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Abstract

Today’s modern Web applications rely heavily on JavaScript and client-side run-
time manipulation of the DOM (Document Object Model) tree. One way to provide
assurance about the correctness of such highly evolving and dynamic applications
is through testing. However, JavaScript is loosely typed, dynamic, and notoriously
challenging to analyze and test.

The work presented in this dissertation has focused on advancing the state-
of-the-art in testing JavaScript-based web applications by proposing a new set of
techniques and tools. We proposed (1) a new automated technique for JavaScript
regression testing, which is based on inferring invariant assertions, (2) the first
JavaScript mutation testing tool, capable of guiding the mutation generation to-
wards behaviour-affecting mutants in error-prone portions of the code, (3) an auto-
matic technique to generate test cases for JavaScript functions and events; Mutation
analysis is used to generate test oracles, capable of detecting regression JavaScript
and DOM-level faults, and (4) utilizing existing DOM-dependent assertions as well
as useful execution information inferred from a DOM-based test suite to automat-
ically generate assertions for unit-level testing of JavaScript functions.

To measure the effectiveness of the proposed approaches, we evaluated each
method presented in this thesis by conducting various empirical studies and com-
parisons with existing testing techniques. The evaluation results point to the effec-
tiveness of the proposed test generation and test assessment techniques in terms of
accuracy and fault detection capability.
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Chapter 1

Introduction

In this section, we provide an introduction to modern web application testing, fol-

lowed by some of the current techniques used for automating the testing process.

1.1 Test Automation
Software testing is an integral part of the software engineering. Testing helps to

improve the quality and dependability of the applications. The importance of web

application testing arises from the ever increasing reliance on these systems in so-

cial and organizational applications. Companies use web applications to transmit,

collect, and process customer’s data. Web applications are also used in webmail,

content management systems (CMS), social media tools, and many other systems.

Such applications have become more complex in last decades, with using different

technologies and programming languages, that are even implemented by different

developers. As a result, writing high-quality test cases for web applications that

can assure their correct behaviour becomes more complicated, time consuming,

and effort intensive for developers [20]. Automatic test case generation can signif-

icantly reduce the time and manual effort, while increasing the reliability of web

applications.

Determining the desired behaviour of the application under test for a given

input is called the Oracle Problem. Manual testing is expensive and time consum-

ing, mainly because of the manual effort that should be spent in identifying the

proper oracle. Therefore, automating the oracle generation is an important part of

the testing process. Our goal is to improve the dependability and reliability of the

1



modern web applications by automating the test and oracle generation process with

different techniques and tools proposed in this thesis.

1.1.1 Web Testing

One of the common engines of today’s modern web applications is JavaScript. Ac-

cording to a recent survey conducted by Stack Overflow, JavaScript is the most

popular programming language [17]. It is also the most-used programming lan-

guage in GitHub repositories [16]. Developers employ JavaScript to add func-

tionality, dynamically change the GUI state, and communicate with web servers.

Given the increasing reliance of web applications on this language, it is important

to check its correct behaviour.

Automatically generating effective test suites for JavaScript applications is par-

ticularly challenging compared with traditional languages. The event-driven and

highly dynamic nature of JavaScript make JavaScript applications error-prone [86]

and difficult to test. Moreover, JavaScript is used to seamlessly change the Doc-

ument Object Model (DOM) at run-time. DOM is a language independent con-

vention for representing and interacting with objects in HTML documents. DOM

nodes are organized in a tree structure, which is called the DOM tree. JavaScript

can dynamically update the content, structure, and style of a document by access-

ing and manipulating the DOM tree. The dynamic interaction between JavaScript

and the DOM, as two separate components, can become quite complex [86].

The huge event space of such applications hinders model inferring techniques

to cover the whole state space in a limited amount of time. Moreover, inferring

test assertions with high fault finding capability requires a precise analysis of the

interaction between the JavaScript and the DOM. Providing an accurate mapping

between the two components becomes difficult as the JavaScript code and the DOM

increase in size. It is also challenging to identify a proper set of test oracles from

the large number of oracles that potentially can be selected.

To test JavaScript-based web applications, developers often write test cases us-

ing frameworks such as SELENIUM [12] to examine the correct interaction of the

user with web application (GUI testing) and QUNIT [11] to test the proper func-

tionality of the individual units (unit testing). Although such frameworks help to

2



1 @Test
2 public void testCase1(){
3 WebElement divElem=driver.findElements(By.id("divElem"));
4 divElem.click();
5 driver.findElements(By.id("endCell")).getSize().height;
6 WebElement startCell=driver.findElements(By.id("startCell"));
7 startCell.click();
8 driver.findElements(By.id("startCell"));
9 ...

10 }

Figure 1.1: SELENIUM test case.

automate test execution, the test cases need to be written manually, which can be

tedious and inefficient. Using SELENIUM to write DOM-based tests and asser-

tions requires little knowledge about the internal operations performed at the client

side code; The tester needs only basic knowledge of common event sequences

to cover important DOM elements to assert. This makes it easier for the tester

to write DOM-based test suites. However, DOM-based assertions can potentially

miss some portion of the code, while more fine grained unit-level assertions might

be capable of detecting such faults. Furthermore, since DOM-based tests are ag-

nostic of the JavaScript code, finding the root cause of an error during DOM-based

testing is more expensive than during unit testing. Figure 1.1 shows a sample

DOM-based test case. The test case contains the sequence of clicking on different

DOM elements without an observable communication with the executed JavaScript

code. On the other hand, writing unit test assertions for web applications that have

rich interaction with the DOM through their JavaScript code is more tedious. To

generate unit-level assertions, the technique needs to precisely interpret the full

range of interaction between the code level operations of a unit and the DOM level

operations of a system, otherwise it may not be able to assert the correctness of

a particular behaviour when the unit is used as a part of a system. The inherent

characteristics of unit and DOM-based tests, indicate that they are complementary

and that there is a trade-off in individually using each to detect faults.

1.1.2 Current Test and Oracle Generation Techniques

Different test and oracle generation techniques have been proposed to overcome

the aforementioned problems.

Web Test Generation. Marchetto and Tonella [71] propose a search-based algo-

3



rithm for generating event-based sequences to test Ajax applications. Mesbah et

al. [76] use generic and application-specific invariants as a form of automated soft

oracles for testing AJAX applications. Sen et al. [105] propose a record and replay

framework called Jalangi. It incorporates selective record-replay as well as shadow

values and shadow execution to enable writing of heavy-weight dynamic analyses.

The framework is able to track generic faults such as null and undefined val-

ues as well as type inconsistencies in JavaScript.

Jensen et al. [63] propose a technique to test the correctness of communication

patterns between client and server in AJAX applications by incorporating server

interface descriptions. They construct server interface descriptions through an in-

ference technique that can learn communication patterns from sample data. Saxena

et al. [102] combine random test generation with the use of symbolic execution

for systematically exploring a JavaScript application’s event space as well as its

value space, for security testing. Artzi et al. propose Artemis [22], which supports

automated testing of JavaScript applications. Artemis considers the event-driven

execution model of a JavaScript application for feedback-directed testing.

Oracle Generation. There has been limited work on oracle generation for testing.

Fraser et al. [48] propose µTEST, which employs a mutant-based oracle generation

technique. It automatically generates unit tests for Java object-oriented classes by

using a genetic algorithm to target mutations with high impact on the application’s

behaviour. They further identify [47] relevant pre-conditions on the test inputs and

post-conditions on the outputs to ease human comprehension. Staats et al. [107]

address the problem of selecting oracle data, which is formed as a subset of internal

state variables as well as outputs for which the expected values are determined.

Mutation testing is applied to produce oracles and rank the inferred oracles in terms

of their fault finding capability. They merely focus on supporting the creation of

test oracles by the programmer, rather than fully automating the process of test case

generation. Loyola et al. [69] propose Dodona, which ranks program variables

based on their dependencies during the program execution. Using this ranking,

they suggest a set of variables to be monitored by the tester as assertion-based

oracles. Dodona is also among the test oracle generation supporting systems.
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1.1.3 Test Automation Challenges

Although, researchers have recently developed automated test generation tech-

niques for JavaScript-based applications [22, 71, 72, 76, 102], current techniques

suffer from two main shortcomings, namely, they:

1. Target the generation of event sequences, which operate at the event-level or

DOM-level to cover the state space of the application. These techniques fail

to capture faults that do not propagate to an observable DOM state. As such,

they potentially miss this portion of code-level JavaScript faults. In order

to capture such faults, effective test generation techniques need to target the

code at the JavaScript unit-level, in addition to the event-level.

2. Either ignore the oracle problem altogether or simplify it through generic

soft oracles, such as W3C HTML validation [22, 76], or JavaScript runtime

exceptions [22]. These type of oracles are not able to detect application

specific errors. A generated test case without assertions is not useful since

code coverage alone is not the goal of software testing. For such generated

test cases, the tester still needs to manually write many assertions, which

is time and effort intensive. On the other hand, soft oracles target generic

fault types and are limited in their fault finding capabilities. However, to be

practically useful, unit testing requires strong oracles to determine whether

the application under test executes correctly.

3. They merely focus on supporting the test oracle generation by the program-

mer. Thus, these approaches are not fully automating the process of test case

creation [69, 107].

To address the above mentioned shortcomings, we proposed a set of fully auto-

mated test case and assertion generation techniques for JavaScript applications.

Our techniques can capture application specific DOM as well as JavaScript code

related faults.

1.2 Adequacy Assessment
While automated testing can help the tester to assure the application’s dependabil-

ity and detect faults in the application code, it does not reveal the trustworthiness
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of the written tests. In order to understand how well the functionality and the data

is being tested, we need to assess the quality of the tests. A large body of research

has been accomplished to assess the quality of test suites from different perspec-

tives: (1) code coverage, and (2) mutation analysis. While code coverage tells how

much of the source code is exercised by the test suite, it does not provide sufficient

insight into the actual quality of the tests. Mutation testing has been proposed as a

fault-based testing technique to assess and improve the quality of a test suite.

The main idea of mutation testing is to create mutants (i.e., modified versions

of the program) and check if the test suite is effective at detecting the mutants.

The technique first generates a set of mutants by applying a set of well-defined

mutation operators on the original version of the system under test. These mutation

operators typically represent subtle mistakes, such as typos, commonly made by

programmers. A test suite’s adequacy is then measured by its ability to detect (or

‘kill’) the mutants, which is known as the adequacy score (or mutation score).

1.2.1 Mutation Testing Challenges

Despite being an effective test adequacy assessment method [21, 66], mutation

testing suffers from two main issues. First, there is a high computational cost in

executing the test suite against a potentially large set of generated mutants. Sec-

ond, there is a significant amount of effort involved in distinguishing equivalent

mutants, which are syntactically different but semantically identical to the original

program [32]. Equivalent mutants have no observable effect on the application’s

behaviour, and as a result, cannot be killed by test cases. Empirical studies indicate

that about 45% of all undetected mutants are equivalent [70, 103]. According to a

recent study [70], it takes on average 15 minutes to manually assess one single first-

order mutant. While detecting equivalent mutants consumes considerable amount

of time, there is still no fully automated technique that is capable of detecting all

the equivalent mutants [70].

Current Mutation Testing Approaches. A large body of research has been con-

ducted to turn mutation testing into a practical approach. To reduce the computa-

tional cost of mutation testing, researchers have proposed three main approaches to

generate a smaller subset of all possible mutants: (1) mutant clustering [64], which
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is an approach that chooses a subset of mutants using clustering algorithms; (2)

selective mutation [24, 84, 116], which is based on a careful selection of more ef-

fective mutation operators to generate less mutants; and (3) higher order mutation

(HOM) testing [65], which tries to find rare but valuable higher order mutants that

denote subtle faults [66].

According to the taxonomy suggested by Madeyski et al. [70], there are three

main categories of approaches that address the problem of equivalent mutants: (1)

detecting equivalent mutants, (2) avoiding equivalent mutant generation, and (3)

suggesting equivalent mutants. As far as equivalent mutant detection techniques

are concerned, the most effective approach is proposed by Offutt and Pan [88, 89],

which uses constraint solving and path analysis. The results of their evaluation

showed that the approach is able to detect on average the 45% of the equivalent

mutants. However, these solutions are involved with considerable amount of man-

ual effort and are error-prone.

Among equivalent detection methods, program slicing has also been used in

equivalent mutants detection [59]. The goal there is to guide a tester in detecting the

locations that are affected by a mutant. Among avoiding equivalent mutant genera-

tion techniques, Domı́nguez-Jiménez et al. [40] propose an evolutionary mutation

testing technique based on a genetic algorithm to cope with the high computational

cost of mutation testing by reducing the number of mutants. Their system gen-

erates a strong subset of mutants, which is composed of surviving and difficult

to kill mutants. Their technique, however, cannot distinguish equivalent mutants

from surviving non-equivalent mutants. Bottaci [30] presents a mutation analysis

technique based on the available type information at run-time to avoid generating

incompetent mutants. This approach is applicable for dynamically typed programs

such as JavaScript. However, the efficiency of the technique is unclear as they do

not provide any empirical evaluation of their approach.

Among the equivalent mutant suggestion techniques, Schuler et al. [104] sug-

gest possible equivalent mutants by checking invariant violations. They generate

multiple mutated versions and then classify the versions based on the number of

violated invariants. The system recommends testers to focus on those mutations

that violate the most invariants. In a follow-up paper [103], they extend their work

to assess the role of code coverage changes in detecting equivalent mutants.
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Deng et al. [39] implement a version of statement deletion (SDL) mutation

operator for Java within the muJava mutation system. The design of SDL opera-

tor is based on a theory that performing mutation testing using only one mutation

operator can result in generating effective tests. However, the authors cannot con-

clude that SDL-based mutation is as effective as selective mutation, which contains

a sufficient set of mutation operators from all possible operators. Therefore, they

only recommend for future mutation systems to include SDL as a choice.

However, these solutions suffer from the following limitations:

1. They are involved with considerable amount of manual effort, and thus are

error-prone;

2. The mutants need to be executed against the test suite, which limits the effi-

ciency of the technique as the number of mutants increase.

3. The system only recommends testers to focus on those mutations that are

more likely to be non-equivalent. These techniques are not fully automated

and are used as a supporting system for the tester;

To tackle the above mentioned issues, we proposed a fully automated mutation gen-

eration technique that avoids generating equivalent mutants a priori by identifying

behaviour-affecting portions of the code, and thus achieving greater efficiency. Our

approach (1) reduces the number of equivalent mutants and (2) guides testers to-

wards designing test cases for important portions of the code from the application’s

behaviour point of view.

1.3 Research Questions
To improve the dependability of JavaScript web applications, we designed two

high-level research questions:

RQ 1.3.A. How can we automatically generate effective test cases for JavaScript

applications?

In response to web testing challenges, we (1) designed an automated test case

and oracle generator, which is capable of detecting faults in the JavaScript appli-

cations for both unit and DOM level, and (2) proposed an approach to exploit the

existing DOM-based test suite in order to generate unit-level assertions.
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RQ 1.3.B. How can we effectively assess the quality of the existing JavaScript

test cases?

To assess the quality of test cases, we proposed a new JavaScript mutation

testing approach, which helps to guide the mutation generation process towards

parts of the code that are error-prone or likely to influence the program’s output.

1.4 Contributions
In response to the first and second research questions as outlined in Section 1.3,

the following papers have been published:

• Chapter 2:

– “JSART: JavaScript Assertion-based Regression Testing” [78], S. Mir-

shokraie and A. Mesbah, International Conferencee on Web Engineer-

ing (ICWE), 2012, 238-252.

• Chapter 3:

– “Efficient JavaScript Mutation Testing” [79], S. Mirshokraie, A. Mes-

bah and K. Pattabiraman, International Conference on Software Test-

ing, Verification, and Validation (ICST), 2013, 74-83 (Best paper Runner-

up award).

– “Guided Mutation Testing for JavaScript Web Applications” [82], S.

Mirshokraie, A. Mesbah and K. Pattabiraman, IEEE Transaction on

Software Engineering (TSE), 2015, 429-444.

• Chapter 4:

– “JSEFT: Automated JavaScript Unit Test Generation” [81], S. Mir-

shokraie, A. Mesbah and K. Pattabiraman, International Conference

on Software Testing, Verification, and Validation (ICST), 2015, 1-10

(Nominated for the best paper award).

– “PYTHIA: Generating Test Cases with Oracles for JavaScript Appli-

cations” [80], S. Mirshokraie, A. Mesbah and K. Pattabiraman, Auto-

mated Software Engineering (ASE), 2013, New Ideas Track, 610-615.
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– “Unit Test Generation for JavaScript”, S. Mirshokraie, A. Mesbah and

K. Pattabiraman, Submitted to the Software Testing, Verification and

Reliability (STVR) journal and is currently under review.

• Chapter 5:

– “Atrina: Inferring Unit Oracles from GUI Test Cases”, Submitted to the

International Conference on Software Testing, Verification, and Valida-

tion (ICST’16) and is currently under review.

I have also contributed to the following related publications:

• Automated Analysis of CSS Rules to Support Style Maintenance [74]: A.

Mesbah and S. Mirshokraie, ICSE’12, 408-418;

• A Systematic Mapping Study of Web Application Testing [50]: V. Garousi,

A. Mesbah, A. Betin Can and S. Mirshokraie, IST, vol. 55, no. 8, 1374-1396,

2013;
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Chapter 2

JSART: JavaScript Assertion-based Regression
Testing

Summary1

One way to provide assurance about the correctness of highly evolving and dy-

namic applications is through regression testing. We propose an automated tech-

nique for JavaScript regression testing, which is based on on-the-fly JavaScript

source code instrumentation and dynamic analysis to infer invariant assertions.

These obtained assertions are injected back into the JavaScript code to uncover

regression faults in subsequent revisions of the web application under test. Our

approach is implemented in a tool called JSART. We present our case study con-

ducted on nine open source web applications to evaluate the proposed approach.

The results show that our approach is able to effectively generate stable assertions

and detect JavaScript regression faults with a high degree of accuracy and minimal

performance overhead.

2.1 Introduction
Web applications usually evolve fast by going through rapid development cycles

and are, therefore, susceptible to regressions, i.e., new faults in existing function-

ality after changes have been made to the system. One way of ensuring that such

modifications (e.g., bug fixes, patches) have not introduced new faults in the mod-

1This chapter appeared at the International Conference on Web Engineering (ICWE), 2012 [78].
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1 function setDim(height, width) {
2 var h = 4*height, w = 2*width;
3 ...
4 return{h:h, w:w};
5 }

7 function play(){
8 $(#end).css("height", setDim($('body').width(), $('body').height()).h←↩

+ 'px');
9 ...

10 }

Figure 2.1: Motivating JavaScript example.

ified system is through systematic regression testing. While regression testing of

classical web applications has been difficult [109], dynamism and non-determinism

pose an even greater challenge [99] for Web 2.0 applications.

In this work, we propose an automated technique for JavaScript regression

testing, which is based on dynamic analysis to infer invariant assertions. These

obtained assertions are injected back into the JavaScript code to uncover regression

faults in subsequent revisions of the web application under test. Our technique

automatically (1) intercepts and instruments JavaScript on-the-fly to add tracing

code (2) navigates the web application to produce execution traces, (3) generates

dynamic invariants from the trace data, (4) transforms the invariants into stable

assertions and injects them back into the web application for regression testing.

Our approach is orthogonal to server-side technology, and it requires no man-

ual modification of the source code. It is implemented in an open source tool

called JSART (JavaScript Assertion-based Regression Testing). We have empiri-

cally evaluated the technique on nine open-source web applications. The results of

our evaluation show that the approach generates stable invariant assertions, which

are capable of spotting injected faults with a high rate of accuracy.

2.2 Motivation and Challenges
Figure 2.1 shows a simple JavaScript code snippet. Our motivating example con-

sists of two functions, called setDim and play. The setDim function has two

parameters, namely height and width, with a simple mathematical operation

(Line 2). The function returns local variables, h and w (Line 4). setDim is called
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in the play function (Line 8) to set the height value of the CSS property of

the DOM element with ID end. Any modification to the values of height or

width would influence the returned values of setDim as well as the property

of the DOM element. Typical programmatic errors include swapping the order of

height and width when they are respectively assigned to local variables h and

w or calling setDim with wrong arguments, i.e., changing the order of function

arguments.

Detecting such regression errors is a daunting task for web developers, es-

pecially in programming languages such as JavaScript, which are known to be

challenging to test. One way to check for these regressions is to define invariant

expressions of expected behaviour [77] over program variables and assert their cor-

rectness at runtime. This way any modification to height, width, h, or w that

violates the invariant expression will be detected. However, manually expressing

such assertions for web applications with thousands of lines of JavaScript code

and several DOM states, is a challenging and time-consuming task. Our aim in this

work is to provide a technique that automatically captures regression faults through

generated JavaScript assertions.

2.3 Our Approach
Our regression testing approach is based on dynamic analysis of JavaScript code to

infer invariants from a given web application. We use the thus obtained invariants

as runtime assertions in the JavaScript code to automatically uncover regression

errors that can be introduced after changes have been made to the web application

in a subsequent reversion. Our approach is largely based on two assumptions (1)

the current version of the web application, from which invariants are being gen-

erated, is bug-free (2) the inferred invariants capture program specifications that

are unlikely to change frequently in the following revisions (we revisit these two

assumptions in Section 5.4.4). Our regression testing technique is composed of

the following four main steps: (1) JavaScript tracing, (2) Invariant generation, (3)

Filtering unstable assertions, and (4) Regression testing through assertions. In the

following subsections, we will describe each step in details.
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Figure 2.2: Overview of the JavaScript tracing and invariant generation steps (web application version n).

2.3.1 JavaScript Tracing

In order to infer useful program invariants, we need to collect execution traces of

the JavaScript code. The idea is to log as much program variable value changes at

runtime as possible. Figure 2.2 depicts a block diagram of the tracing step. Our ap-

proach automatically generates trace data in three subsequent steps: (i) JavaScript

interception and instrumentation, (ii) navigation, and (iii) trace collection. In the

following, we explain each step in details.

JavaScript Interception and Instrumentation.

The approach we have chosen for logging variables is on-the-fly JavaScript source

code transformation to add instrumentation code. We intercept all the JavaScript

code of a given web application, both in JavaScript files and HTML pages, by

setting up a proxy [26] between the server and the browser. We first parse the

intercepted source code into an Abstract Syntax Tree (AST). We then traverse the

AST in search of program variables as well as DOM modifications as described

below.

Tracing Program Variables. Our first interest is the range of values of JavaSc-

ript program variables. We probe function entry and function exit points, by identi-

fying function definitions in the AST and injecting statements at the start, end, and

before every return statement. We instrument the code to monitor value changes

of global variables, function arguments, and local variables. Per program point,

we yield information on script name, function name, and line number, used for de-

bugging purposes. Going back to our running example (Figure 2.1), our technique

adds instrumentation code to trace width, height, h, and w. For each variable,
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we collect information on name, runtime type, and actual values. The runtime type

is stored because JavaScript is a loosely typed language, i.e., the types of variables

cannot be determined syntactically, thus we log the variable types at runtime.

Tracing DOM Modifications. In modern web applications, JavaScript code

frequently interacts with the DOM to update the client-side user interface state.

Our recent study [87] of four bug-tracking systems indicated that DOM-related

errors form 80% of all reported JavaScript errors. Therefore, we include in our

execution trace how DOM elements and their attributes are modified by JavaScript

at runtime. For instance, by tracing how the CSS property of the ‘end’ DOM

element in Figure 2.1 is changed during various execution runs, we can infer the

range of values for the height attribute.

Based on our observations, JavaScript DOM modifications usually follow a

certain pattern. Once the pattern is reverse engineered, we can add proper instru-

mentation code around the pattern to trace the changes. In the patterns that we

observed, first a JavaScript API is used to find the desired DOM element. Next,

a function is called on the returned object responsible for the actual modification

of the DOM-tree. After recognizing a pattern in the parsed AST, we add instru-

mentation code that records the value of the DOM attribute before and after the

actual modification. Hence, we are able to trace DOM modifications that happen

programmatically through JavaScript.

Navigation.

Once the AST is instrumented, we serialize it back to the corresponding JavaScript

source code file and pass it to the browser. Next, we navigate the application in

the browser to produce an execution trace. The application can be navigated in

different ways including (1) manual clicking (2) test case execution (3) or using

a web crawler. To automate the approach, our technique is based on automated

dynamic crawling [75]. The execution needs to run as much of the JavaScript code

as possible and execute it in various ways. This can be achieved through visiting

as many DOM state changes as possible as well as providing different values for

function arguments.
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Figure 2.3: Overview of the filtering step to remove unstable invariant assertions, for web application
version n.

Trace Collection.

As the web application is navigated, the instrumented JavaScript code produces

trace data, which needs to be collected for further analysis. Keeping the trace data

in the browser’s memory during the program execution can make the browser slow

when a large amount of trace data is being produced. On the other hand, sending

data items to the proxy as soon as the item is generated, can put a heavy load on

the proxy, due to the frequency of HTTP requests. In order to tackle the aforemen-

tioned challenges, we buffer a certain amount of trace data in the memory in an

array, post the data as an HTTP request to a proxy server when the buffer’s size

reaches a predefined threshold, and immediately clear the buffer in the browser’s

memory afterwards. Since the data arrives at the server in a synchronized manner,

we concatenate the tracing data into a single trace file on the server side, which is

then seeded into the next step (See Figure 2.2).

2.3.2 Invariant Generation

The assertion generation phase is involved with analyzing the collected execution

traces to extract invariants. Substantial amount of research has been carried out

on detecting dynamic program invariants [29, 37, 43, 56]. Our approach is based

on Daikon [43] to infer likely invariants. As indicated with the dotted line in Fig-

ure 2.2, we cycle through the navigation and invariant generation phases until the

size of generated invariant file remains unchanged, which is an indication that all

possible invariants have been detected.
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2.3.3 Filtering Unstable Invariant Assertions

The next step is to make sure that the generated invariants are truly invariants.

