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Abstract

We use classical density functional theory to investigate the interactions be-

tween solvents and proteins. We examine a diverse experimental literature

to establish thermodynamic properties of protein-cosolute interaction, par-

ticularly the compensation between transfer entropy and transfer enthalpy.

We develop a method of analysing the uncertainties in such measurements

and use the method to resolve a long-standing debate over entropy-enthalpy

compensation. We develop a classical density functional theory for inter-

actions between proteins and cosolutes. The theory developed here ignores

the solvent-solvent interaction but is nonetheless quite accurate. We use this

approach to reproduce transfer free energies reported elsewhere, and show

that the cDFT model captures the desolvation barrier and the temperature

dependence of the transfer free energy. We use experimental values that we

have analyzed to define the parameter space of a model density functional

theory approach. We then extend the classical density functional theory to

capture protein-water interactions, thus developing a new implicit solvent

model. Along the way we give a proof that the free energy of a bath of

particles in a finite external potential is independent of the external poten-

tial in the isothermal-isobaric ensemble. We finally discuss the challenges

remaining in implementing our implicit solvent model.
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Chapter 1

Introduction

Proteins are a class of biological molecules which facilitate essentially ev-

ery biological process. The primary activity of DNA is coding for proteins;

proteins thus act as the intermediary between genetic information and the

physical outcome in an organism. Proteins act as hormones, enzymes, cel-

lular structure elements, transportation, and play many other roles in the

organism. A full understanding of their structure and function is thus sought

both for foundational understanding of biology and for purposes of practical

medical treatment of currently intractable diseases. For example, most new

drug design efforts target proteins[1]. Understanding proteins is crucial for

efforts to combat a variety of diseases, including cancer, Alzheimer’s, and

ALS[2].

Proteins are long molecules made up of a chain of amino acids. There

are twenty different amino acids in eukaryotic proteins, forming an alphabet

out of which the sequence of each protein is made. Once assembled into

a protein, an individual amino acid is known as a residue, and consists of

two parts: a backbone component that is the same for each amino acid and

links them all together, and a side chain that differentiates the amino acids

and provides much of their functionality. Many proteins “fold”, adopting

a well-defined three-dimensional structure. This structure then determines

the function of the protein. The central dogma of molecular biology is that

the folded structure of the protein is uniquely determined by its sequence[3].
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Figure 1.1: Protein structure elements. Primary (A), secondary (B),
tertiary (C) and quaternary (D) structure of a protein.

Understanding the way in which the folded structure is determined from the

sequence and the protein’s environment is a key challenge facing researchers.

In protein terminology the primary structure refers to the sequence of

amino acid residues; see Figure 1.1. The secondary structure is a small set

of structures which are seen in many proteins. These include α-helices and

β-sheets. These secondary structures and so-called unstructured regions

(regions of the primary structure which do not have an identified secondary

structure) fold together to form the tertiary structure. Individual protein

molecules (monomers) often come together to form complexes, and this is

referred to as quaternary structure.

1.1 Experimental Methods

Given the limits of ab initio structure prediction and the long time scales on

which proteins fold, computational studies typically start with experimental

structures. Further, since the structure of the protein is the most funda-
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mental thing about it from a biochemical perspective, much work has gone

into determining it. The most common ways of determining this structure

are x-ray crystallography and nuclear magnetic resonance (NMR). X-ray

crystallography methods rely on scattering x-rays from proteins which have

been condensed into a regular crystal[4]. NMR methods use the relaxation of

nuclear spins to determine the chemical environment of each nucleus (typ-

ically hydrogen) and thus the structure of the protein. Various structure

motifs in a protein give rise to distinct NMR signals, which allows for the

structure to be reconstructed with specialized software[5]. Both x-ray crys-

tallography and NMR require a thermodynamically large number of copies

of the protein in the same conformation. These methods are thus limited

to well-structured proteins. Obtaining structural ensembles of proteins (or

regions of proteins) that are intrinsically disordered is an ongoing challenge.

In addition to the folded structure of the protein, experiments can seek

out the thermodynamics of folding and unfolding. Typically the protein

of interest is placed in a buffer and either the temperature or the solution

composition is varied to drive the transition from folded to unfolded. The

techniques to measure the resultant behaviour most relevant to this thesis

are differential scanning calorimetry (DSC) and circular dichroism.

Circular dichroism refers to the differential absorption of right and left

circularly polarized light. At certain wavelengths in the UV range secondary

structures of a protein have a characteristic difference in the amount of right

and left circularly polarized light they absorb. Thus the circular dichroism

at that wavelength of a sample indicates the percentage of proteins that

have those secondary structures intact–i.e the fraction of folded proteins[6].

This analysis typically assumes a two-state folding process, so that if a

single secondary structure element is missing, the entire protein is unfolded.

As we will discuss in chapter 2, the two-state assumption is quite good for

a broad class of proteins.

Calorimetry refers to any of the variety of ways of determining the heat

capacity of a sample. Differential scanning calorimetry involves heating

two samples, one of which contains the protein of interest and the other of

which is a reference. The difference in heat required to keep both samples

3



to the same temperature vs time is then recorded and the heat capacity

extracted from this. Of particular interest is the heat capacity as a function

of temperature during the process of unfolding the protein. This information

can be used to determine the stability of a protein (that is, the minimum

work required to unfold it at a certain temperature) as well as the extent to

which that stability is determined by enthalpic and entropic effects[7].

There are obviously many other ways proteins are studied experimen-

tally. Experiments that pull on the protein with AFM or optical tweezers

are used to gain information about the stability of the protein structure

and the unfolding and folding pathways. Binding experiments can also be

performed, in which an agent which binds to the protein in one state (eg

the unfolded state) but not another. This agent can then be measured and

serve as a proxy for the amount of unfolded protein.

1.2 Entropy Enthalpy Compensation

Enthalpy and entropy play an intimately connected role in the free energy

change during numerous biochemical processes. It has long been known,

for example, that the transfer of hydrocarbons such as alkanes or alcohols

from pure solvent to water is generally exothermic or enthalpically favorable

(∆H ≈ −(3-6)kcal/mol for methane-butane) but entropically unfavorable,

with T∆S typically 2-3× the magnitude of the enthalpic contribution [8, 9].

These opposing thermodynamic forces result in a net free energy change

that is smaller than either of the enthalpic or entropic contributions.

The first part of this thesis concerns an effect known as entropy-enthalpy

compensation. For a variety of physical processes including solute trans-

fer [10], unfolding of various proteins [11], and ligand binding, ionization,

and hydrolysis [12], the changes in enthalpy and entropy obey a nearly linear

relationship when a variable such as binding ligand is varied; this is referred

to as entropy-enthalpy compensation [12–17]. The effect is ubiquitous but

not universal [18]. The slope of the enthalpy vs. entropy plot, referred

to as the compensation temperature Tc, ranges from about 150K (e.g. for

alkane vaporization [19]) to about 300K (most processes). The difficulty in
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designing high affinity drugs has been attributed to entropy-enthalpy com-

pensation [20–22].

As mentioned above, entropy-enthalpy compensation is not an inevitable

consequence of statistical mechanics, particularly along chemical reaction

coordinates. Long-lived metastable states due to large barriers, and thus

the absence of any significant entropy-enthalpy compensation along the re-

action coordinate, are fairly common in condensed matter and biophysics.

The diamond phase of carbon is metastable to graphite at standard tempera-

ture and pressure, with an enormous conversion barrier; allotropes of boron,

polymorphs of silica, and martensite in steel are all metastable phases with

prohibitive transition barrier; colloidal systems and emulsions have long-

lived metastable phases; long-lived structure with slow, glassy dynamics is

common in supercooled liquids; the covalent bonds forming the backbones

of DNA, RNA, and proteins are metastable to hydrolysis; several proteins

have native, functional states that are metastable, but simply have enor-

mous kinetic unfolding barriers, including alpha-lytic protease, subtilisin,

Streptomyces griseus protease B and the aspartic peptidase pepsin [23]. In

multimeric systems of chain length . 100 amino acids, native protein struc-

tures have been observed to have higher free energy than the amyloid phase,

implying that a significant portion of the proteome is conformationally in

metastable equilibrium[24]. In contrast to these observations, as a general

rule, entropy-enthalpy cancellation does play a critical role in governing

the foldability of proteins and resolving the Levinthal paradox [25]. Small

barriers in protein folding have been shown to arise due to the locality of

interactions and the concomitant loss of entropy in forming stabilizing in-

teractions. If it were not for entropy-enthalpy cancellation as protein chain

conformations progressed towards native-like folds, folding barriers would

be prohibitively high, proteins could not fold on biological time scales, and

life as we know it would not be possible.

The entropy is often obtained from measurements of the enthalpy and

free energy by subtraction; one complication however is that errors in en-

thalpy are often much larger than errors in free energy. In these cases

the error in enthalpy can induce a spurious linear relation to the entropy,
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for example in early measurements for oximation reactions of alkyl thymyl

ketones [26], correlated entropy-enthalpy errors were sufficiently large that

they could account for the whole measurable effect of entropy-enthalpy com-

pensation, which could then not be definitively proven, regardless of whether

or not it existed. Correlated errors generally have an effective compen-

sation temperature equal to the temperature at which the measurements

were taken. Compensation exists however when large entropy and enthalpy

changes either cancel or compensate each other to yield a relatively small net

free energy gain for a given process, regardless of the compensation temper-

ature, and includes cases where the compensation temperature equals the

lab temperature [13, 16, 27]. As well, even if the compensation temperature

is quite different from the temperature of the experiments, if the correlated

scatter is sufficiently large, it can rule out the significance of the effect. Thus

there is a need to introduce more rigorous error analysis to judge the sig-

nificance of any observed entropy-enthalpy compensation. We develop such

an analysis in Chapter 2.

1.3 Implicit Solvent Models

Proteins fold and function in the crowded environment of the cell. Cytoso-

lic proteins must negotiate a complex milieu which in many ways is signifi-

cantly different than the environment in the test tube: roughly 15% of water

molecules are motionally restricted by protein and membrane surfaces [28];

the surrounding solvent is enriched in ions such as Potassium but depleted in

Sodium and Chlorine; osmoprotectants such as trehalose and various amino

acids are present in significant concentration; numerous membrane surfaces

such as the nucleus, ER, and Golgi impose charged substrates for protein

interaction; macromolecular agents such as the microtubules, actin, ribo-

somes, soluble proteins and RNA occupy roughly 30% (≈ 300g/`) of the

cellular volume, and modulate stability [29], aggregation propensity [30],

and dissociation constants [31, 32].

Non-cytosolic proteins also fold in environments distinct from the test

tube as well as the cytosol, particularly with respect to ionic and redox condi-
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tions as well as the chaperone complement. Proteins destined for the plasma

membrane or extracellular matrix are trafficked by the secratory pathway

through the ER and Golgi [33]. The environments in the ER and cytosol

are sufficiently different that the conditions for protein folding are generally

mutually exclusive between the two milieux. Folding generally occurs in

the lumen of the ER, while function occurs either on the plasma membrane

or in the extracellular matrix, which is itself densely occupied by highly

charged glycosaminoglycans such as hyaluronan and heparin sulfate—large

molecules that may facilitate cellular migration and regulate secreted pro-

tein activity. Fibrous proteins such as collagen and fibronectin also occupy

the extracellular space, and provide structural rigidity while allowing rapid

diffusion of nutrients and signalling metabolites between constituent cells.

The above examples demonstrate the need to correctly account for the ef-

fect of the cell environment on protein folding, stability, and function. Accu-

rately accounting for the effects of the cell environment presents a challenge

however to both experimental and computational studies. Experimentally,

most of what is known about protein folding and stability has resulted from

in vitro studies at dilute concentrations, and many questions remain as to

how well such results apply to a realistic cell environment. Computationally,

including explicit solvent along with a realistic concentration of osmolytes

in a box of sufficient size to implement periodic boundary conditions outside

the range of an electrostatic cutoff typically increases the number of parti-

cles in the simulation by a factor on the order of ten or more [34]. While

this can be done for small proteins such as Trp-cage [34], investigating larger

proteins generally requires coarse-grained models to keep the computational

resources required reasonable [35].

Computational studies of crowding on isolated monomeric minimal β-

barrel proteins find that the folding temperature is increased and the folding

time decreased [36, 37]. However, molecular crowding has been shown in se-

cretory cells to impair protein folding and lead to aggregate formation in the

ER [38]. It has been estimated that increasing the total intracellular protein

concentration by 10% can potentially increase the rate of protein misfold-

ing reactions following a nucleation-polymerization mechanism by a factor
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of 10 [39]. Consistent with these observations and estimates, another MD

folding study of a coarse-grained model of crambin found that the presence

of multiple protein copies with a weak inter-protein attractive potential (a

more realistic scenario) hindered correct monomeric folding and predisposed

the system to aggregation and misfolding [40].

The above considerations motivate the creation of computational mod-

els, with which we can account for the cellular environment around a protein

in an accurate but less computationally expensive way. Further, while one

might näıvely suspect that an explicit approach would yield results that are,

in principle, exact, a number of difficulties arise in implementing these mod-

els. The ”best” form of the interaction between water and other molecules

depends on the context of the simulation, and a number of different water

models are available with various strengths and drawbacks[41, 42]. Implicit

solvent models attempt to address these issues.

Implicit solvent models are attempts to compute the transfer free energy

of each configuration of the molecule of interest from a vacuum to a solvent

(or, more generally, from one solvent environment to another) through some

function of the coordinates of the solute biomolecule.

∆Gtransfer = g({Ri}) (1.1)

where {Ri} is the set of coordinates that defines the position and configura-

tion of the biomolecule. Knowing the transfer free energy (or its derivatives

with respect to atom position) for each configuration allows the simulation

to update the position of the protein atoms as if the solvent was present.

Expressing the transfer free energy in the form of equation 1.1 eliminates the

need to explicitly simulate the solvent and hence speeds up the simulation—

provided the implicit solvent algorithm is fast enough. A number of models

to compute this transfer free energy have been proposed, with the goal of

calculating ∆G with less computational resources than an explicit solvent,

while maintaining enough accuracy for the purposes of the simulation. Many

such models have been proposed, with various strengths and weaknesses[43].

The most common implicit solvent models split the transfer energy into
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two parts: a dielectric contribution and a non-polar contribution. These

components are each modelled separately and their contributions summed[44].

∆G = ∆Gnonpolar + ∆Gdielectric (1.2)

The dielectric part is typically the most time-consuming part to calcu-

late because of the long-ranged forces involved. The solvent is often as-

sumed to be a continuous dielectric, and the transfer free energy of the

biomolecule from vacuum to solvent can then be computed via solving the

Poisson-Boltzmann (PB) equation with finite element or finite difference

methods[45, 46], which is accurate up to the continuum assumption but

relatively costly[47], or by faster but more approximate methods such as

the Generalized Born (GB) method[48]. Generalized Born in particular has

become popular, and has been implemented and optimized for a variety of

forcefields used in molecular dynamics[49, 50].

In the GB model the starting point is the standard Poisson equation for

a dielectric:

∇ [ε(r)∇V (r)] = −4πρ(r) (1.3)

where ε(r) is the position-dependent dielectric, V the electric potential, and

ρ(r) the density of charge. This can be recast as an equivalent equation for

the Green’s function:

∇ [ε(r)∇G(ri, rj)] = −4πδ(ri − rj) (1.4)

Equation 1.4 has an analytical solution for a model system which consists

of a collection of charges at positions ri inside a sphere of dielectric εin of

radius Rsphere surrounded by an infinite medium with dielectric εout, with

the condition that εout � εin ≥ 1:

G(ri, rj) =
1

εin|ri − rj |
+ F(ri, rj) (1.5)

∆Gel =
1

2

∑
ij

F(ri, rj)qiqj (1.6)
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where ∆Gel is the free energy to insert the set of charges qi into the dielectric

sphere at positions ri and F(ri, rj) is given by

F(ri, rj) =

(
1

εin
− 1

εout

)
1√

r2
ij +

(
Rsphere −

r2
i

Rsphere

)(
Rsphere −

r2
j

Rsphere

)
(1.7)

The term Rsphere − r
Rsphere

is then defined to be the generalized born radius

R. That this radius is constant is an approximation, as it should in principle

include r. The free energy to insert a single charged atom is then

∆Gel = −1

2

(
1

εin
− 1

εout

)
q2
i

Ri
(1.8)

(the limiting case of F when ri = rj) in this case, and this expression is used

to calculate the Born radii for each atom.

Equation 1.7 can be modified in various ways, which has given rise to

several different methods of calculating Born radii[48, 51, 52]. These meth-

ods all share the same essence of calculating a Born radius from a list of

known self-interaction values and then using that radius to calculate the

interaction between charges.

The nonpolar contribution consists of the free energy to create a cavity in

the dielectric and the free energy arising from the van der Waals interaction

between the protein and water. The observed linear dependence of the log

solubility on the number of CH2 groups and hence chain length, particularly

for long chain saturated fatty acids (decanoic acid and longer), and long-

chain aliphatic alcohols (1-butanol and longer), can be taken to indicate a

free energy change upon transfer to solvent that scales linearly with either

volume or surface area. Historically, surface area has been chosen, under the

assumption that interactions with the solvent take place at the surface of

the molecule in question [53, 54]. Then the free energy difference between an

amino acid in water and in a solvent with some osmolyte concentration is,

for a given configuration, given in terms of the solvent accessible surface area

(SASA) of that configuration by the phenomenological expression: ∆G =
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γ ·SASA+c, where γ is obtained from, eg, a tri-peptide experiment [55]. This

approximation is severe, and neglects aspects such as the length of the van

der Waals interaction[56] and the temperature dependence of the free energy,

despite their known importance. The desolvation barrier is another effect of

importance which SASA approaches cannot capture[57]. The surface area

approach can be expanded such that

∆Gnonpolar =
∑
i

γiAi + b (1.9)

where γi and Ai are different regions of the protein. Distinct coefficients can

even be assigned to each residue type. These modifications do not address

either the temperature dependence or the lack of a desolvation barrier.

In addition to the Generalized Born/Surface Area (GB/SA) approach,

there are a number of other approaches which use the general scheme of

expressing the transfer free energy as a sum of non-polar and dielectric

conbributions. Some attempt more efficient calculation of the dielectric

component[58], while others tweak the nonpolar contribution in ways such

as adding a term proportional to the volume of the biomolecule[59]. Recent

simulation studies have found significant volume contributions to transfer

free energies, however [35]. In these studies, model solvents with no enthalpic

interaction (hard sphere solvents) still showed significant transfer free ener-

gies, due solely to excluded volume. Volume corrections to the surface area

model, computed by scaled particle theory or RISM approaches, have been

investigated by several authors [60–63]. As well, Baker and colleagues have

found that the inclusion of volume terms (computed by scaled particle the-

ory) and dispersion integral terms (computed by Weeks-Chandler-Andersen

theory) were essential for an accurate implicit solvent description of atomic-

scale nonpolar forces [64].

While the combination of generalized Born electrostatics and surface

area nonpolar contributions (GB/SA) is perhaps the most popular choice

of implicit solvent, others have been proposed as well. Kovalenko and

colleagues[65] have developed an approach based on solving the Ornstein-

Zernike (O-Z) equation within the reference site interaction model (RISM)
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proposed by Chandler[66]. The O-Z equation describes density correlations

in a fluid, through the equation

h(r12) = c(r12) + ρ

∫
d3r3 c(r13)h(r23) (1.10)

where h(r) = g(r) − 1, the so-called total correlation function, and c(r) is

the direct correlation function. The O-Z equation defines an expansion in

correlation functions between the model’s reference sites, which requires a

closure relation to then solve[67]. In the RISM-3D approach this closure

relation is taken to be

g(r) = exp(χ(r)) for χ(r) ≤ 0 (1.11)

g(r) = 1 + χ(r) for χ(r) > 0 (1.12)

χ(r) = −βu(r) + h(r)− c(r) (1.13)

where u(r) is the interaction potential between sites.

In principle this approach can be expanded to arbitrary accuracy, but in

practice only a few paths can be taken from any given reference site before

the computational cost becomes prohibitive. The speed is further improved

by only updating the solvent density every few simulation steps, and by using

the previous value at each point as an initial guess. This method requires

a classical interaction potential between the protein and the solvent and

between the solvent molecules themselves, and is limited by the accuracy of

this potential.

Another implicit solvent approach that differs fundamentally from GB/SA

is the ABSINTH model proposed by Vitalis and Pappu[68]. Here the trans-

fer free energy is not broken up into dielectric and nonpolar components, but

rather into a direct mean field interaction term and a screening term. This

not only accounts for the solvent-protein interactions, but also the screening

of the protein-protein interactions. The protein is broken up into solvation

12



groups, the solvation free energy of which is expressed as

∆Gtotal
solv =

NSG∑
i=1

[
ni∑
k=1

λik · vik

]
·∆Gisolv (1.14)

Here ∆Gisolv is the experimental solvation free energy of a particular group of

atoms (based on model compounds). The vik are solvation states of the group

of atoms measured by the available volume surrounding the atoms, rather

than the surface area, and λik are a set of weights to improve the accuracy of

the model. The available volume here is measured by considering a sphere of

some radius around the atom, and subtracting from that sphere the volume

of all other protein atoms which overlap. The remaining volume is thus

available to solvent.

Some of the molecular dynamics approaches discussed above implicitly

use a solvent without an implicit solvent term appearing in the potential

function. As discussed above, Gō models and associative memory hamilto-

nians, for example, use the known native structures of a protein to define a

set of interactions between atoms or residues. Since these structures are ob-

served in the presence of solvent, solvent effects are captured to some extent

in these model interactions.

1.4 Classical Density Functional Theory

Density functional theory (DFT) is best known in the context of quan-

tum DFT[69], where it is widely used in computational studies of electronic

and atomic structure, vibrational spectra, magnetic resonance, and reaction

dynamics[70, 71]. The method has also been applied to classical density

fields to compute correlation functions and dynamics in liquids[72–77]. In

fact the essence of classical density functional theory (cDFT) actually pre-

dates the formal development of DFT[78]. Since then, cDFT has been widely

used to model liquids around nanostructures[79, 80] and has also been ap-

plied to biomolecules[81, 82]. Density functional theories of inter-residue

contact probability developed by Plotkin and Onuchic have elucidated the
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effects of energetic and entropic heterogeneity on protein folding free energy

barriers [83, 84], while Wolynes has used DFT in fundamental studies of glass

physics and the glass transition [85–91], and also in protein folding[92–94].

Density functional theory relies on the following insight: if the free energy

of a system is expressed as a functional of the single particle density, the

single particle density that minimizes the functional will be the true single

particle density, and the resulting value of the functional will be the true free

energy. This is not obvious; the full expression for the free energy includes

probabilities over N positions and momenta, where N is the number of

particles in the system. Nonetheless a functional of the single particle density

can be used to determine the real free energy–a proof of this is shown in

Appendix A. The form of the density functional is taken to be

G =

∫
d3r kBT [φ(r) ln(δV φ(r))− φ(r)] + V(r)φ(r)

+ Φ[φ] (1.15)

where G is the free energy of the system, φ the position dependent density

of the solvent or cosolute, δV a volume element, V the external potential,

and Φ[φ] the free energy functional arising from inter-particle interaction

terms. The equilibrium free energy and density is found from equation 1.15

through functional differentiation:

δ

δφ

[
G− µ

∫
d3r φ(r)

]
= 0 (1.16)

where µ, the Lagrange multiplier associated with the condition that particle

number is conserved, is the chemical potential. In the classical DFT litera-

ture G − Φ is known as the ideal free energy, which is the same in each of

the cDFT approaches we discuss below, while Φ is known as the excess free

energy. In Appendix A we review the proof that G is a unique function of

φ, the single particle density, and hence the function φ that minimizes G is

the equilibrium density.

