
 
	

 

The use of airborne LiDAR to assess tree species and forest biomass in 

subtropical forests 

by 

 
Lin Cao 

 
B.Sc., Nanjing Normal University, China, 2006 

M.Sc., Nanjing Forestry University, China, 2008 
 
 
 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE 
REQUIREMENTS FOR THE DEGREE OF 

 
DOCTOR OF PHILOSOPHY 

 
in 
 

The Faculty of Graduate and Postdoctoral Studies 

(Forestry) 
 
 
 

THE UNIVERSITY OF BRITISH COLUMBIA 

(Vancouver) 
 
 
 

November 2015 
 
 
 

© Lin Cao, 2015 



ii 
	

 

Abstract 

The subtropical forest biome accounts for approximately a quarter of the area of China and is 

particularly important for local economies, and for maintaining biodiversity and the carbon 

balance of forest ecosystems. Despite their importance, there is still considerable uncertainty 

about the characterization and spatial distribution of tree species, as well as the carbon budgets of 

these forests, many of which have been altered by anthropogenic activities. Remote sensing has 

the potential to provide quantitative, spatially explicit information for mapping and monitoring 

forest ecosystems. It is also a cost-effective tool to provide temporally uniform and “wall-to-wall” 

observations over time. Light Detection and Ranging (LiDAR) is an active remote sensing laser 

technology that provides an advantage over most other remote sensing technologies in its ability 

to provide detailed three-dimensional information of forest canopy structure, which is particularly 

useful for studying forest biophysical and structural properties. The aim of this dissertation is to 

investigate novel approaches for using and examining the effectiveness of LiDAR technologies, 

in order to classify tree species and estimate forest biomass and dynamics, across a study site 

within the subtropical region of southeast China. Specifically, airborne LiDAR was evaluated for 

its ability to: (i) discriminate tree species using small-footprint full-waveform LiDAR metrics; (ii) 

estimate forest biomass components by discrete-return and full-waveform LiDAR metrics; (iii) 

spatially extrapolate the estimation of forest biomass components, and (iv) predict and map 

biomass dynamics using multi-temporal LiDAR data. The results of this dissertation confirm that 

LiDAR-based approaches can make significant contributions to analyze the 

structure, composition and distribution of tree species across the study site, and provide effective 

methodologies and techniques for developing high resolution, spatially explicit estimations of 

forest biomass (and its dynamics). These methods have important applications to sustainable 

forest management, forest carbon cycling studies and carbon accounting projects. 
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1 Introduction 

1.1 General background, objectives and chapter overview 

Forests constitute a major part of terrestrial ecosystems, occupying approximately 30% of the 

world’s land area (Dixon et al., 1994). Two-thirds of all plants and animals living on land use 

forests as a component of their habitat and as a result forests are the most bio-diverse terrestrial 

ecosystems globally (Schmitt et al., 2009). Forests absorb carbon through photosynthesis and 

sequester it as biomass, thus contributing significantly to the mitigation of global climate change, 

and it is estimated that over 80% of the world’s aboveground and 40% of belowground carbon are 

stored in forest ecosystems (Lieth and Whittaker, 1975; Dixon et al., 1994). Because of this, the 

United Nations Framework on Climate Change (UNFCCC) has created a collaborative program 

on Reducing Emissions from Deforestation and forest Degradation in developing countries 

(REDD), in order to establish efficient systems for monitoring forest carbon stocks (Gibbs et al., 

2007). 

Tropical (and subtropical) forests are species-rich, carbon-dense and highly productive 

ecosystems (Kant and Berry, 2005) comprising 56% of the world’s forests (Fleming et al., 2011). 

Subtropical forests occur in the transition from the tropics to temperate zones, usually between 

23.5 and 40 ° latitude in both hemispheres (Pancel, 1993) (Figure 1.1). Sub-tropical forests have 

been defined by FAO (2001) as having mean monthly temperatures of over 10° C for more than 

eight months a year, and consist of two distinct types of subtropical forest, i.e., subtropical humid 

and subtropical dry, distinguished by the seasonal distribution in rainfall and humidity (Sands, 

2005). Most of the subtropical humid forests are located on eastern seaboards, with south-eastern 

China containing the largest proportion of humid subtropical forests (0.53×108 ha) globally (Fang 

and Chen, 2001). As this area is located in China’s most densely populated regions and these 

regions have the greatest economic growth, the subtropical forests of China are particularly 

threatened (Wang et al., 2001).  
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Figure 1.1 Map of global ecological zones. The subtropical regions lie between 23.5 and 40 degrees 
of latitude in both hemispheres (FRA, 2000). 

Tropical (and subtropical) forests contain at least half of all global living species (Fleming et 

al., 2011), and, as a result, the characterization of tree species and their spatial distribution is 

critical for sustainable forest management and understanding regional ecological processes. 

Information on individual tree species is important for forest management activities, such as 

estimating timber quality attributes, biomass and for assessing species diversity (Jones et al., 2010; 

Popescu et al., 2003). Species information is also needed when modelling individual tree growth 

(Falkowski et al., 2010; Yu et al., 2004), assessing tree competition (Biging and Dobbertin, 1992) 

and elucidating the response of forests to disturbance (Parker et al., 2004), which in turn is 

important for understanding and management of subtropical forest ecosystems (Li et al., 2012; 

Plourde et al., 2007). Traditional methods of tree species identification have been based on either 

field inventory approaches or interpretation of large-scale aerial photographs. Both of these 

methods are labour intensive and time consuming (Franklin et al., 2000). Remote sensing 

techniques can provide quantitative spatially explicit information and “wall-to-wall” observations 

for mapping and monitoring of forest ecosystems (Gibbs et al., 2007). However, although 

remotely sensed data have been widely explored for forest applications (Franklin, 1994; Key et al., 

2001; Martin et al., 1998), the traditional optical remote sensing techniques still fall short of 

capturing three-dimensional forest structures (Lovell et al., 2003).  
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In addition to species distribution information in subtropical forest stands, information on 

their carbon stocks is also important as many countries are considering developing national forest 

carbon inventories and policies for carbon management that all require accurate methods of 

biomass estimation (Piao et al., 2005). Despite its importance, there is still considerable 

uncertainty about carbon budgets within these subtropical forests, despite several national-scale 

studies using historical forest inventory data (Fang and Chen, 2001). Remote sensing also has the 

potential to provide quantitative information for estimating biomass (and biomass components) 

(Hollaus et al., 2014), and has been shown to be a cost-effective tool to provide temporally 

uniform carbon stock observations over time (Wulder et al., 2010). Remote sensing for forest 

biomass (i.e., carbon stocks) estimation has traditionally focused on the use of imagery from 

passive optical and RADAR (Radio Detection and Ranging) sensors in the tropical and 

subtropical forests (Clark et al., 2011; Du et al., 2014). However, the sensitivity and accuracy of 

these sensors have been shown to decrease with increasing aboveground biomass and leaf area 

index, which inhibits reliable carbon stock estimates (Lefsky et al., 2002; Turner et al., 1999; Tsui 

et al., 2012). Furthermore, optical sensors can only provide limited information on the vertical 

structure of the forests, and the application of RADAR is limited by terrain, surface moisture and 

other factors (Wulder, 1998; Rosenqvist et al., 2003). 

Light Detection and Ranging (LiDAR) is an active remote sensing laser technology capable of 

providing detailed, spatially explicit, three-dimensional information on forest canopy structure 

(Lefsky et al., 2002). LiDAR systems send out pulses of laser light and measure the signal return 

time to directly estimate the height and vertical structure of forests (Dubayah & Drake, 2000), 

which is particularly useful for studying biophysical and structural properties over a wide range 

of forest types (Dubayah and Drake, 2000). Previous studies have demonstrated the potential of 

LiDAR to classify tree species mostly in boreal forests in Scandinavia (Holmgrena and Persson, 

2004; Ørka et al., 2009; Yu et al., 2014), temperate forests in central Europe (Heinzel and Koch, 

2011; Reitberger et al., 2009; Yao et al., 2012) and North America (Jones et al., 2010; Suratno et 

al., 2009; Vaughn et al., 2012). The saturation problem in carbon stock estimation in 
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high-biomass forests can be overcome by LiDAR, as laser pulses can penetrate through even the 

dense multi-layered canopies and retrieve vertical structure information from return signals, and 

as a result there tends to be a strong correlation between LiDAR data and many forest biophysical 

properties (Lu et al., 2012). Previous studies have demonstrated the potential of LiDAR to 

accurately estimate stand level forest biomass in boreal (Næsset & Gobakken, 2008; Næsset et al., 

2013; Kankare et al., 2013), temperate (Lefsky et al., 1999; Lim and Treitz, 2004) and tropical 

forests (Drake et al., 2002; Asner et al., 2010), as well as biomass at the single tree level (Popescu, 

2007; Hauglin et al., 2013). 

For the last past decade or so, most conventional airborne LiDAR systems produced 

small-footprint discrete-return (DR) data (Lindberg et al., 2012). These systems record 

multi-returns (n ≤ 5) per transmitted pulse with each return representing the 3D position and 

intensity of the reflected light (Wulder et al., 2008). However, due to limitations in the electronics, 

the discrete LiDAR systems can only distinguish surfaces that are sufficiently spaced apart 

(Parrish et al., 2011). Furthermore, since the returned signal is interpreted internally, the recorded 

information from these systems is limited to a simple time measurement for each pulse (Wagner 

et al., 2006). In contrast, small-footprint full-waveform (FWF) LiDAR systems have become 

available commercially since 2004 (Mallet and Bretar, 2009); these systems provide new 

opportunities for forestry studies. The FWF systems digitize and record the entire backscattered 

signal of each emitted pulse, and allow the recording of geometric and physical properties of 

intercepted objects (Reitberger et al., 2006). The analysis of FWF data has enhanced point 

extraction (Wu et al., 2011) and provided additional target information (e.g., intensity, pulse width 

and backscatter cross section etc.) (Höfle et al. 2008; Hollaus et al. 2009). This extended return 

information has been successfully applied to forestry applications, such as the estimation of forest 

structure and canopy fuel parameters (Sumnall et al., 2012; Hermosilla et al., 2014; 

Neuenschwander, 2012), single tree detection (Reitberger et al., 2008; Gupta et al., 2010) and tree 

species classification (Xu et al., 2012).  

The primary objective of this dissertation is therefore to investigate the use and effectiveness 



5	
	

of novel LiDAR technologies to classify tree species and estimate forest biomass and dynamics in 

forest stands within the subtropical region of southeast China. From this primary objective, four 

specific research questions have been formulated: 

1) Can small-footprint full-waveform LiDAR data be used to classify tree species in subtropical 

forest stands? 

2) What are the advantages of estimating the forest biomass components by discrete-return and 

full-waveform LiDAR metrics alone or combined?  

3) How can airborne LiDAR be used to provide spatially explicit maps of forest biomass 

components?  

4) How can multi-temporal airborne LiDAR data be used to estimate and map biomass 

dynamics over time? 

These research questions have been addressed in the context of several case studies in Yushan 

forest, located in southeast China, within the subtropical region. Following a description of the 

general study area and data sources in Chapter 2, questions 1, 2, 3 and 4 are then addressed in 

Chapters 3, 4, 5 and 6 respectively. Specifically, Chapter 3 examines the use of airborne 

full-waveform LiDAR data to discriminate six subtropical tree species (at three levels of 

classification) using a voxel-based composite waveform approach and a Random Forest classifier. 

Chapter 4 presents the use of DR and FWF metrics for estimating forest biomass (i.e., above-ground 

and total biomass) and its components (i.e., foliage, branch, trunk and root biomass), and the 

uncertainty analysis of the estimates as well. Chapter 5 spatially extrapolates the estimates of 

forest biomass components (in 2013) across the site using LiDAR data, and then evaluates the 

accuracy using a suite of independent stand-level field inventory data. Chapter 6 assesses 

different approaches to estimate the magnitude and spatial patterns of the above ground biomass 

(AGB) dynamics (from 2007 to 2013) using multi-temporal airborne LiDAR data. Finally, 

Chapter 7 concludes this dissertation by summarizing the major findings, potential implications, 

applications to forest management, and possible future research directions. 
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The interconnection of dissertation chapters (red), data sources (blue) and applications of the 

technologies for forest resources management (FRM) and ecological studies are shown in Figure 

1.2. The following sections provide an overview of airborne LiDAR technology and a summary 

review of the key concept and background of chapter 3 to 6. 

 

Figure 1.2 Interconnection of dissertation chapters (red), data sources (blue) and applications of the 
findings for forest resources management (FRM) and ecological studies. Notes: FWF=full-waveform, 
DR= discrete-return.  
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1.2 An overview of airborne LiDAR 

The LiDAR sensor emits pulses of light to determine the range (or distance) to a target object 

(Lim et al., 2003). The distance to the target is measured by the elapsed time between the 

emission of the pulse and the detection of the reflected (or backscattered) signal (Gatziolis and 

Andersen, 2008):  

Range (m) = (Speed of Light × Time of Flight) ÷ 2            (1.1) 

The coordinates (x, y, z) of the target object is defined with the known position and orientation 

of the sensor, and the range measurements. 

An airborne LiDAR system comprises a set of instruments: a laser ranging unit, an inertial 

navigational measurement unit (IMU), a high-precision global positioning system (GPS) receiver 

and a computer interface (Figure 1.3). The GPS and IMU continuously record the 

three-dimensional position and attitude (i.e., roll, pitch, and yaw) of the platform, and the 

computer interface manages communication among devices and data storage (Gatziolis and 

Andersen, 2008). 

 

Figure 1.3 Schematic diagram of an airborne LiDAR system (Zhang and Cui, 2007) 
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Airborne LiDAR systems can be categorized as either discrete return (DR) or full waveform 

(FWF), and differ with respect to how backscattered laser energy is quantified and recorded by 

the system’s receiver. (Lefsky et al., 2002; Gatziolis and Andersen, 2008). DR systems quantify 

reflected energy (at amplitude intervals) and recorded return targets referenced in time and space 

(White et al., 2013) (Figure 1.4). In a forested area, a laser pulse may be reflected from several 

surfaces, e.g., the canopy (i.e., branches and leaves) and often the ground. The resulting dataset 

(of DR LiDAR) is a cloud of 3D points, with the upper points representing the canopy and the 

lower points representing the ground (Lim et al., 2003). FWF systems record the reflected energy 

from each laser pulse at very small time intervals. The sensitivity of the FWF sensor is at the level 

of a few photons per interval (typically 15 cm), and as a result, even small volumes of vegetation 

can influence the shape of the return waveform (Schuckman and Renslow, 2014) (Figure 

1.4). The following sections provide a review of the use of airborne LiDAR for species 

classification, biomass and biomass change estimations. 

 

Figure 1.4 Illustration of full-waveform and discrete return LiDAR systems. The entire return pulse is 
digitized and recorded in a full-waveform LiDAR system. Only the peaks are recorded in a discrete 
return LiDAR system (Lefsky et al., 2002). 
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1.3 Airborne LiDAR for tree species classification 

Previous studies have demonstrated that attributes extracted from full-waveform (FWF) 

LiDAR (e.g. amplitude, echo width) and the derived metrics, can be used to enhance the 

performance of tree species classification. Reitberger et al. (2008) classified coniferous and 

deciduous trees using FWF metrics (i.e., 3-dimensional coordinates of the reflections, intensity 

and pulse width) and an unsupervised classifier in the Bavarian Forest National Park, southeast 

Germany. Using a variety of models, they found an overall accuracy of 85% in a leaf-on situation 

and 96% in a leaf-off situation. Höfle et al. (2008) found that the mean echo width and 

backscatter cross section from the segmentations of the canopy surface were able to separate larch 

(Larix decidua), from oaks (Quercus robur, Quercus petraea) and beech (Fagus sylvatica). The 

benefits of FWF data were also shown in Vaughn et al. (2012), who reported an increment of 

classification accuracy of approximately 6% for five species (overall accuracy = 85.4%) when 

incorporating the waveform information. Hollaus et al. (2009) investigated the capability of FWF 

data for classifying three dominant tree species in a mixed woodland area. The metrics of echo 

height distributions, mean and standard deviations of echo widths, mean intensities and 

backscatter cross-sections, were all extracted from the segmented tree crowns, and then used as 

inputs for the decision-tree based classification. The echo width was demonstrated as being useful 

for the discrimination of spruce and larch, and the overall accuracy for classifying all the tree 

species was 75%. An increase in accuracy of 8% was found when discriminating between 

coniferous vs. deciduous species.  

Heinzel and Koch (2011) explored a large number of rasterized FWF metrics, and selected the 

three most important variables based on the intensity, width and the total number of targets using 

linear discriminant analysis (LDA). Overall accuracies of 57% for six classes, 78% for four main 

species and 91% for coniferous and broadleaved trees were achieved. Höfle et al. (2012) explored 

the possibilities of using FWF data to extract vegetation in urban areas. An overall accuracy of 94% 

was achieved by using an artificial neural network (ANN) classifier, and a slight enhancement of 
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2% was found when the classifier was changed to a decision-tree classifier based on metrics 

including intensity, echo width and the height distribution of echoes within segments. Yu et al. 

(2014) assessed the possibility of using low density FWF LiDAR data for individual tree 

detection and species classification in southern Finland. In their research, a Random Forests (RF), 

which is an ensemble non-parameter classification method, was used for metrics selection and 

classification. The best result was 73.4% (overall accuracy), and they suggested that including the 

FWF metrics can improve the classification accuracy of pine, spruce and birch by an increment of 

10%. A detailed summary of previous studies that have classified tree species using 

full-waveform LiDAR data is provided in Table 1.1.  
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Table 1.1 Summary of previous studies that classified tree species using full-waveform LiDAR data. 

Previous 
study 

Study area  Forest type 
(tree species) 

Full-waveform 
(FWF) sensors 

FWF metrics for 
classification 

Classifier Max number of 
classes 

Highest accuracy of 
the classification  

Reitberger et 
al. (2008) 

Southeast 
Germany 

Temperate forest 
(alpine spruce forest, 
mixed mountain and 
spruce forests) 

Riegl LMS-Q560 3-D coordinates of the 
reflections, intensity and 
pulse width 

K-means /EM 
classifier  

2 (i.e., 
Coniferous and 
deciduous 
trees) 

Overall accuracy = 
85% (leaf-on) = 96% 
(leaf-off) 

Höfle et al. 
(2008) 

West of Vienna, 
Austria 

Temperate forest 
(red beech, oak and larch) 

Riegl LMS-Q560 Echo width and 
backscatter cross section 

Not reported 3 Not reported 

Vaughn et al. 
(2012) 

Seattle, Pacific 
Northwest, 
United States 

Temperate forest 
(Douglas-fir, western 
red-cedar, black 
cottonwood, big-leaf maple 
and red alder) 

Not reported Fourier transform 
characteristics and voxel 
cluster characteristics 

Support Vector 
Machine (SVM) 

5 Overall accuracy = 
85.4 % (kappa = 
0.817) for all five 
species 

Hollaus et al. 
(2009) 

The federal 
state of Lower 
Austria 

Temperate forest 
(red beech, oak and larch) 

Riegl LMS-Q560 Echo width, backscatter 
cross section, the 
distribution of the 
echoes 

Knowledge-based 
fuzzy 
classification 

3 Overall accuracy = 
85.4 % for all three 
species 

Heinzel and 
Koch (2011) 

Southwestern 
Germany 

Temperate forest 
(Scots pine, oak, European 
beech , Norway spruce, 
Hornbeam and wild 
cherry) 

Riegl LMS-Q560 Intensity, width and the 
total number of targets 

Linear 
discriminant 
analysis (LDA) 

6 Overall accuracy = 
57 % for all six species 
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Previous 
study 

Study area  Forest type 
(tree species) 

Full-waveform 
(FWF) sensors 

FWF metrics for 
classification 

Classifier Max number of 
classes 

Highest accuracy of 
the classification  

Höfle et al. 
(2012) 

City center of 
Vienna, Austria 

Temperate urban forest 
(beech, Norway maple, 
plane, linden and chestnut)  

Riegl LMS-Q560 Intensity, echo width 
and the height 
distribution of echoes 

artificial neural 
network (ANN)/ 
decision-tree 
classifier 

2 (i.e., 
vegetation or 
non-vegetation) 

Overall accuracy = 
96 % for urban 
vegetation 

Yu et al. 
(2014) 

Southern 
Finland 

Boreal forest 
(Scots pine, Norway 
spruce and birch) 

Leica ALS60 Number of peaks, peak 
amplitude, distance and 
distribution of the total 
received energy etc. 

Random forests 
(RF)  

3 Overall accuracy = 
73.4 % for all three 
species 

* FWF: full-waveform. 
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1.4 Airborne LiDAR for forest biomass estimation  

1.4.1 Estimation of biomass components (using discrete-return LiDAR data) 

LiDAR pulses can penetrate through the forest canopy and sample the vertical distribution of 

the canopy (e.g., branches and leaves). Previous studies have found ecological and biomechanical 

links between biomass and vertical structure (Drake et al., 2003; Franco and Kelly, 1998; Givnish, 

1986; King and Loucks, 1978), and as a result, a strong correlation between LiDAR data and 

biomass can be expected (Lefsky et al., 1999; Drake et al., 2002; Lu et al., 2012).  

 

Figure 1.5 Above and below ground forest biomass components (Popescu and Hauglin, 2014) 

Using discrete-return (DR) LiDAR data, area-based (ABA) and individual tree crown (ITC) 

approaches are the most common for estimating biomass and biomass components (see Figure 1.5) 

in previous studies (Hollaus et al., 2014). At the stand level, Lim and Treitz (2004) evaluated the 

canopy-based quantile metrics for estimating above ground biomass (AGB) and biomass 

components in a hardwood forest using the ABA approach, and found that the models (based on 

each canopy-based quantile) have relative high and similar predictive capabilities for each biomass 

component, with respect to R2 (0.82-0.90, the difference between any two models was lower than 
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9%). Næsset (2004) estimated above-ground and below-ground biomass using LiDAR based 

canopy height and density metrics in a boreal forest (with young and mature conifers). The results 

demonstrated that above-ground biomass explained 92% of the variability, whereas the models 

for below-ground biomass explained 86%. Næsset and Gobakken (2008) extended their research 

to ten different areas within the boreal forest zone of Norway. The statistical effects of age class 

were assessed by including dummy variables in the models, and tree species composition was 

treated as continuous variables. They found that above-ground biomass explained 88% of the 

variability, whereas the models for below-ground biomass explained 85%. Their results also 

demonstrated that the proportion of broadleaves had a significant effect on above-ground biomass 

only, while the effect of age class was significant only in the below-ground biomass model. 

Stephens et al. (2012) estimated the national carbon stock of New Zealand using a double sampling 

scheme based on ground plots and LiDAR data. The regression model, fitted by the ground-based 

measurements and LiDAR metrics (e.g., 30th percentile height and canopy cover), explained 74% 

of the variation in total carbon. Compared with the ground-based estimates, the LiDAR-based 

approach improved the accuracy of the national carbon stock estimation in 2008 by 6%. Tsui et al. 

(2012) estimated above-ground component and total biomass for a coniferous temperate forest 

using LiDAR-derived metrics and backscatter coefficients from RADAR. The results of the 

LiDAR-based models indicated that stem biomass had the most accurate relationship with the 

LiDAR measurements, while crown biomass showed the lowest relationship (relative RMSE = 

16%–22%). 

At the single tree level, Popescu (2007) used airborne LiDAR data to estimate the 

aboveground biomass (AGB) and component biomass for loblolly pine (Pinus taeda L.) in 

southeastern United States using the ITC approach. LiDAR-derived single tree-level height and 

crown diameter were used to estimated tree DBH, AGB and component biomass using regression 

models. The results showed that 93% of the variability of individual tree biomass, 90% of DBH, 

and 79–80% of components biomass could be explained by the predictive models. Hauglin et al. 

(2013) estimated single-tree branch biomass of Norway spruce using LiDAR derived crown 
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volume, calculated from an interpolated crown surface. Regression models with branch biomass 

(through destructive sampling) as the dependent variable were fitted to the data. The results 

demonstrated that the best LiDAR-based models can estimate branch biomass with a higher 

accuracy than existing allometric biomass equations based on field measurements. Kankare et al. 

(2013) combined the ABA and ITC approaches to map the AGB in a boreal forest in Finland. The 

ABA was trained with ITC measurements and resulted in a relatively high accuracy 

(RMSE=28.5–34.9%) for ABA estimation. They concluded that although it is not feasible to use 

visually corrected ITC in wall-to-wall forest biomass inventory, it could provide a cost-efficient 

application for training ABA in biomass mapping. A detailed summary of previous studies that 

estimated forest biomass and biomass components using discrete-return LiDAR data is provided 

in Table 1.2.  
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Table 1.2 Summary of previous studies that estimated forest biomass and biomass components using discrete-return LiDAR data. 

