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Abstract

Magnetized target fusion reactors are a modern idea to generate hydrogen

fusion energy on earth. The design entails confining a plasma with a mag-

netic field and crushing it in an imploding shell of molten metal. Such a

design has many unresolved questions in terms of its feasibility as a power

source and ways to make it efficient. In this thesis, we will look into two of

the approaches undertaken to explore these questions. Firstly, we use a coor-

dinate transformation and implement a novel flux-limited, split-step, finite

volume scheme for nonlinear coupled hyperbolic partial differential equa-

tions. With this numerical scheme, we do a parameter sensitivity analysis

for the design performance. Secondly, by a careful series of asymptotic ar-

guments, we establish a leading order asymptotic expression for the plasma

compression. This expression is qualitatively consistent with the numerical

work, but it also gives new insights into how the device operates. Together

these approaches allow us to infer key design parameters for the success of

magnetized target fusion. We will conclude with a look into the viability of

magnetized target fusion and some problems for future work.
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Preface

Relative Contributions

Various chapters are derived from peer-reviewed journal articles (one

published, and one under revision). The numerical finite volume work is

taken from “Investigation into Fusion Feasibility of a Magnetized Target Fu-

sion Reactor: A Preliminary Numerical Framework” (published with Jour-

nal of Fusion Energy, 2014) [26] with co-authors Brian Wetton and Sandra

Barsky. The asymptotic analysis comes from “Asymptotic Analysis of Mag-

netized Target Fusion Reactors” (under revision) [25] where I was the sole

author. At least 95% of the writing in the finite volume paper was done

by myself; I did all of the numerical simulations, in consultation with the

co-authors.

Publications

• “Investigation into Fusion Feasibility of a Magnetized Target Fusion

Reactor: A Preliminary Numerical Framework” (Journal of Fusion

Energy, 2014, published) [26]

• “Asymptotic Analysis of Magnetized Target Fusion Reactors” [25]

Most of section 1.2, part of chapter 2, and much of chapter 4 are taken

from [26]. Chapter 5 is taken from a revision of [25].

iii



Preface

A previous version of this manuscript included work on modelling super-

conductivity, but this work will appear as its own publication and not part

of this thesis.
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Chapter 1

Context for This Work

1.1 Scope of This Thesis

This thesis focuses upon one of the bigger projects I have been working

on during my PhD studies. It relates to modelling the design work of a

magnetized target fusion reactor - a new and promising means for creating

conditions for and harvesting energy from nuclear fusion on earth.

The work presented here comes from a variety of sources. The vast ma-

jority or the entirety of papers I have authored appear in this thesis, with

additional information provided for a more detailed exposition of the math-

ematical thought processes. Due to the fact that some journals have very

targeted audiences and/or page restrictions, there are important background

elements that did not/will not appear in the published form, and the other

chapters of this thesis aim at providing this extra background and other

insights.

Section 1.2 provides an introduction and motivation; chapters 2 and 3

provide a mathematical and physical background to the analysis undertaken;

chapters 4 and 5 are taken from publications with further details and exam-

ples included in chapter 6. Finally, chapter 7 provides a summary and an

outlook at possible future work.
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1.2. Magnetized Target Fusion

1.2 Magnetized Target Fusion

Much of this section is taken from [26]. The purpose is to introduce the con-

cept of magnetized target fusion and some important design considerations.

1.2.1 Fusion Motivation

Finding sustainable, clean energy sources is of the utmost importance for

society. The use of fossil fuels has harmful effects upon the environment

in releasing greenhouse gases [29] and the damages done to the earth and

ecosystems in their harvesting; they are becoming more and more costly; and

their supply is limited [31]. The investment in alternative energy sources is

one of the most exciting areas of research in recent decades [11] including

the rapid development of fuel cells [4], wind-driven power stations [2], solar

power [24] and geothermal power [16]. These technologies are improving

each day, but there is another source of power that as of yet has not been

realized on earth: nuclear fusion [18].

Nuclear fusion is a complicated process in which lighter particles are

fused together, often at very high temperatures and pressures, to produce

heavier particles. Through a change in rest mass between the reacting and

resultant particles, energy is released through radiation. The major chal-

lenge in producing fusion is forcing the lighter particles to interact enough

with each other so that they can fuse. Modern ideas of fusion are often based

on using deuterium (2 H) and tritium (3 H) plasmas as fuel and fusing them

to produce helium and free neutrons [3] according to

2
1H + 3

1H→ 4
2He + 1

0n+ 17.6MeV.
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1.2. Magnetized Target Fusion

Other fuel sources have also been considered, such as using only deuterium,

or a special process known as Muon Catalyzed Fusion µCF. With µCF, a

negatively charged muon facilitates the bonding of a proton and deuterium

to form 3
2 He and the release of the muon [15]. Unfortunately, the muons can

also be trapped in the bonds they form and thereby cease in their catalysis

of fusion.

Nuclear Fusion is how the sun generates its energy, with the conversion

of hydrogen into helium [32]. Much of the work being done upon nuclear

fusion for energy on earth is at the theoretical level, or attempting a proof-

of-concept. The engineering of devices theoretically capable of fusing atomic

nuclei is complex, time-intensive, and costly. As a result, it is important to

proceed with as thorough an understanding of potential devices as possible,

often through modelling work. The motivation for this work is in the math-

ematical modelling and analysis of the design of a magnetized target fusion

reactor being designed at General Fusion in Burnaby, BC, Canada.

1.2.2 Magnetized Target Fusion

There are a number of ongoing large-scale efforts to achieve nuclear fusion,

including work at the National Ignition Facility (NIF)[7] and the Interna-

tional Thermonuclear Experimental Reactor (ITER) project [9]. This paper

reports on an effort by a Canadian nuclear fusion research company General

Fusion [19]. The main idea is to compress a deuterium-tritium (DT) plasma

located in a cylindrical cavity by an imploding shell of lead-lithium. With

sufficient compression, the plasma will heat to ignition, and a recovery sys-

tem will convert the heat and radiation generated to electricity. There are

a number of factors to consider in the design of such a system. The work
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1.2. Magnetized Target Fusion

done on this topic in this thesis focuses on developing a basic model of the

compression so that we can apply finite volume numerical schemes for non-

linear hyperbolic conservation laws with moving boundaries to make basic

predictions of the reactor being designed and thereby do a parameter search

to optimize the conditions under which fusion can occur. We will also apply

asymptotic analysis to gain analytic insight into the factors influencing the

design performance.

One engineering obstacle is that heating the fuel to a high temperature

greatly increases convective cooling, and any contact a plasma makes with

the walls of its confinement yields significant energy losses [3]. Fortunately,

it is possible to suspend a plasma with magnetic fields and minimize its

contact with its enclosure. This insulation helps to reduce energy losses.

Beyond the mere concern of energy losses is the necessary particle den-

sity and pressure necessary for fusion to occur. One useful criterion is the

Lawson condition for fusion (whereby more energy is released than goes into

heating), which states that during a compression the product of number den-

sity and time should exceed 1014 s/cm3 for deuterium-tritium fusion and the

temperature should exceed 6 − 10 keV [21]. This is sometimes generalized

into a triple product where temperature times density times confinement

time must exceed ∼ 4× 1015 s keV / cm3 [28]. The product is even higher

for deuterium-deuterium fusion. In the numerical work that we present, we

compare our predictions of plasma densities and pressures with this triple

product by integrating the product of number density and temperature over

the time the plasma is being compressed.

The design we consider consists of a 3-m diameter spherical region of

molten lead-lithium, rotating about a 0.4-m diameter central vertical axis

at high velocity such that a nearly empty, vertical cylindrical region is formed
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1.2. Magnetized Target Fusion

down the central axis. Within this axis, at a very precise time, a toroidal

plasma of deuterium and tritium is released and reaches the very centre

of the spherical region (we assume the plasma can survive for hundreds of

microseconds). Also at a precise time, pistons, delivering impact pressures

of 2 GPa hit the outside of the sphere, and a pressure wave travels through

the lead-lithium until reaching the central axis at the precise moment the

plasma arrives. The intense pressure and radially inward particle velocity

compress the plasma to cause fusion and release energy. The use of lead-

lithium is appropriate as lead has a high cross section for neutron capture

and absorbs radiation.

The initial total pressure (gas plus magnetic pressure) of the plasma is 5

MPa with particle density 3.2×1016 particles per cm3 and temperature of 100

eV. The intense pressure pulse is modelled by a Gaussian with characteristic

time 45 µs. A diagram illustrating the reactor is given in figure 1.1.

Given the design as described, we wish to gain insights into how it will

operate in practice and what design specifications will make it more effective.

This is taken up in the subsequent chapters.
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1.2. Magnetized Target Fusion

Figure 1.1: Magnetized Target Fusion Reactor Design
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Chapter 2

Modelling

2.1 Overall Components

Sections 2.3 and 2.4.3 are derived from [26].

The system introduced in section 1.2 has a variety of components that

need to be treated together. The pistons impact the outer wall of the lead-

lithium sphere and a localized disturbance in the fluid propagates; for this

understanding we need basic fluid dynamics equations. In our case, we will

deal with the compressible Euler equations. With the Euler equations, it is

necessary to know the relationship between the fluid pressure and its density,

and this requires a model for the so called equation of state for lead-lithium.

The plasma is another component to model, where we need to calculate

its pressure and basic properties. This chapter will derive the equations

relevant for our study.

2.2 Deriving the Euler Equations

For these derivations, we will consider a coordinate system (x, t) describing

position x ∈ R3 at time t ∈ [0,∞). We let the scalar ρ(x, t) ∈ [0,∞) be

the mass density (mass per unit volume), the vector field v(x, t) ∈ R3 be

the local fluid velocity, and P (x, t) ∈ R be the pressure. We denote Ω as

a control volume in space with ∂Ω denoting is boundary with unit normal
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2.2. Deriving the Euler Equations

vector n pointing outwards. Note that n depends on the position upon the

surface.

2.2.1 Mass Conservation

In this setting, the total amount of mass within Ω is

M =

∫
Ω
ρ(x, t)dx.

As mass cannot be spontaneously created or destroyed in our setting, the

only possible cause for M to vary is for mass to enter or leave Ω.

At a point on ∂Ω, the amount of mass flowing into Ω per unit area per

unit time, the mass flux, is −ρv · n. To understand this, we first consider

that only velocities that are parallel to n will carry fluid into or out of Ω

since any fluid flowing parallel to the surface of ∂Ω will not cross it. The

velocity in the unit normal direction is v ·n. A positive value of v ·n indicates

that fluid is leaving because it is flowing in the outward direction. In effect,

v · nda, for a differential area element da, describes the volume of fluid that

is expelled, normal to the surface, per unit time. We can multiply this by

ρ to obtain ρ(v · n)da to find mass that leaves ∂Ω through the area element

da per unit time. Similarly, the mass flux that enters Ω is −ρv · n.

By integrating this mass flux over the boundary of Ω, we can find the

net influx of mass. This can be equated to the time derivative of the total

mass. We have:

d

dt

∫
Ω
ρdx =

∫
∂Ω
−ρ(v · n)da

and by moving the time derivative inside the first integral by making it a

10



2.2. Deriving the Euler Equations

partial derivative and using the divergence theorem on the second integral,

we have ∫
Ω
ρtdx = −

∫
Ω
∇ · (ρv)dx

=⇒
∫

Ω
(ρt +∇ · (ρv))dx = 0.

For this to hold everywhere in space, for all control volumes Ω, it must hold

pointwise so that

ρt +∇ · (ρv) = 0.

2.2.2 Momentum Conservation

This derivation is similar, but there are subtleties, most notably in that we

need to consider a Lagrangian reference frame. At one point in this deriva-

tion we will take a time derivative of an integral whose domain and integrand

are time-dependent and we will use the Reynolds Transport Theorem for this

[22].

We consider a control volume Ω(t) that is time-dependent. We define

Ω(t) as the set of all positions of fluid particles that originated in the set

Ω(0) at t = 0. We will consider a single component of the momentum in

the e-direction where e is a unit vector, and denote φ = ρv · e to be the

e-momentum density per unit volume. We denote

Φ(t) =

∫
Ω(t)

φdx

to be the total e−momentum. As pressure is a force per unit area normal to

an interface, we can compute the total force in the e−direction acting upon

11



2.2. Deriving the Euler Equations

the ensemble of particles within Ω(t) by a surface integral

F (t) =

∫
∂Ω(t)

−P (e · n)da

(where the negative sign accounts for the fact that the outward normal

points in the opposite direction to the force imparted by the boundary of

the control volume upon the contained fluid). Newton’s second law says that

the net force acting on a body is the rate of change of its total momentum

and thus

d

dt

∫
Ω(t)

φdx︸ ︷︷ ︸
Use Reynolds Transport

=

∫
∂Ω(t)

−P (e · n)da

∫
Ω(t)

∂tφdx+

∫
∂Ω(t)

φv · nda = −
∫

Ω(t)
∇ · (Pe)dx∫

Ω(t)
∂tφdx+

∫
Ω(t)
∇ · (φv)dx = −

∫
Ω(t)
∇P · edx

which finally implies, since the relation holds for all control volumes Ω(t)

that

φt +∇ · (φv) +∇P · e = 0

and upon using the fact that φ = ρv · e we have

e · (ρv)t +∇ · (ρ(v · e)v) + e · ∇P = 0.

Since this holds for all directions e, in particular e = x̂, ŷ, ẑ, then


(ρv1)t

(ρv2)t

(ρv3)t

 +


∇ · (ρv1v)

∇ · (ρv2v)

∇ · (ρv3v)

 +


Px

Py

Pz

 =


0

0

0

 .
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2.3. Equation of State for Lead-Lithium

Table 2.1: Data for quadratic equation of state. Using these data points, we
are able to construct an empirical fit to the equation of state for lead.

Density Value

11340 kg m−3 Pressure = 101325 N m−2

11340 kg m−3 Sound Speed = 2090 m s−1

16017 kg m−3 Pressure = 4.06185× 1010 N m−2

Here we are using the notation that vj is the jth component of v.

Often this is written in a more compact form as

(ρv)t +∇ · (ρv ⊗ v) +∇P = 0

where we interpret the tensor product ⊗ by a⊗ b = abT, a matrix, if a and

b are column vectors.

2.3 Equation of State for Lead-Lithium

The Euler equations for mass and momentum conservation are only a closed

set of equations if there is a known function that relates the pressure P to

the density ρ.

Based on the experimental data for lead [34], we fit a quadratic equation

of state for lead-lithium using the density ρ0 and sound speed
√

∂P
∂ρ [39] at

1 atm, and the density at a pressure of 4.06185× 1010 Pa. This gives us two

prescribed points in the density-pressure plane and a slope at a point, which

defines a quadratic equation of state P = A(ρ− ρ0)2 +B(ρ− ρ0) +C. The

data we use in this quadratic fit are given in table 2.1. The fit is plotted in

figure 2.1.

It is important to note that such an equation of state does yield nega-

tive absolute pressures for density values much less than those at standard
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2.4. Equation of State for Plasma

Figure 2.1: Quadratic fit to experimental equation of state data.

conditions. Interpreting a negative pressure is rather delicate, but some

experiments have suggested that for some liquids, a negative pressure can

be sustained for fast time scales [13]. Under these negative pressures, the

fluid will cavitate (i.e., it will turn into a gas or there will be empty space).

Due to this physical observation, we allow for the negative pressures. We

remark further that as can be seen in table 4.3, the fit parameters (such

as the sound speed used) do influence the model predictions. Further ex-

perimental investigation into the equation of state of lead-lithium would be

useful in improving the modelling.

2.4 Equation of State for Plasma

Because the plasma consists of charged particles moving in a magnetic field,

the pressure of the plasma has two components: a gas pressure and a mag-
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2.4. Equation of State for Plasma

netic pressure due to the conservation of magnetic flux. We consider these

components separately now.

2.4.1 Plasma Gas Pressure

This derivation makes use of basic thermodynamics, a good reference for

which is [35].

Because the process is very rapid, and with a first-order approximation

that energy losses can be neglected, we will assume the plasma compression

is adiabatic i.e. no heat is transferred into or out of the plasma during its

compression. Under this assumption, the gas pressure Pg and volume V of

the plasma will obey

PgV
γ = constant

where γ = 5/3.

This is a standard result assuming an ideal gas law and adiabatic con-

ditions, but for a thorough coverage, we derive it below.

2.4.1.1 Specific Heat Relations

The first law of thermodynamics states that

dQ = dU + PdV. (2.1)

i.e., that the differential heat exchange between a system and its environment

dQ is the sum of the small change in its internal energy dU and the pressure-

volume work done in expanding PdV where P is the pressure of the system

and dV is the differential change in volume [35].

Thermodynamically, we can choose two variables as independent, allow-
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2.4. Equation of State for Plasma

ing the rest of the system to be implicitly determined by these two. By

taking P and the temperature T as independent, then we can write

dQ = (
∂U

∂P
)TdP + (

∂U

∂T
)PdT︸ ︷︷ ︸

dU

+P ((
∂V

∂P
)TdP + (

∂V

∂T
)PdT︸ ︷︷ ︸

dV

) (2.2)

where the subscripts indicate which variable was held constant. Likewise,

by taking V and T as independent, we can write

dQ = (
∂U

∂V
)TdV + (

∂U

∂T
)V dT︸ ︷︷ ︸

dU

+PdV. (2.3)

The specific heats cP and cV are defined by (∂Q∂T )P and (∂Q∂T )V , i.e., they

are respectively the instantaneous rate of heat exchange between a system

and its surroundings with respect to temperature under constant pressure

and constant volume conditions. These can be readily expressed by using

dP = 0 in equation (2.2) and dV = 0 in equation (2.3) and dividing the

equations by the differential dT giving us

cP = (
∂U

∂T
)P + P (

∂V

∂T
)P (2.4)

and

cV = (
∂U

∂T
)V . (2.5)

2.4.1.2 Ideal Gas Specific Heats

An ideal gas has an internal energy

U =
f

2
nRT (2.6)
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where f is the number of degrees of freedom, n is the number of moles of

gas, and R is the ideal gas constant. This follow from the equipartition of

energy whereby each degree of freedom for a particle in a system has an

average energy of 1
2kT where k is the Boltzmann constant [17]. In this case,

U = U(T ). This immediately implies that dU = f
2nRdT and that regardless

of what is held constant ∂U
∂T = f

2R and so that with (2.5) we obtain

cV =
f

2
nR. (2.7)

Having found a simple expression for cV , we also seek one for cP . By the

ideal gas law,

PV = nRT (2.8)

where n is the number of moles of gas. This means that differentially PdV +

V dP = nRdT so that in holding P constant and dividing by dT ,

P (
∂V

∂T
)P = nR

or, using this in conjunction with (2.4) and (2.5),

cP = nR+ cV . (2.9)

We have established that cP = nR+ cV for an ideal gas.

2.4.1.3 Adiabatic Conditions

Adiabatic conditions occur when there is no heat exchange between a system

and its environment i.e. dQ = 0. Under these conditions, we will establish

a relationship that is held between the pressure and the volume.
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We first note that from equations (2.6) to (2.8), U = cV T = cV
nRPV so

that

dU =
cV
nR

PdV +
cV
nR

V dP.

If this is used in (2.1), for adiabatic conditions then

cV
nR

PdV +
cV
nR

V dP︸ ︷︷ ︸
dU

+PdV = 0

and therefore

(cV + nR)PdV = −cV V dP

or that upon using cP = cV + nR and rearranging,

cV
dP

P
= −cP

dV

V
.

