Primary estimation
with sparsity-promoting
bi-convex optimization
by

Tim TAr-Y1 LiN

B.Sc., The University of British Columbia, 2009

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in
THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES
(Geophysics)

The University of British Columbia

(Vancouver)
October 2015

© Tim Tai-Yi Lin, 2015



Abstract

This thesis establishes a novel inversion methodology for the surface-related
primaries from a given recorded seismic wavefield, called the Robust Esti-
mation of Primaries by Sparse Inversion (Robust EPSI, or REPSI). Surface-
related multiples are a major source of coherent noise in seismic data, and
inferring fine geological structures from active-source seismic recordings typ-
ically first necessitates its removal or mitigation. For this task, current
practice calls for data-driven approaches which produce only approximate
multiple models that must be non-linearly subtracted from the data, often
distorting weak primary events in the process. A recently proposed me-
thod called Estimation of Primaries by Sparse Inversion (EPSI) avoids this
adaptive subtraction by directly inverting for a discrete representation of
the underlying multiple-free subsurface impulse response as a set of band-
limited spikes. However, in its original form, the EPSI algorithm exhibits
a few notable shortcomings that impede adoption. Although it was shown
that the correct impulse response can be obtained through a sparsest solu-
tion criteria, the current EPSI algorithm is not designed to take advantage
of this finding, but instead approrimates a sparse solution in an ad-hoc
manner that requires practitioners to decide on a multitude of inversion pa-
rameters. The Robust EPSI method introduced in this thesis reformulates
the original EPSI problem as a formal bi-convex optimization problem that
makes obtaining the sparsest solution an explicit goal, while also reliably
admit satisfactory solutions using contemporary self-tuning gradient meth-
ods commonly seen in large-scale machine learning communities. I show
that the Robust EPSI algorithm is able to operate successfully on a variety
of datasets with minimal user input, while also producing a more accurate
model of the subsurface impulse response when compared to the original algo-
rithm. Furthermore, this thesis makes several contributions that improves

ii



ABSTRACT

the capability and practicality of EPSI: a novel scattering-based multiple
prediction model that allows Robust EPSI to deal with wider near-offset
receiver gaps than previously demonstrated for EPSI, as well as a multigrid-
inspired continuation strategy that significantly reduces the computation
time needed to solve EPSI-type problems. These additions are enabled by
and built upon the formalism of the Robust EPSI as developed in this thesis.
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This thesis consists of my original research, conducted at the Department
of Earth, Ocean and Atmospheric Sciences of The University of British
Columbia, Vancouver, Canada, under the supervision of Professor Felix Herr-
mann as part of the Seismic Laboratory of Imaging and modelling (SLIM). I
prepared the manuscript of the thesis in its entirety. Some chapters contain
previously published materials for which I was the main investigator and
author.
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1999, with permission from Elsevier (via Copyright Clearance Center license
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Figure 1.1 Schematic diagram of the Royal Albert Hall, and the
travel paths of direct sound waves (in green) and echoes reflect-
ing off the glazed dome (in red). The canvas velarium (indicated
in blue) was later added soon after opening to mitigate some of
theechoes. . . . . . . . . ..

Figure 1.2 Diagram of a typical marine survey, with primary ray-
paths indicated in green and a surface multiple raypath indicated

Figure 2.1 Example of reflectivity series mechanism. Left sections
shows six distinct geological layers (including a water column)
with five distinct interfaces. Middle section shows the reflectiv-
ity coefficient induced by contrast in acoustic impedance between
the layers. Right section shows how a single-receiver “trace” of
seismogram is produced under an external source with a partic-
ular signature. If the source is perfectly impulsive, the trace
produced would be the Green’s function, with the amplitude of
the reflections as a function of the reflection coefficient and the
length of the raypath (due to spherical divergence). For a partic-
ular finite-energy source signal, the recorded trace is the causal
convolution of the down-going source function and the Green’s
function. This is known as the convolutional model. . . . . . . .

Figure 2.2 Seismic data (a) before and (b) after surface multiple
suppression, showing the strong, periodic, and coherent appear-
ance of surface multiple events in seismic data. In this case the
surface multiple was reverberating within the water layer in a
marine acquisition. Adapted from Character of active faulting in
the North Aegean Sea, Saatcilara et al, 1999.. . . . . . . .. ..
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Figure 2.3  Stacked seismic line (a) before and (b) after surface mul-
tiple suppression. Multiples appear as false, spurious images of
non-existent structure. Some examples are encircled in black.
Adapted from Character of active faulting in the North Aegean
Sea, Saatcilara et al, 1999. . . . . .. ... ...

Figure 2.4 Wavefield convolution concatenates the two propagation
raypaths, while its adjoint operation, cross-correlation, subtracts
raypaths. . . . . . .. ..

Figure 2.5 Convolving a wavefield containing surface multiples of dif-
ferent order (up to infinity) with the primary raypath essentially
produces “shifts” all orders of surface multiples up by one (i.e.,
1st order multiples becomes 2nd order, etc). Primary wavefields
can essentially be viewed in this way as a “zeroth order” surface
multiple. Convolution of the observed data with the primary
raypath therefore produces all surface multiples of order 1 and
above, and leaves no primaries. This effect forms the principle
behind multiple prediction by wavefield propagation. . . . . . .

Figure 2.6  Single trace (1D) surface multiple model of an underlying
two-reflector event seismic signal. Convolving the observed pres-
sure data with itself (SRME prediction) produces a wavefield that
is similar to the true surface multiple but is erroneous in both
the amplitude and the overall shape of the multiple events. The
EPSI relation in turn is able to explain the whole data accurately
by utilizing the Green’s function. . . . . . . . . ... ... ...

Figure 2.7 Shot gathers of the various wavefields involved in this pa-
per. (a) the complete pressure data p, (b) the true discrete
surface-free Green’s function g. Producing this is the primary
objective of the EPSI problem. (c¢) the SRME multiple model,
produced by the equivalent of a PRP term, using the observed
data as an estimating of g the primary raypath propagator. The
amplitudes and general shape of the multiples are erroneous when
compared to the multiple events in the data. (d) the EPSI mul-
tiple model produced by the GRP term in expression 2.3, which
is a much more accurate model of the surface multiple, and can
be directly subtracted from the data with satisfactory results. .
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Figure 2.8 Blind deconvolution is a difficult task. For a given obser-
vation (right column), an infinite number of signal z and blur
kernel w combinations may reproduce it under a causal convo-
lution relationship. Adapted from A lifted ¢1/ls constraint for
sparse blind deconvolution, Esser et. al., 2015 . . . . .. .. ..

Figure2.9 A 1D EPSI model. The Green’s function model g is plot-
ted at the top with two impulsive events. The source signature q
is a standard Ricker wavelet plotted in the middle. The resulting
observation p produced through the EPSI model (equation 2.6)
is plotted at the bottom. . . . . . . .. ... ... ... ... ..

Figure 2.10 The same 1D EPSI model as shown in Figure 2.9, but
with the source signature model q (middle plot) scaled by 2. We
can still find a Green’s function g (top plot) that satisfies the
original observation p, but it is less sparse than the original g as
shown in the top panel of Figure 2.9. . . . . . . . ... ... ..

Figure 3.1 Zoomed common-offset plot (200 m) of (a) a prestack
field dataset from the North Sea,(b) the primary wavefield ob-
tained by the original EPST algorithm, (c) the primary wavefield
obtained by our approach in the physical domain, and (d) results
from our approach obtained under a curvelet-wavelet representa-
tion. The results in (b), (c), and (d) all took the same number
of gradient updates. Compared to the original EPSI algorithm
used in (b), the Robust EPSI algorithm was able to obtain the
solution with much fewer input parameters. It also recovered the
late primary events under the arrows in a more continuous fash-
ion in the physical domain, but is still not satisfactory without
stacking. The result obtained under a hybrid curvelet-wavelet
representation shows a significantly improved recovery for this
event. What appears to be a fault at 1800 m in the data is in
fact localized surface multiple ringing due a syncline structure on
the ocean bottom. . . . . . ... ... 0oL,
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Figure 3.2  An illustration of the ray paths (solid gray line) travelled

by the surface-free Green’s function g(x;,t; Xgc) as described in
this chapter. It includes all responses at position x due to an im-
pulsive pure volume injection source at xg. that have not been
reflected by the free surface, except for the source ghost. Rays
drawn in dashed grey lines are not part of g. Our assumed model
of the primary wavefield is a source signature function ¢ is in-
jected at xg. and recorded at x while following the ray paths
of g. Think black line indicates the free-surface (e.g., water-air
interface) while thin black lines indicate subsurface reflectors. .

Figure 3.3 Illustration showing the evolution of g (grey dots, both

circle and squares) in relation to the Pareto curve function as it
follows a Pareto root-finding continuation method towards the
BPDN solution for a chosen misfit &. The optimal (minimum) 7
for the BPDN problem lies where the Pareto curve intersects the
dashed line. Solutions to the Lasso problem (square dots) lie on
the Pareto curve and is also the solution to an equivalent BPDN
problem, and is likely to be sparse. These solutions are used to
refine the source signature estimate (line 12 of Algorithm 3.3).

Figure 3.4 A typical estimate for the Green’s function g at (a) the

first iteration of a Lasso problem (equation 3.6), and (b) at the
final iteration. This Lasso problem was solved via a spectral-
projected gradient method (van den Berg and Friedlander, 2008)
using 8 gradient updates. This demonstrates that Lasso problems
tend to result in sparse solutions. . . . . . . ... ... ... ..
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Figure 3.5 Comparison of the surface-free Green’s function obtained
via different formulations of EPSI. (a) The input data simulated
from a 2D marine model. Arrows indicate the largest surface
multiples. (b) shows the result produced by the original EPSI
outlined in Algorithm 3.2 without using the sparsifying operator
S on updates to g. When § is employed on all updates to g, keep-
ing the 4 largest events per trace per update, the result obtained
is shown in (c¢). The result produced by Robust EPSI outlined in
Algorithm 3.3 is shown in (d), using a roughly equivalent num-
ber of gradient updates compared to the two other solutions. The
reflection events in g show characteristics of the expected dipole
response. A comparison between (b) and (c) shows that spar-
sity regularization is important in producing correct estimations
of the surface-free Green’s function. The solution produced by
Robust EPSI is cleaner and more free of artifacts compared to
that of the original EPSI with use of the sparsifying operator. . 57

Figure 3.6 The artifacts introduced by the ad-hoc sparsifying oper-
ator in the original EPSI algorithm (shown in Figure 3.5) are
diminished but still present after convolution with the estimated
signature g, shown in (a) for the original EPSI and (b) for Ro-
bust EPSI. Residue wavefield is shown in (c) for the original
EPST and (d) for Robust EPSL. . . . . . ... ... .. .. ... 58

Figure 3.7 A comparison between the source-signature estimates pro-
duced by the original EPSI and the Robust EPSI approaches as
(a) time signals, and (b) amplitude spectra. The original wavelet
used is a Ricker wavelet of peak frequency 30 Hz. Both methods
produce comparable models of the source wavelet. . . .. . .. 59

Figure 3.8 Shot gather of Pluto 1.5 data is shown in (a), while the
surface-free Green’s function produced by Robust EPSI after 80
gradient updates on the Green’s function is shown in (b) for the
physical domain solution and in (c) for the transform domain
solution. The total residue from estimating the Green’s function
in (b) is shown in (d). Parameters for the Robust EPSI algorithm
remain unchanged from the ones used to produce Figure 3.5d.
Without tweaking, Algorithm 3.3 produced a clean solution for
the surface-free Green’s function without the surface multiples at
2 s and 3.8 s (indicated by arrows). . . . . . ... ... L. 61
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Figure 3.9 Estimate of the source signature q that was produced in
the process of obtaining Figure 3.8b as part of Robust EPSI,
plotted as (a) time signals, and (b) amplitude spectra. The
original wavelet used is a Ricker wavelet of peak frequency 15 Hz.
The estimated wavelet partially captured the stationary part of
the receiver ghost that was not removed from the data prior to
Robust EPSL. . . . . . . . ... . 62

Figure 3.10 Demonstration of surface multiple removal from Robust
EPSI. Stacked section of Pluto 1.5 data is shown in (a). The
conservative primary result shown in (b) is produced by sub-
tracting the surface multiple model calculated by Robust EPSI
in (c) from (a). Arrows indicate where surface multiples com-
pletely overlap primary events, which are successfully recovered
in the conservative primary result. . . . . .. .. .. .. .. .. 63

Figure 3.11 Shot gather of Gulf of Suez data is shown in (a), while
the surface-free Green’s function produced by Robust EPSI after
80 gradient updates on the Green’s function is shown in (b) for
the physical domain solution and in (c) for the transform domain
solution. Reflection events in the Green’s function show charac-
teristics of the expected dipole response. The total residue from
estimating the Green’s function in (b) is shown in (d). Parame-
ters for the Robust EPSI algorithm remain unchanged from the
ones used to produce Figure 3.8 aside from the length of time
window for q. . . . . . ... 65

Figure 3.12 Estimate of the source signature q that was produced in
the process of obtaining Figure 3.11b as part of Robust EPSI,
plotted as (a) time signal and (b) amplitude spectrum. Note
that, as mentioned previously, this wavelet does not necessar-
ily reflect the true physical source signature, and furthermore
will capture all preprocessing on the data that be modelled by
a global short-time filter, such as the low-cut filter what was
applied before downsampling in time. . . . . ... ... .. .. 66

Figure 3.13 Stacked section of marine data from the Gulf of Suez is
shown in (a). The conservative primary result shown in (b) is
produced by subtracting the surface multiple model calculated by
Robust EPSI in (c) from (a). Arrows indicate where surface mul-
tiples completely overlap primary events, which are successfully
recovered in the conservative primary result. . . .. .. .. .. 67
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Figure 4.1 The effects of a 100 m near-offset gap in the observed
dataset p’, which is shown in (a), on both SRME and EPSI
multiple predictions. (b) a shot gather of the SRME multiple
prediction produced by auto-convolution of the observed data
P’P’. (c) a shot gather of the EPSI multiple prediction produced
by convolution with the correct, fully sampled, primary Green’s
function GP’. Despite knowing the true primary Green’s func-
tion, the EPSI multiple prediction still contains errors caused by
the missing near-offsets, although it is much more accurate when
compared to the SRME prediction which is twice affected by the
near-offset gap. . . . . . .. L. Lo 76

Figure 4.2 Reference wavefields to the incomplete versions shown in
Figure 4.1. A fully recorded wavefield shown in (a) is directly
comparable to figure 4.1a which shows the same data recorded
with a near-offset gap. Once the true primary wavefield shown
in (b) is taken out, the remaining true surface multiples can be
compared to the incorrect models shown in figures 4.1b and 4.1c. 77

Figure 4.3  Shot-gathers of various multiple contribution terms in the
auto-convolution based forward modelling operator M (G, Q; P’)
(shown in expression 4.6) when applied to the synthetic dataset
with 100 m missing near-offsets in p” shown in Figure 4.1. (a)
shows the total error in multiple prediction due to missing near-
offsets. Panels (b) and (c) are respectively the first two terms of
M (G, Q; P’) involving auto-convolutions with g (expressions 4.4
and 4.5). (d) shows the sum of panels (b) and (¢). Comparing
panels (a) and (d), it is evident that just the first two of the
higher order terms of equation 4.6 are enough to model most of
the significant EPSI multiple prediction errors due to the missing
data. The arrows indicate the apices of the first and second order
surface multiples of the ocean bottom reflection. . . . . .. .. 81

Figure 4.4 Multiple modelling error for the nonlinear series expan-
sion modelling operator (expression 4.6) as a function of term
truncation and the offset gap in the data. The different lines
plot this normalized modelling error from truncating all terms
from expression 4.6 with n higher than that indicated in the leg-
end. . ..o 83
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Figure 4.5 Early gradient updates for g need to be preconditioned,

otherwise convergence will be slow inside the acquisition mask
due to amplitude imbalances. (a) the exact first gradient for g
from fully sampled data, given exact q. (b) the first gradient
from data with missing near-offsets (shown in Figure 4.1a) using
the relinearized forward model M,,. Inside the near-offset gap,
the events are correct but greatly diminished in amplitude. (c)
the gradient shown in (b) after applying the preconditioning scal-
ing described. The average trace-independent scaling is effective
in balancing the amplitude of the updates between the inside and
the outside of the near-offset gap. . . . . . . ... ... ... ..

Figure 4.6 Direct primary estimation results from a 5 km fixed-

spread synthetic dataset with a nearest recorded offset of 45
m, for which a shot-gather at 2.5 km is shown in (a) up to 1
km offset. (b) the estimated primary using explicit data recon-
struction (solving problem 4.2). (c) estimated primary using the
Gauss-Newton method described in this chapter, using up to the
n=1 term (second-order in g) in M. (d) the results obtained
with the same method as (c), but including up to the n=2 term
(third-order in g). (e) estimated primary using the relineariza-
tion strategy, including up to the n=2 term. All the methods pro-
duce similar quality results for this small offset gap, although we
can clearly see the benefit of using the n=2 term in the nonlinear
forward model when comparing (c) and (d). The relinearization
strategy produced slightly better results over the Gauss-Newton
methods, despite also being computationally faster. . . . . . . .
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Figure 4.7 Direct primary estimation results from a 5 km fixed-
spread synthetic data with a nearest recorded offset of 225 m,
for which a shot-gather is shown in (a). The panels in this figure
show the same strategies as the ones shown in Figure 4.6. (b)
the estimated primary using explicit data reconstruction (solving
problem 4.2). (c) estimated primary using the Gauss-Newton me-
thod described in this chapter, using up to the n=1 term (second-
order in g) in M. (d) the results obtained with the same method
as (c), but including up to the n=2 term (third-order in g). (e)
estimated primary using the relinearization strategy, including
up to the n=2 term. The explicit data reconstruction result in
(b) fails to reject some of the later surface multiples, while the
methods introduced in this chapter manages to do a better job.
As in Figure 4.6, we readily see the benefit of including up to the
n=2 term, and also that the relinearization strategy manages to
produce the cleanest result despite being faster to compute than
Gauss-Newton. . . . . . . . . . .. . . 94

Figure 4.8 Moveout-corrected stacks (near-offsets excluded) of the
North Sea field data with 100 m near-offset gap after conserva-
tive multiple removal, with the multiple model generated from
the Green’s function obtained using the methods introduced in
this chapter. (a) the recorded field data. (b) the results us-
ing parabolic Radon near-offset interpolation and the unmodi-
fied REPSI algorithm. (c) the results obtained by discarding
the near-offset traces and using the relinearization method with
up to the n=2 term in M. (d) the same as (c) but using the
Gauss-Newton method. (e) the final multiple model from the
Radon interpolated data result shown in (b). (f) the final mul-
tiple model from the relinearization method result shown in (c).
(g) difference plot between solving the relinearization problem
using up to the n=1 term versus up to the n=2 term. (h) differ-
ence plot between the solutions obtained from the relinearization
method and the Gauss-Newton method. . . . . . .. ... ... 97
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Figure 5.1 F-K spectra plot showing that low-pass filtering removes
the spatial aliasing caused by subsampling seismic data onto a
coarser sampling grid. Black indicates zero amplitude, while
white indicates the maximum amplitude for each plot. The orig-
inal data (a) is sampled at 15 m and contains significant fre-
quency content up to 50 Hz. A 2x subsampling to a 30 m grid
(b) exhibits spatial aliasing behaviour only after 30 Hz due to
the minimum wave velocity in the data. After applying low-pass
filter at 30 Hz (c) the spatial aliased components are removed,
at the tradeoff of halving the spectral bandwidth of the data. .

Figure 5.2 Shot gathers of data (a), its REPSI solution (c), a low-
passed 40Hz solution (b), and its REPSI solution (d). For the
remainder of the chapter, white indicates zero amplitude, while
red and black indicate the maximum and minimum amplitude,
respective. Colormaps are normalized for plots within the same
figure. . . . . ..

Figure 5.3 Zero-offset trace of the REPSI solutions shown in Fig-
ure 5.2. Solution trace from the low-passed data shares the same
general wavefront support as the original data. . . . .. .. ..

Figure 5.4 Synthetic data shot gathers at (a) the original spatial sam-
pling and at (b,c) two levels of spatial decimation, with appropri-
ate time-domain low-pass filters (at 30 Hz and 15 Hz respectively)
to mitigate artifacts spatial aliasing when computing the surface-
related multiple wavefield. The sampling of the time axis remains
untouched. . . . .. ... L Lo

Figure 5.5 Computed multiple-free seismic impulse response shot
gathers using a straightforward application of the REPSI algo-
rithm, from the original data and from its decimated, low-pass
filtered versions shown in Figure 5.4. Even though its input data
was low-pass filtered at 15Hz, the solution shown in (c) retains
a wide-band, “deconvolved” appearance with good resolution of
the two separate events at t=0.9s. More importantly, the coarse-
grid solutions were much faster to compute, with the original
problem taking 40 minutes, (b) taking 6 minutes, and (c) less
than 2 minutes. . . . . . . . . ... Lo
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Figure 5.6  Zero-offset trace for the computed REPSI solutions shown
in Figure 5.5. As can be seen, most of the major events coincide,
although noticeable degradation can be seen in the 15Hz solution,
suggesting that further subsampling might produce results with
completely unrecognizable events. . . . . . . ... ... L. 112

Figure 5.7 The Green’s function model at the 2x decimation (30 m)
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Chapter 1

Introduction

The iconic metal-and-glass glazed dome of the Royal Albert Hall in London,
as originally envisioned by its architects, was meant to evoke sentiments of
the memorable Crystal Palace as the venue of the original Great Exhibition:
often considered the most notable legacy of the Hall’s namesake. It was one
of the first dome structures constructed in this way, and that contributed
to oversights that led to what eventually became one of the highest profile
acoustic catastrophes for any concert hall in history.

As the future King Edward VII (then still the Prince of Wales) gave the
commencement speech on March 29, 1871, reporters from The Times im-
mediately noted a problem (Metkemeijer, 2002), writing: “The address was
slowly and distinctly read by his royal Highness, but the reading was some-
what marred by an echo which seemed to be suddenly awoke from the organ
or picture gallery, and repeated the words with a mocking emphasis which
at another time would have been amusing.” An opening concert followed,
which only served to further cement the Hall’s eventual reputation as “the
only place where a British composer could be sure of hearing his work twice.
If you would visit today, look up and you can see the latest in a century
of engineering effort to defeat the echoes: 135 distinctive-looking acoustic
diffusion discs known affectionately as the “Royal Albert Hall mushrooms.”

)

The work in this thesis addresses a similar coherent echo problem in the
context of exploration seismology. Exploration seismology utilizes seismic
waves that behave very similarly to acoustic waves. In the terminology of
the discipline, these coherent echoes are called multiple reflections or often
simply multiples.
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Figure 1.1 Schematic diagram of the Royal Albert Hall, and the travel
paths of direct sound waves (in green) and echoes reflecting off the glazed
dome (in red). The canvas velarium (indicated in blue) was later added soon
after opening to mitigate some of the echoes.

Much like the Royal Albert Hall, the Earth’s subsurface has a problem-
atic “roof”: the boundary between the ground and the Earth’s atmosphere.
Multiples that are entirely caused by this air-ground (or air-water, in the
case of surveys over oceans and lakes) interface are called surface multiples,
and is historically regarded as one of the most severe and perennial sources
of unwanted noise in surveying projects. Other types of multiples might also
exist in the absence of this interface—usually attributed to reverberations
between subterranean interfaces—which are not considered surface multiples.
Surface multiples by themselves are of importance because they tend to be
systematically the strongest in amplitude for any particular survey. In this
thesis, I will develop a comprehensive inversion framework called Robust
Estimation of Primaries by Sparse Inversion (REPSI), for reliably
identifying and reconstructing the so-called surface-related primaries, which
is the desired part of recorded seismic datum that are free of surface multi-
ples.
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Figure 1.2 Diagram of a typical marine survey, with primary raypaths
indicated in green and a surface multiple raypath indicated in red.

Multiples in general degrade the efficacy and accuracy of seismic sur-
veys by hindering their purpose in several ways. Seismic exploration in-
volves systematically propagating seismic waves through the Earth by ex-
citing point-source energy at its surface. After reflecting or refracting at
geological boundaries, some part of these waves return to the surface and
are measured over a survey area of several hundred square kilometres for
tens of seconds. The arrival time of these responses can be converted into
depth values, which allows the spatial distribution of subsurface interfaces
to be systematically mapped. This inference process is difficult and delicate,
even if one starts with some idealized data without any external noise. The
presence of strong surface multiples can further frustrate this goal by either
being misconstrued as evidence of a phantom boundary, or, as is more of-
ten the case, simply overlap with and thus corrupt responses from a true
boundary deeper underground.

The art of removing seismic multiple consists almost entirely of signal-
processing techniques applied to the recorded data after the field survey-
ing process. Active or mechanical cancellation during acquisition are non-
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existent due to the scale and difficulty of such an approach (unlike with
concert halls, survey teams do not usually have the resource to blanket the
Earth with elaborately positioned diffusive canvases).

Due to the prevalence and severity of multiples in seismic data, the
history of methods for its removal is rich. In the past these methods are
generally filters that are designed to reject multiples based on its specific
characteristics. This is an approach that goes back to the 1950s. Even
though multiples look very similar to their primary counterparts, they in
general have some particular key characteristics that differentiate them in
most seismic data. Surface multiples that reverberate between two very
strong reflectors (e.g., the sea surface and the sea bottom) have fixed, pre-
dictable delay times between the primary and it subsequent multiples, which
can be identified by temporal autoconvolution. Alternatively, it is generally
observed that surface multiples will appear to travel at a slower velocity rela-
tive to other events that arrive at the same time, leading to a moveout-based
filter.

In the past 30 years, significant advancements in surveying equipment
and computational power has enabled the full treatment of seismic data
as physical wavefields propagating in 3D space, rather than as lower-
dimensional approximations. This has enabled seismologists to directly pre-
dict the propagation behaviour of recorded wavefronts after reflecting off the
surface, and thus identify which one are due to surface multiples.

However, this approach approach of direct modelling raises a paradoxical
situation: we are required to know accurately how seismic wavefields propa-
gate, reflect, and refract in the subsurface, but this is the exact information
we wish to establish in the first place with a clean, multiple-free seismic
survey. To break this paradox of cyclical dependencies, we can either accept
some uncertainty in the subsurface model, or in the propagation kernel itself.
This choice respectively leads to the two most common approaches in the
wave propagation method of multiple prediction:

e Modelling by wavefield extrapolation: requires knowing some
velocity and interface information about the subsurface which allows
surveyors to approximately model the raypaths of surface multiples
using either phase space extrapolation or finite-differencing, and sub-
sequently subtract it from the data. In actual usage, this method
turned out to be sensitive to slight errors in the subsurface model (es-
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pecially the exact reflectivity coefficients), and thus sees limited use in
exploration surveys of entirely new areas.

