
Identification and exploration of gene

product annotation instability and its

impact on current usages

by

Adriana Estela Sedeño Cortés

B.Sc., National Autonomous University of Mexico (UNAM), 2012

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate and Postdoctoral Studies

(Bioinformatics)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

October 2014

c© Adriana Estela Sedeño Cortés 2014



Abstract

Proteins are macromolecules responsible for a wide range of activities in the

structure and function of cells. Their activities have been described in dif-

ferent contexts as a mean to elucidate their “function”. These descriptions

have been captured across biological databases in a standardized format

called Gene Ontology Annotations (GOA), to disseminate the knowledge

and extrapolate the information to other proteins whose function is still un-

known. Furthermore, the annotations are used to analyse and interpret data

from high-throughput studies and also as a benchmark for the assessment

of protein function prediction algorithms. Constant changes occur in GOA

that can potentially impact such usages, but only limited effort has been put

into exploring their instability, or to assess the impact that these changes

have on reproducibility or interpretation of previous analyses.

In the present work, I performed the most comprehensive analysis of the

annotation instability for 14 representative model organisms (E.coli, fruit

fly, mouse, etc.). The results showed important instability patterns that

were species-specific. As such information would be of use to the commu-

nity to trace the instability of annotations of their interest, a web-based

visualization tool was built to track these changes on a protein, functional

term and species specific basis.

Additionally, we identified artifacts on the annotation data that can be

attributed to curation patterns. We propose such artifacts to be considered

for a more accurate assessment of function prediction algorithms. Further-

more, the impact that changes in the annotations have on common settings

like gene set enrichment analyses was also explored. In particular, 2,000

ii



Abstract

datasets were used to assess the robustness of enrichment results over time.

On average, the results would display a 60% similarity after only 2 years.

However, cases were found were the similarity will drop 80% within the

same year, demonstrating the impact that the instability has on such ap-

plications. In conclusion, the results of this work will prove useful for those

who use the annotations to interpret their studies to assess their reliability

on a case-by-case scenario.
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Chapter 1

Introduction

Proteins are biological macro molecules responsible for a wide range of ac-

tivities in the structure and function of cells. Research has focused on de-

scribing protein activity in different contexts as a mean to elucidate their

“function”. This information is being captured across biological databases

in a standardized format, called Gene Ontology annotations (GOA). The

primary reason to create the annotations is to disseminate this knowledge,

compare the information across species and extrapolate the information to

other similar proteins whose function is still unknown. GOA has become

over time a key resource and is increasingly used to analyse or interpret

the large amount of data generated from high-throughput studies and also

as a benchmark for the assessment of protein function prediction algorithms.

However, the GO and the GOA are not complete nor perfect. Multiple

changes occur in their structure to better reflect the current knowledge. The

variability derived from such modifications are likely to affect the outcome

of the current uses, specially for the interpretation of biological data, but

critical evaluations on the limitations of GOA are limited in number and

scope.

To properly assess the usefulness of the annotations to analyse or inter-

pret biological data, it is crucial to understand first: 1)how these annotations

are generated, 2) where annotations come from and 3)what factors influence

their changes, if one aims to identify the limitations of GOAs in current

applications. Furthermore, the historical information should be accessible

for comparison purposes to the community. However, no tool has been de-

veloped and made available to conduct such evaluations.

1



1.1. The Gene Ontology

In this thesis, I performed the most comprehensive analysis of the his-

torical changes that have influenced GO and GO annotations; built a visu-

alization tool to make this data accessible for exploration and assessed the

impact that these changes have in current applications. Even though there

is concern within the scientific community of such impacts, only a handful

of studies evaluating the annotation quality have been published, all with

some limitations that I attempt to overcome.

In this chapter, I introduce the background for my research, with an

overview of the Gene Ontology and its annotations, properties, current us-

ages and describe some of the previous assessments that have been done on

this data.

1.1 The Gene Ontology

16 years ago the Gene Ontology project was created to integrate and fa-

cilitate the exploration of biological information behind different genomic

and proteomic studies. The Gene Ontology Consortium (GOC) is a set of

genome database organizations and communities that have joined efforts to

develop and maintain the Gene Ontology (GO), currently considered the

most important ontology within bioinformatics. Its original publication [1]

has over 13,371 citations based on Google Scholar (as of September 29,2014).

The GO describes gene attributes using a standardized vocabulary (terms)

in the form of a directed acyclic graph (DAG) [1]. The terms are classified

in three independent aspects or domains: 1) Molecular Function Ontology

(MF): Activities of the gene product within the cell (e.g. binding, receptor,

enzymatic or transporter activities); 2) Biological Process Ontology (BP): A

series of activities or events that a gene product is involved in within the cell

(e.g. cell-cell signalling, locomotion, cell death); and 3) Cellular Component

Ontology (CC): Describes sub cellular locations and macro molecular com-

plexes within the cell (e.g. membrane, pyruvate dehydrogenase complex,

protein storage vacuole).

2



1.1. The Gene Ontology

In each of those domains, terms are represented as nodes (with a name

and an identifier or accession number) and are inter-connected with other

parental terms (more general entities) and/or children terms (more detailed

entities) by edges that represent different relationships:

• is a: represent cases where the the children term B is a sub type of

the parental term A (e.g. “enzyme regulator activity” is a “molecular

function”; “anoikis” is a “apoptotic process”).

• part of : represent cases where the children term B implies the pres-

ence of the parental term A, but given A we cannot ensure that B ex-

ists (e.g.“catalytic activity” part of metabolic process”; “signal trans-

duction” part of cell communication”).

• has part: represent cases where the parental term A always has the

children termB as a part; if A exists, B will always exist (e.g. “protein

binding transcription factor activity” has part protein binding”; “ni-

trogen utilization” has part nitrogen compound metabolic process”).

• regulates: represent cases where the children term B necessarily reg-

ulates the parental term A, but A may not always be regulated by

B. The regulation of a process does not need to be part of the pro-

cess itself. Two sub-relations exist to represent more specific forms of

regulation (e.g.“regulation of mesenchymal cell apoptotic process” reg-

ulates “mesenchymal cell apoptotic process”; “positive regulation of

catalytic activity” positively regulates “catalytic activity”; “negative

regulation of M phase” negatively regulates “cell cycle process”).

• occurs in: Used to link an occurring function or process to a location

(process A necessarily occurs in component B) (e.g. “mitochondrial

RNA processing” occurs in “mitochondrion”; “COPII-coated vesicle

budding” occurs in “Golgi membrane”).

The three ontologies of GO are each represented by a root term with

no common parental node, but their terms can be inter-connected through

3



1.1. The Gene Ontology

the part of or regulates relationships. For example, “catalytic activity” is a

“molecular function”, but is also part of “metabolic process” which is a “bi-

ological process” (Figure 1.1).

The GO structure is constantly revised and modified to cover missing

links and incorporate new biological knowledge. Some modifications often

found are:

1. extensions: Terms being added when missing attributes are identi-

fied;

2. reductions: Terms being deleted, when definitions are vague or do

not accurately represent a biological aspect;

3. revisions: Terms being split, merged, substituted, moved on a differ-

ent location within the graph;

4. cross-products: Terms combined through aggregating certain rela-

tions (includes terms from other ontologies such as the Cell Ontol-

ogy, Plant Ontology, Uber Anatomy Ontology (UBERON) or ChEBI

(chemical entities of biological interest)). Example: “DNA replica-

tion” + “occurs in” + “mitochondrion” = “mitochondrial DNA repli-

cation” [2, 3].

These modifications are included in each new release of GO. Daily and

monthly versions can be found and different formats are available to use:

• Basic version: Includes is a, part of and regulates (positively and neg-

atively) relationships and excludes those that inter-connect the ontolo-

gies. It is the recommended format for GO annotations. This version

is often used for most of the GO-based annotation tools available.

• Core version: Available in two formats (OBO and OWL-RDF/XML).

It is the non-filtered version and includes the has part and occurs in

relationships, but excludes relationships to other ontologies. These

relationships are recommended to be excluded for propagation, which

4



1.1. The Gene Ontology

is important to note as many enrichment tools consider the propagated

terms for their results.

• Plus version: Includes dependencies to other external ontologies and

some inter-ontology relationships.

• GO Slim version: It is a subset of the ontology created to provide a

broad view of the graph, the most granular terms are removed. This

version is often used in many applications as it does not include species-

specific terms.

Over time, many different tools have been developed to browse GO or its

annotations, each one retrieving one of these different formats. For example,

tools like “CateGOrizer”[4] or “GOSlimViewer” [5] use GO slim versions,

whereas “GO::TermFinder” [6] use the basic version but consider only terms

associated to gene products.

5



1.1. The Gene Ontology

Figure 1.1: An illustration of the structure of the Gene Ontology graph. A term

can have multiple parental and children terms and different relationships between

them. The term that is often annotated to a gene product is called a “Direct GO

term” and the terms that can be inferred by propagation to the root node are called

“Inferred or parental GO terms”.

6



1.2. GO Annotations

1.2 GO Annotations

With the active collaboration of 36 groups, the GOC releases monthly ver-

sions of GO Annotation files (GOA) that capture the association between

gene products and GO terms for different species. For a gene product to be-

come annotated, an electronic or experimental evidence must indicate that

such gene product possess an attribute, i.e. that it has a particular function;

is involved in a certain process or is located on a cellular component. Then,

the most appropriate GO term to reflect such attribute (from the most up-

to-date version of the GO graph at the time) is assigned to the gene and

annotated with the evidence supporting it (Figure 1.2).

Figure 1.2: Schematic representation of the protocol followed to generate gene

annotations. Different members of the GO Consortium link proteins stored in their

databases with the GO terms that best reflect their biological attributes (based on

certain evidence) and store the relationships in annotation files.

An evidence code is also incorporated into the annotation to indicate

if the source is based on experimental or computational evidence or from

a statement made by an author or curator(Table 1.1). Additionally, the

7



1.2. GO Annotations

qualifiers “NOT”, “colocalizes with”, or “contributes to” can be added in

the annotation to modify its interpretation.

Table 1.1: Evidence codes used in GOA files.
Evidence Codes

Reviewed by a curator

Experimental source
EXP Inferred from experiment
IDA Inferred from direct assay
IPI Inferred from physical interaction
IMP Inferred from mutant phenotype
IGI Inferred from genetic interaction
IEP Inferred from expression pattern

Computational source
ISS Inferred from sequence or structural similarity
ISO Inferred from sequence orthology
ISA Inferred from sequence alignment
ISM Inferred from sequence model
IGC Inferred from genomic context
RCA Inferred from reviewed computational analysis

Author statements
TAS Traceable author statement
NAS Non traceable author statement

Curator Statements
IC Inferred by curator
ND No biological data available

Obsolete NR Not recorded

Electronic source

Not reviewed IEA Inferred from electronic annotation

Users can browse the annotations online through website tools provided

by the GOC such as “AmiGO” [7], “QuickGO” [8], or retrieve the informa-

tion from the annotation files that can be downloaded. Third-party tools

and sources like “NCBI Gene” [9] are also used to retrieve the information,

although these are not necessarily synchronized and updated with the most

up-to-date version of GO or GOA.

The Gene Association File (GAF) is the primary format created by

GOC and has had two versions: GAF1.0 (deprecated as of June 2010)

and GAF2.0 (July 2010-current)[10]. A detailed description of each for-

8



1.2. GO Annotations

mat and their differences can be found (Table 1.2). There are important

differences between these two versions that most studies assessing anno-

tation history do not address, specially in the protocol used to identify

genes and gene products. This is crucial to interpret annotations for each

gene / gene product. However, most assessments or tools only consider

one of the two versions or do not to take into account the differences be-

tween such formats. While this thesis was being developed, in 2013, a

new format was introduced: the Gene Product Association Data (GPAD)

file format. This format is a simplified version that only contains anno-

tation data without the information about the gene product (gene names

or synonyms) and it was proposed as a “more normalized version” that

can be used across databases (http://geneontology.org/page/gene-product-

association-data-gpad-format). If one aims to collect the gene product in-

formation, other formats such as the Gene Product Information files (GPI)

were created for this task.

9
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Table 1.2: Attributes of a GO Annotation.

Content Description GAF1.0 (2001-2010) GAF2.0 (2010-current) Entry Examples

1. DB Source of the Object ID Pre-merge stage:

Uniprot and

Ensembl anno-

tations incor-

porated in one

GOA file

Mostly UniPro-

tKB is used

UniProtKB,

SGD,Ensembl

2. DB Object ID Unique identifier for a gene

product.

Able to refer to

particular protein

isoforms or post-

translationally

cleaved or modi-

fied proteins

A top-level pri-

mary gene/gene

product ID. Iso-

forms no longer

valid.

