performance of each method against the

golden standard.

3.4 Parameter sensitivity
In this section we report our simulation studies aimed at elaborating dd-PyClone’s

sensitivity to the choice of hyperparameters and noise level. Since hyperparameter

a, the decay function parameter, is the distinguishing parameter of our model, we

mostly focus on effects of its starting value on our model. To assess our model’s

robustness to noise, we introduce two types of noise, namely, point error and geno-

type loss. Finally, we examine our model under varying values of a and presence

of noise simultaneously.
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Figure 3.10: Performance results for dd-PyClone and existing methods over
TNBC SA501 X1, X2, X4, and SA494 T, X4. Right panel
shows clustering assignment performance. Left panel shows cellular
prevalence approximation mean absolute error.
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3.4.1 Sensitivity to value of a

Figure 3.11 shows the result of running our model with different starting values

for the hyperparameter a. In these experiments we disabled resampling of hyper-

parameters a, α , and s, and fixed them at their starting value. We simulated 10

datasets from the GD model with 5 genotypes over 48 genomic loci. We ran our

model 170 times for each dataset, with different initial values for hyperparameters,

each time for 200 iterations. Each box plot shows the respective performance index

for runs with an identical initial value of a and different values for s and α , each

for 5 datasets.
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Figure 3.11: Performance over 10 synthetic datasets. Hyperparameter a is
fixed at the specific value for each inference run. This result suggests
that performance declines with increasing values of hyperparameter a.
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3.4.2 Sensitivity to presence of noise

We consider two types of noise. A point noise that affects the status of a single

genomic locus for certain genotypes, and a genotype loss noise, where one or mul-

tiple genotypes are completely lost. Let the original genotype matrix be ∆M×N

where M is the number of genotypes and N is the number of genomic loci. In our

experiments, we provided the noisy genotype matrix to our model.

Point noise

When a genotype is erroneously marked as mutated at a genomic locus, we say

a point noise has occurred. In particular, we assume that a process independently

operates on each element of ∆ and flips its value with a probability p. This process

could be due to false positives in calling SNVs.

Concretely, assume fp : {0,1}M×N × [0,1]→ {0,1}M×N be a stochastic map

parameterized by p corresponding to the point noise process. The filtered matrix

would be a random binary matrix RM×N with elements that follow the distribution

in equation 3.3.

Pr(Ri, j = k) = 1(∆i, j = 0)pk(1− p)(1−k)+1(∆i, j = 1)p(1−k)(1− p)k (3.3)

In other words, we can view this process as first sampling a random binary matrix

FM×N each element of which is sampled independently from a Bernoulli distribu-

tion with parameter p, Fi, j
iid∼ Bern(p). Then we combine this filtered matrix with

the original genotype matrix ∆ using an element-wise XOR operation to get filtered

matrix R.

Figure 3.12 shows the result of providing our model with a noisy genotype

matrix, under various probabilities of noise p. We simulated 10 datasets from the

GD model with 10 genotypes and 48 genomic loci. We ran dd-PyClone for 500

iterations and enabled resampling of hyperparameters a, α , and s. Each box plot

shows the respective performance index when dd-PyClone was supplied with a

noisy genotype matrix with a particular p.
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Figure 3.12: Effect of adding point noise on V measure index (left) and mean
absolute error of cellular prevalences (right). This result implies that
our method is sensitive to high levels of point noise.

Genotype loss

Now we turn our attention to effects of genotype loss. It may happen due to un-

dersampling inherent in single cell genotyping (SCG) experiments. The number of

isolated cells that are to be sequenced in SCG experiments is order of magnitudes

less than the number of cells in the donor tumour. This may result in undersampling

of some genotypes, with less prevalent genotypes being more prone to missing.

Figure 3.13 illustrates the effects of progressively removing more genotypes.

