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Abstract

Resources are limited in capacity. In the meanwhile, over-provisioning of resources resulted in server

low utilization could be costly to cloud providers. The underlying reasons of the low utilization are

multiple-folds, such as uneven application fit where the application cannot fully utilize the resources

allocated or the uncertainty in demand forecasts that is introduced by the dramatically varied demand of

the cloud resource between peak and non-peak periods. While many research works are devoted to opti-

mize the resource allocation techniques in the effort of achieving higher server utilization, how to control

resource demand so the correct level of resource provisioning can be determined has become the next

research question. In this thesis, we introduce a pricing methodology with dynamic pricing that intended

to induce desired demand pattern and enhances the revenue of a cloud provider. The proposed pricing

methodology encourages cloud tenants, whose requested Virtual Machines (VMs) can be allocated eas-

ily, to use more cloud service by offering them lower prices and discouraging cloud tenants, whose

requested VMs are difficult to allocate, from using cloud service by charging them higher prices. We

study our pricing methodology with a combinatorial optimization algorithm, the Knapsack Algorithm

and show that the overall revenue is enhanced through evaluations. Then, to achieve fairness among

users, we further perform a case study of our pricing methodology with a multi-resource allocation

fairness algorithm, the Heterogeneous Dominant Resource Fairness (DRFH) algorithm. Trace-driven

simulation results show that the proposed pricing methodology with DRFH can increase the overall rev-

enue by up to 11.60%. Furthermore, we propose a novel cloud federation system that is cognitive to

the dynamic prices as a decision making assistant tool for our pricing methodology. The cloud federa-

tion system automatically selects and migrates user tasks to a cloud system that is charging at a more

affordable rate. We discuss the architectural framework and platform design, provide a mathematical

formulation and investigate a total service cost minimization approach with privacy constraints. Sim-

ii



ulation results demonstrate the proposed system can lower the cost of cloud services by exploiting the

advantages of dynamic prices of multiple clouds.
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Chapter 1

Introduction

This thesis presents how resource management of the cloud system can be accomplished through de-

mand control using dynamic prices. As more and more companies or individuals have moved their

applications or computing tasks to the cloud, cloud providers are facing a new challenge: the server uti-

lization is only at 10% [1]. Low server utilization has numerous causes, such as uneven application fit

where the application cannot fully utilize the resources allocated or the uncertainty in demand forecasts

that is introduced by the dramatically varied demand of the cloud resource between peak and non-peak

periods. While many research works are devoted to optimize the resource allocation techniques in the

effort of achieving higher server utilization, how to control resource demand so the correct level of re-

source provisioning can be determined has become the next research question. This thesis introduces

a new approach of using dynamic pricing to control aggregate demand to avoid resource over/under-

provisioning and achieve a higher profitability. Further, to avoid requiring users to pay close attentions

to the frequent changing prices and make real-time request decisions themselves, this thesis demon-

strates a price-aware cloud federation system that could cognitively reacts to the dynamic prices and

automatically makes demand decisions.

1.1 Motivation

For any for-profit organization, the ultimate goal is to maximize its profitability. Ever since the Cloud

Computing has emerged, we have observed a rising number of cloud service providers providing differ-

ent service types, such as infrastructure, computing and storage, have been introduced to the market [2].

To achieve its ultimate goal, a cloud provider is devoted to seek the way to lower costs through resource

management and develop an efficient pricing strategy that focuses not only on how much it increases
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price, but also on how much it increases profitability[3].The virtualization technique is the key in cloud

computing. Computational and storage resources are provided by Infrastructure as a Service (IaaS)

cloud through different types of Instances. Upon the request of an Instance by a tenant, if the cloud has

enough resources to host the instance, a virtual machine (VM) is allocated onto a server so that the cloud

tenant could run her applications or other computational tasks on the Instance, or the VM to be specific.

Therefore, resource management in cloud computing is well studied in the perspectives of virtualization

and allocation optimization [4][5][6]. However, optimization from any aspect alone is limiting. The

amount of resources a cloud tenant needs varies from time to time. Traditional resource allocation and

provisioning techniques still require data centers to be prepared for the intense resource demand dur-

ing peak period [7]. Incorrect estimations of user demand levels may lead to costly over-provisioning

of resources. Moreover, regardless of how the cloud is considered to be an unlimited resource pool,

any resource has fixed capacity. In case of resource competition, the cloud resource should be shared

among all users fairly. It is important to incentivize cloud tenants to request for cloud resources rea-

sonably. Also, given the cloud system is becoming more compatible and easier to access, changing to a

cheaper service provider has becoming a common practice for users who are price sensitive. Thus, the

demand of cloud resources is more reactive nowadays. A competing cloud provider is urged to develop

a more “dynamic” pricing strategy that could control the reactive demand to maintain system utiliza-

tion level and revenue. Therefore, user demand patterns should also be considered as inputs to the VM

placement problem. In this thesis, we propose a pricing methodology that, by shaping the demand pat-

tern, contributes in the resource management perspective that achieves system resource high utilization

with Knapsack Algorithm and resource fair-sharing with Heterogeneous Dominate Resource Fairness

(DRFH) Algorithm. The profitability of the proposed pricing methodology is evaluated through numer-

ical and trace-driven simulations. Results have shown that it enhances the cloud provider’s revenue.

The ability of the proposed pricing methodology to induce user demand pattern is also proven to be a

success.

On the other hand, the key for a service to be acceptable for general users is powerful functions yet

simplified usages. The pricing methodology we proposed may need users constantly paying attentions

to the current prices a cloud provider charges for their VMs. Users also need to constantly make de-
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cisions about whether or not to continue using the service at the given prices since the price may be

changing. These may become new obstacles for users to adopt the cloud services. Moreover, the goal

of service consumers, especially consumers with huge service demand, are to receive qualified services

with minimum costs possible. To this end, we introduce a new way to improve user experiences on

such cloud services. We propose a price-aware cloud federation system that provides the capability

of automatically choosing and migrating user tasks to the cloud system that is charging at the lowest

rate on real-time basis. The cloud federation [8] system inter-connects global “cloud of clouds” with

the ability to communicate and cooperate between clouds provided by different vendors. Our pricing

methodology is more user-friendly with the cloud federation system. When one cloud resource is too

expensive for a user, the cloud federation system would automatically migrates her program or data set

running on a VM of a cloud service to a cloud service with an affordable rate. Simulation results have

shown that the total cost for users is dropped significantly with the cloud federation system, comparing

to a single-cloud service.

The rest of the thesis is organized as follows: in Chapter 2, we provide an overview of different

techniques of resource management, pricing-based demand control and cloud federations in cloud com-

puting. In Chapter 3, we propose a pricing methodology that enhances the cloud providers’ revenues

and keeps system resource utilization high. We study the ability of the proposed pricing methodology to

affect the user request submission pattern and the profitability of the proposed pricing methodology for

a cloud provider through numerical and trace-driven simulations. In Chapter 4, we introduce a price-

aware cognitive cloud federation system as a supporting tool of our proposed pricing methodology. In

Chapter 5, we discuss the conclusion and suggestions of possible extension of the work included in this

thesis.

1.2 Summary of Results and Contribution

In this thesis, we

• Propose a pricing methodology that leverages cloud task scheduling algorithms to determine the

optimal demand pattern of the cloud service, generates dynamic prices according to current work-

3



load of the cloud system and uses pricing as a tool to control the aggregate demand and achieve a

higher profitability.

• Propose a framework of a price-aware cloud federation system as a supporting tool for the pro-

posed pricing methodology that would help user automatically choosing, and migrate computation

tasks to, a cloud service that is charging at a affordable rate.

• Provide a model of price-aware cognitive decision making and mathematically formulation of the

optimization problem.

4



Chapter 2

Background

2.1 Resource Management

A cost efficient cloud need to use fixed costs optimally and to discourage behavior that drives excessive

service costs. Unlike traditional enterprises where leading cost is operational staff, the leading cost

of a cloud data center is servers and infrastructures, facilities dedicated to consistent power delivery

and evacuate heat [1]. Study shows that 45% of the amortized cost goes to servers and 25% of the

amortized cost goes to infrastructure. So one of the goals of the cloud provider is to seek a high rate

of return of its investment. Unfortunately, statistics show that server utilization is only at 10% [1].

Low server utilization has many causes. Processing capacity is over-provisioned for many business

applications to meet the Service Level Agreement (SLA) specifications in terms of appropriate level

of quality, availability, reliability and performance during peak demand periods. Also, to guarantee

application isolation, the traditional ad-hoc deployment of one application requires one application per

unit of physical hardware [4]. Lots of server resources such as central processing unit (CPU), Memory

and storage unit are wasted during low demand periods. Furthermore, the networking costs concentrate

mainly in the networking gear (i.e. switches, routers and load balancers), network power consumption

and network traffics between geographically distributed data centers and the Internet Service Providers.

Therefore, it is obvious that both achieving high server utilization and finding the optimal placement

of data centers to deploy service applications have a role to play in achieving cost efficient cloud. Our

dynamic pricing methodology utilizes a resource allocation algorithm to determine how many VMs

each user should receive according to their requests. In this section, we discuss resource allocation

optimizations which have been tackled from various perspectives.
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Static and Dynamic Virtual Machine Placement

In data centers that use static VM placement algorithms, a physical machine (PM) is chosen at the

time of VM creation with the knowledge of PM capacity and the resource requirements of the VM.

The placement might not be rearranged until the PM is restarted [9]. On the other hand, dynamic

placement algorithms leverages the VM live migration capability to rearrange the VM placement in

response of variations in traffic load, resource demand and unplanned downtime of a PM. The fact that

VM placement decisions are made with the knowledge of system status such as PM capacity and traffic

load enabled our pricing methodology to calculate new unit prices according to real-time system load.

SLA Violation Reduction Virtual Machine Placement

SLA violation reduction VM placement algorithm reduce SLA violations. SLA specifies not only level

of qualities of the cloud services that the cloud provider provisions, but also has additional constraints

regarding security, data availability or the physical location of the data storage. SLA is negotiated

between cloud providers and consumers [10]. A consumer may require that the VM cannot run on a

PM that is located over-seas. A cloud provider may require that the resource demand does not overload

the resource capacity by a probability of p. [4] proposed a dynamic VM placement algorithm that

minimizes the number of PMs required to provision the VMs subject to constraint of the probability of

server overloading, which reduces the rate of SLA violations. It measures the time series and probability

distribution of VM’s CPU demand during the interval t. The CPU demand for the next interval of length

t is predicted based on the historical demand during the prior interval of length t. VM placement or VM

migration decisions are then made based on the prediction. This algorithm fulfills the resource demand

with a probability.

Another VM placement algorithm minimizes the number of resource utilized, SLA violations due

to the failure of allocating all VMs and the allocation time [11]. All PMs are organized in a binary

search tree. Searching for a PM involves a binary search that would reduce the VM placement com-

putation time. A VM scheduler calculates the ratio of requested VM specification to the available PM

specification for each PM in the binary tree until it finds the best fit (PM that has the maximum VM
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specification to PM specification ratio smaller than 1). VM migration also requires the destination PM

to have enough computation resources that could host the migrating VM. Therefore, migration domain

is carefully defined and the placement service can associate different policies with different migration

domains.

A Constraint Programming optimization approach with a global utility function integrates both the

degree of SLA fulfillment and the operating costs [12]. The VM placement stage is separated from the

VM provisioning stage within the global decision layer autonomic loop. Both problems are formulated

as Constraint Satisfaction Problems (CSP), as well as are instances of an non-deterministic polynomial-

time hard (NP-hard) knapsack problem. Such an approach avoids the problems encountered by rule-

and policy- based systems where conflicting objectives must be handled in an ad-hoc manner by the

administrator.

