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Abstract 
Interest in developing androgen receptor (AR) inhibitors with novel mechanism of 

action for the treatment of prostate cancer (PCa) is on the rise since the commercial anti-

androgens (including recently approved drug, Enzalutamide) face clinical limitations. 

Current therapies fail over a period of time because they all target mutation-prone androgen 

binding pocket on AR to which the receptor has already developed effective resistance 

mechanisms. Hence, there is a pressing need for novel therapeutics that inhibit the AR 

through alternative modes of action.  

 

To address this problem, we have used in silico drug design methodology to create 

new drugs that act on an entirely different site on the AR, a recently identified co-activator 

site called binding function-3 (BF3). This dissertation describes the discovery and 

development of novel anti-androgens directed towards the BF3 surface of the AR. These 

inhibitors were developed through a series of computational experiments followed by 

extensive biological validations. Based on the activity profile of the identified inhibitors, it 

can be anticipated that these drug prototypes will lay a foundation for the development of 

alternative or supplementary small-molecule therapies capable of combating PCa even in its 

drug resistant forms. Because the emergence of castration resistance is the lethal end stage of 

the disease, we anticipate that the thesis work will eventually have a substantial impact on the 

survival of prostate cancer patients. 
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Chapter 1: INTRODUCTION 

1.1 Prostate Cancer 

In recent decades, prostate cancer (PCa) has emerged as one of the most challenging 

oncologic problems in medicine and the second leading cause of cancer related death in elderly 

males particularly in western societies.
1
 It has been estimated that on an average 24,000 

Canadian men will be diagnosed with PCa (24% of all new cancer cases) and 5,000 will die from 

it every year.
2
 PCa is a malignant tumour that starts in cells of the prostate, a walnut-sized gland 

which is a part of the urinary and reproductive systems of the male. The main function of the 

prostate is to help control the flow of urine and production of seminal fluid.  

PCa is a heterogeneous disease, the etiology of which appears to be related to a complex 

range of factors including age, race, lifestyle patterns, genetic and nutritional factors.
3
 Several 

studies evidenced that in most cases some form of inappropriate activation of androgen receptor 

(AR) is linked to recurrent growth of prostate cancers.
4, 5

 AR is expressed throughout prostate 

cancer progression and persists in the majority of patients with hormone refractory disease.
6-8

 

Also, high levels of AR have been observed in over 80% of locally advanced castration-resistant 

prostate cancers.
4
 Since AR is central to progression to castration resistance, inhibition of this 

protein remains an important therapeutic approach. 

1.1.1 Stages of Prostate Cancer 

Staging is a way of describing where the cancer is located and whether it is affecting 

other parts of the body. There are two types of staging for PCa. 

 The clinical stage is based on the results of tests done before surgery, which includes 

digital rectal examination, biopsy and sometimes X-rays, CT and/or MRI scans, and bone 

scans. The tests are recommended based on the level of serum prostate specific antigen 

(PSA), the size of the cancer, which includes its grade and volume. 

 The pathologic stage is based on information found during surgery, plus the laboratory 

results, referred to as pathology, of the prostate tissue removed during surgery. The 

surgery often includes the removal of the entire prostate and some lymph nodes. 

Usually, the urologists use the TNM system to describe the stages of PCa. TNM is an 

abbreviation for tumor, node and metastasis.
9
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1.1.2 Prognostic Factors 

In addition to stage, urologists use other prognostic factors to help plan the best treatment 

and predict how successful treatment will be (table 1.1). Below are prognostic factors for men 

with different stages of PCa.  

PSA test. PSA is a measurement of prostate-specific antigen levels in a man’s blood.
10

 These 

results are usually reported as nanograms per milliliter (ng/mL). In some cases, the tumors do not 

cause an increased PSA level, so a normal PSA does not always mean that there is no PCa. 

Gleason score. The Gleason Scoring System is the most common grading system used in PCa. 

The pathologist looks at how the cancer cells are arranged in the prostate and assigns a score on a 

scale of 1 to 5. Cancer cells that look similar to healthy cells are given a low score, and cancer 

cells that look less like healthy cells or are more aggressive looking are given a higher score. To 

assign the numbers, the doctor determines the main pattern of cell growth, which is the area 

where the cancer is most obvious, looks for any other less common pattern of growth, and gives 

each one a score. The scores are added to come up with an overall score between 2 and 10. For 

example, a Gleason score of 7 is a medium-grade cancer, and a score of 8, 9, or 10 is a high-

grade cancer. 
11

 

 

Table 1.1. Clinical stages of prostate cancer. 

Stage Test results Clinical stage Description Treatment 

1 PSA <10ng/mL and 

Gleason score <=6 

T1a, N0, M0 Cancer growth is slow and 

no symptoms 

Radical prostatectomy, 

Radiation 

2 PSA <10ng/mL and 

Gleason score <=6 

T1b-T2, N0, M0 Cancers have not grown 

outside the prostate but are 

larger than stage 1 

Radical prostatectomy, 

Radiation 

3 PSA >=10 but 

<20ng/mL and 

Gleason score =6 

T3, N0, M0 Cancers have spread 

beyond the prostate but 

have not reached other 

organs 

External beam radiation 

+ hormone therapy, 

hormone therapy alone 

 

4 

 

PSA >=20ng/mL and 

Gleason score >=8 

 

T4, N1, M1 

 

Cancers have spread to the 

bladder, rectum, lymph 

nodes and bones 

 

External beam radiation 

+ hormone therapy, 

hormone therapy alone 
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1.1.3 Castrate-Resistant Prostate Cancer (CRPC) 

Although radiation therapy and radical prostatectomy are used to treat PCa (depending on 

the stage of disease, advice of the physician and choice of the patient), androgen deprivation 

therapy (ADT) is considered to be the ‘gold standard’ treatment option for PCa.
12

 As the name 

suggests ADT blocks either the production or the function of androgens. ADT involves treatment 

with luteinizing hormone-releasing hormone antagonists and AR inhibitors.
13

 While treatment 

with AR antagonists can initially suppress the prostate cancer growth, long-term hormone 

therapy becomes progressively less effective. This leads to the progression of surviving tumor 

cells to the castration resistant state.
14

 CRPC presents a spectrum of diseases ranging from rising 

PSA levels without metastases to bone metastases. 
15, 16

 It has been reported that bone metastases 

is common phenomena, affecting approximately 90% of men with CRPC, causing severe pain 

and spinal cord compression.
17, 18

 

Although the progression to CRPC is not fully understood, studies have determined 

several different mechanisms involving AR that eventually lead to CRPC.
19, 20

 Briefly, there are 

four critical mechanisms for the development of castration resistance. 1) Overexpression of AR 

2) AR mutations that render the receptor responsive to non-androgen ligands including 

antagonists 3) Expression of AR splice variants 4) Androgen independent AR activation 

mechanisms. These factors will be discussed in detail in the following chapters.   

1.2 Androgens and Androgen Receptor 

Androgen receptor can be activated by the binding of its physiological ligands, testosterone 

and 5α-dihydrotestosterone (5α-DHT). 
21, 22

 Physiologically, functional AR is responsible for in 

utero male sexual differentiation and for male pubertal changes. In adult males, androgen is 

mainly responsible for development and the maintenance of male secondary characteristics 

including spermatogenesis and bone mineral density.
22

 The function of androgens can be 

classified into 1) androgenic effect-occurs in the reproductive tissues, including prostate and 

testis 2) anabolic effect-occurs in muscle and bone.
23

 

The human AR, classified as NR3C4 (nuclear receptor subfamily 3, group C, gene 4) 

belongs to the steroid hormone group of nuclear receptor superfamily. AR shares high sequence 

homology with other members of the family that includes estrogen receptor (ER), glucocorticoid 

receptor (GR), progesterone receptor (PR) and mineralocorticoid receptor (MR). 
24, 25

 AR is a 
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ligand-dependent transcription factor mainly expressed in androgen target tissues, with the 

highest expression level observed in the prostate, adrenal gland and epididymis. 
26

 Therefore, AR 

is associated with many androgen-regulated clinical disciplines ranging from urology (prostate 

cancer), neurology (spinal bulbar muscular atrophy) to dermatology (hirsutism, baldness and 

acne).
27

 

Briefly, synthesis of testosterone occurs primarily by the Leydig cells in the testes, under 

the regulation of luteinizing hormone, which is in turn regulated by gonadotropin-releasing 

hormone. Once produced, testosterone mostly circulates bound to serum sex hormone-binding 

globulin 
28

 and albumin.
29

  Free form of testosterone enters prostate cell and gets converted into a 

more potent metabolite DHT by the action of 5α-reductase enzyme.  

1.2.1 Activation of AR 

The activation of AR follows a well characterized pathway. In the cytoplasm of prostate 

cells, unliganded AR associates with a complex of cytoplasmic factors and molecular chaperone 

heat shock proteins 40, 70 and 90 that maintain the structural integrity of the receptor in a high-

affinity agonist binding conformation.
30

 Upon binding of DHT, the AR undergoes a series of 

conformational changes, including disassociation from chaperones, interactions between its N 

and C termini, interaction with co-factors such as importin-α, which transports proteins across 

the nuclear pore complex into the nucleus, dimerization and binds to specific androgen response 

element (ARE).
31, 32

 After translocation, AR interacts with co-activator proteins such as steroid 

receptor coactivators (SRCs) at the co-activator binding site called activation function (AF2) 

site.
33

 This triggers the recruitment of RNA polymerase II and other transcriptional factors 

(p300, CREB binding protein etc.) to form a complex with the AR that leads to the transcription 

of target genes promoting the growth and survival of prostate cells (figure 1.1). Previously, it 

was hypothesized that the nuclear AR is phosphorylated by kinases, forms a dimer and binds to 

AREs found in the promoters and enhancers of AR-dependent genes. However,  in 2012 van 

Royen et al suggested that dimerization of the AR only occurs after nuclear translocation and 

may require prior binding to the DNA.
34
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Figure 1.1. The signaling pathway of androgen receptor. The AR domains are labeled as. NTD - 

N-terminal domain, D - DNA binding domain, LBD - ligand binding domain. 

1.2.2 Structural and Functional Aspects of AR 

The AR gene (located on the X chromosome at Xq11-12) is more than 90 kb long and 

codes for a protein of 919 amino acids. Even though steroidal nuclear receptors are implicated in 

different physiological processes, they all share the same modular structure and domain 

organization.
35

 In AR, the N-terminal domain (NTD) is encoded by exon 1. Exons 2 and 3 

encode for the DNA-binding domain (DBD) whereas the ligand binding domain (LBD) is 

encoded by exons 4 to 8. There is also a small hinge region between the DNA-binding domain 

and ligand-binding domain (figure 1.2A).
21

 

N-Terminal Domain (NTD). This region accounts for more than 60% (1 to 558 

residues) of the AR protein and functions as a potent transcriptional activator independent of the 

androgen activation. Based on sequence similarity, the NTD is the least conserved domain 

amongst all nuclear receptors. Human AR shares only 8.4% sequence identity with the NTD of 
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human ER, 14.9% identity in the case of the GR and 21.9% with the PR. Structurally, the AR 

NTD is highly flexible and displays intrinsic disorder in solution due to which elucidation of its 

crystal structure is almost impossible. 
36-38

 However, biophysical study of the NTD has revealed 

that it exists in a molten globule conformation
38

  with regions of rigid secondary structures. It 

was hypothesized that these regions are either buried or exposed in response to different cellular 

events including levels of androgen, type of coactivators and chromatin environment.  

The NTD is characterized by the presence of two transcriptional activation units (TAU) 

termed TAU-1 (residues 101–370) and TAU-5 (residues 360–485). 
39, 40

 Importantly, the AR-

NTD contains two motifs that are essential for the interaction with its ligand binding domain i.e. 

FxxLF motif (at residues 23–27) and WxxLF motif (at residues 433–437). The corresponding 

contact (termed N/C interaction) has been shown to be critical for stabilizing the androgen in the 

ligand binding pocket and for overall AR function.
41, 42

 Furthermore, the NTD contains two large 

ploy-amino acid repeats known as homopolymers i.e. poly-glutamine and poly-glycine 

fragments, averaging 21 and 24 residues, respectively. Several studies have been reported that 

any variation in length of the poly-glutamine can result in Kennedy disease (also known as X-

linked spinal and bulbar muscular atrophy) and prostate cancer. 
43, 44

 Deletion of portions of the 

NTD or mutation of some of its key residues such as I229A, M244A, L246A, and V248A causes 

a decrease of AR transactivation activity. 
45

  

The AR NTD plays a critical role in mediating AR transcriptional activity by recruiting 

several transcription machinery components including the members of Transcription factor II, 
46

 

coactivator proteins such as CREB-binding protein 
47, 48

 and co-repressors, like SMRT.
49

  

The DNA Binding Domain (DBD). This domain contains 66 amino acids with two zinc 

finger motifs, where each metal ion is coordinated by four cysteine residues. The residues 

GSCKV (577-581) forms the P box that interacts with the major groove of the DNA, while the 

second zinc finger contains the D box (residues 596–600. ASRND), which plays a role in DBD-

mediated AR dimerization (Figure 2B). 
50

 The AR DBD recognizes classical AREs on the DNA 

that are organized as inverted repeats of 5'-AGAACA-3'-like motifs with a three nucleotide 

spacer and selective AREs that are considered direct repeats of 5'-AGAACA-3'-like motifs.
51, 52

  

The DBD is highly conserved domain and shares high degree of sequence similarity with 

other nuclear receptors (79.5% identity with PR, 71.2% with GR and 53.4% with ER).
21

 Shaffer 

et al solved the rat AR DBD in a complex with a direct repeat of ARE (PDB. 1R4I) and reported 
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that the AR DBD is formed by two short anti-parallel β-strands and two perpendicular α-helices 

(figure 1.2B). The study concluded that this particular structural organization allows the AR 

DBD to bind to the DNA in the form of a “head to head” dimer, where one monomer binds the 

half-site response element with high affinity and the second binds the other half-site with lower 

affinity.
53

 

 

Figure 1.2. Structural details of AR DBD region. A) Domain organization of the androgen 

receptor. B) Cartoon representations of the rat AR-DBD structure. Zinc ions are presented as 

spheres and the D-box is highlighted in green. The P-box is shown as purple color.  

Hinge Region. Although this region (residues 625–689) is flexible and poorly conserved 

among nuclear receptors, diverse functions have been ascribed to it. AR hinge region mediates 

its transcriptional activity by acting as a major site for posttranslational modifications including 

methylation
54

 and ubiquitylation.
55

 The signal responsible for nuclear import is encoded by a 

bipartite nuclear localization signal (617-RKCYEAGMTLGARKLKKL-634) formed by two 

clusters of basic residues belonging to the C-terminus of the DBD and the N-terminus of the 

hinge region.
56

 The nuclear translocation of AR occurs in a step-wise manner. First, when 

androgen binds to unliganded AR in cytoplasm, it undergoes a conformational change, which 

exposes the nuclear localization signal and facilitates its interaction with importin-α–importin-β 
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complex. This association results in translocation of the activated AR to the nucleus. 

Crystallographic analysis of importin-α-AR complex revealed that residues 629-RKLKKL-634 

are critical for binding, with an important contribution from Lys630 (figure 1.3). 
31

 

 

 

Figure 1.3. Structural details of AR hinge region. A) Cartoon representations of the importin α 

and β in complex with AR nuclear localization sequence (grey surface). B) AR residue Lys630 

forms hydrogen bond interactions with importin. These interactions are shown as black dotted 

lines.  

Ligand Binding Domain (LBD). AR LBD (in fact, all steroid receptor LBDs) performs 

a conventional mechanistic function i.e. binding its physiological ligands at hormone binding 

sites and inducing structural changes which ultimately forms the coactivator binding surfaces 

(figure 1.4A).
57

 The role of the AR LBD is of particular importance for PCa, because it is the 

foremost target of current androgen deprivation therapies. 

Several crystal structures of AR LBD have been solved by X-ray crystallography, 

revealing that it is composed of 11 α-helices (numbered 1–12, where helix 2 is missing compared 

to other NRs), arranged as a three-layered helical sandwich and four β-strands organized in two 

short sheets. Figures 1.4B shows that a total of 18 residues belonging to β1 and helices 3, 5, 7 

and 10 forms androgen binding site (ABS) and make hydrogen bonds and/or hydrophobic 
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interactions with androgens (figure 1.4C).
58

 Upon agonist binding, helix 12 (H12) is repositioned 

and serves as the “lid” of the ligand-binding pocket to stabilize the ligand, and the very end of 

the C-terminal region of the LBD forms the second α-turn (next to H8 and H10), which works as 

a “lock” to further stabilize the “lid” (H12) conformation.
59

 The agonist-induced conformational 

change in the LBD allows the formation of AF2 pocket on the surface of LBD (green colored 

region in figures 1.4A and D), which is crucial for both the N/C interaction of AR and co-

regulator recruitment during transcriptional activation.
21

 

AF2 pocket is a hydrophobic groove on the AR surface, which is flanked with regions of 

positive and negative charges, “charge clamps”, that are essential for binding AR activation 

factors. AF2 is highly conserved a protein interaction site and has also been extensively analyzed 

throughout this nuclear receptor family. It recruits numerous coactivators, including members of 

the p160 SRC family, such as SRC1, 2 and 3.
33

 Crystal structures of AR complexed with SRC2 

and SRC3 have revealed that Lys720 and Glu837 act as charge-clamp residues and stabilize the 

AF2-coactivator interactions (Figure 1.4D).
60

 Importantly, the AR AF-2 domain displays a 

higher affinity for NTD-derived FxxLF-containing peptides than coactivator-derived LxxLL-

containing peptides, suggesting that N/C interaction, rather than direct transcriptional activation, 

may be the primary role for AF2.
61

 Moreover, AF2 preferentially binds the NTD when the AR is 

mobile, but also recruits co-regulators when AR engages with DNA.
62

 Therefore, these findings 

suggest that N/C interaction may block inappropriate co-regulator interaction until the AR is 

engaged with AREs in the promoter and enhancer regions of target genes. After AR is bound to 

DNA, the AF2 cleft may be more amenable to coactivator binding, which would enhance the 

transcriptional activity of the AR. 
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Figure 1.4. Structural details of AR LBD region. A) Surface representations of the AR ligand 

binding domain. AF2 pocket is shown green color whereas BF3 site is shown in yellow color. 

SRC peptide is represented by a red helix. B) Cartoon representations of the AR ligand binding 

domain. Helix 12, which plays a critical role in formation of the AF2 pocket, is highlighted in 

orange color. DHT is shown as green stick.  C) A network of hydrogen bond interactions 

between DHT and AR ABS residues. These interactions are critical for the tight binding of the 

native ligand in the cavity. D) Charge clamp residues at AF2 pocket, Lys720 and Glu893, which 

stabilize the interaction with LxxLL motif, are highlighted in green color. SRC peptide is shown 

in red color. 

Several lines of evidence demonstrate that the AF2 groove may not be the sole protein–

protein interface dictating macromolecular assembly upon LBD engagement in various nuclear 

receptors. Using a combination of X-ray crystallography and functional assays, Estébanez-
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Perpina et al identified a novel site on the AR LBD surface and named it binding function-3 

(BF3).
63

 The BF3 pocket is located adjacent to the AF2 site but distant from the ABS (figure 

1.4A). As it can be observed from the X-ray structures, the BF3 pocket is formed by residues 

from several LBD-forming helices. The residues contributing to BF3 formation are. Pro671, 

Ile672, and Phe673 from the NH2-terminal part of a helix 1 (H1), Pro723, Gly724, Arg726, and 

Asn727 from H3, and Phe826, Glu829, Leu830, Asn833, Glu837, and Arg840 from H9. The 

residues Arg726 and Asn727 act as boundary between the AF2 and BF3 sites and may play an 

important role in their cross talk and coordinated action.
63, 64

 

 

 

Figure 1.5. Cartoon representations of the BF3 site on the surface of AR LBD. Residues of helix 

1, 3 and 9 form this pocket. Critical residues are shown in yellow. 

A 52 kDa protein called FK506 binding protein (FKBP52) which is known to be an 

important positive regulator of AR has been shown to function through the BF3 domain.
65

 

FKBP52 is a cochaperone of Hsp90 that binds the AR/Hsp90 complex and regulates ligand 

binding to the AR. Recently, Jehle et al showed that N-terminal amino acid sequences of Bag-1L 

bind to the AR and contribute to the transactivation function of the receptor. Furthermore, they 

demonstrated that a hexapeptide motif “GARRPR” in Bag-1L binds to BF3 pocket.
66

 Single 

amino acid exchanges in the BF3 pocket destroy binding of the Bag-1L peptides to the LBD in a 
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mammalian two-hybrid assay. It has been documented that in addition to known mutations in the 

ABS, the BF3 area is also associated with PCa and androgen insensitivity syndromes.
67

 Given 

the importance of this region for AR function and modulation, it clearly represent prospective 

targets for developing novel PCa therapeutics. 

1.3 Current Advances in the Development of AR Inhibitors 

Since androgen receptor is considered as an important therapeutic target for PCa and CRPC, 

number of inhibitors have been reported in the literature with different mechanisms of action. 

Based on their functionality and target domain, they can be categorized into AR ABS inhibitors, 

Selective Androgen Receptor Modulators (SARMS), AR DBD inhibitors and AR NTD 

inhibitors.  

1.3.1 AR ABS Inhibitors 

This class of inhibitors competes with cognate ligands and prevents their binding to the 

receptor. They can be classified as steroidal and non-steroidal based on their chemical scaffold. 

The first anti-androgen to be tested in the clinic was Cyproterone acetate, back in the early 

seventies
68

 (figure 1.6). It is a weak anti-androgen even though it binds to AR with relatively 

high affinity compared to other anti-androgens. Other known steroidal anti-androgens are 

Oxendolone and Spironolactone (figure 1.6). However, they demonstrated several clinical 

limitations including potential hepatotoxicity and cross reactivity with other nuclear receptors. 

More importantly, due to steroidal skeleton, structural modification of these compounds was 

restricted. Therefore, steroidal anti-androgens are rarely used in the clinic.  
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Figure 1.6. Chemical structures of androgens and steroidal anti-androgens. 

Subsequently, non-steroidal anti-androgens were developed to address the limitations of 

steroidal inhibitors.
69

 Non-steroidal AR ligands are broadly classified into toluidides and 

hydantoins (figure 1.7). The toluidide derivatives are the first reported non-steroidal compounds. 

The first generation of anti-AR PCa drugs such as Flutamide (and its derivative, 

hydroxyflutamide), Nilutamide and Bicalutamide belong to this chemical class. Unlike steroidal 

compounds they do not possess any significant intrinsic androgenic activity and cross reactivity 

with other nuclear receptors. Although Flutamide and Nilutamide were initially used as PCa 

therapeutics, they were replaced by Bicalutamide since it demonstrated better pharmacokinetic 

profile i.e. less hepatotoxicity and longer half-life.
70

 

The second generation anti-androgens belong to diarylthiohydantoin chemical class. It 

includes recently FDA approved drug Enzalutamide and its derivative, investigational drug, 

ARN509. Similar to toluidide derivatives, Enzalutamide and ARN509 bind to the AR ABS but 
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with greater affinity (over 5-10 times more potent than bicalutamide).
71, 72

 These drugs not only 

demonstrate improved anti-AR potency, PK profile and enhanced in vivo efficacy but also 

prevent AR nuclear translocation and impair DNA binding.  

 

 

Figure 1.7. Chemical structures of commercially available and experimental anti-androgens that 

target androgen binding site of AR. 

Other anti-androgens known for PCa therapy are Abiraterone acetate and 

Galeterone/TOK-001 (figure 1.5). Abiraterone acetate, a prodrug of abiraterone, is a selective 

inhibitor of androgen biosynthesis that potently blocks cytochrome P450 c17 (CYP17), a critical 

enzyme in testosterone synthesis, thereby blocking androgen synthesis by the adrenal glands and 

testes and within the prostate tumour. 
73, 74

 The anti-AR profile of Abiraterone contributes to its 

anti-tumoural effects and is clinically used for metastatic CRPC.
75

 Galeterone is a proprietary 

small molecule, oral drug for the treatment of CRPC that disrupts AR signaling. Galeterone 

selectively inhibits CYP17 lyase to prevent testosterone synthesis, blocks androgen binding to 

the AR, prevents AR binding to chromatin and degrades the AR protein.
76, 77

 

ODM-201 is an investigational anti-androgen that is thought to block the growth of PCa 

cells. ODM-201 has a great affinity binding to the AR and blocks AR nuclear translocation and 

unlike other anti-androgens, crosses the blood-brain barrier.
78
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1.3.2 Selective Androgen Receptor Modulators (SARMS) 

SARMS are known to exhibit tissue selective profile i.e. they act as antagonists in 

prostate tissue but agonize the receptor in pituitary and muscle cells.
79, 80

 SARMS are developed 

with an aim of having potential of PCa treatment while agonistic activity in the muscle and bone 

can treat diseases such as muscle-wasting conditions and hypogonadism.
80

 Based on the 

structure, SARMS can be classified as steroidal and non-steroidal. 

The steroidal SARMs are formed by modifying the chemical structure of testosterone 

molecule. Pioneering efforts by scientists at Ligand Pharmaceuticals and the University of 

Tennessee provided the early foundations of the nonsteroidal SARM discovery.
81, 82

 Since then, a 

number of structural categories of SARM pharmacophores have been explored. The aryl 

propionamides were the first reported SARMS demonstrating better in vivo tissue selectivity. 

