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Abstract

Silent Data Corruption (SDC) is a serious reliability issue in many do-

mains, including embedded systems. However, current protection techniques

are brittle, and do not allow programmers to trade o� performance for SDC

coverage. Further, many of them require tens of thousands of fault injec-

tion experiments, which are highly time-intensive. In this thesis, we propose

two empirical models, namely SDCTune and SDCAuto, to predict the SDC

proneness of a program's data. Both models are based on static and dy-

namic features of the program alone, and do not require fault injections to

be performed. The di�erence between the two models is that SDCTune is

built using a manual tuning process, while SDCAuto is built using a ma-

chine learning algorithm. We then develop an algorithm using both models

to selectively protect the most SDC-prone data in the program subject to a

given performance overhead bound. Our results show that both models are

accurate at predicting the relative SDC rate of an application. And in terms

of e�ciency of detection (i.e., ratio of SDC coverage provided to performance

overhead), our technique outperforms full duplication by a factor of 0.78x to

1.65x with SDCTune model, and 0.62x to 0.96x with SDCAuto model.
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Chapter 1

Introduction

1.1 Motivation

Hardware errors are increasing due to shrinking feature sizes [3, 7]. Con-

ventional hardware-only solutions such as guard banding and hardware re-

dundancy are no longer feasible due to power constraints. As a result, re-

searchers have explored software duplication techniques to tolerate hardware

faults [28]. However, generic software solutions such as full duplication incur

high power and performance overhead, and hence there is a compelling need

for con�gurable, application-speci�c solutions for tolerating hardware faults.

This is especially so for embedded systems, which have to operate under

strict performance and/or power constraints, in order to meet system-wide

timing and energy targets.

Hardware faults can a�ect the running software in three ways: (1) they

may not have any e�ect on the application (benign/masked), (2) they may

crash or hang the program, or (3) they may lead to incorrect outputs, also

called Silent Data Corruption (SDCs). While crashes and hangs are impor-

tant from an availability perspective, SDCs are important from a reliability

perspective because they cause programs to fail without any indication of the

failure. Prior work [24, 34] has broadly focused on crashes and hangs; there-
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1.2. Background

fore we focus on con�gurable techniques to reduce or eliminate the number

of SDCs in programs.

Studies have shown that SDCs are caused by errors in a relatively small

proportion of programs' data variables [11, 14, 33], and by selectively protect-

ing these SDC-prone variables, one can achieve high coverage against SDCs.

However, most prior work has identi�ed SDC-prone variables using fault

injection experiments, which are expensive for large applications [11, 14].

Other work [33] focuses on Egregious Data Corruptions (EDC), which are a

subset of SDCs that cause unacceptable deviations in soft-computing appli-

cations, i.e., applications with relaxed correctness properties. For example,

a single pixel being corrupted in a frame of a video processing application

would be an SDC but not an EDC, while the entire frame being corrupted

would be an EDC as it can cause an unacceptable deviation. While their ap-

proach is useful for soft-computing applications, it does not apply to general-

purpose applications. Further, most of the prior approaches do not allow the

user to trade-o� performance for reliability by selectively protecting only a

fraction of the SDC-prone variables to satisfy strict performance constraints,

especially for embedded systems. The only exception that we are aware of

is the work by Sha�que et al. [30], but their technique does not distinguish

between SDC causing errors and other failure causing errors.

1.2 Background

We adopt Lapire et al.'s de�nition of "fault-error-failure" chain [17] as

follows.

2



1.2. Background

System failure occurs when the delivered service deviates from

the speci�ed service. The failure occurred because the system

was erroneous: an error is that part of the system state which is

liable to lead to failure. The cause in its phenomenological sense

of an error is a fault.

Faults can be classi�ed into two groups based on their sources: hardware

faults and software faults. (1) Hardware faults represent a dysfunction of

one or more hardware components for a period of time. Hardware faults

can be further classi�ed according to their lifetime into transient hardware

faults, intermittent hardware faults and permanent hardware faults. Transient

hardware faults usually occur only once at a location, and last only for

a short duration of time. Such faults are usually triggered by cosmic ray

strikes, temperature variation or electronic noise. Prior studies have show

that transient hardware faults are increasing due to shrinking feature sizes [3,

7]. Intermittent hardware faults usually recur at a location over a period of

time. They are usually the results of timing violations in the chip, which are

exacerbated by wear out. Permanent hardware faults occur continuously at a

faulty location, and are usually the result of manufacturing defects or circuit

aging. (2) Software faults are those rooted in software code which are usually

caused by the programmer's mistakes or oversights. Memory leak, dangling

pointers and deadlocks can be considered as common software faults. In this

work, we focus on the errors caused by transient hardware faults.

A fault becomes an error once it corrupts the state of the program (i.e.,

changing the result of an operation, accessing wrong memory spaces, etc.).

3



1.2. Background

The error may or may not result in a failure. Errors that do not cause

failures are known as benign errors. Other errors are classi�ed according

to their consequences as follows. (1) Crash, if the errors trigger system

alerts like hardware exceptions, operating system panic, etc. (2) SDC, if the

program returns a wrong output without throwing any exceptions or raising

any alerts. (3) Hang, if the program never ends or ends after a considerably

long time. In this thesis, we focus on detecting SDCs, which are important

for the reliability of the program.

To study the program behaviour in the presence of faults, we apply fault

injection to simulate transient hardware faults in our initial study. Fault in-

jection is a procedure to introduce faults in a systematic, controlled manner

to study the behaviour of the system under test. Fault injection techniques

can be generally categorized into hardware-based and software-based tech-

niques. In this work, we adopt software-based fault injection technique.

Software-based fault injection techniques emulate the e�ects of hardware

faults at the software level by corrupting the values of program data/in-

structions [5, 15]. The main limitations of software-based techniques are their

limited coverage of potential fault locations and speed. However, software-

based techniques o�er a high level of con�gurability without invasive hard-

ware modi�cations and su�cient emulation speed to repeat thousands of

runs. Therefore, we use software fault injection for our study.

4



1.3. Proposed Solution

1.3 Proposed Solution

In this thesis, we propose two models, namely SDCTune and SDCAuto,

to quantify the SDC proneness of program variables, and develop a model-

based technique to selectively protect highly SDC-prone variables in the

program. An SDC prone variable is one in which a fault is highly likely to

result in an SDC, and hence needs to be protected. SDCTune and SDCAuto

use only static and dynamic analysis to identify the SDC-prone variables in a

program, without requiring any fault injections to be performed. Further, it

allows users to con�gure the amount of protection depending on the amount

of performance overhead they are willing to tolerate. We call our �rst model,

SDCTune, as it allows tunable protection, and second model, SDCAuto, as

it builds the model automatically through a machine learning algorithm.

The main novelty of our approach is in the identi�cation of heuristics

that correlate with highly SDC-prone program variables and then integrating

them in our model to quantify the SDC proneness of a variable. We extract

these heuristics using fault injection experiments on a small set of benchmark

programs that we use for training purposes. We integrate the heuristics in

our models with automated program analysis and machine learning algo-

rithms. While the initial identi�cation of the heuristics used in SDCTune

and SDCAuto requires fault injection, we do not need fault injection to apply

our models to new programs.

In this thesis, we target transient errors, and hence we focus on error de-

tection rather than recovery (as the program can be restarted from a check-

point to recover from a transient error). We use SDCTune and SDCAuto to

5



1.4. Contributions

identify SDC-prone variables in the program, and to derive error detectors

for the variables, subject to a given performance overhead. Our detectors

recompute the value of the chosen variable(s) by duplicating their backward

slice(s), and compare the recomputed value with the original one. Any de-

viation between the two values is treated as a successful error detection.

1.4 Contributions

We make the following contributions in this thesis:

� We develop heuristics to identify SDC-prone variables based on an

initial fault-injection study (Chapter 2). These heuristics are based on

static analysis and pro�le information (Chapter 3).

� We �rst develop a manually-tuned model, SDCTune, based on the

heuristics developed to identify the relatively SDC-prone variables in a

program. We then propose an algorithm based on the model to derive

error detectors that check the values of the SDC-prone variables at

runtime, subject to a performance overhead constraint speci�ed by the

programmer (Chapter 4).

� We also develop a automatically tuned model, SDCAuto, based on the

decision tree machine learning algorithm [27] which can automatically

build a regression model from training data.

� We evaluate SDCTune and SDCAuto by using them to predict the over-

all SDC proneness of a program relative to other programs. The results

show that both SDCTune and SDCAuto are highly accurate at predict-

ing the overall SDC proneness of a program relative to other programs.

6



1.4. Contributions

The correlation coe�cient between the predicted and observed overall

SDC rates ranges from 0.855 to 0.877 (Chapter 6) depending on the

model.

� We evaluate the detectors inserted by our algorithm by performing

fault-injection experiments on six di�erent programs from those used in

our model extraction, for performance overhead bounds ranging from

10% to 30%. The results show that our detectors can achieve high

detection coverage for SDC-causing errors, for the given performance

overhead. SDCTune achieves 0.78x to 1.65x higher e�ciencies (i.e.,

ratio of SDC coverage provided to performance overhead) than both

full duplication and hot-path duplication, SDCAuto achieves 0.62x to

0.96x higher e�ciencies (Chapter 6).

7



Chapter 2

Initial Fault Injection Study

Because SDC failures are caused by faults that propagate to the pro-

gram's output, the SDC proneness of an instruction depends on how it prop-

agates a fault, which in turn is determined by its data dependencies. In this

chapter, we empirically study how SDC proneness of instructions is in�u-

enced by the data dependency chains. We �rst de�ne some terms we will

use in this thesis and formalize the protection problem. We then present

our fault model in Section 2.2 and describe our fault injection experiment

in Section 2.3. The results of the experiment is discussed in Section 2.4,

and will be used in Chapter 3 to develop heuristics for estimating the SDC

proneness of program variables.

2.1 Terminology and Protection Model

We �rst de�ne the following terms in this paper:

Overall SDC rate: This is the overall probability that a transient

hardware fault leads to an SDC in the program. We denote this by P (SDC).

SDC coverage of an instruction: We de�ne the SDC coverage of

an instruction I to be the probability that an SDC failure is caused by a

transient hardware fault in instruction I's result and thus can be detected

8



2.1. Terminology and Protection Model

by protecting instruction I with a detector. This is denoted as P (I|SDC).

SDC proneness per instruction: This is the probability that a tran-

sient hardware fault in instruction I leads to an SDC. This is denoted as

P (SDC|I).

Dynamic count ratio: This is the ratio of the number of dynamic in-

stances of instruction I executed to the total number of dynamic instructions

in the program. This is denoted as P (I).

Our overall goal is to selectively protect instructions with detectors, to

maximize the SDC detection coverage for a given performance cost bud-

get. The SDC detection coverage of an instruction, P (I|SDC), represents

the "fraction of SDCs" that can be detected by protecting instruction I,

and thus directly represents the importance of the instruction I. There-

fore, our goal is to maximize the
∑

I∈inst set P (I|SDC) subject to a certain∑
I∈inst set P (I) speci�ed by the user.