Network-aware Virtual Machine Placement

Optimization of the network costs is another resource management optimization goal. In [5], a place-

ment algorithm focused on minimizing communication cost among VMs is proposed. With one CPU/Memory

unit on a host is referred to as a slot, VM can be placed in any slots available. The algorithm first par-

titions VMs into clusters using min-cut graph algorithm to ensure communicating VM pairs are parti-

tioned into the same VM cluster. Available slots are partitioned with slot pairs with low-cost connections

in the same slot cluster based on the cost matrix. Then, the algorithm uses Ci j to denote the communi-

cation cost between slots i, j. Di j denotes the traffic rate from VM i to j. ei and gi denotes the external

traffic for VM i and communication cost between VM i to the gateway. With the assumption that there

are n VMs and n slots, the goal of the algorithm is to find the permutation function that maps VM

clusters with heavy communication traffic to slot clusters with low-cost connections.

Network-aware VM placement can also focuses on network power reduction with consideration of

account network topology and network traffic [13]. The VM placement problem is formulated as a net-

work flow problem using a weighted directed graph G = (V,E). Switches, PMs and client applications

are modeled as a vertex v, an edge e represents communication links between PMs and switches. The

source or destination of the flow network is one of VMs or client applications. An edge has a non-zero
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flow only if the switches or PMs at both ends of the edge are powered on. The flow assignment on each

edge specifies the amount of traffic flow for every source-destination demand. Then the optimal VM

placement is found to be the shortest path in the flow network. The algorithm keeps iterate to select a

VM placement requires minimum increase in network power as a locally optimal placement.

With considerations of both constraints on local physical resources, such as CPU and Memory,

and constraints on network resources evolving from complex network topologies and dynamic routing

schemas, network-aware VM placement optimality problem is much more complex due to its quadratic

nature and since it involves many factors beyond the physical host [14]. This problem strives to minimize

the maximum ratio of the demand and the capacity across all cuts in the network, in order to find

placement solutions that, by having spare capacity on each network cut, can absorb unpredicted traffic

bursts. Since this problem is an NP-hard problem, the solving algorithm uses two novel heuristics,

with diverse tradeoffs between solution quality and execution time. The first heuristic exploits integer

programming techniques to solve the problem. It exploits the tree network structure to define and solve

small problem instances on one-level trees recursively. Thus, each placement step, solved by a mixed

integer programming solver, has to deal with a reduced number of VMs, hosts, and network topology

cuts. The second heuristic, which completely leaves out mathematical programming, consists of two

main phases: the first one ranks all the traffic demands, while the second one exploits the ranking to

place VMs on available hosts.

2.2 Fairness in Resource Management

Above mentioned algorithms optimize resource allocation solely from the cloud providers’ perspective.

Since the cloud is a resource pool with fixed capacity, competition of resources among users will arise

in a demand burst. In this section, we discuss resource allocation techniques taking fairness among all

users as an optimization goal and the fairness-efficiency trade-offs.

Hadoop Fair Scheduler and Quincy are slot-based fair scheduling falls in the category of Asset

Fairness, where each user receives equal share of resources 1. Unlike original Hadoop scheduler that put

1http://hadoop.apache.org/docs/r2.7.0/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
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applications in a queue when the resource is fully occupied, the fair scheduler frees up resources for the

newly joined applications, so that each application in the system eventually occupies the same amount

of resource.

Considering the multi-resource nature of cloud platform, [15] introduced the idea of Dominant Re-

source Fairness (DRF) to this area. DRF is a multi-resource allocation problem with the goal to equalize

the dominant share, which is the maximum ratio of any resource allocated to a user in the system, among

all cloud tenants. It is modeled as a max-min optimization problem and is shown to possess a number

of fairness properties such as sharing incentive, strategy-proofness, envy-freeness and Pareto efficiency.

A higher system utilization is also promised compared to a slot-based fair scheduling and a max-min

fair sharing algorithm that focuses on a single resource type [15]. Yet one limitation of DRF is that it

simplifies resources in a cloud computing system as resources in a super computer. It does not consider

the capacity limitation of each server and the fact that, after several VMs are placed in a server, the

remaining resources of this server might not be sufficient to host other VMs. DRFH is proposed in [16],

which generalizes DRF [15] by applying it to real cloud computing systems with heterogeneous servers.

For resource competitions during a congested situation, [17] has indicated that it is unfair for a

specific user to be given a small amount of resources, or experiences a long service completion time.

In the method proposed in this work, when submitting a task request, users are required to submit

a reduction ratio specifying how much the requested size of resource can be reduced in the case of

congestion. Then, the system dynamically adjusts the resource allocation according to reduction ratios

for each user when the resource utilization level is greater or equal to a predefined threshold. Simulation

results show that the proposed method achieves the fair allocation.

Fairness-efficiency trade-offs were studied in [18] with multiple resource types. The authors defined

percentage efficiency as the percentage difference between the total number of jobs processed in a given

allocation and the maximum number of jobs that can be processed with the same capacity constraint,

and the leftover capacity as the amount of unused resources. They proposed and evaluated two fair-

ness functions for multi-resource allocations. Their evaluation results show that fairness functions bear

different fairness-efficiency trade-offs.
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2.3 Price-based Demand Control

Despite all these effort spent on resource allocation of the cloud system, the resource over/under provi-

sioning problem still cannot be solved since the demand is still unpredictable. The right pricing heavily

affects customer behavior, customer commitment, and thus the organizations’ success [19]. Use pric-

ing to guide user behavior toward a more efficient operating point has been shown to be a success in

radio resource management, wireless networks [20] and the Internet [21]. In this section, we discuss

price-based demand control.

Demand Control with Dynamic-Rate Pricing

The smart metering model proposed in [22] provides dynamic pricing of the cloud service based on

the load condition. The resource usage is metered and recorded. The customer’s historical utilization

statistics are used to predict the load condition for the next time interval of operation and thus determine

the price. The price is then published on the cloud provider’s website so the customer could decide

whether to continue her usage.

Pricing plan can be used to incentivize users to shift their usage from peak to off-peak periods by

providing lower prices in less-congested periods [21]. Authors have implemented a mobile application

and invited 50 trial participants to evaluate their proposed model and user sensitivity to prices. They

conclude that users did shift their traffic from high- to low- price periods.

Auction game-based pricing model has also been studied for the cloud market. A double auction

bayesian game-based pricing model proposed in [23] provides the capacity for users to trade their left-

over cloud resources. Both cloud resource providers and consumers form a double auction. Resource

allocation takes place when two sides make a deal at a certain price.

Demand Control with Fairness-Aware Pricing

While the resources of an instance are dedicated to one cloud tenant, the cloud bandwidth is shared

among all cloud tenants. Haiying et al. [24] introduced a pricing policy that focuses on preventing users

from competing for bandwidth at the cost of the data center or other users with current flat-rate pricing
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models. Their pricing policy achieves network proportionality, which means that network resources

allocated to tenants are proportional to their payments and thus achieves fairness between tenants. An-

other work [25] considered the price competitions among different providers in the open market. They

tackled the cloud competition problem and proposed a non-cooperative game to investigate the price

competition among cloud providers and its impact on profit of all cloud providers, tenant satisfaction

and final instance prices.

2.4 Pricing Models of The Cloud Service

In this section, we discuss existing pricing models of the cloud service. For IaaS cloud, computing

infrastructures such as CPUs, storage and network are virtualized and provisioned to cloud tenants as

Instances. Each cloud tenant simply requests Instances to run her applications or other services. Some

examples of IaaS are Amazon Elastic Compute Cloud (Amazon EC2) and Google Compute Engine [19].

The flat rate pricing model is used by most of the cloud providers, such that cloud tenants are charged

according to the time of usage regardless of network congestions or system workload. Many researchers

have proposed pricing models that provide dynamic rates to encourage cloud tenants to lease Instances

in a desired manner.

Computational Pricing

Since our pricing methodology optimizes computational resources, in this section we discuss existing

computational pricing of the cloud services. Reserved Instances: Amazon EC2 provides the option for

customers to subscribe to its cloud service for one- or three-year periods with a non-refundable one-time

payment at a lower rate. Cloud tenants can use their reserved resources at anytime during the reserved

period while Amazon ensures that the reserved resources are always available [26]. However, resources

may be wasted if the cloud tenant has reserved an instance, but for most of the time left it idle. Freemium

and Usage-based: To encourage potential cloud tenants to try their cloud services, both Amazon EC2

and Google Compute Engine provide free but limited amount of resources for a limited time period.

Once the actual usage exceeds the limits, usage-based pricing is generally applied. Usage-based pricing
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is the most common pricing model for cloud services as it is elastic and charges a tenant based on the

actual usage. A typical Google Compute Engine standard instance may contain 1 virtual core, 3.75GB

memory and charges in minute-level increments for the time that the cloud tenant runs her instance1.

Amazon EC2 bills to the nearest server-hour or gigabyte-month [26]. Usage-based pricing allows users

to use the cloud service anytime without a long-term commitment, but the access to cloud service is

not always guaranteed. Financial Option: Sharma et al. [27] proposed a pricing model that employs

the financial option theory and Moore’s law. They treated the cloud computing commodities as assets

and mapped cloud parameters to the Black-Scholes-Merton Model. Moore’s law is used to describe

the value of the resources in cloud. The price determined by their model is the optimal price the cloud

provider should charge the clients to recover its initial cost.

Although flat-rate pricing is widely adopted by mobile, Internet and television service providers,

[28] has shown that flat-rate pricing is optimal when the capacity or quantity of the expected sales is

infinite. On the other hand, the dynamic pricing method has shown its benefit when the capacity is

fixed and unsold volume is worthless such as in the airline, hotel and electric utility industries [29].

Spot Instances: Amazon provides its unsold cloud capacity as spot instances for customers to bid on.

Amazon sets its spot prices through a market-driven auction and publishes its spot price for the next

time period online so that customers can run those instances as long as their bids exceed the current spot

price. Spot Instance pricing allows Amazon to sell more of its unused resources at the highest possible

rate while preserving control over the spot price [30]. Unfortunately, for cloud tenants, spot instances

introduce uncertainty to their access to the cloud service because they may be terminated at any time.

Networking Pricing

Despite various types of pricing policies, almost all networking pricing models follow a principle that

charge users’ Internet usage bidirectional with different standards2. In general, ingress is cheaper than

egress. Despite various types of pricing models, almost no pricing model comes with a performance

guarantee. Google advertises that its Google Compute Engine instances can achieve maximum perfor-

2https://cloud.google.com/products/compute-engine/
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mance, throughput and availability at low cost through its native load-balancing technology 3. However,

what kind of maximum performance and how low the cost are not specified anywhere. The Amazon

EC2 SLA specifies its service commitment of 99.95% availability 4. Yet no performance guarantee is

included in the SLA.

Storage Pricing

Storage pricing provided by various cloud services are relatively lower compared to computing and

networking. Microsoft Azure 5 provides four types of storage, including block blobs, page blobs and

disks, tables and queues and files (in preview stage). It also has four redundancy levels, including

locally redundant, zone redundant, geographically redundant and read-access geographically redundant.

In addition to basic storage price, some cloud companies also charge users for data operations (request,

delete, etc.) and data transfer, e.g., Amazon Simple Storage Service and Google Cloud Storage. In this

work, we simply use network transmission to represent these additional cost applied to the storages.