In traditional approaches to classical DFT[95] Φ is broken up into two

parts: a hard-sphere term and a term arising from any attractive particle-
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particle interactions–Φ = Φatt + Φhs. The attractive term is taken to be:

Φatt =

∫
d3r d3r′ Uatt(r− r′)φ(r)φ(r′) (1.17)

where Uatt(r − r′) is the attractive part of the solvent-solvent potential.

This form assumes a uniform fluid; that is, the solvent-solvent correlation

function g(r, r′) = 1.

The hard-sphere term in the solvent-solvent interaction functional arises

purely from entropic terms and does not have an analytical form. One

common approach is to take a weighted density average (WDA), so that the

hard-sphere term is written as[95]

Φhs =

∫
d3r φ̄σ(r)F(φ̄τ (r)) (1.18)

where φ̄σ and φ̄τ are weighted averages of φ around position r–e.g. φ̄σ =∫
d3r′ σ(r − r′)φ(r′), and φ̄τ =

∫
d3r′ τ(r − r′)φ(r′). F is an arbitrary

function and σ(r− r′) and σ(r− r′) are local weighting functions, which can

have any form but need to go to zero for large r − r′ in order to be useful.

F can be assigned by requiring that the equation of state for a uniform

system in the absence of external potential (such that φ(r) = ρ, the bulk

density) reproduce some known equation of state. For example, to recover

the Carnahan-Starling equation of state,

P = NkBT/V + kBT
1 + y + y−y3

(1− y)3
(1.19)

where y = πρd3/6 and d the hard sphere diameter, F must be

F(ρ) = kBT
y(4− 3y)

(1− y)2
(1.20)

so that the pressure from the density functional with a uniform density,

P =
∂G[ρ]

∂V
(1.21)
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matches the Carnahan-Starling pressure.

Similarly the forms of the weighting functions σ(r − r′) and τ(r − r′)

are determined by comparison with other systems. For example, in one

dimension the weighting functions

σ(r) =
1

2
δ

(
d

2
− |r|

)
(1.22)

τ(r) =
1

d
Θ

(
d

2
− |r|

)
(1.23)

where Θ is the Heaviside function, reproduces the analytic result for one

dimensional hard rods of length d. This then can be generalized to a three

dimensional system, in particular since many systems of interest to early

cDFT studies are confined and thus behave as lower dimensional systems on

certain length scales[80].

The weighted density average approach can be extended to include gra-

dients of the density–terms such as 1/2
∫
d3r k(∇φ)2, with k a constant.

Oxtaby and colleagues, for example, use such terms to apply classical DFT

to crystal growth and nucleation problems[96].

Despite the fact that the correlation function g(r, r′) was assumed to

be uniform in writing Φatt, WDA models do not assume a uniform den-

sity. Rather the correlation function is implicit in the form of the weighted

averages. Actually obtaining this correlation function, however, typically

involves first solving for the density and thus is non-trivial to obtain from

the density functional. In this approach the total correlation function is a

prediction of the theory rather than an input.

In general these approaches favour accuracy over speed. By appropri-

ately modelling the solvent-solvent interaction terms and iterating a number

of times to find the minimum free energy, cDFT can capture realistic cor-

relation functions and energies, but at a computational cost high enough

to be unfeasible for implicit solvent applications in molecular dynamics in

large systems.

Kinjo and Takada[81] have applied cDFT to protein systems. Their

approach treats both the solvent and the protein with a density field. This
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approach allows them to study crowding effects in a general way, but treats

the protein in an extremely simplified manner in order to reduce it to a

manageable density field.

Borgis and colleagues have also applied cDFT to proteins[82], and solva-

tion in particular. Their approach differs somewhat from more traditional

cDFT schemes. Rather than break the solvent-solvent interaction potential

up into attractive and hard sphere components, Borgis writes the interaction

functional Φ as[97, 98]

Φ[φ] =

∫ ∫
d3rd3r′φ(r)φ(r′)U(r− r′)g(r, r′) (1.24)

where U is the full solvent-solvent interaction potential and g is the corre-

lation function, which is taken from experimental structure factors. Thus

here, rather than the solvent-solvent correlation function being a prediction

of the theory, it is an input. This approach makes two implicit assumptions:

first, that the correlation function is equal to the direct correlation function

over the interaction potential, and second, that the two-body and higher

entropic terms are zero. To see the first assumption, we note that the direct

correlation function can be found from the free energy functional by

δ2G

kBTδφ(r)δφ(r′)
= c(r, r′) (1.25)

which, for the interaction functional 1.24, gives g(r, r′) · βU(r, r′) = c(r, r′).

To see the second assumption we note that the interaction term is entirely

enthalpic; ∂G/∂T generates only the ideal gas term in this model. Put

another way, in the hard sphere limit, in which U(r) = 0 for any region in

which the correlation function is non-zero, the Borgis interaction functional

is identically zero and the model reduces to an ideal gas.

One feature both the Borgis approach and the traditional cDFT ap-

proaches share is the need to iterate over the equations resulting from ap-

plying equation 1.16 to the respective models to obtain a density which

converges to the final self-consistent solution. This iterative nature of the

solution creates a cost penalty to applying these methods. In this thesis
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we seek a model which avoids iterative solutions in order to develop an

algorithm that can be applied many millions of times during a molecular

dynamics simulation. Thus, while other approaches start from a relatively

accurate functional and seek to simplify it, we will start from the most ba-

sic functional and seek to add as little as possible to make it sufficiently

accurate.

1.5 Molecular Dynamics

One of the principal ways of studying proteins computationally is molecu-

lar dynamics (MD)[99]. As in much of condensed matter, the underlying

physics of the protein molecule is in principle known: a collection of nuclei

and electrons which interact via the electromagnetic force. But perform-

ing explicit quantum mechanical calculations on many thousands of atoms

at 300K in many configurations is well beyond even the most powerful of

computers, and will likely remain so for some time. Thus a series of approx-

imations are made to reduce the problem to something more manageable.

The most basic approximation is that the atoms of the protein are treated as

classical particles. These particles interact with each other through a series

of potentials. In the so-called All Atom approach, each atom of the protein

is treated as a point particle, and the atoms interact through potentials such

as bond potential, angle potentials, dihedral potential, Coulomb potential,

and van der Waals potential; i.e. the total potential energy U of the system

is given by

U =
∑
ij

V bond
ij + V Coulomb

ij + V vdW
ij (1.26)

+
∑
ijk

V angle
ijk (1.27)

+
∑
ijkl

V dihedral
ijkl (1.28)

where each term will be discussed below. Once these terms have been de-

termined, the basic approach of a molecular dynamics program is straight-
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forward: at a given time, for each particle in the system, compute the sum

of the forces on that particle,

Fi = −∇iU (1.29)

then evolve the system using Newton’s second law F = ma and a discrete

timestep ∆t. This is repeated until a simulation of sufficient length to sample

the properties of interest has been obtained. The difficulty in practice is the

“sufficient length”; a typical value of ∆t for an all-atom simulation is 2 fs,

while the folding time of a protein might be on the order of 10 s[100]. Thus

even in this classical approximation many phenomena are out of reach. The

timestep ∆t is determined by requiring a certain level of accuracy in the

simulation. Discretizing the integration of Newton’s second law introduces

error in the system. Conceptually this arises from the possibility that a

particle will move through a region in which the potential changes so rapidly

that the integration step cannot keep up. This results in a certain amount of

“shadow work” done by the integrator on the system[101]. The timestep is

thus a compromise between choosing a large value to speed up the simulation

while keeping it small enough to maintain stability. In practice, 2 fs is often

used as a standard value, with the condition that the bonded interactions

involving hydrogens are rigidly constrained (or a so-called “united atom”

forcefield is used to eliminate the hydrogen atoms).

The bond potential Vbond is often assumed to be harmonic;

Vbond(r1 − r2) =
1

2
k(|r1 − r2| − d0)2 (1.30)

There are other forms, though; the Morse potential is one such alternative[102].

The bond can also be rigidly constrained. The angle potentials also take a

harmonic form,

Vangle(θ123) =
1

2
k(θ123 − θ0)2 (1.31)

In this case there is, in principle, a concern that the form of the potential

is not periodic in θ; in practice this concern is dealt with by ensuring that

k has a value such that θ123 − θ0 is never so large as to be an issue. The

19



dihedral potential (see figure 1.2) cannot in general be harmonic, because

it is much softer than the angle potential and there are many situations in

which dihedral angles vary through the full 2π. Further there may be several

local minima. An example of this is the cis and trans configurations of small

molecules. Common forms for the dihedral angle thus include

Vdihedral(θ1234) =k(1− cos(nθ1234 − θ0)) (1.32)

Vdihedral(θ1234) =
5∑

n=1

Cn(cosθ)n (1.33)

There are two types of dihedral angles considered. Proper dihedrals occur

when four atoms are bonded in a line, as in figure 1.2 panel A. The dihedral

angle is then defined as the angle between the plane formed by atoms i,

j, and k and the plane formed by atoms j, k, and l. Improper dihedrals

pertain to three atoms bonded to a central atom, as in figure 1.2 panel B.

Again, the dihedral angle is defined as the angle between the plane formed

by atoms i, j, and k, and the plane formed by atoms i, k, and l, but here the

interpretation of this angle is somewhat different. While proper dihedrals

are used to specify cis and trans configurations, improper dihedrals are used

to stiffen groups of planar atoms.

The form of the force-field potential is chosen to account for the fact that

interactions between atoms can be strongly non-two-body. Thus the angle

and dihedral terms attempt to capture the physics of bonded interactions,

which tend towards particular geometric arrangements.

The van der Waals interaction and the Coulomb interaction are termed

“non-bonded” interactions. They are present between all pairs of atoms that

are in different molecules or in the same molecule but separated by at least

a certain number of bonds (typically three). In most cases they have the

familiar forms:

VvdW(r) = 4ε

((σ
r

)12
−
(σ
r

)6
)

(1.34)

VCoulomb(r) = kq
q1q2

r
(1.35)
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Figure 1.2: Diagram of dihedral angles. Panel A shows an example of a
proper dihedral angle, while panel B illustrates an improper dihedral.

The van der Waals interaction can, however, be modelled by a 10-12 po-

tential (which may be more appropriate for hydrogen bonding) rather than

a 6-12 potential, and some have argued the Buckingham potential is more

physically motivated as it attempts to find a form for the repulsive interac-

tion based on observed virial coefficients[103].

This thesis will discuss the derivation of a new implicit solvent model. To

put this derivation into context, it is useful to summarize how the parameters

in molecular dynamics forcefields are obtained in the first place.

The parameters in equations 1.30-1.35 need to be determined, and there

are a number of ways of doing so. Each of them involves attempting to repro-

duce some aspect of the “real” system. The essential problem, as mentioned

above, is that molecules are quantum mechanical entities and we would like

to simulate them as classical particles. The CHARMM forcefield[104], for

example, uses quantum chemical calculations to generate parameters. The

amino acids are broken down into small molecules amenable to a Hartree-

Fock computation. These molecules are then placed in the vicinity of a water

molecule. The water molecule is placed at a number of different positions to

obtain the equilibrium distance to various atoms in the model compound,

and the interaction energy at that equilibrium distance; this process is illus-

trated in figure 1.3. The van der Waals and Coulomb parameters are then

set to reproduce these interaction energies and equilibrium distances. Simi-

larly, the bonded parameters are found by varying the distances, angles, and

dihedrals of each set of atoms, and finding minimum values and the second
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Figure 1.3: Obtaining the parameters in the CHARMM method-
ology. Panel A illustrates a model compound (in this case imidazole)
and a nearby water. Panel B shows the interaction energy, calculated in
Gaussian[105], for various water-nitrogen distances. The van der Waals and
Coulomb parameters are then picked to reproduce the minimum interaction
energy and the equilibrium distance.

derivatives of the energy with respect to separation. The bond parameters

are set to reproduce the harmonic well each set of atoms rests in.

The OPLS forcefield, on the other hand, compares thermodynamic prop-

erties of Monte Carlo simulations of pure liquids of small molecules with ex-

perimentally measured bulk properties such as density and heat of vaporization[106].

In each of these forcefields the results for small model compounds are then

combined into a force-field for the entire protein.

AMBER is similar to OPLS in that it uses experimental results to de-

termine the force-field parameters, but fits a somewhat different set of prop-

erties, such as observed normal modes and vibrational spectra[107].

The all-atom approach is the one most relevant to this thesis, but it is

only one of a number of approaches to molecular dynamics. There are a

number of coarse-graining methods which can be employed. The simplest

are United Atom (UA) forcefields[108]. In these the only coarse-graining

is to remove most of the hydrogen atoms, incorporating their effects into

modified parameters of the heavy atoms the hydrogens were bonded to–e.g.
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a methyl group would become a single atom labeled CH3 with an atomic

mass of 15 and a radius larger than that of a bare carbon atom.

Coarse graining of atoms can be taken further, subsuming more and

more atoms into single particles. Entire side-chains can be approximated

as a single particle, or, in the most coarse-grained approached, each residue

can be modelled as a single bead[109]. In each of these cases the trade off

is for increased simulation speed at the cost of some accuracy.

Coarse-grained approaches require force-fields to be parameterized, and

as with all-atom, this can be done in a variety of ways. Typically the param-

eters are not calculated ab initio, but are tuned to reproduce some aspect

of the proteins to be studied. The widely used Gō model generates a force-

field by starting with the experimentally determined folded structure of the

protein, then setting attractive interactions between all pairs of particles

in contact in the folded structure (with a equilibrium distance fixed to the

observed contact distance) and repulsive interactions between all pairs of

particles not in contact[110]. This type of model can be useful for many

studies, but obviously cannot be used for things such as structure predic-

tion or investigating intrinsically disordered proteins (proteins that do not

adopt a well-defined structure).

More versatile approaches include Associated Memory Hamiltonians.

Here, rather than just one folded structure, a database of proteins is used.

Each segment of the protein is matched to segments of other proteins that

have the similar sequences[111]. The potential energy function for a given

protein is then constructed based on an appropriately weighted average of

the structures from these similar sequences. In this approach the structure

of the protein of interest does not need to be known and intrinsically disor-

dered proteins can be examined. It shares with the Gō model an essentially

phenomenological character though.

1.6 Computational Methods

As mentioned above, simulations, while providing a level of detail not pos-

sible in experiments, are limited in time scale. A protein and accompanying
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water molecules, simulated on a high performance cluster of CPUs, might

run a nanosecond per hour of wallclock time[112]. Thus simulations of more

than a few hundred nanoseconds become prohibitive. The D.E. Shaw com-

pany, using a dedicated hardware system and custom software, can simulate

on the order of a millisecond[113]. Protein dynamics, however, can occur

on the time scales of seconds or longer. Thus while experimental methods

determine free energies by looking at populations, computational methods

require other approaches.

One of the most relevant questions we can ask of a system is, What is

the difference in free energy between two states? Because we cannot easily

simulate the systems of interest to biophysics for long enough times to ade-

quately sample each state of interest, we require non-equilibrium techniques

to find these differences in free energy. Of particular application to this

thesis are thermodynamic integration[114, 115], Bennet acceptance ratio

(BAR)[116], the Jarzynski equality[117], and weighted histogram analysis

method (WHAM).

Thermodynamic Integration (TI)[114, 115] makes use of the following

relation from statistical mechanics: the difference in free energy ∆G between

Hamiltonians HA and HB is given by

∆G =

∫ 1

0
dλ

〈
dU

dλ

〉
(1.36)

where the Hamiltonian is parameterized to be a continuous function of λ

such that H(λ = 0) = HA and H(λ = 1) = HB, ∆G is the change in free

energy, 〈...〉 indicates the thermal average, and U is the potential energy of

the system. A variety of terms in the forcefield can be set to change with

λ: molecules can be coupled or decoupled from the surrounding solvent

molecules, bonds can be formed or broken, and atoms can even be smoothly

moved from one element to another in an unphysical process that nonetheless

gives meaningful end points. The simulation (or simulations) is then set to

obtain sufficient sampling at each value of λ to evaluate the integral in

equation 1.36.

The Bennet Acceptance Ratio[116] also calculates free energy differences
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relative to changes in the forcefield parameters. This approach starts with

the following theorem: for any f(x) such that f(x)/f(−x) = e−x, the free

energy difference between two systems with Hamiltonians HA and HB is

e−β(∆G−C) =
〈f(β(UB − UA − C))〉A
〈f(β(UA − UB + C))〉B

(1.37)

where ∆G is the free energy difference between systems with Hamiltonians

HA and HB, UA and UB are the potential energies of the HA and HB
forcefields respectively, C is an arbitrary constant, and 〈...〉A and 〈...〉B are

the thermal averages in the A and B ensemble respectively. Equation 1.37

is typically evaluated by running a simulation with Hamiltonian HA and

a simulation with Hamiltonian HB. Then in simulation A the quantity

f(β(UB−UA−C)) can be computed at each time step and the average over

the simulation can be taken to find 〈f(β(UB−UA−C))〉A. The corresponding

quantities for simulation B can be calculated in the same way, and from

this the free energy difference is calculated. Bennet showed that the error

in the estimation of ∆G for a given finite sampling is minimized by setting

f(x) = (1 + ex)−1 and C ≈ ∆G. While we obviously don’t know ∆G a

priori, this approach allows an iterative scheme to obtain a self-consistent

result.

Strictly speaking, equation 1.37 requires that systems A and B occupy

the same phase space. This is rarely true in cases of interest, so in practice

the full change one wishes to examine is parameterized and broken up into

small segments. The free energy to move from state i to state i + 1 is

calculated along the path and summed to arrive at the total change in free

energy. In this way the practical implementation of BAR is very similar to

that of TI.

The Jarzynski equality[117] allows the derivation of the change in free

energy between two states from many independent simulations determining

the work done to move the system between these states. Jarzynski showed

that

〈e−βW 〉 = e−β∆G (1.38)
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where W is the work done in a given simulation, 〈...〉 is the average over

simulations, and ∆G is the difference in free energies between states. To

make use of the Jarzynski equality one performs many simulations in which

the system is driven from state A to state B, and the work done in doing so

is calculated. One factor complicating this analysis is finding an unbiased

estimator for 〈e−βW 〉. In particular, given some finite number of simulations

N , each of gives rise to a work Wi, the estimator

N∑
i=1

e−βWi (1.39)

is biased. Unbiased estimators of the change in free energy using the Jarzyn-

ski equality have been developed though[118] and the Jarzynski equality is

a useful tool in computational biophysics.

The weighted histogram analysis method (WHAM)[119] relies on a tech-

nique for estimating the thermal average of an observable in the absence of

bias from measurements in the presence of bias. Given Nsims simulations

which have different biasing potentials Ui(z) along some reaction coordinate

z, the probability P (z) of the system being in state z can be calculated by

solving self-consistently the following:

P (z) =

∑Nsims
i ni(z)∑Nsims

i Ni exp (β [Fi − Ui(z)])
(1.40)

Fi = −kBT ln

(∑
bins

P (z) exp [−βUi(z)]

)
(1.41)

where ni(z) is the number of counts in the bin centred on z, Ni the total

number of counts for simulation i, and Fi an energy shift introduced to

optimize the estimate of P (z).

The practical implementation of WHAM involves performing many sim-

ulations with different biasing potentials that result in a range of values

of the reaction coordinate (e.g. the distance between two monomers for a

study of binding free energy). The simulations need to be spaced closely

enough along the reaction coordinate that the states sampled in different
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simulations overlap. Then WHAM can be used to determine the free energy

of moving along that reaction coordinate from the knowledge of P .

To summarize these methods: Thermodynamic Integration and Bennet

Acceptance Ratio are useful in calculating the free energy difference between

two states with different forcefield, such as molecules that do not interact

with their surroundings in one state but do in the other. Jarzynski allows

one to calculate the free energy difference between two states when it is

possible to use an external pulling force to move the system from one state

to the other, and when this can be done many times to establish an average.

WHAM can be used when a path in some coordinate can be defined between

the two systems, and simulations at various points along that path can be

performed.

It is important to note here that all these methods calculate the difference

in free energy between two systems. The absolute free energy of a system is

a quantity we cannot calculate, nor would it be of particular interest if we

could. Only relative free energies matter.

1.7 Aims of this Thesis

This thesis investigates protein-solvent interactions using classical density

functional theory. In Chapter 2 we examine a variety of experimental data

on the transfer free energy to move a protein into various solutions, and in

particular the difference in transfer free energy between moving the protein

from vacuum to pure water and moving the protein from vacuum to water

plus a cosolute. We introduce a new way of looking at the uncertainty in

measuring the enthalpy and entropy of such transfers and ascertain whether

entropy-enthalpy compensation is a real effect or an experimental artifact.

In chapter 4 we introduce classical density functional theory in the context

of transfer free energies and prove that the free energy of a bath of particles

is independent of external potential under certain conditions. In chapter

3 we apply cDFT to cosulutes and show that even in a very approximate

form the theory still produces useful insights. We also re-examine the issue of

entropy-enthalpy compensation through the lens of cDFT. Finally in chapter
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5 we develop a cDFT implicit solvent model. We finish with a discussion of

future directions for this work.
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Chapter 2

Experimental Analysis:

Entropy-Enthalpy

Compensation and Cosolutes

As mentioned in Section 1.2, entropy-enthalpy compensation is a phenomenon

in which changes in entropy and enthalpy upon some perturbation largely

cancel, leaving a change in free energy that is much smaller in magnitude

than the changes in entropy and enthalpy. In this chapter we investigate

how broadly this effect of entropy-enthalpy compensation applies to macro-

molecular systems, by analyzing the experimentally-derived enthalpy and

entropy of transferring two-state proteins from water, perhaps with buffers

and at some pH which need not be 7, into the same solution but in the pres-

ence of various cosolutes. These cosolutes can be osmolytes, denaturants,

crowders, or other proteins; i.e. we place no restriction on the size or on how

relatively favorable or unfavorable the interactions are with the protein[35].

While the rest of the thesis examines protein-solvent interactions using

theoretical and computational tools, in this chapter we examine experimen-

tal data on protein-solvent interactions. In addition to addressing entropy-

enthalpy compensation, a topic of interest in and of itself, our analysis in

this chapter will motivate our later development of an implicit solvent the-

ory that accounts for entropy as well as enthalpy. Many presently available
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implicit solvent theories typically do not account for entropy, and are purely

enthalpic. We will see in this chapter that entropy and enthalpy enter the

transfer free energy on equal footing, and must both be accounted for to

create an accurate theory of implicit solvation. We will also return to the

data in this chapter in Section 3.5 to show how it can inform our classical

DFT approach to solvation in a direct way.

In what follows, we begin by introducing various thermodynamic equa-

tions that define the two-state model in Section 2.1. In Section 2.2.1 we

introduce a Monte Carlo procedure for estimating the experimental uncer-

tainty of thermodynamic quantities obtained from calorimetry assays. In

Section 2.2.2 we show that entropy-enthalpy compensation occurs for the

transfer of a diverse set of two-state proteins to various solvents. This may

be the most general class of systems that have been observed to obey com-

pensation. While it may be intuitive that a given protein and solvent se-

ries may compensate, it is not obvious that there would exist compensation

across both solvents and proteins. For example, the excluded volume compo-

nent of transfer is generally non-compensated and different across protein-

solvent systems. We use the method derived in Section 2.2.1 to confirm

that entropy-enthalpy compensation is a significant effect. In Section 2.2.2

we plot the experimental data at lab temperature, which exhibit definitive

entropy-enthalpy compensation across a diverse set of proteins and coso-

lutes. In this section we emphasize the importance of accounting for the (of-

ten neglected) concentration dependence of the heat capacity change upon

unfolding. Finally we conclude in Section 2.3.

