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Abstract

The time complexity of problems and algorithms, i.e., the scaling of the time re-
quired for solving a problem instance as a function of instance size, is of key in-
terest in theoretical computer science and practical applications. In this context,
the propositional satisfiability (SAT) and the travelling salesperson (TSP) are two
of the most intensely studied problems, and it is generally believed that solving
SAT or TSP requires exponential time in the worst case. In this work, we refine
and extend a recent empirical scaling analysis approach and study the empirical
scaling of the running times of several prominent, high-performance SAT and TSP
algorithms. For SAT, we focus on random 3-SAT instances from the phase trans-
ition region, arguably the most prominent model for difficult SAT instances, and
obtain interesting and surprising scaling results for both SLS- and DPLL-based
solvers. Particularly, we find solid support for polynomial scaling for SLS-based
solvers on phase-transition random 3-SAT instances. We also show that DPLL-
based solvers scale exponentially and are faster by only a constant factor in solv-
ing satisfiable instances compared to unsatisfiable instances. We further report
empirical scaling results for two classes of random 4-SAT instances to gain addi-
tional insights into the performance of state-of-the-art SAT solvers. For TSP, we
concentrate on two-dimensional random uniform Euclidean (RUE) instances, and
characterise the scaling of running time for complete and incomplete algorithms
for finding optimal solutions. Our results indicate that the scaling of all these al-
gorithms is consistent with or bounded from above by root-exponential models of
the form a ·b

√
n. We also explored the impact of automated algorithm configuration

on the scaling of these algorithms. Since our approach is applicable beyond SAT
and TSP, to enable its broad use, we designed Empirical Scaling Analyser (ESA),
an automated tool that can be conveniently used to study empirical scaling of many
types of algorithms. In particular, ESA presents scaling analysis results in the form
of automatically generated, detailed technical reports. Many results reported in this
thesis, including most tables and figures, were automatically generated by ESA and
are only slightly modified to fit here.
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Preface

This thesis covers several publications as well as manuscripts not yet published,
which I co-authored with others.

A major part of the SAT-related work is published in [52], where I performed
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Chapter 1

Introduction

In theoretical computer science, time complexity is arguably the most important as-
pect for analysing and understanding problems and algorithms. Time complexity
of an algorithm is the scaling of the time required for solving a problem instance as
a function of instance size. Traditionally studied via rigorous mathematical meth-
ods, complexity results are usually studied and understood via a family of functions
of instance size, which describe the asymptotic scaling of operation counts using
notations such as O(n) or Θ(n). Essentially, such results are compact descriptors
of the performance of algorithms and form the basis of the hierarchy of complex-
ity classes in theoretical computer science. They also convey certain information
regarding the feasibility of using a given algorithm to solve a problem instance of
certain size.

In spite of the significant role that theoretical methods play in understanding
complexity of problems and algorithms, many high-performance algorithms are
beyond the reach of such methods due to the complexity of the algorithms. Yet,
these algorithms often represent the state of the art for solving problems of wide
interest in practice. Thus, empirical analysis arises as the alternative for study-
ing the time complexity of these algorithms. In such studies, the propositional
satisfiability problem (SAT) and the travelling salesperson problem (TSP) are two
important problems that have attracted sustained academic interest and have seen
many practical applications. In this thesis, we extended a recent empirical scaling
analysis approach [33], which emphasises the idea of challenging by extrapola-
tion and uses bootstrap re-sampling to statistically assess obtained models. We
also applied the methodology to studying the empirical time complexity of several
high-performance algorithms for SAT and TSP.

1.1 Empirical Analysis of Algorithms

Theoretical methods usually ignore or idealise low-level details of algorithm im-
plementations and execution environments. Moreover, they are typically obtained
for extreme or average cases and for simpler variants of algorithms. Empirical ana-
lysis of algorithms has seen increasing interest, because it permits predicting the
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running times of high-performance algorithms in practice and may also provide
useful insights into their behaviours. This is especially true for N P-hard prob-
lems, where worst-case theoretical analysis typically does not offer much in under-
standing, evaluating and designing high-performance algorithms. Many of these
problems have important applications in practice, for which high-performance al-
gorithms have been designed. Examples of such problems include SAT and TSP,
which we concentrate on in this work, and many others as well. In this context, em-
pirical analysis is often the only way to understand the relevant performance differ-
ences that we observe in practice. Hoos and Stützle [34], for instance, conducted
a systematic empirical analysis to evaluate a number of local search algorithms for
SAT. Their results drew a comprehensive picture on the performance of these al-
gorithms, and, for some of them, revealed some fundamental weaknesses in their
design. Empirical analysis is also applicable to tractable or polynomial-time solv-
able problems, where empirical results often complement results obtained from
worst- and average-case theoretical analysis. Such analysis can help choose or
configure an algorithm for a given problem instance or situation, as demonstrated
in several studies of sorting algorithms [9, 45, 10].

Empirical analysis recently witnessed progress in studying the scaling or time
complexity of algorithms. For such analysis, the typical approach is to collect run-
ning time data for problem instances of various sizes, use a representative statistic
such as the mean to characterise the running time for each size, and then derive
a parametric function that fits or bounds the statistics. In other words, such ana-
lysis focus on obtaining a good model that describes the functional dependency of
running time on instance size. The process usually involves comparing, based on
goodness of the fit or a quantitative error measure, one parametric function with
another to determine which describes the data better. Figure 1.1 (taken from [59])
illustrates a typical scenario of such a process, as done by Parkes and Walser [59]
when studying the scaling behaviour of WalkSAT/SKC at phase transition.

1.2 The Propositional Satisfiability Problem

The propositional satisfiability problem (SAT) is a conceptually simple decision
problem. Given a Boolean formula, typically in conjunctive normal form, the prob-
lem asks whether there exists an interpretation, i.e., a mapping from propositional
variables to truth values, that satisfies the formula. The following is an example of
a Boolean formula:

(x1∨ x2∨ x3)∧ (¬x2∨ x3∨¬x4)∧ (¬x1∨ x2∨ x4) ,
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Figure 1.1: Typical scenario for the process of empirical scaling analysis (fig-
ure taken from [59]). Here, Parkes and Walser studied the empirical scaling
of number of flips taken by WalkSAT/SKC to solve random 3-SAT instances at
phase transition. They fitted two functions, f (n) = f1 · n

f2+ f3 log(n)
and g(n) =

g1 · exp
(
n

g2 · (1+g3/n)
)
, to the mean number of flips.

which can be satisfied, for instance, by setting all Boolean variables to true. SAT
was the first problem proven to be N P-complete [16], and no known algorithm
solves the problem efficiently in the sense of better-than-exponential scaling of
running time with instance size in the worst case. SAT also has a broad range
of practical applications, and despite its discouraging worst-case time complex-
ity, many SAT solvers have been constructed that perform well on theoretically
and practically interesting sets of benchmark instances. The performance of SAT
solvers is regularly assessed in SAT competitions [62] , which feature benchmark
instances from various applications, instances that are hand-crafted to challenge
solvers, and randomly generated instances.

Following seminal work by Cheeseman et al. [13] and Mitchell et al. [51], ran-
domly generated 3-SAT instances at the so-called solubility phase transition, where
50% of the instances generated at a given size are satisfiable, have been widely
studied; to this day, they are regarded as a model for the difficulty of the N P-
complete 3-SAT problem and represent one of the most prominent benchmarks for
SAT solvers. It is conjectured, yet unproven, that the location of the solubility
phase transition for uniform random 3-SAT, in terms of the ratio of the number
of clauses and variables, m/n, converges towards a limiting value as n approaches
infinity. Crawford and Auton [17] studied the location of the phase transition for
random 3-SAT as a function of n and provided a widely used formula, based on
empirical data for n = 20 . . .300.

In this thesis, we consider the question how the performance of high-performance
SAT solvers on uniform random 3-SAT at the solubility phase transition scale with
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n. Specifically, prompted in part by earlier, inconclusive results suggesting poly-
nomial scaling of incomplete SAT solvers based on stochastic local search (SLS)
[25, 59, 26], we address the problem of characterising the empirical scaling of
the performance of prominent incomplete, SLS-based and complete, DPLL-based
SAT solvers. SLS-based solvers start with a random interpretation and work by
repeatedly flipping the value of a selected variable until a satisfiable interpreta-
tion is found. They usually implement heuristic strategies to select the variable
to flip and often have mechanisms to restart with a new random assignment if no
solution is found for too long. DPLL-based solvers explore the search space of
variable assignment to find satisfiable interpretations following systematic back-
tracking procedures based on the Davis–Putnam–Logemann–Loveland algorithm
[18, 19]. We are interested in determining whether there are qualitative differences
in the scaling behaviour of SLS-based and DPLL-based solvers, in the scaling of
DPLL-based solvers on satisfiable and unsatisfiable instances, and in the scaling of
different solvers within the two major groups (SLS-based and DPLL-based). We
also performed brief experiments on 4-SAT to further understand the scaling per-
formance of these solvers. Our experiments concerned phase-transition instances,
as well as a distribution of instances that is less constrained but believed to be hard
by theorists.

To avoid ‘falling off’ the phase transition, which could bias our scaling results
towards easier instances, we model the location of the solubility phase transition
point with extensive experiments. For 3-SAT, we re-examine the model in [17] for
the location of the phase transition point, and derive a new model that agrees better
with observed data for n > 300 and with recent results from statistical physics (see
Sec. 5.2.1); for 4-SAT, we fit a model using the same approach.

1.3 The Travelling Salesperson Problem

The travelling salesperson problem (TSP) is a well known and widely studied
N P-hard combinatorial optimisation problem. Given a set of cities and their pair-
wise distances, the objective of TSP is to find the shortest round trip to visit each
city exactly once. TSP has motivated sustained development of new algorithmic
ideas in the domain of combinatorial optimisation. TSP algorithms are usually
categorised into two kinds: exact algorithms, which guarantee to find an optimal
solution of any TSP instance and can prove the optimality of the solution, and in-
exact algorithms, which may find optimal solutions but cannot prove optimality.
Until today, Concorde [4] represents the long-standing state-of-the-art complete
algorithm for solving TSP. For incomplete algorithms, LKH [29, 30] had been the
best available solver until the introduction of EAX [57], which is an evolutionary
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algorithm that improved the edge assembly crossover operator Nagata [56] that re-
combines short tours effectively. Empirical results in [57] show that EAX tends
to perform better than LKH on a broad range of TSP instances, though LKH, as
shown by Kotthoff et al. [41], is not dominated in that it is more efficient in solving
a substantial proportion of the instances.

In the following, we focus on the finding times, namely the times required by
state-of-the-art complete and incomplete solvers to find optimal solutions of a TSP
problem without proving optimality, and we want to investigate how the running
times of different solvers scale with instance size. Natural as the focus on find-
ing times is for incomplete solvers, it may not seem straightforward why finding
time should of interest for a complete solver. On one hand, we want to compare
the scaling models of finding and overall running times of complete solvers to bet-
ter understand them. On the other hand, we are also interested in comparing the
scaling models of complete and incomplete solvers.

2D Euclidean instances, i.e., instances where the locations to be visited corres-
pond to points in the Euclidean plane, often occur in practical applications. One
special type of such instances are so-called RUE instances, which can be gener-
ated by placing cities uniformly at random. Even though RUE instances typically
do not occur in practice, they have similar properties as general 2D Euclidean in-
stances and are widely studied in the literature. Following previous works on em-
pirical scaling of TSP solvers [35, 21], we choose 2D RUE instances because they
represent a distribution of TSP instances that is widely studied and can be easily
generated.

1.4 Outline of the Thesis

What follows immediately in Chapter 2 is discussion of previous works on the
empirical time complexity of SAT and TSP and on empirical methods for scaling
analysis, which motivated much of this work. Then we review the methodology
proposed by Hoos [33] and describe our improvements in Chapter 3. These im-
provements make extended use of the bootstrap intervals for statistical assessment
of fitted models and introduce a novel way for comparison of scaling models and
thus scaling performances of solvers. This is followed by Chapter 4 on empirical
scaling analyser (ESA), the automated tool that we designed to perform scaling
analysis automatically. ESA takes a file of running time data as input and can
output a technical report of empirical scaling analysis results.

In Chapter 5, we present our results on the empirical scaling of running times
of six SAT solvers on random 3-SAT, followed by a similar analysis for 4-SAT
instances. Our main findings on 3-SAT are as follows:
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• The median running times of the three prominent SLS-based solvers we stud-
ied, WalkSAT/SKC [64], BalancedZ [44] and probSAT [7, 6], scale polyno-
mially (with an exponent of about 3), and the best exponential models are re-
jected with 95% confidence. Furthermore, we found no evidence that higher
percentiles of the distributions of running times over sets of instances for
fixed n may scale exponentially.

• The median running times of the three DPLL-based solvers we considered,
kcnfs [20], march_hi [32] and march_br [31], exhibit exponential scaling
(with a base of about 1.03), and the best polynomial models are rejected
with 95% confidence.

• For all three DPLL-based solvers, the median running times when solving
only satisfiable and only unsatisfiable instances, respectively, clearly exhibit
exponential running time scaling, and the respective scaling models differ
mainly by a constant factor.

• While the scaling models for the SLS-based solvers are very similar to each
other, the two march-variants scale significantly better than kcnfs.

Afterwards, we investigate the time complexity of three TSP solvers in Chapter
6. For both complete and incomplete solvers, we focus on times required to find
optimal solutions (without proving optimality), and compare the scaling models of
these solvers. Our major conclusions are:

• The median finding times of Concorde, the state-of-the-art complete TSP
solver, are consistent with a root-exponential model, i.e., a model of the
form a ·b

√
n (with a base of about 1.25), and the best exponential model and

polynomial model can be rejected with 95% confidence.

• The time Concorde takes for finding an optimal solution scales slightly worse
than the overall running time, but more detailed models with lower-order
terms may be required to better capture this difference.

• For the two prominent incomplete solvers we studied, the median running
times of EAX are consistent with a root-exponential model (with a base of
about 1.12), and the best exponential and polynomial models can be rejected
with 95% confidence; the median running times of LKH are bound by a
polynomial (with an exponent of about 2.9) and a root-exponential model
(with a base of about 1.19), and the best exponential model can be rejected
with 95% confidence.
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• Both incomplete solvers scale significantly better than Concorde, with b in
the root-exponential model for Concorde (≈ 1.25) significantly larger than b
in those for EAX (≈ 1.12) and LKH (≈ 1.19).

We also assess the impact of automated configuration on the scaling of incomplete
TSP solvers in Chapter 6. For EAX, we showed that automated algorithm config-
uration and adapting population size with instance size can significantly improve
the scaling behaviour; while for LKH, we observed overfitting during automated
configuration in that it improved the performance of LKH for smaller instances but
caused it to suffer for larger ones.

Finally, we conclude the thesis in Chapter 7 and discuss potential areas for
future work.
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Chapter 2

Related Work

In this chapter, we briefly survey related work on SAT and TSP as well as on
empirical scaling analysis. For work on empirical time complexity of SAT and
TSP, we discuss their limitations and point out gaps that we will later fill with
additional analysis. For work on empirical scaling analysis, we discuss various
methods and applications found in the literature, including the methodology that
our work directly builds on.

2.1 Related Work on Random k−SAT

SAT is one of the most intensely studied problems in the computer science literat-
ure and beyond. The k-SAT problem is arguably the most widely studied class of
SAT. Given a Boolean formula in conjunctive normal form for which every clause
consists of exactly k literals, the problem asks whether there exists an interpreta-
tion that satisfies the formula. 3-SAT, the special case for k = 3, is arguably the
most prominent N P-complete decision problem [16]. Interest in phase transition
phenomena in combinatorial problems and in uniform random 3-SAT specifically
rose sharply when Cheeseman et al. [13] demonstrated that the hardest instances
are found around a critical value of an order parameter, where a transition from pre-
dominantly soluble to mostly insoluble instances occurs. Uniform random k-SAT
instances are generated by constructing uniformly and independently at random m
clauses, each of which is obtained by sampling, again uniformly and independently
at random, 3 of n variables, and negating each of them with probability 1/2 [51]
(duplicate clauses are eliminated); the order parameter is the clauses/variable ratio,
m/n. It is believed, but not yet proven, that for k ≥ 3, the location of the phase
transition point of uniform random k-SAT converges to a fixed threshold value as n
approaches infinity. Assuming threshold values exist for small k, an accurate the-
oretical upper bound was proven by Franco and Paull [23] and was later improved
to 2k log2− (1+ log2)/2+ ok (1) by Kirousis et al. [40]. Achlioptas and Peres
[1] achieved a major breakthrough in proving a lower bound, which was recently
improved to 2k log2− (1+ log2)/2−ok (1) by Coja-Oghlan [15].

In a prominent study on the empirical difficulty of SAT instances, Mitchell
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et al. [51] demonstrated that instances drawn from the phase transition region of
uniform random 3-SAT instances tend to be the most difficult for a simple DPLL
solver. Similar results were shown by Yokoo [68] for an SLS-based solver on the
satisfiable phase of uniform random 3-SAT. Crawford and Auton [17] studied the
phase transition region of uniform random 3-SAT empirically, developed a model
for the location of the phase transition point and presented additional evidence for
the difficulty of the SAT instances found there.

Gent and Walsh [25] studied the empirical behaviour of GSAT, one of the earli-
est and most prominent SLS-based SAT solvers [63], and its two variants, DSAT
and HSAT. They noted that the scaling of the average number of variable flips re-
quired by these solvers for solving phase transition random 3-SAT instances was
consistent with less-than-linear exponential scaling with n and did not rule out a
polynomial scaling model with a degree of about 3. Later, Parkes and Walser [59]
presented empirical evidence that the scaling of the average number of flips re-
quired by a more recent, prominent SLS-based SAT solver, WalkSAT/SKC [64],
on the same class of instances might scale either as a power function with a slowly
growing exponent, or as a sub-exponential function. Furthermore, Gent et al. [26]
found that the 90th percentile of the number of flips of GSAT for random 3-SAT
appears to grow no faster than n4. However, in all cases, performance was meas-
ured in variable flips (which become more expensive as n increases) and based on
limited curve fitting only, with a vaguely defined notion of a ‘good fit’.

Coarfa et al. [14] used simple curve fitting to study the empirical scaling of
median running time for three complete solvers on random 3-SAT and observed
exponential scaling above certain solver-dependent density thresholds.

In contrast, in the following, we consider the actual scaling of running time and
use a considerably more advanced and statistically sound approach for assessing
scaling models. Unlike these earlier studies, we also challenge our scaling models
by assessing their predictions on larger instances sizes than those used for fitting
the models.

2.2 Related Work on TSP

The computation complexity of TSP has been intensely studied. It is N P-hard
to solve both the general TSP [24] and the special case of 2D Euclidean instances
[58]. For Euclidean distances, in spite of known polynomial approximation schemes,
it takes exponential time to find good solutions as the gap to optimality decreases
[5].

Much less work has been done on investigating the empirical scaling of modern
TSP solvers on interesting distributions of TSP instances. For complete solvers,
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an important observation is made the book by Applegate et al. [3], who present
a graphical analysis of observed mean running times suggesting that Concorde
may scale exponentially. A more thorough investigation is presented by Hoos and
Stützle [35], which is a direct precursor of our work on TSP. After observing a log-
normal distribution of the running times for given instance size, they found that
the median (and other quantiles of) running times of Concorde scale as a function
of the form a · b

√
n, where b is about 1.24194. In addition to analysing running

times required by Concorde to find an optimal solution and to prove its optimality,
there is work investigating how much of the time is spent on finding the optimal
solution. Hoos and Stützle [36] found that time spent on finding optimal solutions
accounts for a larger percentage of the overall running time, and the percentage
tends to increase with instance size.

For incomplete solvers, Dubois-Lacoste et al. [21] studied the scaling of run-
ning times of EAX and LKH (with restart mechanisms), also on solving RUE in-
stances. They found that scaling models of EAX and LKH are of a similar form
with Concorde, namely of the form a ·b

√
n, but they seem to scale better than Con-

corde in that their models have smaller values of b. We note that some of this
work was carried out in parallel with our work presented in the following, and ours
complemented and extended their results for a better understanding of the scaling
behaviour of these two incomplete algorithms.

2.3 Related Work on Empirical Scaling Analysis

Empirical analysis of the time complexity of algorithms has been applied to prob-
lem other than SAT and TSP. Some of these studies use graphical analysis only,
while others involve the use of model fitting. Subramani and Desovski [67], for in-
stance, investigated the empirical scaling of the vertex contraction (VC) algorithm,
a very well known greedy procedure for the negative cost cycle detection (NCCD)
problem. Their comprehensive results demonstrated that the VC algorithm out-
perform the standard Bellman-Ford algorithm by an order of magnitude. Another
example is found in work by Kunkle [42], which studied four different algorithms
for the longest common subsequence problem. Referencing theoretical results,
Kunkle fitted one-parameter models to find values of the constants in the models.
He also examined the impact of sequence structure and alphabet size on the empir-
ical running times of the algorithms. Aguirre-Hernández et al. [2] also employed
graphical analysis and model fitting to analyse two algorithms for the design of
RNA secondary structure. In particular, they investigated the impact of RNA struc-
tures and primary structure constraints on the scaling of these algorithms and found
support of polynomial scaling for both algorithms.
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Moreover, there has been significant interest in the methodology for empirical
scaling analysis and in its role in complexity research. Sanders and Fleischer [61],
for instance, discussed the role of empirical investigations in guiding theoretical
research, falsifying results from incomplete theoretical analysis or even producing
high-quality surrogates for unproven conjectures on scaling of algorithms. They
illustrated this via several examples, some involving graphical scaling analysis and
even the standard t-test to evaluate hypotheses on scaling of algorithms. McGeoch
et al. [48, 49] also examined the role of analysing asymptotic trends from exper-
imental data as part of a scientific method and evaluated several curve-bounding
techniques using designed experiments. In particular, they focused on polynomial
models and evaluated their techniques on data, both artificial and real, that are
known to be bounded by low-degree polynomials. Success was seen for a strategy
that finds bounding polynomials essentially by performing linear regression on log-
log transformed data. On the other hand, they observed unsatisfactory results from
non-linear regression-based strategies. This observations, as Hoos [33] suspected,
might come from the difficulty of bounding slowly-growing scaling behaviour and
from bounding (rather than fitting) data with a RMSE-minimisation procedure.