¢ Modelling by convolution with data: exploits the fact that mod-
ern acquired seismic wavefields are well-sampled enough to act as ap-
proximations to the true kernels (Green’s functions) that propagate
primaries to their corresponding surface multiples. In general, you
trade accuracy of the kernel (i.e., not knowing the source signature,
sampling issues, noise, itself containing surface multiples) for not hav-
ing to know the subsurface.

That latter class of methods became known under the collective term
“data-driven methods”, and also by the name of its most popular imple-
mentation: Surface-Related Multiple Elimination (SRME). However, due
to the inherent limitations of using the acquired wavefield as a surrogate
for the true Green’s function of the subsurface, its formulation necessitates
a non-linear adaptive subtraction process to map the inevitably erroneous
multiple predictions to the true multiples in the data. This process is often
regarded as sensitive to practician tweaking, and can often fluctuate between
over-subtraction (wrongly removing primary events of interest) and outright
failing to appreciably remove multiples. Although the flexibility and prac-
ticality of these data driven methods has led to its widespread adoption,
this necessity of the adaptive subtraction paradigm places a ceiling on its
theoretical performance. Any cursory literary search today will discover a
longstanding body of work attempting to improve the accuracy of adap-
tive subtraction using a variety of metrics and assumptions on the primary
wavefield.

It later was noted that perhaps striving for a much more accurate multi-
ple prediction in the first place, at the cost of needing to solve a full-wavefield
inversion problem, can eliminate the need of adaptive subtraction and its
many shortcomings altogether. To this end, a proposal to directly solve for
the discretized version of the Green’s function was proposed by van Groen-
estijn and Verschuur (2009a), in a method called Estimation of Primaries by
Sparse Inversion (EPSI). The key insight of EPSI is that a sparsest solution
criteria (in the discretized space-time domain) is enough to uniquely solve
for the discretized multiple-free Green’s function, without any other input
or assumptions other than the acquired data. This Green’s function can in
turn be directly used as the primary wavefield (after applying an estimate of
the source function), or be used to produce a multiple model that is correct
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in phase, amplitude, and kinematics, thus obviating the need for adaptive
subtraction.

Since its appearance in 2009, EPSI has attracted significant attention
from contemporary seismic surveyors seeking results beyond the the limita-
tions to SRME and the prediction-subtraction paradigm. It is still today
considered a relatively novel method, and many of its aspects as presented
in current literature, especially algorithmically, remain very limited. While
the original authors recognized the importance of a minimum sparsity crite-
ria, EPSI still relies on an ad-hoc gradient hard thresholding regularization
that depends on parameter tweaking to obtain acceptable solutions. Further-
more, some very interesting possibilities to mitigating incomplete wavefield
sampling (such as near-offset gaps) which are enabled by the inversion-based
EPSI paradigm remain unexplored. EPSI is also regarded as a computation-
ally expensive method, since it requires many iterations of multiple predic-
tions as function evaluations in an optimization problem, which limits its
adaptation as SRME is already regarded as one of the most time-consuming
processing methods. My work in the following chapters will aim to address
most of these shortcomings.

1.1 Main purpose of this work

The primary objective of this thesis is to propose new formulations and al-
gorithms to apply the nascent EPSI methodology in ways that significantly
improve its robustness and practicality when applied to field data, using
insights and frameworks from formal optimization theory and numerical lin-
ear algebra. The end result of this work is a method that will provide
automated, higher quality surface multiple removal with less practitioner
input when compared to current established data-driven methods. In this
thesis I will generally refer to my method as Robust EPSI (REPSI) to differ-
entiate it from the original form proposed in van Groenestijn and Verschuur
(2009a).

Improvements made in this thesis will especially focus on the issues raised
at the end of the previous section. In the extended introduction (chapter
2), I perform a literature survey on the existing field of multiple removal
as described here, as well as introduce the mathematical notation necessary
for the rest of this thesis. Following that in the subsequent chapters, I
will develop and demonstrate my contributions to EPSI, as enumerated and
summarized as follows:
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1.1.1 Summary of contributions

In this thesis, I present the following novel contributions to both EPSI and
the study of surface multiple removal made during my PhD studies:

1. Formulated a primary estimation method, based on the forward model
used in EPSI, which relies on sparsity induced by formal ¢;-norm min-
imization, instead of by ad-hoc hard-thresholding of gradient updates
(Chapter 3).

2. Demonstrated a way to adapt a convex basis pursuit algorithm based
on Pareto root-finding continuations of a series of norm-constraint
problems solved by spectral projected gradient methods (SPG/;) to the
bi-convex EPSI problem above, solving for two unknowns: a wavefield
with impulsive and sparse events in time, and a source-side wavelet
that is similar to a unknown blur kernel in blind deconvolution (Chap-
ter 3).

3. Using the above two contributions, I proposed a new algorithm for
primary estimation called Robust EPSI or REPSI, and demonstrated
that it is more effective and easier to apply for surface multiple removal
compared to the original EPSI formulation, using both synthetic and
real seismic line data (Chapter 3).

4. Augmented the Robust EPSI problem with a new forward modelling
operator that accounts for errors in surface multiple prediction caused
by an incomplete sampling of the wavefield at the surface (such as
the near-offset gap). This is accomplished using a truncated Born-
scattering model of the free surface (Chapter 4).

5. Proposed two different variations of the original Robust EPSI algo-
rithm that is shown to be effective at solving the new augmented
formulation above, and demonstrated its efficacy on both synthetic
and real seismic line data with near-offset gaps for multiple removal
(Chapter 4).

6. Presented a strategy to significantly decrease the computation time
required to solve the Robust EPSI problem inspired by existing multi-
level (and multigrid) methods. This is made possible by exploiting the
blind deconvolution aspect of Robust EPSI, as well as the high-order
numerical complexity of the evaluation and gradient computation step
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of EPSI as a function of the spatial sampling of the wavefield (Chapter
5).



Chapter 2

Principles of surface multiple
prediction by convolution

This chapter establishes the theoretical background and context necessary
for the thesis. The main body of this work builds upon wavefield propagation
methods for multiple prediction, which are based on well-known physical
behaviour of waves, but in practice facilitated by seismic survey designs
that are only becoming feasible and widespread in the past few decades. A
brief overview of how subsurface structure information are relayed by active-
source seismic responses is included for the benefit of readers without any
background in seismic surveying.

I will go into a more detailed literature survey on the early developments
of multiple removal techniques alluded to in the previous chapter, followed
by a description of more contemporary modelling-based methods that are
enabled by recent acquisition designs, expressing them using mathematical
integral relations. This discussion culminates in the wave equation-based
multiple modelling techniques which make up the physical basis of the EPSI
method, and touches on some of its interesting relationships with the blind
deconvolution problem. Finally, we look at the shortcomings of the cur-
rent EPSI methods, from which the subsequent chapters in this thesis are
motivated and outlined.
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2.1 Exploration seismology

The seismic reflectivity time-series is the theoretical response of the subsur-
face to a perfectly impulsive seismic source of known amplitude. Figure 2.1
depicts the relationship between subsurface structure, reflectivity series, and
seismic data.

When seismic waves meet an interface between subsurface materials with
differing elastic properties, part of the energy carried by the waves will be
reflected and eventually propagated back to the surface. The fraction of
energy reflected at each interface depends on the reflection coefficient (or
“reflectivity”) of the interface, which in turn is determined by the difference in
acoustic impedance of the two materials. Both the strength of this reflected
signal and its arrival time can be used to further induce information of the
subsurface geology.

Typically the subsurface interfaces are assumed to be of zero-order, which
results in an impulsive reflection for an impulsive incident event. The arrival
timing of these reflections to the surface is a thus function of both the
subsurface wave velocity and the location of the interfaces. This relationship
is exploited in subsequent imaging steps to produce a structural depiction
of the subsurface.

Seismic data processing is the practice of preparing physically acquired
seismic data in the field for this type of sensitive inference task. Obtaining
a noise-free, amplitude-correct seismic reflectivity time-series is regarded
as the goal of seismic processing. Hindering this goal are many practical
factors, but the ones most pertinent to this thesis include the presence of
both surface-related and internal multiples, as well as band-limited signature
of the artificial seismic sources. These are both factors that obfuscate the
ideal reflectivity series underlying a seismic recording and makes accurate
seismic surveying an inherently difficult task, even in the absence of outside
noise.

Due to physical limitations in energy output, artificial seismic sources
used in exploration cannot be perfectly impulsive. Instead they typically
have a narrow frequency bandwidth determined by the type of equipment
used, typically bounded above at 80 Hz and below by 10 Hz, taking on a
wavelet-like appearance in time. The recorded reflectivity series from such
a source will thus be distorted by the width of the signature wavelet and its
amplitude. This lowers the resolving power for thin structures, and obscures
the minute differences between reflected and refracted events. In Figure 2.1,

10
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Figure 2.1 Example of reflectivity series mechanism. Left sections shows
six distinct geological layers (including a water column) with five distinct
interfaces. Middle section shows the reflectivity coefficient induced by con-
trast in acoustic impedance between the layers. Right section shows how a
single-receiver “trace” of seismogram is produced under an external source
with a particular signature. If the source is perfectly impulsive, the trace pro-
duced would be the Green’s function, with the amplitude of the reflections
as a function of the reflection coefficient and the length of the raypath (due
to spherical divergence). For a particular finite-energy source signal, the
recorded trace is the causal convolution of the down-going source function
and the Green’s function. This is known as the convolutional model.

the thin geological layers between interfaces 2 and 3, as well as 4 and 5, is
obscured in the recorded seismogram due to a source signature that has a
relatively wide wavelet envelope.

2.1.1 The recorded wavefield

Seismic wavefields recorded at the Earth’s surface are typically represented
as a scalar field (for pressure recording, typically in marine) or vector field

11
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(for particle velocity recording, typically on land) of a space described by two
coordinates: a receiver location x and time ¢ pair. If all receivers lie on a line,
in which case the survey geometry is called a 2D (or seismic line) survey, the
receiver coordinate may be a single scalar parameterized along the line. In
the more general case (typically called a 3D survey), the receiver coordinate
is a 2-vector x of lateral and vertical coordinates spanning a surface patch.
For active seismic surveys, the wavefield is further parameterized by x4, the
location(s) of the active point source responsible for the recorded wavefield,
typically in the same coordinate system as the receiver locations.

Thus the recorded seismic wavefield can be written as a function
p(x,t;Xgc) of all the dependencies described above. For the purpose of
this thesis, we will only deal with scalar pressure fields (thus the use of the
letter p), although the results are equally valid for vector fields (Fokkema
and van den Berg, 1993). Sometimes I will also need to talk about the wave-
field under a Fourier transform in the time direction. For brevity, I will not
use a separate symbol for the Fourier transform of the physical wavefield,
but would simply indicate it by indexing the time coordinate with a suit-
able symbol (such as w) denoting frequency, for example writing the above
recorded seismic wavefield as p(x, w; Xgc)-

2.1.2  Surface multiples

As discussed in the Introduction, surface multiples are essentially “echoes”
of seismic energy off the measurement surface. Much like auditory echoes,
they appear in seismic recordings as copies of the primary reflection signal at
regular time delays, and are hard to distinguish from wavefronts traveling at
a slower velocity than that of the true subsurface. A strong multiple arriving
simultaneously with a weak primary reflection introduces difficult ambigu-
ities in velocity tomography and coherent artifacts in structural imaging.
Figure 2.3 depicts surface multiples and their impact on seismic recordings.

2.2 A brief history of surface-multiple

removal

Multiples are by nature coherent wavefronts, which are difficult to remove
with rudimentary noise rejection methods utilizing trace averaging and
stacking—techniques that otherwise work well with incoherent noise sources.

12
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Figure 2.2 Seismic data (a) before and (b) after surface multiple sup-
pression, showing the strong, periodic, and coherent appearance of surface
multiple events in seismic data. In this case the surface multiple was re-
verberating within the water layer in a marine acquisition. Adapted from
Character of active faulting in the North Aegean Sea, Saatcilara et al, 1999.

Seismic surveyors thus typically rely on sophisticated rejection approaches
that are developed specifically for this purpose. These methods are generally
classified into two broad categories of filtering-based and prediction-based.
Furthermore, filtering is separated into predictive deconvolution and move-
out filtering. This taxonomy can be found in many survey texts on surface
multiple removal methods (Weglein, 1999; Verschuur, 2006).

2.2.1 Predictive deconvolution filtering

Predictive deconvolution assumes that certain periodicity in zero-offset (or
NMO-stacked) data are due to surface multiples. Filters are designed to re-

13
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Figure 2.3 Stacked seismic line (a) before and (b) after surface multi-
ple suppression. Multiples appear as false, spurious images of non-existent
structure. Some examples are encircled in black. Adapted from Character
of active faulting in the North Aegean Sea, Saatcilara et al, 1999.

move these long-period oscillations in time. The concept for this method can
be traced back to Robinson (1954) with additional development by Backus
(1959) and Peacock and Treitel (1969).

In its nascent days, active seismic surveys were mostly single-channel
in nature. Many processing methods are thus formulated solely on trav-
eltime information contained in the individual trace records, which means
that only temporal periodicity is considered here in the simplest case. This
leads to one of the biggest advantages of predictive deconvolution, since
trace-by-trace processing is all that could be achieved with the equipment

14
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of that time. However, it is also its biggest shortcoming, as the assumptions
behind this method is strictly only valid for the zero-offset trace in purely
vertically stratified subsurface medium, which means that fundamental ap-
proximations to the underlying physics must be made for practically all field
surveys.

Due to its simple nature, the predictive deconvolution method can still
be found today in practice as a quick way to approximate surface multiple-
free data, especially in very shallow water marine acquisition (less than 300
m to the water bottom). It has also increased in sophistication to account
for geologically consistent lateral variations in the reverberation period, such
as sloping seabeds, and in some instances full lateral heterogeneity in the
underlying structure (Taner et al., 1995; Lokshtanov, 1999). Contemporary
applications of the predictive deconvolution filter are usually applied in the
linear Radon domain (Durrani, 1991) or in the radial direction of the z—¢
domain (Taner, 1980).

2.2.2 Moveout filtering

As recording equipments increase in sophistication and surveys began to
become increasingly multi-channel in nature (which is around the 1980s), it
became possible to discriminate primaries and surface multiple events by its
apparent velocity. This is based on an inherently multichannel phenomenon
where the subsurface velocity influences the curvature behaviour of arriving
wavefronts as a function of surface offset from the shot position.

If a primary and a surface multiple wavefront appears at the same time,
the multiple is assumed to have travelled through a slower medium. This
assumption is valid as long as wave velocity always increases with depth,
which is a commonly held simplification due to increased pressure. The
multiple is assumed to have bounced around in a shallower area while a
primary that appeared simultaneously ostensibly has to travel through a
deeper part of the subsurface to match the arrival time of the multiples.

This was first noticed and exploited as a practical algorithm in the F-K
(frequency-wavenumber) domain (Ryu, 1982). It can also be accomplished
in the Radon domain (Hampson, 1986; Kelamis et al., 1990; Herrmann et al.,
2000), as well as the velocity-stack domain (Thorson and Claerbout, 1985;
Yilmaz, 1989; Foster and Mosher, 1992; Sacchi and Ulrych, 1995).
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Despite being regarded as more sophisticated than the predictive decon-
volution method, there are also many cases where the assumptions behind
moveout filtering becomes invalid. In general, this method requires that that
subsurface is a strictly increasing function with depth, which is easily inval-
idated in areas with any geological phenomena where pockets of excessively
high or low velocities form, such as salt domes, chalk formations, and gas
clouds. Even thrusting faults can easily invalidate this assumption. To get
around this limitation, a more accurate physical model is needed accurately
identify surface multiples.

2.2.3 Beyond filtering: prediction-subtraction paradigms

The above mentioned filtering methods are often satisfactorily adept at pick-
ing out the kinematic temporal and spatial locations of the surface mul-
tiples (although not entirely error-free). Comparatively, determining the
exact amplitude and waveform of multiples is much harder than kinemati-
cally determining its location. In general, it requires exact knowledge of the
source signature and the bulk properties of the propagation medium, which
paradoxically was what we are trying to infer accurately by doing multiple
removal. This shortcoming is a real problem because primary and multiple
signals often overlap, both in terms of kinematic characteristics and also
physically in the seismic record. The only certain way to cleanly suppress
multiple event without harming primary events is to also accurately know
the amplitude and waveform of the multiples.

This realization came at a time where there is a general trend in the seis-
mic exploration community to utilize more and more wave-equation based
methods, driven by survey designs that spatially sample the seismic wave-
field at a spacing fine enough, such that there is no severe aliasing in the
receiver direction. This resulted in a fundamental shift from simply filter-
ing out multiples to a paradigm of trying to accurately model the multiples
using wave-equation principles, and subsequently subtract it from the data.

In the section below I will first introduce some mathematical notion
involved to describe these methods, which will be used all throughout the
thesis, before doing a survey of the methods specific for multiple removal.
The survey will culminate in the method that most famously represent this
paradigm: Surface-Related Multiple Elimination (SRME).
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2.3 Background on wavefield propagation
multiple prediction methods

2.3.1 Multiple prediction through wavefield convolution

Mathematically, the operation of wavefield convolution is defined such that
its physical interpretation is the concatenation of the propagating raypath
of wavefields. When two wavefields are convolved correctly, the result is
that each point in the first wavefield will act as a local Huygens-type source
function, which is subsequently propagated through the path traveled by the
second wavefield. The aggregate of this action over all of the physical domain
spanned by the first wavefield is the result of the wavefield convolution.
Figure 2.4 illustrates this interpretation for a simplified 1D cas.

Concatenation of raypath under convolution
Subtraction of raypath under cross-correlation

YIVAPRY

Figure 2.4 Wavefield convolution concatenates the two propagation ray-
paths, while its adjoint operation, cross-correlation, subtracts raypaths.

Convolution in the time domain is homomorphic to complex number
multiplication in the Fourier domain. For two wavefields that are observed
over a coincident plane (or a line in 2D medium) that is large enough, and
whose source functions lie on the same plane as described above, the convo-
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lution of these two wavefields can be represented as a surface/line integral.
To produce a model of the surface multiples through convolution, we need
to assume the existence of a wavefield kernel g(x,w;xg.) for all frequencies
w that, under this surface integral representing wavefield propagation, pro-
duces all the multiples p,, generated by that surface from a noiseless pressure
wavefield p(x, w; Xgc). The physical significance of g will be discussed below,
for now we simply require it to satisfy

pm(x,w;xsm):/g(x,w;x’)r(x,x’)p(x’,w;xsrc)dx'. (2.1)
S

Throughout this thesis, our integration surface S is implicitly assumed to
be both the multiple-generating free surface and the observation surface on
which x” lies. This assumption can be relaxed by careful treatment of the
wavefield directionality of p and g based on where we choose to position S
in relation to both surfaces (see Frijlink et al., 2011, for more details). The
operator r models the reflection of the free surface, and is typically assumed
to be isotropic and well approximated by a Dirac delta function §(x — x’)
scaled by a reflection coefficient of —1, although this can again possibly be
relaxed and estimated (AlMatar, 2010).

The surface integration (2.1) with g effectively sends all wave paths in
p exactly one more time through the Earth’s subsurface. This transforms
all detected primary events to the first-order surface multiples, as well as
all later n-th ordered multiples to the n+1 order (Anstey and Newman,
1966; Riley and Claerbout, 1976), as illustrated in Figure 2.5. In order for
equation 2.1 to only produce multiple events, both p and g should be free
of direct arrivals, as they would map to primary events.

The kernel g that satisfies this property can be physically interpreted as
the normal derivative (at surface S) of a particular wave equation’s associ-
ated Green’s function. The propagation medium of this wave equation has
no multiple-generating discontinuity at S, but is otherwise identical to the
Earth’s subsurface which produced p. Thus, g can be seen as the primary
wavefield p, component of p that is also deconvolved from the source wavelet
q, with the relation p,(x,w;Xsc) = g(X,w;Xge)q(w). To keep this thesis
manageable in scope, I assume that all independent seismic experiments at
each source location have roughly the same source function in time. I also
refer to g as the Green’s function instead of its normal derivative, and simply
assume that all surface integrals involving it include a well-known obliquity
factor.
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multiple order
1 2 3 4 ... 00

Primary All surface multiples

Figure 2.5 Convolving a wavefield containing surface multiples of different
order (up to infinity) with the primary raypath essentially produces “shifts”
all orders of surface multiples up by one (i.e., 1st order multiples becomes
2nd order, etc). Primary wavefields can essentially be viewed in this way
as a “zeroth order” surface multiple. Convolution of the observed data
with the primary raypath therefore produces all surface multiples of order 1
and above, and leaves no primaries. This effect forms the principle behind
multiple prediction by wavefield propagation.

2.3.2° Propagation based on estimated subsurface models

We see that in order to completely generate all the surface multiples correctly,
we need to know the raypath of the primary wavefield. However, this kind of
detailed subsurface information is exactly what we have hoped to probe with
the seismic survey in the first place! If one only wished to remove the shallow-
layer reverberations (such as in the water column), a suitable approximation
of the shallow layer can in some cases be estimated well enough to implicitly
generate a suitable primary propagation kernel g (typically by solving the
wave equation for the estimated medium). This method is typically known
as “multiple prediction by wavefield extrapolation” (Bernth and Sonneland,
1983; Berryhill and Kim, 1986; Levin, 1987; Wiggins, 1988; Lokshtanov,
2000).
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Anecdotally, the wavefield extrapolation method can be very difficult to
attain a high degree of accuracy for many survey fields with complex near-
surface geometry; often it is problematically sensitive to even slight errors
in the subsurface model. Furthermore, just modelling the shallow raypaths
would not be satisfactory for projects that need to see very deep into the
Earth. In contemporary usage, unless in very shallow marine acquisitions,
the wavefield extrapolation method is largely supplanted in popularity by
what are known as “data-driven methods” described below, which are much
more straightforward when being applied to arbitrary surveys.

2.3.3 Propagation based on recorded data

Instead of explicitly performing wavefield extrapolation by constructing a
model and solving the wave equation, we can use the data itself as an ap-
proximation of the Green’s function of the wave equation. This is valid if the
reflecting surface is co-located with the detector surface, which is generally
true for surface multiples. The general class of methods that uses the data
itself as the multiple-generation wavefield propagator is generally known as
“data-driven methods”.

This scheme can first be found in Anstey and Newman (1966), which
noted that the autoconvolution of a seismic traces containing only primaries
transforms it into a trace containing only first order surface multiples. A
complete model for surface multiples based on this principle is described by
Kennett (1979) for 1D and Riley and Claerbout (1976) for 2D.

It was then reported in Fokkema and Van den Berg (1990; and further
established in Fokkema and van den Berg, 1993) that this phenomenon,
described by wavefield propagation at a surface, can be formally derived
from a reciprocity theorem of the wave equation from its values and normal
derivatives at a boundary. This was further generalized for different surface,
source, and receiver in van Borselen et al. (1996) and Frijlink et al. (2011).

Another way to look at the data-driven multiple prediction through con-
volution is by considering scattering from the free surface. Since the ground-
air interface can be generally regarded as a perfect scatterer, it is also possi-
ble to derive this relationship from scattering theory that relates an incident
field to a scattered field. This view was most comprehensively developed in
Weglein et al. (1997), and is now commonly known as the Inverse Scattering
Series (ISS) method (see Weglein et al., 2003, for a more complete survey).
Eventually, this method went on to be popular in internal multiple removal.
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2.4 Surface-related multiple elimination

Surface-Related Multiple Elimination (SRME) is perhaps of the most com-
monly used variant out of all the data-driven methods described in the last
section. In our formalism, data-driven methods refer to cases where the
surface-free Green’s function ¢ is approximated with the observed wavefield
p. Although this absolves us of having to know the subsurface medium, it
also leads to an incorrect model of the surface multiples in terms of ampli-
tude and spectral content. This is due to the fact that, unlike the surface-free
Green’s function, the observed data has in addition been convolved with the
source signature, and also includes all orders of surface multiples. This leads
to the multiple prediction having the wrong amplitude, wavefront shape (as
dictated by the source signature), and over-estimated surface multiples.

It was then realized that the wavelet and amplitude mismatch could be
corrected by using a minimum energy assumption on the primary wavefield
(Berkhout and Pao, 1982; Verschuur, 1991). Using this criteria one can treat
the subtraction step as an inverse problem for the primary wavefield. This
adaptive subtraction step, combined with the data-driven multiple predic-
tion, became collectively known as the method of Surface-Related Multiple
Elimination.

2.4.1 Evolution of adaptive subtraction methods for SRME

The aforementioned minimum energy assumption suggests solving a simple
least £so-norm solution for the primary wavefield to obtain a unique solution
from the subtraction. It was realized early on that this is a very aggressive
approach that can lead to over-subtraction of the multiples. In Berkhout and
Verschuur (1997) it was realized that this scheme can be further iterated to
improve the accuracy of the wavelet, gradually leading to a more accurate
multiple model. However, this still relied on minimum-energy assumption
of the primaries. More sophisticated adaptive subtraction method appeared
almost immediately.

Some authors advocated simply measuring the acquisition (wavelet)
more directly with a careful measurement of the direct arrival, which is
typically muted or discarded since only subsurface reflections and refrac-
tions are of interest for exploration projects (Ziolkowski et al., 1998, 1999).
This enables a deconvolution to be deterministically built into the adaptive
subtraction and can improve the reliability of the solution somewhat.
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Others advocated an improved selection of priors for the residue wave-
field (recorded data minus the multiple model) with what can be viewed as
Bayesian-based approaches to adaptive subtraction. One of the earliest ex-
ample is Spitz (1999) who introduced a scheme based on pattern recognition
using spatial predictability of the primary and multiple reflections.

Another successful class of methods uses the sparsity instead of the min-
imum energy criteria for the primary wavefield (Guitton and Verschuur,
2004), usually under some sparsifying wavefield representations such as Cur-
velets (Herrmann et al., 2007; Wang et al., 2008; Herrmann et al., 2008;
Neelamani et al., 2008). Relatedly, more sophisticated methods were also
recently developed using the independent component analysis (ICA) by Ka-
plan and Innanen (2008). Several authors have built upon this framework
(Lu and Liu, 2009; Donno, 2011) including a case that exploits the structure
of the wave equation in 3D by subtracting entire seismic volumes at once
(Li and Lu, 2013).

2.4.2 3D SRME

It should first be noted that the mathematical formalism above applies fully
to a 3D acquisition geometry. However, it proved very challenging to sample
a surface at a fine enough grid to satisfy aliasing-free requirements for these
wavefield propagation methods for multiple modelling. At least one spatial
direction will be much more poorly sampled, due to the overwhelming ma-
jority of seismic detectors (geophones and hydrophones) being embedded
into cables. Despite the sampling challenges involved, many attempts have
been made to make SRME practical for 3D data, to address fundamental
inaccuracies of the 2D method (Matson and Corrigan, 2000). Many ways are
suggested to overcome the sampling deficiencies that is typical of 3D surveys
in the cross-line direction. (Nekut, 1998; Biersteker, 2001; van Dedem and
Verschuur, 2005; Donno et al., 2010). A good survey of the current situation
in 3D is Dragoset et al. (2010).