2.1 Methods and Theory

2.1.1 Thermodynamic Equations for Protein Unfolding

Two-state models in protein folding have a long and rich history, and have

empirical validity for many proteins [120–122]; various aspects of two-state

folding, including applications to protein denaturation, protein stability, and

the prediction of so-called m-values, are described elsewhere [25, 121–132].
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Here, we adopt the two-state model for a set of proteins that either have

been shown previously to satisfy the van’t Hoff two-state criterion[132] or

that have comparably small residuals when fit to a two-state model.

The changes in enthalpy ∆H, entropy ∆S, and free energy ∆G upon

unfolding can be obtained if the change of heat capacity upon unfolding

∆Cp = Cpu−Cpn is measured. Here Cpu and Cpn are the unfolded and native

state heat capacities respectively, which may be temperature-dependent. A

temperature-independent unfolding heat capacity is often used as a good

approximation [133, 134], while others have considered a linear temperature-

dependence of the unfolding heat capacity [7, 135]. Here, we adopt the most

general temperature dependence of the unfolding heat capacity, following

the method used in Wintrode et. al. [136], wherein the folded heat capacity

Cpn is observed to obey a linear temperature-dependence, and the unfolded

heat capacity obeys a non-linear temperature-dependence determined by the

heat capacities of the amino acid constituents. Specifically, the heat capacity

of the unfolded state Cpu is given by

Cpu = (N −Ngly − 1)Cp(bb) + Cp(N/C term) +
N∑
i=1

Cp(Ri) . (2.1)

Here N is the chain length, Ngly is the number of glycine residues in the

polypeptide chain, Cp(bb) is the heat capacity of the peptide backbone,

Cp(N/C term) is the heat capacity of the N- and C- termini, and Cp(Ri)

is the heat capacity of the side chain corresponding to the ith amino acid

(glycine is included in this sum). Values for Cp(bb), Cp(N/C term), and

Cp(Ri) have been obtained by Makhatadze and Privalov [137] for temper-

atures of 5, 25, 50, 75, 100, and 125◦ C. For the proteins and cosolutes we

consider in Section 2.2.1, we use the values in reference ([137]) to interpolate

Cpu(T ) from 5 to 125◦ C with a cubic spline.

With ∆Cp(T ) determined numerically, ∆H, ∆S, and ∆G can be calcu-
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lated from

∆H = ∆Hf +

∫ T

Tf

∆Cp(T
′)dT ′ (2.2)

∆S = ∆Sf +

∫ T

Tf

∆Cp(T
′)

T ′
dT ′ (2.3)

∆G = ∆H − T∆S (2.4)

The reference temperature Tf is taken to be the temperature at which the

unfolding free energy is zero: ∆H(Tf ) = Tf∆S(Tf ). The unfolding heat

capacity is given by ∆Cp(T ) = Cpu(T )−Cnp (T ), with Cpu and Cnp described

above. The non-linearity in the heat capacity is fixed in the model by the

composition of the protein. The linear temperature-dependence of the na-

tive heat capacity is determined empirically from the fit to the data for

each protein-cosolute system. Thus when using this model to fit data, the

free parameters in the heat capacity are the unfolding heat capacity at the

transition temperature, ∆Cpf , and the linear coefficient to the temperature

dependence of the heat capacity of the native state, ∆C ′pn. ∆Cp(T ) is pa-

rameterized as ∆Cp = ∆Cpf + Cpu(T ) − Cpu(Tf ) − ∆C ′pn(T − Tf ), where

Cpu(T ) has the non-linear T dependence in equation (2.1).

In the approximation that ∆Cp is a linear function of temperature:

∆Cp = ∆Cpf + ∆C ′p(T − Tf ), where ∆C ′p = ∂∆Cp/∂T , Equations (2.2)-

(2.4) become

∆H = ∆Hf + ∆Cpf (T − Tf ) +
∆C ′p

2
(T − Tf )2 (2.5)

∆S = ∆Sf + ∆Cpf ln

(
T

Tf

)
+ ∆C ′p

[
T − Tf − Tf ln

(
T

Tf

)]
(2.6)

∆G = ∆H − T∆S (2.7)

The expressions for ∆H, ∆S, and ∆G in the limiting case of a T -independent

unfolding heat capacity may be obtained by setting ∆C ′p = 0 in (2.5)-(2.7);
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e.g. the unfolding free energy is

∆G =

(
1− T

Tf

)
∆Hf +

[
T − Tf − T ln

(
T

Tf

)]
∆Cpf (2.8)

In Section 2.2.1, we examine the effect these approximations have on the

parameters obtained from experimental data.

The probability pu for the system to be unfolded in the two-state model

is

pu = 1/(1 + eβ∆G) (2.9)

with ∆G given in equation (2.4). Equation (2.9) can be equivalently written

as ∆G = −kBT lnKu where Ku is the folding equilibrium constant, given

in the two-state model by Ku = pu/(1− pu).

The total heat capacity in the two-state model is given (for example by

differentiating 〈H〉 = Hn(1− pu) +Hupu with respect to T ) by

Cp = Cpu −∆Cp +
∆Cp

1 + eβ∆G
+

∆H2

4kBT 2
sech2

(
∆G

2kBT

)
(2.10)

where Cpu, ∆Cp, ∆G, and ∆H are all temperature-dependent.

A plot of the Gibbs free energy vs temperature obtained from empirical

data may be fit to Equation (2.4) to obtain values of ∆Hf , ∆Sf , ∆Cpf , and

∆C ′p. Similarly, a plot of the fraction of unfolded protein vs temperature

may be fit to equation (2.9), or a plot of excess heat capacity may be fit to

equation (2.10) to obtain values of these parameters. In all cases, once ∆Hf ,

∆Sf , ∆Cpf , and ∆C ′p are obtained, equations (2.2) and (2.3) can be used to

obtain ∆H(T ) and ∆S(T ) at various temperatures. In Section 2.2.1 we will

compare the best-fit values for the three models of ∆Cp described above, i.e.

Equations (2.2)-(2.4), (2.5)-(2.7), and the temperature-independent ∆Cp

model (cf. Equation (2.8)). This procedure can be performed at various

cosolute concentrations, providing experimental data is available. Then the

changes in unfolding enthalpy δ∆H(T, c) and entropy δ∆S(T, c) upon trans-

fer from a solution of cosolute concentration 0 to one of concentration c at

a given temperature T can be determined.
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We also define the change in the midpoint parameters at each respective

cosolute concentration, nonzero and zero, upon transfer. :

δ∆Hf (c) ≡ ∆H(Tf (c), c)−∆H(Tf (0), 0) (2.11)

δ∆Sf (c) ≡ ∆S(Tf (c), c)−∆S(Tf (0), 0) (2.12)

δ∆Cpf (c) ≡ ∆Cp(Tf (c), c)−∆Cp(Tf (0), 0) (2.13)

In what follows we will often drop the explicit concentration dependence

in writing various thermodynamic equalities when it is unambiguous.

2.2 Results

2.2.1 Monte Carlo Method to Determine Statistical Errors

To analyze the uncertainty involved in fitting the data, we perform a Monte

Carlo procedure. We fit a given data set, such as Cp(T ), ∆G(T ), or pu(T ), to

equations (2.10), (2.4), or (2.9) respectively. Using the root mean square of

the residuals for a given fit, we then generate a large number of sample data

sets by drawing each point from a normal distribution with a mean equal to

the value of the best fit curve at that point and a standard deviation equal

to the root mean square of the residual. Each of these generated sample

data sets is then fitted and new fit parameters are obtained, thus generating

a distribution of values for ∆Hf , ∆Sf , and, depending on the model, either

∆Cp, ∆Cpf and ∆C ′p, or ∆Cpf and ∆C ′pn. We can fit the different models

for ∆Cp described in Section 2.1.1 to compare the parameters extracted.

The uncertainty in the thermodynamic parameters could also be obtained

by examining the covariance matrix of the fit parameters, but the Monte

Carlo method we use allows us to extrapolate uncertainties to other regimes

(as we will do in section 2.2.2) without truncating any moments in obtaining

the variance.

As an example of fitting the stability ∆G(T ), we have used experimental

measurements by Zweifel and Barrick of the thermal denaturation of notch

ankyrin in various concentrations of urea[138]. The best fit to the 0M data
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in figure 4a for reference ([138]) (plotted as green circles in Panel A of

Figure 2.1) yields a root mean square of the residuals of 0.383 kJ/mol, so

the square of this becomes the variance of the normal random distribution

centered around the value of the best fit curve. From this we generate 1000

sample data sets, each of which is fit to either Equation (2.4), (2.7) or (2.8),

depending on the model. In Table 2.1, we compare the parameters obtained

with the three different models of ∆Cp described above. We see that the

parameters are consistent with each other, and with the tabulated value in

reference ([138]). We analyze the variances and correlations of this data; this

is reported in Table 2.2. We see that all parameters are generally strongly

correlated or strongly anti-correlated. Figures 2.1A,B show that the three

models give similar curves even when extrapolating to high temperatures,

though the variance in ∆G at high T is significantly smaller for the T -

independent ∆Cp model than the other two models considered.

We perform the same analysis to compare the three heat capacity models

for the stability ∆G vs T data for hisactophilin given in reference ([6]). The

comparison between the parameters that the three models give for fitting the

same data are given in Table 2.1. The midpoint parameters ∆Hf and ∆Sf

for the different models again all agree within the uncertainties obtained

from the Monte Carlo procedure.

Figure 2.1 panels C and D plot data from reference ([6]) for the stability

∆G vs T for hisactophilin in 0 M and 1 M urea. The data for 1 M urea

includes both hot denaturation and cold denaturation regions. Comparing

panels C and D of Figure 2.1 we can see that the model variance is much

less for the 1M urea data, in that all three models predict similar curves,

presumably as a result of having a larger range of ∆G(T ) data to fit. The

large uncertainty in the non-linear T dependent model for the 1 M urea data

is likely caused by fitting a more flexible model to a limited set of data.

Interestingly, there is a change in sign of the curvature at low tempera-

tures in Panel C of Figure 2.1 for the non-linear T -dependent model. This

effect is caused by a change in sign of ∆Cp at around 310 K. A similar effect

is seen at high temperatures for some generated sets of data in the non-linear

T -dependent model at 1 M urea (Figure 2.1D).
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We have performed the same analysis on data measuring the fraction of

unfolded protein as a function of temperature. The data examined is for

histidine-containing phosphocarrier protein (HPr), from reference ([139]),

and for Arc Repressor, from reference ([140]). The midpoint parameters

∆Hf and ∆Sf are again in agreement between the three models (see Table

2.1) but the way that the different heat capacity models extrapolate quan-

tities such as the stability and the enthalpy is markedly different, as it was

for hisactophilin— see Figure 2.2 for HPr.

We have performed the same analysis on heat capacity vs T data for α-

lactalbumin, from reference ([7]). The midpoint parameters ∆Hf and ∆Sf

are in agreement between the models (Table 2.1). Again, however, the way

that the models extrapolate stability and enthalpy is very different (Figure

2.2).

In all the cases we have examined, the values of the unfolding entropy and

enthalpy at the transition midpoint are robust across all three models. Fur-

ther, the value ∆Cpf agrees within uncertainty for all the cases we looked at

between the linear T -dependent ∆Cp model and the non-linear T -dependent

∆Cp model. Fitting experimental data to a temperature-independent ∆Cp

model will be sufficient, if only midpoint parameters are required and the

accuracy of the unfolding heat capacity ∆Cpf is not particularly important.

However Figures 2.1 and 2.2 indicate that such data is prone to significant

extrapolation errors.

2.2.2 Transfer Entropy and Enthalpy for Various Proteins

and Solvents

Transfer Entropy and Enthalpy at the Transition Midpoint

The above analysis indicates that the thermodynamic parameters obtained

by fitting experimental data are most accurately determined near the tran-

sition midpoint. We thus now examine the entropy and enthalpy of transfer

for various proteins at their transition midpoints, from water to water plus

various cosolutes, cf. Equations (2.11) and (2.12).

For a number of proteins, thermodynamic data exists for more than one
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Figure 2.1: Stability and enthalpy as a function of temperature
for notch ankyrin and hisactophilin. The green circles are experimental
data from ref ([138]) for notch ankyrin (panels A and B) and ref ([6]) for
hisactophilin (panels C and D). The blue lines are fits for the T -independent
∆Cp model, the red lines are fits for the linear T -dependent model, and
the black lines are fits for the non-linear T -dependent model (cf. Section
2.1.1). The solid lines arise from the best fit parameters for each model,
while the dashed lines represent one standard deviation away, determined
by the Monte Carlo procedure described in Section 2.2.1. (Panel A) Stability
for notch ankyrin vs temperature in buffer. (Panel B) Enthalpy for notch
ankyrin in buffer. (Panel C) Stability for hisactophilin in buffer. (Panel D)
Stability for hisactophilin in buffer with 1M urea. The insets in Panels A, C,
and D show the correlation of the midpoint enthalpy and entropy, in which
the models are represented by the same colors as above. All data in the
insets lies on top of the red scatter points; the blue and black points have
been displaced for clarity. 1000 Monte Carlo instances have been generated
for the inset plots. Bars indicate one standard deviation.
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Figure 2.2: Analyzing unfolding fraction data and heat capacity
data. Panels A and B show fraction of unfolded population data and heat
capacity data from refs ([139]) and ([7]) respectively (green circles), along
with best fit curves. Panels C and D show the corresponding stability as
a function of temperature, and panels E and F show the corresponding
enthalpy as a function of temperature. In all panels the blue lines are fits
for the T -independent ∆Cp model, the red lines are fits for the linear T -
dependent model, and the back lines are fits for the non-linear T -dependent
model. The solid lines arise from the best fit parameters for each model
while the dashed lines represent one standard deviation away, determined
by the Monte Carlo procedure described in Section 2.2.1.
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Table 2.1: Thermodynamic parameters for several proteins used
in our analysis, and comparison to literature data where available: α-
Lactalbumin, from heat capacity data in ref. ([7]), Arc Repressor, from
fraction of unfolded protein data in ref. ([140]), Creatine Kinase from heat
capacity data in ref. ([141]), Hisactophilin, from stability data in ref. ([6]),
Histidine-containing phosphocarrier protein (HPr), from fraction of unfolded
protein data in ref. ([139]), Notch Ankyrin, from stability data in ref.
([138]), and RNase A from heat capacity data in ref. ([142]). Values obtained
from the three models of the temperature dependence of ∆Cp are given, as
well as the values obtained from the appropriate reference where available.
The reference value in ref. ([138]) assumed a temperature-independent ∆Cp,
the value of ∆Hf from ref. ([6]) was obtained by integrating Cp up to Tf ,
and the values from ref. ([139]) were obtained assuming a temperature-
independent ∆Cp.

Protein Model ∆Hf ∆Sf ∆Cpf ∆C′p ∆C′pn
(kJ/mol) (kJ/mol/K) (kJ/mol/K) (kJ/mol/K2) (kJ/mol/K2)

T independent 297 ± 1 0.876 ± 0.003 4.38 ± 0.07 – –
α-Lactalbumin T linear 304 ± 1 0.896 ± 0.004 2.88 ± 0.26 -0.101 ± 0.017 –

T non-linear 304 ± 1 0.895 ± 0.004 2.93 ± 0.26 – 0.065 ± 0.017
Reference Value[7] 310 – 5.3 -0.05 –

T independent 139 ± 3 0.454 ± 0.011 0.536 ± 0.5 – –
Arc Repressor T linear 118 ± 7 0.385 ± 0.02 1.45 ± 1.5 1.18 ± 0.44 –

T non-linear 117 ± 7 0.384 ± 0.024 1.49 ± 1.4 – 1.15 ± 0.4

Creatine Kinase∗ T independent 780 ± 3 2.37 ± 0.01 25 ± 2 – –
T linear 733 ± 3 2.24 ± 0.01 66 ± 4 -73 ± 3 –

T independent 215 ± 7.4 0.659 ± 0.022 6.15 ± 0.75 – –
Hisactophilin T linear 218 ± 5.9 0.669 ± 0.018 12.7 ± 1.7 -0.610 ± 0.17 –

T non-linear 218 ± 17 0.667 ± 0.051 12.8 ± 3.3 – 0.784 ± 0.28
Reference Value[6] 226 – – – –

T independent 312 ± 2 0.929 ± 0.006 5.27 ± 0.7 – –
HPr T linear 314 ± 2 0.935 ± 0.006 4.41 ± 0.85 0.359 ± 0.150 –

T non-linear 314 ± 2 0.935 ± 0.006 4.44 ± 0.80 – 0.367 ± 0.14
Reference Values[139] 316 0.941 6.0 –

T independent 593 ± 9 1.86 ± 0.03 15.1 ± 0.5 – –
Notch Ankyrin T linear 602 ± 30 1.89 ± 0.1 16.2 ± 3.5 -0.045 ± 0.14 –

T non-linear 601 ± 33 1.89 ± 0.1 15.7 ± 3.5 – 0.114 ± 0.14
Reference Value[138] – – 15.1 – –

T independent 496 ± 1 1.477 ± 0.002 14.3 ± 0.1 – –
RNase A∗ T linear 468 ± 1 1.396 ± 0.003 22.6 ± 0.2 0.89 ± 0.02 –

Reference Values[142]‡ 515 1.52 – – –

Reference Values[142]§ 479 1.42 – – –
– Not applicable for the respective model.

∗ Literature data had background heat capacity subtracted for these proteins, so the
non-linear temperature-dependent model could not be applied.

‡ Literature values obtained from differential scanning calorimetry. § Literature values
obtained from spectroscopy measurements.
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Table 2.2: Comparison of the variance and covariance of fits to
∆G vs T data for Notch Ankyrin from ref. ([138]), for the three mod-
els of the temperature dependence of ∆Cp discussed. For each model, a
matrix is given in which the diagonal elements are the relative deviations
for that quantity, and the off-diagonal elements are the correlation coeffi-
cients for the two quantities. Relative deviation for e.g. ∆Hf is defined
as (〈∆H2

f 〉 − 〈∆Hf 〉2)1/2/〈∆Hf 〉, where averages are over the Monte Carlo
generated data. In all models the entropy and enthalpy of unfolding are
highly correlated.

T -independent ∆Cp

∆Hf ∆Sf ∆Cp
∆Hf 0.016 0.9997 0.989
∆Sf 0.017 0.989
∆Cp 0.033

T -linear ∆Cp

∆Hf ∆Sf ∆Cpf ∆C ′p
∆Hf 0.055 0.99997 0.987 -0.960
∆Sf 0.056 0.988 -0.959
∆Cpf 0.22 -0.991
∆C ′p 3.0

T -non-linear ∆Cp

∆Hf ∆Sf ∆Cpf ∆C ′pn
∆Hf 0.055 0.99997 0.987 -0.958
∆Sf 0.056 0.988 -0.957
∆Cpf 0.22 -0.990
∆C ′pn 1.20

cosolute; as well, for a number of cosolutes thermodynamic data exists for

more than one protein. These commonalities and differences enable useful

comparisons.

Because ∆Hf = Tf∆Sf , the folding temperature Tf is unchanged upon

transfer to cosolute if δ∆Hf/∆H
0
f = δ∆Sf/∆S

0
f where ∆H0

f and ∆S0
f are

the mid-point enthalpy and entropy of unfolding at cosolute concentration

c = 0, respectively, and δ∆Hf and δ∆Sf are defined in Equations (2.11) and

(2.12). Thus, on a plot with δ∆Hf/∆H
0
f and δ∆Sf/∆S

0
f on the ordinate

and abscissa, a line of slope unity would constitute no change in folding
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temperature due to the cosolute. Further, since

T 0
f + δTf =

∆H0
f + δ∆Hf

∆S0
f + δ∆Sf

≈ T 0
f + T 0

f

(
δ∆Hf

∆H0
f

−
δ∆Sf
∆S0

f

)

we conclude that the distance of each point from the line y = x is, to first

order, the relative change in the folding temperature, δTf/T
0
f , as a result of

the transfer.

We may further interpret the deviation from the line y = x on a plot

of δ∆Sf/∆S0 vs δ∆Hf/∆H0 as the free energy of transfer at fixed tem-

perature T 0
f , δ∆G(T 0

f ), divided by the unfolding enthalpy ∆H0
f . That is,

δ∆Hf/∆H
0
f − δ∆Sf/∆S0

f = δ∆G(T 0
f )/∆H0

f .

In Figures 2.4 and 2.5, we divide both δ∆Hf/∆Hf and δ∆Sf/∆Sf by

the concentration c of the cosolute, to compare cosolutes solutions having

different concentrations. Thus the axes in Figures 2.4 and 2.5 can be thought

of as a decomposition of m-values[143] into enthalpic and entropic compo-

nents, each normalized by the corresponding unfolding enthalpy or entropy

in the absence of cosolute.

Linear regression to the data in Figures 2.4 and 2.5, when taken together

gives a slope of 0.99 ± 0.04. The statistical test outlined in Krugg et. al.

[26] requires that the slope of the best fit δ∆Hf/∆H
0
f vs. δ∆Sf/∆S

0
f line be

more than 2σ away from the harmonic mean of the temperatures at which

the experiments were performed; thus for Figure 2.4 this requires that the

slope be 2σ away from unity. Figure 2.4 fails this test. Nevertheless, we

show that the results in Figure 2.4 are in fact statistically significant, given

the magnitude of the experimental errors. We now describe a treatment of

the statistical significance of entropy-enthalpy compensation that is valid

when the slope of the ∆H-∆S plot is near unity.

The Monte Carlo method in Section 2.2.1 can be applied to data at

various concentrations of cosolutes to assess the significance of the linear

relationship between enthalpy and entropy observed in Figures 2.4-2.5. Fit-

ting each experimental data set to the appropriate equation as described

in Section 2.2.1 results in a set of best fit parameters, as well as a set of
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residuals from the best fit. For the following protein/cosolute systems—

α-lactalbumin in ethanol[7], arc repressor in KCl[140], creatine kinase in

glycerol[141], hisactophilin in urea[6], histidine containing phosphocarrier in

urea[139] notch ankyrin in urea[138], and RNase A in urea[142] — 1000 data

sets were generated as described in Section 2.2.1, for each of several concen-

trations of cosolute. Thus 1000 values for δ∆Hf and δ∆Sf were generated.

We plot the results of this procedure as scatter points in Figures 2.4-2.6.

If we take the average of the extent of the scatter for these six data

points as an estimate for the experimental uncertainty, and apply it to all

other data in Figure 2.4, we can assess the significance of the apparent

linear relationship in the plot. The analysis rests on the assumption that

the deviations from the line of slope unity, δTf = 0, are much smaller than

the deviations from zero of either δ∆Hf or δ∆Sf , i.e., that the data are

essentially distributed along the diagonal. We may then consider the data

as transformed to a coordinate system that is rotated π/4 counterclockwise,

and translated so that the origin coincides with the mean of the data. Then

the data consists approximately of points distributed along the abscissa all

having zero ordinate. If the variance of this data is large compared to what

would be expected from the experimental error as derived from the above

Monte-Carlo method, then the result of entropy-enthalpy compensation is

significant.

To assess the significance we use a bootstrapping method, to avoid re-

quiring an assumption as to the distribution of the points along the y = x

line. From the 48 data points in Figures 2.4 and 2.5 we perform random

sampling with replacement to generate new sets of data (also with n = 48).