O15072,S000038306,

1-PFK-MONOMER,

FBgn0043467

3. DB Object

Symbol

A symbol/ORF name to

which the DB Object ID is

matched.

present present ADAMTS3,FruK,

COX1,064Ya ,14-3-

3epsilon

4. Qualifier Flags that modify the inter-

pretation of the annotation.

present present NOT, contributes to,

co-localizes with

5. GO ID GO term ID attributed to

the DB Object ID.

present present GO:0031012

6. DB Reference Source of the attribution

(literature,database or com-

putational reference).

present present PMID:22261194,

FB:FBrf0174215,

SGD REF:S000050955

Continued on next page
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Table 1.2 – continued from previous page

Content Description GAF1.0 GAF2.0 Entry Examples

7. Evidence Code Indicate how the annota-

tion to the GO term is sup-

ported.

present present TAS, EXP,IGI

8. With or From Other gene products to

which the annotated gene

product is similar or inter-

acts with.

present present UniProtKB-

SubCell:SL-0039

9. Aspect Refers to the Ontology to

which the GO term ID be-

longs.

present present C,F,P

10. DB Object

Name

Name of the gene/gene

product.

present present sonic hedgehog

11. DB object

synonym

Alternative gene symbols or

previous gene product iden-

tifiers associated to the DB

Object ID.

previous DB Ob-

ject IDs would

be gradually in-

corporated

many that were

present in GAF1

editions were re-

moved

DPS1 MOUSE|

Pdss1|Dps1|Sps1|

Tprt|IPI00123984|

B8JJW9|Q9WU69

12. DB Object

type

Used to describe if the prod-

uct is a gene, transcript, pro-

tein or functional RNA.

present present protein,gene

13. Taxon The taxonomic identifier of

the organism encoding the

gene product.

present present taxon:9606

Continued on next page
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Table 1.2 – continued from previous page

Content Description GAF1.0 GAF2.0 Entry Examples

14. Date The date on which the an-

notation was submitted into

the database (not the date of

the GOA file)

present present 20120228

15. Assigned by The database that made the

annotation. Can differ from

DB (column 1)

present present BHF-UCL;MGI;

UniProtKB; Inter-

Pro; RefGenome

16. Annotation

extension

Contains cross references to

other ontologies (Cell Type

Ontology), targets of pro-

cesses/functions to indicate

gene products/chemicals in-

volved.

no present part of

(UBERON:0002084);

acts on population

of(CL:0000100);

has regulation target

(MGI:MGI:107364);

occurs

in(CL:0000057)

17. Gene Product

Form ID

Annotate specific vari-

ants of the gene product

used at the DB Object

ID(differential splicing,

post-translational cleav-

age or post-translational

modifications)

no present UniProtKB:

A5YKK6-2

12



1.2. GO Annotations

Most of the annotations in GOA files are derived from computational

sources (Figure 1.3). Mostly, because the ratio of scientific discovery or

publications available largely exceeds the amount of information that can

be curated and annotated. To increase the “coverage” of gene products,

many sources are constantly pooled together for this task. Many of those

inferences are based on the assumption that a marked similarity exists be-

tween two proteins through evolution (duplication or speciation) from the

same ancestral sequence (homology).

Features that are commonly used for this type of assignments include:

1) structure similarity (ISS); 2) sequence similarity (ISO, ISA, ISM, IKR);

3) protein profiles and phylogenetic relationships (IBA, IBD, IRD, IGC);

4) supervised machine learning algorithms (based on features from protein

sequences (ISM)) or 5) high throughput studies (RCA). However, when the

association is generated electronically but hasn’t been reviewed by a cura-

tor, the evidence code IEA is assigned.

Computationally-inferred annotations are often considered to have limi-

tations in their reliability compared to human-curated evidence [11]. Errors

can arise when, for example, proteins have high sequence similarity but dif-

ferent functions or when they possess a similar function but their sequences

are highly divergent. Some of these cases have been identified in the curation

process and can be identified in the GOA files with the NOT qualifier and

the evidence code IKR, which is characterized by the lack of key sequence

residues. It is important to consider that some of such cases are likely to be

present in inferred annotations but haven’t been revised. Another problem

arises in determining the level of GO term granularity that can be assigned

to an annotation based on similarity alone [12]. Hence, it is common to find

broad GO terms assigned in the annotations, which do not provide insight

from a biological perspective, specially when root terms are assigned.

Despite these limitations, annotations are being computationally gener-

ated for more than 483,000 taxonomic groups (according to UniProtKB).

13



1.2. GO Annotations

The GOC has grown considerably since its foundation [13] and is currently

integrated by 32 institutions, specialist groups and major resources, all of

which participate collectively in the evolution and implementation of GO

and GOA.

14



1.2. GO Annotations

Figure 1.3: GO annotation overview. Figures highlight the number of anno-
tations that are non-experimental compared to the number of experimental
annotations across all species. UniProtKB is the largest source of GO an-
notations [1] (Figure taken from: http://geneontology.org/page/current-
go-statistics. August, 2014.)
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1.2. GO Annotations

Each institution or resource generates species-specific annotations and is

responsible to update them when a change is made to the annotation pro-

tocols or to the GO structure. However, there are cases where the resource

that makes the annotation differs from the institution that provides support

in the long-term. Such cases can be identified in the GAF files (with the DB

and the Assigned By attributes). Likewise, when the research communities

for certain model species do not have an established group that commits

to the long-term maintenance, the annotations are done by collaborations

through the UniProtKB-GO Annotation (UniProtKB-GOA) multi-species

group.

Hence, some resources might have a larger or faster curation effort, or

might have internal changes in their protocols that affect the annotations

they handle. Together, such differences can influence species-specific anno-

tation biases.

The GOA project is predominantly supported by the database UniPro-

tKB, considered the largest source of protein knowledge, with over 80,370,243

entries of protein sequences (Figure 1.3).

These entries are derived from multiple sources and are classified in 2 sec-

tions:

• UniProtKB/SwissProt: This protein sequence database comprises high

quality, manually reviewed and non-redundant entries and is continu-

ously revised and updated. Each entry contains information about one

or more protein sequences derived from the same gene to avoid redun-

dancy. Often, entries that are present in the UniProtKB/TrEMBL

database are revised and integrated into the corresponding UniPro-

tKB/SwissProt entry. As of July 2014, 546,000 entries for 498,088

species can be found on this database. Most of those entries were

inferred from homology(70%) or have evidence at the protein or tran-

script level (26%). The rest are classified as predicted or putative

(http://www.uniprot.org/statistics/Swiss-Prot) [14] (Figure 1.4).

• UniProtKB/TrEMBL: This protein sequence database contains all the

sequences that are not yet present in UniProtKB/SwissProt. These
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1.2. GO Annotations

sequences are derived from public databases, such as EMBL, Gen-

Bank or DDBJ but haven’t been revised. Over 130 databases have

also been cross-referenced. As of July 2014, 79,824,243 entries in-

tegrate this database. Most of them are bacterial (82%), a smaller

proportion are eukaryotic (14%) and the rest are from archaeal or vi-

ral origin (5%). Almost 76% of these entries have been predicted or

inferred by homology (23%). Only a small proportion has evidence

at the transcript level (1.18%) or at the protein level (0.58%). For

each and all of these entries, automatically inferred annotations are

also assigned (http://www.uniprot.org/statistics/TrEMBL). As men-

tioned above, when UniProtKB/TrEMBL entries are revised, they are

often merged to a matching UniProtKB/SwissProt entry [14].
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Figure 1.4: Illustration of changes in UniProtKB entries over time. The figure exemplifies a typical process of revi-
sion and upgrades in entries from the UniProtKB database. UniProtKB/TrEMBL entries that have been revised
at particular time points are merged into a matching UniProtKB/SwissProt entry. Likewise, UniProtKB/Swis-
sProt entries are revised and updated. In this example, two entries for the “ubiquitin” protein sequences were
available back in 1988. The redundancy was eliminated and only one new UniProtKB/SwissProt ID remained.
UniProtKB/TrEMBL entries whose sequences were derived from the same gene were gradually merged. In 2010,
four protein sequences were identified to come from different genes, so the entry representing “ubiquitin” demerged
into 4 new UniProtKB/SwissProt entries.
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1.3. Uses, Challenges and Assessments of GO

1.3 Uses, Challenges and Assessments of GO

The current GO and GOA structure do not aim to cover aspects relevant

to mutants or diseases, attributes of sequences, protein-protein interac-

tions, anatomical or histological information or any feature that is context-

dependant (environmental). Also, the annotation format, reflects a func-

tional “independence” between gene products [3], but in reality, the gene

products can interact and participate collaboratively in different pathways.

Additionally, the incompleteness of the annotations is a concern among the

community [15]. Despite this, the usage of GO and GOA for the interpre-

tation of biological data is continuously growing (as observed from querying

the Gene Ontology using PubMed Discovery tools: Results by Year graph)

[16].

The increase in the number of publications using GO is in part due to the

challenge that scientists have had (ever since microarrays became available

[17]) to interpret the large volume of data generated from high-throughput

technologies. In a typical setting, researchers compare experimental condi-

tions and generate a list of differentially expressed (DE) genes. To extract

meaning from those long lists, features that are common among them are

searched by using gene set enrichment analysis tools 1. As such tools of-

ten base their results on the biological information captured in a particular

GOA version, the quality of the annotations acquires even more relevance.

The first exploration was made by Lord et al in 2003 [18]. The authors

looked at the quality of GO annotations indirectly by assessing the validity

of using semantic similarity to compare proteins annotated in the SwissProt

database at that time. The validation of their study was based on the hy-

pothesis that proteins with a certain sequence similarity would have similar

annotations and that the quality of the evidence codes assigned should be

comparable. In their study, they found that some GO annotations were

1As of August 2014, running a PubMed query with the terms “enrichment analysis/-
analyses” and ”gene set/gene-set” would result in 2553 related publications.
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1.3. Uses, Challenges and Assessments of GO

incorrect or inconsistent and was thus reflected in a reduced semantic simi-

larity score. After grouping sequences that were similar (based on BLAST

searches) and comparing the corresponding similarity scores, they observed

that annotations with a TAS evidence code assigned would tend to increase

in “similarity” compared to others.

A year later, annotation quality was explored in bacterial and archaeal

genomes. Several genome annotation inconsistencies were also found, chal-

lenging the common misconception from users that “reliable annotations”

could be obtained from sources like EMBL or GenBank[19]. Afterwards,

several other groups described similar inconsistencies for other organisms

and databases, regardless of their origin (automatically generated or man-

ually curated). This issue further highlighted the need for standardized

annotation protocols between research groups [20–22].

Further more, an estimation by Baumgartner et al showed that the speed

of manual curation at that time point was not sufficient to complete the an-

notation of even the most important model organisms [23], extending the

problematic not only qualitatively, but also quantitatively.

The importance of assessing annotation quality was recognized and dif-

ferent groups started to propose metrics. For example, Buza et al, suggested

a quality score based on two features: 1) the level of detail (depth) of the an-

notation, by considering the longest path from the term to its root node and

2)the evidence code used for the annotation, in which the authors assigned

arbitrary rankings to the evidence codes. Then, for assessing the “overall

quality” for a gene product, the authors proposed to sum all the individual

scores for each one of its annotations [24]. The “quality score” proposed

had the limitation that both parameters are quite subjective. The length

of each path in the graph does not necessarily reflect its specificity and an

arbitrary ranking of evidence codes does not necessarily reflect the quality

of the source.

A second metric was proposed by Gross et al in 2009. They proposed
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1.3. Uses, Challenges and Assessments of GO

that the “quality score” for an annotation should be based on five param-

eters: 1) how many times the evidence codes assigned to the annotation

changed across editions (quality); 2) how many editions have been created

since the annotation first appeared (age of the annotation); 3) the number of

editions where the annotation is present (existence); and 4) by considering

previous editions (without the current one), the “stability” could be mea-

sured by the number of editions where the annotation remained with the

same quality with respect to its existence. Finally, a “combined stability”

would be assigned per annotation, which is basically the minimum score

obtained in either the “existence” or the “quality” [25].

Gross et al do explore (although indirectly) the effects that changes in

the ontology structure have on the annotations across editions. However,

the authors did not make clear whether they considered the properties of

the GOA files. In particular, a specific association (gene product-GO term)

can be incorporated in multiple rows in just one GOA file, specially when

multiple sources supporting the relationship exist. I raise this concern be-

cause they do not trace the source of the annotation, but only the evidence

code, so the possibility of considering an annotation “unstable” by mistake is

present. Furhermore, they are unable to assess if the evidence code changed

for a “better option”, as they only quantify the number of times it changed

(and removed annotations that had the evidence codes ND or NR from the

analyses).

Gross et al concluded that annotations derived from Ensembl were not

paired with their corresponding GO releases, using often an older version

and that in general, Ensembl annotations were more unstable than those de-

rived from SwissProt. However, they did not explore the changes/updates

that tend to occur in the accession numbers assigned to SwissProt entries,

with the potential risk of losing track of the gene products. It is important

to note that, back in 2009, Ensembl annotations could be distinguished from

Uniprot ones even if they were both integrated in just one GOA file; but

these databases are now merged in the UniProtKB, so the conclusions de-
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rived from the “source of the data” cannot be re-explored in current versions.

Just after such assessments were made, the GOC introduced the GO

reference Genome Annotation project, implementing more rigorous anno-

tation protocols. Since then, existing anotations are being revised and re-

placed with more specific experimental codes. Thus, the GOC acknowledged

that the changes in the evidence codes assigned should not be considered

statements of the quality of the annotation, specially as some methods or

references may have a higher confidence or specificity than others. For ex-

ample, previous annotations would often be assigned with EXP, which is

the parental code for IDA, IPI, IMP, IGI and IEP. However, curators were

encouraged to revise old annotations with such code and replace them with

children codes of higher specificity [26].

Changes in the GO structure took place as more emphasis was put on

the assessment on the impact of changes of GO and GOA in applications

like enrichment analysis. In particular, Alterovitz et al (2010) proposed

modifications to the GO because they identified terms misplaced within the

graph that affected the results of enrichment analyses. Such modifications

were discussed with the GOC and incorporated afterwards [27]. The quality

of computationally inferred annotations also seemed to improve after such

changes were made [11].