Previous study Study area  Forest type 
(characteristics) 

Modelling 
approaches 

Estimated components of 
biomass (or carbon) 

Average point 
densities 
(points m-2) 

Type of predictive 
models 

Accuracy of the best 
predictive model 

Lim and Treitz 
(2004) 

Southeast Canada 
 

Temperate forest (tolerant 
hardwood forest) 

ABA  Stem wood, stem bark, live 
branch and foliage biomass 

3-5 Multiple 
regression models 

R2 = 0.82-0.90 

Næsset 
(2004) 

Southeast Norway  Boreal forest (young and 
mature conifers) 

ABA above-ground and 
below-ground biomass 

1.1 Multiple 
regression models 

R2 = 0.92 (aboveground) 
R2 = 0.86 (belowground) 

Stephens et al. 
(2012) 

Across New 
Zealand 

Temperate and subtropical 
forest (planted and native 
species) 

ABA  Total carbon, above-ground 
carbon 

>3 Double sampling 
regression 

R2 = 0.74 (total) 
R2 = 0.81(aboveground) 

Tsui et al. 
(2012) 

Vancouver island, 
western Canada 

Coastal temperate forest 
(actively logged and managed) 

ABA Above-ground, stem and 
crown biomass 

3.74 Linear regression 
models 

Adj R2 = 0.82 (AGB) 
Adj R2 = 0.86 (stem) 
Adj R2 = 0.72 (crown) 

Popescu 
(2007) 

Southern United 
States 

Loblolly pine stands ITC 
 

Total, foliage, coarse roots, 
bark, and stem biomass  

2.6 Linear regression 
models 

R2 = 0.93 (total) 
R2 = 0.79-0.80(components) 

Hauglin et al. 
(2013) 

Southeast of 
Norway 

Norway spruce ITC Canopy base height (CBH) 
and branch biomass  

7-10 Linear regression 
models (for 
estimating CBH) 

R2 = 0.83 (for CBH) 
 

Kankare et al. 
(2013) 

Southern Finland Boreal forest (heterogeneously 
managed forests) 

ITC and 
ABA 

Total, stem, canopy and 
live branch biomass 

10 Linear regression 
models 

R2 = 0.96 (total) 
R2 = 0.99(stem) 
R2 = 0.85 (canopy) 
R2 = 0.83(live branch) 

ABA: area-based approach; ITC: individual tree crown based approach; Adj R2= Adjusted R2; AGB: Above-ground biomass; CBH: Canopy base height.
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1.4.2 Estimation of biomass components (using full-waveform LiDAR data) 

The additional information from small-footprint full-waveform (FWF) data has also been 

successfully applied to tree species classification (Heinzel and Koch, 2011), and the estimation of 

forest structure characteristics (e.g., height, DBH, volume and biomass) using the area-based 

(ABA) and individual tree crown (ITC) approaches (Hollaus et al., 2014). At the stand level, 

Chauve et al. (2009) used an enhanced peak detection algorithm coupled with echo modelling 

approaches to assess the capability of FWF data for improving the quality of DTMs and 

CHM-based heights in black pine (Pinus nigra) stands in southern France. The results showed 

that although the accuracies (of DTMs and CHM-based heights) were slightly improved, 40 to 60 % 

additional points were detected (mainly in the lower part of the canopy and in the low vegetation), 

providing a much more detailed structure of forest stands. Lindberg et al. (2012) evaluated the 

performance of a normalized FWF-derived profile for estimating vegetation volume in a 

hemi-boreal, spruce-dominated forest in southwest Sweden. The results showed that the 

normalization process is useful in compensating for the shielding effect of higher vegetation 

layers, and that the normalized FWF data had the highest accuracy (relative RMSE=27.6%) 

compared with the other three approaches, i.e., using FWF data (without normalization) (relative 

RMSE=31.9%), point data derived from FWF (relative RMSE=29.1%), point data from discrete 

return LiDAR system (relative RMSE=36.5%). Hermosilla et al. (2014) extracted geometric and 

radiometric information from FWF data based on a spatiotemporal analysis for estimating canopy 

fuel and forest structure parameters in a Douglas-fir dominated mixed forest in northwest Oregon 

(United States). A voxel-based approach was used to generate composite waveforms on the 

normalized full-waveform data before extracting the FWF metrics. The results showed promising 

accuracy (most of the models explained over 80% of the variability of the forest parameters) of 

using FWF metrics to characterize the structure and canopy fuel loads of forests. Pirotti et al. 

(2014) evaluated the performances of three levels of FWF metrics, i.e., peak (from each return 

echo), pulse (from the whole return signal) and plot level (simulating the large footprint LiDAR 

data) for estimating basal area (BA) and aboveground biomass (AGB), in a tropical moist forest 
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in south-western Ghana. The results showed that the basal area (adjusted R2=0.62-0.79) is better 

predicted than aboveground biomass (adjusted R2=0.58-0.65), and trees with a diameter at breast 

height equal to or above 20 cm are better predicted than small trees. 

At the single tree level, Allouis et al. (2013) assessed the capability of FWF LiDAR to 

improve the estimation of individual tree-based volume and biomass in a black pine forest in 

southern France. They found that although the use of additional FWF metrics did not improve the 

volume, the accuracy of biomass estimation (adjusted R2=0.90-0.91) was improved compared 

with models developed using CHM-only (adjusted R2=0.87) or CHM+DR (adjusted R2=0.87-0.88) 

metrics. They also found that when including the FWF metric (i.e., the integral of the cumulative 

signal, which related to the vertical structure of a tree as a whole), the accuracy of biomass 

estimation was enhanced. Wu et al. (2009) extracted structural metrics (i.e., crown thickness and 

canopy height) from LiDAR waveforms for estimating woody and foliar biomass in a wooded 

savanna in South Africa. The results showed that FWF metrics have strong potential for 

estimating woody (R2=0.71) and foliar biomass (R2=0.73) at the tree-level in a savanna 

environment. Sumnall et al. (2012) conducted a comprehensive investigation comparing the 

estimation of forest structural variables from discrete (system points) and full waveform LiDAR 

data, using ABA and ITC approaches, in a semi-natural forest in southern England. ITC metrics 

were derived after individual tree crown delineation, height and intensity-related metrics were 

derived from DR data (system points), metrics of heights (derived from waveform points), 

amplitude and pulse widths of the waveforms were all derived from FWF data. Results indicated 

that FWF metrics appeared to have stronger potential for predicting DBH (R2=0.91), canopy base 

height (R2=0.93) and number of trees (R2=0.80) than DR metrics (R2=0.66, 0.90, 0.70, 

respectively). A detailed summary of previous studies that have estimated forest characteristics 

(e.g., height, volume and biomass etc.) using full-waveform LiDAR data is presented in Table 1.3.  
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Table 1.3 Summary of previous studies that estimated forest characteristics using full-waveform LiDAR. 

Previous study Study area  Forest type 
(characteristics) 
 

Modelling 
approaches 

Estimates Additional information 
extracted from FWF data 

Radiometric 
calibration 

Correction of 
scan-angle 
effects  

Accuracy of the best 
predictive model (FWF 
information being used) 

Chauve et al. 
(2009) 

Southern 
French 

Black pine forest  
(protected 
afforestation of 
mature trees) 

ABA  Canopy 
height 

Denser point clouds 
extracted from FWF data 

  RMSE = 0.21m 

Lindberg et al. 
(2012) 

Southwest 
Sweden 

Hemi-boreal forest 
(spruce dominated) 

ABA Vegetation 
volume 

FWF-derived vegetation 
volume profile 

√  relative RMSE = 27.6% 

Hermosilla et 
al. (2014) 

Northwest 
Oregon, United 
States 

Temperate forest 
(Douglas-fir 
dominated mixed 
forest) 

ABA  Canopy 
fuel and 
forest 
structure 
parameters 

Geometric and radiometric 
metrics form FWF data 

 √ R2 = 0.84 (AGB) 
R2 = 0.66-0.82 (Others) 
 

Pirotti et al. 
(2014) 

Southwest 
Ghana, Africa 

Tropical moist forest 
(disturbed and 
degraded in many 
areas) 

ABA Basal area 
(BA) and 
AGB 

peak (form each return 
echo), pulse (form the 
whole return signal) and 
plot level (simulating the 
large footprint LiDAR data) 

  Adj R2 = 0.62-0.79 (BA) 
Adj R2 = 0.58-0.65(AGB) 

Allouis et al., 
(2013) 

Southern 
France 

Black pine 
(over-mature stands) 

ITC 
 

Volume 
and AGB 

Metrics from FWF signals 
and vegetation profiles 

  Adj R2 = 0.93-0.95(volume) 
Adj R2 = 0.90-0.91(AGB) 
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Previous study Study area  Forest type 
(characteristics) 
 

Modelling 
approaches 

Estimates Additional information 
extracted from FWF data 

Radiometric 
calibration 

Correction of 
scan-angle 
effects  

Accuracy of the best 
predictive model (FWF 
information being used) 

Wu et al. 
(2009) 

South Africa Wooded savanna 
(near-continuous 
grass layer, various 
tree and brush) 

ITC Woody 
and foliar 
biomass 

Crown thickness and 
canopy height 

  R2 = 0.71 (woody) 
R2 = 0.73 (foliar) 
 

Sumnall et al. 
(2012) 

Southern 
England 

Semi-natural and 
planted forests (with 
coniferous and 
deciduous trees) 

ITC and 
ABA 

CBH, 
DBH and 
Volume 
etc. 

Amplitude and pulse widths   R2 = 0.83 (Volume) 
R2 = 0.90(CBH) 
R2 = 0.91(DBH) etc. 

ABA: area-based approach; ITC: individual tree crown based approach; FWF: Full-waveform; Adj R2= Adjusted R2; BA: basal area; AGB: Above-ground biomass; CBH: 
Canopy base height.
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1.4.3 Modeling and estimating biomass dynamics (using multi-temporal LiDAR data) 

Generally, approaches for modeling and predicting change using multi-temporal LiDAR data 

can be classified into two categories, i.e., direct and indirect approaches (McRoberts et al., 2014). 

Direct approaches predict biomass change directly using the differences in LiDAR metrics, 

whereas indirect approaches model biomass at each point in time and predict change as their 

differences. Bollandsås et al. (2013) evaluated different approaches for estimating biomass 

change using bi-temporal airborne LiDAR data over a mature boreal forest and found that models 

based on the direct approach were superior to the indirect approach. Næsset et al. (2013a) used 

bi-temporal LiDAR data to estimate different levels of AGB change (stratified by management 

activities) in actively managed boreal forest (comprising both young and mature stands), and also 

found that the direct approach resulted in more accurate estimates of biomass change than other 

modelling approaches. In contrast, Økseter et al. (2015) found that the indirect approach yielded 

the best results in predicting biomass change in a young boreal forest.  

  Hudak et al. (2012) used repeated airborne LiDAR acquisitions to quantify carbon pools 

and fluxes in a temperate forest. They found that LiDAR can provide accurate, spatially explicit 

biomass distribution estimates that can be used to characterize carbon fluxes. Using spatial 

extrapolation, they found a net gain in AGB in non-harvested forests, but a net loss in harvested 

forests across the study site. Dubayah et al. (2010) used two full-waveform LiDAR datasets from 

the NASA Laser Vegetation Imaging Sensor (LVIS) instrument to determine change in height 

and AGB in tropical forests and found that old-growth forest stands had a net loss of height 

(−0.33 m) and only a small gain of AGB (2 Mg ha-1). However the secondary forests had a net 

gain in both height (2.08 m) and AGB (25 Mg ha-1) during a 7-year period. Meyer et al. (2013) 

used airborne LVIS and discrete-return LiDAR data to analyze the magnitude and spatial patterns 

of AGB change in an old-growth tropical forest. They found that the accuracies of both the mean 

biomass stock and biomass change improved with increasing spatial scales (from 0.04 ha to 10 

ha). The spatial extrapolation results showed that the old-growth forests had a net loss of AGB 

(-0.7 Mg ha−1 yr−1), but secondary forests had a net gain (1.8 Mg ha−1 yr−1) across the study site. A 

detailed summary of previous studies that predicted biomass change using multi-temporal 

airborne LiDAR data is presented in Table 1.4.   

However, to date, most of the research has been conducted in boreal and temperate forests, 

with very few published studies in tropical forests, except a number of studies using sensors 

designed for experimental observations (e.g., LVIS), with these data only publicly available for 
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some intensively studied locations. To the best of my knowledge, no prior published studies 

assessed the utility of using multi-temporal LiDAR data for estimating and mapping biomass 

changes in subtropical forest stands. In addition, although Bollandsås et al. (2013) compared the 

performances of both direct and indirect approaches for estimating changes, their study was only 

focused on boreal forests making it difficult to transfer these results to different forest biomes and 

assess which approach is the best. Additional studies assessing these two approaches are needed 

to be undertaken in a number of different and highly varying forest types before more general 

conclusions about the correct approaches can be drawn (Økseter et al., 2015).  
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Table 1.4 Summary of previous studies that predicted biomass change using multi-temporal airborne LiDAR data. 

Previous study Study area  Forest type 
(characteristics) 

Tested 
modelling 
approaches* 

LiDAR data types 
(t1/t2) 

Average point 
densities 
(t1/t2 points m-2) 

Data acquisition 
time  
(interval, years) 

Accuracy of the best biomass 
change predictive model 

Dubayah et al. 
(2010) 

Costa Rica 
 

Tropical forest 
(old-growth and secondary) 

Direct LVIS/LVIS - / - 1998-2005 (7) ∆Adj-R2=0.65, RSE=10.54 
Mg ha-1 

Hudak et al. 
(2012) 

Northern 
Idaho, USA 
 

Temperate forest 
(heavily managed, with diverse 
stand ages) 

Indirect DR/DR 0.4 / 12 2003-2009 (6) t1:RMSD = 92.75 Mg ha-1 
t2:RMSD = 101.87 Mg ha-1 

Meyer et al. 
(2013) 

Central 
Panama 

Tropical forest 
(old-growth) 

Direct and 
Indirect 

LVIS/DR - / 5.6 1998-2009 (11) t1: R2 = 0.70 
t2: R2 = 0.75 

Englhart et al. 
(2013) 

Borneo, 
Indonesia 

Tropical peat swamp forest 
(intensively disturbed) 

Indirect DR/DR 1.5 / 10.7 2007-2011 (4) t1: R2 = 0.77 
t2: R2 = 0.81 

Bollandsås et 
al. (2013) 

Southeast of 
Norway 

Boreal forest 
(mature stands, in mountain 
area) 

Direct and 
Indirect 

DR/DR 3.4 / 4.7 2005-2008 (3) ∆RMSE=4.0-16.5 Mg ha-1 

Næsset et al. 
(2013a) 

Southeast of 
Norway 

Boreal forest 
(actively managed, young and 
mature stands) 

Direct and 
Indirect 

DR/DR 1.2 / 7.3 1999-2010 (11) ∆R2=0.40-0.98 

Økseter et al. 
(2015) 

Southeast of 
Norway 

Boreal forest 
(young stands, in flat area) 

Direct and 
Indirect 

DR/DR 1.2 / 6.9 1999-2010 (11) ∆CV-RMSE=7.3 Mg ha-1 

*the modelling approach yields higher prediction accuracy is underlined; t1/t2: the first/second time of LiDAR data acquisition; LVIS: NASA Laser Vegetation Imaging 
Sensor; DR: discrete return LiDAR data; Adj-R2: Adjusted R-square; RSE: Standard Error; RMSD: Root Mean Square Difference; RMSE: Root Mean Square Error; 
CV-RMSE: Cross-Validated Root Mean Square Error. 
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2 Study Area and Data 

This chapter describes the general study area and the key datasets that are used throughout 

this dissertation. 

2.1 Study area 

All of the research described in this thesis was undertaken in Yushan Forest, a state-operated 

forest and national forest park located near the city of Suzhou in Jiangsu province, within the 

subtropical region of southeast China (120°42′9.4″E, 31°40′4.1″N). It covers approximately 1103 

ha, with an elevation range of 20–261 m above sea level (Figure 2.1). The main conifers include 

Masson pine (Pinus massoniana Lamb.) and Chinese fir (Cunninghamia lanceolata (Lamb.) 

Hook.), with a small percentage of introduced Slash pine (Pinus elliottii Engelm.) and Japanese 

blackbark pine (Pinus thunbergii Parl.). The primary broadleaved species are Sawtooth oak 

(Quercus acutissima Carruth.), Chinese sweet gum (Liquidambar formosana Hance), mixed with 

Chinese holly (Ilex chinensis Sims.), and associated with some evergreen broadleaved tree species 

belonging to Fagaceae, Lauraceae and Theaceae (Li et al., 2006) (Figure 2.2). 

The natural forest in Yushan was harvested before the 1960s, and then the conifers (e.g., 

Masson pine, Chinese fir and Slash pine etc.) were planted in the 1970s. There has been natural 

regeneration of native species (e.g., Sawtooth oak, Chinese sweet gum and Chinese holly etc.). 

The majority of stands were naturally regenerated and not subject to any major natural 

disturbance or harvest for the past few decades. However, some of the Chinese-fir stands have 

been transformed to Chinese-fir/tea agroforestry systems following silvicultural treatments. In 

addition, to reduce the risk of pine caterpillar (Dendrolimus punctatus Walker) damage, some 

minor silvicultural treatments (e.g., selective thinning and replacement of defoliated pine with 

young indigenous tree species) have been conducted in some of the pine-dominated stands in the 

past few years (SFMP, 2013). The forest is in close proximity to urban areas, and has experienced 

anthropogenic activity such as recreation and local tourism. Yushan forest has a plan for 
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sustainable forest management (SFMP, 2013). The goal of its Development Framework for 

Sustainable Forests (2013-2020) is to ensure the long-term health of forest ecosystems, and to 

manage the forest for a broad range of uses and to conserve economic, social, environmental and 

cultural values (SFMP, 2013).  

 

Figure 2.1 Yushan forest study site and the locations of sample plots of three main forest types. The 
upper-right sub-figure shows the topography of the site. 

 

 
Figure 2.2 Photographs and hemispherical images of the six common tree species in the study area.  
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2.2 LiDAR data 

LiDAR data were acquired in April, 2007 (collected by the Jiangsu Surveying and Mapping 

Engineering Institute, China) and August, 2013 (collected by the Institute of Forest Resource 

Information Techniques (IFRIT), Chinese Academy of Forestry (CAF), China) over the research 

site. An Optech ALTM-3100 discrete-return laser scanner was used in the 2007, operated at 800 

m above ground level with a 50 kHz pulse repetition frequency (wavelength = 1064nm). In 2013, 

a Riegl LMS-Q680i full-waveform scanner was used and data acquired at an altitude of 900 m 

with a 360 kHz pulse repetition frequency (wavelength = 1550nm). The returned waveforms were 

recorded with a temporal sample spacing of 1 ns (approximately 15 cm), and point clouds were 

extracted from the full-waveform data using decomposition algorithms (Wagner, 2010). These 

LiDAR data were stored in LAS format (American Society for Photogrammetry and Remote 

Sensing, Bethesda, MD, USA) by the data providers. Other scanner properties and flight 

parameters of the two LiDAR surveys are provided in Table 2.1.  

Table 2.1 The summary of scanner properties and flight parameters of the two LiDAR surveys. 

Parameters Optech ALTM-3100 
(2007) 

Riegl LMS-Q680i 
(2013) 

Flight altitude (m above ground)  800 900 
Beam divergence (mrad) 0.3 0.5 
Footprint (cm) 24 45 
Wavelength (nm) 1064 1550 
Pulse repetition frequency (kHz) 50 360 
Scan frequency (Hz) 40 112 
Average pulse distance (m) 0.92 0.49 
Average point density (m-2)  1.93 8.37 

 
 

2.3 Plot data 

Plot selection for the purpose of this research was guided by a mean height and cover layer (at 

30m spatial resolution, derived from historical LiDAR data in 2007) and GIS-based stand 

inventory data (Yushan Forest Inventory, unpublished data, 2007). A total of 66 square sample 

plots (30 × 30 m) were established across the study site, covering the dominant species 
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compositions, age classes, and site indices (Figure 2.1). No plots had evidence of significant 

mortality or silvicultural operations (e.g., thinning) being undertaken in recent years (i.e., 

2007-2013). Based on the stratification the plots were divided into three dominant species 

compositions: (i) coniferous forest (n = 15, dominated by Masson pine and Chinese fir); (ii) 

broad-leaved forest (n = 19, dominated by Sawtooth oak and Chinese sweet gum); and (iii) 

mixed-species forest (n = 32, a mixture of coniferous and broad-leaved species). 

Plot data were collected between June-August 2012 and August 2013 under leaf-on conditions. 

Plot corners were located using Trimble GeoXH6000 Handheld GPS units, and high precision 

real-time differential signals received from the Jiangsu Continuously Operating Reference 

Stations (JSCORS), resulting in submeter accuracy (Song et al., 2009). At each plot, for all live 

trees with a DBH > 5 cm, species, diameter (using diameter tape), tree top height, crown base 

height (using a Vertex hypsometer) and crown widths (in both cardinal directions) were measured. 

Crown class, i.e., dominant, co-dominant, intermediate and overtopped, were also recorded 

(Popescu, 2007). For each dominant tree species in the plot, the DBH (of trees) were allocated to 

one of three classes and a proportion of dominant trees within each class were cored (two cores 

were sampled per tree) using increment borers at breast height to quantify tree growth. Individual 

tree locations were recorded within 12 plots (of the total 66 plots) (for the research in Chapter 3) 

established in August 2013, the positions of the trees within each plot were determined using the 

direction and distance of trees relative to the nearest sub-plot (each plot was divided into four 

equal-size square sub-plots) center. The descriptive statistics of the forest characteristics of the 12 

plots (with individual tree location) are summarized in Table 2.2. 

For the growth study in Chapter 6, as no field data exist for 2007, tree height and biomass 

estimations for 2007 were predicted from the field data collected in 2013 using the following 

approach. In order to compute the change (in AGB) between 2007 and 2013, for all cored trees, 

species-specific models were developed between DBH increment (measured from the extracted 

tree cores, as the width of tree ring growth from 2007 to 2013) as a dependent variable, and the 

2013 DBH and tree height as independent variables (Du, 1999; Wyoff, 1990). Once developed, 
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the DBH increment model was then applied to all trees to estimate 2007 DBH. Lastly, once 2007 

DBH was computed, species-specific diameter-height relationships developed from the 2013 field 

collected data were used to estimate height of all trees in 2007.  

Once a full set of inventory data were available for 2007 and 2013, several plot-level forest 

variables were calculated based on the individual tree data, including average DBH, Lorey’s mean 

height (i.e., the basal area weighted height) and above ground biomass (AGB). AGB was 

calculated for individual trees within each plot based on the field-measured (2013) or predicted 

(2007) DBH and height, and then summed to obtain plot-level AGB. Species-specific allometric 

equations referenced from Feng et al. (1999), Qian (2000), Wang and Shi (1990) and Xu et al. 

(2011) were used (allometric equations developed from tree inventory data from local or nearby 

provinces were selected for this research) for calculating the AGB based on the field-measured 

DBH and height. A summary of the predicted ground data in 2007 and field estimated data in 

2013 (of all 66 plots) is provided in Table 2.3. 
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Table 2.2 Description of the forest characteristics for the 12 plots (with individual tree locations) for the research in chapter 3.  

Plot 
No. 

 Forest type  Height (m)  Crown diameter(m)  Number of trees within each crown class 
 Dominated Coniferous (%)  Mean Std.Dev.  Mean Std.Dev.  Dominant Co-dominant Intermediate Overtopped 

1  Coniferous 76  10.20 1.14  4.29 0.72  17 31 13 6 
2  Mixed 41  9.84 1.13  3.76 0.68  22 26 21 11 
3  Broadleaved 22  11.90 1.66  4.43 1.01  20 25 18 12 
4  Mixed 55  7.79 0.82  4.12 0.99  21 24 18 11 
5  Coniferous 79  9.43 1.10  3.68 0.65  25 41 30 7 
6  Coniferous 76  12.44 1.04  4.35 0.76  21 34 15 5 
7  Mixed 52  9.45 1.12  3.31 0.59  25 20 23 13 
8  Mixed 38  10.55 1.20  5.01 0.92  16 22 15 9 
9  Coniferous 82  10.11 1.16  4.15 0.76  20 31 21 6 

10  Broadleaved 17  11.79 1.35  4.74 0.86  20 22 19 9 
11  Mixed 49  11.34 1.23  4.31 0.82  17 24 16 11 
12  Broadleaved 23  8.42 0.88  4.33 0.95  15 18 23 13 

No. = number of trees. Forest type - Coniferous (%) = the proportion of coniferous trees of all trees in the plot. 
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Table 2.3 Summary statistics of predicted ground data in 2007 and field estimated data in 2013 (for all 66 plots). 