Another development is to use empirical scaling analysis as a testing tool, al-
lowing developers to test whether their software scales as theory predicts and/or
as they expect. For this purpose, Goldsmith et al. [28] developed a tool named
Trend Profiler that analyse the computational complexity of software as a func-
tion of a feature (such as size) of a given workload. Trend Profiler models the
execution frequencies of blocks or clusters of blocks of software and fits them to
linear or power law models using linear regression (on actual or transformed data).
These models are qualitatively assessed by scatter plots that relate input feature
values to observed and predicted execution frequencies, and to the residues, that
is, differences between observed and predicted frequencies. R2, the square of Pear-
son’s correlation coefficient, is also used to quantify the quality of such models.
Trend Profiler also calculates bootstrap confidence intervals for predictions made
on workloads with extrapolated input feature values, though these confidence inter-
vals are not utilised in statistical testing. Goldsmith et al. [28] have demonstrated
the effectiveness of Trend Profiler on several pieces of real-world software, includ-
ing bzip2 [12] and gcov [27]. All software they considered showed slow scaling of
low-degree polynomials.

More recently, Hoos [33] proposed an empirical scaling analysis methodology
that emphasised the idea of challenging by extrapolation and used bootstrap re-
sampling to statistically assess obtained models. Different from earlier approaches,
this method uses non-linear numerical techniques to fit models. Our work directly
builds on this methodology and improves in two useful ways, described detailedly
in Chapter 3.

11



Chapter 3

Empirical Scaling Methodology
and Extensions

3.1 Empirical Scaling Methodology

A significant advance in the methodology for studying the empirical scaling of al-
gorithm performance with input size was achieved by Hoos [33]. His method uses
standard numerical optimisation approaches to automatically fit scaling models,
which are then challenged by extrapolation to larger input sizes. Most importantly,
it uses a re-sampling approach to assess the models and their predictions in a stat-
istically meaningful way. Here, we briefly reviewed the methodology in steps, as
presented in Figure 3.1:

1. Collect running time data.
Running time data should be collected for one type of benchmark instances
of interest. These instances need to be collected or generated in sets of dif-
ferent sizes, and the number of different sizes and the number of instances in
each set should be carefully chosen, considering the goal of the analysis and
the budget of computation resources. Then, algorithm runs should be per-
formed on these instances in a homogeneous environment, and the running
times should be reliably measured. For randomised algorithms, multiple runs
are required for each instance.

2. Fit parametric models.
Running times of an algorithm typically vary greatly for instances of the
same size. To study scaling of running times with instance size, a statistic
is typically used to summarise running time data of the same size. Typical
examples include the median, the mean, and higher quantiles. Medians and
other quantiles have the advantage that they can be more reliably estimated,
even when there are (not too many) time-out or crashed runs. Then, a stand-
ard numerical optimisation procedures, such as the Levenberg-Marquardt
Algorithm [43, 47], is used to fit scaling models over summarised running
time data. To perform the next step, only running times of smaller instances

12



3.1. Empirical Scaling Methodology

solver
running
times

fit parametric
models

challenge by
extrapolation

result
use bootstrap re-sampling

for further assessment

Figure 3.1: The methodology for empirical scaling analysis.

(support data) should be used for the fitting process. The numerical optimisa-
tion procedure tries to minimise an error measure such as root-mean-squared
error (RMSE). Commonly considered models are polynomial and exponen-
tial models of the form a ·nb and a ·bn, but other parametric models may be
considered as necessary.

3. Challenge models by extrapolation.
Extrapolation is viewed as an important way to evaluate fitted models. The
reason is that scaling models are of interest mainly because their ability to
predict of running times for larger, unseen instances, and we usually accept
or reject a scaling model based on whether good predictions can be made for
solving larger problem instances. Thus, models obtained from the last step
are challenged by running times required to solve larger instances, which are
referred to as challenge data. In other words, RMSEs on the challenge data
are more informative than those on the support data, and should be relied on
when comparing scaling models.

4. Assess models using bootstrap confidence intervals.
Bootstrap analysis [22] is used to assess the statistical confidence we should
have in the fitted models. In detail, the method re-samples, with replacement,
the running times for each support size. For each sample, it computes the de-
scriptive statistic of interest (e.g., median running time) and fits a parametric
model which gives predictions for the challenge sizes. Through this pro-
cess, a collection of fitted models is obtained for each model family, which
then generates a set of predictions for the challenge sizes. Bootstrap percent-
ile confidence intervals (for certain confidence level denoted as α) are then
computed for each challenge size and for each model family. By comparing
the observed running time statistics with the confidence intervals of a model
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3.2. Extensions to the Methodology

family, we can determine whether a model is consistent with observations or
should be rejected with confidence level of α .

3.2 Extensions to the Methodology

Our work presented in the following applies this empirical methodology to SAT
and TSP solvers, and extends it in two useful ways.

Firstly, noting that observed running time statistics for challenge data are also
based on measurements on sets of instances, we calculate bootstrap percentile con-
fidence intervals for those, in addition to the point estimates used in the original
approach. This way, we capture dependency of these statistics on the underlying
sample of instances.

More formally, we have running time data for instance sizes n1, · · · ,ns+t , di-
vided into a support set of s different sizes and a challenge set of t sizes. For each
size ni, we have a set of instances Ii. We have also collected a set of running time
data D(Ii) for each size. When computing bootstrap confidence intervals, we res-
ample, with replacement, r samples of the instance set Ii,1, · · · , Ii,r. For each sample
I·, we compute statistics S (I·) of the support sizes for model fitting, which then
gives us confidence intervals CI1, · · · ,CIt of model predictions (see step 4 above).
In [33], these confidence intervals are directly compared to S (Is+1) , · · · ,S (Is+t)
to assess whether a model is a good fit. However, these statistics are also based
on sets of running time data. Thus, we calculate bootstrap confidence intervals
for observed challenge data as well. That is, we compute CIOi for i = 1, · · · , t
as confidence intervals of S (Is+i,1) , · · · ,S (Is+i,r) and compare it with CIi to assess
whether a model is a good fit or not. The comparison results can be: the two con-
fidence intervals are disjoint (which we treat as inconsistent), they overlap with
each other but are not fully contained (which we say to be weakly consistent), and
one is contained in another (which we say to be fully consistent). (In addition, if
the point estimate of the observed running time falls within the confidence interval
of the prediction, we say it to be strongly consistent.)

Secondly, we propose a way to compare scaling models between algorithms.
This is done by cross-checking model predictions and observed data. We determ-
ine to which extent a solver A1 shows scaling behaviour different from another
solver A2, by comparing the observed running time statistics of A1 to the boot-
strap confidence intervals obtained from the scaling model of A2. In other words,
we compare CIOi’s for i = 1, · · · ,n of A1 to the CIi’s of A2. If the latter do not
overlap with the former, we can reject the hypothesis that the performance of A1 is
consistent with the scaling model of A2. We note that this method also applies to
comparing scaling models of one algorithm solving two different distributions of
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3.2. Extensions to the Methodology

instances.
A similar methodology can be used to determine if two scaling models differ

by a constant factor. For example, if we have shown that the running times of A1
and A2 are consistent with an exponential model of the form a ·bn, and the model
for A1 is a1 ·bn

1, then we can determine if the scaling of the two algorithms differ
by a constant factor by fitting a one-parameter model of the form a ·bn

1, where a is
a free parameter, on the running times of A2. If the resulting model is not a good
fit (determined based on bootstrap confidence intervals, as explained in step 4 of
Sec. 3.1), we reject the hypothesis that the two models differ by only a constant
factor with confidence level of α .
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Chapter 4

Empirical Scaling Analyser:
An Automated System for Scaling
Analysis1

In this chapter, we present an automated tool – the Empirical Scaling Analyser
(ESA) – that can perform core elements, particularly steps 2 through 4, of the
analysis described in Chapter 3. (The workflow implemented by ESA is illustrated
in Figure 3.1) To use ESA, a user needs to prepare an input file of running time data
of an algorithm (referred to as target algorithm hereafter), as well as other optional
files, including a configuration file, a file specifying the parametric models to be
fitted, a LATEX template and a gnuplot template. Details of these input files will
be given in Section 4.1. Note that ESA is not limited to fitting and assessing a
single scaling model, but can deal with multiple models simultaneously. In other
words, once data collection is finished, a user can put all running time data into a
file, feed it into ESA and obtain the results from the scaling analysis using several
parametric models. Results are presented in a technical report, which contains
easy-to-read tables and figures for the scaling of the target algorithm. The details
of the output report are described in Section 4.2.

We believe the tool is useful for other researchers who want to study the empir-
ical time complexity of other algorithms, and can thus promote the use of such ana-
lysis for other problems and algorithms. The tool is available as an easy-to-use on-
line service at www.cs.ubc.ca/labs/beta/Projects/ESA/esa-online.html
and as a command-line tool with additional functionality (see Section 4.5 on how
to run ESA). Here, we describe all features available in the command-line version.

4.1 Input

To perform scaling analysis, ESA requires input data containing the sizes of the
instances studied and the running times the target algorithm requires for solving

1A shorter version was published as a late breaking abstract in GECCO’15 [53].

16



4.1. Input

these instances. The input running time data need to follow the following format-
ting rules:

• the input file contains lines of details of the instances, one instance per line;

• in each line, the following three pieces of information are provided in order
and are separated by “,”:

– instance name (e.g., file name) and other optional information (this
field is for the user’s reference only; ESA does not use this field in
the scaling analysis);

– instance size;

– running time required to solve the instance, which itself may be a stat-
istic for multiple runs of the target algorithm solving the instance and
may be “inf" for time-out or crashed runs.

Besides, the user may specify the number of instances for some sizes. If there are
not enough entries for one size, ESA will treat the missing entries as instances with
unknown running time. An example for such data is described in Section 6.3, in the
context of analysing the scaling behaviour of EAX and LKH, where the running
times of some instances are unknown because no optimal solution has been found
in previous runs of Concorde. An excerpt of an input file for ESA is in Figure 4.1.

ESA also takes as input a configuration file, containing details on the target
algorithm (algName), the instance distribution (instName), the number of bootstrap
samples (numTrainingData), etc. The file contains lines of configurations, one
configuration per line. Each configuration follows the “name : value” format.
An example of a configuration file is shown in Figure 4.2.

There are a number of other files that a user may supply (if not supplied, ESA
will use the default file(s) distributed with the code), including:

• a file specifying the models to be fit

• a LATEX template specifying the content and format of the output report

• gnuplot templates specifying the format of the plots

The first of these is needed, because ESA supports customised models, as long as
the models are supported by python (including the math and the numpy packages)
and gnuplot. This file contains lines of models, one model per line. Each contains
the following items, separated by “,”:

• Model name (e.g., Exponential)
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4.1. Input

# instance name , size , datum (running time)

portgen -500 -1000.tsp ,500 ,2.3

portgen -500 -100.tsp ,500 ,2.58

portgen -500 -101.tsp ,500 ,2.36

portgen -500 -102.tsp ,500 ,2.51

portgen -500 -103.tsp ,500 ,2.63

portgen -500 -104.tsp ,500 ,2.84

portgen -500 -105.tsp ,500 ,2.62

portgen -500 -106.tsp ,500,3

...

portgen -600 -1000.tsp ,600 ,3.42

...

portgen -4500 -10.tsp ,4500 ,727.68

portgen -4500 -11.tsp ,4500,inf

...

#instances ,4000 ,100

#instances ,4500 ,100

Figure 4.1: Excerpt of an input file for ESA, where deleted lines are represented
by “...”.

• Number of parameters (e.g., 2)

• LATEXexpression of the model

• Python expression of the model

• Gnuplot expression of the model

• Default values of the parameters, separated by “,”

For all expressions of the models, x represents the size, and the parameters should
be a,b, . . . , and should be surrounded by “@@”. For example, the specification
in Figure 4.3, which is also the default model specification, tells ESA to fit an
exponential and a polynomial model of the form a ·bx and a · xb respectively:

For the LATEX template, ESA will use the default template, if no customised
template is found. In the template, dynamic values should be surrounded by “@@”.
For instance, the name of the algorithm (which is defined in the configuration file)
is a dynamic value. Wherever mentioned in the template file, the user should use
“@@algName@@”, and ESA will instantiate it to be the real name of the al-
gorithm when generating the report. Users can also specify the formats of the plots
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4.1. Input

fileName : runtimes.csv

algName : WalkSAT/SKC

instName : random 3-SAT instances at phase transition

modelFileName : models.txt

numTrainingData : 7

alpha : 95

numBootstrapSamples : 1000

statistic : median

latexTemplate : template -AutoScaling.tex

modelPlotTemplate : template_plotModels.plt

residuePlotTemplate : template_plotResidues.plt

Figure 4.2: Example of a configuration file for ESA.

Exp ,2,@@a@@\times @@b@@^{x},@@a@@*@@b@@**x,@@a@@*

@@b@@**x,1e-4 ,1.01

Poly ,2,@@a@@\times x^{@@b@@},@@a@@*x**@@b@@ ,@@a@@*x**

@@b@@ ,1e-8,1

Figure 4.3: An example of model specification for ESA.
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4.2. Output

n 500 600 700 800
# instances 1000 1000 1000 1000

# running times 1000 1000 1000 1000
mean 19.33 31.55 56.8 89.35

coefficient of variation 1.164 1.418 1.303 1.455
Q(0.1) 0.43 2.21 6.73 10.62
Q(0.25) 3.75 8.75 15.3 22.31
median 12.22 18.64 33.15 48.95
Q(0.75) 25.01 37.64 68.29 102.5
Q(0.9) 47.33 70.35 130.4 195.5

n 900 1000 1100 1200
# instances 1000 1000 1000 1000

# running times 1000 1000 1000 1000
mean 139.7 201.2 314.6 385.4

coefficient of variation 1.734 1.759 1.851 1.713
Q(0.1) 17.23 23.28 28.8 38.76
Q(0.25) 32.72 43.23 60.84 78.66
median 70.64 98.56 145.7 177.2
Q(0.75) 142.7 216.1 341.3 409.2
Q(0.9) 302.7 429.4 693.2 846.3

n 1300 1400 1500
# instances 1000 1000 1000

# running times 1000 1000 1000
mean 548.7 749 1072

coefficient of variation 1.859 2.227 2.109
Q(0.1) 53.27 73.78 93.04
Q(0.25) 112.2 153.3 210.1
median 271.7 344.3 483.5
Q(0.75) 583.6 783.6 1136
Q(0.9) 1190 1517 2277

Table 4.1: Example output of ESA – statistics of running times for support data.

via the template gnuplot script. For instance, users may choose whether to use a
log-log plot or a semi-log plot via the template gnuplot script. Default templates
are presented in Appendices A and B and are available for download together with
the source code (see Section 4.5 for details).

4.2 Output

ESA automatically generates a technical report containing detailed empirical scal-
ing analysis results and interpretation. This report contains tables and figures that
users can easily read (see Chapters 5 and 6 for examples), including:

• two tables of statistics of running times, one for support data and the other
for challenge, as illustrated in Tables 4.1 & 4.2, respectively;
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4.2. Output

n 2000 2500 3000
# instances 1000 100 100

# running times 1000 100 100
mean 5402 ∞ ∞

coefficient of variation 2.624 N/A N/A
Q(0.1) 307 671.5 3538
Q(0.25) 765.5 1694 8188
median 1969 6149 1.84×104

Q(0.75) 5207 1.766×104 4.118×104

Q(0.9) 1.137×104 4.611×104 9.048×104

n 3500 4000 4500
# instances 100 100 100

# running times 100 100 100
mean ∞ ∞ ∞

coefficient of variation N/A N/A N/A
Q(0.1) 6060 2.096×104 3.041×104

Q(0.25) 1.226×104 4.125×104 1.22×105

median 3.246×104 1.312×105 2.633×105

Q(0.75) 9.717×104 3.938×105 ∞

Q(0.9) 2.76×105 ∞ ∞

Table 4.2: Example output of ESA – statistics of running times for challenge data.

Model
RMSE RMSE

(support) (challenge)

Concorde
Exp. Model 4.0388×1.0032x 7.7847 2.7852×106

RootExp. Model 0.083457×1.2503
√

x 7.0439 9169.4
Poly. Model 1.6989×10−10× x3.9176 9.9327 1.038×105

Table 4.3: Example output of ESA – fitted models and corresponding RMSE val-
ues.

• a table of fitted models and corresponding RMSE values, as illustrated in
Table 4.3;

• a figure of running times, fitted models and corresponding bootstrap confid-
ence intervals of each model, as illustrated in Figure 4.4;

• a figure of residues of the fitted models, as illustrated in Figure 4.5;

• a table of bootstrap confidence intervals for all model parameters, as illus-
trated in Table 4.4;

• two tables of bootstrap confidence intervals for observed and predicted run-
ning times, one for support data and the other for challenge, as illustrated in
Tables 4.5 & 4.6.
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Figure 4.4: Example output of ESA – a figure of running times, fitted models and
corresponding bootstrap confidence intervals of each model.

Solver Model Confidence interval of a Confidence interval of b

Concorde
Exp. [2.6108,5.2975] [1.003,1.0036]

RootExp. [0.037056,0.15111] [1.2287,1.2793]
Poly.

[
6.1872×10−12,1.7351×10−9

]
[3.5859,4.3713]

Table 4.4: Example output of ESA – bootstrap confidence intervals for all model
parameters.
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Solver n
Predicted confidence intervals Observed median run-time

Exp. model Point estimates Confidence intervals

Concorde

500 [15.43,23.47] 12.22 [11.01,13.33]
600 [22,31.52] 18.64 [16.99,20.16]
700 [31.38,42.57]# 33.15 [30.38,35.9]
800 [44.68,57.59]# 48.95 [44.05,53.15]
900 [63.49,77.63]* 70.64 [64.34,77.28]
1000 [90.18,104.8]# 98.56 [90.16,107.8]
1100 [127.6,141.9] 145.7 [130.9,158.6]
1200 [178.6,193] 177.2 [165.8,196.1]
1300 [244.7,266.8] 271.7 [244.9,298.3]
1400 [332.7,375.7]# 344.3 [318.9,383.3]
1500 [448.8,534.7]# 483.5 [432.8,532.9]

Solver n
Predicted confidence intervals Observed median run-time

RootExp. model Point estimates Confidence intervals

Concorde

500 [9.176,15.31]* 12.22 [11.01,13.33]
600 [15.56,23.81]* 18.64 [16.99,20.16]
700 [25.21,35.83]# 33.15 [30.38,35.9]
800 [39.43,52.46]# 48.95 [44.05,53.15]
900 [60.23,74.99]# 70.64 [64.34,77.28]
1000 [89.56,105.2]# 98.56 [90.16,107.8]
1100 [130.4,145.2] 145.7 [130.9,158.6]
1200 [184.4,199.1] 177.2 [165.8,196.1]
1300 [252,274]# 271.7 [244.9,298.3]
1400 [336.6,380.4]# 344.3 [318.9,383.3]
1500 [442,522.8]# 483.5 [432.8,532.9]

Solver n
Predicted confidence intervals Observed median run-time

Poly. model Point estimates Confidence intervals

Concorde

500 [4.206,8.58] 12.22 [11.01,13.33]
600 [9.398,16.47] 18.64 [16.99,20.16]
700 [18.41,28.62] 33.15 [30.38,35.9]
800 [32.91,46.48] 48.95 [44.05,53.15]
900 [55.04,71.24]# 70.64 [64.34,77.28]
1000 [86.98,104.3]# 98.56 [90.16,107.8]
1100 [131.4,147.6]# 145.7 [130.9,158.6]
1200 [188.5,204.4] 177.2 [165.8,196.1]
1300 [257.9,280.1]# 271.7 [244.9,298.3]
1400 [339.3,384.2]# 344.3 [318.9,383.3]
1500 [435.4,516.3]# 483.5 [432.8,532.9]

Table 4.5: Example output of ESA – bootstrap confidence intervals for observed
and predicted running times for support data.
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Solver n
Predicted confidence intervals Observed median run-time

Exp. model Point estimates Confidence intervals

Concorde

2000 [1988,3179] 1969 [1739,2222]
2500

[
8718,1.884×104] 6149 [4084,8812]

3000
[
3.853×104,1.103×105

]
1.84×104

[
1.332×104,2.669×104

]
3500

[
1.698×105,6.479×105

]
3.246×104

[
2.581×104,5.038×104

]
4000

[
7.5×105,3.809×106

]
1.312×105

[
7.073×104,2.024×105

]
4500

[
3.301×106,2.245×107

]
2.633×105

[
1.73×105,4.419×105

]
Solver n

Predicted confidence intervals Observed median run-time
RootExp. model Point estimates Confidence intervals

Concorde

2000 [1528,2269]* 1969 [1739,2222]
2500 [4536,8335]# 6149 [4084,8812]
3000

[
1.212×104,2.694×104]* 1.84×104

[
1.332×104,2.669×104

]
3500

[
3.001×104,7.925×104]# 3.246×104

[
2.581×104,5.038×104

]
4000

[
6.95×104,2.163×105]* 1.312×105

[
7.073×104,2.024×105

]
4500

[
1.528×105,5.563×105]* 2.633×105

[
1.73×105,4.419×105

]
Solver n

Predicted confidence intervals Observed median run-time
Poly. model Point estimates Confidence intervals

Concorde

2000 [1228,1795] 1969 [1739,2222]
2500 [2737,4771] 6149 [4084,8812]
3000

[
5252,1.057×104

]
1.84×104

[
1.332×104,2.669×104

]
3500

[
9149,2.069×104

]
3.246×104

[
2.581×104,5.038×104

]
4000

[
1.477×104,3.708×104

]
1.312×105

[
7.073×104,2.024×105

]
4500

[
2.248×104,6.205×104

]
2.633×105

[
1.73×105,4.419×105

]
Table 4.6: Example output of ESA – bootstrap confidence intervals for observed
and predicted running times for support data.