As a result of the above developments, and due to the general ease of
applying the method, SRME today enjoys widespread commercial success,
despite its inherent limitation of relying on sophisticated subtraction steps.
As of not long ago from the time of writing, it is still recognized in the seismic
surveying industry as the most accurate surface multiple removal method
for most survey projects. (Verschuur, 1992; Verschuur and Berkhout, 1997;
Dragoset and Jericevié, 1998; Verschuur and Prein, 1999; Hadidi et al., 1999).
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2.5 Estimation of primaries by sparse
mversion

In Guitton and Verschuur (2004) and van Groenestijn and Verschuur (2008),
it was shown that for adaptive subtraction the correct result is often yielded
by the minimizer of a sparsity measure on the primary wavefield. This obser-
vation led to the realization that perhaps directly inverting for a deconvolved
version of the primary wavefield could be an alternative to improve upon
some of the fundamental limitations of SRME. A complete method was even-
tually introduced in van Groenestijn and Verschuur (2009a) as a procedure
called the Estimation of Primaries by Sparse Inversion (EPSI).

The objective of EPSI is to directly solve for a wavefield kernel g that can
simultaneously explain both the multiples and the primaries: the multiples
through expression 2.1, as well as the primaries using a jointly-estimated
wavelet. This fundamental difference was shown to be enough to address
deficiencies in the acquisition of p by augmenting the functionals involved
in EPSI’s variational problem in various ways.

The idea of directly estimating the primary wavefield is not new. Several
authors have previously explored ways to estimate either the surface-free
Green’s function or the primary wavefield directly (van Borselen et al., 1996;
Biersteker, 2001; Wang, 2004). The most famous of these is introduced in
Amundsen (2001), which instead of having to also estimate the wavelet,
instead relies on using the recorded direct wave as proposed by Ziolkowski
et al. (1999). However, as of the most recent attempts reported in Majdanski
et al. (2011), the direct wave still needs to be reconstructed synthetically
from measurements.

Following equation 2.1, we have an expression that maps g to both the
primary and the surface-related multiple events in the total wavefield p. 1
represent this model as a time-domain operator M (g, ¢; p) that is a function
of g and the source wavelet ¢, parameterized by the data:

M(g,q;p) == F," [g(x,w; Xere)q(w) + /Sg(x, w; X )r(x, x)p(x', w; Xere) dx’]
(2.2)
= Po(X, t; Xerc) + Pm (X, t; Xorc)
= p(X, t; Xsre),
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where F_ ! represents the continuous inverse Fourier transform. As Fig-
ure 2.6 shows in 1D models, knowing the true Green’s function greatly im-

proves the accuracy of the modelled multiples.

2.5.1 Discretized notation

In practice, EPSI follows the discretize-then-optimize paradigm, which at-
tempts to solve directly for discretized representations g and q (discretized
entities will be denoted by bold font) using numeric algorithms. We are thus
only concerned with the discretized version of expression 2.2. Assuming a
regularized sampling of source and receiver coordinates, the surface inte-
gral in expression 2.1 can also be written as simple matrix multiplications
between monochromatic slices of data volumes, following the detail-hiding
notation of Berkhout and Pao (1982). Throughout this thesis I will denote
the mono-frequency matrix view of a wavefield by writing the symbol in
upper-case letters (dropping the implied frequency dependence for brevity).
For example, a mono-frequency data matrix for the wavefield p (of size
Ng X Nyey X Ngre) 18 written simply as P (of size nyey X ngre). 1 adhere to the
convention of row (column) indices of a data matrix corresponding to the
discretized receiver (source) positions.

The discretized forward model for EPSI (equation 2.2) is thus

M(g,q;p) = F;'[M,(G,Q; P)], (2.3)
M,(G,Q;P) :=GQ + GRP.

The operator F_! is the (padded) discrete inverse Fourier transform that
prevents convolutional wraparound effects in the time domain. The term
GQ produces the primary events, while the GRP term produces surface
multiples. Note that the discretized notation allows for a more arbitrary
source function compared to the continuous expression, but I reconcile the
two by parameterizing Q = ¢(w)I. Similarly, the reflectivity operator is
assumed isotropic with reflection coefficient —1 as above, by setting R = —1.
For clarity, figure 2.7 shows a shot-gather (xg. fixed at a particular point)
for the various wavefields mentioned and produced in the above relation.

Simultaneously solving for g as well as the source wavelet for will in
general admit non-unique solutions, analogous to nondeterministic deconvo-
lution problems with an unknown blur kernel (I will discuss more on this
topic in section 2.5.3). Thus, obtaining a useful solution requires additional
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Figure 2.6 Single trace (1D) surface multiple model of an underlying two-
reflector event seismic signal. Convolving the observed pressure data with
itself (SRME prediction) produces a wavefield that is similar to the true
surface multiple but is erroneous in both the amplitude and the overall
shape of the multiple events. The EPSI relation in turn is able to explain
the whole data accurately by utilizing the Green’s function.
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regularization on the unknowns. The insights in van Groenestijn and Ver-
schuur (2008) suggests that this regularization should be minimum sparsity
on g. This is also justified by the fact that a discretized representation of the
Green’s function g (in 3-D) resembles a wavefield with impulsive or “sparse’
wavefronts. Therefore, the EPSI algorithm introduced in this thesis pro-
poses to find the sparsest possible g (in the time domain) through fy-norm
minimization. Specifically, it solves the following optimization problem:

)

min [|gllo subject to  f(g,q;p) < o, (2.4)
g7q
flg,a;p) == |lp — M(g,q;p)l2,

where f(g,q;p) is the misfit functional, and the modelling operator
M (g, q;p) is as defined in expression 2.3. In the original EPSI formulation
(van Groenestijn and Verschuur, 2009a), this minimum sparsity assumption
on g is enforced by an ad-hoc hard threshold operation on gradient updates
formed to minimize f(g,q;p). This is a shortcoming that I will address in
Chapter 3.

2.5.2  Improvements of EPSI over SRME

One of the main motivations behind the proposal of EPSI is that by eliminat-
ing the need for adaptive subtraction due to having a much more accurate
multiple model, EPSI will produce much more accurate primaries in areas
where primaries and multiples severely overlap. There are several reports
that show fairly convincing examples on real data that this is indeed the
case (van Groenestijn and Verschuur, 2009b; Savels et al., 2010; Baardman
et al., 2010).

Another important advantage of EPSI is that it relies on a full itera-
tive inversion/optimization process from a physical model that considers the
whole observed data. This allows us to build various kinds of noise into the
forward model, and can inherently reject additive noise if the practitioner
can avoid overfitting. A related extension is the ability to mitigate miss-
ing data in the wavefield which fundamentally leads to erroneous multiple
prediction, since the integration surface would effectively be incompletely
sampled. This aspect was also successfully demonstrated in the above re-
ports, although I will propose an alternative approach in Chapter 4.
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Figure 2.7 Shot gathers of the various wavefields involved in this paper. (a) the complete pressure data p, (b) the
true discrete surface-free Green’s function g. Producing this is the primary objective of the EPSI problem. (c) the
SRME multiple model, produced by the equivalent of a PRP term, using the observed data as an estimating of g
the primary raypath propagator. The amplitudes and general shape of the multiples are erroneous when compared
to the multiple events in the data. (d) the EPSI multiple model produced by the GRP term in expression 2.3,
which is a much more accurate model of the surface multiple, and can be directly subtracted from the data with
satisfactory results.
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Finally, EPSI does not return primary wavefield itself, instead the solu-
tion is decomposed into the source wavelet and the underlying surface-free
Green’s function. Essentially, EPSI can be regarded as a method to achieve
a physically-consistent (with the surface multiples) blind source signature
deconvolution. This aspect has intriguing implications both to the algorithm
choice (e.g., it enables a way to accelerate the compute time of EPSI which
I introduce in Chapter 6), as well as to potential applications of the solution.
In particular, many seismic inference procedures such as velocity tomogra-
phy and imaging benefit greatly from having increased temporal resolution
(wider spectral bandwidth) in the data, and having access to the primary
wavefield deconvolved from the source wavelet greatly helps in that regard.
In the next section I will briefly segue into discussing why this aspect of
EPSI is interesting from a mathematical point of view.

2.5.3 The EPSI formulation and its relation to deconvolution

In this section we look at the EPSI problem as a wavefield deconvolution
problem. Although we will not further explore this concept for the rest of
the thesis (aside from taking advantage of it in chapter 5), it is nevertheless
interesting to mention why the EPSI problem can be solved without too
much assumption on the source signature q.

Source signature deconvolution is the practice of inverting the convolu-
tion model for seismic signals. Specifically, it attempts to solve for g in the
relation

P=g*q, (2.5)

where p is a trace of recorded seismogram, q is the source signature (typically
unknown), and the symbol * denotes convolution in the time domain. The
deconvolution is performed over all possible source and receiver positions
over the surveyed surface, and the aggregate solution we obtain is the Green’s
function of the subsurface seismic response.

The convolution operator with a typical seismic source signature has a
large null space and is difficult to invert. In general, seismic deconvolution is
an ill-posed problem, with the difficulty escalating greatly when the source
signature is unknown (called blind deconvolution). One of the first significant
milestones in this field is the Wiener-Levinson deconvolution developed in
the 1950s (Robinson, 1957), which is essentially a regularized least-squares
method for inverting a known convolution operator. Today this remains
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the staple deconvolution method when the source signature is sufficiently
well-known.

Most deconvolution problems in seismology are somewhat performed
“blind”, since it is often practically impossible to precisely determine the
exact source function sent into the underground from man-made equipment.
Blind deconvolution has a much bigger null space than a typical deconvo-
lution problem in terms of both g and q. As Figure 2.8 shows, the blind
deconvolution model produces the exact same result under complimentary
scaling and shifting. Furthermore, a limited bandwidth in q also means that
it will generate the same output even when random high and low frequency
noise is added to the model for g.

The late 1970s to the early 1980s saw a big leap of effort in the develop-
ment of blind source deconvolution using new estimation theory to obtain
the source wavelet. The class of “minimum entropy” methods devised es-
timators that maximizes the non-Gaussianity of the deconvolved reflectiv-
ity series (Wiggins, 1978; Donoho, 1981; Ulrych and Walker, 1982; van der
Baan and Pham, 2008; Cabrelli, 1985; Oldenburg, 1981). The idea is that
convolution always increases the Gaussianity of the signal, and therefore
the deconvolved result should be as non-Gaussian as possible. Kurtosis is
typically used as the measure of Gaussianity, therefore methods of this type
are also called “higher-order statistics” methods. The comparative name
is meant to distinguish itself from existing second-order statistics methods,
such as spectral whitening.

Even though multiple removal is not usually regarded as a deconvolu-
tion process, it comes naturally from the concept of modelling multiples
via convolution of two wavefields as introduced in this section. Assuming
as before that the surface reflection operator is approximated by —I, the
EPSI model (equation 2.3) of the recorded wavefield in the 1D case can be
seen as a variation of the simple source signature deconvolution problem of
equation 2.5:

P=8*qQ—g*Pp (2.6)

=g*(q—p)
Equation 2.6 essentially contains two convolution relationships: The first
term g * q, with our assumption of a globally stationary source, is simply

the source convolution relation stated in equation 2.5. The second term g*p
produces the multiples caused by the free surface. Intuitively, this means
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Figure 2.8 Blind deconvolution is a difficult task. For a given observation
(right column), an infinite number of signal x and blur kernel w combinations
may reproduce it under a causal convolution relationship. Adapted from A
lifted €1 /0y constraint for sparse blind deconvolution, Esser et. al., 2015
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Figure 2.9 A 1D EPSI model. The Green’s function model g is plotted
at the top with two impulsive events. The source signature q is a standard
Ricker wavelet plotted in the middle. The resulting observation p produced
through the EPSI model (equation 2.6) is plotted at the bottom.

that multiples are produced by using the recorded seismic response (with
opposite sign) as the source wavefield in a new seismic survey, representing
some kind of feedback system. This aligns with the notion that surface multi-
ples are produced by the seismic responses bouncing back underground after
hitting the recorders at the Earth’s surface. Since convolution distributes
over addition, multiple removal can thus also be seen as deconvolving this
new “free-surface” source signature (q — p) from g.

This kind of feedback system introduces some very interesting conse-
quences to the uniqueness of the solutions for 2.6. Specifically, the feedback
term prevents any arbitrary scaling of q (and a complementary scaling of
g) to produce the same observation. Figures 2.9 and 2.10 demonstrate this
effect, and shows that simply scaling the source signature q would introduce
additional spikes in the model g in order to produce the same observation p.
Thus seeking the sparsest solution for g also imposes additional amplitude

31



CHAPTER 2. PRINCIPLES OF SURFACE MULTIPLE PREDICTION BY CONVOLUTION

consistently scaled signal (time domain)
T T T T T

0.3 T T T T T
0.2 .
0.1F A .

0 A A A

1 7
_01 1 1 1 1 1 1 1 1 1 1
50 100 150 200 250 300 350 400 450 500
o scaled blur filter (time domain)
T T T T T T

0.4
0.2
0
-0.2

_04 1 1 1 1 1 1 1 1 1 1
50 100 150 200 250 300 350 400 450 500

Figure 2.10 The same 1D EPSI model as shown in Figure 2.9, but with
the source signature model q (middle plot) scaled by 2. We can still find a
Green’s function g (top plot) that satisfies the original observation p, but it
is less sparse than the original g as shown in the top panel of Figure 2.9.

constraints (I empirically observe a similar situation for phase information)
on q. This kind of relation is non existent in the typical blind deconvolution,
and serves to demonstrate why a minimum sparsity criteria on g alone can
produce good solutions for the whole model, even though a large part of the
EPSI problem essentially consists of blind deconvolution.

2.6  Outline of the thesis

Due to the relative novelty of EPSI, there exist many aspects of the me-
thod that, despite its inherent advantages, contributes to its current lack
of widespread adoption in the industry. In this thesis I will strive to con-
tribute improvements to the EPSI formulation that improve its reliability,
capability, and practicality, in ways that will help to further the adoption
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of this method. To this end, the following research chapters will focus on
some particular aspects of its current shortcomings, as follows:

In Chapter 3, I reformulate the EPSI problem into a form that can
be more easily solved by convex optimization, by utilizing an ¢y to ¢; relax-
ation and existing machineries in the large-scale optimization community.
Despite the authors of EPSI recognizing the importance of a minimum spar-
sity criteria, the EPSI method only rudimentarily imposes sparsity by only
updating the Green’s function model with the few largest elements of each
gradient update. This does not in general lead to the sparsest solution, and
can produce many high-frequency errors in the model update. Instead of
relying on hard thresholding of gradient updates, I develop a bi-convex opti-
mization formulation for EPSI called Robust EPSI. I will demonstrate that
this method leads to more accurate solutions for the Green’s function with
much less ad-hoc parameter tweaking.

In Chapter 4, I investigate a way to incorporate a free-surface
scattering-based model into the convolution-based EPSI forward model of
the multiples. This produces individual scattering terms that recreate the
surface multiples independently from the convolution model. I show that
this can be used to accurately predict the surface multiples inside of areas
where there were large missing sample gaps in the acquisition (and integra-
tion) surface for the data wavefield, especially in the near-offset area where
this kind of error is the strongest. This kind of approach is welcome, since
the current methodology is to also estimate the missing pieces of the data,
which increase the danger of mutual over-fitting between the different un-
known wavefields. I propose modifications to the methods proposed in the
previous chapter that are needed in order to successfully invert this aug-
mented forward model, and show that it is more capable than the current
methodology in EPSI at mitigating near-offset gaps.

In Chapter 5, I introduce a multilevel strategy to significantly shorten
the time needed to compute solutions to the Robust EPSI problem. This
method exploits the existing high computation complexity of wavefield con-
volution in reverse, by suggesting to offload early iterations (where accuracy
is not important) to coarser spatial grids. Low-pass filtering and post-NMO
interpolation is utilized to reliably avoid aliasing issues when moving be-
tween different sampling grids. 1 will analyze the expected computation
complexity reduction, and walk through this strategy using a synthetic ex-
ample dataset, showing how easily it can be implemented without changing
the existing Robust EPSI algorithms introduced in the previous chapters.
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Chapter 3

Robust estimation of primaries
by /1-norm minimization

The Estimation of Primaries by Sparse Inversion (EPSI) method, introduced
in the last chapter, needs to invert for both the surface-free Green’s function
and the source signature at the same time, as they are both unknowns in the
integral equation model for surface multiples. This results in an inversion
that is analogous to blind deconvolution, with a high potential for local-
minima issues, where spectral leakage can occur between the two unknowns
that lead to incorrect solutions for both. It is opposed to the typical SRME
procedure where the solution of the two unknowns are implicitly decoupled
through the prediction-subtraction process. The main insight of EPSI is
that modelling the surface-free Green’s function as impulsive spikes poses a
prior strong enough to overcome the inherent local-minima issues present in
this inversion.

In van Groenestijn and Verschuur (2008; and partly in Guitton and Ver-
schuur, 2004), it was shown that the minimizer of a sparsity measure on
the primary wavefield yields the correct demultipled result during adaptive
subtraction. Therefore, it would seem natural for EPSI to seek the sparsest
possible solution for the surface-free Green’s function. However, as we show
in this chapter, the EPSI algorithm as proposed in (van Groenestijn and Ver-
schuur, 2009a) does not automatically seek the sparsest solution, and leaves
the burden of determining the appropriate level of sparsity to the practi-
tioner. Furthermore, as I will demonstrate, the sparsity control parameters
in the original EPSI do not strongly correlate to the final sparsity level of
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the solution, so even if the structure of the subsurface is perfectly known
(i.e., the number of reflectors) this information cannot be effectively used
in the inversion. This shortcoming impacts the effectiveness of the EPSI in
terms of its flexibility, reliability, and quality of its solutions, particularly in
its ability to recover important late events of low amplitude.

3.1 Motivation

The central purpose of this chapter is to propose a new approach to EPSI
that does attempt to seek the sparsest surface-free Green’s function in a
computationally efficient way, and in the process eliminate the free param-
eters involved in determining the solution sparsity. To achieve this I devise
a reformulation of EPSI as a modification of the basis pursuit optimization
problem (Chen and Donoho, 1994; Chen et al., 2001), and design a custom
algorithm to find its solution. This results in a method that is applicable
to a wide variety of datasets without the need to tweak inversion parame-
ters. Because EPSI itself is a much more computationally expensive method
compared to even SRME;, its success hinges on whether it can reliably give
meaningful results with minimal quality checks over a wide range of datasets.
I feel that elimination of free parameters and the additional robustness that
comes with always asking for the sparsest solution will be a crucial element
for EPSI to be accepted as a more standard practice by industry.

I also aim to improve the quality of EPSI’s estimated multiple-free
Green’s function for those that are interested in using it directly, instead of
just the primary wavefield. Because I regard EPSI as an optimization prob-
lem, our reformulation takes advantage of recent advances in large-scale
sparse recovery techniques (specifically that of van den Berg and Friedlan-
der, 2008, 2011) for faster convergence. This alone resulted in a noticeable
improvement in the fidelity of the recovered surface-free Green’s function
compared to the original algorithm under the same number of iterations.
Furthermore, our framework is also flexible enough to allow estimating
the multiple-free Green’s function in arbitrary transform domains without
changing the overall algorithm. This allows transform-domain sparsity to be
leveraged for further uplifts in the quality of the directly estimated Green’s
function.

To motivate these goals, I show in Figure 3.1 a brief example of EPSI re-
sult obtained before and after our reformulation, focusing on direct recovery
of small primary events at later times. Figure 3.1b is the the surface-free
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Green’s function obtained from running the original EPSI algorithm on the
data shown in Figure 3.1a. To obtain this result I had to decide on sev-
eral things: number of reflection events allowed into the Green’s function
per update, an estimate of the water-bottom muting time, and the time-
window within which the Green’s function is allowed to be updated in each
iteration. With my approach, I was able to obtain the solution shown in
Figure 3.1c¢ without having to set any of those parameters, while taking the
same amount of computational time. Figure 3.1d demonstrates the possible
uplift in the quality of the direct solution by recovering the solution in a
hybrid curvelet-wavelet transform domain. The overall number of updates
on the Green’s function remains the same in this case.

It is important to note beforehand that in this chapter I do not regard
one important aspect of EPSI, which is the simultaneous reconstruction of
missing near-offset data throughout the inversion. Rather, our scope is lim-
ited to in-depth analysis of the sparse regularization aspects of EPSI. That
said, I do feel that enhancing the robustness of the near-offset reconstruction
feature is also an important topic, and that the optimization framework I
introduce in this chapter will benefit its future investigation.

In the following sections, I first review the central premise of EPSI, and
formulate it as an optimization problem to highlight its potential limitations.
I will then introduce a reformulation of EPSI by turning it into a basis pur-
suit problem with two disparate unknowns. I then discuss how to combine a
continuation-based approach (Hale et al., 2008) with a block-coordinate de-
scent scheme to efficiently solve this extended objective. A particular feature
of our algorithm is that, while exploiting the Pareto curve (van den Berg
and Friedlander, 2008; Hennenfent et al., 2008; Daubechies et al., 2008) of
basis pursuit problems for the continuation-approach, it also ensures that
the source signature is always estimated with sparse approximations to the
surface-free Green’s function. I illustrate the improvements of this approach
over the original EPSI algorithm on synthetic datasets. Finally, I will use
field datasets to demonstrate how recovery of primary late-arrivals can fur-
ther be improved by seeking solutions in alternative wavefield representa-
tions.

3.2 EPSI in detail

Our goal in this section is to detail the methodology of EPSI as presented
in van Groenestijn and Verschuur (2009a) and restate its formulation in a
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Figure 3.1 Zoomed common-offset plot (200 m) of (a) a prestack field
dataset from the North Sea,(b) the primary wavefield obtained by the origi-
nal EPSI algorithm, (c) the primary wavefield obtained by our approach in
the physical domain, and (d) results from our approach obtained under a
curvelet-wavelet representation. The results in (b), (c¢), and (d) all took the
same number of gradient updates. Compared to the original EPSI algorithm
used in (b), the Robust EPSI algorithm was able to obtain the solution with
much fewer input parameters. It also recovered the late primary events un-
der the arrows in a more continuous fashion in the physical domain, but is
still not satisfactory without stacking. The result obtained under a hybrid
curvelet-wavelet representation shows a significantly improved recovery for
this event. What appears to be a fault at 1800 m in the data is in fact local-
ized surface multiple ringing due a syncline structure on the ocean bottom.
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manner that more readily (compared to the original works) expresses the
underlying optimization problem. This not only enables a more concrete
notion of the original algorithm’s shortcomings as described in the introduc-
tion, but also forms the basis of our extensions.

As a reminder of the notations established in the previous chapter, I
present two wavefields pertinent to our discussion: the symbol g(X,, t; Xgrc)
which represents the desired surface-free Green’s function (also called the
primary impulse response) that models the response of the earth at location
x due to an impulsive volume-injection dipole source located at xg.. Aside
from the source ghost, it does not include response due to a free surface, so
it is free of surface-related multiples but will contain internal multiples. See
Figure 3.2 for an illustration of its ray paths. Technically, g is the normal
derivative of the surface-free Green’s function with respect to the reflecting
surface. However, directly inverting for the normal derivative creates insta-
bilities at far offset, so it is customary to include a time-derivative “obliquity
factor” in the modelling operator to counteract this. With this change it
is, for algorithmic purposes at least, acceptable to think of g as a standard
pressure wavefield.

Symbol p(x,, t; Xsrc) represents the total upgoing pressure wavefield data,
possibly approximated through receiver deghosting (or wavefield decompo-
sition, if the data allows). Symbols G and P represent their discretized
monochromatic slices (also called data matrices, as indicated by the upper-
case). These slices are arranged in a matrix, with the monochromatic shot
gathers organized in the columns. The overhead hat symbol is used in place
of subscripted frequency indices. I use ¢(t) to represent the source signa-
ture corresponding to our data p. Throughout the scope of this chapter I
assume ¢ to be the same for all shots and traces, such that Q can simply be
modelled by a frequency-dependent scaling Q = ¢(w)I with I the identity
matrix and g(w) a scalar function of frequency. The matrix R models a sur-
face reflection operator that is assumed to be —I (i.e., an ideal reflector) for
the purpose of this chapter. The main physical relationship that underlies
EPSI is thus expressed as

P = GQ + GRP. (3.1)

The main purpose of EPSI is to invert the relationship expressed in equa-
tion 3.1 for g and g. On the left-hand side of equation 3.1 is P the observed
data, while the right-hand side describes how to model this data using the
two unknown quantities G and Q, using P as essentially an integration
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x,®

X

Figure 3.2 An illustration of the ray paths (solid gray line) travelled by
the surface-free Green’s function g(X,,t;Xgc) as described in this chapter.
It includes all responses at position x due to an impulsive pure volume
injection source at Xg. that have not been reflected by the free surface,
except for the source ghost. Rays drawn in dashed grey lines are not part
of g. Our assumed model of the primary wavefield is a source signature
function ¢ is injected at x4, and recorded at x while following the ray paths
of g. Think black line indicates the free-surface (e.g., water-air interface)
while thin black lines indicate subsurface reflectors.

kernel. This matrix equation models a discretization of the inhomogenous
integral equation shown in (2.2). Due to noise, imperfect up-down wavefield
decomposition, and inaccuracies in physical assumptions (such as the pres-
ence of cross-line dips when processing a 3D line using a 2D algorithm), the
data will not lie entirely in the range of the model. Solving equation 3.1 for G
and Q thus requires an inversion that minimizes the energy of the mismatch
between the left-hand and right-hand sides over all frequencies. In addition,
the combined unknowns G and Q exceed the size of P and results in an
underdetermined system, so the inversion requires additional constraints on
the solution. Motivated by the impulsive nature of the Green’s function,
EPSI uses a time domain sparsity constraint on g as a regularizing factor.
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3.2.1 EPSI written in optimization form

As was done in the previous chapter, I express EPSI as an optimization
problem in the form of minimizing an explicit objective, with the unknowns
represented by vector quantities. I again define the EPSI forward-modelling
operator M as the right-hand side of equation 3.1 acting over all frequencies
on G and Q and going under an inverse discrete Fourier transform in the
time axis, such that we can restate equation 3.1 as p = M(g, q; p), this time
over the whole dataset in physical dimensions instead of monochromatic
slices. It is more convenient for M to act on unknowns in the time domain
because of the sparsity constraints we will impose in the time domain. For
the remainder of this chapter I will drop the explicit parameterization of M
on p, thus only writing p = M (g, q). I will return to explicitly stating the
parameterization in the next chapter, since we will make use of it then.