Integration yields P cV = constant× V −cP or that

P ∝ V −cP /cV . (2.10)

In the case of a plasma, comprised of monatomic species, there are 3

degrees of freedom, one for each independent spatial direction, and hence

we model the gas pressure by

Pg ∝ V −5/3

since cP = 5
2nRT and cV = 3

2nRT.
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2.4.2 Plasma Magnetic Pressure

Our model of a plasma is quite rudimentary and as a first approximation

we consider a solenoidal plasma. The essence of this model is that a plasma

consists of moving charged particles, moving in circular orbits. The design

of General Fusion is that of a spheromak - a toroidal plasma. What we

aim to establish here is a qualitative model for what is termed the magnetic

pressure of the plasma. This is the pressure associated with the magnetic

field induced by the motion of the charged particles.

An adiabatic plasma preserves its magnetic flux [1]. This key fact is es-

sential in deriving the pressure. We begin by considering a sheet of plasma

within a cylindrical geometry where the particles travel along a path of

radius R. In cylindrical coordinates (r, θ, z), the current density is 0 every-

where in space except at r = R where it takes the value λ Coulombs/unit

length of z in the unit vector direction θ̂. Throughout this derivation, the

figure 2.2 will be relevant.

2.4.2.1 Magnetic Field Calculation

From Maxwell’s equations [12], we have that ∇× B = µ0J where B is the

magnetic field, J is the current density, and µ0 is the permeability of free

space. Then, by Stokes’ Theorem

∮
C

B · dr =

∫∫
S

(∇×B) · nda =

∫∫
S

µ0J · nda = µ0I (2.11)

where C is a closed loop with differential path displacements dr, S is a

spanning surface to C with normal vector n given by the right-hand rule, da

is the differential area, and I is the total amount of current passing through

19



2.4. Equation of State for Plasma

Figure 2.2: The geometry of our simple sheet of plasma. The current density
is λ. The closed loops we consider are labelled, as is the differential surface
element considered for computing the pressure.

S in the normal direction.

We consider 3 rectangular loops Ci, i = 1, 2, 3, with vertices V i
1 (r =

r−i , θ = 0, z = −`/2), V i
2 (r = r+

i , θ = 0, z = −`/2), V i
3 (r = r+

i , θ = 0, z =

`/2), V i
4 (r = r−i , θ = 0, z = `/2) where for loop C1, r−1 = r−, r+

1 = r(0);

for loop C2, r
−
2 = r−, r+

2 = r+; and for loop 3, r−3 = r(0), r+
3 = r+ with

r− < −R < r(0) < R < r+. Note that by the axial symmetry, there is no

θ−dependence in any of these computations so we chose θ = 0, and due

to the infinite length there is no z−dependence, but for greater physical

interpretation we have chosen the z−range to go from −`/2 to `/2 with

` > 0 arbitrary. As each individual current component is in the θ̂-direction,

this gives rise to magnetic fields in the z− and r−directions but not the

θ−direction. Furthermore, by considering any point in space and looking at

the contribution of the magnetic field r−component due to currents above
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2.4. Equation of State for Plasma

Figure 2.3: The r−direction runs horizontally and the currents run into the
page as indicate by the ⊗. The magnetic fields generated by the currents
are drawn in blue and within the red boxes, the r−components of the field
cancel.

and below it, there is perfect cancellation, and there should be no magnetic

field in the r−direction. See figure 2.3.

We will write B = Brr̂ +Bθθ̂ +Bz ẑ. Then, in exploiting the symmetry

of the system, we have that B = Bz ẑ and

∮
C1

B · dr = −Bz(r = r−)`+Bz(r = r(0))`+

∫ r(0)

r−
0dr +

∫ r−

r(0)
0dr

= `(Bz(r = r(0))−Bz(r = r−)) = µ0`λ. (2.12)
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Also,

∮
C2

B · dr = −Bz(r = r−)`+Bz(r = r+)`+

∫ r+

r−
0dr +

∫ r−

r+
0dr

= `(Bz(r = r+)−Bz(r = r−)) = 0 (2.13)

since the net current is zero for this case (same amount going into and out

of the surface), and

∮
C3

B · dr = −Bz(r = r(0))`+Bz(r = r+)`+

∫ r+

r(0)
0dr +

∫ r(0)

r+
0dr

= `(Bz(r = r+)−Bz(r = r(0))) = −µ0`λ (2.14)

where the negative sign in the current arises from the current pointing in

the opposite direction to the outward normal vector for the loop integral.

Solving equations (2.12) through (2.14) tells us that Bz(r = r−) = Bz(r =

r+) = 0 and Bz(r = r(0)) = µ0λ. Besides their range, r−, r(0), and r+ were

arbitrary so the z−component of the magnetic field must be µ0I everywhere

inside the solenoid and zero everywhere outside.

2.4.2.2 Preservation of Magnetic Flux

The magnetic flux is defined by

ΦB =

∫∫
S

B · nda
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so that if the magnetic field is uniform everywhere inside the solenoid and

we choose a surface with normal vector ẑ, then

ΦB = πR2µ0λ.

If the magnetic flux is to be conserved, we must have that

λ =
ΦB

πR2µ0
. (2.15)

2.4.2.3 Calculating the Magnetic Pressure

We consider a small segment of the solenoidal pathway of z−length ` sub-

tending an angle dθ so that the arc length subtended is Rdθ. See figure 2.2.

If the magnetic field acting upon this segment is Bz ẑ then for a current

Iθ̂, the force acting upon the infinitesimal piece of the surface is, via the

Biot-Savart law,

dF = IRdθθ̂ ×Bz ẑ = IBzRdθr̂ = λ`BzRdθr̂. (2.16)

If the magnetic field just inside the solenoid at r = R− due to the

infinitesimal piece is B(i) (so that at r = R+ it would be −B(i)) and the

magnetic field due to the rest of the solenoid is B(s) then just outside the

solenoid at r = R+, we have −B(i) + B(s) = 0, and just inside r = R−, we

have that B(i) +B(s) = µoλẑ. We find that the magnetic field acting on the

infinitesimal slice is B(s) = 1
2µ0λẑ. Using this result in (2.16), we find that

dF =
λ2µ0`Rdθ

2
r̂.

As pressure is normal force dF · r̂ divided by area `Rdθ, we find there is a
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pressure

Pm =
λ2µ0

2
=

Φ2
B

2π2R4
. (2.17)

Equation (2.17) tells us that in our simple model, the magnetic pres-

sure of a plasma should scale like 1/R4. This holds in more generality for

adiabatic compressions of plasmas with torus-like structures [40].

2.4.3 Total Plasma Pressure

We take the total pressure PL as the sum of the two component pressures

PL = Pg+Pm. A more detailed description of the plasma would be an impor-

tant improvement for using this modelling in making accurate predictions

on the device’s operation.
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Chapter 3

Brief Background into Finite

Volume Methods for

Conservation Laws

The purpose of this chapter is to provided a more detailed mathematical de-

scription and background to the numerical method implemented in chapter

4. There are many books and papers written explaining the implementation

of numerical methods for hyperbolic conservation laws, but one particularly

useful book is one written by Randy LeVeque[23]; this book gives a very

thorough treatment of the topic and any interested reader should refer to

said book.

3.1 Finite Volume Schemes for Conservation

Laws

A finite volume method is one that describes cell averages in a meshing; a

finite difference scheme describes the pointwise values, and a finite element

method transforms a differential equation into its weak form and uses a finite

set of simple functions. The theory behind finite volumes in application to

conservation laws is vast, with deep results on the stability of methods, the so
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called total variation diminishing property (preventing spurious oscillations),

the fact that linear methods that preserve monotonicity are limited to first-

order accuracy, the importance of writing schemes in conservative form, and

much more. While all of these items are important, this chapter will cover

the basic theory necessary for developing and understanding our numerical

method presented in chapter 4.

3.1.1 Convergence

Because hyperbolic problems have solutions that naturally exist in a weak

sense, due to the possibility of shock solutions, convergence only occurs in

the L1-norm. This means that if unum(x, t) denotes the numerical solution

and uex(x, t) denotes the exact solution, both at a fixed end-time t, then as

the mesh is refined, the error

E =

∫
|unum(x, t)− uex(x, t)|dx→ 0

where the integral ranges in x over the set upon which we are solving. A

pth-order method is one where E = O(hp) where the spatial mesh size is

O(h).

3.1.2 Finite Volume Setup

We will consider a simple conservation law, in one spatial dimension x with

time t, for a quantity u ∈ RD:

ut + (f(u))x = 0. (3.1)
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3.1. Finite Volume Schemes for Conservation Laws

Figure 3.1: Diagram of basic finite volume setup.

This describes the time-evolution of a quantity with flux f(u(x, t)) ∈ RD.

Let us suppose further that we wish to solve this hyperbolic partial differ-

ential equation on the domain (x, t) ∈ [0, 1]× [0,∞) so that D = 1.

We mesh the interval [0, 1] into points xi = ih, i = 0, 1, ..., N , where

h = 1/N is the mesh spacing and we allow half-integer indices such that,

for example, x3/2 = 3h/2, etc. Let us define ū(xi, tj) = 1
h

∫ xi+1/2

xi−1/2
u(x, tj)dx

to be the average value of the quantity u on an interval of width h centred

at xi at time tj . See figure 3.1.
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3.1. Finite Volume Schemes for Conservation Laws

We can describe the time evolution of ū(x, t) by

dū(xi, t)

dt
=

1

h
(

d

dt

∫ xi+1/2

xi−1/2

u(x, t)dx)

=
1

h
(

∫ xi+1/2

xi−1/2

ut(x, t)dx)

= −1

h
(

∫ xi+1/2

xi−1/2

(f(u))xdx)

where the last equality came utilizing the original equation (3.1). We can

thus write that

dū(xi, t)

dt
= −

f(u(xi+1/2, t))− f(u(xi−1/2, t))

h
.

This simple evolution is the basic idea behind many finite volume meth-

ods for conservation laws. Ultimately, we seek to find ways of stepping for-

ward in discrete time steps from a state ūji , our approximation to ū(xi, tj),

to ūj+1
i in ways that are consistent with the physical system with high ac-

curacy. This amounts to

dū(xi, tj)

dt
= −
F ji+1/2 −F

j
i−1/2

h
(3.2)

such that F ji−1/2 = F(ūji−1, ū
j
i ) is a discretized flux that depends upon the

approximated average cell values to its left and right. For simpler notation,

we will drop the overbars so that uji represents ūji .

In the following sections, we consider linear and nonlinear systems, and

how low and high resolution schemes can be combined to yield a flux-limited

high-resolution finite volume method.
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3.2. Linear Systems

3.2 Linear Systems

We consider the evolution of the vector u(x, t) ∈ RD according to

ut + (Au)x = 0 (3.3)

for a diagonalizable, real, constant matrix A ∈ RD×D with distinct real

eigenvalues. Let us suppose that A can be diagonalized according to

A = RΛL (3.4)

where R is a matrix whose columns are the right eigenvectors, L = R−1 is the

matrix whose rows are the left eigenvectors ofA, and Λ = diag(λ1, λ2, ..., λD).

For the sake of providing a simple example, we will assume that D = 2

and A has two eigenvalues λ± with λ+ = λ1 > 0 and λ− = λ2 < 0 with

right eigenvectors r± and left eigenvectors `±.

3.2.1 Low Resolution

Here we consider a scheme that provides first-order accuracy for linear sys-

tems. Using equation (3.4) and multiplying equation (3.3) by L, we have:

vt + Λvx = 0 (3.5)

where v = Lu gives a representation of u with respect to the basis col(R).

This gives us two rather trivial equations

v±t + (λ±v±)x = 0
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3.2. Linear Systems

where v± = `±u are scalars (recall `± are row vectors and u is a column

vector).

From the method of characteristics, observe that the system information

propagates along the lines dx
dt = λ±. This is critical to our next step. The

equation (3.2) tells us that if we have discretized u and v according to

the finite volume approach with uji , v
j
i = Luji , then a suitable first-order

approximation to estimating vj+1
i with a forward time step size k is:

v±
j+1
i = v±

j
i −

k

h
(F±ji+1/2 −F

±j
i−1/2) (3.6)

At each point, the true flux is λ±v±, however from the characteristic

information it makes sense to define

F+j
i−1/2 = λ+v+j

i−1

F−ji−1/2 = λ−v−
j
i (3.7)

so that we use the flux as defined on the left side of the interface when

information is right-going and the flux as defined on the right side of the

interface when the information is left-going. The justification of this idea

comes when considering each cell as a piecewise constant and our solving the

Riemann problem between two adjacent cells. This is solving the Riemann

problem at each interface is referred to as Godunov’s method.

Finally we can combine equations (3.6) and (3.7) along with uj+1
i =

30
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Rvj+1
i to write

uj+1
i = uji −

k

h
R(λ+(v+j

i − v+j
i−1), λ−(v−

j
i+1 − v−

j
i ))

T

= uji −
k

h
(λ+(v+j

i − v+j
i−1)r+ + λ−(v−

j
i+1 − v−

j
i )r
−)

= uji −
k

h
(λ+w+j

i−1/2 + λ−w−
j
i+1/2) (3.8)

where w±
j
i−1/2 is the projection of uji−u

j
i−1 onto r±. Often the w’s are called

fluctuations.

Keeping with this idea of projection, there is a nicer way to write equa-

tion (3.8) in defining

A+ = Rdiag(λ+, 0)L (3.9)

and

A− = Rdiag(0, λ−)L. (3.10)

We write

uj+1
i = uji −

k

h
(FLji+1/2 −FL

j
i−1/2) (3.11)

where

FLji−1/2 = A+uji−1 +A−uji (3.12)

is the low resolution flux. In general we can write

FLji+1/2 −FL
j
i−1/2 = A+(ui − ui+∗) +A−(ui−∗ − ui) (3.13)

where i+
∗

= i−1 is an upwind based on a positive eigenvalue and i−
∗

= i+1

is the upwind index based on a negative eigenvalue.
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Note that

A = A+ +A−. (3.14)

Later on, we will make use of the notation

|A| = A+ −A−. (3.15)

Because A+A− = Rdiag(λ+, 0)diag(0, λ−)L = 0 and likewise for A−A+ we

have

A2 = |A|2. (3.16)

With D > 2, we can define A+ = Rdiag(λ1sgn(λ1), ..., λDsgn(λD))L and

A− = Rdiag(λ1sgn(−λ1), ..., λDsgn(−λD))L.

The following remark is more relevant to nonlinear systems but we men-

tion it here: the low resolution flux (3.12) can be expressed by

FLji−1/2 = A+uji−1 +A−uji

= (A−A−)uji−1 +A−uji

= Auji−1 +A−(uji − u
j
i−1)

= Aûji−1/2

where ûji−1/2 = ui−1 + RI−L(uji − u
j
i−1) is an upwinded u-value, and I− =

diag(0, 1). Clearly,

ûji−1/2 = uji−1 + w−
j
i−1/2. (3.17)

What this rewriting tells us is that we can obtain an upwind (low) resolution

flux by evaluating our flux function Au at an upwinded value of u.
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3.2.2 CFL Condition

The low resolution method above is stable provided the CFL condition is

obeyed, namely that the distance information could propagate at maximum

over the time step of size k, max{|λ+|, |λ−|}k, is smaller than the spatial

mesh size. For nonlinear systems for any D, the same condition must be

upheld but we seek the maximum |λi| over all eigenvalues λi and all mesh

locations.

3.2.3 High Resolution

Having established a first-order method given in equation (3.8), we will

obtain a method that has a higher order accuracy by making use of Taylor

series. In what follows, we assume that in our region of interest, the solution

is smooth. Given the nature of hyperbolic problems whereby shocks can

form, this is not always true.

Beginning with (3.3), under the assumption of smoothness of u and the

fact that A is a constant matrix, we can write

ut = −Aux (3.18)

and

utt = −Auxt

= −A(ut)x

= −A(−Aux)x

= A2uxx. (3.19)
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By Taylor series, we also have u(x, t+ k) = u(x, t) + kut(x, t) + k2

2 utt(x, t) +

O(k3) so that

ū(xi, tj+1) = ū(xi, tj) +
k

h

∫ xi+1/2

xi−1/2

(−Aux)dx+
k2

2

1

h

∫ xi+1/2

xi−1/2

A2uxxdx

= ūji −
k

h
(Au(xi+1/2, tj)−Au(xi−1/2, tj))

+
k2

2

1

h
(Aux(xi+1/2, tj)−Aux(xi−1/2, tj)) (3.20)

where in computing the cell averages we replaced the partial time derivatives

with partial space derivatives. To second-order, we have that u(xi−1/2, tj) =

1
2(uji−1 +uji ) and ux(xi−1/2, tj) = 1

h(uji −u
j
i−1) and thus with (3.20) we have

uj+1
i = uji −

k

h
(FHji+1/2 −FH

j
i−1/2) (3.21)

where we have that in general the high resolution flux can be expressed as

FHji−1/2 =
A

2
(uji + uji−1)− k

2h
A2(uji − u

j
i−1). (3.22)

This form is also known as the Lax-Wendroff method.

This is second-order accurate, provided the solution is sufficiently smooth.

In the next section, we will consider how to combine the low and high reso-

lution fluxes, taking advantage of the good properties of both.

3.2.4 Flux Limiters

The idea behind flux limiters is to use the high resolution flux when the

numerical solution is smooth and to use the low resolution flux, which is

not based in Taylor series, when the solution is not smooth or when it is

discontinuous. First, we note that there is a simple way of expressing the
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difference between the high and low resolution fluxes (see equations (3.12),

(3.9), (3.10), (3.15), (3.16), (3.14), and (3.22)):

FHji−1/2 −FL
j
i−1/2 =

A

2
(uji + uji−1)− k

2h
A2(uji − u

j
i−1)−A+uji−1 −A

−uji

=
A+ +A−

2
(uji + uji−1)

− k

2h
A2(uji − u

j
i−1)−A+uji−1 +A−uji

=
A+

2
uji −

A−

2
uji −

A+

2
uji−1 +

A−

2
uji−1

− k

2h
|A||A|(uji − u

j
i−1)

=
1

2
|A|(I − k

h
|A|)(uji − u

j
i−1).

Let us define

∆j
i−1/2 =

1

2
|A|(I − k

h
|A|)(uji − u

j
i−1). (3.23)

Then, depending on how smooth the solution is, the ideal numerical flux

can be written as

F ji−1/2 = FLji−1/2 +
1

2
|A|(I − k

h
|A|)∆̃j

i−1/2 (3.24)

with

∆̃j
i−1/2 = RΘj

i−1/2L(uji − u
j
i−1) (3.25)

and the matrix

Θj
i−1/2 = diag(θ+j

i−1/2, θ
−j
i−1/2) (3.26)

limits the fluxes based on how rapidly the solution is changing in its different

eigencomponents. If the solution is perfectly smooth in the r+ space then
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we should take θ+ = 1; and if, for example, it is highly discontinuous then

θ+ = 0. We can think of RΘj
i−1/2L(uji − u

j
i−1) as a limited net fluctuation.

In our example, we consider the ratio

ρ±
j
i−1/2 =


v±

j
i−1−v±

j
i−2

v±ji−v±
j
i−1

, if λ± > 0

v±
j
i+1−v±

j
i

v±ji−v±
j
i−1

, if λ± ≤ 0

=


r±·w±ji−3/2

r±·w±j
i−1/2

, if λ± > 0

r±·w±ji+1/2

r±·w±j
i−1/2

, if λ± ≤ 0.

(3.27)

If this ratio is negative or near zero then it means the derivative at our cell

i is zero or has a discontinuity; if this ratio is near 1 then the derivative

is not changing very quickly. If the ratio is very large and positive then it

means that the solution is rapidly changing. One particular choice of limiter,

known as the minmod limiter, is given by

θ±
j
i−1/2 = max{0,min{1, ρ±ji−1/2}}. (3.28)

This limiter works in our setting, but many other limiters are possible such

as, for example, the Van Leer limiter with

θ±
j
i−1/2 =

ρ±
j
i−1/2 + |ρ±ji−1/2|

1 + |ρ±ji−1/2|
.