An invariant assertion is called unstable when it is falsely reported as a violated

assertion. Such assertions result in producing a number of false positive errors

during the testing phase. To check the stability of the inferred invariants, we use

them in the same version of the web application as assertions. From the user’s

perspective, no assertion violations should be reported because the web application

has not changed. Hence, any assertion violation reported as such is a false positive

and should be eliminated. Our filtering process, shown in Figure 2.3, consists of

the following four processes:

• Converting the inferred invariants into checkable assertions;

• Injecting the invariant assertions into the same version of the web applica-

tion;

• Navigating the web application;

• Collecting assertion violations and removing them;

From each of the inferred invariants, we generate an assertion in JavaScript

format. We use on-the-fly transformation to inject the assertions directly into the

source code of the same version of the web application. Since we have all the

information about the program points and the location of the assertions, we can

inject the assertions at the correct location in the JavaScript source code through

the proxy, while the code is being sent to the client by the server. This way the

assertions can run as part of the client-side code and gain access to the values of all

program variables needed at runtime. Once the assertions are injected, we execute

the web application in the browser and log the output. Next we collect and remove

any violated assertions. The output of this step is a set of stable invariant assertions,

used for automated regression testing in the next step.

2.3.4 Regression Testing through Assertions

Once a set of stable invariant assertions are derived from version n of a web ap-

plication, they can be used for automatic regression testing a subsequent version
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Figure 2.4: Overview of the JavaScript regression testing step through invariant assertions, for web appli-
cation version n+1.

(n+1) of the web application. The regression testing phase is depicted in Fig-

ure 2.4.

We inject the inferred stable assertions to the JavaScript source code of the

modified web application, in a similar fashion to the filtering step in Section 2.3.3.

Once the assertions are injected, the new version of the web application is ready

for regression testing. Any failed assertion during the testing phase generates an

entry in the test report, which is presented to the tester at the end of the testing step.

The generated test report provides precise information on the failed assertion, the

file name, the line number, and the function name of the assertion.

1 function setDim(height, width) {
2 assert((width < height), ‘example.js:setDim:ENTER:POINT1’);
3 var h = 4*height, w = 2*width;
4 ...
5 assert((width < height), ‘example.js:setDim:EXIT:POINT1’);
6 assert((w < h), ‘example.js:setDim:EXIT:POINT1’);
7 return{h:h, w:w};
8 }

10 function play(){
11 $(#end).css("height", setDim($('body').width(), $('body').height()).←↩

h + 'px');
12 assert(isIn($(‘#end’).css(‘height’), {100, 200,

300}),‘example.js:play:POINT3’);
13 ...
14 }

Figure 2.5: Invariant assertion code for JavaScript function parameters, local variables and DOM modifi-
cations. Injected assertions are shown in bold.

Figure 2.5 shows the automatically injected invariant assertions for our running

example of Figure 2.1. Note that we do not show all the assertions as they clut-
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ter the figure. Each assert call has the invariant as the first parameter and the

corresponding debugging information in the second parameter, which includes in-

formation about script name, function name, and line number. In this example, the

inferred invariants yield information about the inequality relation between func-

tion arguments, width and height, as well as local variables, w and h. The

assertions in lines 2 and 5-6 check the corresponding inequalities, at entry and exit

points of the setDim function at runtime. The example also shows the asser-

tion that checks the height attribute of the DOM element, after the JavaScript

DOM modification in the play function. The assertion that comes after the DOM

manipulation (Line 12) checks the height value by calling the auxiliary isIn

function. isIn checks the value of height to be in the given range, i.e., either

100, 200, or 300. Any values out of the specified range would violate the assertion.

2.4 Tool Implementation
We have implemented our JavaScript regression testing approach in a tool called

JSART. JSART is written in Java and is available for download.2

JSART extends and builds on top of our InvarScope [52] tool. For JavaScript

code interception, we use an enhanced version of Web-Scarab’s proxy [26]. This

enables us to automatically analyze and modify the content of HTTP responses be-

fore they reach the browser. To instrument the intercepted code, Mozilla Rhino3 is

used to parse JavaScript code to an AST, and back to the source code after instru-

mentation. The AST generated by Rhino’s parser has traversal API’s, which we

use to search for program points where instrumentation code needs to be added.

For the invariant generation step, we have extended Daikon [43] with support for

accepting input and generating output in JavaScript syntax. The input files are cre-

ated from the trace data and fed through the enhanced version of Daikon to derive

dynamic invariants. The navigation step is automated by making JSART operate as

a plugin on top of our dynamic AJAX crawler, CRAWLJAX [75].4

2 http://salt.ece.ubc.ca/content/jsart/
3 http://www.mozilla.org/rhino/
4 http://www.crawljax.com
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2.5 Empirical Evaluation
To quantitatively assess the accuracy and efficiency of our approach, we have con-

ducted a case study following guidelines from Runeson and Höst [101]. In our

evaluation, we address the following research questions:

RQ1 How successful is JSART in generating stable invariant assertions?

RQ2 How effective is our overall regression testing approach in terms of correctly

detecting faults?

RQ3 What is the performance overhead of JSART?

The experimental data produced by JSART is available for download.2

2.5.1 Experimental Objects

Our study includes nine web-based systems in total. Six are game applications,

namely, SameGame, Tunnel, TicTacToe, Symbol, ResizeMe, and GhostBusters.

Two of the web applications are Jason and Sofa, which are a personal and a com-

pany homepage, respectively. We further include TuduList, which is a web-based

task management application. All these applications are open source and use

JavaScript on the client-side.

Table 2.1 presents each application’s ID, name, and resource, as well as the

characteristics of the custom JavaScript code, such as JavaScript lines of code

(LOC), number of functions, number of local and global variables, as well as the

cyclomatic complexity (CC). We use Eclipse IDE to count the JavaScript lines of

code, number of functions, number of local as well as global variables. JSme-

ter 5 is used to compute the cyclomatic complexity. We compute the cyclomatic

complexity across all JavaScript functions in the application.

2.5.2 Experimental Setup

To run the experiment, we provide the URL of each experimental object to JSART.

In order to produce representative execution traces, we navigate each application

5 http://jsmeter.info
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Table 2.1: Characteristics of the experimental objects.
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Resource
1 SameGame 206 9 32 5 37 crawljax.com/same-game
2 Tunnel 334 32 18 13 39 arcade.christianmontoya.com/tunnel
3 TicTacToe 239 11 22 23 83 dynamicdrive.com/dynamicindex12/

tictactoe.htm
4 Symbol 204 20 28 16 32 10k.aneventapart.com/2/Uploads/652
5 ResizeMe 45 5 4 7 2 10k.aneventapart.com/2/Uploads/594
6 GhostBusters 277 27 75 4 52 10k.aneventapart.com/2/Uploads/657
7 Jason 107 8 4 8 6 jasonjulien.com
8 Sofa 102 22 2 1 5 madebysofa.com/archive
9 TuduList 2767 229 199 31 28 tudu.ess.ch/tudu

several times with different crawling settings. Crawling settings differ in the num-

ber of visited states, depth of crawling, crawling time, and clickable element types.

To obtain representative data traces, each of our experimental objects is navigated

three times on average. Although JSART can easily instrument the source code of

imported JavaScript libraries (e.g., jQuery, Prototype, etc), in our experiments we

are merely interested in custom code written by developers, since we believe that

is where most programming errors occur.

To evaluate our approach in terms of inferring stable invariant assertions (RQ1),

we count the number of stable invariant assertions generated by JSART before and

after performing the filtering step. As a last check, we execute the initial version

of the application using the stable assertions to see whether our filtered invariant

assertions are reporting any false positives.

Once the stable invariant assertions are obtained for each web application, we

perform regression testing on modified versions of each application (RQ2). To that

end, in order to mimic regression faults, we produce twenty different versions for

each web application by injecting twenty faults into the original version, one at a

time. We categorize our faults according to the following fault model:

1. Modifying Conditional Statements: This category is concerned with swap-

ping consecutive conditional statements, changing the upper/lower bounds

of loop statements, as well as modifying the condition itself;
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Table 2.2: Properties of the invariant assertions generated by JSART.
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1 8.6 303 120 171 12 0 0 0 0 303 120 171 12
2 124 2147 1048 1085 14 14 9 5 0 2133 1039 1080 14
3 1.2 766 387 379 0 16 8 8 0 750 379 371 0
4 31.7 311 138 171 2 14 7 7 0 297 131 164 2
5 0.4 55 20 27 8 0 0 0 0 55 20 27 8
6 2.3 464 160 266 38 3 1 2 0 461 159 264 38
7 1.2 29 4 6 19 0 0 0 0 29 4 6 19
8 0.1 20 2 2 16 0 0 0 0 20 2 2 16
9 2.6 163 58 104 1 0 0 0 0 163 58 104 1

2. Modifying Global/Local Variables: In this category, global/local variables

are changed by modifying their values at any point of the program, as well

as removing or changing their names;

3. Changing Function Parameters/Arguments: This category is concerned

with changing function parameters or function call arguments by swapping,

removing, and renaming parameters/arguments. Changing the sequence of

consecutive function calls is also included in this category;

4. DOM modifications: Another type of fault, which is introduced in our

fault model is modifying DOM properties at both JavaScript code level and

HTML code level.

For each fault injection step, we randomly pick a JavaScript function in the

application code and seed a fault according to our fault model. We seed five faults

from each category.

To evaluate the effectiveness of JSART (RQ2), we measure the precision and

recall as follows:

Precision is the rate of injected faults found by the tool that are correct: TP
TP+FP
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Recall is the rate of correct injected faults that the tool finds: TP
TP+FN

where T P (true positives), FP (false positives), and FN (false negatives) respec-

tively represent the number of faults that are correctly detected, falsely reported,

and missed.

To evaluate the performance of JSART (RQ3), we measure the extra time

needed to execute the application while assertion checks are in place.

2.5.3 Results

In this section, we discuss the results of the case study with regard to our three

research questions.

Generated Invariant Assertions.

Table 2.2 presents the data generated by our tool. For each web application, the

table shows the total size of collected execution traces (MB), the total number

of generated JavaScript assertions, the number of assertions at entry point of the

functions, the number of assertions at exit point of the functions, and the number

of DOM assertions. The unstable assertions before the filtering as well as the sta-

ble assertions after the filtering step are also presented. As shown in the table, for

applications 1, 5, 7, 8, and 9, all the generated invariant assertions are stable and

the filtering step does not remove any assertions. For the remaining four applica-

tions (2, 3, 4, 6), less than 5% of the total invariant assertions are seen as unstable

and removed in the filtering process. Thus, for all the experimental objects, the

resulting stable assertions found by the tool is more than 95% of the total asser-

tions. Moreover, we do not observe any unstable DOM assertions. In order to

assure the stability of the resulting assertions, we examine the obtained assertions

from the filtering step across multiple executions of the original application. The

results show that all the resulting invariant assertions are truly stable since we do

not observe any false positives.

As far as RQ1 is concerned, our findings indicate that (1) our tool is capable of

automatically generating a high rate of JavaScript invariant assertions, (2) the un-

stable assertions are less than 5% of the total generated assertions, (3) the filtering

technique is able to remove the few unstable assertions, and (4) all the remaining

23



Table 2.3: Precision and Recall for JSART fault detection.

App ID # FN # FP # TP Precision (%) Recall (%)
1 2 0 18 100 90
2 4 0 16 100 80
3 1 0 19 100 95
4 2 0 18 100 90
5 0 0 20 100 100
6 1 0 19 100 95
7 0 0 20 100 100
8 0 0 20 100 100
9 1 0 19 100 95

invariant assertions that JSART outputs are stable, i.e., they do not produce any

false positives on the same version of the web application.

Effectiveness.

Since applications 3, 4, and 9 do not contain many DOM assertions, we were

not able to inject 5 faults from the DOM modification category. Therefore, we

randomly chose faults from the other fault model categories.

In Table 2.3, we present the accuracy of JSART in terms of its fault finding

capability. The table shows the number of false negatives, false positives, true

positives, as well as the percentages for precision and recall. As far as RQ2 is con-

cerned, our results show that JSART is very accurate in detecting faults. The pre-

cision is 100%, meaning that all the injected faults, which are reported by the tool,

are correct. This also implies that our filtering mechanism successfully eliminates

unstable assertions as we do not observe any false positives. The recall oscillates

between 80-100%, which is caused by a low rate of missed faults (discussed in

Section 5.4.4 under Limitations). Therefore, as far as RQ2 is concerned, JSART is

able to successfully spot the injected faults with a high accuracy rate.

Performance.

Figure 2.6 depicts the total running time needed for executing each web application

with and without the assertion code. Checking a fairly large number of assertions

at runtime can be time consuming. Thus, to capture the effect of the added asser-

tions on the execution time, we exploit a 2-scale diagram. As shown in Figure 2.6,
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each experimental object is associated with two types of data. The left-hand Y-

axis represents the running time (seconds), whereas the right-hand Y-axis shows

the number of assertions. This way we can observe how the number of assertions

relates to the running time. As expected, the figure shows that by increasing the

number of assertions, the running time increases to some degree. While the time

overhead of around 20 seconds is more evident for the experimental object 2 (i.e.,

Tunnel with 2147 number of assertions), it is negligible for the rest of the experi-

mental objects. Considering that Tunnel has 260 statements in total, the number of

assertions instrumented in the code is eight times more than the number of state-

ments in the original version. Therefore, it is reasonable to observe a small amount

of overhead. Though assertions introduce some amount of overhead, it is worth

mentioning that we have not experienced a noticeable change (i.e., freezing or

slowed down execution) while running the application in the browser.

Thus, as far as RQ3 is concerned, the amount of overhead introduced by our

approach is 6 seconds on average for our experimental objects, which is negligi-

ble during testing. Furthermore, based on our observations, the assertions do not

negatively affect the observable behaviour of the web applications in the browser.

2.6 Discussion

Unstable Assertions.

As mentioned in Section 2.3.3, we observe a few number of unstable invariant

assertions initially, which are removed by our filtering mechanism. By analyzing

our trace data, we observe that such unstable assertions arise mainly because of

the multiple runtime types of JavaScript variables. This is based on the fact that

in JavaScript it is possible to change the type of a variable at runtime. However,

Daikon treats variables as single type, selects the first observed type, and ignores

the subsequent types in the trace data. This results in producing a few number of

unstable invariant assertions for JavaScript. We remove such unstable assertions

in our filtering step. A drawback of removing these assertions, is that our tool

might miss a fault during the regression testing phase. However, according to our

observations, such unstable assertions form only around 5% of the total generated
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Figure 2.6: Performance plot of JSART.

assertions. Thus, we are still able to achieve high accuracy as presented in the

previous section.

Limitations.

Our approach is not able to detect syntax errors that are present in the JavaScript

code. Furthermore, tracing DOM manipulations using APIs other than the standard

DOM API or jQuery is currently not supported by JSART. Further, a regression

fault either directly violates an invariant assertion, or it can violate closely related

assertions, which have been affected by the fault. However, if the tool is not able

to infer any invariants in the affected scope of the error, it fails to detect the fault.

This results in observing a low rate of false negatives as illustrated in Section 5.4.

Revisiting the Assumptions.

As we mentioned in Section 5.3, we assume that the current version of the web

application is bug-free. This is based on the fact that in regression testing a gold

standard is always needed as a trusted version for comparing the test results against
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Table 2.4: Manual effort imposed by our approach for deriving stable invariant assertions.

App ID Total Time (min) Manual Effort (min)
1 13 4
2 11.5 3
3 15.5 5
4 11 3
5 6.5 2.5
6 9 4.5
7 7.5 3.5
8 6.5 2
9 18 13

[28] to detect regression faults. However, if the original version of the application

does contain an error, the generated assertions might reflect the error as well, and

as such they are not able to detect the fault. Our second assumption states that

the program specifications are unlikely to change frequently in revisions. Here we

assume that software programs evolve gradually and regression faults are mostly

due to small changes. However, if major upgrades occur in subsequent revisions

such that the core specification of the application is affected, the inferred invariants

from the original version may not be valid any longer and new invariant assertions

need to be generated.

Automation Level.

While the testing phase of JSART is fully automated, the navigation part requires

some manual effort. Although the crawling is performed automatically, we do need

to manually setup the tool with different crawling configurations per application

execution. Moreover, for each application run, we manually look at the size of the

invariant output to decide whether more execution traces (and thus more crawling

sessions) are needed. We present the manual effort involved with detecting stable

invariant assertions in Table 2.4. The table shows the total time, which is the dura-

tion time of deriving stable assertions including both automatic and manual parts.

The reported manual effort contains the amount of time required for setting up the

tool as well as the manual tasks involved with the navigation part. The results show

the average manual effort is less than 5 minutes.

27



2.7 Related Work
Automated testing of modern web applications is becoming an active area of re-

search [22, 72, 76, 93]. Most of the existing work on JavaScript analysis is, how-

ever, focused on spotting errors and security vulnerabilities through static analysis

[53, 54, 118]. We classify related work into two broad categories: web application

regression testing and program invariants.

Web Application Regression Testing.

Regression testing of web applications has received relatively limited attention

from the research community [109, 114]. Alshahwan and Harman [19] discuss an

algorithm for regression testing of web applications that is based on session data

[41, 106] repair. Roest et al. [99] propose a technique to cope with the dynamism

in Ajax web interfaces while conducting automated regression testing. None of

these works, however, target regression testing of JavaScript in particular.

Program Invariants.

The concept of using invariants to assert program behaviour at runtime is as old as

programming itself [34]. A more recent development is the automatic detection of

program invariants through dynamic analysis. Ernst et al. have developed Daikon

[43], a tool capable of inferring likely invariants from program execution traces.

Other related tools for detecting invariants include Agitator [29], DIDUCE [56],

and DySy [37]. Recently, Ratcliff et al. [96] have proposed a technique to reuse

the trace generation of Daikon and integrate it with genetic programming to pro-

duce useful invariants. Conceptually related to our work, Rodrı́guez-Carbonell and

Kapur [98] use inferred invariant assertions for program verification.

Mesbah et al. [76] proposed a framework called ATUSA for manually speci-

fying generic and application-specific invariants on the DOM-tree and JavaScript

code. These invariants were subsequently used as test oracles to detect erroneous

behaviours in modern web applications. Pattabiraman and Zorn proposed DoDOM

[93], a tool for inferring invariants from the DOM tree of web applications for re-

liability testing.

To the best of our knowledge, this work is the first to propose an automated
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regression testing approach for JavaScript, which is based on JavaScript invariant

assertion generation and runtime checking.

2.8 Conclusions
In this work, we present an automated technique for JavaScript regression testing

based on generated invariant assertions. The contributions of this work can be

summarized as follows:

• A method for detecting JavaScript invariants across multiple application exe-

cutions through on-the-fly JavaScript instrumentation and tracing of program

variables and DOM manipulations;

• A technique for automatically converting the inferred invariants into stable

assertions, and injecting them back into the web application for regression

testing;

• The implementation of our proposed technique in an open source tool called

JSART;

• An empirical study on nine open source JavaScript applications. The results

of our study show that our tool is able to effectively infer stable assertions

and detect regression faults with minimal performance overhead;
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Chapter 3

Guided Mutation Testing for JavaScript Web
Applications

Summary6

Mutation testing is an effective test adequacy assessment technique. However,

there is a high computational cost in executing the test suite against a potentially

large pool of generated mutants. Moreover, there is much effort involved in filtering

out equivalent mutants. Prior work has mainly focused on detecting equivalent mu-

tants after the mutation generation phase, which is computationally expensive and

has limited efficiency. We propose an algorithm to select variables and branches

for mutation as well as a metric, called FunctionRank, to rank functions according

to their relative importance from the application’s behaviour point of view. We

present a technique that leverages static and dynamic analysis to guide the muta-

tion generation process towards parts of the code that are more likely to influence

the program’s output. Further, we focus on the JavaScript language, and propose a

set of mutation operators that are specific to web applications. We implement our

approach in a tool called MUTANDIS. The results of our empirical evaluation show

that (1) more than 93% of generated mutants are non-equivalent, and (2) more

than 75% of the surviving non-equivalent mutants are in the top 30% of the ranked

functions.
6This chapter appeared at the IEEE Transactions on Software Engineering (TSE), 2015 [82].
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3.1 Introduction
Mutation testing is a fault-based testing technique to assess and improve the quality

of a test suite. The technique first generates a set of mutants, i.e., modified versions

of the program, by applying a set of well-defined mutation operators on the origi-

nal version of the system under test. These mutation operators typically represent

subtle mistakes, such as typos, commonly made by programmers. A test suite’s

adequacy is then measured by its ability to detect (or ‘kill’) the mutants, which is

known as the adequacy score (or mutation score).

Despite being an effective test adequacy assessment method [21, 66], mutation

testing suffers from two main issues. First, there is a high computational cost in

executing the test suite against a potentially large set of generated mutants. Sec-

ond, there is a significant amount of effort involved in distinguishing equivalent

mutants, which are syntactically different but semantically identical to the original

program [32]. Equivalent mutants have no observable effect on the application’s

behaviour, and as a result, cannot be killed by test cases. Empirical studies indicate

that about 45% of all undetected mutants are equivalent [70, 103]. According to a

recent study [70], it takes on average 15 minutes to manually assess one single first-

order mutant. While detecting equivalent mutants consumes considerable amount

of time, there is still no fully automated technique that is capable of detecting all

the equivalent mutants [70].

There has been significant work on reducing the cost of detecting equivalent

mutants. According to the taxonomy suggested by Madeyski et al. [70], three

main categories of approaches deal with the problem of equivalent mutants: (1)

detecting equivalent mutants [88, 89], (2) avoiding equivalent mutant generation

[18], and (3) suggesting equivalent mutants [103]. Our proposed technique falls in

the second category (these categories are further described in Section 5.5).

In this work, we propose a generic mutation testing approach that guides the

mutation generation process towards effective mutations that (1) affect error-prone

sections of the program, (2) impact the program’s behaviour and as such are poten-

tially non-equivalent. In our work, effectiveness is defined in terms of the severity

of the impact of a single generated mutation on the applications observable be-

haviour. Our technique leverages static as well as dynamic program data to rank,
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select, and mutate potentially behaviour-affecting portions of the program code.

Our mutation testing approach is generic and can be applied to any program-

ming language. However, in this work, we implement our technique for JavaScript,

a loosely-typed dynamic language that is known to be error-prone [36, 85] and dif-

ficult to test [22, 76]. In particular, we propose a set of JavaScript specific muta-

tion operators, capturing common JavaScript programmer mistakes. JavaScript is

widely used in modern web applications, which often consist of thousands of lines

of JavaScript code, and is critical to their functionality.

To the best of our knowledge, our work is the first to provide an automated

mutation testing technique, which is capable of guiding the mutation generation

towards behaviour-affecting mutants in error-prone portions of the code. In addi-

tion, we present the first JavaScript mutation testing tool in this work.

The key contributions of this work are:

• A new metric, called FunctionRank, for ranking functions in terms of their

relative importance based on the application’s dynamic behaviour;

• A method combining dynamic and static analysis to mutate branches that are

within highly ranked functions and exhibit high structural complexity;

• A process that favours behaviour-affecting variables for mutation, to reduce

the likelihood of equivalent mutants;

• A set of JavaScript-specific mutation operators, based on common mistakes

made by programmers;

• An implementation of our mutation testing approach in a tool, called MU-

TANDIS7, which is freely available from https://github.com/saltlab/mutandis/;

• An empirical evaluation to assess the efficacy of the proposed technique us-

ing eight JavaScript applications.

Our results show that, on average, 93% of the mutants generated by MUTAN-

DIS are non-equivalent. Further, the mutations generated have a high bug severity

rank, and are capable of identifying shortcomings in existing JavaScript test suites.

7 MUTANDIS is a Latin word meaning “things needing to be changed”.
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1 function startPlay(){
2 ...
3 for(i=0; i<$("div").get().length; i++){
4 setup($("div").get(i).prop('className'));
5 }
6 endGame();
7 }

9 function setup(cellClass){
10 var elems=document.getElementsByClassName(cellClass);
11 if(elems.length == 0)
12 endGame();
13 for(i=0; i<elem.length; i++){
14 dimension= getDim($(elems).get(i).width(), $(elems).get(i).height←↩

());
15 $(elems).get(i).css('height', dimension+'px');
16 }
17 }

19 function getDim(width, height){
20 var w = width*2, h = height*4;
21 var v = w/h;
22 if(v > 1)
23 return (v);
24 else
25 return (1/v);
26 }

28 function endGame(){
29 ...
30 $('#startCell').css('height', ($('body').width()+$('body').height())←↩

/2+'px');
31 ...
32 }

Figure 3.1: JavaScript code of the running example.

While the aim of this work is not particularly generating hard-to-kill mutants, our

experimental results indicate that the guided approach does not adversely influence

the stubbornness of the generated mutants.

3.2 Running Example and Motivation
Equivalent mutants are syntactically different but semantically equivalent to the

original application. Manually analyzing the program code for detecting equivalent

mutants is a daunting task especially in programming languages such as JavaScript,

which are known to be challenging to use, analyze and test. This is because of (1)

the dynamic, loosely typed, and asynchronous nature of JavaScript, and (2) its
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complex interaction with the Document Object Model (DOM) at runtime for user

interface state updates.

Figure 5.1 presents a snippet of a JavaScript-based game that we will use as a

running example throughout this thesis. The application contains four main func-

tions as follows:

1. startPlay function calls setup to set the dimension of all div DOM

elements;

2. setup function is responsible for setting the height value of the css

property of all the DOM elements with the given class name. The actual

dimension computation is performed by calling the getDim function;

3. getDim receives two parameters width and height based on which it

returns the calculated dimension;

4. Finally, endGame sets the height value of the css property of a DOM

element with id startCell, to indicate a game termination.

Even in this small example, one can observe that the number of possible mu-

tants to generate is quite large, i.e., they span from a changed relational operator

in either of the branching statements or a mutated variable name, to completely re-

moving a conditional statement or variable initialization. However, not all possible

mutants necessarily affect the behaviour of the application. For example, changing

the “==” sign in the if statement of line 11 to “<=”, will not affect the appli-

cation. This is because the number of DOM elements can never become less than

zero, and hence the injected fault does not semantically change the application’s

behaviour. Therefore, it results in an equivalent mutant.

In this thesis, we propose to guide the mutation generation towards behaviour-

affecting, non-equivalent mutants as described in the next section.

3.3 Overview of Approach
An overview of our mutation testing technique is depicted in Figure 3.2. Our main

goal is to narrow the scope of the mutation process to parts of the code that affect
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Figure 3.2: Overview of our mutation testing approach.

the application’s behaviour, and/or are more likely to be error-prone and difficult

to test. We describe our approach below. The numbers below in parentheses corre-

spond to those in the boxes of Figure 3.2.

In the first part of our approach, we (1) intercept the JavaScript code of a given

web application, by setting up a proxy between the server and the browser, and

instrument the code, (2) execute the instrumented program by either crawling the

application automatically, or by running the existing test suite (or a combination of

the two), and (3) gather detailed execution traces of the application under test.

