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Abstract 
 
Respiratory infections in the hospital setting are a burden to patients, healthcare workers 

and the surrounding community. The patterns of disease spread in hospital settings are 

difficult to capture, due to the heterogeneous rates of contact among healthcare workers 

(HCWs). Patterns of healthcare worker contact were analyzed for a large Canadian 

hospital. A novel tool was developed to capture the heterogeneous patterns in contact in 

hospital settings, and data from the Canadian hospital was used to inform a realistic 

contact network. The spread of respiratory infections with reproductive numbers 

approximating SARS, influenza, and measles were simulated on the network, and control 

strategies including vaccination, transmission reduction, and social distancing were 

tested. The efficacies of measures were compared between subsets of the population, 

which were divided by occupation and contact rate. The results of this study found that 

nurses are in the most contact with other healthcare workers, but the least mobile. 

Additionally, “other” healthcare workers such as respiratory therapists are at a high 

likelihood for superspreading events in the hospital setting. This study also identified 

locations that would reach a large subset of the hospital, which could be used for hand-

washing stations or other interventions. Simulations suggest targeting the most highly 

connected HCW occupations for vaccination, transmission reduction measures, and 

social distancing may lead to more effective disease containment in outbreak scenarios, 

and a reduction in resources needed. The results of this study can be used to inform 

policy decisions, and direct future research towards targeted control strategies in hospital 

settings.  
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Preface 
 

This thesis was an expansion of the ongoing work involving hospital contact patterns 

through the CONNECT study: a multi-institutional, CIHR-funded endeavor lead by Dr. 

Babak Pourbohloul. Survey data collection, entry, and cleaning were previously 

completed by the research team. All survey data analysis and exploration included in this 

thesis was completed myself. Unless otherwise specified, all figures were created myself 

using R or Gephi. 

 

Multi-type networks for the purpose of hospital modeling were previously researched and 

developed by researchers within the Division of Mathematical Modeling, University of 

British Columbia Centre for Disease Control, lead by Dr. Babak Pourbohloul. I 

developed all MATLAB code independently, with input and editing from Dr. Babak 

Pourbohloul. The random connection algorithm was expanded from Matlab Toolbox for 

Network Analysis (MIT, 2011), adding the unique components of the multi-type network, 

multiple degree distributions and association components, independently and originally. 
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1. Introduction 
1.1 Respiratory Infections 
	
  
Respiratory transmitted infections have the potential to become widespread, pandemic 

infections, and are often difficult to fully characterize and contain. Because physical 

contact with another infected individual or fomite isn’t necessary for transmission, 

traditional hand-washing and sanitization methods are not sufficient for effective disease 

containment. With these diseases, droplet or airborne particles are transmitted through 

coughing, sneezing, or simply talking. Thus, casual face-to-face interaction can propagate 

these respiratory transmitted diseases. 

 

Many of the significant respiratory transmitted infections of the past two decades are 

emergent, or re-emergent diseases, where the epidemiological characteristics are not yet 

discovered or commonly known. The emergence of SARS in 2003, influenza 

A(H1N1)pdm09 in 2009, and the resurgence of measles in many countries in 2013 have 

all posed challenges to infection control. Emergent infectious diseases have shown a 

significant increase in incidence since 1940; thus there is a potential for future disease 

emergence and challenges to infection control in years to come (Jones et al., 2008). 

 

1.2 Healthcare Associated Infections 
 

Healthcare associated infections, or nosocomial infections, are a significant burden to 

public health. In Canada, more than 200,000 patients acquire a nosocomial infection 

annually, and more than 8,000 die as a result (Zoutman et al., 2003). 

 

Nosocomial infections can impact the burden of disease both within the hospital and the 

surrounding community. Chains of healthcare associated infections can serve as a 

propagator of disease spread, due to close contact of patients and hospital personnel, 

potentially vulnerable immune systems of patients, and movement of patients from 

hospitals to throughout the community.  
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Respiratory infections including SARS, MERS-CoV, and influenza have been propagated 

through hospital settings (Chironna et al., 2010, Salgado 2004, Assiri et al 2013). Some 

of the factors that likely contributed to this are close contact between patients and 

healthcare workers (HCWs), decreased immune function of many hospitalized patients, 

and aerosol/respiratory droplet producing procedures such as intubation. 

 

Healthcare workers are disproportionately affected in many respiratory disease outbreaks. 

