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Abstract

Robots can be readily equipped with sensors that span a growing range of
modalities and price-points. However, as sensors increase in number and va-
riety, making the best use of the rich multi-modal sensory streams becomes
increasingly challenging. In this thesis, we demonstrate the ability to make
efficient and accurate task-relevant predictions from unlabeled streams of
sensory data for a non-prehensile manipulation task. Specifically, we address
the problem of making real-time predictions of the mass, friction coefficient,
and compliance of a block during a topple-slide task, using an unlabeled mix
of 1650 features composed of pose, velocity, force, torque, and tactile sensor
data samples taken during the motion. Our framework employs a partial
least squares (PLS) estimator as computed based on training data. Impor-
tantly, we show that the PLS predictions can be made significantly more
accurate and robust to noise with the use of a feature selection heuristic,
the task variance ratio, while using as few as 5% of the original sensory fea-
tures. This aggressive feature selection further allows for reduced bandwidth
when streaming sensory data and reduced computational costs of the pre-
dictions. We also demonstrate the ability to make online predictions based
on the sensory information received to date. We compare PLS to other re-
gression methods, such as principal components regression. Our methods
are tested on a WAM manipulator equipped with either a spherical probe

or a BarrettHand with arrays of tactile sensors.
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Preface

The thesis is based on work conducted jointly between the Sensorimotor Sys-
tems and IMAGER laboratories with professors Dinesh K. Pai and Michiel
van de Panne, and students Daniel Troniak and Chuan Zhu of the University
of British Columbia. This section outlines the contributions of each of the

above individuals. Students worked under guidance of the professors.

Software Troniak wrote the C++ software framework for the control,
perception and user interface of the robot, and developed MATLAB scripts
in support of the design and usage of the TVR algorithm. Zhu implemented
a MATLAB framework for data analysis, processing and figure generation,

including the final implementation of the TVR algorithm.

Experiments Troniak designed and built the environment for the robot,
collected all data with the robot, maintained and configured the hardware,
and designed and executed the robot motion. Pai supported the purchase
and maintenance of the robotic hardware. Zhu analyzed preliminary data
collected during various manipulations to help Troniak determine successful
motion trajectories. Data analysis, discussion, and final figure generation

was accomplished collaboratively.

Algorithms van de Panne suggested the TVR feature selection metric
and proposed the usage of the PLS algorithm. Troniak validated the effec-
tiveness of the TVR algorithm on data collected during manipulations. Zhu
performed similar validation on the usage of the PLS algorithm, as well as

designed the scheme for realtime predictions using PLS.
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Preface

Writing Chapters|3, and [5 of the thesis are adapted from a paper submit-
ted to the 2015 IEEE International Conference on Robotics and Automa-
tion (D Troniak, C Zhu, D Pai, M van de Panne, Real-time Predictions from
High-dimensional Unlabeled Sensory Data during Non-prehensile Manipula-
tion, ICRA 2015, submission #1575, 01 October 2014). Troniak performed
and wrote the background literature review and drafted the remainder of
the manuscript, which was then improved and prepared for submission by

van de Panne.

Figures Figure was generated by Troniak. Part of Figure was de-
signed by van de Panne and is present in the paper submitted to ICRA 2015.
Figures from Chapter |5 were developed collaboratively and are also present
in the paper. Figures borrowed from the literature include appropriate ref-

erences within the caption.
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Chapter 1

Introduction

We begin this chapter by introducing robotic manipulation using force and
tactile sensors, and present the challenges in programming robots to per-
form manipulation tasks in the physical world. Following this, we state the
specific problem we wish to address in this thesis as well as the motivations
behind seeking its solution. The chapter concludes with main contributions

and thesis structure.

1.1 Learning to Interact with the Real World

Our world is infinitely complex. By the second law of thermodynamics,
any real-world system constantly changes as energy transfers between its
composing particles of matter [77]. Thus, if one’s goal is to interact with
such a dynamic ever-changing world, one needs to continually infer relevant
truths which exist in that world through some form of external sensing.

This type of approach to system identification and control is known
as model-free [64] in the sense that one functions without needing explicit
knowledge of physics.

Living organisms are known to take this approach [16]. A child does
not learn to walk given absolute knowledge of the dynamics which govern
his interaction with the environment. Rather, he must build an action-
consequence model of the walking task through much trial and error.

By learning a model which maps sensory information to relevant proper-
ties of an environment, the entity also gains an ability to predict anomalies.
Novel events are important as they present opportunities to gain deeper in-
sight into the true underlying principles which define the environment not

presently described by the current model.



1.2. Problem Statement

Humans, who are among the most successful of living organisms, have
the ability to both model their environment and efficiently perform inference
on that model using their available senses. For a trained athlete to succeed
in the game of basketball, she must learn to ignore irrelevant sensory data,
such as the cheering of the crowd, and focus on more important information,
such as the image of the basket on her retina. How can she identify relevant
information with respect to her current task? We are interested in exploring

how humans might accomplish this by enabling robots to possess such a skill.

1.2 Problem Statement

We wish to address the problem of supporting robotic manipulation by ef-
ficiently predicting properties of an environment using unlabeled sensory
data. The ability to predict properties of an environment, such as the mass
of an object on a table, is an important prelude to closing the loop and
allowing robots to adapt to unexpected change.

One barrier to achieving this goal, however, is that the size of the input
space increases with the number of sensor readings available to the system.
This makes making predictions susceptible to Bellman’s infamous curse of
dimensionality. We therefore take steps to reduce the number of sensors
considered when predicting properties of an environment.

To test our solution, we consider a block topple-slide task (see Figure
performed by a robot equipped with force, torque and tactile sensors. In this
task, the end effector of the robot pushes on the side of a foam-encapsulated
block, causing it to topple, and then pushes the block back to its starting
configuration against a wall. A prescribed joint-angle trajectory to achieve
this manipulation task is provided by a human expert through kinesthetic
teaching. The given example trajectory is assumed to be robust in two ways:
repeating the trajectory should cause repeated rotations of the block, and
the same trajectory should remain successful when applied to blocks with

variations in mass, friction, and compliance.
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Figure 1.1: The topple-slide task.

1.3 Motivations

As sensing technologies become more affordable, robots will be able to con-
currently make a wide range of measurements within the environments in
which they operate. As can be seen in Figure[1.2], it is clear that sensors with
the capacity to measure properties of an environment will obtain distinct
readings as those environment properties change. Notice how the streams
become disjoint during phases of robot-object contacts (during toppling and
sliding) and recombine during phases of non-contact. It then becomes pos-
sible, given some form of ground-truth, for the robot to learn a model which
explains how changes in its sensor readings relate to changes in its environ-
ment.

This releases the need for experts to model the relationships between
sensory readings and environmental phenomena. For example, distinct force
measurements may relate to the compliance of an object, which in turn could
provide insight into some high-level feature such as its ripeness (if the object
were a piece of fruit). We thereby achieve a highly scalable system capable
of mapping arbitrary sensor readings (vision, olfactory, inertial, etc.) to
arbitrary environment properties, given the availability of relevant ground-

truth information on which to train the model-learning system.
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Figure 1.2: Example sensory streams during the topple-slide task in different
environments (one colour for each environment).

1.4 Contributions

The contributions of this thesis are three-fold: (1) a unifying bridge be-
tween literature in robotics, physiology and neuroscience on the topic of
exploiting force and tactile sensors for dexterous manipulation, (2) an unsu-
pervised feature selection algorithm based on a new metric called the task
variance ratio, which filters important sensor readings and motion-phases
within high-dimensional sensory data streams during manipulation tasks
and (3) a supervised learning algorithm with partial least squares (PLS)
regression at its core, which builds statistical data-driven models that use
important sensory data traces from a robot to predict properties defining
its environment.

The feature selection algorithm allows the robot to distinguish between



1.5. Thesis Structure

sensors which provide task-critical information, and sensors which provide
information that is noisy or irrelevant to the task. This ability to gauge
the usefulness of sensor readings becomes important as the number of sen-
sors in the system increases, and real-time processing of all sensors becomes
impossible. Disregarding all but the most important sensors reduces algo-
rithmic complexity to constant time, which guarantees support for real-time
operation irrespective of the number of sensors physically available to the
robot. The developed models are then used to efficiently predict environ-
ment properties when novel sensory data traces are recorded by the robot’s

Sensors.