We find the standard deviation of each of these generated sets and thus

obtain a distribution in σ. We obtain another distribution in σ by sampling

from the Monte Carlo generated deviations. From the 6000 total generated

points (1000 for each of 6 proteins) we sample with replacement to obtain

many sets of 1000 deviations. The standard deviations of these sets forms

another distribution in σ. Distributions formed with this procedure are plot-

ted in figure 2.3. The overlap of these two distributions then provides the

significance–the likelihood that the scatter in the experimental data arises
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from the fit uncertainty. For the data in Figures 2.4 and 2.5 we obtain

p < 10−6. With near certainty, these results illustrate entropy-enthalpy

compensation rather than experimental error.

For almost all the points in Figures 2.4 and 2.5 the magnitude of the

enthalpy change is larger than the magnitude of the entropy change. None

of the systems we examined showed a destabilizing cosolute with a change

in entropy of unfolding larger than the change in enthalpy of unfolding, and

only a few systems showed a stabilizing cosolute with a change in entropy of

unfolding larger than the change in enthalpy of unfolding. Thus for the most

part enthalpy drives the change in stability, while entropy tries to catch up

and partially compensates.

Figure 2.5 also shows the transfer enthalpy and entropy for simulation

results by O’Brien et al. on Cold shock protein and protein L [144] (open

black symbols in Figure 2.5). Here, thermodynamic parameters were ex-

tracted from fits to simulated heat capacity curves, for the transfer of the

above proteins to either urea or TMAO. A surface-area based Tanford trans-

fer model [145] was used to model the cosolute solution. We have not found

experimental values for these thermodynamic parameters in the literature;

the values in Figure 2.5 are thus predictions as a consequence of both the sim-

ulation method for generating unfolded ensembles, and the Tanford transfer

model, which are subject to experimental test.

Importance of the Cosolute- and Temperature-Dependence of the

Unfolding Heat Capacity

The unfolding heat capacity ∆Cp(T, c) is generally both temperature- and

concentration-dependent. We define the change in unfolding heat capacity

upon transfer, δ∆Cpf , in Equation (2.13). While the quantities δ∆Hf and

δ∆Sf in Equations (2.11) and (2.12) are independent of δ∆Cpf , since they

are always evaluated at the respective transition temperatures, the ther-

modynamics for transfer at fixed temperature (e.g. lab temperature) does

depend on δ∆Cpf .

A number of the works cited here obtained a concentration-independent
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∆Cp however, by equating ∆Cp to the slope of ∆Hf vs. Tf data for various

cosolute concentrations. This assumes that ∆Cp is constant with varying

cosolute concentration, and hence δ∆Cpf = 0. These proteins/cosolutes

are thus indicated in Table 2.3 by “0†” in the column for δ∆Cpf . This as-

sumption may be sufficient if δ∆Hf , δ∆Sf , or ∆Cp(c = 0) is the quantity

of interest, however when Equations (2.2) and (2.3) are used to evaluate

thermodynamic parameters at lab temperature, this assumption produces

unacceptably large errors. Examples of the change in thermodynamic values

obtained by setting δ∆Cpf = 0 are shown in Figure 2.6, for the transfer of

Hisactophilin and RNase A to urea: neglecting δ∆Cp changes the resulting

value of δ∆H by ≈ 80 kJ/mol for Hisactophilin and ≈ 40 kJ/mol for RNase

A. This is to be compared with the error introduced by neglecting the tem-

perature dependence of ∆Cp, which was ≈ 30 kJ/mol for Hisactophilin and

≈ 10 kJ/mol for RNase A.

In Table 2.3 we have made a note of where the δ∆Cp = 0 assumption has

been made, and we have not plotted the corresponding δ∆Hlab and Tδ∆Slab

data in Figure 2.6. Note that the potential for large errors due to δ∆Cp is

irrelevant when comparing data at the respective folding temperatures, i.e.

for the quantities in Equations (2.11) and (2.12), and Figures 2.4 and 2.5.

Figure 2.7 plots the concentration-dependence of ∆Cpf for several protein-

cosolute systems, obtained by using the non-linear temperature-dependent

model in equation 2.1. The values plotted do not change significantly if

the linear temperature-dependent model is used (see for example Table 2.1,

which shows that the values obtained from the two models are comparable).

Some proteins have a ∆Cpf showing weak concentration-dependence (e.g.

Barstar in GdmHCl, Acylphosphatase in urea), while for others, ∆Cpf shows

significant concentration-dependence (RNase A in urea, α-Lactalbumin in

ethanol). Furthermore, ∆Cpf need not even be monotonic in T ; the non-

monotonic behaviour exhibited by RNase A in urea is well beyond what

can be explained by the experimental uncertainty. Factoring in the inter-

model uncertainty does not change this; as panel B shows the non-monotonic

behaviour is present in both the T-independent and linear T-dependent

models. A concentration-independent heat capacity is often obtained from
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linear fits of the unfolding enthalpy vs. melting temperature for various

osmolyte concentrations. For the proteins in Figure 2.7 that have strong

c-dependence, this would be a recipe prone to large errors.

Transfer Entropy and Enthalpy at Lab Temperature

For 19 proteins and cosolutes that we had investigated, the concentration

dependence of ∆Cpf is known. For these proteins, we have obtained the

transfer enthalpy of unfolding δ∆H(T = 25◦C) and the transfer entropy of

unfolding δ∆S(T = 25◦C) at lab temperature; values are tabulated in Ta-

ble 2.3. For 12 protein-cosolute systems, thermodynamic parameters at the

folding temperatures corresponding to different cosolute concentrations were

tabulated in the literature. For these systems, a temperature-independent

∆Cp model was invariably used to obtain the tabulated values. We thus had

to also assume a temperature-independent ∆Cp model in order to extrapo-

late the thermodynamic values to lab temperature. We show below however

that this procedure may be prone to large errors.

Seven references contained plotted data, which we had fitted to obtain

thermodynamic parameters. For 5 of these protein-cosolute systems, the

non-linear temperature-dependent ∆Cp model was used to extrapolate to

lab temperature. Two of these systems had baselines subtracted in the

published data, so a linear temperature-dependent ∆Cp model was used to

extrapolate to lab temperature. All of these 7 protein-cosolute systems show

scatter due to our Monte Carlo procedure that is indicated in Figure 2.6

(though for α-Lactalbumin in ethanol and RNase A in urea the scatter is

small).

The extent of the scatter in Figure 2.6 makes it clear that for any of

the three methods of obtaining δ∆H and δ∆S (heat capacity, fraction un-

folded, or unfolding free energy, with the method for each protein indicated

in Table 2.3), the uncertainties are highly correlated and can be quite large.

There is very little scatter orthogonal to the lines of constant stability on

the δ∆H-Tδ∆S plot. The scatter along the equi-stability line is significantly

larger however; for arc repressor in particular, the scatter is large enough to
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render the sign of δ∆H and Tδ∆S uncertain. The scatter in the data for

RNase transfer to urea is quite small on the other hand, even though the

scatter in the data for creatine kinase in glycerol, also from heat capacity

measurements, is large. The average standard deviation along the diagonal

was 21 kJ/mol, compared with an average of error of 0.32 kJ/mol perpen-

dicular to the diagonal, corresponding to the change in the unfolding free

energy upon transfer δ∆G.

We apply the same procedure described in Section 2.2.2 to evaluate the

significance of the entropy-enthalpy compensation here. In this case there

are 23 data points in Figure 2.6, and the data themselves have a sample

standard deviation of about s ≈ 65 kJ/mol, whereas the mean Monte-Carlo

standard deviation applied to each data point is about σ ≈ 19 kJ/mol.

Bootstrapping with the same procedure described in section 2.2.2 rejects

the hypothesis that the scatter arises from the uncertainty in fitting with

a significancep = 5 × 10−5. The result in Figure 2.6 thus also illustrates

entropy-enthalpy compensation rather than experimental error.

One caveat of the significance is that the experimental uncertainty only

included the fit uncertainty, and not the model to model uncertainty. At lab

temperature the model to model uncertainty is approximately a factor of two

larger than the fit uncertainty. To assess the significance of entropy-enthalpy

compensation with model to model uncertainty factored in, we perform an-

other bootstrapping procedure. This time we create a distribution in σ by

sampling many sets of 6 standard deviations from the 6 deviations found

from the model to model uncertainty. This distribution is then compared

to the distribution arising from bootstrapping from the experimental lab

temperature data. With this consideration the significance from the boot-

strapping method drops to p = 0.085.
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Figure 2.3: Distribution in σ arising from the bootstrapping method de-
scribed in section 2.2.2. The overlap of the two distributions represents
the statistical significance of entropy-enthalpy compensation–in this case
p = 5× 10−5.
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Table 2.3: Empirical values for thermodynamic unfolding parameters upon transfer of various proteins
to various solvents. For each protein-cosolute system, the values are listed at the concentration corresponding to
(100g/l). The literature reference from which the values were obtained, along with the corresponding figure or
table in that reference, is listed in the last column. For systems in which the parameters were obtained through
fitting a curve to the data in the reference work, the equation from this work used for the fitting is also listed below
the table. Systems without an equation listed were those in which ∆Hf and ∆Sf values were directly available.

Protein Cosolute pH ∆H0
f
∗∗ ∆S0

f Tf ∆Cpf
δ∆Hf

∆H0
f

δ∆Sf

∆S0
f

δ∆Cpf δTf δ∆Hlab Tδ∆Slab Ref/Fig/Tab§

α-CTgenα Trehalose 2.5 403 1.27 317 4.4 6.7e-3 9.7e-4 0† 1.8 2.69† 0.37† [146] Tab. 1
α-lactalbumin∗ Ethanol 8 310 0.916 338 5.3 -8.2e-3 -5.9e-3 0.10 19 1.11 1.67 [7] Fig. 3c

α-lactalbumin TMAO 7 209 0.663 315 6.5 0.27 0.25 -0.133 5.0 22.5 17.4 [147] Tab. 1
Acylphosphatase Urea 5.5 351 1.06 331 6.2 -0.11 -0.10 -0.037 -3.7 -4.17 1.07 [148] Tab. 2
Arc Repressor∗ KCl 4 141 0.463 304 1.0 0.25 0.14 5.20 29 -89.1 -102 [140] Fig. 7a

Barstar GdnHCl 8 292 0.849 343 6.2 -0.43 -0.41 -1.9 -12 -16.2 -5.64 [149] Tab. 2
Cro Protein Urea 6 195 0.591 330 3.8 -0.22 -0.20 0.09 -8.2 -7.47 -3.45 [150] Tab. 2
Cytochrome c Sorbitol 2 226 0.740 305 5.2 0.12 0.09 -1.7 8.4 13.6 7.28 [151] Tab. 1

Cytochrome c Trehalose 7 161 0.502 321 N/A -3.4e-2 -3.7e-2 0† 24 -5.38† -4.78† [146] Tab. 1
Creatine Kinase∗ glycerol 8.05 782 2.38 329 92 2.0e-2 1.9e-2 2.46 0.32 -93.1 -88.4 [141] Fig. 4c

De Novo α B GdnHCl 7.3 103 0.300 343 2.3 -0.53 -0.52 0.21 -7.2 0.564 4.52 [152] Tab. 2
De Novo α C GdnHCl 7.3 153 0.441 347 2.7 -0.48 -0.47 -0.07 -6.5 3.94 10.5 [152] Tab. 2

Hisactophilin∗ Urea 5.8 215 0.658 327 6.1 -0.89 -0.85 3.63 -87 -142 -123 [6] Fig. 6b

Hexokinase Glucose 8 700 2.19 320 30 0.51 0.46 1.5 11 -30.0 -58.1 [153] Tab. 2

HPrβ Urea 7 315 0.935 336 4.4 -0.16 -0.16 -0.0054 -27.1 36.4 39.7 [139] Fig. 2a

Lectin (Pea) Urea 7.2 1130 3.25 347 22 -1.6e-2 -1.1e-2 0.74 -1.8 -7.12 -3.40 [154] Tab. 2

Lysozyme DMSO 2.5 535 1.58 339 7.8 -4.4e-3 -3.4e-3 0† -034 1.00† 1.50† [155] Tab. 2

Lysozyme Trehalose 7 397 1.20 331 N/A -1.5e-2 -2.2e-2 0† 2.4 -5.99† -7.09† [146] Tab. 1
Lysozyme TMAO 6 535 1.50 357 6.8 7.5e-2 6.5e-2 0.089 3.3 12.3 5.59 [147] Tab. 1

Notch Ankyrin∗ Urea 8 592 1.86 318 15 -0.45 -0.43 -1.26 -11 -63.2 -43.8 [138] Fig. 4b

RNase A β-hydroxγ 5.5 364 1.09 334 4.4 2.8e-2 2.4e-2 0.194 1.3 -3.16 -4.36 [156] Tab. 1
RNase A Betaine 5.5 364 1.09 334 4.4 4.2e-2 4.1e-2 0.214 0.32 5.39 3.42 [156] Tab. 1

RNase A Betaine 6.0 364 1.09 334 0 5.3e-2 5.0e-2 0† 0.95 0† -0.291† [157] Figs. 2,4d

RNase A Trehalose 7 385 1.20 321 4.7 1.4e-2 9.1e-3 0† 1.6 5.51† 3.38† [146] Tab. 1

RNase A Glycine 6.0 364 1.09 334 0 -2.0e-2 -2.7e-2 0† 2.4 0† -0.659† [157] Figs. 2,4d

RNase A Sarcosine 6.0 364 1.09 334 0 1.1e-2 -4.0e-4 0† 3.8 0† -1.20† [157] Figs. 2,4d
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cont.

Protein Cosolute pH ∆H0
f ∆S0

f Tf ∆Cpf
δ∆Hf

∆H0
f

δ∆Sf

∆S0
f

δ∆Cpf δTf δ∆Hlab Tδ∆Slab Ref/Fig/Tab§

RNase A TMAO 7 490 1.46 336 5.2 7.3e-2 6.2e-2 0.022 3.5 16.1 9.35 [147] Tab. 1

RNase ACal GdnHCl 7 515 1.53 337 11 -0.23 -0.22 0† -4.3 -0.246† 10.8† [142] Tab. 1

RNase AUV GdnHCl 7 452 1.35 335 6.3 -0.16 -0.14 0† -7.8 0.44† 12.3† [142] Tab. 1

RNase ACal Methylurea 7 515 1.53 337 7.1 -5.3e-2 -4.5e-2 0† -2.8 -0.508† 4.19† [142] Tab. 1

RNase AUV Methylurea 7 452 1.35 335 4.8 -4.4e-2 -3.4e-2 0† -3.5 -0.419† 4.28† [142] Tab. 1

RNase ACal Dimethylureaδ 7 515 1.53 337 3.7 -2.8e-2 -1.8e-2 0† -3.4 -0.08† 5.04† [142] Tab. 1

RNase AUV Dimethylureaδ 7 452 1.35 335 1.2 -8.7e-2 3.2e-2 0† -39 0.79† 5.64† [142] Tab. 1

RNase ACal Ethylurea 7 515 1.53 337 3.6 -4.0e-2 -2.7e-2 0† -4.5 0.13† 6.02† [142] Tab. 1

RNase AUV Ethylurea 7 452 1.35 335 3.9 -4.2e-2 -2.7e-2 0† -5.2 1.05† 8.25† [142] Tab. 1

RNase ACal Butylurea 7 515 1.53 337 6.0 -0.21 -0.17 0† -16 4.3† 23.4† [142] Tab. 1

RNase AUV Butylurea 7 452 1.35 335 7.3 -0.26 -0.21 0† -21 7.4† 30.3† [142] Tab. 1
RNase A∗ Urea 7 501 1.49 336 14.6 -4.0e-2 -2.9e-2 -1.5 -3.8 43.0 46.6 [142] Fig. 1c

Ssh10b GdnHCl 6.8 307 0.840 365 N/A -0.18 -0.14 0† -17 -54.4† -34.3† [158] Tab. 2

Tryps inhε Trehalose 7 236 0.711 332 1.1 8.8e-3 3.4e-3 0† 1.8 2.08† 0.74† [146] Tab. 1
Ubiquitin PVP 5.4 100 0.265 377 1.5 -0.2 -0.2 -0.1 0 -26.0 -14.8 [159] Tab. 3
Ubiquitin Ficoll 5.4 100 0.265 377 1.5 -0.5 -0.6 -0.5 94 -36.1 -44.5 [159] Tab. 3
Ubiquitin BSA 5.4 100 0.265 377 1.5 0.5 0.5 1.6 0 -310 -295 [159] Tab. 3
Ubiquitin Lysozyme 5.4 100 0.265 377 1.5 -0.1 -0.2 0.1 47 -88.1 -107 [159] Tab. 3

Ubiquitin NaCl 2 203 0.617 329 3.0 0.547 0.383 0† 39 111† 70.4† [160] Tab. 1

Ubiquitin CaCl2 2 203 0.617 329 4.6 3.21 2.67 0† 48 652† 490† [160] Tab. 1

Ubiquitin MgCl2 2 203 0.617 329 4.4 1.87 1.49 0† 50 379† 273† [160] Tab. 1

Ubiquitin GdmCl 2 203 0.617 329 4.7 0.248 0.201 0† 13 50.3† 37.0† [160] Tab. 1
§Literature reference and corresponding tabulated value, or figure used to extract the values listed here.

∗∗Values listed for ∆H0
f and ∆S0

f are the unfolding enthalpy and entropy at Tf , 0M cosolute concentration, and pH indicated in the
corresponding column. Throughout this table, values for enthalpy, entropy, and heat capacity are given in kJ/mol, kJ/mol/K, and

kJ/mol/K respectively.
aFit to Equations 2.4 and 2.9 bFit to Equation 2.4. cFit to Equation 2.10. d Used ∆H(Tf ) = Tf∆S(Tf ) to obtain unfolding entropy

N/A: ∆Cp data not available. †∆Cp measured for one concentration and assumed constant with respect to concentration in these
references. The values for δ∆Hlab and Tδ∆Slab for these systems are thus likely inaccurate.

αα-chymotrypsinogen. βHistidine-containing phosphocarrier protein. γ β-hydroxyectoine. δ N-N’ Dimethylurea. εTrypsin Inhibitor.
Cal Measurements taken with calorimetry; UV Measurements taken with UV absorption;

∗ Monte-Carlo error analysis is performed on this protein in Figures 2.4-2.6.
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2.3 Concluding Remarks

In this chapter we have observed and analyzed significant entropy-enthalpy

compensation across both diverse proteins and diverse cosolute solutions, by

performing a rigorous thermodynamic analyis of calorimetric and spectro-

scopic data, which included Monte-Carlo error estimates and a comparison

across different models of the temperature-dependence of the unfolding heat

capacity. Uncertainties in enthalpy and entropy, while much larger than the

uncertainty in free energetic stability, do not rule out significant entropy-

enthalpy compensation as a general phenomenon in protein transfer. The

accuracy of the temperature-dependence and concentration-dependence of

the unfolding heat capacity is not important near the folding transition, but

is important if we are interested for example in the stability at lab temper-

ature.

We can consider several possible scenarios for stabilizing and destabiliz-

ing cosolutes. A stabilizing cosolute, for example, could act in two different

ways: it could increase the change in enthalpy upon unfolding, stabilizing

the protein, while increasing the entropy of unfolding by a lesser amount.

Or it could decrease the change in entropy upon unfolding, while decreasing

the enthalpy by a lesser amount. We refer to the former case as an enthalpi-

cally stabilizing cosolute, and the latter case as an entropically stabilizing

cosolute. Conversely a cosolute could decrease the change in enthalpy upon

unfolding, destabilizing the protein, while decreasing the entropy of unfold-

ing by a lesser amount; we refer to this as an enthalpically destabilizing

cosolute. An entropically destabilizing cosolute would then be one that in-

creases the entropy of unfolding while increasing the enthalpy of unfolding

by a lesser amount. A cosolute could also in principle be stabilizing in both

enthalpy and entropy (or destabilizing in both), which we refer to as uncom-

pensated stabilization (or destabilization). These regions are illustrated in

figure 2.8.

Each of these regions could in principle be populated, but examining

the data in figures 2.4 and 2.5 shows an interesting pattern. In the sys-

tems we looked at, the majority of cosolutes were enthalpically stabilizing
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Figure 2.4: Entropy-enthalpy compensation for protein unfolding transfer en-

thalpy δ∆Hf and unfolding transfer entropy δ∆Sf , both evaluated at the folding midpoint

and suitably normalized as described below. The legend, listed from the upper right data

point to the lower left data point, indicates the protein, cosolute, pH, and correspond-

ing source of the experimental data. Cosolutes above and to the left of the diagonal

are destabilizing as noted; cosolutes below and to the right of the diagonal are stabi-

lizing. Abscissa/ordinate are the transfer enthalpy/entropy normalized by the unfolding

enthalpy/entropy in the absence of solute, per 100g/L of cosolute, i.e. δ∆Hf/(∆Hf · c) vs

δ∆Sf/(∆Sf · c). Also plotted here are the Monte Carlo-generated scatter points for Arc

Repressor in KCl (red circle), Notch Ankyrin in urea (green circle), and Hisactophilin in

urea (blue circle). Bars on each of these three points show the standard deviation in the

direction of the scatter. The scatter here does not substantially reduce the significance of

the linear compensating trend. See also Table 2.3, which gives thermodynamic parameters

for the proteins we study here.
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Figure 2.5: Further illustration of entropy-enthalpy compensation
for various proteins and solvents. The notation here is the same as in Figure
2.4, but the scale of the plot is significantly smaller. Scatter as a result of
uncertainty for Creatine Kinase in glycerol (blue circle) is shown, along with
bars to indicate the standard deviation. Scatter was calculated for RNase A
in urea (cyan circle) and α-lac in ethanol (mustard circle), but the scatter
is smaller than the data point appearing on this plot. Black open symbols
correspond to simulation data using the Tanford transfer model taken from
O’Brien et. al. (ref. [144]). Legend labels are ordered from upper right data
point to lower left data point.
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Figure 2.6: Entropy-enthalpy compensation for the transfer of vari-
ous proteins to various solvents is also seen by plotting δ∆H vs. Tδ∆S
at lab temperature (25◦ C). The points cluster close to the δ∆H = Tδ∆S
line; the deviation from that line (horizontal or vertical) represents the abso-
lute change in stability upon transfer at 25◦ C. Points above the line corre-
spond to destabilizing cosolutes, points below the line correspond to stabiliz-
ing solutes. Scatter points representing the range of uncertainty in obtaining
the enthalpy and entropy are also shown, as determined by the Monte Carlo
method described in Section 2.2.1. The scatter is highly correlated with a
magnitude that in some cases is large enough to change the sign of δ∆H and
Tδ∆S. The compensation is statistically significant however—see Section
2.2.2. In the case of α-Lactalbumin in ethanol, the scatter was smaller than
the symbol. The cyan circle with black outline indicates the Hisactophilin
data assuming ∆Cp is independent of the concentration of urea, but has
non-linear temperature-dependence obtained by fitting to Equation (2.4);
the cyan circle with black square outline is the value obtained assuming ∆Cp
is independent of temperature, but still accounting for the concentration-
dependence. These approximations both introduce significant error: ≈ 80
kJ/mol and 30 kJ/mol respectively. Similarly, assuming a concentration-
independent unfolding heat capacity introduces an error of ≈ 40 kJ/mol for
RNase A in urea (circled blue cross) and a temperature-independent ∆Cp
introduces an error of ≈ 10 kJ/mol. Legend labels are ordered from upper
right data point to lower left data point.
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Figure 2.7: A) Concentration-dependence of the heat capacity for
several protein-cosolute systems. For RNase A in urea, hisactophilin in urea,
and α-Lactalbumin in ethanol, error bars were determined from the Monte
Carlo method described in Section 2.2.1. Error bars are not present for
acylphosphatase or barstar because the corresponding literature data were
not available for application of the Monte-Carlo method. The x-axis was
normalized to facilitate comparison across proteins. B) heat capacity vs
concentration for the T-independent and linear T-dependent models of ∆Cp
for RNase A in urea.

or enthalpically destabilizing. Few were entropically stabilizing, and none

entropically destabilizing. None could be confidently assigned as uncom-

pensated stabilizers or destabilizers based on the error bars shown. The

picture that emerges here is one in which enthalpy plays the dominant role

in stabilization or destabilization, with entropy partially compensating the

effect of enthalpy. This is consistent with recent results by Senske et al.[161]

which found that even some macromolecular crowders, which are typically

assumed to act primarily through entropy, and in fact enthalpic stabilizers.