We simulated 10 datasets from the GD model with 10 genotypes over 48 genomic

loci. For each dataset, we ran dd-PyClone 11 times each for 500 iterations. Each
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time, we held out a number of genotypes from the original genotype matrix ∆ and

provided dd-PyClone with the resulting undersampled genotype matrix ∆
′
. This

result implies that if more than half of high prevalence genotypes are observed,

using them will improve clustering assignment and cellular prevalence estimates

over the genotype-naive methods.
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Figure 3.13: Effect of removing genotypes on V measure index (left) and
mean absolute error of cellular prevalences (right). Zero genotype
loss depicts the model performance under the original genotype ma-
trix. Number of lost genotypes of 10 indicates the performance of
the model with no genotypes supplied. In this case, the method es-
sentially falls back to that of PyClone. We have included PyClone’s
performance over the same datasets with 500 MCMC iterations as a
reference (right most box plot). As expected, with loss of genotypes,
the method progressively performs worse since it is losing informa-
tion. The rise in performance when all genotypes are lost could be
attributed to the fact that undersampled genotypes are misleading and
interfere with the signal in the bulk data.

We also tested the performance of the model under removal of individual geno-

types. Figure 3.14 illustrates the effects of removing individual genotypes. The

experimental configuration is exactly the same as the above experiment, except
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that we held out only one genotype from the original genotype matrix ∆ and pro-

vided dd-PyClone with the resulting undersampled genotype matrix ∆′. This result

implies that our method is robust regarding the removal of individual genotypes.
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Figure 3.14: Effect of removing individual genotypes on V measure index
(left) and mean absolute error of cellular prevalence (right). Zero geno-
type loss depicts the model performance under the original genotype
matrix. Horizontal axes shows which genotype was removed from the
genotype matrix supplied to the method. The model is robust to the
loss of individual genotypes.

3.4.3 Sensitivity to a and noise

Here we examine the effects of simultaneously varying a and introducing noise.

In our first experiment, we added point noise. We simulated five datasets from the
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GD model with 10 genotypes over 48 genomic loci. For each dataset, we ran dd-

PyClone for 200 iterations 60 times. Each time we fixed the hyperparameters a,

α and s to a different starting value and disabled hyperparameter resampling. For

each dataset, we introduced point noise with specified probability p to the original

genotype matrix, and input the filtered genotype matrix to our model. Results for

this experiment are shown in Figure 3.15. It implies that in presence of noise, the

model is more sensitive to higher values of decay function parameter a and as a

increases, model performance declines.
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Figure 3.15: Effect of adding random point noise and varying decay parame-
ter a on V measure index (a) and mean absolute error of cellular preva-
lence estimates (b) for the five simulated datasets. Beta-Binomial pre-
cision parameter s and hyperparameter α are fixed at 1000 and 1 re-
spectively. We note that V measure index is more sensitive to changes
in value of a than the level of point noise. Heat map colours represent
values in the vertical axis and are included to aid the eyes.

We examined two genotype loss scenarios: one where only a single genotype is

lost, and one where progressively more genotypes are missed. Results for the first

scenario are in Figure 3.16. Five datasets identical to the point noise experiment

were generated. For each dataset, we held out the specified genotype and input the

remaining as the genotype matrix to our model (i.e., a matrix with 9 genotypes in

our experiments).