Variables 
 Coniferous forests (n=15)  Broadleaved forests (n=19)  Mixed forests (n=32) 
 Mean Std.Dev. Range  Mean Std.Dev. Range  Mean Std.Dev. Range 

Predicted ground data in 2007 

DBH (cm)   12.95 1.19 10.40-17.59  14.27 2.52 10.17-21.28  12.86 1.26 10.27-16.27 
hL (m)  9.78 1.17 8.16-13.28  10.98 2.48 6.95-17.88  10.09 1.24 7.03-12.95 
WAGB (Mg ha-1)  67.14 20.51 38.71-111.02  88.23 43.48 17.47-209.31  72.56 21.77 40.48-122.83 

Field estimated data in 2013 

DBH (cm)  13.52 2.83 11.35-20.90  16.23 3.78 11.62-24.69  13.50 2.30 11.42-19.69 
hL (m)  11.18 1.61 8.57-14.76  12.42 2.90 7.70-18.52  11.55 1.54 8.79-14.18 
WAGB (Mg ha-1)  77.87 22.48 40.85-127.39  101.40 42.81 32.03-219.68  86.13 24.07 44.20-141.73 

 DBH = mean diameter at breast height; G = basal area; hL = Lorey’s mean height; WAGB = mean above ground biomass; Std. Dev. = 
standard deviation. 
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2.4 Stand inventory data 

Additional sets of forest stand inventory data (2007 and 2012) were also available (collected 

by the East China Forestry Investigation Planning and Design Institute, China). Within the study 

site, stands dominated by non-timber species (e.g., fruits, bamboo and tea plantations), and close 

to anthropogenic activities within the forest (such as stands with large roads intersecting the 

forest), were removed (note that none of the sample plots in section 2.3 were located within these 

removed stands). Figure 2.3 shows the forest stands stratified by dominant tree species and age 

group. The inventory data measured and compiled in summer 2012 served as independent 

validation data for the biomass component estimation (in Chapter 5), and the inventory data 

measured in summer 2007 was used to examine the LiDAR-estimated biomass changes in 

relation to forest type and age (in Chapter 6). 

 

 
Figure 2.3 Map of the forest stands (in 2007) stratified by forest types (classified by the dominant tree 
species in the stands) (a) and age groups (b). 

 

Table 2.4 shows the classification of the age groups for the dominant tree species according to 

Chinese local forest inventory guidelines. The age group is determined by the average age of 

dominant tree species in the stand, representing broad stages in the life cycle of the sub-tropical 

forest stand (Xie et al., 2011). The forest age classification system in China varies from other 

countries due to different growth characteristics of tree species, site quality and harvest intervals 
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(for the optimal commercial timber values). For example, in the Chinese forest age system, 

mature stands are those that have reached harvesting age, where as the young and middle aged 

stands are younger than harvesting age, and the over-mature stands are older than harvesting age 

(FAO, 1997). 

The age class interval is 20 years for the hardwood (e.g., Sawtooth oak) dominated stands and 

10 years for conifer (e.g., Masson pine and Slash pine) dominated stands. The fast-growing tree 

species such as Chinese fir have 5-year age class intervals. The management and silvicultural 

historical treatments in Yushan forest have subsequently resulted in a strong association between 

age classes and species compositions. For example, most of the young stands (age < 40 years) 

comprise regenerated broadleaved trees and many of the middle-aged stands (age = 41 - 60 years) 

are mostly dominated by Sawtooth oak, whereas mature stands (age = 31 - 60 years) are mostly 

dominated by Masson pine and over-mature stands (age > 35 years) are dominated by Chinese fir. 

Table 2.4 The age class intervals and age groups for the dominant tree species at the research site.  

Dominant tree species 
 (in the stand) 

Age class 
interval (years) 

 Age group (years) 
Young Middle-aged Mature Over-mature 

Masson pine 10  ≤ 20 21-30 31-60 >60 
Slash pine 10  ≤ 10 11-20 21-50 >50 
Chinese fir 5  ≤ 10 11-20 21-35 >35 
Sawtooth oak 20  ≤ 40 41-60 61-120 >120 
Other broadleaves 20  ≤ 40 41-60 61-120 >120 

Note: this table is cited from “Guidelines for Forest Resources Inventory in Jiangsu Province, China, 
unpublished operating manual, 2007”; The age group to which most of each forest stand (determined by 
dominant tree species) belongs is highlighted as gray. 
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3 Tree Species Classification using Full-waveform LiDAR  

3.1 Introduction 

Accurate identification and classification of tree species provides key information for the 

precise mapping of timber quality attributes, biomass and species diversity (Jones et al., 2010; 

Popescu et al., 2003) and modeling of individual tree growth (Falkowski et al., 2010; Yu et al., 

2004), which is critical for the understanding and managing forest ecosystems (Li et al., 2012; 

Plourde et al., 2007). The full-waveform (FWF) LiDAR systems digitize and record the entire 

backscattered signal of each emitted pulse and allow the recording of detailed geometric and 

physical properties of intercepted objects (Reitberger et al., 2006). The analysis of FWF data has 

improved height estimations (Duong, 2010), enhanced point extraction (Wu et al., 2011) and 

provided additional target information (Chauve et al., 2009). This extended return information has 

been successfully applied to forestry applications, such as the estimation of forest structural 

characteristics (Hermosilla et al., 2014; Neuenschwander, 2012) single tree detection (Gupta et al., 

2010) and tree species classification (Heinzel and Koch, 2011; Xu et al., 2012). 

However, to date, much of the research related to FWF LiDAR-based tree species 

classification has been conducted in temperate and boreal forests (e.g. Hollaus et al., 2009; 

Heinzel and Koch, 2011; Yu et al., 2014 etc.); published studies from tropical (and subtropical) 

forests are few. Most of the previous studies performed an analysis on the directly observed 

waveform, which was commonly assumed to be truly vertical. However, this assumption may 

lead to uncertain results (for FWF analysis), due to the off-nadir scanning angles and non-vertical 

waveforms from different flight trajectories (Hermosilla et al., 2014; Pang et al., 2011). So, in this 

research, a voxel-based composite waveform approach was applied, which aimed to overcome the 

impacts (of off-nadir scanning angle effects) on the spatio-temporal analysis of waveforms on 

forest canopies. The overall goal of this study is to explore an automatic process by using small 

footprint full-waveform data for individual tree detection (ITD) and tree species classification (of 
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species typically found in the subtropical region of southeastern China). The specific objectives 

of this research are: (1) to evaluate a locally adapted local maxima algorithm for individual tree 

detection in subtropical forest stands; (2) to assess the capability to discriminate 6 tree species at 

3 levels of classification using a voxel-based composite waveform approach; and (3) to 

investigate the most important metrics for tree species classification and the optimal voxel size 

for modelling the composite waveforms. 

3.2 Materials 

3.2.1 Study area 

See details about the study area, main forest types and dominant tree species in Section 2.1. 

3.2.2 Field data 

A total of 12 square plots (with the recorded individual tree position and other measurements) 

established in August 2013 were used in this study (see details about these data in Section 2.3).   

3.2.3 LiDAR data 

Small-footprint full-waveform LiDAR data acquired on 17 August 2013 were used in this 

study (see details about these data in Section 2.2). 
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3.3 Methods 

An overview of the workflow for tree species classification is shown in Figure 3.1, which 

provides details of the general methodologies applied in this study. First, A digital terrain model 

(DTM) was created based on the filtered (above-ground) point clouds (the point clouds were 

extracted from the pre-processed waveforms using Gaussian decomposition); second, a 

locally-adapted local maxima algorithm was applied for tree detection and crown delineation 

based on the canopy height model (CHM); third, the individual tree based composite waveforms 

were extracted by the delineated crowns – these were then used as a data model for calculating 

spatiotemporal metrics. Finally, these metrics were utilized as inputs for the Random Forests 

classifier to discriminate six subtropical tree species at three levels of discrimination. 

 

Figure 3.1 An overview of the workflow for tree species classification. DSM: Digital Surface Model; 
DTM: Digital Terrain Model; CHM: Canopy Height Model.
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3.3.1 Data pre-processing 

A 1-m digital terrain model (DTM) was created in two steps from the point cloud data. First, 

the data were filtered to remove the above-ground returns (Kraus and Pfeifer, 1998) and secondly, 

the DTM was created by calculating the average elevation from the remaining (ground) LiDAR 

returns within a cell (cells that contain no points were filled by interpolation using neighboring 

cells). The DTM was derived using FUSION software (McGaughey, 2014). The point cloud was 

then normalized against the ground surface height and extracted for each plot using the 

coordinates. 

Previous studies have demonstrated that the waveform is stretched as the off-nadir angle 

increases (Neuenschwander, 2008; Pang et al., 2011; Yang et al., 2011). The waveforms for 

specific locations may be recorded from several flight trajectories because the acquisition of 

airborne LiDAR data is usually a composition of many overlapping strips (Bretar et al., 2004; 

Hermosilla et al., 2014). To avoid the effects of off-nadir pointing on the waveform and to 

integrate non-vertical waveforms from different flight trajectories, a voxel-based composite 

waveform approach was applied to the full-waveform data (see Hermosilla et al., 2014 for more 

information). This approach synthesized multiple raw waveforms into composite waveforms 

through the vertical space partitioning of forest canopies by voxels, and used the maximum 

amplitude value to construct new composite waveforms (i.e., each bin in a waveform was 

geo-located and then the maximum amplitude value was assigned for each voxel). The background 

noise of each waveform was first suppressed by a de-noising process and then smoothed by a 

Gaussian filter. Each pre-processed waveform was then spatially located in the three-dimensional 

space and normalized by subtracting the derived DTM height from the height of each bin in the 

corresponding positions.  

The vertical space was partitioned into voxels according to the footprint size and temporal 

sample spacing (of 1 ns (approximately 15 cm)), and 8 different voxel sizes were tested to 

examine their impacts on tree species classification. The maximum amplitude value was 

calculated and assigned to each intersected voxel. The maximum amplitude was used to preserve 
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the significance of the major returns of the observed waveforms (Hermosilla et al., 2014). The 

composite waveforms were finally formed by extracting the preserved amplitude values along 

each vertical column of voxels, from tree top (waveform beginning) to bottom (ground) within 

the delineated tree crown projections (Figure 3.2). The composite waveforms within each tree 

crown were then used as a data model for later calculating the spatiotemporal metrics. 

 

Figure 3.2 The process of extracting point cloud and creating composite waveforms from the 
observed waveforms. Two samples (i.e. one coniferous tree and one broadleaved tree) have been used 
to show the processes and results. 

3.3.2 Individual tree detection 

An approach similar to that of Popescu et al. (2002) and Popescu and Wynne (2004) was 

applied to detect individual trees. First, a 0.5m canopy height model (CHM) was built from the 

point cloud data (the CHM was created by subtracting a Digital Terrain Model (DTM) from the 

Digital Surface Model (DSM), and the DSM was calculated by assigning the highest returns 



38 
	

within the grid cells), and then smoothed by a 3×3 median filter to remove the noise (in the 

complex canopy upper surface). Second, individual trees were detected from the smoothed CHM 

using a local maxima algorithm, which identifies high values (likely to be the tree tops) with a 

variable-size circular window. The appropriate window size is determined by a quadratic model 

fitted by the height of the trees and their crown widths (Popescu et al., 2003): 

               (3.1) 

where h is the tree height (m), and β0 and β1 are the model parameters. Locally measured tree 

heights and crown widths (a total of 673 trees) were used to derive the relationship and to 

determine appropriate window sizes. Finally, the crown extent was determined by analyzing 16 

radial crown profiles of the CHM centered on the tree top, with a sampling point spacing of half a 

pixel. The crown radius along each profile was calculated by the horizontal distance to a local 

minimum or to the second point (if a series of three points had heights less than 66% of the tree 

height) (McGaughey, 2014), and the crown widths were the average of the horizontal distances of 

16 radii. The detection of individual trees was processed using FUSION software (McGaughey, 

2014).  

For each detected tree, the tree position, height and crown diameter were estimated and linked 

to the field-measured trees. If a detected tree was located within 2m of a field-measured tree, it 

was designated as correctly detected. Descriptive statistics for the characteristics of all detected 

trees (classified by the taxonomic species) are shown in Table 3.1. 
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Table 3.1 Description of all detected trees (in 6 species) with the statistics of the characteristics.  

Taxonomic 
group 

Name 
Detected trees  Tree height(m)  Crown base height(m)  DBH(cm)  Crown diameter(m) 

No. Proportion (%)  Mean Std.Dev.  Mean Std.Dev.  Mean Std.Dev.  Mean Std.Dev. 
Conifer Masson pine 85 80  9.73 1.08  5.60 0.46  15.10 2.06  4.20 0.76 
 Slash pine 70 84  12.72 1.21  7.16 0.32  21.43 1.28  4.45 0.75 
 Chinese fir 81 82  9.24 0.98  5.39 0.41  12.83 1.68  3.77 0.71 
Broadleaf Sawtooth oak 72 77  12.37 0.87  7.62 0.27  18.38 1.08  4.44 0.97 
 Sweet gum 73 73  12.26 1.29  7.08 0.54  18.20 2.14  4.72 0.78 
 Chinese holly 50 67  8.47 0.87  3.25 0.40  10.86 1.64  4.75 0.88 
All species  430 77  10.70 1.03  6.02 0.40  16.13 1.65  4.39 0.81 

No. = number of trees. Detected trees - Proportion (%) = Detection rate of the dominant and co-dominant trees in the plots.  
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In this study, tree crown hieght distribution was generated by the LiDAR point cloud 

(extracted from the waveforms) in 2 steps: firstly, all of the non-ground LiDAR returns within 

each tree crown were collected and binned (with a 0.3m bin vertical spacing) according to 

normalized height; secondly, each bin was assigned a value as the total number of returns in the 

bin. A summary of the average crown height distributions of all the detected trees for the six tree 

species is shown in Figure 3.3. 

 

Figure 3.3 Average crown height distributions (mean of the proportion of returns within 0.3m height 
intervals) of all the detected coniferous trees (a) and broadleaved trees (b).  
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3.3.3 Full-waveform LiDAR metrics 

Full-waveform data based metrics describe the radiometric and geometric attributes of the 

return waveforms based on the spatio-temporal analysis (Hermosilla et al., 2014). In this research, 

14 individual tree-level waveform metrics were incorporated into the composite waveform 

analysis due to their success in previous studies (Drake et al., 2002; Duong, 2010; Harding, 2005; 

Neuenschwander, 2012; Ranson et al., 2004; Sun et al., 2008a). These metrics included height of 

median energy (HOME), waveform distance (WD), height/median ratio (HTMR), number of 

peaks (NP), roughness of outermost canopy (ROUGH), front slope angle (FS) and return 

waveform energy (RWE), and were summarized as the mean and standard deviation of all the 

waveform metrics (of individual composite waveform) within each delineated tree crown. A 

summary of the metrics with corresponding descriptions is provided in Table 3.2, and Figure 3.4 

illustrates the formation of a typical composite waveform and the calculation of the waveform 

metrics based on it. 
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Figure 3.4 Illustration of a sample composite waveform (normalized by the DTM), and the metrics 
derived from the waveform. HOME: height of median energy; WD: waveform distance; HTMR: 
height/median ratio; NP: number of peaks (NP); ROUGH: roughness of outermost canopy; FS: front 
slope angle; RWE: return waveform energy. 
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Table 3.2 Description of the composite waveform metrics.  

Waveform-based 
metrics 

Calculation Physical explanation 

HOME 
(height of median 
energy) 

The distance from waveform 
centroid to the ground. 

Sensitive to canopy openness and the 
vertical arrangement of canopy elements 
(Drake et al., 2002).  

WD 
(waveform distance) 

The distance from waveform 
beginning to the ground. 

Relates to the LiDAR canopy height (Sun 
et al., 2008). 

HTMR 
(height/median ratio) 

HOME divided by WD. Depicts the change of HOME relative to the 
canopy height (Drake et al., 2002). 

NP  
(number of peaks) 

The number of detected peaks 
within each normalized 
composite waveform. 

Describes the number of height levels 
corresponding to layers in the forest canopy 
(Duong, 2010). 

ROUGH  
(roughness of 
outermost canopy) 

The distance from the waveform 
beginning to the first peak. 

Describes the roughness of the upper-most 
canopy and the spatial arrangement of plant 
surfaces (Duong, 2010; Harding, 2005). 

FS  
(front slope angle) 

The vertical angle from 
waveform beginning to the peak 
of canopy return energy. 

Provides the variability of the upper canopy 
(Ranson et al., 2004). 

RWE 
(return waveform 
energy) 

The total received energy, i.e., 
the area below the waveform 
between beginning and end. 

Describes the canopy surface 
characteristics, e.g., reflectivity or moisture 
conditions (Duong, 2010). 

In all cases, both the mean (µ) and standard deviation (σ) of these metrics were calculated. 
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3.3.4 Metrics selection and classification  

Metrics selection can reduce the dimensionality of input variables, and is important for 

creating highly efficient, stable and transferable classification models. All of the variables were 

analyzed for collinearity and were excluded from the classifier if their correlation coefficients 

with any other metrics were higher than 0.60.  

Random Forest (RF) randomly and iteratively samples the variables to generate a large group 

(or forest) representing the statistical mode of numerous decision trees, thereby creating a more 

robust model than a single classification tree (Breiman, 2001). A majority vote is used in RF to 

combine the decisions over all constructed trees. In RF, a bagging strategy is applied to create 

new training data by resampling from the original data (Breiman, 1996; Chan and Paelinckx, 

2008). Each decision tree is constructed using bootstrap samples selected n times randomly with 

replacements from a training dataset, and the subsets of predictor variables can prevent problems 

associated with correlated variables and overfitting. Approximately one-third of the samples that 

are left out of the training dataset are called “out-of-bag” (OOB) samples, and can be used 

without bias to estimate the classification error and derive variable importance in many tests 

(Breiman, 2001). RF internally estimates the prediction error using OOB data; hence there is no 

need for cross-validation or separate data to evaluate the performances.  

The importance of a variable Xm can be evaluated for prediction Y by adding up the weighted 

impurity decreases p(t)∆i(st, t) for all nodes t where Xm is used, averaged over all NT trees in the 

forest: 

         (3.2) 

where p(t) is the proportion Nt/N of samples reaching t and v(st) is the variable used in split st. The 

indices of Mean Decrease Accuracy (MDA), which quantify the degree to which inclusion of a 
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variable in the model decreases the mean squared error, can be used to assess the variable 

importance for classification (Breiman, 2001; Liaw and Wiener, 2002).  

 The number of decision trees (in RF) was set to 100 with 4 variables at each split. The 

analysis was started with the low-correlated metrics (i.e., the correlation coefficients of these 

metrics with any other metrics was lower than 0.60) and the one with least importance in each run 

was discarded until 6 metrics remained. Six metrics were chosen because the inclusion of more 

metrics did not significantly improve (<3%) the overall classification accuracy (histograms of the 

improvement of overall classification accuracy were used to determine the number of selected 

metrics for all the voxel sizes, see Figure 3.7). For each test of classification with different voxel 

sizes, the classification accuracies were assessed by the “selected metrics”, and the 3 top-ranked 

metrics were then selected as the final “most important metrics” according to the indices of MDA. 

In addition, confusion matrices and classification accuracies were also tested in three 

classification levels, i.e., using all six tree species (highest classification depth), four main species 

(middle classification depth) and two generalized classes of conifer and broadleaf (lowest 

classification depth). The results of using the “selected metrics” and the “most important metrics” 

for classifications are compared under the best voxel size (i.e. 0.5×0.5×0.15m, generates the 

highest classification accuracies, see Table 3.3).  
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3.4 Results 

In total, 430 (76%) of the dominant and co-dominant trees were detected by LiDAR in all of 

the 12 plots. In general, conifer-dominated plots have a higher detection rate (80-87%) than 

broadleaved (75-78%) and mixed (68-73%) plots. The analysis also indicated that the crown 

diameters (RMSE = 0.55m, rRMSE=12.5% observed mean crown diameter) are less accurately 

estimated than the tree heights (RMSE=0.63m, rRMSE=5.9% observed mean height). Part of the 

lower accuracy of the estimated crown diameters may be due to the overlapping of tree crowns, as 

the local-maxima algorithm used in this study was not aimed at measuring overlapping crowns. 

The GPS positioning and crown measurement errors may also introduce uncertainties to the 

results (Popescu et al., 2003). One sample plot of the canopy height model (CHM) with the 

location of LiDAR-detected tree-tops, crown boundaries and their related ground trees can be 

seen in Figure 3.5. 

 

Figure 3.5 Example map of CHM with the location of trees (dominant and co-dominant trees), the 
LiDAR-detected tree-tops and the estimated tree crowns 
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The correlation of the selected metrics is shown in Figure 3.6. Nine of the total fourteen 

metrics were preserved, i.e., average of HOME (height of median energy), ROUGH (roughness of 

outermost canopy) and RWE (return waveform energy), and the standard deviation of WD 

(waveform distance), HTMR (height/median ratio), NP (number of peaks), ROUGH, FS (front 

slope angle) and RWE. These metrics were used for further analysis in this chapter. 

 

Figure 3.6 The matrix of scatter plots (lower panel) and the correlation coefficients (r) (upper panel) 
for the low-correlated metrics (with r<0.6) for all detected trees. The histograms of each metric are 
drawn in the diagonal line. The values of r are colored red for medium degree correlations (0.4≤r<0.6) 
and green for low degree correlations (0.2<r≤0.4). See Table 3.3 for codes of the metrics.  

 

The combination of 2 sizes (0.15 and 0.3 m, equal to one and two times the waveform bin 

spacing) in the vertical dimension and 4 sizes (0.3, 0.5, 1 and 2 m, according to the footprint 

diameters and tree crown widths) in the horizontal dimension generated 8 different voxel sizes. 

The classification accuracies of the “selected metrics” were assessed by the kappa coefficients 
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and overall accuracies, and 3 top-ranked metrics in each trial were selected according to the 

indices of MDA calculated from the RF analysis. In general, the results demonstrated that the 

voxels in “High” resolution (i.e., 0.5×0.5×0.15m and 0.5×0.5×0.3m) have the highest 

classification accuracies (Kappa coefficients = 0.59-0.61, overall accuracies = 66-68%), followed 

by “Very high” and “Medium” resolutions (Kappa coefficients = 0.55-0.60, overall accuracies = 

62-67%). The voxels in the “Low” resolution case had the lowest classification accuracies (Kappa 

coefficients = 0.52-0.56, overall accuracies = 59-62%). The height-related metrics i.e. the average 

of the height of median energy (HOME) and standard deviation of waveform distance (WD) were 

mostly selected as the 2 top-ranked metrics in the group of “Most important metrics” for all 8 

trials, followed by the standard deviation of number of peaks (NP) (3 out of 8 were selected), the 

standard deviation of front slope angle (FS) (3 out of 8) and the average of return waveform 

energy (RWE) (2 out of 8) (Table 3.3).  

Table 3.3 Comparison of the tree species classification accuracies (of the selected metrics) and demonstration of the most 
important metrics (determined by the indices of MDA) for different voxel sizes.  

No. Voxel Size (m) Resolution Kappa coefficient Overall accuracy 
Most important metrics 
(Ranked by MDA, n=3) 

1 0.3×0.3×0.15 Very high 0.58 65% HOME_avg, WD_std, RWE_avg 
2 0.5×0.5×0.15 High 0.61 68% HOME_avg, WD_std, NP _std 
3 1×1×0.15 Medium 0.60 67% WD_std, HOME_avg, NP_std 
4 2×2×0.15 Low 0.56 62% WD_std, HOME_std, FS_std 
5 0.3×0.3×0.3 Very high 0.55 62% HOME_avg, WD_std, RWE_avg 
6 0.5×0.5×0.3 High 0.59 66% HOME_avg, WD_std, FS_std 
7 1×1×0.3 Medium 0.58 64% WD_std, HOME_avg, FS_std 
8 2×2×0.3 Low 0.52 59% WD_std, HOME_ avg, NP_std 

In all cases, Number of trees= 430 (6 species). Voxel size = length (X axes) × width (Y axes) × height (Z axes). See Table 
3.3 for codes of the metrics; _avg= average value; _std= standard deviation. 