∑
I∈inst set P (I|SDC) is the coverage

of SDC causing faults by protecting the instructions in set: inst set while∑
I∈inst set P (I) is the number of dynamic instances of protected instructions

and is proportional to the protection overhead.

As mentioned above, it is important to understand how P (I|SDC) varies

for each instruction in the program. One way to do this is to perform random

fault injection into the program and measure P (I|SDC) for each instruction.

However, it is di�cult to directly measure this probability for each instruc-

tion by random fault injection as each instruction may not be injected suf-

�cient number of times to obtain statistically signi�cant estimates. Instead,

we perform a �xed number of fault injections into individual instructions to

measure their SDC proneness, P (SDC|I). We then use Bayes' formula to

9



2.2. Fault Model

obtain P (I|SDC):

P (I|SDC) =
P (SDC|I)P (I)

P (SDC)
(2.1)

where,

P (SDC) =
∑

I∈prog
P (SDC|I)P (I) (2.2)

2.2 Fault Model

We consider transient hardware faults that occur in processors and cor-

rupt program data. Such faults are usually caused by electrical noise, cosmic

rays or temperature variation. These faults are exacerbated by decreases in

feature sizes and supply voltages. More speci�cally, we focus on the faults

that occur in processors' functional units and registers, (i.e., the ALUs, LSUs,

GPRs, etc.) which generally result in a corruption of the program data. How-

ever, we do not consider the faults in caches or control logic. Architectural

solutions [19] such as ECC or parity can protect the chip from the faults

in the caches, while faults in the control logic usually trigger hardware ex-

ceptions [37]. We do not consider faults in the program's code or program

counter, as such faults can be detected by control-�ow checking techniques.

As in other work [10, 11, 33], we assume that at most one fault occurs

during a program's execution. This is because transient faults are rare rela-

tive to the execution times of typical programs.

10



2.3. Fault Injection Experiment

2.3 Fault Injection Experiment

The goal of our fault injection experiment is to understand the reasons

for SDCs when faults are injected into the program. In other words, we want

to study the SDC proneness of instructions in the program, and understand

how it varies by instruction.

The fault injection experiment is conducted using LLFI, a program level

fault injection tool, which has been shown to be accurate for measuring SDCs

in programs [35]. LLFI works at the intermediate representative (IR) level

of LLVM compiler infrastructure [18], and enables the user to inject faults

into the LLVM IR instructions. Using LLFI, we inject into the result of a

random dynamic instruction to emulate the e�ect of a computational error in

the program. Speci�cally, we corrupt the instruction's destination register by

�ipping a single bit in it (similar to what prior work has done [10, 11, 33]).

The main advantage of using LLFI is that it allows us to map the faults

back to the program's IR and trace its propagation in the program. This is

necessary for our analysis.

Please note that LLVM applies Static Single Assignment (SSA) form in

its IR code, so that each instruction is representated as its own result. This

makes a program variable equivalent to the instruction that is computing it

when considering program data in LLVM IR code. Therefore, we consider

instructions and program variables as interchangeable in this thesis.

We use four benchmarks in this experiment, namely Bzip2, IS, LU and

Water-spatial. They are from SPEC[13], NAS[1] and SPLASH-2[36] bench-

mark suites respectively. Note that these benchmarks are only used for the

11



2.4. Injection Results

initial fault-injection study - we later derive and validate the model with a

larger set of programs. We choose a limited set of benchmarks in this study

to balance representativeness with time e�ciency for fault injections.

We classify the outcome into four categories: (1) Crash, meaning that the

program threw an exception, (2) SDC, which means the program's output

deviated from the fault-free outcome, (3) Hang, which means the program

took signi�cantly longer to execute than a fault-free run, and (4) benign,

which means the program completed successfully and its output matched

the fault-free outcome. The above outcomes are mutually exclusive and

exhaustive.

2.4 Injection Results

The results of our fault injection experiments show that the top 10%

most executed instructions, or those on the hot paths of the program, are

responsible for 85% SDC failures on average. This result is similar to that of

prior work, which has also observed that a small fraction of static instructions

cause most SDCs [11]. However, this does not mean that all the hot-path

instructions should be protected, as they incur high performance overhead

when protected. Further, there is considerable variation in SDC rates even

among the top 10% most executed instructions as the example below shows.

Table 2.1 shows an excerpt from the Bzip2 program on its hot path. The

principle described here is observed across all four benchmarks we studied,

but we focus on this (single) basic block for simplicity. The excerpt contains

instructions from the LLVM IR, into which we inject faults. Although the
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2.4. Injection Results

original code is in the LLVM IR form, we use C source-like semantics for

simplicity. For each instruction in the table, we report its SDC proneness

measured by fault injection. It can be observed from the table that some of

the instructions have low SDC proneness, even in this highly executed block,

e.g., instruction 4-6. This means even if a fault occurs in the result of these

instructions, it is unlikely to result into an SDC, and hence protecting such

instructions is unlikely to improve coverage by much. Therefore, we need to

�nd factors other than execution time that in�uence the SDC proneness of

an instruction.

After investigating further, we found that SDC proneness is highly in-

�uenced by data dependencies among the instructions. For example, in

Table 2.1, instruction 4-8 constitute a data dependency chain whose �nal

result is stored in instruction 10. Instruction 8 is the end of this data de-

pendency chain and has an SDC proneness = 71%. The result of instruction

7 is used in instruction 8 so a fault may propagate from instruction 7 to

instruction 8. But, the execution of instruction 8: or can mask the faulty

bit from instruction 7 if the corresponding bit of the result of instruction

2 is 1. This explains why the SDC proneness for instruction 7 is slightly

lower than that of instruction 8. The operation of instruction 7: shift left

can mask the fault in high bit positions of the second source operand due

to architectural wrapping implementation of these shifting operations. The

consequence of this masking e�ect is the low SDC proneness of instruction

4-6. In addition to the arithmetic operations, our results show that address

calculation operations such as instructions 1, 3 and 9 ("getelementptr" in-

structions in LLVM) have low SDC proneness. This is because the results of
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Table 2.1: Variation of SDC proneness of highly executed instructions.

Source code:

1 s−>bsBuff |= ( v << (32 − s−>bsLive − n ) ) ;

Basic block ID Instruction SDC proneness

bsW()-bb2

1 t1 = &s + OFFSET(bsBu�) 21%

2 t2 = load t1 47%

3 t3 = &s + OFFSET(bsLive) 21%

4 t4 = load t3 13%

5 t5 = 32 - t4 12%

6 t6 = t5 - n 12%

7 t7 = v � t6 58%

8 t8 = t2 | t7 71%

9 t9 = &s + OFFSET(bsBu�) 26%

10 store t8, t9 -

such instructions are usually used for pointer dereferences and are likely to

cause segmentation faults which crash the application.

Thus, we see that to calculate the SDC proneness of an instruction and

determine whether it should be protected, one needs to take into account the

fault propagation and SDC proneness of the end point of its data dependency

chain. We will examine this in more detail in Chapter 3 by devising heuristics

for �nding highly SDC-prone instructions.

2.5 Summary

This chapter de�ned the fault model adopted in our technique in Sec-

tion 2.2. It also de�ned the core problem of building a con�gurable SDC

14



2.5. Summary

detection technique in Section 2.1 namely, estimating the SDC proneness of

an instruction. It then presented the results of fault injection experiments

(Section 2.3) and found that fault propagation and SDC proneness of data

dependency end points are the two major factors required to estimate SDC

proneness (Section 2.4). We will examine the two factors in detail and for-

mulate heuristics for them in Chapter 3, and then propose our approach for

con�gurable SDC detection in Chapter 4
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Chapter 3

Heuristics

In this chapter, we formulate various heuristics for modelling error propa-

gation in a program, and for estimating the SDC proneness of an instruction.

We �rst propose heuristics as hypotheses, and validate them with our exper-

imental data. These heuristics will be used in the next chapter to extract

program features that are required to build both manually tuned and auto-

matically tuned model.

In the previous chapter, we found that the SDC proneness of a vari-

able depends on (1) the fault propagation in its data dependency chain, and

(2) the SDC proneness of the end point of that chain. An end point can

be a branch instruction, a store instruction or a function call instruction

(in LLVM, function calls are represented by instructions). This is because

stores and branches do not have destination registers, and function call in-

structions create a new stack frame, thereby terminating their dependency

chains. However, function calls are not considered in our work, as LLVM

aggressively inlines functions, and hence there are few instances of such in-

structions. Further, because branch instructions depend on the results from

comparison instructions to determine the direction of the branch, we consider

the results of comparison instructions as the end points of their dependency
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3.1. Heuristics for Fault Propagation

chains. Therefore, we consider only comparison and store instructions for

the SDC proneness of end points of dependency chains.

3.1 Heuristics for Fault Propagation

In this section, we study how faults propagate along dependency chains,

and how to estimate the SDC proneness of an instruction based on the

SDC proneness of the store or comparison instructions that the instruction

depends on, directly or indirectly.

HP1: The SDC proneness of an instruction will decrease if its result is

used in either fault masking or crash prone instructions.

Fault propagation can be stopped by an instruction either masking the

fault, or by crashing the program. Both masking and crashing decrease

the probability of an SDC resulting from the instruction that propagates its

data to the other crashing/masking instruction, as a result of which its SDC

proneness is lowered. For example, in Table 2.1, the fault masking e�ect of

instruction 7 results in instruction 6 having a low SDC proneness.

Table 3.1 shows instructions that have high probability of masking/crash-

ing the program, thus lowering the SDC proneness. We derived this table

from the initial fault injection study in Section 2.4, based on general trends

across the applications. Note that these are conservative, as other instruc-

tions may also mask fault propagation in speci�c circumstances depending

on the values of their operands.

To estimate SDC proneness of all instructions, we simulate backward

fault propagation from the store and comparison instructions through the

data dependency chains of the program. The SDC proneness of the result
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3.1. Heuristics for Fault Propagation

Table 3.1: E�ects on SDC proneness of some operations

Operation Description E�ect

getelementptr address calculation Crash

trunc truncate data size Mask due to truncation

lshr logical shift right Mask due to Wrapping

ashr arithmetic shift right Mask due to Wrapping

shl shift left Mask due to Wrapping

Table 3.2: SDC decreasing rates of masking/crashing prone operations

Operation Involved source operands Decrease by

getelementptr all operands 75%

trunc variable needs truncation 50%

lshr shift bit variable 85%

ashr shift bit variable 85%

shl shift bit variable 85%

18



3.2. Heuristics for Store Operations

of an instruction will propagate to its source operands unless it is one of

the operations listed in Table 3.1, in which case, the SDC proneness of the

source operands will decrease by a certain extent, as listed in Table 3.2 to

model the e�ect of masking. The values in Table 3.2 are based on our fault

injection experiments.

Then, the question left is how to estimate the SDC proneness of store

and comparison instructions. This is addressed in the following two sections.