Early results by Ben-Naim [162], Grunwald [163], Karplus [164], and

Lee [165] have analyzed the invariable entropy-enthalpy compensation that

occurs during solvent reorganization around a solute due to solvent-solvent

interactions. In these theories, cavity creation results in a singular solute-

solvent potential and is non-compensating, the limiting case being the free

energy of inserting a non-interacting, hard-sphere solute. This issue is un-
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Figure 2.8: A diagram illustrating the possible categories of cosolute
discussed in section 2.3

likely to be a factor in the transfer scheme wherein a solute (protein) is

transferred from pure buffer to solution containing cosolute: volume is in-

deed lost to buffer and cosolute upon transfer at constant pressure, but is also

gained to the pure buffer system. A systematic analysis of entropy-enthalpy

compensation in protein transfer using density functional theory to capture

the effects of solvation is an interesting topic for future work.[166, 167]
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Chapter 3

Classical Density Functional

Theory and Protein-Cosolute

Interactions

The problem we consider in this chapter is that of calculating the free en-

ergy change upon moving a solute such as a protein from a pure water

environment and inserting it into a water and cosolute environment. Figure

3.1 illustrates the problem we are considering in the context of the Tanford

transfer model for protein folding [168]. The cycle depicted here implies

that if we know properties (such as the unfolding free energy) of the protein

of interest in water, and we know the transfer free energy of each state of

the protein from water to water and cosolute, we can find the corresponding

properties of the protein in water and cosolute. This can be implemented

either as an implicit solvent model, which we will discuss in Section 3.4, or

in a post-processing way as in Ref. [145], which we will use to empirically

fit our DFT model in Section 3.3.

The organization of this chapter is as follows. We begin in Section 3.1 by

investigating the expected behavior of the surface and volume contributions

to the transfer free energy in a heuristic model. In Section 3.2 we derive the

principal equations for the DFT model of the transfer free energy. In Section

3.2.2 - Section 3.4, we consider several examples of how the DFT model can
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Figure 3.1: A diagram of the Tanford transfer model, for a transfer
process going from a pure water environment to one of water and cosolutes.
Knowledge of the free energy of unfolding ∆Gu→fwat in the absence of cosolutes
can be combined with the transfer free energies of the folded (∆Gfold

w→o)
and unfolded (∆Gun

v→s) states to obtain the free energy of unfolding in the

presence of cosolutes ∆Gu→fcos .

be applied, making connections with the model developed in Section 3.1. We

finally conclude and give our outlook on future directions for this approach.

3.1 Volume and Area Terms in the Transfer Free

Energy

3.1.1 Volume Considerations

To appreciate the terms that we expect in an expression for the transfer

free energy, we initially consider both volume and surface area effects in a

more qualitative way. We consider the difference in volume occupied by the

folded and unfolded states, or more precisely the expanded and collapsed

states of a polymer, to obtain the corresponding free energy difference in the
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presence of a bath of “hard-sphere” cosolutes. There are thus no surface in-

teractions to consider, and we seek to estimate the magnitude of the volume

effect; we also ignore for the time being the change in internal free energy

as the polymer collapses. The free energy change upon collapse of a protein

or polymer then arises from the change in entropy of the cosolutes, due to

the change in available phase space. For hard-sphere cosolutes, the volume

occupied by the expanded polymer will be larger than that of the collapsed

polymer. The same considerations apply to a collapsed vs. expanded pro-

tein; unfolded states of proteins are generally found to be expanded relative

to the folded state [169]. In what follows, let ra be the mean amino acid

radius, ro the cosolute radius, and Np the number of amino acids in the

polymer or protein. Treating the unfolded protein crudely as a meander-

ing cylindrical tube (see Figure 3.2a inset), the volume is approximately

π(ra + ro)
2(2raNp + 2ro), which is that of a cylinder of radius ra + ro and

length 2Npra + 2ro. The volume of the collapsed globule, or folded protein,

can be modelled as a sphere of radius Rp + ro, where Rp is the protein ra-

dius as probed by a zero-radius cosolute particle, i.e. the collapsed volume

is (4/3)π(Rp+ ro)
3. When ro = 0, the unfolded and folded volumes must be

equal, giving R3
p = (3/2)Npr

3
a. The change in available volume for cosolutes

∆V (ro) upon polymer collapse is thus positive, and is plotted in Figure 3.2

as a function of cosolute radius ro, for a chain of length Np = 70.

We can compare the results of the above simple model to data taken

from simulations of a Cα Gō model of cold-shock protein (PDB 2L15), with

70 amino acids, generated with the GROMACS molecular dynamics pack-

age. The Gō potential was generated using a shadow map for the native

contacts [170] by the SMOG@ctbp server [171]. The simulated free en-

ergy surface has a double-well structure with well-defined folded (f) and

unfolded (u) ensemble as observed in Cα Gō models for other single do-

main proteins [172]. We take conformational snapshots in each ensemble

and measure the volume using a variable probe radius with the program

VOIDOO [173]. The average volume change ∆V = 〈Vu〉 − 〈Vf 〉 for a given

probe radius is plotted in Figure 3.2a. The theory and simulation data

compare quite well given the simplicity of the model.
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Figure 3.2: a) The change in volume upon collapse ∆V (ro) = Vu−Vf ,
as a function of cosolute radius ro, for a polymer chain of length Np =
70 residues and with ra = 6 Å. The magnitude of the change in volume
monotonically increases as ro increases. Also plotted are the average ∆V =
〈Vu〉−〈Vf 〉 values of simulation trajectories of Cold-Shock Protein (N = 70,
PDB 2L15) against probe radius. (Inset) Schematic of collapsed/folded and
unfolded polymer. Folded polymer has radius Rp; unfolded polymer has tube
radius ra and length Npra. b) Minus the change in free energy upon collapse
as a function of cosolute radius ro, for both constant packing fraction η and
constant concentration ρ. The value of ρ was set to 1M , and the value of η
was set so that the free energy change would be equal to that at constant ρ
at a typical cosolute radius of 3.1 Å. This gave a packing fraction η ≈ 0.075.59



We now consider the free energy as a function of either uniform density

ρ or packing fraction η of the cosolutes. Given a large effective box with

volume Vbox containing a given protein, the packing fraction of cosolutes η

(i.e. the volume density) is given by

η =
4
3πr

3
oNo

Vbox − Vprot(ro)
≈

4
3πr

3
oNo

Vbox
=

4

3
πr3

o · ρ ,

where ρ is the number density. So, at a fixed packing fraction the number

of cosolutes No scales as r−3
o .

To estimate the volume contributions to the free energy change upon

collapse, ∆GV (ro), as a function of cosolute radius but at either fixed density

or packing fraction, we use the ideal gas approximation for the osmotic

pressure posm = ρkBT to obtain

∆GV (ro) = posm∆V (ro) = ρkBT∆V (ro) =
ηkBT∆V (ro)

4
3πr

3
o

(3.1)

where ∆V (ro) is obtained from the model above.

A plot of the magnitude of the free energy change upon collapse as a

function of cosolute radius, here exclusively due to the increase in entropy

of cosolute particles, is shown in Figure 3.2b. Based on these considerations

we can estimate the volume-like contribution for typical cosolute sizes and

concentrations. Taking TMAO (Trimethylamine N-oxide) as an example,

we expect the cosolute radius to be about 2 Å, from the water oxygen-

TMAO nitrogen radial distribution function[174]. Given this radius and

a concentration of 300 g/L, for a protein of length Np = 70 we estimate

a volume contribution to the free energy of ≈ 4kBT . The free energy of

unfolding is linear in protein length, so a larger protein of Np = 300 has an

estimated ∆G ≈ 17kBT .

3.1.2 Surface Considerations

The presence of cosolutes in solution can make the effective solvent more re-

pulsive to protein resulting in stabilization, or more attractive to the protein
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resulting in denaturation. What effect is observed depends on the energy ε

of cosolute-protein binding and also the concentration c (or equivalently the

chemical potential µ) of the cosolute.

The energy ε of binding of the cosolute is actually the difference in in-

ternal free energy of binding between cosolute and water, since for example

water may have some attraction to the polymer, and also a cosolute may

supplant more than one water molecule in the process of binding.

Previous treatments of transfer free energy analysis as a condensation

problem onto the surface of the protein have been undertaken primarily in

the context of protein denaturation and the prediction of m-values [175–

177]. The process of condensation of a cosolute to a surface is equivalent to

the well-known statistical mechanical problem of Langmuir’s isotherm [178],

for which the partition function Z in the (T, µ) ensemble for a substrate with

M absorbing sites is given by
(
1 + e−β(ε−µ)

)M
. The mean covering ratio f

is then given by

f =
kT

M

∂ logZ

∂µ
=

1

1 + eβ(ε−µ)
, (3.2)

and the mean energy of condensation on the surface is Mfε. Here we neglect

interactions between cosolutes when bound. The Helmholtz free energy in

this model is given by

G = −pV + fMµ = −kBT log(Z) + fMµ

with T, µ partition function Z as given above.

We can relate the Langmuir isotherm to the free energy of a protein

surface by assuming that each cosolute occupies an area a0 ≈ πr2
o on the

protein surface, so that we can write M = A/a0, where A is the protein’s

solvent accessible surface area in a given conformation. The change in free

energy GA upon condensation becomes

GA = −kBT
A

a0
log
(

1 + e−β(ε−µ)
)

+ f
A

ao
µ (3.3)

If the concentration of unbound cosolute is dilute, an ideal gas approxi-

mation suffices for the chemical potential: µ = kT log (ρ/ρQ), where ρQ is a
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reference concentration (typically taken to be 1M). The quantity e−βε/ρQ is

typically treated as an equilibrium constant in the literature [176, 177]. We

consider both dilute and non-dilute limits below. The protein’s exposed sur-

face area is obtained from the volume given in Section 3.1.1 by A = ∂V/∂ro,

so the collapsed exposed area is 4π (Rp + ro)
2 and the expanded (random

coil) exposed area is 2π (ro + ra) [(2Np + 1) ra + 3ro].

3.1.3 Combined Surface/Volume Model for the Transfer Free

Energy

We can now write the total free energy of collapse ∆G arising from cosolutes

by combining the volume and surface area terms in equations (3.1) and (3.3).

We can also remove the ideal gas assumption by expressing ∆G in terms

of the Carnahan-Starling (CS) approximations to the pressure and chemical

potential: [179]

p = ρkBT
1 + η + η2 − η3

(1− η)3

µ = kBT log(ρ/ρQ) + kBT
8η − 9η2 + 3η3

(1− η)3
. (3.4)

where η is the volume fraction (the volume per molecule times ρ).Then the

free energy becomes:

∆G = p∆V +

(
kBT

πr2
o

log (1− f) +
fµ

πr2
o

)
∆A (3.5)

with f given in (3.2) and p and µ given in (3.4), and where

∆V (ro) =
4

3
π

((
3Np

2

)1/3

ra + ro

)3

− 2π(ra + ro)
2(Npra + ro)

∆A(ro) = 4π

((
3Np

2

)1/3

ra + ro

)2

− 2π(ra + ro)[(2Np + 1)ra + 3ro]

are the volume and surface area change upon folding (or collapse).

We plot equation (3.5) in Figure 3.3 as a function of cosolute radius ro,
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for condensation energies ε = 2kBT and ε = −kBT . To assess the limits of

the ideal gas model, we have also plotted the ideal gas results in Figure 3.3.

For repulsive cosolute-protein interactions, both surface and volume terms

stabilize the folded or collapsed state (Figure 3.3). The free energy change

upon collapse is monotonically decreasing (increasing in magnitude) from

zero, and more strongly favoring collapse as cosolute radius is increased.

Non-ideal excluded volume effects in the cosolute pressure and chemical

potential enhance the stabilizing effect. For attractive cosolute-protein in-

teractions, the situation is more complex. At small values of cosolute radius

ro, the collapsed phase is destabilized by cosolute-protein binding, which fa-

vors expansion. As ro increases, the volume change upon collapse increases,

which begins to entropically favor collapse. The osmotic pressure initially

increases modestly, additionally favoring collapse. However the chemical po-

tential also increases modestly, driving condensation of cosolute and favoring

expansion. These two effects nearly cancel each other rendering the real and

ideal gas curves nearly coincident up to ro ≈ 4Å. The sigmoidal dependence

of covering fraction f in equation (3.2) on chemical potential µ results in

a sudden condensation of cosolute onto the protein around ro ≈ 5Å, which

induces the system to favor expansion at these radii. While the number of

condensed cosolutes is bounded, the osmotic pressure is not, and eventually

collapse is favored once again through volume terms. The cosolute radius

ro can only increase until η ≈ 0.6 (near crystal packing densities), giving a

cutoff of r
(cut)
o ≈ (3η/4πρ)1/3, or about 6.2Å for 1M concentration.

In the limit that the cosolute is dilute, ρe−βε/ρQ � 1 and we can expand

the logarithm in equation (3.5) to obtain an area contribution to the free

energy of −ρkBTAe−βε/a0ρQ, so that the free energy change upon unfolding

becomes

∆G = ρkBT
(

∆V −Ate−βε
)
. (3.6)

Here we have used the fact that (a0ρQ)−1 has units of length and can be thus

be interpreted physically as a thickness t over which the surface interaction

acts.

Having looked at these preliminary volume and surface considerations,
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Figure 3.3: Total free energy change ∆G upon collapse in units of kBT ,
as a function of cosolute radius ro. Values of packing fraction η correspond-
ing to the values of ro on the x-axis are shown above the plot. Curves are
taken from equation (3.5) which combines surface area and volume terms.
Here the polymer length Np = 70, the cosolute concentration ρ = 1M, and
ra = 6Å. Red curves show ∆G upon collapse for a repulsive cosolute with
interaction energy +2kBT , i.e. a crowding particle. Blue curves show ∆G
upon collapse for an attractive cosolute with interaction energy −kBT , i.e.
a weak denaturant. Plotted are both the model with ideal gas (IG, dashed)
and Carnahan-Starling (C-S, solid) pressure and chemical potential.

we now turn to a classical density functional theory formulation, which

provides a more complete understanding of the transfer free energy, and

as well, reduces to equation (3.6) in the appropriate limits.

3.2 The Density Functional Theory Formulation

We now consider a density functional formulation of the problem of transfer

free energy. In what follows, we will assume that the intra-protein energy of

a given configuration of a protein is in principle known and the net interac-
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tion between any given site on the protein and either the cosolute or water

is in principle known. We then wish to calculate ∆G, the free energy of

transferring the protein from water to an cosolute solution, or, equivalently,

of transferring the cosolutes from an aqueous solution to one containing the

protein (see Figure 3.1). In short, we wish to consider the effect that the

presence of cosolutes has on the free energy of the protein.

The uniqueness of the Kohn-Sham density functional may be extended

to finite temperatures, so that the free energy of the protein-solvent system

is uniquely expressed as a functional of the single particle density φ(r) [180].

We thus seek an expression for the free energy of the cosolutes and water

in an arbitrary external potential. For our purposes in obtaining a transfer

free energy, we will treat a given protein configuration, with atom positions

{Ri}, as the source of the external potential. We write the free energy in

the standard way [80]:

G({Ri}) =

∫
d3r kBT (−So(φo(r))− Sw(φw(r))) + Vo(r)φo(r) + Vw(r)φw(r)

+ Φo[φo] + Φw[φw] + Φow[φo, φw] (3.7)

Here φj is the density function for the cosolutes (o) or water (w), and Vj the

external potential on the respective species. The entropy density for each

species can be written as

So(r) + Sw(r) = −φo(r) log
[
λ3
oφo(r)

]
− φw(r) log

[
λ3
wφw(r)

]
(3.8)

where λo and λw are constants with units of length, analogous to thermal

wavelengths. The terms Φo, Φw, and Φow are the multi-particle correlation

contributions to the free energy for the respective species. For example, the

two particle correlation part of Φo would have the form

Φ(2)
o [φo] =

∫ ∫
d3r1d

3r2 φo(r1)φo(r2)Uoo(r1 − r2)g(r1, r2|V) (3.9)

where Uoo is the interaction potential between two cosolutes and g the two-

particle correlation function. The full multi-particle function is not known
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exactly, and so, as in electronic DFT, while equation (3.7) is exact in prin-

ciple, approximations must be made to use it in practice [181].

We now make two key assumptions. The first is that the water and coso-

lute densities are completely correlated, such that all vacua are occupied by

either water or cosolute. Thus Nwvw +Novo = V , where vi is the volume of

an individual water or cosolute molecule, and V the total volume. Dividing

this by V vw and allowing the local density of a given species to vary gives

φw(r) + fφo(r) = ρw (3.10)

where f = vo/vw and ρw = 1/vw (the factor of f allows for the cosolute

molecule to be a different size than the water molecule). Equation (3.10) is

not valid in the interior of the protein, so we split our system up into two

regions: a hard wall region Vhw in which φw = φo = 0, and the rest of the

system, which has a volume V identical to the volume of the cosolute-water

bath prior to the insertion of the protein, and in which Equation (3.10) is

valid. We further take Vhw to be the same as the change in volume of the

aqueous system the protein was removed from in the transfer process (see

Figure 3.1), so that the total system of water, protein, and cosolute-water

solution does not change volume during the transfer process.

With the approximation of equation (3.10) we can write

Vo(r)φo(r) + Vw(r)φw(r) =∆V(r)φo(r) + Vw(r)ρw (3.11)

Φo[φo] + Φw[φw] + Φow[φo, φw] =Φt[φo] (3.12)

where ∆V(r) = Vo(r)− fVw(r).

The second approximation in our treatment is that the cosolute number

density is much less than that of water. Using this approximation along with

the one given in Equation (3.10), the entropy in Equation (3.8) becomes

−So(r)− Sw(r) =φo(r) log
[
λ3
oφo(r)

]
+ (ρw − fφo(r)) log

[
λ3
w(ρw − fφo(r))

]
(3.13)

≈φo(r) log
[
λ3
oφo(r)

]
− fφo(r) + ρw log

[
λ3
wρw

]
− fφo(r) log

[
λ3
wρw

]
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In this way we express each part of equation (3.7) in terms of cosolute density

and constant terms. The free energy functional may then be written as

G =

∫
d3r kBT (φo(r) log [λoφo(r)]− (γ + 1)φo(r)) + ∆V(r)φo(r)

+ V ρw log λ3
wρw + Uρw + Φt[φo] (3.14)

where U ≡
∫
d3rV(r), and γ+ 1 ≡ f(1 + log(λ3

wρw)). Since V is the volume

of the system, the term V ρw is equal to V/vw = N ′w, the total number of

water molecules in a system of pure water of volume V .

Thus, dropping the subscripts, letting V ≡ ∆V, and ignoring any posi-

tion independent terms, we can write the free energy as

G =

∫
d3r kBT

(
φ(r) log λ3φ(r)− φ(r)

)
+ kBTγφ(r) + V(r)φ(r)

+ Φ[φ] (3.15)

where Φ[φ] is the functional containing the multi-particle correlation part

of the free energy, and λ ≡ λo is a constant with units of length analogous

to the thermal wavelength, whose value will be shown to be unimportant.

For now we will formally manipulate Φ without making assumptions about

its form. We can find the density that minimizes the free energy by use of

the Euler-Lagrange equations, with the constraint that the cosolute density

when integrated over the total volume is the total number of cosolutes:∫
V
d3r φ(r) = No . (3.16)

We thus write

δ

δφ

[
G− µo

(∫
V
d3r φ(r)−No

)]
= 0

or kBT log λ3φ(r) + V(r)− kBTγ +
δΦ

δφ
− µo = 0 (3.17)

where µo is the Lagrange multiplier corresponding to the constraint in equa-

tion (3.16). Physically, we can interpret equation (3.17) as a statement that
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δG
δφ is equal to the chemical potential µo, and thus must be a constant value

at all points in space. Solving this for the density field gives

φ(r) = eγλ−3e−β(V(r)+Φ′−µo) (3.18)

where Φ′ ≡ δΦ
δφ .

To obtain µo from equation (3.18), we use the constraint on the total

number of particles in equation (3.16) which yields

eβµo =
eγλ3No∫

V d
3r e−β(V(r)+Φ′)

. (3.19)

From here we can obtain the transfer free energy, which is given by

the free energy of the cosolute bath in the presence of the external protein

potential, V(r), minus the free energy of the cosolute bath without the

protein potential (V(r) = 0). We thus have

∆G =∆µoNo

=− kBTNo log

(
eγλ−3

No

∫
V
d3r e−β(V(r)+Φ′f (r))

)
+ kBTNo log

(
eγλ−3

No

∫
V
d3r e−βΦ′i

)
(3.20)

where the volume V integrated over is the volume outside of hard-wall vol-

ume of the protein, and is the same in the initial and final systems. The

difference ∆G is independent of λ and γ.

The bath in the initial state is homogeneous and isotropic, so Φ′i in

equation (3.20) is independent of position. Thus it may be factored out of

the integral, ∫
V
d3r e−βΦ′i = V e−βΦ′i

so that

∆G = −kBTNo log

(
1

V

∫
V
d3r e−β(V(r)+∆Φ′)

)
(3.21)

where ∆Φ′ = Φ′f (r)− Φ′i. The expression in equation (3.21) consists of the

68



logarithm of the integral of a Boltzmann weight for the effective potential

V(r)+∆Φ′(r). Here V(r) and ∆Φ′(r) enter on equal footing. Recall that V
is the protein-cosolute potential, treating the protein as an external source.

Φ′ is the functional derivative of the multi-particle part of the free energy. If

we use the two-particle cosolute contribution from equation (3.9), we obtain

∆Φ(2)′
o =

δΦ
(2)
o

δφo(r)

∣∣∣∣∣
V

− δΦ
(2)
o

δφo(r)

∣∣∣∣∣
V=0

=

∫
d3r′

[
φof (r′)g(r, r′|V)− φoi(r′)g(r, r′|V = 0)

]
Uoo(r, r

′),

(3.22)

which gives the difference of two terms in the presence and absence of the

external protein potential, where each term corresponds to the equilibrium-

averaged interaction energy between cosolutes, up to pair correlations. Thus

the term ∆Φ′ in Equation (3.21) can be interpreted as the change in energy

due to redistribution of the environment in response to the change in external

potential.

We can recast equation (3.21) into a form that will be somewhat more

useful later:

∆G = −kBTNo log

(
1 +

1

V

∫
V
d3r [e−β(V(r)+∆Φ′) − 1]

)
(3.23)

which has the advantage that when V and ∆Φ′ are both zero, the integrand

is also zero, and thus the integral can be taken over all space.

In equation (3.23) we can take the limit V →∞, with No/V = ρ fixed.