Note that if we fix either of the arguments of M (g, q), it becomes a linear
operator with respect to the remaining variable; therefore M is a bilinear
operator. I denote the linearizations with respect to g and q as Mj and
My, and define the partial derivatives OM/0q and OM/0g evaluated at g
and q (using the overhead tilde to denote approximations to actual physical
entities, or empirically determined quantities)

Mg = (G ) = M(e.a)
7 (3.2)

oM
M;q:=— | q= M(g, q).
e <8q>gq (g, q)

Based on this description, we can use our new notation to express the EPSI
procedure as equivalent to solving the following standard-form constrained
optimization problem

minimize |[p — M(g,q)|l2 subject to [|gllo < p, (3.3)
g,aeA

where the {p-“norm” ||g||o measures the number of non-zero samples in g.
Parameter p controls the sparsity of the solution for the surface-free Green’s
function. The final demultipled result can be obtained in one of two ways:
as a direct convolution of the final g and q (called “direct result”) or by
subtracting from p the multiple model M (g, 0) (called “conservative result”).
The latter effectively adds any residue wavefield from the mismatch term
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back into the solution, and could be desired if amplitude loss from lack of
convergence is an issue.

T use A to express the set of candidate source signatures q that satisfy any
desired or a priori constraints we wish to impose, e.g., decay rates in time and
frequency, as well as phase properties. In this chapter I only impose that q
is constrained in a short time window around ¢ = 0, i.e., ¢(t) = 0 for |¢t| > T
when ¢ is represented in the time domain. Also, q is allowed to be anti-
causal to account for any possible time shifts in the recorded data. As shown
in van Groenestijn and Verschuur (2010), this model is easily extended to
accommodate more complex source properties. For example, it is possible to
to capture the offset dependence of a dipole source wavelet by parameterizing
Q as diagonal matrix instead of a single scalar. This was not done in our
chapter to keep the results directly comparable to that produced by the
algorithm described in van Groenestijn and Verschuur (2009a). Furthermore,
the time window is really only crucial in the early stages of the inversion to
mitigate issues with local minima. In practice I find that it is usually safe to
remove this time window entirely in the later stages of the inversion, when
g is sufficiently recovered.

It is important to note that, due to the structure of M(g, q), our final
estimate of q as the product of an inversion will necessarily capture all
preprocessing on p that can be modelled by a filter of the same structure
as q. With the assumptions listed above, this means that an estimate of
q will also capture global scalings, spectrum shaping, and various other
preprocessing techniques commonly applied to the data. Conversely, g is
completely determined by the physics of the free-surface, and its amplitude
depends only on the relative strength between primary events and their
associated multiple reflections in the data. As a consequence, the success
of EPSI will depend very much on the internal consistency of the relative
amplitudes between primaries and multiples in the input data.

In their original work on EPSI, van Groenestijn and Verschuur (2009a)
proposed to approximately solve 3.3 by updating estimates g and q (over-
head tilde denotes estimated quantities) in an alternating Gauss-Seidel it-
eration using successive linearizations of M(g, q) as shown in equation 3.2.
The updates to g and q are simple gradient updates for linearized problems.
This scheme can be described as a cyclic block-coordinate descent algorithm,
which I will briefly describe in the next section, before investigating some of
the potential shortcomings of their original approach.
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3.2.2  Optimizing over multiple variables in the EPSI algorithm

The most straightforward strategy for dealing with multiple unknowns is
to simply lump them together into a single aggregate variable, and deal
with the new problem using the same standard approaches as for single
unknowns. However, this approach has immediate difficulties when the dif-
ferent unknowns are strongly coupled and differ in scale (You and Kaveh,
1996), such as in our case of jointly inverting for both a wavefield and its
source signature. We also have completely different constraints for g and
q, which exacerbates the problem of working on them in unison. Alterna-
tively, we can decrease the objective by iteratively optimizing over g with q
fixed, then q with g fixed. This is an example of the cyclic block-coordinate
descent methods (Bezdek et al., 1987).

Applying this approach to solve equation 3.3 leads to the original EPSI
algorithm. We can define two new objective functions that are formed by
taking the quadratic objective in equation 3.3 and fixing one of the variables
at some value (as discussed above this also linearizes M (g, q) around that
variable), which we write as f3(q) = 1[|p — Msql|3 and f;(g) == 3|lp —
M;g||3. Algorithm 3.1 outlines what a typical cyclic coordinate descent
approach would conform to.

Algorithm 3.1 Cyclic block-coordinate descent for EPSI
1. repeat

2. gry1 < argming f5 (g) subject to |[[gllo < p

3. Qry1 < argming fg,,,(q) subject to q € A

4. k+k+1

5. until |p — M (g, qx)||2 converges to some criteria

If we do not individually minimize the two problems and instead simply
seek some decrease in the objective at each iteration, we arrive at the inexact
cyclic block-coordinate descent method. The original EPSI algorithm uses
just a single gradient update to form the subsequent gr.1 and qxy1 (where
k is the iteration counter), and therefore is an example of such a method.

I now express the original EPSI algorithm in this notation. To begin, a
descent direction for f5,(g) is obtained though its gradient at g = 0. For this
first iteration k = 1, if we start with qg = 0, this gradient is equivalent to the
multidimensional autocorrelation of p. To ensure ||g|lo < p at completion
of the algorithm, this gradient is passed to some sparsifying operator S that
zeroes most of its elements. The resulting sparse gradient is then scaled by
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a line search and used to form g;. Next, we form the gradient for f3 (q) and
update q; in a straightforward fashion (possibly with an implicit projection
to ensure q € A). The process then iterates, stopping when a chosen criteria
is satisfied, such as an iteration limit or a target misfit. Algorithm 3.2
provides a summary of this procedure, with « and 8 denoting scalings that
ensure the objective decreases sufficiently (i.e., line-search scalings).

Algorithm 3.2 Original EPSI algorithm
. 80, qo < zero vector
.k«+0
repeat
grr1 < &k +aS(V s (er))
Qk+1 <~ Qx + BV f5, (dr)
Project qx11 to satisfy qraq1 € A
k+—k+1
. until ||p — M (g, Qxr)||2 converges to some criteria, or k = kiot

00 N O O W N =

In order to impose the sparsity constraint needed on g, all updates on
g goes through a predetermined sparsifying operator S. However, sparse
gradient updates of this form are not actually guaranteed to solve 3.3, so
the solution will be heavily influenced by the specific choice of S. As we see
in the next section, ambiguity in the choice of S is also the source of most
of the free parameters involved in the original EPSI algorithm.

3.2.3 Unpredictable nature of sparse updates

The specifics of the sparsifying operator S greatly affects the behaviour
of the original EPSI algorithm. In order to both satisfy the terminating
sparsity constraint ||g|lo < p and decrease the misfit objective as much as
possible, S selects and keeps the largest amplitude p/kior elements of the
update for g, where kiot is the number of total gradient iterations used for the
problem, while the remaining elements are set to zero. Because kit is rarely
known beforehand, the practitioner is burdened with the task of estimating
an empirical per-update sparsity limit p in place of p/kior. To mitigate
this somewhat, EPSI makes addition simplifications, such as assuming that
seismic reflection events usually appear in all traces. This allows S to be
carried out independently on a per trace basis, and thus p can equivalently
be specified by the number of largest-amplitude events kept from each trace.
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One of the challenges of the original EPSI algorithm is that it is diffi-
cult to justifiably choose a p for any non-trivial dataset. Intuitively, this
parameter seems to correspond to the number of expected reflection events
in the Green’s function, and would thus correlate to the expected number of
subsurface reflectors. However, because the number of gradient updates to
recover a particular event with the right amplitude can vary wildly, even in
the most favorable case imaginable, where the number of subsurface reflec-
tors are entirely known beforehand, it is still difficult to choose p such that
the number of events in our final estimate of g match our expectations.

Furthermore, a poor choice of p can have serious consequences for the
output of the algorithm. If p is allowed to be too large, then g may no
longer resemble a impulsive Green’s function after a few iterations. This
will ultimately result in poor multiple removal, and I will demonstrate this
aspect in the first figure of the Example section. In practice, this outcome is
prevented by setting p to a very small value (typically 2 to 5 events per trace
are kept). Additionally, to avoid any energy being put into g at the loca-
tion of multiples, a time-window, also empirically chosen, is applied on the
updates. This time-window is allowed to expand with the iteration count,
again in an arbitrary fashion, until it covers the entire time axis. The hope
is that, as the time window expands to the location of a particular multi-
ple reflection event, its primary event would have already been recovered
sufficiently enough that the multiple would not appear in gradient updates.

On the other hand, since a small value of p would only allow a small
number of events in g to be updated at each gradient iteration, the prac-
titioner is forced to aggressively ramp the number of iterations in order
to recover late low-amplitude events that may be paramount to imaging
reservoirs. In the effort to lower our error objective as quickly as possible,
large-amplitude early events tend to dominate this p-event allowance of each
update at the early stages of the algorithm, and the weaker events are only
updated at higher iteration counts. Because each gradient update for g is
computationally comparable to computing a SRME multiple prediction of
the whole dataset (see van Groenestijn and Verschuur, 2009a, for detailed
expressions), the additional gradient costs required are substantial. Thus
in a typical iteration-constrained application of EPSI, these weaker events
may therefore not even be present in the solution. Further exacerbating this
issue is the trace-independent nature of S. Because reflection events are
not in general recovered at the same rate across all traces, S does not in
turn guarantee that each update will affect the same events across all traces.
This tends to affect the late low-amplitude events the most, resulting in
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reflections that appear abruptly on some traces but not on adjacent ones.
Refer back to Figure 3.1b for an illustration of this issue, and notice the
discontinuous appearance of events past 2 s.

For the practitioner, the potential for excessive parameter tweaking,
which results from the aforementioned complications due to reliance on S, is
highly undesirable. This is avoided if we instead place the sparsity measure
of g in the objective, thus seeking the sparsest solution for the surface-free
Green’s function. This is closer to the arguments for sparse regularization
of the primary Green’s function laid out in van Groenestijn and Verschuur
(2008), which precedes the formal introduction of EPSI. There, a sparsity
measure on the primary wavefield is shown to be a better objective function
compared to the energy measure for the purpose of resolving overlapping
primary and multiple events in adaptive subtraction for a purely impulsive
source.

3.3 Robust EPSI

As discussed in the previous section, swapping the data misfit |p—M (g, q)||2
and the sparsity measure of the Green’s function [|g|lp in equation 3.3 re-
sults in a more robust and flexible formulation of the EPSI problem, but also
necessitates a different algorithm. Our main contribution here is to demon-
strate that this form can be solved in a computationally efficient manner
by treating it as an extended ¢;-norm minimization problem (also known
as basis pursuit, Chen et al., 2001) for g that also simultaneously solves
for the source signature q. I call this approach the Robust Estimation of
Primaries by Sparse Inversion. The prefix robust is chosen mainly to reflect
a newfound lack of dependence on empirical inversion parameters.

I will first present the Robust EPSI algorithm itself in Algorithm 3.3
before explaining each line in depth. The main part of the algorithm con-
sists of an initialization step to approximate the source signature (lines 2-4),
and the main iterations (lines 7-15) of alternating between solving ¢;-norm
constrained problems for g (line 9-10) and matching for the source signature
q (line 12). For now I will leave the technicality of the initialization step to
the last part of this section, and focus instead on how the main loop solves
the EPSI problem with the goal of obtaining the sparsest solution for g.
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Algorithm 3.3 The proposed Robust EPSI algorithm

1. Input: target residual energy &, recorded surface seismic data p
2. go + initialize via single event picking as described in text
3. qo « argming ||p — Mg,ql|3 subject to qeA
4. gg < reset to zero vector
5. initialize iteration counter k < 0, £1-norm constraint 79 < 0
6. if using transforms, set S as synthesis operator, otherwise set S# =1
7. repeat
8. Ti+1 < determine from & and 7
9.  x <« argmin, |p — Mg SHx||2 subject to [|x[1 < ki1
10.  gpo1 « Sfx
11.  scale gg4+1 by sg4+1 according to (3.7)
12, Qgq1 ¢ argming [|[p — Mg, ql2 subject to q€ A
13. undo scaling of gi11 by sgi1
14. k<+—k+1
15. until ||p—M (g, Qxr)||2 < &, or a predetermined iteration limit is reached
16. Output: estimated Green’s function g and source wavelet qg

3.3.1 Sparsily via basis pursuit (lines 7-15)

Directly putting ||g|lo in the objective leads to a combinatorial problem,
and most heuristics-based algorithms for problems of this type are unstable
under noise. Instead, I take the well-known approach of replacing the |/g||o
objective with a ¢;-norm objective ||g||; in the problem. This heuristic in
the context of inverting linear systems is an established practice (Donoho,
2006) in many fields, including exploration seismology (Claerbout and Muir,
1973), notably in the practice of spiking deconvolution (Taylor et al., 1979;
Dossal and Mallat, 2005; Herrmann, 2005), amongst many others.

A naive adoption of the the block-coordinate descent scheme used to
solve the original EPSI problem (described in Algorithm 3.1) would then
simply iterate over the following two subproblems:

gr+1 < argmin ||g|l1  subject to ||p — Mg gll2 <o (3.4)
g

- 1 :

Qr+1 ¢ argmin in — My, ,ql|3 subject to q€ A, (3.5)
q

where the objective function in the first subproblem (3.4) has been replaced
so that the minimization is over |/g||; and an error tolerance constraint o
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is placed on the misfit function. This is often referred to as a basis pursuit
denoise (BPDN, see Fuchs, 2005; Candes et al., 2006; Donoho, 2006; Tropp,
2006) problem, and is a well-studied convex problem, where the only local
minimum is the global minimum. Its solution is generally a close approxima-
tion to the sparsest (minimum ¢p-norm) solution even under the presence of
noise in the observed data. Although the stability of spiking deconvolution
using the BPDN approach is currently a well-known issue when significant
noise is present, I note that despite similar appearances the EPSI problem
is not a pure spiking deconvolution problem, as the Green’s function is not
only inverted from wavelet convolution but also from the multiple model.
The other subproblem (3.5) related to updating the estimate of the source
wavelet Qi1 remain untouched compared to Algorithm 3.1.

The size of the optimization problem involved in our application (where
the data and the unknowns are both entire prestack wavefields) is very large
compared to most applications of BPDN. Fortunately, computationally ef-
ficient solvers for BPDN is currently a very active area of research (see
Yuan et al., 2010, for a review). However, compared to problems with an
well-behaved differentiable objective function such as the fo-norm misfit in
equation 3.3, the non-differentiability of the £1-norm makes BPDN problems
inherently more difficult to solve, and in general require more iterations to
converge.

On the other hand, the magnitude of our convergence issue is even larger
when we consider it as part of a larger overall block-coordinate descent algo-
rithm. The estimate of q needs to wait until the previous BPDN problem for
g is solved, as in general BPDN problems only produce sparse solutions upon
convergence. With these issues in mind, a direct approach of successively
solving subproblems 3.4 and 3.5 seems likely to require an unacceptably
large number of iterations to produce satisfactory results. Our solution to
this problem is to take advantage of the specific structure of continuation
methods, as I discuss in the next section.

3.3.2  Key insight on the role of continuation techniques (line 8)

The main contribution of our work is recognizing that continuation ap-
proaches, which was shown to greatly improve the convergence of BPDN
algorithms (Hale et al., 2008), also naturally give us a good way to simulta-
neously estimate the source signature for the EPSI problem. This allows us
to solve our reformulated problem in a feasible way that also retains a con-
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vergence guarantee for the BPDN problem. Continuation-based techniques
are currently amongst of the fastest methods for solving large-scale BPDN
problems. The general idea is to break the BPDN problem down into a
series of subproblems, each using the solution of the previous problem as
the initial starting point, with their solutions converging to the true BPDN
solution. This specific structure is inspired by the general observation that
heavily constrained optimization problems generally converge much faster
than optimization problems with a more relaxed constraint. This holds true
for ¢1-norm constrained problems as well; problems with a tight ¢;-norm
constraint on the unknown variable are often much faster to solve than the
same problem with a looser /1-norm constraint (Donoho and Tsaig, 2008;
Malioutov et al., 2005).

To use the continuation scheme in our BPDN problem, we replace the
BPDN problem in subproblem 3.4 with a ¢;-constrained problem (typically
called a Lasso problem)

minimize ||p — Mgg|l2 subject to  [|g|l1 < Tk, (3.6)
g

where 7 is a £1-norm constraint that varies over the cyclic block-coordinate
descent, using k as the iteration counter. If we have a well-defined series
of constraints 79 < 71 < 7o < ... < T that converges to the minimum
constraint required for the misfit function to reach a chosen error level, we
end up converging to the solution to the BPDN problem. It turns out that
the series of constraints 7, can be chosen in a natural way by applying a
Newton root-finding method to the Pareto trade-off curve of our BPDN
problem (van den Berg and Friedlander, 2008), as the solution to each of
the Lasso problems give the slope of the Pareto curve at 7 in closed form.
Readers unfamiliar with using Pareto root-finding for ¢;-minimization can
refer to Appendix A where it is explained in detail.

The Lasso problems described in equation 3.6 have a differentiable objec-
tive function, and are easily solved (most commonly by projected gradient
methods, see van den Berg and Friedlander, 2008). Due to the use of contin-
uation, I find that the number of gradient updates required for each Lasso
problem is on the order of 10. The overall Newton root-finding method for
the correct 7 that solves BPDN, when initialized at 75 = 0 and a zero solu-
tion vector, also tends to converge quickly, typically within 8 to 10 Newton
steps. See Figure 3.3 for a hypothetical solution path of g for 3 iterations
of the Newton root-finding method.
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B solution of Lasso problem
(used to improve q)

Lasso problem

\:\: - intermediate Lasso solutions

— gradient update on g
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Qv

Figure 3.3 Illustration showing the evolution of g (grey dots, both circle
and squares) in relation to the Pareto curve function as it follows a Pareto
root-finding continuation method towards the BPDN solution for a chosen
misfit 6. The optimal (minimum) 7 for the BPDN problem lies where the
Pareto curve intersects the dashed line. Solutions to the Lasso problem
(square dots) lie on the Pareto curve and is also the solution to an equivalent
BPDN problem, and is likely to be sparse. These solutions are used to refine
the source signature estimate (line 12 of Algorithm 3.3).

I make the observation that these Lasso problems also serve as the answer
to how the source signature should be estimated throughout the course of
the algorithm. As each of the Lasso problems are solved, we obtain a series of
approximations to the surface-free Green’s function g. Due to the nature of
constrained convex optimization problems, they are also each solutions to a
BPDN problem with a particular data misfit constraint, determined uniquely
by 7r. We therefore can justifiably believe that each g are also sparse.
Figure 3.4 illustrates that the Lasso problems lead to sparse estimates of the
primary Green’s function. These are the best points within the algorithm
to refine our estimation of the source signature q, as they allow q to fully
capture the spectral properties of the wavefield. By turning subproblem 3.4
into a Lasso problem, we essentially end up with an analogue of the inexact
cyclic block-coordinate descent scheme.
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Figure 3.4 A typical estimate for the Green’s function g at (a) the first iter-
ation of a Lasso problem (equation 3.6), and (b) at the final iteration. This
Lasso problem was solved via a spectral-projected gradient method (van den
Berg and Friedlander, 2008) using 8 gradient updates. This demonstrates
that Lasso problems tend to result in sparse solutions.

3.3.3 Matching for the source wavelet (lines 11-13)

The wavelet matching step is reflected in line 12 of Algorithm 3.3. It just in-
volves solving the subproblem stated in equation 3.5, once the previous Lasso
problem is solved and a sparse approximation of the surface-free Green’s
function gy, is obtained. I advocate solving the wavelet matching problem
to convergence, which happens quickly due to the large amount of observed
data compared to the small number of unknowns for the wavelet. If q is
optimal around the current linearization such that its partial derivative of
the objective function vanishes, then the next gradient update for g will be
very close to a gradient for the overall EPSI problem, not just the Lasso
subproblems (see Aravkin and van Leeuwen, 2012, for an argument of why
this is beneficial). Note that subproblem 3.5 essentially involves finding a
filter (satisfying any constraint specified in A) that matches two wavefields:
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the current guess of the Green’s function g and the current estimate of the
primary wavefield p — M (g,0). It is vastly overdetermined, and if a sophis-
ticated algorithm such as Least-Squares QR (Paige and Saunders, 1982) is
used, q will converge extremely quickly.

The updated wavelet estimate is subsequently used to form a new lin-
earization Mg, for the next Lasso problem. In theory, this will perturb the
underlying Pareto curve, and we can no longer safely expect the original
solution g to be approximately optimal after the re-linearization. However,
the first-order effect of this perturbation largely contributes to inaccuracies
in the computed 7x11, which mostly governs how quickly the root-finding
procedure locate the minimum #;-norm 7* for the target 6. The effects of
errors in approximating the Pareto curve solution, and its subsequent effect
on the convergence rate of the root-finding procedure, is studied in van den
Berg and Friedlander (2008), where the sensitivity of the convergence rate
of 7 to errors in sampling the Pareto curve is shown to be directly related to
the conditioning of each Mg, . Empirically I found that 75 as determined
before and after the re-linearization rarely differed by more than 2 to 3 per-
cent, especially towards the end of the Newton iterations, and therefore I
regard the perturbation of the Pareto curve to be negligible on the quality
of the final solutions.

An important technicality needs to be addressed here: Lasso problems
place an f/1-norm constraint on the Green’s functions, which indirectly lim-
its the amplitude of the primary reflection events in gj. This is a necessary
trade-off unique to the BPDN approach that depends on using the £;-norm
as a heuristic for sparsity. Consequentially, we can expect g; to underesti-
mate the amplitudes of the reflection events. To ensure that our estimates
of q have the correct amplitude, we need to appropriately rescale the events
in g. Under the assumptions of a global source signature for every event in
the data, it should suffice to scale the entire g; with a single factor s; that
minimizes ||p — Mg, , (sx8k)||2. Note that this scaling does not perform the
“debiasing” that is common in the solution of BPDN problems (for example,
Figueiredo et al., 2007). It only attempts to mitigate the issue that Lasso
solutions early on in the Newton iterations are obtained with a severely un-
derestimated ¢1-norm. This is essentially an exact line-search scaling, which
is given by

g'MI p

= =F e (3.7)
M, &3

Sk
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with the symbol  denoting Hermitian adjoint. This scaling needs to be
restored before the next Lasso problem for gy is formulated, to make sure
we return to the neighborhood of the Pareto curve. In my experience I find
that s tend to start at around 2 to 3 and will converge to 1 as T converges
to 7%, which suggests that s; might be useful as a convergence metric for
the overall root-finding algorithm. This scaling is reflected in lines 11 and
13 in Algorithm 3.3.

3.3.4 Incorporating sparsifying transforms (lines 6, 9-10)

One of the advantages of the Robust EPSI algorithm is that seeking the
primary Green’s function g in terms of coefficients of transform domains is
relatively straightforward. This is because the sparsity of our solution comes
from solving Lasso problems, and the algorithms we utilize are agnostic to
the linear forward operator. If the original EPSI approach is used, the
sparsifying operator S, which is formulated with physical arguments, might
need to be redesigned for the specific transform in a non-trivial way in order
to retain convergence. For Robust EPSI, we are free to compound Mg with
any linear synthesis transform without changing the underlying algorithm.

Depending on the specific transform chosen, this can be leveraged for
several benefits. As discussed in Herrmann (2010), a sparse representation
for g, such as curvelets, will enhance the effectiveness of ¢1-norm minimiza-
tion, which in turn strengthens our BPDN approach. Also, a representation
that is composed of atoms that spans over physical space can be called upon
to mitigate spatial undersampling issues in p. For example, g can be sought
as coefficients in the hyperbolic Radon domain, analogous to the approach
used in van Dedem and Verschuur (2005). I show in Figure 3.1 as well
as the Numerical Examples section that this can be leveraged to improve
the recovery of weak late arrivals, which can prove challenging even to the
Robust EPSI formulation due to comparatively weaker associated multiples
from spherical divergence and a naturally lower SNR compared to earlier
events).

To modify the Lasso problems for this extension, the synthesis operator
represented by the symbol S¥ of the transform domain, which maps the
domain coeflicients to the physical signal, simply needs to be compounded
with Mj in equation 3.6 to form a new Lasso problem

minimize |p — MzSPx|s subject to ||x[|; < 7. (3.8)
X
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which is solved using exactly the same algorithm as the one used for (3.6).
This essentially re-parameterizes the unknown Green’s function as coeffi-
cients in the transform domain. Once the solution coefficients x; are ob-
tained, the physical Green’s function can be recovered once again by the
synthesis operation g, = S¥%;. This should be done before subsequently
refining q. Both the Lasso algorithm and the Newton iterations do not need
to be modified, as long as we redefine A = 1\/IqSH instead of A = Mj for
equations A.1 and A.2. These additions to the algorithm to accommodates
the transform domain is reflected in lines 6, 9, and 10 in Algorithm 3.3.

3.3.5 Initial calibration of source signature (lines 2-4)

An effective approach when dealing with problems with inherent local min-
ima issues is to use as much a priori information as possible to narrow down
the appropriate region of the solution space at the outset of the inversion
(see page 136 of Biggs, 1998, for a relevant discussion). For example, in
the application of blind photographic deblurring, a common strategy is to
first identify edges in the image, which allows the algorithm to quickly es-
tablish the correct shape of the unknown point spread function using a
contrast-maximizing objective. I find that an analogous technique is simi-
larly effective for our case. It essentially involves careful identification of
the largest impulsive event per trace in g, which is then matched with the
data to rapidly obtain a reasonable candidate for qq.

This initialization starts with a multidimensional autocorrelation of p
(equivalent to a gradient update for g when @ = 0). From each trace of
this autocorrelation, we pick out the single strongest event that coincides
with a primary reflection in p, which will typically be the ocean-bottom
reflection. This can be achieved in a variety of ways, such as a combination
of muting and automatic first break picking, and can be manually verified if
needed. We then identify its peak location as the arrival time of an impulsive
reflection, and place a single spike at that time in our otherwise empty initial
model of the surface-free Green’s function. After this is done for each trace,
we ensure that the amplitude of these spikes are in the correct neighborhood,
scaling with the exact line-search formula in equation 3.7, setting Mg, ,g =
Mog := M(g,0). A full back-projection can also be done by extending
s to a diagonal weighting, allowing each spike to be weighted individually.
Physically, this is interpreted as adjusting the amplitudes of every event in
the surface-free Green’s function so that collectively they model the multiple
events as accurately as possible through operator M (g,0).
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Finally, setting this methodically calibrated single-event approximation
of g as gy, we can solve equation 3.5 to quickly obtain a good initial source
signature estimate qo with minimal fear of overfitting. This accomplishes our
goal of negating the risk of finding a qg so wildly incorrect that it precludes
reasonable solutions of g (even when it satisfies the constraint set A that
we predetermined for q). Once qq is obtained, we can optionally choose
to minimize the imprint of the initialization by discarding go and reset it
to a zero vector gy = 0 before starting the cyclic block-coordinate descent
iterations. The steps discussed here correspond to lines 2-4 in Algorithm 3.3.