Some members of the GOC also introduced annotation efforts focused

towards prioritized gene sets, and the EMBL-EBI explored the impact that

such prioritization had on gene set enrichment results. In particular, they

observed that more GO groups where such genes belonged could be retrieved

[28]. An independent assessment by Clarke et al (2013) also highlighted that

changes in GOA versions had a larger impact (compared to the changes in

GO structure alone) in the reproducibility of the results of enrichment anal-

yses over time [29].

Changes in GO/GOA also affect widely used tools for enrichment anal-
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yses, such as GSEA [30] or DAVID[31]. The tool developers have to keep

up and follow the recommendation from the GOC to use the latest version

of GOA available [32], but in many cases, the have not. Hence, users run

their analyses on annotations that are considerably outdated. Even if users

acknowledge the situation, they often forget to cite or check the version for

interpreting their findings or future references [32].

A different set of tool-related problems arise when they fail to remove

negative associations (those with a “NOT” qualifier) [33]; do not consider

the same protocol to map gene identifiers, sources, type of relationships

within GO, incorporate robust statistical analyses or correct for data ar-

tifacts [34]. For example, GSEA [30] considers “regulates” relationships in

the GO structure within their analyses, whereas ErmineJ [35] only considers

“is a” or “part of” relationships and also takes into account artifacts such as

gene multifunctionality (i.e., genes which have multiple functions, reflected

as the number of GO terms that have been assigned to them). This is par-

ticularly relevant when multifunctional genes are often retrieved from the

results, but are not necessarily related to the question of interest [36].

Another missing gap in the assessment of GO annotation quality was

partially filled in 2013 when Gillis and Pavlidis explored the stability of GO

annotations by measuring how genes can lose their “functional identity”.

In particular, they expressed functional identity in terms of how semanti-

cally similar a gene’s annotations were across editions. If a gene was most

semantically similar to its previous incarnations in the GOA, compared to

other genes, then it was considered to retain its “functional identity”. Loss

of functional identity is expected as annotations are added, but the rate of

this loss had not been previously evaluated. They found that at least 20%

of the genes can lose their identity after 2 years. They also characterized a

circularity problem, where the same publications are used to support pro-

tein interaction databases and GO annotations, affecting the applicability

of protein-protein interactions for gene function prediction [37].
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Parallel to the usage of GOA for enrichment analyses and despite the

challenges mentioned above, these have also been used in algorithms for gene

function prediction and their assessment. For those genes whose attributes

are not known or haven’t been processed by curators, the challenge relies

on predicting their “function”, especially because the experimental investi-

gation is limited and costly. However, the issues arising from using a gold

standard that is incomplete, such as GO, often makes this task more chal-

lenging. Huttenhower et al (2009) highlighted some of these problems while

assessing how the performance of machine learning algorithms are affected

in this context, but also suggested that the methods were still able to make

“useful predictions” out of incomplete standards [38].

To assess the performance of function prediction algorithms, the task

has been set to predict GO terms for some target genes [39–41]. Such as-

sessments often use, as a benchmark set, recently curated annotations from

a subset of those targets. For example, in the CAFA assessment, a 6 to 12

month waiting period (after the submission) is considered for the accumula-

tion of manual GO annotations. Then, a subset of those “new” annotations

are selected for the evaluation, which in turn look at which GO terms were

assigned to each target gene. However, Gillis and Pavlidis (2013) criticized

such task, as predicting biologically meaningful gene functions may not be

equivalent to predicting GO annotations. This is particularly relevant when

considering that patterns that can be attributed to the curation process

have been used to predict “gene function” since 2002. To give an example,

commonly co-annotated GO terms have been proposed as predictive meth-

ods [42], and even popular tools like the “GeneMANIA prediction server”

utilize such patterns to weight their predictions [43].

In fact, the results from the first Critical Assessment of Automated Func-

tion Prediction (CAFA) in 2013, showed that the top performing methods

incorporated existing knowledge of GO or based their algorithms on sequence

similarity. As many of the existing computational annotations (either IEA

or manually revised) (Table 1.1) are based on sequence similarity and incor-
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porated into the UniProtKB annotation pipeline, many inferred annotations

that have not been curated (IEA) can be considered predictions. In their

results, BLAST was outperformed by what was called the näıve method,

a control that assigns all the target sequences the exact same predictions

based on GO term prevalence from GOA data. This suggests that something

was wrong with the metric. Having a control that performs better than a

popular sequence similarity method, highlights the impact that artifacts at-

tributed to the curation process have on the performance metrics.

Gillis and Pavlidis (2013) assessed the CAFA results independently using

function-centered metrics,i.e., by asking the question “which genes should

be assigned to a particular function? In fact, when considering a function-

centric metric, BLAST was a top performing method and many of the man-

ually curated annotations were derived from existing electronic annotations

(IEA) [37]. This result could be interpreted as an attempt to predict which

targets would be curated or upgraded from existing annotations without

considering any biological attribute from the targets, which seems to fall

out of the scope of the actual “function prediction” task.

In conclusion, given the increased usage of GO for different scenarios and

the constant changes in GO annotations, it is of interest to make a compre-

hensive assessment of the annotation instability and assess the impact that

these changes have on current usages.
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Chapter 2

Objectives

In this thesis, I aim to:

• Run exploratory analyses to identify trends and the evolution of GOA

over time for 14 different taxa.

• Apply different metrics that can be used to learn more about the

instability of particular genes and annotations, including the degree

to which GO assignments are distributed unequally for each gene over

time; the functional identity of each gene compared to its current

state and the “existence” of an annotation considering the source of

the annotation.

• Assess the impact of these changes and artifacts that can be attributed

to curation efforts in applications such as the Assessment of Protein

Function Prediction Algorithms and Gene set Enrichment Analysis.

• Build a visualization tool to extend this information to GO users who

want to explore the instability of genes and annotations of their inter-

est.
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Chapter 3

Methods

The current project involved several steps. To ensure the quality of the

analysis, the first part involved a careful pre-processing of the raw informa-

tion and the implementation of exploratory analyses to observe changes in

the annotation data. The second part involved the design and creation of

a database and a website to visualize and make this information available.

The third part consisted of the exploration of the impact that changes in

the annotation data have on common settings (Figure 3.1).

Figure 3.1: General overview of the methods and analyses done in the
present study.
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3.1 GOtrack: Pre-processing and Analysis

In this section, I will describe the methods used at each step, the database

built to store this information and the web-based tool that was implemented

to make the data accessible to other users.

3.1.1 Data Collection

To collect all the historical annotations available for each one of the 14

species considered, monthly releases of Gene Association Files (”GOA”) in

GAF1.0 and GAF2.0 formats were retrieved from the EMBL-EBI FTP web-

site for: Arabidopsis thaliana (thale cress), Gallus gallus (chicken), Bos tau-

rus (cow), Dictyostelium discoideum (slime mold), Canis familiaris (dog),

Drosophila melanogaster (fruit fly), Homo sapiens (human), Mus musculus

(mouse), Rattus norvegicus (rat), Sus scrofa (pig), Danio rerio (zebrafish),

Caenorhabditis elegans (worm) and Saccharomyces cerevisiae (yeast) [44].

As the EBI repository only contains annotations for yeast and fruit fly with

the date stamp from 2011 until now, earlier versions of GOA files for these

organisms were retrieved from: FlyBase [45] (2006-2011), SGD [46] (2001-

2004) and SGD [47] (2005-2010). The editions (or versions) were ordered and

renumbered consecutively based on the release date. Data for Escherichia

coli was solely retrieved from EcoCyc [48].

To match the annotations with the corresponding versions of the GO

graph at each time point, monthly releases of the core version of the Gene

Ontology database (termdb-xml files) were collected from the GO repository

[49]. Each GOA file was paired with their respective GO version by using

their release dates and the date embedded on each termdb file name. In cases

where the GOA date did not have a matching termdb file, an earlier version

of the termdb was considered. The purpose of such matching was to infer

parental terms in the GO hierarchy for each GO annotation, considering only

“is a” and “part of” relationships and excluding root and obsolete terms.

28



3.1. GOtrack: Pre-processing and Analysis

3.1.2 ID Mapping

As described in the introduction, each GOA file can be created and sup-

ported by different databases. In particular, those created with the GAF1.0

format had database-specific accession codes for each gene product (DB

Object IDs). When the GAF2.0 format was introduced, some DB Object

IDs remained the same, but some others were merged, demerged, deleted,

replaced or mapped to their equivalents in the UniProtKB DB Object ID

version. These changes were implemented at different time points for each

species and some others, like SGD, had internal changes in their internal DB

identifiers even before the GAF format changed. As these changes are of

major importance to track the historical annotations of each gene product,

I implemented a procedure attempting to map the identifiers in a robust

manner was implemented (Figure 3.2 and Script 5.5).

The procedure considered the information retrieval and integration from

different sources:

• ”Mapping Files” provided by the UniProtKB which map a list of iden-

tifiers from external databases to UniProtKB accession IDs[50].

• Three custom dictionaries created with the information currently avail-

able in the Uniprot Documentation for E.coli, yeast and fruit fly. The

dictionaries map Uniprot/SwissProt entries with gene designations, or-

dered locus names, SwissProt primary accession numbers, entry names

and cross-reference accession numbers to the original accession IDs as-

signed from EcoliWiki, SGD and Flybase, respectively.

• A custom dictionary to track Uniprot accession numbers that were

once “primary” accessions and latter became “secondary” because of

a merging or demerging event. Before 2010, when the transition pe-

riod from the GAF1.0 to GAF2.0 format, the secondary IDs would be

normally incorporated as “synonyms” in the annotations. In subse-

quent GAF2.0 format files, these “synonyms” were removed from the

annotations.

29



3.1. GOtrack: Pre-processing and Analysis

The last GOA edition for each species where these secondary accession

numbers were found as synonyms were selected for the creation of

another custon dictionary: (Human (edition 105); Arabidopsis (edition

56); Chicken (edition 53); Cow (edition 46); Mouse (edition 69); E.coli

(edition 95); Fly (edition 30); Rat (edition 72); Dictyostelium (edition

25); Dog (edition 25); Zebrafish (edition 57); Worm (edition 25)).

The information stored on “DB Object Synonym” was collected and

mapped to its primary “DB Object ID”.

• Automated queries to the UniProtKB website were also implemented

to maintain the UniProtKB DB Object IDs (primary accession num-

bers) as updated as possible 2.

Some protein sequences and their corresponding accession numbers are

deleted from UniProtKB and disappear in subsequent GOA files 3. The

deletions occur when entries correspond to open reading frames (ORFs)

or pseudo genes wrongly predicted to code for proteins [14](http://www.

uniprot.org/help/deleted_accessions).

A mapping procedure was also implemented to track “DB reference

objects” (sources of annotation, mostly publications) from old GOA files

(GAF1.0 format). Earlier versions were found to incorporate obsolete MED-

LINE IDs that in subsequent editions were replaced for PubMed IDs. The

mapping files used for this mapping process were retrieved through the Na-

tional Library of Medicine [51] (Script: 5.6).

Finally, old DB Object IDs and DB Reference Objects were updated in

the GOA files for further analyses.

2Changes between primary and secondary accession numbers can also be found on
ftp://ftp.uniprot.org/pub/databases/uniprot/knowledgebase/docs/sec_ac.txt

3www.uniprot.org/faq/11
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Figure 3.2: General schema of the mapping procedure.

The analysis by Gillis and Pavlidis (2013) only considered gene products

that were consistently present in all the GOA file versions. No mapping

procedure was implemented and the instability of the identifiers was not

considered.

3.1.3 Exploratory Analyses

After mapping all the identifiers, I aimed to consider as many gene products

as possible, but discarding those that were considered “mistakes”, which

were disappearing from the GOA over time. For this reason, a series of lists

were generated to identify:

• All Terms: All the GO terms that have been used at least once across

GOA editions,

• Terms Always Present: GO terms that were present across all GOA

editions,

• All Genes: All the DB Object IDs that have been used at least once

(after mapping) across GOA editions,
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• Genes Almost Always Present: DB Object IDs representing “genes”

that are almost always annotated across GOA editions (user defines

threshold. Analyses were run to trace the annotations of gene products

that are present in at least 85% of the GOA editions).

The implementation gave the option to focus on gene products always

present, but including those that might not have been always made it even

more flexible and powerful. Therefore, in the analysis I considered “genes

products almost always present” and a threshold can be set up when run-

ning the analysis. In particular, I considered “gene products almost always

present” if they were present at least in 85% of the GOA editions.

A series of metrics were implemented to assess the instability of the

annotations for the gene products “almost always present” (Figures 3.3

and 3.4, Scripts 5.1 and 5.2):

• Semantic similarity: For each GOA edition, a hash table (an asso-

ciative array called gomatrix) was implemented to trace the GO terms

directly associated for those gene products “almost always present”.

Then, an assessment of how “functionally similar” each one of these

gene products is to itself was conducted by comparing the gomatrices

from previous editions vs. the current one (Scripts 5.3 and 5.4).

• Multifunctionality: Multifunctional genes in the last edition were

identified and ranked per species. Likewise, a multifunctionality score

for each gene product (using ErmineJ) was also calculated per GOA

edition. Gene products that have been prioritized for annotation by

the GOA tend to have more GO terms assigned. This metric does

not reflect that certain gene products are more biologically relevant

than others, but that they tend to be more studied or annotated.