Clearly the minmod limiter will give full weight to the low resolution flux

if there is a spike in the solution and near a local max/min; however, if

the solution changes rapidly but maintains the sign of its derivative, it is

possible for the limiter to give a strong weighting to the high resolution flux.
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3.2.5 Extrapolation

Boundary conditions are an important part of solving partial differential

equations. If we assume that we have unknown cell values uji where i =

0, 1, ..., N then the physical boundary occurs at x = 0 where uj0 is located.

In order to update u0, we need the flux function F j−1/2 and this requires

us to know ρ±
j
−1/2, which in turn requires a value for vj−2. An identical

issue occurs at the right boundary. In practice, a constant extrapolation is

sufficient to maintain at least first-order accuracy at the boundary. Thus,

at each time step when required, if we don’t otherwise have a component of

uji specified, we can define uj−2 = uj−1 = uj0. We can use the same approach

at the right boundary.

3.3 Extensions to Nonlinear Systems

Having established the basic numerical approach to linear systems, this sec-

tion is devoted to extending the methods presented to nonlinear systems

and giving examples.

3.3.1 General Idea

Nonlinear systems can be dealt with in much the same way as we have

considered in the case of a linear system with a few small differences. The

system takes the form

ut + (f(u))x = 0.

When the solution is smooth, and even in the case of shocks the solution

tends to be smooth everywhere except for isolated points, we can define a

linearized matrix A = ∂f
∂u so that ut +A(u)ux = 0. Because the eigenvectors
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and eigenvalues are changing at each grid point in general (the matrix A is

dependent upon u), we need to consider the cell updates locally. Again we

consider the case where A is a 2×2 matrix with eigenvalues λ± with λ+ > 0

and λ− < 0.

In averaging the eigenvalues of the linearized system at cells i and i− 1,

we determine the direction of the system in the basis of eigenvectors of

the matrix A(ui−1/2) where ui−1/2 = 1
2(ui + ui−1). Note that we use the

average of the eigenvalues and not the eigenvalues of the average of A(uji−1)

and A(uji ). We can define an upwind value of uji−1/2 by (see equation (3.17))

ûji−1/2 = uji−1+A−
j
i−1/2(uji−u

j
i−1) and a corresponding upwind flux function

f̂ ji−1/2 in evaluating f at ûji−1/2. This establishes a first-order method. Note

that in evaluating this flux function at the upwinded value of u, we are

implementing an approximate Riemann solver: instead of solving the full

Riemann problem at each interface, we only solve an approximate problem.

In practice this works quite well.

In the local basis, we can also compute w±
j
i−1/2 and, based on the di-

rections, w±
j
i∗ (the upwind fluctuations), allowing us to define a local flux

limiter. Note that because the w±’s are vectors and they may change from

one cell to the next, to compare them, we use a projection and define

ρ±
j
i−1/2 =

w±
j
i∗ · w±

j
i−1/2

|w±ji−1/2|2
.

Then, we can define local flux limiters and include the high resolution flux

defined by (3.24), (3.25), and (3.26), replacing all matrices that were pre-

viously held as constant by their corresponding values at i − 1/2. For full

exposure, we are computing w±i−1/2 and w±
i±∗

where i∗ is either i − 3/2 or

i + 1/2, depending on the sign of the eigenvalue λ±i−1/2. The i±
∗
-value is
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x0 x1 ... xi−1 xi xi+1 ... xN−1 xN
u0 u1 ... ui−1 ui ui+1 ... uN−1 uN

E−2 E−1 E0 E1 ... Ei−1 Ei Ei+1 ... EN−1 EN EN+1 EN+2

D− 3
2

D− 1
2

D 1
2

... Di− 1
2

Di+ 1
2

... DN− 1
2

DN+ 1
2

DN+ 3
2

I− 3
2

I− 1
2

I 1
2

... Ii− 1
2

Ii+ 1
2

... IN− 1
2

IN+ 1
2

IN+ 3
2

w− 3
2

w− 1
2

w 1
2

... wi− 1
2

wi+ 1
2

... wN− 1
2

wN+ 1
2

wN+ 3
2

θ− 1
2

θ 1
2

... θi− 1
2

θi+ 1
2

... θN− 1
2

θN+ 1
2

φ− 1
2

φ 1
2

... φi− 1
2

φi+ 1
2

... φN− 1
2

φN+ 1
2

w̃− 1
2

w̃ 1
2

... w̃i− 1
2

w̃i+ 1
2

... w̃N− 1
2

w̃N+ 1
2

û− 1
2

û 1
2

... ûi− 1
2

ûi+ 1
2

... ûN− 1
2

ûN+ 1
2

f̂− 1
2

f̂ 1
2

... f̂i− 1
2

f̂i+ 1
2

... f̂N− 1
2

f̂N+ 1
2

Table 3.1: An illustration of the grid variables. The solution and true spatial
mesh are defined at indices i = 0, 1, ..., N . By constant extrapolation, we
extend the solution and the spatial mesh giving the E-variables with indices
i = −2,−1, 0, ..., N,N + 1, N + 2. By subtracting these E−values and av-
eraging them, we obtain difference values D and interpolated values I both
with indices −3/2,−1/2, ..., N + 1/2, N + 3/2. With the I− values, we can
also interpolate a linearized system and determine the components of the D-
values in the coordinates of the right eigenvectors, giving us the w variables.
By upwinding, we determine the fluctuation ratios and the limiters θ and
φ with indices i = −1/2, 1/2, ..., N − 1/2, N + 1/2, and we can also define
limited w-variables, the w̃-variables. In making use of the matrices formed
at the I−cells, we can also obtain the upwind E-values, û, relevant to define
the fluxes f̂ . A second-order flux limited method would then determine the
low resolution numerical flux, f̂ along with a second-order flux correction
that is suitably limited.

always chosen to take data from the side, from which, the information is

coming. The second-order flux correction makes use of the limited w-values.

To illustrate the locations of the various grid variables, we present table 3.1.

3.3.2 Example of Different Methods as Applied to Burger’s

Equation

To illustrate the implemention of 3.3.1, we consider the inviscid Burger’s

equation

ut + (
1

2
u2)x = 0
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on (x, t) ∈ [−3, 3]× [0, 3/2] with initial conditions

u(x, 0) = H(x+ 3/2)−H(x− 3/2)

where H denotes the Heaviside step function. From the analytic solution,

we can consider the x−range to be a subset of R where the true solution lies.

We focus on the qualitative behaviour of the different numerical methods.

Numerically our boundary conditions are implemented by constant extrap-

olation as described above in 3.2.5. We will begin by solving the equation

analytically; then we will plot the solutions obtained in applying a first-order

upwinding method, a well-known method that is extremely low resolution

(Lax-Friedrichs), the second-order flux limited scheme explained in 3.3.1,

and finally, and second-order method that is not limited.

From characteristics, in smooth regions, we have that

ut + uux = 0 (3.29)

so that along curves such that

dx

dt
= u,

then
du

dt
= 0.

Thus, along

x = ξ + u(ξ, 0)t,

u = u(ξ, 0)
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for ξ ∈ R. This breaks down in two areas. At t = 0, the characteristic curves

coming from (3/2, 0) overlap: at x = 3/2+, the characteristics are vertical

and at x = 3/2−, the characteristics move to the right with unit speed.

This makes u multivalued and there is a shock. Also, the curves coming

from (−3/2, 0) fail to define values for u in the sector (x + 3/2) = ct for

0 < c < 1. To deal with this, we insert an expansion fan.

With a flux of f(u) = 1
2u

2, the Rankine-Huginoit conditions [36] tell us

that the shock emitted from (3/2, 0) travels at speed v = [f(u)]
[u] =

1
2

02− 1
2

12

0−1 =

1
2 where [u] = u+−u− measures the discontinuity in the quantity u across the

shock where u+ = limx→x+s u(x, t) and u− = limx→x−s u(x, t) are the limiting

values of u to the right and left of the shock at x = xs(t) respectively.

For the expansion fan, we fit a similarity solution u = u(η) where η =

(x + 3/2)/t. Then ∂t = −(x + 3/2)/t2Dη and ∂x = (1/t)Dη. Using this in

(3.29) gives

−(x+ 3/2)/t2u′(η) + uu′(η)/t = 0

or

u′(η)(−η + u) = 0

so that either u′(η) = 0 or u = η. A constant value for u does not work,

but u = η = (x + 3/2)/t does. This fits the expansion fan. A diagram

illustrating the qualitative behaviour of the solution is found in 3.2.
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Figure 3.2: A sketch of the solution to the Burger’s equation illustrating the
shocks and expansion fans.

At t = 3/2, the analytic solution is that

u(x) =



0 if x ≤ −3/2

2
3x+ 1 if − 3/2 < x < 0

1 if 0 ≤ x < 9/4

0 if x ≥ 9/4.

Comparison of several computational approximations to this exact solu-

tion are shown in figure 3.3. For our implementation, we used an approxi-

mate Riemann solver when required to solve the Riemann problem and not

the exact Riemann solution. The other methods have been previously ex-

plained, but we wish to state the Lax-Friedrichs algorithm [23]. This method

is popular due to its extreme simplicity in implementation, but it fails to
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N LF G LTD LW

25 0.96 0.38 0.22 0.42
50 0.62 0.20 0.12 0.46
100 0.38 0.12 0.06 0.37
200 0.22 0.06 0.02 0.33

Rate 0.7 0.9 1.1 0.1

Table 3.2: The L1-numerical errors are computed using the trapezoidal
rule where LF denotes the Lax-Friedrichs scheme, G denotes the Godunov
scheme (first-order), LTD denotes the limited second-order method, and LW
denotes the unlimited second-order method (Lax-Wendroff). Based on the
slope of the best fitting line of the log-log plot of the error vs N , we also
note the convergence rate.

provide an accurate solution without refining the spatial domain immensely.

This method tends to smear out shocks and is, at best, first-order accurate.

Given a mesh of cell averages uji , the Lax-Friedrichs update is:

uj+1
i =

1

2
(uji−1 + uji+1)− k

2h
(f(uji+1)− f(uji−1)).

Although simple, it performs quite poorly as seen in figure 3.3. Also worth

noting in the figure is that the second-order flux-limited scheme matches

the solution the closest, and that without applying a flux-limiter, there are

oscillations in the computed solution.

In table 3.2, we plot the convergence rates of the different methods. As

second-order methods can only be second-order away from shocks and with

smooth solutions, we do not obtain second-order convergence even with the

second-order method. However, it does outperform the other methods. We

see that the Lax-Friedrichs method is the least accurate, and that Lax-

Wendroff may even fail to converge.
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Figure 3.3: An illustration of different numerical solvers applied to the in-
viscid Burger’s equation. The exact solution is plotted in green; the first-
order Godunov method, based on upwinding, is plotted in red; the first-
order Lax-Friedrich’s scheme is plotted in dark blue; the second-order flux-
limited method with approximate Riemann solver is plotted in light blue;
and the second-order Lax-Wendroff method without limiters is plotted in
black. N = 50 mesh points were chosen.
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3.3.3 Example of the Importance of Conservative Form and

Problems with Geometric Source Terms

We consider here a simple example to illustrate how a scheme being in

conservative form is more true to the analytic solution than one that is

not in conservative form. This also touches on the topic of geometric source

terms and how they tend to reduce accuracy. We consider a simple signalling

problem in a sphere where r ∈ (0, 1] and t ≥ 0:

(r2u)t − (r2u)r = 0

with

u(r, 0) = 0, u(1, t) = h(t) = t2(1− t).

To solve this, we consider w = r2u so that

wt − wr = 0, with w(r, 0) = 0, w(1, t) = h(t).

If w = w(r(ξ, η), t(ξ, η) then along ∂r
∂ξ = −1 and ∂t

∂ξ = 1, so that

r = −ξ + r0(η)

and

t = ξ + t0(η),

we find
∂w

∂ξ
= wt − wr = 0 =⇒ w = w(ξ = 0, η).

As η is a free-parameter and we know w(1, t), we choose r0 and t0 to be 1

and η, respectively so that at ξ = 0 we can parameterize all of the line r = 1
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3.3. Extensions to Nonlinear Systems

with t ≥ 0 by (ξ = 0, η). This means that r = 1− ξ and t = ξ + η and thus

η = r+ t− 1 and w(0, η) = w(0, r+ t− 1) = h(r+ t− 1). We thus find that

u(r, t) =
(r − 1 + t)2(1− (r − 1 + t))

r2
H(r − 1 + t)

where the Heaviside function H arises because there is no forcing for t < 0

so that h(t) = H(t)h(t).

Numerically, we consider a variety of approaches, some conservative

where we solve

wt − wr = 0

with w = r2u, and some where we solve

ut − ur −
2

r
u = 0

by using a split-step strategy [23] where at each time step we first step

forward for the equation ut − ur = 0 and then with the updated u-value,

we step forward with ut = 2
ru where u is the updated value. The term 2

ru

is known as a geometric source term; when such terms cannot be avoided

they often make a numerical method less accurate, formally reducing it from

second-order to first-order. The plots of the analytic solution and second-

order flux-limited numerical solutions with and without a geometric source

term where N = 25 and t = 0.5 are plotted in figure 3.4. In our example,

we just see a slightly less strong agreement with the numerics when the

geometric source term is not removed.

As a point of interest, we also include table ?? showing the L1-convergence

(as computed with the trapezoidal rule) of various numerical methods. We

indeed notice that with the geometric source terms, the second-order meth-
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3.3. Extensions to Nonlinear Systems

Figure 3.4: We observe that the numerical scheme in conservative form is
slightly better than the numerical scheme with geometric source terms. The
plots depict the solution at t = 0.5 with N = 25 mesh points.

ods are mostly first-order in nature, whereas in the conservative form, the

methods are both second-order.

two approaches. For the conservative approach, we solve

wt − wr = 0

where w = r2u using a flux-limited second order finite volume method, and

for the non-conservative approach we solve

ut − ur −
2

r
u = 0

by using a split-step strategy [23] where at each time step we first step

forward for the equation ut − ur = 0 and then with the updated u-value,

we step forward with ut = 2
ru where u is the updated value. The term 2

ru

is known as a geometric source term; when such terms cannot be avoided
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3.3. Extensions to Nonlinear Systems

N G1 G2 GL2 C1 C2 CL2

25 1.1× 10−3 5.6× 10−4 4.4× 10−4 1.5× 10−3 3.6× 10−4 1.6× 10−4

50 6.0× 10−4 2.4× 10−4 1.9× 10−4 7.6× 10−4 1.1× 10−4 4.7× 10−5

100 2.8× 10−4 9.0× 10−5 7.3× 10−5 3.5× 10−4 2.8× 10−5 1.1× 10−5

200 1.4× 10−4 3.9× 10−5 3.4× 10−5 1.8× 10−4 7.6× 10−6 2.8× 10−6

Rate 1.0 1.3 1.2 1.0 1.9 2.0

Table 3.3: The L1-numerical errors are computed using the trapezoidal rule
where G1 denotes a first-order scheme with a geometric source term; G2 de-
notes a non-limited second-order scheme with a geometric source term; GL2
denotes a flux-limited second-order scheme with a geometric source term;
C1 denotes a conservative first-order scheme; C2 denotes a non-limited,
conservative second-order method; and CL2 denotes a conservative, flux-
limited second-order method. Based on the slope of the best fitting line of
the log-log plot of the error vs N , we also note the convergence rate.

they often make a numerical method less accurate, formally reducing it from

second-order to first-order. In our example, we just see a slightly less strong

agreement with the numerics. See figure 3.4.
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Chapter 4

Numerical Finite Volume

Investigation

This chapter is derived from [26]. A context to this work is found in chapter

1.2. Details of the model equations used here are found in chapter 2. A more

thorough explanation of numerical methods for hyperbolic conservation laws

is found in 3, and further details of the numerics implemented here are also

found in section 6.1 and in the appendix A.

4.1 Physical Assumptions

Geometrically, we adopt a spherically symmetric model in which the plasma

is treated as a spherical gas, immersed in the lead-lithium whose outer

boundary is a sphere. The pistons hit the lead-lithium from all sides, gen-

erating a spherically symmetric pressure pulse that moves radially inward.

We neglect the rotation of the lead-lithium in this setting. Although the

physical geometry is more complicated than this, a simple model like this

is a necessary step to reaching more complex models. Given the fact that

the empty region of the cylinder will, in actual operation, become partially

filled in by the lead-lithium in compression, the real world system is closer

to being spherical than it may seem.

We treat the plasma as a spatially homogeneous spherical region, with a
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4.2. Governing Equations

pressure given by the sum of a gas pressure and a magnetic pressure, with

the initial ratio of the gas to magnetic pressure of β0 = 0.1. We assume

adiabatic (reversible) conditions. Initially the pressure of the plasma and

the lead-lithium is 5 MPa, and the pressure pulse hits discontinuously, such

that the pressure on the outer walls of the lead-lithium jumps to 2 GPa at

time t = 0. The motion of the outer boundary between the lead-lithium and

pistons, and the inner boundary between the lead-lithium and plasma have

velocities prescribed by the local fluid velocity of the lead-lithium. This is

equivalent to the plasma and lead-lithium being immiscible and no lead-

lithium leaving the confinement. We additionally neglect radiation losses

due to material impurities.

4.2 Governing Equations

In this subsection, we present the equations used in our model. The numer-

ical values of the parameters are tabulated in the following subsection.

Within the lead-lithium, we use the compressible Euler equations for

conservation of mass and conservation of momentum, equations (4.1) and

(4.2) respectively. The variable ρ denotes mass density, v denotes the local

fluid velocity, P denotes pressure, and t is the time. Note that there is a

tensor product ⊗.

ρt +∇ • (ρv) = 0 (4.1)

(ρv)t +∇ • (ρv ⊗ v) +∇P = 0 (4.2)

In a spherically symmetric coordinate system, equations (4.1) and (4.2)
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4.2. Governing Equations

reduce to the equations used in our model, (4.3) and (4.4) respectively.

ρt + (ρv)r +
2

r
(ρv) = 0 (4.3)

(ρv)t + (P + ρv2)r +
2

r
(ρv2) = 0 (4.4)

The lead-lithium pressure is given by equation (4.5)

P = A(ρ− ρ0)2 +B(ρ− ρ0) + C (4.5)

and the total pressure (magnetic plus gas pressure) is governed by equation

(4.6)

PL(t) = P (rL(t), t) =
κ1

rL(t)4
+

κ2

rL(t)5
. (4.6)

The temperature is given as

Θ = kT =
κ2/rL(t)5

n(t)
(4.7)

with k the Boltzmann constant, for a particle density

n(t) =
n0

(rL(t)/rL(0))3
. (4.8)

The pressure of the outer wall is given by equation (4.9)

PR(t) = P (rR(t), t) = Patm + (Pmax − Patm)e−t
2/t20 (4.9)

The position of the lead-lithium and plasma interface rL and the outer wall

of the lead-lithium rR are described by equations (4.10) and (4.11). As
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4.2. Governing Equations

Figure 4.1: Spherically Symmetric Model

discussed previously, these equations correspond to the boundaries moving

with the local fluid velocity.

drL
dt

= v(rL(t), t) (4.10)

drR
dt

= v(rR(t), t) (4.11)

4.2.1 Parameters, Initializations, and Setup

The baseline parameters used in our study are given in table 4.1. We re-

mark that our numerical computations explained in the following section

were done in a dimensionless framework. A figure illustrating our simplified

geometry is given in figure 4.1.
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4.3. Numerical Computations

Table 4.1: A list of the parameters used in the numerical simulations.