3.2 Heuristics for Store Operations

In this section, we examine the SDC proneness of store instructions, as

this is one of the two categories of instructions used to estimate the SDC

proneness of every instruction in the program. Through our fault injection

study in Section 2.4, we found the SDC proneness of store instructions de-

pends on how the stored value is used in the program. Therefore, we catego-

rized the stores into four types according to their usage in memory addresses

and comparisons, as shown in Table 3.3. For each of the categories, we found

that the SDC proneness is dependent on a speci�c feature of that category,

which is also shown in Table 3.3. For example, in the Cmp NoAddr category,

the SDC proneness of the store is determined by whether the value results

in the comparison result being �ipped, thus causing the wrong fork of the

branch to be taken. Figure 3.1a shows the average SDC proneness of the

four categories, and the associated feature for each of the categories.

We now examine each of the four categories in detail.

HS1: Addr NoCmp stored values have low SDC proneness in general,

as shown in Table 3.3.
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3.2. Heuristics for Store Operations

(a) E�ects of major related features for each of the four major categories
of stored values.

(b) E�ect of data width for address compu-
tation related stored values

(c) E�ect of nest loop depths for loop termi-
nating comparisons

Figure 3.1: Average SDC proneness observed across all studied programs
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3.2. Heuristics for Store Operations

Table 3.3: Four major categories of stored values

Category Description
Major related

features

Average

SDC

proneness

Addr NoCmp
The stored value is used in

calculating memory addresses
but not comparison results

Data width 22.82%

Addr Cmp

The stored value is used in
calculating both memory
addresses and comparison

results

Data width and
control �ow
deviation

48.17%

Cmp NoAddr
The stored value is used in

calculating comparison results
but not memory addresses

Resilient or
Unresilient
comparison

67.25%

NoCmp
NoAddr

The stored value is neither
used in memory address

calculation nor comparison
results

Used in output or
not

56.41%

This is because faults in such values are highly likely to propagate to

addresses of other loads and stores, which would likely result in the appli-

cation crashing due to a segmentation fault, especially for those values that

are wider than 32 bits (see Figure 3.1a).

Figure 3.2 shows an example of this category, where a fault in the des-

tination register of i-3 in (line 3) results in a system crash upon pointer

dereference.
HS2: Addr Cmp stored values usually have higher SDC proneness than

Addr NoCmp.

As shown in Figure 3.1a, by propagating the fault to the comparison

instruction, Addr Cmp values may change the control �ow and elide the

pointer dereference, which would have crashed the application otherwise.

This decreases the probability of a crash, thereby increasing the SDC prone-
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1 s t a t i c void mainSort ( . . . ) {

2 f o r ( ; i>=3;i−=4)

3 { . . . ptr [ j ]=i-3 ; } // corrupted

4 }

5 s t a t i c void mainSimpleSort ( . . . ) {

6 whi le ( mainGtU (ptr[j-h]+d , . . . ) )

7 { . . . }

8 }

9 s t a t i c Bool mainGtU ( UInt32* i1 , . . . ) {

10 c1=block [ i1 ] ; . . . i1++; c1=block [ i1 ] ; // load opera t i on

11 }

Figure 3.2: Example of Addr NoCmp from Bzip2.

1 s t a t i c void mainSort ( . . . ) {

2 Int32 lo = ftab[sb]&CLEARMASK ; // corrupted

3 i f (hi > lo) {// con t r o l f low changed

4 mainQsort3 ( lo , . . . ) ;

5 }

6 }

7 void mainQSort3 ( Int32 loSt , . . . ) {

8 mpush ( loSt , . . . ) ; . . . mpop ( lo , . . . ) ;

9 med=(Int32 ) mmed3 ( block [ ptr [ lo]+d ] , . . . ) ; // load avoided

10 }

Figure 3.3: Example of Addr Cmp from Bzip2. The fault occurs at line 2
may not propagate to the load at line 9 because of the control �ow deviation
at line 3
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1 Bool copy_input_until_stop ( Estate* s ) {

2 . . .

3 whi le ( True ) {

4 . . .

5 s−>strm−>total_in_lo32++ ;

6 i f (s->strm->total_in_lo32==0)

7 s−>strm−>total_in_hi32++;

8 }

9 }

Figure 3.4: Example of Cmp NoAddr from Bzip2. A resilient comparison
operations(line 6) that masks the fault that occurs at line 5.

1 s t a t i c void sendMTFValues ( Estate* s ) {

2 f o r ( i=0,i<nSelectors ; i++){

3 s->selectorMtf[i]=j ;

4 } . . .

5 f o r ( i=0;i<nSelectors ; i++){

6 f o r ( j=0;j<s->selectorMtf[i] ; j++)

7 bsW (s , 1 , 1 ) ;

8 }

9 }

Figure 3.5: Example of Cmp NoAddr from Bzip2. An unresilient comparison
usage of the stored value at s->selectorMtf[i]=j(line 3).
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1 void main ( . . . ) {

2 . . .

3 ( start ) = ( unsigned long ) ( FullTime . tv_usec + FullTime . tv_sec *

1000000) ;

4 . . .

5 Global−>starttime = start ;

6 printf ( . . . , Global−>starttime) ;

7 }

8 //The value s to r ed in

9 //Global−>sta r t t ime i s not used

10 // as the output o f the program

11

Figure 3.6: Example of NoCmp NoAddr from IS with zero SDC proneness.

1 void InitA ( double * rhs ) {

2 f o r ( j=0;j<n ; j++){

3 f o r ( i=0;i<n ; i++){

4 rhs[i]+=a[ii][jj] ;

5 }

6 }

7 }

8 void CheckResult ( . . . , double* rhs) {

9 f o r ( j=0;j<n ; j++){y[j]=rhs[j] ; } . . .

10 f o r ( j=0;j<n ; j++){di�=y[j]-1.0 ; . . . }

11 max_di�=di�

12 printf ( . . . ,max_di�) ;

13 }

Figure 3.7: Example of NoCmp NoAddr from LU with high SDC proneness.
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ness compared to the Addr NoCmp category. As an example of this category

from Bzip2 is shown in Figure 3.3.

HS3: The SDC proneness of Addr NoCmp and Addr Cmp stored val-

ues increase as their Data width decrease.

Data width is the number of bits in values, and is a major feature a�ecting

the SDC proneness of stored values used in address computation (i.e., Addr

NoCmp and Addr Cmp). Figure 3.1b shows the average SDC proneness

of the stored values used in address computations, for di�erent data width

values. For values used in address computation, a wider data width means

more bits are crash-prone, and hence the value as a whole has lower SDC

proneness.

HS4: The SDC proneness of Cmp NoAddr stored values depends on the

resilience of the comparison operation to which the value propagates i.e.,

how likely it is to change the result of the comparison given a faulty data

operand.

We illustrate the above heuristic with an example from the Bzip2 ap-

plication. Figure 3.4 shows an example of a resilient comparison operation

in line 6. In this case, the equality is not satis�ed in the majority of exe-

cutions (obtained through pro�ling the program), and hence the branch is

highly biased toward the not-equal fork. Therefore, a fault in the variable

total_in_lo32(line 5) which feeds into the comparison operation is unlikely

to result in the equality being true, and hence the control �ow of the pro-

gram does not change from a fault-free execution. We call such comparisons

as resilient. On the other hand, the code in the right of Figure 3.5, illus-

trates a case where a fault in the comparison operator, selectorMtf[i]=j(line

3) will a�ect the number of loop iterations, thus making it highly SDC prone.
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We call such comparisons as unresilient. A key factor in deciding the SDC

proneness of Cmp NoAddr stored values is whether the comparison using

the stored value is resilient (Figure 3.1a).

HS5: The SDC proneness of NoCmp NoAddr stored values depend on

the probability of a fault in them propagating to the program's output, and

whether the output is important to the program.

NoCmp NoAddr stored values are used neither in computing mem-

ory addresses nor in comparison instructions, and do not a�ect pointers or

branches. Figure 3.6 and Figure 3.7 show two excerpts from IS and LU re-

spectively. The faulty stored value in IS only a�ects the time statistics while

the one in LU may a�ect the output of the application. This explains the

di�erence of their SDC proneness. Also in Figure 3.1a, we can see the aver-

age SDC proneness for the stored values that do not propagate to program

output is much lower than the SDC proneness of those values that do.

3.3 Heuristics for Comparison Operations

Comparison instructions are the other category of instructions whose

SDC proneness determines the SDC proneness of every instruction in the

program. We �nd that the SDC proneness of comparison instructions de-

pends on three features, as follows:

HC1: Nested loop depths a�ect the SDC proneness of loops' comparison

operations, as the SDC proneness of comparison operations in inner loops

are generally lower than the comparison operations in outer loops, as shown

in Figure 3.1c.

Figure 3.8a shows an example from Bzip2. Both nHeap>1 and weight[tmp]
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< weight[heap[zz � 1]] are used in determining the loop exit conditions for

the outer and inner loops respectively.

HC2: Comparison operations that only a�ect silent stores have low SDC

proneness.

A silent store is a store whose stored value is not subsequently used by

the program. Therefore, the comparison operation has a low likelihood of

a�ecting the program's output. An example from Bzip2 is shown in Fig-

ure 3.8b. A �ip in the comparison a2update<BZ_NOVERSHOOT(line 4)

can cause the store operation quadrant[a2update+nblock]=qVal(line 5) to be

elided. However, this is a silent store, and hence does not result in an SDC.

HC3: Comparisons that a�ect output-related store values have

high SDC proneness.

A fault in these comparisons has a high probability of resulting in a

corrupted program output. Figure 3.8c shows an example from the LU

benchmark. A faulty comparison result at i<n(line 3) may terminate the

loop too early and elide the store operation a[i]+=alpha*b[i](line 4) whose

stored value is used in calculating the output. This results in a high SDC

proneness of i<n(line 3).

3.4 Heuristics of Other Factors

In addition to the speci�c features for comparison and store operations

we observed in our experiment, the following factors also a�ect the SDC

proneness of an instruction.

HO1: Memory allocation functions related stored values and com-

parison operations have low SDC proneness.

Memory allocation functions related stored values or comparison
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1 void BZ2_hbMakeCodeLengths

( . . . ) {

2 whi le ( nHeap>1){ // outer loop

3 . . .

4 whi le ( weight [ tmp ]<weight [

heap [ zz>>1]]){

5 // inner loop

6 Heap [ zz ]=heap [ zz>>1];

7 zz>>1;

8 }

9 }

10 }

(a) An excerpt from Bzip2. Outer loop com-
parisons have higher SDC proneness than in-
ner loop comparisons

1 mainSort ( . . . ) {

2 f o r ( j=bbSize−1; j>=0; j−−){

3 . . .

4 i f (a2update

<BZ_NOVERSHOOT)

5 quadrant [ a2update+nblock

]=qVal ;

6 //Not used in fu tu r e

7 . . .

8 }

9 . . .

10 }

(b) An example from Bzip2 that the com-
parison result only a�ects a silent store in-
struction

1 daxpy ( double * a , double * b , . . . ) {

2 long l ;

3 f o r ( i=0;i<n ; i++){

4 a[i]+=alpha*b [ i ] ; // skipped due to loop terminat ion }

5 }

6 bmodd ( double * a , double * c , . . . ) { . . .

7 daxpy (&a[k+1+j*stride_c],&a [ k+1+j*stride_a ] , dimi−k−1,alpha ) ; . . .

8 // the content o f a [ ] i s corrupted

9 }

10 lu ( ) { . . .