Difference among gene products in their multifunctionality have an

important effect [36]. The score is the Area Under the Receiver Oper-

ating Characteristic Curve(AUROC, a comparison of the true positive

rate and false positive rate at various threshold settings) obtained by
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Figure 3.3: General GOtrack pipeline to pre-process the data for any species.

comparing the genes that are members of a GO group to the ranking

provided by the “GO term membership”.

• GO term membership: A way to assess GO term “popularity” is to

assess how many gene products have been associated to each GO term

over time. This metric can also be interpreted as how prevalent a GO

term is on GOA at each time point. This quantitative measure can

also indirectly reflect when the terms are incorporated or discarded

from the graph or when the GOC decided the term was no longer

suitable for annotations.

• Source Instability: If the sources of annotation are robust enough to
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Figure 3.4: General GOtrack pipeline for exploratory analyses.

support an association (such as experimental publications) then, even

if the GO terms assigned to reflect a determined “function” across

annotations change, these sources should remain linked to each gene

product across editions. To explore this hypothesis and assess if there

is also an instability in terms of sources used, a “Publication history”

analysis was made by linking the gene product with a publication ID

(supporting at least one of its annotations), among with the release

date of such paper and tracing their connection across all editions.

Hence, one can observe when the source was first used and when it

was discarded if that is the case. Tracing the date of publication is

also useful to visualize the age of the sources supporting GOA on a

global scale.

• Evidence code Instability: The usage of evidence codes to reflect
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the source for an annotation has changed over time. Since the GO Ref-

erence Genome annotation effort was established, annotations have

been revised to assign more specific experimental codes to annota-

tions.The guide to best practices for GO manual annotation also sug-

gests that annotations that had TAS codes should be replaced with

those that reflect published experimental results [52]. Hence, evi-

dence codes assigned to each annotation (gene product + GO term

+ PubMed ID) were traced across editions (“Evidence code history”)

to visualize such changes on a case-by-case basis.

• Number of direct GO terms annotated per gene product: The

total count of GO terms directly annotated to each gene product was

traced to assess quantitatively if it gains or lose terms over time.

• Number of propagated GO terms: The total count of GO terms

that can be inferred from those directly annotated to each gene product

was traced. This metric is used to assess if the gene product gains or

lose terms over time because of changes in the GO structure. The

propagation was made using ErmineJ and only “is a” and “part of”

relationships were considered.

• Number of promoted annotations: When annotations are revised

by curators, they can disappear, but one of the reasons is because the

GO terms assigned are replaced with a more granular GO term that

better reflects or supports the association. Annotations whose original

GO terms were “promoted” to a more granular (children term) were

identified and counted across editions (Figure 3.5).
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Figure 3.5: General overview to track commonly upgraded annotations.

3.1.4 Database Design, Creation and Management

A database was created to store annotation data and retrieve the information

(Figure 3.6). There are tables created to store general information for

all the species and tables that store specific information for each species

(Script 5.7).

The tables that contain information for all the species are:

• popularGenes: Stores the query history of GOtrackWeb users across

all species. It aims to provide us with an idea of the usage of GO and

what genes are of popular interest.

• edition to date: Stores the release date of each GOA file per species.

• species: Stores a catalog of all the species analyzed.

• GO names: Stores the GO term accession IDs and their correspond-

ing GO names (human readable names) for each Termdb file over time.

Therefore,if a GO term changed its name, previous names can be re-

trieved.

• unique go functions: Stores the relationship between the GO term

accession ID with its most recent GO name.

• avgAllSpeciesCount: Stores for each species and edition: 1) the

average number of GO terms directly annotated to the DB Object IDs

(gene products); 2) the average multifunctionality score; 3) the average

semantic similarity score of the DB Object IDs (gene products) in
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that edition with respect to the current one; 4) the average number of

parental GO terms that can be inferred from the annotations and 5)

the total number of DB Object IDs (gene products) that are present

in each edition.

• annotAnalysisTab: Stores for each DB Object IDs (gene products)

and edition per species: 1) the total number of annotations that have

been promoted from an IEA evidence code to a curated evidence code;

2) the total number of annotations that have been promoted to a

more granular GO term; the average number of GO annotations that

have negative a NOT qualifier with respect to the total number of DB

Object IDs (gene products) that have at least one negative annotation.

The tables that contain information for each species are:

• species gene annot: Stores the information from the GOA files: DB

Object IDs (gene products), GO term, evidence code, PubMed ID,

taxon, DB Object symbol, GO term name, Ontology.

• species replaced id: Stores the relationships between the original

DB Object IDs assigned to the annotations and the new DB Object IDs

(gene products) that were replaced with during the mapping process.

• species evidence code: A simplified version of “gene annot” where

the PubMed identifiers have been cleaned. It was created to make

queries faster. Stores the information: DB Object IDs (gene products)

GO term, PubMed ID, evidence code, edition.

• species count: Stores the pre-processed information for each gene

and edition. Contains: DB Object symbol, total number of GO terms

directly annotated, total number of GO terms inferred, the multifunc-

tionality score, semantic similarity (Jaccard) score.

• species gene per go: Stores information about how many DB Ob-

ject IDs (gene products) belong to a particular GO term (GO term

membership) per edition.
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• species avg: This table is created dynamically after all the informa-

tion has been inserted into the database. It stores the average value of

the columns present in species count and annotAnalysisTab for each

species.

• species unique gene symbol: This table is created dynamically

from “species gene annot” after the data for one species has been in-

serted. It contains the relationship of the DB Object symbols and the

DB Object IDs (gene product accession IDs).
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Figure 3.6: GOtrack database model. See main text for description.
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3.1.5 Web-based Visualization Tool: GOtrackWeb

A website was designed an implemented (Figure 3.7) and is now available

at: www.chibi.ubc.ca/GOtrackWeb.

In the main page, the top 10 queries made by the users and the top

multifunctional gene products per species from the last edition available are

displayed.

The main page was designed for users to query the historical information

for a gene product of their interest. The query allows the use of UniProtKB

accession number IDs, synonyms or or DB Object Symbols (gene symbol).

If the user decides to use a Symbol, all the DB Object IDs (accession num-

bers) that match (whether these are UniProtKB/SwissProt or UniProtK-

B/TrEMBL) are retrieved. If the user queries a UniProt accession number,

the specific information will be retrieved. Obsolete IDs can also be queried.

If the annotations from that obsolete ID are assigned to a newer ID, the

information associated to the most recent accession number is retrieved. To

make the query species-specific, the user must select a particular species

from the list and click on the Search button. The program on the back-end

does the following:

1. Search first for the gene product (DB Object IDs) in the db table

“species unique gene symbol” (list1).

2. Search each element from list1 in the db table “species repaced id” to

retrieve the most recent DB Object IDs available (list2).

3. Retrieves the data stored on table “species count” for each element in

list2.

4. Retrieves the data stored on table “species avg” for each element in

list2.

5. The DB Object IDs found for the queried gene product are displayed

above linked to the Uniprot website for more information.
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6. A dynamic plot using the retrieved data is generated in section “Count

history”, which includes the total number of inferred and direct GO

terms annotated to each ID from list2 across editions, as well as its

multifunctionality score and semantic similarity, which can also be

compared with the average values for the queried species.

7. Update the table “popularGenes” inserting the query made by the

user.

8. Retrieves the corresponding GO terms and GO names annotated to

each DB Object ID found in the db tables “GO names” and “species gene

annot”, separated by Ontology and displayed on the userRequest.xhtml

web page.

The user can then explore the annotations associated to the queried

gene. The user should change to the tab named “Functionality”. This tab

contains a browsable list of all the GO terms that have been ever assigned

to that gene product,separated by Ontology. The user can select those that

are of interest and click “continue”. The page is redirected to functional-

ity.xhtml with the tab “evidence code history”, which displays the historical

existence of the annotation. A dynamic plot is displayed, coloured by the

type of evidence code used. Each row corresponds to one annotation (DB

Object ID + GO term + evidence code + source (PubMed)). The user can

also click on a table with link-outs to access those papers that were used

to support the associations. Another tab named “GO term membership” is

also incorporated. In this section, the total number of DB Object IDs (gene

products) annotated to each of the GO terms selected are displayed on a dy-

namic plot. Alternatively, on the main website, the user can just search for

a GO term ID, and only the plot with the GO term membership is displayed.

A different section on the website was created to provide a general

panorama for each species. The section is called “Global Trends” and can

be accessed through the top panel. Two tabs are displayed, one allowing the

user to select two species for comparison. Two dynamic plots are generated.
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The first one retrieves information from the table “avgAllSpeciesCount”

and displays for each edition and species: the average number of direct GO

terms; the average multifunctionality score; the average number of parental

GO terms; the average semantic similarity score and the total number of

gene products (measured by DB Object IDs found after the mapping pro-

cess).

The second plot is generated from table “annotAnalysis” and displays

for each edition and species: the total number of annotations that were

replaced with a more specific granular GO term; the total number of elec-

tronic annotations that were revised (switching the evidence code IEA to

another evidence code); and the average number of GO annotations that

have a negative association (those with the NOT qualifier) relative to the

total number of gene products that have at least one negative annotation in

each edition.

To explore the overall historical data for one species, the information

stored on “species avg” is retrieved and displays per edition: average mul-

tifunctionality score, total number of annotations promoted from IEA to a

manual evidence code and from a general to a more granular GO term, aver-

age number of direct GO terms and the total number of unique DB Object

IDs (gene products). As there were limitations in the the visualization plot,

to aid with the comparison of changes in the multifunctionality score with

other parameters, this score was multiplied by 10,000,000.

The components used to develop GOtrack and the web-based tool were:

Eclipse Juno, Maven 3.1.0, NetBeans 7.3.1, mysql-connector-java-5.1.18,

Primefaces 4, JSF 2.2, Apache Tomcat and a Google Charts API

(https://google-developers.appspot.com/chart/).
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Figure 3.7: General overview of the GOtrackWeb implementation.
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3.2 Proposing a Benchmark for the Assessment

of Function Prediction Algorithms

As mentioned in the introduction, GO and GOA are used in the context

of Gene function prediction and the evaluation of the performance of such

algorithms. Currently, no reliable “gold standard” is available to use in this

context, but GO annotations that get freshly curated are used as a bench-

mark set.

However, we have to consider the limitations that the annotations have

for this task. The task has been defined to predict GO terms to a set of tar-

get genes. This task can be interpreted as an assessment of the participant’s

ability to predict the curation activity, specially as the functional informa-

tion for some of the target gene products might already be published but

just haven’t been captured in the annotations (post-dictions). Even more,

the “accumulation period” of only 6 months is a limiting step, as few actual

functional discoveries would be made and annotated in the same evalua-

tion time point. With this in mind, it is also important to consider that

some curation patterns can be found in GOA, such as: GO terms frequently

used, GO terms commonly upgraded or GO terms often co-annotated. Al-

gorithms attempting to “predict” curation activity might use such patterns

to increase their “performance”. Gillis and Pavlidis (2013) observed that

in the “state of the art” publication by CAFA, the participating algorithms

do exploit this information [53]. However, such artifacts do not have any

biological relevance and should be subtracted.

In the present study, we identify, use and propose these parameters as a

baseline for a better assessment of function prediction algorithms. To test

the actual “performance” of such artifacts, we submitted the “predictions”

inferred from such patterns to the CAFA2 assessment, but as of September

2014, the results haven’t been made available to the participants. In the

meantime, I elaborated an independent analysis of the performance using

target sequences and old predictions submitted by participating algorithms
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of the CAFA1 assessment(Script 5.8).

3.2.1 Data Collection

Targets from the current (2013) and previous (2011) CAFA assessment were

used as gene sets to study patterns associated to the GO curation process

(Tables 3.1 and 3.2). GOA files were retrieved for the selected species for

the CAFA (2013) assessment.

• CAFA 2013-2014 Target sequences were retrieved from:

http://biofunctionprediction.org/node/12

• Annotations (GOA) for A.thaliana, D.discoideum, H.sapiens, M.musculus,

R.novergicus, S. cerevisiae, D. rerio, E.coli were used from the GO-

track analyses.

• S. pombe annotations were retrieved from:

ftp://ftp.ebi.ac.uk/pub/databases/pombase/pombe/Gene_ontology/

• X. laevis annotations were retrieved from:

http://www.uniprot.org/uniprot/?query=taxonomy\%3a8355&format=

*

• H. pylori, M. genitalium, S. enterica, P. syringae, P. putida, S. pneu-

monia, M. genitalium, B. subtilis were retrieved from:

ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/proteomes/.