We then extract the following pieces of information from the execution traces,

namely (5) variable usage frequency, (6) dynamic invariants, and (7) the functions’

call frequency. In addition to dynamically inferred information from the execution

traces, we also construct the function call graph of the application by incorporating

both static and dynamic information.

Using the function call graph and the dynamic call frequencies, we (9) rank

the program’s functions in terms of their relative importance from the application’s

behaviour point of view. The higher a function’s ranking, the more likely it will be

selected for mutation in our approach.

Further, within the highly ranked functions, our technique (10) identifies vari-

ables that have a significant impact on the function’s outcome based on the usage

frequency and dynamic invariants extracted from the execution traces, and (11)

selectively mutates only those variables to reduce the likelihood of equivalent mu-
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tants.

In addition to variables, our technique mutates branch conditions, including

loops. Functions with high cyclomatic complexity are known to be more error-

prone and challenging to test [25, 83], as the tester needs to detect and exercise all

the different paths of the function. We therefore (4) statically analyze the JavaScript

code of the web application, and (8) measure its cyclomatic complexity. To perform

branch mutation (12), we target the highly ranked functions (selected in 9) that also

exhibit high cyclomatic complexity.

In addition to the generic mutation operators, our technique considers (13)

a number of JavaScript specific mutation operators, based on an investigation of

common errors made by web programmers. These specific operators are applied

without any ranking or selection process.

Our overall guided mutation testing algorithm is presented in Algorithm 1. In

the following three sections, we describe in detail our technique for ranking func-

tions (Section 3.4), ranking and selecting variables (Section 3.5), and performing

the actual mutations, including the mutation operators (Section 3.6).

3.4 Ranking Functions
In this section, we present our function ranking approach, which is used for selec-

tive variable and branch mutation.

3.4.1 Ranking Functions for Variable Mutation

In order to rank and select functions for variable mutation generation, we propose

a new metric called FunctionRank, which is based on PageRank [31], but takes

dynamic function calls into account. As such, FunctionRank measures the relative

importance of each function at runtime. To calculate this metric, we use a function

call graph inferred from a combination of static and dynamic analysis (line 6 in

Algorithm 1). Our insight is that the more a function is used, the higher its impact

will be on the application’s behaviour. As such, we assign functions that are highly

ranked, a higher selection probability for mutation.

Function Call Graph. To create a function call graph, we use dynamic as well

as static analysis. We instrument the application to record the callee functions
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per call, which are encountered during program execution. However, the obtained

dynamic call graph may be incomplete due to the presence of uncovered functions

during the program execution. Therefore, to achieve a more complete function call

graph, we further infer the static call graph through static analysis. We detect the

following types of function calls in our static analysis of the application’s code:

1. Regular function calls e.g., foo();

2. Method calls e.g., obj.foo();

3. Constructors e.g., new foo();

4. Function handlers e.g., e.click(foo);

5. Anonymous functions called by either a variable or an object property where

the anonymous function is saved.

We enhance our dynamically inferred call graph of the executed functions by

merging the graph with the statically obtained call graph containing uncovered

functions. Note that constructing function call graph for the JavaScript applica-

tions using static analysis is often unsound due to highly dynamic nature of the

JavaScript language. In JavaScript functions can be called through dynamic prop-

erty access (e.g., array[func]). They can be stored in object properties with

different names, and properties can be dynamically added or removed. Moreover,

JavaScript functions are first class meaning that they can be passed as parameters.

While static program analysis cannot reason about such dynamic function calls

in JavaScript applications, relying on pure dynamic analysis can also lead to an

incomplete call graph because of the unexecuted functions that are part of the un-

covered code at run-time. Therefore, in our approach we choose to first construct

our function call graph based on dynamic information obtained during the execu-

tion, and then make use of static analysis for those functions that are remained

uncovered during the execution.

Dynamic Call Frequencies. While the caller-callee edges in the call graph are

constructed through static analysis of the application’s code, the call frequency for

each function is inferred dynamically from the execution traces (line 3 in Algo-

rithm 1). The call graph also contains a mock node, called main function, which
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Algorithm 1: Guided Mutation Algorithm.
input : A Web application App, the maximum number of variable mutations MaxVarMut and branch

mutations MaxBrnMut
output: The mutated versions of application Mutants

1 App← INSTRUMENT(App)
begin

2 trace← COLLECTTRACE(App)
3 {callFrq fi, j ,varUsgFrq fi , invars fi} ← GETREQUIREDINFO(trace)
4 l = m = 0
5 while l < MaxVarMut do
6 {FR( fi)

n
i=0} ← FUNCTIONRANK(callGraph,callFrq fi, j )

7 mutF← SELECTFUNC(
(
FR( fi)

)n
i=0)

8 α ← 1
1−ReadVar fi

9 candidVarsmutF ← invarsmutF ∪{vi|varUsgFrqmutF (vi)> α}
10 {pr(vi ∈ candidVarsmutF )} ← 1

|candidVarsmutF |
11 mutVar← SELECTVAR(candidVarsmutF , pr(vi))
12 mutantl ← VARIABLEMUTATION(mutF,mutVar,varMutOps)
13 l ++

end
14 varMutants←

⋃
mutantMaxVarMut

l=1
15 while m < MaxBrnMut do
16 {pr( fi)

n
i=0} ←

f cc( fi)×FR( fi)
∑

n
j=1 f cc( fi)×FR( fi)

17 mutF← SELECTFUNC(
(

pr( fi)
)n

i=0)

18 mutBrn← SELECTRANDOMBRN(mutF)
19 mutantm← BRANCHMUTATION(mutBrn,brnMutOps)
20 m++

end
21 brnMutants←

⋃
mutantMaxBrnMut

m=1
22 Mutants← varMutants∪brnMutants
23 return Mutants

end

represents the entire code block in the global scope, i.e., global variables and state-

ments that are not part of any particular function. The main node does not corre-

spond to any function in the program. In addition, function event handlers, which

are executed as a result of triggering an event, are linked to the main node in our

dynamic call graph.

The FunctionRank Metric. The original PageRank algorithm [31] assumes that

for a given vertex, the probability of following all outgoing edges is identical, and

hence all edges have the same weight. For FunctionRank, we instead apply edge

weights proportional to the dynamic call frequencies of the functions.

Let l( f j, fi) be the weight assigned to edge ( f j, fi), in which function i is called

by function j. We compute l by measuring the frequency of function j calling i
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during the execution. We assign a frequency of 1 to edges directing to unexecuted

functions. The FunctionRank metric is calculated as:

FR( fi) = ∑
j∈M( fi)

FR( f j)× l( f j, fi), (3.1)

where, FR( fi) is the FunctionRank value of function i, l( f j, fi) is the frequency of

calls from function j to i, and M( fi) is the set of functions that call function i

The initial PageRank metric requires the sum of weights on the outgoing edges

to be 1. Therefore, to solve equation 3.1, we need to normalize the edge weights

from each function in our formula such that for each i, ∑
n
j=1 l( fi, f j) = 1. To pre-

serve the impact value of call frequencies on edges when compared globally in the

graph, we normalize l( fi, f j) over the sum of weights on all edges. Since outgoing

edges from function fi should sum to 1, an extra node called f akeNode is added

to the graph. Note that the extra f akeNode is different from the mock main node

added earlier. f akeNode contains an incoming edge from fi, where:

l( fi, f akeNode) = 1−
n

∑
j=1

l( fi, f j) (3.2)

Functions with no calls are also linked to the f akeNode through an outgoing

edge with weight 1.

A recursive function is represented by a self-loop to the recursive node in the

function call graph. The original PageRank does not allow for self-loop nodes

(i.e., a web page with a link to itself). Self-loop to a node infinitely increases its

rank without changing the relative rank of the other nodes. Therefore, such nodes

are disregarded in the original PageRank formula. However, recursive functions

are inherently important as they are error-prone and difficult to debug, and they

can easily propagate a fault into higher level functions. To incorporate recursive

functions in our analysis, we break the self-loop to a recursive function Rec fi by

replacing the function with nodes fi and fci in the function call graph. We further

add an edge l( fi, fci), where l is the call frequency associated with the recursive

call. All functions that are called by Rec fi will get an incoming edge from the

added node fci. This way, all the functions called by Rec fi are now linked to fci

(and indirectly linked to fi). After the FunctionRank metric is computed over all
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Figure 3.3: Call graph of the running example.

functions, we assign the new FunctionRank value of the recursive node as follows:

FR(Rec fi) = FR( fi)+FR( fci), where FR(Rec fi) is the new FunctionRank value

assigned to the recursive function Rec fi.

We initially assign equal FunctionRank values to all nodes in 3.1.The calcu-

lation of FunctionRank is performed recursively, until the values converge. Thus,

the FunctionRank of a function i depends on:

1. the number of functions that call i;

2. the FunctionRank values of the functions that call i (incoming edges);

3. the number of dynamic calls to i.

Hence, a function that is called by several functions with high FunctionRanks

and high call frequencies receives a high FunctionRank itself.

At the end of the process, the extra function f akeNode is removed and the

FunctionRank value of all other functions is multiplied by 1
1−FR f akeNode

, where

FR f akeNode is the calculated FunctionRank of f akeNode.

Overall, our approach assigns each function a FunctionRank value between 0

and 1. These values are used to rank and select functions for variable mutation

(lines 6-7 in Algorithm 1). The higher the FunctionRank value of a given function,

the more likely it is to be selected for mutation.
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Figure 3.3 depicts the function call graph obtained from our running example

(Figure 5.1). The labels on the edges of Figure 3.3a show the number of calls

to each function in the graph. Figure 3.3b shows the modified graph with the

extra node f akeNode added to compute the normalized function call frequency

values. In our example, assuming that the number of div elements is 20 (line

3 in Figure 5.1), setup will be called 20 times and endGame will be called

once (lines 4 and 6). Now, assume that the number of DOM elements with the

class name specified as the input to function setup varies each time setup is

called (line 10) such that two elements have a length of zero and the total length

of the rest is 20. Then, function endGame is called twice (in line 12) when the

length of such elements is zero, and getDim is called 20 times in total (line 14).

Therefore, the call frequencies of functions setup and endGame become 0.3 and

0.03 respectively when they are called by startPlay in lines 4 and 6. Similarly,

the call frequencies of getDim and endGame become 0.61 and 0.06, respectively,

when called by setup.

Note that if the weight on an outgoing edge of a given function is simply

normalized over the sum of the weights on all the outgoing edges of that func-

tion, then the call frequencies for both setup and getDim become 0.91 when

they are called by startPlay and setup, respectively. However, as shown in

Figure 3.3a the number of times that function getDim is called is twice that of

setup. To obtain a realistic normalization, we have introduced the f akeNode, as

shown in Figure 3.3b.

Table 3.1 shows the computed FunctionRank values, using equation 3.1, for

each function of the running example. The values are presented as percentages.

getDim achieves the highest FunctionRank because of the relatively high values

of both the incoming edge weight (where getDim is called by setup in line 14

in Figure 5.1), and the FunctionRank of its caller node, setup. These ranking

values are used as probability values for selecting a function for mutation.

To illustrate the advantage of FunctionRank, we show the same calculation

using the traditional PageRank metric, i.e., without considering dynamic edge

weights. As shown in Table 3.1, endGame obtains the highest ranking using

PageRank. However, this function has not been used extensively during the ap-

plication execution, and hence has only limited impact on the behaviour of the
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Table 3.1: Computed FunctionRank and PageRank for the running example.

Function Name FunctionRank (%) PageRank (%)
getDim 34.5 27.0
setup 25.0 23.0
endGame 21.3 34.6
startPlay 19.2 15.4

application. In contrast, when FunctionRank is used, endGame falls to the third

place, and is hence less likely to be chosen for mutation.

3.4.2 Ranking Functions for Branch Mutation

To rank functions for branch mutation, in addition to the FunctionRank, we take

the cyclomatic complexity of the functions into account (lines 16–17 in Algo-

rithm 1).

The cyclomatic complexity measures the number of linearly independent paths

through a program’s source code [73]. By using this metric, we aim to concentrate

the branch mutation testing effort on the functions that are error-prone and harder

to test.

We measure the cyclomatic complexity frequency of each function through

static analysis of the code. Let f cc( fi) be the cyclomatic complexity frequency

measured for function fi, then f cc( fi) =
cc( fi)

∑
n
j=1 cc( f j)

, where cc( fi) is the cyclomatic

complexity of function fi, given that the total number of functions in the application

is equal to n.

We compute the probability of choosing a function fi for branch mutation using

the previously measured FunctionRank (FR( fi)) as well as the cyclomatic com-

plexity frequency ( f cc( fi)). Let p( fi) be the probability of selecting a function fi

for branch mutation, then:

p( fi) =
f cc( fi)×FR( fi)

∑
n
j=1 f cc( f j)×FR( f j)

, (3.3)

where f cc( fi) is the cyclomatic complexity frequency measured for function fi,

and n is the total number of functions.

Table 3.2 shows the cyclomatic complexity, the frequency, and the function
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Table 3.2: Ranking functions for branch mutation (running example).

Function Name cc fcc Selection Probability (p)
getDim 4 0.4 0.51
setup 3 0.3 0.27
startPlay 2 0.2 0.14
endGame 1 0.1 0.08

selection probability measured for each function in our example (Figure 5.1). The

probabilities are obtained using equation 3.3. As shown in the table, getDim

achieves the highest selection probability as both its FunctionRank and cyclomatic

complexity are high.

3.5 Ranking Variables
Applying mutations on arbitrarily chosen variables may have no effect on the se-

mantics of the program and hence lead to equivalent mutants. Thus, in addition to

functions, we measure the importance of variables in terms of their impact on the

behaviour of the function. We target local and global variables, as well as function

parameters for mutation.

In order to avoid generating equivalent mutants, within each selected function,

we need to mutate variables that are more likely to change the expected behaviour

of the application (lines 7-12 in Algorithm 1). We divide such variables into two

categories: (1) those that are part of the program’s dynamic invariants (invarsmutF

in line 9); and (2) those with high usage frequency throughout the application’s

execution (varUsgFrqmutF(vi)> α in line 9).

3.5.1 Variables Involved in Dynamic Invariants

A recent study [104] showed that if a mutation violates dynamic invariants, it is

very likely to be non-equivalent. This suggests that mutating variables that are in-

volved in forming invariants affects the expected behaviour of the application with

a high probability. Inspired by this finding, we infer invariants from the execution

traces, as depicted in Figure 3.2. We log variable value changes during run-time,

and analyze the collected traces to infer stable dynamic invariants. The details of
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our JavaScript invariant generation technique can be found in [78]. From each ob-

tained invariant, we identify all the variables that are involved in the invariant and

mark them as potential variables for mutation.

In our running example (Figure 5.1), an inferred invariant in getDim yields

information about the inequality relation between function parameters width and

height, e.g., (width > height). Based on this invariant, we choose width and

height as potential variables for mutation.

3.5.2 Variables with High Usage Frequency

In addition to dynamic invariants, we consider the impact of variables on the ex-

pected behaviour based on their dynamic usage. We define the usage frequency

of a variable as the number of times that the variable’s value has been read during

the execution in the scope of a given function. Let u(vi) be the usage frequency of

variable vi, then u(vi) =
r(vi)

∑
n
j=1 r(v j)

, where r(vi) is the number of times that the value

of variable vi is read, given that the total number of variables in the scope of the

function is n.

We identify the usage of a variable by identifying and measuring the frequency

of a given variable being read in the following scenarios: (1) variable initialization,

(2) mathematical computation, (3) condition checking in conditional statements,

(4) function arguments, and (5) returned value of the function. We assign the same

level of importance to all the five scenarios.

From the degree of a variable’s usage frequency in the scope of a given func-

tion, we infer to what extent the behaviour of the function relies on that variable.

Leveraging the collected execution traces, we compute the usage frequencies in the

scope of a function. We choose variables with usage frequencies above a threshold

α as potential candidates for the mutation process. We automatically compute (line

8 in Algorithm 1) this threshold for each function as:

α =
1

ReadVariables f (i)
, (3.4)

where ReadVariables f (i) is the total number of variables that at some point during

the execution their value have been read within function f (i).

Going back to the getDim function in our running example of Figure 5.1, the
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values of function parameters width and height, as well as the local variables w

and h are read just once in lines 19 and 20, when they are involved in a number of

simple computations. The result of the calculation is assigned to the local variable

v, which then is checked as a condition for the if-else statement. v is returned

from the function in either line 22 or 24, depending on the outcome of the if

statement. In this example, variable v has the highest usage frequency since it has

been used as a condition in a conditional statement as well as the returned value of

the getDim function.

Overall, we gather a list of potential variables for mutation, which are obtained

based on the inferred dynamic invariants and their usage frequency (line 9 in Al-

gorithm 1). Therefore, in our running example, in addition to function parameters

width and height, which are part of the invariants inferred from getDim, the

local variable v is also among the potential variables for the mutation process be-

cause of its high usage frequency. Note that the local variables w and h are not in

the list of candidates for variable mutation as they have a low usage frequency and

are not part of any dynamic invariants directly.

3.6 Mutation Operators
We employ generic mutation operators as well as JavaScript specific mutation op-

erators for performing mutations.

3.6.1 Generic Mutation Operators

Our mutant generation technique is based on a single mutation at a time. Thus,

we need to choose an appropriate candidate among all the potential candidates

obtained from the previous ranking steps of our approach. Our overall guided

mutation process includes:

• Selecting a function as described in Section 3.4.1 and mutating a variable

randomly selected from the list of potential candidates obtained from the

variable ranking phase (Section 3.5),

• Selecting a function as described in Section 3.4.2 and mutating a branch

statement selected randomly (lines 16-19 in Algorithm 1).
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Table 3.3: Generic mutation operators for variables and function parameters.

Type Mutation Operator

Local/Global

Change the value assigned to the variable.

Variable

Remove variable declaration/initialization.
Change the variable type by converting x =
number to x = string.
Replace arithmetic operators (+, −, ++, −−, + =,
− =, /, ∗) used for calculating and assigning a value
to the selected variable.

Function
Parameter

Swap parameters/arguments.

Remove parameters/arguments.

Table 3.4: Generic mutation operators for branch statements.

Type Mutation Operator
Change literal values in the condition (including lower/up-
per bound).

Loop
Statement

Replace relational operators (<, >, <=, >=, ==, ! =,
===, ! ==).
Replace logical operators (‖, &&).
Swap consecutive nested for/while.
Replace arithmetic operators (+, −, ++, −−, +=, −=,
/, ∗).
Replace x++/x-- with ++x/--x (and vice versa).
Remove break/continue.
Change literal values in the condition.

Conditional
Statement

Replace relational operators (<, >, <=, >=, ==, ! =,
===, ! ==).
Replace logical operators (‖, &&).
Remove else if or else from the if statement.
Change the condition value of switch-case statement.
Remove break from switch-case.
Replace 0/1 with false/true (and vice versa) in the
condition.

Return
Statement

Remove return statement.

Replace true with false (and vice versa) in return
(true/false).

Table 3.3 shows the generic mutation operators we use for mutating global

variables, local variables as well as function parameters/arguments. Table 3.4

presents the operators we use for changing for loops, while loops, if and

switch-case statements, as well as return statements.
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3.6.2 JavaScript-Specific Mutation Operators

We propose the following JavaScript-specific mutation operators, based on an in-

vestigation of various online resources (see below) to understand common mistakes

in JavaScript programs from the programmer’s point of view. In accordance to the

definition of mutation operator concept, which is representing typical program-

ming errors, the motivation behind the presented selection of operators is to mimic

typical JavaScript related programming errors. To our knowledge, ours is the first

attempt to collect and analyze these resources to formulate JavaScript mutation

operators.

Adding/Removing the var keyword. Using var inside a function declares the

variable in local scope, thus preventing overwriting of global variables ([36, 61,

90]). A common mistake is to forget to add var, or to add a redundant var, both

of which we consider.

Removing the global search flag from replace. A common mistake is assum-

ing that the string replace method affects all possible matches. The replace

method only changes the first occurrence. To replace all occurrences, the global

modifier needs to be set ([15, 100, 111]).

Removing the integer base argument from parseInt. One of the common

errors with parsing integers in JavaScript is to assume that parseInt returns the

integer value to base 10, however the second argument, which is the base, varies

from 2 to 36 ([33, 111]).

Changing setTimeout function. The first parameter of the setTimeout

should be a function. Consider f in setTimeout(f, 3000) to be the func-

tion that should be executed after 3000 milliseconds. The addition of parentheses

“()” to the right of the function name, i.e., setTimeout(f(), 3000) invokes

the function immediately, which is likely not the intention of the programmer. Fur-

thermore, in the setTimeout calls, when the function is invoked without passing

the expected parameters, the parameter is set to undefined when the function is

executed (same changes are applicable to setInterval) ([55, 60, 90]).

Replacing undefined with null. A common mistake is to check whether an

object is null, when it is not defined. To be null, the object has to be defined

first ([36, 100, 111]). Otherwise, an error will result.
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Table 3.5: DOM, jQuery, and XmlHttpRequest (XHR) operators.

Type Mutation Operator

DOM

Change the order of arguments in
insertBefore/replaceChild methods.
Change the name of the id/tag used in getElementById
and getElementByTagName methods.
Change the attribute name in setAttribute,
getAttribute, and removeAttribute methods.
Swap innerHTML and innerText properties.

JQUERY
Swap {#} and {.} sign used in selectors.
Remove {$} sign that returns a JQUERY object.
Change the name of the property/class/element in the follow-
ing methods: addClass, removeClass, removeAttr,
remove, detach, attr, prop, css.

XHR Modify request type (Get/Post), URL, and the value of the
boolean asynch argument in the request.open method.
Change the integer number against which the
request.readyState/request.status is com-
pared with; {0, 1, 2, 3, 4} for readyState and {200, 404}
for status.

Removing this keyword. JavaScript requires the programmer to explicitly state

which object is being accessed, even if it is the current one. Forgetting to use

this, may cause binding complications ([36, 95, 111]), and result in errors.

Replacing (function()!==false) by (function()). If the default value

should be true, use of (function()) should be avoided. If a function in some

cases does not return a value, while the programmer expects a boolean outcome,

then the returned value is undefined. Since undefined is coerced to false,

the condition statement will not be satisfied. A similar issue arises when replacing

(function() === false) with (!function()) ([100]).

In addition, we propose a list of DOM specific mutation operators within the

JavaScript code. Table 3.5 shows a list of DOM operators that match DOM mod-

ification patterns in either pure JavaScript language or the JQUERY library. We

further include two mutation operators that target the XmlHttpRequest type

and state as shown in Table 3.5.

We believe these specific operators are important to be applied on their own.

Hence, they are applied randomly without any ranking scheme, as they are based

on errors commonly made by programmers.
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3.7 Tool Implementation: MUTANDIS

We have implemented our JavaScript mutation testing approach in a tool called

MUTANDIS. MUTANDIS is written in Java and is publicly available for down-

load.8

To infer JavaScript dynamic invariants, we use our recently developed tool,

JSART [78]. For JavaScript code interception, we employ a proxy between the

client and the server. This enables us to automatically analyze the content of HTTP

responses before they reach the browser. To instrument or mutate the intercepted

code, Mozilla Rhino9 is used to parse JavaScript code to an AST, and back to the

source code after the instrumentation or mutation is performed. The execution

trace profiler is able to collect trace data from the instrumented application code by

exercising the web application under test through one of the following methods: (1)

exhaustive automatic crawling using CRAWLJAX [75], (2) the execution of existing

test cases, or (3) a combination of crawling and test suite execution.

3.8 Empirical Evaluation
To quantitatively assess the efficacy of our mutation testing approach, we have

conducted a case study in which we address the following research questions:

RQ1 How efficient is MUTANDIS in generating non-equivalent mutants?

RQ2 How effective are FunctionRank and selective variable mutation in (i) gener-

ating non-equivalent mutants, and (ii) injecting non-trivial behaviour-affecting

faults?

RQ3 How useful is MUTANDIS in assessing the existing test cases of a given

application?

The experimental data produced by MUTANDIS is available for download.8

8 https://github.com/saltlab/mutandis/
9 http://www.mozilla.org/rhino/
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Table 3.6: Characteristics of the experimental objects.

A
pp

ID

N
am

e

JS
L

O
C

#
Fu

nc
tio

ns

C
C

Resource
1 SameGame 206 9 37 http://crawljax.com/same-game
2 Tunnel 334 32 39 http://arcade.christianmontoya.com/tunnel
3 GhostBusters 277 27 52 http://10k.aneventapart.com/2/Uploads/657
4 Symbol 204 20 32 http://10k.aneventapart.com/2/Uploads/652
5 TuduList 2767 229 28 http://tudu.ess.ch/tudu
6 SimpleCart (library) 1702 23 168 http://simplecartjs.org
7 JQUERY (library) 8371 45 37 https://github.com/jquery/jquery
8 WymEditor 3035 188 50 https://github.com/wymeditor

Table 3.7: Bug severity description.

Bug Severity Description Rank
Critical Crashes, data loss 5
Major Major loss of functionality 4
Normal Some loss of functionality, regular issues 3
Minor Minor loss of functionality 2
Trivial Cosmetic issue 1

3.8.1 Experimental Objects

Our study includes eight JavaScript-based objects in total. Four are game appli-

cations, namely, SameGame, Tunnel, GhostBusters, and Symbol. One is a web-

based task management application called TuduList. Two, namely SimpleCart and

JQUERY, are JavaScript libraries. The last application, WymEditor, is a web-based

HTML editor. All the experimental objects are open-source applications. One of

our main inclusion criteria was for the applications to extensively use JavaScript

on the client-side. Although the game applications used in our study are small size

web applications, they all extensively and in many different ways use JavaScript.

Table 4.1 presents each application’s ID, name, and resource, as well as the

static characteristics of the JavaScript code, such as JavaScript lines of code (LOC)

excluding libraries, number of functions, and the cyclomatic complexity (CC)

across all JavaScript functions in each application.
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3.8.2 Experimental Setup

To run the analysis, we provide the URL of each experimental object to MUTAN-

DIS. Note that because SimpleCart and JQUERY are both JavaScript libraries, they

cannot be executed independently. However, since they come with test cases, we

use them to answer RQ3.