11 A=&a[K+j*nblocks] ; // f a u l t propagates to a [ ] through the c a l l o f

bmodd( )

12 bmodd (D ,A , strK , strJ , strK , strK ) ; . . . // content o f A [ ] i s corrupted

13 }

14 CheckResult ( . . . , double* a , . . . ) { . . . // c a l l e d by main ( )

15 printf ( . . . ,max_di� , . . . ) ; . . . // corrupted because o f corrupted a [ ]

16 }

(c) An example from LU that a faulty comparison result: i<n(line 3) will change the
control �ow and �nally a�ect CheckResult(). The fault propagation trace is highlighted
in red.

Figure 3.8: Examples of comparison results.
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operations can directly a�ect memory allocation functions such as malloc(),

valloc(), palloc(), and hence faults in the instructions are very likely to trig-

ger memory exceptions. This results in having low SDC proneness. We

observe that the average SDC proneness for memory allocation related store

or comparison operations is 12.42%, which is considerably lower than the

average of other store and comparison operations, which is 42.58%.

In addition to the above features, we consider other program features

considered in prior work, such as global variable [10], the loop depth [33],

cumulatively calculation [6], and fan-out of variable [24].

HO2: For variables that are used in resilient comparisons, global vari-

ables in this group have higher SDC proneness than others variables that

heading to resilient comparisons.

As mentioned in prior work [10], global variables are more likely to store

the global states of a program, so a fault in these variables is likely to live

longer and a�ect more program data. In our initial study experiments, we

found this e�ect can be helpful in estimating SDC proneness for variables

that are used in resilient comparisons. As presented in Section 3.2 HS4, re-

silient comparisons can mask faults in their backward slices so that variables

used in such comparisons may have lower SDC proneness. However, faults in

global variables have longer life time and are hence less likely to be masked.

Figure 3.9 shows the average SDC proneness of global variables and others

in the group of variables leading to resilient comparisons.

HO3: Comparisons that are in higher loop depths exhibit higher SDC

proneness.

Comparisons that are in higher loop depths have higher SDC proneness

on average. This heuristic is opposite to the conclusion of prior work [33].
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Figure 3.9: Average SDC proneness of global ones and others in resilient-
comparisons-used variables

The reason for this di�erence is that the prior work focuses on Egregious

Data Corruptions(EDCs), which are a subset of SDCs that cause signi�cant

deviation in the program's output. A deeper loop structure usually implies

a core computation in a program, and faults in comparisons from these

deep loops are prone to corrupt a small but critical portion of program data

therefore corrupt the output. However, corrupting such a small portion of

program data may not lead to a large deviation in the program output, and

are hence not considered important in terms of EDC detection. Figure 3.10

shows the average SDC proneness of comparisons with di�erent depths of

loop in our initial fault injection experiment.

HO4: Variables that are cumulatively calculated have higher SDC

proneness.

Similar to the result of prior work [6], cumulatively calculated variables

may have higher SDC proneness. This is because faults in such variables may

accumulate along with program execution and thus less likely to be masked.

Figure 3.11 shows the average SDC proneness for cumulative variables and
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Figure 3.10: Average SDC proneness of comparisons with di�erent depths of
loop

others.

HO5: Variables with higher fan-out are prone be low in SDC proneness.

Pattabiraman et al. [24] have found that the fan-out, or the dynamic

number of uses of a variable, can be a good measure of the crash-proneness

of a program variable. In our initial injection experiment, we also found

that variables with high fan-out usually have lower SDC proneness when

fanout < 4. However, when fanout ≥ 4, we observed a higher average

SDC proneness. Figure 3.12 shows the average SDC proneness for di�erent

fan-outs in our initial injection experiment.

3.5 Summary

In Chapter 2, we identi�ed two major factors that contribute to the esti-

mation of SDC proneness: fault propagation and SDC proneness of the end

points of data dependency chains. In this chapter we formulated heuristics
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Figure 3.11: Average SDC proneness for cumulative variables and others

Figure 3.12: Average SDC proneness for di�erent fan-outs
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to model both of these two factors. We �rst extracted instructions that

have shown high fault masking or crash proneness in all the programs in our

initial study, we then formulated heuristics for fault propagation based on

the result in Section 3.1. For the SDC proneness of the end points of data

dependency chains, we classi�ed the end points into two groups: store oper-

ation and comparison operation, and formulated heuristics for both groups

respectively (Section 3.2 and Section 3.3). Finally, we incorporated some

other program features based on our experiments, and some heuristics pro-

posed in prior work to complement the heuristics for the two groups.
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Chapter 4

Approach

In the previous chapter, we examined various heuristics for identifying

SDC-prone variables in a program. In this chapter, we �rst extract pro-

gram features based on the heuristics to describe each store and comparison

instruction (Section 4.1). We then build the SDCTune (Section 4.2) and

SDCAuto models (Section 4.3) with the extracted features, to quantify the

estimation of SDC proneness based on empirical data. Finally, we present

our approach for choosing the SDC-prone locations subject to a maximum

performance overhead using SDCTune and SDCAuto (Section 4.5), and the

nature of the detectors we inserted to protect the program (Section 4.6)

4.1 Feature Extraction

The �rst step of building our SDC-proneness estimation model is in ex-

tracting features. As shown in Chapter 3, features are extracted according

to our heuristics and also those proposed in prior work [6, 10, 24, 33]. There

is a one to many mapping between heuristics and features. In other words,

a heuristic may correspond to multiple features. For example, stored values

of Addr NoCmp group will be identi�ed using two features, namely address

computing and comparison used. However, the features that are eventually
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selected to be used in either SDCTune or SDCAuto are determined in the

model building phase, covered in Section 4.2 and Section 4.3 respectively.

We extract features through static analysis and dynamic pro�ling of the

programs. These features describe the stored values and comparison results

though three perspectives. (1) Execution time related features contain fea-

tures about dynamic counts of or a�ected by an program variable. (2) Code

structure related features contain features about the position of an program

variable in the code. (3) Data usage related features contain features relevant

to the usage of an program variable.

Table 4.1 shows an excerpt of all the features we extracted. In total, 66

features are extracted for stored values and 67 for comparisons.

Table 4.1: Some features extracted for modeling building

Feature

group
Subgroup Feature Description

Common

features Execution time

related

inst func execution

time ratio

dynamic counts of the speci�c

instruction divided by the

dynamic counts of the

function it belongs to

inst execution time

ratio bymax

dynamic counts of an

instruction divided by the

maximum dynamic counts of

all instructions

dominated execution

time ratio bywhole

dominated dynamic counts of

an instruction divided by the

dynamic counts of all

instructions
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Table 4.1: Some features extracted for modeling building

Feature

group
Subgroup Feature Description

Common

features

Execution time

related

post dominated

execution time ratio

bymax

post dominated dynamic

counts of an instruction

divided by the maximum of

all instructions

Code structure

related

bb length

the number of static

instructions in the basic block

that contains the speci�c

instructions

bb length ratio bymax
bb length divided by the

maximum of all instructions

post dominated loop

depth ratio bymax

post-dominated loop depth of

an instruction divided by the

maximum of all instructions

Data usage re-

lated

data width

the number of bits of the

result of the speci�c

instruction

in global

whether the speci�c

instruction changes a globally

de�ned value

Features

for stored

values

Execution time

related

execution time loads
the dynamic counts of the

stored value being loaded

load execution time

entropy

the entropy computed based

on the probabilities of a stored

value being loaded by di�erent

load instructions
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Table 4.1: Some features extracted for modeling building

Feature

group
Subgroup Feature Description

execution time

required for addr

the dynamic counts required

for computing the storing

address

Features

for stored

values

Code structure

related

num static loads ratio

bymax

the number of static load

instructions divided by the

maximum of all stored values

Data usage re-

lated
used in oef func call

whether the stored value is

used in functions which have

no side e�ect

Features

for com-

parisons

Execution time

related

decision entropy

execution time

the entropy computed based

on the probabilities of the

comparison results

Code structure

related
is loop terminator

whether the comparison result

can break a loop execution

Data usage re-

lated

is icmp
whether the comparison is

made between integers

is fcmp

whether the comparison is

made between �oat point

values

cmp with zero
whether the comparison is

made with zero

Along with these features, we also need the SDC proneness of the stored

values and comparisons as training data. We conduct fault injection experi-

ments upon these variables to gather the SDC proneness.

37



4.2. Manually Tuned Model: SDCTune

4.2 Manually Tuned Model: SDCTune

Both our manually tuned model (SDCTune) and automatically tuned

model (SDCAuto), for predicting the SDC proneness of a variable, are built

from fault injections over a set of training programs, with program features

extracted before which incorporate the heuristics de�ned in the previous

section.

We start building SDCTune model by modelling the SDC proneness of

store and comparison instructions in the program. The SDC proneness of

these instructions depends on categorical features such as resilient compar-

isons and on numerical features such as data width (Section 3.2 and Sec-

tion 3.3). We manually apply classi�cation to model the categorical features,

and linear regression to model the numerical ones. Once we determine the

SDC proneness of the store and branch instructions, we use the fault prop-

agation procedure outlined in Section 3.1 for estimating the SDC proneness

of other instructions. We explain the classi�cation and regression methods

below.

Classi�cation The goal of classi�cation is to use the categorical features

that we observed before to classify the stored values or comparison results

into di�erent groups so that we can apply the numerical features (or arith-

metic means) to quantify the SDC proneness of each group. This classi�-

cation is done manually according to our empirical data. For each division

in the model, we �rst select features that can describe our heuristics, and

then we adopted those features to split our current group into several sub-
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4.2. Manually Tuned Model: SDCTune

groups. We recursively split these subgroups with our heuristics until all the

heuristics are utilized As shown in Sections 3.2 and 3.3, di�erent categories

of stored values and comparison results have di�erent categorical features for

determining their SDC proneness (e.g. resilient comparison or not for Cmp

NoAddr stored values and used in output or not for NoCmp NoAddr ones).

Therefore, we apply tree-structured classi�cation so that di�erent features

can be used in di�erent categories. The features are arranged hierarchically

in the form of a tree, starting from a root node, and partitioning the nodes

based on di�erent features recursively until all the data in a leaf node belongs

to a single category.

Regression is applied upon the leaf nodes of the classi�cation tree to

factor in the e�ects of numerical features such as data width. For example,

consider a leaf node of stored values: Addr NoCmp->Not Used in Masking

Operations. We �nd that the SDC proneness of stored values in this node

satisfy the following equation: P̂ (SDC|I) = −0.012 ∗ data width + 0.878.

This expression was derived using linear regression based on the results from

fault injection over a set of training programs in Section 5.1. The reason

for the negative correlation in this equation is that the higher bit positions

of stored values in leaf Addr NoCmp->Not Used in Masking Operations are

very likely to cause application crash if they are corrupted. Since values with

larger data width have a higher probability of being corrupted in higher bit

positions, faults that occur in those values are less likely to cause SDCs as

they are more likely to cause the program to crash. For the leaf nodes that

do not exhibit a correlation with numerical features, we take the arithmetic
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4.3. Automatically Tuned Model: SDCAuto

means as the estimation of their SDC proneness.