 

The 6 “selected metrics”, ranked by the indices of MDA, were successively included for the 

accuracy assessment and calculated for all 8 different voxel sizes (Figure 3.7). For all 

classifications, the first three (especially the first two) metrics significantly improved the overall 

accuracies, whereas others resulted in improvements of less than 5%.  
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Figure 3.7 Overall accuracy and the improvement of accuracy when successively including the 
selected metrics ranked by the indices of Mean Decrease Accuracy (MDA). The ranks (of importance) 
are shown in the X-axis for each sub-figure. The corresponding voxel size is shown at the top of each 
sub-figure. Note: overall accuracy (in the legend) = overall classification accuracy of 6 tree species. 
	

Table 3.4 shows the confusion matrix and classification accuracies in three classification 

levels, i.e., using all six tree species, four main species and two generalized classes. Below each 

sub-table the corresponding overall accuracy and Kappa coefficient are shown. The results using 

all the “selected metrics” (calculated during the metrics selection process in RF analysis) (shown 

in the upper sub-tables) and the “most important metrics” (selected according to the indices of 

MDA in RF) (in the lower sub-tables) for classifications are also compared under the most 

suitable voxel size (i.e. 0.5×0.5×0.15m, see Table 3.3). Grouping species into coniferous and 

broadleaved trees resulted in high classification accuracy (overall accuracy = 83.7-85.4%; Kappa 

coefficient = 0.67-0.71). Accuracy decreased when the number of classes increased. 
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Table 3.4 Confusion matrix for the detected trees on all the plots in three classification levels, i.e., using all six tree species, four main species and two 
generalized classes. The results of using the “selected metrics” and the “most important metrics” are compared. The values of the fields in the 
confusion matrix are given as percentage of predicted classes of the total number of reference classes, and the correctly classified results are 
highlighted with a grey background. 

 M.Pine C.Fir S.Pine S.Oak C.SG C.Holy  M.Pine C.Fir S.Oak C.SG  Conifer Broadleaf 

The selected metrics     

Predicted classes  Predicted classes  Predicted classes 

M.Pine 

R
ef

er
en

ce
 c

la
ss

es
 68.5 6.2 7.3 2.3 1.7 14 M.Pine 76.7 8.2 8.5 6.6 Conifer 88.3 11.7 

C.Fir 3.7 74.2 2.4 4.9 7.7 7.1 C.Fir 6.9 79.8 6.1 7.2 Broadleaf 17.5 82.5 

S.Pine 7.8 3.8 68.1 4.7 13.4 2.2 S.Oak 1.6 5.8 72.3 20.3  

S.Oak 4.4 5.1 4.2 69.2 15.1 2.0 C.SG 6.2 7.7 14.6 71.5 

C.SG 1.9 4.3 11.6 13.1 64.3 4.8  

C. Holy 15.0 7.1 4.3 6.1 5.1 62.4 

  Overall accuracy: 67.8 %   Kappa coefficient: 0.61 75.1 %        0.67 85.4 %       0.71 

 The most important metrics     

Predicted classes  Predicted classes  Predicted classes 

M.Pine 

R
ef

er
en

ce
 c

la
ss

es
 65.3 6.1 4.9 4.3 4.8 14.6 M.Pine 73.6 9.6 9.4 7.4 Conifer 

Broadleaf 

86.9 13.1 

C.Fir 5.6 72.2 6.2 6.5 3.6 5.9 C.Fir 8.8 77.8 4.5 8.9 19.5 80.5 

S.Pine 10.6 8.5 64.7 5.5 8.4 2.3 S.Oak 1.5 4.2 69.8 24.5  

S.Oak 4.7 4.4 6.5 66.8 15.1 2.5 C.SG 4.5 8.2 18.4 68.9 

C.SG 4.8 8.4 9.2 8.1 63.9 5.6  

C.Holy 19.1 6.5 6.3 5.4 5.2 57.5 

  Overall accuracy: 65.1 %   Kappa coefficient: 0.58 72.5 %       0.63 83.7 %       0.67 

M.Pine: Masson Pine; C.Fir: Chinese fir; S.Pine: Slash pine; S.Oak: Sawtooth oak; C.SG: Chinese sweet gum; C.Holy: Chinese holly. 
The selected metrics: HOME_avg, WD_std, NP_std, RWE_avg, FS_std and HTMR_std.  
The most important (M-I) metrics: HOME_avg, WD_std and NP_std (see Table 3.3). See Table 3.2 for codes of the metrics. 
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3.5 Discussion 

3.5.1 Segmentation of trees 

The detection and delineation of trees can be directly on the point cloud, but more typically on a 

raster image interpolated from discrete LiDAR data (Koch et al., 2014). In this research, a method 

similar to Popescu et al. (2002) and Popescu and Wynne (2004) was used to detect individual trees by 

the CHM, and to delineate tree crowns by fitting radius profiles and analyzing the critical points. The 

detection rate of all trees in the sample plots was 76%, which is higher than that recorded by Ferster et 

al., (2009) who found a 41%, for trees taller that 28m in a coastal temperate Douglas-fir , and 71% in 

the Scandinavian boreal forest (Holmgrena and Persson, 2004). This is likely because: 1) the 

understory and suppressed trees, which are less likely to be detected by the local maxima algorithm 

used in this research, were not considered; 2) the local maxima algorithm was applied on a CHM 

created from a higher density point cloud (approximate 15 pts�m-2 in the study site) (Cao et al., 2014) 

extracted from full-waveform data by decomposition algorithms; and 3) the size of the search window 

was determined by a model fitted by the locally collected field measurements, which may enhance the 

performances of tree top identification.  

In this research, conifer-dominated plots (80-87%) had a higher detection rate than broadleaved 

(75-78%) plots. That was mainly because the crown shape of the coniferous trees tends to be conical 

and relatively isolated. Broadleaved trees have more rounded crowns that are likely to overlap. 

Another reason is that some suppressed evergreen trees (e.g. Chinese holly) under the dominant 

canopies may not be successfully detected by the local maxima algorithm applied in this research.  

3.5.2 Metrics selection and their explanation 

This research provided an effective procedure for full-waveform metrics selection. The analysis 

started with all the low-correlated metrics (with r<0.6) and discarded the ones with least importance 

until the classification accuracy become stable. Then, the 3 top-ranked metrics were selected 
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(according to the indices of MDA) as the final “most important metrics” from the “selected metrics” 

under different voxel sizes. For the most suitable voxel size (which had the highest classification 

accuracy), the most important metrics were (ranked by MDA): average of HOME (HOME_avg), 

standard deviation of WD (WD_std) and standard deviation of NP (NP_std), and the combination of 

these three metrics had a relatively strong classification capability that provided an overall accuracy 

of 65.1% for all the six species (and 83.7% for the general classes of conifer and broadleaf).  

The metric of HOME_avg (i.e., the average of height of median energy) appears to have the 

strongest capability for tree species classification in this research area. Drake et al. (2002) 

demonstrated that HOME is sensitive to canopy openness and the vertical arrangement of canopy 

elements in the LVIS-footprint (0.05ha) and plot (0.25-0.5ha) level. In this research, similar principles 

were found at the individual-tree level by using small-footprint (0.45m) full-waveform LiDAR data. 

An explanation for this is that for tree crowns with densely packed woody materials and foliage, few 

LiDAR pulses can penetrate and reach the ground, thereby increasing HOME. Conversely, for more 

transparent crowns, more LiDAR pulses can pass through, thus, reducing HOME. HOME is sensitive 

to these differences and as a result it is potentially a good indicator for discriminating tree species. 

The second ranked metric WD_std (i.e. the standard deviation of waveform distance) relates to the 

height variation within each tree crown. This relationship could be explained by the different 

biophysical properties of the crown surface. At the research site, coniferous trees usually consist of a 

relatively dense and homogenous crown surface, resulting in a lower variation of waveform distance 

within each tree crown, while the crown surface of broadleaved trees are more heterogeneous and thus 

have a higher height variation. The third ranked metric, NP_std (i.e., the standard deviation of the 

number of detected peaks), describes the variation of the total number of targets within a composite 

waveform, which may be interpreted as the variation of the vertical foliage density within each tree 

crown. Some previous studies have also indicated that tree species could be discriminated due to their 

internal structure (Brandtberg, 2007; Reitberger et al., 2006). Different internal structures within tree 

crowns may lead to a different number of reflections within one pulse, and thus could be used to 

classify tree species.  
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3.5.3 Assessments of classification and the effects of voxel sizes 

According to the confusion matrix and the final classification accuracies (Table 3.4), the 

classification of all six species had the lowest accuracy due to the largest number of classes. For the 

highest level of classification (i.e., with all the six species), the accuracy was relatively high for the 

coniferous species (i.e., Masson pine, Chinese fir and Slash pine) and the tall deciduous species (i.e., 

Sawtooth oak and Chinese sweet gum), followed by secondary broadleaved species (i.e., Chinese 

holly). When classifying the four main species, the pattern is similar to the previous case, and the 

exclusion of secondary tree species (i.e., Chinese holly) resulted in an improvement in the 

classification accuracies for Sawtooth oak and Chinese sweet gum. In addition, compared with the 

classification results using the “selected metrics”, the use of the “most important metrics” did not 

result in a significant difference for all the classification depths, which agrees with the results in 

Figure 3.7 that show that the first three metrics (i.e., the most important metrics) significantly 

improved the overall accuracies, whereas the others only resulted in improvements of less than 5%.  

 

Figure 3.8 Demonstration of the effects of different voxel resolutions on the available (i.e., neither 
incomplete (a) nor over-synthesized (d)) rates of composite waveforms in one example tree. 
CV-Wave=composite waveform. 
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The assessment of different voxel size showed that voxels in the “High” resolution (i.e., 

0.5×0.5×0.15 m and 0.5×0.5×0.3 m) category had the highest classification accuracies, followed by 

“Very high” and “Medium” resolutions. The voxels in the “Low” resolution category had the lowest 

classification accuracies. Under the “Very high” voxel-size condition (0.3×0.3×0.15 m), the horizontal 

resolution of the voxels was even finer than the LiDAR footprint diameter (0.45 m), thereby 

producing many incomplete composite waveforms. As shown in Figure 3.8.a (i.e., samples of 

composite waveforms with either incomplete beginning or ending), the available composite (CV) 

waveform rate (calculated as the number of complete CV-waveforms divided by the total number of 

CV-waveforms) was only 21% under the “Very high” resolution, although the number of newly 

formed CV-waveforms (382) was much higher than the directly observed raw waveforms (124). On 

the other hand, under the “Low” voxel resolution condition (2×2×0.15 m), the horizontal resolution of 

the voxels was around half of the average crown diameter (4.39 m). As demonstrated in Figure 3.8.d, 

although the available composite (CV) waveform rate was as high as 100%, the number of complete 

CV-waveforms was very low (9). The final composite waveforms tended to be over-synthesized and 

as a result many of the detailed geometric and radiometric information were lost. Thus, determination 

of voxel size should consider the footprint size, crown diameter and the available composite 

waveform rate. 	 	

In this research, the locally adapted local maxima algorithm demonstrated good performance, and 

when combined with the full-waveform metrics (calculated based on a voxel-based method) and a 

Random Forest classifier, the approach showed good accuracy discriminating 6 typical subtropical 

tree species (in 3 classification depths). Some combinations of the full-waveform metrics (based on 

height of median energy (HOME), waveform distance (WD) and number of waveform peaks (NP)) 

with high classification importance were shown to be stable among various voxel sizes, and are 

excellent candidate methods for species classification with high accuracy. In addition, the “High” 

resolution (i.e., 0.5×0.5×0.15m and 0.5×0.5×0.3m) voxel size represents the highest classification 

accuracies. The following chapter examines the capability of discrete and full-waveform data to 

estimate total biomass and biomass components.  
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4 Estimation of Biomass Components using Discrete and 

Full-waveform LiDAR Metrics 

4.1 Introduction 

The aim of this part of the research is to explore the advantage of discrete and full-waveform data 

in the estimation of total biomass and specific biomass components. The relationship between forest 

biomass (i.e. above-ground and total biomass) and its components (i.e. foliage, branch, trunk and root 

biomass) with small-footprint discrete (DR) and full-waveform (FWF) airborne LiDAR derived 

metrics were examined in three types of subtropical forest stands (i.e. coniferous, broadleaved and 

mixed forests). In addition, the estimation capability of DR and FWF metrics based models was 

evaluated for biomass estimation individually and in combination.  

4.2 Materials and methods 

4.2.1 Study site  

See details about the study site in Section 2.1. 

4.2.2 Field data 

Data from all of the 66 plots collected between June-August 2012 and August 2013 were used in 

this study (see details about these data in Section 2.3).   

Species-specific allometric equations referenced from Feng et al. (1999), Qian (2000), Wang and 

Shi (1990) and Xu et al. (2011) were used. These allometric equations were developed from tree 

inventory data from local or nearby provinces and therefore were used in this research with biomass 

(i.e., total and above-ground biomass) and biomass components (i.e., stem, root, branch and foliage) 

calculated for individual trees within each plot based on the field-measured DBH and height, and then 

summed to obtain total plot biomass. 
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4.2.3 LiDAR data 

The small-footprint full-waveform LiDAR data acquired on 17 August 2013 were used in this 

study (see details about these data in Section 2.2). 

4.2.4 Data pre-processing 

A 1-m digital terrain model (DTM) was created in two steps from the DR data. First, the data was 

filtered to remove the above-ground returns (using an algorithm adapted from Kraus and Pfeifer, 

1998), and secondly the DTM was created by calculating the average elevation from the remaining 

(ground) LiDAR returns within a cell (cells that contain no points were filled by interpolation using 

neighboring cells). The DR point clouds were then normalized against the ground surface height and 

extracted for each plot using the coordinates of the lower left and upper right corners. All point cloud 

data processing was performed using the FUSION software package (McGaughey, 2014). 

To avoid the effects of off-nadir pointing on the FWF (e.g., the waveform is stretched as the 

off-nadir angle increases) and to integrate non-vertical waveforms from different flight trajectories, a 

voxel-based approach developed by Hermosilla et al. (2014) was applied to the full-waveform data. 

This approach synthesized multiple raw waveforms into composite waveforms through the vertical 

space partitioning of forest canopies by voxels, and used the maximum amplitude value to construct 

new pseudo-vertical waveforms. The background noise of each waveform was first suppressed by a 

de-noising process and then smoothed by a Gaussian filter. Each pre-processed waveform was then 

spatially located in three-dimensional space and normalized by subtracting the derived DTM height 

from height of each bin in the corresponding positions. The vertical space was partitioned into voxels 

(0.25×0.25×0.15 m) according to the footprint size and temporal sample spacing. A maximum 

amplitude value was calculated and assigned to each intersected voxel. The composite waveforms 

were finally extracted as each vertical column of voxels (Hermosilla et al., 2014) (See the technical 

route of this research in Figure 4.1). 
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Figure 4.1 Technological route of this research 

 

4.2.5 LiDAR metrics 

4.2.5.1 Discrete data based metrics 

Discrete data-based metrics are descriptive structure statistics calculated from the height 

normalized LiDAR point cloud measurements in three-dimensional space (Lefsky et al., 2005). In this 

study, 15 metrics for each plot within the 30×30 m area of the plots were calculated including: i) 

selected height measures, i.e., percentile height (h10, h25, h50, h75, h90 and h95), maximum height (hmax) 

and mean height (hmean); ii) variability of height measures, i.e., coefficient of variation of heights (hcv); 

iii) selected canopy return density measures, i.e., canopy return density (d2, d4, d6 and d8) and iv) 

canopy cover measures, i.e., canopy cover above 2 m (CC2m) and canopy cover above mean height 

(CCmean).  

All the discrete data-based metrics were generated from first returns, which have been found to be 

more stable for estimating forest biophysical attributes than all returns (Bater et al., 2011). Metrics of 
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heights and canopy return densities were computed with a height threshold of 2-m above ground-level 

to ensure that the non-canopy and below-canopy returns were excluded from metric calculation 

(Andersen et al., 2005; Hyyppä et al., 2012). 

4.2.5.2 Full-waveform based metrics 

Full-waveform data-based metrics describe the radiometric and geometric attributes of the return 

waveforms based on the spatio-temporal analysis. In this research, 15 waveform metrics adapted from 

previous studies of large-footprint full-waveform data (i.e. SLICER, LVIS and GLAS) were 

incorporated into the pseudo-vertical waveform analysis due to their success in previous studies 

(Heinzel and Koch, 2011; Xu et al., 2012; Neuenschwander et al., 2009; Neuenschwander, 2012). 

These metrics included height of median energy (HOME), waveform distance (WD), height/median 

ratio (HTMR), number of peaks (NP), roughness of outermost canopy (ROUGH), front slope angle 

(FS), return waveform energy (RWE) and vertical distribution ratio (VDR). 

HOME was calculated as the distance from waveform centroid to the ground (i.e. corresponding 

DTM height), and has been found to be sensitive to canopy openness and the vertical arrangement of 

canopy elements (Drake et al., 2002). WD, often related to the LiDAR canopy height, was computed 

as the distance from waveform begin to the ground (Sun et al., 2008). HTMR, which is HOME 

divided by WD, was used to depict the change of HOME relative to the canopy height (Drake et al., 

2002). ROUGH, which is the distance from the waveform beginning to the first peak, was applied to 

describe the roughness of the upper-most canopy and the spatial arrangement of plant surfaces (Duong, 

2010). FS, which is the vertical angle from waveform beginning to the peak of canopy return energy, 

provided the variability of the upper canopy (Ranson et al., 2004). NP is the number of detected peaks 

within each composite waveform. RWE represents the total received energy. VDR was calculated as 

the differences between WD and HOME, divided by WD (Neuenschwander, 2012). The plot level 

waveform metrics (except VDR) were summarized as the mean and standard deviation of all the 

waveform metrics (of individual composite waveform) within each plot. A summary of the FWF 

metrics with corresponding descriptions is shown in Table 3.2. 
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4.2.6 Statistical analyses 

The strength of relationships between biomass (and each of the biomass components) and the 30 

LiDAR metrics were tested by the square of the Pearson correlation coefficient (R2). Multiple linear 

regression models, which included the two sets of LIDAR metrics (i.e. discrete and full-waveform 

based metrics) as predictor variables, were developed independently and in combination for 

estimating the biomass and biomass components among different forest types (i.e. all forests, 

coniferous forests, broadleaved forests and mixed forests). To ensure the independent variables were 

not highly correlated, collinearity was first evaluated using Principal Component Analysis (PCA) 

based on the correlation matrix. Models with a condition number (κ) lower than 30 were accepted to 

ensure that there was no serious collinearity in the selected models (Naesset, 2002). Standard 

backward stepwise regression was performed to select variables for the final models with predictor 

variables left in the models at the 5% significance level. The best fitting models were then selected 

based on the lowest Akaike information criterion value (Akaike, 1974). Once the best models were 

chosen, leave-one-out cross validation was used to validate them. 

Three sets of predictive models, namely discrete data metrics based models (DR-model), 

full-waveform metrics based models (FWF-model) and Combo models (includes the combination of 

both discrete and full-waveform metrics) were fitted. These prediction models were assessed using 

adjusted coefficients of determination (Adj-R2), cross-validation coefficients of determination 

(CV-R2), Root-Mean-Square Errors (RMSE), and relative RMSE (rRMSE), defined as the percentage 

of the ratio of RMSE and the observed mean values (Table 4.1).  
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Table 4.1 The accuracy assessment results for three sets of predictive models among various forest types. 

 

Discrete data model  Full-waveform model 
 

Combo model 

Aj-R2 C-R2 RMSE rRMSE  

 
Aj-R2 C-R2 RMSE rRMSE 

 
Aj-R2 C-R2 RMSE rRMSE 

All forests 

WAGB 0.74 0.69 16.12 12.17  0.52 0.45 25.36 28.61  0.75 0.70 15.91 11.46 

Wtrunk 0.59 0.55 18.94 28.27  0.45 0.41 21.88 32.66 
 

0.6 0.56 18.71 27.93 

Wbranch 0.77 0.71 3.97 27.46  0.65 0.62 4.87 33.68 
 

0.79 0.74 3.76 26.01 

Wfoliage 0.29 0.23 4.02 56  0.07 0.04 4.59 63.94 
 

0.32 0.28 3.91 54.47 

Wroot 0.59 0.55 5.68 21.71  0.42 0.38 6.79 25.95 
 

0.56 0.51 5.88 22.47 

Wtotal 0.7 0.64 21.11 22.03  0.5 0.43 27.12 28.3 
 

0.7 0.64 20.88 21.79 

Coniferous forests 
 
 
 
 

WAGB 0.84 0.79 11.55 15.84  0.81 0.76 12.45 17.07 
 

0.92 0.87 8.08 11.08 

Wtrunk 0.5 0.46 13.78 25.98  0.65 0.61 11.49 21.66 
 

0.84 0.81 7.78 14.67 

Wbranch 0.88 0.81 2.45 23.25  0.77 0.73 3.36 31.89 
 

0.93 0.88 1.84 17.46 

Wfoliage 0.79 0.73 3.38 36.18  0.73 0.69 3.84 41.1 
 

0.82 0.78 3.12 33.39 

Wroot 0.86 0.82 3.04 13.8  0.76 0.71 3.97 18.02 
 

0.88 0.85 2.82 12.8 

Wtotal 0.88 0.83 11.83 14.38  0.79 0.73 15.9 19.33 
 

0.93 0.89 9.29 11.29 

Broadleaved forests 
 
 
 
 
 

WAGB 0.87 0.84 16.23 15.41  0.58 0.52 28.83 27.38 
 

0.86 0.81 16.31 15.49 

Wtrunk 0.87 0.83 12.55 15.86  0.57 0.53 22.74 28.75 
 

0.89 0.85 11.34 14.33 

Wbranch 0.88 0.82 3.34 16.27  0.61 0.56 6.06 29.53 
 

0.89 0.84 3.23 15.74 

Wfoliage 0.18 0.13 2.05 36.36  0.27 0.22 1.93 34.23 
 

0.33 0.29 1.85 32.81 

Wroot 0.63 0.57 4.08 13.61  0.43 0.38 5.06 16.88 
 

0.65 0.61 4.0 13.34 

Wtotal 0.84 0.81 17.84 16.08  0.57 0.51 29.3 26.41 
 

0.84 0.79 18.14 16.35 

Mixed forests 
 
 
 
 
 

WAGB 0.75 0.72 16.08 18.33  0.59 0.53 20.85 23.77 
 

0.82 0.78 13.94 15.89 

Wtrunk 0.67 0.61 16.1 23.39  0.53 0.49 19.27 27.99 
 

0.77 0.72 13.42 19.49 

Wbranch 0.72 0.65 3.02 24.53  0.58 0.54 3.72 30.21 
 

0.71 0.66 3.08 25.01 

Wfoliage 0.44 0.41 2.92 44.56  0.41 0.37 3.01 45.93 
 

0.48 0.43 2.77 42.27 

Wroot 0.7 0.64 5.3 20.01  0.44 0.40 7.19 27.14 
 

0.73 0.68 4.99 18.84 

Wtotal 0.75 0.71 16.89 17.92  0.63 0.58 20.85 22.12 
 

0.81 0.76 14.94 15.85 
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Note: Aj-R2: adjusted R-square; C-R2: The cross-validation coefficient of determination; RMSE: Root mean square error; 
rRMSE (%): relative RMSE, i.e., percentage of the ratio of RMSE and the observed mean value. WAGB: above ground biomass 
(Mg ha-1); Wtrunk: trunk biomass (Mg ha-1); Wbranch: branch biomass (Mg ha-1); Wfoliage: foliage biomass (Mg ha-1); Wroot: root 
biomass (Mg ha-1); Wtotal: total biomass (Mg ha-1).  

4.3 Results 

Most of the biomass and its components (hereafter written as “biomass components”) had a 

stronger correlation with the discrete data based metrics than the waveform model based metrics 

(Figure 4.2). Within the set of discrete data based metrics, except for the “all forests” and 

“broadleaved forests” foliage biomass components, most of the height-related metrics (especially the 

percentile heights and the coefficient of variation of heights) and biomass components were strongly 

correlated. In comparison, measures of canopy return density and canopy cover had a relatively 

poorer relationship with the biomass components. The strength of the relationships between biomass 

components and the waveform metrics were also generally weaker. The waveform metrics related to 

canopy height (e.g. WD), vertical arrangement (e.g. HOME) and roughness of upper-most canopy (e.g. 

ROUGH) had a more significant relationship with biomass components than others.  