24



4.3. Automated Interpretation of Scaling Results

-7e+06

-6e+06

-5e+06

-4e+06

-3e+06

-2e+06

-1e+06

 0

 1e+06

 500  1000  1500  2000  2500  3000  3500  4000  4500

R
es

id
ue

 [s
ec

]

n

Exp. Model Residues
RootExp. Model Residues

Poly. Model Residues
Support Data

Challenge Data

Figure 4.5: Example output of ESA – a figure of residues of the fitted models.

A snapshot of the reported generated by ESA using the default LATEX template is
shown in Figure 4.6.

4.3 Automated Interpretation of Scaling Results

In addition, ESA generates automated interpretations for scaling analysis results. It
evaluates how well a model fits the given data based on the percentage of challenge
sizes for which the model predicts the corresponding running times reasonably
accurately. If a model predicts well for most challenge sizes, then the model should
be accepted as a good fit. Technically, the evaluation is based on the percentage
of challenge points that lie within the predicted bootstrap confidence intervals of
the model. It especially emphasises the challenge points for larger input sizes, as
those provide more information regarding whether the model predicts well. The
detailed criteria, which we design based on extensive experiments with SAT and
TSP algorithms, are as follows:

• fair fit: the model predicts well for a fair percentage of the challenge sizes,
more precisely, > 70% of the challenge points or > 70% of the larger half of
the challenge points are within the predicted bootstrap intervals;

• very good fit: the model predicts well for almost all challenge sizes, more
precisely,> 95% of the challenge points are within the predicted bootstrap
intervals;
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4.4. Implementation

Figure 4.6: Snapshot of the technical report generated by ESA.

• over-/under-estimate: the model over-/under-estimates the running times of
a significant percentage of the challenge sizes, more precisely, > 75% of
the challenge points or > 75% of the larger half of the challenge points are
below/above the predicted bootstrap intervals.

These criteria are combined into the fully automated interpretation procedure illus-
trated in Figure 4.7. Note that when medians (or other quantiles) are not definitely
known (due to instances with unknown running times), we compare the intervals
of the medians against the predicted bootstrap intervals. To be more precise, for
instance, we say a challenge point is below the predicted bootstrap interval, if the
upper bound of the median is smaller than the lower bound of the bootstrap interval.

4.4 Implementation

ESA is implemented in python 2.7 and calls gnuplot to generate plots. All provided
gnuplot scripts are prepared for gnuplot version 4.6, but only minimal modifica-
tions, if any, will be needed to use with another gnuplot version. The online service
has a clear user interface implemented with HTML/CSS, and the back-end service
was realised using python CGI.

One technical difficulty for implementing ESA is to interact with the LATEX
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Figure 4.7: Flow diagram on how ESA automatically interprets the fitting results.
Detailed definitions of the conditions are given in the main text.
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template for producing the output technical report. Generating LATEX commands,
especially those concerning tables, requires careful implementation. Moreover, it
was important to modularise the code for maximum re-use. For instance, there is
one function that takes a string as input and output a string that instructs LATEX to
make the content boldface. This is very frequently used in ESA, since boldface
is widely used for highlighting models and bootstrap confidence intervals. The
function will also need to distinguish between plain text and mathematics environ-
ments, as different commands are needed to make them boldface. Other examples
include the conversion of numbers into LATEX expressions, and the generation of
table rows. Modularisation is also of great value beyond working with LATEX, as
several operations need to be performed in more than one stage of an ESA run.
An example of such operations is to call gnuplot for model fitting/plotting, which
needs to be done for each model in steps 3 and 4.

In addition, ESA was designed to work with customisable LATEX and gnuplot
templates (see Sec. 4.1 for details). There is a special LATEX syntax that can be
used as "variables" in the LATEX template, which will be replaced by actual content
when ESA runs. The LATEX template can also be compiled "as-is"to make it easier
for users to adapt it to their specific needs. We chose gnuplot for plot generation so
that users can easily supply a template for customised figure formatting. ESA also
supports user-defined models for scaling analysis. To achieve this, ESA defines
functions on-the-fly from user-supplied strings.

4.5 Downloading and Running ESA

4.5.1 Downloading and Running ESA from the Command Line

ESA can be downloaded from the project page online at www.cs.ubc.ca/labs/
beta/Projects/ESA/. After unzipping the compressed file, there will be a dir-
ectory named ESA, which contains runESA.sh, the source code and other support
files. A user needs to have python and gnuplot installed in order to run ESA. We
used python 2.7 and gnuplot 4.6 in our environment, but expect ESA to work for
other versions with minimal modifications, if any.

To run ESA from command line, a user should follow the following steps:

1. Create a directory for input and output files.

2. Put the primary input file for running time data into the directory.

3. Create files for models and LATEX and gnuplot templates (optional; if not
provided, ESA will use the default files distributed with the source code).
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4. Create a configuration file named configurations.txt within the directory,
telling ESA the details it requires, including names of the algorithm and
the instance set/distribution, file names of running time data and, if used, the
file names of model specifications and LATEX and gnuplot templates.

5. Run the script in the ESA directory by ./runESA.sh <directory name>,
and ESA will run according to the specifications in <directory name>/configurations.txt.

4.5.2 Running ESA as a Web Service

ESA is also available online as a web service, which supports the essential but not
all features of the command-line version. In particular:

• it only supports three pre-defined models, include:

– exponential: a ·bn,

– root-exponential: a ·b
√

n, and

– polynomial: a ·nb;

• it uses the default LATEX and gnuplot templates for report generation;

• it only supports a limited number of statistics, include median, mean, as well
as 75th, 90th and 95th percentiles.

To run ESA as a web service, visit www.cs.ubc.ca/labs/beta/Projects/ESA/
esa-online.html, upload the file of running time data and fill in the other details
of the form. After submission, ESA will run in the back and redirect the user to the
output technical report. The user interface is shown in Figure 4.8.
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Figure 4.8: The user interface of ESA as a web service.
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Chapter 5

Empirical Time Complexity of
Random k-SAT2

In this chapter, we study the empirical time complexity of random k-SAT, with
a focus on random 3-SAT at the phase transition. Our analyses were performed
on prominent complete and incomplete SAT solvers. We also study the empirical
scaling of these solvers on two interesting distributions of random 4-SAT instances
to further understand the time complexity of random k-SAT.

5.1 Experimental Setup

For our study, we selected three SLS-based solvers, WalkSAT/SKC [64], Bal-
ancedZ [44] and probSAT [7], and three DPLL-based solvers, kcnfs [20], march_hi
[32] and march_br [31]. We chose these, because WalkSAT/SKC and kcnfs are two
classical solvers that are widely known in the community, and the others showed
excellent performance in recent SAT competitions.

All sets of uniform random 3-SAT instances used in our study were obtained
using the same generator used for producing SAT competition instances [8]. To
separate satisfiable from unsatisfiable instances with n ≤ 500, we used the CSH-
CrandMC hybrid solver[46], the winner of Random SAT+UNSAT Track in the
2013 SAT Competition. For larger instances, for which the use of complete solvers
is impractical, we performed long runs (43 200 CPU sec) of BalancedZ and treated
those instances not solved in those runs as unsatisfiable. Since BalancedZ never
failed to solve any of our instances known to be satisfiable, and because the cut-off
time we used for these long runs was at least 20 times of the maximum running
time observed on any satisfiable instance of the same size, we have high confid-
ence that we did not miss any satisfiable instances. We note that, even if we had
misclassified some satisfiable instances, the quantile performance measures would
not be much affected (if at all).

2This chapter covers major results from [52] on the empirical time complexity of random 3-SAT
at the phase transition.
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After observing floor effects for WalkSAT/SKC due to small CPU times re-
quired for solving small instances, we calculated running times based on the num-
ber of local search steps performed, and on estimates of CPU time per local search
step for each problem size obtained from long runs on unsatisfiable instances. The
CPU time estimates thus obtained closely agreed with measured CPU times for
short and long runs, but are considerably more accurate. For all other solvers,
which were less affected by such floor effects, we used runsolver [60] to record
CPU times (and to enforce CPU time limits).

For our scaling analysis, we restricted ourselves to 2-parameter models. In
principle, our methodology works for models with fewer or more parameters; how-
ever, fitting models with more parameters requires more data points (and hence
computational resource) and has more potential for overfitting. In particular, we
mainly considered two parametric models:

• Exp [a,b] (n) = a ·bn (2-parameter exponential);

• Poly [a,b] (n) = a ·nb (2-parameter polynomial).

For investigating 4-SAT, we also added the following model, which was motivated
by Hoos and Stützle [35], to better characterise the scaling behaviour of the solvers:

• RootExp [a,b] (n) = a ·b
√

n (2-parameter root-exponential).

We note that these models are used to capture the first-order terms of the actual
scaling function, which we expect to also contain lower-order terms in most cases.
Particularly, we did not include constant offsets in these models, which could cap-
tured running time for setting up, reporting results, etc., because we believe that,
for the problems and instance sizes studied here, those offsets are small enough to
be negligible.

Models were fitted to performance observations in the form of quantiles, chiefly
the median of the distributions of running times over sets of instances for given n.
Compared to the mean, the median has two advantages: it is statistically more
stable and is immune to the presence of a certain amount of timed-out runs. Con-
sidering the stochastic nature of the SLS-based solvers, we performed 5 independ-
ent runs per instance and used the median over those 5 running times as the running
time for the respective instance. We note that more stable estimates of the medians
can be obtained by performing more runs per instance, but we restricted ourselves
to 5 runs due to limitations of our computational resources. Our approach could
be easily extended to other scaling models, but, as we will show in the following,
these models jointly characterise the scaling observed in all our experiments, and
thus we saw no need to consider different or more complex models. For fitting
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parametric scaling models to observed data, we used the non-linear least-squares
Levenberg-Marquardt algorithm.

Closely following works by Hoos [33] and Hoos and Stützle [35], we computed
95% bootstrap confidence intervals for the performance predictions obtained from
our scaling models, based on 1000 bootstrap samples per instance set and 1000
automatically fitted variants of each scaling model. We extended their approach in
two ways, which are described detailedly in Chapter 3.

For collecting running time data for our SAT solvers, we used Compute Canada
/ Westgrid cluster orcinus (DDR), each equipped with two Intel Xeon E5450 quad-
core CPUs at 3.0 GHz with 16GB of RAM running 64-bit Red Hat Enterprise
Linux Server 5.3.

5.2 Location of Phase Transition

We first revisited studies on the location of phase transition for 3- and 4-SAT, and
refined existing models for them. This refinement is important because we want to
avoid drifting off the phase transition region, which may bias our results.

5.2.1 Location of Phase Transition for 3-SAT

Crawford and Auton modelled the location of the phase transition point based on
extensive experiments on uniform random 3-SAT instances with up to 300 vari-
ables as:

mc = 4.258 ·n+58.26 ·n−2/3, (5.1)

where n is the number of variables and mc the critical number of clauses, at which
about 50% satisfiable instances are obtained [17]. The parametric form of this
model was derived using finite-size scaling by Kirkpatrick and Selman [39]. While
this model does provide a good fit for n ≤ 300, in preliminary experiments, we
found that for n > 300, it increasingly underestimates mc. Furthermore, the model
in Eq. 5.1 predicts that, as n grows, mc/n approaches 4.258, which is in contradic-
tion with a more recent result by Mertens et al., who used the heuristic one-step
replica symmetry breaking cavity method from statistical physics to estimate the
value of mc/n as 4.26675±0.00015 [50].

Because in the empirical scaling study that follows, we wanted to be sure to not
drift off the phase transition point (which could bias the scaling models, especially,
as the phase transition, in terms of mc/n, is known to become increasingly steep as
n grows), we decided to revisit and improve the Crawford & Auton’s model.

We first chose several m/n ratios for each n ∈ {300,400, . . . ,1400}, around
the predictions from Eq. 5.1, loosely adjusted based on results from preliminary
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experiments. Next, we generated sets of 600 uniform random 3-SAT instances
for each m/n ratio. We separated out the satisfiable instances using a hybrid com-
plete solver, CSHCrandMC [46], with a cutoff of 3600 CPU seconds per run. Up to
n= 500, we solved all instances within that cutoff. Beyond, it would have been im-
practical to run any complete solver sufficiently long to prove unsatisfiability, and
we therefore heuristically assumed that the instances not solved by CSHCrandMC
are unsatisfiable. As mentioned earlier, we later used much longer runs of Bal-
ancedZ to challenge these putative unsatisfiable instances further, and among the
thousands of instances for which this was done, only one was found to be satis-
fiable. Nevertheless, throughout what follows we are well aware of the fact that we
may underestimate the fraction of satisfiable instances in our sets.

We note that, even at large numbers of instances sampled at the correct (un-
known) value of mc/n, we should expect to get sets with a fraction of satisfiable
instances varying according to a binomial distribution. Based on this observation,
we determined 95% confidence intervals for the fraction of satisfiable instances
observed for each n. We then rejected the m/n values for which we empirically ob-
served fractions of satisfiable instances outside of the respective 95% confidence
interval as valid estimates of mc/n. In this way, we obtained bounds on the location
of the phase transition point, mc/n. In many cases, the confidence intervals for our
initial sets of 600 instances were too wide to yield bounds, and we subsequently
increased the number of instances in those sets until for every n, we obtained an
upper and lower bound on mc/n. Those bounds and the respective set sizes are
shown in Table 5.1.

These results provide further evidence for our earlier observation that for larger
n, Crawford & Auton’s model becomes inaccurate, as the respective predictions are
below the lower bounds from our analysis. We note that our lower bounds are valid,
as they could only increase if some of our putatively unsatisfiable instances were
in fact satisfiable. For the same reason, the upper bounds may be inaccurate.

Interestingly, and notably different from Crawford & Auton’s model, our res-
ults suggest that mc/n as a function of n is not monotonic, but first drops, before
slowly increasing again, possibly towards a threshold value. This observation, in
combination with the limiting value found by Mertens et al. [50] led us to choose
a model of the form

mc = 4.26675 ·n+a ·nb + c ·nd ,

where a · c < 0, b < 0 and d < 0.3

Finally, taking the data points from work by Crawford and Auton [17] up to

3This type of model is consistent with current theoretical thinking that, for small n, second-order
terms may cause non-monotonic behaviour of the function mc(n). (Dimitris Achlioptas, personal
communication.)
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n Lower bound Upper bound
Prediction

Eq. 5.1 Eq. 5.2
300 4.2600 (3600) 4.2667 (3600) 4.2623 4.2638
400 4.2575 (4800) 4.2650 (600) 4.2607 4.2626
500 4.2580 (2400) 4.2660 (600) 4.2598 4.2622
600 4.2567 (600) 4.2667 (4800) 4.2594 4.2622
700 4.2600 (1200) 4.2657 (4800) 4.2591* 4.2623
800 4.2575 (2400) 4.2638 (2400) 4.2588 4.2624
900 4.2600 (2400) 4.2667 (3600) 4.2587* 4.2626

1000 4.2600 (600) 4.2670 (2400) 4.2586* 4.2627
1100 4.2609 (1200) 4.2655 (600) 4.2585* 4.2629
1200 4.2600 (2400) 4.2650 (3600) 4.2584* 4.2630
1300 4.2608 (600) 4.2646 (600) 4.2584* 4.2631
1400 4.2600 (1200) 4.2664 (2400) 4.2583* 4.2633

Table 5.1: Lower and upper bounds on the location of the phase transition (mc/n)
for 3-SAT determined with 95% confidence, and predictions from the two models
discussed in the text. In parentheses: number of instances used for determining
the bound. Model predictions inconsistent with our lower bounds are marked with
asterisks (*).

n = 300 (which we believe to be of high quality) and the mid-points between our
bounds from Table 5.1, we fitted this 4-parameter model, resulting in:

mc = 4.26675n+447.884n−0.0350967−430.232n−0.0276188 (5.2)

Figure 5.1 shows the predictions obtained from this model, along with the bounds
and mid-points between them from Table 5.1. This model was subsequently used
to generate the instance sets used in the scaling analysis described in Section 5.3.
While it is possible that our model is biased by the fact that we may have missed
satisfiable instances for larger n, it provides a better basis than previously available
for generating instances at or very near the solubility phase transition of uniform
random 3-SAT.

5.2.2 Location of Phase Transition for 4-SAT

Following the same approach used for modelling the locations of the phase trans-
ition points for 3-SAT (see Section 5.2.1), we run experiments to determine the
intervals of the phase transition points for 4-SAT as well. The lower and upper
bounds can be found in Table 5.2.

The bounds, in combination with the limiting value found by [50], led us to
choose a model of the form

r = 9.931+a ·nb,
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Figure 5.1: Empirical bounds on the location of the phase transition points for
3-SAT, mc/n for different n, data used for fitting our model (eq. 5.2) and model
predictions. Data for n > 500 is based on heuristic estimates of the fraction of
satisfiable instances and may underestimate the true mc/n.

resulting, after fitting, in

r = 9.931+155.729×n−2.01596. (5.3)

Figure 5.2 shows the predictions obtained from this model, along with the bounds
and mid-points between them from Table 5.2. This model was subsequently used
to generate the instance sets used in the scaling analysis described in Section 5.4.

5.3 Empirical Scaling of Solver Performance on Random
3-SAT at Phase Transition

We first studied 3-SAT – arguably the conceptually simplest N P-complete prob-
lem, and focused on random 3-SAT instances at phase transition, which is a widely
known distribution of hard 3-SAT instances.

5.3.1 Empirical Scaling of the Performance of SLS-based Solvers

We first fitted our two parametric scaling models to the median running times of
the three SLS-based solvers we considered, as described in Section 5.1. For each
SLS-based solver, both models were fitted using median running times for n =
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# Variables Lower bound Upper bound Prediction by eq. 5.3
20 10.20 (600) 10.40 (600) 10.302
40 9.975 (600) 10.10 (600) 10.023
60 9.95 (2400) 10.0 (1200) 9.972
80 9.90 (600) 9.975 (2400) 9.954
100 9.91 (600) 9.95 (1200) 9.945
120 9.925 (600) 9.958 (2400) 9.941
140 9.921 (600) 9.95 (1200) 9.938
160 9.919 (600) 9.931 (2400) 9.937
180 9.922 (600) 9.944 (600) 9.935
200 9.92 (1200) 9.94 (600) 9.935
250 9.916 (1200) 9.94 (600) 9.933
300 9.917 (600) 9.94 (600) 9.933
350 9.92 (600) 9.9428 (600) 9.932
400 9.92 (600) 9.945 (600) 9.932

Table 5.2: Exclusive lower and upper bounds of phase transition points for 4-SAT
determined with 95% confidence, and predictions from the model discussed in
the text. The number after the lower/upper bounds (in parentheses) are the least
number of instances we have used to conclude with 95% confidence that the ratio
is away from the phase transition point.

200,250, . . .500 (support) and later challenged with median running times for n =
600,700, . . .1000. Details of the instances can be found in Table 5.3. This resulted
in the models, shown along with RMSEs on support and challenge data, in Table
5.4. In particular, we illustrate the fitted models of WalkSAT/SKC in Figure 5.3;
similar results are obtained for BalancedZ and probSAT (figures not shown).

We note that the RMSEs on support data, i.e., the data used for fitting the mod-
els, often, but not always provide a good indication of their predictive power. Based
on the latter, in the form of RMSEs on challenge data, we see clear indications that
the median running times of all three SLS-based solvers are overall more consistent
with our polynomial scaling model than the best exponential model.

But how much confidence should we have in these models? Are the RMSEs
small enough that we should accept them? To answer this question, we assessed
the fitted models using the bootstrap approach described in Chapter 3 and imple-
mented in ESA. The results of this analysis, shown in Table 5.5 , clearly show
that observed median running times for the SLS-based solvers are consistent with
our polynomial scaling model and inconsistent with the exponential model (as il-
lustrated in Figure 5.3 for WalkSAT/SKC). Also, this analysis gives us bootstrap
confidence intervals for the model parameters, as shown in Table 5.6. Note that
the scaling of all SLS-based solvers are consistent with a low-degree polynomial
model (b < 4). This is especially striking for the larger challenge instances sizes.
Limited experiments for even larger instances sizes (up to n = 2000) produced
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Figure 5.2: Empirical bounds on the location of the phase transition points for
4-SAT, mc/n for different n, data used for fitting our model (eq. 5.3) and model
predictions. Data for n ≥ 200 is based on heuristic estimates of the fraction of
satisfiable instances and may underestimate the true mc/n.