Then, assuming that the region over which the integrand in equation (3.23)

is non-zero is finite, we can expand the logarithm to first order to obtain

∆G = −kBTNo
1

V

∫
d3r

(
e−β(V(r)+∆Φ′) − 1

)
(3.24)

which has the form

∆G = pid∆Veff

where pid = NokBT/V is the ideal gas osmotic pressure, and Veff =
∫
d3r

[
1− e−β(V(r)+∆Φ′)

]
is an effective change in volume. In the dilute limit, the osmotic pressure

p = pid; then Veff may be interpreted as the change in volume available to
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the cosolutes.

We now need to address ∆Φ′ to progress further. The obvious first ap-

proximation is to set ∆Φ′ = 0; we will see below that this approximation

can in fact go quite a long way, depending on the solvent. This is con-

sistent with the observations in Figure 3.3 where the ideal gas approxima-

tion, which neglects cosolute-cosolute correlations, holds for typical molecu-

lar radii at 1M concentration. It is worth noting that this is not ignoring the

cosolute-cosolute, cosolute-water, and water-water correlations completely;

it is merely assuming that they are the same in the initial and final baths.

Making this approximation, we have

∆G = −kBTNo log

(
1 +

1

V

∫
V
d3r [e−βV(r) − 1]

)
(3.25)

Equation (3.25) represents an approximation to the transfer free energy

that, while severe, nonetheless takes into account both the change in energy

and change in entropy of the cosolute bath.

3.2.1 Validation Tests in Model Solvents

As a test of the density functional theory, we have used equation (3.25)

to calculate the transfer free energy of several small molecules into model

cosolutes. To simplify the simulations, we looked at transfer from vacuum

to a van der Waals gas of cosolutes, which were taken to be single atoms

interacting through a VDW potential. The density of the cosolutes was

set to 1M. The molecules we transferred were the side chains of alanine

and valine, with C-β capped with a hydrogen to replace the backbone (ie,

the molecules were methane and propane). The coordinates were taken

from an existing protein structure file, and the angle and bond parameters

were generated with the GROMACS utility pdb2gmx. The charges were set

to zero for all atoms, and the interaction was purely van der Waals. We

list the VDW parameters in Table 3.1. Figure 3.4 shows the interaction

potential for the two different cosolutes we used. The transfer energies

were calculated both with equation (3.25) and by simulating the transfer
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Table 3.1: van der Waals parameters for the atoms used in the
simulation test of the DFT, as taken from the CHARMM parameter set.
Cos2 is a relatively attractive spherical cosolute, while the potential of
Cos1 is dominated by steric repulsion. The interaction is parameterized

as V (r) = 4ε
[
(σ/r)12 − (σ/r)6

]
.

Atom σ (Å) ε (kJ/mol)

Ala C-β 0.36705 0.33472

Ala H 0.23520 0.092048

Val C-β 0.40536 0.08368

Val C-γ 0.36705 0.33472

Val H 0.23520 0.092048

Cos1 0.40536 0.08368

Cos2 0.36705 0.33472

Table 3.2: Comparison of test cases between density functional the-
ory (DFT) and thermodynamic integration (TI)

Molecule/cosolute DFT ∆G (kJ/mol) TI ∆G (kJ/mol)

Ala/Cos1 0.188± 0.002 0.187± 0.002

Val/Cos1 0.255± 0.004 0.261± 0.004

Ala/Cos2 0.055± 0.002 0.059± 0.003

Val/Cos2 −0.018± 0.004 −0.011± 0.004

in GROMACS and using Thermodynamic Integration (TI) [182–184]. The

results are summarized in Table 3.2, and show excellent agreement between

TI and DFT. This is notable since the result was obtained neglecting the

inter-particle correlations, and at 1M the pressure of the cosolutes was ≈ 1.5

that of the ideal gas pressure, which indicates that the cosolute-cosolute

interactions were significant.

3.2.2 Connecting DFT to Previous Surface/Volume Models

We now take a simplified model of a protein potential to compare with

the results obtained previously in Section 3.1 for the solvent contribution

to the change in free energy upon protein collapse. In this model we will

consider the protein to have an excluded volume of Vprot; that is, within
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Figure 3.4: Comparison of cosolute potential functions for the test
cases parameterized in Table 3.1. Cos2 is significantly more attractive than
Cos1, which is reflected in the transfer free energies in Table 3.2

that volume the potential is infinite. From the discussion in Sections 3.1.1-

3.2 concerning excluded volume, we saw that the changes in volume treated

there are volumes from which cosolutes are excluded. We also consider the

protein to have a surface region of thickness t that exerts a potential on the

cosolutes of depth ε; this region is sufficiently thin that we can approximate

its volume as Vsurface ≈ tA. If we use this model in the expression for the

free energy in the limit of large system size (equation (3.25) ) then we obtain

a free energy upon transfer of

∆G = ρkBT
(
Vprot + (1− e−βε)tA

)
. (3.26)
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The DFT transfer free energy with this simplified model provides a nat-

ural split between the volume contribution pidVprot and the surface area con-

tribution pid(1 − e−βε)tA. Thus the DFT result, in the appropriate model,

naturally generates the free energy contributions derived in Section 3.1 from

more bespoke considerations. Specifically, if we take the total volume of the

protein upon insertion to be V = Vprot + tA, then equation (3.26) is identi-

cal to equation (3.6). The simplified DFT model here reduces to our earlier

considerations and helps give a physical interpretation of the quantity ρQ as

it pertains to the protein surface.

We can also see that, in order to obtain a SASA approximation in which

∆G is independent of temperature, one would have to assume that the

cosolute-protein binding energy ε� kBT , and that volume terms were either

negligible compared to surface terms, or they were proportional to them. We

find below that ε ≈ kBT in order to obtain empirically-derived transfer free

energies to TMAO, which does not satisfy the above inequality. As well, we

can use the tube model from Section 3.1 for protein volume and surface area

to estimate the relative contributions of volume and area: for a cosolute of

radius ro = 2.5 Å and a protein with Np = 70, V/tA = 0.62 in the unfolded

state, and V/tA = 0.77 in the folded state. The volume here is by no means

negligible.

We thus expect on general grounds that the transfer free energy will

be dependent on temperature. One way of looking at the simplified limit

for the transfer free energy in equation (3.26) is as a derivation of a new

phenomenological form for the transfer energy, containing both temperature

and volume dependence:

∆G = γ1kBT (Vsolute) + γ2kBT (ASA)e−βε , (3.27)

where one can now fit the parameters γ1, γ2, and ε, to empirical data.
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3.3 Empirically Deriving DFT Transfer Free En-

ergy Parameters

The potential V(r) in equation (3.25) is an effective potential given by

Vo(r) − fVw(r). Obtaining f and Vw ab initio may be nontrivial, so we

examine some model systems, and compare with empirical methods. To

begin with, we will assume that the potential takes the form of a sum of

terms from each particle in the protein, where a particle may be an atom

in an all-atom model, or a bead modeling an amino acid in a coarse-grained

approach:

V(r) =

Np∑
i=1

veff
i (r −Ri) .

Here Np is the number of particles in the protein, and Ri the position of the

ith particle.

We consider a model consisting of backbone Cα atoms and coarse-grained

side-chain beads, which then form the particles for our potential. We make

the assumption that the protein-cosolute potentials have a 6-12 form:

vi(r) = 4εi

[(σi
r

)12
−
(σi
r

)6
]
,

and we wish to determine the potential parameters σi, εi for each amino

acid that reproduce the transfer energies found experimentally when DFT

is applied using the above potential. As a starting point, we examine those

used by Auton and Bolen [145].

Two constraint equations are required for each amino acid. For the first

equation, we note that the beads representing the various amino acid side

chains have residue radii roi that may be obtained from measured partial

molar volumes [185]. We can then apply a constraint to the above 6-12

parameters σi, εi by requiring that at a distance roi from the residue centre,

vi(roi) = 0.6 kcal ·mol−1 . (3.28)

To obtain the remaining equation determining the parameters σi, εi, we

74



require that the DFT transfer free energy, as computed by the dilute limit of

equation (3.25) for the single particle representing an amino acid side chain,

should be equal to the experimental value as given in reference [145], specif-

ically for transfer into a solution of 1M TMAO. This involves computing the

integral over the cosolute-accessible volume in the expression

ρkBT

∫
d3r

(
1− e−βvi(r)

)
(3.29)

and setting the result to the empirical value of δgi for each amino acid.

The sum of the transfer free energies of each amino acid in a Gly-X-

Gly tripeptide is often used to approximate the conformationally-averaged

transfer free energy for a protein.[145] Here we consider the tripeptide trans-

fer free energies. The integral in expression (3.29) then involves integration

over a solid angle Ωi determined by the fraction of solid angle available to

the side chain in the tripeptide vs. that for the isolated residue, i.e.

Ωi =
Aitri
Aiiso

4π

The potential vi is then fully determined from equation (3.28) along with

ΩiρkBT

∫ ∞
0

dr r2
(

1− e−βvi(r)
)

= δgi . (3.30)

We can now construct potentials for each amino acid transfer free en-

ergy given in reference [186]. The parameters derived from doing so are

listed in Table 3.3. The backbone-cosolute interaction was parameterized as

vBB(r) = C/r12, as this better represented its strongly repulsive character.

The value of C obtained by fitting to δgBB was C = 7.510× 107 kcal·Å12.

In this context, the DFT formulation provides a way of using the infor-

mation from tri-peptide experiments in a way that captures both energetic

and entropic effects. The parameters just obtained can be used to determine

the change in the transfer free energies for isolated residues as temperature

changes. The experimental transfer free energies δgi are predicted to in-

crease as temperature increases, with the new values at T = 310K given in
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Table 3.3: Parameter values yielding transfer free energies δg to 1M
TMAO for amino acid side chains and backbone at 300K, and the predicted
δg at 310K .

Type ro (Å) a δg (cal/mol) b σ (Å) c ε (kcal/mol) d δg(T = 310K) (cal/mol) e

Ala 2.52 -14.64 3.517 0.6286 -12.65

Arg 3.28 -109.3 4.088 1.022 -104.0

Asn 2.74 55.69 4.564 0.0483 58.06

Asp 2.79 -66.67 3.627 1.055 -63.31

Gln 3.01 41.41 4.397 0.1710 44.57

Glu 2.96 -83.25 3.799 0.9973 -78.88

His 3.04 42.07 4.428 0.1707 45.28

Ile 3.09 -25.43 4.084 0.5692 -21.59

Leu 3.09 11.6 4.246 0.3405 15.15

Lys 3.18 -110.23 3.968 1.126 -104.7

Met 3.09 -7.65 4.154 0.4538 -3.791

Phe 3.18 -9.32 4.237 0.4587 -5.397

Pro 2.78 -137.7 3.457 1.987 -133.5

Ser 2.59 -39.04 3.4905 0.8849 -36.45

Thr 2.81 3.75 3.9312 0.3889 6.41

Trp 3.39 -152.9 4.157 1.150 -146.5

Tyr 3.23 -114.3 4.020 1.103 -109.2

Val 2.93 -1.02 4.021 0.4238 1.78

BB f 2.25 90.0 - - 92.7

aDistance where the cosolute-amino acid potential is taken to be 0.6 kcal·mol−1

bEmpirical transfer free energies to 1M TMAO
cvan der Waals size parameter
dvan der Waals well depth
e predicted transfer free energies at T = 310K
fBackbone is parameterized for TMAO by a purely repulsive potential (see text)

Table 3.3. Increasing temperature by 0.03kBT increases the transfer free

energy by ≈ 0.6kBT for a 100 residue protein. This change is not large,

but the relative temperature change is also small. The transfer entropy is

significant: d(δg)/dT ≈ 20kB.
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3.4 Using DFT for Implicit Solvent Models

The DFT methodology has been applied to the problem of solvation to cal-

culate fluid correlation functions, solvation free energies, and reorganization

energy in charge transfer [167, 187]. The use of time-dependent density

functional theory has been well-established to understand solvation dynam-

ics in single-component solvents [188] as well as selective solvation in binary

mixtures [189, 190]. The methodology has also been applied to the connect

static and dynamic approaches to the glass transition by Kirkpatrick and

Wolynes [86]. The DFT methodology as described above may also be be

applied to the problem of finding the effective forces for molecular dynamics

simulation in an implicit solvent, which we briefly describe here.

We again write the external potential due to solute-solvent interactions

as

V(r) =
∑
j

vj(|Rj − r|)

we can write the force on the ith particle from the transfer free energy in

equation (3.24) (neglecting solvent inter-particle correlations) as

Fi = ∇Ri
[
kBTρ

∫
d3r

(
1− e−β

∑
j vj(|Rj−r|)

)]
= kBTρβ

∫
d3r e−β

∑
j vj(|Rj−r|)∇Rivi(|Ri − r|)

= ρ

∫
d3r e−β

∑
j vj(|(Rj−Ri)−r|)∇vi(r) (3.31)

We immediately see that the integrand is non-zero only when ∇vi(r)
is non-zero, so that if there is an effective cutoff rc such that vi(r) ≈ 0

for r > rc, then the integral in equation (3.31) only needs to be taken

in the region r < rc. This is a generalization of the result obtained by

Götzelmann et al[191], who have shown that for a hard sphere potential,

only the solvent density at the surface of the spheres was relevant to the

calculation of depletion forces. Here we extend this analysis to arbitrary

potentials.

Consider a particle with a spherically symmetric vi(r), as assumed above.
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The net force on this particle when isolated is zero. When a second particle

exerting potential vj(r) on the cosolutes is brought near, the net force on

the first due to the solvent is a result of the now asymmetric solvent density.

We note here we are treating the indirect force rather than the direct force

between the particles, which can be calculated by direct application of the

interparticle potential. The region of asymmetric solvent density constitutes

a restricted volume to be integrated over in equation (3.31), as only the

region of overlap between the two spheres defined by the cutoff in potential

around Ri and Rj contributes to the net force (see e.g. Figure 3.5b below).

In addition, the solvent field in this overlap region will maintain cylindrical

symmetry about the axis joining the two particles, which means that the

force will be along this axis as well. This suggests that the force on particle

i can be written as

Fi =
∑

|Rij |<2rc

Fij(|Rij |)R̂ij .

Here R̂ij is the unit vector from particle j to particle i, and Fij is a scalar

function of the interparticle distance |Rij | ≡ |Ri−Rj |, which is determined

by the overlap integral in equation (3.31), and which could in principle be

pre-computed and tabulated to speed up execution.

3.4.1 Depletion and Impeded-Solvation Interactions in an

Implicit Solvent Model

We can use equation (3.31) to investigate the forces due to solvent on col-

loidal particles. In what follows, we imagine the “solvent” to be simplified

cosolutes within an implicit solvent bath. This subject has been well-studied

(see e.g. refs. [192–196] ); our goal here is simply to show that the DFT trans-

fer free energy provides a natural way of calculating depletion forces as well

as transfer energies, and that even the approximated form in equation (3.31)

yields non-trivial results for the depletion force.

We investigate a model consisting of two spheres that interact only

by a hard wall potential of radius rs. Each sphere also interacts with

a bath of cosolutes through a 6-12 (van der Waals) potential: V (r) =
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4ε
(

(σ/r)12 − (σ/r)6
)

, with σ = rs + ro. With this model we examine the

force as a function of the sphere separation d. Any force between the spheres

is entirely due to cosolute-mediated effects.

When the solute particles are far apart, they dress themselves with coso-

lute solvation shells because of the attractive solute-cosolute potential. As

we imagine moving the two solute particles closer together, eventually the

repulsive region of one solute particle overlaps with the attractive region of

the other solute particle, and vice versa. This situation is unfavorable for

the solute particles, and the energy may be lowered by moving them further

apart; hence there is a repulsive force at these distances (see Figure 3.5). As

the solute particles continue to approach each other, the above repulsive re-

gion encroaches on the regions of space where the van der Waals potential is

deeper. A larger amount of potentially favorable binding energy is removed

per distance travelled, and the repulsive force due to “impeded-solvation”

increases. The repulsive force is maximal when the solute separation d is

roughly 2σ. For separations d < 2σ, the repulsive regions of the two so-

lute spheres begin to overlap. This reduces the volume excluded, or more

precisely repulsive to, cosolutes. This reduced excluded volume results in

an attractive force which is the traditional depletion force. Eventually the

depletion force becomes stronger than the above impeded-solvation force,

and the net force becomes attractive. We note that such effects would not

be present in standard GB/SA models of implicit solvation.

In general, direct inter-particle interactions must be superimposed on

the above scenario. Which force dominates at a given separation will then

depend on the values for rs, ro, and ε, along with the strength of the direct

interaction. The above-described repulsive effect has been observed before in

hard-sphere solutes using the Derjaguin approximation to obtain an effective

surface tension [191]. Here we see that the effect arises naturally from the

presence of an attractive potential in the density functional theory.
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Figure 3.5: Solvent-induced force on a pair of “hard-wall” spheres
as a function of the separation distance, as obtained from equation (3.31).
Spheres interact with cosolutes through a LJ potential (see text). The only
parameters that determine the force are thus σ and ε, which appear in
the LJ potential that enters into the DFT expression for the force. Each
curve in the figure corresponds to a given well-depth ε in the sphere-cosolute
potential. The depletion force is dominant at small separation, but there is
a region in which the spheres are mutually repulsive due to lost attraction
or “impeded-solvation” to the solvent.
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Figure 3.6: Schematic renderings of the solute spheres in Figure 3.5
at several distances. a) The sphere-cosolute interaction is through a LJ
potential, which is negative beyond a distance σ = rs + ro (shown as the
green region), and positive and repulsive for d < σ (red region). The di-
rect sphere-sphere interaction is only through a hard-wall potential of radius
rs. The cosolutes have radius ro. (b) Sphere configuration when distance
d = 2σ. An cosolute can just fit between the spheres at this distance- the
LJ potential is zero in this configuration if the cosolute (dashed sphere) is
centered directly between the solute particles. Such separations have pos-
itive force between the solutes in Figure 3.5a, due to “impeded-solvation”:
the repulsive interaction between one sphere-cosolute pair removes some of
the attractive region from the other sphere-cosolute pair (region shown in
magenta). At the separation shown in (c), the solvent-induced force between
the spheres is now attractive; the volume of the removed attractive region
now varies weakly with separation, and bringing the spheres closer together
gains free energy by removing the depletion zone highlighted in blue.
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3.5 Transfer Enthalpy and Entropy from Density

Functional Theory

Having developed a DFT for cosolute-protein interactions, we can return to

the experimental results analyzed in Chapter 2 and ask what constraints the

observed data places on our simple models.

The transfer enthalpy δH may be found from the free energy (equa-

tion (3.25) in Section 3.2) through ∂(βδG)/∂β:

δH =

∫
d3r V(r)φ(r) = c̃

∫
d3r V(r)e−βV(r) , (3.32)

where φ(r) is given by

φ(r) =
Ne−βV(r)∫
d3r′ e−βV(r′)

≡ c̃e−βV(r) , (3.33)

The transfer entropy may be found from −∂δG/∂T or directly from δS =

β(δH − δG):

δS = β

∫
d3r V(r)φ(r) +N log

(
1

V

∫
d3r e−βV(r)

)
. (3.34)

We can now take a simple, heuristic model wherein we assume that the

protein occupies a volume Vn in the native state, and over that volume exerts

an average potential εn on the cosolutes, relative to that of water. Likewise,

the protein occupies an average volume Vu in the unfolded ensemble, and

exerts an average potential εu on the cosolutes. Then (3.32) and (3.34)

reduce to:

δHn = c Vnεne−βεn (3.35)

δSn = c Vn

[
βεne−βεn +

(
e−βεn − 1

)]
(3.36)

with similar expressions holding for the transfer enthalpy and entropy of the

unfolded state in terms of Vu and εu. This then gives us model predictions

for δ∆H = δHu − δHn and δ∆S = δSu − δSn.
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The observation of entropy-enthalpy compensation means that the devi-

ations from the line βδ∆G = 0 are not large compared to the scale of βδ∆H

or δ∆S. The dimensionless quantity

βδ∆G = −cVu
(

e−βεu − 1
)

+ cVn

(
e−βεn − 1

)
(3.37)

defines a hypersurface as a function of the dimensionless variables cVu, cVn, βεu, βεn.

We can estimate cVn for a 1M solution and a typical steric native volume

for a two-state protein, Vn ≈ 2.5 × 104Å3. Then cVn ≈ 15, perhaps larger

depending on the size of the protein or cosolute.

Then the inequality |βδ∆G| < a, where a is a constant of order unity,

defines a region in the space βεu, βεn, cVu bounded by the surfaces βδ∆G = a

and βδ∆G = −a. In Figure 3.7, we analyze what requirements entropy-

enthalpy compensation imposes on the parameters of the model, by taking

the two proteins that had the minimal and maximal free energy change upon

transfer to 100g/l of cosolute. These systems correspond to Arc repressor

in KCl, with βδ∆G = 6.1 at the transition temperature in water, to RNase

A in Butylurea, with βδ∆G = −8.1 at the transition temperature in water.

The two surfaces βδ∆G = 6.1 and βδ∆G = −8.1 in Figure 3.7 are quite

close: for Arc repressor for example, a difference in unfolding interaction

energy of ∆εu ≈ 0.2kBT can move points from the stabilizing surface to the

destabilizing surface. We also observe that as εn and εu become increas-

ingly negative, all systems, for both stabilizing and destabilizing cosolutes,

converge to Vu ≈ Vn. Thus, if the effective interaction potentials are net

attractive, even small changes in unfolded volume can yield dramatically

different values of unfolding transfer enthalpy δ∆H for example. We found

that both Lysozyme/DMSO and RNase A/Butylurea systems decreased the

volume experienced by the cosolutes upon unfolding, for most of the range of

the energetic parameters. Strongly stabilizing cosolutes such as KCl showed

significant increases in volume upon unfolding, if the interaction energies

were small. This particular observation is consistent with previous findings

for the volume increase upon unfolding of Trp-cage miniprotein in model

hard-sphere cosolutes[35].
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Figure 3.7: Allowed volume in parameter space for the proteins
we investigated, as predicted by the classical density functional
theory of protein transfer free energy [166] for the model described in Sec-
tion 3.5. The two bounding surfaces shown bracket the observed transfer
free energy transfer values for the proteins we considered. The transfer free
energy is taken for cosolutes with concentration 100g/ml, at the transition
midpoint in water, δ∆G(T of ). The upper surface in green corresponds to
a transfer free energy of βδ∆G = 6.1, observed for the transfer of Arc re-
pressor to KCl. The lower surface in orange corrsponds to a transfer free
energy of βδ∆G = −8.1, observed for the transfer of RNase A to Butylurea.
The volume bounded by the surfaces, where parameters characterizing all
other proteins reside, is shaded yellow. The Arc repressor system is also
constrained by the transfer enthalpy βδ∆Hf = 13.9, which further restricts
parameter values to lie on the black curve within the green surface. The
RNase A system, with βδ∆H = −42, is constrained to lie on the cyan
curve. The transfer of Lysozyme to DMSO corresponds to the two red
curves. The lower red curve corresponding to negative interaction energies
obeys Vu < Vn, while the upper red curve crosses the plane Vu = Vn for
some energetic parameters. The transfer of RNase A to N-N’ Dimethylurea
corresponds to the two blue curves. Both red and blue curves lie between
the surfaces. The intersection of the surfaces with the plane cVu = cVn, and
with the plane εu = 0 are shown as grey solid or dashed lines for the upper
and lower surfaces respectively.
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In fact, rigorous inequalities for the volume change upon unfolding as

well as the protein-cosolutes effective interaction energies may be shown for

the case of a stabilizing cosolute with negative change in unfolding enthalpy

upon transfer (δ∆G > 0 and δ∆H < 0) and for a destabilizing cosolute with

positive change in unfolding enthalpy upon transfer (δ∆G < 0 and δ∆H >

0). Examples of the former protein cosolute system are ubiquitin in ficoll or

lysozyme, RNase A in glycine, and cytochrome c in trehalose. Interestingly,

we did not find a protein that fit into the latter class among the proteins we

investigated. Consider first the case in which βδ∆G > 0 and βδ∆H < 0, and

assume that the protein-cosolute energies are negative with respect to water

(εu < 0, εn < 0). From equations (3.35) and (3.37), letting u ≡ −εu and

n ≡ −εn, we have Vuueu > Vnnen and Vu(eu− 1) < Vn(en− 1). Eliminating

Vu/Vn from these inequalities yields ueu/(eu − 1) > nen/(en − 1). Since the

function f(x) = xex/(ex− 1) is monotonically increasing for positive x, this

inequality directly shows that |εu| > |εn|. Therefore (en−1)/(eu−1) < 1 and

Vu/Vn < 1. Thus the effective volume decreases upon unfolding. Similarly,

for the case in which βδ∆H > 0 and βδ∆G < 0, |εn| > |εu| and Vu > Vn.