This chemical series is structurally similar to bicalutamide and the replacement of aryl sulfonyl 

in bicalutamide with phenoxyl group leads to the transformation of the antagonist to agonist, 

such as investigation drugs Andarine and Enobosam (figure 1.7). Currently, these compounds are 

in clinical trials for the treatment of cachexia and osteoporosis. 
80, 83

 

1.3.3 AR DBD Inhibitors 

There has been little development of inhibitors that specifically target the DBD portion of 

the AR. Previously, a hairpin pyrrole-imidazole polyamide was designed to target the ARE to 

disrupt AR DBD binding and was effective at inhibiting androgen-induced PSA expression in 

LNCaP cells.
84

 A follow up study reported a cyclic polyamide that decreases PSA mRNA levels 

with a greater affinity and specificity towards ARE. 
85

 Cherian et al conducted a high-throughput 

screen to target the AR and identified a compound that reduces AR-specific DNA binding, 

although it remains unclear whether this compound works directly by binding to the DBD.
86

 

Given that the structure of the AR DBD has been solved,
53

 our group conducted a 

systematic computational screen and identified small-molecule inhibitors that disrupt AR 

DBD−DNA interaction.
87, 88

  The authors reported two compounds VPC-14228 and VPC-14449 

that selectively interact with the intended binding site on DBD and inhibit the growth of 

Enzalutamide-resistant cells as well as block the transcriptional activity of both full length AR 

and constitutively active variants. Currently efforts are focused on developing DBD inhibitors 

with greater potency and stability.   
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Figure 1.8. Chemical structures of clinically available SARMS and small-molecule inhibitors 

that target AR DNA binding domain and N-terminal domain reported in the literature. 

1.3.4 AR NTD Inhibitors 

Since both ligand-dependent and -independent transcriptional activity of the AR is 

attributed to its N-terminal TAU1 and TAU5 regions, the NTD remains a very attractive drug 

target for treating both early stage PCa and CRPC. Even though rational drug discovery efforts 

are hindered due to the unavailability of structural information on NTD, high throughput 

screening approaches have been so far successful in discovering different classes of NTD 

inhibitors. EPI-001 was the first small-molecule inhibitor reported to bind covalently to AF1 

region and inhibit protein-protein interactions necessary for AR transcriptional activity and its 

splice variants.
89, 90

 Although EPI-001 was identified as a AR NTD inhibitor, it is reclassified as 

a selective modulator of peroxisome proliferator activated receptor-gamma (PPARγ). 
91

 Cyclical 

peptides termed sintokamides
90

 and decoy peptides
92

 containing the AR-NTD sequence are also 

reported to inhibit AR NTD.  
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1.4 Limitations of Commercial Anti-AR PCa Drugs 

1.4.1 Overexpression of AR 

High AR expression in CRPC at both mRNA and protein levels represents a mechanism 

of acquired resistance to ADT. Chen et al presented an evidence supporting that the AR mRNA 

is universally upregulated in hormone-refractory xenograft models, and increased AR expression 

is sufficient to convert Bicalutamide from antagonist to agonist.
93

 AR overexpression can occur 

due to gene amplification
94

 and it has been reported that AR gene amplification is present 

between 20-33% of patients with recurrent PCa who initially responded to ADT for 12 months. 

95
AR amplification was not found in untreated primary tumors suggesting it is not involved in 

the genesis or progression of PCa in patients untreated with ADT.
95

 AR amplification promotes 

the survival and proliferation of tumor cells even if the residual androgen level is low after 

castration. Since the rate of AR amplification is low, it cannot account for most cases of 

resistance; in addition, high AR expression at mRNA level without increase in gene copy 

number has also been observed in CRPC.  

1.4.2 Mutations in the ABS 

Another well-known mechanism for the development of CRPC is ligand promiscuity of 

mutated forms of the AR. It has been reported that mutations in AR gene can cause amino acid 

substitutions in the LBD, more specifically in ABS that hampers the efficacy current drugs (eg, 

T877A, L701H, W741L, and F876L).
96-98

 So far, no crystal structure of the wild-type AR 

complexed with an antagonist has been reported, due to the instability of the receptor upon 

antagonist binding. However, structures for W741L-bicalutamide and T877A-cyproterone 

acetate complexes have been solved.
99, 100

 Based on the crystallographic observations it was 

proposed that AR can accommodate larger atoms due to extra space provided by the T877A 

mutation. This causes aberrant AR activation in response to hydroxyflutamide, cyproterone 

acetate and alternative steroids. The AR T877A mutation has historically been of great interest, 

because it is found in the LNCaP cell line as well as cases of advanced PCa. 
101

 This mutant thus 

serves as the prototype for altered AR ligand specificity caused by AR mutations in PCa.  

Recently, Balbas et al and Korpal et al identified the AR mutation F876L that converts 

Enzalutamide into an agonist.
97, 102

 F876L causes the mutant receptor to bind Enzalutamide six 

times more effectively than wild-type receptor. As the structure of AR-Enzalutamide has not 

been solved yet, Balbas et al modeled the AR-Enzalutamide complex through ligand docking 
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and molecular dynamics simulations. 
97

 They suggested that leucine lacks the favorable contact 

with Enzalutamide that is predicted to be necessary for H12 displacement. Hence, H12 is thought 

to assume an agonist-like conformation that allows coactivator recruitment. 

1.4.3 Splice Variants 

There is increasing evidence to show that AR signaling could occur in complete absence 

of androgen binding, owing to the expression of constitutively active AR variants lacking the 

LBD portion (figure 1.9).
103, 104

 These variants arise primarily through exon skipping and cryptic 

exon inclusion. Although some splice variants, such as AR-45,
105

 are found in normal prostate 

tissue, variants lacking the LBD have been found to be upregulated in tumours, compared to 

levels in normal prostate cells.
103, 104, 106

 AR-V7/AR3 and AR
v567es

 are the most commonly found 

variants in PCa and thus the most studied. RNA and protein for both variants has been found in 

PCa cell lines, xenografts, and human tumor specimens.
107

 Recently, Li et al demonstrated that 

expression of constitutively active truncated AR splice variants are the key drivers of AR 

activation causing resistance to therapies targeting full-length AR, including Enzalutamide.
108

 

 

 

 

Figure 1.9. Reported splice variants of the AR.  The AR gene is organized as eight exons, which 

form the coding sequence for its different domains. Shown above each splice variant are the 

corresponding exon numbers included in spliced mRNA. Cryptic exon inclusion results in 



19 
 

unique (U) regions with novel nucleic acid sequences not found in the wild-type AR. In AR-

V3/AR6, the inclusion of exon 2 yields a splice variant bearing only one zinc finger (Zn) and, 

thus, a truncated DBD. 

1.4.4 Alternative Pathways 

In addition to androgen-involving mechanisms, activation of AR can be mediated by 

growth factor signaling pathways such as epidermal growth factor receptor,
109

 insulin-growth 

factor-1 
110

 and interleukin-6.
111

 For example, insulin-growth factor 1 was able to cause AR 

activation, inducing a five-fold increase in PSA levels in LNCaP cells cultured in serum-free 

medium. Activation of the AR complex can also occur via crosstalk with other signaling 

pathways, such as those mediated by the non-receptor tyrosine kinases including Src kinase.
112

 

Besides, the PI3K/mTOR signaling pathway is a critical oncogenic pathway that plays a role in 

the tumorogenesis and resistance in a variety of cancers. The pathway was found to be 

deregulated in advanced PCa and associated with ADT resistance.
113

 Preclinical study elucidated 

that there is a dynamic interplay between PI3K/AKT/mTOR pathway and AR signaling during 

the development of resistance to anti-androgens. 
114

 

1.5 Drug Discovery and Development 

The process of drug discovery and development is generally time-consuming and expensive. 

A study conducted by DiMasi et al suggested that the average time and expenditure involved in 

discovering and developing a novel therapeutic agent may take  up to 15 years and could cost 

approximately US $1 billion.
115

 The standard drug discovery pipeline involves three critical 

stages 1) initial drug discovery which involves target identification and validation, hit 

identification, lead optimization 2) preclinical trials and 3) clinical trials (figure 1.10). 
116

 

The first step in the drug discovery process is identification and validation of a target. A 

drug target is a broad term which can be applied to a range of biological entities including 

proteins, genes and RNA. A good target needs to be efficacious, safe, meet clinical and 

commercial needs and most importantly it should be ‘druggable’. In particular, A druggable 

target should be accessible to the putative therapeutic molecule and elicit a biological response 

which can be measured both in vitro and in vivo.
117

 It is now known that certain target classes are 

more amenable to small-molecule drug discovery. One of the common target identification 

approaches is by examining mRNA/protein levels to determine whether they are expressed in 
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disease and if they are correlated with disease exacerbation or progression. An alternative 

approach is to use phenotypic screening to identify disease relevant targets.
118

 Once identified, 

the target then needs to be fully prosecuted. Validation techniques range from in vitro tools 

through the use of whole animal models, to modulation of a desired target in disease patients. 

Following the process of target validation, it is during the hit identification and lead 

discovery phase of the drug discovery process that compound screening protocols are utilized. 

The traditional and routine way of screening is through high-throughput screening, which 

involves the testing of the entire compound library directly against the drug target using a cell-

based assay. Sometimes secondary assays may be needed to confirm the site of action of tested 

compounds.
119

  

 

 

Figure 1.10. The typical drug discovery & development workflow and timelines involved. 

Once the active compound is identified through the initial screening, a lead optimization 

stage takes place that involves fine-tuning undesired properties while maintaining its potency to 

develop better preclinical drug prototypes. The ultimate goal of preclinical studies is to 

accurately model the desired biological effects (efficacy and toxicity) of a drug-like candidate in 

animals in order to predict treatment outcome in patients. Currently, the outcomes of preclinical 

studies are poor with low success rate.
120, 121

 The quality of the hit-to-lead starting point and the 

expertise of the available team are the key determinants of a successful outcome of “hit 

generation to preclinical” phase. The clinical trials (Phase1, 2 and 3) take up to 8 years and cost 

around 200 million USD.
122

 It has been estimated that over 90% of drug candidates fail at this 
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stage. Due to this high attrition rate, new technologies should be incorporated into drug 

discovery process to enhance hit rate and lower the risk and costs.  

Due to the higher estimates of time and costs involved in traditional approach, new 

avenues are needed to facilitate, expedite and streamline drug development process to save time 

and money. One promising strategy is to implement computer-aided drug discovery as a viable 

alternative and complement to high-throughput screening. It has been reported that large scale 

industrial high-throughput screening campaigns routinely used by pharmaceutical companies 

typically yield less than a 0.1% success rate. 
123

 In contrast, the use of a rationalized, computer-

aided approach allows us to achieve a success rate as high as 50%.
124

 

1.5.1 Computer-Aided Drug Discovery 

The current post genomic era has been characterized by a large increase in a number of 

potential therapeutic targets amenable to investigation. In turn, this growth puts a pressure on 

pharmaceutical industry (and academic labs) to prioritize drug discovery programs and conduct 

them in a highly efficient manner. Therefore, computer-aided drug discovery (CADD) has 

emerged as an efficient approach to shorten the drug development cycle and save expenses. 

CADD is capable of increasing the success  rate as it uses a much more targeted search than 

traditional high-throughput screening and combinatorial chemistry.
124

 Moreover, it also explains 

the molecular basis of therapeutic activity. With the emergence of high computing facilities such 

as super computer clusters and graphics processing units, CADD has become a vital part of a 

modern drug discovery. Applications and benefits of CADD have been reviewed extensively and 

demonstrated in growing number of publications and supported by examples of drugs derived 

from the in silico approach.
125-127

 

CADD is usually performed for the following three major purposes. (1) to quickly filter 

large databases into smaller sets of predicted active compounds that can be tested experimentally 

(2) to help in guiding optimization of lead compounds either to increase their target affinity or to 

optimize drug metabolism and pharmacokinetics properties or both (3) to facilitate the design of 

novel compounds either by growing template molecules one functional group at a time or by 

piecing together fragments into novel chemo-types.  

CADD can be classified into two general categories. structure-based and ligand-based. 

The structure-based methods relies on the structural information of the therapeutic target 

(typically derived from X-ray crystallography, NMR or sometimes homology modeling) to 
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determine key protein-ligand interaction features. These methods include molecular docking and 

molecular dynamics simulations. The ligand-based approaches are generally preferred when no 

or little structural information is available and it mainly relies on the structure and bioactivity 

information of both known actives and inactive compounds. Commonly used ligand-based 

methods are similarity search, ligand pharmacophore and QSAR.  

Molecular Docking. Docking recognizes and optimizes drug candidates by capturing 

molecular interactions between ligand and target macromolecules. The process involves two 

basic steps. Prediction of the ligand conformation as well as its position and orientation within 

the proposed binding site (usually referred to as a pose) and then ranking a pose via a scoring 

function. Ideally, sampling algorithms should be able to reproduce the experimental binding 

mode and the scoring function should also rank it highest among all generated conformations. 

Glide,
128

 eHiTS
129

 and GOLD
130

 are some of the examples of commercially available docking 

programs.  

A common limitation of the molecular docking approach is it may be ineffective in 

obtaining a meaningful correlation between its predicted scores and bioactivities of compounds. 

In the current work, we developed a novel approach to overcome some of such limitations by 

combining structure-based and ligand based approaches. This methodology is discussed in detail 

in chapter 5. 

Molecular Dynamic (MD) Simulations. MD is a computationally expensive tool that 

provides more accurate information on protein-ligand interactions. Usually it is performed in the 

presence of an aqueous environment and under physiological conditions (certain temp, pressure 

and pH). MD simulation calculates the trajectory of a protein-ligand system by the application of 

Newtonian mechanics. In simple terms, the MD technology allows recreation of ‘cartoon-like’ 

trajectories of movements of a compound in a protein cavity during their mutual molecular 

recognition and binding. Such trajectories allow isolation of various ‘snapshots’ of a target 

protein’s structure corresponding to its state before, during and after- ligand binding.  

The binding free energy calculation is a critical step as post processing on the MD 

simulation which generally provides better correlation with experimental data than docking 

scores. Despite limitations in the force field of computations and high computational demands, 

MD simulations have become an important tool in drug discovery.
131
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Similarity Search. It is one of the traditional and most widely applied approaches in 

cheminformatics. This approach is developed based on the “Similarity Property Principle’ which 

states that ‘similar molecules should have similar biological properties’. In this method, an 

active compound is used as a template/query to search against a large pool of chemicals and as a 

result compounds with better activity and/or chemicals deviating structurally from original query 

are obtained. Molecular fingerprint-based similarity is a commonly used method in similarity 

searching. The fingerprint is defined as bit string where each bit position accounts for the 

presence or absence of a given feature in a molecule.
132

 If the feature is present in a molecule the 

bit is set to ‘1’ and if the feature is not present, it is set to ‘0’ forming a distinctive and unique 

fingerprint profile for each chemical structure. Popular substructure fingerprints include the 

Molecular ACCess System/MACCS structural keys
133

 and Barnard Chemical Information Ltd. 

fingerprint.
134

 The similarity between two molecules is identified by comparing bit strings of 

molecules and quantified as Tanimoto coefficient (Tc).
135

 

Tc=C / (A+B-C)  

Where, A and B are the number of features present in compounds A and B, respectively, 

and C is the number of features shared by A and B. Hence, Tc quantifies the fraction of features 

common to A and B to the total number of features of A or B, where the C term in the 

denominator corrects for double counting of the features. 

Quantitative Structure Activity Relationship (QSAR). This approach has been applied 

for decades for constructing relationships between physicochemical (or structural) properties of 

compounds and their biological activities. The goal of QSAR is to derive a reliable and 

meaningful statistical model to predict the activity and/or binding affinity of new chemical 

entities. The construction of QSAR model typically comprises of two main steps. (1) description 

of molecular structures and (2) multivariate analysis for correlating molecular descriptors with 

observed activities (endpoints). The descriptors explain the properties of compounds including 

steric, topological, geometrical and hydrophobic properties.
136

 Recently, Cherkasov et al 

provided an overview of the state-of-the-art QSAR methods and its application in the field of 

drug discovery and medicinal chemistry.
137

 

Pharmacophore Modeling. Conventionally, a pharmacophore is defined as the specific 

3D arrangement of functional groups within a molecular framework that are indispensable to 

attach to an active site of a protein or bind to a macromolecule. A pharmacophore feature 
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includes Hydrogen bond donor, acceptor, positively and negatively charged groups, hydrophobic 

regions and aromatic rings. A Pharmacophore map can be generated by superposition of active 

compounds to identify their common features. Based on the pharmacophore map either de novo 

design or chemical database searching can be carried out.
138

 

1.6 Objective and Rationale of the Study 

Once PCa progresses to castration-resistant stage, existing androgen deprivation therapies 

including the most potent and recently approved drug, Enzalutamide are ineffective due to the 

development of drug resistance. Numerous factors are causative for this phenomenon, including 

mutations in the ligand binding pocket of the AR resulting in structural changes in the receptor, 

allowing it to regain agonist conformation. These events weaken protein-drug interactions and 

allow anti-androgens to promote the recruitment of coactivators by the AR, enhancing its 

transcriptional activity.  Therefore, there is an urgent need to develop new types of anti-AR 

therapeutics that exhibit entirely different modes of AR inhibition. For instance, rather than 

blocking androgen binding to the AR, such new drugs could target regulatory sites on the 

receptor and prevent co-activator recruitment directly. 

The novel strategy was to explore the BF3 pocket as an alternative drug target that will 

help avoiding resistant escapes by the AR. BF3 is a protein-protein interaction site and is 

essential for AR transcriptional activity by recruiting co-regulator proteins such as FKBP52 and 

Bag-1L and engaging in crosstalk with the adjacent AF2 site. Thus, targeting BF3 pocket 

provided potential to not only inhibit wild-type AR, but also clinically relevant mutant forms of 

AR that confer resistance to clinically used Bicalutamide and Enzalutamide. The discovery of 

AR BF3 inhibitors involved the hit identification, lead optimization and upcoming preclinical 

evaluation. Although the developed lead compound needs further preclinical assessment, it has 

already demonstrated all desired profiles and may serve as a prospective therapeutic for 

advanced and castration resistant PCa.  

1.7 Thesis Layout 

Chapter 1 provided the background information on PCa, structure and function of AR, drug 

resistance mechanisms and modern drug discovery approaches. Chapter 2 presents materials and 

methods applied in the current work. Chapter 3, 4 and 5 summarize results of the research project 
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aimed to develop novel AR inhibitors which have been published in 2 research articles as 

indicated in the preface. Chapter 6 includes summary and future directions.  
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Chapter 2: MATERIALS AND METHODS 

 

All methods applied in chapter 3, 4 and 5 are summarized in this chapter. 

2.1 In Silico Modeling 

2.1.1  Preparation of the Protein Structure for Docking 

AR crystal structures 2YLO (2.50Å resolution)
139

 and 4HLW (2.50Å resolution)
64

 were 

used in the current study to perform molecular docking. These structures were prepared using the 

Protein Preparation Wizard within Maestro 9.3 suite (Schrödinger, LLC). All solvent molecules 

have been deleted and the bond order for the ligand and protein has been adjusted. The missing 

hydrogen atoms have been added, and side chains have then been energy-minimized using the 

OPLS-2005 force field, as implemented by Maestro. The active site was defined by a 12Å box 

centered on the crystallographic ligands, YLO and 17W for 2YLO and 4HLW, respectively. No 

van der Waals scaling factors were applied; the default settings were used for all other adjustable 

parameters. 

2.1.2  Ligand Preparation 

All the compounds presented in this thesis were imported into a molecular database using 

Molecular Operating Environment (MOE) version 2009.
140

 Hydrogen atoms were added after 

these structures were ‘washed’ (a procedure including salt disconnection, removal of minor 

components, de-protonation of strong acids and protonation of strong bases). The following 

energy minimization was performed with MMFF94x force field as it is implemented by the 

MOE and the optimized structures were exported into Maestro suite in the SD file format. 

2.1.3 Virtual Screening 

All the prepared compounds were docked into BF3 site of AR crystal structures using 

Glide SP program
128

 implemented in Maestro suite.
141

 This program approximates a complete 

systematic search of the conformational, orientational, and positional space of the docked 

compound. In this search, an initial rough positioning and scoring phase that dramatically 

narrows the search space is followed by torsionally flexible energy optimization on an OPLS-AA 

non-bonded potential grid for a few hundred surviving candidate poses. The very best candidates 

are further refined via a Monte Carlo sampling of pose conformation, which is a crucial step for 
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obtaining an accurate docked pose. The final poses are scored according to GlideScore 2.5. The 

starting point for Glide scoring is the empirically based ChemScore function of Eldridge et al. 
142

 

GlideScore 2.5 modifies and extends the ChemScore function as follows. 

 

∆Gbind = Clipo-lipo ∑f(rlr) + Chbond-neut-neut ∑g(∆r) h(∆α) + 

   Chbond-neut-charged ∑g(∆r) h(∆α) + Chbond-charged-charged ∑g(∆r) h(∆α) + 

   Cmax-metal-ion ∑f(rlm) + CrotbHrotb + Cpolar-phobVpolar-phob +  

   CcoulEcoul + CvdWEvdW + solvation terms 

 

The lipophilic-lipophilic term is defined as in ChemScore. The hydrogen-bonding term also uses 

the ChemScore form but is separated into differently weighted components that depend on 

whether the donor and acceptor are both neutral, one is neutral and the other is charged, or both 

are charged. 

At the next step, molecules which had a high computational binding affinities were re-

docked into the same binding cavity using the electronic high- throughput screening (eHiTS) 

docking module.
129

 The eHiTS algorithm takes a “divide and conquer” approach to docking, by 

breaking ligands into rigid fragments and connecting flexible chains. Each fragment is 

systematically and exhaustively docked everywhere in the receptor active site. Matching 

fragments are then reconnected to generate the docked pose. The generated poses are refined by 

a local energy minimization in the active site of the receptor, driven by the scoring function (as 

mentioned above). Compounds which received eHiTS docking scores above a cutoff value were 

selected for further in silico refinement.  

2.1.4 Consensus Scoring and Voting 

The determined docking poses of selected compounds were evaluated by 1) calculating 

rigorous docking scores, defined by the LigX module of the MOE package, which accounts for  

receptor/ligand flexibility; 2) predicting pKi of protein-ligand binding using MOE SVL script 

scoring.svl to improve accuracy of prediction of energies of hydrogen bonds and hydrophobic 

interactions; 3) by computing the root mean square deviation (RMSD) between docking poses 

generated by Glide and eHiTS programs to quantify their docking consistency.  
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Based on these sorted output values from the above four procedures, each molecule 

would then receive a binary 1.0 vote for every ‘top10% appearance’. The final cumulative vote 

(with the maximum possible value of 5) was then used to rank the training set entries. Based on 

the cumulative vote, we have selected the most highly voted molecules and have subjected their 

docking poses to visual inspection. After this final selection step, promising compounds were 

purchased and tested experimentally. Most of the compounds were purchased from commercial 

vendors such as Enamine, Vitas-M and Life Chemicals with purity ≥95%. Some of the synthetic 

derivatives were provided by our collaborator Dr. Robert N Young (Professor, Dept. of 

Chemistry, Simon Fraser University, Burnaby, Canada) 

2.1.5 Similarity Searching 

Instant JChem,
143

 a 2D similarity search tool from ChemAxon, was used to search 

through the ZINC database
144

 (18 million compounds) for structural analogs. Compounds with 

higher Tanimoto coefficients values with respect to the query structure were selected for further 

studies.  

2.1.6 Molecular Dynamics Simulations 

In order to obtain the molecular picture of lead BF3 inhibitors VPC-13163, VPC-13566 

and GARRPR peptide binding in the AR BF3 site, we performed the explicit solvent molecular 

dynamics (MD) simulations starting from their docking poses in the crystal structure (4HLW) as 

predicted by Glide. All MD simulations were performed with the CUDA accelerated Amber 14 

program. AR LBD force field parameters were obtained from the ff14SB force field and the 

ligands (13163,13566 and DHT) parameters came from generalized amber force field with 

charges derived from a RESP fit using an HF/6-31G* electrostatic potential calculated using the 

Gaussian 09 program. 

The initial AR LBD structure was taken from the 4HLW crystal structure. 13163 and 

13566 were docked to the BF3 site. Five Cl− counter ions were added to neutralize the protein’s 

total charge, and then the resulting complex structure was solvated using TIP3P water model in a 

cubic box, with box edges lying 10 Å from the outermost atoms of the complex. The numbers of 

water molecules used to solvate the complex were 11303. 

MD simulations were carried out within AMBER 14 on WestGrid facilities from 

Compute Calculation Canada (https.//www.westgrid.ca). Firstly, it is a two-step minimization 

procedure. The first-step energy minimization was performed on solvent with the protein-ligand 

https://www.westgrid.ca/
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complex restrained for a 2000-step steepest decent minimization and then 3000 steps of 

conjugate gradient minimization. The second step minimization was performed on the whole 

system without restraints. After the energy minimization, the system was heated up from 0 to 

298 K over 40 ps with a harmonic restraint weight of 500 kcal/( mol·Å
2
) on the whole system, 

followed by a 60 ps density equilibrium simulation by restraining the solute with a harmonic 

restraint weight of 10 kcal/(mol·Å
2
). Then production MD simulation was conducted for 100 ns 

without any restraints under the NPT ensemble condition at a temperature of 298 K and pressure 

of 1atm.  