# Variables 200 250 300 350 400 450 500
# Clauses 854 1066 1279 1492 1704 1918 2130

C-to-V ratio 4.27 4.264 4.263 4.2629 4.260 4.260 4.260
equation 5.2 4.2687 4.2652 4.2638 4.2630 4.2626 4.2623 4.2622

# Variables 600 700 800 900 1000
# Clauses 2557 2984 3410 3836 4263

C-to-V ratio 4.2617 4.2629 4.2625 4.2622 4.2630
equation 5.2 4.2622 4.2623 4.2624 4.2625 4.2627

Table 5.3: We used UniformKSAT to generate 12 sets of random 3-SAT instances
of different sizes, at clause-to-variable ratios computed as equation 5.2. This table
summarises the numbers of variables and of clauses, and the clause-to-variable
ratios.
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Solver Model
RMSE RMSE

(support) (challenge)

WalkSAT/SKC
Exp. Model 6.89157×10−4×1.00798n 0.0008564 0.7600
Poly. Model 8.83962×10−11×n3.18915 0.0007433 0.03142

BalancedZ
Exp. Model 1.32730×10−3×1.00759n 0.001759 1.081
Poly. Model 5.14258×10−10×n2.97890 0.002870 0.05039

probSAT
Exp. Model 8.35877×10−4×1.00763n 0.0013867 0.6487
Poly. Model 2.92275×10−10×n2.99877 0.002285 0.03301

Table 5.4: Fitted models for median running times of SLS-based solvers solving
phase-transition random 3-SAT instances and the corresponding RMSE values (in
CPU sec). Model parameters are shown with 6 significant digits, and RMSEs with
4 significant digits; the models yielding more accurate predictions (as per RMSEs
on challenge data) are shown in boldface.
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Figure 5.3: Fitted models for the median running times (in CPU-sec). Both models
are fitted with the median running times of WalkSAT/SKC solving the satisfiable
instances from the set of 1200 random 3-SAT instances of 200, 250, ..., 500 vari-
ables, and are challenged by median running times of 600, 700, ..., 1000 variables.
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Solver n
Observed median running time (sec) Predicted confidence intervals (sec)

Point estimates Confidence intervals Poly. model Exp. model

WalkSAT/SKC

600 0.056 [0.050,0.070] [0.054,0.081] [0.067,0.104]
700 0.108 [0.093,0.120] [0.083,0.146]* [0.137,0.264]
800 0.180 [0.132,0.209] [0.122,0.238]* [0.277,0.664]
900 0.267 [0.222,0.323] [0.170,0.373]* [0.565,1.676]
1000 0.385 [0.327,0.461] [0.229,0.557]* [1.151,4.200]

BalancedZ

600 0.095 [0.085,0.102] [0.082,0.116]* [0.103,0.149]
700 0.142 [0.131,0.154] [0.124,0.195]* [0.204,0.348]
800 0.194 [0.177,0.212] [0.177,0.308]* [0.400,0.816]
900 0.270 [0.231,0.324] [0.240,0.462] [0.782,1.915]
1000 0.353 [0.307,0.398] [0.316,0.663] [1.531,4.493]

probSAT

600 0.050 [0.043,0.059] [0.050,0.085] [0.063,0.110]
700 0.089 [0.077,0.105] [0.073,0.149]* [0.119,0.271]
800 0.151 [0.133,0.197] [0.101,0.245]* [0.222,0.664]
900 0.237 [0.209,0.295] [0.135,0.379]* [0.413,1.640]
1000 0.357 [0.304,0.438] [0.174,0.559]* [0.771,4.050]

Table 5.5: 95% bootstrap confidence intervals for observed and predicted running
times of SLS-based solvers solving random 3-SAT instances. The instance sizes
shown here are larger than those used for fitting the models. Bootstrap intervals
on predictions that agree with the observed point estimates are shown in boldface,
and those that fully contain the confidence intervals on observations are marked by
asterisks (*).

Solver Model Confidence interval of a Confidence interval of b

WalkSAT/SKC
Poly.

[
2.58600×10−12,8.63869×10−10

]
[2.80816,3.76751]

Exp.
[
4.05064×10−4,1.00662×10−3

]
[1.00709,1.00924]

BalancedZ
Poly.

[
3.65984×10−11,4.53094×10−9

]
[2.60985,3.41689]

Exp.
[
8.91856×10−4,1.83333×10−3

]
[1.00675,1.00855]

probSAT
Poly.

[
5.00843×10−12,1.02411×10−8

]
[2.40567,3.66266]

Exp.
[
4.90478×10−4,1.42905×10−3

]
[1.00629,1.00907]

Table 5.6: Bootstrap intervals of model parameters for median running times of
SLS-based solvers solving phase-transition random 3-SAT instances.
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Figure 5.4: Comparing the scaling model for BalancedZ with that for WalkSA-
T/SKC on solving 3-SAT instances. Both models are fitted with the median run-
ning times of WalkSAT/SKC or BalancedZ solving 3-SAT instances of 200, 250,
..., 500 variables, and are challenged by median running times of 600, 700, ..., 1000
variables. Similar results can also been obtained by doing the comparison in the
other way around.

further evidence consistent with the polynomial scaling models for all three SLS-
based solvers (see Section 5.3.3). Although the running time of the SLS-based
solvers are still quite moderate even at these instances sizes, the much longer runs
required to filter out satisfiable instances with high confidence make it difficult to
further increase n.

Next, we used the same bootstrap confidence intervals to investigate the signi-
ficance of differences observed between the scaling models for different solvers.
Using the approach described in Section 3.2, we cannot reject the hypothesis that
the differences reflected in the constants for the polynomial models of our three
SLS-based solvers seen in Table 5.4 are insignificant. The difference between
WalkSAT/SKC and BalancedZ, for instance, is illustrated in Figure 5.4. Examining
these results in detail, we believe that by substantially increasing the number of
instances for each value of n, the bootstrap confidence intervals can likely be nar-
rowed to also demonstrate significant scaling differences between all pairs of SLS-
based solvers.

Finally, we investigated the question whether our observations regarding the
qualitative differences in the scaling of median running time of SLS-based SAT
solvers also hold when considering higher quantiles of the distribution of running
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Solver Model
RMSE RMSE

(support) (challenge)

WalkSAT/SKC
Exp. Model 1.3165×10−3×1.0092n 0.002370 5.354
Poly. Model 6.5151×10−12×n3.8148 0.002143 0.06216

BalancedZ
Exp. Model 3.0082×10−3×1.0075n 0.005848 2.024
Poly. Model 1.0385×10−9×n2.9892 0.004009 0.05739

probSAT
Exp. Model 1.5357×10−3×1.0088n 0.004594 3.912
Poly. Model 2.1829×10−11×n3.6122 0.004743 0.2951

Table 5.7: Fitted models for 0.75-quantile of the running times of SLS-based solv-
ers solving phase-transition random 3-SAT instances and the corresponding RMSE
values (in CPU sec). Model parameters are shown with 5 significant digits and
RMSEs with 4 significant digits; the models yielding more accurate predictions (as
per RMSEs on challenge data) are shown in boldface.

times across instance sets. For these solvers, we noted weak evidence that the
ratio between the higher quantiles and the median increases with n, but the ob-
served scaling of the 0.75-quantile is still found to be consistent with a polynomial
model and inconsistent with an exponential model. Details of the models, along
with RMSEs on support and challenge data, are shown in Table 5.7. Note that for
BalancedZ, the parameter b in the polynomial model for 0.75-quantiles does not
increase much from that of the model for medians, which is in contrast to our find-
ings for the other two solvers. The fitted models of WalkSAT/SKC are illustrated
in Figure 5.5.

5.3.2 Empirical Scaling of the Performance of DPLL-based Solvers

Applying the same methodology, we studied the empirical scaling of the perform-
ance of DPLL-based solvers. For each DPLL-based solver, we used support data
for n = 200,250, . . .400 and challenge data for n = 450,500,550, as for even larger
n, we could no longer complete sufficiently many runs to estimate even median run-
ning times. The fitted models and the corresponding RMSEs are shown in Table
5.8. We note that running times of the DPLL-based solvers are more consistent
with our exponential scaling model – even when only considering performance on
satisfiable instances. As an example, we illustrate the fitted models of kcnfs in Fig-
ure 5.6; similar results are obtained for the two march variants (figures not shown).

We also performed similar bootstrap analysis for DPLL-based solvers. The
result of this analysis, presented in Table 5.9, shows opposite results for SLS-based
solvers: the median running times of DPLL-based solvers, even solving satisfiable
instances only, are consistent with exponential models but not polynomial ones.
Also, this analysis gives us bootstrap confidence intervals for the model parameters,
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Solver Instances Model
RMSE RMSE

(support) (challenge)

kcnfs

All
Exp. Model 4.30400×10−5×1.03411n 0.05408 143.3
Poly. Model 9.40745×10−31×n12.1005 0.06822 1516

Sat.
Exp. Model 2.41708×10−5×1.03205n 0.02496 83.86
Poly. Model 2.41048×10−30×n11.7142 0.05600 225.8

Unsat.
Exp. Model 6.38367×10−5×1.03386n 0.001466 52.19
Poly. Model 9.70804×10−31×n12.1448 0.1813 2291

march_hi

All
Exp. Model 4.93309×10−5×1.03295n 0.05449 460.0
Poly. Model 1.05593×10−30×n12.0296 0.05971 1266

Sat.
Exp. Model 8.33113×10−6×1.03119n 0.03035 3.087
Poly. Model 2.44435×10−30×n11.4789 0.03879 61.77

Unsat.
Exp. Model 7.86081×10−5×1.03281n 0.03336 399.7
Poly. Model 2.10794×10−30×n11.9828 0.16703 1912

march_br

All
Exp. Model 6.17600×10−5×1.03220n 0.05401 402.4
Poly. Model 5.56146×10−30×n11.7408 0.05199 1253

Sat.
Exp. Model 1.02788×10−5×1.03048n 0.02497 13.72
Poly. Model 1.25502×10−29×n11.1944 0.03341 67.85

Unsat.
Exp. Model 6.10959×10−5×1.03344n 0.03230 262.8
Poly. Model 5.18600×10−31×n12.2154 0.1586 1920

Table 5.8: Fitted models for median running times of the DPLL-based solvers
solving phase-transition random 3-SAT instances and the corresponding RMSE
values (in CPU sec). Model parameters are shown with 6 significant digits, and
RMSEs with 4 significant digits; the models yielding more accurate predictions (as
per RMSEs on challenge data) are shown in boldface.

Solver n
Observed median running time (sec) Predicted confidence intervals (sec)

Point estimates Confidence intervals Poly. model Exp. model

kcnfs
450 156.480 [143.340,166.770] [98.326,122.115] [120.078,161.444]
500 750.510 [708.290,806.130] [327.997,439.089] [561.976,889.428]*
550 3896.450 [3633.630,4130.915] [971.862,1402.255] [2622.488,4901.661]*

march_hi
450 112.553 [101.957,121.167] [62.021,91.787] [74.982,116.729]
500 564.821 [508.433,614.105] [190.395,333.963] [317.398,628.498]*
550 2971.450 [2660.430,3152.570] [523.034,1074.244] [1342.438,3375.460]*

march_br
450 112.812 [101.108,121,469] [69.649,91.290] [84.743,117.937]
500 594.095 [542.564,620.963] [226.874,332.773] [385.943,640.179]*
550 2975.580 [2544.450,3179.950] [659.553,1070.478] [1754.277,3492.830]*

Table 5.9: 95% bootstrap confidence intervals for observed running times of
DPLL-based solvers solving random 3-SAT instances. The instance sizes shown
here are larger than those used for fitting the models. Bootstrap intervals on predic-
tions that agree with the observed point estimates are shown in boldface, and those
that fully contain the confidence intervals on observations are marked by asterisks
(*).
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Figure 5.5: Fitted models for the 0.75-quantiles of the running times (in CPU-sec).
Both models are fitted with the 0.75 quantiles of the running times of WalkSA-
T/SKC solving the satisfiable instances from the set of 1200 random 3-SAT in-
stances of 200, 250, ..., 500 variables, and are challenged by median running times
of 600, 700, ..., 1000 variables.

as shown in Table 5.10. Note that we found no evidence for a substantial change
in the ratios between the median and higher quantiles as n increases; thus, there is
no reason to assume any difference in the scaling models of a higher quantile and
the median other than a constant factor.

Additionally, we investigated whether the differences between the scaling mod-
els of DPLL-based solvers are significant using the approach described in Section
3.2. We found that the bootstrap confidence intervals for march_hi and march_br
largely overlap with each other, and we cannot detect sufficient evidence for statist-
ically significant differences in scaling behaviour. On the other hand, the observed
running times for kcnfs are inconsistent with the scaling models for march_hi and
march_br, confirming that the performance of the march solvers indeed scales sig-
nificantly better than that of kcnfs. (See Figure 5.7 for an illustration of the com-
parison of the models for kcnfs and march_hi.)

Using the same approach, we investigated the significance of the differences
in scaling behaviour for each DPLL-based solver when applied to satisfiable and
unsatisfiable instances only, respectively. Intuitively, we would expect unsatis-
fiable instances to be harder, and the differences between the respective scaling
models are significant, in that the observed running times for solving unsatisfiable
instances are generally inconsistent with the scaling model for the same solver on
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Figure 5.6: Fitted models for the median running times of kcnfs [CPU-sec]. Both
models are fitted with the median running times of kcnfs solving 1200 random 3-
SAT instances of 200, 250, ..., 400 variables, and are challenged by median running
times of 450, 500 and 550 variables.

only satisfiable instances (as illustrated in Figure 5.8 for march_hi). To further
investigate whether the performance difference can be attributed to the constant
factor a in the exponential models, we fitted a one-parameter model of the form
a · bn

sat of the median running times for solving unsatisfiable instances, where a is
a free parameter and bsat is the value of parameter b from the scaling model for
satisfiable instances. For all three DPLL-based solvers, the observed running times
for solving unsatisfiable instances is consistent with these one-parameter models,
suggesting that, indeed, the scaling on satisfiable and unsatisfiable instances differs
only by a constant factor of around 20.

We also experimented with sat11, the running times of which are highly con-
sistent with exponential models but not with polynomial ones. The exponent is
similar to those of other DPLL-based solvers, but the constant factor is much lar-
ger (potentially due to implementation details of the solver itself).

5.3.3 Challenging the Scaling Models of SAT Solvers with Larger
Instances

We further challenged our models with runs of solvers of larger instances, the sizes
of which match those used in the most recent SAT Competitions. Due to the cost
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Solver Instances Model Confidence interval of a Confidence interval of b

kcnfs

All
Poly.

[
3.33969×10−31,4.30846×10−29

]
[11.4234,12.2674]

Exp.
[
3.33378×10−5,1.07425×10−4

]
[1.03136,1.03476]

Sat.
Poly.

[
1.81751×10−36,2.47924×10−21

]
[8.19161,14.0613]

Exp.
[
2.02817×10−6,5.85540×10−4

]
[1.02283,1.03835]

Unsat.
Poly.

[
5.65987×10−32,5.28138×10−30

]
[11.8558,12.6251]

Exp.
[
4.22382×10−5,1.03613×10−4

]
[1.03252,1.03508]

march_hi

All
Poly.

[
1.72213×10−31,3.51322×10−27

]
[10.6379,12.3284]

Exp.
[
2.90480×10−5,1.72479×10−4

]
[1.02928,1.03433]

Sat.
Poly.

[
5.68054×10−32,1.93360×10−24

]
[9.16765,12.1075]

Exp.
[
7.97341×10−7,7.07414×10−5

]
[1.02521,1.03765]

Unsat.
Poly.

[
5.01545×10−31,1.43762×10−29

]
[11.6557,12.2263]

Exp.
[
5.51043×10−5,1.06014×10−4

]
[1.03195,1.03386]

march_br

All
Poly.

[
1.26357×10−31,1.79577×10−28

]
[11.1507,12.3819]

Exp.
[
2.61030×10−5,1.08165×10−4

]
[1.03064,1.03466]

Sat.
Poly.

[
4.33022×10−32,1.53387×10−24

]
[9.10489,12.1426]

Exp.
[
1.81911×10−6,6.40234×10−5

]
[1.02515,1.03519]

Unsat.
Poly.

[
4.36438×10−31,6.51380×10−30

]
[11.7848,12.2416]

Exp.
[
4.27173×10−5,9.18950×10−5

]
[1.03230,1.03443]

Table 5.10: Bootstrap intervals of model parameters for median running times of
DPLL-based solvers solving phase-transition random 3-SAT instances.
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Figure 5.7: Comparing scaling models of kcnfs and march_hi on solving 3-SAT in-
stances. Both models are fitted with the median running times of kcnfs or march_hi
solving 1200 3-SAT instances of 200, 250, ..., 400 variables, and are challenged by
median running times of 450, 500 and 550 variables.
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Figure 5.8: Scaling of the median running time of march_hi on satisfiable vs un-
satisfiable 3-SAT instances. We show the scaling model and bootstrap confidence
intervals for performance on satisfiable 3-SAT instances, along with observations
on support and challenge data for satisfiable and unsatisfiable instances.

of solving these instances, we only used a small number of these. For SLS-based
solvers, we generated 120 instances of sizes 1500 and 2000 as well as 11 instances
of sizes 5000 and 10000. For these instances, 66, 58, 5 and 7 instances were solved
respectively, with a cut-off of 2 CPU days. Note that, WalkSAT/SKC failed to
solve one n = 5000 instance and five n = 10000 instances that BalancedZ man-
aged to solve, and probSAT missed one instance of each size. For DPLL-based
solvers, we generated 120 instances with n = 650, 67 our of which are satisfiable
and 53 are unsatisfiable. Note that about half of the march_hi and march_br runs
produced SIGSEGV errors when solving these larger instances, and we did not
further analyse them with larger instances.

The detailed results are shown in Table 5.11. From these results, we see evid-
ence that the exponential model remains a good descriptor of the scaling of kcnfs
for the large n = 650 instances. For the SLS-based solvers, the predictions made
by the polynomial models are also well consistent with the observed running times,
except for WalkSAT/SKC solving n = 10000 instances. We have not found con-
crete explanations for this exception, but believe that it may result from imple-
mentation details of the solver. Nevertheless, our results are striking, considering
that we fitted our polynomial models on instances with n ≤ 500 and these models
remain valid, even when challenged with 10 times larger instances that are challen-
ging for modern SAT solvers.
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Solver n
Predicted Observed median running time (sec)

Confidence intervals Point estimate Confidence intervals

WalkSAT/SKC
1500 [0.721,2.569]# 1.775 [1.135,5.286]
2000 [1.641,7.571] 12.002 [4.969,32.103]
5000 [20.48,217.6]# 149.6 [94.91,331.9]

BalancedZ

1500 [0.906,2.653] # 1.081 [0.541,2.586]
2000 [1.915,7.068] # 3.465 [1.485,6.383]
5000 [23.72,185.0] 18.07 [4.515,4077]
10000 [149.9,2072]# 1064 [224.1,20475]

probSAT

1500 [0.488,2.755] 2.820 [1.335,5.745]
2000 [0.989,8.129] 19.38 [3.740,37.944]
5000 [9.387,257.527]# 12.75 [10.329,∞]
10000 [51.502,3546.870] 11377 [1326,∞]

kcnfs
650, All [57720,149011]* 108071 [62308,126999]
650, Sat. [1285,96993]* 26370.6 [11877,44980]

650, Unsat. [111920,228028]* 159747 [135445,191781]

Table 5.11: Challenging the models with running times for large 3-SAT instances.
For the bootstrap intervals of the predicted median running times, those overlap-
ping with the observed confidence intervals are in boldface, those that agree with
the observed point estimates are marked by #, and those agreeing with the observed
confidence intervals are followed by *.

5.4 Empirical Scaling of Solver Performance on Random
4-SAT

We next studied two distributions of random 4-SAT instances: phase-transition
instances (as discussed in Section 5.2.2) and a class of less constrained instances
proposed by Dimitris Achlioptas.

5.4.1 Empirical Scaling of Solver Performance on Random 4-SAT at
Phase Transition

Similar to the analysis performed for random 3-SAT, we analysed the scaling
performance of the same set of SAT solvers (WalkSAT/SKC, BalancedZ, prob-
SAT, kcnfs, march_hi and march_br) on phase-transition random 4-SAT as well.
For SLS-based solvers, we used n = 70,80, · · ·150 as the support data and n =
160,170, · · ·200,225, · · · ,300 as the challenge data; while for DPLL-based solv-
ers, we used n = 80,90, · · · ,130 as the support data and n = 140,150, · · · ,190 as
the challenge data. The sizes were chosen considering the running times of the
solvers and our budget of computational resources, and we roughly used half of
the sizes for model fitting and the other half for challenging the obtained models.
To reduce floor effects, we made sure that median running times for SLS-based
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Model
RMSE RMSE

(support) (challenge)

WalkSAT/SKC
Exp. Model 6.9784×10−5×1.0456n 0.00084331 11.175

RootExp. Model 2.0584×10−7×2.777
√

n 0.0011903 1.1389
Poly. Model 9.6674×10−15×n5.8626 0.0015716 3.5491

BalancedZ
Exp. Model 1.1841×10−3×1.0208n 0.00077 0.03889

RootExp. Model 1.0763×10−4×1.5631
√

n 0.00089 0.08843
Poly. Model 1.473×10−7×n2.4042 0.00107 0.13516

probSAT
Exp. Model 8.7936×10−4×1.0208n 0.00071 0.06340

RootExp. Model 8.082×10−5×1.5616
√

n 0.00087 0.03013
Poly. Model 1.1498×10−7×n2.3939 0.00104 0.06473

Table 5.12: Fitted models for median running times of the SLS-based solvers solv-
ing phase-transition random 4-SAT instances and the corresponding RMSE values
(in CPU sec). The models yielding the most accurate predictions (as per RMSEs
on challenge data) are shown in boldface.