We evaluate the efficiency of MUTANDIS in generating non-equivalent mutants

(RQ1) for the first five applications in Table 4.1. We collect execution traces by

instrumenting the custom JavaScript code of each application and executing the

instrumented code through automated dynamic crawling. We navigate each appli-

cation several times with different crawling settings. Crawling settings differ in the

number of visited states, depth of crawling, and clickable element types. We in-

ject a single fault at a time in each of these five applications using MUTANDIS. The

number of injected faults for each application is 40; in total, we inject 200 faults for

the five objects. We automatically generate these mutants from the following mu-

tation categories: (1) variables, (2) branch statements, and (3) JavaScript-specific

operators. We then examine each application’s behaviour to determine whether the

generated mutants are equivalent.

The determination of whether the mutant is equivalent is semi-automated for

observable changes. An observable change is a change in the behaviour of the

application which can be observed as the application is automatically executed

in the browser. Note that in web applications DOM is an observable unit of the

application, which is shown in the browser. We execute the same sequence of

events in the mutated version as it is used in the original version of the application.

The resulting observable DOM of the mutated version in the browser is visually

compared against the original version. If we notice any observable change during

the execution, the mutant is marked as non-equivalent. This way we can eliminate

the burden of manual analysis of the applications’ source code for every mutants.

For non-observable changes, we manually inspect the application’s source code to

determine whether the mutant is equivalent.

To make sure that changes in the applications’ behaviour, from which the non-

equivalency is determined, are not cosmetic changes we use the bug severity ranks

used by Bugzilla, a popular bug tracking system. The description and the rank
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associated with each type of bug severity is shown in Table 3.7. We choose non-

equivalent mutants from our previously generated mutants (for RQ1). We then

analyze the output of the mutated version of the application and assign a bug score

according to the ranks in Table 3.7.

To address RQ2, we measure the effectiveness of MUTANDIS in compari-

son with random-based mutation generation. Moreover, to understand the impact

of applying FunctionRank and rank-based variable mutation in generating non-

equivalent mutants as well as injecting behaviour-affecting faults we compare:

1. The proposed FunctionRank metric with PageRank;

2. Our selective variable mutation with random variable mutation;

Similar to RQ1, we use the ranks provided by Bugzilla to measure the criticality of

the injected faults on the non-equivalent mutants.

Unfortunately, no test suites are available for the first five applications. Thus,

to address RQ3, we run our tool on the SimpleCart, JQUERY, and WymEditor that

come with Qunit10 test cases. We gather the required execution traces of the Sim-

pleCart library by running its test cases, as this library has not been deployed on a

publicly available application. However, to collect dynamic traces of the JQUERY

library, we use one of our experimental objects (SameGame), which uses JQUERY

as one of its JavaScript libraries. Unlike the earlier case, we include the JQUERY

library in the instrumentation step. We then analyze how the application uses dif-

ferent functionalities of the JQUERY library using our approach. The execution

traces of the WymEditor are collected by crawling the application. We generate

120 mutants for each of the three experimental objects. Mutated statements, which

are not executed by the test suite are excluded. After injecting a fault using MU-

TANDIS, we run the test cases on the mutated version of each application. We de-

termine the usefulness of our approach based on (1) the number of non-equivalent

generated mutants, and (2) the number of non-equivalent surviving mutants. A

non-equivalent surviving mutant is one that is neither killed nor equivalent, and is

an indication of the incompleteness of the test cases. The presence of such mutants

can help testers to improve the quality of their test suite. For mature test suites,

we expect the number of non-equivalent surviving mutants to be low [62]. We fur-

ther compare MUTANDIS against random mutation testing to evaluate the effect of
10 http://docs.jquery.com/QUnit
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Table 3.8: Mutants generated by MUTANDIS.
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SameGame 40 2 38 5.0 3.9 78
Tunnel 40 4 36 10.0 3.8 76
GhostBusters 40 3 37 7.5 3.2 64
Symbol 40 3 37 7.5 3.9 78
TuduList 40 2 38 5.0 3.8 76
Avg. 40 2.8 37.2 7.0 3.7 74.4

our approach on the stubbornness of the generated mutants. Stubborn mutants are

non-equivalent mutants that remain undetected by a high quality test suite [115].

3.8.3 Results

Generated Non-Equivalent Mutants (RQ1)

Table 3.8 presents our results for the number of non-equivalent mutants and the

severity of the injected faults using MUTANDIS. For each web application, the

table shows the number of mutants, number of equivalent mutants, the number of

non-equivalent mutants, the percentage of equivalent mutants, and the average bug

severity as well as the percentage of the severity in terms of the maximum severity

level.

As shown in the table, the number of equivalent mutants varies between 2–4,

which corresponds to less than 10% of the total number of mutants.

On average, the percentage of equivalent mutants generated by MUTANDIS is

7%, which points to its efficiency in generating non-equivalent mutants.

We observe that more than 70% of these equivalent mutants generated by MU-

TANDIS originate from the branch mutation category. The reason is that in our cur-

rent approach, branch expressions are essentially ranked according to the variables

used in their expressions without considering whether mutating the expression
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changes the actual boolean outcome of the whole expression (e.g.; if(trueVar

|| var){...}where the value of trueVar is always true, and thus mutating

var to !var does not affect the boolean outcome of the expression). We further

notice cases in our experimental objects where the programmer writes essentially

unused hard-coded branch expressions. For instance, in Tunnel, we observed a

couple of return true/false statements at exit point of the functions that

have high FunctionRank and cyclomatic complexity value. However, the returned

value is never used by the caller function and hence, mutating the return boolean

value as part of branch mutation generates an equivalent mutant. This is the main

reason that we observe 10% of equivalent mutants (the highest in Table 3.8) for the

Tunnel application. Moreover, we notice that certain types of mutation operators

affect the number of equivalent mutants. For example for a number of mutations we

observe that replacing >= (<=) sign with > (<) keeps the program’s behaviour

unchanged since either the lower/upper bound is never reached or the programmer

specify extra bounds checking before returning the final value.

Fault Severity of the Generated Mutants. The fault severity of the injected faults

is also presented in Table 3.8. We computed the percentage of the bug severity as

the ratio of the average severity rank to the maximum severity rank (which is 5).

As shown in the table, the average bug severity rank across all applications is 3.72

(bug severity percentage is 74.4% on average). We observed only a few faults

with trivial severity (e.g; cosmetic changes). We also noticed a few critical faults

(3.8% on average), which caused the web application to terminate prematurely or

unexpectedly. It is worth noting that full crashes are not that common for web

applications, since web browsers typically do not stop executing the entire web

application when an error occurs. The other executable parts of the application

continue to run in the browser in response to user events [85]. Therefore, it is very

rare for web applications to have type 5 errors, and hence the maximum severity

rank is often 4.

More than 70% of the injected faults causing normal to major loss of func-

tionality are in the top 20% ranked functions, showing the importance of

FunctionRank in the fault seeding process.

Moreover, we noticed that the careful choice of a variable for mutation is also

as important as the function selection. For example, in the SameGame applica-
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Figure 3.4: Equivalent Mutants (%) generated by MUTANDIS, random, PageRank, and random variable
selection.

tion, the updateBoard function is responsible for redrawing the game board

each time a cell is clicked. Although updateBoard is ranked as an important

function according to its FunctionRank, there are two variables within this func-

tion that have high usage frequency compared to other variables. While mutating

either of these variables causes major loss of functionality, selecting the remaining

ones for mutation either has no effect or only marginal effect on the application’s

behaviour. Furthermore, we observed that the impact of mutating variables that

are part of the invariants as well as the variables with high usage frequency can

severely affect the application’s behaviour. This indicates that both invariants and

usage frequency play a prominent role in generating faults that cause major loss of

functionality, thereby justifying our choice of these two metrics for variable selec-

tion (Section 3.5).

Effectiveness of FunctionRank and selective variable mutation (RQ2)

The results obtained from MUTANDIS, random mutation, PageRank, and random

variable mutation in terms of the percentage of equivalent mutants and bug severity

rank are shown in Figure 3.4 and Figure 3.5, respectively.
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Figure 3.5: Bug Severity Rankd (Avg) achieved by MUTANDIS, random, PageRank, and random variable
selection.

As shown in Figure 3.4, the percentage of equivalent mutants generated by

MUTANDIS is always less than or equal to the ones generated by the other three

approaches. Not surprisingly, random mutation obtains the largest percentage of

equivalent mutants (ranges from 7.5–15%). This indicates that our selective vari-

able mutation plays a more prominent role in reducing the percentage of equivalent

mutants generated by MUTANDIS.

On average, MUTANDIS reduces the number of equivalent mutants by 39% in

comparison with random mutation generation.

On average, FunctionRank and selective variable mutation reduce the num-

ber of equivalent mutants by 12% and 26%, respectively when compared with

PageRank and random variable mutation.

We observed that for three applications (ID=1, 2, 4) the main reason behind

the reduction in the number of equivalent mutants is the use of selective variable

mutation, as by replacing selective variable mutation with random mutation, the

percentage of equivalent mutants significantly increases (ranges from 33–50% in-

crement) For these applications, we observed that although high rank functions are

selected for mutation, modifying a non-behavioural affecting part of the selected
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function’s code (i.e., a useless branch or variable) results in generating an equiv-

alent mutant. Therefore, the choice of the variable or branch to mutate is very

important.

However, for application with ID 3 (GhostBusters), FunctionRank plays a

prominent role in reducing the number of equivalent mutants. Figure 3.4 shows

that for this application the percentage of equivalent mutants becomes the same as

MUTANDIS, when we use random variable mutation coupled with FunctionRank.

We observed that in the aforementioned application, major variables in the program

have high usage frequency. Moreover, these variables are shared among detected

invariants, thus making the selection of a specific variable for mutation less effec-

tive compared to other applications. For the last application (ID 5), we observed

that FunctionRank and selective variable mutation are both effective in terms of

generating non-equivalent mutants.

Figure 3.5 compares the severity of the injected faults according to the ranks

provided in Table 3.7. The results show that MUTANDIS achieves the highest rank

among the other approaches. Our mutation generation technique increases the criti-

cality of the injected faults by 20% in comparison with random mutation approach.

We observed that by replacing FunctionRank with PageRank, the severity of

the behaviour-affecting faults drops by 13%, which indicates that FunctionRank

outperforms PageRank in terms of its impact on the behaviour of the application

towards more critical failures.

We further noticed that using the proposed selective variable mutation increases

the bug severity by 9% on average. While this indicates the importance of us-

ing the proposed variable mutation technique, it reveals that our rank-based func-

tion selection technique plays a more prominent role in increasing the severity

degree of the injected faults compared to our variable selection strategy. For ex-

ample, in application with ID 2 (Tunnel), function updateTunnel contains the

main logic of the application, and it is among the top-ranked functions. Since

updateTunnel is significantly used throughout the application’ execution as

its high rank indicates, modifications to the variables of the function affects the

expected behaviour of the application, and cause the application to show more se-

vere bugs. Our function ranking technique is able to guide the mutation process

towards selecting updateTunnel function, and thus increasing the overall bug
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Table 3.9: Mutation score computed for SimpleCart, JQUERY, and WymEditor.

Mutandis Random

A
pp

ID

#
JS

Te
st

C
as

es

JS
B

ra
nc

h
C

ov
er

ag
e

(%
)

#
To

ta
lM

ut
an

ts

#
E

qu
iv

.

#
K

ill
ed

N
on

-E
qu

iv
.(

%
)

E
qu

iv
.(

%
)

N
on

-E
qu

iv
.S

ur
vi

vi
ng

(%
)

M
ut

at
io

n
Sc

or
e

(%
)

#
E

qu
iv

.

#
K

ill
ed

N
on

-E
qu

iv
.(

%
)

E
qu

iv
.(

%
)

N
on

-E
qu

iv
.S

ur
vi

vi
ng

(%
)

M
ut

at
io

n
Sc

or
e

(%
)

6 83 41 120 2 80 95 5 32 67 8 78 81 19 30 70
7 644 73 120 3 106 79 21 9 90 6 107 54 46 6 94
8 253 71 120 6 97 74 26 15 85 9 99 57 43 11 89

severity degree. On the other hand, more than 90% of the local and global variables

used in function updateTunnel are involved with crucial reading and writing of

properties. While mutating such important variables generates non-equivalent mu-

tants, it will not significantly improve the criticality of the injected faults among

the non-equivalent mutants compared to random selection of variables. This im-

plies that our variable selection strategy plays a more prominent role in generating

non-equivalent mutants rather than increasing the severity degree of the mutation.

Assessing Existing Test Cases (RQ3)

The results obtained from analyzing the mutants generated by MUTANDIS on the

test cases of SimpleCart (ID 6), JQUERY library (ID 7), and WymEditor (ID 8) are

presented in Table 3.9. The columns under “MUTANDIS”, and “Random” present

the results obtained by using our approach and random mutation generation re-

spectively. The table shows the number of test cases, branch coverage achieved by

the test suite, number of mutants, number of equivalent mutants, number of mu-

tants detected by the test suite (killed mutants), the percentage of non-equivalent

mutants and the equivalent mutants, the percentage of non-equivalent surviving

mutants, and the mutation score. To compute the percentage of equivalent mu-

tants in presence of the test suite, we follow the guidance suggested by [103],

where, Equiv(%) = #Equiv
#TotalMutants−#Killed × 100. Similarly, the percentage of non-

equivalent mutants is: Non-Equiv(%) = #Non-Equiv
#TotalMutants−#Killed ×100 The percentage
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of non-equivalent surviving mutants is: #NonEquivSurvivingMutants
#TotalNonEquivMutants ×100.

Mutation score is used to measure the effectiveness of a test suite in terms of

its ability to detect faults [112]. The mutation score is computed according to the

following formula:
( K

M−E

)
× 100, where K is the number of killed mutants, M is

the number of mutants, and E is the number of equivalent mutants.

Quality of test suites. The test suites of both JQuery and WymEditor are fre-

quently updated in response to issues raised by the users. Both JQUery and WymEd-

itor have around 71% branch coverage. This points to the overall high quality of the

test cases considering how difficult it is to write unit-level test cases for JavaScript

code. Note that despite the low branch coverage of SimpleCart, we gather exe-

cution traces of this application based on the available test suite. Therefore, the

process of mutation generation is performed according to the executed part of the

application from the test suite point of view. We also observed that for the three

applications in Table 3.9, a substantial percentage of uncovered branches are re-

lated to check for different browser settings (i.e., running the application under IE,

FireFox, etc).

Surviving mutants. As shown in the table, less than 30% of the mutants gener-

ated by MUTANDIS are equivalent. SimpleCart achieves a mutation score of 67,

which means there is much room for test case improvement in this application. For

SimpleCart, we noticed that the number of non-equivalent, surviving mutants in

the branch mutation category is more than twice the number in the variable muta-

tion category. This shows that the test suite was not able to adequately examine

several different branches in the SimpleCart library, possibly because it has a high

cyclomatic complexity (Table 4.1). On the other hand, the QUnit test suite of the

JQUERY library achieves a high mutation score of over 90%, which indicates the

high quality of the designed test cases. However, even in this case, 9% of the

non-equivalent mutants are not detected by this test suite.

We further observed that:

More than 75% of the surviving non-equivalent mutants are in the top 30% of

the ranked functions.

This again points to the importance of FunctionRank in test case adequacy

assessment.
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As far as RQ3 is concerned:

MUTANDIS is able to guide testers towards designing test cases for important

portions of the code from the application’s behaviour point of view.

Stubbornness of the generated mutants. Comparing the percentage of equiva-

lent mutants as well as surviving non-equivalent mutants generated by MUTAN-

DIS to those generated by random mutation in Table 3.9, reveals that while our

approach decreases the percentage of equivalent mutants (55% on average), it

does not negatively affect the stubbornness of the mutants. To better show the

effectiveness of MUTANDIS in decreasing the number of equivalent mutants, we

compute odds ratio, which is a useful measure of effect size for categorical data

[70]; the odds of non-equivalent mutants generated by approach M is computed as

oddsNon-Equiv in M = #Non-EquivM−#killedM
#EquivM

.

Regarding our results, odds ratioNon-Equiv =
oddsNon-Equiv in Mutandis
oddsNon-Equiv in Random

= 2.6, which is

the odds of non-equivalent mutants generated by MUTANDIS divided by the odds

of non-equivalent mutants using random mutation generation. This indicates that

the odds of non-equivalent mutants generated by MUTANDIS is 2.6 times higher

than the random mutation strategy. We similarly measure the odds ratiokilled for

the number of killed mutants. The odds ratiokilled of 0.98 indicates that compared

with random mutation generation, our approach does not sacrifice stubbornness of

the mutants. We further discuss the stubbornness of the mutants in Section 5.4.4.

3.9 Discussion

3.9.1 Stubborn Mutants

The aim of our mutation testing approach is to guide testers towards potentially

error-prone parts of the code while easing the burden of handling equivalent mu-

tants by reducing the number of such mutations. However, reducing the number

of equivalent mutants might imply a decrease in the number of generated stubborn

(or hard-to-kill) mutants, which are particularly useful for test adequacy assess-

ment. Our initial results indicate that while the proposed guided approach reduces

the number of equivalent mutants, it does not negatively affect the number of stub-

born mutants generated. This finding is in line with a recent empirical study [115],
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in which no precise correlation was found between the number of equivalent mu-

tants and stubborn mutants. However, we acknowledge that our finding is based on

preliminary results and more research in this direction is needed.

In the following, we discuss different types of stubborn mutants we observed

in our evaluation of MUTANDIS and how they can be utilized by a guided mutation

generation technique to increase the number of hard-to-kill mutants. Based on our

observations, stubbornness of mutants in JavaScript applications stems from (1) the

type and ultimate location of the mutation operator, and (2) specific characteristics

of JavaScript functions. We discuss each in the next two subsections, respectively.

3.9.2 Type and Location of Operators

We notice that the type of the mutation operator as well as the ultimate location

of the mutation affect the stubbornness of generated mutant. As far as the variable

and branch mutations are concerned, the following mutations can result in stubborn

mutants based on our observations:

• Variable mutations that happen in the body of conditional statements with

more than one nested statement, where the conditions are involved with both

variable as well as DOM related expressions. To satisfy such conditions, not

only the variables should hold proper values, but also the proper structure as

well as the properties of the involved DOM elements are required to be in

place. This intertwined interaction limits the input space to only a few and

challenging ones that are capable of satisfying the condition.

• Replacing the prefix unary operators with postfix unary operators, e.g., ++va-

riable to variable++.

• Replacing the logical operators in conditional statements when the statement

contains more than one different logical operator (e.g., if(A && B ||

C){...} to if(A && B && C){...}).

• Swapping true/false in conditional statements when the statement con-

tains more than two conditions (e.g., if(A && B && C){...} to if(A

&& !B && C){...}).
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• Removing a parameter from a function call where the function contains more

than three parameters.

As far as JavaScript specific mutation operators are concerned, we observed

that the following two mutations result in more stubborn mutants compared with

the rest:

• Adding a redundant var keyword to a global defined variable.

• Changing setTimeout calls such that the function is called without pass-

ing all the required parameters.

Our findings with respect to the type of mutation operator indicate that some classes

of the operators tend to generate more stubborn mutants. While in our current ap-

proach we equally treat all classes, giving more priority to the hard-to-kill mutation

operators would enhance the guided technique to potentially produce more stub-

born mutants, which is part of our future work.

3.9.3 Characteristics of JavaScript Functions

A given JavaScript function can exhibit different behaviours at runtime. This is

mainly due to two features of the JavaScript language.

First feature is related to the use of this in a function. The this keyword

refers to the owner of the executed function in JavaScript. Depending on where the

function is called from at runtime, the value of this can be different. It can refer

to (1) a DOM element for which the executed function is currently an event handler

of, (2) the global window object, or (3) the object of which the function is a prop-

erty/method of. Let’s assume function func is defined as follows: var func =

function () {console.log(this);};. If func is set as the event han-

dler of a DOM element elem (e.g.; elem.addEventListener(‘‘click’’,

func, false);), when elem is clicked, this will become the DOM element

elem. However, if function func is directly invoked (e.g.; func();), this be-

comes the window object. Therefore, the value of this can dynamically change

within the same function as the program executes. Considering the highly dynamic

nature of JavaScript applications, it is challenging for the tester to identify all such
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usage scenarios. Therefore, the mutation that occurs in these functions remains

undetected unless the tester (1) correctly identifies all possible scopes from which

the function can be invoked, and (2) associates each invocation with proper test

oracles that are relevant to the value of this.

Second feature is function variadicity, meaning that a JavaScript function can

be invoked with an arbitrary number of arguments compared to the function’s static

signature, which is common in web applications [97]. For example, if a function is

called without passing all the expected parameters, the remaining parameters are

set to undefined, and thus the function exhibits a different behaviour. Note that

in cases where the programmer uses the same implementation of a given function

for the purpose of different functionalities, the function achieves a high rank value

according to our ranking mechanism since the function is executed several times

from different scopes of the application. Testing the expected behaviour of all the

possible functionalities is quite challenging, since invoking a particular functional-

ity is often involved with triggering only a specific sequence of events capable of

taking the application to the proper state. While the code coverage of the function is

the same among different usage scenarios, the mutated statement remains unkilled

unless a proper combination of test input and oracle is used. We believe that if our

guided approach takes into account such particular usages of a function, which are

barely exposed, it can reduce the number of equivalent mutants while increasing

the number of hard-to-kill mutants, which forms part of our future work.

3.9.4 Threats to Validity

An external threat to the validity of our results is the limited number of web appli-

cations we use to evaluate the usefulness of our approach in assessing existing test

cases (RQ4). Unfortunately, few JavaScript applications with up-to-date test suites

are publicly available. Another external threat to validity is that we do not per-

form a quantitative comparison of our technique with other mutation techniques.

However, to the best of our knowledge, there is no mutation testing tool available

for JavaScript, which limits our ability to perform such comparisons. A relatively

low number of generated mutants in our experiments is also a threat to validity.

However, detecting equivalent mutants is a labour intensive task. For example it
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took us more than 4 hours to distinguish the equivalent mutants for JQUERY in our

study. In terms of internal threat to validity, we had to manually inspect the appli-

cation’s code to detect equivalent mutants. This is a time intensive task, which may

be error-prone and biased towards our judgment. However, this threat is shared by

other studies that attempt to detect equivalent mutants. As for the replicability of

our study, MUTANDIS and all the experimental objects used are publicly available,

making our results reproducible.

3.10 Related Work
A large body of research has been conducted to turn mutation testing into a prac-

tical approach. To reduce the computational cost of mutation testing, researchers

have proposed three main approaches to generate a smaller subset of all possible

mutants: (1) mutant clustering [64], which is an approach that chooses a subset of

mutants using clustering algorithms; (2) selective mutation [24, 84, 116], which is

based on a careful selection of more effective mutation operators to generate less

mutants; and (3) higher order mutation (HOM) testing [65], which tries to find rare

but valuable higher order mutants that denote subtle faults [66].

Our guided mutation testing approach is a form of selective mutation. However,

in addition to selecting a small set of effective mutation operators, our approach

focuses on deciding which portions of the original code to select such that (1) the

severity of injected faults impacting the application’s behaviour increases, (2) the

likelihood of generating equivalent mutants diminishes.

The problem of detecting equivalent mutants has been tackled by many re-

searchers (discussed below). The main goal of all equivalent mutant detection tech-

niques is to help the tester identify the equivalent mutants after they are generated.

We, on the other hand, aim at reducing the probability of generating equivalent

mutants in the first place.

According to the taxonomy suggested by Madeyski et al. [70], there are three

main categories of approaches that address the problem of equivalent mutants: (1)

detecting equivalent mutants, (2) avoiding equivalent mutant generation, and (3)

suggesting equivalent mutants. As far as equivalent mutant detection techniques

are concerned, the most effective approach is proposed by Offutt and Pan [88, 89],
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which uses constraint solving and path analysis. The results of their evaluation

showed that the approach is able to detect on average the 45% of the equivalent

mutants. However, these solutions are involved with considerable amount of man-

ual effort and are error-prone. Among equivalent detection methods, program slic-

ing has also been used in equivalent mutants detection [59]. The goal there is to

guide a tester in detecting the locations that are affected by a mutant. Such equiv-

alent mutant detection techniques are orthogonal to our approach. If a mutation

has been statically proven to be equivalent, we do not need to measure its impact

on the application’s expected behaviour and we focus only on those that cannot be

handled using static techniques. Moreover, static techniques are not able to fully

address unpredictable and highly dynamic aspects of programming languages such

as JavaScript.

Among avoiding equivalent mutant generation techniques, Adamopoulos et al.

[18] present a co-evolutionary approach by designing a fitness function to detect

and avoid possible equivalent mutants. Domı́nguez-Jiménez et al. [40] propose

an evolutionary mutation testing technique based on a genetic algorithm to cope

with the high computational cost of mutation testing by reducing the number of

mutants. Their system generates a strong subset of mutants, which is composed

of surviving and difficult to kill mutants. Their technique, however, cannot distin-

guish equivalent mutants from surviving non-equivalent mutants. Langdon et al.

have applied multi-object genetic programming to generate higher order mutants

[68]. An important limitation of these approaches is that the generated mutant

needs to be executed against the test suite to compute its fitness function. In con-

trast, our approach avoids generating equivalent mutants in the first place, thereby

achieving greater efficiency. Bottaci [30] presents a mutation analysis technique

based on the available type information at run-time to avoid generating incompe-

tent mutants. This approach is applicable for dynamically typed programs such

as JavaScript. However, the efficiency of the technique is unclear as they do not

provide any empirical evaluation of their approach. Gligoric et al. [51] conduct the

first study on performing selective mutation to avoid generating equivalent mutants

in concurrent code. The results show that there are important differences between

the concurrent mutation and sequential mutation operators. The authors show that

sequential and concurrent mutation operators are independent, and thus they pro-
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pose sets of operators that can be used for mutation testing of concurrent codes.

While we also make use of a small set of mutation operators, we aim to support

sequential programs.

Among the equivalent mutant suggestion techniques, Schuler et al. [104] sug-

gest possible equivalent mutants by checking invariant violations. They generate

multiple mutated versions and then classify the versions based on the number of

violated invariants. The system recommends testers to focus on those mutations

that violate the most invariants. In a follow-up paper [103], they extend their work

to assess the role of code coverage changes in detecting equivalent mutants. Kin-

tis et al. [67] present a technique called I-EQM to dynamically isolate first order

equivalent mutants. They further extend the coverage impact approach [103] to

classify more killable mutants. In addition to coverage impact, the classification

scheme utilizes second order mutation to assess first order mutants as killable. To

generate mutants, they utilize Javalanche [103]. Our work is again different from

these approaches in the sense that instead of classifying mutants, we avoid gener-

ating equivalent mutants a priori by identifying behaviour-affecting portions of the

code.