During the simulation, the periodic boundary conditions and particle-mesh Ewald for 

long range electrostatics were employed. Short range interactions were cut off at 10 Å, and 

bonds involving hydrogen were held fixed using SHAKE. The time step was set to 2 fs, and the 

snapshot was taken every 500 steps to record the trajectory. 

2.1.7 Binding Free Energy Calculation 

The GB/SA component within the AMBER package was employed to compute the 

binding free energy.
145

 This method was performed in parallel by running a python script 

“MMGBSA.py.MPI”. Snapshots at 10 ps intervals in production phase were extracted for energy 

calculation within the whole simulation time. Average binding free energy on all snapshots was 

used for analysis. Based on the hypothesis, binding free energy was divided into the binding 

energy in vacuum and solvation free energy. The former was calculated by molecular mechanical 

algorithm with sander program and included internal energy, vdw energy and electrostatic 

energy; the latter consisted of polar and nonpolar solvation free energy. Generalized Born (GB) 

model was applied to calculate the contribution of polar solvation free energy, whereas solvent 

accessible surface area (SA) method was used to evaluate the nonpolar part of solvation free 

energy. The entropic penalty was omitted in terms of the same simulation condition and 

considerable computational cost. GB/SA method estimates the total solvation free energy of a 

molecule, ΔGsolv, by assuming that it can be decomposed into the "electrostatic" and "non-

electrostatic" parts. 

ΔGsolv = ΔGel +ΔGnonel 

where  ΔGnonel  is the free energy of solvating a molecule from which all charges have been 

removed (i.e. partial charges of every atom are set to zero), and ΔGel  is the free energy of first 
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removing all charges in the vacuum, and then adding them back in the presence of a continuum 

solvent environment. The GB model approximates ΔGel by the following formula. 

 

𝛥𝐺𝑒𝑙 = −
1

2
∑

𝑞𝑖𝑞𝑗

𝑓𝐺𝐵(𝑟𝑖𝑗, 𝑅𝑖, 𝑅𝑗)
(1 −

exp[−𝐾𝑓𝐺𝐵]

𝜀
𝑖𝑗

) 

where ri j is the distance between atoms i and j, the Ri are the so-called effective Born radii, and 

fGB() is a certain smooth function of its arguments. The electrostatic screening effects of 

(monovalent) salt are incorporatedvia the Debye-Huckel screening parameter k. 

2.1.8 Dataset Preparation for QSAR Models 

A dataset of 106 BF3 inhibitors with anti-AR activity (Active or 1 if IC50<10uM, Inactive 

or 0 if IC50>10uM) in the range of low to high micro-molar range are collected.
146

 These 

compounds were built and prepared using the MOE 2012 program as described above. All the 

prepared compounds were docked into BF3 site of AR crystal structure (4HLW, 2.3Å 

resoluion)
64

  using Glide SP program.
128

  No constraints were applied, and all other adjustable 

settings were kept as default. Top ranked conformation for each compound was considered to 

calculate atom-pair distance dependent descriptors. AR BF3 residues falling in the range of 5Å, 

7Å and 10 Å (figure 2.1A) are considered to calculate those descriptors. 10Å was defined as 

upper cut off because interactions between the protein-ligand are weak beyond this threshold 

except Leonard-Jones potentials.  
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Figure 2.1. Methodology to develop protein-ligand atom pair descriptors. A) Distance-binding 

scheme for atom pair descriptors. B) Different type of metrics used to capture protein-ligand 

interactions.  

2.1.9 Development of Descriptors 

The sum of atomic distances between specific atomic type of BF3 residues and the 

docked ligands are captured as APDD (atom-pair distance dependent) descriptors. The atomic 

type was determined as 1) General.- based on geometry or hybridization and 2) Specific.- as per 

SMARTS atom typing scheme 
147

 (table 2.1). Specific atom type is incorporated because Kramer 

et al have recently shown that they yield significantly better statistical values compared to all 

other reported scoring functions.
148

 Three different metrics (see figure 1B) are used to calculate 

the distances. This is implemented to see if change of precision plays a role in the final models. 
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General element typing. First, atoms were categorized according to their geometry and 

formal charge. For example, Nitrogen can be categorized into five types. Nsp
3
, N+sp

3
, Nsp

2
, N+ 

sp2 and .Nsp2. Similarly, MOE distinguishes 3 atom types for carbon, 2 atom types for oxygen, 

and one atom type each for H, S, F, Cl, Br, and I. Overall, there are 16 different atom types for 

AR BF3 pocket and compounds. All the descriptors were calculated using SVL script encoded in 

MOE 2012.
140

 Total number of calculated descriptors is 768 = 16 (ligand) X 16 (protein) X 

3(number of bins). 

Specific element typing. The atom typing scheme applied distinguishes 29 atom types for 

carbon, 17 atom types for nitrogen, 14 atom types for oxygen, 16 atom types for hydrogen, 3 

atom types for sulfur, and one atom type each for F, P, Cl, Br, and I. Overall there are 84 atom 

types for the ligand atoms. Supporting Table 1 shows all carbon atom types, including the logP 

increments and the assignment of donor/acceptor/neutral as an example. Total number of 

calculated descriptors is 9828 = 84(ligand) * 39(protein) * 3(number of bins). 

2D descriptors. In addition, about 300 descriptors such as the Molecular weight, molar 

refractivity and logP, were calculated as implemented in the MOE 2012. 

Since the number of descriptors calculated is large, descriptor pruning is carried out. 

Descriptors with a variance below 0.01 and having a correlation above 0.90 are removed to 

reduce the signal-to-noise ratio. 

Table 2.1. Sample of the atom typing SMARTS list for Carbon atoms used for the APDD 

descriptors. 

#ID SMARTS Log P Don/Acc/Neu MR 

C1 [CH4] 0.1441 N 2.503 

C1 [CH3]C 0.1441 N 2.503 

C1 [CH2](C)C 0.1441 N 2.503 

C2 [CH](C)(C)C 0 N 2.433 

C2 [C](C)(C)(C)C 0 N 2.433 

C2 [CH3][N,O,S,F,Cl,Br,I] -0.2035 N 2.753 

C3 [CH2X4][N,O,S,F,Cl,Br,I] -0.2035 N 2.753 

C28 [C](=[O,N])[O,N] -0.2783 N 5.007 
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#ID SMARTS Log P Don/Acc/Neu MR 

C4 [CH1X4][N,O,S,F,Cl,Br,I] -0.2051 N 2.731 

C4 [CH0X4][N,O,S,F,Cl,Br,I] -0.2051 N 2.731 

C5 [C]=[!C;A;!#1] -0.2783 N 5.007 

C6 [C;A]=C 0.1551 N 3.513 

C7 [CX2]#[A;!#1] 0.0017 N 3.888 

C8 [CH3]c 0.08452 N 2.464 

C9 [CH3]a -0.1444 N 2.412 

C10 [CH2X4]a -0.0516 N 2.488 

C11 [CHX4]a 0.1193 N 2.582 

C12 [CH0X4]a -0.0967 N 2.576 

C13 [cH0]-[A;!C;!N;!O;!S;!F;!Cl;!Br;!I;!H] -0.5443 N 4.041 

C14 [c][#9] 0 N 3.257 

C15 [c][#17] 0.245 N 3.564 

C16 [c][#35] 0.198 N 3.18 

C17 [c][#53] 0 N 3.104 

C18 [cH] 0.1581 N 3.35 

C19 [c](.a)(.a).a 0.2955 N 4.346 

C20 [c](.a)(.a)-a 0.2713 N 3.904 

C21 [c](.a)(.a)-C 0.136 N 3.509 

C22 [c](.a)(.a)-N 0.4619 N 4.067 

C23 [c](.a)(.a)-O 0.5437 N 3.853 

C24 [c](.a)(.a)-S 0.1893 N 2.673 

C25 [c](.a)(.a)=[C,N,O] -0.8186 N 3.135 

C26 [C](=C)(a)[A;!#1] 0.264 N 4.305 

C26 [C](=C)(c)a 0.264 N 4.305 

C26 [C](=C)a 0.264 N 4.305 

C26 [C]=c 0.264 N 4.305 

C27 [CX4][A;!C;!N;!O;!S;!F;!Cl;!Br;!I;!#1] 0.2148 N 2.693 
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#ID SMARTS Log P Don/Acc/Neu MR 

CS [#6] 0.08129 N 3.243 

 

2.1.10  Mathematical Methods 

To build QSAR models, we applied binary models implemented in WEKA
149

 such as 

Decision Table, OneR, ADTree, BFTree, J48, BayesNet, SMO (SVM), NaiveBayes, Rotation 

Forest, Random Forest, Multilayer Perceptron, IB1, IBk, Kstar, Bagging, LogitBoost and 

Decorate. (http.//www.cs.waikato.ac.nz/ml/weka/). The classifier ‘Relief Attribute Evaluation’ 

with a search method ‘Ranker’ has been applied to rank descriptors. This evaluator assesses the 

worth of an attribute by repeatedly sampling an instance and considering the value of the given 

attribute for the nearest instance of the same and different class. Based on the ranking we 

selected top 10, 15 and 20 descriptors calculated by three metrics.  

2.1.11  Evaluation of QSAR Models 

Validation is the process by which reliability and relevance of a procedure are established 

for a specific purpose.
150

 For validation of QSAR models, three strategies were adopted 

including 10-fold cross-validation 
151

, validation on external set and evaluation of the 

corresponding applicability domain (AD) criteria. 

Once the 10 fold cross-validation was applied, all the models were ranked according to 

the Specificity, Sensitivity, Accuracy and Positive Predict Value (PPV). Sensitivity and 

specificity are common statistical measures of the performance for a binary classification 

research.
152

 The sensitivity measures the proportion of active compounds which are correctly 

identified; and the specificity measures the proportion of inactive compounds which are correctly 

identified. Accuracy and PPV estimates the performance of the built QSAR classification 

models.  

Accuracy =  
(TP + TN)

(TP + FP + FN + TN
 
)

=  
TN

Specificity
FP +

 
TN

= 
TP

Sensitivity
TP +

 
FN
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PPV =
TP

TP + FP
 

Here, TP is the number of true positives; FP the number of false positives, TN the 

number of true negatives and FN is the number of false negatives predicted by the QSAR model.  

In addition, root mean squared error (RMSE) is used to assess the quality of the relative 

predictions. RMSE measures the absolute accuracy of the prediction, i.e., how well the outcome 

value is reproduced by the model. 

RMSE =

√
  
  
  
  
  𝑠

1

𝑁
∑(𝑌𝑖,𝑝𝑟𝑒𝑑 − 𝑌𝑖,𝑚𝑒𝑎𝑠)2

𝑁

𝑖=1
𝑠
𝑠

 

The receiver operating characteristic (ROC) curve is employed to graphically present the 

model behavior in a visual way. A ROC curve shows the separation ability of a binary classifier 

by iteratively setting the possible classifier threshold.
152

 As a result, a plot of the trade-off 

between the sensitivity (y-axis) and 1-specificity (x-axis) is shown. If the plot has a surface area 

of 1, a perfect classifier is found, and if the area equals 0.5, the classifier has no discriminative 

power at all. 

2.1.12 External Set 

Based on the chemical scaffold  13163
146

 an external library of derivatives was built. 

Approximately 400 derivatives were designed and prepared and docked into BF3 site as 

mentioned above. Based on the prediction of selected QSAR models and synthetic feasibility, 

twenty five compounds are selected for chemical synthesis.  

2.2 Experimental Validation 

All in vitro assays are performed by the team members of Dr. Paul Rennie (Professor, Dept. 

of Urologic sciences, University of British Columbia). 
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2.2.1  Cell Culture 

LNCaP and PC3 human PCa cells were obtained from the American Type Culture 

Collection and grown in RPMI 1640 medium supplemented with 5% fetal bovine serum (FBS) 

(Invitrogen). LNCaP and PC3 cells were tested and authenticated by Idexx Radil (case no. 

14616-2011) in June 2011. The LNCaP eGFP cells
153

 were grown in phenol-red-free RPMI 1640 

medium supplemented with 5% charcoal-stripped serum. HeLa-AR cells stably expressing the 

wild-type AR were grown in Dulbecco’s modified Eagle’s medium supplemented with 5% FBS. 

Enzalutamide-resistant LNCaP cells (MR49F) were provided by Dr. Zoubeidi
154

 and were 

cultured in RPMI 1640 medium supplemented with5%FBS and 10 mM Enzalutamide. All cells 

were maintained at 37C in 5%CO2. 

2.2.2 eGFP Cellular AR Transcription Assay 

AR transcriptional activity was assayed as previously described by Tavassoli et al.
153

 

Briefly, stably transfected eGFP-expressing LNCaP human prostate cancer cells (LN-

ARR2PBeGFP) containing an androgen-responsive probasin-derived promoter (ARR2PB) were 

grown in phenol-red-free RPMI 1640 supplemented with 5% CSS for 5 days. The cells were then 

seeded into a 96-well plate (35,000cells/well) and treated the next day with 0.1nM R1881 and 

increasing concentrations (0-100μM) of compound. After 3 days of treatment the fluorescence 

was measured (excitation, 485 nm; emission, 535 nm).  

2.2.3 Prostate Surface Antigen assay 

The evaluation of PSA excreted into the media was performed in parallel to the eGFP 

assay using the same plates (see above description). After the cells were incubated for 3 days 

150µl of the media was taken from each well, and added to 150µl of PBS. PSA levels were then 

evaluated using Cobas e 411 analyzer instrument (Roche Diagnostics) according to the 

manufacturer’s instructions. 

2.2.4 MTS Assay 

Cell proliferation was determined using the MTS cell proliferation assay following 

incubation with the compound (0-100μM) over 72h (CellTiter 961 Aqueous One Solution 

Reagent, Promega). In brief, 30μL of the reagent was added to cells in each well of the 96-well 

plate containing 200μL of media and incubated for 90 minutes at 37°C in 5% CO2. The 

production of formazan was measured at 490 nm.  
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2.2.5 Bio-Layer Interferometry (BLI) Assay 

The direct reversible interaction between small molecules and the AR was quantified by 

BLI using OctetRED (ForteBio). The LBB of the biotinylated androgen receptor (bAR) was 

produced in situ with AviTag technology.
155

 The AviTag sequence (GLNDIFEAQKIEWHE) 

followed by a six residue glycine serine linker (GSGSGS) was incorporated at the N-terminus of 

the AR LBD (669-919). Escherichia coli BL21 containing both biotin ligase and AR LBD 

vectors were induced with 0.5mMisopropyl-β-D-thiogalactopyranoside (IPTG) in the presence of 

dihydrotestosterone (DHT) and biotin at 16°C overnight. The bacteria were then lysed by 

sonication, and the resulting lysate was purified by immobilized metal ion affinity 

chromatography (IMAC) with nickel_nitrilotriacetic acid (Ni_NTA) resin and cation-exchange 

chromatography (HiTrap SP).  

Purified bAR LBD (50μg/mL) was bound to the super-streptavidin sensors over 50 min 

at room temperature. The sensor was kept in assay buffer [20 mMN-2-hydroxyethylpiperazine-

N0-2-ethanesulfonic acid (HEPES), 150mM NaCl, 500μM tris(2-carboxyethyl)phosphine 

(TCEP), 500nM DHT, and 1% dimethylsulfoxide (DMSO)]. In all experiments, a known AF2-

interacting peptide was used as a control to confirm functionality of the bAR LBD. 

2.2.6 X-ray Crystallography of VPC-9002 

All crystallographic experiments (pdb-4HLW) have been carried out as contract research 

by Structure-Based Design, Inc. (www.strbd.com). 

2.2.7 In vivo Studies of Maximum Tolerated Dose (MTD) and Pharmacokinetics 

In vivo experiments are performed by the team members of Dr. Emma Guns (Associate 

Professor, Dept. of Urologic Sciences, University of British Columbia). All animal experiments 

were conducted in accordance with the University of British Columbia Committee on Animal 

Care. For the Maximum Tolerable Dose (MTD) and serum level evaluation, twenty seven 6-8 

week-old athymic nude mice (Harlan Sprague Dawley, Inc.) were intravenously, 

intraperitoneally or orally administered 50, 100 or 200 mg/kg of tested BF3 inhibitors solution 

formulated using 1.10, hydroxypropyl-cyclodextrin.ddH2O. Mice were monitored for 24 hours 

for signs of acute toxicity including death, lethargy, blindness and disorientation. In order to 

measure serum drug levels, tail bleed samples were taken from mice (100mg/Kg, n=3) following 

the administration at time points corresponding to 0, 1/2, 1, 2, 4, 6, 8 and 24 hours. Serum was 

separated by centrifugation (5min 3000G) and stored at -20 °C pending analysis by LC-MS. 

http://www.strbd.com/
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Assessment of in vivo tumor growth for castration-resistant LNCaP xenografts and 

Enzalutamide-resistant (MR49F) xenograft transplantation. LNCaP. 6-8 week-old nude mice 

(Harlan Sprague Dawley, Inc.) weighing 25-31 g were subcutaneously inoculated with LNCaP 

cells (106 cells in BD matrigel, BD Biosciences, New Jersey, USA) at posterior dorsal site. 

Tumor volume, body weight, and serum PSA levels were measured weekly. When serum PSA 

levels reached more than 25 ng/mL, mice were castrated. When PSA recovered to pre-castration 

levels, mice were randomized into 3 treatment groups; vehicle, 10 mg/kg of Enzalutamide or 200 

mg/kg of VPC-13163, 100 mg/kg of VPC-13566 and treated orally twice daily for 3 weeks. 

Calipers were used to measure the three perpendicular axes of each tumor. The formula V= 

(L*W*H) π/6, where L is the length, W the width, and H the height, was used to calculate the 

tumor volume. Mice were also weighed weekly and monitored daily for signs of toxicity 

including death, lethargy, blindness and disorientation.   

Enzalutamide-resistant (MR49F) cells. LNCaP-derived MR49F cells
154

 were excised and 

transplanted to castrated mice treated with 10 mg/ kg of Enzalutamide daily. When tumors 

reached 100-150 mm3, the Enzalutamide treatment was stopped and mice were randomized into 

3 treatment groups; vehicle, 10 mg/kg of Enzalutamide or required doses of BF3 inhibitors and 

treated orally twice daily for 3 weeks. 
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Chapter 3: DEVELOPMENT OF 2-((2-PHENOXYETHYL) THIO)-1H-

BENZIMIDAZOLE DERIVATIVES 

3.1 Background 

As previously mentioned Fletterick and his group conducted a high throughput screen of AR 

with a known compound library and reported several compounds that bind to the receptor’s 

surface at a novel structural pocket, referred to as BF3 site.
63

 X-ray structural analysis revealed 

that chemicals such as flufenamic acid (FLUF), 3,3′,5-triiodo thyroacetic acid (TRIAC) and its 

derivative T3 (figure 3.1) were reported to bind to the BF3 cleft and interfere with AR activity. 

While these compounds revealed the importance of the BF3 site, they had weaker potency (IC50 

> 50 μM) and were found to bind nonspecifically to the AR at multiple sites. Further 

investigational studies confirmed that BF3 is a protein-protein interaction site and is essential for 

AR transcriptional activity by recruiting co-regulator proteins such as FKBP52
65

 and Bag-1L
66

 

and engaging in crosstalk with the adjacent AF2 site.  

 

 

Figure 3.1. Chemical structures of small-molecule inhibitors reported to be able to bind to BF3 

pocket as reported by Fletterick and co-workers. 
63

 

Based on the above observations, we proposed that rationally designed compounds 

selectively engaging BF3 will modulate coregulatory recruitment in physiological settings 

including PCa. In an effort to improve target affinity and BF3 specificity, our group has 

performed a large-scale computational screen followed by a series of experimental validation. 

We have discovered a number of novel small-molecules that inhibit AR activity in micro-molar 

range.
139

 A comparison of the four reported co-crystal structures of the selected BF3 inhibitors 

(PDB code. 3ZQT, 2YLO, 2YLP, 2YLQ) revealed that residues of BF3 site may undergo 

significant conformational changes upon ligand binding. On the basis of the elucidated structure-

activity-relationship of our virtual screening hits and binding poses in the co-crystals, 2-((2-
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phenoxyethyl)thio)-1H-benzo[d]imidazole (VPC-4035) was derived and proposed as a proper 

starting point for further lead optimization (see figure 3.2).  

 

 

Figure 3.2. Known AR BF3 inhibitor and a chemical template derived from it. A) Previously 

identified AR BF3 inhibitor reported by Lack et al.
139

  B) Chemical template used as a query to 

find analogues by 2D similarity search method. 

3.2. Results 

3.2.1 Identification of Analogues by 2D Similarity Search Method 

Among previously identified BF3 inhibitors, (2-((2-phenoxyethyl) thio)-1-(2-(p-tolyloxy) 

ethyl)-1H-benzo[d]imidazole) derivative (compound VPC-4035) was selected as a lead 

candidate. A chemical template was designed based on the structure of VPC-4035 (figure 3.2B) 

and a molecular similarity search was performed to identify compounds with different 

substitutions at R1 and 1-5 positions of the benzene ring. Instant JChem,
143

 a 2D similarity 

searching tool from ChemAxon, was employed to search through ZINC database 12.0.
144

 All 

software parameters were set to their default values. A total of 30 ZINC compounds which 

generated Tanimoto coefficient above 0.6 with respect to the query structure were selected and 

tested for their anti-AR activity (see analogues section in Table 3.1).  
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Table 3.1. Structures and measured activities of the analogues of compound VPC-4035 retrieved 

by 2D similarity search and proposed synthetic derivatives. 

 

VPC-

ID 

AR 

Transcriptional 

IC50  (µM) 

 

R1 

 

1 

 

2 

 

3 

 

4 

 

5 

Analogues 

07 11.1 CH2-C(O)O-iPr H H CH3 H H 

4068 12.7 C2H4OMe H H CH3 H H 

4075 13.7 CH2-C(O)O-iPr H H H CH3 H 

4007 14.1 CH2-C(O)OEt H CH3 H H H 

4034 22.8 C2H4O-Ph(4-Me) H H H OC2H5 H 

4065 24.1 C2H4OMe H H H CH3 H 

4054 30.6 CH2-C(O)O-iPr H H CH3 CH3 H 

4011 32.9 CH2-C(O)OMe H H CH3 H H 

4101 35 Et H H H CH3 H 

4009 40.3 CH2-C(O)OEt H H CH3 CH3 H 

4110 45 Me H H H CH3 H 

4069 55 CH2C(O)OEt H H H C2H5 H 

4012 163.8 CH2-C(O)O- H H CH3 H H 

4003 >200 CH2C(O)-N-

Morph 

H H H CH3 H 

4006 >200 CH2-C(O)OMe H H H C2H5 H 

4008 >200 CH2-C(O)OMe H H CH3 CH3 H 
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VPC-

ID 

AR 

Transcriptional 

IC50  (µM) 

 

R1 

 

1 

 

2 

 

3 

 

4 

 

5 

4010 >200 CH2-C(O)OEt H CH3 H CH3 H 

4020 >200 CH2-C(O)O- H H H C2H5 H 

4025 >200 C2H4-C(O)O- H H CH3 H H 

4028 >200 C2H4O-Ph H H H CH3 H 

4032 >200 CH2-C(O)O- H H CH3 CH3 H 

4037 >200 CH2-C(O)O- H H H CH3 H 

4039 >200 C2H4-C(O)O- H CH3 H H H 

4041 >200 C2H4-C(O)O- H H H CH3 H 

4052 >200 CH2C(O)NEt2 H H H CH3 H 

4060 >200 CH2-C(O)O- H CH3 H CH3 H 

4061 >200 CH2-C(O)O- H CH3 H H CH3 

4064 >200 CH2-C(O)O- H H H t-Bu H 

4076 >200 CH2-C(O)O-Me H CH2CH=CH2 H H H 

4096 >200 C2H4-C(O)O- H H H C2H5 H 

Synthetic Derivatives 

9002 4.2 H H H H H H 

9045 12 Et H H H H H 

9047 >200 C2H4OH H H H H H 

9050 >200 C2H4COOH H H H H H 

9055 >200 CH2CH=CH2 H H H H H 

 

9100 

 

>200 
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3.2.2. Cell-Based Testing and In Vitro Characterization 

The selected compounds were screened for their ability to inhibit AR transcriptional 

activity using a nondestructive, cell-based enhanced green fluorescent protein (eGFP) AR 

transcriptional assay 
153

 (see chapter 2. materials and methods). In this assay, the expression of 

eGFP is under the direct control of an androgen responsive probasin-derived promoter and 

enables quantification of AR transcriptional activity. 13 of the purchased compounds exhibited 

>50% inhibition of AR transcription at a concentration of 50μM. These were subjected to 

concentration-dependent titration to establish corresponding IC50 values (table 3.1). The observed 

IC50 values were estimated to be in the range of 11-60μM. These inhibitors were then tested in 

SRC2 peptide and androgen displacement assays (using commercial kits available from Life 

Technologies) for their ability to displace SRC2 peptide from the AF2 site and androgen from 

the ABS, respectively. None of the compounds were active in these assays, confirming that they 

target the BF3 pocket. From the cell proliferation assay, the compounds were also confirmed to 

be nontoxic to non-AR containing cells at a 50μM concentration administered for over 72h.  