Inequalities may also be obtained in the limit of strong entropy-enthalpy

compensation, where |δ∆H| � 1 and |δ∆G| ≈ 0, still assuming εn, εu < 0.

Then equation (3.37) gives Vu/Vn ≈ (en − 1)/(eu − 1). If δ∆H is large

and positive, equation (3.35) gives Vu/Vn � nen/ueu. Together these yield

|εn| > |εu| and Vu > Vn. If δ∆H is large and negative, |εu| > |εn| and

Vn > Vu.

For the more realistic case of εn, εu > 0, if βδ∆H < 0, βδ∆G > 0, and

the interaction energies are larger than kBT (βεn, βεu > 1), then εu > εn; if

βδ∆H > 0, βδ∆G < 0, and βεn, βεu > 1, then εn > εu.

Further analysis of the parameter space for the simple model introduced

here, as well as more realistic models that include both bulk and a surface

terms in the free energy functional, are a topic for future research.
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3.6 Conclusions

In this chapter we have explored the application of the density functional

framework to protein transfer free energies. We have focused primarily on

conceptual questions, such as the role of solvent excluded volume, the tem-

perature dependence of transfer free energies, and how the density functional

theory (DFT) would reduce to a Volume + SASA model of transfer free en-

ergy.

We compared the DFT results with those from a simplified model that

treated the protein as a tube with a given volume and surface area, on

which cosolutes could condense. The DFT contains contributions from both

enthalpy and entropy, so it allows for the calculation of the temperature-

dependence of the transfer free energy.

A further development of the theory presented here which accounts for

interparticle correlations while maintaining computational efficiency is an

important topic for future research. As well, the calculation of transfer free

energies was implemented here for a model system with simplified poten-

tials that were parameterized to experimental values. One could extend this

by implementing the theory using more realistic potential models, and all-

atom representations of a protein or peptide. The various approximations

involved in these potentials and models could then be tested and the lim-

its of their validity determined through comparisons with experiment and

simulation. The DFT framework may also provide a method to obtain com-

putationally efficient but still accurate implicit solvent models for molecular

dynamics simulation, a subject of immense practical importance. In general,

the framework of density functional theory can provide a powerful tool to

explore aspects of solvation in the context of protein folding, and can do so

in a systematic way.
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Chapter 4

Theoretical Considerations

in Classical Density

Functional Theory

4.1 Defining the Transfer Free Energy

Having shown the usefulness of classical density functional theory in treating

cosolutes, we now turn to water. While cosolutes tend to be relatively

dilute, such that the approximation that ∆Φ′ = 0 used in Equation 3.25

is acceptable (because the cosolute-cosolute energy is not changed by the

presence of an external potential), water is not dilute and this approximation

is unlikely to be very good. Thus a suitable approach to determining Φ′ must

be found.

To begin, though, we broaden our scope to consider the transfer free

energy in a more general sense. The usefulness of the transfer free energy

(also known as the free energy of solvation in the context of polar solvents)

extends beyond protein simulations–every molecule of interest, whether a

biological molecule, a functional inorganic molecule, or a member of some

nanostructure, operates in a background of solvent molecules that impact

the function of the molecule one is looking at, but whose behaviour, in and

of itself, is not of interest.
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Figure 4.1: Diagram of the transfer free energy. The top row represents
the states we can simulate cheaply—those without the solvent present. The
bottom row represents the states we actually want to access—those with
the solvent present. The vertical transitions constitute the transfer process.
The transfer process can be broken up into two terms: the change in free
energy of the solvent, ∆Gsolvent−solvent, and the change in free energy of the
environment, ∆Gsolute−solvent

The transfer free energy can be implemented in computational studies

in several different ways. The implicit solvent models discussed in Chap-

ter 1 are typically implemented as an extra force at each time step of the

simulation–i.e. the total force on the ith particle will be Fi = Fforcefield
i +

∇i∆G, where Fforcefield
i is the term arising from the explicit particles in the

simulation and ∆G is the transfer free energy. Alternatively the transfer

free energy can be implemented in a post-processing way. This makes use of

the Tanford transfer model[168] to modify the weights and energies of the

observed simulation states. This approach requires that the initial simula-

tion offer sufficient sampling of the final states[197], and thus is limited to

relatively small changes in the environment, such as a change from a protein

in water to a protein in water with a small concentration of urea[144].

We need to take care to clarify what the transfer free energy consists of,

and which parts of it we would like to calculate. Consider an initial state

which consists of an isotropic bath of solvent molecules and, isolated from

this bath, a solute molecule. This system has free energy Gi. The final state
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will be the solute molecule dissolved in the bath of solvent molecules, and this

state will have free energy Gf . Then the total change in free energy ∆Gtotal

will have three terms: a term arising from the solute-solvent interaction, a

term arising from the solvent-solvent interactions (accounting for both the

change in entropy as the ensemble shifts and the change in solvent-solvent

potential), and a term arising from the solute-solute interactions (again both

in entropy and enthalpy). That is,

∆Gtotal = ∆Gsolute−solvent + ∆Gsolvent−solvent + ∆Gsolute−solute (4.1)

Experimental measures of the transfer free energy measure ∆Gtotal, while

typically implicit solvent models are concerned with calculating the first two

terms, ∆Gsolute−solvent+∆Gsolvent−solvent, which we will refer to as ∆Gsolvent.

The reason for this is that if during the course of a simulation ∆Gsolvent is

implemented correctly, ∆Gsolute−solute will then fall out naturally as the

system adjusts; e.g. the swelling of a polymer in response to a solvent that

makes surface exposure favourable. Also note that ∆Gtotal and ∆Gsolvent

are equal in the limit of a small rigid solute molecule, since then neither the

solute energy nor its configurational space change.

We now wish to consider the general case of ∆Gsolvent within the frame-

work of classical density functional theory. To do this we take the solvent

to be in an NPT ensemble and the solute molecule to be a fixed source of

external potential. We can then take the solvent-solute term ∆Gsolute−solvent

as the minimum work required to insert this fixed potential, and the solvent-

solvent term ∆Gsolvent−solvent as the change in free energy of the solvent;

∆Gsolvent−solvent = N∆µ

where N is the number of solvent molecules and ∆µ is the change in chemical

potential of the solvent molecules. The chemical potential of the solvent

molecules is not the same in general as the chemical potential of the solute

molecule, an important point we will return to. We will show below that

∆µ is identically zero in the NPT ensemble.
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As a simple example to motivate our conclusions, consider the free energy

change to transfer an idealized solute into an ideal gas that initially has

volume Vi and pressure Pi. The idealized solute has a volume v0 over which

it produces a step potential of U0. The configuration integral of the partition

function of the gas after insertion is proportional to

Z ∝ [Vf − v0(1− e−βU0)]N

where Vf is the final volume of the solvent + solute. Vf is greater than Vi

if U0 > 0 and less than Vi if U0 < 0; it is determined from the constancy of

the pressure, Pf = Pi, where

Pi =
NkBT

Vi

The final pressure may be found from

P = − ∂G

∂V

∣∣∣∣
Vf

=
NkBT

Vf + v0(e−βU0 − 1)

so that

Vf = Vi − v0(e−βU0 − 1)

Thus the change in free energy of the solvent is

N∆µ = Gf −Gi = NkBT log

[
Vf − v0(1− e−βU0)

Vi

]
= 0

That is, the change in free energy of the ideal gas upon inserting the region

of potential U0 is 0, regardless of U0 and vo. The transfer free energy is

then equal to the change in free energy of the environment–in this case

P∆V = −Pv0(1− e−βU0).

4.2 The DFT Formulation

We consider the solute molecule being transferred as a fixed potential that

acts on the solvent, and we ask what the difference in free energy of the
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solvent is in going from the system without that potential to that with the

external potential. So we write the free energy as a functional of the solvent

density ϕ:

G =

∫
Vsys

dr V(r)ϕ(r) + kBT (ϕ(r) logϕ(r)− ϕ(r))

+ Φ[ϕ] (4.2)

Here V(r) is the potential the solvent feels due to the solute, the integral is

taken over the volume of the system Vsys, Φ contains all non-ideal terms in

the free energy (ie, all two and higher particle correlation terms) and kBT is

Boltzmann’s constant times the temperature. While in earlier chapters we

approximated Φ[φ], here we will leave it as is, and manipulate it formally

without specifying the form it takes.

While in Chapter 3 we considered the cosolute contribution to the trans-

fer free energy in an NVT ensemble (while later allowing V → ∞), in this

chapter we consider the more general case of a transfer from vacuum to an

arbitrary solvent bath, in an NPT ensemble.

Minimizing equation (4.2) subject to a fixed number of solvent particles

amounts to minimizing the function

L = G+ µ

(
N −

∫
Vsys

dr ϕ(r)

)

where the Lagrange multiplier µ is the chemical potential. The Euler-

Lagrange equation becomes:

δL
δϕ

= V + kBT logϕ(r) +
δΦ

δϕ
(r)− µ = 0 (4.3)

We now define solvent redistribution energy density Φ′ ≡ δΦ
δϕ and note that

Φ′(r) can be thought of physically as the energy arising from solvent-solvent

interactions; if we consider only the two-particle enthalpic component of Φ′

we get

Φ′(r) =

∫
dr′ U(r− r′)g(r, r′)ϕ(r′)
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where U(r − r′) is the solvent-solvent interaction potential and g(r, r′) the

two-particle total correlation function.

Equation (4.3) gives an (implicit) expression for ϕ(r),

ϕ(r) = eβµe−β(V(r)+Φ′(r)) (4.4)

both sides of which can be integrated over the system volume to give

N = eβµ
∫
Vsys

dr e−β(V(r)+Φ′(r))

or

µ = −kBT log

(
1

N

∫
Vsys

dr e−β(V(r)+Φ′(r))

)
(4.5)

For the transfer problem we find the difference in free energy N∆µ be-

tween the initial case in which the external potential on the solvent is zero

everywhere, and the final state. We thus write

∆µ = −kBT log

∫Vf dr e−β(V(r)+Φ′f (r))

Vie
Φ′i

 (4.6)

where Vf and Vi are the final and initial system volumes respectively, and

Φ′f and Φ′i are likewise the final and initial solvent redistribution energy

densities. In the denominator of equation (4.6) we have used the fact that,

in the absence of an external potential, the system is homogeneous and

isotropic, so any property of the solvent must be independent of position r.

We now consider the conditions under which the transfer is made. We

will assume that there is some region Ω∞ in the solvent that is sufficiently

far from the solute potential in the final system such that

V(r ∈ Ω∞) = 0 (4.7)

ϕf (r ∈ Ω∞) = ϕi (4.8)

Φ′f (r ∈ Ω∞) = Φ′i (4.9)

92



Figure 4.2: Density, potential, and Φ′ of water as a function of distance
from a spherical van der Waals potential. The interaction function Φ′(r)
decays to zero on the same length scale as V(r).

Using equation (5.3) in equation (4.8) gives

eβµie−βΦ′i = eβµf e−β(V(r∈Ω∞)+Φ′f (r∈Ω∞)) . (4.10)

Using (4.7) and (4.9) in equation (4.10) gives eβµi = eβµf , or

∆µ = 0 , (4.11)

i.e. the change in free energy of the solvent upon transfer is zero. Thus the

solvent transfer free energy is given entirely by the solvent-solute interaction,

which is simply the work done by the external potential to insert itself into

the solvent bath.

∆Gsolvent = ∆Gsolvent−solute (4.12)
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Equations (4.11) and (4.12) together are the principal result of this chapter.

We now consider a set of conditions that are sufficient for the existence

of a region Ω∞ that satisfies equations (4.7)-(4.9):

1. The transfer of the potential source (the solute) into the system occurs

at constant solvent particle number N , pressure P , and temperature

T .

2. The external potential acts on a finite, enclosed region of the system.

This implies a fixed solute molecule transferred to a fixed position, so

that we are addressing the solvation contribution to the transfer free

energy.

3. Define lengths `C and `G as follows: At distances r > `C , the di-

rect correlation function C(r) satisfies |C(r) − 1| < εC , where εC is a

system-dependent constant. Similarly, at distances r > `G, the total

correlation function G(r) satisfies |G(r) − 1| < εG, where again εG is

a system dependent constant. We thus require that the direct cor-

relation length `C and the total correlation length `G of the solvent

molecules are both finite in the initial and final systems.

4. The system is sufficiently large that there exists a finite region Ω∞

that is everywhere farther than `C +`G from the region over which the

potential acts.

The above conditions ensure that identical initial and final pressures

yield identical values of ϕ and Φ′ far from the solute. In Figure 4.2 we plot

the density relative to the equilibrium density φf/φi, the external potential

V, and the difference in the solvent-solvent interaction terms Φ′f − Φ′i as a

function of distance from a spherical van der Waals potential for a simulation

of TIP3P water at 300K. The simulation was performed in GROMACS with

the CHARMM27 forcefield (see Appendix B for specific parameters used).

One feature that is immediately apparent is that the length scale over which

Φ′f − Φ′i is non-zero is very small–slightly larger than 1 nm. This is true

even for the long-range electrostatic force; due to screening by the dielectric
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medium of water (enhanced by the salt present in real biological systems)

the effective range of the force will be small. One atom per nm3 corresponds

to a concentration of around 1 M, so we can conclude that up to that point

a solute is well described by the infinite dilution limit.

4.3 Discussion

To return to the simple example in section 4.1, we consider the ideal gas

form of the DFT transfer free energy, in which Φ′ = 0. Then

φ =
N

V
e−β(V) (4.13)

and the work done to insert a step potential U0 over a volume V0 is then

∆Gsolvent =

∫
d3r

∫ U0

o
dVN

V
e−β(V) (4.14)

=
kTN

V
V0(1− e−βU0) (4.15)

which is simply the ideal gas pressure times the change in total volume. We

discussed in chapter 3 how this result also comes about by considering the

constant volume system and letting V →∞. Thus in the ideal gas approx-

imation, the solvent-solute transfer free energy is equal to P∆V , which is

also the result given from the NVT ensemble in the limit of infinite V. As

we will discuss below, these equalities are not true when we move away from

the ideal gas.

The result in equation 4.11 is significant for two reasons. The first is

that, to our knowledge, it is a general proof in the context of density func-

tional theory. That the solvent-solvent term in the transfer free energy is

zero was shown by Yu and Karpluss using different methods for a specific

case[164]. Their result made use of the hyper-netted chain closure relation,

which is only one possible closure relation of the Ornstein-Zernike equation.

To our knowledge the identity ∆µ = 0 has not been extended to all closure

relations, and thus our result here, which is independent of closure rela-
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tion, is significant. Indeed, we have shown that the free energy of a bath of

particles in the NPT ensemble is independent of the external potential so

long as that potential is finite in range. Further, while our definition of the

terms in the transfer free energy here makes it clear that ∆µ corresponds

to Karpluss and Yu’s solvent re-organization term, this has not been appre-

ciated in other literature on classical density functional theory. Ramirez,

Mareschal, and Borgis [198], for example, do not make use of such a result

in their discussion of the transfer free energy.

The other reason this result is significant is practical: it is a useful the-

orem in developing an implicit solvent model within the cDFT framework.

This is the subject we turn to next.
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Chapter 5

Including Solvent-Solvent

Interactions in DFT

5.1 A Simple Form for the Solvent-Solvent Inter-

action

In developing an implicit solvent model, the overall goal is to develop a way

of computing the solvent forces on protein atoms quickly; the main reason

one uses such models in practice is to speed up simulations. To that end

we require that the final equations for the force involve only the protein

coordinates and constants—not the solvent density. That said, to address

solvent forces in a DFT approach we obviously need to consider the solvent

density—but we consider approximations to the free energy functional that

give the solvent density a simple enough form that we can evaluate the sol-

vent forces on a given atom as a single spatial integral over scalar functions.

The challenge in the context of this work is to express the quantity Φ′ (see

section 3.2 equations 3.17 and 3.18) in a way that allows for both accuracy

and speed.

After the assumption that the solvent-solvent interaction energy does

not change upon transfer, which we have made in Chapter 3, the next sim-

plest approximation mathematically is to assume that the solvent-solvent
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interactions take the form of a delta function: Φ(r, r′) = f(φ)δ(r−r′). That

is, limiting the free energy function to terms no higher than two-body,

G =

∫
d3rkT

(
φ(r) ln[λ3φ(r)]− φ(r)

)
+V(r)φ(r)+

∫
d3r′

γ

2
δ(r−r′)φ(r)φ(r′)

(5.1)

This density functional can be minimized in the usual way to give

δG

δφ
= kT ln[λ3φ(r)] + V(r) + γφ(r) = µ, (5.2)

which can be re-arranged to give

λ3φ = eβµe−βVe−βγφ (5.3)

where it is understood that φ and V depend on position. Equation 5.3 can

be solved for the density to give

φ =
1

βγ
W

[
βγeβµe−βV

λ3

]
(5.4)

where W is the Lambert-W function.

At this point we can make use of the main result from Chapter 4: in the

NPT ensemble the chemical potential is independent of external potential,

so long as the potential is finite in range. Thus in Equation 5.2 we can set

V = 0 everywhere, and note that this implies φ must be a uniform constant

ρ = N/V so that

µ = kT ln[λ3ρ] + γρ (5.5)

Inserting this into Equation 5.4 then gives

φ(r) =
1

βγ
W
[
βγρeβγρe−βV(r)

]
(5.6)

If we take the usual assumption that the potential V has the form

V(r) =
∑
i

vi(r−Ri)
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where Ri is the position of the ith atom in the protein, and vi is the potential

energy at r due to atom i, then we can calculate the force on the ith atom

from equation 5.6 via

Fi =

∫
d3r φ(r)

∂vi
∂Ri

(5.7)

We can also calculate the transfer free energy through

∆G =

∫
d3r

∫ Vfin

0
dV φ(r;V) (5.8)

The integral over V evaluates analytically using properties of the Lambert-

W function to give

∆G = −1

γ

∫
d3r W

(
βγρeβγρ−βV(r)

)
+

1

2
W
(
βγρeβγρ−βV(r)

)2

+ V

(
βρ+

1

2
γ(βρ)2

)
(5.9)

Going back to section 4.3, it is worth noting here that equation 5.9 is

not equal to P∆V (when γ 6= 0). For this form of the interaction potential,

the pressure can be calculated to be

P =
kBT

V
+
γ

ρ2
(5.10)

and the change in volume is

∆V =

∫
d3r

[
1

ρβγ
W
(
βγρeβγρ−βV(r)

)
− 1

]
(5.11)

The non-interacting solvent case has the somewhat fortuitous result that

the NPT ensemble transfer free energy, the NVT ensemble transfer free

energy in the infinite dilution limit, and P∆V are all equal. It appears this

is not the case for models with solvent-solvent interaction terms.
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5.2 Making the Form of Solvent-Solvent Interac-

tions More General

While we could pursue the derivation in Section 5.1 in more detail, instead

we will stop here to note that we can model the solvent-solvent interaction

Φ′ as a general function of φ without much increase in complication, so long

as we continue to include the δ-function form for Φ′; that is, we can take

the interaction free energy Gint = Φ[φ] (see equation 4.2 of Chapter 4) to be

Gint =

∫ ∫
d3r d3r′ δ(r− r′)φ(r)f

(
φ(r′)

)
(5.12)

Performing the same procedure as above, in which we minimize the func-

tional G with respect to φ and use the fact that µ is independent of external

potential, gives an implicit expression for φ:

φ(r) = ρeβ(f(ρ)−f(φ(r))e−βV(r) (5.13)

where ρ is the equilibrium density in the absence of external potential.

From equation 5.13 it is clear that φ(r) is local: it depends only on the

form of f(φ), the value of the external potential at r, and constants; φ(r)

does not depend on the value of φ anywhere other than r.

We set the restriction on equation 5.13 that ∂φ
∂V < 0. This has both

physical and computational motivations. Physically, we want to ensure that

our equations are such that an increase in external potential never leads

to an increase in solvent density. Computationally, we need to ensure that

φ(V) is a one-to-one function, and thus equation 5.13 has a unique solution

for φ given V. Performing the derivative in equation 5.13 gives

∂φ

∂V
=

−βφ
1 + β ∂f∂φφ

(5.14)

Since φ and β are always positive, this implies that we require

β
∂f

∂φ
φ > −1 (5.15)
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Again, since φ and β are always positive, a sufficient (but not necessary)

condition is that ∂f
∂φ > 0. Relaxing this inequality requires knowing some-

thing about φ, which for all but the simplest f(φ) is non-analytic. At least

in practice, after φ(V) has been found numerically, equation 5.15 can be

used to confirm that φ(V) is one-to-one.

As an example, we will take

f(φ) =
k

2β
(φ− ρ)2 (5.16)

For this model we plot φ/ρ as a function of V/kBT in Figure 5.1. Even

though for this interaction function it is clear that ∂f
∂φ > 0 does not hold,

visually the function can be seen to satisfy ∂φ
∂V < 0. And indeed, when we

use the calculated values of φ to plot the quantity in equation 5.15 in Figure

5.1, we see that the inequality is satisfied. Finding the general conditions

on f(φ) for equation 5.15 to be satisfied is a topic for future work.

5.3 Fitting the Model to Data

We would like to fit the model of section 5.2 to simulation data, so that

it reproduces the correct forces that the solvent exerts on the protein in

any given protein configuration. In principle, we could allow both V(r) and

f(φ) to be defined by a spline function of general form. This gives a model

with as many parameters are there are points in these two splines, though

in practice these will be constrained by equation 5.15, and potentially by

further constraints we may place on how fast these functions can change.

Below we will make the problem more tractable by developing a procedure

to fix V(r).

It is important to note that V(r) can be different for each atom type

in the protein—and indeed should be different. On the other hand, f(φ) is

a single function and should depend only on the solvent used. Thus it is

not sufficient to simulate the transfer of a single atom to the desired solvent

and then find the V(r) and f(φ) which reproduce the solvent density and

transfer free energy; instead we must consider various combinations of atom
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Figure 5.1: The solvent density φ vs. external potential for the inter-
action function 5.16 for various values of k.

types at various distances from each other. Of particular interest must be

the regions in which the solvent feels the potential from more than one atom,

as we expect the solvent density in those regions to be the most difficult to

capture. Because f(φ) is a non-linear function whose parameters are limited

only to the number of spline points we choose to take (in what follows we

will use twenty), using the transfer free energy from e.g. a single atom would

not uniquely determine f(φ).