 
Figure 4.2 Intensity graph of the square of the Pearson’s correlation coefficient (R2) between each biomass 
components and LiDAR-derived metrics. The values of the coefficients are transformed into pixels within 
a blue-red color range.  
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Note: See Table 4.1 for the codes and descriptions of metrics (Hmi=hmin; Hmn=hmax; C2m=CC2m; 
Cmn=CCmean; Hµ=HOMEµ; Wµ=WDµ; HRµ=HTMRµ; Fµ=FSµ; Nµ=NPµ; Rµ=ROUGHµ; RWµ=RWEµ; 
Hσ=HOMEσ; Wσ=WDσ; HRσ=HTMRσ; Fσ=FSσ; Nσ=NPσ; Rσ=ROUGHσ; RWσ=RWEσ; VR=VDR). 
 

Table 4.1 summarizes the accuracies of the three sets of predictive models (i.e., general and 

forest-type specific models developed from discrete data based metrics, waveform based metrics and 

their combinations). Overall, most of the biomass components were generally well-predicted 

(Adj-R2=0.42-0.93, rRMSE=11.08-33.68%) except for foliage biomass (Adj-R2=0.07-0.82, 

rRMSE=32.81- 62.94%). The combo models performed the best, explaining 60-79% (for the general 

model) and 65-93% (for each forest type-specific model) of the variability of most biomass 

components (excluding foliage biomass). Compared with full-waveform models (Adj-R2=0.42-0.79), 

the discrete data models (Adj-R2=0.50-0.88) had a relatively higher performance, except for the trunk 

biomass (in coniferous forests) and foliage biomass (in broadleaved forests) (see Table 4.1). The fit 

for the general model (developed from all plots) was relatively low (Adj-R2= 0.07-0.79). In 

comparison, the relationships were generally improved for forest type-specific models (Adj-R2= 

0.18-0.93). Overall, most of the fitted models had higher correlations in coniferous forests 

(Adj-R2=0.50-0.93) and broadleaved forests (Adj-R2=0.43-0.89) than in mixed forest types 

(Adj-R2=0.41-0.82). The relative RMSE was generally in accordance with adjusted R2, with lower 

values in coniferous forests (rRMSE=11.08-41.1%) and broadleaved forests (rRMSE=13.34-36.36%) 

than in mixed forest types (rRMSE=15.85-45.93%).  
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Figure 4.3 Plot-level observed and estimated above-ground and root biomass for the combination of 
forest-type specific models developed form discrete data based metrics, waveform based metrics and their 
combinations. 
Note: DR model: Discrete data based model; FWF model: Full-waveform data based model; Combo model: 
Model developed from both of DR and FWF metrics as a pool of candidate variables; AGB: above-ground 
biomass. 
 

Scatter plots of the plot-level field-measured and LiDAR-estimated above-ground and root 

biomass are shown in Figure 4.3 with linear fits and prediction confidence intervals (95%). The linear 

models demonstrate the increased correlations in the Combo models (R2=0.89 for above-ground 

biomass; R2=0.80 for root biomass) in comparison to the DR model (R2=0.88; R2=0.78) and FWF 

model (R2=0.70; R2=0.58). The widths of the confidence intervals in the DR model (AGB) and 

Combo model (AGB) were relatively narrow, indicating a better quality of model fitting. Some 

outliers, which may be the result of prediction bias, should be noted in the FWF model (AGB) and 

DR model (Root). 
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Figure 4.4 The selected LiDAR metrics of the discrete data model vs. full-waveform model in various forest types.  
Note:. Wa = WAGB; Ws = Wtrunk; Wb = Wbranch; Wf = Wfoliage; Wr= Wroot; Wt= Wtotal. (See Table 4.1 for biomass 
components’ codes) 
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Figure 4.5 The selected LiDAR metrics of the combo model in various forest types.  

Note: Each specific biomass component is represented by a cell of different darkness. Wa = WAGB; Ws = Wtrunk; Wb = 
Wbranch; Wf = Wfoliage; Wr= Wroot; Wt= Wtotal. (See Table 4.1 for biomass components’ codes) 

 

The selected metrics of the two sets of biomass estimation models (i.e., the discrete data models 

and full-waveform models) are shown in Figure 4.4. For the discrete data models, height-related 

metrics (hmean, h50, h75 and h95) calculated from the point cloud were the most frequently selected by 

the regression models, followed by canopy return density and canopy cover metrics. The hmean statistic 

was sensitive to all the biomass components in coniferous forests (selected by all of the 6 conifer 

models). In comparison, the statistics of h50 and h95 were more sensitive to the biomass components of 

“all forests” and mixed forests (selected by 8-9 of 12 models of the “all forests” and mixes), whereas 

d6 and d8 were more sensitive to the biomass components of broadleaved forests (selected by 5 of 6 

models of the broadleaves). The h75 statistic appeared to be sensitive to above-ground (WAGB), trunk 

(Wtrunk) and total biomass (Wtotal), and was often selected by the predictive models (in 3 of the 4 forest 

types). For the full-waveform models, the statistic of HOMEµ calculated from composite waveforms 

was the most frequently selected variable. The HTMRµ and NPµ statistics appeared to be sensitive to 

foliage biomass since they were selected to predict this component in 3-4 of the 4 forest types. FSσ 
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values were significantly sensitive to the branch biomass since they were selected in 4 of all the forest 

types. 

Figure 4.5 represents the selected metrics of the combo models, i.e., using both discrete and 

full-waveform metrics. Each predictive model included at least one variable from the DR and FWF 

metric pools, whereas more discrete metrics (11 out of the total 15) were used in the combo models 

than full-waveform metrics (7 out of 15). Height-related metrics of h50 and h95 remained sensitive to 

the biomass components of “all forests” and mixed forests (selected by 8-9 of 12 models of the “all 

forests” and mixes), which agrees with the previous analysis of the discrete data only models. VDR 

was the most frequently used full-waveform metrics in the combo models (it was selected at least 

once for each forest type-specific models). 

Within specific forest types, the biomass components were calculated using the individual models 

(i.e. forest type-specific models) and then averaged (Figure 4.6). Compared with the field 

measurements (the 1st left column in each forest type), most of the biomass components were similar 

to the field-measured values except for an overestimation of branch biomass by all the models within 

all plots; an underestimation of trunk biomass by full-waveform and combo models within coniferous 

forests; and an overestimation of trunk biomass by full-waveform and combo models within the 

mixed forests. 
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Figure 4.6 Relationship between plot-level field measured and LiDAR-estimated biomass components of 
three sets of models (i.e. discrete data based model, full-waveform based model and the combo model) 
within each type of forest. Each biomass component was calculated as the average value of the plots within 
a specific forest type.  
Notes: The values in the first column of each section are baseline data. The numbers inside the cells of the stacked 
bar are the anomalies. The amount of biomass component = baseline data + anomalies. Codes: Field: Field 
measurements; Discrete: discrete data model estimated biomass; Waveform: full-waveform model estimated 
biomass; Combo: The combo model estimated biomass. 

Across all field plots, the relationship between field-measured and LiDAR-estimated biomass 

components is shown in Figure 4.7. Overall, most of the estimated biomass components of foliage, 

branch and root were well-predicted by the combo models. The five plots with the greatest bias in 

trunk biomass are highlighted and analyzed against four topographic and vegetation factors which 

may influence the accuracy of biomass estimation (Clark et al., 2004; Hopkinson et al., 2005). Both 

slope (calculated by DTM) and canopy cover (percentage of first returns above the first return 2-m 

heights) were derived from discrete LiDAR data, while the mean height and stem number of trees 

were calculated based on the field-measured data. All five plot outliers had high levels of canopy 
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cover, and most were located on steep slopes (Figure 4.7.b). 

 
Figure 4.7 Relationship between the amount of field-measured and LiDAR-estimated biomass components 
across all field plots (abscissa: all of the field plots; ordinate: the amount of biomass components): (a) the 
field-measured biomass components are displayed as area. The biomass components estimated by the 
combo model are displayed as dots; five plots with the largest bias in trunk biomass are highlighted and 
analyzed against four topographic and vegetation factors; (b) slope (degree) and canopy cover (%) of all 
plots with the five outlier plots highlighted. 

Notes: Wf_FM: field-measured foliage biomass; Wb_FM: field-measured branch biomass; Ws_FM: 
field-measured trunk biomass; Wr_FM: field-measured root biomass; Wf_LE: LiDAR-estimated foliage biomass; 
Wb_LE: LiDAR-estimated branch biomass; Ws_LE: LiDAR-estimated trunk biomass; Wr_LE: LiDAR-estimated 
root biomass. The five plots with the greatest bias are singled out, and levels of the topographic (i.e. slope) and 
vegetation condition (i.e. mean height, stem number and canopy density) factors are marked (by red triangle) 
within each color ramp bar, showing where the values are within the scaled range of all plots. 
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4.4 Discussion 

Fu et al. (2011) estimated above-ground biomass components using low hit density (point 

distance=1.08 m) small foot-print discrete LiDAR data in 78 smaller circle plots (radius=7.5 m or 15 

m) in mountainous subtropical forests in southwest China. In their study, less variability (compared 

with results in this research) was explained for above-ground biomass within the broad-leaved (43%) 

and coniferous (68%) forests, and there was no significant correlation found in the mixed forests. 

Both the larger plot size (30×30m) (see Zhao et al., 2009 for details of the effects of plot size) and the 

higher hit density may explain the more significant correlations found in this study. Studies predicting 

root biomass from small footprint LiDAR, especially in subtropical forests, are rare. Næsset (2004) 

reported a R2 = 0.86 for below-ground biomass in boreal forests. Pang & Li (2012) fitted regression 

models for biomass components in temperate forests in Northeast China and explained 85% of the 

variability in root biomass in conifers, which is slightly higher than reported in this study. The reason 

for the slightly lower accuracy in this study may be due to the relatively higher species diversity in 

this study site, which has a far greater variability in stem height and density compared to the 

above-mentioned boreal and temperate forest stands. 

Neuenschwander (2012) extracted waveform metrics (e.g. amplitude, pulse width, integrated 

canopy energy) from FWF data and found that the FWF-metrics can help with improving the 

characterization and classification of the vegetation. In this study, most of the combo models 

(including both DR and FWF metrics) showed a higher variation explanation capability for predicting 

the biomass components than the DR-metrics (only) models, especially for trunk biomass (in 

coniferous forests; with a adjusted-R2 increase of 0.34) and foliage biomass (in broadleaved forests; 

with a adjusted-R2 increase of 0.15), which is in agreement with their findings. Sumnall et al. (2012) 

investigated the estimation of forest structural variables from both discrete (system points) and full 

waveform LiDAR data. Height and intensity-related metrics were derived from DR data (system 

points), metrics of heights (derived from waveform points), amplitude and pulse widths of the 

waveforms were all derived from FWF data. Their results indicated that most of the FWF-models 

(using both waveform points and full-waveform based metrics as independent variables) had a higher 
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accuracy than DR models (using system points based metrics as independent variables) for estimating 

biophysical properties of a semi-natural forest in southern England, which agrees with this research 

that shows that most of the combo models had a higher performance than DR-models, and the 

full-waveform metrics contributed to the improvements by characterizing the detailed vertical 

structure of the forest stands. 

For the discrete and full-waveform metrics analyzed in this study, metrics related to vegetation 

heights, i.e., mean height, upper height percentiles (i.e. h50, h75, h95), HOME (i.e. waveform centroid 

to the ground) and VDR (calculated from HOME and waveform distance), were the strongest 

predictors of biomass and its components. Larson (1963) found that the bole form and stem increment 

are strongly connected to the crown geometry and crown position. The LiDAR sensors measure 3-D 

structural characteristics of the forest canopy, which provides a good foundation for strong 

relationships between the LiDAR-derived metrics and forest biomass. Since most LiDAR returns are 

from dominant trees, the LiDAR mean height likely represents the height of overstory trees. The 

inclusion of waveform-derived HOME (which depicts the vertical arrangement of canopy elements) 

and VDR (which describes the change of HOME relative to the canopy height) (Duong, 2010), helped 

to account for intermediate tree crowns in the midstory and suppressed trees in the understory, 

therefore potentially improving the characterization of the vertical structure. The predictive 

capabilities of these metrics were strong (in both the single and combo models) for estimating most of 

the biomass components, and they therefore provide a precise quantitative description of stand 

structure characteristics. This finding is consistent with the small-footprint discrete data (Popescu, 

2007), small-footprint full-waveform data (Hermosilla et al., 2014) and large-footprint SLICER data 

(Lefsky et al., 2005; Drake et al., 2002) studies, in which mean height, height percentiles and HOME 

(and HOME-related waveform metrics) were found to explain most of variability in forest structure 

characteristics. 

Compared to the individual DR and FWF models, the combo models performed the best, 

explaining a large amount of variability for most biomass components, and indicating significant 

synergies in small-footprint DR and FWF LiDAR data across the three types of subtropical forests. Fu 
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et al. (2011) explored several regression models relating both percentile heights and canopy return 

density variables derived from airborne DR LiDAR for the estimation of above-ground biomass 

components in a similar forest type. Compared with this study, their results showed relatively low 

relationships for above ground biomass (R2=0.37-0.68), and no significant correlation between foliage 

biomass and the DR metrics in the subtropical mixed forests. In this study, FWF models had a higher 

variation explanation capability for predicting foliage biomass than DR models. The waveform 

statistic of HTMRµ and NPµ also seems to be sensitive to foliage biomass, and FSσ was significantly 

sensitive to branch biomass. The results demonstrate promising results for improving the estimation of 

crown (i.e. branch and foliage) components, which would be useful for modeling forest growth and 

fire behavior. 

In this study, the forest type-specific models performed better than the general model (developed 

from all plots). This is consistent with previous studies that have demonstrated that forests with highly 

variable species composition should be stratified to ensure accurate biomass predictions (Fu et al., 

2011; Pang and Li, 2012). Næsset (2004) reported that forest type did not have any significant impact 

on the estimated biomass models in boreal forest (in southeast Norway, dominated by Norway spruce 

and Scots pine). However, in this study, the forest conditions in subtropical forest stands contained 

greater species diversity, making the effects of tree-species composition (classified as forest types) 

significant. Overall, the models were more accurate for coniferous and broadleaved forests than in 

mixed forests across all models. The dominant coniferous and broadleaved species at this research site 

have a relatively even-aged tree structure and higher homogeneous composition, i.e., less variation in 

tree height and density at the plot level. In contrast, the mixed forest had more variability and less 

accurate LiDAR-derived heights within plots. Meanwhile, individual tree biomass in coniferous and 

broadleaved plots was calculated by relatively accurate species-specific allometric equations, while 

the mixed forest biomass was estimated from a less accurate, generalized allometric equation. Thus, 

the homogeneous forest conditions coupled with the accurate field-measured biomass was expected to 

strengthen the linear fit and reduce bias. 

Bater & Coops (2009) explored the relationship between satellite-derived NDVI and LiDAR 
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ground return density in a coastal western hemlock dominated forest, and found that ground return 

density decreased as NDVI (an estimate of vegetation cover) increased. Clark et al., (2004) also 

demonstrated that in an evergreen tropical rain forest, RMS error of DEM on steep slopes was 0.67 m 

greater than on flat slopes. Meanwhile, the LiDAR ground retrieval was complicated by the dense, 

multi-layered evergreen canopy in old-growth forests, causing an overestimation of 1.95 m. In this 

study, five plots with the largest bias of trunk biomass were analyzed by topographic and vegetation 

conditions. All five plot outliers had high levels of canopy cover, and most were located on steeper 

slopes. Thus, the lower predictive accuracy may be due to less canopy penetration by LiDAR and 

consequently less accurate definition of the digital terrain model and canopy height model. Bater & 

Coops (2009) suggested that in areas with high slope and low point density, the prediction uncertainty 

maps may provide insights into optimal DEM selection and improve the vegetation height estimation. 

This study suggests that although the discrete and full-waveform LiDAR data extract forest 

canopy information in different ways, i.e., discrete data characterize the 3-D canopy structure, while 

full-waveform data recorded the detailed geometric and radiometric information of the canopy return, 

both discrete and full-waveform metrics can provide valuable information for accurately estimating 

specific biomass components in certain forest types. However, the choice of LiDAR metrics impacts 

the performance of models used for the biomass estimation, and different biomass pools are correlated 

with different LIDAR metrics. As a result, the combination of DR and FWF metrics and the 

exploration of new sets of full-waveform metrics contributed to the development of more robust 

predictive models.  

This study implemented two different approaches (i.e., discrete data and full-waveform based) to 

extract plot-level LiDAR metrics, and evaluated the capacity of these metrics to predict biomass and 

its components in three types of subtropical stands. The results indicated that the three sets of 

predictive models performed well across the different subtropical forest types (Adj-R2 = 0.42–0.93, 

excluding foliage biomass). Forest type-specific models (Adj-R2 = 0.18–0.93) were generally more 

accurate than the general model (Adj-R2 = 0.07–0.79) with the most accurate results obtained for 

coniferous stands (Adj-R2 = 0.50–0.93) in relatively homogeneous forest conditions. In addition, the 
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analysis of bias in the estimation of trunk biomass demonstrated that the lower accuracy may be due 

reduced canopy penetration by the LiDAR returns, resulting in a less accurate digital terrain model 

and canopy height model. The following chapter demonstrates the use of small-footprint 

discrete-return LiDAR data to estimate and map above- and below- ground biomass components in 

the study site.  
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5 Mapping Biomass Components using LiDAR Data 

5.1 Introduction 

The research presented in this chapter reports the use of a small-footprint LiDAR (point cloud) to 

spatially extrapolate the estimates of above- and below-ground biomass components (in 2013) in 

subtropical forest stands. The objectives were (1) to build models for above- and below-ground 

biomass components for forest plots (30 × 30 m) in three forest types (i.e., mixed, broadleaved and 

coniferous forests) using LiDAR data, and to assess the impact of forest type on the accuracy of the 

regression models; and (2) to map the above- and below-ground forest biomass components across the 

site using LiDAR data, and evaluate the accuracy using a suite of independent stand-level field 

inventory data. 

 

5.2 Methods 

5.2.1 Study site and materials 

5.2.1.1. Study site 

See details about the study site in Section 2.1. 

5.2.1.2. Plot data 

Plots measured in June-August 2012 (n=53) were used in this study (see details about these data in 

Section 2.3). A summary of the ground estimated plot-level biomass is shown in Table 5.1. 
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Table 5.1 Summary of the mean and range of the derived biomass attributes of the plots; HLorey’s (m): Lorey’s 
height; DBHavg (cm): average DBH; Wf (Mg ha−1): foliage biomass; Wb (Mg ha−1): live branch biomass; Ws (Mg 
ha−1): trunk wood biomass; Wa (Mg ha−1): total above-ground biomass; Wr (Mg ha−1): root biomass; Wt (Mg 
ha−1): total biomass. 

Variables 
Coniferous forest  

(n = 12) 
Broadleaved forest  

(n = 18) 
Mixed forest 

 (n = 23) 
Range Mean Range Mean Range Mean 

Biomass-related attributes 

HLorey’s 4.50–14.18 10.54 7.70–18.52 11.96 7.79–14.83 10.63 
DBHavg 8.15–20.90 14.19 12.49–22.43 15.19 10.95–20.62 14.22 
Wf (foliage) 1.04–23.57 11.69 2.13–8.67 5.12 3.18–19.93 7.89 
Wb (branch) 1.62–25.12 12.36 9.72–44.46 19.44 6.42–25.33 13.90 
Ws (trunk) 8.35–78.70 48.48 18.65–173.05 72.17 36.61–100.26 67.28 
Wa (above-ground) 11.02–127.39 72.52 32.03–219.67 96.76 49.65–141.73 89.07 
Wr (root) 6.25–39.42 22.60 10.31–45.62 29.06 15.70–43.05 27.26 
Wt (total) 17.27–166.81 95.12 42.34–265.29 125.82 65.35–184.78 116.33 

Species composition 

Chinese fir (%) 0–89 29 0 0 0–39 7 
Pines (%) 0–90 53 0–29 13 19–52 40 
Broadleaved (%) 2–29 18 71–100 87 27–67 53 

 
 

5.2.1.3. Stand inventory data 

An additional set of stand inventory data was available to serve as independent validation data, 

measured in summer 2012 (by the East China Forestry Investigation Planning and Design Institute, 

China) following the Chinese National Forest Inventory (CNFI) guidelines. From the approximately 

150 stands in the dataset, stands on steep slopes (>30°) dominated by non-timber species (e.g., fruits, 

bamboo and tea plantations), and close to anthropogenic activities within the forest (such as stands with 

large roads intersecting the forest), were removed. In addition, if one of the original 53 plots occurred 

within a stand, that stand was also excluded. The remaining 45 stands were then stratified by age class, 

site index, and tree species, and again classified as coniferous forest (11 stands), broadleaved forest (15 

stands) and mixed forest (19 stands). A summary of selected stand data is shown in Table 5.2. 
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Table 5.2 Summary of the calculated attributes of the selected stands; Wf (Mg ha−1): foliage biomass; Wb 

(Mg ha−1): live branch biomass; Ws (Mg ha−1): trunk wood biomass; Wa (Mg ha−1): total above-ground 
biomass; Wr (Mg ha−1): root biomass; Wt (Mg ha−1): total biomass. 

Variables 
Coniferous forest  

(n = 11) 
Broadleaved forest  

(n = 15) 
Mixed forest 

 (n = 19) 
Range Mean Range Mean Range Mean 

Biomass-related attributes 

Wf (foliage) 2.69–18.06 10.16 3.18–12.52 8.64 4.83–20.76 9.61 
Wb (branch) 3.58–18.86 12.08 8.12–29.57 19.48 6.08–22.89 12.96 
Ws (trunk) 10.34–67.30 47.32 32.19–135.85 78.75 34.33–95.01 57.40 
Wa (above-ground) 16.56–95.26 73.64 54.51–183.45 108.13 50.02–131.73 85.29 
Wr (root) 8.31–33.75 21.26 23.04–39.84 29.25 13.84–34.97 25.16 
Wt (total) 23.81–146.15 94.18 93.24–216.20 140.96 75.44–160.28 116.37 

Species composition 

Chinese fir (%) 0–90 21 0–10 2 0–20 4 
Pines (%) 0–100 61 0–30 6 30–50 52 
Broadleaved (%) 0–30 19 70–100 94 40–60 47 

 

5.2.1.4. LiDAR data 

The small-footprint full-waveform LiDAR data acquired on 17 August 2013 were used in this 

study (see details about these data in Section 2.2). 

5.2.2 LiDAR metrics 

LIDAR metrics are descriptive structural statistics calculated from the raw LiDAR point cloud. The 

metrics for each plot within the 30 × 30 m area of the 53 plots were calculated using the procedures of 

Lim et al. (2003), Naesset (2002), Naesset (2004) and Ferster et al. (2009), and a summary of the 

LiDAR metrics with corresponding descriptions is shown in Table 5.3. 

LiDAR metrics were generated from first returns (i.e., the first thing hit by a laser pulse, 

corresponding to the forest canopy) based on research from a number of studies that have found that 

first returns may have more predictive ability for forest biophysical attributes than all returns (Kim et 

al., 2009). As a result, percentile heights and canopy return density metrics were computed from first 

returns with a height of 2 m above-ground-level, reducing potential biases due to low-lying vegetation 

(Naesset, 2002). 
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Table 5.3 Summary of LiDAR metrics computed from LiDAR point cloud. 

Metrics Description 

Percentile height (h5, h10, h20,…, h95) 
The percentiles of the canopy height distributions (5th, 10th, 20th . . . 
95th) of first returns. 

Canopy return density (d0, d1, d2, …, d9) 
The canopy return density over a range of relative heights, i.e., 
percentage (0%–100%) of first returns above the quantiles  
(0, 10, 20 . . .  90) to total number of first returns. 

Mean height (hmean) Mean height above ground of all first returns. 

Maximum height (hmax) Maximum height above ground of all first returns. 

Coefficient of variation of heights (hcv) Coefficient of variation of heights of all first returns. 

Canopy cover above 2 meters (CC2m) Percentages of first returns above 2 m. 

Canopy cover above mean (CCmean) Percentages of first returns above the first return mean heights. 

 

5.2.3 Statistical analyses 

All of the dependent variables (ground-truth data of the biomass components) and independent 

variables (LiDAR-derived plot-level metrics) were transformed using the natural logarithm and 

corrected for bias (Ferster et al., 2009). To ensure that the independent variables were not highly 

correlated, collinearity was evaluated using Principal Component Analysis (PCA) based on the 

correlation matrix. Models with condition number (κ) lower than 30 were accepted to ensure that there 

was no serious collinearity in the selected models (Weisberg, 1985). Individual regression models were 

developed for all of the biomass components. Stepwise selection was performed to select variables for 

the final models. Predictor variables were left in the model using an F-test with a p < 0.05 significance 

level. Prediction models were assessed using coefficient of determination (R2), Root-Mean-Square 

Error (RMSE), which was transformed back to the original scale, and relative RMSE (rRMSE), defined 

as the percentage of the ratio of RMSE and the observed mean values. 