Solver Model Confidence interval of a Confidence interval of b

WalkSAT/SKC
Poly.

[
8.3451×10−17,7.7952×10−13

]
[4.7239,6.7928]

RootExp.
[
3.375×10−8,1.1002×10−6

]
[2.308,3.2189]

Exp.
[
2.9942×10−5,0.00014855

]
[1.0377,1.0518]

BalancedZ
Poly.

[
1.9088×10−8,4.2697×10−7

]
[2.1762,2.8316]

RootExp.
[
4.7598×10−5,1.6375×10−4

]
[1.5002,1.6841]

Exp.
[
7.9832×10−4,1.4443×10−3

]
[1.0189,1.0242]

probSAT
Poly.

[
2.4434×10−8,3.9394×10−7

]
[2.1333,2.7203]

RootExp.
[
4.3564×10−5,1.3324×10−4

]
[1.4899,1.6541]

Exp.
[
6.5415×10−4,1.1207×10−3

]
[1.0186,1.0234]

Table 5.13: Bootstrap intervals of model parameters for median running times of
SLS-based solvers solving phase-transition random 4-SAT instances.

solvers are above 0.005 CPU sec, and those for DPLL-based solvers above 0.1
CPU sec.

We first fitted parametric models to the median running times. Preliminary ex-
periments showed that polynomial and exponential models do not accurately cap-
ture the scaling behaviour of the SLS-based solvers. Thus, as mentioned in Section
5.1, we included root-exponential models to better characterise their scaling beha-
viour. The fitted models and corresponding RMSE values for SLS-based solvers
are shown in Table 5.12. We also performed bootstrap analysis as described in
Section 3.1 and computed bootstrap confidence intervals for the model paramet-
ers, observed and predicted running times, which are presented in Tables 5.13,
5.14 and 5.15, respectively. Our results show that exponential (for BalancedZ)
or root-exponential (for the other solvers) models usually fit the running times of
SLS-based solvers better, which stands in contrast to random 3-SAT. Figure 5.9, for
instance, shows the fitted models and corresponding bootstrap confidence intervals
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Solver n
Observed median running time (sec)

Point estimates Confidence intervals

WalkSAT/SKC

160 0.07675 [0.06683,0.09427]
170 0.1112 [0.09516,0.1296]
180 0.1661 [0.1439,0.2145]
190 0.2111 [0.1773,0.252]
200 0.3488 [0.2739,0.3967]
225 0.7695 [0.5895,1.055]
250 2.306 [1.936,3.239]
275 5.159 [4.166,7.331]
300 13.29 [8.837,17.68]

BalancedZ

160 0.03399 [0.02849,0.03878]
170 0.03899 [0.03447,0.04252]
180 0.04849 [0.04247,0.05478]
190 0.06099 [0.04947,0.07156]
200 0.08699 [0.06646,0.1016]
225 0.106 [0.08699,0.1492]
250 0.209 [0.186,0.2967]
275 0.283 [0.232,0.3613]
300 0.4724 [0.3586,0.6418]

probSAT

160 0.02499 [0.022,0.02852]
170 0.02899 [0.027,0.03452]
180 0.03099 [0.02899,0.03499]
190 0.03899 [0.03347,0.04652]
200 0.04699 [0.03999,0.05751]
225 0.06599 [0.05641,0.07851]
250 0.118 [0.09241,0.136]
275 0.166 [0.128,0.209]
300 0.2615 [0.17,0.3467]

Table 5.14: 95% bootstrap confidence intervals for observed running times of SLS-
based solvers solving phase-transition random 4-SAT instances. The instance sizes
shown here are larger than those used for fitting the models.
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Solver n
Predicted confidence intervals of median running time (sec)
Poly. model RootExp. model Exp. model

WalkSAT/SKC

160 [0.06396,0.09442]* [0.06672,0.09797]* [0.06985,0.1021]#
170 [0.08559,0.1412]* [0.09274,0.153]* [0.1013,0.1676]#
180 [0.1121,0.2077]# [0.1272,0.2377]* [0.1466,0.2776]#
190 [0.1447,0.2971]* [0.173,0.3618]* [0.2123,0.4554]
200 [0.1844,0.42]* [0.2334,0.5483]* [0.3074,0.7519]#
225 [0.3217,0.9324]# [0.4784,1.49]* [0.7752,2.645]
250 [0.5291,1.907] [0.943,3.848]* [1.955,9.34]#
275 [0.83,3.644] [1.798,9.486]* [4.932,32.98]#
300 [1.252,6.581] [3.332,22.46]* [12.44,116.5]#

BalancedZ

160 [0.02644,0.03333] [0.0275,0.0349]# [0.02862,0.03662]#
170 [0.03021,0.03962]# [0.03225,0.04282]* [0.03455,0.0466]#
180 [0.03425,0.04663] [0.03764,0.05223]# [0.04173,0.05931]*
190 [0.03857,0.05441] [0.04374,0.06337]# [0.05039,0.07523]#
200 [0.04317,0.06298] [0.05064,0.07626] [0.06086,0.09537]#
225 [0.05592,0.08773] [0.07192,0.119]# [0.09753,0.1728]#
250 [0.07048,0.118] [0.1001,0.1812] [0.1561,0.313]*
275 [0.08678,0.1543] [0.1371,0.2704] [0.2495,0.5671]#
300 [0.1049,0.1971] [0.1849,0.3968] [0.3985,1.03]#

probSAT

160 [0.01968,0.02449] [0.0205,0.02566]# [0.02136,0.02694]#
170 [0.02242,0.02885] [0.02397,0.03119]# [0.02574,0.03394]#
180 [0.02535,0.03368]# [0.02791,0.03769]* [0.03105,0.04275]
190 [0.02848,0.03899] [0.03239,0.04532]# [0.03731,0.05385]#
200 [0.03183,0.0448] [0.03733,0.05423]# [0.04482,0.06784]#
225 [0.0409,0.06161] [0.05244,0.08337]* [0.07101,0.1208]
250 [0.05113,0.08195] [0.07232,0.1252]# [0.1129,0.2152]#
275 [0.06258,0.1061] [0.09844,0.1843]# [0.1794,0.3833]
300 [0.07526,0.1342] [0.1322,0.2668]# [0.285,0.684]

Table 5.15: 95% bootstrap confidence intervals for predicted median running time
of SLS-based solvers solving phase-transition random 4-SAT instances. The in-
stance sizes shown here are larger than those used for fitting the models. Bootstrap
intervals on predictions that overlap with the corresponding bootstrap interval on
observed data are shown in boldface, those that agree with the observed point es-
timates are marked by sharps (#), and those that fully contain the confidence inter-
vals on observations are marked by asterisks (*).
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Figure 5.9: Fitted models for median running times of BalancedZ. Both models are
fitted to the median running times of BalancedZ solving the 4-SAT instances from
the set of phase-transition random instances with 70, 80, ... 150 variables, and are
challenged by median running times for instances with 160, 170, ... 200, 225, ...
300 variables.

for BalancedZ.
On the other hand, results for DPLL-based solvers on random 4-SAT are very

similar to those on 3-SAT, with exponential models fitting the running times very
well. Details of the fitted models and corresponding RMSE values can be found
in Table 5.16. Note that we did not present result for polynomial models, because
they clearly under-estimate the scaling of the running times, and the Levenberg-
Marquardt Algorithm takes extremely long time to fit such models. We again
performed bootstrap analysis and obtained the bootstrap confidence intervals for
model parameters and for observed and predicted running times shown in Tables
5.17 and 5.18, respectively. Figure 5.10 illustrates the fitted models and corres-
ponding bootstrap confidence intervals for march_hi.

5.4.2 Empirical Scaling of Solver Performance on Less-constrained
Random 4-SAT

We also explored less-constrained 4-SAT instances generated according to a for-
mula proposed by Dimitris Achlioptas, namely

m = 2k−1 ·n (5.4)
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Solver Model
RMSE RMSE

(support) (challenge)

kcnfs
Exp. Model 1.9621×10−5×1.1098n 0.02472 689.0

RootExp. Model 5.8865×10−11×10.008
√

n 0.06817 1085

march_hi
Exp. Model 5.4972×10−5×1.1006n 0.01430 333.02

RootExp. Model 4.8241×10−10×8.285
√

n 0.06351 1318

march_br
Exp. Model 3.272×10−5×1.1045n 0.07124 123.7

RootExp. Model 1.813×10−10×8.9758
√

n 0.11317 1034

Table 5.16: Fitted models for median running times of the DPLL-based solvers
solving phase-transition random 4-SAT instances and the corresponding RMSE
values (in CPU sec). The models yielding more accurate predictions (as per
RMSEs on challenge data) are shown in boldface.

Solver Model Confidence interval of a Confidence interval of b

kcnfs
Exp.

[
1.1077×10−5,3.4453×10−5

]
[1.1047,1.1149]

RootExp.
[
1.8193×10−11,1.9247×10−10

]
[8.9979,11.116]

march_hi
Exp.

[
2.2428×10−5,9.0675×10−5

]
[1.0961,1.1082]

RootExp.
[
7.9199×10−11,1.3699×10−9

]
[7.5342,9.701]

march_br
Exp.

[
9.033×10−6,5.9334×10−5

]
[1.0994,1.1156]

RootExp.
[
1.3416×10−11,6.0806×10−10

]
[8.0647,11.323]

Table 5.17: Bootstrap intervals of model parameters for median running times of
DPLL-based solvers solving phase-transition random 4-SAT instances.

For WalkSAT/SKC, we used n = 6000,7000, · · · ,15000 as support data, and n =
16000,17000, · · · ,20000,30000,40000 as challenge data. For kcnfs, we used
n = 300,350, · · · ,450 as support data, and n = 500,550,600 as challenge data.
The sizes were chosen considering the running times of the solvers and our budget
of computational resources, and we roughly used half of the sizes for model fitting
and the other half for challenging the obtained models. To reduce floor effects, we
made sure that median running times for SLS-based solvers are above 0.005 CPU
sec, and those for DPLL-based solvers above 0.1 CPU sec. The fitted models and
corresponding RMSE values are shown in Table 5.19. Results of bootstrap ana-
lysis, including confidence intervals for model parameters, for observed running
times and for predicted values, are shown in Tables 5.20, 5.21 and 5.22, respect-
ively. Figure 5.11 illustrates the fitted models of WalkSAT/SKC, which suggests
some scaling behaviour lower-bounded by, and close to, polynomial. For kcnfs,
the fitted models are shown in Figure 5.12, and the observed running times are
surprisingly well consistent with the polynomial model.

To summarise, both WalkSAT/SKC and kcnfs demonstrate significantly better
scaling behaviour for solving the less-constrained 4-SAT instances than for phase-
transition instances. This confirms earlier observations that phase-transition SAT
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Solver n
Observed median running time (sec) Predicted confidence intervals (sec)

Point estimates Confidence intervals RootExp. model Exp. model

kcnfs

140 39.39 [37.06,41.39] [36.81,42.96]* [38.74,45.25]#
150 115.2 [108.5,119.9] [91.8,116.9]# [105,134.3]*
160 319.6 [306.1,327.3] [221.9,306.9] [284.1,398]*
170 839.7 [783.9,874.3] [521.8,785.3] [768.8,1183]*
180 2331 [2242,2448] [1197,1955] [2081,3519]*
190 6151 [5745,6447] [2686,4749]

[
5632,1.046×104]*

march_hi

140 36.54 [32.77,39.18] [31.81,39.33]* [33.43,41.37]#
150 101.6 [95.02,105.3] [73.85,101.8]# [83.98,116.5]*
160 278.8 [263.4,291.4] [166.8,254.3] [211,326.4]*
170 759.6 [710.9,803.5] [367.3,615.5] [530.1,910.3]*
180 2070 [1965,2157] [790.7,1449] [1332,2535]*
190 5227 [4887,5537] [1667,3331] [3346,7059]*

march_br

140 32.6 [28.06,35.07] [31.9,38.24]# [33.53,40.23]
150 94.26 [85.39,99.02] [76.18,104.4]* [86.79,119.8]#
160 261.1 [251.2,272.4] [176.8,277.8]* [224.7,359.2]*
170 714.1 [686.2,748.8] [399.3,717]# [580.3,1077]*
180 1868 [1774,1962] [880,1800] [1498,3227]*
190 4892 [4529,5237] [1898,4396] [3865,9646]*

Table 5.18: 95% bootstrap confidence intervals for observed running times of
DPLL-based solvers solving phase-transition random 4-SAT instances. The in-
stance sizes shown here are larger than those used for fitting the models. Bootstrap
intervals on predictions that overlap with the corresponding bootstrap interval on
observed data are shown in boldface, those that agree with the observed point es-
timates are marked by sharps (#), and those that fully contain the confidence inter-
vals on observations are marked by asterisks (*).

Solver Model
RMSE RMSE

(support) (challenge)

WalkSAT/SKC
Exp. Model 0.02346×1.00012n 0.00301 0.76778

Poly. Model 2.97526×10−7×n1.35594 0.00139 0.08560

kcnfs
Exp. Model 2.47586×10−5×1.02815n 0.02313 137.183

Poly. Model 9.44803×10−31×n11.625 0.03740 2.91674

Table 5.19: Fitted models for median running times of the solvers solving less-
constrained random 4-SAT instances and corresponding RMSE values (in CPU
sec). The models yielding more accurate predictions (as per RMSEs on challenge
data) are shown in boldface.

Solver Model Confidence interval of a Confidence interval of b

WalkSAT/SKC
Exp. [0.02190,0.02570] [1.00011,1.00012]
Poly.

[
2.12689×10−7,4.36148×10−7

]
[1.31430,1.39195]

kcnfs
Exp.

[
3.47927×10−6,0.00012

]
[1.02419,1.03295]

Poly.
[
3.92302×10−36,3.17454×10−26

]
[9.91562,13.6855]

Table 5.20: Bootstrap intervals of model parameters for median running time of
the solvers solving less-constrained random 4-SAT instances.
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Solver n
Observed median running time (sec)
Point estimates Conf. intervals

WalkSAT/SKC

16000 0.1404 [0.1387,0.1422]
17000 0.1540 [0.1521,0.1558]
18000 0.1697 [0.1671,0.1717]
19000 0.1862 [0.1841,0.1882]
20000 0.2040 [0.2014,0.2075]
30000 0.4363 [0.4234,0.4546]
40000 0.7262 [0.7113,0.7355]

kcnfs
500 21.3758 [17.8882,24.9521]
550 72.2845 [55.7475,89.4627]
600 189.071 [153.728,239.913]

Table 5.21: 95% bootstrap confidence intervals for observed running times on less-
constrained random 4-SAT instances. The instance sizes shown here are larger than
those used for fitting the models..

Solver n
Predicted confidence intervals (sec)
Exp. model Poly. model

WalkSAT/SKC

16000 [0.1510,0.1617] [0.1462,0.1519]
17000 [0.1687,0.1832] [0.1583,0.1652]
18000 [0.1884,0.2075] [0.1707,0.1789]
19000 [0.2105,0.2351] [0.1833,0.1929]*
20000 [0.2351,0.2663] [0.1961,0.2072]#
30000 [0.7111,0.9267] [0.3341,0.3637]
40000 [2.1504,3.2241] [0.4876,0.5423]

kcnfs
500 [18.7603,39.0276]# [16.1396,32.6376]*
550 [61.7576,189.54]# [41.1617,115.85]*
600 [208.907,957.263] [99.4254,379.376]*

Table 5.22: 95% bootstrap confidence intervals for predicted running times on less-
constrained random 4-SAT instances. The instance sizes shown here are larger than
those used for fitting the models. Bootstrap intervals on predictions that overlap
with the corresponding bootstrap interval on observed data are shown in boldface,
those that agree with the observed point estimates are marked by sharps (#), and
those that fully contain the confidence intervals on observations are marked by
asterisks (*).
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Figure 5.10: Fitted models for median running times of march_hi. Both models
are fitted with the median running times of march_hi solving the 4-SAT instances
from the set of phase-transition random instances with 40, 50, ... 120 variables,
and are challenged by median running times for instances with 130, 140, ... 190
variables.

instances represent a very hard distribution, and the less-constrained instances we
studied here are significantly easier than phase-transition 4-SAT instances.

5.5 Experiments for the Survey Propagation Algorithm

We also tried to experiment with the survey propagation algorithm [11], but en-
countered some practical problems with the implementation made available by
the authors4. In particular, the solver turns out to be unable to solve a signi-
ficant proportion of satisfiable phase-transition random 3-SAT instances for n =
200, · · · ,1000. In our experiments, 5 runs were performed for each instance and
we report the number of instances that cannot be solved in at least 3 out of the 5
runs in Table 5.23. It is clear that the proportion of failed runs is quite large and
tends to increase with n. For n = 1000, more than 70% of the instances could not
be solved in 3 out of 5 runs. To further evaluate whether we could restart the al-
gorithm to make it a practical solver for satisfiable instances, we performed 1000
independent runs on 3 instances, and none of these instances was ever solved in
any single run of the algorithm.

4http://areeweb.polito.it/ricerca/cmp/code/sp
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Figure 5.11: Fitted models for the median running times of WalkSAT/SKC.
Both models are fitted to the median running times of WalkSAT/SKC solv-
ing the less-constrained 4-SAT instances from the set of random instances with
6000,7000, · · · ,15000 variables, and are challenged by median running times with
≥ 16000 variables.

According to Alfredo Braunstein and Riccardo Zecchina5, the reason for this is
that the solver, after some decimation, starts not converging and eventually goes to
a singularity of the underlying fixed point equations. Then, the solver presumably
makes random choices and eventually gets into a bad partial configuration of vari-
ables that leads to a contradiction. To solve this problem, one needs to implement
a solver combining survey propagation with backtracking. Due to time constraints,
we did not pursue this path to evaluate the survey propagation algorithm empir-
ically. However, our methodology is readily applicable to the survey propagation
algorithm, once a practical implementation of the algorithm is available, and such
analysis should be of interest to the community.

5.6 Chapter Summary

In this chapter, we presented an empirical analysis of the scaling behaviour of sev-
eral prominent SAT solvers on phase transition uniform random 3-SAT instances.
We were surprised to find solid support for low-degree polynomial scaling of the
performance of all three SLS-based SAT solvers we studied, which stands in stark

5Personal communications.
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Figure 5.12: Fitted models for the median running times of kcnfs. Both models
are fitted to the median running times of kcnfs solving the less-constrained 4-SAT
instances from the set of random instances with 300, · · · ,450 variables, and are
challenged by median running times for instances with 500,550,600 variables.

contrast to the exponential performance scaling of the three DPLL-based solvers
we considered, even when these were run on satisfiable instances only. As ex-
pected, we did find evidence for significant differences in the performance scaling
models of DPLL-based solvers on satisfiable and unsatisfiable instances, but these
differences could be attributed to a constant factor, suggesting that they cannot be
leveraged to obtain reasonably accurate guesses on the unsatisfiability of instances
based on long runs of those solvers. However, the qualitative differences between
the scaling of SLS- and DPLL-based solvers can be exploited, in that for growing
n, it appears to be possible to separate satisfiable from unsatisfiable instances with
high and further increasing accuracy based on long runs of SLS-based or hybrid
solvers. Furthermore, the polynomial scaling of even high quantiles of the distri-
bution of running times for SLS-based solvers across instance sets suggests that
random 3-SAT instances from the solubility phase transition are likely not captur-
ing the difficulty we expect to encounter in the worst case when solving an N P-
hard problem. We note that, considering their sizes, these instances are still very
hard compared to almost all types of structured SAT instances and may therefore
still be useful as a benchmark.

We also explored the empirical scaling of these solvers on two distributions
of random 4-SAT instances. For phase-transition instances, exponential (for Bal-
ancedZ) or root-exponential (for the other solvers) models usually fit the running
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n 200 250 300 350 400 450
# Instances 581 589 633 558 579 572

# Not solved 211 268 317 285 319 329
% Not solved 36.3% 45.5% 50.1% 51.1% 55.1% 57.5%

n 500 600 700 800 900 1000
# Instances 578 572 607 584 592 593

# Not solved 355 356 398 408 393 437
% Not solved 61.4% 62.2% 65.6% 69.9% 66.4% 73.7%

Table 5.23: Number of the satisfiable instances of different sizes, and the number
and percentage of instances that cannot be solved in at least 3 out of 5 independent
runs of the survey propagation algorithm.

times of SLS-based solvers better, while DPLL-based solvers demonstrate scaling
behaviour well characterised by exponential models. For solving a class of less-
constrained instances, we showed that both WalkSAT/SKC and kcnfs scale signi-
ficantly better than solving phase-transition instances in that a polynomial model
is the better fit for both solvers.