2.5 Service Recommendation Systems

Because each cloud service provides different VM types and SLAs, selecting an appropriate cloud ser-

vice for user applications may require some technical background. To ease up this process, some re-

search works have been devoted to service recommendation systems [31][32][33]. Authors in [31]

proposed a business-centric revenue-driven recommendation system that considers the appropriate rec-

ommendation time, price and the number of repetitions when finding the optimal recommendation strat-

egy to maximize the seller’s expected total revenue. In [32], authors proposed a recommendation system

for IaaS Cloud applications based on analytic hierarchy process method. The proposed system automat-

ically selects a cloud service that satisfies the required network Quality of Service (QoS) constraints

on real-time basis. In [33] authors proposed a cloud service discovery system that automatically find a

cloud service according to user provided service query specified in pre-defined query structures.

3https://cloud.google.com/products/compute-engine/
4http://aws.amazon.com/ec2/sla/
5https://azure.microsoft.com
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2.6 Cloud Federation Systems

The term of cloud federation, or inter-cloud, the cloud of clouds, was first introduced by Kevin Kelly

in 2007. The inter-cloud is analogous in the way the Internet works. An Internet service provider

that has an endpoint attached to it will access or deliver traffic from/to source/destination addresses

outside of its service area by using Internet routing protocols with other Internet service providers with

pre-arranged exchange or peering relationships. The work [34] first proposed the inter-cloud blueprint

to describe the high level architecture of the inter-operating of multiple clouds. With the concept of

inter-cloud, distributed software systems [35] explored a new application scenario. Federated cloud

system helps to achieve better QoS, reliability and flexibility [36]. Authors in [37] proposed a cloud

federation system that provides profit-aware solutions in order to receive benefits from pricing policies

provided by multiple clouds. Some of the other cloud federation systems are proposed for load balancing

and distribution of elastic applications among different cloud data centers to achieve reasonable QoS

levels [38].

Program Decomposition

Decomposition of software program is breaking the system into small parts that are easy to maintain.

The decomposition can be in terms of system functions as classes or objects and data entities. Program

decomposition, distributed storage and computation are the fundamental techniques for parallel com-

puting, which is widely adopted as a solution in big data processing and complex computing [39]. For

example, Hadoop decomposes data into chunks and distributes them among computer clusters. Then,

based on the data each node contains, the Hadoop MapReduce sends appropriate program module to

each node to process data in parallel 6. [40] proposed a decomposition algorithm that decompose a

sequential program into speculatively parallel threads that can run on multi-processor chip, with consid-

erations of data dependency and load imbalance. In [41], authors proposed a program decomposition

framework that provides near-optimal mappings of program segments to machines with minimum-cost.

Data elements needed for the program segments can be transferred among machines. The cost of exe-

6https://en.wikipedia.org/wiki/Apache Hadoop
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cuting a program segment depends on machine selections and associated data transfer costs.

With decomposed and distributed programs, cognitive optimization of resource allocation is also an

open issue. Intrinsically as a group of dynamic partitioning problem, research on the dynamic parti-

tioning between cloud and users’ mobile terminal has been conducted from the perspectives of offline

K-step approach [42] and flexible partitioning [43]. A similar idea has been used in [44], which has

designed and developed a cognitive platform that enables task migration and dynamic task allocation

between the cloud server and the devices.

Privacy Regulation Through Across-Clouds Distribution

Keeping computing tasks that involve sensitive data in a private cloud and outsourcing the rest of com-

puting tasks that involve insensitive data to public clouds is a preliminary solution for data privacy

regulation. However, as more data-intensive computing tasks are required, this kind of hybrid cloud

computing has became inappropriate. [45] proposed a Privacy-Aware Data Intensive Computing on Hy-

brid Clouds that automatically splits data-intensive tasks according to security levels of the data. They

modified MapReduce’s distributed file system to replicate data and send sanitized data to the public

cloud. Using multiple public clouds to ensure data security is also a popular solution. Faults in software

or hardware in cloud computing are known as Byzantine faults. Many research work has been done

on Byzantine fault tolerance [46]. DepSky virtual storage cloud system [47] leverages the Byzantine

quorum system protocols to ensure data security. The DepSky system is consisted of n clouds, while the

DepSky system reads and write to each cloud separately. With intensive tests, experiences of working on

a specific cloud and extraordinary positive user reviews, a cloud provider might be trustworthy. Besides,

a series of redundant array of independent disks (RAID) of the cloud work [48] tackle the problem by

encrypting and encoding the original data and later by distributing the fragments transparently across

multiple providers. This way, none of the storage vendors can see the full picture of the client’s data.
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Chapter 3

A Pricing Methodology for Revenue

Enhancement

3.1 The Pricing Methodology

As discussed in Chapter 1, in this chapter, we propose a pricing methodology with dynamic pricing

[49], which has been shown to be beneficial in many industries [29]. Under this methodology, an IaaS

cloud provider may charge different tenants different prices. Inspired by the principle of the Law of

Supply and Demand, we aim to use pricing to incentivize cloud tenants to use data center resources

in a way that high utilization level is ensured. Given that the types of VMs and the number of VMs

requested by all active cloud tenants are known at any point in time, our pricing methodology leverages

a task scheduling algorithm to evaluate how many VMs each tenant should receive so that the system

utilization is maximized. Since the fewer resources allocated to a user by the task scheduling algorithm

indicates that the system has more difficulty to place the user requested VM, we are motivated to raise

the prices of these users who overload the system. Thus, a pricing weight for each tenant is derived

according to the number of VMs allocated to the tenant. Finally, new prices are determined based on

the prices the cloud provider was charging originally and the weight derived in two methods: we study

our pricing methodology with Total Unit Price Redistribution (TUPR), where we sum up the unit prices

charged by a cloud provider originally and redistribute the charges among users according to the pricing

weight, and Total Revenue Redistribution (TRR), where we sum up the revenue received by a cloud

provider originally and redistribute the charges among users according to the pricing weight.

Moreover, we study our pricing methodology with two resource allocation algorithms. First, we
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study our pricing methodology with Knapsack Algorithm, a combinatorial optimization algorithm that

aims to maximize the total revenue and the server utilization level of a cloud data center. From the

simulation results we notice that some of the users may not be getting any resources and this is not

fair. Therefore, we further study our pricing methodology with the DRF algorithm [15] where total

resources allocated to each cloud tenant is fair and resource utilization is higher compared to other fair

sharing resource allocation algorithms [50]. As a result of price changes, requests for a specific type of

VM by existing or potential users are encouraged or discouraged according to the Law of Supply and

Demand, so system optimal resource utilization and optimal usage behaviors are eventually achieved.

From simulation results, we show that the total revenue a cloud provider receives is enhanced and overall

fairness is archived among users through simulations. The proposed pricing methodology follows a

pay-as-you-go pricing model. It suits the fundamental characteristics of the cloud as an on-demand and

usage-based service. The proposed pricing methodology is transparent and truthful because it takes the

total allocable resources into consideration so that any manipulation from the backend such as resource

throttling or capacity right-sizing is reflected in the new prices. Unlike the Spot Instance [30], our

proposed pricing methodology does not produce service termination. Also, instead of setting the price

to the highest possible rate, the prices generated by our pricing methodology are determined by looking

at the utilization of system resources.

3.1.1 Methodology

As mentioned above, the main motivation of this work is leveraging pricing policy to manipulate user

behavior, for the purpose of increasing system resource utilization. Figure 3.1 is a sequence diagram

that demonstrates the working mechanism of the proposed Fairness-aware Pricing Methodology. Users

request VMs with known current prices of VM types. Then, upon the arrival of a new user’s VM request,

task scheduling algorithms are executed to dynamically allocate cloud resources, subject to the cloud

server’s existing tasks and available resources. The algorithm not only determines how easily the VM

could be hosted, but also decides on which server the VM is to be placed. While the user’s request

is being fulfilled, the real-time cloud information, including incoming VM settings and current cloud

workload, are updated to the decision making module that implements our proposed pricing model. The
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new price is generated accordingly after the allocation decision. With the new prices, existing users

react by increasing or decreasing their usage percentage of the cloud service. Once the user reactions

are submitted to our system, the algorithm starts again from the beginning as a new loop. Also, potential

users may decide to start to use the cloud service. This procedure continues as the users’ demands

fluctuate. It is apparent that a decision making module that predicts users’ reaction to future prices

and subsequently adjusts prices to achieve predefined optimization goals is the key of our methodology.

Details are described in following sections.

Figure 3.1: Sequence Diagram for Fairness-aware Pricing

3.2 Problem Formulation

With the pricing methodology proposed in the last section, a number of open issues remain to be ad-

dressed before the methodology can be put in practice. For instance, on which server or servers should

the cloud system place the requested VMs? How would pricing affect users’ demands? How to deter-

mine the price, in order to enhance the revenue? In this section, we discuss these issues.

We define the input variables as shown in Table 3.1. Suppose the set of servers S, resource types Sr

and resource capacity vector cl are known for each server l. Also suppose the set of cloud tenants U ,

resource vector of their desired types of VM Di and the number of VMs users initially requested Ts are
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known.

S = {1, . . . ,k} Set of servers the cloud system contains.

Sr = {1, . . . ,m} Resource types each server contains.

cl = {cl1, . . . ,clm} Normalized resource capacity vector for each server
l, where clr denotes the total amount of resource r
available in server l.

U = {1, . . . ,n} Set of cloud tenants active in the cloud system.

Di = {Di1, . . . ,Dim} Resource vector of the VM requested by user i,
where Dir denotes the fraction of resource r required
by user i’s VM.

Ts = {Ts1 , . . . ,Tsn} The number of VMs submitted to the system by all
tenants, where Tsi denotes the number of VMs sub-
mitted by user i.

Table 3.1: Definition of Input Variables

3.2.1 Price Sensitivity

Our pricing methodology leverages the concept of price sensitivity to model user reaction to the new

price generated by our pricing model. In a competitive market, price sensitivity defines the highest price

a customer would pay for the desired product and the lowest price a customer would pay without second

thought of the product quality [51][52]. As the most powerful tool to marketers, price sensitivity is

well studied when setting the price of a new product to maximize the demand of the product and the

business outcome [53]. For a majority of the buyers, the price is not only a key factor that will influence

their purchase decisions, but also an indicator for them to perceive product or service quality. The price

threshold that captures consumer insensitivity to small price changes was examined in [53]. Harmon

et al. [51] studied the Price Sensitivity Measurement (PSM) model and incorporated it into the Value-

Based Software Engineering (VBSE) process. PSM check is used twice during the VBSE process to first

refine customer value assessment of the potential product and then help in finalizing the development of

a marketing plan prior to commercialization. Moreover, the Law of Supply and Demand suggests that

the availability and desirability of a product has a great effect on the product price [54]. If the supply
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is sufficient but the demand is low, the price will be low. In contrast, if the supply is inadequate but

the demand is high, the price will be high. Then, given that all other factors are equal, the demand of

the good or service decreases as the price increases7. The demand curve of a commodity is downward

sloped as shown in Figure 3.2. However, to the best of our knowledge, the specific demand curves of

cloud services have not been well studied.

Figure 3.2: Commodity Demand Curve

Since the supply and demand functions of the cloud service as the price changes has not been well

studied, in this work, we utilize an iso-elastic demand function to model how the level of user demand

changes as price changes [55]

fR(p) = (1/p)(1/α),α ∈ (0,1)

α =
1

log1/p fR(p)

(3.1)

where α is the elasticity coefficient and fR(p) represents the demand.