1.5 Thesis Structure

Following this introductory chapter, in Chapter [2| we provide some back-
ground on the topic of exploiting force and tactile sensors in support of
physical manipulation, as presented in a sample of the literature from the
robotics, neuroscience and physiology research communities. In Chapter [3|
we more formally define the problem we wish to solve in this thesis and
define the algorithms and data structures used in our approach. Chapter
serves as an overview to the robot control software developed to support
experiments. In Chapter 5, we present details on experiments conducted to
test the effectiveness of our approach on a physical robotic system, along
with results of said experiments. Finally, conclusions are drawn and future

work is provided in Chapter 6]



Chapter 2

Background

2.1 Robotic Manipulation

In the present study, we consider the general research question: how should
robots be programmed to manipulate (e.g. grasp) objects? There exist two
common approaches to this problem in the robotics literature. One approach
is for a human expert to provide the robot with an analytical model of itself
and its environment. Using this model, the robot achieves its manipulation
goals in two phases: planning and execution. Planning is often performed in
simulation using models of object geometry and robot/environment dynam-
ics. Once the robot has found a feasible plan, it then executes that plan via
physical robot actuation. One disadvantage to this approach is that due to
imperfect precalculated dynamical models and robot calibration, executed
manipulations can easily become unstable and fail [13].

Another approach is to remove the requirement of human-supplied mod-
els and have the models learned autonomously from data using statisti-
cal learning techniques. The key advantage of this type of model-free ap-
proach [30, 64] is that apriori object and dynamical models are not required
to succeed in the task; the model is learned automatically from data. In
this thesis, we define model-free [64] systems as those that function without

given explicit knowledge of physics or geometry from human experts.

2.1.1 Model-free schemes

One example of such a learning technique is called the Self-Organizing Map
(SOM), an architecture of Artificial Neural Networks (ANN) that spatially

and uniformly organizes features automatically by input signals [39]. An
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example where SOMs have been used successfully is in [65]: objects are
grasped based on hand posture and tactile experience of previously success-
ful grasps. Experience is represented as a low dimensional smooth manifold
in hand posture space.

A similar system was devised in [54], where a SOM was used to map
finger joint angles and tactile readings to object shape and size. The system
could identify previously grasped objects as well as categorize new objects
as being a particular shape and size.

The same authors obtained similar results with another algorithm in-
spired by biological spiking neurons, called a spiking neural network [53].
For this scheme, joint angle input is encoded into a series of spike trains
which result in three feature outputs that are then used to recognize and
classify grasped objects. In addition, similar objects tended to cluster in
output feature space. The authors’ system was able to recognize objects of
different shapes as well as objects with the same shape but different size.

In [14], the authors present blind grasping: a novel approach to object
grasping that does not require visual feedback or apriori 3D object models.
Their scheme works from a database of one thousand stable grasps from
the Columbia Grasp Database [25] using the model of a BarrettHand [71].
Corresponding tactile feedback during grasps of objects simulated in the
Graspit! [45] simulator are also recorded. They proceed to create feature
vectors comprising simulated tactile and robot kinematic data which they
then use to train an SVM to classify grasps as being stable or unstable. In

this way, the system was able to learn tactile feedback indicative of a stable

grasp.

2.1.2 Model-based schemes

In model-based schemes, a human expert provides the robot apriori models
which, for example, map sensory input signals to specific control policies.
This approach grants the advantage of providing the robot access to the
understanding of the task dynamics of the researcher. The disadvantage of

this approach is that the supplied model may contain errors and is limited
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by the domain expertise of the researcher.

In [20], the authors present sensor-based atomic controllers for a robotic
hand/arm system to empty a box containing an undefined number of un-
known objects. Manipulation primitives are defined that search, grasp and
transport objects from the box to predefined locations. A finite state ma-
chine (FSM) is used to transition between motion primitives based on corre-
sponding sensory feedback. The authors also compare a vision-plus-tactile-
based version of their system to a purely tactile-based version. They found
that while the version which incorporated vision was more efficient at com-
pleting the empty-the-box manipulation task, the tactile version was also
successful. Vision was only crucial in determining if the box was empty; in
the non-vision based system, a human moderator was required to tell the
robot when it had finished its task. The authors in [20] also present an inter-
esting scheme that compensates for errors in translation of the robotic hand.
The hand repositions itself if there is force experienced by only one finger,
denoting a single hand/object contact. The controller compensates by mov-
ing the hand in direction of single contact, which effectively repositions the
manipulator above the object.

In [44], the authors take an analytical approach to the non-prehensile
toppling task. This approach, while successful, assumes knowledge of the
dynamics of the entire system and would therefore not generalize to oper-
ation outside of controlled factory environments where complete models of
robot-object interaction dynamics were unavailable. Another analytical ap-
proach to a non-prehensile tumbling task, given apriori models of how the
system reacts to the robot at each phase of the task, is studied in [58].

In [76], an analytical approach is applied to the non-prehensile task of
manipulating an object with rolling contacts across a robotic finger tip using
tactile sensor feedback. Their approach relies on accurate apriori kinematic

and dynamic models of the robot and its environment.
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2.1.3 Human-inspired schemes

In the human hand, there are a wide variety of receptors in the skin and mus-
cles which in turn respond to a wide variety of stimuli. Sensed phenomena
include skin stretch, skin curvature, vibration and muscle force and length.
One baflling aspect of the human motor system however is that information
bandwidths range from just a few Hz to possibly several hundred Hz. In
terms of technological performance, this is horrendously slow. Information
is also time varying, nonlinear, and its encoding scheme (known as pulse-
frequency) obscures much of the raw inputs from the nerve endings. How
these deficiencies are made up for, however, is a high degree of parallelism
and redundancy [31].

It is also known that the human motor system executes manpulations
as a series of discrete states that transition based on afferent signals [36].
Since this type of model is appropriate for execution on a computer, it has
been quite popular to model the robotic grasping task as an FSM, which
transitions between states based on tactile or other intrinsic contact input
events [41, 61].

The authors in [41] present an approach to tactile-motor coordination of
a robotic hand based on a neurological model of the human tactile-motor
system. This model is implemented as a series of ANNs whose function
and structure reflect discoveries in the human sensory areas specific to ob-
ject grasping. A scheme based on SOMs was chosen to model these sensory
areas, since they must process a high rate of combined tactile and somatosen-
sory input. Use of the SOM controlled the volume of incoming inputs by
making small, efficient adjustments to the model each time a new input
vector became available.

The authors in [56] developed a human-inspired robotic grasp controller
that gently picks up and sets down unknown objects. They employ pressure
sensors and accelerometers to mimic SA-I, FA-I and FA-II tactile channels
(see Section . An FSM is programmed to transition between six dis-
crete states: (1) Close, (2) Load, (3) Lift and Hold, (4) Replace, (5) Unload,

and (6) Open. Transitions are based entirely on tactile event cues. Their
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controller also dynamically adapts its initial grasp force depending on tactile
events such as slipping, and judges when to set down the object in light of
detected contact events with the table.

In [61], a new tactile-based object manipulation strategy was proposed,
called tactile servoing. Analogous to vision-based visual servoing, each state
in the manipulation task sequence is characterized by tactile images detected
via tactile sensor arrays on the robot hand. The authors’ conclusion was
that tactile sensors are useful in simple, direct and effective control of robots
during manipulation tasks. The literature supports the fact that tactile data
is processed much the same way that visual data is processed in the human
brain [35, 59].

2.2 Sensory Information Processing

2.2.1 Force and tactile sensing for robotic manipulation

Force and tactile sensing can provide information about mechanical proper-
ties, such as compliance, coefficient of friction, and mass, which are not per-
ceivable through other means (e.g. vision) [31]. Obtaining object properties
via force and tactile sensing for the purposes of succeeding in manipulation
tasks has been the subject of numerous studies [17, 27, 42].

The application of force and tactile sensors to many robotics problems
affords new solutions that have previously been intractable via traditional,
often computer vision-based methods [40]. In their 2005 review article,
Tegin and Wikander [68] stress that, in contrast to the amount of literature
on the application of vision-based solutions to robotics problems, literature
on exploiting contact information (e.g. tactile) remains relatively rare. One
reason may be simply due to the lack of availability of force and tactile
sensors in comparison to cameras [31].

While vision is arguably the dominant sense in primates, including hu-
mans, there are certain scenarios in which vision fails, such as during object
occlusion or when sensory resolution is too low for a given task. In such

cases, more detailed and versatile contact information may compensate for

10
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Figure 2.1: Schematic drawing of the pen-twirling task. Drawings repro-
duced from [18]. Use of the reproduction is by permission of the copyright
owner, John Wiley and Sons.

these deficiencies.

In [11] the authors review techniques for processing and combining force
and tactile information to develop abstract understanding of a given manip-
ulation. An excerpt of these processing techniques is shown graphically in
Figure 2.2} as raw sensory data travels from left to right, they are processed
and combined to provide increasingly abstract understanding of a manipula-
tion. The authors state that force and tactile sensors have potential to yield
the following information: (1) object contact/no contact; (2) contact con-
figuration (surface, edge, point, etc.) based on pressure-patterns; (3) object
slip via vibrations in the grasped object, (4) properties (compliance, texture,
friction, etc.) of an object via haptic exploration; and (5) feedback for con-
trol. Given the above information, a robot can more appropriately control
the force and moment on an object to accomplish the desired manipulation
task.