The emergence of SARS revealed the vulnerability of Canadian HCWs in outbreak 

scenarios. Forty-three percent of Canadian SARS cases occurred in healthcare workers 

(World Health Organization, 2003), leading to long-term stress and trauma among HCWs 

in SARS-affected hospitals. The WHO has reported a similar burden of disease for 

MERS-CoV, with approximately 25% healthcare worker cases between April and June 

2014 (World Health Organization, 2014).  

 

1.3 Factors That Make a Disease More Likely to Spread 
 

The primary measure in epidemiology used to predict the likelihood of an outbreak is the 

basic reproductive number, or R0, which is the average number of secondary cases arising 

from an average primary case in an entirely susceptible population, assuming 

homogeneous population mixing (Anderson & May, 1991). This value is used to inform 

vaccination policy, infection prevention, and control measures for a range of diseases and 

scenarios. 

 

R0 can be estimated through seroprevalence data, epidemic growth rates, and outbreak 

size (Dietz, 1993). In an entirely susceptible population, diseases with values of R0 below 

one are predicted to die out over time, while diseases with an R0 above one have 

epidemic potential. Diseases such as seasonal influenza have an R0 estimated at 

approximately 1.3 (range 0.9 to 2.1) (Chowell, Miller, & Viboud, 2007), while highly 

contagious diseases such as measles are estimated between 6 and 7 (Mossong & Muller, 

2000) and as high as 15 (Anderson & May, 1991).  
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Although the value of R0 remains informative in epidemiology, there is often a large 

heterogeneity in the magnitude of disease spread from population to population, despite 

identical R0 (Meyers, Pourbohloul, Newman, Skowronski, & Brunham, 2005). This may 

be due to many factors, including differing immunity or infection control measures, as 

well as the structure of the population’s social network. 

 

First, the susceptibility of the population plays a role in the success or failure of the 

epidemic. Re, or the net effective reproductive number, is utilized when predicting 

epidemics in a population which is not entirely susceptible. It is calculated by the product 

of R0 and the percent of susceptible individuals in the population. Thus, as the percent of 

susceptibles in a population decreases, due to vaccination or natural immunity, the 

effective Re decreases.  

 

Infection control measures can also impact the heterogeneity in disease spread between 

populations. Interventions that decrease either duration of illness, probability of 

transmission, or contact rate, will reduce R0. Thus, the use of interventions such as early 

detection, and treatment of the disease, mask-wearing, and population level distancing 

measures such as school closures or quarantine will decrease R0 in a population.  

 

Finally, an individual’s position in the social network can impact the magnitude of 

disease spread in a population. Traditional applications of R0 assume that all individuals 

in a population have an equal probability of exposure, thus ignoring the potential 

differences in social network, or network of contacts between individuals, which can 

greatly impact the fate of a disease.  

 

The outbreaks of SARS in Canada exhibited the impact of the social network on outbreak 

heterogeneity (Meyers et al. 2005). Through the introduction of a single case in both 

cities, Vancouver experienced four probable cases of SARS, while Toronto experienced 

approximately 375 (Campbell, 2006).  
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The reasons for this vast heterogeneity is likely influenced by the social networks of the 

index patients in each city. The index patient in Vancouver acquired SARS while 

traveling abroad, and upon return to Vancouver, returned to his home where only his wife 

resided. Limited social contact and almost immediate hospitalization prevented the 

spread of SARS in Vancouver much past this index patient (Skowronski et al., 2006).  

 

In contrast, patient zero in Toronto was the matriarch of a large family, and died at home. 

Her son’s subsequent infection was the first of five additional familial infections. Due to 

the index patient’s large family social network, and slow identification of the disease, 

SARS spread to other HCWs and patients, leading to approximately 375 probable 

infections. (Poutanen, 2003; Campbell, 2006). 

 

1.4 Social Network Heterogeneity 
 

Utilizing R0 while addressing the heterogeneity in social networks is essential for 

effectively predicting disease spread, particularly in populations where these contact rates 

vary greatly between individuals. Networks of social interactions can be observed in 

many subsets of the population, and measure many different types of connections 

including sexual contact, face-to-face interaction, and physical contact.  