Parameter Value

Piston impact pressure PR(0) = Pmax 2 GPa
Initial total pressure PL(0) 5 MPa
Initial plasma particle density n0 3.2× 1016 particles per cm3

Initial plasma temperature Θ0 100 eV
Initial lead-lithium radius rR(0) 1.5 m
Initial plasma radius rL(0) 0.2 m
Pulse time scale t0 45 µs
Initial gas/magnetic pressure ratio β0 0.1
Magnetic pressure coefficient κ1 7.273× 103 kg m3 s−2

Gas pressure coefficient κ2 145.5 kg m4 s−2

Lead-lithium parameter A 922.9 m5 kg−1 s−2

Lead-lithium parameter B 4368100 m2 s−2

Lead-lithium parameter C = Patm 101325 kg m−1 s−2

4.3 Numerical Computations

4.3.1 Change of Variables to Map Problem to Fixed

Domain

The equations themselves are challenging to solve numerically due to the

moving boundaries, the stiff equation of state, and the geometric source

terms arising from the spherical geometry [23]. One strategy involves inter-

polation and extrapolation while keeping the computational domain in the

radial coordinate fixed [38]. We choose another approach here by transform-

ing the coordinate system so that there is an underlying, constant compu-

tational domain, without using interpolation or extrapolation. We perform

a change of variables to deal with the moving boundaries, setting τ = t and

y = r−rL(t)
∆(t) with ∆(t) = rR(t)− rL(t). We will denote Γ(t) by vR(t)− vL(t).

Under this transformation, our new equations for mass and momentum
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4.3. Numerical Computations

conservation are given by equations (4.12) and (4.13)

ρτ + { 1

∆
[−(vL + Γy)ρ+ ρv]}y =

−2

rL + ∆y
ρv − Γ

∆
ρ (4.12)

(ρv)τ + { 1

∆
[−(vL + Γy)(ρv) + P + ρv2]}y =

−2

rL + ∆y
ρv2 − Γ

∆
ρv (4.13)

in the fixed computational domain 0 ≤ y ≤ 1 and τ ≥ 0. Equations (4.12)

and (4.13) are expressed in conservation form with time-dependent geomet-

ric source terms on the right-hand sides.

4.3.2 Finite Volume Discretization

After the coordinate transformation, we use a finite volume discretization

for the numerical simulations. The fundamental ideas we present here are

presented with excellent clarity and full detail in [23].

We discretize the computational domain as follows. First, we choose an

N and corresponding spatial mesh size h = 1/N , defining the coordinates

yi = ih with i = 0 and i = N on the boundary. We denote ρji to be

numerical approximation to the average cell value
∫ yi+h/2
yi−h/2 ρ(y, tj)dy at time

tj . The index j denotes our time-stepping. Similarly we define (ρv)ji .

The pseudocode of what is done at each time step is provided below:

- Use constant extrapolation to define ρ and ρv at i = −1, 0 and i =

N + 1, N + 2.

- Compute the eigenvalues λ± =
v−(vL+Γy)±

√
dP/dρ

∆ of the linearized

systems of 4.12 and 4.13.
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4.3. Numerical Computations

- Obtain a time step k = 0.8h/λ∗ where λ∗ is the largest value |λ±|

takes.

- Using λ±i and λ±i+1, determine the direction of information propagation

of the corresponding eigencomponents of the system by taking their

average.

- Define flux limiters based on how rapidly changing the information is

in the different directions.

- Solve the homogeneous Riemann problem at each interface using the

direction information from the eigenvalues, but analytically precise

numerical flux.

- Compute a second-order flux correction, and use the flux limiters to

define an updated set of values for ρ and ρv, again without the right-

hand-side terms.

- Advance forward once more in time using the nonzero right-hand side

as update information (a split step).

- Update the time, boundary positions, and boundary

pressures/densities.

In the end, our method is first-order, despite the second-order correction

term, due to the split stepping and the time-varying source terms. How-

ever, this approach does accurately capture many aspects of the solutions

of conservation laws with shocks [23].
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4.3. Numerical Computations

Figure 4.2: Profiles of velocity (left) and density (right) at various time
values compared to the 1/rs growth rate predicted in the acoustic limit.

4.3.3 Validation

4.3.3.1 Linear Equation of State and Acoustic Limit

In the case of a linear equation of state for the lead-lithium A = 0 in (4.5),

and a small-amplitude pressure pulse, the mass and momentum equations

can effectively be reduced to the acoustic equations. Under this reduction,

the amplitude of the shock front in both the local fluid velocity and the

pressure should grow inversely with the shock position rs. See [20] for details.

In figure 4.2, we plot the pressure and velocity profiles at various times

along with the curves predicted by a 1/rs growth rate. Our numerics are

validated in this acoustic limit.

4.3.3.2 Qualitative Convergence with N →∞

We choose a fixed time of t = 1.243×10−4 s and plot the profiles of velocity,

density, and pressure for N = 500 and N = 4000. The plots as displayed in

figure 4.3 confirm convergence.
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4.3. Numerical Computations

Figure 4.3: Profiles of velocity (left) and density (right) at t = 7.03× 10−4s
for N = 500 and N = 4000. The plots are very similar.

4.3.3.3 First Order Convergence

We choose N = 250000 and define the predictions of this model as the

“numerically exact” solution. Then we compare the errors of the velocity

and density (normalized by their characteristic scales) in the L1−norms for

N = 1000, N = 2000, N = 4000, N = 8000 and N = 16000 at the fixed

time t = 1.243× 10−4 s. In order to make this comparison, the N = 250000

solution was projected onto the coarser mesh by a linear interpolation. At

these same N -values, we computed the maximum error in total mass by

numerically integrating
∫ rR(t)
rL(t) r

2ρ(r, t)dr and finding the maximum deviation

from t = 0 for all times up to the fixed time. The errors are tabulated in

table 4.2 and there is a very clear first-order trend. The convergence rates

based on the slopes of the lines of best fit of the errors and N -values on a

log-log plot are indicated in the table.
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Table 4.2: Convergence of Numerical Scheme at t = 1.243× 10−4 s

N Velocity Error Density Error Mass Error

1000 5.68× 10−4 1.11× 10−3 4.79× 10−4

2000 2.95× 10−4 5.58× 10−4 2.39× 10−4

4000 1.39× 10−4 2.77× 10−4 1.20× 10−4

8000 6.97× 10−5 1.39× 10−4 5.97× 10−5

16000 3.51× 10−5 6.93× 10−5 2.99× 10−5

Rate 1.01 1.00 1.00

4.4 Model Predictions

4.4.1 Plasma Compression and Fusion Possibility

The figures 4.4, 4.5, and 4.6 depict the position of the inner wall, its veloc-

ity, and the pressure of the plasma as a function of time given the baseline

parameters in table 4.1. With these baseline parameters, our triple product

value is 0.52×1015 keV s cm−3, which is smaller than the Lawson triple prod-

uct required for yielding more energy output than input. Under a modified

parameter regime, as given in second last row of table 4.3, we obtain a triple

product that exceeds 4× 1015 keV s cm−3. We also make a brief remark on

the plasma survival time as survival times are an important aspect of the

engineering. With our simulations, the plasma is compressed over the scale

of hundreds of microseconds, which is within the survival times of plasmas

such as spheromaks [10]. We thus infer that survival time should not be an

issue. With these observations, it seems there is promise to yielding fusion

energy through such a design, although we acknowledge the rudimentary

nature of the physical modelling considered.
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Figure 4.4: The radius of the plasma vs time in the simulations.

Figure 4.5: The radial velocity of the plasma-lead-lithium interface vs time
in the simulations.
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Figure 4.6: The total plasma pressure vs time in the simulations.

4.4.2 Sensitivity Analysis

Here we analyze what results are obtained in varying some of the physical

parameters of the system. We concern ourselves with five aspects of the

reactor performance: firstly, the minimal plasma radius rm; secondly, the

maximum total plasma pressure PM; thirdly, the duration over which the

plasma is compressed - the time over which the inner wall velocity is negative

tc; fourthly, the maximum plasma temperature ΘM; and finally the Lawson

triple product computed as

ΠL =

∫
t:vL<0

n(t)Θ(t)dt. (4.14)

Table 4.3 provides the baseline value of the predictions, and subsequently

varies only one of the parameters.

While many of the parameters have little effect upon the compression,

some parameters cause drastic changes in the reactor behaviour, even when

perturbed by 10%, most notably the impulse pressure of the pistons, the

61



4.4. Model Predictions

initial size of the plasma, the initial size of the lead-lithium sphere, and the

timescale of the impulse. In interpreting these results, some care is needed,

as not all the variables are physically independent. For example, the pressure

intensity of the pistons is primarily governed by their impact velocity and

the sound speed of the lead-lithium. Increasing the pressure could come from

increasing sound speed, perhaps by changing the lead-lithium to a different

material, or by increasing the impact velocity. Observe, though, that purely

by increasing the sound speed at a fixed impulse pressure, the compression

is less effective.

With a fixed initial plasma pressure, if the initial plasma radius is smaller

then there is more focusing and the compression is much more effective, just

as it is with a higher impulse pressure or a larger lead-lithium initial radius.

The time scale is also important; the more drawn out the pulse is, the more

energy that can be added to the system to drive compression.

As a point of interest, we consider the engineering parameters that can

most readily be controlled and the aspects of the model with the largest pos-

sible error and perform larger perturbations. We consider the performance-

enhancing prospects of doubling the pressure at the outer wall, doubling the

pulse time scale, and doubling the initial radius of the lead sphere. The

doubling of the pressure could in principle be achieved with faster pistons

and doubling the radius of the lead-lithium sphere is a possibility. There is

uncertainty as to the precise form of the pressure imparted as a function of

time and doubling the time-scale, which essentially amounts to considering

a symmetric instead of one-sided Gaussian wave, is well within the realm of

modelling uncertainty.

Under optimal conditions, we obtain a Lawson triple product of 16×1015

keV s cm−3, giving promise of net energy gain, which occurs when the
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Table 4.3: A sensitivity analysis of the reactor performance upon varia-
tions in the model parameters. We denote the minimum radius by rm, the
maximum total pressure by PM, the compression time by tc, the maximum
temperature by θM, and the Lawson triple product by ΠL. The final three
rows of the table illustrate the most promising conditions for fusion.

Parameters rm (cm) PM (GPa) tc (ms) ΘM (keV) ΠL (1015 keV s cm−3)

Baseline 3.6 6.7 0.43 2.7 0.52
β0 ↓ 10% 3.6 6.8 0.43 2.5 0.49
β0 ↑ 10% 3.6 6.6 0.43 2.9 0.55
c∗ ↓ 10% 3.3 9.5 0.33 3.2 0.56
c∗ ↑ 10% 3.8 5.3 0.52 2.5 0.46
PR(0) ↓ 10% 4.4 2.8 0.63 1.8 0.37
PR(0) ↑ 10% 3.0 15. 0.30 4.0 0.64
PL(0) ↓ 10% 3.4 7.5 0.43 2.7 0.53
PL(0) ↑ 10% 3.8 6.0 0.43 2.7 0.48
rL(0) ↓ 10% 1.9 71. 0.20 8.0 1.4
rL(0) ↑ 10% 5.5 1.7 0.85 1.4 0.25
rR(0) ↓ 10% 4.3 3.0 0.61 1.9 0.27
rR(0) ↑ 10% 3.0 13. 0.31 3.8 0.92
t0 ↓ 10% 4.3 3.2 0.60 1.9 0.39
t0 ↑ 10% 3.1 13. 0.32 3.7 0.61
t0 ↑ 100% 1.3 570 0.15 20. 1.9
PR(0) ↑ 100% 1.2 690 0.14 22 16
rR(0) ↑ 100% 0.84 4900 0.12 24 2.5

impact pressure is doubled. Doubling the pulse time or the lead-lithium

initial radius also lead to large triple products, which are close to 4 × 1015

keV s cm−3.

4.5 Summary and Future Work

Our work here has developed the basis of a numerical framework that could

be useful in fusion modelling, and with this numerical framework, we have

made a preliminary examination into the operational conditions and feasi-

bility of magnetized target fusion reactors. Within the model assumptions,

current designs for magnetized target fusion reactors are within reach of
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reaching fusion conditions. There is, however, a high degree of sensitivity of

physical parameters upon the resultant behaviour. Having a higher impulse

pressure, a large confining sphere, and a long impulse are key factors in

achieving a highly efficient reactor.

There are many avenues for future work. Firstly, some of the model

assumptions such as isentropic conditions could be relaxed, and we could

include more material properties of the plasma instead of it being homoge-

neous, and consider the possible effects of turbulence. We could also consider

a geometry that is not spherically symmetric and examine how much the

results differ. Another natural question is how deviations from a spherical

symmetry behave, and if there is a growth in such deviations, such as what

has been investigated in [37]. It would also be of great interest if an analytic

estimate for the plasma compression could be obtained. We also note that

this model’s predictions about the collapse differ somewhat from previous

results [18], except for some of the more promising results of the sensitivity

analysis. This model represents success in numerically solving conservation

laws with free boundaries with a constant computational domain, but at the

same time we realize that the physics has been greatly simplified. Further

investigation, including tuning the mathematical model to more accurately

represent the underlying physics, is warranted.

64



Chapter 5

Formal Asymptotic Analysis

This work on asymptotic analysis is taken from [25]. The physical system is

presented in chapter 1.2 and the model is derived in chapter 2. More details

of the asymptotics including some slight extensions are found in section 6.2;

due to page restrictions, they are not included in the paper below.

5.1 Context for the Analysis

Mathematical models of fluids often deal with nonlinear conservation laws

such as the Euler or Navier Stokes equations. These equations are often

difficult to solve or approximate analytically. In our work, we will be dealing

with the hyperbolic conservation laws for mass and momentum conservation

given by the compressible Euler equations for fluids (see [8] for relevant

background to these equations). There is an additional obstacle we deal

with, which are the free boundaries that arise naturally in our application.

Free boundary, or moving boundary problems, entail a physical boundary

(possibly the domain of a PDE or an interface) evolving with time due to the

conditions at the boundary itself. Instead of the boundary position being

prescribed in the problem or being a known function of time, it must be

solved for within the problem as its evolution depends upon the nature of

the solution at any given time, where the solution evolves as a PDE in both

space and time. A common example is that of a Stefan problem describing
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the position of the boundary of an ice cube as it melts: the velocity of the

boundary depends on the jump in heat flux at the interface which changes

with time [30]. Another example, which is closely related to the problem of

interest discussed here, relates to bubble dynamics and the motion of the

boundary of a gas bubble in a fluid (see [5] for a thorough introduction to

bubble dynamics). This work is novel in that asymptotic analysis allows us

to overcome both the obstacle of the nonlinear conservation laws and the

difficulty of the free boundaries to yield insightful results for the application.

In our context, the fluid will be lead-lithium between the free boundaries

of an inner spherical plasma ball and an outer spherical shell impacted by

pistons.

Our objective is to predict the minimum radius of the plasma, as this is

a key parameter in how efficient such a design could potentially be. The pa-

rameter regime for the device winds up being at the boundary of asymptotic

validity; we will furnish a minimum radius that is qualitatively consistent

with the numerics in its parameter sensitivity, but where the quantitative

accuracy is a loose estimate. Our work also shows that the asymptotics are

quantitatively accurate given a well-ordered parameter regime. Other fac-

tors besides the minimum radius, such as confinement time, are not analyzed

here.

5.2 Physical Assumptions

We take the plasma to be spherical and we assume spherical symmetry for

all components. Plasma pressures have both a gas pressure and magnetic

pressure component. In many plasmas, the magnetic pressure is much larger

initially. We model the plasma pressure by a magnetic pressure (scaling
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Figure 5.1: The geometry we consider is spherically symmetric, with rL and
rR free boundaries.

inversely with the fourth power of its radius) [40], neglecting the gas pressure

component.

The pressure imparted by the pistons is described by a baseline pres-

sure plus a very large pressure modulated by a Gaussian with a very short

time-scale. The pressure of lead-lithium is taken to depend linearly on the

density. Our model will neglect mixing effects and radiation losses. These

simplifications allow us to write more tractable equations and gain quali-

tative insight into how the most basic engineering parameters influence the

compression of the plasma.

5.3 Equations and Nondimensionalization

Here we present the equations relevant to this study and nondimensionalize

the system so that formal asymptotics can be applied. The values and

explanations of the constants used are provided in tables 5.1 and 5.2. A

dimensionless diagram of our model is given in figure 5.1.
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Variable Description Value

Cs Sound speed in lead at 1 atm 2090 m/s
%0 Density of lead at 1 atm 11340 kg/m3

Patm Atmospheric pressure 101325 Pa
Pplasma,0 Initial plasma pressure 5 MPa
Pmax Maximum piston pressure 2 GPa
Γ Coefficient for magnetic pressure growth 8000 N m2

T0 Guassian decay time scale 45 µs
Rinner,0 Initial plasma radius 0.2 m
Router,0 Initial lead sphere radius 1.5 m

Table 5.1: Table of physical constants/parameters.

5.3.1 Euler Equations

Within the lead-lithium, we work with the Euler equations for mass and

momentum conservation. Denoting the mass density by %, the local fluid

velocity by V and the pressure by P in a space-time coordinate system

(X, T ), we have:

%T +∇X • (%V) = 0 and (%V)T +∇XP +∇X · (%V ⊗V) = 0

which with spherical symmetry in space-time coordinates (R, T ), where the

vector quantity V is replaced by V , the radial velocity, reduce to

%T +(%V )R+
2

R
(%V ) = 0 and (%V )T +PR+(%V 2)R+

2

R
(%V 2) = 0. (5.1)

From experimental data, the sound speed Cs and density %0 of lead at

atmospheric pressure Patm are known [34]. The square of the sound speed

is the derivative of P with respect to density % [39] allowing us to express
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P (ρ) as an approximate linear function:

P (%) = C2
s (%− %0) + Patm. (5.2)

We approximate the equation of state of lead-lithium by the linearized equa-

tion of state for lead and permit negative absolute pressures. Negative ab-

solute pressures are observed over short time scales in some materials [13].

5.3.2 Boundary Conditions

Due to the impact of the pistons and the interaction of the wave with the

plasma boundary, this is a moving boundary problem. We denote RL to be

the radius of the inner wall of the lead-lithium sphere (the plasma radius),

and RR to be the radius of the outer wall of the lead-lithium sphere. The

local fluid velocity at the inner and outer boundaries matches the velocities

of these walls respectively:

VL(T ) ≡ dRL
dT

= V (RL(T ), T ) and VR(T ) ≡ dRR
dT

= V (RR(T ), T ).

(5.3)

At any given time, the lead-lithium occupies the spherical shell between RL

and RR.

At the inner wall, the pressure is given by the plasma magnetic pressure.

This gives

PL(T ) = P (RL(T ), T ) =
Γ

RL(T )4
=

Pplasma,0

(RL(T )/RL(−∞))4
(5.4)

where Γ is a constant chosen so that with PL = ΓR−4
L , PL(RL(−∞)) =

Pplasma,0. This is an algebraic coupling of the fluid pressure and plasma
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pressure at this wall. At the outer wall, the pressure is given by the piston

pressure which is modelled by a Gaussian pressure in addition to a baseline

minimum applied pressure

PR(T ) = (Pmax − Pplasma,0)e−T
2/T 2

0 + Pplasma,0. (5.5)

5.3.3 Initial Conditions

The maximum piston pressure occurs at T = 0, but we allow for negative

times relative to this. The system begins at T = −∞ where

V (R,−∞) = 0, P (R,−∞) =
Γ

RL(−∞)4
, %(R,−∞) =

P (R,−∞)− Pplasma,0

C2
s

+ %0

(5.6)

with

RL(−∞) = Rinner,0, RR(−∞) = Router,0. (5.7)

5.3.4 Nondimensionalization

To nondimensionalize, we will look at (5.1) with the change of variables

% = %̄ρ, V = V̄ v, P = P̄ p, R = R̄r, T = T̄ t where the bars denote

characteristic dimensional quantities and ρ, v, p, r, and t are dimensionless.