4.3 Automatically Tuned Model: SDCAuto

Unlike SDCTune, our automatically tuned model, SDCAuto, is built au-

tomatically using a machine learning approach known as the Classi�cation

and Regression Tree (CART) algorithm [27].

We choose this algorithm due to the following reasons:

1. The built tree model is simple to understand and to interpret. On the

contrary, results from other models such as arti�cial neural networks,

may be more di�cult to interpret. The generated CART tree can help

us gain a better understanding of the relation between SDC prone-

ness and program features by picking out the features showing strong

correlation with SDC proneness.

2. CART tree model, as one of decision tree model requires little data

preparation [4]. Other regression models, like support vector machine

(SVM) and Gaussian process, rely on an appropriate normalization

method of input data, which needs delicate tuning based on the appli-

cation scenarios. However in our case, the orders of magnitude may

be very di�erent for di�erent features (e.g., execution time related fea-

tures and code structure related features), and are hence very di�cult

to normalize. Therefore, we prefer models like CART Tree which re-

quire little data preparation.

3. CART tree is able to handle both numerical and categorical data.
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4.3. Automatically Tuned Model: SDCAuto

Many of the features we extracted are categorical data, e.g.,is_global,

is_integer and is_fcmp. At the same time, other features are numer-

ical, e.g., loop_depth, dominated_execution_time and data_width.

Many other regression algorithms may not support a mix of categori-

cal data and numerical data.

However, one disadvantage of CART algorithm is that the tree may grow

to be biased if some classes of data dominate. In our case, the tree may

biased towards some training programs because of the large number of data

points from them while ignoring other training programs. To balance the

dataset between di�erent training programs, we de�ne data point threshold as

a parameter to constrain the maximum number of data points allowed in the

growth of the trees for stored values and comparisons. Store and comparison

instructions will be ranked decreasingly according to their dynamic counts,

and we incorporate the top ones as the highly executed instructions are

more valuable for SDC proneness estimation (Equation 2.2). The number of

instructions we incorporate from each program is limited by the data point

threshold.

Our decision tree is built based on the Mean Squared Error (MSE) cri-

teria, and used as regression tree to estimate the SDC proneness. The

algorithm splits the training dataset recursively to divide the data points

into multiple groups until the divided groups have data points fewer than a

threshold value, namely minimum size of leaves. The end groups are known

as leaves and the average value (i.e., SDC proneness) are assigned as the

value of each leaf. For each split, the decision tree algorithm will select a
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4.3. Automatically Tuned Model: SDCAuto

feature and splitting threshold among all possible positions to maximize the

reduction of MSE which represents the information gain.

Algorithm 1 shows the pseudo code of the CART algorithm to build a

decision tree. The algorithm takes a set of n data points: < Xi, yi >, i =

1, ..., n as the input data. In our case, the size of this set of data points

are controlled by data point threshold. For each data point, there is a target

value: y, SDC proneness in our case, and an input vector: X with in total D

dimensions as each dimension represents one feature that we extract. The

algorithm will �rst test if the current set of n data points can be split into

two subsets (line 1). The precondition here is that every leaf should have at

least minleaf data points. If the current set of data points cannot be split,

the algorithm will create a leaf node and assign it with the average y value of

its data points as its estimation value (line 2-4). If the set of data points can

be split, the algorithm will traverse all the D dimensions of X and all the

possible splitting values of the data points to �nd a split that can maximize

the information gain which, in our case, is represented as a minimum Mean

Squared Error (MSE) (line 7-18). Once a split is done, we recursively call

the routine on the two new subsets until no more divisions can be done (line

19-20). Finally, the algorithm will return the root node of the tree.

In the above algorithm, the growth of the trees is controlled by param-

eter: minimum size of leaves and we control the input data through data

point threshold. We study the in�uence of them and present our results in

Section 2.4. Figure 4.1 shows an example of our built decision tree for stored

values with 17 points as minimum size of leaves and 80 instructions as data

point threshold.
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4.3. Automatically Tuned Model: SDCAuto

input : 1) A set of n data points: < Xi, yi >, i = 1, ..., n;
2) minimum size of leaves: minleaf

output: A regression tree

1 if n < 2 * minleaf then

2 No split can be made to create two leaves with more than
minleaf data points;

3 Create Leaf Node and assign it the average y value of the n
data point;

4 Return Leaf Node;

5 end

6 else

7 MSEtotal = The MSE of y values of all n data points;
8 for dimension d in all dimensions of X do

9 < x[d]i >, i = p, ..., q = all possible variables in
< x[d]i, i = 1, ..., n > that can split n points into two
groups with more than minleaf points in each;

10 for variable v in all possible variables < x[d]i >, i = p, ..., q
do

11 left group, right group = Split at dimension: d with
value: v;

12 new MSEtotal = MSEleft group ×
Numleft group

n +

MSEright group ×
Numright group

n ;
13 if newMSEtotal < MSEtotal then

14 MSEtotal = newMSEtotal;
15 cache split(d, v);

16 end

17 end

18 end

19 left leaf , right leaf = split data points < Xi, yi > with last
cached split(dlast, vlast);

20 Call recursively upon created left leaf , right leaf ;

21 end

22 Return Root Node;
Algorithm 1: CART Algorithm to Build a Decision Tree
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Figure 4.1: Auto tuned decision tree for stored values

4.4 Model Usage

Once the trees are built from training dataset, we can utilize it to esti-

mate the SDC proneness of the stored values and comparison results of the

testing programs. The estimated SDC proneness of those end points of data

dependency chains will be back propagated along their backward slice to

derive the SDC proneness of each instruction with fault masking or crashing

rate considered (section 2.4). Then the SDC proneness of each instruction

will be used to calculate the importance of the instruction and guide the

selection of instructions to duplicate and check under a speci�c overhead

bound as described in Section 5.3.
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4.5 Choosing the Instructions

As shown in Section 2.4, we can calculate the SDC coverage of protecting

an instruction if we know the SDC proneness of that instruction using Equa-

tion 2.1 in Section 2.1. We apply either SDCTune model or SDCAuto model

to estimate the SDC proneness of each instruction in the program that we

want to protect. We also obtain the dynamic count of each instruction in

the program by pro�ling it with representative inputs. We then attempt to

choose instructions to maximize the SDC coverage subject to a given per-

formance overhead (Section 2.4), using a standard dynamic programming

algorithm [22].

4.6 Detector Design

Once we identify a set of instruction to protect, the next step is to insert

error detectors for instructions. Our detectors are based on duplicating the

backward slices of the instructions to protect, similar to prior work [10]. We

insert a check immediately after the instructions to be protected, which com-

pares the original value computed by the instruction with the value computed

by the duplicated instructions. Any di�erence in these values is deemed to

be an error detection and the program is stopped. Figure 4.2b shows a con-

ceptual example of our detector for a given set of instructions to be protected

in Figure 4.2a.

Note that we assume that there is a single transient fault in the program

(Section 2.2), and hence it is not possible for both the detector and the

chosen instruction to be erroneous. Therefore, any error in the computation
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4.6. Detector Design

(a) Data dependency of
detector-free code. The
shaded portion shows the in-
structions need protection.

(b) Basic detector instru-
mented. The shaded nodes
shows the duplicated in-
structions and the detector
inserted at the end of the two
dependency chains.

(c) concatenate duplicated
instructions. One instruc-
tion is added to be pro-
tect(node e') that concate-
nates the two dependency
chains and save one checker

Figure 4.2: Example of inserted detectors and concatenating instructions

performed by the chosen instruction will be detected by the corresponding

error detector.

A naive implementation of our detectors can result in prohibitive per-

formance overhead. Therefore, we develop two optimizations to lower the

detector overhead. First, we concatenate adjacent duplicated pieces of code

by adding the instructions between them to the protection set so that we

can combine their detectors. Figure 4.2c shows how this optimization works.

This optimization provides bene�ts when the cost of the saved detector is

higher than the cost due to the added instructions. Second, we perform

lazy checking, in which detectors for cumulative computations in loops are

moved out of the loop bodies, as the example in Figure 4.3 illustrates. This

optimization is e�ective for long running loops.

46



4.6. Detector Design

1 f o r ( i=0; ; i++){

2 // loop body

3 flag = i<n ? 1 : 0 ;

4 i f ( flag == 1) break ; //decompose e x i t p r ed i c a t i on

to s imulate i n s t r u c t i on−l e v e l behaviour .

5 }

(a) Detector-free code

1 i=0;

2 dup_i=0; // dup l i c a t i on o f i

3 f o r ( ; ; ) {

4 // loop body

5 flag = i<n ? 1 : 0 ;

6 dup_flag = dup_i<n ? 1 : 0 ;

7 if(�ag != dup_�ag)

8 Assert();// i n c o n s i s t e n t

9 i f ( flag == 1) break ;

10 }

(b) Basic detector instrumented. This shows how the loop index i in
original code (a) is protected with bold code as check.

1 i=0;

2 dup_i=0; // dup l i c a t i on o f i

3 f o r ( ; ; ) {

4 // loop body

5 flag = i<n ? 1 : 0 ;

6 dup_flag = dup_i<n ? 1 : 0 ;

7 i f ( flag == 1) break ;

8 }

9 if(�ag != dup_�ag)

10 Assert();

11 // i n c o n s i s t e n t

(c) Lazy checking applied. This shows how we move the check out of the
loop body

Figure 4.3: Example of inserted detectors and lazy checking
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4.7 Summary

This chapter described the approach of building our con�gurable SDC

detection technique based on the heuristics from Chapter 3. Section 4.1

presented the extracted features for building both the manually tuned model:

SDCTune and automatically tuned model: SDCAuto. Section 4.2 presented

the building of SDCTune and Section 4.3 presented the building of SDCAuto

with the CART algorithm. Section 4.4 presented the usage of the two models

to estimate SDC proneness, and Section 4.5 presented how to utilize the

estimated SDC proneness to guide detector placement. The last section

presented our SDC detector and two optimizations to reduce its overhead.

In the next chapter, we will evaluate the models we built with the algorithms

and use them to guide the placement of error detectors in the application.
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Chapter 5

Experimental Setup

In this chapter, we present our experimental setup to evaluate both the

SDCTune and SDCAuto models for con�gurable SDC protection. All the

experiments and evaluations are conducted on a Intel i7 4-core machine with

8GB memory running Debian Linux. Section 5.1 presents the details of

benchmarks and Section 5.2 presents our evaluation metrics. Section 5.3

presents our methodology and work�ow for performing the experiments.

5.1 Benchmarks

We choose a total of twelve applications from a wide variety of domains

for training and testing both of our models. The applications are drawn from

the SPEC [13], SPLASH2 [36], NAS parallel [1], PARSEC [2] and Parboil [32]

benchmark suites. We randomly divide the twelve applications into two

groups, one group for training and the other for testing. The four benchmarks

used in Section 2.3 to derive the heuristics are drawn from the training group.