Deng et al. [39] implement a version of statement deletion (SDL) mutation

operator for Java within the muJava mutation system. The design of SDL opera-

tor is based on a theory that performing mutation testing using only one mutation

operator can result in generating effective tests. However, the authors cannot con-

clude that SDL-based mutation is as effective as selective mutation, which contains

a sufficient set of mutation operators from all possible operators. Therefore, they

only recommend for future mutation systems to include SDL as a choice, which

we have already taken into account in this work.

Ayari et al. [23] and Fraser et al. [48] apply search based techniques to auto-

matically generate test cases using mutation testing for Java applications. Harman

et al. [57] propose SHOM approach which combines dynamic symbolic execu-

tion and Search based software testing to generate strongly adequate test data to

kill first and higher order mutants for C programs. However, all these approaches

make use of mutation testing for the purpose of test case generation, and thus to

generate mutants they rely on the available mutation testing frameworks.

Zhang et al. [117] present FaMT approach which incorporates a family of tech-
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niques for prioritizing and reducing tests to reduce the time required for mutation

testing. FaMT is designed based on regression test prioritization and reduction.

Our approach is orthogonal to this work as our goal is to optimize the mutant gen-

eration to produce useful mutants, which can later be executed against the test suite.

Our mutation generation approach can be combined with this technique to further

speed up mutation testing.

Bhattacharya et al. [27] propose NodeRank to identify parts of code that are

prone to bugs of high severity. Similar to our work, NodeRank uses the PageRank

algorithm to assign a value to each node in a graph, indicating the relative im-

portance of that node in the whole program according to the program’s static call

graph. The authors empirically show that such important portions of the code re-

quire more maintenance and testing effort as the program evolves. In our approach

we propose a new metric, FunctionRank, which takes advantage of dynamic infor-

mation collected at execution time for measuring the importance of a function in

terms of the program’s behaviour. Weighting the ranking metric with call frequen-

cies as we do makes it more practical in web application testing, as the likelihood

of exercising different parts of the application can be different. Further, to the best

our knowledge, we are the first to apply such a metric to mutation testing.

3.11 Conclusions
In this work, we proposed a guided mutation testing technique that leverages dy-

namic and static characteristics of the system under test to selectively mutate por-

tions of the code that exhibit a high probability of (1) being error-prone, or (2)

affecting the observable behaviour of the system, and thus being non-equivalent.

Thus, our technique is able to minimize the number of generated mutants while

increasing their effect on the semantics of the system. We also proposed a set

of JavaScript-specific mutation operators that mimic developer mistakes in prac-

tice. We implemented our approach in an open source mutation testing tool for

JavaScript, called MUTANDIS. The evaluation of MUTANDIS points to the efficacy

of the approach in generating behaviour-affecting mutants.
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Chapter 4

JSEFT: Automated JavaScript Unit Test
Generation

Summary11

The event-driven and highly dynamic nature of JavaScript, as well as its runtime

interaction with the Document Object Model (DOM) make it challenging to test

JavaScript-based applications. Current web test automation techniques target the

generation of event sequences, but they ignore testing the JavaScript code at the

unit level. Further they either ignore the oracle problem completely or simplify it

through generic soft oracles such as HTML validation and runtime exceptions. We

present a framework to automatically generate test cases for JavaScript applications

at two complementary levels, namely events and individual JavaScript functions.

Our approach employs a combination of function coverage maximization and func-

tion state abstraction algorithms to efficiently generate test cases. In addition, these

test cases are strengthened by automatically generated mutation-based oracles. We

empirically evaluate the implementation of our approach, called JSEFT, to assess

its efficacy. The results, on 13 JavaScript-based applications, show that the gen-

erated test cases achieve a coverage of 68% and that JSEFT can detect injected

JavaScript and DOM faults with a high accuracy (100% precision, 70% recall).

We also find that JSEFT outperforms an existing JavaScript test automation frame-

work both in terms of coverage and detected faults.

11This chapter appeared at the IEEE International Conference on Software Testing, Verification
and Validation (ICST), 2015 [81].
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4.1 Introduction
To test JavaScript applications, developers often write test cases using web testing

frameworks such as SELENIUM (GUI tests) and QUNIT (JavaScript unit tests).

Although such frameworks help to automate test execution, the test cases still need

to be written manually, which is time-consuming.

Researchers have recently developed automated test generation techniques for

JavaScript-based applications [22, 71, 72, 76, 102]. However, current web test

generation techniques suffer from two main shortcomings:

1. Target the generation of event sequences, that can potentially miss the por-

tion of code-level JavaScript faults.

2. Either ignore the oracle problem altogether or simplify it through generic

soft oracles.

To address these two shortcomings, we propose an automated test case generation

technique for JavaScript applications.

Our approach, called JSEFT (JavaScript Event and Function Testing) operates

through a three step process. First, it dynamically explores the event-space of the

application using a function coverage maximization method, to infer a test model.

Then, it generates test cases at two complementary levels, namely, DOM event and

JavaScript functions. Our technique employs a novel function state abstraction

algorithm to minimize the number of function-level states needed for test gener-

ation. Finally, it automatically generates test oracles, through a mutation-based

algorithm.

This work makes the following main contributions:

• An automatic technique to generate test cases for JavaScript functions and

events.

• A combination of function converge maximization and function state ab-

straction algorithms to efficiently generate unit test cases;

• A mutation-based algorithm to effectively generate test oracles, capable of

detecting regression JavaScript and DOM-level faults;

• The implementation of our technique in a tool called JSEFT, which is pub-

licly available [8];
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1 var currentDim=20;
2 function cellClicked() {
3 var divTag = '<div id='divElem' />';
4 if($(this).attr('id') == 'cell0'){
5 $('#cell0').after(divTag);
6 $('div #divElem').click(setup);
7 }
8 else if($(this).attr('id') == 'cell1'){
9 $('#cell1').after(divTag);

10 $('div #divElem').click(function(){setDim(20)});
11 }
12 }

14 function setup() {
15 setDim(10);
16 $('#startCell').click(start);
17 }

19 function setDim(dimension) {
20 var dim=($('#endCell').width() + $('#endCell').height()))/dimension;
21 currentDim += dim;
22 $('#endCell').css('height', dim+'px');
23 return dim;
24 }

26 function start() {
27 if(currentDim > 40)
28 $(this).css('height', currentDim+'px');
29 else $(this).remove();
30 }

32 $document.ready(function() {
33 ...
34 $('#cell0').click(cellClicked);
35 $('#cell1').click(cellClicked);
36 });

Figure 4.1: JavaScript code of the running example.

• An empirical evaluation to assess the efficacy of JSEFT using 13 JavaScript

applications.

The results of our evaluation show that on average (1) the generated test suite

by JSEFT achieves a 68% JavaScript code coverage, (2) compared to Artemis, a

feedback-directed JavaScript testing framework [22], JSEFT achieves 53% better

coverage, and (3) the test oracles generated by JSEFT are able to detect injected

faults with 100% precision and 70% recall.
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4.2 Challenges and Motivation
In this section, we illustrate some of the challenges associated with test generation

for JavaScript applications.

Figure 4.1 presents a snippet of a JavaScript game application that we use as

a running example throughout the thesis. This simple example uses the popular

jQuery library [6] and contains four main JavaScript functions:

1. cellClicked is bound to the event-handlers of DOM elements with IDs

cell0 and cell1 (Lines 34–35). These two DOM elements become avail-

able when the DOM is fully loaded (Line 32). Depending on the element

clicked, cellClicked inserts a div element with ID divElem (Line 3)

after the clicked element and makes it clickable by attaching either setup

or setDim as its event-handler function (Lines 5–6, 9–10).

2. setup calls setDim (Line 15) to change the value of the global variable

currentDim. It further makes an element with ID startCell clickable

by setting its event- handler to start (Line 16).

3. setDim receives an input variable. It performs some computations to set the

height value of the css property of a DOM element with ID endCell

and the value of currentDim (Lines 20–22). It also returns the computed

dimension.

4. start is called at runtime when the element with ID startCell is clicked

(Line 16), which either updates the width dimension of the element on which

it was called, or removes the element (Lines 27-29).

There are four main challenges in testing JavaScript applications.

The first challenge is that a fault may not immediately propagate into a DOM-

level observable failure. For example, if the ‘+’ sign in Line 21 is mistakenly

replaced by ‘-’, the affected result does not immediately propagate to the observ-

able DOM state after the function exits. While this mistakenly changes the value

of a global variable, currentDim, which is later used in start (Line 27), it

neither affects the returned value of the setDim function nor the css value of
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element endCell. Therefore, a GUI-level event-based testing approach may not

help to detect the fault in this case.

The second challenge is related to fault localization; even if the fault propagates

to a future DOM state and a DOM-level test case detects it, finding the actual

location of the fault is challenging for the tester as the DOM-level test case is

agnostic of the JavaScript code. However, a unit test case that targets individual

functions, e.g., setDim in this running example, helps a tester to spot the fault,

and thus easily resolve it.

The third challenge pertains to the event-driven dynamic nature of JavaScript,

and its extensive interaction with the DOM resulting in many state permutations

and execution paths. In the initial state of the example, clicking on cell0 or

cell1 takes the browser to two different states as a result of the if-else state-

ment in Lines 4 and 8 of the function cellClicked. Even in this simple ex-

ample, expanding either of the resulting states has different consequences due to

different functions that can be potentially triggered. Executing either setup or

setDim in Lines 6 and 10 results in different execution paths, DOM states, and

code coverage. It is this dynamic interaction of the JavaScript code with the DOM

(and indirectly CSS) at runtime that makes it challenging to generate test cases for

JavaScript applications.

The fourth important challenge in unit testing JavaScript functions that have

DOM interactions, such as setDim, is that the DOM tree in the state expected

by the function, has to be present during unit test execution. Otherwise the test

will fail due to a null or undefined exception. This situation arises often in

modern web applications that have many DOM interactions.

4.3 Approach
Our main goal in this work is to generate client-side test cases coupled with effec-

tive test oracles, capable of detecting regression JavaScript and DOM-level faults.

Further, we aim to achieve this goal as efficiently as possible. Hence, we make

two design decisions. First, we assume that there is a finite amount of time avail-

able to generate test cases. Consequently we guide the test generation to maximize

coverage under a given time constraint. The second decision is to minimize the

72



number of test cases and oracles generated to only include those that are essential

in detecting potential faults. Consequently, to examine the correctness of the test

suite generated, the tester would only need to examine a small set of assertions,

which minimizes their effort.

Our approach generates test cases and oracles at two complementary levels:

DOM-level event-based tests consist of DOM-level event sequences and asser-

tions to check the application’s behaviour from an end-user’s perspective.

Function-level unit tests consist of unit tests with assertions that verify the func-

tionality of JavaScript code at the function level.

An overview of the technique is depicted in Figure 4.2. At a high level, our

approach is composed of three main steps:

1. In the first step (Section 4.3.1), we dynamically explore various states of a

given web application, in such a way as to maximize the number of functions

that are covered throughout the program execution. The output of this initial

step is a state-flow graph (SFG) [76], capturing the explored dynamic DOM

states and event-based transitions between them.

2. In the second step (Section 4.3.2), we use the inferred SFG to generate event-

based test cases. We run the generated tests against an instrumented version

of the application. From the execution trace obtained, we extract DOM ele-

ment states as well as JavaScript function states at the entry and exit points,

from which we generate function-level unit tests. To reduce the number of

generated test cases to only those that are constructive, we devise a state

abstraction algorithm that minimizes the number of states by selecting rep-

resentative function states.

3. To create effective test oracles for the two test case levels, we automatically

generate mutated versions of the application (Section 4.5). Assuming that

the original version of the application is fault-free, the test oracles are then

generated at the DOM and JavaScript code levels by comparing the states

traced from the original and the mutated versions.
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Figure 4.2: Overview of our test generation approach.

4.3.1 Maximizing Function Coverage

In this step, our goal is to maximize the number of functions that can be covered,

while exercising the program’s event space. To that end, our approach combines

static and dynamic analysis to decide which state and event(s) should be selected

for expansion to maximize the probability of covering uncovered JavaScript func-

tions. While exploring the web application under test, our function coverage max-

imization algorithm selects a next state for exploration, which has the maximum

value of the sum of the following two metrics:

1. Potential Uncovered Functions. This pertains to the total number of unexe-

cuted functions that can potentially be visited through the execution of DOM events
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in a given DOM state si. When a given function fi is set as the event-handler of

a DOM element d ∈ si, it makes the element a potential clickable element in si.

This can be achieved through various patterns in web applications depending on

which DOM event model level is adopted. To calculate this metric, our algorithm

identifies all JavaScript functions that are directly or indirectly attached to DOM

elements as event handlers, in si through code instrumentation and execution trace

monitoring.

2. Potential Clickable Elements. The second metric, used to select a state for

expansion, pertains to the number of DOM elements that can potentially become

clickable elements. If the event-handlers bound to those clickables are triggered,

new (uncovered) functions will be executed. To obtain this number, we statically

analyze the previously obtained potential uncovered functions within a given state

in search of such elements.

While exploring the application, the next state for expansion is selected by

adding the two metrics and choosing the state with the highest sum. The procedure

repeats the aforementioned steps until the designated time limit, or state space size

is reached.

In the running example of Figure 4.1, in the initial state, clicking on elements

with IDs cell0 and cell1 results in two different states due to an if-else

statement in Lines 4 and 8 of cellClicked. Let’s call the state in which a

DIV element is located after the element with ID cell0 as s0, and the state in

which a DIV element is placed after the element with ID cell1 as s1. If state

s0, with the clickable cell0, is chosen for expansion, function setup is called.

As shown in Line 15, setup calls setDim, and thus, by expanding s0 both of

the aforementioned functions get called by a single click. Moreover, a potential

clickable element is also created in Line 16, with start as the event-handler.

Therefore, expanding s1 results only in the execution of setDim, while expanding

s0 results in the execution of functions setup, setDim, and a potential execution

of start in future states. At the end of this step, we obtain a state-flow graph of

the application that can be used in the next test generation step.
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4.3.2 Generating Test Cases

In the second step, our technique first extracts sequences of events from the inferred

state-flow graph. These sequences of events are used in our test case generation

process. We generate test cases at two complementary levels, as described below.

DOM-level event-based testing. To verify the behaviour of the application at

the user interface level, each event path, taken from the initial state (Index) to

a leaf node in the state-flow graph, is used to generate DOM event-based test

cases. Each extracted path is converted into a JUNIT SELENIUM-based test case,

which executes the sequence of events, starting from the initial DOM state. Go-

ing back to our running example, one possible event sequence to generate is:

$(‘#cell0’).click→$(‘div #divElem’).click→$(‘#startCe-
ll’).click.

To collect the required trace data, we capture all DOM elements and their at-

tributes after each event in the test path is fired. This trace is later used in our DOM

oracle comparison, as explained in Section 4.5.

JavaScript function-level unit testing. To generate unit tests that target JavaScript

functions directly (as opposed to event-triggered function executions), we log the

state of each function at their entry and exit point, during execution. To that end, we

instrument the code to trace various entities. At the entry point of a given JavaScript

function we collect (1) function parameters including passed variables, objects,

functions, and DOM elements, (2) global variables used in the function, and (3)

the current DOM structure just before the function is executed. At the exit point of

the JavaScript function and before every return statement, we log the state of the

(1) return value of the function, (2) global variables that have been accessed in that

function, and (3) DOM elements accessed (read/written) in the function. At each

of the above points, our instrumentation records the name, runtime type, and actual

values. The dynamic type is stored because JavaScript is a dynamically typed

language, meaning that the variable types cannot be determined statically. Note

that complex JavaScript objects can contain circular or multiple references (e.g.,

in JSON format). To handle such cases, we perform a de-serialization process in

which we replace such references by an object in the form of $re f : Path, where
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Path denotes a JSONPath string12 that indicates the target path of the reference.

In addition to function entry and exit points, we log information required for

calling the function from the generated test cases. JavaScript functions that are

accessible in the public scope are mainly defined in:

1. The global scope directly (e.g., function f(){...});

2. Variable assignments in the global scope (e.g., var f = function()-

{...});

3. Constructor functions (e.g, function constructor() {this. me-

mber= function(){...}});

4. Prototypes (e.g., Constructor.prototype.f= function() {.-
..});

Functions in the first and second case are easy to call from test cases. For the third

case, the constructor function is called via the new operator to create an object

type, which can be used to access the object’s properties (e.g., container=new

Constructor(); container.member();). This allows us to access the

inner function, which is a member of the constructor function in the above ex-

ample. For the prototype case, the function can be invoked through container.-

f() from a test case.

Going back to our running example in Figure 4.1, at the entry point of setDim,

we log the value and type of both the input parameter dimension and global

variable currentDim, which is accessed in the function. Similarly, at the exit

point, we log the values and types of the returned variable dim and currentDim.

In addition to the values logged above, we need to capture the DOM state

for functions that interact with the DOM. This is to address the fourth challenge

outlined in Section 5.2. To mitigate this problem, we capture the state of the DOM

just before the function starts its execution, and include that as a test fixture [11] in

the generated unit test case.

In the running example, at the entry point of setDim, we log the innerHTML

of the current DOM as the function contains several calls to the DOM, e.g., retriev-

ing the element with ID endCell in Line 22. We further include in our execution
12 http://goessner.net/articles/JsonPath/
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trace the way DOM elements and their attributes are modified by the JavaScript

function at runtime. The information that we log for accessed DOM elements in-

cludes the ID attribute, the XPath position of the element on the DOM tree, and

all the modified attributes. Collecting this information is essential for oracle gen-

eration in the next step. We use a set to keep the information about DOM modi-

fications, so that we can record the latest changes to a DOM element without any

duplication within the function. For instance, we record ID as well as both width

and height properties of the endCell element.

Once our instrumentation is carried out, we run the generated event sequences

obtained from the state-flow graph. This way, we produce an execution trace that

contains:

• Information required for preparing the environment for each function to be

executed in a test case, including its input parameters, used global variables,

and the DOM tree in a state that is expected by the function;

• Necessary entities that need to be assessed after the function is executed,

including the function’s output as well as the touched DOM elements and

their attributes (The actual assessment process is explained in Section 4.5).

Function State Abstraction. As mentioned in Section 5.2, the highly dynamic

nature of JavaScript applications can result in a huge number of function states.

Capturing all these different states can potentially hinder the technique’s scalability

for large applications. In addition, generating too many test cases can negatively

affect test suite comprehension. We apply a function state abstraction method to

minimize the number of function-level states needed for test generation.

Our abstraction method is based on classification of function (entry/exit) states

according to their impact on the function’s behaviour, in terms of covered branches

within the function, the function’s return value type, and characteristics of the ac-

cessed DOM elements.

Branch coverage: Taking different branches in a given function can change its

behaviour. Thus, function entry states that result in a different covered branch

should be taken into account while generating test cases. Going back to our
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Algorithm 2: Function State Abstraction
input : The set of function states sti ∈ STf for a given function f
output: The obtained abstracted states set AbsStates

begin
1 for sti ∈ STf do
2 L = 1; StSetL← /0
3 if BRNCOVLNS[sti] 6= BRNCOVLNS[StSet]Ll=1 then
4 StSetL+1← sti
5 L++

end
6 else
7 StSetl ← sti ∪StSetl

end
8 K = L+1; StSetK ← /0
9 if DOMPROPS[sti] 6= DOMPROPS[StSet]Kk=L+1 || RetType[sti] 6= RETTYPE[StSet]Kk=L+1

then
10 StSetK+1← sti
11 K ++

end
12 else
13 StSetk ← stk ∪StSetk

end
end

14 while StSetK+L 6= /0 do
15 SelectedSt← SELECTMAXST(sti|sti ∩StSetK+L

j=1 )

16 AbsStates.ADD(SelectedSt)
17 StSetK+L← StSetK+L−SelectedSt

end
18 return AbsStates

end

example in Figure 4.1, executing either of the branches in lines 27 and 29

clearly takes the application into a different DOM state. In this example, we

need to include the states of the start function that result in different cov-

ered branches, e.g., two different function states where the value of the global

variable currentDim at the entry point falls into different boundaries.

Return value type: A variable’s type can change in JavaScript at runtime. This

can result in changes in the expected outcome of the function. Going back to

our example, if dim is mistakenly assigned a string value before adding it to

currentDim (Line 21) in function setDim, the returned value of the function

becomes the string concatenation of the two values rather than the expected

numerical addition.

79



Accessed DOM properties: DOM elements and their properties accessed in a

function can be seen as entry states. Changes in such DOM entry states can af-

fect the behaviour of the function. For example, in line 29 this keyword refers

to the clicked DOM element of which function start is an event-handler. As-

suming that currentDim≤ 40, depending on which DOM element is clicked,

by removing the element in line 29 the resulting state of the function start

differs. Therefore, we take into consideration the DOM elements accessed by

the function as well as the type of accessed DOM properties.

Algorithm 2 shows our function state abstraction algorithm. The algorithm first

collects covered branches of individual functions per entry state (BRNCOVLNS[sti]

in Line 3). Each function’s states exhibiting same covered branches are categorized

under the same set of states (Lines 4 and 7). StSetl corresponds to the set of function

states, which are classified according to their covered branches, where l = 1, ...,L

and L is the number of current classified sets in covered branch category. Similarly,

function states with the same accessed DOM characteristics as well as return value

type, are put into the same set of states (Lines 10 and 13). StSetk corresponds

to the set of function states, which are classified according to their DOM/return

value type, where k = 1, ...,K and K is the number of current classified sets in that

category. After classifying each function’s states into several sets, we cover each

set by selecting one of its common states. The state selection step is a set cover

problem [35], i.e., given a universe U and a family S of subsets of U , a cover is a

subfamily C ⊆ S of sets whose union is U . Sets to be covered in our algorithm are

StSetK+L, where sti ∈ StSetK+L. We use a common greedy algorithm for obtaining

a minimum number of states that can cover all the possible sets (Lines 15-17).

Finally, the abstracted list of states is returned in Line 18.

4.3.3 Generating Test Oracles

In the third step, our approach automatically generates test oracles for the two

levels of test cases generated in the previous step, as depicted in the third step of

Figure 4.2. Instead of randomly generating assertions, our oracle generation uses a

mutation-based process.

Mutation testing is typically used to evaluate the quality of a test suite [38], or
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to generate test cases that kill mutants [48]. In our approach, we adopt mutation

testing to (1) reduce the number of assertions automatically generated, (2) target

critical and error-prone portions of the application. Hence, the tester would only

need to examine a small set of effective assertions to verify the correctness of the

generated oracles. Algorithm 3 shows our algorithm for generating test oracles. At

a high level, the technique iteratively executes the following steps:

1. A mutant is created by injecting a single fault into the original version of

the web application (Line 9 and 19 in Algorithm 3 for DOM mutation and

code-level mutation, respectively),

2. Related entry/exit program states at the DOM and JavaScript function levels

of the mutant and the original version are captured. OnEvDomSt in Line 4 is

the original DOM state on which the event Ev is triggered, A f terEvDomSt

in line 5 is the observed DOM state after the event is triggered, MutDom

in line 9 is the mutated DOM, and ChangedSt in line 10 is the correspond-

ing affected state for DOM mutations. FcExit in Line 22 is the exit state

of the function in the original application and MutFcExit in line 23 is the

corresponding exit state for that function after the application is mutated for

function-level mutations.

3. Relevant observed state differences at each level are detected and abstracted

into test oracles (DIFF in Line 11 and 24 for DOM and function-level oracles,

respectively),

4. The generated assertions (Lines 15 and 28) are injected into the correspond-

ing test cases.

DOM-level event-based test oracles. After an event is triggered in the generated

SELENIUM test case, the resulting DOM state needs to be compared against the

expected structure. One naive approach would be to compare the DOM tree in

its entirety, after the event execution. Not only is this approach inefficient, it re-

sults in brittle test-cases, i.e., the smallest update on the user interface can break

the test case. We propose an alternative approach that utilizes DOM mutation test-

ing to detect and selectively compare only those DOM elements and attributes that
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Algorithm 3: Oracle Generation
input : A Web application (App), list of event sequences obtained from SFG (EvSeq), maximum

number of mutations (n)
output: Assertions for function-level (FcAsserts) and DOM event-level tests (DomAsserts)

1 App← INSTRUMENT(App)
begin

2 while GenMuts < n do
3 foreach EvSeq ∈ SFG do
4 OnEvDomSt← Trace.GETONEVDOMST(Ev ∈ EvSeq)
5 A f terEvDomSt← Trace.GETAFTEREVDOMST(Ev ∈ EvSeq)
6 AccdDomProps← GETACCDDOMNDS(OnEvDomSt)
7 EquivalentDomMut← true
8 while EquivalentDomMut do
9 MutDom←MUTATEDOM(AccdDomProps,OnEvDomSt)

10 ChangedSt← EvSeq.EXECEVENT(MutDom)
11 Di f fChangedSt,A f terEvDomSt ← DIFF(ChangedSt,A f terEvDomSt)
12 if Di f fChangedSt,A f terEvDomSt 6= /0 then
13 EquivalentDomMut← f alse
14 DomAsserti = Di f fChangedSt,A f terEvDomSt
15 DomAssertsEv,A f terEvDomSt =

⋂
DomAsserti

end
end

16 AbsFcSts← Trace.GETABSFCSTS()
17 EquivalentCodeMut← true
18 while EquivalentCodeMut do
19 MutApp←MUTATEJSCODE(App)
20 MutFcSts← EvSeq.EXECEVENT(MutApp)
21 foreach FcEntry ∈ AbsFcSts.GETFCENTRIES do
22 FcExit← AbsFcSts.GETFCEXIT(FcEntry)
23 MutFcExit←MutFcSts.GETMUTFCEXIT(FcEntry)
24 Di f fFcExit,MutFcExit ← DIFF(FcExit,MutFcExit)
25 if Di f fFcExit,MutFcExit 6= /0 then
26 EquivalentCodeMut← f alse
27 FcAsserti =

⋂
Di f fFcExit,MutFcExit

28 FcAssertsFcEntry =
⋃

FcAsserti
end

end
end

end
end

29 return {FcAsserts,DOMAsserts}
end

are affected by an injected fault at the DOM-level of the application. Our DOM

mutations target only the elements that have been accessed (read/written) during

execution, and thus have a larger impact on the application’s behaviour. To se-

lect proper DOM elements for mutation, we instrument JavaScript functions that

interact with the DOM, i.e., code that either accesses or modifies DOM elements.