Example

Consider the following example: how might one accomplish the task of
twirling a pen end-over-end between one’s fingers, as demonstrated in Fig-

ure [2.17 The position and orientation of the object must somehow match
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Figure 2.2: Force and tactile sensor processing to estimate object pose [11].

imposed forces to maintain stability. Successfully tracking the movement of
the pen requires the knowledge of many variables, such as the configuration
of one’s hand, the locations and movements of contacts between the pen
and one’s fingers, the magnitudes of grasp forces, the contact conditions
with respect to friction limits, etc. How is it that, with enough practice, one
can control all of these parameters effortlessly, even in the absense of visual
feedback?

A potential answer can be seen in Figure[2.2; we can combine the forward
kinematic model of the hand together with current finger joint angles to
determine the positions and orientations of the finger tips. When combined
with force/torque measurements at the points of contact, it is possible to
obtain local information of object shape, surface normal orientation, etc.,

which could then be combined to track the geometric pose of the object.

Tactile sensing

For robotic hands with tactile sensor arrays, such as the BarrettHand, cur-
vature and shape information can be obtained by measuring the local cur-
vature at each element of the sensor array [11]. From there, it is possible
to extract features, such as corners and edges of the object by combining
local shape information from multiple sensors. This task can be greatly en-
hanced if at least a partial model of the grasped object is available apriori,

in which case the object can be statistically matched via surface or data

12
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fitting methods [19].

The most common application of tactile information has been to classify
and recognize objects from a known set based on calculated geometric in-
formation of the object from raw tactile data. Features, such as holes, edges
and corners [11] and object surfaces [50] have been used and extracted from
tactile array, force and/or joint sensor information. For example, Siegel [60]
devised a way to extract object pose of a known object in a robot’s grasp

via joint angle and joint torque measurements.

Active sensing

Since force and tactile sensors provide only local object information, recogni-
tion and disambiguation often require the hand to actively explore multiple
areas of the object surface. These types of strategies are referred to as ac-
tive sensing. There exist many example applications of active sensing, such
as tracing object contours, measuring compliance and determining lateral
extent of object surfaces. In [47], the authors propose an active sensing
strategy to edge-finding by exploring the surface of an object until contigu-
ous segments of tactile array impressions are found. In [42], tactile sensors
are used to discriminate shape and position of various textured cylindrical
objects. In [17], grasp affordances are obtained through exploration of the

pose space of manipulable objects.

Dynamic sensing

The ability to detect tactile events with respect to time (e.g. object slip) is
important to many manipulation tasks such as lifting fragile objects. The
challenge lies in detecting such events reliably in the presence of sensor
noise. Highly sensitive tactile sensors capable of detecting minute events
can be easily thrown off by e.g. vibrations from the robot actuators or by
rapid robot acceleration. Robust dynamic event detection can be solved
by comparing tactile sensor readings at and away from contact regions, or
even more robustly via statistical pattern matching methods that detect the

signature of particular dynamic events [73].
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2.2.2 Anomaly detection in streaming data

Since high-dimensional data streams often exhibit considerable structure,
information that does not fit within this structure is most likely an anomaly,
or outlier, in comparison to the vast majority of other input data. An
anomaly can be defined as an event or pattern which does not conform to
some well-defined notion of normal phenomena. Detecting the existence
of anomalies within data streams is an important topic within both the
data mining and machine learning communities [1, 15, 38, 63, 75] and has
far-reaching applications in such areas as fault detection, fraud detection,
sensor-networks and image processing [6]. In [30], a model-free approach is
taken to find anomalies in high-dimensional sensory streams. Data collected
from the robot are first passed through a PCA-based feature extractor before

building models of normal operation.

2.2.3 Dimensionality reduction

As the number of sensors available to a system increase, the computational,
storage and transmission costs in inferring information from all available
sensor readings also increase. Therefore, given a large number of sensor
readings, it is important to develop a reduced set of measurements or derived
features that can model desired information in a compact fashion. Dimen-
sionality reduction techniques can be classified into two broad categories: (1)
feature extraction and (2) feature selection. Most feature extraction tech-
niques take an unsupervised [24, 28, 57, 69] or self-supervised [2, 12, 43, 62]
learning approach. The result is a transformed, lower-dimensional set of
features that more compactly describe the underlying structure of the data.
In contrast, feature selection techniques, such as those based on feature sim-
ilarity [46] and genetic algorithms [32], achieve dimensionality reduction by
considering only a subset of input dimensions. In [51], the authors present a
novel feature selection method comparing the variance of sensor readings to
choose to encode either force or position information while recording user-

demonstrated trajectories.
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2.3. Neuroscience & Physiology

2.3 Neuroscience & Physiology

Studying the manipulation capabilities of humans and animals for the pur-
pose of designing better robotic systems is a challenge. First, it is hard to
discover the precise algorithms that our brains employ. Second, the mechan-
ics of the human hand is highly complex and thus the algorithms our motor
system employs may not be appropriate for the relatively simple mechanics
of a robot. Nevertheless, studying human manipulation can provide insight
into designing more efficient and effective robotic systems. In this section,
we attempt to draw such insight by exploring the human motor system as

presented in a sample of the neuroscience and physiology literature.

2.3.1 Object manipulation: definitions

In this section, we present some common vocabulary used by researchers in

describing object manipulation tasks as performed by humans.

The power-precision dichotomy

Humans employ a wide variety of manipulation skills depending on the ob-
ject being manipulated. When opening a jar, for example, a power-style grip
is required to loosen the jar. Once the lid is loose and required torque is
lessened, a lighter grip is adopted for speed and precision. This dichotomy of
power /precision prehensile (i.e. grasping) activities was proposed by Napier
in 1956 [49]. Figure provides an example of these two patterns of ac-
tivity in the manipulation task of tying a knot: power is required to hold
the rope in place while precision is required to tie the knot. Cutkosky and
Wright also propose a taxonomy of human grasps in [9], breaking down the
dichotomy of power/precision even further (see Figure . Depending on
the weight and size of the object as well as the desired dexterity of the hand,
a human adopts a different style of grip.
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Figure 2.4: Tying a knot: manipulation task combining precision and power
grips. Figure inspired by [49].
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Analytical measures of grasp quality

The authors in [10] present common measures of grasp quality, which may
be optimized or become part of the set of constraints with respect to a given
manipulation task. An overview of these analytical grasp-quality measures
is presented in Table The set of ideal grasps of any object then exists
within the space of grasps that satisfy all hard constraints and optimize
important soft constraints with respect to the given task. For example,
Nakamura et al. search for grasps that minimize internal forces (i.e. grasp-
ing effort), subject to constraints on force closure and manipulability [48].
According to physiological findings, humans tend to employ a similar scheme
as proposed by Nakamura et al. where a certain frictional safety margin is
maintained [55].

Human grasps have also been studied in terms of these analytical mea-
sures. For example, power grasps can be thought of as having higher com-
pliance, stability and slip resistance than precision grasps. Power grasps
also tend to have a connectivity of zero (since the fingers tend not to play a
manipulating role). In contrast, precision grasps have high manipulability

and connectivity (of at least three and often six) [10].

Metric Description

Compliance | Inverse-stiffness of the object with respect to the hand

Connectivity | Number of DOFs between grasped object and the hand

Form closure | External forces are unable to unseat the grasped object

Force closure | Object held without slipping (a.k.a. frictional form closure)

Grasp isotropy

Fingers are able to accurately apply force/moment to object

Internal forces

Kinds of internal grasp forces hand may apply to the object

Manipulability | Fingers can impart arbitrary motions (i.e. connectivity = 6)
Slip resistance | Amount of force required before object starts to slip
Stability | Tendency of grasped object to return to a spatial equilibrium

Table 2.1: Common analytical measures that may be optimized or become
a part of grasp constraints [10].
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Force vs. form closure

A subtle yet important distinction must also be made between force closure
and form closure. Form closure refers to grasping without the use of friction
whereas force closure uses friction to keep objects seated in the hand. An
object likely requiring form closure would be for example a wet bar of soap

or a slinky.

Slipping vs. crushing threshold

While adequately large grip forces must be maintained to keep the object
within a force closure grasp, exceedingly large forces are also not desirable
as they impose unnecessary fatigue on the hand and may even crush fragile
objects [33], [26]. Thus, grip force is constrained by both the slipping and
crushing thresholds of objects (see Figure for some examples).

The amount of force that subjects apply over and above the slipping
threshold is known as the safety margin. The magnitude of the safety margin
varies across subjects, and was found to be dependent on the dexterous
manipulation skill of the subject in performing the given task [36].