The details of these training and testing benchmarks are shown in Table 5.1

and Table 5.2 respectively. All the applications are compiled and linked into

native executables with -O2 optimization �ags and run in a single threaded

mode, as our current implementation of both SDCTune and SDCAutomodels
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Table 5.1: Training programs

Program Description
Benchmark

suite
Input Stores Comparisons

IS
Integer
sorting

NAS default 21 20

LU
Linear
algebra

SPLASH2 test 41 110

Bzip2 Compression SPEC test 681 646

Swaptions
Price

portfolio of
swaptions

PARSEC
Sim-
large

36 101

Water
Molecular
dynamics

SPLASH2 test 187 224

Lbm
Fluid

dynamics
Parboil short 71 34

work only with single-threaded programs.

5.2 Evaluation Method

We evaluate our SDC proneness estimation model from three perspec-

tives. First we evaluate the regression results of CART algorithm with dif-

ferent parameters, the optimal parameters will be selected for SDCAuto. We

then use both model for estimating the overall SDC rate of applications, as

well as the SDC coverage(s) for di�erent performance overhead bounds. The

estimation of overall SDC rates are used for comparing the SDC rates of

di�erent applications free from fault injection, while the coverage(s) show

the capability of con�gurable protection of our technique. We use the same

experimental setup for fault injection as that described in Section 2.3.

50



5.2. Evaluation Method

Table 5.2: Testing programs

Program Description
Benchmark

suite
Input Stores Comparisons

Gzip Compression SPEC test 251 399

Ocean
Large-scale

ocean
movements

SPLASH2 test 322 813

CG
Conjugate
gradient

NAS default 32 97

Bfs
Breadth-
First
search

Parboil 1M 36 57

Mcf
Combinatorial
optimization

SPEC test 87 158

Libquantum
Quantum
computing

SPEC test 39 136

Regression results from decision tree model To evaluate the regres-

sion results, we calculate the average squared errors for both training and

testing dataset. As shown in Section 4.3, there are two parameters control-

ling the tree building process: (1)minimum size of leaves and (2)data point

threshold.

We explore this two-dimensional parameter space, we vary the minimum

size of leaves from 1 to 120 points per leaf, and the data point threshold from

10 to 120 data points for each program. These values were chosen based

on our empirical measurements of the numbers of stores and comparison

instructions in the program. We explore this two-dimensional parameter

space and calculate the mean squared errors for both training and testing

dataset for each point in our exploration space. We then present the two
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optimal pairs of parameters for stored value decision tree and comparison

decision tree respectively. We also present the features that are adopted by

the optimal trees and compare them with the manually selected features in

SDCTune model.

Estimation of overall SDC rates: We perform a random fault injection

experiment to determine the overall SDC rate of the application. We then

compare the SDC rate estimated by both of our models with that obtained

from the fault injection experiment. We also estimate the correlation between

our estimated SDC rates and SDC rates from fault injection. A high positive

correlation implies the usefulness of our models in comparing SDC rates

among di�erent applications.

SDC coverages for di�erent performance overhead bounds: The

SDC coverage is de�ned as the fraction of SDC causing errors detected by

our detectors. We apply both SDCTune model and SDCAuto model to pre-

dict the SDC coverage for di�erent instructions to satisfy the performance

overhead bounds provided by the user. Our selection algorithm(Section 4.5)

starts with the instructions providing the highest coverage, and iteratively

expands the set of instructions until the performance overhead bounds are

met. We then perform fault injection experiments on the program instru-

mented with our detectors for these instructions, and measure the percent-

age(s) of SDCs detected. We also compare our results with those of full

duplication, i.e., when every instruction is duplicated in the program, and

that of hot-path duplication, i.e., when the top 10% most executed instruc-
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tions are duplicated in the program.

To ensure a fair comparison among these techniques, we use a metric

called the SDC detection e�ciency, which is similar to the e�ciency

de�ned in prior work by Sha�que et al. [30]. We de�ne the SDC detection

e�ciency as the ratio between SDC coverage and performance overhead for

a detection technique. We calculate the SDC detection e�ciency of each

benchmark under a given performance overhead bound, and compare it with

the corresponding e�ciencies of full duplication and hot-path duplication.

The SDC coverage of full duplication is assumed to be a hundred percent [28].

5.3 Work Flow and Implementation

Measuring regression results of decision trees Figure 5.1 shows the

work�ow for selecting parameters and measuring the regression results of the

decision trees which are parts of SDCAuto model. The work�ow explores the

parameter space which is consist of minimum size of leaves and data point

threshold to test their in�uences on the regression results.

We �rst compile the application using LLVM into its IR form. We then

extract the features that SDCAuto needs to estimate the SDC proneness

of stored values and comparison results. This is done using an automated

compiler pass we wrote in LLVM, and the LAMPView tool [23] for analyzing

load/store dependencies. We also need initial SDC proneness data for each

stored value and comparison instructions to build our decision tree model.

This is obtained by fault injections. However, the fault injections are done

for building SDCAuto; using the built model does not require fault injection.

53



5.3. Work Flow and Implementation

Figure 5.1: The work�ow of building regression trees and exploring the pa-
rameter space for SDCAuto.

Once the training data and testing data are obtained, we build regression

trees for stored values and comparison instructions with minimum size of

leaves iterating from 1 to 120 and data point threshold iterating from 10

to 120. For each combination of minimum size of leaves and data point

threshold, we calculate MSE for both training data and testing data to show

the in�uences of the two parameters. The values of minimum size of leaves

and data point threshold with minimum MSE of testing data will be selected

as the optimal parameters of the regression trees.

Measuring overall SDC estimation and coverage Figure 5.2 shows

the work�ow for estimating the overall SDC rates and providing con�gurable

protection using either SDCTune model or SDCAuto model. The work�ow

requires the following inputs from the user: (1) source code for the program,
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Figure 5.2: The work�ow of applying our models for (1) estimate the overall
SDC failure rate and (2) selectively protect the SDC-prone variables subject
to a performance overhead.

(2) a set of representative input(s) for executing the application, and (3)

output function calls that generate the output data that we care about in

terms of SDC failures (as mentioned before, not all output data in an ap-

plication is important from the perspective of SDCs, for example, statistical

or timing information in the output). In addition, it requires the user to

specify the maximum allowable performance overhead that may be incurred

by the detectors inserted by our technique.

Similar to how we did the initial study, we �rst compile the source code

and extract features from the compiled IR. Then, we run the extracted fea-

tures through either the SDCTune or the SDCAuto model built in Chapter 4,

to generate an estimated SDC proneness for each instruction. We then use

the results from our model to estimate the overall SDC rate of the appli-

cation, and for inserting detectors into the program for protecting the most

SDC-prone instructions within the given overhead bound. The detectors are

automatically inserted into the program by another LLVM pass we wrote.

We use the representative inputs provided by the user to execute the pro-

55



5.4. Summary

gram for obtaining its execution time with the detectors. The above process

of choosing instructions to protect is repeated iteratively until the desig-

nated performance overhead bound is ful�lled. If we exceed the performance

overhead bound, we backtrack and remove the most recently inserted detec-

tors. Finally, we use the program forti�ed with the detectors to measure its

performance overhead and fault coverage.

5.4 Summary

In this chapter, we described the experimental setup for evaluating our

SDCTune and SDCAuto models. Section 5.1 presented the benchmark pro-

grams for evaluating our models and described the characteristics of the

programs. Section 5.2 presented the of evaluation methods and experiment

design. Section 5.3 presented the work�ow and implementation details of

evaluating our technique. In the next chapter, we will present the results of

our evaluation.
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Chapter 6

Results

This chapter presents the results of our experiments to: (1) explore the

parameter space for our decision tree model for SDCAuto, (2) estimate the

overall SDC rate of an application with both SDCTune and SDCAuto model

and (3) apply con�gurable protection to maximize detection coverage under

di�erent performance overhead bound. We �rst present the results of the

times taken by both the SDCTune and SDCAuto models.

6.1 Time Taken by Models

In our experiments, both SDCTune and SDCAuto models require �ve

to �fty minutes (average of 24 minutes) depending on the application, to

estimate the overall SDC rate and to generate a forti�ed executable protected

with detectors for a given performance overhead. As shown in Table 6.1, most

of the time are spent on Feature extraction and Instruction selection, which

require one to forty �ve minutes (average 10.08 minutes) and �ve seconds to

forty nine minutes (average 14.34 minutes), respectively.

The time taken by the Feature Extraction phase is spent in pro�ling the

program and recording the store-load dependencies with LAMPView [23].

Therefore, programs with longer execution time and more dynamic counts
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Table 6.1: Time consumption of SDCTune and SDCAuto

Group Benchmark

Feature

extraction

(minutes)

Instruction

Selection

(minutes)

Total

(minutes)

Training

Lbm 23 9 32

IS 9 1 10

LU 3 0.083 3.083

Bzip2 9 49 58

Water 3.5 16 19.5

Swaptions 9 9 18

Testing

Gzip 8 27 35

CG 45 3 48

Ocean 6 35 41

Bfs 1 4 5

Mcf 2 9 11

Libquantum 2.5 10 4.167

Mean 10.083 14.340 23.729

for memory operations requires much longer time for pro�ling than other

programs. In this study, Lbm and CG require longest time on feature ex-

traction, and they also require a obviously longer time for a normal run and

have higher dynamic counts of store/load operations.

We found that the time taken by Instruction Selection phase is mainly

a�ected by the number of stores and comparisons of a program. This is

shown in the number of stores and comparisons in Table 5.1, Table 5.2 and

time spent on Instruction Selection in Table 6.1. The reason that programs

with many stores and comparisons usually have a large number of static

instructions. And more static instructions will polynomially increase the
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search space of �nding an optimal set of instructions to protect in our tech-

nique [22].

We also found that merely applying our models to estimate SDC prone-

ness causes nearly no time consumption. This matches our intuition as using

the tree to classify the store/comparison instructions and then back propa-

gating the SDC proneness has O(n) time complexity, where n represents the

number of instructions. Even several tens of thousands static instructions

can be processed in just tens of milliseconds on today's desktop computers.

On the contrary, fault injection alone requires anywhere from a few hours

to a few days to generate the SDC rates for each application. Further, esti-

mating the SDC-prone locations in a program using fault injection requires

even more fault injections and signi�cant e�ort to map the results of the

fault injection back to the program's code, which is necessary for placing

detectors.

6.2 E�ect of Decision Tree Parameters

We explored the parameter spaces for stored value decision tree and com-

parison instruction decision tree. Figure 6.1 shows the mean squared errors

(MSE) for the decision trees under di�erent minimum size of leaves and data

point threshold for training and testing dataset. Recall that our goal is to

choose parameters for the models to minimize the MSE.

From Figure 6.1, we can observe that over�tting occurs (as expected)

when minimum size of leaves is too small, while incomplete learning occurs

when it is too large. At the same time, a large data point threshold may
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introduce imbalance in the training dataset and worsen the regression result,

as shown in Figure 6.1d, while too small a value can hinder the tree splitting

process then decrease the accuracy, as shown in Figure 6.1c and Figure 6.1a.

As shown in Figure 6.1c and Figure 6.1d , we found minimum size of

leaves = 17, it data point threshold = 80 has lowest MSE for testing stored

values, and so is selected as optimal for tree of stored values. Similarly,

minimum size of leaves = 57, data point threshold = 40 has lowest MSE for

comparison instructions, and so is selected for tree of comparisons. Based

on this con�guration, we rank the features according to their importance in

Table 6.2. We further discuss these features in Section 7.2.