3.4 Numerical comparison with original

EPSI

I demonstrate the performance of Robust EPSI by applying it to a 2D syn-
thetic seismic dataset that is also used by van Groenestijn and Verschuur
(2009a). A shot gather from the center of the model is shown in Figure 3.5a,
with arrows indicating the largest surface multiples. The dataset is mod-
elled from a 2D synthetic model that was depicted in figure 1 of the afore-
mentioned paper. It has a water layer approximately 200 m deep and a
laterally-varying salt dome layer that is situated roughly between the depths
of 400 m and 800 m. The split-spread pressure data (up to zero-offset) is
modelled by a second-order in time, fourth-order in space finite-difference
acoustic program using a zero-phase Ricker wavelet with peak frequency 30
Hz as source signature, and is deghosted at the receiver-side. We have a
well-sampled source line that exactly coincides with the receiver line, so the
multidimensional convolution for multiple estimation is free of aliasing issues.
A factor of /w is included in My to account for the technical requirement
that g should be the normal derivative of the Green’s function with respect
to the free-surface. This matches the “obliquity factor” that is also used in
van Groenestijn and Verschuur (2009a), and allows us to compare directly
with the original EPSI results.

From this data I obtained two estimates of the surface-free Green’s func-
tion according to the original EPSI algorithm as described in Algorithm 3.2
after 80 iterations. Figure 3.5b depicts the result obtained without the spar-
sifying operator S (i.e., kept each gradient update for g untouched), and
serves to illustrate the importance of sparsity in EPSI. Not only was the
primary multiple removal relatively ineffectual (e.g., the water-bottom mul-
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tiple at 0.45 s), but also the result clearly does not resemble reflection events
due to an impulsive source. Figure 3.5¢ depicts the result obtained by set-
ting S to keep the 4 largest amplitude events per trace for every update on
g. This greatly improved the multiple rejection and delivered the impulsive
appearance we expect from the surface-free Green’s function.

Both of these results required a triangle muting mask on g through-
out the inversion procedure (as part of the global time-window implicitly
included in S) to prevent placing events before the first water-bottom re-
flection event around 0.25 s. However, there are still visible artifacts at the
boundaries of the triangle mute. Since these anti-causal events are not in
the original data, they indicate update errors introduced when q is severely
underestimated in amplitude, most likely at one of the earlier iterations.
Because the original EPSI inversion does not attempt to seek the spars-
est solution, I find that these errors decay very slowly with the iteration
count. To make these artifacts appear more visible in the plots I slightly
exaggerated the clipping percentile of the colourmap for plots of the Green’s
functions only.

Meanwhile, Figure 3.5d shows the result produced by Robust EPSI. I
set 0 to 2% of total data energy in anticipation of edge effects, but the
program is terminated early at the equivalent of 82 gradient updates of the
Green’s function. I find that for Robust EPSI we no longer need to depend
on a tight muting mask to reject anti-causal events. Note the absence of the
aforementioned anti-causal artifacts, which indicates that we are close to
good physical approximations with our p and q. Furthermore, we can more
clearly see here that reflection events show characteristics of the expected
dipole response of the Green’s function, although it is mitigated somewhat by
the inclusion of the obliquity factor. Ishould note that most of these artifacts
appear to be high-frequency and sit in the nullspace of wavelet convolution
with q, and will be highly attenuated with a suitable low-pass filter, but
not completely. This can be seen in Figures 3.6a and 3.6b which shows the
Green’s function in Figures 3.5c and 3.5d, respectively, convolved with the
estimated source signature q shown in Figure 3.7. It is interesting to find
that Robust EPSI does not produce artifacts of this nature, and serves to
demonstrate that ¢1-norm regularization naturally attenuates small random-
like events that do not contribute to explaining the data via the forward
model. This is one of the reasons why it is often used to heuristically obtain
the sparsest solution.
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Aside from the absence of artifacts, the fidelity of the Green’s function
obtained from the Robust EPSI procedure is also qualitatively better, with
the weaker reflections around 0.8 s and the diffracted events directly below
the water-bottom reflection more cleanly defined compared to the original
EPSI results. In both programs the wavelet was allowed to live within a
4100 ms time window. The projected gradient methods used to solve the
set of Lasso problems in Robust EPSI converged quickly, typically within 5
to 20 projected gradient updates for each Lasso problem. The root-finding
procedure updated 7 a total of 6 times throughout this procedure. At the end
of the procedure, the original EPSI achieved a relative data-space f2-norm
residual of 0.079 while Robust EPSI achieved a lower 0.044; their residue
wavefields p — M(g,q) are plotted in Figures 3.6¢c and 3.6d respectively.
While the residue of the original EPSI is swamped by the aforementioned
artifacts, for Robust EPSI the residue more clearly demonstrates parts of
the data that do not fit the forward model, which in this case show a offset-
dependent nature, possibly due to either the obliquity factor or imperfect
deghosting. As discussed in van Groenestijn and Verschuur (2009b), looking
at the residue in this way is useful for identifying potential inconsistencies
within the dataset.

3.5 Additional numerical examples

3.5.1 Synthetic Pluto 1.5 dataset

To demonstrate that the Robust EPSI algorithm is insensitive to optimiza-
tion parameters, I apply it to different datasets without appreciably chang-
ing parameters from the values used in the previous section. Here I use the
Pluto 1.5 dataset publicly released by the SMAART JV consortium, which
was produced using a fourth-order finite difference P-SV modelling code
with a Ricker wavelet of peak frequency 15 Hz. Not only did I keep the
exact same parameters used in the previous example, I also directly used
the pressure recording at the surface, foregoing any preprocessing such as
deghosting or up-down wavefield decomposition. Unlike the example in the
previous section, an obliquity factor was not included in the forward model.
Nevertheless, the inversion process remained stable and produced a Green’s
function with a clean impulsive appearance while successfully rejecting mul-
tiples. See Figure3.8b for a shot gather plot. Without any change in the
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Figure 3.5 Comparison of the surface-free Green’s function obtained via
different formulations of EPSI. (a) The input data simulated from a 2D
marine model. Arrows indicate the largest surface multiples. (b) shows
the result produced by the original EPSI outlined in Algorithm 3.2 without
using the sparsifying operator S on updates to g. When S is employed on
all updates to g, keeping the 4 largest events per trace per update, the result
obtained is shown in (c¢). The result produced by Robust EPSI outlined in
Algorithm 3.3 is shown in (d), using a roughly equivalent number of gradient
updates compared to the two other solutions. The reflection events in g show
characteristics of the expected dipole response. A comparison between (b)
and (c) shows that sparsity regularization is important in producing correct
estimations of the surface-free Green’s function. The solution produced by
Robust EPSI is cleaner and more free of artifacts compared to that of the
original EPSI with use of the sparsifying operator.
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Figure 3.6 The artifacts introduced by the ad-hoc sparsifying operator in
the original EPSI algorithm (shown in Figure 3.5) are diminished but still
present after convolution with the estimated signature g, shown in (a) for
the original EPSI and (b) for Robust EPSI. Residue wavefield is shown in
(c) for the original EPSI and (d) for Robust EPSI.

parameters used compared to the previous example, and despite the large
difference between the two datasets, Robust EPSI was able to produce a
clean estimate of the surface-free Green’s function while successfully reject-
ing the main surface multiples visible at 2 s and 3.8 s, indicated by arrows.
The algorithm also showed good convergence with coherent energy barely
visible in the total residue p — M (g, q) shown in Figure 3.8d.

I also used the Robust EPSI variant that seeks the solution in a trans-
form domain. An ideal candidate is the 3D curvelet frame for its ability
to represent prestack wavefields with a high degree of sparsity. However,
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Figure 3.7 A comparison between the source-signature estimates produced
by the original EPSI and the Robust EPSI approaches as (a) time signals,
and (b) amplitude spectra. The original wavelet used is a Ricker wavelet
of peak frequency 30 Hz. Both methods produce comparable models of the
source wavelet.

I instead used a separable transform that is more amenable to scaling in
a distributed implementation. It consists of 2D curvelets (with 5 scales
and 16 angles) on time-slices of the wavefield to promote continuity across
source-receiver coordinates. In the time domain I chose the basis associated
with the discreet wavelet transform (DWT) constructed from a third-order
Battle-Lemarié wavelet (Battle, 1987), due to its compact support in time
and ability to sparsely represent seismic time-series. Notationally we can
write this hybrid representation as S := CH @ WH  where C¥ is the syn-
thesis operator of the 2D curvelet frame and W is the inverse DWT. This
hybrid transform had been successfully used before in the sparse recovery of
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simultaneously-acquired prestack seismic wavefields (Herrmann et al., 2009).
I used this transform for all the examples in the chapter involving transform
domains. The total gradient iteration counts were also kept the same as the
physical domain experiments. The result can be seen in Figure 3.8c. This
method produces a smoother Green’s function with fewer continuity issues
across traces compared to the examples with sparsity promotion in the phys-
ical domain, but some low-frequency artifact in the cross-dip direction can
be seen. This may be addressed by a more careful selection of the transform
used, or by scale and angle-dependent masking of the transform domain co-
efficients. This artifact is not present after convolution with the estimated
source signature q (shown in Figure 3.9) as it is outside the dominant seismic
signal band.

To assess the quality of the multiple removal achieved by Robust EPSI,
I show in Figure 3.10 the full NMO stack of this dataset using the provided
velocities. To avoid any potential issue caused by amplitude loss to the
residue wavefield, the standard proposed method for EPSI is to produce a
amplitude and phase-correct model of the surface multiple wavefield M (g, 0)
from the estimated Green’s function, so that it can be directly subtracted
from the data. This is called the “conservative primary” result. Figure 3.10b
shows the conservative primary produced by subtracting from Figure 3.10a
the surface multiple model shown in Figure 3.10c, which is calculated from
the Green’s function obtained by Robust EPSI in Figure 3.8b. The figures
results show good separation of primaries and surface multiples even in areas
where the two completely overlap, as indicated by arrows. Note that this
demultiple result was again obtained without any parameter tweaking.

3.5.2 Gulf of Suez marine data

As a final demonstration of Robust EPSI’s capabilities, I look at a ma-
rine seismic line from the Gulf of Suez region, with a very shallow ocean-
bottom causing strongly ringing surface multiples that permeates the entire
dataset. The pre-processing included a time down-sampling from 2 ms to 4
ms, 2x shot spacing interpolation to coincide with receiver spacing, Radon
domain near-offset interpolation, and extending via reciprocity to negative
offsets when needed. Neither deghosting nor up-down decomposition was
performed on the data except for an attempted removal of direct waves by
muting. The data contains 361 shot records and 361 hydrophone traces at
co-located positions. Robust EPSI was performed on this data using both
the physical domain (Algorithm 3.3) and the transform domain variants.
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Figure 3.8 Shot gather of Pluto 1.5 data is shown in (a), while the surface-free Green’s function produced by
Robust EPSI after 80 gradient updates on the Green’s function is shown in (b) for the physical domain solution
and in (c) for the transform domain solution. The total residue from estimating the Green’s function in (b)
is shown in (d). Parameters for the Robust EPSI algorithm remain unchanged from the ones used to produce
Figure 3.5d. Without tweaking, Algorithm 3.3 produced a clean solution for the surface-free Green’s function
without the surface multiples at 2 s and 3.8 s (indicated by arrows).
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Figure 3.9 Estimate of the source signature q that was produced in the
process of obtaining Figure 3.8b as part of Robust EPSI, plotted as (a) time
signals, and (b) amplitude spectra. The original wavelet used is a Ricker
wavelet of peak frequency 15 Hz. The estimated wavelet partially captured
the stationary part of the receiver ghost that was not removed from the data
prior to Robust EPSI.

I show shot gathers of the Green’s function g produced by Robust EPSI,
with and without use of the transform domain, in Figure 3.11. The ringing
nature of the surface multiples make it hard to indicate by arrows, but they
can be seen throughout the entire shot gather. With the same number of
gradient updates we have a very evident improvement in reconstructing the
later events past 1 s by using the transform domain. The direct Robust
EPSI result only reproduces the strongest sections of the late events, while
the transform domain solution is more successful in reconstructing them
in their entirety. Owur transform domain solution also produced a more
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Figure 3.10 Demonstration of surface multiple removal from Robust EPSI.
Stacked section of Pluto 1.5 data is shown in (a). The conservative pri-
mary result shown in (b) is produced by subtracting the surface multiple
model calculated by Robust EPSI in (c¢) from (a). Arrows indicate where
surface multiples completely overlap primary events, which are successfully
recovered in the conservative primary result.
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smoothed appearance, which is consistent with the results in Figures 3.1
and 3.8. The residue wavefield p — M (g, q) shown in Figure 3.11d is from
the Green’s function shown in Figure 3.11b. Figure 3.12 shows the associated
estimated source signature, upon which no constraint is imposed aside from
a time window that coincides with the boundaries of the plot.

The conservative primary result (see previous section) is shown as a
NMO stacked section in Figure 3.13b. The calculated model of surface
multiples M(g,0) subtracted from the data is shown in Figure 3.13c. The
surface multiple model appears physically consistent with no sign of local-
ized amplitude variation that can sometimes result if windowed adaptive
subtraction was performed. Arrows indicate where primary events that are
obfuscated by strong surface multiples is successfully recovered.

3.6 Discussion

3.6.1 Robust EPSI in practice

One of the main goals of this chapter is to eliminate most of the implicit free
inversion parameters associated with the original EPSI algorithm. Minimiz-
ing parameter tweaking is especially important for this expensive algorithm
to become successfully adapted in practical use.

Due to the ad-hoc sparse regularization used in EPSI, choosing a suit-
able sparsifying operator for the gradient updates is crucial. Tweaking of
the following parameters are usually conducted the goal of allowing the
gradient-sparsifying step in the original EPSI algorithm to build up into an
approximation of the the sparsest solution:

o number of events per trace updated in each iteration
e exact arrival time of first reflection event
e size of update window on g for each iteration

We eliminated the need for all the above parameters in Robust EPSI, be-
cause the REPSI problem formulation explicitly makes finding the sparsest
solution for a given misfit its goal.
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Figure 3.11 Shot gather of Gulf of Suez data is shown in (a), while the surface-free Green’s function produced by
Robust EPSI after 80 gradient updates on the Green’s function is shown in (b) for the physical domain solution
and in (c) for the transform domain solution. Reflection events in the Green’s function show characteristics of

the expected dipole response. The total residue from estimating the Green’s function in (b) is shown in (d).

Parameters for the Robust EPSI algorithm remain unchanged from the ones used to produce Figure 3.8 aside
from the length of time window for q.
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Figure 3.12 Estimate of the source signature q that was produced in the
process of obtaining Figure 3.11b as part of Robust EPSI, plotted as (a) time
signal and (b) amplitude spectrum. Note that, as mentioned previously, this
wavelet does not necessarily reflect the true physical source signature, and
furthermore will capture all preprocessing on the data that be modelled by
a global short-time filter, such as the low-cut filter what was applied before
downsampling in time.
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Figure 3.13 Stacked section of marine data from the Gulf of Suez is shown in (a). The conservative primary
result shown in (b) is produced by subtracting the surface multiple model calculated by Robust EPSI in (c) from
(a). Arrows indicate where surface multiples completely overlap primary events, which are successfully recovered
in the conservative primary result.
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There is still a need to decide how long the global wavelet model is
initially allowed to be. But as previously discussed, this length can be
relaxed once the danger of local minima (i.e., picking up periodicity with
the wavelet when it should have instead been explained by the multiple
model) can be ignored. Thus, the only important choice that remains is
deciding when to terminate the algorithm.

Depending on the exact needs of the application, the stopping criterion
issue may actually matter less compared to most inversion procedures. If
multiple removal is the only desired outcome, then the estimated Green’s
function is actually not used. Instead, it is multidimensionally convolved
with the data to produce a amplitude- and phase-correct multiple predic-
tion, which is then simply subtracted from the data. This is called the
“conservative solution” in van Groenestijn and Verschuur (2009b). In this
case, failure to recover weak events in the g will not actually remove it from
the final product, and therefore the number of iterations used in our exam-
ples will typically be sufficient for accurate multiple prediction. It is also
worth noting that it is relatively easy to add more iterations for Robust EPSI
if it were only terminated at the completion of individual Lasso problems.

If more accuracy in the estimated g is desired, then transform domain
solutions have several inherent advantages over physical domain ones. From
a sparse-recovery theory perspective, the ability to fully recover the true
Green’s function is very much related to its relative sparsity within its rep-
resentation domain. As an example, curvelet representations of wavefields
generally have a higher relative sparsity than physical domain wavefield.
This explains why we consistently see improvements in the ability to recover
weak signals using curvelets, despite using the same number of optimization
iterations.

In addition, the choice of transform domains for Robust EPSI will also re-
sult in the rejection of signals that it cannot sparsely represent. Figure 3.1d
shows an example of this; the primary events recovered using curvelets ap-
pear to be less noisy than any other results, because curvelets do not sparsely
represent wide-band noise. In effect, we are getting a curvelet denoising,
which operates on the same principle, “for free” as part of Robust EPSI.
Perhaps the most important point to emphasize is that the transforms can
be chosen to suit the needs of particular datasets and its unique charac-
teristics without needing to change the algorithm itself. The only source
of concern is whether sparsity in the transform domain will correspond in
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some way to sparsity in the number of reflection events in time, which is
still needed to regularize the inversion process itself.

The decision to use transform domains at all in practice will also be sit-
uational. Improvements in the direct solution may be a desirable goal, but
they need to be assessed with the cost of applying the transforms to the
whole dataset in mind. If the estimated Green’s function is to simply be
used for multiple prediction, and the data is already of high quality, then
the additional uplift in Green’s function accuracy might not be needed. Con-
versely, if the Green’s function itself is of interest, for example in velocity
or attribute analysis where a deconvolved wavefield is advantageous in pro-
viding better temporal resolution, then we might favor the use of transform
domains at the expense of additional computation time.

3.6.2 Computational considerations

The majority of the cost involved in Robust EPSI is the same as that of
the original EPSI program; both consist of gradient updates on both the
Green’s function and on the source signature. Computing the gradient on
the Green’s function requires a multidimensional cross-correlation of seis-
mic wavefields, while evaluation of the forward modelling operator requires
the multidimensional convolution (identical to the SRME prediction step).
These are still considered costly operations, even though for most implemen-
tations they are carried out in parallel over frequency.

Nonetheless, the engineering task of making these operations computa-
tionally economical directly benefit from the widespread efforts in efficient
implementations of SRME. In chapter 5, I will introduce a very general
solution strategy inspired by multigrid methods from numerical linear alge-
bra, which can somewhat alleviate this cost by exploiting the computational
complexity of the multidimensional convolutions of the wavefield in reverse.

Furthermore, due to the nature of EPSI as a wavefield inversion, it is
compelling to explore whether the algorithm is tolerant to using low-rank
approximations of p both as part of the modelling operator M and also as
the observable. The data-structure of low-rank wavefield approximations
can directly be exploited to reduce the cost of the wavefield convolutions
and correlations that underlie the evaluation and gradient steps of EPSI.
Provided that the low-rank approximation may be obtained at a low over-
head cost compared to the overall cost of EPSI, this will greatly increase the
computational tractability of EPSI, especially on large 3D datasets where
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actual information of the reflection events are overwhelmed by the size of
the ambient wavefield dimensions. Exploratory work on this topic had been
done in Jumah and Herrmann (2011) with the low-rank approximations built
up efficiently via random vector probes into p, using a very limited number
of passes through the full data with on-the-fly interpolation.

Another avenue to further reduce the computation cost of wavefield op-
erations come from exploiting simultaneous acquisition. It was shown in
van Groenestijn and Verschuur (2011) that the physics of EPSI can work
directly on simultaneously acquired data, and that information from the
multiple events can even aid in the separation of shot records. Because Ro-
bust EPSI uses the same ¢;-norm minimization that had been previously
proposed to directly separate simultaneous seismic data (Herrmann et al.,
2009; Wason et al., 2011), there is reason to believe that Robust EPSI can
recover its solution under a much denser simultaneous acquisition system
compared to the method shown in van Groenestijn and Verschuur (2011),
using the combined framework proposed in Lin and Herrmann (2009). This
opens the possibility of directly using post-acquisition summing of seismic
shot records (sometimes referred to as “shot-encoding”) to reduce the effec-
tive size of p for the goal of further speeding up the wavefield convolutions
and correlations.

The spectral projected gradient method we used (van den Berg and Fried-
lander, 2008, section 4.1) to solve the Lasso problems for the Green’s func-
tion incurs negligible computation overhead compared to the large costs of
computing the gradients. It mainly introduces a further fixed memory over-
head (two to three times) due to having to store one previous solution of the
Green’s function and its updates, but is responsible for a major acceleration
in convergence rate. Overall, I expect the slight increase in computation
costs using Robust EPSI to be more than compensated for by the increased
convergence rate and the quality of the resulting Green’s function, as well
as the reduced dependence on parameter search compared to the original
EPSI algorithm.

3.6.3 Other future extensions

Other important existing extensions of EPSI include the ability to simul-
taneously estimate missing near-offset reflection data and the capability to
account for source-arrays. With the Pareto root-finding approach, I believe
there are also straightforward adaptations of these extensions. The near-
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offset traces could, for example, be updated along with the source signature
upon reaching the Pareto curve (however, in the next chapter I will develop
a more reliable alternative to this kind of explicit estimation). The complete
decoupling of the source signature estimation from the Green’s function in
Robust EPSI means we can also easily impose constraints from additional
prior knowledge on the source without modification to the algorithm. Due to
the optimization framework that it is derived from and the generic solvers
it employs, I believe Robust EPSI presents itself as a much more flexible
framework compared to the original EPSI formulation for future extensions
of the method.

3.7  Summary

The stated goal of EPSI is to improve upon existing surface-multiple removal
schemes by truly inverting a discrete operator that models the free surface.
This method estimates the surface-free Green’s function as well as the source-
time function associated with the observed data.

My approach follows the sparsity argument of the original EPSI for-
mulation but differs fundamentally in crucial algorithmic details. Instead
of alternated enforcing of sparsity on updates of the Green’s function and
Fourier-domain smoothness on the source-time function, I formulate EPSI
in terms of a bi-convex optimization problem. This approach allows us
to tap into recent developments in large-scale optimization where sparsity-
promoting problems are solved via carefully defined subproblems that allow
components to enter into solution in a controllable way.

The main contribution of this work is to combine continuation methods,
based on the Pareto trade-off curve, with the estimation of the source func-
tion after each subproblem has been solved. By relying on the fact that we
solve each of these subproblems uniquely, we arrive at a reliable formulation
where all but one of the parameters of the original EPSI have been elimi-
nated. Aside from making the algorithm more robust and hence practical,
our formulation has the additional advantage that it offers flexibility to use
sparsifying transforms, such as curvelets, with very little effort compared to
the original EPSI formulation.

Experimentally, I demonstrated the improved performance of the Robust
EPSI algorithm on various synthetic and field datasets. Compared to the
original EPSI approach, Robust EPSI produces fewer artifacts for its esti-
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mates of the surface-free Green’s function. By exploiting transform sparsity
promotion, we accomplish these improvements without meticulous control
on the sparsity of each update as required by the original EPSI. Because we
follow a rigorous formulation and use techniques that are proven to solve
£1-norm minimization problems, our method produces high quality results
on different datasets without parameter changes. While numerous perfor-
mance related issues will still need to be addressed to extend Robust EPSI
to 3D, the resilience of this method to parameter settings makes it highly
suitable for large industry-scale multiple-removal problems.
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Chapter 4

Mitigating acquisition gaps
using scallering

One of the best known technical challenges of wave propagation-based mul-
tiple prediction is the requirement that wavefields need to be completely
sampled over the whole survey domain. This is because primaries in the
measured wavefield are used as the source functions for the multiple wave-
field. Primaries that are not measured cause gaps in the subsequent ray
paths that reflect back down from the free surface, and consequently can
lead to serious errors in the final surface multiple prediction. This charac-
teristic behaviour poses serious budget and technical challenges for survey
design, and is one of the main motivations behind the the decades-long effort
to improve near-offset acquisition, since near-offset primaries are known to
be the strongest contributors of surface multiples. While it is now not un-
common for deep-water surveys to use a combination of cables in over /under
configurations and off-azimuth recordings to reconstruct the ideal near-offset
traces, this is still nearly impossible for shallow-water and on-shore surveys.

Therefore, current practice calls for intricate, on-the-fly trace interpola-
tions, by inserting moveout-corrected versions of kinematically similar traces
into non-sampled locations as a preprocessing step of the SRME multiple
prediction. However, this paradigm is now being challenged by the increas-
ing ubiquity of simultaneous or blended source acquisition designs, where
overlapping wavefronts of conflicting dip and velocity are the norm. Alter-
native interpolation methods that are more immune to this situation but
come at a higher computational cost are generally transform-based, such as

73



CHAPTER 4. MITIGATING ACQUISITION GAPS USING SCATTERING

FK-domain reconstruction (sometimes with weighted matching-pursuit), the
venerable parabolic Radon-based interpolation (Kabir and Verschuur, 1995),
as well as more contemporary methods based on advanced transforms such
as curvelets (Herrmann and Hennenfent, 2008; Hennenfent et al., 2010) or
exploiting low-rank structures (Ma, 2013; Kreimer et al., 2013; Kumar et al.,
2015). Unfortunately, these methods are all at their weakest when recon-
structing parts of the wavefront with high curvature and amplitude variation,
which is typically characteristic of near-offset traces in seismic data.

Some recent trends have developed where these data are explicitly recon-
structed by looking at the multiple information. One such method is EPSI,
which involves finding the correct surface-free Green’s function that will
unambiguously relate all wavefronts in the observed data under a primary-
multiple relationship through the action of the free surface. In the original
formulation of EPSI, it was proposed to include missing data as yet another
piece of unknown that must be found to be consistent with this model, forc-
ing the algorithm to alternate between estimating the surface-free (primary)
Green’s function, the missing data, and the source wavelet. While the initial
results of this explicit reconstruction technique in EPSI have been success-
ful, it fails to take advantage of the tightly-coupled relationship between the
missing data and the surface-free Green’s function, by ignoring their partial
derivatives with respect to each other in the inversion process. My main
contribution in this work is coming up with a formulation where the effects
of missing data—i.e., a mask acting on the data matrix zeroing entries where
data are missing—are explicitly accounted for in the forward model of EPSI
through scattering terms at the surface boundary, modelled by repeated
autoconvolution with the observed part of the wavefield.

This chapter is organized as follows. I will demonstrate the effect of data
gaps in the near-offset on EPSI predictions and contrast it with its impact
on SRME. Next, we discuss the method proposed by van Groenestijn and
Verschuur (2009a), which extends EPSI to additionally invert for missing
parts of the wavefield. I then contrast it with the proposed method in this
chapter, where multiple contributions from the missing data are directly ac-
counted for using scattering terms of the estimated model of the Green’s
function on just the observed part of the wavefield. These terms account
for the impact of missing data on the prediction of surface-related multiples.
The main difference of my method is that it allows formation of exact gra-
dients for the full Green’s function using correlating-type interferometry to
explain data that we have, and Born scattering at the surface to emulate
data that we don’t have. I conclude by demonstrating the efficacy of this
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method on both synthetic and field data sets, and make some remarks on
the impact of this method on computational costs of REPSI.