58



02468

0.0
0.2

0.4
0.6

0.8
1.0

0.55
0.60
0.65
0.70
0.75
0.80
0.85

Index of removed genotype

a

V
 m

ea
su

re

seed = 0

02468

0.0
0.2

0.4
0.6

0.8
1.0

0.55
0.60
0.65
0.70
0.75
0.80
0.85

Index of removed genotype

a

V
 m

ea
su

re

seed = 1

02468

0.0
0.2

0.4
0.6

0.8
1.0

0.55
0.60
0.65
0.70
0.75
0.80
0.85

Index of removed genotype

a

V
 m

ea
su

re

seed = 2

02468

0.0
0.2

0.4
0.6

0.8
1.0

0.55
0.60
0.65
0.70
0.75
0.80
0.85

Index of removed genotype

a

V
 m

ea
su

re
seed = 3

02468

0.0
0.2

0.4
0.6

0.8
1.0

0.55
0.60
0.65
0.70
0.75
0.80
0.85

Index of removed genotype

a

V
 m

ea
su

re

seed = 4

0.55

0.60

0.65

0.70

0.75

0.80

0.85

(a) V measure Index

59



02468

0.0
0.2

0.4
0.6

0.8
1.0

0.06
0.08
0.10
0.12
0.14
0.16

Index of removed genotype

a

P
hi

 e
rr

or

seed = 0

02468

0.0
0.2

0.4
0.6

0.8
1.0

0.06
0.08
0.10
0.12
0.14
0.16

Index of removed genotype

a

P
hi

 e
rr

or

seed = 1

02468

0.0
0.2

0.4
0.6

0.8
1.0

0.06
0.08
0.10
0.12
0.14
0.16

Index of removed genotype

a

P
hi

 e
rr

or

seed = 2

02468

0.0
0.2

0.4
0.6

0.8
1.0

0.06
0.08
0.10
0.12
0.14
0.16

Index of removed genotype

a

P
hi

 e
rr

or
seed = 3

02468

0.0
0.2

0.4
0.6

0.8
1.0

0.06
0.08
0.10
0.12
0.14
0.16

Index of removed genotype

a

P
hi

 e
rr

or

seed = 4

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

(b) Cellular prevalence error

60



Figure 3.16: Effect of removing single genotypes and varying hyperparame-
ter a on V measure index (a) and mean absolute error of cellular preva-
lence estimates (b) for five simulated datasets. Genotypes are sorted
in decreasing order of prevalence from right to left. Genotype 1 is the
least prevalent and genotype 9 is the most prevalent. Beta-Binomial
precision parameter s and hyperparameter α are fixed at 1000 and 1 re-
spectively. We note that V measure index is more sensitive to changes
in value of a than removal of single genotypes. Heat map colours rep-
resent values in the vertical axis and are included to aid the eyes.

In the second scenario, we progressively removed more genotypes. Figure 3.17

depicts these results. Except for genotype loss, the rest of experiment setup was

identical to the first scenario. This result implies that the model is more sensitive

to the value of the decay function parameter a than it is to genotype removal.
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Figure 3.17: Effect of removing progressively more genotypes and varying
decay parameter a on V measure index (a) and mean absolute error
of cellular prevalence estimates (b) for five simulated datasets. Beta-
Binomial precision parameter s and hyperparameter α are fixed at
1000 and 1 respectively. We note that V measure index is more sensi-
tive to changes in value of a than removal of multiple low prevalence
genotypes. Heat map colours represent values in the vertical axis and
are included to aid the eyes.

3.4.4 Effect of non-exchangeability

As stated in the Methods chapter, ddCRP is not an exchangeable prior in general.

Figure 3.18 shows the effect of random reordering of customers on our model. It

implies that our model is not significantly sensitive to the order of customers.
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Figure 3.18: Effect of random reordering of customers in each iteration of
the sampler vs keeping the order of customers fixed on V measure
index (left) and mean absolute error of cellular prevalence (right). The
top row depicts results over a synthetic dataset (all settings identical
to subsection 3.4.2 except that there is no added artificial noise). The
bottom row shows result over a real dataset.

3.5 Computational aspects
Computing the Distance Matrix takes O(N2M). Computing the clustering result

takes O(N2). The complete analysis with 100 MCMC runs on a personal laptop

with 2.4 GHz Intel Core 2 Duo and 8GB of RAM memory, for a dataset of 48

genomic loci and 10 genotypes takes about 5 minutes.
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3.6 Convergence diagnostics
Following [29] to assess convergence of the MCMC chain for TNBC Xenograft

samples SA501 and SA494, we ran 3 chains for 10,000 iterations with random

seeds and visually inspected Posterior Similarity Matrices (PSM) to ensure simi-

larity. Figure 3.19 shows the PSM for time point X4 in sample SA494. The rest

of the figures are in the appendix, section A.2. These experiments imply that the

chains have converged.
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Figure 3.19: 10,000 runs from 3 different seeds over the Xenograft sample
SA494 timepoint X4.
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3.7 Conclusion
In this chapter, we first introduced a SNV and CNV aware genotype simulation

scheme based on a phylogenetic tree, termed the Generalized Dollo model, from

which we also simulated the bulk datasets.