Since the molecules selected from the 2D similarity search did not result in compounds 

with improved cell-based activity, the lead optimization was initiated. 

3.2.3 Rational Design, Synthesis and Characterization of 2-((2-phenoxyethyl) thio)-

1H-benzimidazole (9002) 

Based on the crystallographically determined binding pose of a compound 4035 (2YLO) 

and the corresponding activity profiles of their analogues, we hypothesized that solvent-exposed 

substituents at the R1 position of the ligands are not likely to contribute to target affinity. To test 

this hypothesis, we designed a compound 9002 where R1 = H (table 3.1).  The structure was built 

using the MOE program and energy minimization was performed by applying the MMFF94X 

force field. The compound was then docked into the AR crystal structure (2YLO structure) using 

the Glide SP program without applying any constraints. From the docking pose, we could 

observe that compound 9002 is anchored to the protein site by a hydrogen bond that it forms 

with the Glu837 side chain. Compound 9002 was synthesized and evaluated by the eGFP 

transcriptional assay. As anticipated, it exhibited approximately a 3-fold increase (IC50=4.2μM) 

of AR transcriptional activity inhibition compared to the parent substance (IC50=13.1μM). The 

dose-response curve for compound 9002 is presented on figure 3.3A.  
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Furthermore, we have tested compound 9002 with the AF2 peptide displacement assay 

and androgen displacement assay where it did not demonstrate any detectible levels if activity, 

confirming that it is a specific BF3 binder. Biolayer interferometry (BLI) studies demonstrated a 

direct reversible interaction between this compound and AR LBD (figure 3.3B).  

Based on these observations, we concluded that the formation of H-bond between NH of 

the benzoimidazole moiety of compound 9002 and the side chain of the Glu837 residue is a 

significant factor for protein-ligand affinity. This observation becomes particularly obvious when 

compound 9002 is compared with the synthetic analogues 9045, 9047, 9050 and 9055, which 

were designed and tested as negative probes and which also received lower docking scores due 

to the loss of a critical H-bond with Glu837. Upon testing for anti-AR activity, all these 

derivatives except compound 9045 turned out to be completely inactive whereas compound 9045 

showed a 3-fold decrease in activity (IC50=12μM) in the eGFP assay (compounds shown as 

synthetic derivatives in table 3.1). Similarly, replacing benzoimidazole ring with benzoxazole, as 

in the case of compound 9100, caused a drastic effect in activity and binding to the AR LBD. 

Since compound 9002 has a promising experimental activity profile, it was subjected to 

structural elucidation using x-ray crystallography as contract research by Structure-Based 

Design, Inc. (www.strbd.com). 

 

http://www.strbd.com/
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Figure 3.3. Activity profile of 9002. A) Dose-response curve (0-25μM) illustrating the inhibiting 

effect of the compound 9002 on the AR transcriptional activity in cells. Data was fitted using log 

of concentration of the inhibitors vs % activation with GraphPad Prism 6. B) BLI dose-response 

curves (0-50μM) reflecting the direct binding of the compound 9002. 

3.2.4. Crystallographic Structure of AR in Complex VPC-9002 

In an effort to unambiguously confirm the site of the compound’s interaction, x-ray 

crystallographic studies were conducted with the AR and compound 9002. Following 

optimization of the soaking protocol, the structure of the AR in complex with compound 9002 

was determined to 2.5Å resolution. The crystallographic data refinement statistics for the 

corresponding PDB entry 4HLW are presented in table 3.2. In the present crystallographic data 

set, there was clear electron density observed at the BF3 site, supporting the presence of the 

inhibitor. Interestingly, unlike the cases of previously published BF3 binders such as 4035, 

139
TRIAC, T3 and FLUF

63
, compound 9002 was found to reside specifically in the BF3 site. 
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Since the crystallographic information is in agreement with the activity data, compound 9002 

could be characterized as a specific BF3 inhibitor. Figure 3.4A shows a good structural fit of 

compound 9002 inside the target cavity. Notably, the experimentally determined configuration of 

the BF3-bound molecule is similar to its docking predicted pose generated by Glide 

(r.m.s.d=0.62Å), which gave confidence to rely on the adopted in silico protocol (supplemental 

figure 3.1). 

The structure of the AR-LBD in complex with compound 9002 is generally similar to the 

previously reported structures 2YLO. Compound 4035 differs slightly in terms of its positioning 

inside the BF3. Thus, as predicted compound 9002 forms a strong hydrogen bond between the 

NH benzimidazole moiety and side-chain carboxyl of the Glu837. Moreover, this compound 

maintains strong hydrophobic contacts with the neighboring residues, including Ile672, Phe673 

and Leu830. Additional stabilization of the protein-ligand complex occurs due to T-shaped 

arene-arene conjugation between the phenyl ring of compound 9002 and the Phe826 side chain. 

These interactions possibly explain the increased potency of compound 9002 (IC50 =4.2μM) 

compared to its parental compound 4035 as well as other structural analogues listed in table 3.1 

(where the corresponding IC50 values range from 11μM to >200μM). Since compound 9002 

demonstrated improved AR inhibitory activity profile and could be experimentally resolved 

inside the BF3 site, it was advanced into further optimization studies. 
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Figure 3.4.  Binding orientation of benzimidazole derivatives. A) X-ray crystal structure of 

compound 9002 bound to BF3 pocket on the surface of human AR. Hydrogen bonds are shown 

in red. B) Binding orientation of compound 9145 inside the BF3. Hydrogen bonds are shown in 

black. 
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Table 3.2. Data collection and refinement statistics of 4HLW. 

PDB Code 4HLW 

X-ray Source Synchrotron 

Space Group P212121 

a, b, c (Å) 55.19, 66.30 and 73.01 

α,β,γ () 90.0, 90.0 and 90.0 

Data collection statistics 

Resolution (Å) 2.5  

Rsym or Rmerge 0.136/(0.580) 

No. of unique reflections 12422/(1786) 

I/σ (I) 7.01/(2.37) 

Completeness (%) 99.93/(100) 

Multiplicity  6.0/(6.2) 

Refinement and model statistics 

Resolution (Å) 2.5 

No. reflections used (work + test) 9717 

Rwork
a 

0.188 

Rfree
a
 0.250 

No. of residues 244 

No. of water molecules 13 

Additional molecules 4 

Total No. of atoms 1953 

R.M.S.D bond length (Å) 0.029 

R.M.S.D bond angles (Å) 1.21 

Wilson B-factor (Å
2
) 35.4 

Mean B-factor (Å
2
) 47 

Ramachandran statistics (%) 
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PDB Code 4HLW 

Favored region 98.0 

Additional allowed region 7.0 

Generously allowed region 0.9 

Disallowed 0 

 

a
 Rwork and Rfree = Σh||Fo(h) - Fc(h)||/Σh|| for the working set and test set (5%) of reflections, 

where Fo(h) and Fc(h) are the observed and calculated structure factor amplitudes for reflection. 

3.2.5. Structure Activity Relationship (SAR) for 2-((2-phenoxyethyl) thio)-1H-

Benzimidazole as AR BF3 Ligands 

To further explore the relevance of various structural elements of compound 9002, we 

designed 8 of its close derivatives by substituting its sulfur and oxygen atoms in the linker region 

(table 3.3). Data obtained from Bio-Layer Interferometry (BLI) experiments and eGFP cellular 

assays revealed that subtle changes in the linker can have profound effects on target binding and 

inhibitory activity. Accordingly, we investigated the significance of a sulfur atom in compound 

9002 by replacing it with nitrogen (compound 9105) and carbon (compound 9130). These 

modifications abolished the cellular activity of derivatives 9105 and 9130 and their binding to 

the AR. Similarly, the replacement of sulfur with sulfinyl and sulfonyl fragments caused a 

significant drop in activity of the corresponding derivatives 9058 and 9057.  According to the 

modeling data the loss in activity of 9058 and 9057 was due to the presence of oxygen which 

disrupts the critical van der Waals contacts with Phe673, Tyr834 of the BF3 pocket. Thus, our 

further investigation was focused around the oxygen atom of linker region in compound 9002. In 

particular, the replacement of oxygen with carbon resulted in compound 9097, which 

demonstrated a 4-fold drop in anti-AR potential (12μM). Surprisingly, replacing oxygen with 

nitrogen (compound 9131) exhibited detrimental effects on its binding and activity. Increasing 

the length of the linker fragment from SC2H4O to SC3H6O resulted in loss of activity of a 

derivative 9061, likely caused by its poor fit inside BF3. Shortening the linker region (i.e. 

removing oxygen atom and exchanging the SC2H4OPh fragment to SC3H6Ph) did not result in 

any major alteration of anti-AR potential, with the corresponding IC50 assessed for compound 

9099 at 7.4μM. 
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Table 3.3. Structures and measured activities of the synthetic derivatives of compound 9002 with 

different linkers attached. 

 

VPC-ID AR Transcriptional 

IC50  (µM) 

Linker 

9105 >200 

 

9130 >200 

 

9058 >200 

 

9057 >200 

 

9097 12 

 

9131 >200 

 

9061 >200 

 

9099 7.4 
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Another focal point of the study was evaluation of the effect of substitutions at the 

benzene ring of compound 9002 (table 3.4). The starting three analogues, 9112, 9117 and 9006, 

were designed and synthesized by introducing a methyl group at R1, R2 and R3 positions of the 

core. As predicted, compound 9117 showed a 2-fold increase in AR-suppressing activity 

(IC50=1.8μM) compared to the parental compound 9002 whereas molecule 9112 demonstrated 5-

fold decrease while compound 9006 demonstrated only slightly lowered activity (IC50=7.0μM). 

As our docking models demonstrated, the presence of a methyl group at the meta- position 

ensures additional hydrophobic contacts with the Phe826 and Leu830 residue of BF3 and 

contributing towards enhanced ligand binding (supplemental figure 3.2). Similarly, 2, 5-methyl 

substitution was well-tolerated and led to further enhanced activity of the corresponding 

derivative 9114 (IC50=2.7μM). The dose response curve for compounds 9117 and 9114 is 

presented in figure 3.4A. The BLI experiment confirmed a direct reversible interaction between 

compounds 9117, 9114 and the AR as shown in figure 3.5B and C. We have also explored the 

introduction of chlorine atom into R2 (compound 9103) and R3 (compound 9101) substitution 

positions, which appear not to affect the overall activity. A larger sulfonamide group was not 

tolerated at position R3 (9102) and caused a 15-fold decrease in the inhibition activity.  

An effort was also made to replace imidazole with an indole moiety in the developed BF3 

inhibitors (table 3.5). Initially, we have made an indole-based compound 9088 which 

demonstrated a similar level of AR inhibition compared to compound 9002 with a corresponding 

IC50 of 5.4μM. Derivative 9145 was designed by adding a sulfonamide group to the 7-position of 

compound 9088. According to the docking model shown in figure 3.4B, sulfonamide forms 

additional networks of hydrogen bonds with nearby residues i.e. side chain of Arg840, Glu837, 

Asn833 and backbone of Pro671. As a result, the compound demonstrated 4-fold increase its in 

activity (figures 3.4A). The direct reversible interaction between this compound and the AR 

LBD was also detected by the BLI (Figure 3.5D). Based on the above observations, compounds 

9002, 9117, 9114 and 9145 were selected for further evaluation. 
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Table 3.4. Structure and activity data for synthetic derivatives with different substitutions around 

phenyl ring. 

 

ID AR 

Transcriptional 

IC50  (µM) 

 

1 

 

 

2 

 

3 

 

4 

 

5 

9112 19 CH3 H H H H 

9117 1.8 H CH3 H H H 

9006 7 H H CH3 H H 

9114 2.7 CH3 H H H CH3 

9103 5 H Cl H H H 

9101 4 H H Cl H H 

9102 62 H H SO2NH2 H H 

 

Table 3.5. Structure and Activity Data for 2-((2-phenoxyethyl) thio)-1H-indoles. 

ID AR 

Transcriptional 

IC50  (µM) 

Structure 

9088 5.4 
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ID AR 

Transcriptional 

IC50  (µM) 

Structure 

9145 1.5 

 

 

 

 

Figure 3.5. Activity profile of benzimidazole derivatives. A) Dose-response curves (0-100μM) 

illustrating the inhibiting effect of the compounds 9117, 9114, and 9145 on the AR 

transcriptional activity in cells. Data points represent the mean of two independent experiments 

performed in triplicate. Data was fitted using log of concentration of the inhibitors vs % 

activation with GraphPad Prism 6. BLI dose-response curves (0-50μM) reflecting the direct 
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binding of the compound B) compound 9117 C) compound 9114 and D) compound 9145 to the 

AR LBD protein. 

3.2.6. Derivatives 9002, 9117, 9114 and 9145 Reduce PSA Expression in LNCaP 

and Enzalutamide- Resistant Cells 

To rule out possible false positive hits in the AR transcriptional eGFP assay, we validated 

the activity of compounds 9002, 9117, 9114 and 9145 by quantifying their effect on the 

production of the prostate specific antigen (PSA) in prostate cancers cell lines. PSA is a serine 

protease whose expression is dependent on AR activity level in the cell.
156

 PSA is widely used as 

a marker for PCa as its serum concentration is associated with this pathological condition. As 

expected, these derivatives induced a dose-dependent decrease in PSA levels in LNCaP prostate 

cancer cells 
157

 with corresponding IC50s value determined as 4.3, 3.3, 1.9 and 1.6μM 

respectively (Figure 3.6A). These compounds were also evaluated using in house developed 

Enzalutamide- resistant PCa cell line (MR49F cells).
154

 These AR inhibitors are significantly 

more effective than Casodex and Enzalutamide in these cells. Figure 3.6B demonstrates that anti-

AR drugs are ineffective, with IC50s greater than 100μM. On the other hand, even though 

compound 9002 (IC50=21μM) reduced PSA levels moderately, derivatives 9117, 9114 and 9145 

(IC50=13, 6.8 and 6.4μM) were quite effective in these MR49F cells. Hence, the inhibition values 

obtained for inhibition of PSA in LNCaP and MR49F cells confirms the effectiveness of these 

inhibitors on the AR signaling pathway.  
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Figure 3.6. Inhibition effect of 9002, 9117, 9114 and 9145 in comparison to Casodex and 

Enzalutamide on PSA in dose response manner in A) LNCaP cells B) MR49F cells. 

3.2.7. Derivatives 9002, 9117, 9114 and 9145 Reduces Cell Growth in LNCaP and 

Enzalutamide- Resistant Cells 

To ascertain the growth inhibitory potential of AR inhibitors 9002, 9117, 9114 and 9145 

we evaluated their ability to inhibit growth of LNCaP
157

  and MR49F cells
154

 as well as on AR-

independent PC3 cells.
158

 The cell viability was assessed after 4 days of incubation with the test 

compounds at a concentration of 6µM. Figure 3.7 shows that compound 9002 did not have any 

significant inhibition effect on these cancer cells whereas its derivatives 9117, 9114 and 9145 

suppress cancer cells quite effectively at the concentration measured. Derivatives 9114 and 9145 

exhibit a particularly strong effect on the growth of both LNCaP and MR49F cells.  Moreover, 

derivatives 9117, 9114 and 9145 did not show any effect on AR independent PC3 cell lines, 

confirming their AR-specific activity.  
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Figure 3.7. The effect of compounds 9002, 9117, 9114 and 9145 on cell viability in LNCaP, 

Enzalutamide resistant cells and PC3 cells. % cell viability is plotted at 6µM concentration. Data 

are presented as Mean ± SEM. A p value <0.05 was considered very significant effect on LNCaP 

and Enzalutamide resistant cells compared with PC3 cells.  

3.2.8. Derivatives 9002, 9117, 9114 and 9145 are Selective AR BF3 inhibitors 

We undertook to profile the selectivity of these derivatives for AR over ERα, other 

member the steroidal nuclear receptor subfamily. The compounds were tested for their ability to 

inhibit 17βEstradiol-ERα-mediated gene transcription in MCF-7 human breast cancer cells using 

luciferase reporter whose expression is driven by consensus estrogen response element. 

Supplementary figure 3.3 shows that the compounds do not inhibit ERα transcriptional activity 

compared to Tamoxifen measured at 3 different concentrations (10, 5 and 1µM). This confirms 

that these inhibitors are AR BF3 specific. 

3.3 Discussion 

Surface pockets or protein-protein interaction sites are often considered as attractive options 

for therapeutic targeting. However, identifying small-molecules that modulate these sites is often 

difficult owing to issues such as lack of a well-defined deep binding pocket. Although surface 

sites are challenging drug targets, their adaptive character can provide binding grooves for 

compounds and thus opportunities for drug discovery.
159, 160

  In the case of the AR, targeting its 
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BF3 pocket offers a promising alternative strategy to create novel therapeutics for castration-

resistant PCa. Since the AR BF3 is surface exposed, identifying compounds with significant 

activity profiles and developing structure-activity relationship around them is challenging. 

We have previously utilized the power of virtual screening combined with experimental 

evaluations to discover a number of small molecules that effectively target the BF3 site of the 

AR.  On the basis of one of the identified inhibitors (4035), we developed a series of analogues 

with improved anti-AR activity. In particular, a simplified yet more active derivative 9002 was 

synthesized, experimentally evaluated and crystallographically resolved inside the AR BF3 

target cavity. The reported structure 4HLW demonstrated that bezinoimidazole moiety of the 

parental compound 9002 makes a strong H-bond with neighboring residue Glu837. The 

information obtained by both inhibition experiments and x-ray crystallography studies indicated 

that compound 9002 is a strong BF3-specific inhibitor. Hence, we synthesized a number of 

derivatives of this compound and explored their structure-activity relationship in the context of 

anti-AR potency.  

We initially modified the linker region of compound 9002. Replacement of the oxygen 

atom in SC2H4O was tolerated, but did not result in further improvement of potency. Other 

modifications completely abolished anti-AR activity and binding. Hence, we focused on 

introducing groups at the benzene ring of the compound 9002 template. By comparison, addition 

of small hydrophobic substituents such as methyl at various position of the benzene ring was 

able to enhance anti-AR potency of the corresponding derivatives of compound 9002. In 

particular, compounds 9117 and 9114, containing methyl at meta- and di-ortho positions, 

demonstrated IC50 in single digit µ-molar range. Replacement of the benzoimidazole moiety in 

compound 9002 with a synthetically more favorable indole fragment did not significantly alter 

the activity of the derivatives. The introduction of a sulfonamide group at 7-position of the indole 

core (compound 9145) further increased the target affinity by providing additional hydrogen 

bonds with Arg840 and Phe673 residues.  

These findings culminated in the discovery of rather potent AR inhibitors 9002, 9117, 

9114 and 9145 with the corresponding IC50s of 4.2, 1.8, 2.7 and 1.5μM respectively, which are 

5-10 times lower than the IC50 of 13.1μM for the parental compound 4035. The activity of these 

chemicals was further confirmed by their ability to decrease the levels of PSA in LNCaP and 
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Enzalutamide-resistant PCa cells. Compounds 9002, 9117, 9114 and 9145 exhibited IC50s of 4.3, 

1.9, 3.3 and 1.6μM respectively in LNCaP cells. Similar potencies were also observed in 

Enzalutamide-resistant cell line. Compounds 9114 (IC50=6.8μM) and 9145 (IC50=6.4μM) turned 

out to be especially effective in comparison with clinically used Casodex and Enzalutamide 

(IC50>100μM in these resistant cells). The PSA inhibition figures were also in agreement with 

the above numbers giving further confidence in these BF3 inhibitor prototypes.  

In summary, while we obtained 30 analogues of compound 4035 by 2D similarity search, 

but they were not very active. However, we further rationally developed, synthesized and tested 

21 benzimidazole derivatives of compounds 4035 and 9 of them showed equivalent or improved 

potency against the AR. Similarly, we created and evaluated two indole derivatives which also 

exhibited enhanced anti-AR potency. These initial results obtained with indole-based compounds 

are encouraging and will be further investigated. Moreover, the structure of the AR in complex 

with compound 9002 (one of the synthetic derivatives) was elucidated and turned out to be in 

very good agreement with our prior predictions, providing additional confidence in our modeling 

approach.  

Drug resistance remains a fundamental cause of therapeutic failure in cancer therapy.
161, 

162
 In PCa, cancer progression to a drug-resistant phenotype in the presence of an antagonist 

possibly through selection of cells with epigenetics or mutational changes that bypass the 

inhibitory action of the drug. Our lead derivatives were tested for their ability to inhibit AR in 

LNCaP PCa cell lines including those which have developed resistance to the recently approved 

potent anti-androgen, Enzalutamide.
71

 Results from cell viability assays indicated that the tested 

derivatives exhibited effective inhibition of growth in both LNCaP and Enzalutamide-resistant 

cell lines containing T877A and F876L forms of AR, respectively. There was no significant 

effect on the growth of PC3 PCa cells which lack the AR. The effectiveness of these BF3 

inhibitors was also confirmed when they were shown to reduce the endogenous expression levels 

of PSA in Enzalutamide-resistant cell lines. Even though the specific mechanism for 

Enzalutamide-resistance in MR49F cells is still unclear and may or may not be fully related to 

mutations in the AR, the effectiveness of compounds 9117, 9114 and 9145 in these cells 

substantiates targeting an alternative binding site on the AR such as the BF3. The results 
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obtained from the ERα luciferase assay confirms that these inhibitors are specific to AR and do 

not effect ERα in human breast cancer cells.  

In summary, the study resulted in development of novel class of anti-AR drugs chemo-

types with an alternative mechanism of action which can overcome conventional anti-androgen 

resistance and exhibit strong antagonism in PCa cell lines. The only limitation of the study on 

benzoimidazole series was we did not achieve great potency that could potentially reflect in vivo 

applications. Nonetheless, these derivatives were promising enough to carry out further hit-to-

lead optimization efforts. 
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Chapter 4: DEVELOPMENT OF INDOLE-BASED DERIVATIVES 

4.1 Background 

Although, the BF3 inhibitors reported
64

 and discussed in chapter 3 demonstrated promising 

in vitro activity profile we did not achieve great potency that could potentially reflect in vivo 

applications. Hence we initiated the current study to identify another chemical class of 

compounds using  2-[(2-phenylethyl) sulfanyl]-1H-1,3-benzodiazole (9099) 
64

 as template for 

further drug optimization.  

4.2 Results 

4.2.1 Identification of Indole Chemical Series by the Shape-Based Similarity Search 

In previous chapter, we reported series of synthetic derivatives by substituting different 

functional groups on benzimidazole and benzene moieties which resulted in their increased anti-

AR potency. However, derivatives with longer linker fragments connecting the aromatic systems 

did not generally demonstrate improved activity (with the exception of compound 9099). In the 

current study, we searched for chemicals containing various shorter linkers using compound 

9099 as template. We employed Instant JChem, a 2D similarity searching tool from ChemAxon 

to search for structural analogues. Similarity search was performed against the ZINC database 

v12.0 containing ~18 million compounds.
144

 All software parameters were set to their default 

values. The search resulted in 10 candidate structures. The identified compounds were mapped to 

the query template and ranked according to generated “Tanimoto coefficient (Tc)” values. 

The identified molecules were inspected visually and only compound 13235 was selected 

because it contains a short linker that connects two aromatic systems and obtained Tc value 

above 0.8. Since compound 13235 represented a novel chemotype -3-[(E)-2-phenylethenyl]-1H-

indole, it was used as a template for another similarity search and which led to the identification 

of a series of N-[1H-indol-3-ylmethylidene] aniline derivatives, compounds 13303-13309. In the 

same way, each subsequent chemical series (3-[(E)-2-phenyldiazen-1-yl]-1H-indole, compounds 

13226-13258; 3-(3H-indol-2-yl)-1H-indole, compounds 13127-13221; 3-(2, 3-dihydro-1H-indol-

2-yl)-1H-indole, compounds 13163 and 13164;) was identified based on the scaffold of active 

compounds from the previous search (compounds 13235, 13303, 13226 and 13127) as shown in 

figure 4.1. Thus, from each similarity search steps, we obtained a different number of hits, 
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totaling 295 identified chemical structures. These compounds were further evaluated using our 

established in silico pipeline as discussed below. 

4.2.2  Molecular Docking of Selected Compounds into the AR BF3 Pocket 

The BF3 site represents a hydrophobic groove located adjacent to the AF2 pocket on the 

surface of the AR. Being a protein-protein interaction site, BF3 represents a challenging target. 

Nevertheless, it offers an attractive option for direct inhibition of the AR transactivation.  

Using our in-house computational drug discovery pipeline, we virtually tested the 

selected 295 compounds. Our in silico pipeline included molecular docking, on-site rescoring, 

and consensus voting procedures (see Materials and Methods section for more details). Initially, 

all molecules were docked into the AR crystal structure (4HLW, 2.5Å resolution) using the Glide 

SP program 
128

. Our previous studies indicated that charged amino acids Glu837 and Leu830 

form an H-bond interaction and hydrophobic contacts with BF3 binders and are critical for 

protein-ligand coordination. Therefore, we have applied the corresponding H-bond and 

hydrophobic constraints during the docking. Compounds that received moderate-to-high score by 

Glide SP were selected and re-docked into the 4HLW structure using the eHiTS docking 

protocol.
129

 In order to improve accuracy of the predicted binding orientation, the root-mean-

square deviation (RMSD) was calculated for the docking poses generated by Glide and eHiTS 

programs. Only molecules with docking poses varying with RMSD < 2.0Å were subjected to 

further analysis.  