In this work, a higher demand level indicates an increasing need of cloud VMs.

7http://www.investopedia.com/terms/l/lawofdemand.asp
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3.2.2 Cloud Task Scheduling

One of the most important steps of our proposed pricing methodology is to determine how easily a VM

can be handled by the cloud. The computing resources provided by the cloud consist of heterogeneous

servers where each server may contain a different amount of resources. Hence, the allocation of various

forthcoming VM requests onto the distributed servers in the cloud is of great importance for the overall

system efficiency. In this work, we utilize resource allocation algorithms that maximizes the cloud

server utilization level to help us determine how should the user requests of VM should be addressed.

Namely, given the number of VMs each user has initially requested, Tsi , we determine Tni , the number

of VMs each user is allocated in the cloud system by a cloud task scheduling algorithm.

3.2.3 Revenue Enhancement

One of the goals of our proposed pricing methodology is to enhance the revenue for cloud service

providers. According to the Law of Supply and Demand, given that other factors such as advertisement,

brand preferences, product differentiation and segment membership are kept the same, the quantity

demanded and the price of a commodity are inversely related [51]. For simplicity, let

wi =

1
Tni

∑i∈U
1

Tni

,∀i ∈U (3.2)

where w = {w1, . . . ,wn} denote the weights assigned to n tenants.

Revenue Enhancement with Total Unit Price Redistribution

To calculate our new prices of a VM, we first study the case in which we keep the total unit price of

all users the same and redistribute the sum among users according to the weights. To be specific, the

new price for each user i is calculated according to the weight of user i and the price the cloud provider

charges each tenant. For example, a typical Google Compute Engine standard instance may contain

1 virtual core, 3.75GB memory and charges in minute-level increments for the time the cloud tenant

runs her instance at $0.07/hour1. Let Pe = {Pe1 , . . . ,Pen} denote the prices the cloud provider charges n

tenants and Pd = {Pd1 , . . . ,Pdn} denote the new prices generated by our pricing model for the n tenants,
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then,

Pdi = wi×∑
i∈U

Pei ,∀i ∈U. (3.3)

Algorithm 1 Pricing Calculator for user i with Total Unit Price Redistribution
1: Set Pesum ← 0
2: Get Tni ← TaskSchedulingAlgorithm
3: for n = 1 to N do

4: wi←
1

Tni
∑i∈U

1
Tni

5: Pesum ← Pesum +Pei

6: end for
7: Pdi ← wi×Pesum

The algorithm for calculating unit prices for user i is shown in Algorithm 1.

Revenue Enhancement with Total Revenue Redistribution

Next, we study the case in which we keep the total revenue of all users the same and redistribute the sum

among users according to the weights, given the number of VMs that can be scheduled for each user by

DRFH. To be specific, the revenue generated by user i, Rei , is calculated as

Rei = Tni×Pei ,∀i ∈U. (3.4)

New unit price Pd = {Pd1 , . . . ,Pdn} is calculated as

Pdi =
wi×∑i∈U Rei

Tni

,∀i ∈U. (3.5)

Algorithm 2 Pricing Calculator for user i with Total Revenue Redistribution
1: Set Pesum ← 0
2: Get Tni ← TaskSchedulingAlgorithm
3: for n = 1 to N do
4: wi←

1
Ni(Ai)

∑i∈U
1

Ni(Ai)

5: Resum ← Resum +Pei ×Ni(Ai)
6: end for
7: Pdi ←

wi×Pesum
Ni(Ai)

The algorithm for calculating unit prices for user i is shown in Algorithm 2.
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Reactive Revenue Calculation

Then, given Pei known, the total revenue Re a cloud provider receives is calculated as

Re = ∑
i∈U

Tsi×Pei ,∀i ∈U. (3.6)

User elasticity is determined through the demand function

Tsi = fR(Pei),∀i ∈U. (3.7)

We input the same user demand vectors and system resource vectors into our pricing model to obtain

the new prices Pdi . Then, we use the demand function again to derive the number of VMs users would

request after they receive the new prices, denotes as T ′si

T ′si
= fR(Pdi),∀i ∈U. (3.8)

All users’ VM requests T ′si
are scheduled using first-in-first-out (FIFO) scheduling again. Let T ′ni

be

the number of VMs each user is allocated. The total revenue Rd a cloud provider receives with the new

prices is calculated as

Rd = ∑
i∈U

T ′ni
×Pdi ,∀i ∈U. (3.9)

From (3.1) and (3.9) we deduce that

Rd = ∑
i∈U

(1/Pdi)
(1/α−1),α ∈ (0,1). (3.10)

When Pdi is smaller than 1, the revenue generated by our pricing methodology decreases as α in-

creases. In contrast, when Pdi is larger than 1, the revenue generated by our pricing methodology in-

creases as α increases.
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3.3 Case Study on Knapsack Combinatorial Optimization

Combinatorial optimization optimizes the total value of the items that could fit in a container with fixed

volume. Knapsack problem is a popular combinatorial optimization problem widely applied in resource

allocation and cost-benefits analysis where there are financial constraints exist [56][57]. Thus, in this

section, we study our proposed pricing methodology with knapsack allocation algorithm.

3.3.1 Knapsack Problem

In general knapsack problem, given a set of n items, each item with a weight ki and value vi, and also

given the maximum weight K of the container, the knapsack problem determines the number of items

that can be put into the container with the optimization goal of maximizing the total value of the items.

When applying knapsack problem into resource allocation of cloud data center with resource capacity

vector c, given Tsi VMs requested by cloud tenant i, each VM with a resource vector Di and price Pei ,

the optimization goal is to maximize the total revenue of a cloud provider given the amount of resources

user requested VMs contain, the prices of each VM and the total resource available in the cloud data

center.

0-1 Knapsack Problem

0-1 knapsack constraints that each type of the VM requested by user i is allocated on cloud servers with

no repetition. The mathematical expression of the 0-1 knapsack problem is,

maximize
n

∑
i=1

PeiTni

subject to
n

∑
i=1

DiTni ≤ c,Tni ∈ (0,1).
(3.11)
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Bounded Knapsack Problem

Bounded knapsack problem allows multiple but limited VMs requested by user i to be allocated on cloud

servers. Let Tsi denotes the maximum number of VM each VM type i that user requests, then,

maximize
n

∑
i=1

PeiTni

subject to
n

∑
i=1

DiTni ≤ c,Tni ∈ (0, . . . ,Tsi).

(3.12)

Unbounded Knapsack Problem

Unbounded knapsack problem allows unlimited VMs requested by user i to be allocated on cloud

servers. Thus, the problem is formulated as,

maximize
n

∑
i=1

PiTni

subject to
n

∑
i=1

DiTni ≤ c,Tni ≥ 0.
(3.13)

3.3.2 Knapsack-based Revenue Enhancement

Since there are possibilities that different users would require the same VM, or the same user would

require multiple VMs of the same type, we study our pricing methodology with bounded knapsack

problem. The mathematical formulation of pricing weight is,

wi =

1
Tni

∑i∈U
1

Tni

,∀i ∈U (3.14)

Knapsack-based Revenue Enhancement with Total Unit Price Redistribution

The calculation of Pdi is straight forward,

Pdi = wi×∑
i∈U

Pei ,∀i ∈U. (3.15)
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Knapsack-based Revenue Enhancement with Total Revenue Redistribution

With the number of VM that is allocated for each user i, the calculation of Pdi is as follows,

Rei = Tni×Pei ,∀i ∈U. (3.16)

New unit price Pd = {Pd1 , . . . ,Pdn} is calculated as

Pdi =
wi×∑i∈U Rei

xi
,∀i ∈U. (3.17)

3.3.3 Simulations

In order to evaluate the proposed pricing methodology, we conduct experiments to compare the total

revenue our pricing model produces with the total revenue a pricing model with flat-rate unit price would

produce. We use actual Google Compute Engine VM types to model our cloud system. To be specific,

we assume a cloud provider with unified resource formulated as <CPU,Memory >, where Memory is

represented in terms of gigabyte (GB) and four users each requesting a VM with resource formulated

in terms of <CPU,Memory >. We compare the revenue of our pricing model with the revenue a cloud

provider would receive with Google Compute Engine unit prices. New prices are generated once a

request of VM has arrived at the system. Then, user responses to the new prices are modeled according

to the demand function described in Section 3.2.1. Finally, the revenue of our pricing model is calculated

as the product of the new unit prices and users’ final decision of the amount of the VMs they request.

Furthermore, we compare the change of user requests with our new unit prices to evaluate the ability

of demand control of our proposed pricing methodology. The numeric data used in the simulations is

listed in Table 3.2 and Table 3.3 .

Table 3.2: System Resource Vector for Knapsack-based Revenue Enhancement

Total Resource < 40CPU,180GB >

From Table 3.3 we observe that User A requested VM is small so while it is easy to be allocated
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Table 3.3: User Demand Vector and Prices of Google Compute Engine

User A < 1CPU,3.75GB > $ 0.045/hour

User B < 4CPU,3.6GB > $ 0.112/hour

User C < 2CPU,7.5GB > $ 0.089/hour

User D < 4CPU,15GB > $ 0.177/hour

using resource fragments, it also would fragmentize server resources. User B requested VM is CPU

intensive. It would quickly use up server CPUs but left too much Memory. User C requested VM is

medium sized which is easier to be allocated than User D requested VM but also easier to fragmentize

server resources.

Simulation for Knapsack-based Revenue Enhancement with Total Unit Price Redistribution

In Figure 3.3, we compare the revenue our pricing methodology generates with alpha set to 0.5 to 0.9.

The revenue decreases as the alpha value increases. The overall revenue is higher comparing to the

revenue generated with Google Compute Engine unit prices.
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Figure 3.3: Comparison of Revenues with Different Alpha Values

In Table 3.4 we show the new unit prices our pricing methodology produces. The unit price of the

VM User A requested is raised by 17.8% and the unit price of User B requested VM is raised by 135.7%
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Table 3.4: New Unit Prices Compared To Google Compute Engine Unit Prices

VM Type Number of
VMs

Requested

Google
Prices

New Prices

< 1CPU,3.75GB > 5 $ 0.045/hour $ 0.053/hour

< 4CPU,3.6GB > 5 $ 0.112/hour $ 0.264/hour

< 2CPU,7.5GB > 5 $ 0.089/hour $ 0.053/hour

< 4CPU,15GB > 5 $ 0.177/hour $ 0.053/hour

to discourage User A and, especially, User B from requesting resources. The unit price of the VM User

C requests is lowered by 40.4% while the unit price of the VM User D requested is lowered by 70% to

encourage User C and D to request more resources.
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Figure 3.4: Comparison of Requests Generated by Each User

In Figure 3.4, we compare the change of user requests with our new unit prices of the types of VMs

used in example with α set to 0.9. To maximize the total revenue and the server utilization level, a

cloud provider needs to sell as much VMs as possible. The VM User B requests is the least encouraged

according to the knapsack algorithm because the CPU would quickly be used up if User B requests

too much. Therefore, from the simulation result, the number of VMs User B requests as a response to
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our new unit prices is changed to 0 eventually. Also, since the VM User D requested is large, User D is

starting to be discouraged to request resources as the server is fully utilized and the sum of requested VM

by all users goes to 40. On the other hand, the VM User C requests is the most encouraged according

to knapsack algorithm. So the number of VMs User C requests as a response to our new unit prices is

increased the most.
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Figure 3.5: Comparison of Allocated Virtual Machines for Each User

In Figure 3.5 and Figure 3.6, we further show the change of allocated VMs for each user and compare

the revenue each user generates with our new unit prices. The result show to correctness of our pricing

methodology since it indeed controlled user demand in a way that Knapsack Algorithm suggests.