• P. aeruginosa was retrieved from:

http://cvsweb.geneontology.org/cgi-bin/cvsweb.cgi/

go/gene-associations/gene_association.pseudocap.gz

• M. jannaschii, I. hospitalis, N. maritimus, H. salinarum, S. solfatar-

icus, H. volcanii :

ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/proteomes/

• P. furiosus from:

http://www.uniprot.org/uniprot/?query=taxonomy\%3a186497&format
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Table 3.1: Target sequences and species considered for the CAFA2 assess-
ment.
Species ID Organism Domain No.Targets

3702 Arabidopsis thaliana Eukarya 12069
44689 Dictyostelium discoideum Eukarya 4126
9606 Homo sapiens Eukarya 20257
10090 Mus musculus Eukarya 16613
10116 Rattus norvegicus Eukarya 7854
559292 Saccharomyces cerevisiae Eukarya 6621
8355 Xenopus laevis Eukarya 3365
284812 Schizosaccaromyces pombe Eukarya 5089
7955 Danio rerio Eukarya 2885
7227 Drosophila melanogaster Eukarya 3195
224308 Bacillus subtilis subsp. subtilis 168 Bacteria 4188
83333 Escherichia coli K12 Bacteria 4431
85962 Helicobacter pylori ATCC 700392 Bacteria 581
243273 Mycoplasma genitalium ATCC 33530 Bacteria 483
208964 Pseudomonas aeruginosa PA01 Bacteria 1245
160488 Pseudomonas putida KT2440 Bacteria 693
223283 Pseudomonas syringae pv.tomato str.DC3000 Bacteria 675
321314 Salmonella enterica Bacteria 882
99287 Salmonella typhimurium Bacteria 1771
170187 Streptococcus pneumoniae TIGR4 Bacteria 502
478009 Halobacterium salinarum R1 Archaea 267
309800 Haloferax volcanii DS2 Archaea 93
453591 Ignicoccus hospitalis KIN4/I Archaea 125
243232 Methanocaldococcus jannaschii DSM 2661 Archaea 1787
186497 Pyrococcus furiosus DSM 3638 Archaea 480
273057 Sulfolobus solfataricus P2 Archaea 448
436308 Nitrosopumilus maritimus strain SCM1 Archaea 91

3.2.2 GO Term Prevalence in Annotation Data

The prevalence of the terms in the GOA are considered in both CAFA1 and

in the present study as a baseline (näıve method or null). Some GO terms

are noticeably more used than others, specially those that are “generic”.

Prevalence was computed using the last GOA edition available (before the

CAFA2 or CAFA1 submission deadline). Annotations were propagated and

the size of each GO group was determined. Prevalence was computed sep-

arately for each taxon (at the species level, except for bacteria and archaea

organisms, within each of which annotations were pooled). The assessment

allowed the assignment of up to 1500 predictions per target sequence. Hence,
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the top 1500 most prevalent GO terms were assigned to each and all the

target sequences after filtering those that were already assigned as manual

annotations for each gene product.

Prevalence provided the initial scores for each target-GO term associa-

tion. As simply predicting commonly used terms yields surprisingly strong

performance according to Gillis and Pavlidis [53], this score would only be

replaced by the IEA upgrade or the co-occurrence methods if they had a

stronger prediction than prevalence.

3.2.3 Identification of Inferred Electronic Annotations

Commonly Reviewed and Re-annotated by Curators

in GOA

Electronic annotations for each species were identified within a two year

interval (12-2008 to 12-2012). Posterior dates were then used to check for

annotation upgrades, which could be the same GO term but with a manual

evidence code assigned or updated to a children term with a manual evi-

dence code. The data for each species was independently processed. The

promotions were translated into probabilities by pooling the frequency for

which term is upgraded across all the taxa.

3.2.4 Identification of GO Terms Frequently Co-annotated

in GOA

The probability of co-occurrence of GO terms was calculated based on the

conditional likelihood of getting a GO term “B” given that a gene already

has GO term “A” assigned with a manual evidence code. These probabilities

were calculated by pooling gene annotation data from all the taxa, consid-

ering an interval of two years before submission deadline.

Given the GO terms A,B, the correlation matrix M is defined as the

matrix whose entries M[A,B] are the number of gene products(Uniprot ac-

cession IDs) that have annotations toA,B simultaneously (integrating GOA

annotations for all species from 12-2008 until the submission deadline), i.e.
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freq A ∩B.

Step 1: freq(A ∪B) = M [A,A] +M [B,B]−M [A,B]

Step 2: P (A ∩B) = freq(A∩B)
freq(A∪B) =

M [A,B]
freq(A∪B)

Step 3: P (A|B) = P (A∩B)
P (A)

3.2.5 Evaluation of the Performance of Function Prediction

Algorithms and the Proposed Benchmark

To assess the performance of the methods, predictions were generated using

the same pipeline described above but simulating the predictions that would

have been likely assigned if we were participating in the CAFA1 assessment.

The results were later compared with those of other algorithms submitted

in the CAFA1, which were provided to us anonymously.

The final list of predictions used as “gold standard” by the organizers

of CAFA1 was also considered to assess the performance of our methods.

The gold standard list included 866 targets from a total of 48,298 target

sequences initially set for the assessment and 1876 annotations (which, after

propagation,formed a total of 16,888 relations (gene-GO term). Only BP

and MF ontologies were considered. A filtered “gold standard” list was also

considered using only those GO terms that had 10 to 100 members in the

true positive list (after propagation).
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Table 3.2: Target sequences and species considered for the CAFA1 assess-
ment.

Taxon ID Organism Number of targets

10090 Mus musculus 231
10116 Rattus norvegicus 45
3702 Arabidopsis thaliana 86
44689 Dictyostelium discoideum 2
8355 Xenopus laevis 16
9606 Homo sapiens 285
4932 Saccharomyces cerevisiae 5
1423 Bacillus subtilis 16
83333 Escherichia coli K12 153
287 Pseudomonas aeruginosa 2
1313 Streptococcus pneumoniae 25

The primary metric used for the CAFA1 assessment was gene-centric

and is called the “CAFA score”. For each predicted annotation from the

algorithms and each annotation present in the “gold standard” list, terms

were propagated to the root. Any overlap between the predicted annota-

tions and the “gold standard” was considered a true positive. Precision,

recall, thresholds and F-score were calculated using the ROCR package in

R[54]. The average precision for each threshold t was calculated across tar-

gets with respect to the number of targets for which at least one prediction

was made above that threshold t. The average recall was calculated across

all targets regardless of the threshold. The F-measure (harmonic mean) was

also calculated as defined by the CAFA organizers [41].

As proposed by Gillis and Pavlidis [53], a different gene-centric approach

was considered by using the Resnik measure to explore the semantic similar-

ity between the actual and the predicted function. In particular, this metric

was used to find how many predictions were more informative than the null,

i.e., how many of those predictions had a higher score than what could be

assigned by prevalence alone.

A function-centric measurement was also performed by calculating the
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Area under the receiver operating characteristic curve (AUROC). Terms

were propagated to the root and the scores assigned by the prediction meth-

ods were used. The package pROC [55] was used to calculate the area under

the ROC curve.

3.3 Analysis of the Instability of Gene Set

Enrichment Analysis Over Time

Gene Set Enrichment analysis are increasingly used to analyse and inter-

pret biological information. For this reason, it is important to explore the

impact that annotation instability has on the results of such analysis on a

comprehensive scale.

In this study, more than 2,000 hit lists stored in GMT files from Mol-

SigDB [56] (collection C2: curated gene sets from online pathway databases,

publications in PubMed and knowledge of domain experts and collection

C3: motif gene sets based on conserved cis-regulatory motifs from a compar-

ative analysis of the human, mouse, rat and dog genomes) [30] were retrieved

from the GSEA website:

(http://www.broadinstitute.org/gsea/msigdb/genesets.jsp). Only hit lists

with more than 10 members were considered (Figure 3.8). After that ini-

tial filtration, a series of enrichment analyses were ran using yearly GOA

(fromMay and November). For each gene set, the same score was assigned to

all the genes (0.001). Enrichment analyses were done using the software Er-

mineJ, considering an over-representation(ORA) analysis and a FDR ≤ 0.1

(Figure 3.9).
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Figure 3.8: Pre-processing steps for enrichment analysis.
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Figure 3.9: Pipeline to compare results of enrichment analyses over time.
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Chapter 4

Results and Discussion

4.1 Exploratory Analyses

To get a general overview of the data, the first exploration was made towards

exploring if the annotations were more prominent or supported for organisms

with a smaller genome size or if the biases previously reported were most

likely influenced by curation preference. By considering the the genome size

of each species (considered as the total number of coding genes reported in

the current assembly listed in the Ensembl Genome Browser), the number of

existing annotations and the number of annotations supported by publica-

tions. The results showed that there is no association between of the number

of annotations and the genome size. Within organisms that have less than

10,000 genes, yeast has more annotations and also more publications (circle

size), followed by E. coli; while dictyostelium clearly lacked annotations and

publication supporting those annotations. For those organisms that have

a genome size between 15,000 and 20,000 genes, the fruit fly had consider-

ably less annotations than chicken or dog, but more of them were supported

by publications. This result is expected as chicken, dog or cow have most

of their annotations are inferred by homology. For those organisms whose

genome size is bigger than 20,000 genes, mouse was noticeably the organism

with the highest number of annotations, followed by human and rat. These

three organisms also had a considerable number of annotations supported

by publications. However, other important model organisms like zebrafish,

worm or Arabidopsis fall behind in the number of annotations available and

those supported by publications (Figure 4.1).
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Figure 4.1: Overview of Species-specific biases on manual curation efforts. No re-

lationship was found between the genome size (quantified by the number of protein-

coding genes), the number of total annotations and the total number of publications

supporting them (circle size).

All 14 organisms were processed for analysis. However, for descriptive

purposes and an easier comparison, only 5 representative species are dis-

cussed: human, Arabidopsis, E.coli, yeast and fruit fly.

It is clear that there are more gene products than genes in the genome.
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However, one would likely expect a constant or subtle increase in the number

of those gene products annotated over time. Nevertheless, these numbers

are highly dependant on the source and the database that provides that

information. As mentioned in the introduction, DB Object IDs from the

UniProtKB are reflecting gene products mapped to each gene. However,

the instability of such database (and others) will likely impact in the num-

ber of DB Objects available.

Consistent with this hypothesis, the number of gene products (DB Ob-

ject IDs) available at each GOA version over time had a gradual increase for

organisms with larger genomes such as mouse, human or Arabidopsis. In

contrast, smaller organisms like fly or yeast seemed more stable in terms of

the number of gene products. However, exceptions were observed in a par-

ticular time points for human and E.coli, where clearly some gene products

were lost and recovered intermittently over time.

Even if the GAF2.0 GOA format has the rule of assigning DB Object

IDs to a top level primary gene or gene product ID, the total number of

proteic entries are directly influenced by the source of the annotation files.

In particular, the sudden decrease in the number of DB Object IDs observed

for human data between 2009 and 2011 can be explained by the fact that,

at the end of 2008, a draft of the complete human proteome was released

specifically from UniProtKB/SwissProt. This release had approximately

20,000 putative human protein-coding genes manually reviewed. UniProtK-

B/TrEMBL products were also revised and 15,000 isoforms were merged

with 40% of the UniProtKB/SwissProt entries, causing a large reduction

in the number of annotated products. These numbers are consistent with

the shifts observed (Figure 4.2).

The next increase for human was observed in 2011. The most likely

reason is that a complementary pipeline was implemented to import pre-

dictions from UniProtKB/TrEMBL sequences, which are non-revised and

potentially redundant (http://www.uniprot.org/help/human_proteome).
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Similar shifts can occur when annotation pipelines are revised by other

databases that are species-specific, as it may be the case for the changes

observed in E.coli (EcoCyc).

Figure 4.2: Total number of Gene Product Identifiers found for each species.

Additionally, a scientist would most likely be interested to know how

stable are the annotations of each gene product over time. This can be ex-

plored by looking at the changes in the number of the GO terms directly

annotated to each gene product over time.

To have a general overview of the number of “functions” one can expect

for each gene product and species, the average number of GO terms assigned
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to all the gene products was computed. The results showed a considerable

variation within and between species, ranging from 3 to 10 GO terms per

gene product. In this metric, no distinction was made for GO terms man-

ually assigned or inferred electronically. However, in the case of human,

the average count is clearly influenced by electronic annotations, specially

when considering the changes discussed above (where UniProtKB/TrEMBL

products were removed between 2009 and 2011). From this observation, it

is clear that the gene products from UniProtKB/SwissProt (in that period

of time) had considerably more GO terms assigned than their non-reviewed

counterparts originated from UniProtKB/TrEMBL. But, as both sets are

incorporated in-distinctively in the GOA files, the average value decreased

when the new pipeline reincorporated UniProtKB/TrEMBL entries into the

database.
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Figure 4.3: Average number of GO terms directly annotated to gene prod-
ucts across editions.

A closer look at the data showed a high variability in the number of

GO terms assigned to each gene product over time (Figure 4.3). In some

cases, the changes would be noticeable, whereas in others, no changes would

be detected. An example of such changes is shown (Figure 4.4), where

a random set of genes from human was taken to compare the difference

between the number of GO terms assigned from one edition to the next one.

A common “assumption” is that existent annotations remain stable and new

ones would be incorporated over time. A gradual increase in the number of

GO terms might be then expected. However, this figure showed that some

notorious shifts can occur on small periods of time and that these differences

occur in larger proportions for some gene products and in particular editions.
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Figure 4.4: Contrasting shifts found in the number of GO terms assigned to a random set of gene products across editions.The

gray colour indicate that no changes in the number of terms were observed compared to those of a previous edition. A red

colour would indicate that the gene product lost more than 20 terms within that particular edition compared to the previous

one and the blue colour would reflect that it gained more than 20 GO terms compared to the previous edition. All genes

were explored, but only a random sample is shown. Genes that showed the more drastic changes in human data showed a

magnitude of over 100 GO terms added or removed at particular time points compared to previous editions.
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However, gene products that seemed to have a relatively constant num-

ber of GO terms are not necessarily “stable”. In particular, terms can appear

and disappear from one edition to the next. An example of such instability

is shown on (Figure 4.5).