6.3 Estimation of Overall SDC Rates

We estimate the overall SDC rates of the applications using SDCTune

model and SDCAutomodel, then compare them with the SDC rates obtained

through 3000 random fault injections per benchmark. Table 6.3 shows the

overall SDC rates (P (SDC)) from the fault injections and the estimated

overall SDC rates (P̂ (SDC)) for both training programs and testing pro-

grams. The SDC rates are statistically signi�cant with an error bar ranging

from 1.78%(Lbm) to 0.71%(Swaptions), at the 95% con�dence intervals.

From Table 6.3, it can be observed that the absolute values of the esti-

mated SDC rates do not match with the observed ones accurately. However,

the results show high positive correlation between the SDC ranks estimated

by our models and those observed in reality, where rank represents the rela-

tive SDC rate. Figure 6.2 plots the estimated SDC ranks versus the observed
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(a) MSE of training stored values (b) MSE of training comparisons

(c) MSE of testing stored values (d) MSE of testing comparisons

Figure 6.1: E�ect of data point threshold(y-axis) and minimum size of
leaves(x-axis) on regression results
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Table 6.2: Features adopted by the optimal decision trees for SDCAutomodel

Tree Features used by decision trees Importance

Stored values

inst func execution time ratio 0.4828

bb length 0.1507

data width 0.1501

post dominated loop depth ratio
bymax

0.0706

post dominated execution time
ratio bymax

0.0286

in global 0.0269

load execution time entropy 0.0257

num static loads ratio bymax 0.0219

bb length ratio bymax 0.0185

dominated execution time ratio
bywhole

0.0119

execution time required inst foraddr 0.0075

used in oef func call 0.0045

execution time loads 0.0003

Comparisons
inst func execution time ratio 0.6058

inst execution time ratio bymax 0.3942

ranks for both the SDCTune and SDCAuto models. The x-axis shows the

overall SDC rates from 3000 random fault injections, while the y-axis shows

the estimated overall SDC rates using either SDCTune or SDCAuto. The

correlation coe�cient is 0.8770 for our SDCTune model, and 0.8545 for SD-

CAuto model, showing a strong positive correlation for both models.

Thus, our models are highly accurate in predicting the SDC rates of ap-

plications relative to others. However, it is not accurate at predicting the

absolute rates of SDCs. There are two reasons for this inaccuracy. First, our

estimation of SDC rates using fault propagation is conservative, and some-
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6.3. Estimation of Overall SDC Rates

Figure 6.2: The correlation of overall SDC rates for all programs.

times may overestimate the SDC proneness of variables in the presence of

application-speci�c masking. Second, our load-store dependence analysis is

performed using the LAMPView tool, which does not handle some library

functions such as memcpy. This is also the reason for the large deviation of

the SDC rate of CG when using SDCTune model. A large portion of the

output of CG comes from memcpy and memset. This prevents LAMPView

to trace the data �ow so that cause large deviations in estimating the SDC

proneness for instructions. This inaccuracy in absolute SDC rate predic-

tion may lead to inadequate protection, and additional overhead. However,

our results show that despite the inaccuracy, our models can guide detector

placement to obtain high coverage at low performance overheads. This is be-

cause detector placement mainly relies on estimating the SDC proneness of

an instruction compared with other instructions, or the relative SDC prone-

ness. Even though the absolute SDC proneness is not estimated accurately,

our selection algorithm is still able to choose correct instructions if the rel-
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Table 6.3: The SDC rates and ranks from fault injections and our models

Group Benchmark

P (SDC)
from

injections

P̂ (SDC)
from

SDCTune

P̂ (SDC)
from

SDCAuto

Training

Lbm 52.53% 48.11% 48.89%

IS 43.46% 33.75% 26.57%

LU 31.9% 25.43% 22.36%

Bzip2 24.47% 17.88% 19.78%

Water 5.9% 9.75% 18.85%

Swaptions 4.1% 11.46% 11.74%

Testing

Gzip 33.67% 32.46% 26.88%

CG 23.67% 3.75% 24.58%

Ocean 20.6% 14.75% 16.8%

Bfs 17.37% 14.27% 17.19%

Mcf 15.76% 17.84% 15.89%

Libquantum 10.5% 10.9% 18.64%

ative SDC proneness is correctly estimated by the models. However, this is

not su�cient for the estimation of overall SDC rates, as the estimated overall

SDC rates are actually a sum of absolute SDC proneness of all instructions.

6.4 SDC Coverage and Detection E�ciency

We use both of the models for inserting error detectors into the appli-

cations to maximize SDC coverage under a given performance overhead.

Figure 6.4a shows the SDC coverage obtained by SDCTune model for each

benchmark under three di�erent performance overhead bounds: 10%, 20%

and 30%. For the training programs, the geometric means of the SDC cov-

erage for the 10%, 20% and 30% overhead bounds are 34.8%, 71.1% and
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78.9%, respectively. For the testing programs, the corresponding geometric

means are 37.0%, 58.4% and 74.8% respectively, which are somewhat lower

than the training programs' averages, as expected. We also measured the

SDC coverage obtained with hot-path duplication, and found it to be 74.28%

and 92.33% on average for training and testing programs respectively.

Figure 6.5a shows the SDC coverage obtained by SDCAuto model. The

geometric means of the SDC coverage are 31.14%, 66.32% and 76.03% re-

spectively for the training programs. For the testing programs, the geometric

means are 27.37%, 45.70% and 67.63% respectively.

Figure 6.3 shows the performance overhead of full duplication and hot-

path duplication. The overhead of full duplication is 50.16% on average for

the training programs, while it is 71.37% on average for the testing pro-

grams. Hot-path duplication has an overhead of 33.19% for the training

programs, and 61.76% for the testing programs. Note that both of these are

considerably higher than the 30% overhead bound we considered with our

detectors.

We also calculate the detection e�ciency of the detectors we inserted,

and for hot-path duplication based on their overhead and SDC coverages

(Section 5.2). Figure 6.4b and Figure 6.5b show the SDC detection e�-

ciency for our detectors with the three overhead bounds, and for hot-path

duplication. The e�ciencies are normalized to that of full duplication, which

has a baseline e�ciency of 1. A value close to 1 means that no improvement

is achieved over full duplication.

With SDCTune model, we observe SDC detection e�ciencies of 1.75x,

1.78x and 1.32x for the training programs, and 2.65x, 2.09x and 1.78x for the
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testing programs, at the 10%, 20% and 30% performance overhead bounds

respectively. We have higher detection e�ciencies for our testing programs

because the full duplication overheads of the testing programs are commonly

higher than the training programs. This results into a lower baseline for the

testing programs in terms of detection e�ciencies. More details are provided

in Chapter 7. The reason that the e�ciencies generally decrease as overhead

increase is that some of the instructions protected at higher overhead are

not as SDC prone. As the performance overhead of the detectors approaches

that of full duplication, the detection e�ciencies will drop to 1.

Detectors inserted using SDCAuto model have detection e�ciencies of

1.56x, 1.67x and 1.27x over full duplication for the training programs, and

1.96x, 1.64x and 1.62x over full duplication for the testing programs. Thus,

we �nd that there is considerable variation in detector e�ciency among

benchmarks and between SDCTune and SDCAuto model. We explain the

reasons in the next chapter.

We also observe no gain in e�ciency with hot-path duplication compared

to full duplication in spite of its high coverage, as it incurs correspondingly

higher overhead (as mentioned in Section 2.4). In summary, our technique

signi�cantly outperforms both full-duplication and hot-path duplication in

providing better detection e�ciency, for much lower performance overhead

bounds.
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Figure 6.3: The overhead of full duplication and hot-path duplication

6.5 Summary

In this chapter, we presented the results of the evaluation of the models.

We found that SDCTune and SDCAuto are both accurate in predicting the

SDC rates of applications relative to other applications. However, both the

two models did not predict the absolute SDC rates accurately for some appli-

cations, as shown in Table 6.3 (Section 6.3). When applying our models for

guiding detector placement, we found that our technique improved detection

e�ciency of full duplication by a factor of 0.78x to 1.65x, compared with full

duplication and hot-path duplication, for the SDCTune model, and 0.62x

to 0.96x for the SDCAuto model. This means that our technique provides

more e�cient SDC detection for much lower performance overhead bounds

compared with full duplication like approaches.
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6.5. Summary

(a) The SDC coverages with error bars at the 95% con�dence interval for SDCTune
model. The error bars are less than 2%, and obtained from 3000 random fault injec-
tions per benchmark. The SDC coverage of full duplication is considered as 100%

(b) The normalized detection e�ciency of SDCTune model. Full duplication is the
baseline and has detection e�ciency = 1. (Detection e�ciency is the ratio of SDC
coverage and performance overhead)

Figure 6.4: The results of SDCTunemodel for di�erent performance overhead
bounds, hot-path duplication and full duplication.
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(a) The SDC coverages with error bars at the 95% con�dence interval for SDCAuto model.
The error bars are less than 2%, and obtained from 3000 random fault injections per
benchmark. The SDC coverage of full duplication is considered as 100%

(b) The normalized detection e�ciency of SDCAuto model. Full duplication is the
baseline and has detection e�ciency = 1. (Detection e�ciency is the ratio of SDC
coverage and performance overhead)

Figure 6.5: The results of SDCAutomodel for di�erent performance overhead
bounds, hot-path duplication and full duplication.
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Chapter 7

Discussion

In this chapter, we discuss the reasons of the variation in detection cov-

erage and e�ciency among benchmarks and also the di�erences between the

two models. We �rst present the di�erences between benchmarks when us-

ing SDCTune model (Section 7.1). Then we discuss the reasons of di�erent

results between SDCTune model and SDCAuto (Section 7.2). Finally we

discuss the threats to the validity of our approach (Section 7.3).

7.1 Di�erences between Benchmarks

There are two main reasons for the di�erences of the detection e�ciency.

First, for our technique to be e�cient, it needs to protect instructions

with high SDC proneness, but with low dynamic execution count. We ob-

served that applications which have such instructions experience moderate

SDC rates, which are neither too high nor too low. From Table 6.3, programs

such as Libquantum, Bfs, Mcf, Bzip2, and Ocean fall into this category. Gen-

erally, these programs bene�t the most from SDCTune model (Figure 6.4b).

But the detectors inserted in Mcf and Ocean have higher overhead so that

the SDC coverage of these two benchmarks are lower in general under same

performance overhead bound. For Mcf the reason is that it has a large
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amount of comparison operations for branches at runtime so that much more

check instructions are needed to be inserted (Section 4.6) which cost more

performance overhead budget. For Ocean, many of its dynamic instances

are �oat point operations which means duplicating these instructions may

cause higher overhead because processors usually have very limited ALU

resources for �oat point operations. Higher overhead for detectors prevents

our technique from protecting larger amount of instructions so that these two

benchmarks have relatively low SDC coverage. However, The high detection

e�ciencies of these two benchmarks also bene�t a lot with our technique.

On the other hand, if the benchmark has highly SDC prone instructions

that are also highly executed, our technique does not do as well since the

overhead limit prevents our technique from selecting those SDC prone in-

structions. Examples of these programs are Lbm, and IS.