4.1 Theory

4.1.1 Effects of incomplete data coverage

In the previous chapter, we have assumed that the observed wavefield p has
complete coverage over all source-receiver coordinates. Let us now consider
the case where p is spatially well-sampled enough for the multiple model in
equation 2.3 to have no aliasing issues, but otherwise has significant gaps in
its sampling coverage, such as a near-offset gap. To mathematically describe
the effects of coverage issues in field acquisition geometries, I adhere to a
notation used by van Groenestijn and Verschuur (2009a) that segregates
all entries of p into actual sampled data p’ and missing data p”, both of
equal dimensions to p, such that p = p’ + p”. Remember that p is the
hypothetical fully sampled (in terms of both source and receiver locations)
data at a fixed, regular sampling grid. We can model the available data
p’ using a masking operator K that eliminates (by setting to zero) traces
belonging to unrecorded source-receiver coordinates. Similarly, we can map
to the missing data p” by the complement of this mask K, := I — K (a
stencil operator). This gives us

p=p +p"=Kp+Kcp.

The separation can also be done on the monochromatic data-matrices
through a binary masking matrix A, with the same dimensions as the data-
matrices G and P. The elements of A are defined as 1 at sampled positions
and 0 otherwise. In this case applying the mask is equal to a Hadamard
product P/ = KP := A o P. Likewise, the unacquired part of the data-
matrix comes from applying the complement stencil P” = K.P.

When the difference between p and p’ is large, the incomplete coverage
can become a significant source of error in the calculation of the surface
multiples, especially at the near-offset locations (Verschuur, 2006). The most
well-known example of this situation is missing near-offsets, as illustrated
in Figure 4.1. The effects of these gaps on the multiple model are felt
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throughout the wavefield volume due to the surface integral that underlies
the prediction process, which results in a non-stationary spatial convolution.

The approximation G ~ P assumed by SRME doubles the impact of
missing data during acquisition. Comparing Figure 2.7d with Figures 4.1b
and 4.1c, it is clear that using P’ in place of G greatly exacerbates kine-
matic errors in the multiple prediction, resulting in completely unrecogniz-
able wavefronts even when we have a near-offset gap as small as 100 m. Due
to this effect, SRME usually requires some type of trace interpolation as a
preprocessing step, since adaptive subtraction alone is not able to account
for this degree of error.

Time (s)
Time (s)
Time (s)

0 . . 0
Offset (km) Offset (km)

(b) (©)

Figure 4.1 The effects of a 100 m near-offset gap in the observed dataset p/,
which is shown in (a), on both SRME and EPSI multiple predictions. (b) a
shot gather of the SRME multiple prediction produced by auto-convolution
of the observed data P'P’. (c) a shot gather of the EPSI multiple prediction
produced by convolution with the correct, fully sampled, primary Green’s
function GP’. Despite knowing the true primary Green’s function, the EPSI
multiple prediction still contains errors caused by the missing near-offsets,
although it is much more accurate when compared to the SRME prediction
which is twice affected by the near-offset gap.
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Figure 4.2 Reference wavefields to the incomplete versions shown in Fig-
ure 4.1. A fully recorded wavefield shown in (a) is directly comparable
to figure 4.1a which shows the same data recorded with a near-offset gap.
Once the true primary wavefield shown in (b) is taken out, the remaining
true surface multiples can be compared to the incorrect models shown in
figures 4.1b and 4.1c.

However, on the flip side, the non-local effect of the prediction error
ultimately enables us to probe the (actions of the) free surface inside the
data gap based solely on measurements outside of it. Since EPSI inherently
relies on wavefield inversion, there are enough degrees of freedom in the
process to take advantage of this effect. In their original report on EPSI,
van Groenestijn and Verschuur (2009a) propose to explicitly reconstruct p”
from intermediate estimates of g, such that the accuracy of M improves as
the algorithm converges. Adapting this approach to the REPSI formulation
means extending the definition of M, with the unobserved traces as another
variable in the forward modelling operator

M,(G,Q,P";P) := GQ + GR(P' + P"), (4.1)
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which leads to a more complicated version of the optimization problem (2.4),
with p” as an additional unknown:

min ||g[l1 subject to f(g,q,p";p’) <o, (4.2)
p//

y» Y

f(g.a,p”;p') =|p'+p" — M(g.a,p";P) |2

A major issue with this method of independently updating g and p”
in a cyclically alternating fashion is that we end up needing to include the
intermediate and incorrect estimates of p” into the observation term of the
misfit functional. Otherwise, the parts of G inside the unobserved locations
will tend to converge very slowly, if at all, since its gradients would not be
driven by the residuals that belong to the primaries, which only appear in
p” inside the gap.

This approach also ignores the fact that g and p” are tightly coupled in
an obvious way. The strongest parts of these two wavefields (the primaries)
overlap and relate to one another through convolution with the wavelet. The
full relation is implicitly defined by

P’ — K.P = K.[GQ + GRP' + GRP"], (4.3)

where it is evident that P” can be almost completely characterized by G.
Therefore, we would expect that their mutual partial derivatives dp”/dg
and 0g/0p” should not be ignored when independently updating p” and
g. While 9p”/dg is straightforward to compute, the expression for dg/dp”
is, conversely, quite tricky to compute stably since it necessarily involves
Q! (deconvolution by the unknown wavelet function q). Motivated by
this observation, in this chapter I seek to remove p” as an inversion variable
altogether, and instead account for its multiple contribution with terms that
only involve g, q, and the known data p’.

4.1.2  Deterministic correction of surface multiple prediction by
scattering terms

I start off eliminating p” from the EPSI modelling function (expression 4.1)
by recursively substituting it with the right-hand side of expression 4.3. This
results in a new modelling function M that does not depend on p”, but at
the cost of having infinitely many terms in a series expansion. In terms of
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mono-frequency data matrices, M is written as

M,(G,Q;P') = K[(GQ + GRP')

+ GRK.(GQ + GRP) (4.4)
+ GRK. (GRK.(GQ + GRP)) (4.5)
+ 0(GY)]
=K i (GRK,.)" (GQ + GRP'). (4.6)
n=0

The outermost masking operator K is needed to match the data p” only at
the observed location, since every term in this expression produces wavefield
responses over the entire domain. Note that this expression is no longer
linear in G. The n=1 term (4.4) is a second-order term since it is effectively
a function of G2, and similarly the n=2 term (4.5) is a third-order term.

Since multiples that we observe in nature will decay in amplitude as a
function of their order, we can assume from physical arguments that the
spectral norm (i.e., largest singular value) of G is |G| < 1, and therefore
the infinite-term series expansion 4.6 converges to

KP =K (I- GRK.) ' (GQ+ GRP). (4.7)

This expression states that we can recover the original EPSI forward model
P = GQ + GRP’ + GRP” if it is somehow possible to invert the data mask
K by some hypothetical exact data interpolation.

Although equation 4.7 is not practically useful, it admits a useful in-
terpretation of my approach: that of a Born series solution to a Lippmann-
Schwinger relation between the total wavefield P and an “incident wavefield”
composed of the erroneous EPSI prediction (GQ + GRP’) from incomplete
data. The perturbation in this case is the missing contribution coming from
within the acquisition gap. This view makes it clear that each term in ex-
pression 4.6 is a term in the Born series expansion due to the free-surface
reflector within the confines of the acquisition gap (as bound by the stencil
K¢). One direct consequence of this interpretation is that we can expect all
orders of surface multiples in every term of expression 4.6, because the inci-
dent wavefield is not only composed of the primaries GQ but also parts of
all subsequent orders of surface multiples, as produced by the term GRP’.

This scattering-based interpretation is perhaps most commonly seen in
literature on the inverse scattering series (ISS) approach to multiple removal
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(Weglein et al., 1997, 2003). However, unlike typical applications of ISS
methodology, where it is used on subsurface reflectors for internal multiple
removal, in this chapter we know exactly that the scattering boundary is at
the free surface, and have only reflection effects from this scatterer. Perhaps
more significantly, we use the derived multiples as part of the modelling
function in the context of a full data-fitting inversion problem for the primary
estimation, instead of an adaptive subtraction scheme.

As with all series expansion expressions, it is important to investigate
how the approximation error behaves as a function of the number of terms
used. Since computing these terms involves partial wavefield convolutions
that have significant computational costs (although not as much as the full
wavefield convolution, as we will discuss later in the chapter), it is practically
desirable to limit the number of terms as much as possible. In the next
section I claim what is perhaps the main insight of this chapter: that a
very small number of these terms, even just two or three, can be enough to
account for most of the missing multiple contributions.

4.1.3  Effects of term truncation on accuracy

As discussed in the previous section, the whole series up to the n-th term
of expression 4.6 accounts for all of the missing n-th order multiples coming
from the part of the free surface confined within the acquisition gap. It also
includes some part of all multiples of n+1-st order and above, although these
contributions may be much smaller. Figure 4.3 shows this with shot-gather
representations of the different terms in expression 4.6 for the synthetic
dataset shown in Figure 4.1a. We can see that the majority of these terms
is composed of the n-th order surface multiple by comparing the wavefront
shapes and traveltimes of panels 4.3b and 4.3c to the true primaries shown
in Figure 4.2b. The arrows in panel 4.3b and 4.3c show two apices of the
missing contribution of the second-order surface multiple, which we can see
faintly in the n=1 term (equation 4.4) and very prominently the n=2 term
(equation 4.5). The sum of these two terms, shown in panel 4.3d, perfectly
accounts for the total missing contribution to the wavefront without relying
on any data inside the gap.
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Figure 4.3 Shot-gathers of various multiple contribution terms in the auto-convolution based forward modelling
operator M (G, Q;P’) (shown in expression 4.6) when applied to the synthetic dataset with 100 m missing near-
offsets in p” shown in Figure 4.1. (a) shows the total error in multiple prediction due to missing near-offsets. Panels
(b) and (c) are respectively the first two terms of M (G, Q; P’) involving auto-convolutions with g (expressions 4.4
and 4.5). (d) shows the sum of panels (b) and (c). Comparing panels (a) and (d), it is evident that just the first
two of the higher order terms of equation 4.6 are enough to model most of the significant EPSI multiple prediction
errors due to the missing data. The arrows indicate the apices of the first and second order surface multiples of
the ocean bottom reflection.
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Figure 4.3 also visually demonstrates that the sum of just the first three
terms of the series expansion 4.6 is enough to model most of the signifi-
cant multiple contributions from the missing data p”. Panel 4.3d, which
shows the sum of the n=1 and n=2 terms, explains all the missing contri-
butions from p” (panel 4.3a) up to the second-order surface multiple, and
also contains some kinematic imprints of all higher order ones. Together,
these two terms were able to bring the normalized prediction error (defined
by |pm — M(g, q; P')||/||Pmll, Where py, is the true surface multiple) down
from ~22% to ~3%. Figure 4.4 summarizes the effectiveness of these first
two terms as a function of the nearest available offset.

From the general trend of the curves in Figure 4.4 we can see that, for
a range of typical near-offset gap sizes, just including the n=1 term can
reduce the normalized multiple modelling error of M by more than one half
(corresponding to a 6 dB improvement), and a further halving of the error
is achieved by including up to the n=2 term. The model used here is the
same one as used by van Groenestijn and Verschuur (2009a), with a gently-
varying water column depth around 200 m throughout the model, and a
water-bottom reflectivity coefficient of ~0.41 (seafloor p-wave velocity 2.0
km/s, density 1.8 g/cm3).

4.2 Algorithmic considerations

With the new augmented forward-modelling operator M (G, Q;P) as defined
in equation 4.6 using data-matrix notation, we can now solve a new opti-
mization problem by using it in place of the uncorrected modelling operator
in the original REPSI problem (c.f. equation 4.2):

min ||g|l1 subject to  f(g,q;p’) < o, (4.8)
g d

f(g a:p) = |p" — M(g,q;p')|2.

The main challenge that I will address in this section is that, compared to
the original REPSI problem with fully-sampled data, this new one loses the
linear relationship of the modelling function with g. In the previous chapter,
we relied on this bilinear property of M (g, q; p’) in terms of g and q to solve
problem (2.4) using an alternating coordinate-descent method. Below I first
briefly recount how the original REPSI problem is solved, followed by the
proposal of two possible ways to modify our solution strategy to account
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Figure 4.4 Multiple modelling error for the nonlinear series expansion mod-
elling operator (expression 4.6) as a function of term truncation and the
offset gap in the data. The different lines plot this normalized modelling
error from truncating all terms from expression 4.6 with n higher than that
indicated in the legend.

for the additional nonlinearity due to the existence of higher-order terms in
M(G,Q;P).

The existing approach to solving the original REPSI problem (2.4) is
an alternating update of g and q. Each new iteration of g is formed by a
¢1-norm constrained problem (called a Lasso problem, Tibshirani, 1996) to
give a sparse wavefront, which has a broadband, impulsive appearance in
time. We then use it to estimate the wavelet q by matching the impulsive
wavefronts against the data. The number of sparse wavefronts allowed into
g is kept small at the early iterations to capture only the most significant
primary events, quickly giving us the best estimate for the wavelet q. Later
iterations will then gradually increase the number of events allowed to better
fit the remaining data residual.

This relaxation of sparsity constraint happens in a theoretically rigorous
way for REPSI. The sparsity of g is directly influenced by the ¢;-norm
constraint value of the Lasso problems. The initial /;-norm constraints
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start at a small value that is designed to be an underestimate of the true
minimum. It is then gradually increased throughout the iterations in a way
such that it does not exceed the £1-norm of the true solution, yet approaches
it quickly. This scheme is enabled by the convex properties of the Pareto
trade-off curve for Lasso problems (van den Berg and Friedlander, 2008;
Hennenfent et al., 2008; Daubechies et al., 2008).

For the sake of exposition, I now roughly outline and number the main
components of the Robust EPSI algorithm as described in the previous chap-
ter (Algorithm 3.3), omitting some initialization details. We first set our
solution candidates pg and qg to zero vectors, and the inversion residue
(prediction error) e to p. Then we iterate over the following steps with
iteration counter k.

1. Select a new £; norm constraint 7, > 7,_1, which is evaluated through
a closed-form expression from the current residue ey, the target misfit
o, and the ¢;-norm of the current solution gy.

2. Obtain gj41 by solving through a spectral projected gradient method
(van den Berg and Friedlander, 2008; Birgin et al., 2000), using the
previous solution gy as the initial guess

min [p — M (g, qi; p)l|2 subject to [[g]l1 < 7. (4.9)

3. Do an exact line-search scaling on giy1 using the multiple term in
M(g,qr; p) on p to minimize the effect of the ¢;-norm constraint on
the amplitude of gg41.

4. Obtain qg11 by solving a matched-filtering problem

min P — M(gk+1,a:P)2
5. Form a new residue exy; = p — M(gk+1,dk+1;P) and check for con-
vergence conditions.

6. (If explicitly reconstructing data as in Problem 4.2) Solve for the miss-
ing part of the data p”j,;, using the previous solution p”j as the
initial guess

mip Ip" +p" — M(g,ar; p" +p")|2

and form new data by p =p’ +p”; ;.
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For steps 1 and 2 we depend on the notion of a smooth, monotonic
Pareto curve (sometimes known as the L-curve) for problem (2.4) to give
us sensible /1-norm constraint parameters 7. The smooth and monotonic
property is generally no longer valid when the forward system is nonlinear in
g, so below I will discuss two possible approaches to work around this issue,
and propose how it can be applied to the above strategy to derive suitable
methods for solving 4.8.

4.2.1 Modified Gauss-Newton approach

Several existing works on regularized inversion of auto-convolution functions
rely on either the Gauss-Newton method or more generally the Levenberg-
Marquardt method (Fleischer et al., 1999; Fleischer and Hofmann, 1996). In
the same vein, I introduce an approach inspired by Li et al. (2012), which
gives heuristically sparse solutions to the new nonlinear REPSI problem (4.8)
using a modified Gauss-Newton method.

The crux of this method is to always ensure that the Green’s function
updates Ag are as sparse as possible for a given amount of decrease in
the objective. This is achieved most effectively by taking as updates the
solution to a Lasso problem formed around the Jacobian J; of M evaluated

at (8k, qx):

Agp+1 = argmin e — Jiglla s.t. gl < 7%, (4.10)
g

where e, is the current nonlinear residue p — M (gk,qx). The ¢;-norm con-
straint 7, in this case is again obtained deterministically by the optimization
parameters of problem 4.10, using the same expressions used in step 1. How-
ever, since we are explicitly solving for updates Ag instead of g itself, the
previous solution g (and hence its ¢1-norm) for this linearized problem is
always zero. Each update formed this way will thus tend to have a much
smaller /1-norm constraint 7, compared to the final ¢;-norm of the true so-
lution, but the sum of all the updates may have a final norm that exceeds it.
The assumption here is that our series of sparse updates will actually sum
into a sparse final solution, which will depend on the Jacobians evolving
slowly enough over the iterations, which implies that that all updates Ag
should kinematically all consist of very similar wavefront sets. In practice, I
find that this assumption is rarely a problem if the acquisition gaps are not
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too large, and that we typically indeed usually end up with sparse solutions
for g.

The action of the Jacobian Jj is straightforward to obtain, but actually
computing it will pose a challenge. If we explicitly write it out using the data-
matrix notation, it becomes evident that the computational effort required
escalates very quickly with the order of the series expansion:

JG = K[(GQ; + GRP')
+ G,RK.(GQ;. + GRP')
+ GRK((GQy. + G;RP')
+ G;RK. (GyRK:(GQj, + GRP')) (4.11)
+ GRK. (GyRK((GrQ), + GLRP'))
+ G;RK. (GRK((GQ), + GLRP'))
+..].

Note that the above expression is only written up to the n=2 nonlinear
term (expression 4.5) of M. Comparing all the terms here to the original
nonlinear expression 4.6, we can see that due to partial derivatives, each
of the O(G"™) terms expand into n separate terms in the Jacobian. In
aggregate, this effectively introduces a quadratic complexity factor in the
number of nonlinear terms n over the usual cost of the gradient. Although
some reuse is possible in the calculation of these terms, this approach may
nonetheless present a prohibitive amount of computation overhead compared
to the original problem. In the next subsection I will discuss an alternative
scheme that forgoes using the Jacobian and will instead linearize the problem
in some other way.

To summarize the modified Gauss-Newton approach to solving prob-
lem 4.8, we essentially need to modify steps 2 and 3 of the original algo-
rithm above. In step 2 of each iteration we explicitly compute the updates
8r+1 = 8k + Agri1 with Agiyy given by solving problem 4.10. In step 3
we then perform the exact line-search on the update Agy.q itself against
the current residual. Much like in the original algorithm, this mitigates the
amplitude loss from the ¢1-norm regularization while keeping its sparsifying
effect.
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4.2.2  Relinearization by substitution

As shown in expression 4.11, having to compute the action of the Jacobian of
the operator M may be unacceptably costly, considering that each wavefield
multiplication in these expressions is computationally equivalent to one full
SRME multiple prediction step. Since the non-linearity only comes from
essentially having quadratic and higher powers of G, a possible alternative to
avoid dealing with the Jacobian is to simply substitute the previous iteration
gi as a constant in the (GRK_)" part of equation 4.6. This returns us to
the paradigm of inverting a linear operator in G at step 2, which is written
in data-operator notation as

M,(G) = K[(GQy + GRP')
+ GyRK:(GQy, + GRP)
+ G;RK. (GyRK.(GQ; + GRP))
+ ...

(4.12)

Similar to Gauss-Netwon, the approach also relinearizes the problem at
step 2, except that we do not have to find each update explicitly. Instead, we
simply replicate step 2 of the original REPSI algorithm (solving the Lasso
problem in equation 4.9 starting from the previous solution gj) using the
approximate but linear modelling operator of expression 4.12. In effect, we
now solve the following in step 2:

min||p - M;,(g)||2 subject to [|g]i < 7. (4.13)

Theoretically speaking, we have to give up some nice properties of Gauss-
Newton with this method, such as possible quadratic convergence and guar-
antees of reaching a stationary point. But in practice I find this method,
which I will call “relinearization” for the purpose of this chapter, converges
similarly to the Gauss-Newton approach while also having much smaller
per-iteration compute costs. In fact, the computational overhead here is
marginal compared to the original algorithm, as I will explain in the Discus-
sion section of this chapter. However, to achieve this result I find that it is
necessary to manually precondition the first few gradients, where we have
zero contribution coming from the missing primary part of p”.
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Improving convergence by gradient trace weighting

If we explicitly write out a (negative) gradient step of the Lasso problem
in step 2 (where the residue is at e;) in the data-matrix notation, using
the approximate operator in expression 4.12 up to the n=1 term, we obtain,
assuming R = —I and using H for Hermitian adjoint,

(KE)QY — (KE)P'" — K.Gf (KE;)Ql + K.Gf (KE;)P'".

Recall that E; is the data-matrix representation of the current residue error
er. From this we can see that g is not being updated equally inside the
acquisition mask compared to the outside of it. In fact, the first term in this
whole expression is actually zero inside the acquisition mask (i.e., KcK =0
so K¢(KE)QH = 0), due to the residue being zero inside the mask, and
the fact that the source wavelet applies a purely time domain convolution
which does not spatially “spread” the wavefield. Since this term contains all
the contribution from primary wavefields, which tends to be the strongest
part of the wavefield, there is immediately a large loss of amplitude for the
updates inside the mask. The job of filling this void then naturally falls to
the subsequent terms, which all involve some sort of wavefield convolution
and can potentially generate events inside the mask. However, in the first few
gradients where Gy, is small in amplitude (due to the ¢;-norm constraints),
the third term and above are also unhelpfully close to zero. This creates
a convergence “lag” where traces of g outside of the mask must already be
well reconstructed in order for the inside of the mask to begin updating,
which is problematic because the outside traces are susceptible to overfit on
multiples that should ultimately be explained by contributions coming from
the inside of the mask.

We can mitigate the inherent imbalance on the early gradients through
a simple weighting applied to all traces inside the acquisition gap. This
can be seen as applying a diagonal right preconditioner to the linearized
modelling operator. For the Gauss-Newton approach, this kind of scaling
is automatically handled by the implicit Hessian, but for the relinearization
method we must form and apply this preconditioner manually. An averaged,
trace-independent version can be obtained by finding an exact line-search for
a scaling « of K¢gr1 which maximally reduces the residual left over from
the contributions of Kgj1 under the action of the next forward operator
Mj+1 (not that it is linearized around the newly obtained giy1). In other
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words, we seek the scalar «, which solves the following problem
min || (p' — KMy1 (Kgis1)) — oK M1 (Kegisn) |3

The computation of this scaling can be effectively free in the process of
computing the residual of iteration k41, by producing the new predicted
wavefield due to the two parts of g1 separately:

€outside = p/ - KMk+1(ng+1)
Pinside = KM 1(Kcgr1)

Opy1 = f)’jl;lsideeoutside/nf)insideH%- (414)

Note that all the computational cost for this scaling is in the last line, which
only involves the vector inner products between Pinside and €gutside, as well
as fo norms. All the terms needed to form these two wavefields are already
computed once we have the final residue for this iteration. As an aside,
this scaling should be calculated after the line-search over all of g described
in step 3, to minimize the impact of the accuracy of the current wavelet
estimate (simply ignoring the primary GQ term when forming Pinsige and
€outside Will have a similar effect).

After obtaining «, we can use it as a right-preconditioner aK in step 2
of the next iteration, where we now solve

mgin Ip — My (aKeg) |2 subject to [|&]y < 7%. (4.15)

This will effectively scale all gradient traces inside the stencil by .. After the
inversion is complete, we obtain the new estimate of the Green’s function by
grr1 = aKcg, which removes the imprint of the right preconditioner. As
the iteration count increases and g becomes more accurate, we should see «
trend towards 1.

Figure 4.5 demonstrates the effectiveness of this method. Panel 4.5a
shows the first gradient update for g (assuming we use the true wavelet q)
we would have obtained from a fully sampled data (shown in Figure 2.7a).
Panel 4.5b shows the same gradient step that we would obtain using data
with missing near-offsets (figure 4.1a). Evidently, this update contains
mostly correct kinematic information about the wavefield, but is much
weaker in amplitude for traces inside the near-offset gap. After applying
the preconditioner aK., with o computed using the inaccurate gradient
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in Panel 4.5b as the approximate solution, we see in Panel 4.5¢ that this
amplitude imbalance is effectively mitigated.

Time (s)
Time (s)
Time (s)

. . 0 . . 0
Offset (km) Offset (km) Offset (km)

(a) (b) (c)

Figure 4.5 Early gradient updates for g need to be preconditioned, other-
wise convergence will be slow inside the acquisition mask due to amplitude
imbalances. (a) the exact first gradient for g from fully sampled data, given
exact q. (b) the first gradient from data with missing near-offsets (shown in
Figure 4.1a) using the relinearized forward model M,,. Inside the near-offset
gap, the events are correct but greatly diminished in amplitude. (c) the gra-
dient shown in (b) after applying the preconditioning scaling described. The
average trace-independent scaling is effective in balancing the amplitude of
the updates between the inside and the outside of the near-offset gap.

To summarize, in the “relinearization” approach we essentially need to
replace the steps 2 and 3 of the original algorithm with the following modified
steps:

2. Solve the modified Lasso problem (4.15) instead of the original
one (4.9). This replaces the wavefield modelling function with the
approximately linearized version of M , defined in expression 4.12, and
adds a right preconditioner a;Kc.. Once solution is obtained, apply
ar K, to invert the preconditioner and get gjy1.
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3. Compute the scaling for all of g1 as in the original. After apply-
ing the scaling, compute the next preconditioner scaling ay41 using
expression 4.14.

4.3 Numerical examples

In this section I demonstrate the efficacy of my proposed methods, focusing
on the missing near-offset problem. I will compare the results given by
both the Gauss-Newton and the relinearization approach, using up to the
n = 2 term (expression 4.5) in the augmented nonlinear modelling operator
M (g,q;p’). T also compare my results to the explicit data reconstruction
approach (problem 4.2) based on the method suggested by van Groenestijn
and Verschuur (2009a), as well as a parabolic Radon-domain interpolation
done as a preprocessing step. I will first show results using the synthetic
data shown in 2.7a, then move on to a field data example from the North
Sea. Although I only show 2D acquisition examples, note that this method
makes no assumptions on the coordinate system used for the data matrices,
so the derivations are extendable to a 3D survey geometry.

4.3.1 Synthetic data example

In this section I focus on how effectively the proposed methods in this chapter
handle different sizes of near-offset gaps, and how they fare compared to
explicitly inverting for the missing data p”. T use the same 5 km fixed-
spread synthetic data used in all the figures so far in the chapter, a shot
gather of which is shown in Figure 2.7a. For reference, the corresponding
true primary model is shown in Figure 4.2b. This model appears in almost
all existing EPSI literature today and serves as an effective benchmark.