When manipulating visually fragile objects, the initial force in human
subjects is lighter and their action is slower when compared to manipulat-
ing visually non-fragile objects. Once contact with the object is made, tac-
tile feedback complements the missing information with respect to the true
fragility of the object. Subjects can then properly carry out the planned
action [7]. Accurate predictions are crucial however due to the relatively

slow response rate of corrective actions [34].

2.3.2 Force and tactile sensing

The elements of the human sense of touch can be broken up into two distinct
categories: proprioceptive and tactile. Proprioceptive sensing refers to the
perception of limb motion and forces using internal receptors, such as muscle
spindles (responding to changes in muscle length), tendon organs (measur-
ing muscle tension), and cutaneous afferents (reacting to skin deformations

around the joints) [34]. Proprioceptive receptors within the joints of the
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Figure 2.5: Example slipping and crushing thresholds of everyday objects.
The difference between the required Minimum Force and observed Grip
Force is known as the safety margin. Data obtained from [56].
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hand are also present, which report joint angles, forces and torques [31].
Tactile sensing deals with the perception of contact information with recep-
tors beneath the surface of the skin [74].

Actuation of the hand is imparted by muscles in the forearm through
transmission of tension by tendons passing through the wrist. It has been
shown that due to dynamics of transmission such as friction, backlash, com-
pliance and inertia, accurate control of endpoint position and forces based
on proprioceptive signals alone is difficult [37]. Thus, tactile afferents are
essential for fine-grained mechanical measurements at contact locations [36].

Tactile afferents have received much attention in the physiology and
neuroscience literature; a comprehensive summary of which may be found
in [74] and, more recently in [34]. There are in total four specialized types of
mechanoreceptive nerve endings within the skin of the human hand, each of
which can be categorized as having large or small active areas (Type I and
Type II respectively) and responding or not responding to static stimuli (SA
for slowly adapting and FA for fast adapting, respectively). See Figure
for a description of each of these types. It has been calculated that a total
of 17,000 specialized mechanoreceptors exist in the grasping surfaces of the
human hand [34]. In addition, there are free nerve endings that are sensitive

to thermal and pain stimuli [31].

2.3.3 High-level processes

In addition to low-level tactile and proprioceptive processing, the mam-
malian central nervous system performs many high-level processes such as
prediction, planning and memory. These processes support, guide, and orga-
nize our more primitive manipulative functions to accomplish more complex

manipulation tasks.

Prediction

In [33], the authors preclude that the magnitude of fingertip forces imposed
on objects are determined by at least two high-level control processes: (1)

anticipatory parameter control (APC) and (2) post-contact control. The
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Afferent type Density
(and response properties) (afferents per cm?)

FA-I (fast-adapting type I)
Meissner endings

* Sensitive to dynamic skin
deformation of relatively
high frequency (~5-50 Hz)

* Insensitive to static force

e Transmit enhanced
representations of local
spatial discontinuities
(e.g., edge contours and
Braille-like stimuli)

SA-I (slowly-adapting type I)
Merkel endings

¢ Sensitive to low-frequency
dynamic skin deformations
(<~5Hz)

* Sensitive to static force

* Transmit enhanced
representations of local
spatial discontinuities

FA-IlI (fast-adapting type Il)
Pacini ending

 Extremely sensitive to
mechanical transients and
high-frequency vibrations
(~40—-400 Hz) propagating
through tissues

e Insensitive to static force

* Respond to distant events
acting on hand-held objects

SA-ll (slowly-adapting type Il)
Ruffini-like endings

* Low dynamic sensitivity

* Sensitive to static force

e Sense tension in dermal and
subcutaneous collagenous
fibre strands

e Can fire in the absence
of externally applied
stimulation and respond to
remotely applied stretching
of the skin
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Figure 2.6: Characteristic of tactile afferents within human fingertip skin.
Reproduced from [34]. Permission to reproduce granted by R.S. Johansson.
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authors model APC as a feedforward controller that uses predictions of
critical characteristics of the object (weight/friction/initial condition, etc.)
based on the results of previous object manipulation experience. Following
contact with the object, sensory information can be extracted to (1) modify
motor commands automatically; (2) update sensory memories for APC; (3)
inform central nervous system of the completion of subgoals of a task; and (4)
trigger subsequent subgoals. The central nervous system monitors specific,
expected events and produces control signals appropriate to each subgoal.
In contrast to feedback controllers, this feedforward, sensor-driven control
strategy predicts appropriate control output several steps in advance. Slips
are avoided and force across digits is coordinated by independent control

mechanisms based on local sensory information.

Planning

Planning plays an important role in anticipating future events as well. In [35],
Johansson, et al. demonstrate the importance of eye-hand coordination dur-
ing manipulation tasks. Subjects’ gaze were tracked during a block-stacking
task. It was found that their gaze played an important role in planning each
pick-and-place action. The authors then further propose and demonstrate
in [22] the direct matching hypothesis, which predicts that subjects will un-
consciously produce eye movements when observing a familiar action as if

they were performing the task themselves.

Supramodal processing

In a study conducted by Bicchi et al. [59], it was found that the V5/MT
cortex (the same area in the brain that responds to optical flow) is activated
during tactile-flow perception, i.e. when dynamic movement is detected via
tactile afferents. This is consistent to other findings that there exists a
supramodal, or multi-modal, organization of regions in the brain involved in
both tactile-flow and optical-flow processing [21]. In another study by Bicchi
et al. [4], it was found that certain experiments could fool the subjects’ tactile

flow processing in the brain through tactile illusions, much the same way
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that optical-flow processing can be fooled, which is known as the aperture

problem.

Action-phase control strategies

Findings by Johansson et al. indicate that, during certain manipulation
tasks, the human motor system functions as a sort of state machine that
transitions based on sensory predictions and sensory inputs. These states,
or action-phases, are defined as sequences of specific sensory events that are
each linked to subgoals of a given task [34].

Action-phase goals are evaluated by matching patterns in tactile afferent
signals. For example, grasp contact — a required action-phase subgoal for
many manipulation tasks — detects patterns in SA-I and FA-II afferent in-
puts. Combinations of certain afferents provide information such as contact
timing, location, force intensity and direction. Contact location is defined
as the spatial center of all afferents involved in the overall signal. Force
intensity is characterized by the number of afferents involved as well as the
firing rates of each. Patterns of activity in combinations of afferents give us

the direction of the detected contact force.

Dexterity

Once a grasp is attained, adequate force within the friction cone of the
object must be imposed to retain force closure. Dexterity is then defined
as the ability to adapt the balance of grip and load forces to object surface
properties [31]. Dexterous manipulation abilities are attributed mainly to
tactile afferents since a loss in these abilities is experienced during digital

anesthesia [36].

Object identification

Tactile afferents during initial contact also provide object surface property
information, which is frequently combined with visual cues and/or sensory

memories to develop abstract understanding. Reactions of FA-I, SA-I and
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SA-IT afferents to object surface are used to determine object surface proper-

ties. For example, FA-I afferents react more strongly to slippery surfaces [5].

Filtering noise

Robust processing of tactile afferent information is attributed to the brain’s
innate ability to detect coincidence: a phenomenon in which its central
neurons receive synchronous input spikes from many distinct tactile affer-
ents [29]. Therefore, noise in the environment, i.e. information unrelated to
the current focus of attention, can be characterized by input spikes which do
not arrive at the brain at the same precise moment in time as input deemed

valuable to the current task.

25



Chapter 3

Predicting Environment
Properties from Sensory

Inputs

In this chapter, we first formally define the problem of predicting character-
istics of an environment using high-dimensional force and tactile sensor data.

We then present the prediction framework designed to solve this problem.

3.1 Problem Definition

n 7 ~y
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Figure 3.1: Collection of data matrix D = (X,Y): (a) data X are col-
lected across all trials and environments; (b) environmental quantities Y
are provided by the human expert.

The manipulation task considered is shown in Figure The end ef-
fector pushes down on a foam-encapsulated block, causing it to topple, then
pushes the block back to its starting position against the wall. A prescribed

joint-space trajectory to achieve this manipulation task is provided by a hu-
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man expert via kinesthetic teaching. Upon replay, the robot tracks the given
trajectory using standard computed-torque control. We assume the trajec-
tory is robust in two ways: (1) repeating the trajectory causes repeated
rotations of the block, and (2) the same trajectory remains successful in
toppling blocks for all mass, friction, and compliance values. The use of a
prescribed trajectory also implies an approximate correspondence between
the current elapsed time within a motion and the manipulation phase.
Each sensory sample collected at each timestep of the prescribed trajec-

tory is defined by a sensory data stream:

SERnS:(p7p7T7p7w7f7a) (3'1)

where p, p,7 € R7 represent respectively the angles, velocities and torque
measurements of each of the seven joints of the manipulator arm, p € R7
gives the end effector’s pose measurements (3D position and 4D quaternion),
w € RS is the task wrench measured via the force-torque sensor mounted
to the wrist of the robot, f € R?* are torque measurements for the joints in
the robot hand, and a € R are tactile sensor measurements on each of the
three fingers, reshaped into a single vector.