We execute the instrumented application by running the generated SELENIUM
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test cases and record each accessed DOM element, its attributes, the triggered event

on the DOM state, and the DOM state after the event is triggered (GETONEVDOM-

ST in line 4, GETAFTEREVDOMST in line 5, and GETACCDDOMNDS in line 6

to retrieve the original DOM state, DOM state after event Ev is triggered, and the

accessed DOM properties as event Ev is triggered, respectively, in Algorithm 3).

To perform the actual mutation, as the application is re-executed using the same

sequence of events, we mutate the recorded DOM elements, one at a time, be-

fore the corresponding event is fired. MUTATEDOM in line 9 mutates the DOM

elements, and EvSeq.EXECEVENT in line 10 executes the event sequence on the

mutated DOM. The mutation operators include (1) deleting a DOM element, and

(2) changing the attribute, accessed during the original execution. As we mutate

the DOM, we collect the current state of DOM elements and attributes.

Figure 4.3 shows part of a DOM-level test case generated for the running ex-

ample. Going back to our running example, as a result of clicking on $(‘div

#divElem’) in our previously obtained event sequence ($(‘#cell0’).cli-

ck→$(‘div #divElem’).click→$(‘#startCell’)), the height a-

nd width properties of DOM element with ID endCell, and the DOM element

with ID startCell are accessed. One possible DOM mutation is altering the

width value of the endCell element before click on $(‘div #divElem’)

happens. We log the consequences of this modification after the click event on

$(‘div #divElem’) as well as the remaining events. This mutation affects

the height property of DOM element with ID endCell in the resulting DOM

state from clicking on $(‘div #divElem’). Line 6 in Figure 4.3 shows the

corresponding assertion. Furthermore, Assuming that the DOM mutation makes

currentDim≤ 40 in line 27, after click on element #startCell happens, the

element is removed and no longer exists in the resulting DOM state. The generated

assertion is shown in line 10 of Figure 4.3.

Hence, we obtain two sets of execution traces that contain information about

the state of DOM elements for each fired event in the original and mutated applica-

tion. By comparing these two traces (DIFF in line 11 in Algorithm 3), we identify

all changed DOM elements and generate assertions for these elements. Note that

any changes detected by the DIFF operator (line 12 in Algorithm 3) is an indication

that the corresponding DOM mutation is not equivalent (line 13); if no change is
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1 @Test
2 public void testCase1(){
3 WebElement divElem=driver.findElements(By.id("divElem"));
4 divElem.click();
5 int endCellHeight=driver.findElements(By.id("endCell")).getSize().←↩

height;
6 assertEquals(endCellHeight, 30);
7 WebElement startCell=driver.findElements(By.id("startCell"));
8 startCell.click();
9 boolean exists=driver.findElements(By.id("startCell")).size!=0;

10 assertTrue(exists);
11 int startCellHeight=driver.findElements(By.id("startCell")).getSize()←↩

.height;
12 assertEquals(startCellHeight, 50);
13 }

Figure 4.3: Generated SELENIUM test case.

detected, another DOM mutation is generated.

We automatically place the generated assertion immediately after the corre-

sponding line of code that executed the event, in the generated event-based (SELEN-

IUM) test case. DomAssertsEv,A f terEvDomSt in line 15 contains all DOM assertions

for the state A f terEvDOMSt and the triggered event Ev.

Function-level test oracles. To seed code level faults, we use our recently devel-

oped JavaScript mutation testing tool, MUTANDIS [79]. Mutations generated by

MUTANDIS are selected through a function rank metric, which ranks functions in

terms of their relative importance from the application’s behaviour point of view.

The mutation operators are chosen from a list of common operators, such as chang-

ing the value of a variable or modifying a conditional statement. Once a mutant

is produced (MUTATEJSCODE in line 19), it is automatically instrumented. We

collect a new execution trace from the mutated program by executing the same

sequence of events that was used on the original version of the application. This

way, the state of each JavaScript function is extracted at its entry and exit points.

AbsFcSts.GETFCENTRIES in line 21 retrieves the function’s entries from the ab-

stracted function’s states. GETFCEXIT in line 22, and GETMUTFCEXIT in line 23

retrieve the corresponding function’s exit state in the original and mutated applica-

tion. This process is similar to the function state extraction algorithm explained in

Section 4.3.2.

After the execution traces are collected for all the generated mutants, we gen-

erate function-level test oracles by comparing the execution trace of the original
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1 test("Testing setDim",4,function(){
2 var fixture = $("#qunit-fixture");
3 fixture.append("<button id=\"cell0\"> <div id=\"divElem\"/> </button>←↩

<div id=\"endCell\" style=\"height:200px;width:100px;\"/>");
4 var currentDim=20;
5 var result= setDim(10);
6 equal(result, 30);
7 equal(currentDim, 50);
8 ok($(#endCell).length > 0));
9 equal($(#endCell).css('height'), 30); });

Figure 4.4: Generated QUNIT test case.

application with the traces we obtained from the modified versions (DIFF in line

24 in Algorithm 3). If the DIFF operator detects no changes (line 25 of the algo-

rithm), an equivalent mutant is detected, and thus another mutant will be generated.

Our function-level oracle generation targets postcondition assertions. Such

postcondition assertions can be used to examine the expected behaviour of a given

function after it is executed in a unit test case. Our technique generates postcon-

dition assertions for all functions that exhibit a different exit-point state but the

same entry-point state, in the mutated execution traces. FcAsserti in line 27 con-

tains all such post condition assertions. Due to the dynamic and asynchronous

behaviour of JavaScript applications, a function with the same entry state can ex-

hibit different outputs when called multiple times. In this case, we need to com-

bine assertions to make sure that the generated test cases do not mistakenly fail.

FcAssertsFcEntry in line 28 contains the union of function assertions generated for

the same entry but different outputs during multiple executions. Let’s consider a

function f with an entry state entry in the original version of the application (A),

with two different exit states exit1 and exit2. If in the mutated version of the appli-

cation (Am), f exhibits an exit state exitm that is different from both exit1 and exit2,

then we combine the resulting assertions as follows: assert1(exit1,expRes1)‖a-
ssert2(exit2,expRes2), where the expected values expRes1 and expRes2 are ob-

tained from the execution trace of A.

Each assertion for a function contains (1) the function’s returned value, (2) the

used global variables in that function, and/or (3) the accessed DOM element in

that function. Each assertion is coupled with the expected value obtained from the

execution trace of the original version.

The generated assertions that target variables, compare the value as well as the
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runtime type against the expected ones. An oracle that targets a DOM element,

first checks the existence of that DOM element. If the element exists, it checks

the attributes of the element by comparing them against the observed values in

the original execution trace. Assuming that width and height are 100 and 200

accordingly in Figure 4.1, and ‘+’ sign is mutated to ‘-’ in line 20 of the running

example in Figure 4.1, the mutation affects the global variable currentDim,

height property of element with ID endCell, and the returned value of the

function setDim. Figure 4.4 shows a QUNIT test case for setDim function

according to this mutation with the generated assertions.

4.3.4 Tool Implementation

We have implemented our JavaScript test and oracle generation approach in an au-

tomated tool called JSEFT. The tool is written in Java and is publicly available for

download [8]. Our implementation requires no browser modifications, and is hence

portable. For JavaScript code interception, we use a web proxy, which enables us

to automatically instrument JavaScript code before it reaches the browser. The

crawler for JSEFT extends and builds on top of the event-based crawler, CRAWL-

JAX [75], with random input generation enabled for form inputs. As mentioned

before, to mutate JavaScript code, we use our recently developed mutation test-

ing tool, MUTANDIS [79]. The upper-bound for the number of mutations can be

specified by the user. However, the default is 50 for code-level and 20 for DOM-

level mutations. We observed that these default numbers provide a balanced trade-

off between oracle generation time, and the fault finding capability of the tool.

DOM-level test cases are generated in a JUNIT format that uses SELENIUM (Web-

Driver) APIs to fire events on the application’s DOM inside the browser. JavaScript

function-level tests are generated in the QUNIT unit testing framework [11], capa-

ble of testing any generic JavaScript code.

4.4 Empirical Evaluation
To quantitatively assess the efficacy of our test generation approach, we have con-

ducted an empirical study, in which we address the following research questions:

RQ1 How effective is JSEFT in generating test cases with high coverage?
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Table 4.1: Characteristics of the experimental objects.

ID Name LOC URL
1 SameGame 206 crawljax.com/same-game/

2 Tunnel 334
arcade.christianmontoya.com/
tunnel/

3 GhostBusters 282
10k.aneventapart.com/2/Uploads/
657/

4 Peg 509
www.cccontheweb.org/peggame.
htm

5 BunnyHunt 580
http://www.themaninblue.com/
experiment/BunnyHunt/

6 AjaxTabs 592
https://github.com/amazingSurge/
jquery-tabs/

7 NarrowDesign 1,005 http://www.narrowdesign.com
8 JointLondon 1,211 http://www.jointlondon.com
9 FractalViewer 1,245 onecm.com/projects/canopy/

10 SimpleCart 1,900
https://github.com/wojodesign/
simplecart-js/

11 WymEditor 3,035 http://www.wymeditor.org
12 TuduList 1,963 http://tudu.ess.ch/tudu
13 TinyMCE 26,908 http://www.tinymce.com

RQ2 How capable is JSEFT of generating test oracles that detect regression faults?

RQ3 How does JSEFT compare to existing automated JavaScript testing frame-

works?

JSEFT and all our experimental data are available for download [8].

4.4.1 Objects

Our study includes thirteen JavaScript-based applications in total. Table 4.1 presents

each application’s ID, name, lines of custom JavaScript code (LOC, excluding

JavaScript libraries) and resource. The first five are web-based games. AjaxTabs is

a JQUERY plugin for creating tabs. NarrowDesign and JointLondon are websites.

FractalViewer is a fractal tree zoom application. SimpleCart is a shopping cart

library, WymEditor is a web-based HTML editor, TuduList is a web-based task

management application, and TinyMCE is a JavaScript based WYSIWYG editor

control. The applications range from 206 to 27K lines of JavaScript code.

The experimental objects are open-source and cover different application types.

All the applications are interactive in nature and extensively use JavaScript on the

client-side.
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4.4.2 Setup

To address our research questions, we provide the URL of each experimental object

to JSEFT. Test cases are then automatically generated by JSEFT. We give JSEFT

10 minutes in total for each application. 5 minutes of the total time is designated

for the dynamic exploration step.

Test Case Generation (RQ1). To measure client-side code coverage, we use JS-

Cover [7], an open-source tool for measuring JavaScript code coverage. We report

the average results over five runs to account for the non-determinism behaviour that

stems from crawling the application. In addition, we assess each step in our ap-

proach separately as follows: (1) compare the statement coverage achieved by our

function coverage maximization with a method that chooses the next state/event

for the expansion uniformly at random, (2) assess the efficacy of our function state

abstraction method (Algorithm 2), and (3) evaluate the effectiveness of applying

mutation techniques (Algorithm 3) to reduce the number of assertions generated.

Test Oracles (RQ2). To evaluate the fault finding capability of JSEFT (RQ2), we

simulate web application faults by automatically seeding each application with 50

random faults. We automatically pick a random program point and seed a fault at

that point according to our fault category. While mutations used for oracle gen-

eration have been selectively generated (as discussed in Section 4.5), mutations

used for the purpose of evaluation are randomly generated from the entire applica-

tion. Note that if the mutation used for the purpose of evaluation and the mutation

used for generating oracles happen to be the same, we remove the mutant from the

evaluation set. Next we run the whole generated test suite (including both function-

level and event-based test cases) on the faulty version of the application. The fault

is considered detected if an assertion generated by JSEFT fails and our manual

examination confirms that the failed assertion is detecting the seeded fault. We

measure the precision and recall as follows:

Precision is the rate of injected faults found by the tool that are actual faults:
TP

TP+FP

Recall is the rate of actual injected faults that the tool finds: TP
TP+FN
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Table 4.2: Results showing the effects of our function coverage maximization, function state abstrac-
tion, and mutation-based oracle generation algorithms.
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1 99 80 447 33 93 5101 136
2 78 78 828 21 97 23212 81
3 90 66 422 14 96 3520 45
4 75 75 43 19 56 1232 109
5 49 45 534 23 95 150 79
6 78 75 797 30 96 1648 125
7 63 58 1653 54 97 198202 342
8 56 50 32 18 43 78 51
9 82 82 1509 49 97 65403 253
10 71 69 71 23 67 6584 96
11 56 54 1383 131 90 2530 318
12 41 38 1530 62 96 3521 184
13 51 47 1401 152 89 2481 335

AVG 68.4 62.8 - - 85.5 - -

where TP (true positives), FP (false positives), and FN (false negatives) respec-

tively represent the number of faults that are correctly detected, falsely reported,

and missed.

Comparison (RQ3). To assess how JSEFT performs with respect to existing

JavaScript test automation tools, we compare its coverage and fault finding ca-

pability to that of Artemis [22]. Similar to JSEFT, we give Artemis 10 minutes

in total for each application; we observed no improvements in the results obtained

from running Artemis for longer periods of time. We run Artemis from the com-

mand line by setting the iteration option to 100 and enabling the coverage priority

strategy, as described in [22]. Similarly, JSCover is used to measure the coverage

of Artemis (over 5 runs). We use the output provided by Artemis to determine if

the seeded mutations are detected by the tool, by following the same procedure as

described above for JSEFT.
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Figure 4.5: Statement coverage achieved.

4.4.3 Results

Test Case Generation (RQ1). Figure 4.5 depicts the statement coverage achieved

by JSEFT for each application. The results show that the test cases generated by

JSEFT achieve a coverage of 68.4% on average, ranging from 41% (ID 12) up to

99% (ID 1). We investigated why JSEFT has low coverage for some of the ap-

plications. For instance, we observed that in JointLondon (ID 8), the application

contains JavaScript functions that are browser/device specific, i.e., they are exclu-

sively executed in Internet Explorer, or iDevices. As a result, we are unable to

cover them using JSEFT. We also noticed that some applications required more

time to achieve higher statement coverage (e.g., in NarrowDesign ID 7), or they

have a large DOM state space (e.g., BunnyHunt ID 5) and hence JSEFT is only

able to cover a portion of these applications in the limited time it had available.

Table 4.2 columns under “St. Coverage” present JavaScript statement cover-

age achieved by our function coverage maximization algorithm versus a random

strategy. The results show a 9% improvement on average, for our algorithm, across

90



Table 4.3: Fault detection.
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2 50 9 0 41 100 82 73 100 12
3 50 4 0 46 100 92 17 100 8
4 50 15 0 35 100 70 28 100 22
5 50 26 0 24 100 48 25 100 0
6 50 9 0 41 100 82 15 100 16
7 50 17 0 33 100 66 24 100 0
8 50 23 0 27 100 54 26 100 0
9 50 6 0 44 100 88 41 100 24

10 50 16 0 34 100 68 65 100 8
11 50 21 0 29 100 58 27 100 6
12 50 26 0 24 100 48 17 100 22
13 50 23 0 27 100 54 26 100 28

AVG - 15 0 35 100 70 32 100 12.8

all the applications. We observed that our technique achieves the highest improve-

ment when there are many dynamically generated clickable DOM elements in the

application, for example, GhostBusters (ID 3).

The columns under “State Abstract” in Table 4.2 present the number of func-

tion states before and after applying our function state abstraction algorithm. The

results show that the abstraction strategy reduces function states by 85.5% on av-

erage. NarrowDesign (ID 7) and FractalViewer (ID 9) benefit the most by a 97%

state reduction rate. Note that despite this huge reduction, our state abstraction

does not adversely influence the coverage as we include at least one function state

from each of the covered branch sets as described in Section 4.3.2.

The last two columns of Table 4.2, under “Oracles”, present the number of as-

sertions obtained by capturing the whole application’s state, without any mutations,

and with our mutation-based oracle generation algorithm respectively. The results

show that the number of assertions is decreased by 86.5% on average due to our al-

gorithm. We observe the most significant reduction of assertions for NarrowDesign

(ID 7) from more than 198000 to 342.

Fault finding capability (RQ2). Table 4.3 presents the results on the fault finding
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capabilities of JSEFT. The table shows the total number of injected faults, the

number of false negatives, false positives, true positives, and the precision and

recall of JSEFT.

JSEFT achieves 100% precision, meaning that all the detected faults reported

by JSEFT are real faults. In other words, there are no false-positives. This is

because the assertions generated by JSEFT are all stable i.e., they do not change

from one run to another. However, the recall of JSEFT is 70% on average, and

ranges from 48 to 100%. This is due to false negatives, i.e., missed faults by

JSEFT, which occur when the injected fault falls is either in the uncovered region

of the application, or is not properly captured by the generated oracles.

The table also shows that on average 32% percent of the injected faults (ranges

from 15–73%) are detected by function-level test cases, but not by our DOM event-

based test cases. This shows that a considerable number of faults do not propagate

to observable DOM states, and thus cannot be captured by DOM-level event-based

tests. For example in the SimpleCart application (ID 10), if we mutate the mathe-

matical operation that is responsible for computing the total amount of purchased

items, the resulting error is not captured by event-based tests as the fault involves

internal computations only. However, the fault is detected by a function-level test

that directly checks the returned value of the function. This points to the im-

portance of incorporating function-level tests in addition to event-based tests for

JavaScript web applications. We also observed that even when an event-based test

case detects a JavaScript fault, localizing the error to the corresponding JavaScript

code can be quite challenging. However, function-level tests pinpoint the corre-

sponding function when an assertion fails, making it easier to localize the fault.

Comparison (RQ3). Figure 4.5 shows the code coverage achieved by both JSEFT

and Artemis on the experimental objects running for the same amount of time,

i.e., 10 minutes. The test cases generated by JSEFT achieve 68.4% coverage on

average (ranging from 41–99%), while those generated by Artemis achieve only

44.8% coverage on average (ranging from 0–92%). Overall, the test cases gen-

erated by JSEFT achieve 53% more coverage than Artemis, which points to the

effectiveness of JSEFT in generating high coverage test cases. Further, as can be

seen in the bar plot of Figure 4.5, for all the applications, the test cases generated

by JSEFT achieve higher coverage than those generated by Artemis. This increase
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was more than 226% in the case of Bunnyhunt (ID 5). For two of the applications,

NarrowDesign (ID 7) and JointLondon (ID 8), Artemis was not able to complete

the testing task within the allocated time of ten minutes. Thus we let Artemis run

for an additional 10 minutes for these applications (i.e., 20 minutes in total). Even

then, neither application completes under Artemis.

Table 4.3 shows the precision and recall achieved by JSEFT and Artemis. With

respect to fault finding capability, unlike Artemis that detects only generic faults

such as runtime exceptions and W3C HTML validation errors, JSEFT is able to

accurately distinguish faults at the code-level and DOM-level through the test or-

acles it generates. Both tools achieve 100% precision, however, JSEFT achieves

five-fold higher recall (70% on average) compared with Artemis (12.8% recall on

average).

4.4.4 Threats to Validity

An external threat to the validity of our results is the limited number of web ap-

plications that we use to evaluate our approach. We mitigated this threat by us-

ing JavaScript applications that cover various application types. Another threat

is that we validate the failed assertions through manual inspection, which can be

error-prone. To mitigate this threat, we carefully inspected the code in which the

assertion failed to make sure that the injected fault was indeed responsible for the

assertion failure. Regarding the reproducibility of our results, JSEFT and all the

applications used in this study are publicly available, thus making the study repli-

cable.

4.5 Related Work

Web application testing. Marchetto and Tonella [71] propose a search-based al-

gorithm for generating event-based sequences to test Ajax applications. Mesbah

et al. [75] apply dynamic analysis to construct a model of the application’s state

space, from which event-based test cases are automatically generated. In subse-

quent work [76], they propose generic and application-specific invariants as a form

of automated soft oracles for testing AJAX applications. Our earlier work, JSART

[78], automatically infers program invariants from JavaScript execution traces and
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uses them as regression assertions in the code. Sen et al. [105] recently proposed a

record and replay framework called Jalangi. It incorporates selective record-replay

as well as shadow values and shadow execution to enable writing of heavy-weight

dynamic analyses. The framework is able to track generic faults such as null

and undefined values as well as type inconsistencies in JavaScript. Jensen et al.

[63] propose a technique to test the correctness of communication patterns between

client and server in AJAX applications by incorporating server interface descrip-

tions. They construct server interface descriptions through an inference technique

that can learn communication patterns from sample data. Saxena et al. [102] com-

bine random test generation with the use of symbolic execution for systematically

exploring a JavaScript application’s event space as well as its value space, for secu-

rity testing. Our work is different in two main aspects from these: (1) they all target

the generation of event sequences at the DOM level, while we also generate unit

tests at the JavaScript code level, which enables us to cover more and find more

faults, and (2) they do not address the problem of test oracle generation and only

check against soft oracles (e.g., invalid HTML). In contrast, we generate strong

oracles that capture application behaviours, and can detect a much wider range of

faults.

Perhaps the most closely related work to ours is Artemis [22], which supports

automated testing of JavaScript applications. Artemis considers the event-driven

execution model of a JavaScript application for feedback-directed testing. In this

work, we quantitatively compare our approach with that of Artemis (Section 5.4).

Oracle generation. There has been limited work on oracle generation for testing.

Fraser et al. [48] propose µTEST, which employs a mutant-based oracle generation

technique. It automatically generates unit tests for Java object-oriented classes by

using a genetic algorithm to target mutations with high impact on the application’s

behaviour. They further identify [47] relevant pre-conditions on the test inputs

and post-conditions on the outputs to ease human comprehension. Differential test

case generation approaches [42, 108] are similar to mutation-based techniques in

that they aim to generate test cases that show the difference between two versions

of a program. However, mutation-based techniques such as ours, do not require

two different versions of the application. Rather, the generated differences are in

the form of controllable mutations that can be used to generate test cases capable
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of detecting regression faults in future versions of the program. Staats et al. [107]

address the problem of selecting oracle data, which is formed as a subset of internal

state variables as well as outputs for which the expected values are determined.

They apply mutation testing to produce oracles and rank the inferred oracles in

terms of their fault finding capability. This work is different from ours in that

they merely focus on supporting the creation of test oracles by the programmer,

rather than fully automating the process of test case generation. Further, (1) they

do not target JavaScript; (2) in addition to the code-level mutation analysis, we

propose DOM-related mutations to capture error-prone [86] dynamic interactions

of JavaScript with the DOM.

4.6 Conclusions
In this work, we presented a technique to automatically generate test cases for

JavaScript applications at two complementary levels: (1) individual JavaScript

functions, (2) event sequences. Our technique is based on algorithms to maximize

function coverage and minimize function states needed for efficient test generation.

We also proposed a method for effectively generating test oracles along with the

test cases, for detecting faults in JavaScript code as well as on the DOM tree. We

implemented our approach in an open-source tool called JSEFT. We empirically

evaluated JSEFT on 13 web applications. The results show that the generated tests

by JSEFT achieve high coverage (68.4% on average), and that the injected faults

can be detected with a high accuracy rate (recall 70%, precision 100%).
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Chapter 5

Atrina: Inferring Unit Oracles from GUI Test
Cases

Summary13

Testing JavaScript web applications is challenging due to its complex runtime in-

teraction with the Document Object Model (DOM). Writing unit-level assertions

for JavaScript applications is even more tedious as the tester needs to precisely

understand the interaction between the DOM and the JavaScript code, which is

responsible for updating the DOM. In this work, we propose to leverage existing

DOM-dependent assertions in a human-written DOM-based test cases as well as

useful execution information inferred from the DOM-based test suite to automat-

ically generate assertions used for unit-level testing of the JavaScript code of the

application. Our approach is implemented in a tool called Atrina. We evaluate our

approach to assess its effectiveness. The results indicate that Atrina maps DOM-

based assertions to the corresponding JavaScript code with high accuracy (99%

precision, 92% recall). In terms of fault finding capability, the assertions generated

by Atrina outperform human-written DOM-based assertions by 31% on average.

It also surpasses the state-of-the-art mutation-based assertion generation technique

by 26% on average in detecting faults.

13This work has been submitted to the International Conference on Software Testing, Verification,
and Validation (ICST’16) and is currently under review.
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5.1 Introduction
JavaScript has emerged as the lingua franca of modern, interactive web applica-

tions. The interactivity is made possible by the close relation between the Doc-

ument Object Model (DOM) and the underlying JavaScript code. However, test-

ing modern web applications is challenging. To check the application’s behaviour

from an end-user’s perspective, testers often use popular frameworks such as Se-

lenium. The main advantage of using these frameworks to write DOM-based tests

and assertions is that they require little knowledge about the internal operations

performed by the code. Rather, the tester needs only basic knowledge of common

event sequences to cover important DOM elements to assert.

On the other hand, it is more tedious to write unit test assertions for web ap-

plications that have rich interaction with the DOM through their JavaScript code.

This is because the tester needs to precisely understand the full range of interac-

tion between the code level operations of a unit and the DOM level operations of a

system, and thus may fail to assert the correctness of a particular behaviour when

the unit is used as a part of a system. Our previous findings [81] indicate that while

DOM-based assertions tend to miss the related portion of code-level failure, more

fine grained unit-level assertions can detect such faults. Furthermore, finding the

root cause of an error during DOM-based testing is much more expensive than dur-

ing unit testing. This suggest that we need unit-level tests to complement existing

DOM-based test for more effective fault detection and localization.

Current test generation approaches either produce unit test oracles based on

mutation testing techniques [48, 81], or rely on soft oracles [22]. Mutation-based

approaches suffer from high computational cost, and the problem of equivalent

mutants (which are syntactically different but semantically the same as the original

application). Soft oracles such as HTML validation and runtime exceptions are

also limited in that they fail to capture logical and computational errors. Recently,

Milani Fard et al. [44] proposed using the DOM-based test suite of a web applica-

tion to regenerate assertions for newly detected states through exploring alternative

paths of the application. However, the new assertions generated by this technique

remain at the DOM-level without considering the relation between the JavaScript

code and the DOM. In this work, we propose to exploit an existing DOM-based test
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suite to generate unit-level assertions at the code-level for applications that interact

highly with the DOM through the underlying JavaScript code. We utilize existing

DOM-dependent assertions as well as useful execution information inferred from

a DOM-based test suite to automatically generate assertions used for testing indi-

vidual JavaScript functions. To the best of our knowledge, this work is the first to

propose an approach for generating unit-level assertions by using existing DOM-

based test suites.