We obtain:

%̄

T̄
ρt+

%̄V̄

R̄
(ρv)r+

%̄V̄

R̄

2

r
(ρv) = 0 and

%̄V̄

T̄
(ρv)t+

P̄

R̄
pr+

%̄V̄ 2

R̄
(ρv2)r+

%̄V̄ 2

R̄

2

r
(ρv2) = 0.

(5.8)

By matching dimensional terms in (5.8)1, we have %̄/T̄ = %̄V̄ /R̄ so that

V̄ = R̄/T̄ . (5.9)

70



5.3. Equations and Nondimensionalization

Variable Notation/Equation Characteristic Scale

Density % %̄ = %0 11, 340 kg m−3

Pressure P P̄ = Pmax 2 GPa
Distance R R̄ = Router,0 1.5 m

Time T T̄ = R̄
√
%̄/P̄ 3.57 ms

Radial Velocity V V̄ =
√
P̄ /%̄ 420. m s−1

Table 5.2: Characteristic dimensions for the system. The first three entries
are chosen by the operating conditions. The last two entires can be derived
from the first three.

By matching dimensional terms in (5.8)2, we have (%̄V̄ )/T̄ = P̄ /R̄ giving

%̄ = (P̄ T̄ )/(R̄V̄ ) (5.10)

and (%̄V̄ )/T̄ = (%̄V̄ 2)/R̄ giving the same as in (5.9).

Equations (5.9) and (5.10) give good guidance as to reasonable scalings

for the system, and we also have some freedom. We will choose R̄ = 1.5

m, the initial outer radius; %̄ = 11340 kg/m3, the density of lead at at-

mospheric pressure; P̄ = 2 GPa, the maximum pressure imparted on the

outer wall. Substituting (5.9) into 5.10, we have % = (P̄ T̄ 2)/(R̄2) so that

T̄ =
√
R̄2%̄/P̄ = 3.57 ms. Using this now known value of T̄ in (5.9) gives

V̄ = 420. m/s. Table 5.2 summarizes this.

5.3.5 Selecting an Asymptotic Parameter

Through the nondimensionalization, various dimensionless parameters ap-

pear. Upon considering the physics of the problem, an intense pressure

imparted over a very short time-scale (45µs � 3.57 ms), we will define

ε = T0/T̄ = 0.0126 such that the Gaussian component of the pressure

becomes e−(tT̄ /T0)2 = e−t
2/ε2 . With respect to this value of ε, the differ-
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ent dimensionless parameters have characteristic orders. For example, in

dimensionless form, p = c2(ρ − 1) + d where c2 = C2
s %̄/P̄ ≈ 24.7 and

d = Patm/P̄ ≈ 5.07 × 10−5. The density of lead-lithium corresponding to

the maximum pressure is 1.04, which is well described by ρ = 1 + O(ε).

If ρ = 1 + O(ε) corresponds to p = O(1) then c2 = O(ε−1). Thus, it is

reasonable to write p(ρ) = b2

ε (ρ− 1) + aε5/2 where b = 0.557 and a = 2.84.

In fact, since we are aiming for a leading-order behaviour of the system, we

will neglect aε5/2 entirely since it is so small. Also due to its negligible size,

O(ε3/2), we neglect the dimensionless Pplasma,0 term in the pressure condi-

tion at the right wall. Discarding these terms can be justified a posteriori by

noting that in all the analysis to come, only pressures that are O(ε) balance

in the relevant equations.

Proceeding in a similar way with the remaining equations and boundary

conditions, and making use of the fact that knowing either p or ρ is equiv-

alent, the final set of equations and conditions we consider are presented

below, valid for rL < r < rR, −∞ < t < ∞. In due course, all of these

equations will be used.

ρt + (ρv)r +
2

r
(ρv) = 0, (ρv)t +

b2

ε
ρr + (ρv2)r +

2

r
(ρv2) = 0 (5.11)

p =
b2

ε
(ρ− 1) (5.12)

vL(t) =
drL
dt

= v(rL(t), t), vR(t) =
drR
dt

= v(rR(t), t) (5.13)
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Variable Meaning Formula Value

ε pulse time scale T0
R̄
√
%̄/P̄

0.0126

b scaled sound speed Cs
√
ε√

P̄ /%̄
0.557

γ scaled magnetic pressure coefficient
Pplasma,0R

4
inner,0

P̄ R̄4ε7/2
3.52

χ scaled initial inner radius
Rinner,0

R̄
√
ε

1.19

Table 5.3: The dimensionless parameters of the asymptotic model.

pL(t) = p(rL(t), t) =
γε7/2

rL(t)4
, pR(t) = p(rR(t), t) = e−t

2/ε2 (5.14)

v(r,−∞) = 0, p(r,−∞) =
γε7/2

rL(−∞)4
, ρ(r,−∞) = 1 (5.15)

rL(−∞) = χε1/2, rR(−∞) = 1 (5.16)

We summarize the constants in the table 5.3. Our main objective is to

estimate the smallest value of rL, which we denote r∗.

5.4 Formal Asymptotic Analysis

The analysis has five distinct phases: I, formation; II, focusing; III, reflect-

ing; IV, slow collapse; and V, maximum compression. See figure 5.2. Much

of the analysis is done on the linear acoustic equations. Techniques include:

Riemann invariants, the velocity potential formulation with a transformation

that turns the linear acoustic equations for a sphere into one-dimensional

wave equations, indirect computations of long-term behaviours by integrals

of boundary conditions, energy arguments, and matched asymptotics on

the Rayleigh-Plesset equation. We ultimately compute the plasma radius at
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Figure 5.2: Relevant space-time scales and boundary motion. In phase I,
pulses are formed, moving towards the plasma. In phase II, the pulses move
radially inward, growing in amplitude due to focusing. In phase III, the
pulses interact with the plasma with much of the energy reflecting but a
small portion of useful energy remaining. In phase IV, the plasma slowly
begins to collapse and in phase V, the maximum compression is reached.

which the velocity of the plasma boundary switches from negative (i.e. com-

pressing) to zero at leading order, which we define as the minimum plasma

radius. Effectively I is an inner region that is matched to II; III is an inner

region that can match to II and which matches to IV over a long time; and

V is an inner region to IV.

5.4.1 Phase I

5.4.1.1 Pulse Formation Setup

To analyze the formation of the pulse, we rescale time so that t = ετ, and

make the ansatzes that ρ ∼ 1 + ερ1 + ε`ρ2 and v ∼ εm0v0 + εm1v1. Seeing

as the peak impulse pressure of p = O(1) corresponds to ρ = 1 + O(ε)
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these expansions are justified. In order to capture the pulse formation, we

also define y = r−1
εn . This leads to ρv ∼ εm0v0 + εm1v1 + εm0+1ρ1v0 and

ρv2 ∼ ε2m0v2
0, r = 1 + ε1/2y, 2/r ∼ 2 − 2ε1/2y, ∂r = ε−n∂y and ∂t = ε−1∂τ .

Using this in (5.11), we have to various leading orders:

ε−1(ερ1 + ε`ρ2)τ + ε−n(εm0v0 + εm1v1 + εm0+1ρ1v0)y

+ 2(εm0v0 + εm1v1 + εm0+1ρ1v0) = 0

ε−1(εm0v0 + εm1v1 + εm0+1ρ1v0)τ + ε−n−1b2(ερ1 + ε`ρ2)y + ε−1/2(ε2m0v2
0)y

+ 2(ε2m0v2
0) = 0.

Balancing as many terms as possible to leading order, we choose m0−n = 0

and m0 − 1 = −n so that m0 = n = 1/2. This gives

ρ1,τ + v0,y + ε`−1ρ2τ + εm1−1/2v1,y + 2ε1/2v0 = 0

ε−1/2(v0,τ + b2ρ1,y) + εm1−1v1,τ + ε`−3/2ρ2,y + ε1/2(v2
0)y = 0.

We now balance as many terms as possible at the next order with ` − 1 =

m1 − 1/2 = 1/2 so that ` = 3/2, and m1 = 1. We thus arrive at

ρ ∼ 1 + ερ1 + ε3/2ρ2, v ∼ ε1/2v0 + εv1

with t = ετ and y = r−1
ε1/2

.

To deal with boundary conditions, we first need to find an asymptotic ex-

pression for rR ∼ 1 + εkrR0(τ). To leading order vR = drR
dt = O(ε1/2). Thus,

r′R(t) = εkr′R0(t) = O(ε1/2). Using d/dt = ε−1d/dτ , we have εk−1r′R0(τ) =
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O(ε1/2) so that k = 3/2.

It is worth mentioning that when we write rR0(τ) we really mean rR0(t =

ετ) and not rR0(t = τ)! Throughout this paper we use the shorthand that

a dependent variable evaluated at a rescaled variable should be interpreted

by the proper scalings in the original (r, t) variables.

The outer wall changes by a distance O(ε3/2). If we denote yR as the

position of the outer boundary in the y−coordinates, then yR = rR−1
ε1/2

=

εrR0(τ) + .... The boundary condition that must be upheld is pR(τ) =

b2

ε (ρ− 1) = e−τ
2

so that

ρ1(rR(τ), τ) + ε1/2ρ2(rR(τ), τ) =
1

b2
e−τ

2
.

We can now perform a Taylor expansion (seeing as the problem is linear

and the forcing terms are continuous and differentiable). Keeping just a few

terms, we obtain b2(ρ1(0, τ) + ρ1y(0, τ)(εrR0) + ε1/2ρ2(0, τ)) = e−τ
2

which

implies

ρ1(0, τ) =
1

b2
e−τ

2
and ρ2(0, τ) = 0. (5.17)

We obtain the following initial conditions in this scaling:

ρ1(y,−∞) = ρ2(y,−∞) = v0(y,−∞) = v1(y,−∞) = 0. (5.18)

Figure 5.3 depicts this phase.
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Figure 5.3: Depiction of phase I. This is the formation phase. In this phase,
ρ ∼ 1 + ερ1 + ε3/2ρ2 and v ∼ ε1/2v0 + εv1.

5.4.1.2 Riemann Invariants

Both the leading order and first correction terms can be written in the form

ρτ
vτ

 +

 0 1

b2 0

ρy
vy

 =

f(y, τ)

g(y, τ)

 (5.19)

and such problems can be solved effectively with a technique known as Rie-

mann Invariants [6].

The 2 × 2 matrix in (5.19) has eigenvalues ±b with corresponding left

eigenvectors `± = (±b, 1). Upon left multiplying (5.19) by `±, we obtain

(±bρ+ v)τ ± b(±bρ+ v)y = ±bf + g. Thus, the system has characteristics.

Denoting c± = ±bρ+v, we have that along dy/dτ = ±b, dc±/dτ = ±f+g ≡

h±. Given that ρ = v = 0 at τ = −∞, (so c± = 0 at τ = −∞) we can

compute c+(y, τ) = 0+
∫ τ
−∞ h(ỹ(τ̃), τ̃)dτ̃ where ỹ(τ̃) = y+b(τ̃−τ) describes

the straight pathway along the rightgoing characteristic starting at τ = −∞

and reaching (y, τ). Thus,

c+(y, τ) =

∫ τ

−∞
h+(y + b(τ̃ − τ), τ̃)dτ̃ . (5.20)
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Figure 5.4: Illustration of the right- and left-going characteristic paths and
parameterizations.

To find c−(y, τ), we need to know its value at the point along the τ−axis

whose leftgoing characteristics eventually reach (y, τ). As c+ is known along

the τ−axis, and ρ is also specified there, we can find c−. The leftgoing

characteristic path leading to (y, τ) can be described by (ỹ(τ̃), τ̃) = (b(τ −

τ̃), τ̃) for τ+y/b ≤ τ̃ ≤ τ. From c+(0, τ+y/b) = bρ(0, τ+y/b)+v(0, τ+y/b)

we get c−(0, τ + y/b) = −bρ(0, τ + y/b) + v(0, τ + y/b) = c+(0, τ + y/b) −

2bρ(0, τ + y/b). We thus have

c−(y, τ) = c+(0, τ +y/b)−2bρ(0, τ +y/b) +

∫ τ

τ+y/b
h−(b(τ − τ̃), τ̃)dτ̃ (5.21)

Given c±, we can recover

ρ =
1

2b
(c+ − c−) and v =

1

2
(c+ + c−). (5.22)

Figure 5.4 illustrates the characteristic curves.
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5.4.1.3 Leading Order

At leading order, using (5.18) and (5.17)1 we have

ρ1,τ

v0,τ

 +

 0 1

b2 0

ρ1,y

v0,y

 = 0,

ρ(0, τ) = 1
b2

e−τ
2
, ρ(y,−∞) = v(y,−∞) = 0. Thus, c+(y, τ) = 0 by (5.20)

since the forcing function h = 0. And c−(y, τ) = −2b 1
b2

e−(τ+y/b)2

= −2
be
−(τ+y/b)2 by (5.21). We then use (5.22) to get

ρ1(y, τ) =
1

b2
e−(τ+y/b)2 (5.23)

and

v0(y, τ) =
−1

b
e−(τ+y/b)2 . (5.24)

5.4.1.4 Correction

At the next order, we obtain

ρ2τ

v1τ

 +

 0 1

b2 0

ρ2y

v1y

 =

−2v0

0


subject to ρ2(0, τ) = 0, ρ2(y,−∞) = v1(y,−∞) = 0 as per (5.17)2 and

(5.18). In this case, h± = ∓2bv0. By (5.20),

c+(y, τ) =

∫ τ

−∞
(−2b)v0(y + b(τ̃ − τ), τ̃)dτ̃ =

∫ τ

−∞
2e−(2τ̃+y/b−τ)2dτ̃ .
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We can evaluate this integral with a substitution u = 2τ̃ + y/b− τ to get

c+ =

∫ τ+y/b

−∞
e−u

2
du =

∫ ∞
−τ−y/b

e−u
2
du =

√
π

2
erfc(−τ − y/b).

Similarly, by (5.21),

c−(y, τ) =

√
π

2
erfc(−τ − y/b)− 0 +

∫ τ

τ+y/b
(2b)v0(b(τ − τ̃), τ̃)dτ̃

=

√
π

2
erfc(−τ − y/b) +

2y

b
e−(τ+y/b)2 .

We once again use (5.22) to furnish

ρ2(y, τ) =
−y
b2
e−(τ+y/b)2 and v1(y, τ) =

√
π

2
erfc(−τ − y/b) +

y

b
e−(τ+y/b)2 .

5.4.1.5 Phase I Results

To leading order, the density and velocity are described by left-going plane

waves. Due to the scalings, we have been looking on such a small scale

that the system has not quite “noticed” the spherical nature of the problem

and everything appears flat (for y = O(1)). The divergent terms with y

prefactors, however, actually result from the spherical geometry as we shall

see in the following section.

We have

ρ ∼ 1 + ε
1

b2
e−(τ+y/b)2 − ε3/2 y

b2
e−(τ+y/b)2 (5.25)

and

v ∼ ε1/2−1

b
e−(τ+y/b)2 + ε(

√
π

2
erfc(−τ − y/b) +

y

b
e−(τ+y/b)2). (5.26)

A plot of these solutions at τ = 1/2 is given in figure 5.5. In the r-
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Figure 5.5: Plots depicting the profiles of the velocity and density at a
very small value of t to validate the asymptotics of phase I. In the case of
the second row, the two term asymptotic expansions agree so well with the
numerics the plots cannot be distinguished. Parameters: b = 0.557, χ =
1.19, γ = 3.52, ε = 0.0126, t = ε/2 (top row); b = χ = γ = 1, ε = 0.001, t =
ε/2 (bottom row).

coordinates, the characteristic widths of these pulses are O(
√
ε). The plot

includes numerical validation of the results which are discussed in more de-

tail in section 5.5.
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5.4.2 Phases II and III

5.4.2.1 Spherical Focusing Setup

Having obtained the basic shape of the pulses being formed, we can now

analyze how these pulses behave as they move towards the centre of the

sphere. See figure 5.6. From phase I, we have ρ ∼ 1 + ερ1 + ε3/2ρ2 and

v ∼ ε1/2v0 + εv1 and we shall make a similar ansatz here. We will consider

r = O(1) and choose a time scale t = εkT . With these scalings, (5.11)

becomes:

ε−k(ερ1 + ε3/2ρ2)T + (ε1/2v0 + εv1)r +
2

r
(ε1/2v0 + εv1) = 0

ε−k(ε1/2v0 + εv1)T + ε−1b2(ερ1 + ε3/2ρ2)r + (εv2
0)r +

2

r
(εv2

0) = 0.

Clearly k = 1/2 yields a suitable balance. The equations are:

ρ1,T + v0,r +
2

r
v0 = 0 and v0,T + b2ρ1,r = 0

where the identical equations are upheld for ρ2 and v1.

The initial and boundary conditions are more subtle here. They cannot

be written down clearly because of the different time scales (typically, to

match at T = 0, we would require τ → ∞ but in this case, the solutions

found in phase I tend to 0). However, by solving the hyperbolic systems

at different orders, we can find the functional form of the solution, which

allows us to find the solutions by matched asymptotics.
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Figure 5.6: Depiction of phase II. This is the focusing phase. In this phase,
we initially have ρ ∼ 1+ ερ1 + ε3/2ρ2 and v ∼ ε1/2v0 + εv1, and finally obtain
ρ ∼ 1 + ε1/2ρ1 + ερ2 and v ∼ v0 + ε1/2v1.

5.4.2.2 Spherical Linear Acoustic Limit

For the two leading orders, the systems of PDEs that need to be solved are

of the form

ρT + vr +
2

r
v = f and vT + b2ρr = g. (5.27)

Such equations also appear in linear acoustic problems, often with f = g = 0

(and in our case we will not need to explicitly solve such an equation with

f, g 6= 0).

To solve this, we will make use of a velocity potential

φ(r, T ) =
∫ r
∞ v(s, T )ds. With this substitution, we have

ρT + φrr +
2

r
φr = f and φrT + b2ρr = g. (5.28)

Integrating (5.28)2 from r = ∞, assuming ρ = 0 at r = ∞, we have

φT (r, T ) + b2ρ(r, T ) =
∫ r
∞ g(s, T )ds ≡ G(r, T ) so that φTT = −b2ρT + GT .
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Using (5.28)1 here now gives φTT = −b2(−φrr − 2
rφr + f) +GT so

φTT = b2(φrr +
2

r
φr) +GT − b2f. (5.29)

Note that by taking a time derivative of (5.27)1 and a space derivative

of (5.27)2 we have

ρTT = −vrT −
2

r
vT + fT and vrT = gr − b2ρrr. (5.30)

Equations (5.30)2 and (5.30)1 can then be used in (5.27)1 to obtain ρTT =

−(gr − b2ρrr)− 2
r (g − b2ρr) + fT so that

ρTT = b2(ρrr +
2

r
ρr) + fT −

2

r
g − gr. (5.31)

A symmetry argument now helps to solve (5.29) and (5.31). If φ = Φ/r

and ρ = K/r then φrr + 2
rφr = Φrr

r and similarly for K. Thus we can

transform these equations into one-dimensional wave equations [39]:

ΦTT = b2Φrr + S1(r, T ), KTT = b2Krr + S2(r, T ) (5.32)

with S1(r, T ) = r(GT − b2f), and S2(r, T ) = r(fT − 2
rg − gr).