Figure 4.6 shows a comparison of methods for a 45 m near-offset gap
(in both positive and negative offsets). This is an extremely mild offset
gap and typically poses no major problems for SRME workflows. In this
case, the data reconstruction (panel 4.6b), the Gauss-Newton (panels 4.6¢
and 4.6d), and the relinearization (panel 4.6¢e) strategies all performed very
similarly and gave good results without needing to interpolate the near-
offsets in preprocessing. All the results plotted here are the direct primary
estimation (the final g from the inversion convolved with the final q from
the same inversion), as the effects of reconstruction inside the offset gap are
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clearer this way. In practical applications, usually a multiple model would
be formed with the solution g instead, so it can be subtracted from the data
under perhaps more scrutiny.

Comparing the Gauss-Newton results allows us to examine the effects of
term truncation in the nonlinear modelling operator M. Panel 4.6¢ shows
the Gauss-Newton solution using up to the n=1 term (second-order in g)
in M. As discussed in the theoretical section, this term alone cannot fully
account for the second-order surface multiples, and thus some part of the
first order multiple is put into g by the algorithm to make up some of the
difference. This is especially apparent inside the offset gap, where g is less
constrained by the observed data.

Panel 4.6d shows the solution we can obtain by just using one more term
in M, up to the n=2 term which is third-order in g. We see that the imprint
from the first-order multiple is much less severe in this result. This result,
notably, is already very close to the solution from fully sampled data shown
back in Figure 4.2b, even though only two additional terms from the series
expansion is used. The results of the relinearization method (also using up to
the n=2 term) shown in Panel 4.6¢ is almost identical to the Gauss-Newton
solution, despite being much faster to compute. In fact it appears to suffer
from less overfit of the remaining multiple prediction errors due to the the
lack of higher order scattering terms.

Figure 4.7 shows the opposite end of the near-offset gap severity scale
with a 225 m offset gap. As we can see in panel 4.7a, the majority of the
near-offset wavefront curvature information is missing, which poses a serious
challenge for standard workflow tools to accurately reconstruct near-offset
traces. In this case the explicit data reconstruction (figure 4.7b) fails to
remove some of the later surface multiples, such as those after 0.6 s. The
augmented nonlinear modelling operator approaches introduced in this chap-
ter arguably fared better in comparison. The Gauss-Newton approach up
to the second-order term (figure 4.7c) is better at recovering the wavefronts
inside the offset gap, even building up some of the diffraction events, but
also similarly fails to remove some of the later surface multiples. The mul-
tiple removal is improved greatly by including up to the third-order term
(figure 4.7d), although some multiples still remain, again possibly due to
overfit. The relinearization method appears to be the overall winner in this
case (panel 4.7e), producing the cleanest primary estimation that is nearly
identical to the reference primary events outside of the near-offset gap, while
also computing the result much faster than the Gauss-Newton method.
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Figure 4.6 Direct primary estimation results from a 5 km fixed-spread syn-
thetic dataset with a nearest recorded offset of 45 m, for which a shot-gather
at 2.5 km is shown in (a) up to 1 km offset. (b) the estimated primary using
explicit data reconstruction (solving problem 4.2). (c) estimated primary
using the Gauss-Newton method described in this chapter, using up to the
n=1 term (second-order in g) in M. (d) the results obtained with the same
method as (c), but including up to the n=2 term (third-order in g). (e) es-
timated primary using the relinearization strategy, including up to the n=2
term. All the methods produce similar quality results for this small offset
gap, although we can clearly see the benefit of using the n=2 term in the
nonlinear forward model when comparing (¢) and (d). The relinearization
strategy produced slightly better results over the Gauss-Newton methods,
despite also being computationally faster.
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Figure 4.7 Direct primary estimation results from a 5 km fixed-spread
synthetic data with a nearest recorded offset of 225 m, for which a shot-
gather is shown in (a). The panels in this figure show the same strategies
as the ones shown in Figure 4.6. (b) the estimated primary using explicit
data reconstruction (solving problem 4.2). (c) estimated primary using the
Gauss-Newton method described in this chapter, using up to the n=1 term
(second-order in g) in M. (d) the results obtained with the same method
as (c), but including up to the n=2 term (third-order in g). (e) estimated
primary using the relinearization strategy, including up to the n=2 term.
The explicit data reconstruction result in (b) fails to reject some of the later
surface multiples, while the methods introduced in this chapter manages to
do a better job. Asin Figure 4.6, we readily see the benefit of including up to
the n=2 term, and also that the relinearization strategy manages to produce
the cleanest result despite being faster to compute than Gauss-Newton.
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4.3.2  Field data example

I now demonstrate the effectiveness of the methods proposed here using a
North Sea shallow-water marine 2D seismic line with a 100 m near-offset gap.
Pre-processing has been applied to convert the collected dual-sensor data to
an upgoing pressure wavefield using the method described in Cambois et al.
(2009). Data regularization and interpolation were carried out as part of
the preprocessing, so in this example I will compare my method with the
existing parabolic Radon interpolated near-offsets. An approximate 3D-to-
2D correction factor v/t has also been applied after data regularization.

Figure 4.8 shows the moveout-corrected stacks of the field data exper-
iments. Panel 4.8a shows the dataset itself. All near-offsets are excluded
from the stack to keep comparisons consistent. Panel 4.8b shows the re-
sults obtain from using the original REPSI on the regularized data where
the near-offset is pre-interpolated independent of REPSI using parabolic
Radon-domain methods. Panel 4.8c shows results obtained by inverting the
third order (keeping up to n=2 terms) nonlinear operator M(g,q;p’) us-
ing the relinearization method, while panel 4.8d shows the same using the
Gauss-Newton method.

The methods presented here improve on the results obtained by using un-
modified EPSI on pre-interpolation data. With shallow water data most pre-
interpolation methods are known to be inaccurate, often under-estimating
near-offset amplitudes and incorrectly reconstructing wavefront curvature
at the apex. Comparing panel 4.8b with panels 4.8c and 4.8d shows that
my methods exhibit a much improved ability to remove large water-bottom
multiples that are evident at 0.25 s, 0.55s, and 0.8 s of the stack. This is espe-
cially evident by looking at the multiples removed from the pre-interpolation
result (panel 4.8¢) and comparing it to the multiples removed using the relin-
earization result (panel 4.8f). By discarding the pre-interpolated near-offset
and using the augmented modelling operator M to account for its effects,
we are able to get a much better defined multiple model with more accurate
amplitude. Pre-interpolation also led to some ringing kinematic artifacts in
the multiple model near the large diffraction events at 3 km and 1.0 s, which
is not present in my methods.

Panel 4.8g shows a difference plot between inverting the second order
(keeping up to n=2 terms) and the third order forward operator using relin-
earization. We see that the impact of using the additional term is already
very small, and mainly consists of the imprint of second-order surface mul-
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tiples. The comparison between relinearization and Gauss-Newton is more
interesting (panel 4.8h). It is not very clear from the difference plot which
method produced a better multiple model, although when carefully examin-
ing the primary stacks we see that the amplitude of the first water-bottom
multiple (at 0.25 s) is slightly over-estimated for Gauss-Newton. This is pos-
sibly due to the over-fitting issues discussed earlier in the synthetic example
section. Nevertheless, the relinearization method once again provided a very
good result at a fraction of the compute time required for Gauss-Newton.

4.4  Discussion

The synthetic results shown in the previous section demonstrated that my
proposed scattering-based correction to the multiple modelling with incom-
plete data can outperform the existing explicit data reconstruction approach
used in the literature, especially when larges gaps are encountered in the
near-offset. As far as I am aware, this proposed method is also the first
practical formulation where a scattering series is rigorously used in a varia-
tional problem for primary estimation, with all its numerical approximations
explicitly stated and explored. The real data example also demonstrates a
significant improvement over using parabolic Radon interpolation for the
near-offset. These improvements are tangible regardless of the algorithmic
approach used to invert the augmented and non-linear modelling operator.

Perhaps more interestingly, I find that the Gauss-Newton method did
not converge appreciably faster than the conceptually simpler and compu-
tationally cheaper relinearization method, despite its more solid theoretical
convergence guarantees. This might be because the number of total gradient
updates typically involved in REPSI is already fairly small (typically around
50), since the projected gradient method that I employ to solve the Lasso
problems forms an implicit Hessian of the problem by using spectral step
lengths (Birgin et al., 2000). The Gauss-Newton Hession might not have
been able to improve much more on this scaling information. On the other
hand, I find to my surprise that the relinearization strategy often produced
better results. One possible explanation is that in some of the later itera-
tions, the Gauss-Newton method is more prone to over-fitting g, particularly
inside the trace mask where it is less sensitive to data misfit, to account for
some of the inherent modelling error due to term truncation.

Although I have only shown near-offset acquisition gap effects in this
chapter, the derivations here are valid for missing data located anywhere on
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Figure 4.8 Moveout-corrected stacks (near-offsets excluded) of the North
Sea field data with 100 m near-offset gap after conservative multiple removal,
with the multiple model generated from the Green’s function obtained using
the methods introduced in this chapter. (a) the recorded field data. (b) the
results using parabolic Radon near-offset interpolation and the unmodified
REPSI algorithm. (c) the results obtained by discarding the near-offset
traces and using the relinearization method with up to the n=2 term in
M. (d) the same as (c) but using the Gauss-Newton method. (e) the final
multiple model from the Radon interpolated data result shown in (b). (f)
the final multiple model from the relinearization method result shown in (c).
(g) difference plot between solving the relinearization problem using up to
the n=1 term versus up to the n=2 term. (h) difference plot between the
solutions obtained from the relinearization method and the Gauss-Newton
method.
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the acquisition geometry. I imposed no special structure on our diagonal
masking operator K, so in theory the missing traces can be anywhere. Near-
offset traces are well-understood to be responsible for the majority of the
constructively interfering part of the multiple contribution gather, so we
conveniently use it as a worst-case location for the type of large contiguous
detector gaps that are the focus of this chapter.

In theory, my scattering-based method to account for missing data works
only when we can trace raypaths that reach the inside of the masked location
from the observed data positions, using the estimated Green’s function. This
would imply that missing traces near the edge of the acquisition grid would
be less effectively mitigated, which I do observe in practice. However, I find
that the resulting edge effects tend to be overshadowed in magnitude by
what would typically be produced in imaging algorithms.

Another important exception to the generality of my method is that it
cannot deal with regular undersampling, even if it strictly counts as miss-
ing data in the overall framework. This is mainly because the mechanisms
employed here also depends on wavefield interferometry, which is fundamen-
tally erroneous when strong, coherent spatial aliasing is present in the data.

Finally, I note that one additional advantage of this approach over ex-
plicit data reconstruction is the possibility of exploiting any existing regu-
larization schemes for g, such as the curvelet-based estimation discussed in
the previous chapter, although a thorough investigation is outside the scope
here. This has the potential to improve the accuracy of the recovery inside
the gap using constraints such as wavefront continuity and lateral smooth-
ness. While it is also possible to regularize explicitly reconstructed data, it
is much easier in my approach to take advantages of regularizations that are
already in place.

4.4.1 Computation costs

In each of the scattering terms GRK¢ in expression 4.6, the wavefield con-
volution is done after stencilling out the traces that lie inside unobserved
locations. Therefore the computation cost of applying each of the higher-
order terms will depend on the ratio of unobserved to observed locations,
and can be much smaller than the convolution cost for the whole wavefield
if we are only interested in near-offsets. Since we only have to apply a single
GRK_ to the current term to obtain the subsequent term, the marginal cost
of using higher-order terms is small, and the aggregate cost of computing ex-
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pression 4.6 will only be a fractional overhead to the uncorrected modelling
operator.

The story is different when applying the adjoint of the relinearized oper-
ator (expression 4.12) to form the gradient for g in the relinearization step.
In this case each of the scattering terms add a KRG to the previous-
order term. Although we still involve the stencil K. before computing the
next term, there is a special case when computing the n=1 term, where we
do not have a stencil between G and the residual wavefield, and instead
need to compute one full wavefield convolution over the whole grid. The
cost of the (linearized) adjoint is thus two times the cost compared to the
uncorrected modelling operator, plus the same fractional overhead for higher
order terms as mentioned above.

However, note that my method avoids the cost of updating and storing
the unknown data p” as described in step 6 of the original algorithm. The
gradients for p” also require a full wavefield convolution, so the overall cost
of updating the unknown wavefield is actually absorbed into the cost of
updating g. In fact, if we only use the n=1 term, then the overall computa-
tional cost of the relinearization strategy is identical to the original REPSI
algorithm with explicit data reconstruction (assuming the same number of
gradient updates is applied on both p” and g), while being slightly more
memory efficient due to not having to store and compare p”. As discussed in
the algorithms section, the cost of using the Gauss-Newton approach is sig-
nificantly higher due to the partial derivatives in the Jacobian. Depending
on the number of terms used, I find that the Gauss-Newton approach adds
a two-to-three time computational overhead compared to the relinearization
approach.

4.5 Summary

In this chapter I presented a modification of the REPSI problem that ac-
counts for large gaps in the acquisition grid (as a function of both source
and receiver coordinates), such as the near-offsets, without having to explic-
itly interpolate or invert for the missing near-offset data. The main idea of
this method is to modify the forward modelling operator to fully explain the
multiples in the observed data as long as the correct surface-free Green’s
function is obtained, even though the data operator itself is not completely
sampled. This is achieved by augmenting the forward model for the observed
wavefield with a truncated scattering series that approximately mimics the
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action of the free surface reflector within the acquisition gap. Inverting this
modified operator can thus recover the primary Green’s function without
involving the unobserved data in any way.

Part of the main contribution in this chapter is demonstrating that just
two terms in the scattering series is enough to reach a useable accuracy
for the REPSI inversion problem. I have demonstrated on both synthetic
and real data that this level of approximation already leads to significant
improvements over existing methods. The scattering terms involve the same
wavefield convolution kernel as the original REPSI problem, so not much
effort is required to implement its action. Furthermore, because the effective
aperture of the multiple contribution for these scattering terms is limited to
the inside of the acquisition gap, each additional term imposes only a small
computational overhead compared to the original problem.

Unlike the original REPSI problem, the augmented modelling operator
is no longer linear with respect to the primary Green’s function; each term in
the scattering series involve higher powers of the primary Green’s function.
I presented two possible modifications to the REPSI algorithm for dealing
with this nonlinearity: a Gauss-Newton type approach (which involves a
costly computation of the action of the Jacobian), and a straightforward re-
linearization approach that simply fixes the primary Green’s function used
in higher-order scattering terms at its previous iteration value. A simple
scaling preconditioner allows the relinearization approach to perform simi-
larly to the Gauss-Newton approach while keeping the same computational
complexity as the original REPSI algorithm with explicit missing-data inver-
sion, making it a suitable candidate for large industry-scale multiple-removal
problems.
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Chapter 5

Multilevel acceleration strategy

for Robust EPSI

The practice of multiple removal on large industry-scale seismic data is a
constant struggle between multiple conflicting factors, and can be summa-
rized as a classical trade-off trilemma between accuracy, robustness, and
low computational requirements. Current prediction-subtraction methods
such as SRME face limits in accuracy and robustness when confronted with
undersampled data of limited quality. This shortcoming promoted recent
developments in whole-wavefield inversion/deconvolution techniques to de-
crease dependence on practitioner guesswork and QC, including the Robust
EPSI method developed in this thesis. However, these more advanced meth-
ods usually require many iterations of multiple prediction to determine an
entire unknown discretized wavefield, and thus are far more computationally
intensive, posing significant hinderances to practical adaption.

This chapter proposes a strategy for significantly reducing the computa-
tional burden of Robust EPSI, without having to fundamentally alter the
core implementation of the algorithm. This is achieved by essentially com-
puting a large part of the early model updates on a hierarchy of coarsened
spatial sampling grids (the temporal sampling remains untouched), which
drastically reduces the computation time required for both the Fourier trans-
form over the time axis as well as the matrix multiplication between the
data-matrices. The results computed on the coarser grids are mapped to
the full grid in a way that avoids spatial aliasing artifacts, which is the main
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contributor of multiple prediction errors due to grid coarsening (Dragoset
et al., 2006).

One of the advantages of the method proposed here is that it does not
change the underlying physics and optimization problem of REPSI, only
the problem size(s), and is therefore essentially “free” to implement. The
main ingredients of this method is essentially a way to project and map the
observed data, as well as the estimated model of the Green’s function g,
between different grid sizes. In a way, the thematic structure of this method
mimics what is usually known as “multilevel” (or, relatedly, “multigrid”)
methods in numerical linear algebra for inverting particular classes of linear
operators, in that it involves moving intermediate solutions between different
samplings in a disciplined way using restriction and prolongation operators.

It is important to note that borrowing nomenclature that is typical of
the field of multigrid methods in numerical analysis does not imply that
this chapter establishes anything more than a superficial allusion to these
classical multigrid methods. Most notably, the operators involved in REPSI
does not in general behave like elliptical partial differential operators, and
we therefore lose many of the theoretical properties of prolongations in terms
of reducing the residue. However, as I will show, the drastic reduction in
computation cost when going to a coarser grid is simply enough to reduce
the runtime of REPSI to a small fraction of the full problem, and therefore
warrants the adoption of this approach.

This chapter will first continue with a discussion of the problems involved
in a naive downsampling of the spatial grid, a way to mitigate it in the
context of EPSI, and the reduction in computational complexity from the
grid coarsening. I will then present a multilevel strategy, which involves
an outer loop of downsampling and trace interpolation, and a inner loop
of solving REPSI using the solution from the previous outer iteration as a
warm start. It will finish with examples on both synthetic and real datasets
which demonstrate the speedup obtained from the multilevel strategy, and
that we can obtain a close approximation of the solution computed directly
on the full grid.

5.1 Sampling requirements for EPSI

Wavefield convolution-based multiple prediction methods, such as SRME
and EPSI, are essentially operating under an algebra over the set of well-
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sampled discrete wavefields. The convolution relationship between different
discrete wavefields are described as plain matrix multiplication over mono-
frequency data slices. Implicitly, this ties the sampling grid of the wave-
propagation operator (the Green’s function) to the sampling grid of the data,
since the matrices must be of consistent dimensions in order to multiply
correctly.

A further implicit assumption is that the sampling interval of this grid
must be sufficient to support the frequency spectrum of the wavefield. The
largest lateral wavenumber of a seismic recording is an increasing function
of temporal frequency, and is typically determined by the slowest medium
velocity. The spatial sampling of the whole wavefield is therefore bound by
the highest frequency in the effective spectral band of the wavefield. If this
relationship is not satisfied, then spatial aliasing occurs which creates further
errors in the propagated wavefield, invalidating the integral equations which
underlies both SRME and EPSI.

Figure 5.1 shows the F-K (frequency-wavenumber) spectra of a typical
seismic common-shot gather. In Figure 5.1a a dataset with a spatial sam-
pling just fine enough (15 m) to support a frequency content of up to 60 Hz.
Figure 5.1b shows the spatial aliasing that results when you simply restrict
the data to a 30 m grid (2x subsampling). However, since this aliasing only
occurs at 30 Hz and above, a low-pass filter is sufficient to remove the aliased
part of the spectrum and result in an alias-free wavefield, which can be seen
in Figure 5.1c.

Therefore, in order to satisfy the P = GQ + RGP relation used in
previous chapters for EPSI, one of two things can be done to ensure that a
particular input data p is not spatially aliased:

1. Low-pass filter the data to limit the maximum effective frequency, then
subsample spatially to a grid that satisfies the Nyquist criteria for the
largest surviving wavenumber. We will use this general method, called
decimation, as a general way to move to coarser grids (corresponding
to the restriction step of general multigrid methods).

2. Interpolate the data to a finer grid that satisfies the existing Nyquist
criteria for largest wavenumber without any low-pass filtering of the
existing frequency content. This must be done in a way that does not
result in any existing spatial aliases polluting the interpolated signal
(i.e., no nearest-neightbour interpolation). Typically this is accom-
plished by weighted averages of nearby samples after doing a normal-
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Figure 5.1 F-K spectra plot showing that low-pass filtering removes the
spatial aliasing caused by subsampling seismic data onto a coarser sampling
grid. Black indicates zero amplitude, while white indicates the maximum
amplitude for each plot. The original data (a) is sampled at 15 m and
contains significant frequency content up to 50 Hz. A 2x subsampling to a
30 m grid (b) exhibits spatial aliasing behaviour only after 30 Hz due to the
minimum wave velocity in the data. After applying low-pass filter at 30 Hz
(c) the spatial aliased components are removed, at the tradeoff of halving
the spectral bandwidth of the data.

104



CHAPTER 5. MULTILEVEL ACCELERATION STRATEGY FOR RoBuUST EPSI

moveout (NMO) correction in the time domain. We will use the term
interpolation as a general way to map wavefield on coarse grids to
finer grids in an alias-free way (corresponding to the prolongation
step of general multigrid methods).

5.2  Low-pass filter, subsampling, and their
effects on EPSI

So far we have only involved basic results from Fourier analysis and signal
processing, but the effectiveness of the multilevel strategy comes from an
interesting characteristic unique to EPSI, and does not apply to SRME.
Specifically, I use the fact that EPSI looks for a discretized multiple-free
Green’s function that is effectively “full-band”. This full-band structure is
enforced by imposing sparsity constraints in the physical time-space samples
of the solution wavefield, similar in concept to spiking wavelet deconvolution.
In fact, when we (globally) low-pass filter the input data, we can expect this
filter to be captured just by the source signature model q, while the Green’s
function g remains full-spectrum.

Essentially, as discussed in Chapter 2, EPSI can also be regarded as a
deconvolution process that fundamentally attempts to recover the Green’s
function on any given spatial grid. Subsampling and low-pass filtering the
input data given to EPSI should not, in the most ideal case, fundamentally
change the temporal shape of the solution. If we keep the time axis sam-
pling the same as the original data, EPSI should give us the same spikes
at the same locations in the Green’s function. However, given that the in-
put data is now missing more frequency information due to the low-pass,
it necessarily increase the difficulty of the blind deconvolution problem due
to a smaller effective measurement. It is important to keep an account of
whatever degradation on the estimated Green’s function this introduces, in
order to make sure that the solution is not totally off-base.

Figure 5.2 demonstrates the effect of this low-pass filtering (without the
subsampling) on the Robust EPSI algorithm as described in previous chap-
ters. The top two panels show a synthetic data, whose frequency content can
be seen in Figure 5.1a (effectively up to 60 Hz), and the same data with a 40
Hz low-pass filter applied to the time domain using a Hanning window. The
bottom two panels show the Green’s function obtained respectively from the
two dataset above, using the exact same optimization parameters.
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Figure 5.2 Shot gathers of data (a), its REPSI solution (c), a low-passed
40Hz solution (b), and its REPSI solution (d). For the remainder of the
chapter, white indicates zero amplitude, while red and black indicate the
maximum and minimum amplitude, respective. Colormaps are normalized
for plots within the same figure.
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Figure 5.3 Zero-offset trace of the REPSI solutions shown in Figure 5.2.
Solution trace from the low-passed data shares the same general wavefront
support as the original data.

As seen in Figure 5.3, the impulsive events in the two solutions both have
similar shape and support location. The solutions from low-passed data
contains fewer fine-scale features when compared to the solution obtained
from the full data, but this is expected behaviour since the source signature
was estimated blindly REPSI, and thus will be inherently less effective when
resolving data with less spectral content. It is more important to realize that
the solution to the low-passed data is already faster to compute, since the
matrix-multiplications on the now eliminated higher frequencies do not need
to be computed, and that if the 40 Hz data’s REPSI solution was used as
the initial guess, it will speed up the convergence of the original REPSI
problem.

It is not hard to see that, if the reduced computational time of the
40 Hz problem is significant enough, then the total runtime of a two-stage
optimization as proposed in that last sentence may indeed be shorter than
the original problem. The multilevel strategy studied in this chapter is
inspired by this idea, and I propose it as a possible generalization of the
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multilevel method paradigm for REPSI. Before I introduce the full algorithm,
I discuss below the expected reduction in computational complexity that can
result when we not only low-pass, as above, but also subsample to a coarser
grid which is facilitated by the reduction of spectral content.

5.2.1 Expected computational savings due to subsampling

Roughly speaking, REPSI converges through carefully-controlled projected
gradient iterations, and by far the most time-consuming part of each itera-
tion is the computation of M (g, q;p) and its adjoint operation to form the
gradient updates on g. Both of these involve a complete wavefield convolu-
tion, modelled in the discretized setting as matrix multiplications between
mono-frequency data-slices of the two wavefields.

Assuming that the number of samples in the source and receiver co-
ordinates are the same so n = np.y = N, the data matrices are of size
n X n, so each gradient update iteration involves two operations that are of
computation complexity

Cost(n) = O(2nn?logny) + O(nsn),

where ny is the number of discrete frequencies, n; is the number of discrete
time samples, to compute the multiple wavefield for a 2D (seismic line)
acquisition geometry. The first term is the cost of computing the discrete
Fourier transforms using FFT, and the second term is the cost of the matrix
multiplications. A simple reduction of grid samples by half (doubling the
sample distance), along with a similar halving of the highest frequency from
low-passing, results in the computational complexity

1 1 1 1
i1 — L onmnl 1 3
Cost <2n, 2nf) 4(’)( nn®logng) + 16(9(nfn ),

while a further halving (now one-quarter of the original sampling) results in

1 1 1 1
Cost <4n, 4nf> = E(’)(2nm2 logng) + EO(nfnig).

Evidently, the n? and n3 terms in the computational complexity of EPSI
gradients which are normally a bane for large-area seismic surveys now helps
us to drastically reduce the computational cost for subsampled data. By
just halving the sampling, each gradient update is potentially computed an

108



CHAPTER 5. MULTILEVEL ACCELERATION STRATEGY FOR RoBuUST EPSI

order of magnitude faster than the full data, and at one-quarter sampling the
speedup is now potentially two orders of magnitude. In fact, an entire REPSI
problem at the one-quarter sampling can finish before the first gradient step
is even finished at the full scale.

For a well-sampled 3D dataset (approximately the same sampling in both
spatial directions, so that n = n&ycy = NYrev = NTye = NYsrc), this effect
is even more drastic, since the n? and n? terms for the 2D survey situation
now becomes n* and n% terms. We end up with the following complexity for
3D surveys:

Cost(n) = O(2nn*logny) + O(nnb)

1 1 1
Cost <2n, 2nf> —(’)(2ntn log ng) + 128(’)(nfn6)
Cost 1 ! —(’)(2 4] )+ L(’)( 6)
4" g ) T gpe T 0BT T grgp AT

Figures 5.4 and 5.5 demonstrates this reduction in computation as we
halve and quarter the original spatial sampling. The coarse-grid solutions
were much faster to compute, with the original problem taking 40 minutes,
2x decimation taking 6 minutes, and 4x decimation less than 2 minutes. I
will use these examples to illustrate the general multilevel strategy, after first
giving a general description and outline of the method in the next section.