At the next step, the selected ligands underwent additional on-site rescoring using the 

LigX program and the pKi predicting modules implemented in MOE. With this information, a 

cumulative scoring of four different predicted parameters (Glide score, eHiTS score, RMSD, 

LigX score and pKi predicted by the MOE) was computed, with each molecule receiving a 

binary 1.0 score for every “top 20% appearance” (supplemental table 4.1). The final cumulative 

vote allowed for selecting 70 molecules associated with higher probability of being BF3 binders. 

These compounds were then visually inspected and 23 chemicals (compounds mentioned in 

figure 4.1) were selected.  
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Figure 4.1. The strategy used in order to obtain high active indole based AR BF3 inhibitors. The 

IC50 values shown for each compound are obtained from AR-eGFP assay. 
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To ensure that these compounds represent an entirely different chemical class of AR 

inhibitors, we compared them with previously reported BF3 binders 
63, 64, 139

 and with known 

anti-androgens (supplemental table 4.2) on the basis of structural and physicochemical similarity. 

The assembled set was clustered according to pairwise Tanimoto distances and using Daylight 

fingerprints. A clustering threshold of 0.5 resulted in 17 groups, highlighting structural diversity 

of the set (figure 4.2).   

In addition, these structures were clustered according to their physicochemical similarity 

(figure 4.3). The heat map generated by matrix2png program
163

 highlights the distances 

calculated in the first 3 principal components space (variance explained >95%) that originated 

from 9 drug-likeness descriptors (polar surface area, logP, logS, molecular weight, number of H-

bond donors, H-bond acceptors, heavy atoms, rings, and rotatable bonds). From the resulting 

structural classification tree and the heat map, one can see that the identified chemicals are quite 

distinct from the previously reported BF3 binders and from conventional anti-androgens listed in 

supplemental table 4.2. Hence, these 23 chemicals were purchased and further investigated 

experimentally.  
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Figure 4.2. An un-rooted classification tree representing the structural diversity of reported BF3 

inhibitors compared to published BF3 inhibitors and AR drugs. The tree is built based on 

pairwise Tanimoto distances between Daylight fingerprints of 44 AR inhibitors including 4 

commercial anti-androgens and 17 previously published BF3 inhibitors. Only highest active 

inhibitor from each colored cluster is depicted. 
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Figure 4.3. Comparative analysis of reported BF3 inhibitors and published/commercial AR 

inhibitors based on 9 physicochemical properties (polar surface area, logP, logS, molecular 

weight, number of H-bond donors, H-bond acceptors, heavy atoms, rings, and rotatable bonds). 

Green shades code for similarity whereas red shades code for dissimilarity. Compound 13163 

has less or no similarity with previously reported BF3 compounds such as T3, TRIAC and ant-

AR drugs Casodex and Enzalutamide (as highlighted by horizontal box). Asterisk (*) point 

highlights the difference between compound 13163 and Casodex, Enzalutamide.  
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4.2.3 Cell-Based Testing and In Vitro Characterization 

All purchased compounds were screened for their ability to inhibit AR transcriptional 

activity using an eGFP AR transcriptional assay. 
153

 Since all the compounds exhibited >75% 

inhibition of AR transcription at the screening concentration of 3μM, they were all subjected to 

concentration-dependent titration along with Enzalutamide as a positive control. We established 

an IC50 value for Enzalutamide of 0.08 μM, whereas the tested compounds exhibited IC50 values 

in the range of 0.3-25 μM (figure 4.1).  

In addition, we tested the most active derivative 13163 within the SRC2 peptide and 

androgen displacement assays to check if they displace the activator peptide from the AF2 site 

and androgen from the ligand binding pocket. It showed any significant activity in these assays at 

the concentrations measured, confirming that it likely target the BF3 pocket. Furthermore, 

biolayer interferometry (BLI) studies demonstrated a direct, reversible and dose-dependent 

interaction between the tested compound and the AR LBD. Figure 4.4A and B feature the eGFP 

IC50 curve and BLI graph for the highest active compound, 13163.  
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Figure 4.4. Activity profile of compound 13163. A) Dose-response curve illustrating the 

inhibiting effect of compound 13163 (IC50 = 0.31 μM) and enzalutamide (IC50 = 0.08 μM) on the 

AR transcriptional activity in LNCaP cells. Data points represent the mean of two independent 

experiments performed in triplicate. Error bars represent the SEM for n = 6 values. Data were 

fitted using log of concentration (conc) of the inhibitors versus percent activation with GraphPad 

Prism 6. B) BLI dose-response curves (3–100 μM) reflecting the direct binding of 13163. C) The 

effect of 13163 (IC50 = 0.21 μM) in comparison with enzalutamide on PSA (IC50 =0.09 μM) in a 

dose-response manner in LNCaP cells. D) The effect of 13163 in comparison with enzalutamide 

on PSA (IC50 = 6.02 μM) in a dose response manner in enzalutamide-resistant cells (MR49F). 

4.2.4 Compound 13163 Stably Binds to BF3 Pocket 

To determine the binding of 13163 at BF3 pocket, molecular dynamics (MD) simulations 

was performed for 50ns (see chapter 2. materials and methods). The stability of the receptor and 

ligand conformation was then assessed by the RMSD between the starting agonist conformation 

and the final conformation after 50ns MD simulations. 
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In figure 4.5A, the RMSD of 13163 is plotted in orange color and that of backbone heavy 

atoms of AR LBD is shown in grey color. The RMSD was calculated by using the initial 

complex conformation as the reference. The plateau of backbone RMSD over 50 ns indicates 

that the AR LBD was well equilibrated, and the 13163’s average RMSD showing its value 

around 3.5Å over the maximum period (up to 40ns) clearly demonstrates that the ligand fits in 

the BF3 site well. We observed the RMSD shift  at around 40ns and this is because there was the 

rotation of dihydroindole moiety in the 13163 ligand while its indole group is maintaining its 

pose close to initial confirmation. 

In order to identify the representative binding pose of 13163, we applied the cluster 

analysis to the 13163 ligand’s conformations obtained from the 50ns MD production run. The 

clustering was conducted on the basis of RMSD of ligand’s heavy atoms by using the 

hierarchical agglomerative clustering approach, and the five clusters were obtained. About 54% 

of the ligand conformations were assigned to the first ranked cluster, and its centroid 

conformation in the cluster (shown in yellow color in figure 4.5B) was found to be similar to the 

initial 13163 binding pose docked into the 4HLW crystal structure as depicted in green color in 

figure 4.5B.  

To determine the representative binding pose of 13163, we proceeded to the generalized 

born/surface area (GB/SA) model to calculate the binding free energy for all the protein-ligand 

complex conformations in the first ranked cluster, and defined the conformation that gave the 

lowest binding free energy as the representative binding pose. The binding free energy of the 

representative binding pose was calculated to be -30.6 kcal/mol, and we can see from the figure 

that the ligand is well surrounded by the residues in the BF3 site, although the BF3 site is the 

surface exposed binding pocket (figure 4.5C). Figure 4.5D demonstrates the residues in the BF3 

site that had the frequent contact with the 13163 ligand during the MD simulations. We defined 

the contact between the ligand and residue when their closest distance between the constituent 

atoms is closer than 3 Å. For example, Phe673, Leu830, Asn833 and Glu837 had the contact 

with the ligand over 80% of total MD simulation time. This confirms that the intermolecular 

interactions are mainly driven by hydrophobic contacts. The H-bond interaction between Glu837 

and 13163 was more prominent in docking studies. During MD studies, this interaction was 

observed approximately 10% of the total simulation time.  
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Figure 4.5. The analysis of molecular dynamics simulations performed on AR BF3-13163 

complex. A) The observed RMSD values observed for 13163 and AR LBD during 50ns MD 

simulations. B) Initial docked conformation predicted by Glide program (green) and 

representative docking pose and most stable conformation of 13163 obtained from MD 

simulations (yellow). C) Surface representation BF3 pocket and 13163. It shows that the ligand 

occupies the BF3 site and bind tightly. D) List of BF3 residues that are in close contact with the 

ligand during MD simulations.  

To confirm computational prediction of 13163’s binding to the BF3 pocket, a 

mutagenesis study was performed on the AR. Preliminary results with mutants Phe673Glu, 

Glu837Ala (Figure 4.6A) and Asn833Trp (Figure 4.6B) confirmed that compound 13163 did not 

show any binding to the protein compared with the wild-type AR in a BLI assay. Because these 

residues are critical for protein-ligand interactions, compound 13163 binding has been abolished 

upon mutating them. 
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Figure 4.6. BLI dose-response curves (10-320 μM) showing that there is no binding of 13163 

and mutant forms of AR BF3. A) Phe673Glu and Glu837Ala mutants. B) Asn833Trp mutant. 

4.2.5 Compound 13163 Displaces Bag-1L Peptide from the AR BF3 Pocket 

Recently, Jehle et al reported that Bag-1L protein interacts with AR BF3 pocket through 

its hexapeptide repeat sequence, GARRPR.
66

 They demonstrated that one of our BF3 inhibitors 

mentioned in chapter 3 (VPC-9114) blocks the association between GARRPR motif and BF3 

pocket. Therefore, to determine the binding of hexapeptide sequence at BF3 pocket, MD 

simulations was performed for 40ns. In figure 4.7A, the plateau of backbone RMSD over 40 ns 

(shown in grey) indicates that the AR LBD was well equilibrated, and the GARRPR motif’s 

average RMSD (shown in orange) showing its value around 2.5Å throughout the simulation time 

indicates that the peptide fits well in the BF3 site. However, due to the presence of three highly 

flexible arginine residues in the hexapeptide sequence, RMSD value is increased when 

sidechains were considered in the calculation (blue curve).  

Figures 4.7B and C illustrate binding mode of GARRPR motif and BF3 residues that are 

critical for the protein-protein associations. It can be clearly seen that the peptide makes a 
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network of hydrogen bond interactions with several BF3 residues. Phe673, Asn727, Glu829, 

Asn833, Glu837 and Arg840 had the contact with the peptide over 80% of total experimental 

time frame. During simulations, H-bond interaction between carbonyl oxygen of Arg3 and 

sidechain of Arg840 was observed for more than 60% of the time. Similarly, the interaction 

between Arg1 and sidechain of Asn833 was observed 79% of the total simulation time. The 

average bond distance of these interactions are estimated to be 2.6Å. The significance of these 

residues is confirmed by the mutagenesis study reported by Jehle et al. It has been observed that 

the interaction of Bag1L protein was strongly compromised when Asn833 and Arg840 were 

mutated compared to wild-type AR-Bag1L complex.  Moreover, authors reported that the Proline 

of the GARRPR motif is a highly conserved residue among the peptides homologues to Bag1L. 

It has been observed in our MD simulations that Proline makes strong hydrophobic interactions 

with neighboring Phe673, Pro723 and Tyr734, hence, critical for the binding at AR LBD surface. 

The superimposition of the binding orientations of 13163 and GARRPR motif inside the 

BF3 pocket as shown in figure 4.7D explains the mechanism behind the possible displacement of 

GARRPR motif from the binding pocket in the presence of a BF3 inhibitor. 13163 perfectly 

occupy the binding regions of hexapeptide motif and disrupt key interactions between the Bag1L 

protein and BF3 residues. According to MD simulations, the compound disrupts the H-bond 

interactions and van der Waals contacts formed between ARRP residues and BF3 pocket.  
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Figure 4.7. Predicted binding orientation of GARRPR motif of Bag1L protein inside the BF3 

pocket. A) The observed RMSD values for GARRPR motif and AR LBD during 40ns MD 

simulations. B) Frequently observed binding conformation of the GARRPR motif during 

simulations. C) List of BF3 residues that are in close contact with GARRPR motif D) 

Superimposition of bound Bag1L peptide, GARRPR and 13163. 

Since 13163 has been developed as a selective AR BF3 inhibitor, we anticipated that the 

binding of this compound at the BF3 target should disrupt the interaction between GARRPR 

motif and AR. Therefore, the displacement of the bound peptide from the AR provides a direct 

validation for 13163. Hence, the outcomes of the MD study were confirmed by a fluorescence 

polarization assay developed in house as described by Jehle et al.
66

 We found that 13163 blocked 

the interaction of Bag-1L peptide with the AR with the corresponding IC50 value of 6.10 μM, 

whereas compound 13221, characterized in prior experiments as non-AR disrupting and hence 

used as a negative control, exhibited no effect on peptide displacement (Figure 4.8A). 
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Interestingly, Casodex also demonstrated moderate displacement of Bag-1L from the BF3 

pocket. This could be explained by Casodex binding to the androgen binding pocket of the AR, 

which then destabilizes the protein and allosterically affects the BF3. When Casodex was tested 

with AR-T877A mutant protein (where the drug acts as an agonist and stabilizes the AR) it did 

not displace Bag-1L peptide, whereas compound 13163 exhibited an unchanged potency against 

the mutant AR-T877A (IC50 value of 7.51 μM; see supplemental figure 4.1). Collectively, these 

observations strongly imply that compound 13163 binds directly to the AR BF3 site. 

 

Figure 4.8. 13163 displaces Bag1L peptide and compound effect on PCa cell growth. A) 

Fluorescence polarization experiment showing competition between FITC-labeled Bag-1L (61-

80) peptide (12.5nM) and serially diluted Casodex, 13163, 13221, unlabeled core GARRPR 

hexapaptide (100-0.05µM) for binding to AR-LBD (2 µM). The competition experiments were 

performed at conditions for maximum polarization of FITC-labeled peptide and AR-LBD. B) 

The effect of compounds 13163 on cell viability in LNCaP, Enzalutamide resistant cell line 

(MR49F) and PC3 cells. % cell viability is plotted in dose dependent manner. Data are presented 

as Mean ± SEM. A p value <0.05 was considered very significant effect (*) on LNCaP and 

MR49F compared with PC3 cells. 
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4.2.6 Activity Profile of 13163 

Upon testing, 13163 induced a significant decrease in secreted PSA levels in LNCaP cells 

with the corresponding IC50 value established at 0.21 μM (figure 4.4C). Compound 13163 was 

further evaluated in Enzalutamide-resistant prostate cancer cell line. As anticipated, 

Enzalutamide was confirmed to be ineffective against MR49F line, whereas compound 13163 

caused a significant reduction in the PSA (IC50 = 6.02 μM; see figure 4.4D). The anti-

proliferative effect of 13163 was assessed in LNCaP, MR49F and PC3 cells by MTS assay. As 

shown in Figure 4.8B the compound is very effective in reducing the growth of both LNCaP and 

MR49F cells, achieving IC50 values of 0.71 and 2.01 μM, respectively. Moreover, compound 

13163 did not show any effect on AR-independent PC3 cells, confirming its AR-specific 

activity.  

The selectivity of a compound 13163 toward other nuclear receptors was evaluated as 

contract research by Life Technologies.  Supplemental figure 4.2 demonstrates that compound 

13163 does not have a significant effect on GR or ERα. The compound exhibited 80-100 fold 

decrease in inhibitor activity against ERα (IC50=22 µM) and GR (IC50=30 µM) compared to the 

AR (IC50=0.31 µM). As anticipated, compound 13163 demonstrated a somewhat better, although 

~7-fold weaker activity (IC50=2.1 µM), against PR, as the AR and PR are more similar in their 

sequence in the BF3 region 
164, 165

 compared to the BF3 conservation between the AR and GR 

and ERα.  

4.2.7 Compound 13163 Inhibits AR-dependent Growth of Xenograft Tumors In 

Vivo 

The in vivo effect of 13163 was evaluated with both androgen-sensitive LNCaP and 

Enzalutamide-resistant MR49F xenografts. The IV, PO and IP serum profiles of compound 

13163 (supplemental figure 4.3) suggest that it could be administered orally with substantial 

retention up to 24 h. The initial experiments demonstrated no systemic toxicity, and doses up to 

200 mg/kg (twice a day) could be tolerated by the mice with no decrease in body weight 

monitored for 3 weeks.  

A dose of 200 mg/kg of 13163 and 10mg/kg of Enzalutamide (control) administered 

twice a day was chosen based on the preliminary studies. The in vivo screening for tumor growth 

was initially done using the castration-resistant tumor xenografts model 
166-169

, in castrated hosts 

154, 170
.  When tumor regrowth was observed and the serum PSA rose to pre-castration levels, the 
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mice were treated with compound 13163 at 200 mg/kg. The growth of the tumor volume was 

effectively suppressed in this castration-resistant xenograft models with both  LNCaP (p < 0.01, 

figure 4.9A) and MR49F cells (p < 0.05, figure 4.9C), compared to the vehicle control. 

Moreover, compound 13163 significantly decreased the serum PSA levels in the LNCaP 

xenograft model (p < 0.01, Figure 4.9B). However, there was no significant change in the PSA 

levels of MR49F xenograft bearing mice compared to the vehicle-treated mice.  

 

Figure 4.9. In vivo effect of compound 13163 in LNCaP and Enzalutamide resistant xenograft 

models. A) The in vivo effect of compound 13163 on the tumor volume of LNCaP mice 

xenograft. Data are presented as Mean ± SEM. A p value < 0.01 was considered very significant 

(*) ccompared to vehicle control. B) The in vivo effect of compound 13163 on PSA level of 

LNCaP mice xenograft. Data are presented as Mean ± SEM. A p value < 0.01 was considered 

very significant (*), A p value < 0.001 was considered extremely significant (**) compared to 

vehicle control. C)  The in vivo effect of compound 13163 on the tumor volume of MR49F mice 

xenograft. Data are presented as Mean ± SEM. A p value < 0.05 was considered significant (*) 

compared to vehicle control. 
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4.3 Discussion 

By harnessing the power of in silico modeling, combined with experimental evaluations, we 

identified a variety of BF3 binders which could effectively inhibit the AR at micromolar 

concentrations (as discussed in chapter 3). Even though these compounds were effective in PCa 

cells in vitro, their potency was not sufficient for proper in vivo studies. Hence, the present work 

was initiated to develop a series of BF3 inhibitors that would be potent enough for evaluation in 

PCa human xenograft models and provide the foundation for subsequent therapeutic 

development.  

At the onset, the previously identified BF3 binder - compound 9099 was selected as the 

chemical template for similarity search in the chemical space of a full ZINC database. As a 

result, 295 molecules were identified and subjected to docking in the AR BF3 site. Based on our 

knowledge of the BF3 residue-ligand interactions, compounds that interact with Glu837 and 

Leu830 were further selected, purchased and evaluated in our eGFP transcriptional assay
153

. 

Figure 4.1 illustrates that some of the selected chemicals, especially compound 13163, 

demonstrate higher potency against the AR (IC50 = 0.31 μM) in the assay. Figure 4.4 illustrates 

that compound 13163 exhibits dose-dependent inhibition of AR and its direct binding to the AR 

LBD. In addition, we calculated a ligand-lipophilicity efficiency (LLE) score for 23 compounds 

reported in this study (see supplemental table 4.3). Since cell permeability, absorption, 

microsomal clearance and pharmacological clearance of the drugs are associated with clogP, it 

has been suggested that LLE is a critical factor to determine the quality of the lead candidates 

(LLE = pIC50-clogP)
171

. Compound 13163 received a high LLE score (LLE = 2.775) giving 

confidence to the premise that this chemical was a potential lead (see supplemental table 4.3).  

The potency of 13163 was further confirmed by its ability to decrease endogenous PSA 

levels in PCa cells. The PSA inhibition value in LNCaP system (IC50 = 0.21 μM) was in 

agreement with the IC50 (= 0.31 μM) obtained from the AR eGFP assay, giving us confidence 

that the developed chemical is a true AR inhibitor. Compound 13163 also turned out to be more 

effective in reducing PSA levels in Enzalutamide-resistant MR49F cells (IC50 = 6.02 μM). 

Moreover, the compound possesses a strong anti-proliferative response on AR-dependent 

LNCaP and MR49F cells (IC50 of 0.71 and 6.02 μM), whereas there was no effect observed on 

AR-negative PC3 PCa cells. It should also be noted that LNCaP cells contain a mutated AR-

T877A form of the receptor, while and MR49F contain an AR with the recently reported 
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mutation F876L that can turn Enzalutamide into agonist. 
97

 Since compound 13163 is a BF3-

targeting AR inhibitor, we anticipated that this mutation would not affect its efficacy. As 

expected, it retained activity against both LNCaP and MR49F cell lines in all the experiments 

performed. 

The MD simulation analysis performed on AR-13163 (figure 4.5) and AR-Bag1L (figure 

4.7) complexes, separately, revealed the possible mechanism behind the displacement of 

GARRPR motif from the active site in the presence of a BF3 inhibitor. 13163 perfectly occupies 

the binding regions of hexapeptide motif and disrupt key interactions (H-bond interactions and 

van der Waals contacts) between the ARRP residues of Bag1L protein and BF3 residues. The 

analysis of inter-molecular interactions has provided valuable information and helped us in 

optimizing the structure of 13163 (discussed in further chapter).  

These predictions of MD simulations were confirmed with a fluorescence polarization 

assay, where GARRPR portion of Bag-1L protein  was used as a native BF3 ligand and was 

displaced by the compound in a concentration-dependent manner (IC50 = 6.10 μM). As the AR 

BF3 site is a recently established co-activator pocket 
63

 so far only two proteins (FKBP52
65

 and 

Bag-1L
66

) have been reported to interact with it. The IC50 observed for compound 13163 in the 

Bag-1L peptide displacement assay is higher than its cellular activity (6.10μM Vs 0.31μM). It 

should be noted that this was observed in a cell-free assay. In reality, the BF3 site may 

accommodate a variety of proteins, many of which could contribute to or influence the cellular 

inhibitory activity of compound 13163. Further studies are underway to determine the complete 

repertoire of interactions that can be blocked by the BF3 inhibitors. 

Our in vivo studies demonstrated that compound 13163 achieves serum levels well above 

its IC50 and has a significant effect on tumor growth as well as serum PSA levels in the LNCaP 

xenograft model. However, the inhibition of serum PSA was minimal compared to the impact on 

tumor volume. This is likely because PSA production occurs independently of cell growth rate 

and may be influenced by various other factors, including hormonal and stromal milieu 
172

. Upon 

testing the efficacy of compound 13163 in the MR49F Enzalutamide-resistant xenograft model, a 

substantial inhibitory effect on the volume was observed compared to the vehicle control, but 

with no significant effect on serum PSA levels were observed (data not shown). The difference 

in the efficacy of compound 13163 between LNCaP and MR49F tumor xenograft models might 
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be attributed to the mechanisms responsible for Enzalutamide resistance in MR49F, for example, 

expression of splice variants such as AR-V7 and/or factors not necessarily related to the AR.  

In summary, we report the indole based compound, 13163 that exhibit very potent AR 

inhibition in androgen sensitive and Enzalutamide-resistant cells in vitro and in vivo.  
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Chapter 5: THE APPLICATION OF GLOBAL FREE ENERGY SCORING 

FUNCTION IN IDENTIFICATION OF DERIVATIVES OF VPC-13163 

5.1 Background 

As discussed in the previous chapters, the BF3 site is a shallow groove located on the surface 

of the AR. Therefore, compounds bind to this area (inhibitors discussed in the previous chapters) 

tend to exhibit poor/moderate correlation between their predicted binding energies (i.e. dock 

score) and biological activities (cellular IC50s) as shown in supplemental figure 5.1. Hence, 

robust binary QSAR models were developed and applied as a scoring function to predict the 

binding affinity of synthetic derivatives of 13163 prior to their chemical synthesis. The entire 

study is discussed in part 1 section of this chapter. The developed approach helped us to obtain a 

better correlation between experimental activities and computational predictions in comparison 

with already existing scoring functions. More importantly, we developed a novel chemical 

scaffold, indole-quinoline, as a promising lead AR BF3 inhibitor. Part 2 of this chapter highlights 

the structure activity relationship and activity profile of this chemical series.   

PART 1 

5.1.1 Scoring Functions 

Scoring functions are approximate computational methods widely used in structure-based 

drug discovery applications to predict the binding affinity (or free energy of binding) between 

molecules (commonly - protein and a ligand).
173, 174

 During lead identification and optimization 

process, predicted binding affinity is used as a key parameter for compound selection and their 

advancement into the drug discovery pipeline. Free energies of binding are used to make 

assumptions about efficacy, selectivity and toxicity of drug candidates.
175-179 

Moreover, free 

energy-based scoring function reduces the number of compounds that have to be screened in 

experimental assays. Unfortunately, the current docking and scoring techniques are trained to 

give the correct geometry, rather than correct free energy of interaction. 
180, 181

  

So far, a variety of scoring functions have been established, which can be roughly 

classified into three categories.
182

 force field-based
183

, knowledge-based,
184-186

 and empirical
187, 

188
. In order to provide better efficiency, these scoring functions are restricted and do not attempt 

to simulate certain physical processes that influence the process of binding. Therefore, scoring 

functions have limitations in their ability to rank-order and select small-molecules based on 
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predicted values. Although these scoring functions work slightly better for compounds that bind 

to deeper and buried binding pockets, the problem remains for molecules that occupy more 

exposed binding sites. One of efficient strategies to tackle such as problem is by combing ligand-

based and structure-based approaches i.e. capturing protein-ligand interaction terms in a 

quantitative manner. Wikberg et al coined the term of proteochemometrics for such an 

approach.
189

 Recently, Kramer and Gedeck summarized number of publications in their recent 

study that adopted similar approaches to derive models of free energy of binding.
148

  

Previously, our group introduced various reactivity indices derived from the linearity of 

free energy relationships principle. All of these atomic and group parameters could be easily 

calculated from the fundamental properties of bound atoms and possess much defined physical 

meaning.
190-192

 All of these parameters (also known as ‘inductive’ reactivity indices) have been 

expressed through the very basic and readily accessible parameters of bound atoms. their 

electronegativities (χ), covalent radii (R) and intramolecular distances (r). These descriptors were 

successfully used to predict the affinity of peptides. 
193, 194

 

Intermolecular distance plays a pivotal role while estimating binding affinities. Therefore, 

atomic pair potentials derived from interatomic distances can be expected to capture at least the 

distance preferences between protein and ligand to a reasonable extent. Hence, we developed a 

novel set of QSAR descriptors that captured interatomic distances between BF3 inhibitors and 

the binding pocket. First, the protein-ligand atom-pair distance dependent (APDD) descriptors 

were calculated based on general and specific categorization of element types. In addition, 

traditional 2D descriptors were calculated as implemented in MOE (Molecular Operating 

Environment) program. Robust binary QSAR models were developed and used as a scoring 

function to predict binding affinity of a new library of derivatives developed based on the 

structure of 13163. Most promising synthetic derivatives were synthesized and evaluated 

experimentally.  