Figure 4.5: Example of the functional instability that gene products have over

time. The gene product OR11H7 (Olfactory receptor 11H7) with the UniProtK-

B/SwissProt ID Q8NGC8 is used as an example of functional instability. The GO

terms were traced and a constant adding and removal of the same terms across edi-

tions could be appreciated. The schema displays the historical changes, where each

GO term directly annotated has been colour coded. Those marked with an asterisk

(*) are GO terms that remained annotated to the gene product as of August 2014.

The latter example clearly reflects the problem of the instability of the

GO terms. A way to explore such shifts on a wider scale is by looking at

how semantically similar a gene product is to itself. This can be done by
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using the Jaccard distance (Figure 4.6).

Figure 4.6: Average values of how semantically similar genes are across
editions.

Noticeably, after only 2 years, yeast, human, Arabidopsis and mouse

data showed only a semantic similarity of just 50% compared to the current

annotations but increased to 80% within the same year. Interestingly, the

fruit fly had a different behaviour and on average, its gene products retained

a higher functional similarity. In contrast, E.coli data showed a considerably

abnormal pattern of semantic similarity, which seemed correlated with the

drops observed in the number of gene product IDs. The results are similar

to those reported by Gillis and Pavlidis (2013) for “genes always present”
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in human data [37].

Gene products that are multifunctional often tend to be prioritized for

curation. In fact, when looking at the gene sets defined by different GOC

projects, they seemed to rank high in terms of their multifunctionality score.

This behaviour was particularly observed in the gene sets listed for car-

diovascular processes and those derived from the reference genome project

(Figure 4.7).

Figure 4.7: Exploring the association between prioritized gene sets for curation

and multifunctionality. Genes that have been prioritized for curation seemed also

to be highly multifunctional. However, some projects seemed to rank higher than

others. Some genes are not in the top multifunctional ranking, seemingly because

the curation project is still in progress.

However, from a general overview, the average multifunctionality score

for each species showed a very slight gradual increase, and only yeast and
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E.coli data had considerable shifts. This means that on average, the score

of gene multifunctionality across genes do tend to increase over time, poten-

tially due to the increase in the multifunctionality effect of the prioritized

genes (Figure 4.8).

Figure 4.8: Average score of gene multifunctionality across editions.

In fact, most of the gene products present in GOA data are not consid-

ered multifunctional, specially when on average, each gene product has 3 to

10 GO terms. One particular problem that has been constantly observed

and described is that most genes have very shallow GO terms assigned, spe-

cially because these were inferred computationally and in most cases, have

not been curated.
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One indirect form to verify this is by exploring the overall GO term

membership across editions (i.e. the number of gene products belonging

to a particular GO group). The results showed that only a few set of GO

terms are directly annotated to support the largest number of gene products

(Table 4.1).

In particular, the top GO terms used across editions were too shallow,

reflecting the lack of a proper coverage in the GOA data, specially as the

root terms were also the ones most commonly assigned: “biological pro-

cess” (GO:0008150), “molecular function”(GO:0003674/ GO:0005554), “cel-

lular component” (GO:0008372/GO:0005575), “cytoplasm”(GO:0005737),

“nucleus” (GO:0005634), “translation” (GO:0006412), “plasma membrane”

(GO:0005886), “membrane” (GO:0016020), “integral component of mem-

brane” (GO:0016021), “protein binding” (GO:0005515) and “ATP binding”

(GO:0005524).

On one hand, a person would assume that such shallow terms are only as-

signed by IEA annotations. However, when IEA annotations are removed,

the top terms most commonly assigned (as direct GO terms) remain mostly

the same, except for a few others like: ”regulation of transcription, DNA-

templated” (GO:0006355), “cellular response to DNA damage stimulus”

(GO:0006974), “structural constituent of ribosome”( GO:0003735) or “cy-

tosolic ribosome” (GO:0022626), which were particularly prevalent in Fly

data.

Table 4.1: The GO terms most frequently used in GOA data.
Species >5,000 genes 1,000-5,000 genes 100-1,000 genes <100 genes Total GO terms(GOA)

Human 1-5 7-33 96-436 3244-14034 3347-14507
Arabidopsis 1-2 9-22 85-265 1534-5223 1628-5509
E.coli 0 1-2 2-38 859-3146 861-3191
Yeast 0 5-8 6-85 1396-4925 1402-4965
Fruit fly 0 4-13 61-128 4320-6238 4410-6374

The numbers on the table reflect the range in number of GO terms that have a

certain number of genes (GO membership) for each species. The last column of

the table shows the range of GO terms that have been ever been used to support

the annotations across GOA editions.
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Another way to observe this is by looking at the number of inferred terms

for each direct annotation (Figure 4.9). The average values obtained were

consistent with previous observations. In particular, for human data, the

number of propagated functions between 2009 and 2011 was considerably

higher from those of other time points where UniProtKB/TrEMBL anno-

tations (with shallow GO terms) are present. However, it is important to

note that all the species seem to have a gradual increase in the number

of propagated terms, which can lead to think that annotations are gaining

“specificity”. Nevertheless, it is important to remember that one of the

properties of the GO structure is that the depth of a term in the branch

does not necessarily reflect how specific a term can be.

Figure 4.9: Average number of inferred terms over time.

However, an interesting way to interpret that subtle an gradual increase

is by arguing that in the last couple of years, the Reference Genome Project
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focused their efforts towards improving and revising existent GO annota-

tions. The results reflect such efforts. Particularly, a large number of anno-

tations are being curated from electronic inferences. In contrast, a small but

still appreciable proportion of previous manual annotations have also been

upgraded to more granular GO terms. However, these promotions were con-

siderably different between species (Figure 4.10).
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Figure 4.10: Total number of electronic annotations that are curated and
total number of manual annotations that are promoted with a more granular
GO term.

The effect of upgrading IEA annotations to manual revisions can also be

explored by observing the changes in the number of annotations assigned to

other manual evidence codes for each ontology. For example, in the cellular

component ontology, recent annotations have been assigned to the compu-

tational codes IGC, IBA, IKR, and IRD. Some codes are only used for one
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species: ISO and IGC in fruit fly and IKR in human. Others have been used

for longer and have increased its usage, like RCA and ISM. It seemed that

more increases in annotations from this ontology are found for those with

experimental evidence codes, such as IPI, IDA and in a smaller proportion

IGI. The usage of IEP was apparently discontinued and EXP evidence is

only found currently in E.coli data. Interestingly, TAS annotations have

remained stable, except for human data, where an important increase was

found. The usage of other codes assigned by curators, such as IC or ND

have remained stable, except for Arabidopsis, where a considerable increase

of gene product annotations with the code ND (no biological data is avail-

able) was reported in 2011 (Figure 4.11).
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Figure 4.11: Changes in the usage of evidence codes for the Cellular com-
ponent Ontology.

In the molecular function ontology, recent annotations were assigned to

the computational codes ISO, ISA, IBA, IKR and IRD. Some increased its

usage like ISS (although remained the same for fly or E.coli), ISM in fly (but
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dropped in yeast), and RCA remained stable in all but yeast data, were its

usage dropped. Experimental annotations have also increased slightly for

IDA, IPI and IGI. The usage of IEP was also discontinued in this ontology.

TAS annotations have remained stable, whereas IC have slightly increased.

ND annotations have also remained stable, except for Arabidopsis again.

Contrary to the cellular component, annotations assigned to ND were re-

moved from E.coli data (Figure 4.12).
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Figure 4.12: Changes in the usage of evidence codes for the Molecular Func-
tion Ontology.

In the biological process, many new annotations have been recently in-

corporated with the computational codes ISA, ISM, IBA, IRD, IKR and
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RCA. However, they were mostly used for fly, yeast and human data. Ex-

perimental annotations are gradually increasing for IDA, IGI, IMP or IC

codes, and has remained stable in TAS or ND annotations. It seems that

NR data is still present in E.coli data, indicating that some genes haven’t

been characterized (Figure 4.13).
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Figure 4.13: Changes in the usage of evidence codes for the Biological Pro-
cess Ontology.

It is important to remember that annotations can change not only due to
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GO term upgrades or changes in the evidence codes, but also due to incon-

sistencies in the databases. A way to visualize the shifts observed (Figure

4.5) on a practical way for users is by plotting the “existence” of the anno-

tation at each time point.

Contrary to the previous methods discussed in the introduction, I con-

sidered not only the GO term or evidence code, but also the supporting

publication to trace the annotation. This is arguably the most important

factor to consider if one aims to properly trace the existence of the anno-

tation and, even if the annotation disappeared, the association can still be

validated if the source is accessible, specially for manual annotations.

Users often assume that manually curated annotations from revised gene

product IDs (as its the case for those derived from the UniProtKB/SwissProt

database) remain relatively present or stable in subsequent GOA editions.

However, an exploration made with human data for the highly popular and

multifunctional gene TP53 with a random selection of its annotations showed

the opposite. ( Figure 4.14) shows that, even for highly studied genes such

like this one, important changes occur from one edition to the next. Old

annotations can be removed completely, others can remain relatively stable,

disappear after just a few editions or exist in only one single GOA edition.

Another potential hypothesis of why manual annotations can disappear,

is that maybe the source was not robust enough, was wrongly interpreted

or was even derived from a retracted paper. An exploration of how many

retracted papers are used to support annotations however, showed that the

numbers are negligible (less than 5, data not shown).
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Figure 4.14: Manually curated annotations are also unstable. A common assumption is that manually curated
annotations are stable. However, an exploration for 50 random annotations in human for the multifunctional gene
TP53 highlighted that their annotations can be highly volatile over time.
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4.2 Utility of Creating a Web-based

Visualization Tool: GOtrackWeb

Clearly, there is still a lot to learn from exploratory data analyses in gene an-

notation data. The previous results highlighted the high variability of GO

annotations. However, the importance of assessing the instability should

also be translated into an application that users can use, and particularly,

that allows them to explore how these factors impact genes and annotations

of their interest. Such tool was not available until now.

A database and a web interface (GOtrackWeb) were built to study and

extend this information to the community and designed to keep the informa-

tion as updated as possible. This is a large contribution that can be useful

not only for researchers, but also for GO curators.

On the website, users are able to explore all the UniProtKB/SwissProt or

UniProtKB/TrEMBL identifiers mapped to particular gene symbols; com-

pare parameters such as the number of direct and propagated terms for

their gene product of interest over time, changes in their multifunctionality

score or how semantically similar they were in previous versions as com-

pared to the latest version on a dynamic plot. Similarly, they can retrieve

which are the top multifunctional genes for each species in the latest edition

(Figure 4.15).
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Figure 4.15: Explore different exploratory metrics for a gene product.

Additionally, the functionality tab is very handy as users are able to

explore all the GO terms that have been ever annotated to the queried gene

product and visualize the “existence” of each annotation across editions. A

“time line” with monthly squares are displayed for users to visualize this

existence. The colours of each monthly box represent the evidence code
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that was used in that annotation at that time point. When the annotation

was absent for a particular edition, a gap in the time line is shown. Even

if the GO term is no longer used or if the annotation seems unstable, the

user can have access to the sources used to support them by using the

table displayed below (in case there is a PubMed ID). Likewise, users can

download this information or even check the time line of how many gene

products have been assigned to the respective GO terms at each time point

(Figure 4.16).
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Figure 4.16: Explore the historical existence of annotations associated to
functions for a particular gene product of interest.
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4.3 The Assessment of Gene Function Prediction

Algorithms

As it was noted in the exploratory analyses, curation effort is skewed to cer-

tain model organisms and within each organism, prioritized gene sets seem

to favor multifunctional genes. The results from the GO term membership

also highlighted that mostly shallow GO terms are assigned to annotation

data and that often IEA annotations are preferred in manual revisions.

As most of the genes considered in the CAFA assessment already have

at least an electronically inferred function assigned to them (mostly by se-

quence alignment or other similar methods), it is likely that for the CAFA

assessment, manual annotations that are likely to come up in the “accumu-

lation period” (and most likely used for the assessment), will reflect IEA

upgrades.

Taken all these factors into account, a submission was made for the

CAFA2 assessment by considering the GO term prevalence as the null model,

and assigning the most prevalent terms (excluding those already assigned

manually) to every single target. Additionally, GO terms that are frequently

updated or commonly co-occurred were also assigned as “predictions” if

their probability score was higher than what could be assigned by preva-

lence alone.

To assess the performance of this set of methods, which basically can be

attributed to annotation artifacts and do not consider any biological reality

of the targets, I reproduced the predictions by using in this case the targets

included in the gold standard set of the CAFA1 assessment.

In general, co-occurrence and IEA upgrade showed a small contribution

on top of prevalence. Specifically, on average across all the evaluation tar-

gets, 15% of the predictions were derived from co-occurrence and 84% were

derived from prevalence. Contrary to what was expected, only 1% of the
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predictions were assigned by IEA upgrade, as their probabilities rarely im-

proved those from prevalence. When using the gold standard set reported

in the CAFA1 paper to assess how many of our predictions became true

positives, an average of 10 (true positive) annotations and a maximum of

125 annotations were derived from prevalence, 0 on average and a maximum

of 2 annotations were derived from IEA upgrades and 1 on average and 41

as the maximum number of annotations were derived from co-occurrence.

These trends didn’t differ when combining prevalence with only one of the

two other methods. The apparent utility derived from IEA upgrades might

in part be just a reflection of the closed world assumption of the evaluation,

a limitation that has already been criticized [15] and recently explored [57].