29



0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 Sum of VM requested by all users

R
ev

en
ue

 (
$/

ho
ur

)

 

 

User A Existing Revenue
User A New Revenue
User B Existing Revenue
User B New Revenue
User C Existing Revenue
User C New Revenue
User D Existing Revenue
User D New Revenue

Figure 3.6: Comparison of Revenues Generated by Each User

Simulation for Knapsack-based Revenue Enhancement with Total Revenue Redistribution

In Figure 3.7, we compare the revenue our pricing methodology generates with alpha set to 0.5 to 0.9.

The revenue decreases as the alpha value increases. The overall revenue is higher comparing to the

revenue generated with Google Compute Engine unit prices.
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Figure 3.7: Comparison of Revenues with Different Alpha Values

In Table 3.5 we compare the new unit price our pricing methodology produces with the existing unit

prices the Google Compute Engine charges. User A, C, and D are encouraged to request more resources
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Table 3.5: New Unit Prices Compared To Google Compute Engine Unit Prices

VM Type Number of
VMs

Requested

Google
Prices

New Prices

< 1CPU,3.75GB > 5 $ 0.045/hour $ 0.042/hour

< 4CPU,3.6GB > 5 $ 0.112/hour $ 1.042/hour

< 2CPU,7.5GB > 5 $ 0.089/hour $ 0.042/hour

< 4CPU,15GB > 5 $ 0.177/hour $ 0.042/hour

since the unit price User A requested is lowered by 6.7%, the unit price User C requested is lowered

by 52.8% and the unit price User D requested is lowered by 76.3%. The unit price User B requested is

raised by 803.3% to discourage User B from requesting resources.
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Figure 3.8: Comparison of Requests Generated by Each User

In Figure 3.8, we compare the change of user requests. Same as the simulation results of TUPR,

User B is the least encouraged to request VM, so the number of VMs User B requests is gradually

changed to 0. User D is discouraged to request VM as the sum requested VM by all users goes to 40.

User C is most encouraged to request VM, so the number of VMs user C requests increased the most.
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Figure 3.9: Comparison of Allocated Virtual Machines for Each User

In Figure 3.9 and Figure 3.10, we compare the change of allocated Virtual Machines of each user

with our new unit prices and the revenue each user generates with our new unit prices. The results

shows that our pricing methodology is able to control demand according to the suggestion of Knapsack

algorithm.
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Figure 3.10: Comparison of Revenues Generated by Each User
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3.3.4 Discussion of Knapsack-based Revenue Enhancement

The knapsack problem maximizes the total revenue for the cloud provider. However, it does not consider

fairness among users. Some of the desirable fairness properties are sharing incentive that guarantees

that no user is better off in a system where resources are equally partitioned among all users; strategy-

proofness, where no user can be better off by providing untruthful resource demands; Pareto-efficiency,

where user requests are allocated without preempting existing allocations; envy-freeness, where no user

prefers the allocation of another user [15]. From the simulation results, we can see that eventually

User B will not be able to use any of the cloud resources. We claim that it is not fair for User B.

However, as discussed in previous chapter, the fairness-efficiency trade-off is also an important factor

for any algorithms or methodologies that tries to achieve fairness. How to find an acceptable threshold

has become an interesting question. To this end, we study our pricing methodology with the DRFH

algorithm, which is proved to be able to achieve fairness and a higher system utilization than several fair

schedulers in next section.

3.4 Case Study on DRFH Fairness

In [16], authors have proved that the DRFH allocation algorithm achieves significant improvements in

resource utilization, compared to the traditional slot scheduler (e.g., Hadoop Fair Scheduler). Thus, in

this section, we study our proposed pricing methodology with DRFH allocation algorithm.

3.4.1 DRFH Scheduling

DRFH takes the set of heterogeneous servers S, server resource types (e.g., CPU, Memory, storage) Sr

and normalized resource capacity vector for each server l, cl , as one input and takes the set of cloud

tenants U and resource vector of demanded VM Di as another input. Let r∗i be the largest resource

required by user i’s VM, then the normalized demand of user i’s VM is calculated as

dir = Dir/Dir∗i ,∀i ∈U,r ∈ R. (3.18)
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For example, consider a system with 2 servers, Server 1 with 2 CPUs, 12GB Memory and Server 2 with

12 CPUs, 2GB Memory. The system has 14 CPUs, 14GB Memory in total. Thus, Server 1 and Server 2

have normalized resource capacity vectors < 1/7,6/7 > and < 6/7,1/7 >, respectively. Suppose there

are two users. User1 requests VMs with 0.1 CPUs and 0.5GB Memory. User2 requests VMs with 1

CPU and 0.2GB Memory. User1 and User2 have normalized demand vectors < 1/5,1 >, < 1,1/5 >,

respectively.

Let Ail = {Ail1, . . . ,Ailm} be the resource allocation vector for user i on server l, Ai = {Ai1, . . . ,Aik} be

the allocation matrix of user i and A = {A1, . . . ,An} be the overall allocation for all users. An allocation

is feasible only if no server has used more resources than its total resources

∑Ailr ≤ clr,∀l ∈ S,r ∈ R. (3.19)

Let Nil(Ail) be the maximum number of VMs that can be scheduled for user i in server l and Dir be

the fraction of the total resource r required by user i, then,

Nil(Ail) = min
r∈R
{Ailr/Dir},∀l ∈ S,r ∈ R. (3.20)

Let Ni(Ai) be the total number of VMs that can be scheduled for user i under allocation Ai, then,

Ni(Ai) = ∑
l∈S

Nil(Ail). (3.21)

The dominant resource allocated to user i in server l is

Gil(Ail) = Nil(Ail)Dir∗i = min
r∈R
{Ailr/dir}. (3.22)

Therefore, the global dominant share allocated to user i is

Gi(Ai) = ∑
l∈S

Gil(Ail) = ∑
l∈S

min
r∈R
{Ailr/dir}. (3.23)

The goal of DRFH is to maximize the minimum global dominant share among all users, subject to
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the capacity constraints of each server,

max
A

min
i∈U

Gi(Ai),

s.t.∑Ailr ≤ clr,∀l ∈ S,r ∈ R. (3.24)

DRFH allocates resource to the user with the minimum global dominant share among all active

users. When a user has all its VMs placed in a server, it is removed from the user set U and DRFH

repeats the allocation process with the updated user set.

3.4.2 DRFH-based Revenue Enhancement

As introduced in Section 3.2.3, the pricing weight calculation for DRFH-based revenue enhancement

methodology is

wi =

1
Ni(Ai)

∑i∈U
1

Ni(Ai)

,∀i ∈U (3.25)

DRFH-based Revenue Enhancement with Total Unit Price Redistribution

The calculation of Pdi is

Pdi = wi×∑
i∈U

Pei ,∀i ∈U. (3.26)

DRFH-based Revenue Enhancement with Total Revenue Redistribution

Next, the calculation of Pdi for TRR is

Rei = Ni(Ai)×Pei ,∀i ∈U. (3.27)

New unit price Pd = {Pd1 , . . . ,Pdn} is calculated as

Pdi =
wi×∑i∈U Rei

Ni(Ai)
,∀i ∈U. (3.28)
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3.4.3 DRFH-based Fairness

In [15], authors showed that unlike the fair division mechanism Competitive Equilibrium from Equal

Incomes [58], which does not satisfy strategy-proofness and population monotonicity, and Asset Fair-

ness, which does not satisfy sharing incentive and bottleneck fairness, DRF satisfies sharing incentive,

strategy-proofness, envy-freeness, Pareto-efficiency, single resource fairness, bottleneck fairness and

population monotonicity at the mean time. In [16], authors proved by deduction that DRFH, as an ex-

tension of DRF, satisfies strategy-proofness, envy-freeness, Pareto-efficiency, single resource fairness,

bottleneck fairness and population monotonicity as the DRF does. Furthermore, authors in [16] showed

through the trace-driven evaluation that although DRFH does not guarantee 100% sharing incentive for

all users, it provides 98% of users the same task completion ratio as traditional Slots schedulers do.

Since the calculation of our new prices is inversely proportional to the number of tasks DRFH algorithm

can schedule for a user, our proposed pricing methodology satisfies the same fairness properties as

DRFH. That is, our proposed pricing methodology provides sharing incentive for most of the users; it is

strategy-proof, envy-free and Pareto-efficient, and satisfies single resource fairness, bottleneck fairness

and population monotonicity.

For the same example described previously, suppose a cloud provider charges for one VM with 0.1

CPU and 0.5GB RAM at $0.6/hour and one VM with 1 CPU and 0.2 GB RAM at $1.2/hour. Also

assume each user requests an infinite number of VMs. DRFH allocates 12 VMs to user1 and 6 VMs to

user2. The new prices are calculated as $0.4/hour and $1.6/hour for user1 and user2, respectively.

Personal Fairness Since by Personal Fairness [59], most users would expect that a VM consisting

of smaller resources is cheaper than a VM that consists of larger resources, the new prices of $0.4/hour

for a 0.1 CPU and 0.5GB RAM VM and $1.6/hour for a 1 CPU and 0.2 GB RAM VM indicate personal

fairness of our pricing model.

Social Fairness Social fairness means that the provider does not profit unreasonably and the price

only increases based on the increase of costs. Since server capacity is limited, one VM with a larger

amount of resources allocated in a server could use up a large portion of the server’s resources and the

remaining resources might not be sufficient for allocation to other users’ VMs. Therefore, a VM with
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larger amount of resources is more costly to allocate. Our new prices are inversely proportional to the

number of VMs a user receives. With the goal of DRFH allocation algorithm to equalize the share of

resources among all active users, fewer VMs allocated indicates the type of VM requested consists of

larger amount of resources. VM with larger amount of resources is more costly to allocate, so it should

be charged more. Comparing to the original prices, the decrease in user1’s price and increase in user2’s

price indicate social fairness of our pricing model.

3.4.4 Simulations

In order to evaluate the proposed fairness-aware pricing methodology, we conduct experiments to com-

pare the total revenue our pricing model produces with the total revenue a pricing model with flat-rate

unit price would produce. To be specific, in numerical evaluations, we use actual Google Compute

Engine VM types to model our cloud system. We compare the revenue of our pricing model with the

revenue a cloud provider would receive with Google Compute Engine unit prices. In the trace-driven

evaluation, we use the sum of CPU and memory of each requesting VM as the unit price of this VM.

Then, we compare the revenue of our pricing model with the revenue a cloud provider would receive

with the calculated unit prices. New prices are generated once a request of VM has arrived at the sys-

tem. Then, user responds to the new prices are modeled according to the demand function described

in Section 3.2.1. Finally, the revenue of our pricing model is calculated as the product of the new unit

prices and users’ final decision of the amount of the VMs they request.