A single execution of the manipulation task leads to the capture of a
sensory stream, x € R"™, which consists of the observations of ns sensor
readings each sampled at n; points in time, and then stacked into a single
vector; here, n = ng X ny.

The environment properties to be predicted from the sensory stream
data are given by y € R3 : (m, u,c), where m is the object mass, y the
coefficient of friction between the object and its support surface, and c is
the material compliance of the object.

In order to learn a predictive model y = f(x), training data is first
gathered for n, different combinations of the environment properties, i.e.,
variations of mass, compliance, and friction. For each setting, the task is

repeated nj, times in each environment. The final dataset is thus defined by
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the following data pairs:
D =X Y)={(pnyp) [pel---ml,he[l---m]}, (32

shown graphically in Figure This dataset is used to learn the predictive

model that we now describe.

3.2 Prediction Framework

Given a new sensory stream, X,e.,, which consists of n; samples of s, we wish
to predict the environment properties y. For our work, the prediction task
is characterized by having a small number of observations, p = 144, and a
large number features to use for the prediction, n = 165(ﬂ Furthermore,
many of the features are likely to be highly correlated. These character-
istics are problematic for many common regression methods. In contrast,
PLS is a good alternative for such problems [23]. In particular, it couples
the dimension reduction and the regression model, making the dimension
reduction dependent on the input, X, and the output, Y. While PLS is a
popular tool in the biological sciences and elsewhere, its use in the context
of robotic sensing remains rare.

An important remaining challenge with PLS, however, is that while it
provides a principled estimation method, the method itself is not tailored for
variable or feature selection [8]. Relatedly, it can be shown that the PLS es-
timator does not guarantee statistically-consistent predictions for problems
like ours with a high feature-count to sample-count ratio, and that noise vari-
ables act to attenuate the predictions of the regression parameters [8]. We
specifically address this by imposing an aggressive feature selection method
before applying PLS. In our results, we demonstrate this to be highly ef-
fective in helping to achieve improved prediction performance. We note
that other methods have also been recently proposed to address the limita-

tions of PLS, such as imposing sparsity in the dimension reduction step of

'Note that our notation for p and n is the reverse of that used in the statistics literature,
where n commonly represents the number of samples, and p represents the number of
predictors, i.e., the feature count.
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Figure 3.2: Intuition behind the task variance ratio (I') algorithm. We wish
to select good sensors (at each time-phase) which exhibit low variance when
the environment remains constant and high variance when the environment
changes. Colours signify data streams collected in distinct environments.

PLS [8] or Supervised Principle Components [3]. As currently developed,
these alternative methods are motivated-by and tested on gene expression
problems.

With the above motivation in mind, our two-stage solution consists of (i)
selecting the most relevant input features from x, and (ii) using PLS to fur-
ther learn a compact latent linear subspace that is well suited to predicting

environment properties. We now discuss these two stages in further detail.

3.2.1 Feature selection via the task variance ratio

We define the Task Variance Ratio (I') vector as

enviro
Vars

r={r'= Vil |i€[l---n]} (3.3)

7
where Varﬁ”“l models the variance of a given element of X across all trials,
and Var¢™° models the variance of the same element across all environ-

7

ments. Specifically, for feature 4:

Zp,h (‘Tzz,p,h - Mzz,p)

Var@rial —
npnp — 1

7

(3.4)
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and ) )
2opn(Tipn = 13)

Va,r,gnviro —
npnp — 1

)

: (3.5)

where i, p, h are the indices for features, environment properties, and re-

peated trial number, respectively;
Pip = > Tiph/Mh;
h

and
Hi = vai,p,h/npnh.
p,h
A large value of I'; indicates a good feature, as it implies that variation
occurs as changes to the environment take effect, while observable noise
between repeated trials in the same environment is relatively small.
The feature selection is then implemented using a simple threshold func-

tion to produce a reduced input matrix X*:
X* =X, - diag(l' > I'nin), (3.6)

where
Th

1
szm;xp,h |pel---ny), (3.7)

diag(v) produces a square matrix with the elements of v across the diagonal,
and I';,;n 1s chosen such that the desired number of elements of I" are selected.

The resulting reduced dataset is given by
D* = (X" Y) = {(x"p,yp) | p € [L---np]}. (3.8)

In this way, we identify features in X that exhibit small variation across
repeated trials when the environment is kept constant and exhibit large vari-
ations as the environment changes (see Figure , which we approximate
as the degree of relevance of the sensor reading to predicting environment

properties.
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3.2.2 Property prediction with partial least squares

The PLS algorithm provides us with an estimated weighting matrix 8 €
Re*™ where c is a parameter denoting the number of components to factor.

B is calculated iteratively according to the following algorithm: first,
define

Ay =X*TY,
My = X*TX* and (3.9)
Co=1,

then iterate

g = eigvl(A]T_lAj_l) ¢; — dominant eigenvector

wj = —= store into column j of W
VG
rj = M;_qw; store into column j of R (3.10)
q; = A;‘-F_le store into column j of Q
vj = nCjp; 1 — normalizing constant
T
Cj == ijl - Uj’Uj
AJ’ = CjAj,1
forall j € [1---¢]. With R, @ and W assembled, we now compute:
B=waQ" (3.11)
Finally, we use § at runtime to predict environment properties:
V=0 Xpew (3.12)
where x7 .., represents the reduced version (i.e. following I" feature selection)

of a new unlabeled sensory data stream collected during a repetition of the

motion in an unknown environment.
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Chapter 4

Control Software

In this chapter, we provide an overview of the software deployed to control
the motion of the robot and collect sensor readings in support of experi-

ments.

4.1 System Overview

To support experiments, a sensor processing and robot control framework
was written in C4++ leveraging the libbarrett API provided by Barrett Tech-
nology (MA, USA) (Section |4.2). Our framework was developed exclusively
on the internal PC of the WAM robot [72], the details of which are presented
in Table |4.1L

Motherboard Aaeon PFM-5401

Processor 500 MHz AMD LX-800 x86-compatible
Memory 256 MB 200-pin DDR-333 SODIMM
Linux distribution | Ubuntu 9.10

Linux kernel 2.6.31.4

Realtime Xenomai 2.5

Ethernet 10/100 Base-T

CANbus Peak PCAN-PC/104, 2 ports

Table 4.1: Specifications of the WAM Internal PC/104 [67] used for frame-
work development and robot control in support of experiments.

4.2 Libbarrett API

The API used to communicate with the robot is called libbarrett: a C+-+

library from Barrett Technology Inc. [66]. Our framework was tested using

32



4.3. WAM Control

version 1.1.0 of the API. The libbarrett API provides abstract control of the
WAM and BarrettHand and allows them to be controlled in tandem. Sample
programs that perform simple control and sensor monitoring routines are
provided, upon which our controller in the current study is based.

Libbarrett provides three high-level constructs to interface with the robot:
(1) the WAM object (2) the Hand object and (3) the ProductManager ob-
ject. The WAM and Hand objects provide high-level control of the WAM
and attached BarrettHand respectively. The ProductManager provides ac-
cess to the WAM'’s optional components, such as attached tools (e.g. Bar-
rettHand) and Force/Torque sensor. The control software communicates
with the Hand and WAM through high-level function calls to their respec-
tive libbarrett objects using a variety of pre-defined data structures. These
datastructures are presented in Table

Name Type Unit

Cartesian Position | cp_type Meters
Joint Position jp-type | Radians
Joint Velocity jv_type | Radians/s
Joint Torque jt-type | Radians/s

Table 4.2: Libbarrett data-types when communicating with the robot. The
jp-type for the WAM is a seven-dimensional vector whereas for the Barrett-
Hand, it is a four-dimensional vector — one entry for each finger and one for
the spread.

4.3 WAM Control

Cartesian-space Control in Cartesian space is a convenient way to pro-
totype motions and is sufficiently repeatable for tasks which require low
accuracy. Accuracy of the Cartesian positioning of the WAM is advertised
at two millimeters. In practise, however, this accuracy depends largely on
the joint-angle configuration of the WAM at the beginning of the Cartesian-
space move. In our experiments, position error could easily accumulate to

reach as high as one centimeter, depending on the joint-angle position of
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4.3. WAM Control

the robot at the beginning of the Cartesian-space move. These high errors
may be due to imperfect inverse-kinematics currently available through the
libbarrett API. Cartesian trajectories were not sufficiently repeatable in our
experiments since we required a precise and highly repeatable motion (ac-
curate to within 1 mm) to perform our task across various environments.
Moreover, the workspace accessible by rotating the wrist is limited by the
angular configuration of its attaching joint. This means that certain wrist
orientations are not repeatable if the inverse-kinematics solution provides
differing joint-space positioning around the wrist. These drawbacks prevent

us from commanding the robot in Cartesian-space in our experiments.