Dummy variables (or class variables) were added to the selected models to assess whether these 

models differed between forest types (Kutner et al., 2004). Three types of combinations of dependent 

variables, i.e., Common, Intercept Only and Full, were chosen to evaluate the effects of the intercepts 

and slopes of the final model fitting. “Common model” implies a reduced model with one common 

equation regardless of forest type. “Intercept Only” models implies reduced models with common 

slopes for all forest types, but different intercepts. “Full model” implies both intercepts and slopes 
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varying by forest type. The partial-F test of Full versus Common (FVC) and Full versus Intercepts Only 

(FVIO) was applied to test whether only the intercepts or both intercepts and slopes were different 

among separated models of different forest types. Cross-validation was used to assess model accuracy. 

This was an iterative process where one plot was removed from the dataset at a time, and the selected 

models re-fitted to the n-1 remaining plots (Naesset, 2002). Once models were developed, differences 

between the field-measured stand-level biomass components and the predicted values were evaluated 

for the 45 selected stands. A 1:1 line was applied to assess accuracy. 

5.2.4 Biomass mapping 

The second objective of this research was to map forest biomass components using the regression 

models estimated from the sample plots to improve the understanding of the spatial distribution of each 

component for the whole site. To do so, a regular grid covering the entire study site was generated, with 

a cell size of 30 × 30 m corresponding to the same size of the plots. The selected forest type-specific 

regression models were used to predict foliage biomass (Wf), live branch biomass (Wb), trunk wood 

biomass (Ws), above-ground biomass (Wa), root biomass (Wr) and total biomass (Wt) of each grid. 
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5.3 Results 

All the biomass components were fitted against the predictor variables (LiDAR-derived metrics) 

derived from the first returns. Separate models were built for each of the forest types, i.e., mixed, 

broadleaved and coniferous forests (Table 5.4). PCA analysis indicated that no serious collinearity 

problems existed in the models. All of the selected models included less than five predictor variables. 

The fit for the common, generic model, for all stands, irrespective of dominant species was relatively 

low (R2 = 0.26–0.63). In comparison, the relationship were generally improved for individual models 

based on dominant species (R2 = 0.21–0.84). In general, the fitted models had higher correlations in 

coniferous forest (R2 = 0.80–0.84) than in other forest types. The results for the biomass components 

indicated that root biomass (Wr) in coniferous forest (R2 = 0.83) was well predicted, whereas models for 

root biomass (Wr) in broadleaved forests (R2 = 0.53) and mixed (R2 = 0.64) had a slightly lower level of 

significance. For the other individual components, namely foliage, branch, and stem biomass, the R2 

values ranged from 0.21–0.83. The poorest correlations were for foliage biomass (R2 = 0.21) in 

coniferous forests and the highest rRMSE (43.22%) values were also reported for the foliage biomass 

but in mixed forests. The coefficients of determination for the above-ground and total biomass ranged 

from 0.58 to 0.84. 
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Table 5.4 Summary of the biomass components prediction models and plot-level accuracy assessment results; 
Wf (Mg ha−1): foliage biomass; Wb (Mg ha−1): live branch biomass; Ws (Mg ha−1): trunk wood biomass; Wa (Mg 
ha−1): total above-ground biomass; Wr (Mg ha−1): root biomass; Wt (Mg ha−1): total biomass. 

Dependent Final models R2 RMSE rRMSE (%) 
Common models 

Wf 
ln Wf = 3.590 + 2.334 ln hcv + 0.867 ln h25 − 3.021 ln CCmean + 
2.707 ln d4 

0.26 4.87 62.44 

Wb ln Wb = 1.198 − 0.907 ln h10 + 2.635 ln h25 − 0.633 ln CCmean 0.56 4.55 29.47 
Ws ln Ws = 2.347 + 1.297 ln h75−2.646 ln CC2m + 2.375 ln d2 0.59 16.96 26.22 
Wa ln Wa = 2.464 − 0.634 ln h10 + 1.997 ln h25 − 0.279 ln CCmean 0.60 20.74 23.58 
Wr ln Wr = 1.713 + 0.432 ln hcv + 1.036 ln h25 0.59 4.85 18.10 

Wt ln Wt = 2.803 − 0.625 ln h10 + 1.901 ln h25 − 0.247 ln CCmean 0.63 24.40 21.26 

Coniferous forest 

Wf 
ln Wf = −1.892 + 1.976 ln hcv + 2.902 ln h25 − 3.059 ln CCmean + 
3.055 ln d4 

0.80 4.10 35.07 

Wb ln Wb = −3.060 − 0.065 ln h10 + 3.048 ln h25 − 0.136 ln CCmean 0.81 4. 51 36.46 
Ws ln Ws = −1.035 + 1.840 ln h75 − 5.718 ln CC2m + 5.961 ln d2 0.80 10.14 20.93 
Wa ln Wa = −0.735 + 0.228 ln h10 + 2.166 ln h25 + 0.076 ln CCmean 0.83 18.52 25.54 
Wr ln Wr = 0.086 + 0.421 ln hcv + 1.799 ln h25 0.83 4.46 19.74 

Wt ln Wt = 0.054 + 0.071 ln h10 + 2.136 ln h25 + 0.026 ln CCmean 0.84 22.28 23.42 

Broadleaved forest 

Wf 
ln Wf = 4.980 + 1.227 ln hcv + 0.327 ln h25 − 4.652 ln CCmean + 
3.685 ln d4 

0.21 1.90 37.16 

Wb ln Wb = 3.104 + 0.882 ln h10 + 0.173 ln h25 − 0.605 ln CCmean 0.71 4.79 24.67 
Ws ln Ws = 6.937 + 1.275 ln h75 − 7.328 ln CC2m + 6.069 ln d2 0.77 18.04 24.99 
Wa ln Wa = 3.407 − 0.336 ln h10 + 1.622 ln h25 − 0.471 ln CCmean 0.62 24.69 25.52 
Wr ln Wr = 2.271 + 0.284 ln hcv + 0.689 ln h25 0.53 4.76 16.37 

Wt ln Wt = 3.560 − 0.515 ln h10 + 1.685 ln h25 − 0.382 ln CCmean 0.64 27.70 22.02 

Mixed forest 

Wf 
lnWf =−1.925 + 2.595 ln hcv + 0.232 ln h25 − 0.643 ln CCmean + 
1.037 ln d4 

0.54 3.41 43.22 

Wb ln Wb =−1.802 − 1.228 ln h10 + 2.391 ln h25 + 0.398 ln CCmean 0.62 4.25 30.60 
Ws ln Ws = 1.336 + 1.491 ln h75 − 2.765 ln CC2m + 2.643 ln d2 0.70 11.28 16.77 
Wa ln Wa = 2.295 − 0.451 ln h10 + 1.588 ln h25 − 0.084 ln CCmean 0.58 17.10 19.20 
Wr ln Wr = 1.444 + 0.295 ln hcv + 1.091 ln h25 0.64 4.27 15.66 

Wt ln Wt = 2.481 − 0.428 ln h10 + 1.504 ln h25 − 0.028 ln CCmean 0.62 20.73 17.82 
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Cross-validation of the models indicated that mean differences between the estimated and 

field-measured values at the 53 sample plots were insignificant (Table 5.5). The standard deviations of 

the differences ranged from 11.12 to 29.15 Mg ha−1 for above-ground biomass (Wa) and from 16.60 to 

24.83 Mg ha−1 for total biomass (Wt). For foliage (Wf), branch (Wb), trunk (Ws), and root biomass (Wr), 

the standard deviations ranged from 1.44 to 4.78 Mg ha−1 (18.3%–45.7%), 3.25 to 5.87 Mg ha−1 

(23.4%–39.4%), 10.16 to 22.43 Mg ha−1 (15.1%–31.1%), and 3.25 to 6.50 Mg ha−1 (14.4%–22.4%), 

respectively. 

Table 5.5 Plot-level validation results: summary of the plot-level observed mean, the mean and standard 
deviation of the differences of the cross-validation results for the separated models. 

Variables 
(Mg ha−1) 

Coniferous forest (n = 12) Broadleaved forest (n = 18) Mixed forest (n = 23) 
#OM #MD #SD #OM #MD #SD #OM #MD #SD 

Wf  11.69 −1.09 NS 
4.78 

(40.9%) 
5.12 −0.87 NS 

2.34 
(45.7%) 

7.89 0.48 NS 
1.44 

(18.3%) 

Wb  12.36 −0.51 NS 
4.87 

(39.4%) 
19.44 −1.02 NS 

5.87 
(30.2%) 

13.90 −0.21 NS 
3.25 

(23.4%) 

Ws  48.48 −1.96 NS 
11.96 

(24.7%) 
72.17 −0.42 NS 

22.43 
(31.1%) 

67.28 −1.02 NS 
10.16 

(15.1%) 

Wa  75.52 −0.13 NS 
13.91 

(18.4%) 
96.76 −2.33 NS 

29.15 
(30.1%) 

89.07 −1.76 NS 
11.12 

(12.5%) 

Wr  22.60 −0.94 NS 
3.25 

(14.4%) 
29.06 −1.12 NS 

6.50 
(22.4%) 

27.26 −0.04 NS 
3.32 

(12.2%) 

Wt  95.12 0.02 NS 
16.60 

(17.5%) 
125.82 −4.98 NS 

20.76 
(16.5%) 

116.33 −1.07 NS 
24.83 

(21.3%) 

Level of significance: NS = not significant (>0.05); * p < 0.05, ** p < 0.01; #OM: The arithmetic mean of the 
observed value; #MD: Mean of the differences in cross-validation of the selected regression equations in Table 
5.4; #SD: Standard deviation of the differences in cross-validation of the selected regression equations in Table 
5.4. 

The forest type-specific equations were applied to the 45 reference stands to predict the stand-level 

forest biomass components. The comparisons indicated that 9 of the 12 developed models in coniferous 

and broadleaved forests did not have significant mean differences between predicted and stand 

inventory measures (p < 0.05), whereas only one model for mixed forests was not significantly different 

(Table 5.6). For foliage biomass (Wf), a mean difference of 0.24 Mg ha−1 indicated an underestimation 

by LiDAR in broadleaved stands. In mixed and coniferous stands, the LiDAR-estimated foliage 

biomass (Wf) overestimated the field-measured values by 1.49–1.52 Mg ha−1. The predicted branch 
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biomass (Wb) overestimated the ground-truth by 3.01–3.05 Mg ha−1 in mixed and coniferous stands, but 

underestimated by 0.37 Mg ha−1 in broadleaved stands, although these differences in broadleaved and 

coniferous stands were insignificant. Stand-measured trunk biomass (Ws) values were significantly 

overestimated by 3.02–12.50 Mg ha−1, which corresponded to a bias of 5.8%–18.6%, whereas an 

underestimation of between 9.1% and 17.4% was found for foliage biomass (Wf) in coniferous and 

mixed stands, and an overestimation of 6.5% for broadleaved stands. Above-ground biomass (Wa) and 

total biomass (Wt), were the only two models where differences were not significantly different for 

coniferous and broadleaved forests. 

Table 5.6 Stand-level validation results: summary of the observed mean, the mean and standard deviation for 
the differences in stand predictions using the selected regression equations. 

Variables 
(Mg ha−1) 

Coniferous forest (n = 11) Broadleaved forest (n = 15) Mixed forest (n = 19) 

#OM #MD #SD #OM #MD #SD #OM #MD #SD 

Wf  7.08 1.52 NS 
2.63 

(37.1%) 
9.25 −0.24 NS 

2.15 
(22.2%) 

6.37 1.49 * 
1.88 

(29.5%) 

Wb  7.83 3.01 NS 
3.10 

(39.6%) 
19.48 −0.37 NS 

6.18 
(31.7%) 

9.57 3.05 * 
3.92 

(41.0%) 

Ws  38.93 10.54 * 
12.93 

(33.2%) 
67.21 12.50 ** 

32.85 
(48.9%) 

52.32 3.02 NS 
10.50 

(20.1%) 

Wa  59.48 9.90 NS 
10.43 

(17.5%) 
94.12 15.81 * 

31.55 
(33.5%) 

66.42 8.90 ** 
12.32 

(18.5%) 

Wr  24.94 −2.27 NS 
2.28 

(9.14%) 
27.47 1.78 NS 

7.43 
(27.0%) 

29.49 −4.33 ** 
3.35 

(11.4%) 

Wt  96.63 10.14 NS 
15.70 

(16.2%) 
141.72 15.20 NS 

19.03 
(13.4%) 

115.47 14.05 * 
25.62 

(22.2%) 

Level of significance: NS = not significant (>0.05); * p < 0.05, ** p < 0.01; #OM: The arithmetic mean of the 
observed value; #MD: Mean of the differences between the model-predictions and the field inventory data; #SD: 
Standard deviation of the differences between the model-predictions and the field inventory data. 

Figure 5.1 shows LIDAR-based biomass predictions versus the stand-measured biomass estimates 

in the 45 reference stands. As indicated, overall model fit was good for most of the biomass components 

with relationships close to the 1:1 line. The mean values of the individual components for each sample 

plot, illustrated in Figure 5.2, were extrapolated across the entire site using the regression models 

estimated from the sample plots (Figure 5.3). As expected, relatively low biomass components were 

found on steep slopes, especially the mountain ridges of both southern and northern slopes. Higher 

values of biomass components were found in most valleys, especially on the northern slopes where the 

dominant species prefer cooler summer temperatures and sufficient water supply. In some of the north–

central areas, very high value stands of both above-ground and root biomass were associated with 
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broadleaved forests (e.g., Sawtooth oak). Coniferous-dominated forests contributed high biomass in 

areas with good site quality (e.g., forest dominated by Masson pine in some valleys with thick soil 

layers) and relatively flat areas (e.g., stands dominated by Slash pine at the foot of the southern part of 

the study area). There was a relatively large area of lower biomass, especially root biomass, in the 

northwest–central part of the study area, reflecting the presence of low-quality Chinese fir plantations 

on ridge tops with poor site quality and some agroforestry plantations (Chinese fir accompanied by tea) 

with large canopy gaps and low stem density. 

 

Figure 5.1 Scatterplots and 1:1 line (dotted line) of biomass components between the field-measured and 
the model-estimated results of the selected stands (i.e., (a) foliage biomass; (b) branch biomass; (c) stem 
biomass; (d) above-ground biomass; (e) root biomass; (f) total biomass). The models were built from the 
sample plots of three forest types. 
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Figure 5.2 Mean value of the biomass components (Mg ha−1) of the 53 sample plots from (1) field 
measurements; (2) estimations of the dummy variable including stepwise regression model; and (3) 
predictions of the general models of three forest types, i.e., coniferous, broadleaved and mixed forests. 

 

Figure 5.3 Maps of biomass components (Mg ha−1) across the research site (pixel size = 30m), which 
calculated from the individual models; (A) map of the estimated foliage biomass; (B) branch biomass; (C) 
stem biomass; (D) root biomass; (E) above-ground biomass (AGB); (F) total biomass. 
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5.4 Discussion 

Dummy variables are numerical variables used in regression analysis, to distinguish different 

treatment groups and to represent subgroups of the sample (Kutner et al., 2004). The dummy variable 

technique provides a method for including categorical data into regression analysis, which does not 

require a relatively large number of observations (Heathington and Isibor, 1972). Næsset and Gobakken 

(2008) estimated above- and below- ground biomass within the boreal forest zone of Norway. The 

statistical effects of age class were assessed by including dummy variables in the models. They found 

that the effect of age class was significant only in the below-ground biomass model. In this study, dummy 

variables were added to the models to assess whether these models differ between forest types, and the 

results showed that the effect of forest type was significant in all the biomass components estimation 

models and the dummy variable-included models (R2=0.21-0.84) generally performed better than the 

general model (R2=0.26-0.63).  

Previous studies have demonstrated that in forests with highly variable species composition, 

habitat-based models are required to ensure accurate biomass predictions (Naesset, 2002; Fu et al., 

2011; Pang and Li, 2012). Likewise in this study, the inclusion of class variables based on dominant 

species addressed this issue successfully and improved estimations significantly. For foliage, branch, 

and stem biomass, most of the R2 values of the individual species models were above 0.54. The 

coefficients of determination for above-ground and total biomass ranged from 0.58 to 0.84, and the R2 

for root biomass in coniferous forest was as high as 0.83. Lim et al. (2003) estimated biomass equations 

in hardwood forests in Canada by small-footprint LiDAR. The highest proportion of explained 

variability in the estimated log-transformed linear models was 85%, which is similar to the results in 

this study. Results in this study indicate that biomass predictions for coniferous stands were more 

accurate than broadleaved and mixed forest types. In coniferous forests, 80%–84% of the variability 

could be explained, whereas, 21%–77% and 54%–70% could be explained in broadleaved and mixed 

forests respectively. Næsset (2004) reported that forest type did not have any significant impact on the 

estimated biomass models. However, the relatively mixed species composition in this study site led to 

significant effects of tree-species composition (classified as forest types) on the biomass models. 

The dominated coniferous species in this research site are Masson pine and Chinese fir (Table 5.1), 

which, in this forest, have a relatively even-aged tree structure and higher homogeneous composition, 

i.e., less variation in tree height and density at the plot level. In contrast, the broadleaved forest 

dominated by Sawtooth oak and Chinese sweet gum, have more variability in tree height and density 
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and as a result have more variable LiDAR-derived metrics within plots. Most of the selected models 

comprised three independent variables (except the foliage biomass models, which include four). All of 

the models contained at least one variable related to canopy height (hcv, h10, h25, h75) derived from the 

first returns, indicating sensitivity and high potential for predicting biomass components. LiDAR data 

allows estimation of the 3-D structural characteristics of the forest canopy, which provides a good 

foundation for strong relationships between the LiDAR-derived metrics and forest biomass. Since most 

LiDAR returns are from dominant trees, the LiDAR upper percentile heights (e.g., h75) likely represent 

the height of overstory trees. The inclusion of variables which describe height variations (e.g., hcv) and 

lower percentile heights (e.g., h10 and h25), accounted for intermediate tree crowns in the midstory and 

suppressed trees in the understory, therefore potentially improving the characterization of vertical 

structure. Fu et al. (2011) estimated above-ground biomass components using the lower hit density 

(distance=1.08 m) small-footprint LiDAR data in 78 smaller circle plots (radius = 7.5m or 15m) in 

southern China. In similar forest types, 43% and 68% of the variability in above-ground biomass was 

explained within broadleaved and coniferous forests, respectively, but there was no significant 

correlation between any of the biomass components and the LiDAR-derived metrics in mixed forests. 

Both the increased plot size and the higher hit density may be reasonable for the more significant 

correlations found in this study. Studies predicting root (below-ground) biomass from small-footprint 

LiDAR are rare, especially in subtropical forests stands. Næsset (2004) reported a R2 = 0.86 for 

below-ground biomass prediction in boreal forests. Pang and Li (2012) fitted regression models for 

biomass components in temperate forests in northeastern China and explained 85% of the variability in 

root (below-ground) biomass in conifers, which is higher than reported in this study (53%–83%). The 

reason for the lower accuracy in this study may be explained by the relatively complicated forest 

conditions in the study site with root biomass of some less common tree species calculated from 

generalized allometric equations. 

Overall, small-footprint LiDAR has shown strong capability to estimate the amount of biomass 

components in the study site within the subtropical region of southeast China, and the dummy variable 

technique is likely to compensate the issue of limited number of field plots and improve the estimations 

of biomass components. Forest type-specific models performed better than the general model. Results 

varied between forest types; in this study, the most accurate results were obtained for coniferous stands 

in relatively homogeneous forest conditions. In addition, some of canopy height metrics appeared to 

have stronger capabilities for estimating biomass components. The following chapter demonstrates the 

use of multi-temporal LiDAR to estimate biomass dynamics in the study site. 
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6 Estimation of Biomass Dynamics using Multi-temporal LiDAR  

6.1 Introduction 

In this part of the research, the capacity of using multi-temporal airborne LiDAR data, field 

surveys and statistical models to estimate forest biomass dynamics was assessed over the study site, 

and the magnitude and spatial patterns of the above ground biomass (AGB) changes were analyzed 

over a 6-year period. The objectives of this study are: (1) to evaluate the accuracies of direct and 

indirect approaches for AGB change estimation in a subtropical forest; (2) to extrapolate the change of 

AGB across the entire study site; and (3) to examine the relationships between the change of AGB and 

the forest type (classified by dominated tree species) and age (classified by tree age groups) within the 

forest stands. This research provides new insights as it examines both direct and indirect approaches 

to predicting change in above-ground biomass. In addition, understanding carbon (and biomass) 

dynamics across varied forest landscapes (with different forest types and age) is useful for predictive 

modeling and carbon management, since it connects forest ecosystem processes with landscape-scale 

carbon pools and fluxes (Hudak et al., 2012). Lastly this study focuses on the prediction and spatial 

extrapolation of biomass changes in certain forest types within the subtropical forest zone, a relatively 

poorly studied ecosystem, for forest biomass change estimation. 

6.2 Materials and methods 

6.2.1 Study area 

See details about the study site in Section 2.1. 

6.2.2 LiDAR data 

LiDAR data were acquired in April, 2007 and August, 2013 over the research site (see details 

about this data in Section 2.2).  
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A normalization approach was applied to eliminate any systematic shifts in the heights (z) between 

the two LiDAR acquisitions (Næsset & Gobakken, 2005) with the 2007 data co-registered to the 2013 

data (which has higher point density). A road that transects the entire research area was used for the 

calibration (see Figure 2.1). A total of 163 circle plots (2m in radius) were sampled along the road 

center-line at 50 m intervals. All last return ground points (from 2007) were matched to their nearest 

2013 ground return using a 0.5 m search window. The mean difference in height between 2007 and 

2013 was 10.3 cm (i.e. the 2007 datasets was shifted upwards as compared to the 2013 datasets). As a 

result the 2007 LiDAR point cloud was shifted by this mean difference, similar to the procedure used 

by Næsset and Gobakken (2005).  

A 1 m digital terrain model (DTM) was created by the last return points from 2013. The data was 

first filtered to remove the above-ground returns (Kraus and Pfeifer, 1998), and then the DTM was 

created by calculating the average elevation from the remaining (ground) LiDAR returns within a cell 

(cells that contain no points were filled by interpolation using neighboring cells). The LiDAR point 

clouds from both 2007 and 2013 were then normalized against the ground surface height (by DTM) 

and extracted for each plot using their coordinates. 

6.2.3 Plot data 

All of the plots sampled between June-August 2012 and August 2013 were used in this study (see 

details about this data in Section 2.3).   

As no field data exists for 2007, tree height and biomass estimations for 2007 were estimated from 

the field data collected in 2013 using the following approach. In order to compute the change (in AGB) 

between 2007 and 2013, for all cored trees, species-specific models were developed between DBH 

increment (measured from the extracted tree cores, as the width of tree ring growth from 2007 to 2013) 

as a dependent variable, and the 2013 DBH and tree height as independent variables (Du, 1999 and 

Wyoff, 1990). Dummy variables (or class variables) were added to the models (as the dependent 

variables) to assess whether models differed among tree species (Kutner et al., 2004). Once developed 

(Table 6.1), the DBH increment model was then applied to all trees to estimate 2007 DBH. Lastly, 
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once 2007 DBH was computed, species-specific diameter-height relationships (Table 6.2) developed 

from the 2013 field collected data were used to estimate height of all trees in 2007.  

Table 6.1 The fitted dummy variable models (and accuracy assessments) of DBH growth (2007-2013) for each tree 
species. 

Species group Names Predictive models  R2 RMSE(cm) 
Conifers Masson pine ∆d = 0.967 - 0.047H + 0.034D  (n = 142) 

0.658	 0.098		 Chinese fir ∆d = 0.642 + 0.003H - 0.008D  (n = 89) 
	 Slash pine  ∆d = 1.795 - 0.014H + 0.043D  (n = 90) 

Broadleaves	 Sawtooth oak  ∆d = -0.114 + 0.012H + 0.078ln (D) (n = 104) 
0.647 0.116 	 Sweet gum ∆d = 1.357 - 0.003H + 0.023ln (D) (n = 79) 

	 Other broadleaves ∆d = 0.418 + 0.008H + 0.051ln (D) (n = 91) 

∆d = DBH increment (cm); D = diameter at breast height (cm); H = tree top height (m). 

�

Table 6.2 The fitted dummy variable models by the sample trees (and accuracy assessments) of tree height 
for each tree species. 