We have shown that our method outperforms existing methods on both clus-

tering assignment and cellular prevalence estimates in simulated datasets from the

GD model. Furthermore, we have demonstrated that our method performs com-

parably well with existing methods in a benchmark over a real dataset. We have

also shown that our method is fairly robust to the choice of hyperparameters and

performs reasonably in presence of noise.
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Chapter 4

Conclusion

Understanding tumour subpopulation structure is essential in understanding how

tumours start, grow, and develop resistance to treatment [13]. Next generation

sequencing and, more recently, single cell sequencing have been used to study this

intra-tumour heterogeneity.

Our method sits at the intersection of bulk and single cell sequencing technolo-

gies. It leverages genotype co-occurrence patterns extracted from SCS to improve

clustering and cellular prevalence estimates in bulk sequencing data.

4.1 Significance and contribution
In this work we introduced a novel method to incorporate single cell genotyping

data with bulk sequencing data in the study of subclonal architecture. We presented

a new genotype simulator, the Generalized Dollo model. It enables us to account

for both copy number and single nucleotide variations while respecting the Dollo

parsimony principle. Moreover, it models evolution before the occurrence of a

SNV, resulting in a more realistic simulated dataset.

We have shown that our method outperforms existing methods on both cluster-

ing assignment and cellular prevalence estimates in simulated experiments. Fur-

thermore, we have demonstrated that our method performs comparably well with

existing methods in a benchmark over real datasets. We have also shown that our

method is fairly robust to the choice of hyperparameters and performs reasonably
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in presence of noise.

Thus we have confirmed the hypothesis we posited in the introduction chapter,

that is, that co-occurrence patterns from single genotyping assays, when enough

genotypes have been captured, in conjunction with deep sequencing bulk data, may

improve cellular prevalence estimates of genomic loci.

4.2 Limitations
We note that our assumptions regarding the clonal subpopulation in the bulk data

may not agree with the input genotype matrix ∆ from the single cell genotyping

experiment. More specifically, we assume in modelling of the bulk data that there

are only three possible genotypes per genomic locus, namely, normal, variant, and

reference subpopulations. If there are fewer or greater than three genotypes present

in ∆, then the two assumptions are in conflict. We note that this is not an inherent

problem in the model and could be fixed in future implementations.

The current inference algorithm uses a cache-based Griddy-Gibbs method to

deal with non-conjugate distributions. This may potentially impair accuracy and

impose a high memory footprint.

Our experiments indicate that our method is sensitive to undersampling of

genotypes. That is, performance in both clustering assignment and cellular preva-

lence estimation decline when some of the existing genotypes are not observed.

In particular, we observed that if less than half of the genotypes are observed, our

model performs worse than some of the genotype-naive methods.

4.3 Potential applications
Until single cell sequencing technology is mature enough, that is, sufficiently cost-

efficient and more accurate, it could be used in conjunction with bulk sequencing

data to obtain improved estimates of tumour subclonal properties.

One scenario is the longitudinal sampling of cancer patients and model systems

to more accurately profile evolutionary dynamics. This is a step on the route to

uncovering properties of clonal fitness that in turn are required for quantitative de-

scriptions of phenotypic traits conferring selective advantages. We are undertaking

such experiments in our labs so that computational methods to decipher the sub-
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clonal structure of heterogeneous tumours, including ours, can be directly applied

in the coming years.

We note that genotype matrix inferred from single cell genotyping studies

is the main intended source to compute distance between genomic loci in dd-

PyClone. However, any genomic loci co-occurrence indicator data from parallel

studies could be used with our model. One example is co-occurring and anti-co-

occurring mutations network [5].

4.4 Future research
There are a number of ways in which our model could be improved. First, instead

of a binarized genotype matrix, the original single cell genotype matrix in copy

number space could be used to compute distance between genomic loci. Second,

we posit that it may be possible to use the bulk sequencing data to estimate missing

or noisy values in the single cell genotype matrix. Third, these could be incorpo-

rated into a phylogenetic reconstruction algorithm that jointly infers evolutionary

history, genotypes, and prevalences from bulk and single cell sequencing data.