The main contributions of our work include:

• A slicing-based technique to generate unit-level assertions for testing JavaScr-

ipt functions by utilizing existing DOM-based test assertions;

• A technique for selectively choosing additional DOM elements to assert on

that are unchecked in the existing DOM-based test suite;

• An implementation of our approach in a tool, called Atrina;

• An empirical evaluation to assess the efficacy of the approach on seven open-

source web applications; The results show that the assertions generated by

Atrina surpass the fault finding capabilities of (1) the human-written DOM-

based assertions by 31% on average, and (2) the state-of-the-art mutation-

based assertion generation technique by 26% on average.

5.2 Motivation
Unlike DOM-based testing, asserting the behaviour of a JavaScript application

through unit-level tests requires a tester to check the correctness of several in-

termediate code-level variables and object properties. The code-level operations

are mainly responsible for updating the DOM during the application execution.

Therefore, a tester needs to analyze the relationship between the JavaScript code

and the DOM’s evolution. We believe that DOM-based assertions can be utilized as

a guideline to generate unit test assertions at JavaScript code level. In this section,

we discuss why through an example.

Figure 5.1 presents (a) snippet of a JavaScript-based shopping cart application,

and (b) sample DOM-based SELENIUM test case, which we will use as a running

example. The application’s code (a) consists of two functions:
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	1		$document.ready(function()	{		
	2			...		
	3		$(	".merchandise").click(addToCart);
	4		$(	"#shopCart").click(viewCart);
	5		});
	6
	7		function	addToCart()	{	
	8			var	coupElem=	$("#couponButt");
	9			selItem=	getItemInfo($(".merchandise"));
	10			for(var	i=0;	i<availItems.length;	i++){
	11				if(availItems[i].name	==	selItem.name)
	12					availItems[i].count-=	selItem.quantity;		
	13			}
	14			var	price=	selItem.price	*	selItem.quantity;
	15			if(!coupon.expired){
	16				coupElem.removeClass(customer.couponStatus);
	17				customer.couponStatus=	coupon.Id	+	'-'	+	'used';
	18				price	-=	coupElem.data('value');	
	19				coupElem.addClass(customer.couponStatus);
	20				coupon.expired=true;	
	21			}		
	22			customer.payable	+=	price;
	23		}	
	24
	25		function	viewCart(){
	26			...
	27			if($("#couponButt").attr("class")	==	'default'	&&	customer.payable==0)
	28				showMsg('Shopping	cart	is	empty');
	29			else
	30				$("div.shopContainer").append("<p>"	+	"Total	purchase	is:	$"	+	
							customer.payable	+"</p>");
	31		}

	1		@Test

	2		public	void	testCase1(){

	3			Select	quantity	=	new	Select(driver.findElement(By.

					id("quantityDropDown")));

	4			quantity.selectByIndex(1);

	5			WebElement	item	=	driver.findElements(By.css("merchandise"));

	6			item.click();

	7			WebElement	cart	=	driver.findElements(By.id("shopCart"));

	8			cart.click();		

	9			String	expectedMsg	=	"Total	purchase	is:	$70";	

	10		String	msg=driver.findElements(By.cssSelector

					("div.shopContainer")).getText();

	11		assertEquals(msg,	expectedMsg);

	12	}

(a)

(b)

Figure 5.1: Running example (a) JavaScript code, and (b) DOM-based test case. The line from (b) to (a)
shows the point of contact between the DOM assertion and the code. The arrow lines in (a) show the
backward as well as forward slices between JavaScript statements.

1. addToCart is bound to the event handler of DOM element with class at-

tribute merchandise. When any of these element are clicked, addToCa-

rt gets the information of the selected merchandise, and sets the quantity of
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the current available items by updating the availItems object. If a valid

discount coupon exists, addToCart calculates the discount value, and dis-

ables the selected coupon button with ID couponButt by removing the

corresponding class. Finally, addToCart updates the payable amount by

setting the payable property of the customer object.

2. viewCart is invoked by clicking on a DOM element with ID shopCart.

The function appends a message to a div element with class shopConta-

iner including the final payable amount of the customer. If the coupon

button with ID couponButt is not selected and the payable amount is

equal to zero, then the empty cart message is shown.

Let’s assume that in line 14 of Figure 5.1(a) selItem.price, which repre-

sents the original price of the merchandise, is 100, and selItem.quantity

is 1. In line 18, the discount, which is calculated based on the data value of

the couponButt element is 30. The DOM-based assertion in Figure 5.1(b)

(line 11) checks the correctness of a text appended to a div element with class

shopContainer containing the final amount payable by the customer, which is

equal to 70 in this example. Analyzing the assertion in line 11 of Figure 5.1(b) indi-

cates that the expected value of the assertion is directly influenced by the payable

property of customer object as well as the object’s property coupon.expired

in function addToCart. We also infer that the selitem variable in line 9 of Fig-

ure 5.1(a), which directly influences the value of customer.payable, is also

used in updating the value of availItems.count in line 12.

Further, by leveraging the execution information obtained from running the

DOM-based test case, we can infer the DOM’s evolution, which can influence

the fault finding capability of the test suite. However, this is not checked by the

DOM-based test suite. For instance, DOM element with ID couponButt is ac-

cessed several times in function addToCart as well as viewCart as the test

case in Figure 5.1(b) runs, however it remains unchecked. Since the evolution of

the couponButt DOM element pertains to the underlying JavaScript code, it is

important to assert on code statements responsible for changing the aforementioned

DOM elements.
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Figure 5.2: Overview of our assertion generation approach.

5.3 Approach
Figure 5.2 shows an overview of our unit-level assertion generation technique. At

a high level, our approach generates code-level assertions based on human written

DOM-based tests and assertions. Our code level assertions fall in the following

three categories: (1) explicit assertions, which are directly inferred from analyzing

the manually written DOM-based assertions, (2) implicit assertions, which are in-

directly affected by the human written DOM-based assertions, and (3) candidate

assertions, which are not considered in the written DOM-based assertions, yet are

potentially useful for fault detection. We describe how our approach below finds

the three categories of assertions. The numbers below in parentheses correspond

to those in the boxes of Figure 5.2.

In the first part of our approach we (1) execute the instrumented application by

running the existing DOM-based test suite, and gather a detailed execution trace

of the application. We then extract (2) DOM-based assertions, and (3) candidate

DOM element properties, which are useful DOM properties that can be used to

generate assertions. We also (4) identify the initial point of connection between

the application’s source code and checked DOM element.

In the second part of our approach, we use the information gathered in the first

part to obtain the assertions. In this part, we (5) calculate the backward slice of the

DOM mutating statements to find the entire code blocks that update the checked

DOM element, (6) extract accessible entities from the obtained statements, and
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Algorithm 4: Oracle Generation
input : Test suite T ; The set of test cases tci ∈ T
output: The ordered set of oracles oracles

begin
1 trace← EXEC(T )
2 domAccss← GETDOMACC(trace)
3 f reqAccdDOM← /0
4 α = 1

READPROPERTIES(T )

5 for dom ∈ domAccss do
6 if ACC(propdom)≥ α then
7 f reqAccdDOM← dom∪ f reqAccdDOM

end
end

8 for tci ∈ T do
9 trace← EXEC(tci)

10 domAccss← GETDOMACC(trace)
11 for asstn ∈ assertionstci do
12 asserDOMAcc← GETDOMACC(asstn)
13 asserDOMMuts← GETDOMMUTS(asserDOMAcc)
14 for domMut ∈ asserDOMMuts do
15 bwSts← GETBWSLICE(domMut, trace)
16 expAsstnRel← GETWRVARS(bwSts)
17 f wSts← GETFWSLICE(bwSts, trace)
18 impAsstnRel← GETWRVARS( f wSts)

end
end

19 cndDOMMuts← GETDOMMUTS( f reqAccdDOM)
20 for domMut ∈ cndDOMMuts do
21 bwSts← GETBWSLICE(domMut, trace)
22 cndAsstn← GETWRVARS(bwSts)

end
23 explicitAsstn[ f unc]nf=1← ACCESSIBLES([ f unc]nf=1, [expAsstnRel])
24 implicitAsstn[ f unc]nf=1← ACCESSIBLES([ f unc]nf=1, [impAsstnRel])
25 candidateAsstn[ f unc]nf=1← ACCESSIBLES([ f unc]nf=1, [cndAsstn])
26 oracles[ f unc]nf=1←{explicitAsstn∪ implicitAsstn∪ candidiateAsstn}

end
27 return (oracles[ f unc]nf=1)

end

(7) form explicit assertions using the accessible entries. We further (8) perform a

forward slice on the extracted entities to identify statements that are implicitly af-

fected by such entities, and (9) form implicit assertions using the collected entities,

and (10) generate candidate assertions by performing steps (4), (5), and (6) on the

inferred candidate DOM element properties (3).

Our overall unit-level assertion generation is presented in Algorithm 4. In the

following sections we describe our technique for extracting DOM related informa-
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1��@Test�
2��public�void�testCase1(){��
���...
8��cart.click();�
9��String�expectedMsg�=�"Total�purchase�is:�$70";
10�String�msg=driver.findElements
���(By.cssSelector("div.shopContainer")).getText();
11�assertEquals(msg,expectedMsg);
12�}

22�customer.payable�+=�price;
...
30�$("div.shopContainer").append("<p>"�+�
���"Total�purchase�is:�$"+�customer.payable�+"</p>");

1

2(a)

(b)

3

Figure 5.3: Finding (1) intra DOM assertion dependency within the test case (b), (2) inter DOM assertion
dependency between (b) DOM-based assertion and (a) the JavaScript code, and (3) the initial point of
contact between (b) DOM-based assertion and (a) the JavaScript code.

tion from the execution (Section 5.3.1), relating DOM mutations to the JavaScript

code (Section 5.3.2), and generating unit test assertions (Section 5.3.3).

5.3.1 Extracting DOM-Related Characteristics

The DOM connects a test case to the web application’s code. Therefore, we first

need to analyze the DOM-based test suite and extract the following pieces of infor-

mation: (1) DOM-related operations of the existing test suite that may have tight

connection with the JavaScript code, and (2) frequently accessed DOM properties,

which are potentially influential in improving the fault finding capability of the test

suite, but are left unchecked in the manually-written test suite.

DOM-Related Operations. Any written test case needs to check the correctness

of the application’s behaviour. In a DOM-based test case, the expected behaviour

is checked through DOM-based assertions. A DOM-based assertion is defined as

< domProps,expVal >, where domProps consists of one or more DOM element

features (e.g. attribute, and/or textual value), and expVal is the correct value ex-

pected by the assertion. In the rest of the sections, we call the DOM element feature

as a DOM property. DOM-based assertions play a significant role in our approach

as they guide us towards important portions of the underlying JavaScript code that

need to be checked in unit-level assertions.

103



For each DOM-based assertion we find intra DOM assertion dependency within

the test case.

Definition 1 (Intra DOM Assertion Dependency) An intra DOM assertion de-

pendency is defined as a three tuple of < assert,domElems,domProps >, where

assert is the intended DOM-based assertion, domElems is the accessed DOM el-

ements in the test case pertaining to the assertion, and domProps is the accessed

DOM properties within the assertion.

GETDOMACC in line 10 of Algorithm 4 retrieves DOM dependencies of the as-

sertion in the test case. Going back to our example in Figure 5.3(b), tracking the

assertion in line 11 shows that it has a DOM dependency to a div element with

class shopContainer, which is accessed in line 10. The intra DOM assertion

dependency of the example further shows that the text value of the DOM element

is compared with the expectedMsg in line 11.

We further need to correlate the inferred intra DOM assertion dependency with

the application’s code. We call the correlation between the DOM-based assertion

and the application’s code as inter DOM assertion dependency.

Definition 2 (Inter DOM Assertion Dependency) An inter DOM assertion de-

pendency is defined as < assert, initPoint >, where assert is the intended DOM-

based assertion, and initPoint is the initial line of code in the application that is

responsible for mutating the property of a DOM element extracted from the intra

DOM assertion dependency.

In order to find the initial point of contact between the application’s code and a

mutated DOM property in the DOM-based test case, we track evolution of the

accessed DOM elements (GETDOMMUTS in line 13 of the algorithm) as well as

invoked event handlers as the test case runs. We consider DOM mutation as a

DOM-tree structural change (e.g.; additions and removals of child nodes), as well

as DOM write operations such as changes to attributes and/or updates to child

text nodes. For instance, running the sample test case in Figure 5.1(b) results in

mutating (1) the textual value of div element with class shopContainer, and

(2) the class attribute of DOM element with ID couponButt.
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In Section 5.3.2, we explain inferring the initial point of contact between the

source code and a mutated DOM element in a DOM-based test suite in details.

Frequently Accessed DOM Properties. In addition to DOM-based assertions, we

further consider DOM element properties that are frequently accessed within the

application as the test case runs (lines 1 to 7 of Algorithm 4). ACC in line 6 of the

algorithm computes the access frequency of a DOM property, f reqAccdDOM in

line 7 contains the inferred candidate DOM properties, and GETDOMMUTS in line

19 records DOM mutations occur on candidate DOM properties.

The intuition is that frequent use of a given DOM property can point to the ex-

tent of application’s behaviour dependency on the DOM property. Thus, if changes

happen to a property through the JavaScript code, it is important to assert the cor-

rectness of mutations on the property. We define the access frequency of a DOM

element property as the number of times that the element’s property has been read

during the execution of a test case. DOM properties include attributes as well as

textual value of the elements. In order to record DOM property accesses within the

application, we rewrite native function calls used by programmers to access DOM

element such as getElementById, getElementsByClassName, and/or g-

etElementsByTagName. The returned object from these functions is later used

to access attributes or textual values of the element. Thus, we apply a forward slice

on the returned object to find instances of element’s property access in the code.

For example in function addToCart of Figure 5.1(a), DOM element with ID

couponButt is assigned to coupElem variable. The assigned variable is later

used to access the class attribute as well as the value of the DOM element in

lines 16, 18, and 19.

Let Acc(propel) be the access frequency computed for property prop of DOM

element el, then:

Acc(propel) =
Read(propel)

∑
n
e=1 Read(domEleme)

, where Read(domEleme) is the number of

times that DOM element domElem is read, given that the total number of DOM

elements during the execution of a test case is n. Note that reading a DOM element

refers to accessing the element to read the corresponding property. In Figure 5.1(a),

the class attribute of DOM element couponButt is read in lines 16 and 27, and

thus the access frequency computed for the class attribute of the element is equal

to 2
3 .
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�7���function�addToCart()�{
�8����var�coupElem=�$("#couponButt");
�9����selItem=�getItemInfo($(".merchandise"));

�14���var�price=�selItem.price�*�selItem.quantity;
�15���if(!coupon.expired){
��������...
�18�����price�-=�coupElem.data('value');�
�19�����coupElem.addClass(customer.couponStatus);
�20�����coupon.expired=true;�
�21���}��
�22���customer.payable�+=�price;
�23��}

...

Figure 5.4: Intra (data and control) code dependency through backward slicing.

We choose element’s property with access frequencies above a threshold α as

potential candidates, which are later used for the purpose of unit-level assertion

generation. We automatically compute this threshold for each test case as:

α = 1
ReadProperties(T ) , where ReadProperties(T ) is the total number of proper-

ties which have been read during the execution of test suite T .

Going back to our running example and the sample DOM-based test case in

Figure 5.1, class attribute of the couponButt is selected as a potential candi-

date since its access frequency ( 2
3 ) is greater than the computed threshold, which is

equal to 1
2 in this example.

5.3.2 Relating DOM Changes to the Code

To determine the initial point of contact between DOM and the underlying appli-

cation’s code, we first cross reference the DOM element as well as the property

we are interested in with a set of DOM mutations obtained from the execution

trace. The desired DOM element and its property are inferred from either the in-

tra DOM assertion dependency or the candidate DOM properties as described in

Section 5.3.1. Recall that our execution trace contains information about triggered

events, event handlers, and DOM mutations caused by the events. Therefore, we

can identify relevant events and invoked functions corresponding to a given DOM

mutation. For example, the collected execution trace in Figure 5.3 contains infor-

mation about the mutations of a div element with class shopContainer, which

pertains to the DOM-based assertion.

To figure out where the mutation originated in our execution trace, we keep
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record of DOM accesses within the invoked functions. For each DOM access, we

track JavaScript lines of code that are responsible for updating the corresponding

DOM element. Going back to our example in Figure 5.3, given that the textual

property of the div element is extracted from the intra DOM assertion depen-

dency, we identify line 30 in function viewCart as the initial point of contact

responsible for changing the text of DOM element.

After inferring DOM mutant statements, we identify the control and data intra

code dependency within the application’s code.

Definition 3 (Intra Code Dependency) An intra code dependency is defined as

< criterion,codeSts >, where criterion is a variable at the initial point of contact,

and codeSts is the set of control and data dependent statements that are either

affected by the ctiterion or have some effect on the criterion.

To find the intra code dependency, we perform backward as well as forward

slicing by using criterion as the slicing criterion. GETBWSLICE in lines 15 and 21

of Algorithm 4 computes a backward slice with respect to assertion related DOM

mutations, and candidate DOM property mutations respectively. We use dynamic

slicing to capture run-time dependencies. Note that instrumenting the entire appli-

cation’s code to perform dynamic slicing incurs high performance overheads. To

avoid high overheads, we first intercept the code sent from the server to the client,

and then statically instrument only those statements that may affect a given DOM

element. To extract the subset of the code statements, we first find the JavaScript

closure scope which contains the definition of the variable in the initial slicing

criteria. Then all references to the variable within the closure scope are found.

Therefore, we can identify all locations in the code where the variable is updated,

read, or a new alias is created. For each variable update/read related to the variable

of the slicing criteria, we track the data dependencies for such an operation. The

aforementioned steps are performed iteratively for each dependencies to collect the

subset of code statements, which are instrumented for a given initial slicing crite-

ria. The instrumented code keeps track of all updates and accesses to all relevant

data and control dependencies. Once the test case runs, we collect traces from

the instrumented code. This trace is used to dynamically extract backward slicing

as well as forward slicing statements. Note that in addition to backwards slicing
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which is later used to generate explicit assertions, we also use forward slicing to

generate our implicit assertions (Section 5.3.3).

The backward slicing technique starts by extracting instances of the initial slic-

ing criteria from the trace. For each read operations, the trace is traversed back-

wards to find the nearest related write operation. Once found, the write operation

is added to the slice under construction. This process is repeated for all the data de-

pendencies related to that write operation. A similar approach is taken for including

control dependencies in the slice. Our slicing technique supports inter-procedural

slicing. For example, if a variable is assigned by the return value of a called func-

tion, the slicer recursively tracks the function and performs a backward slice on the

statement returned by the called function.

To address aliasing when computing the slice of a variable that has been set

by a non-primitive value, we need to consider possible aliases that may refer to

the same object. Specifically in JavaScript dot notation and bracket notation are

frequently used to modify objects at run time. Since static analysis techniques for

JavaScript often ignore this issue [45], we use dynamic slicing. If a reference to

an object of interest is saved to a second object’s property, e.g. through the use of

the dot notation, the object of interest may also be altered via aliases of the second

object. For example, after executing statement a.b.c = objOfInterest;,

updates to objOfInterest may be possible through a, a.b, or a.b.c. To

deal with such scenarios, our slicing technique searches through the collected trace

and adds the forward slice for each detected alias to the current slice for our variable

of interest (e.g. objOfInterest).

Given customer.payable as the initial slicing criteria in our example, Fig-

ure 5.4 shows the relevant backward slice statements (lines 22, 18, 15, 14, and 9),

where customer.payable, variable price, as well as properties of the object

selItem are assigned, and the value of coupon.expired is checked in the

conditional statement. By the end of backward slicing step, we have all the rele-

vant statements corresponding to a given DOM element. These are later used to

derive test assertions.
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5.3.3 Generating Unit-Level Assertions

Our approach targets postcondition assertions which are used to examine the ex-

pected behaviour of a given function after it is executed in a unit test case. By

analyzing a given DOM-based test case, we generate unit-level assertions in the

following three categories: (1) explicit assertions, (2) implicit assertions, and (3)

candidate assertions.

Explicit Assertions

After collecting all the statements, that are relevant to a given DOM-based asser-

tion, we extract accessible entities from these statements (ACCESSIBLES in line 23

of the algorithm). Types of accessible entities include (1) the function’s returned

value, (2) the used global variables in that function, (3) the object’s property where

the object is accessible in the outer scope of the function, and/or (4) the accessed

DOM element in that function. Dynamic backward slice of a DOM-based asser-

tion helps to (1) track all statements that contribute to the checked result and as

such identify those entities that might have influenced the checked property value

of the DOM element, and (2) eliminate unrelated entities that are not involved in

the computation that leads to the update performed on the checked DOM element.

Since our dynamic slice is extracted from the program run, we can track all con-

crete values associated with accessible entities. During the run of a test case, there

might be different instances where a given statement is executed. Different exe-

cution instances can lead to different behaviour. Since we are using dynamic slic-

ing, an instance that leads to the required behaviour, which is checked through the

DOM-based assertion, is on the backward slice. Given that the manually-written

expected value, that is checked against the DOM’s property is valid, the concrete

values of related entities in the backward slice are potentially correct. Therefore,

concrete value of an entity in the backward slice can be used as the expected value

of the entity in unit-level assertions to test the current version of the application

(discussed in Section 5.4.4). explicitAsstn in line 23 of Algorithm 4 contains the

inferred explicit assertions.

In our running example (Figure 5.4), explicit assertions check the correctness

of customer.payable, coupon.expired, as well as price and quanti-
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1�test("addToCart",�5,�function(){
���...
2��var customer= {Id:"10", couponStatus:"default", payable:0};
3��var coupon= {Id:"1", expired:false}
4��var availItems= {{name:"jacket", price:100, count:2}}
5��var�selItem= {name:"", price:0, quantity:0};
6��addToCart();
7��equal(customer.payable,�70);
8��ok(coupon.expired);
9��deepEqual(selItem,�{price:100,�quantity:1});
10�equal(availItems[0].count,�1);
11�equal(customer.couponStatus, '1-used');�
12});��

Figure 5.5: Generated QUNIT test case and assertions.

ty properties which belong to selItem object. Assuming that the original price

of the item is 100, the number of selected item is 1, and the calculated discount

according to the value attribute of a DOM element with ID couponButt is 30,

then the expected values included in the assertions for each of the entities are 70,

boolean value true, 100, and 1, respectively. Figure 5.5 shows a unit test case for

addToCart function with the generated assertions in QUNIT framework. Lines

7 to 9 in the figure corresponds to the explicit assertions.

Implicit Assertions

We gather all the statements that explicitly affect the computations relevant to a

given DOM-based assertion. While assertions inferred from such statements are

inherently important, we further need to consider entities that are implicitly in-

fluenced by the checked DOM element in the manually-written test suite. For this

purpose we apply a dynamic forward slice on the statements collected from a back-

ward slice of a DOM-based assertion. A forward slice with respect to a statement

st, indicates how an operand at st is being subsequently. This can help the tester

to ensure that st establishes the expected outcome of the computations assumed by

later statements.

GETFWSLICE in line 17 of the algorithm computes forward slice on the vari-

able operands of a statement in the backward slice. The process of forward slicing

is similar to the backward slicing technique discussed earlier (Section 5.3.2). The

slicing criterion of the forward slice module is either a variable, object’s property,

or an accessed DOM property extracted from the statements in a backward slice
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�7��function�addToCart()�{
�8���var�coupElem=�$("#couponButt");
�9���selItem�=�getItemInfo($(".merchandise"));
�10���for(var�i=0;�i<availItems.length;�i++){
�11����if(availItems[i].name�==�selItem.name)
�12�����availItems[i].count�-=�selItem.quantity;��
�13���}�
�����...
�����}

Figure 5.6: Intra code dependency through forward slicing.

�7�function�addToCart()�{

�15��if(!coupon.expired){
�16���coupElem.removeClass(customer.couponStatus);
�17���customer.couponStatus=�coupon.Id�+�'-'�+�'used';
�18���price�-=�coupElem.data('value');�
�19���coupElem.addClass(customer.couponStatus);

�����}���
����}�

...

...

Figure 5.7: Relating candidate DOM element to JavaScript code.

segments of the code. The accessible entities (ACCESSIBLES in line 24), which

have been set within the collected forward slice statements establish the implicit

assertions. implicitAsstn in line 24 of Algorithm 4 contains the inferred implicit

assertions. Figure 5.6 shows the intra code dependency obtained by performing

forward slicing on the running example. As shown in the figure, the properties of

object selItem are set in line 9, that is recorded during the backward slice pro-

cess. Given line 9 as the forward slice criteria, we mark availItems.count

(line 12) as an implicit assertion. Line 10 in Figure 5.5 shows the generated implicit

assertion for addToCart function according to this criteria.

Candidate Assertions

In addition to explicit and implicit assertions, we also verify the correctness of

code-level entities pertaining to DOM updates, which are essentially important but

not checked in the existing DOM-based test cases. We derive such unit-level asser-

tions, which we call candidate assertions, from the candidate DOM element prop-

erties previously obtained from the test case execution (box 3 in Figure 5.2). As

the test case runs, we monitor the DOM’s evolution and match the list of mutated
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DOM elements and their properties with property updates of the candidate DOM

elements. Once a match is found, we infer backwards slice statements pertaining

to the mutation of DOM element’s property (GETBWSLICE in line 21 of the al-

gorithm). Therefore, in this case the slicing criteria which is given as input to the

backwards slicing module is an update to the property of the candidate DOM ele-

ment. After gathering the related JavaScript statements within the application, we

extract accessible entities of these statements (ACCESSIBLES in line 25), which

form our candidate assertions. candidateAsstn in line 25 contains our candidate

assertions.

Recall from the running example, one such potential DOM property which we

record as part of Section 5.3.1, is class attribute associated with DOM element

with ID couponButt. As shown in Figure 5.7 monitoring DOM changes reveal

that line 19, where the class attribute of the element is set, is the initial point

of contact between DOM mutation and the JavaScript code. Given line 19 as the

slicing criteria, customer.couponStatus (line 17) is marked as the candi-

date assertion. Line 11 in Figure 5.5 shows the candidate assertion generated for

addToCart function.

5.3.4 Tool Implementation: Atrina

We have implemented our JavaScript unit test assertion generation in an auto-

mated tool called Atrina. The tool is written in Java, and is publicly available

for download [2]. We use a proxy server to intercept HTTP responses which con-

tain JavaScript code. The JavaScript Mutation Summary library [9] is used to track

DOM changes during the execution of the test suite. Trace information is collected

by the proxy once received from the browser. To instrument Selenium test cases,

we convert them into an abstract syntax tree (AST) by employing Eclipse Java de-

velopment tools (JDT). Once the transformation is done, we run the Java code of

the changed AST on the application under test.