To the best of our knowledge, ours is the first study that uses a statistically
sound way to assess the scaling of SAT solver performance with instance size, and
to discriminate between different scaling models. The empirical scaling analysis
we have performed here can easily be applied to other SAT solvers and other dis-
tributions of SAT instances (as long as reasonably large sets of instances for each
n can be obtained). We believe that doing so can and will produce interesting and
useful results that can inspire the design of algorithms and benchmark instance
generators as well as, hopefully, theoretical work.
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Chapter 6

Empirical Scaling of Running
Time of TSP Solvers 6

In this chapter, we studied the empirical scaling of finding time, that is, the time
required by a solver to find an optimal solution of a TSP instance without proving
optimality, of prominent TSP solvers. Our analyses were done on the state-of-the-
art complete solver, Concorde, and two prominent incomplete solvers, EAX and
LKH.

6.1 Experimental Setup

For our analyses, we used the benchmark RUE instances that were previously used
and made available to us by Dubois-Lacoste et al. [21] as well as by Hoos and
Stützle [35, 36]. We focused on RUE instances, because they represent a widely-
studied distribution of hard TSP instances and can be obtained easily for a given
set of instance sizes. These instances were generated using the portgen generator
from the 8th DIMACS implementation challenge for TSP [38]. It places n points
in a 100000× 100000 square uniformly at random and computes the Euclidean
distances between pairs of points. There are 1000 instances for each instance size
n = 500,600, · · · ,1500,2000 and 100 instances for each n = 2500,3000, · · · ,4500.

Regarding solvers, we chose three high-performance TSP solvers that are well
known in the community, including one complete algorithm and two incomplete
algorithms. All algorithms perform well on large TSP instances and play an im-
portant role in the development of TSP solving techniques. We thus have reasons
to expect that analyses of these solvers would greatly enrich our understanding of
empirical time complexity for finding optimal TSP solutions.

For complete algorithm, we concentrated on the long-time state-of-the-art exact
TSP solver, Concorde [4]. Mainly based on a branch & cut scheme, it makes use of
a multitude of heuristics and is the best-performing exact solver that we are aware
of. The solver has been used to solve some largest non-trivial instances.

6This chapter covers results that are also reported in two working papers [54, 55]
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For incomplete algorithms, we chose the latest versions of LKH and EAX.
LKH [29, 30], Helsgaun’s variant of the Lin-Kernighan TSP heuristic, is a variable-
depth search method that performs sophisticated heuristic-guided local search moves
based on sequences of five or more edge exchanges. It can perform restarts based
on perturbations of previously found solutions using a variety of strategies. The
algorithm arguably represents a milestone in the development of inexact TSP solv-
ing and the state-of-the-art for finding high-quality TSP solutions. In this work, we
used LKH version 2.0.7, keeping parameters at default except for PATCHING_A
and PATCHING_C, which we set to 2 and 3 respectively to include patching of
cycles in searching for improving moves. These values were also adopted in the
example parameter file for solving TSPLIB instance pr2392 and in earlier work by
Dubois-Lacoste et al. [21].

Recently, there has been a fast-developing line of work on evolutionary al-
gorithms for inexact solving of TSP. EAX [57], a very successful genetic algorithm,
makes use of improved variants of the edge assembly cross-over recombination
operator. It also exploits diversity preservation techniques and carefully initial-
ises the initial population by local optimisation. In the following, we used EAX
with default parameters, namely with population size as 100 and number of no-
improvement iterations before restart as 30.

For our analyses, we used implementations of LKH and EAX made available
to us by Dubois-Lacoste et al. [21]. Their versions of the solvers use a restart mech-
anism to achieve improved performance. Restart mechanisms are needed because
even high-performance local search algorithms can suffer from stagnation beha-
viour, and restart mechanisms help both algorithms considerably to find the known
optimal solution more efficiently.

For our scaling analysis, we considered three parametric models:

• Exp [a,b] (n) = a ·bn (2-parameter exponential);

• RootExp [a,b] (n) = a ·b
√

n (2-parameter root-exponential);

• Poly [a,b] (n) = a ·nb (2-parameter polynomial).

Similar to our analyses on SAT, we fitted these models on the medians of running
times, and computed 95% confidence intervals of the predictions following meth-
odology outlined in Chapter 3.

For running these TSP solvers, we used a cluster of computers, each equipped
with a 2.0GHz eight-core AMD 6128 processor, 2×12MB L2/L3 cache and 16GB
RAM. The operating system was Cluster Rocks Linux 6.0/CentOS 6.3, and gcc
4.4.6 was used to compile the programs with optimisation flag -O3. To avoid meas-
urement noise caused by memory bottlenecks, we used only one core per CPU to
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run our solvers and imposed a memory limit of 1GB per run. We performed 10
independent runs of incomplete TSP solvers, and used the median as well.

6.2 Empirical Scaling of Running Time of Concorde for
Finding Optimal Solutions

In this section, we study empirical scaling of finding time, namely the time required
to find an optimal solution of a given TSP instance, of Concorde, the state-of-the-
art complete solver for TSP. We further compared the scaling results with those
of overall running time of Concorde and obtained interesting results. Our work
complement previous analyses on empirical scaling of TSP, as discussed in Section
2.2.

6.2.1 Treatments of running time data

When studying the running times for finding optimal solutions (finding times) com-
pared to those including proving optimality (overall running times), care needs to
be taken in the treatment of timed-out runs. In the Concorde case, this concerns
runs on instances for which only pseudo-optimal solutions or not even pseudo-
optimal solutions are available. These solutions were found through multiple runs
of EAX and LKH. For a subset of these instances, EAX and LKH reached the same
best solution in every single run; we conjecture that these best solutions are in fact
optimal and refer to them as pseudo-optimal. When comparing the best solution
found during a run of Concorde to the pseudo-optimal solution or the best solution
we know for an instance in case these are not considered pseudo-optimal, we could
verify that for all except one such solution Concorde did not find within the 7 CPU
days such solutions, that is, we can verify that the finding times of Concorde are
larger than 7 CPU days and, hence, larger than the median times on which we base
the analysis given below. It thus enables us to compute the median finding time in a
definite manner, despite that finding times for these instances are unknown. For the
remaining instance on which Concorde found the same solution as the best known
one, the computation time to match the best solution known was larger than the
respective median time required on instances for which proven optimal solutions
are already known.

6.2.2 Scaling models, RMSEs and bootstrap intervals

We first fitted parametric models on the finding times of Concorde, and obtained
three models together with corresponding RMSE values as in Table 6.1. According
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Solver Model
RMSE RMSE

(support) (challenge)

Concorde
Exp. 4.0388×1.0032n 7.7847 2.7852×106

RootExp. 0.083457×1.2503
√

n 7.0439 9169.4
Poly. 1.6989×10−10×n3.9176 9.9327 1.038×105

Table 6.1: Fitted models for the medians of the running times of Concorde and
the corresponding RMSE values (in CPU sec). The models yielding more accurate
predictions (as per RMSEs on challenge data) are shown in boldface.

Solver Model Confidence interval of a Confidence interval of b

Concorde
Exp. [2.6108,5.2975] [1.0030,1.0036]

RootExp. [0.037056,0.15111] [1.2287,1.2793]
Poly.

[
6.1872×10−12,1.7351×10−9

]
[3.5859,4.3713]

Table 6.2: 95% bootstrap confidence intervals for the parameters of the scaling
models for Concorde’s running times to find optimal solutions of RUE instances.

to the RMSE values on support and challenge data, the root exponential model
gives the best fit.

To assess the confidence we should have in these models, we used the bootstrap
re-sampling method described in Section 3.1 to evaluate the models, which gives
us the confidence intervals for model parameters (Table 6.2) and for observed/pre-
dicted running times (Tables 6.3 and 6.4 respectively). The results, also clearly
seen from Figure 6.1, indicate that the root-exponential model with a base ≈ 1.25
is a very good fit for the finding times of Concorde.

6.2.3 Comparison with scaling for overall running time of Concorde

Previously, Hoos and Stützle [35] have shown that the overall running times (for
finding optimal solutions and proving optimality) of Concorde also scale as a root-
exponential model. Here, we repeated the analysis with newer overall running time
data that we collected together with finding times. The results we thus obtained
confirmed a root-exponential scaling model for the overall running time of Con-
corde, with a in the interval [0.11658,0.35323] and b in the interval [1.2126,1.2522].
Note that the confidence interval for b is very close to that obtained for finding time,
which is [1.2287,1.2793]. Moreover, the predictions made by the root-exponential
model of overall running time, as shown in Table 6.5, are quite consistent with ob-
served finding times. A closer look at the data, however, reveals that the observed
finding times are usually closer to the lower end of the corresponding bootstrap
confidence intervals, while the observed overall running times are usually closer

63
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Solver n
Observed median finding time

Point estimates Confidence intervals

Concorde

2000 1969 [1739,2222]
2500 6149 [4084,8812]
3000 1.84×104

[
1.332×104,2.669×104

]
3500 3.246×104

[
2.581×104,5.038×104

]
4000 1.312×105

[
7.073×104,2.024×105

]
4500 2.633×105

[
1.73×105,4.419×105

]
Table 6.3: 95% bootstrap confidence intervals for the medians of observed running
times for Concorde to find optimal solutions of RUE instances. The instance sizes
shown here are larger than those used for fitting the models.

Solver n
Predicted confidence intervals

Exp. model RootExp. model Poly. model

Concorde

2000 [1988,3179] [1528,2269]* [1228,1795]
2500

[
8718,1.884×104] [4536,8335]# [2737,4771]

3000
[
3.853×104,1.103×105

] [
1.212×104,2.694×104]* [

5252,1.057×104
]

3500
[
1.698×105,6.479×105

] [
3.001×104,7.925×104]# [

9149,2.069×104
]

4000
[
7.5×105,3.809×106

] [
6.95×104,2.163×105]* [

1.477×104,3.708×104
]

4500
[
3.301×106,2.245×107

] [
1.528×105,5.563×105]* [

2.248×104,6.205×104
]

Table 6.4: 95% bootstrap confidence intervals for the medians of the running time
predictions for Concorde to find optimal solutions of RUE instances. The instance
sizes shown here are larger than those used for fitting the models. Bootstrap inter-
vals on predictions that are weakly consistent with the observed data are shown in
boldface, those that are strongly consistent are marked by sharps (#), and those that
fully contain the confidence intervals on observations are marked by asterisks (*).

Solver n
Predicted confidence intervals Observed median overall running time

RootExp. model Point estimates Confidence intervals

Concorde

2000 [1962,2736]# 2508 [2197,2760]
2500 [5431,8914]# 7899 [4886,9789]
3000

[
1.366×104,2.612×104]# 2.064×104

[
1.492×104,2.795×104

]
3500

[
3.181×104,6.994×104]# 4.057×104

[
2.586×104,5.719×104

]
4000

[
6.987×104,1.753×105]# 1.377×105

[
8.236×104,2.108×105

]
4500

[
1.462×105,4.154×105]# 3.264×105

[
1.953×105,5.087×105

]
Table 6.5: 95% bootstrap confidence intervals for the medians of the observed and
predicted overall running times for Concorde to solve RUE instances. Bootstrap
intervals on predictions that are weakly consistent with the observed finding times
are shown in boldface, those that are strongly consistent are marked by sharps (#),
and those that fully contain the confidence intervals on observations are marked by
asterisks (*).
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Figure 6.1: Fitted models for the medians of the running times for Concorde to
find optimal solutions of RUE instances without proving optimality. All models
are fitted with the medians of the running times of Concorde solving the RUE
instances from the set of instances 500 ≤ n ≤ 1500 variables, and are challenged
by the medians of the running times of 2000≤ n≤ 4500 variables.

to the higher end. In other words, we do not have strong evidence that the finding
times scale differently compared to the overall running times, but more experi-
ments may narrow down the confidence intervals and help us better understand the
scaling behaviour of Concorde.

To further test whether the difference between finding and overall running
times is explained by a constant factor, we fitted a one-parameter root-exponential
model of the form a · b

√
n

proving on the finding times of Concorde, where bproving =
1.2281 from the root-exponential model for Concorde overall running time. Our
results show that the model obtained in this way tends to under-estimate the find-
ing times, and imply that the finding times scale slightly worse than overall running
times. Note that this is also suggested by the difference in the confidence intervals
for b in the two models. Moreover, it was also observed by Hoos and Stützle that,
as n increases, the percentage of running times spent on finding optimal solutions
goes up and dominates the running time for large n [36].

So, do Concorde finding times scale worse than overall running times? While
this is not clear from cross-checking model predictions with observed finding times,
our analysis using the one-parameter root-exponential model clearly suggests an
affirmative answer. We argue that two reasons cause our analysis with the two-
parameter model of overall running time to fail to illustrate this: 1) the two-
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6.3. Empirical Scaling of Running Time of EAX and LKH

parameter model represents a large family of models, and the bootstrap confidence
intervals tend to be wide; 2) the fitted root-exponential model for overall running
time has a larger a, which causes an illusion that overall running times scale worse
than finding times. Given the relationship between finding and overall running
times, though, we believe that more sophisticated models than the two-parameter
root-exponential model we use here would be required in order to explain the in-
crease of fraction of running time spent on finding optimal solutions.

6.3 Empirical Scaling of Running Time of EAX and
LKH

In this section, we study empirical scaling of running time of EAX and LKH, two
prominent incomplete solvers for TSP. We further compare the scaling results with
those of findings time of Concorde and obtain interesting results. Our work com-
plements previous analyses on empirical scaling of TSP, as discussed in Section
2.2.

6.3.1 Details of instances

As described in detail before, Concorde does not manage to solve all instances
within the allowed time. Because EAX and LKH cannot prove optimality, they
need to be given the optimal solution in advance in order to terminate once the
optimal solution is reached. To make more instances available for EAX and LKH
to solve, we ran Concorde on the previously unsolved instances with different seeds
and/or on (limited number of) faster machines. In addition, we performed multiple
runs of EAX and LKH on those instances that remain unsolved by Concorde. For
a subset of these instances, EAX and LKH reached the same best solution in every
single run; we conjecture that these best solutions are in fact optimal and refer to
them as pseudo-optimal. In the results to follow, we include data for both optimal
and pseudo-optimal instances. We note that only using data for optimal instances
gives qualitatively similar conclusions.

For the six instances (two of size 4000 and four of size 4500) for which we did
not succeed in establishing pseudo-optimal solutions, we took special care in how
to treat them. As found by Dubois-Lacoste et al. [21], performance correlations
between each pair of solvers are all very low. Thus, the instances for which we
do not have optimal or pseudo-optimal solutions may actually be easy for the in-
complete solvers. Thus, they are treated using an optimistic/pessimistic estimation
as done by Dubois-Lacoste et al. [21]. More precisely, we treat these instances as
easy with smaller-than-the-median running times in the optimistic estimation, and
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6.3. Empirical Scaling of Running Time of EAX and LKH

Solver Model
RMSE RMSE

(support) (challenge)

EAX
Exp. 1.6512×1.0017n 0.80329 [1513.3,1566.2]

RootExp. 0.24795×1.1230
√

n 0.45614 [44.77,88.739]
Poly. 1.9196×10−5×n1.9055 0.10699 [235.79,287.6]

LKH
Exp. 0.56147×1.0025x 0.51265 [18213,18330]

RootExp. 0.030075×1.1879
√

x 0.38383 [797.7,909.51]
Poly. 1.15×10−8×x2.9297 0.50193 [282.12,378.53]

Table 6.6: Fitted models for the medians of the running times of EAX and LKH and
the corresponding RMSE values (in CPU sec). The models yielding more accurate
predictions (as per RMSEs on challenge data) are shown in boldface.

Solver Model Confidence interval of a Confidence interval of b

EAX
Exp. [1.6234,1.6764] [1.0017,1.0018]

RootExp. [0.23938,0.25592] [1.1219,1.1242]
Poly.

[
1.6803×10−5,2.1556×10−5

]
[1.8887,1.9245]

LKH
Exp. [0.46665,1] [1.0021,1.0027]

RootExp. [0.020678,0.043847] [1.1749,1.2006]
Poly.

[
2.769×10−9,4.8245×10−8

]
[2.7229,3.1287]

Table 6.7: 95% bootstrap confidence intervals for the model parameters of the
scaling models for EAX’s and LKH’s running times to find optimal solutions of
RUE instances.

as timed-out instances in the pessimistic treatment. This gives us intervals for the
medians for those sizes where there are instances with unknown (pseudo-)optimal
solutions. We note that these intervals are not confidence intervals, but bounds
on the median running times, as the true median must be contained within these
intervals.

6.3.2 Scaling models, RMSEs and bootstrap intervals

Similarly, we first fitted parametric models to the running times of EAX and LKH,
resulting in the models and corresponding RMSE values shown in Table 6.6. Judged
from the RMSE values, the running times of EAX and LKH are best approximated
by a root-exponential and a polynomial model, respectively.

We also assessed the fitted models with bootstrap re-sampling, using the method
described in Section 3.1. In particular, we calculated the confidence intervals for
model parameters (Table 6.7) and for observed/predicted running times (Tables 6.8
and 6.9). The results for EAX, also presented graphically in Figure 6.2, indic-
ate that the root-exponential model with a base ≈ 1.123 is a fairly good fit. On
the other hand, the results for LKH, also shown in Figure 6.3, suggest a scaling
behaviour bounded from below and above by a polynomial and a root-exponential
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6.3. Empirical Scaling of Running Time of EAX and LKH

Solver n
Observed median run-time

Point estimates Confidence intervals

EAX

2000 41.24 [40.03,42.26]
2500 73.19 [61.11,118]
3000 172.2 [155.7,223.2]
3500 239.9 [220,357.7]
4000 [483.2,547.4] [370.2,649.8]
4500 [611.7,727.7] [520,877.6]

LKH

2000 62.64 [58.03,69.61]
2500 137 [108.5,199.7]
3000 249.4 [201.3,372.2]
3500 382.8 [260.8,648.8]
4000 [891,907.3] [551.5,1207]
4500 [1059,1352] [808.2,2203]

Table 6.8: 95% bootstrap confidence intervals for the medians of the observed
running times for EAX and LKH to find optimal solutions of RUE instances. The
instance sizes shown here are larger than those used for fitting the models.

Solver n
Predicted confidence intervals

Exp. model RootExp. model Poly. model

EAX

2000 [53.08,54.75] [43.77,45.01] [37.02,37.98]
2500 [125.9,131.9] [80.33,83.51] [56.43,58.35]
3000 [298.7,317.8] [139,146] [79.63,82.87]
3500 [709.2,765.6] [230.3,244]# [106.5,111.5]
4000 [1682,1845] [368.4,393.6] [137.1,144.1]
4500 [3991,4445] [572.8,616.7]+ [171.3,180.8]

LKH

2000 [62.15,95.52]# [58.8,73.94]# [48.05,59.71]
2500 [174.5,360.2] [138.1,193.6] [88.54,119.8]
3000 [490,1361] [299.3,462.5] [145.9,211.4]
3500 [1376,5154] [609.3,1030] [222.4,342.4]
4000

[
3863,1.954×104

]
[1176,2178] [320.7,519.9]

4500
[
1.085×104,7.412×104

]
[2173,4391] [442.8,751.6]

Table 6.9: 95% bootstrap confidence intervals for the medians of the running time
predictions for EAX and LKH to find optimal solutions of RUE instances. The
instance sizes shown here are larger than those used for fitting the models. Boot-
strap intervals on predictions that are weakly consistent with the observed data are
shown in boldface, those that are consistent are marked by plus signs (+), those
that are strongly consistent are marked by sharps (#), and those that fully contain
the confidence intervals on observations are marked by asterisks (*).
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Figure 6.2: Fitted models for the medians of the running times for EAX to find
optimal solutions of RUE instances. All models are fitted with the medians of
the running times of EAX solving the set of RUE instances of 500 ≤ n ≤ 1500
variables, and are challenged by the medians of the running times of 2000 ≤ n ≤
4500 variables.

model, respectively.

6.3.3 Comparison with scaling of Concorde for finding optimal
solutions

To compare the scaling of Concorde with that of EAX and LKH, we first ana-
lysed the bootstrap intervals of the values of the parameter b in the obtained root-
exponential models. For Concorde, b∈ [1.2255,1.2747], which is significant larger
than that for EAX ([1.1219,1.1242]) and for LKH ([1.1749,1.2006]). This obser-
vation suggests that Concorde scales significantly worse than EAX and LKH.

To further test this, we fitted two one-parameter models of the form a ·b
√

n
Concorde

to the running times of EAX and LKH, where bConcorde = 1.2503. The obtained
models, shown in Figure 6.4, clearly over-estimate the running times of EAX and
LKH, which confirms our observation that the finding times of Concorde scale
significantly worse than those of EAX and LKH.
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Figure 6.3: Fitted models for the medians of the running times for LKH to find
optimal solutions of RUE instances. All models are fitted with the medians of
the running times of LKH solving the set of RUE instances of 500 ≤ n ≤ 1500
variables, and are challenged by the medians of the running times of 2000 ≤ n ≤
4500 variables.