Numerical Simulations

In this section, we demonstrate the efficiency of our algorithm with numerical simulations with 2

types of computing resources, including CPU units and Memory. A cloud service provider with 2

servers is hosting 4 users’ applications simultaneously. We formulate the servers’ resource as a vector

< CPU,Memory >, represented in GB, and all users’ request as a resource vector < CPU,Memory >

and corresponding unit prices from Google Compute Engine. These numeric data are listed in Table 3.6

and Table 3.7, respectively. We use FIFO scheduling to simulate the process of VM allocation and at

the end of scheduling process, get the actual number of VMs each user could receive.
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Table 3.6: System Resource Vector

Server 1 < 27CPU,50GB >

Server 2 < 13CPU,50GB >

Total Resource < 40CPU,100GB >

Table 3.7: User Demand Vector and Prices of Google Compute Engine

User A < 1CPU,3.75GB > $ 0.07/hour

User B < 4CPU,3.6GB > $ 0.176/hour

User C < 2CPU,7.5GB > $ 0.14/hour

User D < 4CPU,15GB > $ 0.28/hour

DRFH-based Revenue Enhancement with Total Unit Price Redistribution
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Figure 3.11: Comparison of Revenues Generated by Existing and Proposed Pricing Model

Figure 3.11 illustrates the comparison of revenues achieved with unit prices of Google Compute En-

gine and proposed policies with α set to 0.5, 0,6, 0.7, 0.8 and 0.9. Revenues converge as the system

resource is fully occupied at which the sum of VM requested by all users is approximately 15. Since

the unit prices are smaller than 1, the revenue with a smaller α value is greater than the revenue with
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a larger α value, as depicted in Section 3.2.1. Overall, new revenue generated by our proposed pricing

methodology is higher than the existing revenue calculated with unit prices of Google Compute Engine.

Table 3.8: New Unit Prices Compared to Google Compute Engine Unit Prices

VM Type Number of
VMs

Requested

Google
Prices

New Prices

< 1CPU,3.75GB > 5 $ 0.07/hour $ 0.097/hour

< 4CPU,3.6GB > 5 $ 0.176/hour $ 0.162/hour

< 2CPU,7.5GB > 5 $ 0.14/hour $ 0.162/hour

< 4CPU,15GB > 5 $ 0.28/hour $ 0.244/hour

In Table 3.8 , we compare our new unit prices of each user with Google Compute Engine unit prices

for the types of VMs used in the example with each user requesting 5 VMs of their desired type. The

unit price of the VM User A requested is raise by 38.6% and the unit price of VM User C requested is

raised by 15.7%, where as the unit price of VM User B requested is lowered by 8.0% and the unit price

of VM User D requested is lowered by 12.9%. The VM with < 1CPU,3.75GB > that User A requested

requires the smallest portion of resources so that it is easy to be placed on a server. Therefore, the unit

price of VM < 1CPU,3.75GB > is the lowest. On the other hand, the VM with < 4CPU,15GB > that

User D requires the largest portions of resources so that it is hard to be placed on a server. Hence, the

new price of this type of VM is the highest.
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Figure 3.12: Comparison of Requests Generated by Each User

In Figure 3.12, we compare the change of user requests of our new unit prices of the types of VMs

used in the example with α set to 0.9. The VM with < 1CPU,3.75GB > is charged at the lowest price;

therefore, the number of VMs User A requests is increased the most. On the other hand, the VM with

< 4CPU,15GB > is charged at the highest price; therefore, as a respond to the price increases, User D

requests less and less VMs.
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Figure 3.13: Comparison of Allocated Virtual Machines for Each User
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Figure 3.14: Comparison of Revenues Generated by Each User

In Figure 3.13, we show the number of VMs allocated on a server for each user with our new unit

prices with α set to 0.9. In Figure 3.14, we compare the revenue generated by each user with our

new unit prices of the types of VMs used in the example with α set to 0.9. Compared to the revenue

achieved with Google Compute Engine unit prices, the results show that revenues generated with our

pricing methodology by users B and D are decreased, whereas the revenues generated by users A and

C are increased. Still, with our pricing methodology, the greatest revenue is generated by user D as it

requires the type of VM that is most difficult to handle; the next greatest revenue is generated by user C,

and then user B and user A, which indicates personal and social fairness.
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Figure 3.15: Comparison of Revenues Generated by Existing and Proposed Pricing Model

Figure 3.15 illustrates the comparison of revenues achieved with unit prices of Google Compute Engine

and proposed policies with α set from 0.5 to 0.9. Revenues converge as the system resource is fully

occupied. Again, the revenue with α = 0.5 is greater than the revenue with α = 0.9. Overall, new

revenue generated by our pricing methodology is higher than the revenue calculated with the existing

unit prices of Google Compute Engine.

Table 3.9: New Unit Prices Compared To Google Compute Engine Unit Prices

VM Type Number of
VMs

Google
Prices

New Prices

< 1CPU,3.75GB > 5 $ 0.07/hour $ 0.054/hour

< 4CPU,3.6GB > 5 $ 0.176/hour $ 0.151/hour

< 2CPU,7.5GB > 5 $ 0.14/hour $ 0.151/hour

< 4CPU,15GB > 5 $ 0.28/hour $ 0.34/hour

In Table 3.9, we compare the unit prices generated for each user’s requested VM type with the unit

prices provided by Google Compute Engine. The unit price of VM User A requested is lowered by
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22.9% and the unit price of VM User B requested is lowered by 14.2%, where as the unit price of VM

User C requested is raised by 7.9% and the unit price of VM User D requested is raised by 21.4%.
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Figure 3.16: Comparison of Requests Generated by Each User
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Figure 3.17: Comparison of Allocated Virtual Machines for Each User

In Figure 3.16, we compare the requests submitted to the cloud system by each user with the existing

and new unit prices. All users are able to request for resource. As the sum of requested VM by all users

goes to 40, the number of VMs User A requests is increased the most and the number of VMs User D

requests is decreased the most.
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In Figure 3.17 we show the differences of the number of requested VMs allocated for each user with

the existing and new unit prices. In Figure 3.18, we compare the revenue generated by each user with

α set to 0.9. The results show that, compared to the revenue achieved with Google Compute Engine

unit prices, the revenues generated by users A and B are decreased with our new unit prices, whereas

revenues generated by users C and D are increased with our new unit prices. Furthermore, the greatest

revenue is generated by user D as it requires the type of VM that is most difficult to handle; the next

greatest revenue is generated by user C, and then user B and user A, which indicates personal and social

fairness.

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 Sum of VM requested by all users

R
ev

en
ue

 (
$/

ho
ur

)

 

 
User A Existing Revenue
User A New Revenue
User B Existing Revenue
User B New Revenue
User C Existing Revenue
User C New Revenue
User D Existing Revenue
User D New Revenue

Figure 3.18: Comparison of Revenues Generated by Each User

Trace-driven Simulations

In this section, we evaluate our proposed pricing methodology with empirical data from Google cluster-

usage traces8. The traces contain user resource requests and system resource information for about a

month-long period in May 2011. We extract the system resource vector (S and Sr), set of active cloud

tenants (U), resource vector of the VM requested by the ith user (di), and the number of VM requests

submitted (Tsi) from the traces. Since server resources provided in Google cluster-usage traces are

normalized to the largest server resource, the actual Google Compute Engine price of the requested type

8https://code.google.com/p/googleclusterdata/
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of VM is hard to determine. Thus, we assume that originally the cloud provider charges $1 per CPU per

hour and $1 per GB Memory per hour, where both CPU and Memory are normalized numbers extracted

from Google cluster-usage traces. For example, a server with normalized 0.5 CPU and 1 GB Memory

is originally charged at $1.5 per hour.

As described in Section 3.2.1, elasticity coefficient α is the decisive parameter for market reaction.

However, the values of α are different from user to user, subject to distinct application domain and

various motivations. To simulate a reasonable scenario, the elasticity coefficient α is derived by dynamic

calculations with price and demand settings in our experiments. Specifically, the value of α is calculated

by the following equation for our trace-driven simulations:

α =
1

log1/p fR(p)
. (3.29)

DRFH-based Revenue Enhancement with Total Unit Price Redistribution
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Figure 3.19: Comparison Between Existing and Proposed Pricing Model

The trace-driven simulation results for total unit price redistribution are depicted in Figure 3.19. The

revenue of the cloud provider is calculated according the user demands extracted from the traces and the

assumed original unit prices from Google Compute Engine and unit prices generated by our proposed

pricing methodology. The user demands vary throughout the monitoring period, so does the cloud
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provider’s revenue, which ranges from around $0 to around $15000. From the results we observe that

our proposal outperforms existing pricing policy in most of the time slots. Cumulatively, the cloud

service providers’ overall revenue can be increased from $2173700 to $2426000, which is by up to

11.60%.
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Figure 3.20: Comparison Between Existing and Proposed Pricing Model

DRFH-based Revenue Enhancement with Total Revenue Redistribution

In contrast, we also conducted evaluations for the pricing of total revenue redistribution. From the results

shown in Figure 3.20, we observe that the cloud service provider derives more revenue with the novel

pricing solution, comparing to existing flat pricing approach. The overall revenue increased significantly

from $2172800 to $2415600, which is around 11.18%.

3.5 Summary

In this chapter, we have proposed a pricing methodology that induces the optimal resource demand

pattern and enhances the revenue of cloud providers. New prices are determined according to the number

of tasks a user could get scheduled by the cloud task scheduling algorithm. A user whose task is difficult

for the system to process is discouraged from being submitted to the system as frequently as other users’
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tasks that can be handled easily. Our new prices are calculated with TUPR and TRR. Then, we have

studied our methodology with the Knapsack Algorithm and DRFH allocation algorithm. Numerical

simulations have been conducted to compare the total revenue a cloud provider would receive with

the new unit prices generated by our pricing methodology in both of the cases to the total revenue

a cloud provider would receive with its original prices. Simulation results have also shown that our

pricing methodology is able to control demand according to the allocation algorithms’ suggestions.

An empirical study with trace-driven simulation results has shown that the proposed pricing policy with

DRFH algorithm can increase the cloud service providers’ overall revenue by up to 11.60% and 11.18%,

respectively.
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Chapter 4

A Price-Aware Cloud Federation System

4.1 The Price-Aware Cloud Federation System

Our pricing methodology proposed in Chapter 3 requires users to constantly pay attentions to the current

prices the cloud providers charge. This may be a shortcoming for our pricing methodology to be accept-

able or useful. Furthermore, since the cloud is the best effort service, many organizations are afraid to

rely on a third-party cloud service to ensure the organizations’ service availability and business continu-

ity. Another concern relates to data security, confidentiality and auditability [60]. Crackers and hackers

have never stopped their efforts on attacking information systems to steal users’ virtual properties. Since

the access is public, cloud exposes their systems to more public attacks than conventional data centers.

On the other hand, users cannot easily extract their data and programs from one cloud service to an-

other. When a cloud data center crushes, users can hardly move their data to another data center on

time. Plenty of research works are devoted to investigate secured and robust cloud service infrastruc-

tures. All of these obstacles can be removed by using services from a cloud federation or inter-cloud

[8] system that supports distributed cloud services where one cloud could use the computational, stor-

age or network resources of other clouds [61] to complete a task together [62]. Similar to cloud-RAID

[48], better privacy protection can be achieved if users were able to control on which clouds the highly

sensitive software classes or objects are hosted and distribute the rest of system function codes on other

clouds. This way, no public cloud provider could acquire all the program pieces. With programs and

data scattered among and backed-up by different data centers maintained by different cloud providers,

also with the automated service choosing and program/data sets migration ability, the cloud service and

our proposed pricing methodology are more reliable and convincible for users to adopt.