5.2 Results 

Surface exposed binding pockets or protein−protein interaction sites such as BF3 groove on 

AR are often considered as attractive opportunities for therapeutic targeting. However, 

identifying small molecules that modulate these sites is often difficult owing to issues such as 
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lack of a well-defined deep binding pocket. Therefore, predicting binding energy for BF3 

inhibitor prior to their chemical synthesis and biological testing still remains a challenge. Hence, 

we proposed a novel QSAR like scoring function, built on a data set of known AR BF3 

inhibitors. The distances between the general and specific atomic types of ligands and BF3 

residues are encoded in the form of descriptors, which are subjected to a QSAR fitting 

procedure. It represents a proteo-chemo-metric approach to predict the binding free energy of 

novel synthetic derivatives of 13163.  

5.2.1 Development of Descriptors and QSAR Models 

The sum of atomic distances between specific atomic type of BF3 residues and the 

docked ligands were captured as APDD descriptors (figure 2.1A). The atomic type was 

determined as 1) General.- based on geometry or hybridization and 2) Specific.- as per SMARTS 

atom typing scheme 
147

 (as explained in table 2.1; materials and methods). As shown in figure 

2.1B three different metrics were used to calculate the distances. Once these descriptors were 

developed, QSAR models were generated using the WEKA software,
149

 which is a collection of 

machine learning algorithms typically used in data mining studies. Anti-AR activity values 

measured by AR eGFP assay for all the BF3 inhibitors were transformed into binary form (1-

active, 0-inactive). 

First, several binary models were built using specific APDD descriptors. The robustness 

of these models was assessed by ROC, Accuracy, Specificity, Sensitivity and PPV values 

calculated as described in chapter 2 (materials and methods). These models received an average 

of ROC=0.826, PPV=0.799, Specificity=0.728, Sensitivity= 0.823 and Accuracy=0.781. These 

are shown in table 5.1. In addition, the quality of these models was assessed by root mean 

squared error (RMSE) with an average value of 0.493. The best model (ROC=0.876 and 

RMSE=0.278) was obtained with 10 descriptors, calculated using metric 3. The statistical 

difference in the model 1 and 9 confirms that precision of descriptor calculation (metric 1 versus 

metric 3) plays a critical role in determining the quality of the developed models.  

In comparison, QSAR models were built using descriptors calculated based on atomic 

geometries described in MOE 2012. These models received an average of ROC=0.742, 

PPV=0.759, Specificity=0.657, Sensitivity = 0.753 and Accuracy=0.712 with an average RMSE 

value of 0.867 (supplementary table 5.1). The difference in the quality of models built using 
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specific APDD descriptors and general APDD descriptors is due to the specific categorization of 

each element. For example, specific classification represents a Carbon atom in 29 types whereas 

carbon has 3 types geometrically.  Precise categorization of an element facilitates capturing of 

protein-ligand interactions in more specific manner. In addition, 2D descriptors were calculated 

for all 106 BF3 inhibitors to build QSAR models. These models received an average of 

ROC=0.774, PPV=0.750, Specificity=0.658, Sensitivity = 0.801 and Accuracy=0.738 with an 

average RMSE value of 0.812. 

Table 5.1. The list of 35 QSAR models built based on distance-dependent descriptors classified 

as per SMARTS strings. Desc - Descriptors, PPV - positive prediction values. 

Metrics Desc Model ROC PPV Specificity Sensitivity Accuracy 

3 10 Kstar 0.876 0.806 0.750 0.862 0.811 

2 10 Kstar 0.874 0.806 0.750 0.862 0.811 

3 20 Random Forest 0.859 0.839 0.767 0.825 0.802 

2 10 Random Forest 0.856 0.839 0.778 0.852 0.821 

3 10 Rotation Forest 0.856 0.774 0.714 0.842 0.783 

2 20 Random Forest 0.843 0.839 0.744 0.776 0.764 

2 20 KStar 0.843 0.806 0.733 0.820 0.783 

3 20 KStar 0.843 0.806 0.733 0.820 0.783 

3 10 KStar 0.839 0.823 0.761 0.850 0.811 

2 15 KStar 0.837 0.823 0.761 0.850 0.811 

1 10 Logit Boost 0.836 0.742 0.673 0.807 0.745 

1 15 Rotation Forest 0.833 0.806 0.739 0.833 0.792 

3 10 Random Forest 0.830 0.774 0.682 0.774 0.736 

1 20 Rotation Forest 0.827 0.758 0.674 0.783 0.736 

3 20 Rotation Forest 0.826 0.823 0.744 0.810 0.783 

1 20 Bagging 0.823 0.806 0.739 0.833 0.792 

1 10 Random Forest 0.822 0.823 0.738 0.797 0.774 

3 15 Random Forest 0.820 0.806 0.714 0.781 0.755 

2 20 Bayes Net 0.817 0.742 0.686 0.836 0.764 

3 20 Bayes Net 0.817 0.742 0.686 0.836 0.764 

2 10 Bayes Net 0.816 0.790 0.729 0.845 0.792 

3 10 Bayes Net 0.816 0.790 0.729 0.845 0.792 

2 15 Bayes Net 0.815 0.774 0.714 0.842 0.783 

3 15 Bayes Net 0.815 0.774 0.714 0.842 0.783 

1 10 Rotation Forest 0.812 0.823 0.750 0.823 0.792 

2 10 Rotation Forest 0.810 0.774 0.702 0.814 0.764 

1 15 Random Forest 0.810 0.806 0.727 0.806 0.774 

2 10 Logit Boost 0.808 0.790 0.723 0.831 0.783 

3 10 Logit Boost 0.808 0.790 0.723 0.831 0.783 
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Metrics Desc Model ROC PPV Specificity Sensitivity Accuracy 

1 15 ADTree 0.807 0.839 0.750 0.788 0.774 

2 20 Logit Boost 0.807 0.726 0.653 0.789 0.726 

2 10 Decision Table 0.805 0.823 0.750 0.823 0.792 

3 10 Decision Table 0.805 0.823 0.750 0.823 0.792 

1 15 Bagging 0.805 0.823 0.756 0.836 0.802 

2 15 Decision Table 0.805 0.823 0.750 0.823 0.792 

        

Average 0.826 0.799 0.728 0.823 0.781 

 

5.2.2 The Validation of QSAR Models 

In order to validate the performance of the developed models, an external dataset of 400 

derivatives was built as described in the chapter 2. Compared to models generated on general 

APDD descriptors and 2D descriptors, specific APDD descriptors received high ROC values i.e. 

in the range of 0.876 to 0.805 as shown in table 5.1. Moreover, they show significant sensitivity, 

selectivity and PPV and lower RMSE values, which determine the quality of QSAR models. 

Therefore, these models were used as a scoring function to predict the binding affinity of the 

derivatives.  

Preliminary Evaluation of Selected Derivatives. The range of descriptors selected in each 

model was compared to evaluate the applicability domain (AD) criteria for the developed 

models. This procedure estimated the reliability of predictions for the top-voted hits. Values of 

each descriptor for every top-voted chemical were checked to fit in the training descriptors value 

range. From this analysis we verified that all of the selected chemicals fit into suitable AD, with 

the percentage of reliable predictions being 100%.  

Consensus Analysis. The statistical results obtained from QSAR models indicate that 

different modeling techniques may have different advantages for predicting novel AR BF3 

synthetic derivatives. Although the performances of our individual models are comparable, it is 

difficult to decide which model is the best one and which model should be chosen as a predictor 

for new derivatives. Thus it seems reasonable that the consensus approach can provide a better 

predictive ability than the individual models. The availability of several possible models, equally 

reliable for response prediction, highlights the need for methods able to preserve both model 

quality and diversity for model comparison. The strategy of majority voting (i.e. 1-actives, 0-

inactives) is used to give predictions for all the developed derivatives. The final cumulative vote 



84 
 

with the maximum possible value of 35 is then used to rank the processed structures. Based on 

the synthetic feasibility, we selected 25 compounds for chemical synthesis. Activity profile and 

final score of QSAR predictions are shown in table 5.2. 

Table 5.2. Activity profile of 25 synthetic derivatives. These compounds are selected and tested 

based on the developed on the predictions of QSAR models reported above. 

VPC-ID Structure AR eGFP IC50 

(µM) 

PSA IC50 

(µM) 

Voting / 35 

models 

 

13500 

 

1.21 1.84 26 

 

13502 

 

4.17 3.54 25 

 

13503 

 

4.52 6.36 25 

 

13504 

 

2.00 1.69 26 

 

13509 

 

2.61 3.12 26 

 

13530 

 

4.71 1.62 24 

 

13532 

 

2.83 3.14 25 

13534 

 

0.643 0.93 28 
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VPC-ID Structure AR eGFP IC50 

(µM) 

PSA IC50 

(µM) 

Voting / 35 

models 

13535 

 

1.45 1.87 27 

13536 

 

2.17 2.52 27 

13537 

 

0.46 0.61 31 

13538 

 

7.7 Not tested 22 

13539 

 

Inactive Not tested 13 

13541 

 

0.52 0.94 31 

13542 

 

5.71 Not tested 22 

13543 

 

13.69 13.19 18 
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VPC-ID Structure AR eGFP IC50 

(µM) 

PSA IC50 

(µM) 

Voting / 35 

models 

13544 

 

11.39 Not tested 20 

13545 

 

4.85 2.92 25 

13546 

 

Inactive Not tested 14 

13548 

 

3.21 4.24 27 

13549 

 

1.7 2.57 29 

13550 

 

11.75 Not tested 12 

13551 

 

1.12 1.4 29 

13554 

 

0.59 0.67 31 

13562 

 

0.160 0.21 33 
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5.2.3 Biological Evaluation of Synthetic Derivatives 

The selected synthetic derivatives were tested and five of them demonstrated anti-AR 

activity and anti-PSA activity below 1µM (table 5.2). Importantly, compounds 13554 and 13562 

belong to 2-(1H-indol-3-yl) quinolone chemical class demonstrated very potent at inhibition of 

AR transcriptional activity as measured by AR eGFP cellular assay. It should be noted that these 

derivatives received highest cumulative score by developed QSAR models (13554=31 and 

13562=33 out of 35 models). 

5.2.4 Structure Based Prediction Versus QSAR Prediction 

For comparing the performance of docking scoring functions with our QSAR prediction 

values we calculated enrichment factor (EF), which reflects the ability of the docking 

calculations to find actives throughout the background database compared to random selection. 

EF is defined as the ratio between the percentage of actives in the selected subset and the 

percentage in the entire database.  

EF subset =
Hits selected/N subset

Hits total/N total
 

First, the dock scores from different scoring functions such as Glide SP, eHiTS, Ligand 

explorer (LigX) and pKi are obtained for external set derivatives along with their consensus 

values from QSAR models. Enrichment values for 25 derivatives are summarized in table 5.3. 

LigX yielded slightly better enrichment value (at 60% dataset) compared to Glide SP, eHiTS and 

pKi. This could be due to LigX considers receptor and ligand flexibility while generating binding 

scores unlike other docking programs mentioned here. Importantly, superior enrichments are 

observed with QSAR consensus voting compared to docking scoring functions. On average, 

100% and 92% of the active derivatives are found in the top 30% and 60% of the ranked data set, 

respectively, corresponding to better enrichment factors of 1.5 and 1.38 (table 5.3).  

5.2.5 Significance of Consensus Analysis 

Enthalpy (ΔH) and entropy terms (TΔS) are the key components while estimating binding 

energy (ΔG) between a protein and a ligand. Enthalpy reflects the strength of the protein-ligand 

interactions such as H-bond and VdW interactions whereas entropic contributions could arise 

from the solute (protein and the ligand), as well as from the solvent (usually water). Since BF3 

site is surface exposed and a shallow pocket, it is necessary to calculate entropy terms accurately 

to obtain meaningful ΔG. Despite improvements over the last years, most scoring functions, 
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regardless whether they are empirical, force field based or knowledge based, still suffer from a 

rather poor correlation with experimental binding affinity.
195

 This can be evidenced by ROC 

curves shown in figure 5.1. These ROC curves confirm that Glide SP, eHiTS, LigX and pKi 

scoring functions poorly ranked newly synthesized BF3 derivatives, based on their predicted 

score. However, consensus voting procedure based on specific APDD descriptors clearly 

outperformed traditional scoring functions.  The consensus curve is on the top of all other models 

with the largest area of 0.89 for the prediction set. It also gives the highest sensitivity of 96% and 

specificity of 82.7%. The high sensitivity of 96% indicates that the consensus analysis can 

recognize more actives from a large number of chemicals. Furthermore, the similar values of the 

overall accuracy (89.8%) sets indicate the comparable external predictive abilities of the 

consensus analysis. 

 

Table 5.3. Comparison of enrichment factor values calculated based on different scoring 

functions and QSAR voting pattern. 

 

Scoring Function 

 

% of the External Set 

         30%                    60%                    90% 

Glide SP-Score 0.86 1.04 0.87 

eHiTS-Score 0.64 0.81 0.95 

LigX 0.86 1.15 1.03 

dock_pKi 0.86 0.92 0.95 

QSAR voting 1.50 1.38 1.11 
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Figure 5.1. Comparison of ROC curves generated by QSAR models versus Glide, eHiTS, LigX 

and pKi docking programs. The curve generated by consensus voting of QSAR models (ROC 

value of 0.89) clearly outperformed other scoring functions.  

5.2.6 Interpretation of the Descriptors 

The most important and frequently occurred specific APDD descriptors are listed in table 

5.4. These descriptors are straightforward to interpret atoms belonging to residues Ile672, 

Val676, Pro723, Glu829, Asn833 and Glu837 are critical for protein-ligand interactions. Most 

importantly, carbonyl oxygen of Glu837 side chain is critical for the binding and activity of BF3 

inhibitors since it forms a strong H-bond with NH group of indole moiety (GLU837-O12.sp2 # 

H11.sp3). In order to test the significance of ‘GLU829.O12.sp3 # 0_O2.sp’ descriptor, we 

designed a derivative, 13541 with OH group at 7-indole position. As anticipated, carbonyl 

oxygen of Glu829 contributes positively for the prediction since it interacts with hydroxyl group 

of 13541. The activity of compound 13542 decreased 10-times compared to 13541 since OH-

group is located at 6-indole instead of 7
th

 position. The replacement of dihydro-indole group with 

quinoline moiety favored the activity. The scaffold replacement resulted in identification of 

compound 13562 with an IC50 of 0.16µM. 

The number of protein aliphatic hydrogens of Ile672, Val676, Pro723 and Asn833 forms 

other most important descriptors. They stand for hydrophobic rich feature of the binding pocket. 

Also, the number of halogens attached aliphatic/aromatic carbons of compounds and protein 

hydrogens connected to aliphatic carbons are critical.  
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Table 5.4. The list of most important and frequently occurred specific APDD descriptors. 

Descriptor 

(protein atom # ligand atom) 

Occurrence 

(out of 35) 

 

Meaning 

GLU837-O12.sp2 # H11.sp3 27 The distance between Glu837 carbonyl oxygen 

and Hydrogens attached to amine group 

GLU829.O12.sp3#0_O2.sp#0 20 The distance between Glu829 carbonyl oxygen 

and Oxygen atom of the hydroxyl group ligands.  

PRO723.H1.sp3#0_C4.sp3#0 21 The distance between Pro723 aliphatic hydrogens 

and all carbons bearing Halogens 

ILE672.H1.sp3#0_H1.sp3#0 29 The distance between aliphatic hydrogens of 

Ile672 and aliphatic hydrogens of ligands 

LEU830.H1.sp3#0_C4.sp3#0 29 The distance between Leu830 aliphatic hydrogens 

and all carbon bearing Halogens 

PRO723.H1.sp3#0_C7.sp#0 28 The distance between Pro723 aliphatic hydrogens 

and Carbon of ligands’ CN group 

ASN833.C1.sp3#0_C1.sp2#0 29 The distance between aliphatic hydrogens of 

Asn833 and aliphatic hydrogens of ligands 

VAL676.H1.sp3#0_C21.sp2#0 26 The distance between aliphatic hydrogens of 

Val676 aromatic carbon attached to aliphatic C of 

ligands 

 

In summary, we developed a customized scoring function to predict binding free energies 

that have been trained on in house developed AR BF3 inhibitors. The scoring function is fit in a 

QSAR-like manner with descriptors coding for specific interactions between AR BF3 pocket and 

its binders. The developed APDD descriptors are straightforward to interpret and have never 

before been used in drug design. In its current state, the scoring function presented is useful for 

ranking derivatives and helps in prioritizing compounds for chemical synthesis. An important 

outcome of this study was that we identified a novel chemical scaffold, indole-quinoline, as a 

promising lead AR BF3 inhibitor, which is studied in detail in part 2. 

PART 2 

5.2.7 Rational Design, Synthesis, and Evaluation of Indole-quinoline Series 

As discussed previously, we identified compound 13562 that belong to indole-quinoline 

series with an IC50 of 0.16µM. Hence, we initiated a lead optimization based on the observations 

from 1) molecular dynamic simulations performed on AR BF3-13163 complex and AR-Bag1L 
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complexes as discussed in sections 4.2.4 and 4.2.5 2) interpretation of APDD descriptors listed in 

table 5.4. 

 Compound 13562 forms a hydrogen bond between the NH indole moiety and side chain 

carboxyl of the Glu837. The importance of this interaction was evaluated by replacing NH with a 

methyl group. As molecular docking studies predicted, it resulted in 10-fold decrease in the 

activity (13571 = 1.20 µM). Next, we focused on testing the effect of substitutions around the 

indole ring of 13562. Evaluation of derivatives 13566, 13569, 13622 and 13582 revealed that 

groups with different van der Waals radius such as F, Cl, Me and Br affect the potency. For 

example, 13569 with F at 7-indole position exhibited an IC50 of 1.60µM whereas 13566 and 

13622 with methyl and Cl, respectively, showed 20-fold increment in the activity compared to 

13569 (13566=0.080µM and 13622=0.10µM). Similarly, 13582 harbors Br at 7-indole position 

showed improved activity (IC50=0.052 µM). Since methyl and Br were favorable for the activity, 

we designed compounds with same groups at 5-indole and 6-indole positions. These 

modifications hampered the activity by 20 to 30 fold compared to 13566 confirming that methyl 

and Br are favored only at 7-indole position. In order to study the significance of methyl group at 

7
th

 position we initiated a molecular dynamic study which is discussed in further section.  

An effort was also made to design derivatives by replacing quinoline with different rings. 

However, these modifications did not yield any potent derivatives except for 13603 (IC50=0.63 

µM). 

5.2.8 VPC-13566 Stably Binds to BF3 Pocket in MD simulations 

The binding pose of compound 13566 predicted by Glide SP program is used a starting 

point for the 100ns-MD simulations. The stability of the receptor and ligand conformation was 

then assessed by the RMSD between the starting agonist conformation and the each snapshot 

during MD simulations, and GB/SA binding free energy calculation. 

In figure 5.2A, the RMSD of 13566 is plotted in orange color and that of backbone heavy 

atoms of AR LBD is in grey color. The RMSD was calculated by using the initial complex 

conformation as the reference. The plateau of backbone RMSD over 100ns indicates that the AR 

LBD was well equilibrated and the 13566’s average RMSD showing its value around 2Å over 

the entire 100ns clearly demonstrates that the ligand fits in the BF3 site very well with its 

binding orientation similar to its initial conformation. We observed the RMSD shift at around 67 
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ns and this is because there was the rotation of quinoline group in the 13566 ligand while its 7-

methylindole group is keeping its binding pose. 

 

 

Figure 5.2. The analysis of molecular dynamics simulations performed on AR BF3-13566 

complex. A) The observed RMSD values observed for 13566 and AR LBD during 100ns MD 

simulations. B) Initial docked conformation (green) and representative docking pose of 13566 

obtained from MD simulations (yellow). C) List of BF3 residues that are in close contact with 

the ligand during MD simulations D) Superimposition of bound Bag1L peptide, GARRPR and 

13566.  

In order to identify the frequently occurring binding pose of 13566 during the MD 

simulations, we applied the cluster analysis to the 13566 ligand’s conformations obtained from 

the total 100ns production MD run. The clustering was conducted on the basis of RMSD of 

ligand’s heavy atoms by using the hierarchical agglomerative clustering approach, and the five 
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clusters were obtained. About 45% of the ligand conformations were assigned to the first ranked 

cluster, and its centroid conformation in the cluster was found to be similar to its input 

conformation (shown in yellow in figure 5.2B). To determine the most stable binding pose, we 

proceeded to the GB/SA binding free energy calculation for all the protein-ligand complex 

conformations in the cluster and defined the conformation that gave the most stable binding free 

energy. The binding free energy of the representative binding pose was calculated to be -

33.6kcal/mol. Figure 5.2C shows the residues in the BF3 site that had the frequent contact with 

the 13566 ligand during the MD simulations. For example, Phe673, Leu830 and Asn833 had 

contact with 13566 over 80% of total MD simulation time.  

Earlier analysis of AR BF3-13163 complex revealed the mechanism behind the possible 

displacement of GARRPR motif from the BF3 site. The Pro residue of GARRPR motif makes 

strong hydrophobic interactions with the BF3 residues. Due to the presence of 7-methyl indole 

moiety and quinoline in 13566, the compound binds more tightly at the binding pocket and 

disrupts hydrophobic interactions between Pro/Ala and BF3 residues (figure 5.2D). Hence, 

greater free energy of binding for 13566 was observed compared to 13163. This explains why 

13566 exhibits stronger inhibition of AR compared to 13163 (0.31 µM versus 0.80 µM).  

5.2.9 Activity Profile of VPC-13566 

As shown in figure 5.3 the compound resulted in IC50 values of 0.08μM and 0.09 μM for 

its anti-AR and anti-PSA activity in LNCaP cells and exhibited direct reversible interaction with 

AR LBD. Also, it caused a significant reduction in the PSA expressed in Enzalutamide-resistant 

MR49F cells (IC50 = 1.7μM). To determine the efficacy of 13566 on the viability of various PCa 

cell lines, its activity was assessed in LNCaP, MR49F and PC3 cells. The results indicated that 

13566 was very effective in inhibiting the growth of both LNCaP and Enzalutamide-resistant 

cells, achieving IC50 values of 0.11 and 0.51μM, respectively. Moreover, 13566 did not show 

any effect on AR-independent PC3 cells, confirming its AR-specific action (figure 5.4A). 

Furthermore, 13566 did not affect the expression levels of AR in PC3 cells transfected with wild-

type AR (figure 5.4B). To further confirm 13566 is a true BF3 binder we tested the ability of 

increasing concentrations of 13566 to displace a FITC labelled Bag1L peptide from the BF3 

pocket of a purified LBD using a TR-FRET assay. Indeed 13566 was able to displace Bag1L 

peptide with a dissociation constant (Kd) of 19.2μM. However the compound 14449,
88

 a reported 

inhibitor that targets the DNA Binding domain of AR was not able to displace Bag1L from its 
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pocket (figure 5.4C).  Overall, these results confirm that 13566 is a potent and true AR BF3 

inhibitor. 

 

 

Figure 5.3. Activity profile of 13566. A) Dose-response curve illustrating the inhibiting effect of 

the 13566 and Enzalutamide on the AR transcriptional activity in LNCaP cells. Data points 

represent the mean of two independent experiments performed in triplicate. Error bars represent 

the standard error of the mean (SEM) for n = 6 values. Data was fitted using log of concentration 

of the inhibitors vs % activation with GraphPad Prism 6. B) BLI dose-response curves (3-

100μM) reflecting the direct binding of the 13566. C) Effect of 13566 in comparison to 

Enzalutamide on PSA in dose response manner in LNCaP cells D) Effect of 13566 in 

comparison to Enzalutamide on PSA in dose response manner in Enzalutamide resistant cells. 
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Figure 5.4. Further characterization of 13566. A) The effect of 13566 on cell viability in LNCaP, 

MR49F and PC3 cells. % cell viability is plotted in dose dependent manner. Data are presented 

as Mean ± SEM. A p value <0.05 was considered very significant effect (*) on LNCaP and 

MR49F compared with PC3 cells. B) The effect of 13566 on the expression levels of AR in PC3 

cells transfected with wild-type AR. C) Displacement of Bag1L peptide from BF3 pocket as 

measured by TR-FRET assay. Compound 14449, used as a negative control did not show any 

effect since it does not bind to BF3 site.  