Joint-space For accurate and repeatable sets of motions, the robot should
be controlled directly in joint-space. The only issue with joint-space con-
trol is that the robot performs its task in Cartesian-space. Joint-angle tra-
jectories that accomplish specific Cartesian-space tasks are difficult if not
impossible to define manually. This necessitates kinesthetic teaching where
the robot is trained to perform its task in Cartesian space by a human ex-
pert manually moving the robot tool to perform a task, while corresponding

joint-space trajectories are recorded by the robot.

Kinesthetic Teach-and-Play The libbarrett API comes equipped with
kinesthetic teaching functionality via the teach-and-play module. Teach-
and-play records position information at the rate of 500Hz while a user
physically moves the robot through the desired motions. The robot can
record its trajectory in either Cartesian-space or joint-space. Again, due to
imperfect inverse-kinematics, if a highly repeatable motion is required it is
advisable to record trajectories in joint-space. It becomes possible to execute
highly repeatable Cartesian-space trajectories if the relative displacement
from a known starting joint-angle position is small (i.e. a workspace of

approximately 10cm? around a starting joint-angle position).
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4.4. BarrettHand Control

4.4 BarrettHand Control

In this section, we introduce the details on control of the BH8-280 Barrett-
Hand through the libbarrett API, as used in our experiments.

Velocity Move The simplest form of control of each finger of the Hand
is to specify a direction and rate of travel of each of the joints in the Hand.
The joints will halt gracefully if they reach their limits or become obstructed

before they reach these limits.

Trapezoidal Position Move If the Hand must be configured precisely
(for e.g a pre-grasp posture), the user can specify desired joint-angles of
each finger and spread. The spread of the Hand refers to the single degree of
freedom rotation of the first and third fingers about the palm. Upon sending
position commands to the hand, the proximal finger joint angles or the angle
of spread move toward the goal position via a trapezoidal velocity profile.
As with velocity control, the fingers will halt gracefully if the movement of

the hand becomes obstructed.

High Control-rate Position Move High control-rate position moves
provide an advanced alternative to simple trapezoidal moves. Joint-angles
can be specified to reach a desired pose, however each of the joints travel at
maximum velocity until they reach the desired pose or become obstructed.
Care must be taken when sending these commands, as obstructions do not
result in graceful halts and instead could cause damage to objects or the
Hand itself. It is necessary to ensure a clear path for each of the fingers and

spread of the Hand before sending these commands.

4.5 Realtime Systems

Control of the robot in realtime must be done through the libbarrett re-
altime systems API. Realtime control allows for complex and closed-loop

motions since the output of each realtime system depends upon its inputs
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at each step of the realtime control loop at the rate of 500Hz. Program
provides an example program which defines such a realtime system in the

C++ programming language.
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class WamSystem : public System {

public: Input<jp_type> input; // Obtain current joint-angles as input
public: Output<jp_type> output; // Provide updated joint-angles as output
protected: Valuex outputValue; // Value that output reads
protected: jp_type jp_offsets; // Modifications to realtime motion feed
public:
WamSystem(const string& sysName): // All systems must define a name
System(sysName), input(this), output(this, &outputValue){
init_vec(&jp_offsets, 0); // Initialize all offsets to O
}
“WamSystem() { mandatoryCleanUp(); } // Mandatory destructor
protected:
jp_type jp_out; // Declare local copy of output data
virtual void operate() {
const jp_type& jp_in = input.getValue(); // Pull data from the input
jp_offsets[5] += 0.001; // Increase 6th joint-angle of WAM slightly
jp_out = jp_in + jp_offsets; // Modify wam joints by relative offsets

outputValue->setData(&jp_out); // Push data to subsequent system

};

Program 1: Example libbarrett realtime system written in C+4 that controls the 6th joint of the WAM to increase
indefinitely. Namespace references removed for brevity.
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Chapter 5

Experiments and Results

In this chapter, we describe the experimental setup, provide details on the
experimental procedure, and finally present and discuss environment prop-

erty prediction results obtained by the prediction framework.

5.1 Setup

5.1.1 Actuation and sensing

Experiments are conducted using a 7 DOF Barrett WAM robot arm with
attached 4 DOF Barrett BH-280 Hand, built by Barrett Technology (MA,
USA). A 6-axis force-torque sensor is mounted to the wrist of the arm. The
robot hand is equipped with tactile arrays on the fingers and palm. Joint
torque sensors are embedded in each of the 3 fingers. Position control of
the arm occurs at 500Hz and all sensors are sampled at 125 Hz, which is

reduced to 2.5 Hz during preprocessing (see section |5.2.2)).

5.1.2 Kinesthetic teach-and-play

Example trajectories are demonstrated to the robot via a kinesthetic teach-
and-play interface. The system records pose estimates of the arm at the rate

of 500 Hz and the result is saved for future playback.

5.1.3 Software architecture

Our real-time control framework runs on top of the libbarrett real-time sys-
tems library [66], and is used during demonstration and autonomous ex-
ecution. We also use it to record and play back data streams that are

time-synchronized with the motion. See Chapter {4 for further details.
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5.1. Setup

5.1.4 Experimental testbed

The block used for the experiment is a rectangular prism made of medium-
density polyethylene foam, with length 48.5 cm, width 10.5 cm and height
10.5 cm. Two parallel walls of length 28.5 cm and width 6.5 cm are used to
prevent the block from sliding sideways out of the workspace. The distance
between the walls is 49 cm. As shown in Figure [1.1] a wall is used to limit
the final sliding motion and leave the block in its original location, ready to
be toppled again. The walls are lined with paper to decrease the coefficient
of friction between the block and the walls for smoother operation.

In our experiments, different environments are defined by the Cartesian
product of three sets of environment property values for P = {P,,, P,, P.},
yielding a total of 8 x 6 x 3 = 144 different environments. These values are
shown in Table [5.11

P (@) 425, 650, 875, 1100,

m 1325, 1550, 1775, 2000
0.441, 0.505, 0.616,
0.768, 0.911, 1.136
P, (mm/N) | 0.294, 2.484, 0.978

By

Table 5.1: Mass, coefficient of Coulomb static friction and compliance prop-
erty sets, as measured for a variety of blocks and surfaces.

5.1.5 The block topple-slide task

Toppling, as defined in [44], consists of two high-level phases: rolling and
settling. In the rolling phase, the robot pushes the block up onto a toppling
edge, which is perpendicular to the robot’s movement, until the center of
mass of the block is directly above the edge. During the settling phase, the
block falls under gravity and lands on a new face before coming to rest.

As it is difficult to ensure the block’s center of mass is above the edge
following the rolling phase, the prescribed motion is developed so as to have
the robot maintain contact with the block throughout the settling phase, to
the extent that this is possible.
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5.2. Procedure

Once the block has settled, the robot then proceeds to slide the block
across the surface of the table until the block has come to a stop back at
its initial pose. Figure depicts the topple-slide task with a sequence of

images.

5.2 Procedure

5.2.1 Learn the task trajectory

A human expert demonstrates the topple-slide trajectory (Figure via
kinesthetic teaching. The robot is fixed to the table so as to not introduce
additional variance in the recorded data due to base motion. The demon-
strating user performs the task in about 6 s. The motion is then manually
tuned so that the reference trajectory succeeds for the topple-slide task for a

variety of combinations of block mass, coefficient of friction, and compliance

(see section |5.1.1)).

5.2.2 Record sensory dataset

The prescribed motion is repeated over a series of trials h € [1---ny] for
each property set p € P, yielding the complete raw sensory data set D. We
use np = 20 repeated trials. Before training our model, we pre-process the
data as follows. The sensory data is resampled to 5 Hz after applying a
200 ms mean box filter.

We whiten each data set to support meaningful comparisons between
sensors — by shifting data collected from each sensor to have zero mean and
a variance of one — across all trials h € [1---ny] and property sets p € P. In
our experiments we use ny = 110 sensors across n; = 18 time samples. This

yields a complete input vector of size n = 1980 for each manipulation trial.

5.2.3 Feature selection

Following the equations in section [3.2.1], we compute the I' for each element

in x. We select I'jnin so as to select 0.1 x n features.
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Figure 5.1: Effect of varying degrees of PLS dimensionality reduction on
mass estimation performance. A 20% reduction is achievable with trivial
loss in estimation quality.

5.2.4 Partial least squares modeling

Following PLS, we obtain the [ coefficients. We can make the represen-
tation more compact by further choosing only the § coefficients of largest
magnitude. In practice, we are able to make a further reduction of around
40% without any significant impact on the prediction accuracy, as shown in
Figure The first row uses all features and no PLS reduction. The second
row uses a reduced set of 5% selected features without PLS reduction. The
third row uses 5% selected features, followed by 40% PLS reduction.
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Figure 5.2: Online estimation of the mass from sensory data using vary-
ing degrees of dimensionality reduction. The estimated mass of the block
are shown at various blue points throughout the motion. The dotted red
horizontal line denotes the actual mass of the block.