In fact, many IEA annotations are likely to be accurate even if they are not

directly upgraded by curators in the time frame used for the evaluation.

To further assess the relative “performance of these methods, I used the

18 sets of predictions that were provided to Jesse Gillis and Paul Pavlidis

from the organizers of the CAFA1 assessment for an independent evaluation.

They also provided the “predictions” from the prevalence set used as a

control,as well as those derived from the GOtcha and BLAST methods.

When exploring the performance of the proposed methods in a function-

centric evaluation versus the others, it was clearly observed that regardless

of the ontology, the combined method performed better than prevalence

alone and was comparable to others. GOtcha and BLAST were the top

performing methods. An alternative “gold standard” was used by including

GO terms that have 10 to 100 genes assigned, but the results didn’t show

any significant differences between using this or the CAFA1 gold standard

(Figure 4.17; Table 4.2).
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Figure 4.17: Results of the performance of function-prediction algorithms as
measured by AUROC. A and B show performance using GO terms present
in the gold standard list; C and D show performance using GO terms that
had 10 to 100 genes assigned.
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Table 4.2: Results of the function-centered performance as measured by
AUROC.

Ontology
Number of GO
(terms out of 18974)

Method for
AUC analysis

Team-data
AUC value
(Prevalence filtered)

BP

154

GOTerms
considered
if they had
10-100 members

BLAST 0.680
Gotcha 0.698
Naive Method 0.500
Prevalence + IEA + co-occurrence 0.599
Prevalence + IEA 0.557
Prevalence + co-occurrence 0.588

Top score 0.698
Lowest score 0.500
Average (all teams) 0.571

211/233
All GOterms
considered in
the gold standard

BLAST 0.702
Gotcha 0.715
Naive Method 0.500
Prevalence + IEA + co-occurrence 0.595
Prevalence + IEA 0.557
Prevalence + co-occurrence 0.590

Top score 0.715
Lowest score 0.500
Average (All teams) 0.575

MF

22

GO terms
considered if
they had 10-100
members

BLAST 0.798
Gotcha 0.815
Naive Method 0.500
Prevalence + IEA + co-occurrence 0.540
Prevalence + IEA 0.508
Prevalence + co-occurrence 0.538

Top score 0.831
Lowest score 0.500
Average (All terms) 0.688

27/28
All GOTerms
present in the
gold standard

BLAST 0.792
Gotcha 0.813
Naive method 0.500
Prevalence + IEA + co-occurrence 0.530
Prevalence + IEA 0.505
Prevalence + co-occurrence 0.545

Top score 0.831
Lower score 0.500
Average (All terms) 0.671

Regardless of what was considered the “gold standard”, our methods had a stronger

performance compared to prevalence alone. Performance was similar to the average

performance across the other algorithms considered, but could not outperform

BLAST or GOTcha. 83
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I was not able to reproduce the results of the “CAFA score” used for the

original CAFA1 assessment. The results computed were highly discordant

with what was reported in the publication and the reason could be that I

did not have all the results of the algorithms submitted, but just a subset.

The descriptions to compute the metrics were also not entirely clear on the

original publication. I took an alternative approach to evaluate the perfor-

mance as described by Gillis and Pavlidis (2013). The evaluation is based on

the semantic similarity between the predictions and the true assignments in

the gold standard. This metric allows the exploration of how informative a

prediction is, in particular, by looking at those predictions that had a higher

probability score than what could be assigned by prevalence alone.

Using information content (IC) as a measure of term specificity is ad-

equate for this purpose because of the shallow annotation problem. The

metric proposed by Resnik was used to explore this. The results obtained

from the molecular function ontology showed that, on average, 14.17% of

the predictions were more informative than prevalence across all methods.

The proposed controls yielded 16.08% informative predictions and from the

datasets, the top performing method (labelled as team20) had 30% infor-

mative predictions. Contrary to the function-centered evaluation, BLAST

and GOtcha were not the top most informative, but yielded between 14-15%

informative predictions (Table 4.3).

Even though all the methods assessed here seemed to improve the base-

line set with prevalence alone, some of them had a very low performance.

The results showed that some -but not all- the algorithms can make correct

and specific predictions. Such percentages, however, can be affected when

some rarely used generic terms in GOA (and thus, not that prevalent) ac-

quire a high IC score but do not necessarily reflect the specificity of the term

[58].
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Table 4.3: Results of the function-centered performance measured by infor-
mation content (molecular function ontology).

Method Total Predictions
Total Informative

predictions
Percentage

Prevalence+IEA+Co-Occurrence 690 111 16.1 %
Prevalence+IEA 690 79 11.4 %
Prevalence+Co-Occurrence 690 110 15.9 %
GOtcha 690 105 15.2 %
BLAST 690 102 14.8 %
Naive 690 0 0.0 %
Team 51 690 118 17.1 %
Team 50 690 117 17.0 %
Team 49 690 1 0.1 %
Team 48 690 13 1.9 %
Team 47 690 12 1.7 %
Team 45 690 134 19.4 %
Team 44 690 184 26.7 %
Team 38 690 97 14.1 %
Team 35 690 133 19.4 %
Team 28 690 116 16.8 %
Team 27 690 15 2.2 %
Team 22 690 147 21.3 %
Team 21 690 131 19.0 %
Team 20 690 208 30.1 %
Team 17 690 120 17.4 %

In contrast, when looking at the results obtained for the biological pro-

cess ontology, it was noted that on average, only 6.3% of the predictions were

more informative than prevalence. Our methods, similar to MF, yielded 17%

informative predictions and again, team20 was the most informative one,

but only with 12.73%. In this case, GOtcha only yielded 6% and BLAST

performed better with 12% (Table 4.4).
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Table 4.4: Results of the function-centered performance as measured by
information content (biological process ontology).

Method Total Predictions
Total Informative

predictions
Percentage

Prevalence+IEA+Co-Occurrence 1186 206 17.4 %
Prevalence+IEA 1186 93 7.8 %
Prevalence+Co-Occurrence 1186 203 17.1 %
GOtcha 1186 73 6.2 %
BLAST 1186 142 12.0%
Naive 1186 0 0.0 %
Team 51 1186 35 3.0 %
Team 50 1186 33 2.8 %
Team 49 1186 0 0.0 %
Team 48 1186 2 0.2 %
Team 47 1186 5 0.4 %
Team 45 1186 76 6.4 %
Team 44 1186 139 11.7 %
Team 38 1186 49 4.1 %
Team 35 1186 91 7.7 %
Team 28 1186 0 0.0 %
Team 27 1186 4 0.3 %
Team 22 1186 59 5.0 %
Team 21 1186 78 6.6 %
Team 20 1186 151 12.7 %
Team 17 1186 89 7.5 %

The results obtained are comparable to those reported by Gillis and

Pavlidis (2013) and also highlight the large impact that prevalence has on

the assessment. Similarly, other patterns that can be attributed to biases in

the annotation process, such as gene multifunctionality, or commonly anno-

tated terms should be considered in critical assessments such as CAFA.

However, as it was described earlier, such artifacts are now considered

priors for prediction methods, when in fact, they do not take into account

any meaningful biological information. In particular, the results from the

IC evaluation showed that only scarce informative terms are assigned by

the current function prediction algorithms and are equivalent to the per-

formance obtained in the proposed benchmark, which is partially reflecting

86



4.3. The Assessment of Gene Function Prediction Algorithms

the continuous problem of assigning shallow terms that might not answer

the question of what a certain target gene do in a biological context. The

question still remains on how to design an assessment not affected by such

biases. However, the methods proposed in this thesis serve as a constructive

baseline that any algorithm focused on function prediction should clearly

outperform.
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4.4 Instability of Gene set Enrichment Results

The last part of the study aimed to explore the impact that annotation

instability has on the performance of gene set enrichment analyses. More

than 2,000 experimentally-derived hit lists from MolSigDB were analysed for

this matter. Previous studies have explored this variability on a small scale

and suggested that changes in GO annotations have an important influence

in the enrichment results [29]. However, to my knowledge, no analysis has

been made on a large scale to identify their variability. An example of the

enrichment results for one hit list from MolSigDB is given, at 3 different

time points, to exemplify problems in reproducibility of the results, where

the first time point indicated vesicle transport-related terms, whereas the

third time point involved terms highly associated with organ development.

Such a difference in the top enriched terms may impact the interpretation

of results (Figure 4.18).

A biologist would prefer to consider terms that are “robust” regardless

of the changes in the annotations. Members of the GOC recommend to use

the latest version of GO/GOA (if possible) for analysis[32]. To explore the

“robustness” of the data, I considered for each gene set, how many enriched

GO terms reaching statistical significance (with a FDR≤ 0.1) will overlap

(at each time point) with those present in the “last edition” (July 2014).

The results showed a considerable variability in the number of significant

GO terms in the “last edition” across data sets (from 1 to more than a 100).

To facilitate the exploration, the sets were classified in arbitrary groups to

explore the variability of those gene sets that contain less than 50 significant

terms vs. those that have more than 150 significant terms (Table 4.5).

It is of interest to find the proportion of enrichment results that are likely

to show some stability for a certain period of time. It is also expected to

identify shifts in the results at certain time points that would correlate with

reported changes in GO/GOA.

The variability in “motif gene sets” (C3 collection) between May vs. the
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4.4. Instability of Gene set Enrichment Results

Figure 4.18: Example of a motif gene set at different time points showing prob-

lems in reproducibility and interpretation of results. The data corresponds to with

genes with promoter regions around a Transcription Start Site containing the motif

YTTCCNNNGGAMR. The motif does not match any known transcription factor.

The top 37 enriched GO terms are shown and unstable terms are coloured for

comparison.

last edition showed that 17% of the gene sets had less than 80% overlap

in their enriched terms. In fact,in a few cases the overlap barely reached

40%. This raised the concern that some results can considerably in short

periods of time (a couple of months). The pre-defined groups A and B,
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Table 4.5: Classification of gene sets by the number of significant GO terms.
C2 collection (1870 total hit lists) C3 collection (636 total hit lists)
Group # sigGOterms # gene sets Group # sigGOterms # gene sets

Group A ≤ 10 160(28) Group A ≤ 10 163(40)
Group B 11-50 386(26) Group B 11-50 178(48)
Group C 51-100 377(9) Group C 51-100 139(14)
Group D >100 947(1) Group D >100 156 (7)
The table shows an arbitrary classification of the gene sets by considering the

number of statistically significant GO terms in the “last edition”. For example,

gene sets that had 11 to 50 significant GO terms belong to Group B. For reference,

the numbers in parenthesis show how many gene sets in each group had less than

80% overlap in May 2014 with those of July 2014.

which have less than 50 significant GO terms, showed the largest variabil-

ity. Most gene sets (regardless of the group where they were classified)

only showed a very small overlap before 2009, which matches the period of

time where the Reference Genome Project started to revise and improve the

quality of GO/GOA. A large variation was also observed between 2010 and

2011, which also coincides with major changes in GO annotations for hu-

man data, as described earlier. In general, most results will show more than

50% similarity after 2012. However, interesting outliers were also observed

(Figure 4.19). A similar trend was observed in curated gene sets from online

pathway databases (C2 collection), although these gene sets showed a higher

percentage of overlap with the last edition, compared to C3 (Figure 4.20).
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Figure 4.19: Variability of GO term overlap in the gene sets (C3). Figure
shows that, gene sets with less than 50 significant terms, tend to show
more variability after comparing different time points vs. the “last edition”.
Outliers were identified which showed almost no overlap after just a couple
of months (May vs. July 2014).
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Figure 4.20: Variability of GO term overlap in the gene sets (C2).Figure
shows that, gene sets with less than 50 significant terms(Group A and B),
tend to show a small variability after comparing different time points vs.
the “last edition”. Outliers were identified with almost no overlap after just
a couple of months (May vs. July 2014).

The previous results showed a considerable variation in the enrichment

results for group A in C2 vs. C3, while the rest of the groups seemed to have

a consistent variation. In general, some variability is expected, although the

extent of this variation has not been explored on a larger scale until now.

The differences between the overlap of significant terms at different time

points might not be substantial if the changes reflect an “improvement” or

upgrade in the annotations. Hence, the gene sets are likely to contain more

specific GO terms, which in turn, will share many parental terms with pre-

vious results. As long as the semantic similarity of the results is maintained,
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the results could be considered consistent.

To further explore how similar the results are, the significant results were

compared in terms of how semantically similar the significant GO terms are

vs. the “last edition” (after propagation). One limitation of this method is

that the changes in the GO structure are not considered. However, according

to the results of Clarke et al [29] and Gross et al [59], changes in the GO

structure have a smaller influence in the instability of the results compared to

the effect of changes in GOA. For comparative purposes, the gene sets were

also grouped by an arbitrary classification, defined by the number of parents

belonging to the significant terms from the “last edition” (Table 4.6).

Table 4.6: Classification of gene sets by the number of parental terms.
C2 collection (1870 total hit lists) C3 collection (636 total hit lists)
Group # Parental terms # gene sets Group # Parental terms # gene sets

Group E ≤ 50 249(114) Group E ≤ 50 167(79)
Group F 51-150 406(140) Group F 51-150 158(86)
Group G 151-250 335(87) Group G 151-250 129(53)
Group H >250 1026(82) Group H >250 182(29)

The table shows an arbitrary classification of the enrichment results by considering,

for each gene set, the number of parental terms linked to the significant GO

terms in the “last edition”. The numbers in parenthesis show how many of the

enrichment results in each group had a semantic similarity value of 80% or less

between May 2014 and July 2014.