The second reason for the variation in e�ciency among benchmarks rela-

tive to full duplication, is that the overhead of full duplication is not uniform,

as shown in Figure 6.3. This is because of benchmark-speci�c reasons such

as the distribution of integer and �oating point operations. In general, pro-

cessors have abundant integer computation units but not as many �oating

point units, so the higher the fraction of �oating point operations, the higher

is the overhead due to duplication. We found that for some benchmarks such

as IS, Bfs, and Bzip2, the full duplication overhead is only about 40%. This

means that the detection e�ciency improvement over full duplication is un-

likely to be very high for these benchmarks. For example, even though IS,

Bfs and Swaptions have reasonable SDC coverage, their detection e�ciency

is not very high. In one of the benchmarks, Lbm, our detectors have a lower
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detection e�ciency compared to full duplication. This is because nearly

all SDC prone instructions in the program have high execution counts, and

hence the performance overhead bounds cannot be satis�ed if they are se-

lected for protection. Therefore, this benchmark has low SDC coverage with

our technique.

7.2 Di�erences between Models

Comparing the coverage provided by the detectors of SDCTune model

and the SDCAuto model, the latter performs much worse on three programs,

namely Bzip2, Gzip, Ocean and Mcf. The reason is the regression tree built

for comparison operations. As shown in Table 6.2, only two features are

utilized in the optimal regression tree by SDCAuto which turns out to have

only three leaves. Such a result means an incomplete learning and failure in

classifying the extracted features correctly.

This is because our CART model cannot utilize multiple features for

one split, while categorizing comparison instructions usually requires to do

so. For example, is _loop _terminator and nest _loop _depth should be

considered at the same time, as nest _loop _depth show strong correlation for

loop terminating comparisons, which are labeled with is _loop _terminator

= True. However, CART may not discover this, as splitting on the individual

features, is _loop_terminator or nest _loop _depth along does not reduce

the total MSE. So the SDCAuto is not likely to select these features and

use them correctly, and hence fails to build an optimal tree for comparison

instructions.
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In addition, as shown in Figure 4.1 and Table 6.2, the regression tree

for stored values also failed in categorizing the training data according to

the four major usage groups (Section 3.2). However, in contrast to usage-

based classi�cation, the decision tree of stored values selects many code struc-

ture related (e.g. bb_length, post_dominated_loop_depth_ratio_bymax)

and common execution time related (e.g. inst_func_execution_time_ratio,

dominated_execution_time) features in the model building phase. This

means that from the decision tree algorithm's perspective, these easy-to-

extract features also have strong correlations with SDC proneness and are

worthy of further study for SDC proneness estimation.

In short, our SDCTune model illustrates an upper bound on the SDC

detection capability of a model, while our SDCAuto model presents an ex-

ample of applying an existing machine learn-ing algorithm to build such a

model. Although our results show that SDCTune outperforms SDCAuto in

both estimating overall SDC rates and guiding detector placement, we note

that the gap is mainly caused by the limitation of the CART algorithm. A

di�erent automatically tuned model with a more appropriate algorithm and

more training data may be able to match the manually tuned model.This is

a subject of future investigation.

7.3 Threats to Validity

Internal Threats First, the heuristics presented in Chapter 3 are formu-

lated based on our observation of the fault injection experiments in our initial

study (Chapter 2) and we can not guarantee that these heuristics can be al-
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ways held for all programs. Second, we cannot guarantee that the CART

algorithm is the best for building our automatically tuned model of esti-

mating SDC proneness. Other machine learning algorithms such as neural

network and hidden Markov models may work better. Third, our SDCAuto

model is not built with K-fold cross validation. This is because the parame-

ter data point threshold limits the total number of data points available in

our training set so that we do not have enough data points for K-fold cross

validation.

External Threats A major external threat comes from the training pro-

grams and testing programs of our study. In this thesis, we randomly selected

six training programs and six testing programs from standard benchmark

suites. However, there may not be su�cient for training and testing a solid

predictor. We partially mitigate this threat by choosing programs from a

variety of standard benchmark suites rather than con�ning ourselves to a

single suite. Another external threat is that both of our models are archi-

tecture and operating system dependent, which means the models may only

work for programs that run on a speci�c operating system with a speci�c ar-

chitecture. This is because in our study, the consequences of fault injection

experiments depend on the underlying architecture and operating system.

Shifting to another architecture or operating system may vary the results

of the faults so that our models may not be able to predict them success-

fully. We partially mitigate this threat by using an x86 platform running the

Linux operating system, which represent common choices running in many

commodity platforms.
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Chapter 8

Related Work

In this section, we present prior work related to the detection of silent

data corruption with software technique. We classify related work into three

categories, namely (1) duplication based techniques, (2) invariant based tech-

niques, and (3) application or algorithm speci�c techniques.

8.1 Duplication Based Techniques

One of the earliest papers on identifying critical variables in programs,

and selectively protecting them is by Pattabiraman et al. [24]. Unlike our

work, they focus mostly on crash-causing errors, which are relatively easy

to detect compared to SDCs. Further, they do not provide con�gurable

protection in their work.

SWIFT [28] is a compiler based technique that uses full duplication to

detect faults in program data. However, full duplication can have signi�cant

performance overhead, especially on embedded systems which do not have

an abundant idle resources to mask the overhead of duplication. As shown

in Figure 6.4b and Figure 6.5b, SDCTune and SDCAuto outperforms full

duplication in terms of SDC detection e�ciency, and also enables con�g-

urability to protect programs from SDC causing errors under various given
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performance overheads.

Feng et al. [10], and Khudia et al. [16] have attempted to reduce the

overhead of full duplication by only duplicating �high-value� instructions

(and variables), where a fault is unlikely to be detected by other techniques

and hence lead to SDCs. Unlike our work however, they do not provide

a mechanism to con�gure the protection for a given performance overhead

bound. This is especially important for embedded systems where the system

has to satisfy strict performance constraints.

Another branch of work [6, 8, 19, 20, 33] has focused on protecting soft-

computing applications from soft errors, by duplicating only critical instruc-

tions or data in the program. Examples of soft-computing applications are

those used in media processing and machine learning, which can tolerate a

certain amount of errors in their outputs. These papers exploit the resilience

of soft computing applications to come up with targeted protection mecha-

nisms. However, they cannot be applied in general purpose applications.

Thomas et al. [33] propose a technique to protect soft-computing ap-

plications from Egregious Data Corruptions (EDCs), which are errors that

cause unacceptable deviations in the program's output. Similar to our work,

they formulate program-level heuristics to identify EDC prone data in the

program. However, there are two main di�erences between their work and

ours. First, the heuristics they propose are based on how much program data

is a�ected by an error. While this is important for EDC-causing errors, this

is not so for SDC-causing errors as even a small deviation in the output can

be an SDC. Therefore, we need a more complex set of heuristics to predict

SDC prone data in a program. Secondly, EDCs constitute only 2 to 10%
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of a program's faulty outcomes. In comparison, SDCs constitute up to 50%

of a program's faulty outcomes, and hence need much more heavyweight

protection.

Finally, in recent work, Sha�que et al. [30] propose a technique for ex-

ploiting fault masking in applications to provide e�cient detection. Similar

to our work, they rank the vulnerability of instructions in the program, and

allow the user to specify performance overhead bounds to selectively choose

instructions to protect. However, our work di�ers from theirs in two ways.

First, they consider all failures as equally bad, including crashes and hangs.

However, we focus exclusively on SDC-causing faults, which are the most

insidious of faults. Therefore, we can achieve higher e�ciency for protecting

against SDC-causing faults. Secondly, their work employs three metrics to

determine the instructions to protect, all of which are estimated by perform-

ing a static analysis of the application's control and data �ow graph, which

is conservative by nature. In contrast, our work uses empirical data to build

the model for estimating the SDC proneness of di�erent instructions, and

is hence relatively less conservative. Since Sha�que et al. do not provide

a breakdown of their coverage among SDC failures, crashes and hangs, we

cannot quantitatively compare the coverage of SDCTune and SDCAuto with

their technique.

8.2 Invariant Based Techniques

Invariant-based techniques [9, 25, 29] detect errors by extracting likely

invariants in programs through runtime pro�ling and dependency analysis.
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Those likely invariants are used as assertions to check abnormal behaviours

or data out-of-bounds to detect errors. Invariant based techniques typically

have lower overhead than duplication-based techniques, as the assertions

consist of much fewer instructions than the entire backward slice of the vari-

ables. However, an important limitation of this class of techniques is that

they incur false positives, i.e., they can detect an error even when none oc-

curs. This is because they all learn invariants from testing inputs, and these

invariants may not hold when the program is running with real inputs in

production. While our work also learns the model for SDC proneness based

on training applications, it uses static analysis to actually derive the detec-

tors from the backward slices, and has no false positives as static analysis is

conservative.

8.3 Application or Algorithm Speci�c Techniques

Hari et al. [11] proposes a set of detectors for detecting SDCs using

program-level detectors. Similar to our work, they also come up with a

method to choose variables to protect for maximizing the SDC coverage

under a given performance overhead bound. However, there are two dif-

ferences between our work and theirs. First, they require fault injections

to �nd the highly SDC prone variables in the program, which is time con-

suming. Although they reduce the fault injection space using their Relyzer

technique [12], they still need to perform tens of thousands of injections. In

contrast, we use our model to determine the SDC prone locations without

needing fault-injections. Secondly, their detector derivation is done manually
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based on understanding of the program. Further, some of their detectors are

application-speci�c and cannot be generalized across programs, as they rely

on speci�c algorithmic properties. In contrast, we use generic duplication-

based detectors which are automatically derived for any application.

Sloan et al. [26, 31] propose an algorithm speci�c approach to enhance

the fault detection for sparse linear algebra applications. Algorithmic so-

lutions can achieve high coverage while keeping the performance overhead

low. However, they are not general solutions and cannot be easily applied

to other application types.
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Chapter 9

Conclusion and Future Work

As hardware errors increase with technology scaling, Silent Data Corrup-

tions (SDCs) are becoming more serious for a wide class of systems. Generic

solutions such as full duplication incur high performance overhead as they

do not prioritize protecting against SDC-causing errors.

This paper proposes a con�gurable protection technique for SDC-causing

errors that allows users to trade-o� performance for reliability. We develop

heuristics for estimating the SDC proneness of instructions and build a man-

ually tuned model, SDCTune, and a auto tuned model, SDCAuto, based on

the heuristics and decision tree algorithm. We then use our models to guide

the selection of instructions to be protected with error detectors under a

given performance overhead. Our results show that our models are highly

accurate at predicting the relative SDC rates of applications. The detectors

inserted using SDCTune model outperform both full duplication and hot-

path duplication by a factor of 0.78x to 1.65x in detection e�ciency. And

with SDCAuto model, our detectors outperform full duplication by a factor

of 0.62x to 0.96x.

We plan to explore two directions as future work. First, while SDCTune

and SDCAuto have high accuracy in predicting the relative SDC rate of
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an application, they are not as accurate in predicting the absolute SDC

rates. We plan to work on improving their absolute accuracy. Second, we

will explore parallelizing the detectors to lower their performance overhead

further.
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