5.2.5 Online prediction

We start by parsing the entire motion into a series of key time-phases, t*.
We define each t* € T as a time-phase wherein at least K sensors have
received a I' larger than a certain value. In practice, we choose a minimum
I' so that K = 0.1 x ns. By training separate models in this fashion, we are
able to make predictions as soon as the robot enters any phase of the motion
involving selected features. Figures and demonstrate the prediction

performance on-board the robot as it executes the task.
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Figure 5.3: Online estimation of mass, friction and compliance from sensory
data following I" feature selection and PLS feature extraction. Time-phases
1 through 3, 9, and 15 through 18 are ignored since sensor readings during
these time-phases do not provide any information with respect to distin-
guishing environment properties, i.e. their respective I' values are below

ann-
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5.2.6 Calculating environment properties

In order for the robot to discover a mapping between sensor readings and
environment properties, a unique numerical approximation of the underlying
property must be calculated. See Figure for a graphical overview of how
the coefficient of friction and compliance are calculated and Figure for a

photo of each of the environmental properties.

Mass The mass of each unit is approximated using an off-the-shelf kitchen

scale.

Friction coefficient We first place the foam block atop a surface lined
with the frictional material we are measuring. We then gradually incline
the surface until the block begins to slide. We capture the inclination at the
point of sliding as 6. We finally approximate the coefficient of static friction

of the frictional material to be
p=tan (8 ),

which we also assume to be a fair approximation to the coefficient of kinetic

friction.

Compliance As an estimate of the compliance of each type of foam, we
set a rigid solid of known mass m atop a solid block of the foam we are
measuring. The dimensions of the rigid solid and the foam solid are identical.
We then measure the compressional displacement, d, of the top of the foam
solid using standard calipers. Finally, we approximate the compliance of the

foam to be
c:d/(m : g)a

where g is acceleration due to gravity.
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(a) Friction: p=tan (0)
(b) Compliance: c¢=d/(m-g)

Figure 5.4: Calculating numerical representations of environment properties
(a) coefficient of friction, u, and (b) compliance, c.

5.3 Results

In what follows below, we comment on topple-slide experiments carried out
with the robot hand, as well as with the spherical probe. We also encourage
the reader to watch the supplemental video associated with this thesis.

I" selection helps focus attention on specific sensors and motion-phases
that are particularly likely to provide information useful to predicting en-
vironment properties. Figure illustrates the selected features for the
topple-slide task as executed by the robot arm with either the Hand or
spherical probe as end effectors (see Figure . Notice how clusters of x*
can be interpreted as defining important sensory events in the task sequence,
which the robot should pay most attention to. The yellow shaded region
corresponds to the topple phase and the blue shaded region corresponds to
the slide phase. The motion phases where the arm is not in contact with
the object are identified as being unimportant, as are the phases that mark
the beginning and end of both of the topple and sliding phases. In terms of
sensors, the joint velocities, jv,, are generally unimportant, with the excep-
tion of joint 6. Joints 2, 4, and 6 provide task-relevant information in their

sensed torques and positions. Similar results are also obtained with the full
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(a) Eight units of 0.225kg mass which are used to vary the mass of the manipulated
foam block from 0.445kg to 2kg.

(b) Six surface frictions (from left to right): paper, plastic, wood, fine-sandpaper,
coarse-sandpaper, cloth.

g o

(c) Three levels of compliance (from left to right): ethafoam, seafoam, greyfoam.

Figure 5.5: Environment properties used in experiments. 46



5.3. Results

hand attached to the robot arm, in which case there are over a hundred sen-
sors sampled across 18 time phases of the motion. With the hand in place,
the key sensors are determined as being the task wrench w, as measured
by the force-torque sensor, the fingertip torques, f, and the fingertip tactile
readings, a.

It may be noted that a simple contact /no-contact feature identifier might
yield similar segmentations of the overall task in this case. However, this
would require an explicit model that extracts contact information from sen-
sory inputs. Our method identifies key points in the motion without any
manually-tuned sensory features.

To determine the impact of the I' feature selection, we compare mass
predictions obtained using the inclusion of all features, i.e., no feature selec-
tion, and those obtained when I' feature selection is used to select a subset
of 5% of the the original features. This is applied to the manipulation task
as executed using the spherical probe. In both cases, a non-reduced par-
tial least squares model is constructed and leave-one-out-cross validation
(LOOCYV) test is considered for performance evaluation. As shown in Ta-
ble [5.2, the result produced using the significantly reduced subset of input
features is in most tests better than that obtained when using all the fea-
tures and accuracy improves to within 1 measurement unit (£ 112.5 g) for
all tests. Also, as can be seen in Table applying up to 20% I" feature
selection to the incoming datastreams enables real-time operation in terms
of both data-transfer bandwidth and prediction runtime. Tradeoff calcu-
lations assume 1Mbit CANBus, 16MHz dedicated processing speed and a
real-time control loop frequency of 500Hz. FLOPs are calculated using stan-
dard inner-product vector multiplication complexity of 2n — 1 for each of
the three property predictions.

If desired, a fixed subset of the largest computed partial least squares
coefficients can be used for the final prediction, instead of the full set, 5. In
practice, a 40% reduction in the number of coefficients yields only a minimal
reduction in the quality of the prediction.

To validate our choice of partial least squares (PLS), we compare the re-

sults against three other methods: principal component regression (PCR),
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Figure 5.6: Visualization of features selected according to the task variance
ratio, I, of data collected using (a) robot with spherical probe and (b)
robot with BarrettHand. Colour is added to signify task-phases. Gaps
between task-phases signify an absence of task-relevant information withjg
corresponding time-phases.



5.3. Results

(a)

Figure 5.7: WAM robot with (a) spherical probe and (b) BarrettHand as
end-effectors.
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Prediction RMSE (g)

Mass (g) | PLS + ' | PLS Only
425 2.40 75.7
650 13.9 86.9
875 1.40 51.1
1100 15.8 40.8
1325 7.20 43.1
1550 0.20 37.2
1775 9.00 147
2000 11.0 7.20

Table 5.2: Effect of 5% I' feature selection on LOOCYV block mass prediction
root mean squared error (RMSE).

least squares regression (LSR), and naive Bayes classification (NBC). For
LSR, we regularize the solution using ridge regression. For NBC, a new
sensory stream is treated as input to a classification problem, and the clas-
sifier is constructed using naive Bayes that assumes that all features in x
are independent. Using the repeated trials for the given set of environment
properties, a normal distribution is constructed for each element of x, and
the likelihood of a new value of x belonging to the same class is simply mod-
eled as the product of the individual element likelihoods. The environment
properties of the most likely class are then returned as the prediction. All
four methods are evaluated using LOOCYV, and are applied to x*, i.e., after
I feature selection. The results for mass prediction show that PLS yields the
best predictions, with respective mean errors for PLS, PCR, and LSR and
NBC of 33.3, 56.4, and 84.9, and 282.6, with respective standard deviations
of 4.2, 8.4, 14.6 and 83.2 as measured in grams.

Figure illustrates online mass prediction results. The robot is able
to make predictions at any key time-phase, t*, each characterized by a high
I' for many sensors. This is accomplished through building multiple models,
each spanning the data from the start of the motion to some t € t*.

These results are obtained for the case of training on data for m =
{425, 650, 875, 1100, 1550, 1775,2000} as measured in g and is then tested

using sensory data obtained for m = 1335 g. The result shows predictions
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being made using increasingly fewer selected features or reduced PLS dimen-
sions, as noted in the caption. Also, the predictions improve as the motion
progresses and more selected features are observed.

Our framework is also robust to feature noise. To demonstrate this, we
run experiments where we introduce large amounts of synthetic noise into the
sensory data streams before feature selection and after data whitening (see
Section . As shown in Table , LOOCYV prediction RMSE increases
smoothly as feature noise increases. Note that for even small amounts of
additive noise (02 ~ 0.1), PLS fails to produce meaningful results in the

absence of T" feature selection.

I' data selection: | 5% | 10% | 20% | 40% | 70% | 100%
Z FLOPs (approx.): | 32 | 65 | 131 | 263 | 461 | 659
Runtime (ms): | 0.25 | 0.5 1.0 |21 3.6 5.1
Bandwidth (bit): | 352 | 704 1408 | 2816 | 4928 | 7040
Maximum error (g): | 69.5 | 112.7 | 96.3 | 111.4 | 107.9 | 188.3
Real-time satisfied? | T T T T/F | F F
Bandwidth satisfied? | T T T F F F
Accuracy satisfied? | T T/F | T T/F | T F

Table 5.3: Bandwidth/runtime/accuracy tradeoff following different
amounts of I' selection. Optimal tradeoff is achieved when between 5%
and 20% of the data is selected using T'.