5.4.2.3 Leading Order and Correction in Outer Region

The system of equations for ρ1 and v0 and ρ2 and v1 are the same, and in

both cases the source terms are fortunately zero. With no source terms,

and with only leftgoing waves (since there are no sources going right), the

solutions of (5.32) are K = P (r+bT ) and Φ = Q(r+bT ) respectively, where

P here is not the dimensional pressure. Then, being mindful of the fact that
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the pulses generated have a width of size O(
√
ε) and are leftgoing originating

near r = 1, we can write the solutions to the systems of equations as ρ1 =

1
rP1( r−1+bT√

ε
), ρ2 = 1

rP2( r−1+bT√
ε

), v0 = 1
rQ
′
0( r−1+bT√

ε
) −

√
ε

r2
Q0( r−1+bT√

ε
), and

v1 = 1
rQ
′
1( r−1+bT√

ε
)−

√
ε

r2
Q1( r−1+bT√

ε
).

We will now take these solutions and express them in the inner (y, τ)-

coordinates. We will apply the Van-Dyke matching of inner and outer so-

lutions [14], and since we have a two-term expansion for the inner solution,

we also take two terms in the outer solution. We have t = ετ = ε1/2T so

T = ε1/2τ and r = 1 + ε1/2y so that r−1+bT√
ε

= y + bτ . This allows us to

write:

ρ1 =
P̃1(y + bτ)

1 + ε1/2y
∼ P̃1(y + bτ)− ε1/2yP̃1(y + bτ)

ρ2 =
P̃2(y + bτ)

1 + ε1/2y
∼ P̃2(y + bτ)− ε1/2yP̃2(y + bτ),

v0 =
Q̃0
′
(y + bτ)

1 + ε1/2y
− ε

1/2Q̃0(y + bτ)

(1 + ε1/2y)2
∼ Q̃0

′
(y+bτ)+ε1/2(−Q̃0

′
(y+bτ)y−Q̃0(y+bτ)),

v1 =
Q̃1
′
(y + bτ)

1 + ε1/2y
− ε

1/2Q̃1(y + bτ)

(1 + ε1/2y)2
∼ Q̃1

′
(y+bτ)+ε1/2(−Q̃1

′
(y+bτ)y−Q̃1(y+bτ))

Now we write

(1 + ερ1 + ε3/2ρ2)outer = (1 + ερ1 + ε3/2ρ2)inner

1 + ε(
1

b2
e−(τ+y/b)

2

) + ε3/2(
−y
b2
e−(τ+y/b)

2

) = 1 + ε(P̃1(y + bτ))

+ε3/2(−yP̃1(y + bτ) + P̃2(y + bτ))

so that P̃1(x) = 1
b2

e−(x/b)2 and P̃2(x) = 0. Doing the same for the velocity,
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we write:

(ε1/2v0 + εv1)outer = (ε1/2v0 + εv1)inner

ε1/2
−1

b
e−(τ+y/b)2 + ε(

√
π

2
erfc(−τ − y/b) +

y

b
e−(τ+y/b)2) = ε1/2Q̃0

′
(y + bτ)

+ε(−yQ̃0
′
(y + bτ)− Q̃0(y + bτ) + Q̃1

′
(y + bτ))

giving us Q̃0(x) = −
√
π

2 erfc(x/b) and Q̃1
′
(x) = 0 so that Q̃1 is constant.

Since Pi(x/
√
ε) = P̃i(x) and Qi(x/

√
ε) = Q̃i(x), i = 0, 1, we have that

during this initial phase of focusing,

ρ ∼ 1 + ε(
1

b2r
e
−( r−1+bT

b
√
ε

)2
) + o(ε3/2) (5.33)

and

v ∼ ε1/2(
−1

br
e
−( r−1+bT

b
√
ε

)2
) + ε(

√
π

2r2
erfc(−r − 1 + bT

b
√
ε

)) + o(ε). (5.34)

5.4.2.4 Leading Order and Correction in Inner Region

As the pulses move inwards, due to the 1/r and 1/r2 terms, the amplitudes

grow and the asymptotic expansions we arrived at above lose their validity.

To describe the region where the pulses have grown and arrive at the inner

wall, we rescale space and time. We let r = ε1/2σ and t − ts = εt̂, where

ts is a shifting parameter such that the peak of the leftgoing pressure wave

will have reached the plasma wall at r = χε1/2 at t̂ = 0. We anticipate

different scalings for the asymptotic expansions. From r = O(1) to r =

O(
√
ε), the first perturbation term in the density perturbation given in (5.33)

should have grown from O(ε) to O(
√
ε). Similarly, from (5.34), the velocity

amplitude should have grown from O(
√
ε) to O(1) and the velocity term
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that was O(ε) in that expression should also become O(1) since it grows like

1/r2. Therefore, in this next inner region, we write ρ ∼ 1 + ε1/2ρ1 + ερ2 and

v ∼ v0 + ε1/2v1. Using ∂r = ε−1/2∂σ and ∂t = ε−1∂t̂, (5.11) becomes

ε−1(ε1/2ρ1 + ερ2)t̂ + ε−1/2(v0 + ε1/2(v1 + ρ1v0))σ + ε−1/2
2

σ
(v0 + ε1/2(v1 + ρ1v0)) = 0

ε−1(v0 +ε1/2(v1 +ρ1v0))t̂+ε
−3/2b2(ε1/2ρ1 +ερ2)σ+ε−1/2(v2

0)σ+ε−1/2 2

σ
v2

0 = 0

which upon looking at balancing terms yield two sets of PDEs:

ρ1,t̂ + v0,σ +
2

σ
v0 = 0, v0,t̂ + b2ρ1,σ = 0 (5.35)

and

ρ2,t̂+v1,σ+
2

σ
v1 = −(ρ1v0)σ−

2

σ
ρ1v0, v1,t̂+b

2ρ2,σ = −(ρ1v0)t̂−(v2
0)σ−

2

σ
v2

0.

(5.36)

By virtue of the fact these PDEs can be solved and matched to the outer

solution (as done in the following paragraphs), we can be confident in the

scalings chosen. We will now consider boundary conditions. For a timescale

that is O(ε), given a velocity v = O(1), the inner wall can only move a

distance O(ε) and thus the inner wall position remains O(
√
ε) (recall that

rL(−∞) = χ
√
ε). We can find the leading order nonzero contribution to the

inner wall motion in the (σ, t̂)-coordinates. We define σL = rL/
√
ε. Then

σL(t̂) = χ+
∫ t̂
−∞
√
εv(σL(ŝ), ŝ)dŝ. The factor of

√
ε comes from the fact that

drL
dt = v(rL(t), t) = dε1/2σL

dεt̂
= ε−1/2 dσL

dt̂
. Thus,

σL(t̂) = χ+

∫ t̂

−∞

√
εv(χ+O(

√
ε), ŝ)dŝ = χ+ ε1/2

∫ t̂

−∞
v(χ, ŝ)dŝ+O(ε).
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As the pressure at the inner wall is given by p = γε7/2/r4
L, for rL =

O(
√
ε), p = O(ε3/2) = b2

ε (ε1/2ρ1(σL, t̂) + ερ2(σL, t̂) + ...) so that by a Taylor

expansion, ε1/2ρ1(χ, t̂)+ε(ρ1σ(χ, t̂)
∫ t̂
−∞ v0(χ, ŝ)dŝ+ρ2(χ, t̂))+o(ε) = 0. This

gives us boundary conditions

ρ1(χ, t̂) = 0 and ρ2(χ, t̂) = −ρ1σ(χ, t̂)

∫ t̂

−∞
v0(χ, ŝ)dŝ. (5.37)

If we again consider (5.35) in potential form with φ0(σ, t̂) =
∫ σ
∞ v0(σ̂, t̂)dσ̂

then by integrating the equation from σ =∞ to σ = χ, φ0t̂(χ, t̂)+b
2ρ1(χ, t̂) =

0 where we used ρ1 = φ0 = 0 at σ =∞. Since ρ1(χ, t̂) = 0, we must have

φ0t̂(χ, t̂) = 0. (5.38)

Similarly by integrating (5.36) we have φ1t̂(χ, t̂)+b2ρ2(χ, t̂) =
∫ χ
∞(−(ρ1v0)t̂−

(v2
0)σ − 2

σv
2
0)dσ which with (5.37)2 gives

φ1t̂(χ, t̂) = b2ρ1σ(χ, t̂)

∫ t̂

−∞
v0(χ, ŝ)dŝ+

∫ χ

∞
(−(ρ1v0)t̂ − (v2

0)σ −
2

σ
v2

0)dσ.

(5.39)

We can find the form of the solution to (5.35) using the solutions of

(5.32) with S1 = S2 = 0. We note that there are both incoming signals

(from σ =∞) and outgoing signals (from the interaction of the pulses with

the plasma) so we have waves propagating in both directions. Also, we are

on a spatial scale of O(
√
ε) so that it is not necessary to rescale the argument

of the solutions like we did in the previous section. As t̂ → −∞, we will

neglect the rightgoing wave and consider only the incoming wave. We write

ρ1 =
P+
1 (σ+bt̂)
σ , v0 =

Q+
0

′
(σ+bt̂)
σ − Q+

0 (σ+bt̂)

σ2 .

Expressing the outer solutions in (r, T )-coordinates in the inner coordi-
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nates and going to leading order, and using the fact that any function of

r−1+bT
b
√
ε

is a function of σ−χ
b + t̂, we have

(1 + ε1/2ρ1)inner = (1 + ε1/2ρ1)outer

1 + ε1/2
P̃+

1 (σ−χb + t̂)

σ
= 1 + ε(

1

b2σε1/2
e−(σ−χ

b
+t̂)2)

giving us a leading order solution in the inner region for the density

ρ1 =
1

b2σ
e−(σ−χ

b
+t̂)2 (t̂→ −∞). (5.40)

Also,

(v0)inner = (ε1/2v0 + εv1)outer

Q̃+
0

′
(σ−χb + t̂)

σ
−
Q̃+

0 (σ−χb + t̂)

σ2
= ε1/2(

−1

bσε1/2
e−(

σ−χ
b +t̂)2) + ε(

√
π

2σ2ε
erfc(

σ − χ
b

+ t̂))

so that v0 = −1
bσ e−(σ−χ

b
+t̂)2 +

√
π

2σ2 erfc(−(σ−χb + t̂)).

These solutions are only valid for t̂ → −∞. To get solutions for other

times, we first find the potential as φ0 =
∫ σ
∞ v0(σ, t̂)dσ so that

φ0 = −
√
π

2σ erfc(−σ−χ
b − t̂) (t̂ → −∞). From equation (5.37)1, in order for

ρ1 to be 0 along σ = χ and to have the incoming solution given in (5.40),

the solution is

ρ1 =
1

b2σ
(e−(σ−χ

b
+t̂)2 − e−(χ−σ

b
+t̂)2) (5.41)

For the potential, we note that φ0(χ,−∞) = −
√
π

2χ erfc(∞) = 0 so that

by (5.38), φ0(χ, t̂) = 0 is the boundary condition for all t̂. Using this, and

the wave solution to φ0, we must have that

φ0 =

√
π

σ
(erfc(−χ− σ

b
− t̂)− erfc(−σ − χ

b
− t̂))
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so

v0 =

√
π

2σ2
(erf(

σ − χ
b
− t̂)− erf(−χ− σ

b
− t̂))− 1

bσ
(e−(σ−χ

b
+t̂)2 + e−(χ−σ

b
+t̂)2)

(5.42)

In writing the above equation, we used the fact that erfc(−x− y)− erfc(x−

y) = (1− erf(−x− y))− (1− erf(x− y)) = erf(x− y)− erf(−x− y).

We note that the leading order density perturbation and velocity profiles

grow in amplitude like 1/r, or close to such scaling, at their peak values as

the profiles move radially inwards. This is consistent with known results

for fluid dynamics with spherical symmetry [20]. Given the equation of

state (5.12), this also means the peak pressure grows like 1/r. To be more

precise, the asymptotic profile for ρ1 and p do grow like 1/r, but because

v0 in the inner region also includes an error function term that reduces the

magnitude of the Gaussian peak, the scaling may be slightly smaller. A

typical profile of the velocity and pressure, computed numerically [27] is

depicted in figure 5.7. We also observe that v0 and ρ1 tend to 0 as t̂ → ∞

and the total distance the plasma wall moves due to these leading order

terms is O(1)×O(ε) = O(ε). More precisely the leading order displacement

solely due to the v0 term is

δ0 = ε

∫ ∞
−∞

v0(χ, t̂)dt̂ = ε

∫ ∞
−∞

−2

bχ
e−t̂

2
dt̂ = −2

√
πε

bχ
. (5.43)

Any nonnegligible compression will be a result of the correction terms. Equa-

tions (5.36), (5.37)2, and (5.39) give insights into what the effects of these

correction terms are, which we discuss in the following portion of this paper.
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Figure 5.7: The pulses are moving to the left. The pressure peak grows
like 1/r as the pulses move inwards. The velocity has a peak with negative
value and one with positive value. The negative value grows roughly like
1/r. Parameters: b = χ = γ = 1, ε = 0.0025,t = 0.0262.

5.4.2.5 Phase III - Resultant Velocity Field

Figure 5.8 depicts this region of analysis.

Given that most of the localized disturbances are reflected, the driving

force for compression, if a substantial compression is to occur, must come

from a residual negative radial velocity of the inner wall after the waves

come in. We begin by considering the systems given by (5.36) in a time-

independent regime (a long time after the v0 and ρ1 pulses have interacted

with the inner wall). We then find that v1σ + 2
σv1 = 0 and ρ2σ = 0 so that

v1 = A/σ2 and ρ2 = B. Note that these A and B values have nothing to

do with equation (4.5). Physically, ρ2(σ = ∞) = 0 so that B = 0, but

the constant A cannot be determined. We can, however determine φ1 =∫ σ
∞

A
σ̂2 dσ̂ = −A/σ (t̂ → ∞). This suggests that the correction term leaves

a velocity field behind that may do further work to compress the plasma.

Strictly speaking, we show that the value of φ1 approaches a constant at

σ = χ as t̂ → ∞ but section 5.5.3 validates this residual velocity field
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Figure 5.8: Depiction of phase III. This is the reflection phase. In this phase,
we start with ρ ∼ 1 + ε1/2ρ1 + ερ2 and v ∼ v0 + ε1/2v1 and finally obtain
ρ = 1 + o(ε) and v = O(ε1/2).

numerically.

Observe that −χφ1(χ,∞) = A and

φ1(χ,∞) = φ1(χ,−∞) +

∫ ∞
−∞

φ1t̂(χ, t̂)dt̂.

At t̂ = −∞, v1 = 0, and φ1(χ,−∞) = 0. Then by using (5.39), we have

φ(χ,∞) =

∫ ∞
−∞

[b2ρ1σ(χ, t̂)

∫ t̂

−∞
v0(χ, ŝ)dŝ

+

∫ χ

−∞
(−(ρ1v0)t̂ − (v2

0)σ −
2

σ
v2

0)dσ]dt̂

=

∫ ∞
−∞

b2ρ1σ(χ, t̂)

∫ t̂

−∞
v0(χ, ŝ)dŝdt̂︸ ︷︷ ︸

T1

−
∫ ∞
−∞

∫ χ

∞
(ρ1v0)t̂dσdt̂︸ ︷︷ ︸
T2

−
∫ ∞
−∞

∫ χ

∞
(v2

0)σdσdt̂︸ ︷︷ ︸
T3

−
∫ ∞
−∞

∫ χ

∞

2

σ
v2

0dσdt̂︸ ︷︷ ︸
T4

.
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We can simplify these terms and there is cancellation. Indeed,

T1 =

∫ ∞
−∞

−4

bχ
e−t̂

2
t̂

∫ t̂

−∞

−2

bχ
e−ŝ

2
dŝdt̂ =

∫ ∞
−∞

4
√
π

b2χ2
t̂e−t̂

2
(1− erf(−t̂))dt̂

=
4
√
π

b2χ2

∫ ∞
−∞

t̂e−t̂
2
erf(t̂)dt̂ (by parts)

=
4
√
π

b2χ2
(
−1

2
e−t̂

2
erf(t̂)|∞−∞ +

∫ ∞
−∞

1√
π

e−2t̂2dt̂) =
2
√

2
√
π

b2χ2

T2 =

∫ ∞
−∞

∫ χ

∞
(ρ1v0)t̂dσdt̂ =

∫ χ

∞

∫ ∞
−∞

(ρ1v0)t̂dt̂dσ

=

∫ χ

∞
0dσ = 0

T3 =

∫ ∞
−∞

∫ χ

∞
(v2

0)σdσdt̂ =

∫ ∞
−∞

v0(χ, t̂)2dt̂

=

∫ ∞
−∞

4

b2χ2
e−2t̂2dt̂ =

2
√

2
√
π

b2χ2

T4 =

∫ ∞
−∞

∫ χ

∞

2

σ
v2

0dσdt̂ = −
∫ ∞
−∞

∫ ∞
χ

2

σ
v2

0dσdt̂

Adding all terms together gives us φ(χ, t̂) =
∫∞
−∞

∫∞
χ

2
σv

2
0dσdt̂ > 0. Thus,

A < 0 and there is a remaining velocity field in the negative radial direction

that can compress the plasma. Obtaining a simple expression for the exact

value of this integral is not possible, but by taking note of the characteristic

shape of the integrand, we can approximate it with high precision. We
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(b, χ) I∗approx I∗numerical

(0.557, 1.19) 5.75 5.71
(1.11, 1.19) 1.45 1.43
(0.288, 1.19) 22.5 22.8
(0.557, 2.38) 1.40 1.43
(0.557, 0.595) 23.5 23.8

Table 5.4: Verifying the numerical validity of the approximation given in
(5.44) by doubling/halving the governing parameters and computing I∗ with
the approximation of v2

0 given in (5.44) and the numerically integrated value.

remark that

v2
0 = [

√
π

2σ2
(erf(

σ − χ
b
− t̂)− erf(−χ− σ

b
− t̂))

− 1

bσ
(e−(σ−χ

b
+t̂)2 + e−(χ−σ

b
+t̂)2)]2

≈ 1

b2σ2
(e−(σ−χ

b
+t̂)2 + e−(χ−σ

b
+t̂)2)2

≈ 1

b2σ2
(e−2(σ−χ

b
+t̂)2 + e−2(χ−σ

b
+t̂)2)

≈ 1

b2σ2

√
π√
2

(δ(t̂− σ − χ
b

) + δ(t̂− χ− σ
b

)) (5.44)

where δ denotes the Dirac delta function [41]. We justify the first approxi-

mation by noting the terms with erf are modulated by a 1/σ2 which decays

to 0 faster as σ → ∞ than terms with 1/σ and that for σ ≈ χ, the two

error functions are being subtracted and have similar arguments. The sec-

ond approximation comes from the fact that a Gaussian is dominated by

its behaviour near its maximum and there is little overlap between the two

Gaussians. The final approximation comes from approximating each Gaus-

sian by its area modulating a delta function centred at its maximum.
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From the approximation in (5.44),

φ1(χ,∞) = I∗ ≈
∫ ∞
−∞

∫ ∞
χ

2

σ

1

b2σ2

√
π√
2

(δ(t̂− σ − χ
b

) + δ(t̂− χ− σ
b

))dσdt̂

=

∫ ∞
χ

∫ ∞
−∞

√
2π

b2σ3
(δ(t̂− σ − χ

b
) + δ(t̂− χ− σ

b
))dt̂dσ

=

∫ ∞
χ

2
√

2π

b2σ3
dσ =

√
2π

b2χ2
.