5.2.10 VPC-13566 Inhibits AR-dependent Growth of Xenograft Tumors In Vivo 

The in vivo effect of 13566 was evaluated with both androgen-sensitive LNCaP and 

Enzalutamide-resistant MR49F xenografts. The initial toxicity experiments demonstrated no 

systemic toxicity and doses up to and including 100 mg/kg twice a day could be tolerated by the 

mice with no decrease in body weight for 3 weeks.  

A dose of 100 mg/kg administered twice a day was chosen based on these preliminary 

studies. The in vivo screening for tumor growth was initially done using the castration-resistant 

tumor xenografts model 
166-169

, in castrated hosts 
154, 170

.  When tumor regrowth was observed 
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and the serum PSA raised to pre-castration levels, the mice were treated with 13566 at 100 

mg/kg. The growth of the tumor volume was effectively suppressed in this castration-resistant 

xenograft models with LNCaP (p < 0.01, figure 5.5A) compared to the vehicle control. 

Moreover, 13566 significantly decreased the serum PSA levels in the LNCaP xenograft model (p 

< 0.01, Figure 5.5B). The effect of 13566 in MR49F xenograft models is currently under 

investigation. 

These results clearly indicate that 13566 could effectively inhibit androgen sensitive 

LNCaP xenograft growth in vivo, suggesting that this class of AR inhibitors has the potential to 

yield an AR targeting drug which could also be useful in the treatment of patients with 

castration-resistant tumors. 

 

Figure 5.5. In vivo effect of 13566 in LNCaP xenograft model. A) The in vivo effect of 13566 on 

the tumor volume. Data are presented as Mean ± SEM. A p value < 0.01 was considered very 

significant (*) ccompared to vehicle control. B) The in vivo effect of 13566 on PSA level. Data 

are presented as Mean ± SEM. A p value < 0.01 was considered very significant (*), A p value < 

0.001 was considered extremely significant (**) compared to vehicle control.  

5.3 Discussion 

In this chapter, we report the development of a novel scoring function for molecular 

modeling. This approach was developed in order to obtain a good correlation between in silico 

prediction and experimental activities of the studied series of AR BF3 inhibitors. The customised 

scoring function fits in a QSAR-like manner with descriptors coding for specific interactions 

between AR BF3 pocket and its binders. Compared to the traditional, universal scoring functions 
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(such as Glide and eHiTS), our customized approach demonstrated superior performance i.e. 

higher ROC values in terms of predicting new synthetic derivatives. An important outcome of 

this study was that we identified a novel chemical scaffold, indole-quinoline as a promising lead 

AR BF3 inhibitor.  

The computer-aided optimization of indole-quinoline chemical class resulted in the 

development of the most potent BF3 inhibitor, 13566. The activity profile of this confirmed that 

this compound has the potency comparable to Enzalutamide - a recently approved FDA drug for 

prostate cancer. In in vitro experiments 13566 demonstrated ant-AR activity. Importantly, the 

compound reduced the growth of LNCaP and Enzalutamide-resistant MR49F cells which contain 

clinically relevant mutant forms of AR, T877A and F876L, respectively. Further in vivo 

characterization of 13566 confirmed that the compound reduced PSA levels and shrinks PCa 

tumors in LNCaP mice models. A major limitation of 13566 was that it exhibited moderate 

microsomal stability (T1/2 = 30 mins). Therefore, further lead optimization is ongoing to improve 

the physicochemical properties, and acquire a better microsomal stability and pharmacokinetics 

for preclinical studies. 

There were no preceding investigations on targeting the AR BF3 site or other nuclear 

receptors by potent inhibitors. Our work provides the first proof-of-concept for targeting the AR 

BF3 by small-molecule inhibitors for the treatment of advanced PCa, which promises a new field 

of developing therapeutics utilizing AR BF3 as a target. More importantly, this work also 

demonstrated the BF3 is potentially a druggable site, and provided a new avenue of targeting 

nuclear receptors through a different mechanism of action, which is less likely to be associated 

with drug resistance.  
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Chapter 6: CONCLUSIONS 

6.1 Summary of the Study 

This thesis describes the development of novel small molecule inhibitors that selectively 

target BF3 regulatory site of human androgen receptor and can serve as prototypical therapeutics 

for the treatment of advanced prostate cancer (PCa).  

PCa represents a common malignancy and second leading cause of male cancer-related 

deaths in North America. Since the discovery of the androgen dependence of prostate cancer in 

1941 by Huggins and colleagues,
196

 androgen deprivation therapy has remained the mainstay of 

PCa treatment.  

Notably, all marketed anti-androgens including the latest Enzalutamide share similar 

chemical scaffold and exhibit similar binding mode of action i.e. target androgen binding site of 

the AR. While administration of these drugs can initially suppress the tumor growth, long-term 

therapy becomes progressively less effective. Among others, factors that make the AR less 

sensitive to conventional anti-androgens include ‘gain-of-function’ mutations (such as T877A 

and F876L) of the androgen binding site that convert AR antagonists to act as agonists, further 

contributing to cancer progression. Hence, there is an urgent need to develop new types of 

therapeutics that exhibit entirely different modes of AR inhibition and circumvent the drug 

resistance problem. One promising strategy for combating the mutation-driven resistance is to 

target alternative sites on the AR (such as BF3 regulatory pocket) and directly disrupt critical 

receptor-coactivator interactions that are essential for AR activity.  

In this study, two computational strategies were applied to develop such AR BF3 

inhibitors by taking the advantage of available resources of protein structures and known ligands. 

a) structure-based alone and b) a combination of structure- and ligand-based approaches. Both 

strategies yielded promising candidate molecules and novel chemo-types. Importantly, the 

developed AR BF3 inhibitors described in Chapters 3, 4 and 5 are structurally distinct from the 

commercially available anti-androgens of Enzalutamide series and nonspecific BF3 binders 

originally reported by Fletterick and colleagues. 
63

 

The developed drug candidates demonstrate direct selective interaction with the BF3 site, 

confirming this AR region as druggable. Our group has previously utilized the power of virtual 

screening combined with experimental evaluations to discover a number of small-molecules that 



99 
 

effectively target the BF3 site of the AR.
139

 Taking the advantage of crystallographic structure of 

one of the identified inhibitors, 4035 (pdb id-2YLO),
139

 we further developed a series of 

derivatives that belong to benzimidazole class. A simplified yet more active derivative 9002 was 

synthesized, experimentally evaluated and crystallographically resolved inside the AR BF3 

target cavity (pdb id-4HLW). Another line of confirmation on this class of BF3 inhibitors was 

provided by a study conducted by Jehle et al.
66

 They reported that compound 9114 (a BF3 

inhibitor discussed in chapter 3) successfully disrupted activating interactions between AR and 

Bag1L protein. The only limitation of the benzoimidazole series was that they did not achieve a 

level of potency that could be translated into significant in vivo implications. Hence, we initiated 

another round of systematic lead optimization that involved similarity searching and high-

powered computational modeling as described in chapter 4. The identified compound 13163 

belongs to indole chemical series that is confirmed to be effective in both in vitro assays and in 

vivo xenograft models.  

During the lead optimization process, we observed that docking-based scoring functions 

failed to yield a statistically significant correlation between predicted docking scores and 

experimental activities of the identified chemicals. Hence, a part of this thesis work also focused 

on developing a method, termed proteo-chemo-metric approach to overcome the limitation of 

computational scoring functions. Chapter 5 described the development of new set of structure-

activity descriptors that captured the sum of atomic distances between specific atomic type of 

active site residues and the docked ligands. These descriptors are straightforward to interpret and 

have never before been used in scoring functions. The QSAR models built on them demonstrated 

excellent predictability compared to commonly used scoring functions, highlighting the need for 

better structure-activity metrics. The developed models enabled us to prioritize further med.chem 

derivatives prior to their chemical synthesis. This approach was effective in terms of reducing 

time and costs involved during lead optimization process. 

Further optimization of 13163 resulted in the development of indole-quinoline series of 

AR BF3 binders. One such compound - 13566 has been identified as the most potent BF3 

inhibitor developed so far with its in vitro activity comparable to that of Enzalutamide. 

Importantly, the observations from molecular dynamic studies performed on AR-13163, AR-

13566 and AR-Bag1L motif complexes allowed us to elaborate the mechanism behind the 

possible displacement of GARRPR motif from the binding pocket in the presence of a BF3 
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inhibitor. These compounds perfectly occupy the binding regions of hexapeptide motif and 

disrupt key interactions between the Bag1L protein and BF3 residues. Florescence polarization 

and TR FRET assays confirmed that our BF3 inhibitors displace Bag1L protein effectively. 

Drug resistance remains a fundamental cause of therapeutic failure in PCa therapy. This 

creates a challenge for researchers in the field of PCa drug discovery. It has been estimated that 

approximately 30% of CRPC patients harbor AR mutations 
197

 with most of them located within 

the ligand binding domain. Specific mutations that result in antagonist-to-agonist switch have 

been found recurrently at positions 877 and 741 in the LBD in samples from patients with 

metastatic CRPC, who have been treated with Hydroxyflutamide and Bicalutamide, respectively. 

Recently, a novel, third point mutation in the LBD (F876L) has been reported which developed 

upon treatment with Enzalutamide in PCa cell lines and xenograft models.
97, 102, 154

 That 

particular F876L mutation is known to hamper the efficacy of Enzalutamide and its potent 

derivative ARN509.
198

 Overall, these observations emphasize the urgency of developing the next 

generation of AR antagonists that provide therapeutic benefits in clinical applications. 

Since BF3–directed compounds exhibit a novel mode of AR inhibition, we anticipated 

that they should address the issue of Enzalutamide resistance. Results from the cell viability 

assays indicated that 13566 exhibited strong anti-proliferative effect against LNCaP and 

Enzalutamide-resistant MR49F cell lines containing T877A and F876L forms of AR, 

respectively. No significant effect was detected on the growth of PC3 PCa cells which lack the 

AR entirely, which provides another indication of selective AR-directed effect of the developed 

BF3 inhibitors. The effectiveness of 13566 was further confirmed when it was shown to reduce 

the endogenous expression levels of PSA in Enzalutamide-resistant cells. More importantly, 

13566 demonstrated significant inhibition of PCa tumors compared to Enzalutamide in LNCaP 

in vivo model. Recently, Lallous et al at Vancouver Prostate Centre investigated the effect of 

13566 on 23 AR mutations identified from 62 CRPC patients. It has been observed that all these 

mutants demonstrate signs of resistance to at least one of commercial/experimental anti-

androgens. The study highlighted that 13566 has been very effective against all 23 AR mutants 

and could and significantly inactivate the AR signaling axis in all the tested conditions (data not 

shown).
199

 Overall, these results substantiate that targeting BF3 pocket is a viable option for PCa 

therapy. Especially when Enzalutamide resistance occurs, treatment with AR BF3 based drugs 
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could potentially provide another line of treatment and thereby enhance patient survival 

and slow disease progression.  

It should be noted, that although BF3-directed drugs offer excellent therapeutic benefits, 

their applicability might be restricted in certain scenarios. These chemicals may be ineffective 

against AR splice variants that lack the ligand binding domain. However, it has been reported 

that AR variants tend to hetero-dimerize with full-length AR.
200

 Furthermore, Watson et al 

demonstrated that some variants promote castration resistance by acting through full-length 

AR.
201

 In a similar study, Xu et al reported that AR-V7 and AR
v567es

 not only homo-dimerize and 

hetero-dimerize with each other but also hetero-dimerize with full-length AR in an androgen-

independent manner.
202

 The fact that full-length AR is required for the function of variants 

validates the rationale behind developing BF3 inhibitors as an alternative therapeutic strategy for 

treating PCa. 

6.2 Future Directions 

In this study, we presented a cheminformatics scoring function that was trained and evaluated 

on the basis of a dataset of AR BF3 inhibitors. The developed method generally outperformed 

traditional docking-based scoring functions. In its current state, the scoring function presented is 

useful for predicting and prioritizing the derivatives prior to their chemical synthesis. However, a 

couple of improvements are feasible for future exploration.  

6.2.1. First, the descriptors were developed based on the ligand poses generated by 

molecular docking method, which do not account for dynamic variations of the protein-ligand 

complex. Hence, introducing receptor flexibility in a docking protocol is a promising strategy to 

account for conformational changes induced by ligand binding. Multiple receptor conformers 

docking approach should help us to obtain more accurate geometry of the ligands docked into the 

BF3 pocket. Next, continuous algorithms (such as partial least squares) should be used along 

with machine-learning techniques to generate QSAR models. The advantage of linear QSAR 

methods is that they predict a range of activity rather than simply predicting whether a 

compound is active or inactive. 

6.2.2. A key component in drug discovery is the process of achieving the optimum 

combination of potency and stability of a drug-like candidate. Although 13566 confirmed to be 

as potent as Enzalutamide, it still needs to be optimized for enhanced microsomal stability (t1/2). 
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Increased t1/2 should enable lower and less frequent dosing, thus promoting improved patient 

compliance. Therefore, further lead optimization led to the development of 13789 (a derivative 

of 13566) with improved pharmacokinetic profile (t1/2= 269 mins). Further profiling of this 

compound is currently underway. This further opens up an opportunity to develop a clinical 

agent. 

6.2.3. It has been proven that 13566 binds to BF3 site and inhibits AR activity with a 

mechanism that is entirely different from conventional anti-androgens. However, this mechanism 

needs to be studied in detail. It should be interesting to investigate if BF3 binders block nuclear 

translocation of AR and/or explore the panel of co-regulatory proteins that are critical for the AR 

transcriptional activity. A major clinical impact of the BF3 inhibitors would be if they may be 

used in combination with current anti-androgens to possibly avoid or delay progression to 

castration resistance. Therefore, it is worth testing the synergistic effect of 13566 and 

Enzalutamide in both in vitro assays and in vivo models. 

6.2.4. Finally, the ultimate goal of developing any drug candidate is to make it orally 

available. Therefore studies directed towards developing oral formulations of these compounds 

could be an important part of future investigations.  
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Appendix 

 

Supplementary figure 3.1. Predicted docking pose (grey molecule) of compound 9002 versus 

experimentally (brown molecule) identified BF3-bound configuration. White dotted lines 

indicate hydrogen bond with Glu837. 

 

Supplementary figure 3.2. Predicted docking pose (grey molecule) of compound 9006. White 

dotted lines indicate hydrogen bond with Glu837. 
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Supplementary figure 3.3. ERα mediated luciferase transcriptional assay showing the 

specificity of AR BF3 compounds. The compounds (10 µM) were unable to inhibit estrogen 

response element mediated transcriptional activity compared to Tamoxifen (Tx). For each 

compound the luminescence signal for 17βEstradiol stimulated MCF-7 cells is shown.  The error 

bars represent standard deviation for n=6 values.  

 

Supplementary figure 4.1. Fluorescence polarization experiment showing competition between 

FITC-labeled Bag-1L (61-80) peptide (12.5nM) and serially diluted Casodex, 13163, 13221, 

unlabeled core GARRPR hexapaptide (100-0.05µM) for binding to mutated AR-LBD-T877A (2 



118 
 

µM). The competition experiments were performed at conditions for maximum polarization of 

FITC-labeled peptide and AR-LBD. 

 

Supplementary figure 4.2. The effect of 13163 on A) Estrogen receptor alpha B) 

Glucocorticoid receptor C) Progesterone receptor, as measured by Life Technologies SELECT 

screen. The experiment was performed using HEK cells expressing the Gal4 DNA binding 

domain fused to the ligand binding domain of AR, ER, PR or GR according to Life Technologies 

protocol. 
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Supplementary figure 4.3. 13163 Inhibits AR-dependent Growth of Xenograft Tumors In Vivo. 

Pharmacokinetic profiles of compound 13163 following intravenous (IV), oral (PO) or 

intraperitoneal (IP) administration at 100mg/kg (n=3 each).  IV and oral dosing are observed to 

be the best routes of delivery.  For IV, PO and IP respectively, Cmax was approximately 400, 

150 and 12µM and half-life 2.3, 2.3 and 3.4 hours. 
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Supplementary figure 5.1. The correlation curve plotted between the experimental activity 

(inhibition of AR activity as measured by AR eGFP assay) and dock score produced by Glide SP 

program for 106 BF3 inhibitors. The graph shows that there is no correlation observed.  
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Supplemental table 4.1. The list of compounds selected through virtual screening process as 

described in chapter 4. The scores predicted by different in silico protocols (Glide score, eHiTS 

score, RMSD, LigX pKi) for each compound and their cumulative vote are reported below.  

ID Glide SP-

Score 

eHiTS-

Score 

RMSD LigX dock_ 

pKi 

SP 

vote 

eHiT

S vote 

RMSD 

vote 

Lig X 

vote 

pki 

vote 

Final 

Vote 

13259 -5.301 -5.805 0.612 -28.894 4.890 1 1 1 0 1 4 

ZINC00297315 -5.364 -5.479 0.460 -30.843 5.246 1 0 1 1 1 4 

13163 -5.850 -5.800 0.624 -32.878 4.952 1 0 1 1 1 4 

13256 -5.306 -5.600 0.512 -31.733 4.900 1 0 1 1 1 4 

ZINC00019965 -5.517 -5.783 0.606 -32.516 2.621 1 1 1 1 0 4 

13309 -5.554 -6.040 1.353 -30.793 4.850 1 1 0 1 1 4 

13127 -5.510 -5.493 0.642 -32.141 4.840 1 0 1 1 1 4 

13221 -5.371 -5.769 1.155 -35.253 4.821 1 1 0 1 1 4 

ZINC00079157 5.640 -6.316 0.698 -30.061 3.706 1 1 1 1 0 4 

13310 -5.300 -5.841 1.051 -31.064 4.798 1 1 0 1 1 4 

13299 -5.405 -6.105 1.476 -30.205 4.747 1 1 0 1 1 4 

13167 -5.660 -5.871 0.530 -30.165 4.702 1 0 1 1 1 4 

ZINC00273820 -5.731 -6.150 0.516 -29.302 5.090 1 1 1 0 1 4 

13164 -5.975 -5.820 0.801 -31.196 4.850 1 1 0 1 1 4 

13320 -5.267 -5.893 1.602 -32.107 4.697 1 1 0 1 1 4 

ZINC17206741 -5.145 -5.766 1.668 -32.081 5.763 1 1 0 1 1 4 

13225 -5.460 -5.790 0.390 -33.676 4.653 1 0 1 1 1 4 

13257 -5.600 -5.977 1.593 -30.434 4.625 1 1 0 1 1 4 

ZINC59513820 -5.391 -6.228 0.663 -31.554 4.203 1 1 1 1 0 4 

13166 -5.490 -5.835 0.391 -31.603 4.604 1 0 1 1 1 4 

13226 -5.156 -6.447 1.251 -31.233 4.533 1 1 0 1 1 4 

13258 -5.500 -5.411 0.500 -30.987 4.477 1 0 1 1 1 4 

ZINC05741193 -4.705 -5.799 0.642 -28.645 5.684 0 1 1 0 1 3 

ZINC13125776 -5.320 -5.312 0.420 -25.954 5.646 1 0 1 0 1 3 

13255 -5.407 -5.839 1.350 -29.970 4.889 1 1 0 0 1 3 

ZINC00270881 -5.284 -5.597 0.622 -20.676 4.868 1 0 1 0 1 3 

ZINC59518358 -5.180 -5.127 0.580 -26.198 4.867 1 0 1 0 1 3 

13303 -5.492 -5.750 1.639 -30.124 4.796 1 0 0 1 1 3 

13304 -5.387 -5.807 1.276 -29.994 4.700 1 1 0 0 1 3 

13300 -5.330 -5.800 1.647 -30.369 4.640 1 0 0 1 1 3 

ZINC21002281 -5.024 -5.383 0.651 -30.925 4.607 0 0 1 1 1 3 

ZINC00287779 -5.209 -5.043 0.509 -27.005 4.593 1 0 1 0 1 3 

13345 -5.390 -5.046 0.617 -31.368 4.497 1 0 1 1 0 3 

13254 -5.330 -5.780 0.653 -31.531 4.485 1 0 1 1 0 3 

ZINC59518222 -4.697 -5.832 0.527 -32.993 4.127 0 1 1 1 0 3 

13321 -5.269 -5.989 0.783 -30.027 4.580 1 1 0 0 1 3 

ZINC59513854 -4.871 -5.132 0.710 -28.983 5.437 0 0 1 0 1 2 

ZINC00047188 -4.802 -5.289 0.700 -22.418 5.408 0 0 1 0 1 2 

ZINC04756486 -5.206 -5.625 1.453 -24.439 4.950 1 0 0 0 1 2 

ZINC03196421 -4.462 -5.741 1.145 -27.238 4.895 0 1 0 0 1 2 

ZINC83388991 -3.681 -5.186 0.689 -23.937 4.883 0 0 1 0 1 2 

ZINC00296941 -4.504 -5.785 1.884 -26.656 4.671 0 1 0 0 1 2 

ZINC40570824 -5.347 -5.360 1.952 -21.548 4.664 1 0 0 0 1 2 

ZINC72137657 -4.679 -5.157 0.627 -25.803 4.644 0 0 1 0 1 2 

ZINC16525325 -5.275 -5.300 0.759 -28.758 4.629 1 0 0 0 1 2 

ZINC02749872 -4.920 -5.947 1.400 -24.393 4.553 0 1 0 0 1 2 

ZINC59248175 -5.285 -4.989 0.975 -26.864 4.539 1 0 0 0 1 2 

ZINC00046098 -4.957 -5.279 1.988 -31.618 4.526 0 0 0 1 1 2 

ZINC05619237 -5.101 -4.938 0.908 -31.198 4.363 1 0 0 1 0 2 

ZINC75260628 -4.896 -6.178 0.460 -26.292 4.187 0 1 1 0 0 2 

ZINC40570823 -4.468 -5.642 0.552 -30.937 4.181 0 0 1 1 0 2 

ZINC72177086 -4.614 -6.293 1.318 -31.127 4.115 0 1 0 1 0 2 

ZINC00587972 -4.674 -6.280 1.865 -31.550 3.987 0 1 0 1 0 2 

ZINC00298052 -5.077 -5.950 1.918 -32.554 3.902 0 1 0 1 0 2 
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ID Glide SP-