As discussed in Chapter 1, in this chapter, we propose a price-aware cloud federation system in-
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tended to provide a tool for users to automatically choose and migrate their applications to a cloud

provider that is charging at a more acceptable rate. Further, we take the advantage of program decom-

position techniques, where a large program system can be broken down into system functions as smaller

classes or objects and data entities9. In this chapter, we assume user applications can be decomposed

into program and data sets, each set can run on a VM as a task. Our cloud federation system allows users

to configure the privacy constraints of their program by defining the number of program or data sets that

could be hold in one cloud service concurrently. The system looks up current prices a cloud provider

charges for their VM at a pre-defined time interval. Then, each of the program and data sets can be

assigned to a cloud service charging at the lowest rate according to the privacy constraints. The cost of

running the program or data set at the destination service, along with the cost of migrating the program

or data sets to the destination service are considered before the migration decision is made. As a price-

aware cognitive system, the proposed platform collects pricing information from multiple clouds and

dynamically adapts its execution modality on purpose of minimizing total cost. This dynamic adaption

seeks optimal assignment of codes and data sets of user decomposed application, which is a procedure

that uses the update-to-date prices to predict future trend of cost and eventually lead to a lower priced

solution. Hence, it is also a user-oriented system that benefits its customers financially.

4.1.1 System Overview

Architecture

The architectural framework of the cloud federation system is shown in Figure 4.1. The platform con-

catenates multiple cloud services to provide a unified inter-cloud environment. Essentially, it is a three-

layer software system: application layer (consists of the code layer and the data set layer), platform layer

and cloud infrastructure layer, from top to bottom. As the middle-ware between the cloud infrastruc-

ture and application layer, the cloud federation platform monitors the real-time pricing from different

providers and cognitively adjust the decomposed program and data sets of user applications to minimize

the overall price.

9https://en.wikipedia.org/wiki/Decomposition
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Figure 4.1: Architectural Framework for Cognitive Cloud Federation System

Code Definition

We define c program codes in set C and d data chunks in set D as illustrated as ovals and rectangles in

Figure 4.1. We also define s cloud service providers S. Note that some cloud server hosts both code

and data set, while some of the others only supports either code or data set. Considering the code-data

relationship between program codes and data chunks, we define that a program code can be associated

with 0 to d data chunks, while a data chunk can be accessed by 0 to c program codes. Furthermore,

we consider the code-data relationship as a directed graph G, where the directed edges are the data flow

from data chunks to the program codes, the weights of the edges are the data size to be transmitted. In

general, a program code only require a small proportion of data in the data chunk. In this chapter, we

denote ω as the data access proportion. Note that if a program code and its associated data chunk are

located in different cloud server, an inter-cloud data transmission is required.

Code Migration

One of the key features of our inter-cloud system is the capability of program and data set migrations

among multiple cloud services on demand. A mobile agent is a composition of computer software and

data that is able to migrate from one cloud to another autonomously and continue its execution at the

destination [63][64]. In our cloud federation system, once a better task and cloud assignment solution is
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found, designated program codes or data chunks can be encapsulated into mobile agents and dispatched

to the destination cloud.

Inter-Cloud Message Exchange

In order to facilitate the work flow of user task, the program codes need to communicate with each

other through messages, including native context states, processed data and control signals. Since the

program codes are executed in a distributed manner among multiple clouds and a single code can be

hosted in different clouds under different circumstances, a message exchanges between two code sets

can be either local invocations (e.g., when the two code sets are hosted in the same cloud) or remote calls

(e.g., when the two code sets are executed in different clouds). Hence, a dynamic message forwarding

mechanism that determines the source and destination of a message is needed in the cognitive cloud

federation system.

Platform Design

Figure 4.2: Design of Decomposed Cloud Federation Platform

The cloud federation system introduces challenges including decomposition granularity, response

latency, synchronization frequency and application programming interface design. In order to facili-

tate the proposed architectural framework, we design the cognitive cloud federation platform with both

privacy and pricing awareness as shown in Figure 4.2.
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Similar to the concept of Master Node and Slave Node implemented in the Hadoop10 system, the

proposed platform incorporates Cognitive Node and Element Node to facilitate the cognitive feature. A

Cognitive Node is the core of the whole network, which is hosted in a secured cloud infrastructure, e.g.,

a private cloud. The Price-Aware Cognitive Engine collects the pricing data from Element Nodes in

pre-defined time interval and makes cognitive decisions to optimize the program/data set and the cloud

assignment. Note that both Cognitive Node and Element Node contain a Message Coordinator, which

serves as the router for inter-code message exchange. The Price-Aware Cognitive Engine’s decision

provides message routing information, which is broadcasted by the Cognitive Node to all Element Nodes

spreading in multiple clouds.

4.2 Problem Formulation

In this section, we mathematically formulate the cloud federation system. For a particular user applica-

tion, we denote the number of available cloud service providers as cs, the number of program codes as

pc, and the number of data chunks as dc.

4.2.1 Program Feature

We model the code-data relationship as a 1−n,{n = 0,1,2,3..,dc} pair, which means a program code

can access 0 to dc data chunks distributed in various cloud servers. We formulate the code-data relation-

ship as pc×dc logical matrix L, in which the numeric value of elements are defined to be either 0 or 1.

Hence, Li j = 1 indicates that the ith program code requires data chunk j for its procedure. In addition,

we denote the message exchange between code as a pc× pc matrix M, where Mi j indicates the message

data size between the ith and the jth program codes.

4.2.2 Dynamic Pricing

With the assumption that each cloud service is charging with dynamic prices, we denote instance prices

for the cs cloud providers in vectors Pα and Pβ with length of cs, where Pα represents the unit com-

10http://hadoop.apache.org/
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putational resource prices and Pβ represents the unit data storage prices, respectively. In addition, we

denote the network prices for the cs cloud providers as Pρ and Pθ , representing the unit input and output

bandwidth prices.

4.2.3 Assignment of Codes and Data Sets

A key of the system design is to determine the assignment of program codes and data chunks. We

formulate the assignment of program codes over cloud services as a pc× cs matrix Bp. It is defined as

a logical matrix, where Bpi j = 1 represents that the ith code is executed at the jth cloud service. Similar

to code assignment, we define a dc× cs logical matrix Bd to formulate the assignment of data chunks

over cloud services. Bdi j = 1 indicates that the ith data chunk is stored at the jth cloud service.

4.2.4 Assignment Constraints

Software Integrity

In order to guarantee the completeness of the software system, every program code and data set chunk

is required to be assigned to either one or more cloud services. In order to simplify our model, we only

consider the case that no duplicate exists in this work. Therefore, the constraints on software integrity

can be described by the following equations:

n

∑
j=1

Bpi j = 1,∀i ∈ Bpi j (4.1)

where Bpi j represents whether the ith code is executed at the jth cloud service.

n

∑
j=1

Bdi j = 1,∀i ∈ Bdi j (4.2)

where Bdi j represents whether the ith data chunk is stored at the jth cloud service.
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Privacy Assurance

Privacy assurance involves a series of techniques and SLAs, which constrain the access of sensitive

data. With strict privacy requirements, some sensitive data even need to be stored in cloud servers

within certain geographical areas. For instance, some health care data cannot be transferred outside the

US territory, according to specific laws and legislations. In this chapter, we demonstrate the privacy of a

software system by a set of privacy levels T heta and Phi, which represent the privacy restriction on the

assignment of program codes and data chunks, respectively. The value of privacy level T heta, Θ∈ [1,c],

is defined as the maximum quantity of program codes allowed to be hosted in the same cloud. Similarly,

Phi, Φ ∈ [1,d], constrains the coexistence of multiple data sets for a specific cloud service. In either of

Θ or Φ, a value 1 represents that all program codes or data chunks shall be distributed among different

clouds, while the values of pc and dc provide complete freedom for assigning the program codes and

data chunks. Thus, the smaller Θ and Φ are, the higher privacy level is assured. With these definitions,

we derive the constraints of privacy assurance as follows:

n

∑
i=1

Bpi j ≤Θ,∀ j ∈ Bpi j (4.3)

where Bpi j represents whether the ith code is executed at the jth cloud service.

n

∑
i=1

Bdi j ≤Φ,∀ j ∈ Bdi j (4.4)

where Bdi j represents whether the ith data chunk is stored at the jth cloud service.

Apparently, privacy and pricing represent a pair of trade-off that the software users shall be aware

of.
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4.2.5 Price Calculation

Computing Price

According to above formulations, the total computing price Pc is derived as follows:

Pc = FT
p BpPα (4.5)

where FT
p is the transpose of the pc×1 program code set Fp, Bp is the pc× cs matrix representing

the assignments program codes and cloud services and Pα is the cs× 1 vector of unit computational

resource prices.

Storage Price

According to above formulations, the total storage price Ps is derived as follows:

Ps = FT
d BdPβ (4.6)

where FT
d is the transpose of the dc×1 data chunk set Fd , Bd is the dc× cs matrix representing the

assignments data chunks and cloud services and Pβ is the cs×1 vector of unit data storage prices.

Networking Price

With the data access proportion ωd , we first derive the cs× cs data networking volume matrix Vr in

following algorithm:

Algorithm 3 Data Networking Matrix Algorithm
1: Initiate a cs× cs all 0 matrix Vr

2: for each (i, j) in Li j == 1 do
3: for each (x,y) satisfies Bpix == 1 and Bd jy == 1 do
4: if x!=y then
5: Vryx ← ωdFdy

6: end if
7: end for
8: end for
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According to the above formulations, the total inbound bandwidth price Pi is derived as follows:

Pi = ||VrPρ ||1 (4.7)

where Vr is a cs× cs matrix representing the networking volume between cs cloud services when a

piece of data is read from one cloud service and Pρ is the cs×1 vector of unit input bandwidth prices.

||.||1 is the l1 norm.

while the total outbound bandwidth price Po is derived as follows:

Po = ||V T
r Pθ ||1 (4.8)

where V T
r is the transpose of the cs× cs matrix representing the networking volume between cs

cloud services when a piece of data is read from one cloud service and Pθ is the cs× 1 vector of unit

output bandwidth prices. ||.||1 is the l1 norm.

Also, we derive the cs× cs message networking volume matrix Vm as follows:

Algorithm 4 Message Networking Matrix Algorithm
1: Initiate a cs× cs all 0 matrix Vm

2: for each (i, j) in Mi j! = 0 do
3: for each (x,y) satisfies Bpix == 1 and Bp jy == 1 do
4: if x!=y then
5: Vmxy ←Mi j

6: end if
7: end for
8: end for

According to the above formulations, the total message inbound bandwidth price Qi is derived as

follows:

Qi = ||VmPρ ||1 (4.9)

where Vm is a cs× cs matrix representing the networking volume between cs cloud services in case

of inter-cloud message exchange and Pρ is the cs×1 vector of unit input bandwidth prices. ||.||1 is the

l1 norm.
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while the total message outbound bandwidth price Qo is derived as follows:

Qo = ||V T
m Pθ ||1 (4.10)

where V T
m is the transpose of the cs×cs matrix representing the networking volume between cs cloud

services in case of inter-cloud message exchange and Pθ is the cs× 1 vector of unit output bandwidth

prices. ||.||1 is the l1 norm.

Therefore, the overall network price Pn is derived as

Pn = Pi +Po +Qi +Qo (4.11)

Total Price

Hence, we derive the total price P of the cloud federation system:

P = Pc +Ps +Pn (4.12)

4.2.6 State-Transition Cost

When the price changes, the cognitive system needs to adapt to the new optimal solution. However,

the transition between two assignment states involves network transmissions. Since the package size of

a program code is relatively insignificant comparing to the size of a data chunk, we only consider the

networking volume produced by the migration of data chunks. Given the current dc× cs data chunk

assignment matrix Bd at the total price of P, we assume that with an up-to-date pricing status, the

proposed system optimizes and derives a set of new dc× cs data chunk assignment matrix B′d with new

total price P′. The network volume of state-transition dc× cs matrix Vs can be derived by the following

equations:

Vs = B′d−Bd (4.13)
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Here we derive the inbound matrix I, a d× s logical matrix, by

Ii j =


Vsi j , Vsi j > 0

0, otherwise

(4.14)

where Vsi j represents the ith data chunk state transition cost.