6.4 Impact of Automated Configuration on Scaling of
EAX and LKH

We also performed several experiments investigating the impact of automated con-
figuration on scaling behaviour of incomplete TSP solvers. Automated config-
uration involves the use of an automated procedure to determine good parameter
values for a given algorithm. In this work, we used SMAC [37], the prominent se-
quential model-based algorithm configurator, to configure EAX and LKH, and as-
sessed the impact of algorithm configuration on their scaling behaviour. Following
the standard configuration protocol, we performed 25 independent runs of SMAC
for each scenario, selected the best parameter setting according to performance on
the given set of training instances and report scaling results for that setting.

6.4.1 Impact of Automated Configuration on Scaling of EAX

We first present results for EAX, which has only two exposed parameters. One key
parameter is fNumOfPop, the population size whose default value is 100, and the
other is fNumOfKids, the number of no-improvement iterations before the search
restarts, for which the default value is 30. In our experiments, we enforced a cur-
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Figure 6.4: Fitted one-parameter models (of the form a ·b
√

n
Concorde) for the medians

of the running times for EAX (top) and LKH (bottom) to find optimal solutions
of RUE instances. All models are fitted with the medians of the running times of
the solvers solving the RUE instances from the set of instances of 500≤ n≤ 1500
variables, and are challenged by the medians of the running times of 2000 ≤ n ≤
4500 variables.
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Solver Model
RMSE RMSE

(support) (challenge)

EAX
Exp. 1.2511×1.0017n 0.4711 [1085,1097.8]

RootExp. 0.1991×1.1193
√

n 0.22625 [22.278,32.899]
Poly. 2.0916×10−5×n1.8464 0.050459 [124.04,135.61]

Table 6.10: Fitted models for the medians of the running times of EAX with con-
figured parameters and the corresponding RMSE values (in CPU sec). The models
yielding more accurate predictions (as per RMSEs on challenge data) are shown in
boldface.

Solver Model Confidence interval of a Confidence interval of b

EAX
Exp. [1.2249,1.2709] [1.0017,1.0017]

RootExp. [0.19024,0.20586] [1.1182,1.1208]
Poly.

[
1.7804×10−5,2.3636×10−5

]
[1.8288,1.8693]

Table 6.11: 95% bootstrap confidence intervals for the parameters of the scaling
models for EAX’s running times (with configured parameters) to find optimal solu-
tions of RUE instances.

off of 1 CPU day for each SMAC run. To ensure that SMAC could perform at
least 1000 runs of EAX, we further enforced a cut-off time of 86 sec for each EAX
run. After training on a set of RUE instances with 1500 cities, SMAC picked a
parameter setting with larger population sizes (167 vs. 100) and smaller number of
no-improvement iterations (20 vs. 30).

To investigate the scaling of EAX with optimised parameters, we used the
methodology described in Section 3.1. The fitted models are presented in Table
6.10 and illustrated in Figure 6.5 together with the confidence intervals obtained
from bootstrap analysis. Similar to results for the default version of EAX, root-
exponential characterises the scaling the best, while the best exponential and poly-
nomial models can be rejected with 95% confidence. From the confidence intervals
of the model parameters, as shown in Table 6.11, there is evidence that algorithm
configuration improves the scaling of EAX, since it reduces the value of b in root-
exponential models from 1.123 to 1.119 with completely disjoint confidence in-
tervals ([1.1219,1.1242] vs. [1.1182,1.1208] ). Following the method described
in Section 3.2, we cross-checked the predictions of the root-exponential model for
the default version of EAX against the observed running times for the optimised
version of EAX. Our results, illustrated in Figure 6.6, clearly show that the model
over-estimate the running times for the optimised version of EAX.
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Figure 6.5: Fitted models for the medians of the running times for EAX with con-
figured parameters to find optimal solutions of RUE instances. The parameters
of EAX are set to the optimised values determined by configuration on instances
with 1500 variables using SMAC. All models are fitted with the medians of the
running times of EAX solving the SAT instances from the set of RUE instances of
500≤ n≤ 1500 variables, and are challenged by the medians of the running times
of 2000≤ n≤ 4500 variables.
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Figure 6.6: Best fitted models for the medians of the running times for EAX with
configured and default parameters to find optimal solutions of RUE instances. All
models are fitted with the medians of the running times of EAX solving the SAT
instances from the set of RUE instances of 500 ≤ n ≤ 1500 variables, and are
challenged by the medians of the running times of 2000≤ n≤ 4500 variables.

6.4.2 Effect of Population Size for EAX

Considering the impact of the parameters, it is natural to increase the population
size when solving a larger instance size. Thus, we also performed experiments to
quantify the impact of varying population size with instance size. In particular, we
set the population size as a multiple of the instant size, namely,

ps(n) = α ·n,

where ps(n) is the population size for instance size n.
We experimented with two different ways of determining α . The first way is

to choose α based on the default parameter settings, namely, fNumOfPop = 100
(for training instances with instance size n = 1500) and fNumOfKids = 30. This
gives α = 0.067. We then followed the methodology described in Section 3.1 to
examine the scaling of EAX with these optimised parameters. The fitted models
are presented in Table 6.12 and illustrated in Figure 6.7. Surprisingly, the best-
fitting model is now the polynomial model, while the best and root-exponential
models are rejected with 95% confidence. This stands, as illustrated in Figure 6.8,
in contrast with the scaling of the default version of EAX, which is well character-
ised by a root-exponential model. We also performed bootstrap analysis described
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Solver Model
RMSE RMSE

(support) (challenge)

EAX
Exp. 0.34117×1.0026n 0.37901 [13976,13987]

RootExp. 0.017513×1.1914
√

n 0.17295 [840.11,850.63]
Poly. 4.7691×10−9×n2.9918 0.099509 [11.214,21.427]

Table 6.12: Fitted models for the medians of the running times of EAX with de-
fault parameters and varying population size and the corresponding RMSE values
(in CPU sec). The models yielding more accurate predictions (as per RMSEs on
challenge data) are shown in boldface.

Solver Model Confidence interval of a Confidence interval of b

EAX
Exp. [0.32156,0.36342] [1.0025,1.0026]

RootExp. [0.01539,0.01993] [1.1870,1.1957]
Poly.

[
2.9101×10−9,7.6663×10−9

]
[2.9241,3.0607]

Table 6.13: 95% bootstrap confidence intervals for the parameters of the scaling
models for EAX’s running times (with default parameters and varying population
size) to find optimal solutions of RUE instances.

in Section 3.1, which results in the confidence intervals for the model parameters
shown in Table 6.13.

The second way is to configure α (hence fNumOfPop) and fNumOfKids us-
ing SMAC. Following the same configuring protocol in the previous configura-
tion experiment with EAX, we arrived at the optimised setting with α = 0.111
and fNumOfKids = 20. We then followed the same methodology to examine the
scaling of EAX with these optimised parameters. The fitted models are presen-
ted in Table 6.14 and illustrated in Figure 6.9. Similar to the previous experi-
ment, the best-fitting model is now the polynomial model, while the best and root-
exponential models are rejected with 95% confidence. This also stands, as illus-
trated in Figure 6.10, in contrast with the scaling of the default version of EAX.
We also performed bootstrap analysis described in Section 3.1, which results in the
confidence intervals for the model parameters shown in Table 6.15.

To summarise, both experiments indicate that varying population size can sig-
nificantly improve the scaling behaviour of EAX. Whether the formula for the
population size is determined based on default parameter settings or based on auto-
mated configuration of α (together with fNumOfKids), the scaling of EAX is best
captured by a polynomial model. Cross-checking the two polynomial models ob-
tained above using the method described in Section 3.2, we found that the differ-
ence between them is not significant.
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Figure 6.7: Fitted models for the medians of the running times of EAX to find
optimal solutions of RUE instances. The parameters of EAX are set to the default
values, and the population size is a simple function of instance size. All models
are fitted with the medians of the running times of EAX solving the SAT instances
from the set of RUE instances of 500≤ n≤ 1500 variables, and are challenged by
the medians of the running times of 2000≤ n≤ 4500 variables.

Solver Model
RMSE RMSE

(support) (challenge)

EAX
Exp. 0.43879×1.0024n 0.48413 [10931,10940]

RootExp. 0.02628×1.1816
√

n 0.24178 [667.42,676.81]
Poly. 1.6194×10−8×n2.8364 0.027288 [37.049,44.847]

Table 6.14: Fitted models for the medians of the running times of EAX with con-
figured parameters and varying population size and the corresponding RMSE val-
ues (in CPU sec). The models yielding more accurate predictions (as per RMSEs
on challenge data) are shown in boldface.

Solver Model Confidence interval of a Confidence interval of b

EAX
Exp. [0.42779,0.44748] [1.0024,1.0025]

RootExp. [0.024996,0.027408] [1.1801,1.1833]
Poly.

[
1.3335×10−8,1.9003×10−8

]
[2.8132,2.8636]

Table 6.15: 95% bootstrap confidence intervals for the parameters of the scaling
models for EAX’s running times (with configured parameters and varying popula-
tion size) to find optimal solutions of RUE instances.
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Figure 6.8: Best fitted models for the medians of the running times for EAX with
configured and default parameters to find optimal solutions of RUE instances. All
models are fitted with the medians of the running times of EAX solving the SAT
instances from the set of RUE instances of 500 ≤ n ≤ 1500 variables, and are
challenged by the medians of the running times of 2000≤ n≤ 4500 variables.

6.4.3 Impact of Automated Configuration on Scaling of LKH

We also attempted to configure LKH for scaling performance. With over 40 para-
meters, LKH is arguably much more configurable than EAX. Out of these para-
meters, some require additional information like initial tours or sub-division of a
given TSP instance, which are not available in our case. Thus, we analysed the de-
tails of the parameters, and selected 21 parameters that we could configure without
additional information or code modification. These parameters are listed in Table
6.16 in detail. Out of them, 12 are numerical paramters and 9 are categorical. We
kept all parameter at default values specified in the user guide, except for PATCH-
ING_A and PATCHING_C. As mentioned earlier, we used 2 and 3 respectively for
these two parameters in our earlier experiments, and continued using these values
as default in our configuration experiments. The ranges of all parameters were de-
termined based on the user guide. When in doubt, we tried to use large ranges and
leave larger configuration space to SMAC.

We first followed the standard protocol, performing 25 SMAC runs to configure
LKH using a set of 100 instances of size n = 1500 randomly selected from the
larger set. We enforced a cur-off of 2 CPU days for each SMAC run. To ensure
that SMAC could perform at least 1000 runs of LKH, we further enforced a cut-off
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Figure 6.9: Fitted models for the medians of the running times of EAX to find op-
timal solutions of RUE instances. The parameters of EAX are set to the optimised
values, and the population size is a simple function of instance size. All models
are fitted with the medians of the running times of EAX solving the SAT instances
from the set of RUE instances of 500≤ n≤ 1500 variables, and are challenged by
the medians of the running times of 2000≤ n≤ 4500 variables.
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Parameter name N/C Domains
ASCENT_CANDIDATES N [10,500]
BACKBONE_TRIALS N {0,1,2,3,4,5}
BACKTRACKING C {YES, NO}
CANDIDATE_SET_TYPE C {ALPHA, DELAUNAY, NEAREST-NEIGHBOR,

QUADRANT}
EXTRA_CANDIDATES N [0,20]
EXTRA_CANDIDATE_SET_TYPE C {NEAREST-NEIGHBOR, QUADRANT}
GAIN23 C {YES, NO}
GAIN_CRITERION C {YES, NO}
INITIAL_STEP_SIZE N {1,2,3,4,5}
INITIAL_TOUR_ALGORITHM C {BORUVKA, GREEDY, MOORE,

NEAREST-NEIGHBOR, QUICK-BORUVKA,
SIERPINSKI, WALK}

KICK_TYPE N {0}∪ [4,20]
KICKS N {0,1,2,3,4,5}
MAX_CANDIDATES N [3,20]
MOVE_TYPE N [2,20]
PATCHING_A N {1,2,3,4,5}
PATCHING_C N {1,2,3,4,5}
POPULATION_SIZE N [0,1000]
RESTRICTED_SEARCH C {YES, NO}
SUBGRADIENT C {YES, NO}
SUBSEQUENT_MOVE_TYPE N {0}∪ [2,20]
SUBSEQUENT_PATCHING C {YES, NO}

Table 6.16: List of numerical (N) and categorical (C) parameters for LKH that are
configurable.
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Figure 6.10: Best fitted models for the medians of the running times for EAX
with configured and default parameters to find optimal solutions of RUE instances.
All models are fitted with the medians of the running times of EAX solving the
SAT instances from the set of RUE instances of 500≤ n≤ 1500 variables, and are
challenged by the medians of the running times of 2000≤ n≤ 4500 variables.

time of 172 sec for each LKH run. Out of the 25 parameter settings, we selected the
best parameter setting based on training performance on the same set. Analysing
the scaling of LKH with this parameter setting, we obtained the three models shown
in Table 6.17. Based on RMSE (challenge), the root-exponential model provides
the best fit, but has a larger b than that for LKH with default parameters (1.2452 vs
1.1879). We also performed the bootstrap analysis described in Section 3.1. From
the bootstrap confidence intervals of the model parameters shown in Table 6.18, the
confidence interval of b in the root-exponential model is also larger than that for
LKH with default parameters ([1.2213,1.2720] vs. [1.1749,1.2006] ). Moreover,
the root-exponential model actually under-estimates the observed running times on
challenge data, as clearly seen in Figure 6.11. Examining the running times in
detail, we saw that configuration does bring down the running times of LKH for
n ≤ 2000, but causes it to perform worse for larger instances. In other words, the
configuration procedure seems to overfit on smaller instance sizes.

We then followed a protocol proposed by Styles et al. [66], performing 25
SMAC runs to configure LKH using a set of 100 instances with instance size n =
1000, and selected the best parameter setting based on validation performance on
a set of 50 instances with instance size n = 1500 randomly selected from the larger
set (referred to as scaling protocol hereafter). The underlying idea is to select
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Solver Model
RMSE RMSE

(support) (challenge)

LKH
Exp. 0.10374×1.0031n 0.24213 [32342,44308]

RootExp. 0.0022353×1.2452
√

n 0.17628 [5682.2,17808]
Poly. 6.8001×10−12×n3.8412 0.19239 [7758.7,19825]

Table 6.17: Fitted models for the medians of the running times of LKH with con-
figured parameters from experiments following the standard protocol and the cor-
responding RMSE values (in CPU sec). The models yielding more accurate pre-
dictions (as per RMSEs on challenge data) are shown in boldface.

Solver Model Confidence interval of a Confidence interval of b

LKH
Exp. [0.071619,0.14743] [1.0028,1.0034]

RootExp. [0.0010571,0.004436] [1.2213,1.272−]
Poly.

[
3.4774×10−13,9.5553×10−11

]
[3.4693,4.2573]

Table 6.18: 95% bootstrap confidence intervals for the parameters of the scaling
models for EAX’s running times (with configured parameters) to find optimal solu-
tions of RUE instances.
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Figure 6.11: Fitted models for the medians of the running times for LKH with con-
figured parameters from experiments following the standard protocol. All models
are fitted with the medians of the running times of LKH solving the set of RUE
instances of 500 ≤ n ≤ 1500 variables, and are challenged by the medians of the
running times of 2000≤ n≤ 4500 variables.
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Solver Model
RMSE RMSE

(support) (challenge)

LKH
Exp. 0.17326×1.0027n 0.25216 [12219,12917]

RootExp. 0.0066414×1.2077
√

n 0.13341 [533.13,1165.9]
Poly. 4.7378×10−10×n3.2473 0.090054 [1281.8,1941.8]

Table 6.19: Fitted models for the medians of the running times of LKH with con-
figured parameters from experiments following the scaling protocol and the cor-
responding RMSE values (in CPU sec). The models yielding more accurate pre-
dictions (as per RMSEs on challenge data) are shown in boldface.

Solver Model Confidence interval of a Confidence interval of b

LKH
Exp. [0.13477,0.22338] [1.0025,1.0029]

RootExp. [0.0040961,0.010936] [1.1908,1.2245]
Poly.

[
7.2956×10−11,2.9719×10−9

]
[2.9843,3.5068]

Table 6.20: 95% bootstrap confidence intervals for the parameters of the scaling
models for EAX’s running times (with configured parameters) to find optimal solu-
tions of RUE instances

parameter settings that tend to perform well for larger instances. We again analysed
the scaling of LKH with the parameter setting such obtained, and obtained the
three models shown in Table 6.19. Based on the RMSE (challenge), the root-
exponential model is still the best fit, with a smaller b (1.2077) than the previous
configuration (1.2452) but still larger than the default (1.1879). We also performed
the bootstrap analysis described in Section 3.1. From the bootstrap confidence
intervals of the model parameters shown in Table 6.20, the confidence interval of b
in the root-exponential model is also slightly larger than that for LKH with default
parameters ([1.1908,1.2245] vs. [1.1749,1.2006]). As seen in Figure 6.12, the
root-exponential model is a very good fit up to n = 3500. Investigating the running
times more closely, we see that this configuration brings down the running times
of LKH compared to the default up to instance size n = 3500. In other words, the
new configuration protocol seems to less overfit on the smaller instances, but still
runs into problems for large instances.

Comparing the two resulted parameter settings, we believed that the configured
parameter settings help LKH do a more careful check of possible moves on smal-
ler instances, but that does not pay off for larger instances. Seeing this, we fixed
KICKS, MOVE_TYPE, POPULATION_SIZE and RESTRICTED_SEARCH to
their default values and performed another round of configuration following the
scaling protocol. The result parameter setting was also analysed using the meth-
odology described in Section 3.1, resulting in the three models as shown Table
6.21. We also performed the bootstrap analysis described in Section 3.1. From
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Figure 6.12: Fitted models for the medians of the running times of LKH with con-
figured parameters from experiments following the scaling protocol. All models
are fitted with the medians of the running times of LKH solving the set of RUE
instances of 500 ≤ n ≤ 1500 variables, and are challenged by the medians of the
running times of 2000≤ n≤ 4500 variables.

Solver Model
RMSE RMSE

(support) (challenge)

LKH
Exp. 0.1084×1.0027n 0.14318 [4910.6,5596.5]

RootExp. 0.0048097×1.2010
√

n 0.15081 [1394.8,2090.6]
Poly. 6.0534×10−10×n3.1401 0.19236 [1764.1,2460.9]

Table 6.21: Fitted models for the medians of the running times of LKH with con-
figured parameters from experiments following the scaling protocol but with less
parameters and the corresponding RMSE values (in CPU sec). The models yield-
ing more accurate predictions (as per RMSEs on challenge data) are shown in
boldface.
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Solver Model Confidence interval of a Confidence interval of b

LKH
Exp. [0.079825,0.14304] [1.0024,1.0029]

RootExp. [0.0027107,0.008814] [1.1802,1.2210]
Poly.

[
6.2838×10−11,6.1249×10−9

]
[2.8125,3.4561]

Table 6.22: 95% bootstrap confidence intervals for the parameters of the scaling
models for EAX’s running times (with configured parameters) to find optimal solu-
tions of RUE instances.
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Figure 6.13: Fitted models for the medians of the running times of LKH with con-
figured parameters from experiments following the scaling protocol but with less
parameters. All models are fitted with the medians of the running times of LKH
solving the set of RUE instances of 500 ≤ n ≤ 1500 variables, and are challenged
by the medians of the running times of 2000≤ n≤ 4500 variables.

the bootstrap confidence intervals of the model parameters shown in Table 6.22,
the confidence interval of b in the root-exponential model is also slightly larger
than that for LKH with default parameters ([1.1802,1.2210] vs. [1.1749,1.2006]
). Again, the root-exponential model gives the best fit according to RMSE (chal-
lenge), and fits the running times, as seen in Figure 6.13, well up to n = 4000. The
b in the model (1.2010) is very similar to before (1.2077), with similar confidence
intervals ([1.1802,1.2210] vs. [1.1908,1.2245]), but remains larger than the de-
fault. Examining the running times, we noticed that the new configuration further
decreases running times for n ≤ 4000, but performs even worse for n = 4500. In
other words, the new configuration protocol seems to even less overfit on the smal-
ler instances, but still runs into problems for the largest instance size in our analysis

84



6.5. Chapter Summary

and presumably even larger sizes.
To sum up, we have attempted to configure LKH in several different settings

and observed clear impact of configuration on the scaling of LKH. However, all
of our attempts overfit the running times for smaller instances and lead to worse
performance for instances larger than some threshold that varied with the configur-
ation protocol used. This calls for more experiments on LKH to study the impact
of its key parameters on the scaling of the solver and to examine if we can improve
its scaling by adapting certain parameters with instance size. Another direction is
the development of more sophisticated protocols for algorithm configuration that
incorporate automated scaling analysis. Such protocols can be useful in config-
uring algorithms with a large number of parameters for scaling performance. We
elaborate more on this idea in Section 7.2, where we discuss potential future work.

6.5 Chapter Summary

In this chapter, we presented empirical scaling results for several state-of-the-art
TSP solvers for finding optimal solutions of RUE instances.

For Concorde, a root-exponential model of the form a · b
√

n, with b being
around 1.25, was found to best describe the scaling behaviour. Compared to the
scaling models for overall running times (for finding optimal solutions and prov-
ing optimality), we found that the finding times of Concorde scale slightly worse
than the overall running times, which can be seen in that b is slightly larger for
the model of finding time (1.25032 vs 1.2281); the effect is also seen in the boot-
strap intervals for b ([1.2287,1.2793] vs [1.2126,1.2522]). While this is consistent
with the conclusion that the fraction of finding time goes up and approaches 1 as
n increases Hoos and Stützle [36], we note that better capturing this property may
require more sophisticated models with second-order terms.