Species group Names Predictive models  R2 RMSE 
Conifers Masson pine ht = 4.585 + 0.339D (n = 703) 

0.761	 1.283		 Chinese fir ht = 3.345 + 0.438D (n = 508) 
	 Slash pine  ht = 7.834 + 0.263D (n = 335) 
Broadleaves	 Sawtooth oak  ht = -2.948 + 4.978ln(D) (n = 452) 

0.734 1.431 	 Sweet gum ht = -3.830 + 5.292ln(D) (n = 417) 
	 Other broadleaves ht = -2.177 + 4.394ln(D) (n = 405) 
ht = tree top height; D= diameter at breast height. 

Once a full set of ground data were available for 2007 and 2013, several plot-level forest variables 

were calculated based on the individual tree data, including average DBH, Lorey’s mean height (i.e., 

the basal area weighted height) and above ground biomass (AGB). AGB was calculated for individual 

trees within each plot based on the field-measured (2013) or predicted (2007) DBH and height, and 

then summed to obtain plot-level AGB. Species-specific allometric equations, developed from tree 

inventory data from local or nearby provinces were selected for this research, for calculating the AGB 

(Feng et al.,1999; Qian, 2000; Wang and Shi, 1990; Xu et al., 2011).   
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6.2.4 Stand inventory data 

An additional set of forest stand inventory data (2007) was used to examine the LiDAR-estimated 

biomass changes in relation to forest type and age (see details about these data in Section 2.4) 

6.2.5 LiDAR metrics 

LiDAR point clouds for 2007 and 2013 were extracted and metrics calculated for each plot using 

the procedures of Naesset (2002), Hudak et al. (2012) and Bollandsås et al. (2013). These metrics 

were generated from first returns as they have been found to be more sensitive to changes in the forest 

canopy (Næsset & Gobakken, 2005). The LiDAR returns below 2 m were omitted to reduce potential 

biases due to low-lying vegetation (Nilsson, 1996; Næsset & Gobakken, 2005). A summary of the 

LiDAR metrics with corresponding descriptions is provided in Table 6.3. Differences between the 

metrics were calculated from the two LiDAR data acquisitions (2007 and 2013) and labeled as 

“Δ-metrics” (Bollandsås et al., 2013). As a result, three datasets (each with 22 metrics) were created, 

i.e., metrics for LiDAR acquisitions in 2007 and 2013, and the Δ-metrics (for the 6 year period). 

Table 6.3 Summary of LiDAR metrics for biomass stock and biomass change estimation. 

LiDAR metrics  Description 

Percentile heights 
(h10, h20, h30,…,h90) 

 The percentiles of the canopy height distributions (10th, 20th, 
30th, . . . , 90th)  

Canopy return density  
(d0, d1, d2,…,d9 ) 

 The canopy return density over a range of relative heights, i.e. 
percentage (0–100%) of LiDAR returns above the quantiles (0, 
10,20.…,90) to total number of returns 

Maximum height (hmax)  Height of the highest LiDAR return 

Mean height (hmean)  Average height of non-ground LiDAR returns  

Coefficient of variation of 
heights (hcv) 

 Coefficient of variation of heights of non-ground LiDAR returns 
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6.2.6 Predictive modeling and spatial extrapolation 

Both direct and indirect approaches were applied for modeling and estimating changes in AGB. 

For the direct approach, the differences between plot-level metrics calculated from the two LiDAR 

datasets were directly related to changes in AGB. The linear model of biomass change can be written 

in the following generalized form (Bollandsås et al., 2013): 

                    (6.1) 

where ∆Wi is the ground estimated change of AGB in the i th plot, α0 is a constant term, n is the total 

number of variables in the model, βk is a coefficient estimated for independent variables, ∆xki is the 

differences between metrics (or “delta values”) in the i th plot, and !i is the error term (Bollandsås & 

Næsset, 2010).  

For the indirect approach, AGB for 2007 and 2013 were predicted using separate models for each 

period (i.e., 2007 and 2013), and the difference calculated between the two estimates to qualify AGB 

changes. The general form of the AGB estimation model for single time point measurement is written 

as:  

                   (6.2) 

where "#
$ is the ground estimated AGB at one time point (t = the year of 2007 or 2013) in the i th 

plot and %&#$  is the derived plot-level metrics at one time point (Bollandsås et al., 2013). Finally, the 

∆Wi is calculated as the difference between "#
'()* and		"#

'((,. 

Linear regression models were fitted separately to predict Lorey’s mean height and AGB at each 

time point (2007 and 2013) and the changes of AGB. To ensure that the independent variables were 

not highly correlated, collinearity was evaluated using Principal Component Analysis (PCA) based on 

the correlation matrix. Models with condition number (κ) lower than 30 were accepted to ensure that 

there was no marked collinearity in the variables (Weisberg, 1985). Stepwise selection was performed 

to select variables for the final models. Predictor variables were left in the model using an F-test with 



92 
	

a p < 0.05 significance level. Prediction models were assessed using the coefficient of determination 

(R2), Root-Mean-Square Error (RMSE) and relative RMSE (rRMSE) defined as the percentage of the 

ratio of RMSE and the observed mean values. The best fitting models were then selected based on the 

lowest Akaike information criterion value (Akaike, 1974). Once the best models were chosen, 

leave-one-out cross-validation was used to validate prediction accuracies of the models.  

The spatial prediction of AGB change was calculated as the differences between AGB distributions 

in 2007 and 2013. For estimating the AGB distribution in 2007 and 2013, regular grids covering the 

entire study site were generated, with a cell size of 30×30 m corresponding to the size of the plots. In 

addition, the spatial distribution of AGB change was compared with forest stand inventory data, 

stratified by the forest type (classified by the dominated tree species within each stand) and age group 

(Yushan Forest Inventory, unpublished data, 2007). 
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6.3 Results 

LiDAR point cloud (height has been normalized) profiles (5m wide) in 2007 (1.93 points m-2) and 

2013 (8.37 points m-2) within undisturbed forest profiles are shown in Figure 6.1. Six samples of 

canopy height distributions and hemispherical photos for coniferous and broadleaved dominated plots 

are shown in Figure 6.2. 

	

Figure 6.1 LiDAR point cloud profiles (5 m wide) in 2017(a) and 2013(b) through an undisturbed forest. 
Note that the heights (z) of point clouds have been normalized.  
	

 
Figure 6.2 Canopy height distributions (vertical interval in 0.3m) calculated by LiDAR first returns in 
2007 (gray bars) and 2013 (black line) for six coniferous and broadleaved plots (dominant tree species are 
shown in the parentheses). The corresponding hemispherical photos are shown in the lower-right for each 
plot. 
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The Lorey’s mean height (hereafter “height”) and AGB estimation models for 2007 and 2013 and 

for AGB change (i.e. ∆AGB between 2007 and 2013) are shown in Table 6.4. All of the height models 

have two independent variables and the AGB and ∆AGB models have three. In general, the height 

models (R2 = 0.81-0.84) explained relatively higher levels of variation (R2) than the AGB and ∆AGB 

models (R2 = 0.67-0.79). Within the biomass estimation models, the ∆AGB model (R2 = 0.67) 

explained less variability in the response variable than the AGB models in 2007 and 2013 (R2 = 

0.74-0.79). The canopy height distribution metrics of mean height (hmean), median height (i.e., h50) and 

delta value of mean height (∆hmean) were most often selected by the models. A small number of 

metrics of canopy return density from the upper canopy (i.e., d7 and d9) were selected for estimating 

AGB in 2007 and 2013.  

 

Table 6.4 The best models for height, biomass stock and change estimation, and the statistics of accuracy assessments.  

Models Parameters and coefficients R2 RMSE  rRMSE (%) κ 

(1) ℎ.'((, 2.904 + 0.536 × h50 + 0.299 × h95 0.81 1.09 10.31 12.78 

(2) ℎ.'()* 0.847 + 0.903 × h50 + 5.176 × hcv 0.84 0.97 8.28 5.94 

(3) W2007 4.162 + 11.506 × hmean - 71.873 × d7 + 183.052 × d9 0.74 12.85 16.94 12.28 

(4) W2013 -18.987 + 12.041 × h50 - 52.057 × d7 + 347.596 × d9 0.79 13.48 15.21 11.91 

(5) ∆W07-13 - 0.982 + 11.302 × ∆hmean - 2.387 ×∆h75 + 2.512 ×∆h95 0.67 2.91 22.65 14.04 

See Table 6.3 for codes of the LiDAR metrics. ℎ.'((,: Lorey’s mean height in 2007; ℎ.'()*: Lorey’s mean height in 2013; 
W2007: above ground biomass in 2007; W2013: above ground biomass in 2013; ∆W07-13: change of above ground biomass 
(2007-2013); rRMSE: the percentage of RMSE divided by the ground estimated mean; κ: condition number. 

	

Scatter plots of the plot-level ground estimated and LiDAR predicted height, AGB (in 2007 and 

2013) and ∆AGB (using both direct and indirect approaches) are shown in Figure 6.4. For both height 

and AGB estimations in 2007 and 2013, the relationships are close to the 1:1 line. The height (R2=0.84) 

and AGB (R2=0.79) estimations in 2013 have higher correlations than for the same variables in 2007. 

Compared with the fitted model for ∆AGB using the indirect approach (R2=0.62, rRMSE=27.55%), 

the fitted model for ∆AGB using the direct approach (R2=0.67, rRMSE=22.65%) had a relatively 

higher performance. 
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Figure 6.3 Relationship between ground and LiDAR estimated Lorey’s mean height in 2007(a) and 
2013(b), above ground biomass (AGB) in 2007(c) and 2013(d), and the change of biomass (i.e., ∆AGB) 
estimated by the indirect approach (e) and direct approach (f). 
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Cross-validation of the predictive models showed that the mean differences between 

LiDAR-predicted and ground-estimated height, AGB (in 2007 and 2013) and ∆AGB were not 

statistically significant in the cross-validated models (Table 6.5). In general, the height models (CV-R2 

= 0.75-0.80, CV-rRMSE = 12.34-14.12%) had higher accuracy than the AGB and ∆AGB models 

(CV-R2 = 0.59-0.74, CV-rRMSE =18.12-28.35%). Within the biomass estimation models, the AGB 

models in 2007 and 2013 (CV-R2 = 0.68-0.74, CV-rRMSE =18.12-20.48%) had higher accuracy than 

the ∆AGB model (CV-R2 = 0.59-0.63, CV-rRMSE =25.64-28.35%). Compared with the results of the 

indirect approach for ∆AGB (CV-R2=0.59, CV-rRMSE =28.35%) (Table 6.5. Eq. (5)), the direct 

approach (CV-R2 = 0.63, CV-rRMSE =25.64%) had a higher accuracy (Table 6.5. Eq. (6)). 

Table 6.5 Summary of the cross-validation results for the R2, relative RMSE (rRMSE) and differences in 
cross-validation models for height, biomass stock and change estimation. 

Models a Variables CV-R2 
CV-rRMSE 

(%) 
 Differences in cross-validation 
 Mean b Std. Dev. Range 

(1) ℎ.'((, 0.75 14.12  0.68 NS 0.98 -2.76 – 3.35 

(2) ℎ.'()* 0.80 12.34  0.35 NS 0.87 -1.84 – 2.63 

(3) W2007 0.68 20.48  -1.23 NS 13.95 -46.31 – 30.18 

(4) W2013 0.74 18.12  -1.39 NS 16.14 -48.60 – 34.85 

(5) ∆"(,0)*
1#2  0.63 25.64  -0.43 NS 2.75 -7.17 – 6.96 

(6) ∆"(,0)*
#31#2  0.59 28.35  -0.78 NS 4.32 -9.03 – 8.89 

See Table 6.3 for codes of the variables; CV-R2: R-square of cross-validation; CV-rRMSE: Relative Root 
Mean Square Error (RMSE) of cross-validation; Std. Dev.: standard deviation;	∆"(,0)*

#31#2 : the cross 
validated results of ∆AGB using direct approach;	∆"(,0)*

#31#2 : the cross validated results of ∆AGB using 
indirect approach. a Models: refer to the models (1-5) in Table 6.4; b Level of significance: NS = not 
significant (p> 0.05). 

Figure 6.4 shows the spatial estimates of ∆AGB distribution (grid size: 30×30m) across the 

research site, calculated as the difference between the AGBs of 2007 and 2013. Figure 6.5 shows the 

histograms of AGB for the study site in 2007 and 2013, and the shift and change of AGB between the 

two time periods. The average ∆AGB was 11.41 Mg ha-1 ± 5.39 (SD = standard deviation) from 2007 

(71.98 Mg ha-1 ± 24.24 (SD)) to 2013 (83.39 Mg ha-1 ± 26.45 (SD)) (see Figure 6.5.a and b). Figure 

6.5.c shows the distribution of AGB shifted from 2007 with a range of 28.74 - 172.92 Mg ha-1 to 31.08 
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- 181.30 Mg ha-1 in 2013, and resulting in a ∆AGB with a range of -14.16 - 41.72 Mg ha-1 (Figure 

6.5.d). 	

	
Figure 6.4 The spatial prediction of the changes of AGB across the research site (between 2007 and 2013). 
The upper-right sub-figure shows the scatterplot between LiDAR estimated AGB in 2007 and in 2013 for 
all the cells across the research. Some highlighted locations of AGB changes are marked on the map, such 
as, an increase of AGB in regenerated broadleaved forests (a, b, d, e, g) and a decrease of AGB in Chinese 
fir/tea agroforestry systems (transformed from the Chinese fir stands after silvicultural treatments) (c, f). 

	
Figure 6.5 Histogram and boxplot of above ground biomass (AGB) distributions across the research site in 
2007 (a) and 2013(b), the shift (c) and changes (d) between the two times.  



98 
	

Figure 6.6 shows the LiDAR estimated AGB change for all the stands grouped by age. Figure 6.7 

shows LiDAR estimated AGB for all the stands within each forest type in 2007, 2013 and the changes. 

For the change of biomass (∆AGB) within age groups, middle-aged stands had the highest gain of 

AGB (13.76 Mg ha-1), followed by mature (10.31 Mg ha-1) and young (8.86 Mg ha-1) stands. 

Over-mature stands had the lowest gains of AGB (4.58 Mg ha-1) from 2007 to 2013 (Figure 6.6). 

Stands dominated by Sawtooth oak had the highest gain of AGB (13.85 Mg ha-1), followed by Slash 

pine (11.57 Mg ha-1), Masson pine (10.16 Mg ha-1) and other stands dominated by broadleaved trees 

(10.38 Mg ha-1). Stands dominated by Chinese fir had the lowest gain of AGB (5.73 Mg ha-1) during 

the 6-year period (Figure 6.7).  

 
Figure 6.6 The boxplots of LiDAR estimated AGB change for all the stands within each age group. The 
median values were displayed on top of each boxplot.  
	
	

 

Figure 6.7 The bar graph of the mean of LiDAR estimated AGB for all the stands within each forest type 
in 2007, 2013 and their changes. Note: M.Pine=Masson pine; C.Fir=Chinese fir; S.Pine=Slash pine; 
S.Oak=Sawtooth oak; S.Gum=Sweet gum; O.B = Other broadleaves. 	
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6.4 Discussion 

For forest biomass change detection studies, it would be desirable to have field-measured data that 

correspond to LiDAR survey at each point in time. However, in this study, the ground-truth data for 

AGB in 2007 was estimated by the field-estimated AGB (calculated from the field-measured DBH 

and height) in 2013. It was anticipated that the species-specific diameter growth models (fitted on the 

field-measured samples of DBH, DBH increment, tree height and a site factor) and the 

diameter-height relationships (fitted on the field-measured samples of DBH and height) would give 

better predictions of the DBH and height in 2007, compared to using general forest growth models 

from the published literature. The results demonstrating the relatively good performance of Lorey’s 

mean height and AGB predictions in 2007 as shown in Table 6.4 and 6.5 indicated this is likely the 

case.  

   In this study, since different sensors were used for repeated LiDAR surveys, the selection of a 

standard ground reference level is critical when calculating height values (Næsset & Gobakken, 2005). 

St-Onge and Vepakomma (2004) argued that the same terrain model should be used in multi-temporal 

LiDAR studies to avoid errors in canopy height changes caused by modelled terrain differences. Yu et 

al. (2004) also reported that, in certain cases, bias from using different terrain models (on two 

occasions) was even larger than the real canopy height growth. As a result, in this study, after the 

height calibration of LiDAR data for 2007, only one terrain model (interpolated by the 2013 LiDAR 

data, which had higher density) was used for the two LiDAR datasets. With the rapid development of 

LiDAR sensors, multi-temporal LiDAR datasets are likely to be different in acquisition parameters, 

such as the differences of point cloud densities between two occasions. In this study, the point density 

of LiDAR surveys in 2013 (8.37 points m-2) was approximately three times greater than in 2007 (1.93 

points m-2). However, according to the results of the cross-validation (Table 6.5), point density did not 

significantly affect the AGB and ∆AGB estimates at the plot-scale. This is likely due to the consistent 

vertical pattern of point clouds (within the canopy structure) at the two points in time (Figure 6.1). 

Furthermore, due to the relatively large size of the sample plots (i.e., 30×30 m), the two LiDAR 
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datasets appear to be sufficiently comparable when aggregated into the size of 900m2. The 1.93 points 

m-2 mean point density in 2007 can be converted to a mean of approximately 1740 points per plot 

(900 m2), which could be sufficient to produce a stable canopy height distribution for calculating 

canopy height metrics (Hudak et al., 2012). In this study, the wavelength of LiDAR surveys in 2007 

(1064nm with Optech) was slightly different from 2013 (1550nm with Riegl). The two near-infrared 

wavelengths are both commonly used by commercial LiDAR instruments because they can be 

transmitted through the atmosphere, are eye-safe, and vegetation typically has high reflectivity in 

these regions of the spectrum (Lewis and Hancock, 2007). Wichmann et al. (2015) evaluated the 

performance of multi-spectral LiDAR (with three wavelengths, i.e., 532, 1064 and 1550 nm) for land 

cover classification in the city of Oshawa (Ontario, Canada). They found a good agreement of the 

spatial pattern for vegetation between the two LiDAR channels (of 1064 and 1550 nm), and observed 

no significant difference of in the peaks and distributions of the histograms between these 

wavelengths for the vegetation classification. 

In this study, canopy height metrics such as the delta value of mean height (∆hmean) and some 

upper percentile heights (i.e., ∆h75 and ∆h95) were chosen in the final AGB change estimation model 

(Table 6.4.Eq.(5)). Similarly, Næsset and Gobakken (2005) reported that upper percentiles of h50 and 

h90 are especially suitable for detecting forest growth, due to height distributions tending to be shifted 

upwards due to height growth, and the relative portion of the upper canopy increased by the 

elongation of the branches (St-Onge and Vepakomma, 2004). Maximum canopy height (hmax) may be 

less reliable to detect changes with multi-temporal LiDAR datasets because, due to the lower point 

density, LiDAR predicted heights in 2007 tend to have more bias (i.e., underestimated the height by 

missing the tree-tops) than in 2013. The metrics of canopy return densities were only selected in the 

AGB estimation models at two points in time (Table 6.4. Eq.(3) and (4)), but were not selected for 

estimating the change of AGB (Table 6.4. Eq.(5)). Similarly, Bollandsås and Næsset (2010) argued 

that although density metrics have proved useful for modeling biomass in previous studies, the delta 

value of the density metrics had little effect on the biomass change model. Hudak et al. (2012) also 

reported that compared with the metric of mean canopy height that has a linear relationship to the 
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biomass change, the relationship of the biomass change to either maximum canopy height or canopy 

densities is curvilinear and more scattered. 

Canopy height distributions (calculated by LiDAR first returns) in 2007 and 2013 for some 

sample plots are shown in Figure 6.2. A marked vertical upward shift of the canopy height 

distributions can be found in broadleaved dominated plots (especially in the Sawtooth oak dominated 

plot) during the 6-year period. Furthermore, for these broadleaved dominated plots, ground returns 

decreased from 2007 and 2013, likely due to the horizontal growth of the crowns that reduced the 

canopy gaps (Næsset & Gobakken, 2005). These changes in pattern can also be found in some conifer 

dominated plots (especially in the Slash pine dominated plot); they were, however, much less marked 

than in the broadleaved dominated plots. This is probably because most coniferous forests in the study 

site are either mature or over-mature and tend to grow more slowly than productive young and 

middle-aged broadleaved forests (see Figure 6.7 and Table 2.4). In addition, the results in Figure 6.2 

also confirm that the first returns are sensitive to the changes of canopy height distribution patterns in 

the forests. Næsset and Gobakken (2005) found that the first returns, representing the first part of the 

reflected signal, are more sensitive to changes on the canopy surface, and can therefore be used to 

explain the variation in forest growth. It should be noted that LiDAR-derived canopy height 

distributions are also sensitive to changes to factors other than forest growth, for example, thinning 

and harvesting activities, natural disturbance, seasonal change of undergrowth and the amount of 

foliages for deciduous trees. Therefore, results should be interpreted with caution if these effects are 

know to exist in the study area (Yu et al., 2008). In this study, the multi-temporal LiDAR technique 

used for growth estimation was based on the assumption that the canopy height distribution was only 

influenced by forest growth. No plots had evidence of significant mortality or silvicultural operations 

(e.g., thinning) being undertaken during the laser acquisition period. 

For estimating the changes of AGB, both direct (i.e., directly predicted biomass change using the 

differences between LiDAR metrics) and indirect approaches (i.e., modeling biomass for each point in 

time and predicting the change as their differences) were used in this study. It was found that the 

model for estimating ∆AGB using the direct approach (CV-R2=0.63, CV-rRMSE= 25.64%) has a 
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higher accuracy than the indirect approach (CV-R2=0.59, CV-rRMSE= 28.35%), which is consistent 

with Bollandsås et al. (2013), who postulated that it was because the direct approach was only 

affected by errors from one model rather than two. Likewise, Næsset et al. (2013a) also reported that 

the direct approach resulted in more accurate estimates of biomass change in young and mature forest 

stands. However, these studies were all conducted in boreal forests. This result confirms these 

conclusions in another type of forests (i.e., the subtropical forest).  

The spatial prediction of biomass change shows that, in general, most of the forest area saw an 

overall gain in biomass. Areas of biomass gain more commonly occurred on northern slopes (i.e., 

northern side of the central road) than on southern slopes, partially due to the better site quality on 

northern aspects. In these areas, conifer-dominated forests may contribute higher gains of biomass in 

areas with good site quality (e.g., stands dominated by Masson pine in some valleys with thick soil 

layers) and relatively flat areas (e.g., stands dominated by Slash pine at the foot of the mountain). In 

some of the areas, relatively high biomass gain was associated with broadleaved forests (e.g. stands 

dominated by middle-aged Sawtooth oak, see Figure 6.4, location: a, b, d e and g). There are two main 

areas of biomass loss; one along the central ridge of the mountain, reflecting the new development of 

Chinese fir/tea agroforestry systems by silvicultural treatments (see Figure 6.4, location: c, f). 

Secondly, some scattered losses (of biomass) can also be found within the pine dominated forests, 

likely due to selective thinning lowering the risk of pine caterpillar damage (SFMP, 2013).  

In general, the middle-aged stands (typically dominated by Sawtooth oak between 41-60 years old) 

show marked growth in biomass (median ∆AGB = 13.76 Mg ha-1 or 2.29 Mg ha-1 yr-1), followed by 

mature (typically dominated by Masson pine between 31-60 years old) (median ∆AGB = 10.31 Mg 

ha-1 or 1.72 Mg ha-1 yr-1) and young stands (typically consist of regenerated broadleaved trees younger 

than 40 years old) (median ∆AGB = 8.86 Mg ha-1 or 1.48 Mg ha-1 yr-1), whereas over-mature stands 

(typically dominated by Chinese fir older than 35 years) show the lowest growth (median ∆AGB = 

4.58 Mg ha-1 or 0.76 Mg ha-1 yr-1) (Figure 6.6 and Table 2.4). Dubayah et al. (2010) conducted the first 

LiDAR-based AGB change detection study in a tropical forest (in Costa Rica), and showed that 

secondary forests were gaining biomass (3.6 Mg ha−1 yr−1) but the old growth forest was mostly 
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neutral (0.29 Mg ha−1 yr−1). Their results are comparable in terms of the trends of ∆AGB (at 

landscape-level) with this study, i.e., the secondary broadleaved forests (at middle age, ∆AGB=2.29 

Mg ha-1 yr-1) showed marked growth, while the productivity of the old forests (at mature and 

over-mature age, ∆AGB=0.76-1.47 Mg ha-1 yr-1) were declining. Meyer et al. (2013) also performed 

change detection study in the tropics (in central Panama); they found that secondary forests gained 

+1.8 Mg ha−1 yr−1, but the old growth forests lost -0.7 Mg ha−1 yr−1 across the entire study site. In this 

study, most of the losses of AGB were likely due to management activities (e.g. silvicultural 

treatments), not natural mortality. It should be noted that the over-mature stand of Chinese fir in this 

study site (Table 2.4) was much younger than the old growth forests in Panama (e.g., > 400 yr old, 

Meyer et al. 2013). 