The procedure we will use to determine V(r) for various atom types

and f(φ) can be illustrated by example. We take two uncharged Cα atoms

from the CHARMM27 forcefield. We then treat these atoms as bonded

and use bond contraints to fix them at various distances from each other

(d = 0.12, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 nm). For each distance we calculate
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Figure 5.2: Testing the condition in equation 5.15; indeed β ∂f∂φφ > −1.

the transfer free energy from vacuum to TIP3P water with the Bennet Ac-

ceptance Ratio method in GROMACS. We also get the density of water

molecules around each configuration. We then seek to find V(r) and f(φ)

which reproduce both the transfer free energies and the water density profiles

for all eight distances.

Figure 5.3 shows the simulation results. The solvation shells for both

atoms are clearly visible. Also of interest is the desolvation barrier observed

in panel B. It is worth noting that desolvation barriers cannot be captured by

SASA models as the surface area of the two atoms monotonically decreases

as they are brought together.

Rather than allowing both V(r) and f(φ) to vary independently, we

fixed V(r) for a given f(φ) by using f(φ) to calculate φ(V), then finding the
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Figure 5.3: Transfer of a pair of bonded carbon atoms from vacuum
to water. Transfers were performed using the CHARMM27 forcefield with
TIP3P water. A) Density profiles for each distance; darker areas correspond
to higher water densities. The excluded volume (lighter spheres around each
carbon) and solvation shells (darker rings around the lighter spheres) are
clearly visible here. B) Transfer free energy as a function of d. Notable is
the desolvation barrier observable around d = 0.5nm. The local maximum
in ∆G arises because the finite size of water molecules induces preferred and
avoided separation distances of the carbons. Uncertainties on the transfer
free energy are smaller than the symbol size.
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inverse of this function φ−1(φ|f) and applying it to the observed simulation

density profile φsim(r) for a single carbon atom. So

V(r) = φ−1(φsim(r)|f) (5.17)

We then vary f(φ) (and hence V(r)) to minimize the difference between

the DFT calculated free energies and the explicit solvent free energies.

We parameterized f(φ) as a cubic spline with 20 spline points and used

a trust-region minimization approach[199] to find those points. After per-

forming several stages of minimization, we arrive at a function f(φ) which

captures the results of Figure 5.3 reasonably well. This function is plotted

in Figure 5.6, and the resulting transfer free energies are shown in Figure

5.4. The cDFT model parameterized here captures the shape of the ∆G

vs d curve, and in particular captures the desolvation effect observed when

d = 0.25 to 0.3 nm. As mentioned above a solvent accessible surface area

approach cannot capture this–shown is the best fit SASA curve for these

free energies, even if the fit is of similar quality with respect to the residual.

There are several other comparisons we can make. The potential function

V arrived at from equation 5.17 (which implicitly uses f(φ)) can be com-

pared to the actual potential the solvent molecules experience. In the case

of TIP3P water and uncharged solute atoms, this comparison is straight-

forward as the water hydrogen atoms have no van der Waals radius. The

comparison between the two potentials is shown in Figure 5.5. Relative to

the true potential, the effective potential has extra local maxima and min-

ima, which correspond to the solvation shells of water. These features must

be present because we recast the many-body behaviour of water into the

effects due to a local potential. Additionally, the well depth is somewhat

greater for the effective potential, and the hard wall does not rise quite as

fast. Still the overall form is roughly consistent with what we might expect

a priori.

We can also compare the effective solvent-solvent interaction function

f(φ) with a function derived directly from simulations. We start by recasting
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Figure 5.4: Transfer free energies with DFT and surface area. The
free energies from Figure 5.3 are compared with the best fit free energies
from the cDFT model developed in the text and the best fit free energies
from a surface area model. While the residuals of the fits are comparable,
the surface area model fails to capture the desolvation barrier observed from
0.25 to 0.3 nm. The SASA curve was generated by taking the analytic form
of the surface area for two spheres and allowing the effective solvent radius
and the proportionality constant to be varied.
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Figure 5.5: Effective and actual potentials. The red curve gives the
potential arrived at by finding the f(φ) that best reproduces the two-carbon
transfer energy data and requiring V(r) to reproduce the observed radial
distribution function. The green curve is the actual potential (i.e. a van der
Waals potential).

equation 5.13 as an equation for f(φ)− f(ρ):

f(φ)− f(ρ) = −V(r)− kBT ln

(
φ

ρ

)
(5.18)

This is in fact exactly how we extracted Φ′ in Figure 4.2; here f(φ) − f(ρ)

has taken the place of Φ′. From a simulation of an isolated carbon atom we

determine φ, and then V in equation 5.18 is taken as the actual potential.

Then we can find for each r a V and a f(φ) − f(ρ) (or Φ′f − Φ′i in our
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Figure 5.6: Solvent-solvent interaction potentials. The red curve is
the best fit f(φ) arrived at from the DFT approach, while the gree curve is
the observed Φ′ from the radial distribution function.

more general notation) and plot these against each other. This we do in

Figure 5.6. Two interesting features emerge: one is that the overall shape

of the functions is similar, and the other is the jump in f(φ) around φ = 80

nm3. This jump corresponds to a “doubling” back of the “true” solvent-

solvent interaction function, which is no longer a single-valued function at

these densities. It is encouraging that this feature emerged from a routine

which simply varied f(φ), and minimized the difference between observed

and calculated free energies. That the functions do not overlap entirely

is to be expected, as the effective interaction potential involves projecting

essentially non-local interactions onto purely local ones.
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Finally, we can compare the transfer free energy of atoms not used in the

fitting procedure to observed explicit solvent transfer free energies. To do

this we calculated the transfer free energy of several uncharged amino acids

in GROMACS with the CHARMM27 forcefield using the Bennet acceptance

ratio method. These amino acids are composed of various atoms; in addition

to several types of carbon (carbon atoms with slightly different force-field

parameters are used in various positions in the amino acid), nitrogen, oxy-

gen, sulfer, and hydrogen are also present. For each of these the effective

V(r) was determined from observed radial distribution functions and f(φ)

through equation 5.17 and the total transfer free energy calculated in the

DFT approach. The result is shown in Figure 5.7. The results show general

agreement, with a correlation coefficient of 0.7, and absolute magnitudes

that are comparable. By comparison we can consider the best fit SASA

prediction of the transfer free energy vs the explicit simulation free energy,

which has a correlation coefficient of 0.65. To compare these another way,

using the Kendall τ test, we arrive at a significance of p = 0.001 for the

relationship between the DFT transfer free energy and the explicit solvent

transfer free energy, and a significance of p = 0.003 for the relationship be-

tween SASA and the explicit solvent transfer free energy. We note here that

the correlation between SASA and explicit transfer free energy is the best

possible correlation, while the correlation between the DFT predictions and

the explicit transfer free energy is a starting point which we expect would

be improved by fitting f(φ) (and potentially the effective potentials V(r) )

to a more representative set of candidate structures rather than two carbon

atoms.

5.4 Discussion

We have shown that the protein-water interaction can be captured at least as

well as existing implicit solvent approaches by a classical density functional

theory with purely local solvent-solvent interactions. The strengths of this

method are that it captures important effects lacking in traditional solvent

accessible surface area models, while still being fast to implement. The
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Figure 5.7: A) Comparison of DFT predicted free energies with
results from explicit solvent simulations. The explicit solvent results
were obtained with the Bennet acceptance ratio method implemented in
GROMACS. The DFT predicted free energies were obtained as described in
the text. B) Comparison of SASA predicted free energies with results from
explicit solvent simulations.

reason for this speed is the approximation that allows the density to be a

single valued function of the potential. Thus a table of φ(V) values can be

computed once for a given f(φ) (which does not change from simulation

to simulation) and then φ can be determined at any point from the atom-

dependent V(r) functions. Given that each of these functions can be stored

as a cubic spline, the total transfer free energy can be computed in a single

integral over the space surrounding the protein, a procedure of comparable

number of operations to the evaluation of surface area[200].

To make this last point more quantitative, we examine the calculation

of solvent accessible surface area implemented in GROMACS, described by

Eisenhaber et al[201]. Here, to calculate surface area, each atom in the

molecule is assigned a set of points around it. The distance from each of

these points to neighbouring atoms is calculated, and then each point is

either declared buried or exposed. From this the exposed surface of the

atom is determined. Such a method could also be applied to the DFT

approach described in this chapter, with two differences: 1) the density must

be evaluated at each point, and 2) the number of points needed to accurately
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Figure 5.8: Testing convergence of a DFT free energy calculation. The free
energy is plotted against the number of points for which the effective external
potential was neither zero nor infinite, divided by the number of atoms. Also
plotted is the deviation from true SASA vs the number of points per atoms
from [201]. The two converge in a similar scale.

determine the transfer free energy may be different than the number needed

to determine the solvent accessible surface area, particularly as the points

would need to be distributed in a spherical shell around each atom rather

than on a surface.

Based on the benchmarks described in [201], it requires on the order of

106 floating point operations to compute the distance of neighbouring atoms

to approximately 3× 105 points. Evaluating a cubic spline at each of those

points and summing the result can be expected to add on the order of 10

operations, an increase of approximately 30 %.

The question of how many points would be required is more difficult to

answer without fully implementing the implicit solvent method and testing

it on various proteins. We can make an estimate, though, from our initial

calculations. The DFT values for ∆G in Figure 5.7 were computed with a

three-dimensional integration grid which covered all the space surrounding

111



the protein. To make a better comparison to the method in [201], we can

imagine a method in which only the points around each atom for which the

effective external potential is neither zero nor infinite are considered. In

Figure 5.8 we look at the free energy of transfer of a Leucine amino acid

(which contains 22 atoms) calculated by DFT, vs the number of non-zero-

non-infinite points. The value converges around 1000 points per atom. In

[201] the number of points per atom considered ranged from 300 to 1500,

depending on the accuracy wished. All together we estimate that the DFT

calculation can be performed with approximately twice the operations a

surface area calculation can be.

The procedure outlined here calculates the non-polar component of the

transfer free energy. While density functional theory could be extended to

consider the electrostatic aspects of the transfer free energy, the more limited

approach described here allows this procedure to be integrated with existing

methods, particularly GB/SA. Despite its flaws, GB/SA is undoubtedly the

most widely used implicit solvent model in molecular dynamics simulations,

and thus the ability for new models to integrate and improve upon it must

be counted as an advantage.

There remains much work to do with this model, which we will consider

in the next chapter, on future research directions.
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Chapter 6

Conclusions and Future

Directions

6.1 Summary

In this thesis we studied protein-solvent interactions and developed a clas-

sical density functional theory for those interactions. The interactions be-

tween the protein and its environment are inseparable from the intra-protein

interactions. Proteins do not evolve in a vacuum, and the way in which the

intra-protein interactions come together to create the folded, functioning

protein depends intrinsically on the protein-solvent interactions.

In chapter 2 we examined some of the experimental literature on protein-

solvent interactions. Specifically we looked at how the introduction of a

cosolute changed the enthalpy and entropy of unfolding. We found that

the change in unfolding entropy and enthalpy upon the introduction of a

cosolute was an example of a broad class of phenomena known as entropy-

enthalpy compensation, in which the change in free energy is small relative

to the change in both entropy and enthalpy. There has been a long-standing

debate concerning the significance of entropy-enthalpy compensation, and it

has been suggested that the effect is due to highly correlated experimental

uncertainties in entropy and enthalpy. We showed that there are indeed

highly correlated uncertainties, but that the effect is still significant in light
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of them, at least for the case of the transfer of various proteins from water

to water with various cosolutes. This is not a general statement about

all systems which seem to display entropy-enthalpy compensation, though,

and wider application of procedures similar to the one we developed here

to measure the uncertainty in entropy and enthalpy could establish which

systems genuinely display the effect and which have uncertainties so large

as to be unable to determine it.

In chapter 3 we continued to examine cosolutes (or osmolytes as we also

refer to them), this time from the standpoint of developing a general theory.

We develop a classical density functional theory for protein-cosolute inter-

actions, which assumes that the density of water and cosolute are perfectly

correlated, in the sense that the total density at any point is fixed, and fur-

ther assumes that the cosolute-cosolute interaction energy doesn’t change

upon transfer of the protein. We show that the theory gives good results

for a monatomic gas, even in the regime in which the gas is significantly

non-ideal. This theory can reproduce the observed transfer free energies of

moving side chains from water to water plus urea, and captures the tem-

perature dependence of the transfer free energy. We showed that the cDFT

theory developed in chapter 3 reduces to a SASA approach with suitable

parameters. Our approach reproduces the general phenomenon of a desol-

vation barrier in a natural way as well. Finally we examine how a simple

cDFT model can be related to entropy-enthalpy compensation and use the

data from chapter 2 to restrict the parameter space of this model.

In chapter 4 we take a step back to examine the transfer problem in

cDFT in more general terms. We show that the free energy of a particle bath

at fixed temperature and pressure is independent of the external potential

provided the external potential is finite in range–this is the dilute solute

limit in the context of transfer. We discuss the implications of this finding–in

particular the fact that all transfer free energy comes from the solute-solvent

interactions–and note its usefulness in working with cDFT.

In chapter 5 we develop a classical density functional theory of water

to implement as an implicit solvent. To make the mode fast to execute we

assume solvent-solvent interaction can be modelled by a completely local
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way. In exchange we allow the local function of φ to take on any form,

subject to conditions to keep the solution physical. We fit the resulting

theory to explicit water simulations. The model shows good agreement with

explicit simulations, while capturing the desolvation barrier and temperature

dependence, and while maintaining speed by requiring that φ depend only

on the local potential.

Each of these chapters involved different aspects of protein-solvent inter-

actions and their theoretical description, particularly within the framework

of classical density functional theory.

6.2 Theoretical Work in cDFT

While classical density functional theory has a long history, there is still

work to do on the theoretical end. The functional often described as the

starting point for cDFT looks like this:

G =

∫
d3r kBT [φ lnφ−φ] +V(r) +

∫
d3r′U(r− r′)g(r− r′)φ(r)φ(r′) (6.1)

But, as we note in the introduction, this cannot be correct; for a hard-

sphere model in the absence of an external potential the energy terms are

zero, which implies an ideal gas solution no matter what density we take.

Thus there must be a multi-particle entropy functional.

Entropy functionals, however, have seen remarkably little development.

Early efforts by Nettleton and Green[202] involved taking the known form of

the total density functional from radial distribution functions and reverse-

engineering a numeric entropy functional. More recent approaches have

looked at entropy functionals of 3-body and higher correlation terms[203],

which limits their applicability to the use of cDFT in practice.

One alternative approach which seems promising is to express the en-

tropy as an integral series in correlation functions; that is, the total entropy

would be

S = Sideal +

∫
d3r [p(r)Spresent + (1− p(r))Sabsent] (6.2)
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where Sideal is the ideal gas entropy, p(r) is the probability of finding a

particle at position r, Spresent is the entropy of the system of N −1 particles

given that a particle is at r, and Sabsent is the entropy of the system given

that a particle is not at r. This type of approach gives rise to an integral

series reminiscent of the Orstein-Zernike equation.

We have not had time to pursue this line of analysis in this thesis, but it is

a direction for future research. And whether or not this particular equation

bears fruit, the search for analytic expressions for the entropy functional

should not be abandoned.

6.3 Error Analysis in Thermodynamic Data

We developed a technique for determining the uncertainty in fitting heat

capacity or fraction of unfolded data and extracting thermodynamic pa-

rameters. This technique is useful, but it does overlook one key source of

uncertainty: the uncertainty in the underlying experiment. That the model

uncertainty is important can be seen from the plots in figures 2.2. For many

regions in those plots the difference between models is well outside the un-

certainty calculated by the monte carlo technique. This implies the choice

of model itself brings in a great deal of uncertainty. Given that most of the

literature seems to use the temperature-independent ∆Cp model without

checking if a linear or non-linear ∆Cp model would give the same results,

this is a worrisome finding.

The uncertainty in the underlying experiment is more difficult to quan-

tify. Looking at table 2.3 we see that, for example, RNase A, different ex-

periments gave different values for ∆H0
f ; that is, the enthalpy of unfolding

in the absence of cosolute. The variance in ∆H0
f values is somewhat higher

than the variance in Tf values, which raises the concern that this experi-

mental uncertainty contributes to entropy-enthalpy compensation in a way

we have not accounted for. Given the statistical significance of our result

it is unlikely this effect will reverse our conclusion, but this is an important

consideration for future work. Such work will likely require collaboration

with experimentalists, as literature sources typically quote a single value for
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each thermodynamic parameter, rather than a range of values indicative of

the multiple samples they may or may not have tested.

6.4 Implementing the cDFT Implicit Solvent

We have developed an implicit solvent model based on classical density func-

tional theory. Of course, the development of the model is the first step

towards its adoption by researchers performing molecular dynamics. Im-

plementing the model across force-fields and MD software packages is an

enormous challenge well outside the scope of this thesis, or indeed even a

single research group. Nonetheless this is the ultimate goal of the project.

One concern moving forward is what the target system should be for fit-

ting the cDFT parameters. We have used explicit water simulations because

we had easy access to them and they provide a high level of detail about

energies and distribution functions. But the case could be made that exper-

imental results would provide a better target system, and lead to a set of

parameters which would not depend on any one forcefield. Experimental re-

sults have the disadvantage, though, of not cleanly separating the non-polar

and polar contributions to the transfer free energy. One possibility would

be to start with experimental transfer free energies and subtract off the pre-

dicted polar component (either in generalized Born or Poisson-Bolztman)

to obtain quasi-experimental non-polar components of the transfer free en-

ergies.

We have assumed in this thesis that the cDFT model we developed would

apply to the non-polar contributions to the transfer free energy. There is no

reason a priori why we could not also apply cDFT to the polar contribution–

that is, the electrostatic interactions. Doing so would require a significant

modification of the work presented here. The water density in such an ap-

proach would no longer be a function of position only but also orientation;

φ = φ(r,Ω). The solvent-solvent interaction energy would then also be a

function of both molecule separation and the orientation of each molecule,

which greatly increases its computational cost. One way around this might

be to break the density up into two fields: a position dentisy φ(r) and a po-
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larization density p(r). Performing two three-dimensional integrals would

be faster than one five-dimensional integral, but the accuracy of such an

approximation needs to be assessed. It is not clear whether a purely local

approach such as the one adopted in chapter 5 would continue to be effec-

tive. On the other hand, it is not obvious that it will not be effective, and

extending the theory to polar interactions is a topic of future interest.

6.5 Parting Thoughts

All science relies on others to truly succeed. Findings left on their own do

not advance human knowledge. But work on methods perhaps uniquely

relies on the adoption of other scientists to bear fruit. In this thesis we have

proposed a new method of looking at transfer free energies. The extent to

which this method contributes to the field is, in one sense, out of our control.

Regardless of its intrinsic merits, if it does not resonate with the community

in a way that spurs others to work on implementing it in various forcefields

and MD packages it will not be widely used and its impact will be small. On

the other hand if it does find wide implementation it could have a greater

impact than other models, regardless of their intrinsic merit. In working

within the existing framework of decomposing the transfer free energy into

polar and non-polar components, and in targeting the non-polar parts, we

hope this model will be easily adaptable to existing MD approaches and

therefore more likely to see wide implementation.

If we examine the literature on GB/SA, for example, after the initial

paper by Qiu et al[48], following papers by various groups parameterized the

model for AMBER[204], CHARMM[205], OPLS[206], and GROMOS[207]

forcefields, suggested surface area calculation algorithms, and ported the

model to various MD packages such as GROMACS[208] and NAMD[206].

This work underlaid the widespread adoption GB/SA enjoys today.

Moving forward then, the future work outlined in this chapter will be

an important component of seeing the work in this thesis fulfill its promise,

but equally important will be networking with other researchers to see these

results implemented in a variety of existing software. We hope our shoulders
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provide an ample platform for those that would follow.
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Appendix A

Proof of Theorems in DFT

In this appendix we prove the Hohenberg-Kohn theorem. To start we define

Tr... =
∞∑
N=0

1

h3NN !

∫ ∫
...dr3Ndp3N (A.1)

and

Ξ = Tre−β(H−Nµ) (A.2)

With these defined we can begin with the following:

Ω[f ] = Trf(H−Nµ+ kBT ln f) (A.3)

Lemma A.0.1 Let f0 be the equilibrium density. Then for any other den-

sity f , Ω[f ] > Ω[f0].

Proof: The equilibrium density can be expressed as

fo =
e−β(H−Nµ)

Ξ
(A.4)
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So then

Ω[f0] = Tr(H−Nµ− kBT ln Ξ−H+Nµ) (A.5)

= −kBT ln Ξ (A.6)

We can then write

Ω[f ]− Ω[f0] = Trf(H−Nµ+ kBT ln f + kBT ln Ξ) (A.7)

Since H−Nµ+ kBT ln Ξ = −kBT ln f0,

Ω[f ]− Ω[f0] = TrkBT (f ln f − f ln f0) (A.8)

Since Trf = 1, we can write

Ω[f ]−Ω[f0] = TrkBT (f ln f−f ln f0 +f0−f) = Trf0kBT (
f

f0
ln
f

f0
+1− f

f0
)

(A.9)

Since x lnx ≥ x − 1 for all x, where the equality is only true when x = 1,

Ω[f ]− Ω[f0] > 0, and hence Lemma A.0.1 is proved.

We can now show the following theorem:

Theorem A.0.2 The functional F [φ] = Trf0(H − Nµ + kBT ln f0) is a

unique functional of φ, the single particle density.

To prove this we assume the opposite: that there are two densities f0

and f ′0, both of which are equilibrium densities for the given hamiltonian.

Then, by Lemma A.0.1, we have

F [φ′] > F [φ] (A.10)

But, the choice of f ′0 and f0 was arbitrary; the prime could have been on

either function. So equation A.10 cannot be true. Thus the density is a

unique functional of the hamiltonian and hence of the external potential,

proving theorem A.

Finally, we have
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Theorem A.0.3 The minimum value of F [φ] is the free energy of the sys-

tem and occurs when φ = φ0, the equilibrium density

This follows because if F [φ] at the equilibrium density is Ω[f0] in equation

A.6. Theorem shows that there cannot be another φ that satisfies this

condition, and lemma A.0.1 shows that F is larger for any other φ. Thus

theorem A.0.3 is shown.
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Appendix B

Simulation Parameters

In this appendix we list the van der Waals parameters used in simulations

throughout this thesis. The vdW interaction between two atoms i and j is

given by

Vij = 4
√
εiεj

((
σi + σj

2rij

)1

2−
(
σi + σj

2rij

)6
)

(B.1)

were σi and εi are the van der Waals parameters for atom i (and likewise

for atom j) and rij is the distance between atoms i and j. The following

atom types are from the CHARMM forcefield.
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Table B.1: van der Waals parameters for atoms used in simulations in this
thesis.

Atom type σ (nm) ε (kJ/mol)

CA 0.355005321205 0.29288
CC 0.356359487256 0.29288
CP1 0.405358916754 0.08368
CP2 0.387540942391 0.23012
CP3 0.387540942391 0.23012
CT1 0.405358916754 0.08368
CT2 0.387540942391 0.23012
CT3 0.367050271874 0.33472

H 0.0400013524445 0.192464
HA 0.235197261589 0.092048
HB 0.235197261589 0.092048
HP 0.242003727796 0.12552
HR1 0.160361769265 0.192464
HR2 0.12472582054 0.192464
HR3 0.261567863646 0.0326352
NC2 0.329632525712 0.8368
NH1 0.329632525712 0.8368
NH2 0.329632525712 0.8368
NH3 0.329632525712 0.8368
NPH 0.329632525712 0.8368
NR1 0.329632525712 0.8368
NR2 0.329632525712 0.8368
NR3 0.329632525712 0.8368

O 0.302905564168 0.50208
OC 0.302905564168 0.50208
S 0.356359487256 1.8828

OWT3 0.315058 0.636386
HWT3 0.0 0.0
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