5.4 Discussion

Our prediction framework uses unlabeled sensory data streams, collected
during a manipulation task, to make reliable real-time predictions about
environment properties that cannot be visually observed, i.e., mass, friction,
and compliance, given the existence of relevant training examples. Sensors
or motion phases that are observed to be noisy are readily discounted by

our method. The results show that the task variance ratio, I', provides a
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o2 | RMSE (g)
0.0 9.4
0.5 55.1
1.0 160.7
1.5 172.8
2.0 255.5

Table 5.4: Effect of different levels of additive Gaussian noise A(0,02) on
the sensory input data for LOOCV mass prediction RMSE (m = 1335 g).
Accuracy degrades smoothly as sensor noise increases.

simple means for feature selection, identifying important sensors and motion-
phases supporting real-time predictions, and which furthermore improves
the resulting partial least squares predictions.

While predicting environment properties from labeled training data could
be an obvious application of linear regression, this is in practice problem-
atic because the training data for our scenario consists of a relatively small
sample size (low hundreds) embedded in a high dimensional space: x can
contain thousands of sensory measurements. Furthermore, the large number
of measurements required to make accurate predictions prohibits real-time
operation.

Although PLS utilizes a dimension reduction technique by using a few
latent factors, it cannot avoid the sample size issue since a it has been
proven that a reasonable sample size relative to the number of parameters is
required to estimate sample covariances consistently [8]. Thus, PLS works
best under the conditions of large sample sizes and/or small numbers of
input variables.

When combined with I" feature selection, our results show PLS superior
to other regression algorithms which do not leverage input and output cor-
relations in their calculations. Unlike PCR, PLS uses y (in addition to x)
to construct its principal directions. Thus, its solution path is a nonlinear
function of y [23]. In addition to outperforming the other benchmark pre-
diction methods for the task, PLS also provides a further opportunity for

dimensionality reduction if desired.
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Due to the model-free nature of our approach, the prediction frame-
work works for virtually any combination of sensor modalities, including
tactile-pressure, Cartesian wrench and joint-torque, which enables easy ex-
perimentation to determine the optimal tradeoff between sensor usage and
prediction accuracy.

One limitation of our approach is that I' can be misleading, such as
in the case of noise-free features that also exhibit significant non-linearities
with respect to the properties being predicted. Another drawback is that
the learned predictive model remains specific to the prescribed motion used
for the task and the specific kinematics and dynamics of the robot and
environment it trained in. The current remedy is to incorporate further
training data from which to build the model when changes to the robot
or its motion take effect. In future work, we intend to examine how the
predictive model can be transferred to new settings [52].

Our framework can also be leveraged in multiple ways in order to detect
anomalous events. Rapid changes in the predicted environment properties,
such as object compliance, is a signal of an anomaly. Also, implicit in the

computation of Vare™°

is a model of what value a sensory feature should
have at a given point in the motion. This allows a motion anomaly to be
signaled if a number of sensors each begin to signal anomalous values at a
given point in time, or a sensor anomaly to be signaled if a single sensor

begins to consistently produce anomalous readings.
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Chapter 6

Conclusions and Future
Work

In this thesis, we present the challenge of predicting properties of real-world
environments using high-dimensional haptic sensory data from the perspec-

tives of both biological and robotic systems.

6.1 Summary

We begin in Chapter 2| by presenting insights into the problem from the
established robotics, neuroscience and physiology literature. Next, we de-
fine the prediction problem more formally in Chapter [3l In Chapter [4] we
provide an overview on the software framework used to control the phys-
ical WAM /Hand system and collect data in support of experiments. We
then introduce a model-free approach to the prediction of example environ-
ment properties — namely object mass, friction, and compliance — during the
course of a non-prehensile topple-slide manipulation task in Chapter
Given appropriate data from example manipulations with known envi-
ronment properties, the method presented in this thesis extracts information
from unlabeled sensory data collected over the course of a new manipulation.
We demonstrate that our novel metric, known as the Task Variance Ratio
(TVR), identifies important features, sensors and motion-phases. Using the
TVR metric combined with the PLS regression method, we obtain accurate
predictions in real-time using only 3% of the sensory input data from the

robot.
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6.2 Limitations and Future Directions

One significant limitation of the predictive framework is the need for a pre-
scribed motion that can already succeed at the task despite variations in the
environment properties that we seek to predict.

An important direction for future work will be to investigate the tight
integration of prediction and adaptation into the framework. With knowl-
edge (learned or provided) of how to adapt the topple-slide task for heavier
or more compliant blocks, this could readily be used to enlarge the range of

variations that can be coped with.

Surprise-and-adapt

We have devised a preliminary model-based motion adaptation approach
to succeed in environments where the prescribed motion fails. Under the
assumption that the robot has access to tactile pressure and/or fingertip
torque sensors, we modify the orientation of the robot’s wrist about the
axis parallel to the manipulated block, so that the pressure readings at the
fingertips track an appropriate profile provided by an expert.

To deal with sensor noise, we consider a history of sensor readings of size
K,.. If sensor readings fall below a threshold for at least K, timesteps, the
orientation of the wrist increases — thus applying more pressure to the block.
Similarly, if sensors consistently read above a threshold, the orientation of
the wrist decreases — releasing pressure. See Appendix [A] for a pseudocode
of this operation.

This scheme is successful for the topple-slide task when particularly small
perturbations in the environment are experienced, such as a relatively small
(within two units) change in object mass, but fails with large perturbations.

An interesting future direction is to devise a model-free approach in
which the robot discovers for itself that a lack of pressure at its fingertips
means that its wrist orientation should increase (in addition to other relevant
mappings between sensor readings and adaptive motions). This knowledge
would have to come from the data and would most likely require additional

sensors and/or some form of supervision, e.g. from a human or a camera.
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6.2. Limitations and Future Directions

Time-synchronized motions

A related limitation is that our current sensory features are all time-indexed,
i.e., there is an assumption that the current phase of the motion is tightly
coupled to the current time. In future work, we would like to couple the
phase estimate more tightly to the actual motion via available sensory ob-

servations.

Task-parameter generalization

A last key limitation is that because of the model-free nature of the current
approach, the prediction procedures do not generalize well to changes in the
task kinematics or dynamics. We aim to develop parameterized versions of

the predictive model in order to allow for such generalization.

Leveraging physics-based simulation

We are are also interested in exploring how simulations with only qualita-
tive accuracy might be used to identify suitable sensors and motion phases
in advance. This could be used to inform the types of sensors and their
placement, as well as provide insight with respect to relevant time-steps at
which to record data. Initial results in this direction are promising and thus
point to a new use for simulations that are not necessarily tightly calibrated

to the true kinematics and dynamics of the plant.
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Appendix A

Surprise-and-adapt

Pseudocode

void operate() //repeat at 500Hz

{

by

//Consider a history of thresholded differences.

if ( sensor_value - expected_value > threshold_p )
history.append_front ( 1 )

else if ( sensor_value - expected_value < threshold_n )
history.append_front ( -1 )

else
history.append_front ( 0 )

//’Surprise’ iff at least K contiguous unexpected readings.

if ( sum ( history [ 0 : K] ) == K ) //too much pressure
decrease_wrist_angle ()
if ( sum ( history [ 0 : K] ) == -K ) //too little pressure

increase_wrist_angle()

Program 2: Realtime operate method pseudocode for the surprise-and-adapt
realtime system module. See Section [4.5| for general details on Libbarrett
realtime systems development.

66



	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Learning to Interact with the Real World
	Problem Statement
	Motivations
	Contributions
	Thesis Structure

	Background
	Robotic Manipulation
	Model-free schemes
	Model-based schemes
	Human-inspired schemes

	Sensory Information Processing
	Force and tactile sensing for robotic manipulation
	Anomaly detection in streaming data
	Dimensionality reduction

	Neuroscience & Physiology
	Object manipulation: definitions
	Force and tactile sensing
	High-level processes


	Predicting Environment Properties from Sensory Inputs
	Problem Definition
	Prediction Framework
	Feature selection via the task variance ratio
	Property prediction with partial least squares


	Control Software
	System Overview
	Libbarrett API
	WAM Control
	BarrettHand Control
	Realtime Systems

	Experiments and Results
	Setup
	Actuation and sensing
	Kinesthetic teach-and-play
	Software architecture
	Experimental testbed
	The block topple-slide task

	Procedure
	Learn the task trajectory
	Record sensory dataset
	Feature selection
	Partial least squares modeling
	Online prediction
	Calculating environment properties

	Results
	Discussion

	Conclusions and Future Work
	Summary
	Limitations and Future Directions

	Bibliography
	Surprise-and-adapt Pseudocode