EAX also scales root-exponentially, best described by a model with b being
around 1.123. For LKH, the scaling seems also to be root-exponential, but we can-
not rule out a polynomial model. For both solvers, there is evidence that they scale
better than Concorde for finding the optimal solutions of RUE instances. In other
words, if we treat Concorde as an incomplete solver, then it scales significantly
worse than EAX and LKH. We are hopeful that by exploiting solutions found by
high-performance incomplete solvers, better exact algorithms can be constructed
for the TSP problem.

We also investigated the impact of parameter settings and automated configura-
tion on the scaling of algorithms. For EAX, algorithm configuration helps improve
the scaling, which can be further improved by adapting the population size with
instance size. For LKH, we have observed significant impact of parameter settings
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on its scaling, but the state-of-the-art algorithm configurator SMAC tends to overfit
the running times for smaller instances and thus produces configurations for which
LKH scales worse. This calls for thorough studies on the parameters of LKH, and
for the development of better configuration protocols for scaling performance.

Overall, our work complements earlier work on the scaling of state-of-the-art
TSP solvers [35, 36, 21] and deepens our understandings of them. It also indicates
potential for improvements in scaling behaviour through automated algorithm con-
figuration and through setting certain parameters in dependence of features of the
problem instance to be solved.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this work, we further developed a framework to analyse the empirical scaling of
the performance of algorithms in a statistically sound way. The original method-
ology was introduced by Hoos [33], who proposed to challenge obtained models
by extrapolation and to use bootstrap re-sampling to assess these models. Here,
we further expanded the use of bootstrap intervals to observed running times of
challenge data, and proposed a systematic way to compare scaling models for dif-
ferent algorithms. The former extension allows us to better capture variability of
observed running time data, while the latter helps compare scaling behaviour of
algorithms to draw useful conclusions. To facilitate the broad use of the method-
ology, we designed ESA, an automated empirical scaling analysis tool, which can
be easily used as a web service or a command-line tool. ESA takes a file of running
times as input, performs scaling analysis as described in Chapter 3, and generates
a technical report on the scaling of the target algorithm.

We applied and extended the methodology for empirical scaling analysis to two
prominent problems, SAT and TSP. For phase-transition random 3-SAT, we invest-
igated the time complexity of three SLS-based (WalkSAT/SKC, BalancedZ and
probSAT) and three DPLL-based solvers (kcnfs, march_hi and march_br). Our
results show that the running times of SLS-based solvers are surprisingly well
captured by polynomial models, while DPLL-based solvers clearly scale expo-
nentially. We also compared the scaling models within each category of solvers,
and found no significant difference between the SLS-based solvers we studied,
but showed that the two march variants scale significantly better than kcnfs. We
also demonstrated that DPLL-based solvers are faster by only a constant factor
for solving satisfiable instances compared to their performance on unsatisfiable
instances. In addition, we explored two distributions of 4-SAT instances. For
phase-transition instances, the performance of SLS-based solvers are consistent
with exponential (for BalancedZ) or root-exponential (for the other two solvers)
models, while DPLL-based solvers show clear exponential scaling. For a class of
less-constrained instances, the performance of both WalkSAT/SKC and kcnfs is
well characterised by polynomial models.

87



7.2. Future Work

For TSP, we investigated the scaling of running times of state-of-the-art com-
plete solver, Concorde, as well as incomplete solvers, EAX and LKH, for finding
optimal solutions without proving optimality. For Concorde, we found that the
finding times scale root-exponentially, and the finding times scale slightly worse
than overall running times, but more sophisticated models may be needed to better
capture this. For EAX and LKH, we showed that their running times are consist-
ent with or upper bounded by a root-exponential model, respectively, and that they
scale significantly better than Concorde. We also studied the impact of automated
configuration on the scaling of the two incomplete solvers and obtained positive
results for EAX. For LKH, we encountered overfitting, which calls for more stud-
ies on its parameters and for the development of new configuration protocols for
scaling performance.

In summary, we showed that the empirical scaling analysis methodology can be
successfully applied to high-performance solvers for prominent decision or optim-
isation problems like SAT and TSP, and that such analysis can produce interesting
and even surprising results. We note that the methodology is also applicable to
other problems, and we have designed ESA to facilitate such applications. We
hope that empirical scaling analysis can play a more important role in the design
and analysis of algorithms and instance generators, and can even inspire new lines
of theoretical analysis.

7.2 Future Work

We see several areas for future work, which potentially will lead to enhanced meth-
odology and improved tool for empirical scaling analysis, as well as to deeper un-
derstanding of target algorithms and problems. For SAT, we see some interest in
further investigating the survey propagation algorithm, which is of interest to many
researchers in the community. Also of interest, as pointed out by the anonymous
reviewers for our paper [52], is the empirical scaling analysis for structured SAT
instances. More generally, it would be very interesting to develop empirical scal-
ing analysis methods for classes of instances for which no instance generator is
available. Such instances can be of substantial industrial or practical interest, like
structured SAT and real-world non-Euclidean TSP instances. In such cases, we
may have only one or a few instances for each size, and much fewer instances
overall. As a result, estimations of medians or other statistics will be of much
lower quality. Presumably, outlier detection will be an interesting and difficult task
for scaling analysis in this context. On the methodology side, how to handle estim-
ations of varying quality for different instance sizes is also a challenging problem.
Currently, the methodology treats the estimation of all support sizes as of equal
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quality, and needs to be extended if the assumption does not hold. Intuitively, the
fitted model should be less influenced by an estimation obtained from fewer in-
stances and thus being of lower quality. Bayesian methods can potentially address
this situation, but further thought and thorough evaluation is clearly needed when
extending the methodology to handle such situations.

Earlier work on empirical scaling analysis has involved evaluating curve bound-
ing techniques with artificial data [48]. McGeoch et al. [49] also reported poor
results when using non-linear regression for curve bounding of slow-growing func-
tions. We suspect that this results from their focus on slow-growing functions and
on curve bounding rather than fitting. Thus, it will be interesting to evaluate our
methodology with this type of data. It will also be interesting to explore how to
extend our methodology to empirically bounding asymptotic growth of algorithms.

One future direction for the development of our methodology and of ESA is
to use nested bootstrap re-sampling when dealing with randomised algorithms and
multiple runs per problem instance. Currently, the methodology only re-samples
the running times for different instances. For randomised algorithms, multiple runs
are performed for each instance and the running time for one instance is actually
a statistic of multiple running times for the same instance. Thus, re-sampling can
also be done on multiple running times for the same instance in order to capture
the variability of running time on the same instance. We call this nested bootstrap
re-sampling, since it involves two nested steps of bootstrap re-sampling.

Another future direction is to automatically select models from a large family
of functions based on input data. This can also facilitate fitting of models with
lower-order terms. One possible approach is to repeatedly fit models, first on the
original data, then on the residues, in order to obtain a model with several terms. In
this way, the tool will be easily applicable to an even broader range of algorithms
with little human input, and may potentially produce even more interesting results.
Potentially, such models can make more accurate predictions on running times for
large instances, and can help bring us to another level of understanding of the al-
gorithms. One particular example is the investigation of the scaling of finding and
overall running times of Concorde, where models with lower-order terms are be-
lieved to be needed in order to model the observed running times more accurately.

In addition, we see great potential in developing automated configuration pro-
cedures for better scaling behaviour. Such procedures can make algorithm config-
uration even more applicable to real-world situations, as problem instances from
the target distribution can take a long time to solve. This makes it infeasible to run
algorithm configuration directly on these instances, because an algorithm configur-
ation usually requires many runs of the target algorithms with different parameter
settings. Some previous work has shown that new protocols are needed to con-
figure algorithms for better scaling performance [66, 65] . As we observed when
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configuring LKH, an algorithm configurator may overfit the support data. A prom-
ising area for the development of configurators is to incorporate empirical scaling
analysis into algorithm configuration. To achieve that goal, our automated scaling
analysis tool, ESA, should provide a solid basis. The major challenge comes from
the fact the scaling analysis involves solving a large number of problem instances
of different sizes and takes a long time to complete. Thus, it will be important
to design a way to reduce the time, possibly by leveraging previously fitted mod-
els. One possible way is to incorporate Bayesian methods into empirical scaling
analysis, with a previous model acting as the prior for model fitting.

Application of the methodology to other problems and instance distributions
is also a promising area for future research. As seen in this thesis and in previous
work, empirical scaling analysis has revealed interesting and surprising properties
of high-performance algorithm for SAT and TSP, and we believe other problems
can also benefit from such analysis. Some example problems include AI plan-
ning and scheduling, for which international competitions are regularly organised
to evaluate solvers, but the methodology is applicable other problems as well. We
note that empirical analysis is also of value for polynomial-time solvable prob-
lems, particularly in understanding the impact of features other than the size of
instances on the empirical complexity of algorithms. Empirical investigation of
the complexity of prominent algorithms for these domains can potentially enrich
our understanding of these algorithms and inspire the design of new algorithms.

Finally, we envision that our methodology can be adapted to analyse properties
beyond time complexity of algorithms, as long as the change in the property with
some aspect (e.g., size) of problem instances is expected to follow some parametric
functions. For instance, one may use similar ways to model the scaling of quality
of algorithm outcomes. A more concrete example is modelling of learning curves
of machine learning algorithms.
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Appendix A

LATEX Template for ESA

%% template -AutoScaling.tex

%% Author: Zongxu Mu

%% This is the LaTeX template file for Empirical Scaling

Analyser (ESA).

%% ESA takes the template , replace variables with their

corresponding values ,

%% and generates an output file named AutoScaling.

tex.

%% You may compile this file alone without running ESA to

see how the output looks like.

%% Variables are surrounded by ``@@ ''s

%% Supported variable names include:

%% - algName , e.g., ``WalkSAT/SKC ''

%% - instName , e.g., ``random 3SAT at phase

transition ''

%% - models , e.g., ``\\begin{itemize }\n\\item $Exp\\

left[a,b\\ right ]\\ left(n\\right)=a\\cdot b^{n}$ \\

quad {}(2- parameter exponential);\n\\end{itemize}''

%% - numBootstrapSamples , the number of bootstrap

samples used in the analysis , e.g., 1000

%% - numSizes , the number of sizes used in the

analysis , e.g., 12

%% - largestSupportSize , e.g., 500

%% - table -Details -dataset , e.g., ``\\input{

table_Details -dataset}''

%% - table -Details -dataset , e.g., ``\\input{

table_Details -dataset}''

%% - table -Fitted -models , e.g., ``\\input{

table_Fitted -models}''

%% - figure -fittedModels , e.g., ``\\ includegraphics[

width =0.8\ textwidth ]{ fittedModels_loglog}''

%% - supportSizes , the sizes used for fitting the

models , e.g., ``200, 250, 300, 350, 400, 450, 500''

%% - challengeSizes , e.g., ``600, 700, 800, 900,

1000''

%% - table -Bootstrap -intervals -of-parameters , e.g.,
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``\\input{table_Bootstrap -intervals -of -parameters}''

%% - table -Bootstrap -intervals , e.g., ``\\input{

table_Bootstrap -intervals}''

%% - analysisSummary , e.g., ``observed median

running times are consistent with the polynomial

scaling model ''

\documentclass[british ]{ article}

\usepackage[T1]{ fontenc}

\usepackage[latin9 ]{ inputenc}

\usepackage{geometry}

\geometry{verbose ,tmargin =3.5cm ,bmargin =3.5cm,lmargin =3cm

,rmargin =3cm}

\usepackage{array}

\usepackage{multirow}

\usepackage{amstext}

\usepackage{graphicx}

\usepackage{color}

\newcommand {\ medianInterval }[1]{}

@@customCommands@@

\makeatletter

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LyX specific LaTeX

commands.

%% Because html converters don 't know tabularnewline

\providecommand {\ tabularnewline }{\\}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% User specified LaTeX

commands.

\title{On the empirical scaling of running time of

@@algName@@ for solving @@instName@@}

\author{Empirical Scaling Analyser}

\makeatother

\usepackage{babel}

\begin{document}

\maketitle %

\section{Introduction}

This is the automatically generated report on the
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empirical scaling

of the running time of @@algName@@ for solving

@@instName@@.

\section{Methodology}

\label{sec:Methodology}

% models , model fitting

For our scaling analysis , we considered the following

parametric models:

@@models@@

% \begin{itemize}

% \item $Exp\left[a,b\right ]\left(n\right)=a\cdot b^{n}$

\quad {}(2- parameter exponential);

% \item $RootExp\left[a,b\right]\left(n\right)=a\cdot b

^{\ sqrt{n}}$ \quad {}(2- parameter root -exponential);

% \item $Poly\left[a,b\right]\left(n\right)=a\cdot n^{b}$

\quad {}(2- parameter polynomial).

% \end{itemize}

Note that the approach could be easily extended to other

scaling models.

For fitting parametric scaling models to observed data ,

we used the

non -linear least -squares Levenberg -Marquardt algorithm.

% what we fitted the models to , how we assessed model fit

Models were fitted to performance observations in the

form of @@statistic@@s

of the distributions of running times over sets of

instances for given

$n$ , the instance size.

%Compared to the mean , the median has two

%advantages: it is statistically more stable and immune

to the presence

%of a certain amount of timed -out runs.

To assess the fit of a given

scaling model to observed data , we used root -mean -square

error (RMSE).

\medianInterval{

Due to the instances for which the running times are

unknown ,

there is uncertainty about the
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precise location of the @@statistic@@s of the running

time distributions

at each such $n$ , and we can only provide bounds on

those @@statistic@@s instead. Closely following \cite{

dubois2015on}, we calculate

these bounds based on the best

and worst case scenarios , in which all instances with

unknown running times

are easiest or hardest , respectively.

We note that these are not confidence

intervals , since we can guarantee the actual

@@statistic@@ running

times to lie within them.

We also calculate RMSEs and confidence intervals based on

these bounds.

}

% bootstrap confidence intervals

Closely following \cite{hoos2009bootstrap ,

hoos2014empirical}, we

computed 95\% bootstrap confidence intervals for the

performance predictions

obtained from our scaling models , based on

@@numBootstrapSamples@@ bootstrap samples

per instance set and @@numBootstrapSamples@@

automatically fitted variants of each scaling

model.

In the following , we say that a scaling model is in-

consistent with observed data if the bootstrap confidence

interval for the observed data

is disjoint from the bootstrap confidence interval for

predicted running times;

\medianInterval{we say that a scaling model is consistent

with observed data , if the interval for observed medians

overlaps with , but is not fully contained within the

bootstrap confidence interval for predicted running times

;}

we say that a scaling model is strongly consistent with

observed

data , if the observed median is fully contained

within the bootstrap confidence interval for predicted

running times.

Also , we define residue of a model at a given size as the

observed

point estimate less the predicated value.
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\section{Dataset Description}

The dataset contains running times of the @@algName@@

algorithm solving

@@numSizes@@ sets of instances of different sizes. We

split the running times into

two categories , support ($n\leq@@largestSupportSize@@$)

and challenge ($n >@@largestSupportSize@@$). The

details of the dataset can be found in Tables \ref{tab:

Details -dataset -support}

and \ref{tab:Details -dataset -challenge }.

\begin{table *}

\noindent \begin{centering}

@@table -Details -dataset -support@@

\par\end{centering}

\caption {\label{tab:Details -dataset -support} Details of

the running time dataset used as support data for

model fitting .}

\end{table *}

\begin{table *}

\noindent \begin{centering}

@@table -Details -dataset -challenge@@

\par\end{centering}

\caption {\label{tab:Details -dataset -challenge} Details of

the running time dataset used as challenge data for

model fitting .}

\end{table *}

%

% Figure \ref{fig:CDFs} shows the distributions of the

running times of

% @@algName@@ solving @@instName@@.

% \begin{figure *}[tb]

% \begin{centering}

% @@figure -cdfs@@

% % \includegraphics[width =0.8\ textwidth ]{cdfs}

% \par\end{centering}

%

% \noindent \centering {}\ caption {\ label{fig:CDFs}

Distribution of running times across instance sets

for
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% @@algName@@ .}

% \end{figure *}

%

%

\section{Empirical Scaling of Solver Performance}

\label{sec:Results}

We first fitted our parametric scaling models to the

@@statistic@@s of the running times

of @@algName@@ , as described in Section \ref{sec:

Methodology }. The

models were fitted using the @@statistic@@s of the

running times for $@@supportSizes@@$

(support) and later challenged with the @@statistic@@s of

the running times for $@@challengeSizes@@$.

This resulted in the models , shown along with RMSEs on

support and

challenge data , shown in Table ~\ref{tab:Fitted -models }.

\begin{table }[tb]

\begin{centering}

@@table -Fitted -models@@

% \input{table_Fitted -models}

\par\end{centering}

\caption {\label{tab:Fitted -models}Fitted models for the

@@statistic@@s of the running times and RMSE

values (in CPU sec). The models yielding more

accurate predictions (as per RMSEs on challenge data) are

shown in

boldface .}

\end{table}

In addition , we illustrate the fitted models of

@@algName@@ in Figure ~\ref{fig:Fitted -models},

and the residues for the models in Figure ~\ref{fig:Fitted

-residues }.

\begin{figure }[tb]

\noindent \begin{centering}

@@figure -fittedModels@@

% \includegraphics[width =0.8\ textwidth ]{ fittedModels}

\par\end{centering}

\caption {\label{fig:Fitted -models} Fitted models for the

@@statistic@@s of the running times.
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The models are fitted with the @@statistic@@s of the

running times of

@@algName@@ solving the set of @@instName@@

of $@@supportSizes@@$ variables , and are challenged by

the @@statistic@@s of the

running times of $@@challengeSizes@@$ variables .}

\end{figure}

\begin{figure }[tb]

\noindent \begin{centering}

@@figure -fittedResidues@@

% \includegraphics[width =0.8\ textwidth ]{ fittedResidues}

\par\end{centering}

\caption {\label{fig:Fitted -residues} Residues of the

fitted models for the @@statistic@@s

of the running times. }

\end{figure}

But how much confidence should we have in these models?

Are the RMSEs

small enough that we should accept them? To answer this

question ,

we assessed the fitted models using the bootstrap

approach outlined

in Section ~\ref{sec:Methodology }. Table ~\ref{tab:

Bootstrap -intervals -of-parameters}

shows the bootstrap intervals of the model parameters ,

and Table~\ref{tab:Bootstrap -intervals -support}

contains the bootstrap intervals for the support data.

Challenging the models with extrapolation , as shown in

Table ~\ref{tab:Bootstrap -intervals -challenge}, it is

concluded that

@@analysisSummary@@

(as also illustrated in Figure ~\ref{fig:Fitted -models }).

\begin{table *}[tb]

\noindent \begin{centering}

@@table -Bootstrap -intervals -of -parameters@@

% \input{table_Bootstrap -intervals -of -parameters}

\par\end{centering}

\caption {\label{tab:Bootstrap -intervals -of-parameters}

95\% bootstrap intervals
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of model parameters for the @@statistic@@s of the running

times}

\end{table *}

\begin{table *}[tb]

\noindent \begin{centering}

@@table -Bootstrap -intervals -support@@

% \input{table_Bootstrap -intervals}

\par\end{centering}

\caption {\label{tab:Bootstrap -intervals -support} 95\%

bootstrap confidence intervals

for the @@statistic@@s of the running time predictions

and observed running times on @@instName@@.

The instance sizes shown here are those used for fitting

the models.

Bootstrap intervals on predictions that are weakly

consistent

with the observed point estimates are shown in boldface ,

those that are consistent are marked by plus signs ({+}) ,

and those that fully contain the confidence intervals on

observations are marked by asterisks ({*}).}

\end{table *}

\begin{table *}[tb]

\noindent \begin{centering}

@@table -Bootstrap -intervals -challenge@@

% \input{table_Bootstrap -intervals}

\par\end{centering}

\caption {\label{tab:Bootstrap -intervals -challenge} 95\%

bootstrap confidence intervals

for the @@statistic@@s of the running time predictions

and observed running times on @@instName@@.

The instance sizes shown here are larger than those used

for fitting the models.

Bootstrap intervals on predictions that are weakly

consistent

with the observed data are shown in boldface ,

\medianInterval{those that are consistent are marked by

plus signs ({+}) ,}

those that are strongly consistent are marked

by sharps ({\#}) ,

and those that fully contain the confidence intervals on

observations are marked by asterisks ({*}).}

\end{table *}
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\section{Conclusion}

In this report , we presented an empirical analysis of the

scaling

behaviour of @@algName@@ on @@instName@@. We found

@@analysisSummary@@.
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Gnuplot Templates for ESA

B.1 Gnuplot Template for Plotting Models

#!/ gnuplot

set terminal pdfcairo dashed fontscale 0.5

set termopt enhanced

set logscale

set xlabel 'n'

set ylabel 'CPU time [sec]'

set format y "10^{%T}"

set key top left

set xtics auto

set grid xtics ytics mxtics mytics lc rgb '#999999 ' lw 1

lt 0

set style fill transparent solid 0.2 noborder

B.2 Gnuplot Template for Plotting Residue Curves

#!/ gnuplot

set terminal pdfcairo dashed fontscale 0.5

set termopt enhanced

set print "plot -residues.log"

set xlabel 'n'

set ylabel 'Residue [sec]'

set xtics auto

set key left bottom

set grid xtics ytics mxtics mytics lc rgb '#999999 ' lw 1

lt 0

set style fill transparent solid 0.2 noborder
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