5.4 Empirical Evaluation
To quantitatively assess the efficacy of our test generation approach, we have con-

ducted a case study, in which we address the following research questions:
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Table 5.1: Characteristics of the experimental objects.

ID Name LOC (JS) # Test
Cases # Assertions

1 Phormer 1.5K 7 18
2 EnterpriseStore 57K 19 21
3 WolfCMS 1.3K 12 42
4 Claroline 36K 23 35
5 StudyRoom 10.6K 12 23
6 AddressBook 1.1K 13 14
7 Brotherhood 0.8K 10 10

RQ1 How accurate is Atrina in mapping DOM-based assertions to the correspond-

ing JavaScript code?

RQ2 How effective is Atrina in generating unit test assertions that detect faults?

RQ3 Are the assertions generated by Atrina more effective than DOM-based as-

sertions written manually by the tester in terms of fault finding capability?

RQ4 How does Atrina compare to existing mutation-based techniques for gener-

ating unit test assertions?

Atrina and the experimental data are available for download [2].

5.4.1 Objects

Our study includes seven open source JavaScript web applications that have SELE-

NIUM test cases. Table 5.1 presents the experimental objects and their properties.

Phormer [10] is a photo gallery web application. EnterpriseStore [5] is an asset

management web application. WolfCMS [14] is a content management system.

Claroline [4] is a collaborative online learning and course management system.

AddressBook [1] is an address/phone book. StudyRoom [13] is a web-based out-

door study environment simulator, and Brotherhood [3] is an online social net-

working platform.

5.4.2 Setup

To address our research questions, we provide the URL as well as the available

manually written DOM-based test suite of each experimental object to Atrina. Unit

level test assertions are then automatically generated by the tool.

Accuracy (RQ1). To evaluate the accuracy of Atrina, we measure precision and
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recall. We manually compare the slices generated by Atrina with the JavaScript

code that is relevant to each assertion. Precision and recall are defined as follows:

Precision is the fraction of lines in a slice produced by Atrina, that are actually

related to the human-written DOM-based assertion: T P
T P+FP

Recall is the fraction of the correct set of related lines of code to each assertion,

which is actually present in the slice produced by Atrina: T P
T P+FN

where T P (true positives), FP (false positives), and FN (false negatives) respec-

tively represent the number of lines of code that are correctly reported, falsely

reported, and missed to report as related to the DOM-based assertion.

Effectiveness (RQ2). To assess the effectiveness of Atrina, we measure the fault

finding capability of the assertions generated by the tool. Moreover, to under-

stand the effect of each type of assertion produced by Atrina in detecting faults,

we compare the fault detection rate of using (1) exclusively explicit assertions, (2)

explicit assertions and implicit assertions, and (3) explicit assertions and candidate

assertions. Since explicit assertions compose the core body of our assertions, we

consider implicit and candidate assertions in conjunction with explicit ones rather

than separate them.

The experimental objects do not come with a rich version history to apply At-

rina on real regression changes. Therefore we mimic regression faults by auto-

matically injecting mutations to the application, and evaluate the tool’s ability in

detecting the seeded faults. Using our recently developed mutation testing tool,

MUTANDIS [79], we automatically inject 50 random first-order mutations into the

JavaScript code of the applications. The mutation operators are chosen from a list

of common operators such as changing the value of a variable, modifying a con-

ditional statement, altering unary operations, as well as common mistakes made

by developers when developing a given web application [82], e.g., changing the

ID/tag name passed into DOM access functions such as getElementById or

getElementsByTagName, and modifying the attribute name/value in setAt-

tribute. The fault is considered detected if an assertion generated by Atrina fails

when run on the mutated code, and our manual examination confirms that the failed

assertion is detecting the seeded fault.

Comparison with human-written DOM-based Assertions (RQ3). To assess the

114



usefulness of Atrina, we compare the human written DOM-based assertions with

the unit-level test assertions generated by our approach in terms of fault finding

capability. Similar to RQ2, we perform fault injection on both. The faults injected

into our experimental objects in response to RQ3 are the same as the ones that we

seed in applications to answer RQ2.

Comparison with Mutation-based Assertion Generation (RQ4). To assess how

Atrina performs with respect to the current state-of-the-art oracle generation tech-

nique, we compare our tool’s fault finding capability with the mutation-based as-

sertion generation approach [48, 81]. To generate mutation-based assertions for

the JavaScript code, we use human-written DOM-based test suite as a means to

execute the application and infer the execution traces required for the purpose of

mutation analysis. We perform the following steps to generate test assertions using

mutation analysis.

1. Remove assertions from the human-written DOM-based test suite.

2. Execute the test suite on the original version of the application to obtain

execution traces.

3. Inject mutations for the purpose of oracle generation.

4. Execute the human-written test suite on the generated mutants, and produce

test oracles by comparing execution traces obtained from the mutants and

the original version of the application.

We generate 50 mutants to produce test assertions for each application - we choose

50 to balance coverage of different faults and execution time. Note that the im-

plementation and evaluation of the mutation analysis technique both use mutation

operators from our prior work [82]. Therefore, our evaluation is biased in favour

of mutation-based assertion generation approach over Atrina.

5.4.3 Results

Accuracy (RQ1). Table 5.2 shows the number of correctly reported (true posi-

tive), the number of incorrect reported (false positive), and the number of missed

(false negative) JavaScript lines of code, as well as precision and recall achieved by

Atrina, which are related to human-written DOM-based assertions. The table also

shows the number of explicit, implicit, candidate, and the total number of asser-
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tions generated by Atrina. The recall achieved for Phormer (ID 1), WolfCMS (ID

3), AddressBook (ID 6), and Brotherhood (ID 7) is 100%. For EnterpriseStore (ID

2), Claroline (ID 4), and StudyRoom (ID 5) the recall achieved is 84%, 79%, and

82% respectively. Except for EnterpriseStore and Claroline applications, for which

the precision rate is 98%, the computed precision rate for the rest of applications is

100%.

We noticed that the lower recall rate obtained by Atrina is mainly due to the use

of third party libraries. Currently, we only analyze the application source code and

do not consider libraries in our slicing technique. The underlying assumption is

that faults mainly originate from the application’s code. The small drop observed

in precision is due to functions that are called but not instrumented due to limi-

tations in our current implementation. If the definition of a called function is not

instrumented, we assume that the function call is related to our slice, while it may

not be so. We also observed that in rare cases a variable is seemingly assigned by a

return value of a function, though the return statement is not found in the body

of the called function. Our current implementation includes such variable assign-

ments in the pertaining slices. Note that both recall and precision can be improved

to 100% with a more robust implementation of our technique.

We found out that on average 6% of the human-written DOM-based assertions

in our experimental objects are not connected to the JavaScript code in the follow-

ing scenarios: (1) HTML is used to transfer the data, which is required by the client

from the server (e.g;, the required information is stored as meta-data in attributes

within the HTML), (2) web server is utilized to perform computations, (3) instead

of dynamically generating the DOM structure through the JavaScript code, HTML

fragments are retrieved from the server and injected into the page, and (4) CSS and

HTML are used to perform required changes to the user interface (e.g.; the CSS

transition property with hover is used to bypass JavaScript).

Effectiveness (RQ2). Figure 5.8 depicts the fault detection rate (percentages)

achieved by (1) Atrina, (2) explicit assertions when included individually, and (3)

explicit assertions in conjunction with either implicit assertions or (4) candidate

assertions. The number on each bar represent the number of faults detected by the

corresponding assertion types. As shown in Figure 5.8, Atrina detects on average

63% of the total faults (ranges from 42-84%). The percentage of faults detected
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Table 5.2: Accuracy achieved by Atrina.
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Figure 5.8: Fault detection rate using different types of generated assertions.

by explicit assertions alone is less than that detected through the combination of

explicit with either implicit assertions or candidate assertions. This indicates that

implicit as well as candidate assertions are essential entities in improving the fault

finding capability of Atrina. By eliminating implicit and candidate assertions, fault

detection rate drops 23% on average, with a maximum drop of 31% for the Enter-
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Figure 5.9: Fault finding capability.

priseStore application (ID 2).

Figure 5.8 shows that the improvement contributed by implicit assertions is 6%

on average, while the improvement due to candidate assertions is 19% on average.

This indicates that candidate assertions play a more prominent role in increasing

the number of faults detected by Atrina than implicit assertions. Not surprisingly,

explicit assertions contribute the most among the three assertion types generated

by Atrina. Explicit assertions detect 76% of the total detected faults on average

(ranges from 69-94%). These assertions are derived directly from the DOM-based

oracles written by the developer of the application who has a deep knowledge of the

application’s behaviour. Therefore, it is not surprising that explicit assertions de-

rived directly from such oracles have the highest impact on fault finding capability

of our tool.

Comparison with human-written DOM-based Assertions (RQ3). Figure 5.9

compares the fault detection rate achieved by the code-level assertions generated

by Atrina with the human-written DOM-based assertions. The numbers shown on
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each bar represent the actual number of faults detected by the corresponding asser-

tion generation technique. As shown in the figure, the percentage of faults found by

Atrina is higher than manually written DOM-based assertions for all applications.

Overall, Atrina outperforms manual assertions in terms of fault finding capability

by 31% on average (ranges from 6-45%). We observed that on average, 52% of

the candidate DOM properties that we select to construct our candidate assertions

were ignored in human-written DOM assertions, although their values are updated

through the JavaScript code. We further noticed that for each failed manual DOM

assertion as a result of an injected fault, at least one explicit assertion fails in Atrina

(three failed explicit assertions on average). We observed that most often DOM as-

sertions written by the tester are too generic in nature. Therefore even when a DOM

assertion detects a JavaScript fault, pinpointing the root cause of the error can be

quite challenging. However, code-level assertions make it easier for the tester to

localize the fault, as their locations directly correlate with the code.

We observed in several cases that the value of a DOM element property that

is checked in the human-written test suite is later used in JavaScript code that in-

volves internal computations only. If the seeded fault falls in the corresponding

computational statements, the resulting error is not captured through the manually

written DOM assertions. In such cases, implicit assertions are capable of detecting

the error, which points to the importance of incorporating these types of assertions

in our approach. We also noticed that around 66% of the faults found by implicit

assertions are neither detected by explicit/candidate assertions nor by the human-

written ones. This is because they require executing a more complex sequence of

events to propagate to the observable DOM (e.g., when an object’s property is as-

signed in a function to be later used in updating a value of a DOM element after a

specific event is triggered).

Comparison with Mutation-based Assertion Generation (RQ4). Figure 5.9

presents the results of comparing fault finding capability of Atrina with mutation-

based assertion generation technique. As shown in the figure, Atrina produces unit

assertions that are more effective than those produced by mutation-based technique

in terms of fault-finding capability. The assertions generated by Atrina surpasses

those generated by the mutation-based approach by 26% on average (ranges from

10-40%), although both implementation and evaluation of the mutation-based tech-
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nique use a common set of mutation operators (and thus our evaluation is biased

towards mutation-based techniques). This points to the importance of incorporat-

ing the information that exists in human-written DOM-based test cases.

While the results demonstrate that Atrina is more effective than mutation-based

approach in terms of fault detection, we further investigate efficiency of our ap-

proach in terms of time overhead. We compute overhead of Atrina as the sum-

mation of time required for (1) instrumenting the application, and (2) analyzing

the collected trace to compute JavaScript slices. To calculate time overhead of the

mutation-based approach, we consider the total time required for running the test

suite multiple times (once per mutation), generating mutants, as well as the time

needed to compare the original and the mutated version of the application to gen-

erate assertions. Figure 5.10 shows the results of time overhead computed for each

approach. Our results show that the time overhead for Atrina is 47 seconds on av-

erage, while the overhead computed for mutation-based technique is 98 seconds on

average. As shown in the figure, for the EnterpriseStore application (ID 2), which

is the largest application we considered (57K LOC), time efficiency is increased

by 58% using Atrina. This indicates that our approach significantly outperforms

mutation-based assertion generation as far as time efficiency is concerned.

5.4.4 Discussion

Fault Masking. As we mentioned in Section 5.3.3, the concrete value of an entity

in the computed backward slice can potentially be used as the expected value of

the entity in explicit assertions to test the current version of the application. The

actual values of the related entities in the backward slice are correct unless there

exists a masked fault which is concealed in the chain of computations and thus

does not propagate to the checked state of the DOM element. However, we conjec-

ture that fault masking rarely happens in JavaScript web applications as it is more

prevalent in programs with many small expressions whose results are stored in sev-

eral intermediate values. We also observed no fault masking occurrence during the

evaluation of Atrina on seven JavaScript applications used in this study.

Limitations. The effectiveness of the generated assertions by Atrina in terms of

fault finding capability depends on the quality of human-written DOM-based test
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Figure 5.10: Time overhead for each approach.

cases. If the DOM assertions contained in the DOM-based test suite check irrele-

vant information, the explicit assertions obtained by our tool will point to entities

that may not be important from the tester’s point of view. This can also negatively

affect the fault finding capability of implicit assertions as they are indirectly in-

ferred from the DOM-based assertions. Moreover, if the human-written test suite

does not execute application’s state with effective DOM elements, our tool is not

able to infer effective candidate assertions.

5.4.5 Threats to Validity

An external threat to the validity of our evaluation is the limited number of JavaScri-

pt applications used to measure the effectiveness of our approach. We mitigated

this threat by using web applications from various domains, code size, and func-

tionality. Another threat concerns validating failed assertions through manual in-

spection that can be error-prone. To mitigate this threat, we carefully examine the

code in which the assertion failed to make sure that the injected fault was indeed re-

sponsible for the assertion failure. Moreover, manual computation of the JavaScript

slices to measure precision and recall is a time intensive task done by the authors,
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and thus could be error-prone. However, we made every effort to mitigate this

threat by precisely examining the application’s code.

The regression faults we inject to evaluate the effectiveness of Atrina may not

be realistic. We mitigate this threat by injecting mutations that represent common

JavaScript applications faults, as well as using real-world web applications, and

SELENIUM test cases written by developers.

5.5 Related Work
While automated test generation has significantly addressed in the literature, there

has been limited work on supporting the construction of test oracles. Recently,

Harman et al. [58] have conducted a comprehensive survey of current techniques

used to address the oracle problem. Mesbah et al. [76] automatically produce

generic invariants in a form of soft oracles to test AJAX applications. JSART [78]

automatically infers JavaScript invariants from the execution traces for the purpose

of regression testing. Jalangi [105] is a framework to support writing of heavy-

weight dynamic analyses. The framework detects generic JavaScript faults such

as null, undefined values, and type inconsistencies. Jensen et al. [63] incorporate

server interface descriptions to test the correctness of communication patterns be-

tween client and server through learning the communication patterns from sample

data in AJAX applications. Xie et al. explore test oracle generation for GUI sys-

tems [113]. Eclat [91], and DiffGen [108] are used for automatically generating

invariant-based oracles. Our work is different from these approaches in that we

use the available DOM-related information in a human written test suite to infer

unit-level assertions at the JavaScript code-level. Moreover, we generate assertions

that capture application’s behaviour, rather than generic and soft oracles.

Fraser et al. [48] propose a mutation-based oracle generation system called

µTEST. µTEST automatically generates unit tests for Java object-oriented classes

by employing a genetic algorithm which target mutations with high impact on the

application’s behaviour. They further enhance the system [47] to improve human

comprehension through identifying relevant pre-conditions on the test inputs and

post-conditions on the outputs. The authors assume that the tester will manually

correct the generated oracles. However, the results on the effectiveness of such ap-
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proaches which rely on the ”generate-and-fix” assumption to construct test oracles

are not conclusive [49]

Staats et al. [107] propose an oracle data selection technique, which is based

on mutation testing to produce oracles and rank the inferred oracles in terms of

their fault finding capability. This work suffers from the scalability issues of

mutant-generation based techniques as well as the problem of estimating the proper

number of mutants required for generating effective oracle data set. Similar to

mutation-based techniques, differential test case generation approaches [42, 108]

also target generating test cases that show the difference between two versions of a

program. Pastore et al. [92] exploit crowd sourcing approach to check assertions.

In this approach the developer produces tests and provides sufficient API docu-

mentation for the crowd such that crowd workers can determine the correctness

of assertions. However, recruiting qualified crowd to generate test oracles can be

quite challenging.

In the context of leveraging the existing test cases to generate more complex

tests, Pezzè et al. [94] propose a technique to construct integration tests which

focus on class interactions by utilizing the unit test cases. The integration tests are

formed by combining initialization and execution sequences of simple unit tests to

form new ones. However, the proposed technique does not deal with assertions.

eToc [110] and EvoSuite [46] use search based techniques to evolve the initial

population of test cases. Their main goal is to increase the code coverage achieved

by the test suite. However, in this work our aim is to increase the fault finding

capability by focusing on test assertions rather than increasing the code coverage.

Milani Fard et al. [44] propose Testilizer which utilizes DOM-based test suite

of the web application to explore alternative paths and consequently regenerate

assertions for new detected states. Our work is different from this approach in that

we exploit DOM-related information in a human written test suite to capture the

behaviour of the application at the unit-level JavaScript. Furthermore, they do not

generate code-based assertions which we do.
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5.6 Conclusions
In this work, we presented an automated technique to generate JavaScript unit test

assertions; given a web application and a UI-level test suite, we generate assertions

that can capture regression faults in the JavaScript code. We implemented our

approach in an open-source tool called Atrina. We empirically evaluated Atrina

on seven web applications. The results show that our approach (1) is accurate in

mapping the existing UI-level assertions to the JavaScript code, (2) is effective

in detecting regression faults (63% on average), (3) outperforms human-written

DOM-based assertions in terms of fault finding capability (by 31% on average),

and (4) generates unit assertions that are more effective (26% on average) than

those produced by a mutation-based technique.

The results indicate that existing higher level test assertions can be leveraged to

generate unit-level assertions. In our current approach we rely on parts of the code

that are covered by the human-written test cases. Our future work will include

using learning-based techniques to generate unit-level assertions for parts of the

code that are not examined through existing human-written tests.
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Chapter 6

Conclusions

JavaScript is increasingly being used to create modern interactive web applications

that offload a considerable amount of their execution to the client-side. JavaScript

is a notoriously challenging language for web developers to use, maintain, analyze

and test. The work presented in this dissertation aims at improving the state-of-

the-art in testing JavaScript web applications.

6.1 Revisiting Research Questions
In the beginning of this thesis, we designed two research questions. We believe

that the contributions show that we have addressed the research questions.

6.1.1 Research Question 1

How can we generate effective test cases for JavaScript web applications?

To this end, we proposed a set of techniques to automatically test the correct

behaviour of the application. Mutation analysis has subsequently been used to

assess the effectiveness of the generated tests.

Chapter 2. We proposed JSART, which targets web application testing from the

invariant assertions points of view. Program invariants formulate the main char-

acteristics of the application under test that remain unchanged as the application

evolves. Therefore, they can be used towards regression testing. Our technique

first infers such invariants from the application, and then convert them to test asser-

tions. Our empirical study shows that the proposed approach is able to infer stable

assertions and accurately detect regression faults. Our technique is involved with
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minimal performance overhead, and thus it may also scale well for industrial appli-

cations in practice. Moreover, manual detection of invariants is a time consuming

task. Therefore, the automation brought by our tool can reduce the manual effort

involved with inferring invariants.

However, our invariant generation technique is based on the assumption that

the program specifications are not changed frequently in subsequent revisions. If

major changes affect the core properties of the application, the inferred invariants

from the original version may not be valid any longer. Furthermore, it may not

be possible to convert every program’s characteristic into a useful invariant. For

instance, game applications are usually involved with huge amount of state changes

as the application executes. In such cases, the application may contain only a few

invariants.

Chapter 4. In order to generate a more generic type of oracles that can be used

during the testing cycle of various applications, including unit and GUI testing, we

proposed JSEFT in Chapter 4. JSEFT generates test cases combined with post-

condition assertions at the two complementary levels of unit and event-based tests.

We use mutation testing to produce our assertions. To evaluate the effectiveness

of JSEFT we consider a state-of-the-art JavaScript test generation framework as a

basis to compare our technique. The results of the empirical evaluation indicate

that the approach generates test cases with high fault finding capability.

Using our tool makes it easier for the tester to find the root cause of the error

through the fine grained unit assertions. Moreover, our tool provides a better test

suite comprehension as we reduce the number of test cases. Note that the generated

tests can become hard to understand because of the huge number of test cases and

assertions.

Though the evaluation results points to the effectiveness of JSEFT in detect-

ing faults, we found out that the generated event-based tests are brittle. Therefore,

if trivial changes occur on the GUI of the application, our event-based assertions

may not be valid anymore. A more robust mutation-based assertion generation

is required to address this problem. Further analysis of the results obtained from

JSEFT revealed that (1) although, the generated assertions by JSEFT are effective

in detecting the injected faults, the use of mutation testing for the purpose of asser-

tion generation can negatively impact the performance, and (2) event-based tests
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can potentially miss the code-related errors if the fault does not propagate to the

observable GUI state. We observed that the rate of missed faults by DOM-based

test cases is higher for the applications that have tight interaction with the GUI

through the underlying executable code. These two observations form the basis

of Chapter 5, where we make use of the GUI-dependent assertions as a guide to

generate code related unit-level assertions.

Chapter 5. Fruitful observations from analyzing the results of JSEFT led us to pro-

pose Atrina, which utilizes the existing GUI-based (i.e., DOM) assertions as well

as useful execution information inferred from a GUI test suite to automatically gen-

erate assertions used for testing individual functions. Our results confirm that the

generated unit-level assertions surpass the fault finding capability of DOM-based

assertions. We also found out that Atrina outperforms mutation-based assertion

generation technique in terms of the time efficiency. Though the current results are

promising, we acknowledge that more studies are required to draw more general

conclusions.

Further Observations. During the evaluation of different test generation tech-

niques proposed in this thesis, we realized that using function closures is quite

popular in writing JavaScript applications. Function closures in JavaScript lan-

guage provide a way to make variables and functions private, thus keeping them

out of the global scope. While function closures can be called during the testing

process at the highest program scope they belong to, it is not possible to call them

directly in test cases, which makes it challenging to assess their outcomes. One

possible future direction is to measure the extent of such hard-to-test code writ-

ten by developers by conducting a thorough empirical study. The results of the

study can be used towards generating effective test cases by identifying hard-to-

test scopes, and if possible expose them to the testing unit through automated code

refactoring. JavaScript developers can also make use of the results of empirical

study as a coding recommendation to make their future applications more testable

and consequently more maintainable.

6.1.2 Research Question 2

How can we effectively assess the quality of the existing JavaScript test cases?
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We used mutation analysis as the test assessment technique. In the following,

we explain our observations as well as potential future work to further improve and

expand the use of mutation analysis.

Chapter 3. To assess the quality of test cases, we proposed MUTANDIS, a generic

mutation testing approach, that guides the mutation generation towards behaviour-

affecting mutants in error-prone portions of the code. The empirical evaluation

indicates that MUTANDIS can (1) significantly reduce the number of equivalent

mutants, and (2) guide testers towards designing test cases for important portions

of the code from the application’s behaviour point of view.

One of the main challenges in adopting mutation testing in industrial environ-

ments, is the time and manual effort involved with detecting equivalent mutants.

According to a recent study [70], it takes 15 minutes on average to manually detect

an equivalent mutant. Our current evaluation results show that our approach con-

siderably reduces the number of such useless mutants. This indicates that MUTAN-

DIS can potentially reduce the effort required for eliminating such useless mutants,

though this needs to be investigated by a thorough user study in future. Testers can

also use MUTANDIS to assess and compare the adequacy of their web application

testing techniques.

Stubborn Mutants. Reducing the number of equivalent mutants can potentially

eliminate stubborn (hard-to-kill) mutants, which are particularly important for as-

sessing the fault finding capability of test cases. The current evaluation results

show that MUTANDIS does not negatively influence the stubbornness of the mu-

tants. However, our approach is not particularly designed to generate such muta-

tions. We found out that the stubbornness of the mutants generated by MUTANDIS

stems from the inherent characteristics of the JavaScript functions. For example,

one such characteristic is function variadicity, meaning that a function can be called

with an arbitrary number of arguments. Therefore, one interesting future work di-

rection is to enhance the mutation generation technique by taking into account

such specific function features. This way we can reduce the number of equivalent

mutants while increasing the number of stubborn mutants.

DOM-level Mutation. We proposed DOM-level mutation testing in Chapter 4

to generate our DOM-based assertions. However, we currently considered only a
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few type of GUI mutations. Moreover, DOM elements are randomly selected for

the purpose of mutation. To make DOM-level mutation more useful, we need to

precisely define the type and location of mutation operators. In DOM mutation

the output is the resulting state of an executed event. Therefore, the scope of the

mutation operators differs from the traditional code-based mutant generators. As

a future work to enhance our current mutation technique, we need to (1) define a

new set of DOM-based mutation operators, and (2) design a new equivalent mutant

detection method, which is capable of identifying mutants that are equivalent at

their DOM-level properties.

6.2 Concluding Remarks
The work presented in this thesis has focused on providing JavaScript applications

with a rich set of new test automation techniques. Given the growing popularity

of JavaScript and the challenges of testing this dynamic language, we see many

opportunities for using the proposed techniques in practice. Further, developers

can use our approaches not only to test the applications, but also to assess the

adequacy of their web application tests.

Although, the approaches proposed in this thesis have been tailored for JavaSc-

ript-based applications, a number of contributions in test generation as well as test

assessment techniques are applicable to other programming languages as well. As

far as our test generation technique is concerned:

• DOM-level mutation, which is proposed to generate DOM-based assertions,

can be extended to support GUI-level mutation. The GUI mutation-based

oracle generation can be utilized to create test oracles for any type of appli-

cation that has rich user interface interactions.

• Our function coverage maximization, which is used to increase the number

of functions executed during the model extraction phase, is generic enough

to be applied in other event driven applications as well.

• Our slicing-based technique, which is proposed to generate unit-level asser-

tions by utilizing existing DOM-based test assertions, can be extended to
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model GUI-level test cases (e.g.; written in Java). The extracted model is

then converted to the corresponding unit-level assertions.

Our test assessment approach is designed for the purpose of mutation analysis,

however the proposed FunctionRank metric, which measures the relative impor-

tance of functions, can be used in program comprehension analysis as well. It is

worth mentioning that although we proposed a set of specific JavaScript mutation

operators, the overall mutation generation methodology can be applied to other

programming languages (e.g.; Java) as well.
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