The results showed a notable difference between the similarity of the

results from 2013 vs. the “last edition” in the motif gene sets collection

(C3). For the curated gene sets (C2), the overall similarity remained slighly

higher at each time point (Figures 4.21 and 4.22). The small groups (E

and F) had the largest variability across gene sets. The outliers observed

on the bottom side of May 2014 also demonstrate that, in some cases, the

results are highly discordant between editions and thus, we might be getting

a completely different result. On the contrary, the outliers observed in the

upper side of the groups from 2009-2010 show that, in some cases, the gene

sets are highly similar, extending the possibility of having a “robust result”

after 5 years. Changes in the GO structure are also likely to influence these
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measurements.

Figure 4.21: Semantic similarity of enriched gene sets by group (C3).Figure
shows that gene sets with more than 150 parental terms tend to show less
variability in their semantic similarity. Outliers were detected showing al-
most no overlap after just a couple of months (May vs. July 2014).
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Figure 4.22: Semantic similarity of enriched gene sets by group (C2).Figure
shows that gene sets with more than 150 parental terms tend to show less
variability in their semantic similarity. Outliers were detected showing al-
most no overlap after just a couple of months (May vs. July 2014).

Even if the gene sets change, a biologist might be more interested in

looking at the genes responsible to support those results and formulate fur-

ther hypotheses. It is then relevant to assess whether the same genes are

actually supporting the significant results, even if the GO terms change. If

the overlap is high, then the groups can be considered highly similar (how-

ever, they might likely also be supported by multifunctional genes). If the

overlap is low, the actual functional result has changed, and this can be

likely be due to changes in the size of the GO groups in GOA.
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The results showed a similar trend to the other two metrics. In partic-

ular, the variability observed for gene sets with less than a thousand genes

ranged from 0 to a 100% overlap in the years 2012 and 2013. Compared

to the results from May 2014, most of the results showed a considerable

overlap,but outliers would also cover the entire range. Even for the years

2005-2010, outlier gene sets were found to have a high overlap, but most of

them seemed to be completely different results. Those gene sets supported

by more than 4,000 genes showed a high percentage of overlap and a notice-

ably smaller variability. This reflects that GO groups with a high number

of genes are likely to contain those present in the hit lists and often show

in the results of the enrichment analysis, although most of the results are

derived from GO groups with 1000 or less genes (Figures 4.23 and 4.24).

Figure 4.23: Percentage of overlapped genes in the gene sets from C3. Gene
sets were grouped by number of genes supporting their significant terms in
the last edition.
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Figure 4.24: Percentage of overlapped genes in the gene sets from C2. Gene
sets were grouped by number of genes supporting their significant terms in
the last edition.

Taken together, these results show a considerable number of gene sets

with a high degree of variability, even in small time frames. Some terms

might disappear in future analyses, influenced by the effect of changes in

the annotations, which was clearly correlated with the changes observed in

these results at particular time points. The interpretation of all the results

derived from gene set enrichment analyses should be considered with caution

and used as a complementary exploration rather than a “conclusive result”,

specially as the reproducibility of results for studies that are older than 5

years seemed to be jeopardized in most cases. Enrichment tools that use

GO annotations older than 2009 (like DAVID) might then display completely

different results to what could be obtained using current GO annotations.
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Chapter 5

Future Directions

There is clearly a great deal of interest in better understanding GO and

GOA both among biologists who use it and even among GOC itself. In this

thesis I have presented results obtained from the integration of historical

GO Annotation data for 14 different organisms. I showed differences in the

annotation patterns for different species and built a tool to track and extend

this analyses to the research community. The assessment of GO Annotation

instability is still challenging, but the work presented here provides an over-

all panorama of how annotation data is evolving. By nature, each change is

dependent on decisions made by the GOC and a constant evolution of the

databases they rely on, such as UniProtKB; which in turn, limits the fea-

sibility of assigning predictive scores for future annotation instability. Such

decisions also impact the traceability of protein annotations, specially when

previous identifiers are removed or de-merged or new annotation pipelines

are implemented. However, this study has addressed changes that had oc-

curred in the 14 year history of GOA and filling important gaps in the

assessment of annotation quality and instability. Different metrics were im-

plemented and incorporated into a web-based tool, along with a baseline

method that could be employed for the assessment of function prediction

algorithms. While the web-based tool does reflect the existence of an an-

notation, it does not reflect time points where annotations are promoted.

Likewise, the influence of annotation extensions and cross-references to other

ontologies on GOA instability wasn’t addressed. Future work in this regard

would answer the question of whether such additions do contribute to the

interpretability of GOA annotations or adds in a detrimental way to the

problem of annotation instability. Likewise, incorporating these metrics

and historical information into actual applications such as enrichment tools
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will definitely contribute to the interpretability of the shared functions for

further analyses. In particular, the final aim is that any user can submit a

set of genes and obtain enrichment results over time for such dataset. The

most stable or relevant GO terms and genes for their study could be then

prioritized for further interpretation and analyses. Likewise, the possibility

of a parallel exploration of the instability of the parental terms within the

enrichment analyses should be considered.

In the meantime, this work altogether has been presented to the commu-

nity of interest at the fourth annual CHiBi/GSAT retreat (UBC’s Loon Lake

Research and Education Centre, October 3-4,2013),the 3rd Annual Cana-

dian Human and Statistical Genetics Meeting (Fairmont Empress Hotel Vic-

toria B.C.,May 3-6, 2014), at the Bio-ontologies Special Interest Group and

the Automated Function Prediction Interest Group in the SIG-Meetings and

Intelligent Systems for Molecular Biology (ISMB) conference (Boston MA,

July 11-15, 2014), receiving a positive feedback from the GOC, UniPro-

tKB, users of gene-set enrichment tools and by participants from the CAFA

assessment.
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Appendix

I provide a list of the algorithms used and implemented for the elabora-

tion of this thesis.

General definitions

Let M a hash table, and k a key of the hash map. We define M(k) as

the function that get all the elements mapped to k

Let M be a Hash Table of type < S,E >, k a key of type S and e

an element of type E We define Put(M,k, e) the function that creates the

relationship k− > e in M
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Program 5.1 This is the main structure of GOtrack, built to pre-process
and analyse historical GO annotations.

1. Read user arguments.

2. Download new GOA files and TermDB files from the repository, collect
the release date of each file.Output: edition2dates.txt.

3. Update DB Object IDs to current version and old MEDLINE IDs to
PubMed IDs (mapping).

4. Create a list of all the GO terms and GO terms always present in the
GO graph.

5. Create a file listing all DB Object IDs and DB Object IDs almost
always present across editions with the user threshold. For each GOA
file, get parental GO terms for each direct GO term annotated.

6. Retrieve the PubMed date of each publication. If possible, use the
pre-computed file per species or query on website.

7. Track changes in the evidence codes assigned to each annotation. Out-
put: evidencecodehistory.txt

8. Compute parameters using the EDITIONANALYSIS algorithm.

9. Count the number of GO terms annotated to each DB Object ID per
GOA file. Output: countGenseperGoTerm.txt

10. Count the number of direct GO terms assigned to each DB Object ID
per GOA file. Output: countDirectTermspergene.txt

11. Count the number of parental GO terms with ”is a” and ”part of”
relationships to the direct GO term assigned to each DB Object ID
per GOA file. Output: countInferredTermspergene.txt

12. Count the number of parental GO terms with ”is a” and ”part of” re-
lationships to the direct GO term assigned to each DB Object Symbol
per GOA file. Output: countInferredTermsperSymbol.txt

13. Generate a file with 4 columns: the DB Object ID, number of direct
GO terms per DB Object ID, number of inferred GO terms per DB
Object ID and the edition. This file will be loaded into the database.

14. Compute the JACCARD algorithm for all GOA editions.

15. Count the number of GO annotations that are replaced in
future editions with a more granular GO term.
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Program 5.2 An algorithm run by GOtrack to compute one single edition.

1. Get the parental GO terms of each direct GO term in the GOA file.

2. Get a list of DB Object IDs in the GOA file. Output:
genes.+edition+.txt

3. Compute the multifunctionality score per DB Object ID.

4. Create gomatrix file (GOMATRIX algorithm).

Program 5.3 Program to create GOMatrix files. They list genes and the
GO terms they are associated to on a particular edition.

Data: GenesAlmostAlwaysPresent.txt (GAAP ): List of genes.
Data: Gene Association File (GOA): File with GO Annotations.
hashGenesTerms← a hash table that maps a gene g to the set of
GO terms annotated to it.
for DB Object ID g ∈ GAAP do

if g ∈ GOA then
for term ∈ hashGenesTerms(g) do

print DB Object Id + GOterm

else
print DB Object ID + ”-1” ;
(used to indicate that the DB Object ID is not in GOA)

Output: gomatrix.*.txt
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Program 5.4 An algorithm to compute semantic similarity based on Jac-
card distance

Data: Gene Association Files (GOA): File with GO Annotations.
Data: gomatrix.*.txt files
for edition i ∈ 1... n do

Let edA be the edition i;
Let edB be the edition n;
genesA← all DB Object IDs in edA;
genesB ← all DB Object IDs in edB(done only once);
for each DB Object ID ∈ genesA do

if g /∈ edB then
sim← −1//gene not in the last edition

else
goA← GOterms associated to g in edA (gomatrix file);
goB ← GOterms associated to g in edB (gomatrix file);
jaccardScore← (|goA ∩ goB|)/(|goA ∪ goB|);
//jaccardScore is the similarity score for gene g in edition i

Output: jaccardpergeneovertime.txt
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Program 5.5 An algorithm to map old DB Object IDs to the most current
version.

Data: IdMap: DB Object ID mapping for not Uniprot Ids
Data: Gene Association File (GOA): File with annotations.
Data: List of genes (allgenes.txt): File with all the DB object IDs

annotated across all editions of GOA.
Data: Genes Always Present (GAP ): List of DB Object IDs present

in all GOA.
Data: Genes Last Edition (GLE): List of DB Object IDs present in

the current GOA.
Result: GOA files with updated DB Object IDs
//Create the most updated version of the IDs
for gene ∈ allgenes.txt do

IdWebMap← value returned by the Uniprot Website for gene

//Build a dictionary using a special edition of the GOA files
s← pre-selected edition for the current species
for annot ∈ GOAs do

customDic← hash table that maps the DB Object ID to the DB
Object Symbol and the synonyms present in annot

//Update IdMap and customDic using IdWebMap
for match ∈ IdMap ∪ customDic do

if match points to a different id in IdWebMap then
update match

for GOAi ∈ GOA do
for annot ∈ GOAi do

Get DB Object ID and synonyms;
//For Ecoli the symbol is used ;
if DB Object ID is already an Uniprot ID then

if DB Object Id ∈ GAPorGLE then
Leave current DB Object ID;

else if DB Object Id ∈ customDic then
Replace old DB Object ID with new one;

else
Search synonyms in annot and replace DB Object ID
with the most prevalent candidate;

else if DB Object ID is in IdMap then
Replace old DB Object ID with matching DB Object ID;

else
Search synonyms in annot and replace DB Object ID with
the most prevalent candidate;

if DB Object Id IdWebMap then
Update the If with the latest version in idWebMap;

Write to *syn file the latest version of annot

Rename the *syn files to *gz
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Program 5.6 An algorithm to map old MEDLINE IDs to current PubMed
IDs

Data: Dictionaries (MuID-PmID.ids.gz): Files with conversion
information from older IDs used in MEDLINE to new
PubMed IDs.

Data: Gene Association Files (GOA): Files with GO Annotations
Result: GOA files with updated PubMed IDs.
Procedure;
Read Dictionaries.
for GOAi ∈ GOA do

for annot ∈ GOAi do
PubMedIdgets PubMed id annotated in annot;
if PubMedId is in Dictionaries then

Replace DB Reference from annot with new DB Reference
in a new copy (*syn) of the GOA file;

Rename file *syn to *gz;

Program 5.7 An algorithm to load the information to the database

Data: Go Tree files (termdb):
Data: Gene Association Files (GOA): Files with GO Annotations
Data: countGenesPerGoTerm.txt: Contains the information about

the number of genes that are annotated to a go term
Procedure;

1. Load the GO term names in the termdb files

2. Load the ¡species¿ count table

3. Load number of genes per GO term

4. Load evidence code history

5. Load the relationship of GOA file and the publication date

6. Load the DB Object Ids that were updated

7. Load the GOA files

8. Load the analysis of annotations

9. Execute post load procedures

114



Appendix

Program 5.8 CAFA main algorithm

Data: go.*.txt : Prevalence GO terms
ids← hashset that maps partialId to CafaId ;
annot← read annotation file, create hash map that associates a
CafaId ∈ ids to arrayList of annotations ;
annot← read children and parents for each annotation ;
topGoterms← read prevalence goterms go. ∗ .txt ;
for gene ∈ annot do

predictionsForThisGene← will save all predictions for this
target ;
predictionsForThisGene← Call predictGoTerms if method
Cooccurrence is active ;
predictionsForThisGene← add all items in topGoterms if
method prevalence is active ;
predictionsForThisGene← Call predictGoTerms if method
IEAupgrade is active ;
predictionsForThisGene← remove dups, if any, also order
predictions by score.;
if two or more methods predict the same GO term then

take the one with highest score

if A prediction is already manually annotated to gene then
Don’t take a prediction

print only the first 1500 predictions in predictionsForThisGene
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