Score 

eHiTS-

Score 

RMSD LigX dock_ 

pKi 

SP 

vote 

eHiT

S vote 

RMSD 

vote 

Lig X 

vote 

pki 

vote 

Final 

Vote 

ZINC03240772 -4.974 -6.327 1.789 -30.951 3.898 0 1 0 1 0 2 

ZINC21002283 -5.271 -5.439 1.638 -31.551 3.851 1 0 0 1 0 2 

ZINC00046422 -4.866 -5.814 0.770 -30.185 3.836 0 1 0 1 0 2 

ZINC40570771 -5.374 -4.975 0.652 -21.125 3.830 1 0 1 0 0 2 

ZINC18191571 -4.681 -6.117 2.650 -30.820 3.793 0 1 0 1 0 2 

ZINC38805545 -5.303 -4.943 1.650 -31.765 3.752 1 0 0 1 0 2 

ZINC59247885 -5.318 -4.996 1.500 -31.116 3.715 1 0 0 1 0 2 

ZINC00242590 -4.836 -5.015 0.708 -31.739 3.662 0 0 1 1 0 2 

ZINC00062723 -4.274 -5.921 0.703 -29.215 3.630 0 1 1 0 0 2 

ZINC00584458 -4.429 -6.192 0.597 -28.567 3.627 0 1 1 0 0 2 

ZINC00065287 -4.657 -5.755 0.951 -30.944 3.585 0 1 0 1 0 2 

ZINC13144651 -5.132 -4.954 0.667 -29.615 3.509 1 0 1 0 0 2 

ZINC00064459 -4.650 -5.577 0.715 -32.242 3.376 0 0 1 1 0 2 

ZINC04713988 -4.153 -6.402 0.835 -31.219 3.039 0 1 0 1 0 2 

ZINC04707741 -4.999 -5.074 0.600 -32.140 2.835 0 0 1 1 0 2 

ZINC00273916 -3.858 -5.870 1.762 -30.599 2.598 0 1 0 1 0 2 

ZINC04694547 -5.009 -5.000 1.098 -29.235 5.457 0 0 0 0 1 1 

ZINC40452777 -4.210 -5.215 0.748 -28.017 5.342 0 0 0 0 1 1 

ZINC40570831 -4.283 -5.692 1.416 -29.857 5.253 0 0 0 0 1 1 

ZINC59249148 -4.759 -4.991 1.221 -26.188 5.215 0 0 0 0 1 1 

ZINC04906320 -4.933 -5.392 1.100 -24.284 5.153 0 0 0 0 1 1 

ZINC59386206 -4.318 -5.045 1.535 -26.691 5.013 0 0 0 0 1 1 

ZINC05669183 -5.081 -5.323 1.218 -29.064 4.929 0 0 0 0 1 1 

ZINC83388990 -3.695 -4.940 1.502 -27.455 4.858 0 0 0 0 1 1 

ZINC59518550 -4.734 -5.153 0.884 -26.387 4.858 0 0 0 0 1 1 

ZINC00065809 -4.777 -5.151 0.999 -27.786 4.848 0 0 0 0 1 1 

ZINC18137618 -4.435 -5.157 1.289 -24.913 4.726 0 0 0 0 1 1 

ZINC73733927 -4.442 -5.081 1.805 -24.903 4.702 0 0 0 0 1 1 

ZINC00271359 -4.899 -5.281 1.357 -26.576 4.681 0 0 0 0 1 1 

ZINC05536636 -5.097 -5.473 1.319 -26.002 4.636 0 0 0 0 1 1 

ZINC59302900 -4.132 -4.995 1.870 -27.902 4.546 0 0 0 0 1 1 

ZINC40570776 -4.263 -4.984 1.638 -28.205 4.543 0 0 0 0 1 1 

ZINC00047177 -5.049 -5.438 1.900 -25.579 4.540 0 0 0 0 1 1 

ZINC85442351 -4.997 -5.189 0.845 -23.675 4.523 0 0 0 0 1 1 

ZINC13209067 -5.068 -5.001 0.932 -22.048 4.517 0 0 0 0 1 1 

ZINC02541087 -5.039 -4.952 1.983 -24.926 4.511 0 0 0 0 1 1 

ZINC03194754 -5.214 -5.353 1.112 -24.695 4.502 1 0 0 0 0 1 

ZINC00502159 -5.225 -5.263 1.098 -28.415 4.497 1 0 0 0 0 1 

ZINC59513845 -4.511 -5.276 0.673 -26.648 4.422 0 0 1 0 0 1 

ZINC00051081 -5.360 -5.486 0.924 -27.846 4.409 1 0 0 0 0 1 

ZINC85442353 -4.458 -5.191 0.459 -23.747 4.402 0 0 1 0 0 1 

ZINC04728918 -4.575 -4.958 1.145 -30.638 4.373 0 0 0 1 0 1 

ZINC00297515 -4.821 -6.354 1.804 -28.692 4.291 0 1 0 0 0 1 

ZINC01274758 -4.838 -5.559 1.687 -33.489 4.284 0 0 0 1 0 1 

ZINC59457042 -4.487 -5.155 0.990 -30.629 4.239 0 0 0 1 0 1 

ZINC00136664 -5.279 -5.033 1.130 -28.092 4.228 1 0 0 0 0 1 

ZINC71767002 -3.365 -4.962 0.414 -25.968 4.228 0 0 1 0 0 1 

ZINC33653051 -4.474 -4.945 0.569 -26.746 4.212 0 0 1 0 0 1 

ZINC40570697 -4.140 -5.389 0.673 -27.969 4.202 0 0 1 0 0 1 

ZINC00439163 -4.808 -5.336 1.153 -36.827 4.184 0 0 0 1 0 1 

ZINC00297619 -5.052 -5.835 1.598 -23.763 4.155 0 1 0 0 0 1 

ZINC59487898 -4.456 -5.711 0.974 -30.435 4.154 0 0 0 1 0 1 

ZINC04821853 -5.354 -5.069 1.710 -25.386 4.151 1 0 0 0 0 1 

ZINC59519276 -3.971 -5.579 0.616 -20.158 4.129 0 0 1 0 0 1 

ZINC00288470 -4.413 -5.264 0.712 -26.252 4.116 0 0 1 0 0 1 

ZINC59457245 -5.162 -5.357 1.695 -25.419 4.094 1 0 0 0 0 1 

ZINC59418781 -4.582 -5.766 1.120 -28.875 4.090 0 1 0 0 0 1 

ZINC00576379 -4.886 -5.392 0.527 -29.927 4.000 0 0 1 0 0 1 

ZINC00062467 -5.169 -5.422 1.095 -29.461 3.986 1 0 0 0 0 1 

ZINC03250977 -4.959 -6.194 0.832 -15.536 3.978 0 1 0 0 0 1 

ZINC00588219 -4.276 -5.456 0.803 -35.958 3.975 0 0 0 1 0 1 
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ID Glide SP-

Score 

eHiTS-

Score 

RMSD LigX dock_ 

pKi 

SP 

vote 

eHiT

S vote 

RMSD 

vote 

Lig X 

vote 

pki 

vote 

Final 

Vote 

ZINC00273957 -5.084 -5.332 0.696 -29.947 3.971 0 0 1 0 0 1 

ZINC12346351 -4.164 -5.800 1.217 -29.860 3.971 0 1 0 0 0 1 

ZINC03036427 -4.814 -5.033 0.635 -26.406 3.953 0 0 1 0 0 1 

ZINC01274756 -5.256 -5.553 2.122 -28.574 3.943 1 0 0 0 0 1 

ZINC39410466 -5.237 -5.495 1.641 -21.729 3.921 1 0 0 0 0 1 

ZINC59678792 -5.252 -4.990 1.845 -27.021 3.915 1 0 0 0 0 1 

ZINC00668188 -4.495 -5.762 1.628 -26.143 3.871 0 1 0 0 0 1 

ZINC00588159 -5.345 -5.266 1.016 -26.936 3.861 1 0 0 0 0 1 

ZINC00357299 -5.091 -5.522 1.650 -31.936 3.848 0 0 0 1 0 1 

ZINC40570820 -5.110 -5.645 0.963 -27.116 3.783 1 0 0 0 0 1 

ZINC03589754 -5.184 -5.173 1.781 -22.401 3.769 1 0 0 0 0 1 

ZINC04713984 -4.746 -5.345 0.548 -29.324 3.768 0 0 1 0 0 1 

ZINC09482118 -3.710 -5.006 0.738 -29.484 3.749 0 0 1 0 0 1 

ZINC04821732 -4.561 -5.073 0.574 -25.115 3.739 0 0 1 0 0 1 

ZINC03233313 -4.466 -6.269 1.007 -28.299 3.711 0 1 0 0 0 1 

ZINC00068921 -5.039 -5.535 1.843 -32.167 3.694 0 0 0 1 0 1 

ZINC13608197 -5.194 -5.116 1.901 -26.747 3.592 1 0 0 0 0 1 

ZINC38174436 -4.597 -5.378 0.634 -27.493 3.581 0 0 1 0 0 1 

ZINC00358027 -5.291 -5.678 0.943 -29.267 3.568 1 0 0 0 0 1 

ZINC20508916 -4.268 -5.032 0.667 -27.110 3.566 0 0 1 0 0 1 

ZINC39932995 -3.940 -5.412 1.808 -32.318 3.496 0 0 0 1 0 1 

ZINC05517877 -4.990 -6.161 1.736 -26.666 3.484 0 1 0 0 0 1 

ZINC03158604 -5.020 -5.766 1.812 -25.625 3.476 0 1 0 0 0 1 

ZINC02131693 -5.149 -5.696 1.843 -28.589 3.474 1 0 0 0 0 1 

ZINC59508156 -3.990 -5.988 1.121 -26.419 3.449 0 1 0 0 0 1 

ZINC01086150 -4.205 -5.023 1.597 -30.501 3.440 0 0 0 1 0 1 

ZINC59513935 -4.756 -5.851 1.394 -24.467 3.439 0 1 0 0 0 1 

ZINC00243289 -4.474 -5.012 0.940 -31.061 3.438 0 0 0 1 0 1 

ZINC17001876 -4.742 -4.957 0.736 -27.345 3.428 0 0 1 0 0 1 

ZINC01052351 -4.662 -5.000 0.714 -28.706 3.370 0 0 1 0 0 1 

ZINC00297828 -4.178 -6.260 0.986 -27.687 3.366 0 1 0 0 0 1 

ZINC00576365 -4.639 -5.393 1.998 -33.355 3.312 0 0 0 1 0 1 

ZINC18191561 -4.667 -5.110 0.741 -27.497 3.256 0 0 1 0 0 1 

ZINC00282379 -4.648 -5.153 0.595 -27.058 3.254 0 0 1 0 0 1 

ZINC03154475 -4.998 -5.038 0.401 -29.497 3.233 0 0 1 0 0 1 

ZINC00079154 -4.861 -6.302 0.986 -24.577 3.221 0 1 0 0 0 1 

ZINC05337327 -4.058 -4.966 0.620 -24.843 3.207 0 0 1 0 0 1 

ZINC00497896 -4.660 -6.394 2.681 -24.592 3.205 0 1 0 0 0 1 

ZINC01709001 -3.986 -5.440 0.843 -30.502 3.175 0 0 0 1 0 1 

ZINC01044367 -3.795 -5.066 0.854 -30.093 3.165 0 0 0 1 0 1 

ZINC04957827 -4.663 -6.337 2.231 -25.238 3.141 0 1 0 0 0 1 

ZINC32620423 -4.122 -5.903 0.922 -23.749 3.115 0 1 0 0 0 1 

ZINC00306551 -4.083 -5.080 0.622 -24.112 3.101 0 0 1 0 0 1 

ZINC59418779 -4.797 -6.067 1.550 -29.156 3.073 0 1 0 0 0 1 

ZINC00971280 -4.593 -5.149 1.358 -32.530 3.038 0 0 0 1 0 1 

ZINC06269866 -5.171 -4.938 1.998 -25.974 3.020 1 0 0 0 0 1 

ZINC00065652 -4.670 -6.015 1.035 -28.651 2.996 0 1 0 0 0 1 

ZINC00943139 -4.551 -5.762 1.862 -23.401 2.948 0 1 0 0 0 1 

ZINC24410425 -4.397 -5.113 0.451 -28.669 2.931 0 0 1 0 0 1 

ZINC00571310 -4.539 -5.573 1.831 -32.026 2.898 0 0 0 1 0 1 

ZINC00065058 -4.616 -5.012 1.102 -27.769 4.503 0 0 0 0 0 0 

ZINC06269861 -3.947 -4.939 1.827 -26.924 4.503 0 0 0 0 0 0 

ZINC00267862 -4.340 -5.373 0.778 -26.659 4.471 0 0 0 0 0 0 

ZINC00065374 -3.441 -5.046 1.563 -27.653 4.462 0 0 0 0 0 0 

ZINC21002279 -4.757 -5.401 2.404 -28.332 4.442 0 0 0 0 0 0 

ZINC00271175 -4.168 -5.544 0.798 -25.983 4.441 0 0 0 0 0 0 

ZINC39248931 -4.905 -5.391 1.209 -29.221 4.411 0 0 0 0 0 0 

ZINC01274757 -4.150 -5.561 1.038 -27.501 4.410 0 0 0 0 0 0 

ZINC73733923 -4.394 -5.086 0.801 -12.145 4.408 0 0 0 0 0 0 

ZINC05977375 -4.358 -4.941 1.744 -28.254 4.382 0 0 0 0 0 0 

ZINC04380137 -4.969 -5.338 1.917 -26.336 4.319 0 0 0 0 0 0 
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ZINC05257525 -4.967 -5.117 0.759 -23.067 4.310 0 0 0 0 0 0 

ZINC08616443 -5.024 -5.061 1.402 -23.224 4.306 0 0 0 0 0 0 

ZINC06760081 -4.617 -5.198 1.311 -27.774 4.250 0 0 0 0 0 0 

ZINC59513661 -4.098 -5.050 1.488 -24.437 4.235 0 0 0 0 0 0 

ZINC18191566 -4.622 -5.723 1.694 -29.442 4.233 0 0 0 0 0 0 

ZINC00061061 -4.858 -5.003 0.834 -25.078 4.213 0 0 0 0 0 0 

ZINC01044365 -4.508 -5.065 1.658 -22.920 4.211 0 0 0 0 0 0 

ZINC00054670 -4.890 -5.007 1.438 -24.277 4.197 0 0 0 0 0 0 

ZINC72134786 -3.818 -5.068 0.928 -23.892 4.195 0 0 0 0 0 0 

ZINC03158614 -4.110 -5.141 1.704 -26.912 4.176 0 0 0 0 0 0 

ZINC89209310 -5.058 -5.118 1.502 -27.857 4.162 0 0 0 0 0 0 

ZINC05331228 -4.830 -4.964 1.092 -27.357 4.162 0 0 0 0 0 0 

ZINC00297848 -4.447 -5.488 1.249 -25.830 4.154 0 0 0 0 0 0 

ZINC00282395 -4.829 -5.628 1.028 -22.862 4.146 0 0 0 0 0 0 

ZINC59679309 -4.124 -4.991 1.048 -24.546 4.137 0 0 0 0 0 0 

ZINC59946761 -5.097 -5.012 0.752 -26.026 4.123 0 0 0 0 0 0 

ZINC13125523 -4.846 -5.574 1.792 -25.430 4.121 0 0 0 0 0 0 

ZINC16687806 -4.350 -5.697 0.963 -28.394 4.046 0 0 0 0 0 0 

ZINC17326384 -4.747 -5.066 1.872 -25.670 4.035 0 0 0 0 0 0 

ZINC08683932 -4.063 -5.383 1.256 -26.894 4.034 0 0 0 0 0 0 

ZINC59457052 -4.789 -5.147 1.913 -26.098 4.034 0 0 0 0 0 0 

ZINC08616455 -4.176 -5.060 1.406 -29.818 4.019 0 0 0 0 0 0 

ZINC59302736 -4.579 -4.990 0.763 -25.378 4.009 0 0 0 0 0 0 

ZINC03109245 -4.977 -5.016 1.606 -22.534 3.975 0 0 0 0 0 0 

ZINC00179512 -4.939 -5.318 1.191 -22.340 3.966 0 0 0 0 0 0 

ZINC59514173 -4.244 -5.144 1.994 -25.651 3.896 0 0 0 0 0 0 

ZINC00065981 -4.727 -5.290 2.855 -16.643 3.892 0 0 0 0 0 0 

ZINC40570819 -4.030 -5.585 1.201 -30.059 3.887 0 0 0 0 0 0 

ZINC40570703 -4.221 -5.503 1.427 -24.109 3.880 0 0 0 0 0 0 

ZINC59518484 -4.672 -5.141 0.864 -26.180 3.871 0 0 0 0 0 0 

ZINC38805548 -4.287 -4.950 1.542 -25.212 3.868 0 0 0 0 0 0 

ZINC33594294 -3.840 -4.947 1.129 -25.036 3.865 0 0 0 0 0 0 

ZINC06417874 -3.757 -5.402 1.018 -29.516 3.843 0 0 0 0 0 0 

ZINC01709000 -4.602 -5.583 1.798 -27.787 3.833 0 0 0 0 0 0 

ZINC75278567 -5.092 -5.223 1.593 -23.487 3.829 0 0 0 0 0 0 

ZINC16929290 -3.702 -4.963 1.110 -27.311 3.826 0 0 0 0 0 0 

ZINC05536639 -4.968 -5.441 1.336 -27.971 3.819 0 0 0 0 0 0 

ZINC12495215 -4.462 -5.323 1.300 -21.981 3.817 0 0 0 0 0 0 

ZINC00065733 -3.754 -5.045 0.985 -22.200 3.813 0 0 0 0 0 0 

ZINC05977376 -4.205 -4.946 1.948 -29.969 3.808 0 0 0 0 0 0 

ZINC00047179 -4.999 -5.456 1.482 -26.354 3.798 0 0 0 0 0 0 

ZINC00096041 -4.842 -5.370 1.476 -26.751 3.794 0 0 0 0 0 0 

ZINC00079148 -3.694 -5.214 1.214 -24.830 3.792 0 0 0 0 0 0 

ZINC59508020 -4.189 -5.269 1.287 -27.176 3.788 0 0 0 0 0 0 

ZINC14983237 -4.034 -5.212 1.135 -27.155 3.780 0 0 0 0 0 0 

ZINC40570829 -3.588 -5.030 0.919 -26.878 3.768 0 0 0 0 0 0 

ZINC15973646 -3.564 -5.550 1.289 -24.532 3.721 0 0 0 0 0 0 

ZINC03183544 -4.769 -5.144 1.919 -23.297 3.698 0 0 0 0 0 0 

ZINC75251431 -5.054 -5.216 1.045 -28.353 3.694 0 0 0 0 0 0 

ZINC59519274 -4.591 -5.149 1.165 -24.251 3.689 0 0 0 0 0 0 

ZINC01233230 -4.269 -5.259 1.834 -26.959 3.685 0 0 0 0 0 0 

ZINC17042267 -4.977 -5.003 1.350 -26.267 3.666 0 0 0 0 0 0 

ZINC38976989 -4.711 -5.271 1.233 -26.264 3.658 0 0 0 0 0 0 

ZINC00047190 -3.982 -5.313 0.797 -26.367 3.645 0 0 0 0 0 0 

ZINC18191555 -4.134 -5.349 1.552 -27.518 3.644 0 0 0 0 0 0 

ZINC40570704 -4.581 -5.501 1.415 -28.249 3.628 0 0 0 0 0 0 

ZINC59248130 -4.844 -4.962 0.811 -27.991 3.612 0 0 0 0 0 0 

ZINC59678778 -3.770 -4.988 0.824 -28.493 3.601 0 0 0 0 0 0 

ZINC00297964 -4.969 -5.471 0.753 -23.557 3.597 0 0 0 0 0 0 

ZINC18192593 -4.824 -5.331 1.122 -27.279 3.585 0 0 0 0 0 0 

ZINC00096273 -4.365 -5.522 1.916 -28.834 3.582 0 0 0 0 0 0 
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ZINC00255270 -4.669 -5.036 1.002 -29.897 3.579 0 0 0 0 0 0 

ZINC40570775 -3.402 -4.983 1.000 -29.491 3.578 0 0 0 0 0 0 

ZINC34070709 -4.283 -5.116 2.098 -29.861 3.576 0 0 0 0 0 0 

ZINC03149578 -5.060 -5.079 1.050 -25.602 3.575 0 0 0 0 0 0 

ZINC12341239 -5.067 -5.204 1.213 -25.500 3.566 0 0 0 0 0 0 

ZINC40570706 -4.656 -5.524 1.228 -28.714 3.564 0 0 0 0 0 0 

ZINC04673337 -4.079 -5.008 2.105 -26.561 3.532 0 0 0 0 0 0 

ZINC05604499 -4.613 -5.021 0.843 -29.887 3.480 0 0 0 0 0 0 

ZINC00065933 -4.891 -5.044 1.237 -26.759 3.454 0 0 0 0 0 0 

ZINC59678328 -4.156 -4.993 1.969 -24.491 3.451 0 0 0 0 0 0 

ZINC00225845 -4.956 -5.012 1.191 -29.529 3.436 0 0 0 0 0 0 

ZINC40570772 -5.067 -4.974 0.853 -27.226 3.434 0 0 0 0 0 0 

ZINC00198307 -4.932 -5.127 1.817 -27.005 3.432 0 0 0 0 0 0 

ZINC05159007 -4.567 -5.205 1.148 -26.423 3.413 0 0 0 0 0 0 

ZINC00297927 -4.386 -5.151 0.970 -24.942 3.409 0 0 0 0 0 0 

ZINC59248174 -3.801 -4.990 1.711 -25.725 3.347 0 0 0 0 0 0 

ZINC59518432 -3.936 -5.375 1.782 -27.084 3.337 0 0 0 0 0 0 

ZINC59456920 -4.805 -5.277 1.867 -29.192 3.328 0 0 0 0 0 0 

ZINC17201147 -4.117 -5.055 1.990 -26.965 3.304 0 0 0 0 0 0 

ZINC17355178 -4.822 -4.953 0.876 -27.919 3.296 0 0 0 0 0 0 

ZINC16512576 -4.749 -5.672 1.663 -27.710 3.292 0 0 0 0 0 0 

ZINC01087149 -4.305 -5.004 1.209 -26.638 3.286 0 0 0 0 0 0 

ZINC00506217 -4.754 -5.201 0.868 -29.841 3.198 0 0 0 0 0 0 

ZINC59249700 -4.509 -4.988 1.173 -27.445 3.173 0 0 0 0 0 0 

ZINC02043018 -4.747 -4.985 0.813 -28.492 3.152 0 0 0 0 0 0 

ZINC00297751 -3.526 -5.353 1.037 -26.479 3.120 0 0 0 0 0 0 

ZINC05015728 -4.203 -5.204 1.493 -26.243 3.089 0 0 0 0 0 0 

ZINC00943141 -5.065 -5.146 1.609 -27.271 3.087 0 0 0 0 0 0 

ZINC04981614 -4.338 -4.986 2.986 -24.856 3.062 0 0 0 0 0 0 

ZINC48329990 -3.957 -5.089 1.512 -26.979 3.025 0 0 0 0 0 0 

ZINC00062768 -4.438 -5.355 1.800 -22.868 2.982 0 0 0 0 0 0 

ZINC40570773 -4.933 -4.966 1.046 -26.633 2.971 0 0 0 0 0 0 

ZINC03589752 -4.814 -5.158 0.975 -29.576 2.937 0 0 0 0 0 0 

ZINC01274759 -4.641 -5.571 1.186 -27.978 2.869 0 0 0 0 0 0 

ZINC00257158 -4.526 -5.280 0.962 -28.263 2.847 0 0 0 0 0 0 

ZINC03589755 -4.923 -5.124 1.113 -22.085 2.828 0 0 0 0 0 0 

ZINC00297232 -4.730 -5.023 1.166 -28.563 2.727 0 0 0 0 0 0 

ZINC06396396 -3.905 -5.427 0.949 -27.015 2.713 0 0 0 0 0 0 

ZINC12970788 -4.976 -5.126 1.745 -29.417 2.649 0 0 0 0 0 0 

ZINC19772510 -4.470 -5.125 1.096 -26.337 2.279 0 0 0 0 0 0 

ZINC00298291 -4.074 -5.034 0.953 -29.960 1.990 0 0 0 0 0 0 

ZINC59518301 -4.916 -5.140 1.472 -26.969 1.575 0 0 0 0 0 0 
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Supplementary table 4.2. Chemical structures of previously reported BF3 inhibitors by 

Estenabez-Perpina et al, Lack et al, Munuganti et al and commercial anti-androgens.  

T3 

 

TRIAC 

 

FLUF 

 

9002 

 

9114 

 

9117 

 

9145 

 

0056 

 

4035 

 

0098 

 

0209 

 

4026 
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4090 

 

4041 

 

0017 

 

0058 

 

Flutamide 

 

Nilutamide 

 

Bicalutamide 

 

Enzalutamide 

 

 

 

Supplementary table 4.3. Lipophilicity-corrected ligand efficiencies (LLE) for the BF3 AR binders. 

LLE can be defined as LLE = pIC50-clogP 

 

ID 

eGFP Activity 

(µM) 

 

pIC50 

 

LogP(o/w) 

 

LLE 

13163 0.310 6.509 3.734 2.775 

13127 0.600 6.222 3.610 2.612 
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ID 

eGFP Activity 

(µM) 

 

pIC50 

 

LogP(o/w) 

 

LLE 

13167 1.910 5.719 3.323 2.396 

13256 0.380 6.420 4.278 2.142 

13164 1.200 5.921 4.002 1.919 

13255 0.520 6.284 4.868 1.416 

13259 0.310 6.509 5.211 1.298 

13225 0.700 6.155 4.909 1.246 

13221 15.000 4.824 3.648 1.176 

13300 9.330 5.030 3.860 1.170 

13254 1.200 5.921 4.870 1.051 

9099 7.400 5.131 4.123 1.008 

13299 8.160 5.088 4.202 0.886 

13257 4.180 5.379 4.576 0.803 

13235 2.210 5.656 4.876 0.780 

13320 25.230 4.598 3.897 0.701 

13303 4.460 5.351 4.876 0.475 

13310 10.310 4.987 4.535 0.452 

13166 1.690 5.772 5.379 0.393 

13304 7.270 5.138 5.199 -0.061 

13345 13.890 4.857 5.084 -0.227 

13321 25.000 4.602 5.123 -0.521 
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ID 

eGFP Activity 

(µM) 

 

pIC50 

 

LogP(o/w) 

 

LLE 

13309 27.210 4.565 5.535 -0.970 

13258 6.780 5.169 6.236 -1.067 

 

Supplementary table 5.1. The list of QSAR models built based on distance-dependent 

descriptors classified as per atomic geometries described in MOE. Desc - Descriptors, PPV - 

positive prediction values. 

Metrics Desc Model ROC PPV Specificity Sensitivity Accuracy 

3 10 Random Forest 0.765 0.806 0.684 0.735 0.717 

1 10 Decorate 0.761 0.726 0.646 0.776 0.717 

2 10 Bagging 0.759 0.758 0.625 0.712 0.679 

1 10 Multilayer-

Perception 

0.757 0.758 0.667 0.77 0.726 

1 10 Random Forest 0.733 0.774 0.659 0.738 0.708 

3 10 Decorate 0.715 0.677 0.623 0.792 0.708 

1 15 ADTree 0.707 0.726 0.638 0.763 0.708 

1 15 Decorate 0.787 0.758 0.688 0.81 0.755 

2 15 Random Forest 0.767 0.806 0.684 0.735 0.717 

1 20 Multilayer-

Percepiron 

0.763 0.774 0.689 0.787 0.745 

2 20 ADTree 0.739 0.79 0.683 0.754 0.726 

1 20 Logit Boost 0.738 0.758 0.651 0.746 0.708 

3 20 ADTree 0.737 0.79 0.683 0.754 0.726 

2 20 Logit Boost 0.717 0.758 0.643 0.734 0.698 

3 20 Decorate 0.714 0.742 0.61 0.708 0.67 

3 20 Logit Boost 0.718 0.758 0.643 0.734 0.698 

        

Average 0.742 0.759 0.657 0.753 0.712 

 

 

 

 