According to the calculation procedure, a non-zero element Ii j indicates a network input of the ith

data chunk to the jth cloud in the state-transition from Bd to B′d .

Similarly, we derive the outbound matrix O, a d× s logical matrix, by

Oi j =


−Vsi j , −Vsi j > 0

0, otherwise

(4.15)

where Oi j indicates a network output of the ith data chunk to the jth cloud in the state-transition

from Bd to B′d

Hence, the total inbound bandwidth price Ri is derived as follows:

Ri = FT
d IPρ (4.16)

where Fd is the transpose of the dc× 1 data chunk set Fd , I is the dc× cs matrix representing the

inbound network volume and Pρ is the cs×1 vector of input bandwidth prices.

while the total outbound bandwidth price Ro is derived as follows:

Ro = FT
d OPθ (4.17)

where FT
d is the transpose of the dc×1 data chunk set Fd , O is the dc× cs matrix representing the

outbound network volume and Pθ is the cs×1 vector of output bandwidth prices.
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Therefore, the state-transition pricing R can be derived by:

R = Ri +Ro (4.18)

4.2.7 Optimization Target

In the starting stage of the system, the price-aware feature requires the system to seek an optimal com-

bination of program code assignments Fp and data chunk assignments Fd that minimizes the overall cost

according to a given prices. Hence, the optimization target is formulated as follows:

Minimize: P(Fp,Fd)

Subject to: (4.1)(4.2)(4.3)(4.4)
(4.19)

Once the system is launched, to maintain the price-aware performance, the cognitive engine needs

to make decisions to adjust the assignments of program codes and data chunks, according to the real-

time pricing fluctuation. It is a continuous process that keeps the assignment up-to-date with dynamic

prices. Note that, this procedure does not only simply seeking for the lowest prices, but also need to

take the state-transition cost into consideration. With the assumption that pricing policy for all clouds

will last for a time interval t, the system is able to make decisions by calculating the overall cost with

current price P and new minimal price P′ with the state-transition price R. Hence, the objective function

is constructed as:

Minimize: R+P′(Fp,Fd)t

Subject to: R+P′(Fp,Fd)t < P(Fp,Fd)t

(4.1)(4.2)(4.3)(4.4)

(4.20)

4.3 Simulations

To validate the performance of our proposed system and the efficiency of optimization approach, we

conduct simulations from the perspectives of pricing optimization and cognitive price-aware transition.
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4.3.1 Simulation Setup

Table 4.1: Default Simulation Parameters for Cognitive Cloud Federation System

cloud service provider cs 10

code quantity pc 8

data set quantity dc 8

code-data relationship probability p 0.1

computational requirement C (GB) 1 ∼ 30

size of data sets Fd (GB) 1024 ∼ 10240

size of message exchange M (GB) 0 ∼ 0.1

data access proportion ωd 1×10−5

minimum computing pricing Pα 0.0073∼ 0.0089

maximum computing pricing Pα 0.036∼ 0.044

minimum storage pricing Pβ 0.000032∼ 0.000040

maximum storage pricing Pβ 0.000050∼ 0.000062

minimum inbound network pricing Pρ 0.0011∼ 0.0013

maximum inbound network pricing Pρ 0.0019∼ 0.0023

minimum outbound network pricing Pθ 0.11∼ 0.13

maximum outbound network pricing Pθ 0.19∼ 0.23

code and data set privacy level (Θ,Φ) (4,4)

This section describes the initial settings for our simulations. For user applications to be deployed

over our cognitive cloud federation system, we specify the quantities of codes and data sets, while initiate

their code-data relationship by randomly generating non-zero values for all elements in the matrix L

with a probability of p. For the prices from different cloud service providers, we set up random values

for minimum and maximum prices for a specific service and simulate the dynamic prices within the

intervals. Note that the prices of computational resource is given by dollars per unit per hour, the prices

of storage space is given by dollars per GB per hour and the prices of network is given by dollars per

GB. From existing commercial cloud service pricing policies, the initial values for parameters of the

simulations are set in Table 4.1. Note that, all random parameters follow uniform distributions.
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4.3.2 Pricing Optimization

We first simulate the starting stage of the system to demonstrate the efficiency of seeking an optimal

assignment with the lowest cloud service fee. In addition to our proposed optimization approach, we

also compare the cloud service cost with our cloud federation system with the conventional Single-Cloud

solution, which selects the cloud with lowest total service fee to host all codes and data sets.
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Figure 4.3: Tradeoff between Security Level and Cloud Service Fee

Figure 4.3 reveals the trade-off between privacy regulation and pricing optimization. We derive the

cloud service fee for various combinations of privacy levels in codes and data sets. It is obvious that as

the privacy level increases, either in codes Θ or in data sets Φ, the total cloud service fee grows. This

requires the user to choose from different privacy levels based on various requirements. According to

our experimental settings, the proposed cognitive optimization can only outperform the Single-Cloud

system with Θ = 6 and Φ > 6.

One of the most important features of our cloud federation system is the data-code relationships.

Figure 4.4 shows its impact on the cloud service fee. We increase the probability of code-data rela-

tionship, p, to illustrates its impact on cloud service fee. Note that, along with the growth of p from

0 to 1, the cloud service fees for distinct combinations of Θ and Φ all linearly raised to a higher level.

Apparently, these increases are caused by additional inter-cloud data transmissions from data chunks
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Figure 4.4: Effect of Data-Code Relationship on the Cloud Service Fee

to program codes. Similar comparison on Θ and Φ combinations are also conducted. As depicted, if

we select the highest privacy level with Θ = 1 and Φ = 1, the cloud service fee is higher than that of

Single-Cloud within the range of 30%∼ 46%. In contrast, the setting of lowest privacy level with Θ = 8

and Φ = 8 will save the users’ cost by 3%∼ 20%.
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Figure 4.5: Effect of Data Access Proportion on the Cloud Service Fee

Another critical feature that impacts the cloud service cost is the data access proportion ωd . As
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shown in Figure 4.5, we evaluate the system performance with various values of ωd . Apparently, a

larger ωd yields a higher volume of data transmissions between multiple clouds, which results in a

higher cloud service fee. Note that the cost for highest privacy level with Θ = 1 and Φ = 1 dramatically

climbs to 6 dollars. The growth rate is relatively higher than other schemes. This is because the highest

privacy level restricts the program codes and data chunks to be completely distributed, and thus the

solution space for price-aware optimization is much smaller than others.

4.3.3 Cognitive Price-Aware Transition

After the establishment of the optimal assignment solution, we perform simulations over time to evaluate

the platform’s cognitive capability to the dynamic prices. With the initial privacy level setting at Θ = 4

and Φ = 4, we compare the cost of three deployment methodologies: Single-Cloud: to host all program

codes and data chunks in the lowest-cost cloud and never change deployment over time, Optimal-Static:

to find the optimal program codes and data chunks assignments initially and never change deployment

over time, and Optimal-Cognitive: to be cognitive to the dynamic prices of multiple clouds and keep

optimizing deployment assignment over time.
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According to our discussion before, the length of price change time interval will impact the state
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transition decisions. In our formulation, the optimization target in state transition involves the price

change time interval t, which implies that longer time interval will make the cost in state transition

worthy. Therefore, we expect to see a decrease in total cost with a longer interval in our simulations.

Figure 4.6 illustrates the results of our experimental settings with value of t ranging from 1 hour to 100

hours. In contrary to the total cost of Single-Cloud and Optimal-Static methodologies, we observe a

decline in the service cost of the Optimal-Cognitive scheme. In a nutshell, the performance of proposed

dynamic optimization is not severely impacted by the frequency of price fluctuation. This phenomenon

indicates that the occurrence of state-transition in our simulations rarely involves inter-cloud transfer of

data chunks, which will instead significantly increase the cost of state-transition.
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Figure 4.7: Efficiency of Proposed Platform with Time Elapsed

Given price change time interval t = 1, Figure 4.7 illustrates the average cloud service cost over

50 hours for 100 random iterations. In the first hour, Optimal-Static and Optimal-Cognitive share the

same assignment for program codes and data chunks. So they share identical costs. Afterwards, since

the Single-Cloud and Optimal-Static schemes are not cognitive to the price fluctuations of clouds, their

performances become worse as time progresses. In contrast, the Optimal-Cognitive scheme dynamically

adapts new strategies for different pricing combination, thus yields an around 30% reduction on total

cloud service cost.

64



4.4 Summary

In this chapter, to make our dynamic pricing methodology more user friendly, we have investigated a

price-aware cloud federation system that automatically chooses and cognitively migrates user tasks to a

cloud provider charging at a more affordable rate as a reaction to dynamic prices. With the ability of mi-

grating to a lower-rated cloud service, our cloud federation system provides a lower priced solution that

benefits its customers financially. We have mathematically formulated and derived optimal solutions in

both first-stage pricing minimization and cognitive strategy. Preliminary numeric results have revealed

the trade-off between privacy and cost. Simulation results have also demonstrated the efficiency of the

proposed system in reducing total cloud service cost while considering privacy constraints.
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Chapter 5

Conclusion

5.1 Summary of Contributions

This thesis has tackled resource management of the cloud system through demand control using dy-

namic prices. Low server utilization problem cloud providers encountered today has numerous causes,

including uneven application fit where the application cannot fully utilize allocated resources and the

uncertainty in demand forecasts that requires the cloud system always need to be prepared for the de-

mand burst during peak period. Many research works have been devoted to optimize resource allocation

from different perspectives. In this thesis, we have introduced a new approach of using dynamic pricing

to control aggregate demand to avoid resource over/under provisioning and achieve a higher profitabil-

ity. Then, to free users from paying close attentions to the frequent changing prices and make real-time

request decisions themselves, we have introduced a framework of a price-aware cloud federation system

that automatically chooses and cognitively reacts to the dynamic prices and migrate user tasks that is

charging at an affordable rate.

In Chapter 3 we have studied our pricing methodology with resource allocation techniques Knapsack

algorithm and DRFH fair sharing algorithm. We have verified the correctness of our pricing methodol-

ogy and simulation results have shown that the proposed pricing methodology is able to control demand

as the resource allocation algorithm suggests.

In Chapter 4 we have formulated the price-aware cognitive decision making problem mathemati-

cally for our cloud federation system. We have demonstrated the feasibility and efficiency of the cloud

federation system with in-depth simulations.
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5.2 Future Directions

For potential extensions of the current work, we suggest to let users define the maximum prices they

would accept for using a cloud service. Then, instead of responding to every price changes, the cloud

federation system only need to reassess the cost of new code/data set assignment when the price exceeds

the maximum prices. Also, we suggest to explore a more sophisticated system that allows redundant

presence of data chunks and parallel codes over multiple clouds. With the duplicated copies, the cloud

federation system will be more robust and reliable. Given the new setting, the pricing optimization pro-

cedure will a become more complicated system since the system ought to select the appropriate piece

of program codes or data chunks from redundant identical copies. Note that, the information redun-

dancy provides potential reduction in networking costs as it decreases the opportunity of intra-cloud

transmission between program codes and data chunks. On the other hand, this redundancy introduces

storage overheads to the system, which also raises the cost of storage spaces. Therefore, a well-designed

mechanism that leverages this trade-off is needed.
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