This study has some implications for forest management, both in terms of the development of new 

tools for management, as well as informing biomass management strategies. The LiDAR-derived data 

provide a more precise basis for managers to measure, monitor and respond to changes in biomass for 

the entire forest over relatively short periods of time (i.e. a 6 year period in this study). Also, the 

spatial analysis allows managers to identify individual stands and patches that may need prioritized 

management responses, or to alert managers to specific problems at an early stage (if monitoring is 

undertaken regularly). For example, the Yushan data suggests that managers might focus on replacing 

the older Masson Pine stands when growth declines (where appropriate) if they are concerned about 

forest productivity or optimizing carbon sequestration; also, they could consider intensive 

management (e.g. fertilization) to enhance productivity of suitable younger and middle-aged stands. 

Optimal management rotations should also be considered when carbon sequestration is an important 

objective with regard to forest type and age. This tool therefore may help managers to balance the 

multiple ecosystem services and outputs from the forest and adapt their management plans.  

Overall, repeated small-footprint airborne LiDAR can be used to estimate efficiently the amount 

and distribution of biomass change in subtropical forests over a 6-year period. The direct approach of 

biomass change modeling improved performance relative to the indirect approach in these forests. The 

canopy height metrics of delta mean height (∆hmean) and some upper percentile heights (i.e., ∆h75 and 
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∆h95), calculated from the LiDAR first returns, tend to be sensitive to the change of biomass, whereas 

the metrics of maximum canopy height or canopy densities had little effect on the biomass change 

model. Furthermore, the differences of point cloud densities between the two times did not 

significantly affect the AGB and ∆AGB estimations at the plot-scale. The map of biomass change 

showed that biomass gains accounted for the largest area of the study site. The middle-aged stands 

show marked growth of biomass, followed by mature and young stands, whereas over-mature stands 

show the lowest growth. This study provides further evidence of the benefits of LiDAR approaches in 

identifying specific areas for management interventions to enhance forest productivity, maintain 

biomass stocks and optimize carbon sequestration.  
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7 Conclusions 

Airborne LiDAR data has become increasingly accessible and affordable over the past decade. As 

the technology continues to develop, it will provide valuable information for managers globally for a 

variety of forestry applications (Merrick et al., 2013). This dissertation has investigated novel 

techniques for airborne LiDAR-based assessment of tree species and forest biomass (and its dynamics) 

in a forest within the subtropical biome. Specifically, airborne LiDAR was evaluated for its ability to: 

� discriminate tree species using small-footprint full-waveform LiDAR metrics, 

� estimate forest biomass components by discrete-return and full-waveform LiDAR metrics,  

� spatially extrapolated the estimation of forest biomass components, and 

� predict and map biomass dynamics using multi-temporal LiDAR data. 

Four research questions were addressed in this dissertation:  

1) Can small-footprint full-waveform LiDAR data be used to classify tree species in the subtropical 

forest stands? 

2) What are the advantages of estimating the forest biomass components by discrete-return and 

full-waveform LiDAR metrics alone or combined?  

3) How can airborne LiDAR be used to provide spatially explicit maps of forest biomass 

components?  

4) How can multi-temporal airborne LiDAR data be used to estimate and map biomass dynamics 

over time? 

In Chapter 3, small-footprint full-waveform LiDAR data was used to classify tree species in 

subtropical forest stands. A local maxima algorithm was applied for tree detection and crown 

delineation, and full-waveform metrics (extracted from a voxel-based composite waveform) were 

examined. Using a Random Forests (RF) classifier, six subtropical tree species (i.e., Masson pine, 
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Chinese fir, Slash pines, Sawtooth oak and Chinese holly) were discriminated at three levels of 

discrimination. The result showed that the local maxima algorithm was appropriate for delineating 

individual crowns (detection rate=79%, relative RMSE=5.1% and 11.8% for tree height and crown 

diameter, respectively), and the use of full-waveform metrics in the Random Forests classifier showed 

relatively high accuracy (overall accuracy = 68.6% for six classes, 75.8% for four main species and 

86.2% for conifers and broadleaved trees) for classifying tree species. The full-waveform metrics 

(height of median energy (HOME), waveform distance (WD) and number of waveform peaks (NP)) 

had high classification importance and were shown to be stable among various voxel sizes. These 

most important metrics can be used for species classification in the subtropics with high accuracy 

(overall accuracy = 66.1% for six classes, 73.2% for four main species and 84.4% for conifers and 

broadleaved trees).  

In Chapter 4, small-footprint discrete (DR) and full-waveform (FWF) metrics were evaluated to 

predict biomass and its components. The LiDAR metrics derived from DR and FWF LiDAR data 

were used alone, and in combination, in stepwise regression models to estimate total as well as 

above-ground, root, foliage, branch and trunk biomass. Overall, the results indicated that three sets of 

predictive models performed well across the different subtropical forest types (Adj-R2 = 0.42–0.93, 

excluding foliage biomass). Forest type-specific models (Adj-R2 = 0.18–0.93) were generally more 

accurate than the general model (Adj-R2 = 0.07–0.79) with the most accurate results obtained for 

coniferous stands (Adj-R2 = 0.50–0.93). In addition, LiDAR metrics related to vegetation heights were 

the strongest predictors of total biomass and the components. For the DR metrics, metrics related to 

vegetation heights, i.e., mean height, upper height percentiles (i.e. h50, h75, h95) were the strongest 

predictors of biomass and its components. The FWF metrics were sensitive to the trunk biomass (in 

coniferous forests) and foliage biomass (in broadleaved forests).This research also illustrates the 

potential for the synergistic use of DR and FWF LiDAR metrics to accurately assess biomass stocks 

in the study site.  

In Chapter 5, small-footprint discrete-return LiDAR data was used to estimate and map above- 

and below-ground biomass components of subtropical forests. Foliage, branch, trunk, root, 
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above-ground and total biomass of 53 plots (30 × 30 m) were modeled using a range of 

LiDAR-derived metrics, with individual models for each of the three dominant forest types using 

stepwise multi-regression analysis. A regular grid covered the entire study site with cell size 30 × 30 

m corresponding to the same size of the plots was used to generate maps for each biomass component. 

Overall, results indicate that biomass estimation was more accurate in coniferous forests, compared to 

mixed and broadleaved stands. The coefficient of determination (R2) for the forest type-specific 

models was significantly improved compared with an overall generic, or common, model. Using 

independent stand-level data from existing forest inventory, the results indicated that overall model fit 

was significant for most of the biomass components, with relationships close to a 1:1 line, indicating 

no significant bias. This research illustrates the potential for LiDAR as a technology to assess forest 

carbon accurately and to provide a better understanding of how forest ecosystems function in this 

region. 

In Chapter 6, the capacity of multi-temporal airborne LiDAR data to estimate forest biomass 

dynamics was assessed, and the magnitude and spatial patterns of AGB change were analyzed over a 

6-year period. To do so, direct and indirect approaches to estimate change in AGB were evaluated. 

Once models were developed, the change in AGB was spatially extrapolated across the study site and 

examined in relation to forest type and age. The results demonstrate that the direct approach (CV-R2 = 

0.63, CV-rRMSE =25.64%) produced more accurate estimates in change of AGB than the indirect 

approach (CV-R2 = 0.59, CV-rRMSE =28.35%). Canopy height metrics of delta mean height (∆hmean) 

and a number of upper percentile heights (i.e., ∆h75 and ∆h95), calculated from the LiDAR first returns, 

were found to be most sensitive to changes in biomass, whereas metrics based on maximum canopy 

height or canopy density had less predictive power. Furthermore, differences in point cloud densities 

did not significantly impact the estimations of AGB and change of AGB at the 30×30 m plot-scale (in 

these subtropical forest conditions). Spatial extrapolation of the AGB change indicated that, in general, 

most of the forest area had an overall gain in biomass. The middle-aged stands show marked growth 

of biomass (median ∆AGB = 2.29 Mg ha-1 yr-1), followed by mature (median ∆AGB = 1.72 Mg ha-1 

yr-1) and young stands (median ∆AGB = 1.48 Mg ha-1 yr-1), whereas over-mature stands show the 
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lowest growth (median ∆AGB = 0.76 Mg ha-1 yr-1). This study demonstrates the benefits of using 

multi-temporal LiDAR data to help identify specific areas for management interventions, to enhance 

forest productivity, maintain biomass stocks and optimize carbon sequestration. 

7.1 Unique outcomes 

To the best of my knowledge, this is the first application of full-waveform LiDAR for tree species 

classification and biomass components estimation in subtropical forest stands, and the first application 

of multi-temporal LiDAR data to assess biomass dynamics in these forest environments. In particular, 

the unique outcomes of this dissertation are: 

� A new approach to classify tree species by full-waveform metrics and investigate the optimal 

voxel size for modelling the LiDAR returns.	

� A new application of a locally-adapted algorithm for tree detection and crown delineation in the 

subtropical forest stands. 	

� A new method to estimate biomass components by using the discrete-return and full-waveform 

metrics at the plot level. 

� Demonstration of a voxel-based approach of LiDAR processing which avoids scan angle effects 

and to synthesize non-vertical waveforms from different flight trajectories; 	

� For the first time, the direct and indirect approaches were assessed for estimating biomass 

dynamics in the subtropical forest stands.  

In combination, these LiDAR-based approaches allow forest managers to develop a more 

comprehensive and robust understanding of the structure, composition and spatial distribution of tree 

species in the subtropical forest stands. These approaches also provide methodologies and techniques 

for developing high resolution, spatially explicit estimates of forest biomass (and its dynamics), with 

applications to sustainable forest management, forest carbon cycling studies and forest carbon 

accounting projects.	 	
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7.2 Limitations 

While this dissertation presents novel technologies for assessing tree species and forest biomass 

(and its dynamics) in subtropical forest stands, there are a number of limitations which can point the 

way to further research:  

1) an incomplete understanding of the full potential of full-waveform (FWF) metrics, requiring, 

in future, a more direct (physical) interpretation of FWF metrics especially from small footprint 

systems;  

2) a lack of comprehensive understanding on the use of voxel based approaches to derive vertical 

waveforms, including the generation of composite waveforms which do not have complete Gaussian 

shapes;  

3) a need to refine estimates of root biomass due to less accurate allometric equations than above 

ground biomass components;  

4) a limited number of change detection approaches were tested to estimate change in biomass; 

5) a lack of ground truth data in 2007 for biomass change estimation. 

In Chapter 3 and 4, most of the full-waveform metrics were adapted from previous large-footprint 

full-waveform analysis (i.e., SLICER, LVIS and GLAS), however, the potential of small-footprint 

full-waveform data (for classifying tree species and estimating biomass) remains to be fully explored. 

A key challenge of using the full-waveform metrics is understanding their direct interpretability (with 

the tree crown architectural characteristics), which can then be validated in the field at fine spatial 

scales (Neuenschwander, 2012). In the full-waveform based tree species classification research 

presented in Chapter 3, the composite waveforms were constructed by directly georeferecing each bin 

of the raw waveform within the voxels. As a result, “incomplete” composite waveforms were created 

if the resolution of the voxels were “very high”, or if they were located around the edge of tree 

boundaries. Although “incomplete” composite waveforms were not used for calculating final metrics, 

new waveform synthesis approaches (which can create composite waveforms with complete Gaussian 
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shape) still need exploration.  

Species-specific allometric equations developed from tree inventory data from local or nearby 

provinces (referenced from Feng et al. (1999), Qian (2000), Wang and Shi (1990) and Xu et al. (2011)) 

were used for calculating plot-scale biomass (i.e., total and above-ground biomass) and biomass 

components (i.e., stem, root, branch and foliage) in this dissertation. However, it should also be noted 

that the root biomass of some less common tree species were calculated from generalized allometric 

equations (in Chapter 4 and 5). The use of generalized equations can lead to a bias in estimating root 

biomass for a particular species (Clark et al., 2001; Litton et al., 2006). In addition, in Chapter 5, the 

relationships of LiDAR metrics and field estimated biomass change may vary between forest types, 

however the impact of differences in forest type (i.e. coniferous, broadleaved and mixed dominated) 

for estimating biomass change has not been fully evaluated. Likewise only two approaches were 

compared for biomass change estimation, and the advantages (or disadvantages) of the 

transformations (e.g., log or squared transformations) for the (independent or dependent) variables (in 

the predictive models) on the biomass change estimation have not been evaluated.  

In this study, as the sample plots were not established in 2007, biomass estimations for 2007 were 

predicted from the field data collected in 2013 and the estimated forest growth (derived from the DBH 

increments measured from extracted tree cores). This could introduce some errors into the ground 

reference data (in 2007). In addition, the height estimations for 2007 were predicted from the 

estimated DBH (in 2007) and the fitted species-specific diameter-height relationships, could also 

introduce some errors. Destructive sampling could be considered as a potential source of reference 

growth measurement techniques if historic data is unavailable and it would likely produce more 

accurate estimates of forest growth (for height and biomass). It should also be noted that the 

variability in stand structures present within the Yushan forest study area is not necessarily 

representative of structural variability within the subtropical forest stands. The regression models 

developed in this dissertation are designed to demonstrate the potential of this methodology for 

biomass and biomass change estimations, and should be tested before they are applied more broadly 

to other locations or subtropical forest types.  
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7.3 Future directions and recommended implications 

Future research will focus on these areas: 

Although this research demonstrates significant potential for full-waveform metrics to classify tree 

species and estimate biomass in subtropical forest biomes, more FWF metrics still need to be explored 

in order to maximize their potential for future forest studies. The tree crown-based geometric (e.g. 

echo height distributions, mean and standard deviation of echo widths) and radiometric (e.g. mean 

intensities and backscatter cross-sections) FWF metrics (following Gaussian decomposition) have 

been used to tree species classification, and achieved a relative high classification accuracy (overall 

accuracy = 83%) (Hollaus et al., 2009). Other metrics such as rise time of the leading edge 

(Neuenschwander, 2012), area under the third Gaussian peak (Nelson et al., 2009) and ground return 

ratio (calculated as the ground intensity divided by total canopy intensity, used in large footprint 

LiDAR study) (Drake et al., 2002), were found to be useful for predicting stand volume and biomass. 

These FWF metrics could also be explored, adapted (from large footprint LiDAR literatures) and 

implemented at the plot and individual tree scale in the subtropical forests. The exploration of spectral, 

textural or shape metrics from hyperspectral and high-resolution data (these data were also acquired 

simultaneously with the full-waveform LiDAR data by the LiCHy Airborne Observation System) 

could also further extend the range of preferred metrics and enhance the capability of species 

classification and biomass estimation in the subtropical forests. 

Building links between the inherent architectural differences of tree species and how they are 

manifested in LiDAR metrics remains a critical endeavor for remote sensing scientists and ecologists 

alike. For example, is the height of median energy (HOME) correlated with tree crown volume 

density or penetration into the crown? Popescu et al. (2011) demonstrated that the metric of energy 

penetration index (EPI) (which is calculated as the ratio of ground energy to total waveform energy) 

was related to canopy cover in large footprint LiDAR systems (i.e., Geoscience Laser Altimeter 

System (GLAS) onboard the Ice Cloud and land Elevation Satellite (ICESat)), and is a good indicator 

for characterizing forest structural variables (e.g., mean canopy height) (Neuenschwander et al., 2008). 
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However, in small footprint LiDAR studies, one footprint (e.g., diameter = 30cm) only describes a 

portion of the tree structure. As a result, gathering field measurements (potentially, terrestrial laser 

scanning (TLS) data that can be used as a precise and efficient tool to directly measure detailed 3D 

models of vegetation elements) and developing relationships between crown structural characteristics 

and waveform metrics (aggregated or calculated variability within tree crown) is important to improve 

the direct interpretability of the full-waveform metrics (Neuenschwander, 2012). 

Future work should also focus on how to improve the waveform synthesis approach in order to 

construct composite waveforms (with complete Gaussian shape in any cases). Jung and Crawford 

(2012) proposed a waveform reconstruction approach, which geo-references the decomposed 

components and then reconstructs waveforms by combining all Gaussian functions. Their approach 

included several steps: 1) waveform decomposition using an expectation–maximization (EM) 

algorithm; 2) georeferecing of the decomposed components using the estimated mean (of the 

components); 3) waveform reconstruction (using the geo-referenced components for each voxel); 4) 

and waveform normalization and shifting (using the DTM). After the preliminary FWF data 

processing, they found that compared with the ground truth data, the metrics (e.g., mean canopy 

height) extracted from the aggregated (or reconstructed) waveform (R2=0.85) had a higher accuracy 

than from recorded (or raw) waveform (R2=0.68). As a result, their approach could be adopted in 

subtropical forest types for creating improved composite waveforms, and may improve the tree 

species and estimate biomass in future studies. 

For the calibration and validation of LiDAR derived biomass, accurate ground reference 

measurements are needed. In this dissertation, the ground biomass was estimated by allometric 

equations, which relate biomass to tree diameter and height, based on a theory that assumes that one 

or more parts of an organism are proportional to the size or growth of other tree parts (Komiyama et 

al., 2008). The allometric approach can be effective when applied within the productivity and species 

range of the calibration data, but the species-specific allometric relationships may change between 

regions and site conditions (Smith and Whelan, 2006), and the creation of site-specific allometric 

relationships needs intensive fieldwork and destructive sampling (therefore only be conducted on a 
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limited basis). TLS allows for measuring forest structure with a high degree of detail and accuracy, 

and has the potential to reduce uncertainties in estimating above ground biomass since it directly 

estimates tree structure parameters (Calders et al., 2015). Feliciano et al. (2014) used TLS data to 

estimate AGB of various mangrove plants in the coast of South Florida, United States. They found 

that the directly estimated AGB (by TLS) showed comparable results with published mangrove 

allometry, and suggested that TLS based methodology could almost be as accurate as destructive 

sampling and harvesting technology. Their methodology could be adopted (in Yushan Forest) for 

creating site-specific allometric equations of the subtropical tree species. 

In relation to modelling approaches, studies have found differences in the relationships between 

LiDAR variables and field estimated biomass such as a study by Drake et al. (2003) who found 

differences between tropical wet and moist forest. In future studies, dummy variables could be added 

into the predictive models to assess the differences of forest types (i.e. coniferous, broadleaved and 

mixed dominated) for biomass change estimation (Kutner et al., 2004). 

Srinivasan et al. (2014) assessed the multi-temporal TLS data to model tree biomass change 

(available for both 2009 and 2012) and field data (only available for 2009). In their approach, AGB 

for 2012 was estimated by the model developed from field and TLS data in 2009 and then applied to 

the 2012 TLS data.AGB change was then calucuated as the difference between the estimated AGB 

from the two times. This approach was based on remote sensing paradigm of reducing field work by 

applying previously developed models to update remote sensing estimates, which also has potential to 

be adapted to airborne LiDAR studies for furure investigation in the subtropical forest stands.  

Økseter et al. (2015) tested five different approaches for biomass change estimation in a boreal forest: 

1) predicting change as the difference between separate AGB predictions; 2) predicting change using 

the differences of LiDAR metrics; 3) predicting change using the LiDAR metrics from each point in 

time; 4) predicting change using relative growth rate and 5) predicting change using relative reduction 

rate. In their research, several different transformations were applied to the indepedent variables, and 

the natural logarithm (LN) transformations used for the dependent variables in the indirect approaches. 

They found that the use of LN transformation (for dependent variables) increased the accuracy of 



114 
	

biomass estimation for each point in time (relative RMSE decresased from 14.8% to 18.0%). Future 

studies could test more approaches in biomass change estimation and evaluate the advantages (or 

disadvantages) of the transformations for the model variables on the biomass change estimation. 

Previous studies have also shown that the relationships between biomass and LiDAR metrics are 

dependent on forest type  (Drake et al., 2003; Asner et al., 2012; Naesset and Gobakken, 2008), 

which means that the biomass estimation models developed in this study may not be directly 

transferred to other study areas. Some previous studies have shown promising results transferring 

between forest types using power models based on mean canopy height (MCH) to predict biomass 

across large geographic extent. Lefsky et al. (2002) found that 84% of biomass variations across three 

sites in North America (a temperate conifer forest in Oregon, USA, a temperate deciduous forest in 

Maryland, USA, and a boreal conifer forest in Manitoba, Canada) can be explained using a model 

based on the squared MCH. Asner et al. (2012) found that plot-scale biomass across four tropical 

forest sites in Panama, Peru, Madagascar, and Hawaii can be estimated by LiDAR-based MCH, after 

accounting for the differences of wood density and basal area (BA) to MCH relationships for each site. 

More research is needed to find reliable and stable LiDAR metrics for creating transferable biomass 

estimation models as well as an ability to assess model uncertainties. 

In addition to these future directions, this dissertation does provide some recommended 

implications for using LiDAR in forest management, particularity in the sub-tropical forest biome:  

To support sustainable forest management, high spatial resolution forest structure information is 

required to accurately assess the species composition, structure, and distribution of forest stands that, 

in turn, can be used as base information for management decisions across a range of spatial and 

temporal scales (Wulder et al., 2008). Airborne LiDAR has emerged as one of the most promising 

remote sensing technologies, providing detailed, spatially explicit, three-dimensional information on 

forest structure, for operational applications in a wide range of disciplines related to the management 

of forest ecosystems (Vauhkonen et al., 2014). With increasing availability of LiDAR data, forest 

managers have seen opportunities for using LiDAR to meet a wider range of forest information needs 



115 
	

(Nelson et al., 2003). For instance, this dissertation has shown promising results that LiDAR can be 

effectively used to classify tree species and estimate biomass (and biomass change) with relatively 

high accuracy in the study site. The tree species information (predicted by LiDAR) can be helpful for 

forest management, because the development and use of species-specific growth and yield models or 

to inform a range of forest treatment schedules that are highly dependent on species (Vauhkonen et al., 

2014). The LiDAR estimated biomass (and biomass change) can help identify specific areas for 

management interventions, to enhance forest productivity, maintain biomass stocks and optimize 

carbon sequestration. 

The costs associated with LiDAR data will likely continue to be relatively high (compared to other 

remote sensing data), as the regular survey costs (e.g., fuel, mobilization and aircraft ferrying charges) 

need to be borne, and the instrument costs need to be amortized (Wulder et al., 2008). At this time, it 

may be advisable for forest managers to cooperate with other interested agencies to share the cost of 

LiDAR (for multiple use), making it feasible to apply LiDAR on a regular basis. Full-waveform 

(FWF) airborne LiDAR sensors and data have become increasingly available since 2004 (Mallet and 

Bretar, 2009). As there is no significant difference in the acquisition costs between discrete and FWF 

data, more contractors are promoting FWF data because of its perceived additional benefits (Hollaus 

et al., 2014). FWF systems have two important advantages with regard to the additional investigation 

possibilities, i.e., point cloud density can be enhanced by processing the full FWF return signal and 

additional metrics can be extracted by modelling the received waveforms. In the past decade, the 

additional information from FWF data has shown significant potential to forest management, for 

example in the estimation of forest structure parameters (Sumnall et al., 2012; Neuenschwander, 

2012), single tree detection (Reitberger et al., 2008; Gupta et al., 2010) and tree species classification 

(Xu et al., 2012). This dissertation (Chapter 3 and 4) has also shown that the FWF metrics have strong 

capabilities for tree species classification and biomass estimation in the subtropical forest stands. 

Using appropriately designed surveys, multi-temporal LiDAR observations enable measurement of 

forest growth over time (Yu et al., 2008, 2006, 2004; Næsset and Gobakken, 2005). A change in tree 

height, however, can only be measured if the height increase is greater than any bias in the LiDAR 
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measurements. Bias can include instrument specifications, flying height, species architecture and so 

on. (Wulder et al., 2008). Hopkinson et al. (2008) analyzed the relationship between time interval and 

the standard deviation of error in growth estimates, and found that over a one-year period, the growth 

uncertainty was in the range of 0.3 m (around 100% of total growth), but reducing to less than 0.1 m 

(around 6% of total growth) after 5 years. For operational conifer plantation growth estimates, the 

acceptable uncertainty (10%) can be achieved within a three-year time interval. As a result this 

approach could be adopted (in the subtropics) for determining the minimum repeat acquisition time 

interval for an accurate and statistically significant estimate of forest growth in the future.  
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