5.3 A multlevel strategy for REPSI

We observed in the previous section that coarse-scale solutions of REPSI
closely resemble decimated versions of the solution at the original sampling
interval. It is thus reasonable to postulate that the computation budget
would be more efficiently spent on updates at the coarser level first until
all coarse-scale information is exhausted, assuming that we also have an
effective mapping (i.e., interpolation) from coarser grids to finer grids.

For the sake of simplicity and brevity, we fix a decimation ratio between
subsequent grid sizes, such that we can choose our interpolation methods
with a known criterion. In this chapter, we simply choose a 2x decimation
and interpolation ratio. Today, this degree of interpolation is routinely per-
formed in SRME multiple removal procedures on existing surveys. Typically,
field data (at least for marine) will have a shot sampling that is one-half that
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Figure 5.4 Synthetic data shot gathers at (a) the original spatial sampling
and at (b,c) two levels of spatial decimation, with appropriate time-domain
low-pass filters (at 30 Hz and 15 Hz respectively) to mitigate artifacts spa-
tial aliasing when computing the surface-related multiple wavefield. The
sampling of the time axis remains untouched.

of receiver sampling, so this level of interpolation is considered routine and
be achieved reasonably well by, e.g., NMO-corrected trace averaging. Re-
cursion of this approach leads to a multilevel strategy for efficiently solving
the REPSI problem, which I outline in Algorithm 1.

As discussed in the introduction, because the REPSI problem inherently
involves solving an integral equation of the second kind (Frijlink et al., 2011),
our proposed method bears some theoretical connection to the general class
of algebraic multigrid algorithms, although we are not able to take advan-
tage of many of the theoretical guarantees of multigrid for parabolic PDE
systems due to the hyperbolic nature of the wave equation operator. Never-
theless, this method should outperform unmodified REPSI in computation
time provided that the interpolated coarse-scale solution brings g closer to
the true finer-grid solution than the computationally equivalent number of
iterations on the finer-grid problem.
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Figure 5.5 Computed multiple-free seismic impulse response shot gath-
ers using a straightforward application of the REPSI algorithm, from the
original data and from its decimated, low-pass filtered versions shown in
Figure 5.4. Even though its input data was low-pass filtered at 15Hz, the
solution shown in (c¢) retains a wide-band, “deconvolved” appearance with
good resolution of the two separate events at t=0.9s. More importantly, the
coarse-grid solutions were much faster to compute, with the original problem
taking 40 minutes, (b) taking 6 minutes, and (c) less than 2 minutes.

Algorithm 5.1 Multilevel acceleration strategy for REPSI

= e
N =~ O

©O© 0 N O Ok W N =

Input: wavefield data p containing surface multiples

Choose maximum data decimation factor 2%, set scale variable s=S

Set initial solution gs_g to zero vector

Repeat
ps < subsample original data in all spatial coordinates by factor of 2%
Low-pass filter in the time domain on ps to remove spatial aliasing
Solve the REPSI problem on subsampled data ps, initializing from g
gs—1 < interpolate solution g, in all spatial coordinates by factor of 2
s «+ s —1 (go to finer scale)

. until scale variable s=0 (reached original spatial sampling)
. Solve the REPSI problem on original data p, initializing from g
. Output: approximate solution g to the REPSI problem (equation 2.4)
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Figure 5.6 Zero-offset trace for the computed REPSI solutions shown in
Figure 5.5. As can be seen, most of the major events coincide, although
noticeable degradation can be seen in the 15Hz solution, suggesting that
further subsampling might produce results with completely unrecognizable
events.

5.4 Numerical example

In this section I will illustrate the multilevel strategy using the familiar
synthetic dataset shown in the previous sections. I also use the descriptions
in this section to expand on some practical details of the multilevel strategy,
as well as give tangible figures for computational time savings. I will also
use a North Sea dataset similar to the one used in the last section (but with
pre-interpolated near-offsets) to demonstrate the viability of this method in
practical application, even though the interpolation and decimation tools
used here are relatively simple.
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5.4.1 Synthetic data example

Using the fully-sampled, fixed-spread 2D synthetic seismic line data shown
in Figure 5.4a, I illustrate the performance improvements possible with our
proposed multilevel strategy. This is the same synthetic dataset that was
heavily featured in the previous chapters. The original spatial sampling
is 15 m in both the source and receiver coordinates, with 150 source and
receiver locations, and 512 time samples. The data was modelled using a
source function of a zero-phase Ricker wavelet with peak frequency at 30
Hz, with the highest available frequency at around 60 Hz, near the cutoff
for the maximum spatial wavenumber supported by the 15 m sampling.

As shown in Figure 5.5, directly applying the unmodified REPSI algo-
rithm to decimated, smoothed versions of the original data yields decimated,
non-smooth versions of the original solution, due to the sparse-promoting na-
ture of REPSI. The impulse response shown in Figure 5.5b is computed from
the data shown in Figure 5.4b, which is a 2x decimated version of the origi-
nal data (spatial sampling at 30 m, dropping every other receiver trace and
also every other shot record from the original data) followed by low-pass fil-
ter with a one-sided Hanning window at 30Hz. Similarly, Figure 5.5¢ follows
from the data shown in Figure 5.4c with 60m spatial sampling and low-pass
at 15 Hz. The three different solutions in Figure 5.5 all took roughly 75
iterations of the REPSI algorithm. Due to the cubic scaling of compute
operations with the number of grid points, obtaining the coarsest-scale so-
lution in Figure 5.5¢ is roughly equal in runtime to just 1 iteration of the
original undecimated problem.

We now follow the multilevel strategy outlined in Algorithm 5.1, start-
ing with the coarsest decimation factor 4x (corresponding to s = 2). As
hinted in Figure 5.6, decimation factors coarser than this produced Green’s
functions that are too erroneous to act as a good starting model. The EPSI
problem is solved at this scale (shown back in Figure 5.5¢), using 75 itera-
tions as described above. This takes roughly 2 minutes on a contemporary
workstation. The Green’s function solution at 4x decimation is then mapped
to the next finer gird of 2x decimation (corresponding to s = 1) via a simple
linear interpolation after applying NMO correction in the common-midpoint
domain (using a constant velocity of 1600 m/s), which effectively decreases
the maximum spatial wavenumber in a deterministic way by reducing the
curvature of hyperbolic wavefronts. After interpolation, an inverse NMO
correction is then applied.
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The result of this interpolation and mapping to the 2x grid is shown
in 5.7a. I then run the REPSI algorithm using the 2x decimated and low-
pass filtered data shown in Figure 5.4b, using the interpolated 4x solution as
the initial solution of the iterative algorithm. This would also mean skipping
the original spike-picking initialization step outlined in Section 3.3.5. Note
that the solution for the wavelet q at 4x needs to be discarded, since it will
have the spectral imprint of the 15 Hz low-pass filter which is applied to
the 4x decimated data, and is thus invalid for the 2x decimated data that
is low-pass filtered at 30 Hz. A new initial wavelet must be therefore be
estimated instead from the interpolated solution.

After 30 iterations at the 2x grid, we obtain a solution that is comparable
to the misfit achieved after 75 iterations at 2x grid starting from an empty
initial solution. The resulting Green’s function is shown in Figure 5.7b,
which can be compared to the reference solution for this scale shown in
Figure 5.5b.

0 0

0.2 0.2

0.4 0.4

% 06 0.6
[0}
£

Fos8 0.8

1.21 F 1.2
1.4 ; ; 1.4 T T
0 1 2 0 1 2
Position (km) Position (km)
(a) initial at 2x (b) final at 2x

Figure 5.7 The Green’s function model at the 2x decimation (30 m) sam-
pling, computed as part of a multilevel continuation strategy for accelerating
REPSI. Panel (a) shows the NMO-interpolated solution of the REPSI prob-
lem at 4x decimation (shown in Figure 5.5¢), which is used as initial model
for the REPSI problem at 2x. Panel (b) shows the final Green’s function
solution at 2x decimation, using 30 gradient iterations.
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(a) initial at original sampling (b) final at original sampling

Figure 5.8 The Green’s function model at the original (15 m) sampling,
computed as part of a multilevel continuation strategy for accelerating
REPSI. Panel (a) shows the NMO-interpolated solution of the REPSI prob-
lem at 2x decimation (shown in Figure 5.7b), which is used as initial model
for the REPSI problem at the original sampling. Panel (b) shows the final
Green’s function solution at the original sampling of the data, using just 15
gradient iterations.

Finally, we go to the final s = 0 outer loop in Algorithm 5.1, taking
the bootstrapped 2x grid solution from Figure 5.8b, and use it (again, after
NMO correction and interpolation, shown in Figure [#5.8a]) as the initial
solution in a REPSI problem at the original scale. The resulting Green’s
function for this original scaling is shown in Figure 5.7b, which can be com-
pared to the reference solution for this scale shown in Figure 5.5a. This time,
we obtained an acceptable solution after just 15 iterations, comparable in
misfit to 75 iterations starting from empty solution.

Figure 5.10 compares the final demultipled wavefields as computed
through the multilevel strategy against a reference solution computed com-
pletely at the original scale. The results are very similar despite the multi-
level strategy requiring only one-third of the runtime of the original method,
as described in Figure 5.9.
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Unmodified REPSI 75 iters

Multilevel REPSI

max 4x decimation 15 iters

0 5 10 15 20 25 30 35 40
Wall time (minute)

Figure 5.9 Runtime comparison for the synthetic data example between
REPSI run entirely at the original spatial sampling (40 minutes), and
the proposed multilevel strategy beginning at 4x decimation of the data
(12 minutes). Different colours denote REPSI computation at different
decimation levels of the data, with yellow the original sampling, light blue
the 2x decimation, and dark blue the 4x decimation. Brown colour denotes
computations done for interpolation to a finer grid.

5.4.2 Real data example

The dataset used in this section is similar to the North Sea dataset used in
Section 4.3.2. However, to isolate the results in this chapter from any algo-
rithmic choices made in the methods in introduced last chapter, I have de-
cided to pre-interpolate any missing near-offset traces using parabolic Radon
transform. The original dataset has a 12.5 m spatial sampling, with 361
source and receiver positions and 1024 time samples, making it significantly
larger than the synthetic dataset above. Like the synthetic example, I pre-
pare two levels of decimated data at 25 m (2x decimation) and 50 m (4x
decimation) sampling, and low-pass filtered at 40 Hz and 20 Hz respectively.
These different decimations of the data are shown in Figure 5.11.

For the real data example I will skip plotting the intermediate scale
solutions, which are mainly for illustrative purposes, and show directly the
final results. A summary of the runtime reduction is shown in Figure 5.12.
A three-times speedup was achieved, which is similar to the synthetic case,
and largely influenced by the number of iterations at the original scale in
the final outer loop.
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Figure 5.10 Synthetic example comparison shot-gathers of the final demul-
tipled primary wavefield between the REPSI algorithm run at the original
spatial sampling, and the proposed multilevel strategy beginning at a 4x
decimation of the data.
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Figure 5.11 North Sea field data shot gathers at (a) the original spatial
sampling and at (b,c) two levels of spatial decimation, with appropriate time-
domain low-pass filters (at 40 Hz and 20 Hz respectively) to mitigate artifacts
spatial aliasing when computing the surface-related multiple wavefield. The
sampling of the time axis remains untouched.

From full data 70 iters
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from 4x decimated i
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Figure 5.12 Runtime comparison for the North Sea field data example,
between REPSI run entirely at the original spatial sampling (209 min-
utes), and the proposed multilevel strategy beginning at a 4x decimation
of the data (79 minutes). Different colours denote REPSI computation at
different decimation levels of the data (c.f. Figure 5.9).
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Figure 5.13 North Sea field data example: shot-gather comparison of the
final obtained primary wavefield solution between the REPSI algorithm run

at the original spatial sampling, and the proposed multilevel strategy begin-
ning at a 4x decimation of the data.
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Figure 5.14 North Sea field data example: NMO stack comparison of the
final obtained primary solution between the REPSI algorithm run at the

original spatial sampling, and the proposed multilevel strategy beginning at
a 4x decimation of the data.
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Figure 5.13 compares the final demultipled wavefields for the real data
example as computed through the multilevel strategy, against a reference
solution computed completely at the original scale. The two results here are
extremely similar, and the differences are hard to discern visually.

To ensure that we do not end up removing erroneous surface multiple
events using the multilevel strategy, in Figure 5.14 I show NMO-corrected
time domain stacks as a rough approximation of a seismic image computing
from this data. Specifically, Figure 5.14d shows an image of the multiple
prediction generated from the reference solutions’ Green’s function when con-
volved with the original data. Figure 5.14e shows an image of the difference
between the primary wavefield generated by both the multilevel strategy
solution and the reference solution. Comparing the two, we see that the
approximation error is mainly concentrated on small amplitude differences
on existing surface multiple events, and no extraneous or spurious artifacts
are introduced by following the multilevel strategy.

5.5 Summary

The main motivation behind this chapter is the observation that interme-
diate solutions to the Robust EPSI problem can be computed on a coarser
gird and interpolated to a finer grid orders-of-magnitude faster than the time
required to reach comparable accuracy when working directly on the finer
grid. To exploit this discrepancy, I proposed a method based on a multilevel
inversion strategy to substantially reduce the computational requirements
of Robust EPSI.

I have also demonstrated on both synthetic and real 2D seismic lines
that, without appreciable loss in solution quality, significant speedups for the
Robust EPSI algorithm is possible using this approach. Further speedups
can be expected for a 3D acquisition geometry due to the higher computation
complexity order as a function of grid point density.
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Chapter 6

Conclusions

Throughout this thesis I have developed a method called Robust EPSI, which
is a novel algorithm aimed at reliably solving the EPSI problem for surface-
related primary estimation using contemporary methodology inspired by
recent trends in large-scale sparsity-promoting optimization. In Chapter 3,
I formalized the Robust EPSI problem as a formal bi-convex optimization
problem, and proposed an effective solver for this problem that requires less
parameter tweaking compared to existing algorithms while delivering im-
proved results. In Chapter 4, I extended the multiple prediction model of
Robust EPSI to account for contiguous unobserved gaps in the input wave-
field using scattering terms, and as a result was able to mitigate larger gaps
than the existing proposed method of explicitly estimating the missing data.
In Chapter 5 I proposed a multilevel continuation strategy that significantly
speeds up the computation time for the Robust EPSI problem.

In the introduction chapters of this thesis I brought up several shortcom-
ings of the EPSI algorithm as it was originally stated in van Groenestijn and
Verschuur (2009a). My work in this thesis results in the following findings
which contribute to addressing those shortcomings:

1. The EPSI problem can be effectively described as a dual variable, bi-
convex optimization problem. Under a cyclic block coordinate descent
scheme, the bi-convex problem decomposes into a basis pursuit de-
noising (BPDN) problem in the variable describing the surface-free
Green’s function, and a constraint satisfaction problem in the variable
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describing the source signature. I call this formalism the Robust EPSI
problem. (Chapter 3)

. A continuation-based convex solver based on the BPDN Pareto root-
finding paradigm can effectively solve the above Robust EPSI prob-
lem after a suitable initialization step for the unknown wavelet. The
Green’s function model is obtained as a typical sparse regularization
problem, while the wavelet is updated along the way to minimize the
misfit of the forward model by solving a constrained massively overde-
termined least-squares fitting before each continuation step. The over-
all approach is an extension of an existing method called SPG/¢;. The
algorithm performs well on test synthetic and field data, and is able
to produce more accurate models of the Green’s function while also re-
quiring less parameter input when compared to the existing algorithm.
I call this solution method the Robust EPSI algorithm. (Chapter 3)

. The forward wavefield convolution model used in Robust EPSI can
be augmented with a truncated scattering series to mitigate multiple
errors introduced by propagating an incompletely sampled wavefield.
These scattering terms are mainly composed of the corresponding or-
der of surface multiples which decay in amplitude, and therefore just
the first few terms of this series is enough to account for the majority
of the errors introduced by incomplete wavefield sampling. (Chapter
1)

. The modified Robust EPSI problem that uses the above augmented
forward multiple prediction model no longer takes the form of a simple
BPDN problem with respect to the Green’s function. However, the
Robust EPSI algorithm can be easily adapted to this problem with a
straightforward relinearization scheme under a suitable preconditioner.
The resulting algorithm is shown to outperform an existing explicit
data reconstruction scheme for EPSI, in the sense that it is able to
more accurately obtain the whole primary wavefield under a larger
near-offset gap in the seismic data. (Chapter 4)

. A simple multilevel continuation strategy can successfully accelerate
the computational runtime needed for Robust EPSI without appre-
ciable changes to the underlying algorithm nor the implementation.
This strategy offloads early iterations of the Robust EPSI algorithm to
coarser spatial grids run at more iterations. A straightforward choice
of restriction and prolongation operations that utilizes low-pass filter-
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ing and post-NMO interpolation can be effective at avoiding aliasing
issues when moving between different sampling grids. Overall, on 2D
real and synthetic data I showed that one can expect the computation
time to be 25% of that needed by the unmodified algorithm, without
appreciable loss in accuracy. Analysis shows that more drastic com-
putation savings is expected for 3D. Since EPSI is often considered
a computationally expensive method, this contribution goes a long
way towards improving its practicality on existing computer hardware.
(Chapter 5)

6.1 Impact to the current field of multiple
removal

For the field of surface multiple removal to evolve, it is now considered
very important for the inversion-based methods, such as EPSI, to receive
more widespread adoption. There are many existing acquisition scenarios
for which the current SRME methodologies, even with sophisticated adap-
tive subtraction methods, fail to acceptably perform multiple removal. An
example of this would be shallow-water (less than 200 m) acquisition where
surface multiples are exceptionally strong, yet at the same time it is ex-
tremely difficult to get acceptable near-offset measurements. Another exam-
ple would be in cases where surface multiples overlay with very weak but
important primary signal, such as sub-salt areas, to the degree that adaptive
subtraction can never hope to cleanly preserve the primary.

The contributions made in the thesis thus impact the existing survey
industry by removing many of the existing roadblocks leading to practical
EPSI adoption, as well improving on its capabilities. The work in Chapter
3 takes most of the guesswork out of using EPSI by removing many free
parameters introduced by the ad-hoc sparse regularization, while providing
a better solution quality of the Green’s function. Since the publication of
this chapter in Geophysics, some authors have independently implemented
the Robust EPSI algorithm and verified that it does indeed provide a more
accurate solution for the primary wavefield with less parameter tweaking
(Czyczula Rudjord et al., 2015). In Chapter 5, I further improve on the
practicality of this method by introducing a simple way to make its compu-
tation significantly faster, with tools that practitioner would easily have at
their disposal. In Chapter 4, I improved the inherent capabilities of EPSI,
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providing a way to deal with even larger near-offset gaps than EPSI was ever
previously shown to work in existing literature. Altogether, this collection
of work should hopefully make adopting and implementing the general EPSI
paradigm a more enticing prospect for working seismic surveyors.

6.2 Future research directions

In general, the EPSI technique, and primary estimation by inversion, is in
its nascent stages of development. This thesis has made significant progress
in terms of making EPSI practical for existing surveying projects, but more
could be done in that regard. One obvious direction is towards a full 3D
implementation of Robust EPSI. We did not get to it, but many of the
contributions in this thesis are done with eventual 3D implementations in
mind, and in service of it. For example, the acceleration strategy developed
in Chapter 5 was always meant for a full 3D implementation, as that is where
we expect to see the most drastic reduction in computing costs compared to
a fully sampled 3D EPSI problem that is currently considered impractical
on existing hardware.

A major roadblock for a full 3D formulation is one that I did not di-
rectly address in the thesis: the issue of undersampling. Even in Chapter 4,
which concerns mitigating missing data, I have made a careful distinction of
sampling patterns that results in a large gap of missing data from one the
introduces spatial aliasing issues due to undersampling. The latter is special
in that it invalidates the assumptions of the wave equation in such a way
that our forward model becomes fundamentally unable to correctly produce
a multiple wavefield using the type of convolution discussed in this thesis.
So far all, the 2D data we use have only seen a 2x upsampling when interpo-
lating the source coordinate. In 3D, it is very common to require much more
difficult interpolations, with cross-line sampling distance to 5 times or even
10 times the in-line receiver sampling. It remains to be seen whether current
upsampling techniques introduce prediction errors that severely compromise
both EPSI and REPSI. One possible solution to this can come from a hybrid
approach, combining some of the the scattering method in Chapter 4 with
other kinds of interpolation methods currently available.

In the current literature, many extensions to the EPSI paradigm exist
that tweaks the prediction model for slightly acquisition designs. For ex-
ample, the surface integration does not necessarily need to be coincident
with the source and receiver locations (and often are not). As alluded to
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the introduction section, for marine streamer acquisitions this can be simply
satisfied with proper receiver or source-side deghosting, but one can think
of more extreme cases such as when receivers are ocean bottom nodes or
cables, in which case it may be separated hundreds of meters from the in-
tegration surface. There is existing work that extends EPSI to this kind
of acquisition by introducing wave propagation operators into the integral
expression for the multiples (van Groenestijn and Ross, 2011). These kinds
of extensions can easily be brought to the Robust EPSI scheme. Speaking
in broad terms, some more low-hanging contributions can be made by work-
ing to relax either the source signature model q (e.g., van Groenestijn and
Verschuur, 2011) or the surface reflection operator R (e.g., AlMatar, 2010)
to capture the physical characteristics of different field surveys.

Finally, a very rich area of investigation lies in developing a deeper the-
oretical link between blind deconvolution and EPSI. As Figure 3.5 showed,
the Robust EPSI approach results in a clean estimate of the Green’s function.
This opens up the possibility of using Robust EPSI as a physically-consistent
way to deconvolve the source signature. This approach will differ from the
traditional “spiking” deconvolution in that it additionally exploits informa-
tion from the multiples to construct the impulse response. Some early work
on this topic in terms of spectrum recovery of seismic data can be seen in
Lin and Herrmann (2011). It is possible that (Robust) EPSI can play a
very important role in preparing seismic data for applications that require
wide-band data.

Furthermore, as was discussed in section 2.5.3, the inherent feedback
mechanism in EPSI by itself has interesting theoretical implications as a
variation on the traditional blind deconvolution models, in in the sense that
it introduces a more constrained relationship between the wavelet model and
the signal model. There is an existing work with colleagues that exploits
this general problem form for a novel deconvolution algorithm (Esser et al.,
2015). A more costly but more sophisticated deconvolution algorithm fits
naturally into the multilevel strategy in Chapter 5: at the very coarse scales,
computation is extremely cheap, but the bandwidth limitation imposed by
the low-pass filter becomes more daunting, so being able to get a more
accurate solution from a computationally costly algorithm can be welcome.
I find this line of research very promising, and definitely plan to pursue this
inquiry in the future.
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Appendix A

Pareto root-finding for the
minimum £{-norm solution

The Pareto curve of a basis pursuit denoising (BPDN) problem character-
izes its optimal solutions; it relates any choice of a target misfit o to its
corresponding optimal /;-norm objective. Because the BPDN problem is
convex, this relation is bijective. The most convenient way to express the
Pareto curve for our purposes is to write the optimal misfit o(7) of a given
optimization problem as a function of 7 the ¢1-norm constraint imposed on
the unknown. In other words, we define

o(7) := minimize ||y — Ax||2 subject to |x|: < 7. (A.1)
X

Note that this form is natural for describing Lasso problems, where o(7)
is the optimal objective value for a given ¢;-norm ball constraint 7 . See
Figure A.la for an illustration of the Pareto curve in a 2d plane of possible
solutions characterized with ||x||; on the horizontal axis and ||y — Ax||2 on
the vertical axis.

The idea of looking at the Pareto curve for ¢i-norm minimization is
not new. It was described in van den Berg and Friedlander (2008) and
Daubechies et al. (2008) as the basis of novel solvers, and in Hennenfent et al.
(2008) as a way to characterize the various optimization routines for geophys-
ical compressive sensing problems. Specifically, van den Berg and Friedlan-
der (2008) proved that the Pareto curve as defined here (as a function of 7)
is convex, decreasing, and continuously differentiable for 7 € [0, 7*], where

139



APPENDIX A. PARETO ROOT-FINDING FOR THE MINIMUM #1-NORM SOLUTION

Q a(0) = |lyll2

region of
feasible solutions

ly — Ax|[2

Pareto curve 0'(7’)
region of
infeasible solutions

Bl
Il
3

7= [[x[h

(a)

solving LASSO
via projected gradient

Figure A.1 Illustrations of the Pareto curve. Panel (a) shows the Pareto
curve in the parameter space of possible solutions. Panel (b) depicts one
iteration of the root-finding procedure to find the minimum ¢; norm that
gives the target energy misfit &.

*

7* is the optimal objective of the BP problem miny ||x||; s.t. y = Ax. Fur-
thermore, given an optimal solution X at any point on the Pareto curve,
the slope A of the Pareto curve at that point is given by the closed form
expression A = —||Afr||/||r||2, where r is the residual vector y — A%, and
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the o, norm is equal to the largest absolute value amongst all the elements
of the vector.

These properties allow us to find the optimal ¢;-norm 7 for any BPDN
problem, by using Newton’s method to solve o(7) — & = 0 (van den Berg
and Friedlander, 2008, 2011). Refer to Figure A.1b for a depiction of this
procedure. Starting with any solution that lies on the Pareto curve X, with
¢1-norm of 73, and mismatch oy (I overload the iteration counter k to keep
track of the Newton’s method iterations), we iterate over subsequent guesses
of the root using the rule 7411 = 7% + A7, where A1, = — (o) — &)/ Ak

In the typical case where noise will cause the observation y to not be in
the range of A, the Pareto curve will not reach ¢ = 0, but will instead have
an asymptote at the least-squares misfit ¢* = min ||y — Ax||2 (van den Berg
and Friedlander, 2011). We therefore need to make sure that our target
residual & satisfies & > o*. A pragmatic approach to this condition is to
monitor A~ through the Newton iterations and stop the inversion when its
magnitude becomes unreasonably large, which would indicate the asymptote
at o*.

Since obtaining the slope in the Newton root-finding scheme requires
knowing an optimal solution x on the Pareto curve for each of the £;-norm
restrictions 7, its success hinges on the ability to quickly solve problems of
the form

minimize ly — Ax|2 subject to |x|; < 7. (A.2)

This is typically called a Lasso problem, which differentiates itself from
BPDN by an interchanged role between the objective and the regulariz-
ing metric, resulting in an objective function is actually differentiable (Tib-
shirani, 1996; Osborne et al., 1999). Because of this differentiability, a
Lasso problem can be solved much faster than BPDN using projected gra-
dient methods (van den Berg and Friedlander, 2008; Schmidt et al., 2007;
Daubechies et al., 2008). Furthermore, the algorithm used to solve each
Lasso problem can be initialized with the solution of the previous Lasso
problem, which distributes the burden of descending the misfit and ensures
that each Lasso problem does not require increasingly larger number of it-
erations. A successive of Lasso problems solved in this way, with the series
of £1-norm restrictions 73 prescribed by the Newton’s root-finding method
until the optimal 7 is found for the target misfit, forms a continuation-based
BPDN solver that was introduced in van den Berg and Friedlander (2008).
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