4.5 Final word
In summary, we have introduced a novel way to combine single cell genotyping and

bulk sequencing data to study clonal subpopulation architecture and have shown

that it outperforms existing methods in simulation studies and performs compara-

bly in real dataset benchmarking. We hope that our method will help in under-

standing the evolutionary basis of cancer.
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Appendix A

Supporting Materials

A.1 Simulated genotypes from the GD model
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Figure A.1: Transposed binarized simulated genotypes X (right) from Gen-
eralized dollo process over a fixed phylogeny (left). The original geno-
type matrix XCN is in copy number space. We binarize it by setting en-
tries with non zero variant allele copy number to one (coloured red) and
setting entries with variant allele copy number of zero to zero (coloured
blue).
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Figure A.2: Transposed binarized simulated genotypes X (right) from Gen-
eralized dollo process over a fixed phylogeny (left). The original geno-
type matrix XCN is in copy number space. We binarize it by setting en-
tries with non zero variant allele copy number to one (coloured red) and
setting entries with variant allele copy number of zero to zero (coloured
blue).
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Figure A.3: Transposed binarized simulated genotypes X (right) from Gen-
eralized dollo process over a fixed phylogeny (left). The original geno-
type matrix XCN is in copy number space. We binarize it by setting en-
tries with non zero variant allele copy number to one (coloured red) and
setting entries with variant allele copy number of zero to zero (coloured
blue).
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Figure A.4: Transposed binarized simulated genotypes X (right) from Gen-
eralized dollo process over a fixed phylogeny (left). The original geno-
type matrix XCN is in copy number space. We binarize it by setting en-
tries with non zero variant allele copy number to one (coloured red) and
setting entries with variant allele copy number of zero to zero (coloured
blue).
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Figure A.5: Transposed binarized simulated genotypes X (right) from Gen-
eralized dollo process over a fixed phylogeny (left). The original geno-
type matrix XCN is in copy number space. We binarize it by setting en-
tries with non zero variant allele copy number to one (coloured red) and
setting entries with variant allele copy number of zero to zero (coloured
blue).
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Figure A.6: Transposed binarized simulated genotypes X (right) from Gen-
eralized dollo process over a fixed phylogeny (left). The original geno-
type matrix XCN is in copy number space. We binarize it by setting en-
tries with non zero variant allele copy number to one (coloured red) and
setting entries with variant allele copy number of zero to zero (coloured
blue).
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Figure A.7: Transposed binarized simulated genotypes X (right) from Gen-
eralized dollo process over a fixed phylogeny (left). The original geno-
type matrix XCN is in copy number space. We binarize it by setting en-
tries with non zero variant allele copy number to one (coloured red) and
setting entries with variant allele copy number of zero to zero (coloured
blue).
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Figure A.8: Transposed binarized simulated genotypes X (right) from Gen-
eralized dollo process over a fixed phylogeny (left). The original geno-
type matrix XCN is in copy number space. We binarize it by setting en-
tries with non zero variant allele copy number to one (coloured red) and
setting entries with variant allele copy number of zero to zero (coloured
blue).
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Figure A.9: Transposed binarized simulated genotypes X (right) from Gen-
eralized dollo process over a fixed phylogeny (left). The original geno-
type matrix XCN is in copy number space. We binarize it by setting en-
tries with non zero variant allele copy number to one (coloured red) and
setting entries with variant allele copy number of zero to zero (coloured
blue).
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A.2 Convergence analysis results
The following figures each show PSM from 3 chains over the Xenograft TNBC

real dataset.
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Figure A.10: 10,000 runs from 3 different seeds over the Xenograft sample
SA501 timepoint X1.
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Figure A.11: 10,000 runs from 3 different seeds over the Xenograft sample
SA501 timepoint X2.
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Figure A.12: 10,000 runs from 3 different seeds over the Xenograft sample
SA501 timepoint X3.
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Figure A.13: 10,000 runs from 3 different seeds over the Xenograft sample
SA501 timepoint X4.
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Figure A.14: 10,000 runs from 3 different seeds over the Xenograft sample
SA501 timepoint X5.
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Figure A.15: 10,000 runs from 3 different seeds over the Xenograft sample
SA494 timepoint T.
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