Therefore A ≈
√

2π
b2χ

. For the remainder of this paper, we will take

this approximation as the value of I∗. Table 5.4 computes the integral∫∞
−∞

∫∞
χ

2
σv

2
0dσdt̂ using (5.44) and numerically, and the results show good

agreement. With this A, the long-time velocity profile is v ∼
√
εv1 =

√
ε−
√

2π
b2χσ2 (5.45).

5.4.2.6 Phase III Results

After the pulses have interacted with the inner wall, there remains a residual

velocity field which remains as a time-independent solution of the asymptotic

equations. We find that ρ ∼ 1 + o(ε) and v ∼ −
√

2π
b2χσ2 ε

1/2 + o(ε1/2).

5.4.3 Phases IV and V

5.4.3.1 An Energy Argument

At this point we now compute the remaining kinetic energy (all the particles

with a negative radial velocity), assuming there are no reflections at the right

boundary and that all the useful energy is in the vicinity of the inner wall.

The kinetic energy density is E = 1
2ρv

2, and to leading order this is E =

1
2(1)(ε1/2v1)2 = ε

2v
2
1. The total kinetic energy is 4π

∫ rR
rL
Er2dr, which in the

inner variables at leading order is E = ε5/2

2

∫∞
χ v1(σ)2σ2dσ = 4π2ε5/2

b4χ2

∫∞
χ

dσ
σ2 .
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The total possible compression energy is

E =
4π2ε5/2

b4χ3
. (5.46)

The work done in compressing the plasma from rL = χ
√
ε to rL = r∗ the

minimum radius −
∫
PdV is −4π

∫ r∗
χ
√
ε P (rL)r2

LdrL = −4π
∫ r∗
χ
√
ε
γ
r2L

drL giving

us the total work done

W = 4πγε7/2(
1

r∗
− ε−1/2

χ
). (5.47)

Equating E = W in (5.46) and (5.47) implies 4π2ε5/2

b4χ3 = 4πγε7/2( 1
r∗ −

ε−1/2

χ ) so that r∗ = O(ε) with

r∗ ∼ b4χ3γ

π
ε. (5.48)

This sort of energy argument was originally used by Lord Rayleigh in consid-

ering the compression of a bubble in an incompressible fluid [33]. We present

a formal asymptotic argument for this result in the next two subsections.

5.4.3.2 Outer Region for Motion of Plasma Boundary

The relevant region in space and time for this analysis is sketched in figure

5.9.

To proceed with formal asymptotics, we need to consider higher orders of

the equations of mass and momentum conservation. By taking the equations

of (5.11) to two higher orders than presented in (5.36) with ρ ∼ 1 + ε1/2ρ1 +

ερ2 + ε3/2ρ3 + ε2ρ4 and v ∼ v0 + ε1/2v1 + εv2 + ε3/2v3 we obtain the following
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Figure 5.9: Depiction of phase IV. This is the slow compression phase. In
this phase, ρ ∼ 1 + O(ε2) and v = O(ε1/2). The peak velocity and pressure
are growing in this phase.

balances:

ρ3,t̂ + v2,σ +
2

σ
v2 = −(ρ2v0 + ρ1v1)σ −

2

σ
(ρ2v0 + ρ1v1) (5.49)

v2,t̂ + b2ρ3,σ = −(ρ1v
2
0 + 2v0v1)σ −

2

σ
(ρ1v

2
0 + 2v0v1)− (ρ2v0 + ρ1v1)t̂ (5.50)

ρ4,t̂ + v3,σ +
2

σ
v3 = −(ρ3v0 + ρ2v1 + ρ1v2)σ −

2

σ
(ρ3v0 + ρ2v1 + ρ1v2) (5.51)
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v3,t̂ + b2ρ4,σ = −(ρ2v
2
0 + 2ρ1v0v1 + 2v0v2 + v2

1)σ

− 2

σ
(ρ2v

2
0 + 2ρ1v0v1 + 2v0v2 + v2

1)

− (ρ3v0 + ρ2v1 + ρ1v2)t̂ (5.52)

From our previous considerations of the behaviour of the solutions as t̂→

∞, we observe that (5.49) and (5.50) can also reach a steady-solution with

ρ3 = 0 and v2 = constant/σ2 since ρ1, ρ2, v0 all tend to 0 which eliminates

all forcing terms in the equations. Looking at (5.51) and (5.52) similarly, we

actually have residual forcing terms that do not vanish as t̂ → ∞, namely

the terms with v2
1. After a long time, we infer that ρ ∼ 1 + ε2ρ4 and

v ∼ ε1/2v1 + ... By scaling so that t = $, an O(1) time-scale we obtain a

new PDE system to evolve, which serves as an outer region for a problem

describing the motion of the plasma radius. Our balance is:

v1,σ +
2

σ
v1 = 0, v1,$ + b2ρ4,σ + v2

1σ +
2

σ
v2

1 = 0. (5.53)

Equation (5.53)1 gives an effective incompressibility to the lead-lithium and

we can proceed to solve (5.53) as done to derive the Rayleigh-Plesset equa-

tion for bubble dynamics [5]. From (5.53)1 we have v1 = f($)/σ2 so that

upon substituting this into (5.53) we have f ′

σ2 + b2ρ4σ −
2f2

σ5 = 0 which can

be integrated from σ = ∞ to σ = σL($) the position of the plasma in-

ner radius in the σ−coordinates to get −f
′

σL
+ b2ρ4(σL) + f2

2σ4
L

= 0 where we

used ρ4(∞, $) = 0. We have ρ4(σL, $) = 0 as well because if r = O(
√
ε),

p = O(ε3/2) so that the density at the left boundary is 1 +O(ε5/2). We then
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get
df

d$
=

f2

2σ3
L

. (5.54)

Additionally, the velocity at the inner wall dσL
d$ = v1(σL, %) (due to the

scaling in this regime there is no extra factor of
√
ε to deal with) so

dσL
d$

=
f

σ2
L

. (5.55)

Dividing (5.54) and (5.55) we find that df
dσL

= f
2σL

which has solution

f = C
√
σL for a constant C. Thus we can treat v1 as a function of the inner

wall position where v1(σL) = C/σ
3/2
L after using the solution in conjunction

with (5.55). Given

v1(χ) = −
√

2π

b2χ3
(5.56)

from equation (5.45), we have C = −
√

2π
b2χ3/2 and with respect to these outer

coordinates

v1(σL) =
−
√

2π

b2χ3/2σ
3/2
L

. (5.57)

At this point, the system has not felt the effects of the plasma pressure and

the wall is accelerating inwards.

5.4.3.3 Inner Region for Motion of Plasma Boundary

Numerous balances are possible for the system of (5.11) and it is possi-

ble to arrive at the scaling we choose here considering all possible bal-

ances and solutions and choose the one that can match to the outer re-

gion, but we will consider a physical argument here to obtain the bal-

ance. We seek a balance of terms where the pressure of the plasma re-

sists the compression (i.e. the pressure gradient balances the momentum
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Figure 5.10: Depiction of phase V. This is the rapid compression phase where
the plasma reaches its minimum radius. In this phase, ρ ∼ 1 +O(ε1/2) and
v = O(ε−1/4).

flux). We consider r = O(εc). If r = O(εc) then p = O(ε7/2−4c) and

ρ = 1+O(ε9/2−4c). Based on the growth predicted by (5.57) this would give

a scaling of v = O( ε1/2

(εc/ε1/2)3/2
) = O(ε5/4−3c/2). The form of the scaling as

written comes from the velocity growing like 1/r
3/2
L but being O(

√
ε) when

r = O(
√
ε). To balance the pressure/density ρ term in the momentum equa-

tion with the v2 terms, we require 7/2 − 4c = 5/2 − 3c so that c = 1. Now

we let r = ε1z. Then v ∼ ε−1/4v−1, ρ ∼ 1 + ε1/2ρ1, and to balance the scales

of velocity times time equals distance, we pick t = ε5/4$̂ where $̂ measures

a time with respect to an arbitrary reference point. See figure 5.10. The

resulting balance is given by

v−1,z +
2

z
v−1 = 0 and v−1,$̂ + b2ρ1,z + (v2

−1)z +
2

z
v−1 = 0. (5.58)

Using the functional form of v−1 implied by (5.58)1, v−1 = g($̂)/z2
L, in
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(5.58)2 and integrating as before, this time up to zL, the position of the

wall in the inner coordinates gives us −g
′

zL
+ γ

z4L
+ g2

2z4L
= 0 where we used

b2ρ1(zL, $̂) = γ/z4
L. It follows then that

dg

d$̂
=
γ + g2/2

z3
L

and
dzL
d$̂

=
g

z2
L

so that after dividing the equations we get dg
dzL

= γ+g2/2
zLg

which we separate

to get
∫ g
γ+g2/2

dg =
∫

dzL
zL

with solution γ + g2/2 = DzL for a constant D.

We can solve for g, obtaining g = −
√

2DzL − 2γ (the negative sign giving

the correct direction of the wall) which finally gives us

v−1 =
−
√

2DzL − 2γ

z2
L

. (5.59)

Observe that when zL = z∗L = γ/D the velocity is 0 to leading order and

this will be our leading order estimate to the compression. To find D, we

need to perform matched asymptotics between the inner and outer regions

with respect to the functional dependence of the wall velocity upon the wall

position.

5.4.3.4 Matching to Determine Minimum Radius

We now put the outer variables of (5.57) in inner variables to match the

behaviours as zL →∞ and σL ↓ 0.

ε−1/4(v−1)inner = ε1/2(v1)outer

ε−1/4−
√

2D

z
3/2
L

= ε1/2
−
√

2π

b2χ3/2(ε1/2zL)3/2
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yielding −
√

2D

z
3/2
L

= −
√

2π

b2χ3/2z
3/2
L

so that D = π
b4χ3 . In the z variable, we have a

minimum radius of z∗L = γ/D = b4χ3γ
π and we thus find r∗ = b4χ3γ

π ε consis-

tent with (5.48) found with the energy argument. While the energy argu-

ment was assumed true for incompressible fluids, it seems in the asymptotic

limit compressibility does not influence the compression to leading order.

Note that by having quarter powers of ε, it may become difficult to distin-

guish different asymptotic terms without taking ε to be extremely small.

When v = O(ε−1/4), this is very close to v = O(ε−1/2), the sound speed

magnitude and the wave-like behaviour of the equations may be close to

breaking down. Indeed, when ε is too large, the local velocity magnitude

can even exceed the sound speed during the compression phase.

5.4.3.5 Dimensional Expression for Plasma Compression

We can finally go back to the dimensional parameters in our problem. Using

tables 5.2 and 5.3, we find the minimum radius is

R∗L ≈
C4
sPplasma,0R

7
inner,0%

3
0

πP 4
maxR

4
outer,0T

2
0

(5.60)

102



5.5. Comparison with Numerics

where

T0

Router,0

P
1/2
max

%
1/2
0

� 1 (5.61)

CsT
1/4
0 P

1/4
max

R
1/2
outer,0%

1/4
0

= O(1) (5.62)

Pplasma,0R
4
inner,0%

7/4
0

P
11/4
max R

1/2
outer,0T

7/4
0

= O(1) (5.63)

Rinner,0%
1/4
0

R
1/2
outer,0T

1/2
0

= O(1). (5.64)

Equation (5.60) gives the approximate expression for the minimum ra-

dius, which requires that ε is small (5.61) and that b, γ, and χ all be O(1)

as given in equations (5.62), (5.63), and (5.64).

5.5 Comparison with Numerics

In chapter 4, a finite volume numerical framework was developed to solve the

nonlinear conservation laws with the moving boundaries. Using this numer-

ical framework, we run simulations on the asymptotic problem formulated

in this paper. Our validation is done in multiple stages: we examine the

profiles of the pulses during their formation both numerically and asymp-

totically by comparing the profiles of the resultant variables; then, we study

the growths of the amplitudes of the pulses as they move radially inward as

predicted by the asymptotics and numerics; we next proceed to study the

existence of the residual velocity field with the numerics and the growth of

the inner wall velocity with inner wall position; we observe that the velocity

at the inner wall is qualitatively consistent with the numerical results; and
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finally, we compute the minimal radius in the asymptotic and numerical

workings for various values of b, γ, χ, and ε.

We remark that the asymptotic problem we have considered is primar-

ily concerned with a single direction of information propagation: the pulse

travels towards the plasma wall, it is reflected, and then everything else

governing the plasma wall takes place locally near the wall and there is no

influence from leftgoing waves. We need to exercise caution with this nu-

merically by removing reflections that occur at the outer wall. This allows

for better agreement between the asymptotics and numerics but we make

two remarks. We first note that if these reflections are not removed then a

reflection occurs at the outer wall and disturbances return to hit the plasma

again which drastically reduces the compression. Such effects are noticeable

for ε . 0.0025. The second point to make is that even in attempting to re-

move the reflections at the outer wall, there is likely still a small numerical

error that remains.

5.5.1 Pulse Formation

We consider two parameter regimes here. One is the for the parameter set

of interest, and the other is for a much smaller ε with other dimensionless

parameters set to unity. We fix an end time t = ε/2 and plot the profiles of v

and ρ as computed numerically, and with two different levels of asymptotic

accuracy. From the plots, we are able to verify that the successive terms of

the asymptotic expansion yield higher accuracies, and that the asymptotics

and numerics are in good agreement. See figure 5.5.
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Figure 5.11: Numerical and asymptotic descriptions of the growth in peak
values for the minimum value of velocity and peak value of pressure. Based
on a best fit, the numerically observed scalings are 1/r0.99 and 1/r0.90 for
the left and right plot respectively. Parameters: b = χ = γ = 1, ε = 0.001.

5.5.2 Focusing

Here, we consider the asymptotically predicted growth rates for the peak

amplitudes of the velocity and pressure. From the asymptotic predictions,

both of these amplitudes should grow inversely with the position of these

peaks. This validation is rather delicate: these growths should be upheld in

the limit ε ↓ 0; however, there are difficulties in getting the numerics to give

highly accurate results on regions where r � 1. What we choose to do is

pick a very small value of ε, 0.001, and consider the growth of the amplitudes

on the region r > 0.1 ≈ O(
√
ε). We plot the predictions as given by a perfect

growth of 1/r based on the initial peak pressure and minimum velocity, and

the numerical results for the peak amplitude vs position for this ε value.

The plots are given in figure 5.11 and we observe strong consistency.
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Figure 5.12: A plot of the numerical and asymptotic velocity profile after
much of the pulses have reflected off of the inner wall. The two are nearly
indistinguishable. Parameters: b = χ = γ = 1, ε = 0.0025, t = 0.0784.

5.5.3 Residual Velocity Field

Our prediction of a steady velocity field resulting from the disturbances

interacting with the plasma was based primarily on intuition, as we did not

formally find the solution for v1 and ρ2 for general t̂; we simply showed that

the potential approaches a constant value along the boundary. Numerically,

however, we can validate the scaling. After a long time with respect to the t̂

time-scale so that v0 has had its full effect, we plot the profile of the velocity

versus the radial position. As the inner wall moves inward, in its wake there

is a velocity profile that scales like 1/r2
L. See figure 5.12.

5.5.4 Outer Region Describing Inner Wall Velocity

This validation is rather delicate as there are a number of sources of error.

Firstly, the inner wall position at which the boundary condition of (5.56) is

better approximated by σ = χ −
√
ε2
√
π

bχ as per (5.43) but to leading order

we have taken it as σ = χ. In the case considered in figure 5.13, this already
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Figure 5.13: A plot of the numerical and asymptotic velocity profile for
how the inner wall velocity implicitly depends on the inner wall position.
Parameters: b = χ = γ = 1, ε = 0.0025, t ranging from 0.0784 to 0.11.

amounts to an error of 17% in estimating the boundary condition which

will lead to an error in the constants obtained. We additionally know that

v ∼
√
εv1 +εv2 so that there is an O(ε) error term in the radial position that

is accrued over a time scale of O(1). Throwing these effects together makes

it very hard to get a clean fit between numerical and asymptotic results. In

finding the slope of the log vL vs log rL plot, a least squares fit shows the

numerical scaling is vL ∝ 1/r1.49
L which is completely consistent with the

asymptotic scaling.

5.5.5 Qualitative Agreement of Inner Wall Velocity

The asymptotics predict a series of phenomena at the inner wall: firstly, the

wall is stationary until the pressure pulse reaches it whereupon it takes on a

Gaussian shape then decreases in speed; secondly, a smaller asymptotic term

describing the wall velocity remains for some time (as the velocity acquires

the residual profile); thirdly, the wall rapidly speeds up; and finally, the wall

is stopped abruptly on a small spatial scale when the plasma pressure finally
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Figure 5.14: A numerical validation that the asymptotics have qualitatively
captured the behaviour of the inner wall. Parameters: b = χ = γ = 1,
ε = 0.0025. The different qualitative regimes are labelled in the diagram.
The r∗-value that we seek occurs at the bottom spike of the curve where the
maximum compression label appears.

takes over. We observe all of these phenomena in figure 5.14.

5.5.6 Predictions for Plasma Compression

In this section, we verify that the fundamental asymptotic predictions are

consistent with the numerics. Table 5.5 presents the results. We remark

that verifying the asymptotic limit is not trivial. As ε ↓ 0, the numerics, for

modest discretizations, lose accuracy due to the very small radial positions

under consideration. As a result, we cannot not take ε too small. We also

have to ensure that quantities such as b4χ3γ/π, etc. remained roughly O(1)

for these values of ε. Picking ε too large also leads to problems: for one,

the higher order terms may dominate over the desired r∗ = O(ε) behaviour.

Another issue is that if ε is not small enough, the apparently negligible dis-

placement of the inner wall given by (5.43) could be larger than the initial

inner radius of χ
√
ε. In table 5.5, we compute the minimum radius asymptot-
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ε r∗asy r∗num Error

0.02 0.02000 0.01155 0.00845
0.01 0.01000 0.00600 0.00400
0.005 0.00500 0.00444 0.00056
0.0025 0.00250 0.00242 0.00008

Table 5.5: Asymptotic and numerical predictions of minimum radius of
plasma for different values of ε with b = 1.05, χ = 0.937 and γ = π. Based
on a least squares linear regression in a log-log plot of the difference versus
ε, the convergence rate appears to be O(ε2.3) = o(ε). The convergence rate is
excellent likely either due to small coefficients in the o(ε) asymptotic series
terms or fortuitous cancellations of higher order asymptotic error terms.

ically and numerically. We verify that the difference in the minimum radius

between the asymptotic and exact (numerical) predictions is o(ε) when b, χ,

and γ are fixed. We choose b = 1.05, χ = 0.937, γ = π so that the minimum

radius should be 0.99994ε.

5.5.6.1 Comments on the Model Parameter Regime

With respect to the parameters of table 5.3, the asymptotic prediction of the

minimum radius is r∗ = 0.00229 and the numerical results are larger with a

value of 0.00649. The two predictions are roughly on the same scale, but are

not quantitatively consistent. We speculate this is the result of the fact that

b4χ3γ/π = 0.18, which is approximately O(
√
ε) and not O(1) with respect

to ε = 0.0126. Somewhere in the sequence of asymptotic regions, the asymp-

totic series lost its ordering and this is likely the cause of the discrepancy. We

would naturally expect these results to be more accurate if ε were smaller or

b4χ3γ/π were nearer unity (for example if we use b = 0.8 and ε = 0.01 instead

of b = 0.557 and ε = 0.0126 so that b4χ3γ = 0.77, the asymptotic prediction

is 0.0077 and the numerical result is 0.0088). Despite the discrepancy, there

is qualitative consistency between the numerical and asymptotic modelling.
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In previous work [27] where the model was very similar, the data show that

perturbations to the inner radius had the greatest impact upon the com-

pression. This was followed by a tie between maximum external pressure

and maximum outer radius, and then pulse time scale, sound speed, initial

plasma pressure. This is reasonably consistent with (5.60), where based on

the respective powers of the parameters, the relative sensitivity of the mini-

mal radius with respect to the parameters (i.e., the percentage by which the

minimal radius would change for a percent change in the parameter), from

most to least sensitive follows the ordering: initial plasma radius; sound

speed, initial outer radius, and maximum impulse pressure (three-way tie),

pulse time scale, and initial plasma pressure. The proper positive/negative

correlations are also consistent i.e. when the asymptotics show an increase

in a parameter decreases the radius, so do the numerics.

With the results of the asymptotics, we can make a few application-

relevant statements. Based on (5.14)2, (5.24) and (5.46), we note that only

a small fraction of the energy input actually goes towards compressing the

plasma. Indeed if we compute the energy input by

∫ ∞
−∞
−4πrR(t)2pR(t)︸ ︷︷ ︸

force

vR(t)dt︸ ︷︷ ︸
displacement

∼ 4πε3/2

b

∫ ∞
−∞

e−2τ2dτ =

√
8π3

b
ε3/2,

the leading order energy is O(ε3/2) but only O(ε5/2) ultimately goes towards

compression. A lot of energy is lost in reflection. In our modelling, we ne-

glected the gas pressure of the plasma, which would also work to oppose the

compression of the plasma; the degree the plasma is compressed is likely less

than what we predict asymptotically, i.e., in a model with the gas pressure,

we would expect r∗ to be larger than our value given in (5.48) at leading or-
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der. Also, based on the previous work mentioned in the previous paragraph,

we can see that a smaller minimum radius does not necessary yield more

promising fusion conditions (based on the Lawson triple product criterion

[21]); the time over which the plasma is compressed is another vital element.

While our work here predicts the minimum radius, this is only one of many

complex components required for the success of magnetized target fusion.

5.6 Conclusions and Future Work

In this chapter, an analytic result for the minimal radius of a plasma has been

obtained in the limit of a very fast impulse time scale. Although the model

is highly simplified, we can describe qualitatively the effects of key design

parameters in the magnetized target fusion model in question. Equation

(5.60) is qualitatively accurate, given the stipulations outlined in equations

(5.61) - (5.64), and it provides a good ballpark quantitative estimate for

the minimum radius. The key parameters that are within control are likely

Pmax, Router,0, and T0. In this case, within the limitations of the physical

model, the plasma is compressed to a smaller and smaller radius as the

piston pressure, initial outer radius, and pulse time scale all increase. If the

medium through which the pressure pulses travel could be modified then

decreasing either its sound speed or density (or both) would be ideal while

sustaining the piston pressure. Also, if the initial plasma pressure or size

could be decreased, a greater compression can take place.

Although this problem contained nontrivial obstacles, including nonlin-

ear conservation laws and moving boundaries, through appropriate scaling

arguments and suitable solution techniques and estimates, an analytic re-

sult that agrees well with numerical simulations has been obtained in the
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limit where ε ↓ 0. Building upon this asymptotic framework, many new and

important studies could potentially be done to enhance the physical accu-

racy and predictive power of the modelling including: adding more detailed

plasma physics, including adding in the gas pressure and allowing for energy

losses; considering the plasma and lead-lithium interaction more carefully;

incorporating a more sophisticated equation of state for the lead-lithium; or

even studying the effects of localized angular perturbations in the system

given that perfect spherical symmetry is not possible in the real device.
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Conclusions
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Chapter 6

Additional Insights

Concerning the Numerical

and Asymptotic Modelling of

the Fusion Reactor

6.1 Fusion Reactor Numerical Details

This section provides further details on the numerical simulations studied

in chapter 4.

Our implementation follows from the discussion found in 3.3.1, but we

provide the background to the coordinate transformation and setup. A

detailed pseudo-code is provided in the appendix A.

6.1.1 Transformed Coordinate System

To avoid dealing with moving boundaries within each time step, we chose to

transform the coordinate system to a fixed computational domain arriving at

equations (4.12) and (4.13). The reader may wish to refer back to equations

(4.1) through (4.11) for the setting. We begin with the spherically symmetric
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compressible Euler equations,

ρt + (ρv)r +
2

r
ρv = 0

(ρv)t + (P + ρv2)r +
2

r
ρv2 = 0

where rL(t) ≤ r ≤ rR(t) with r′L(t) = v(rL(t), t) and r′R(t) = v(rR(t), t). We

consider a fixed computational domain in space y ∈ [0, 1] where y = r−rL
rR−rL

and a time parameter τ = t. If we denote ∆(t) = rR(t) − rL(t) and Γ(t) =

vR(t)− vL(t) then:

∂r =
∂y

∂r
∂y

=
1

∆
∂y

∂t =
∂τ

∂t
∂τ +

∂y

∂t
∂y

= ∂τ +
−vL∆− Γ(r − rL)

∆2

= ∂τ +
−vL∆− Γ∆y

∆2

= ∂τ +
−vL − Γy

∆

With this, we are now able to rewrite the equations for mass and momentum

conservation as:

ρτ +
−vL − Γy

∆
ρy +

1

∆
(ρv)y +

2

rL + ∆y
ρv = 0

(ρv)τ +
−vL − Γy

∆
(ρv + P )y +

1

∆
(ρv2)y +

2

rL + ∆y
ρv2 = 0.

The numerical methods work best when spatial derivative terms are writ-
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ten in a conservative form ut + (f(u))x = 0 as we observe in section 3.3.3.

Observe we can rewrite the system in a more conservative form as:

ρτ + (
−vL − Γy

∆
ρ+

1

∆
ρv)y +

Γρ

∆
+

2

rL + ∆y
ρv = 0

(ρv)τ + (
−vL − Γy

∆
(ρv) +

1

∆
P +

1

∆
ρv2)y +

Γρv

∆
+

2

rL + ∆y
ρv2 = 0.

This is the system given by (4.12) and (4.13).

6.1.2 Formulation

In vector form our equations have a flux function

 −vL−Γy
∆ ρ+ 1

∆ρv

−vL−Γy
∆ (ρv) + 1

∆P + 1
∆ρv

2


with linearized eigenvalues

λ± =
v − (vL + Γy)±

√
P ′(ρ)

∆
.

Our vector that we called u in the discussion of the finite volume method in

chapter 3 is taken to be (ρ, ρv)T .

Even with this conservative-like form, there are still terms that are

y−dependent (and τ−dependent) that appear outside of the fluxes. As

we cannot avoid these terms, we anticipate our method being reduced from

second to first-order [23].
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6.2. Asymptotic Commentary

6.2 Asymptotic Commentary

6.2.1 Different Model than Numerical Simulations

The asymptotic model in chapter 5 entailed a slightly different formulation

than the numerical modelling done in chapter 4 notably in the fact that

the asymptotic model worked with a linearized equation of state for lead-

lithium, that the plasma only involved a magnetic pressure, and that the

piston impulse was continuous and smooth. Our choice of a more smooth

impulse function was motivated by an attempt to avoid, if possible, nonlinear

systems with shocks and possibly delta-functions (the spatial derivative of

step functions) appearing in the analysis. We comment, however, that given

the nature of a Gaussian impulse and its fast time scale, both the continuous

and discontinuous idealizations of how the pistons impact the outer wall, do

describe the same system, and, as we observe in the qualitative analysis, the

asymptotics, even with this more smooth impulse function, do predict the

relative influence of the different design specifications.

6.2.2 Suitability of Linear Lead-Lithium Equation of State

From the numerical simulations for the nuclear fusion reactor, we observe

that the peak total plasma pressure (and peak pressure within the entire

system) is approximately 6.7 GPa from table 4.3. With this maximum

pressure, we are able to investigate where this falls on the quadratic equation

of state curve, and determine how well the linear equation of state used in

the asymptotics describes the behaviour. The red line in figure corresponds

to the peak pressure of 6.7 GPa and we see that at this point, the quadratic

does deviate from the straight line, but the relative error in the densities

corresponding to this pressure is only around 5%. The simple assumption of
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6.2. Asymptotic Commentary

Figure 6.1: Plot of quadratic and linear equation of state models with peak
pressure as computed numerically.

a linear equation of state appears to be acceptable.

In the following subsection, we illustrate how the plasma gas pressure

could be incorporated into the asymptotic analysis.

6.2.3 Inclusion of Gas Pressure

The asymptotic results illustrated above are valid for a plasma pressure

described solely by its magnetic pressure. We can, however, add the gas

pressure at the expense of not being able to solve the equations of motion

in regions IV and V in 5.4.3 and relying upon the energy argument.

If we nondimensionalize equation (4.6) by the parameters listed in table

5.2 then we have

P̄PL =
κ1R̄

4

r4
+
κ2R̄

5

r5
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6.2. Asymptotic Commentary

or that

p =
γε7/2

r4
+
µε9/2

r5

where µ = κ2R̄5

P̄
ε−9/2. Numerically, µ ≈ 3.380.

Even with the inclusion of the gas pressure, the asymptotic order of the

initial plasma pressure remains O(ε3/2) so that all the analysis is the same

up to the energy argument. Then, with this new pressure, we can compute

the work done in compressing the plasma from r = χ
√
ε to r = r∗:

W = −
∫ r∗

χ
√
ε
4πr2(

γε7/2

r4
+
µε9/2

r5
)dr

= 4π(
γε5/2

r
+
µε9/2

2r2
)|r∗χ√ε

= 4π(−γε
2

χ
+
γε5/2

r∗
− µε2

2χ2
+
µε5/2

2r∗2
) (6.1)

In equating the remaining kinetic energy equation (5.46) with the work

done in equation (6.1), we find that to leading order, r∗ = sε where

π

b4χ3
=
γ

s
+

µ

2s2
.

This is a quadratic in 1/s so that the solution is that

s = (
−γ +

√
γ2 + 2µπ

b4χ3

µ
)−1 =

µ

−γ +
√
γ2 + 2µπ

b4χ3

(6.2)

where we have taken the + sign in using the quadratic formula because s > 0

is physically relevant.

At first glance equation (6.2) may not appear consistent with (5.48) in
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6.2. Asymptotic Commentary

setting µ = 0, however for µ� 1, we can write
√
γ2 + 2µπ

b4χ3 as γ
√

1 + 2µπ
b4χ3γ2

=

γ(1 + µπ
b4χ3γ2

+ o(µ)) so that as µ ↓ 0, equation (6.2) reads

s =
µ

−γ + γ + µπ
b4χ3γ

+ o(µ)
=
b4χ3γ

π
+ o(µ).

With the gas pressure included, we estimate the minimum radius to be

r∗ =
µ

−γ +
√
γ2 + 2µπ

b4χ3

ε (6.3)

We justify that this claim is still valid in the following section. Numerically,

with the value 3.380 and the values of b, χ, γ, and ε as in chapter 5, this

evaluates to r∗ ≈ 0.005, which is larger than in chapter 5 where the gas

pressure was neglected. Our neglecting the gas pressure in chapter 5 was

not done with the intent of stating the that it is negligible in the overall

device performance (indeed, we see that it does play a leading-order role),

but rather that for much of the compression, it does not appear, and with

the asymptotic work we sought a basic qualitative description of the system,

which requires an analytic description of the compression.

Further asymptotic work could possibly be done by including corrections

to the lead-lithium equation of state; however, the asymptotic work has

already reached the edges of validity.

6.2.4 Justification of Equation (6.3)

The energy argument attributed to Lord Rayleigh holds for incompressible

fluids, but our system of interest involves the compressible Euler equations.

However, if the leading order asymptotic equations maintain the incom-

pressible limit as in chapter 5, we would expect (6.3) to hold asymptotic
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6.2. Asymptotic Commentary

consistency.

Even with the modified pressure for the plasma, at a scale r = O(ε)

and a time t = O(ε5/4), we still have a balance of terms with ρ ∼ 1 + ε1/2ρ̂

and v ∼ ε−1/4v̂. As a result, the leading order equations that describe the

collapse in this inner region, although unsolvable analytically, still impose

that

v̂σ +
2

σ
v̂ = 0

so that the leading order behaviour is still that of an incompressible fluid.

This assumes that during the compression, the peak density, after reflection,

occurs at the plasma-lead-lithium interface, which is a reasonable assump-

tion. If this were not the case, we could imagine that the leading order

density perturbation could be larger than O(ε1/2) somewhere away from

the boundary and the asymptotics would break down. However, after the

reflection, the problem seemingly amounts to a signalling problem with dis-

turbance source located at the inner wall, and we would expect the peak

values to occur there.

For a compressible fluid, the results could be quite different because

to leading order, an asymptotically non-negligible energy could be stored

within the lead-lithium during compression. Observe that the kinetic energy

density is K = 1
2ρv

2, which, to leading order with ρ ∼ 1 + ε1/2ρ̂ and v ∼

ε−1/4v̂ implies K = O(ε−1/2).

To compute the potential energy density in our setting, we will consider

the work done in compressing a fluid occupying a volume Vi at constant

density ρi and pressure p(ρi) down to a volume Vf with constant density ρf

and pressure p(ρf ). By conservation of mass, at any intermediate volume

V where the density is ρ, we have that ρiVi = ρV so that V = ρiVi/ρ. The
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6.2. Asymptotic Commentary

work done is

W = −
∫ Vf

Vi

p(ρ(V ))dV

=

∫ ρf

ρi

ρiVi
ρ2

p(ρ)dρ

= ρiVi

∫ ρf

ρi

p(ρ)

ρ2
dρ.

The second equality arose from replacing dV by dV
dρ dρ and switching our

variable of integration from V to ρ.

We can use any reference density, and we choose ρi = 1. Then, by noting

that ρiVi = ρfVf we have the work done is

W = ρfVf

∫ ρf

1

p(ρ)

ρ2
dρ.

Given this amount of potential energy in a volume Vf , we can find the

potential energy density by dividing by Vf , and if our fluid is at a denisty

ρf = ρ then the potential energy density becomes

P = ρ

∫ ρ

1

p(s)

s2
ds.
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With p(s) = b2

ε (s− 1), ρ = 1 + ε1/2ρ̂, we find

P =
1 + ε1/2ρ̂

ε

∫ 1+ε1/2ρ̂

1

b2(s− 1)

s2
ds

=
1 + ε1/2ρ̂

ε
b2

∫ 1+ε1/2ρ̂

1
(
1

s
− 1

s2
)ds

=
1 + ε1/2ρ̂

ε
b2(log s+

1

s
)|1+ε1/2ρ̂

1

=
1 + ε1/2ρ̂

ε
b2(log(1 + ε1/2ρ̂)− log 1 +

1

1 + ε1/2ρ̂
− 1)

=
1 + ε1/2ρ̂

ε
b2(ε1/2ρ̂− ε

2
ρ̂2 + 1− ε1/2ρ̂+ ερ̂2 − 1 +O(ε3/2))

=
b2

2
ρ̂2 +O(ε1/2).

We see from this that the leading order potential energy contribution is

a factor of ε1/2 smaller than the leading order kinetic energy contribution

and compressibility effects are not asymptotically significant.

6.2.5 Numerical Validation

Here we validate equation (6.3) through numerical simulations. The data

of table 6.1 validate our prediction with one particular realization of the

constants b, χ, γ, and µ. As the error appears to be o(ε), these results support

equation (6.3).
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6.2. Asymptotic Commentary

ε r∗asy r∗num Error

0.02 0.02883 0.01637 0.01246
0.01 0.01442 0.00848 0.00594
0.005 0.00721 0.00603 0.00118

Table 6.1: Asymptotic and numerical predictions of minimum radius of
plasma for different values of ε with b = 1.05, χ = 0.937, γ = π, and µ = 4.
The asymptotic minimum radius should be 1.4415ε. The apparent conver-
gence rate is O(ε1.7).
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Chapter 7

Summary and Future Work

This chapter provides a summary and considers the future work for the

investigation into magnetized target fusion.

7.1 Summary

In this thesis we developed a simple model for a magnetized target fusion

reactor, and analyzed it from a numerical and asymptotic perspective. Both

methodologies validated each other in their model predictions. Our numeri-

cal work shows us that nuclear fusion energy may be within reach of current

engineering efforts when considered in the light of the sensitivity analysis.

The model has a high degree of sensitivity to its parameters, and while the

baseline parameters do not suggest a net energy production, small changes

in these parameters could very well push the design into a regime with a net

energy yield.

The asymptotic work has allowed for a qualitative description of the

reactor operation, illustrating how the pressure pulse works in compressing

the plasma, how much of the input energy is reflected before compressing

the plasma, and how various design parameters should affect the operation,

which are consistent with the numerics. We find that an increase in the

piston impact pressure and its time scale, along with an increase in the radius

of the lead-lithium sphere would tend to improve the device performance.
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7.2. Future Work

Also, although counterintuitive, the notion arises that having a transmitting

material with a lower sound speed may make the device more effective if the

other parameters could remain intact.

This work has brought up some interesting ideas, but they should be

interpreted within the realm of our assumptions. Some notable assump-

tions were: assuming spherical symmetry, considering an adiabatic plasma

with a highly simplified equation of state, neglecting viscous terms in the

lead-lithium, not allowing mixing of the plasma and lead-lithium, and ex-

trapolating experimental data for lead to predict the equation of state for

lead-lithium down to negative (cavitation) pressures. This work is really just

a first step in a much bigger exploration and development of fusion energy

technology.

7.2 Future Work

Much of the work to extend this investigation should focus upon building

a more accurate model. This could include: a higher dimensional numer-

ical framework, more sophisticated equations of state for the plasma and

lead-lithium, including energy balances and losses in the system, consider-

ing angular instabilities during the implosion, and having a more precise

interaction between the plasma and its surrounding fluid.
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Appendix A

Detailed Pseudo-Code of

Fusion Finite Volume

Scheme

The pseudo-code here provides the details of the program mentioned in

chapter 4.

After the initializations, our system consists of 2 variables ρ and ρv with

P = P (ρ) in the coordinate system (y, τ). The variables are defined on the

mesh yi = ih, h = 1/N , i ∈ {0, 1, ..., N}. The outline below defines a single

forward step in time of size k. We will denote u = (ρ, ρv)T as our unknown.

1. Having found the largest eigenvalue of the linearized system matrices

Ai about each ui, we determine a suitable time step.

2. We extrapolate u and y to indices i = −2,−1 and i = N + 1, N + 2.

Extensions of v are defined by ρv/ρ. We are also able to extend the

values of the sound speed by computing
√

dP/dρ.

3. We compute the difference vector of u, defined at indices

i = −3/2,−1/2, 1/2, ..., N − 1/2, N + 1/2, N + 3/2.

4. We interpolate values for u at half-integer indices by averaging, and
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from these interpolated values define interpolated values for v and the

sound speed. This also gives interpolated linearized system matrices.

5. We average the eigenvalues at adjacent cells in the extrapolated set of

u-values to determine the sign of the eigenvalues at the cell edges (and

hence the direction).

6. We project the differences onto the eigenvectors of the interpolated

matrices.

7. We obtain limiters at half-integer index positions by projecting the up-

wind difference onto the difference and applying the minmod routine.

This allows for us to compute the limited high resolution correction.

8. We calculate the upwind u-value and corresponding upwind flux at

half-integer indices.

9. We neglect the geometric source term and update u with the upwind

flux the limited high-resolution correction by taking a step k forward

in time.

10. We then step forward by k in time with only the geometric source

terms and no flux, where the geometric source terms are based on the

values updated above.

11. We update the wall positions based on the left and right velocity before

the time-step, then update the width of the domain and new mesh.

12. We then update the pressure at the left and right boundary based on

the new domain. The corresponding density at the left and right of

the domain are given from the pressures.
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13. We then update velocity by v = ρv/ρ and the relative velocity of the

left and right boundaries.
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