 

The study of sexually transmitted diseases first revealed the importance of social 

networks in epidemiology. Anderson and May’s derivation of R0 for the spread of 

sexually transmitted diseases in a population utilizes the average number of sexual 

contacts in a population (Anderson & May, 1991). The number of sexual contacts is 

known to vary significantly across a population, adopting a scale-free distribution where 

the majority of the population has few sexual contacts, and a small number of highly 

connected individuals preferentially attach to each-other (Liljeros, Edling, Amaral, 

Stanley, & Aberg, 2001). Therefore, although useful for planning control strategies and 

evaluating R0 within homogenous sexual populations, this average fails to capture the 

diversity within sexual networks. Addressing the sexual network along with R0 has led to 
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more efficient and targeted STI control strategies, by concentrating resources to the most 

highly connected subsets of the population.  

 

1.5 Social Networks in the Hospital 
	
  
Although mixing patterns and contact rates of the general population have been 

quantified on a large scale (Mossong et al., 2008), rates of healthcare worker contact 

(HCWs) are known to be significantly higher and more heterogeneous than the general 

population (Bernard, Fischer, Mikolajczyk, Kretzschmar, & Wildner, 2009). Studies that 

have attempted to quantify these rates have utilized methods ranging from observation to 

wearable sensors.  

 

Shadowing of hospital employees has been utilized to capture contact network dynamics, 

but only in 30-minute time increments for a total of 40 hours per job category (Polgreen, 

Tassier, Pemmaraju, & Segre, 2010). This leaves little room for evaluation of contact 

heterogeneity, but revealed that intensive care nurses, residents and fellows had the 

highest number of HCW contacts of the job categories observed.   

 

Utilizing radio-frequency identification (RFID) tags within a pediatric ward (Isella, 

Barrat, Cattuto, & Colizza, 2011), a large heterogeneity of contact frequency was found 

among HCWs, even within occupation type. RFID tags are useful along with other sensor 

technologies to track movements and interactions between healthcare workers in an 

automated way. Ward assistants were found to have the highest number of daily contacts, 

with physicians having the least. Patterns of inter-HCW interaction were analyzed, and 

intra-occupational (assortative) mixing was the most common: The most frequent 

interactions were ward assistant-ward assistant and nurse-nurse (Isella et al., 2011).  

 

The presence of highly mobile and connected HCWs was confirmed through the study of 

HCW contact in a medical intensive care unit (MICU), using sensor technology 

(Hornbeck et al., 2012). This study was the first to confirm the heavy tailed distribution 

of HCW contacts, where a small number of HCWs were responsible for a large 
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proportion of contacts. These HCWs were determined to be peripatetic, or having a 

significantly large and diverse set of contacts.  

 

Similar patterns were found using RFID tags in a geriatric ward. Only 6 HCWs were 

responsible for 42% of all patient contacts, suggesting a similar heavy-tailed distribution 

in this setting (Vanhems et al., 2013). Additionally, inter-HCW interaction was studied, 

again suggesting assortative mixing between HCW occupations: Nurse-Nurse 

interactions were the most frequent HCW contact type, followed by medical doctor-

medical doctor interactions.  

 

The methods of direct observation and wearable sensors are accurate in capturing all 

forms of HCW contact within the hospital: both social and work-related. Currently, these 

data only exists within units or wards, since sensor technology and observation isn’t 

feasible or cost-effective to implement on a large scale. Measures of HCW contact are 

needed hospital-wide. 

 

Large-scale studies have utilized electronic medical records to approximate HCW contact 

throughout the hospital, which provides a larger and more readily available source of 

data. A combination of Electronic Medical Records (EMR) and spatial hospital data was 

utilized to examine contact between HCWs. A heavy-tailed distribution of contacts was 

found, with a high level of contact heterogeneity among HCWs (Curtis, Hlady, Kanade, 

Pemmaraju, & Polgreen, 2013). Resident Physicians and nurses were the most frequently 

in the top 10% of contacts, contributing most to the heavy-tailed distribution. Although 

useful for quantifying on a large scale, EMR data fail to capture casual and social 

contacts in the hospital setting.  

 

More research is needed at a hospital-wide level to explore these patterns of contact. The 

ability to inform hospital-wide policy is currently limited, as the majority of studies focus 

within a single ward or unit in the hospital. Despite these limitations, it is apparent that 

the social network of a hospital is highly heterogeneous, and that utilizing a network 
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approach for infection control would best capture the spread of infectious disease in this 

environment. 

 

1.6 Research Statement 
 

Healthcare associated infections remain a significant burden to public health, affecting 

over 200,000 Canadians yearly. Routine practices of hospital infection control are 

currently centered on hospital-wide precautions to reduce transmission (Public Health 

Agency of Canada, 2013)  

 

Social contact heterogeneities among HCWs are not addressed in current control 

strategies, yet patterns of social contact may significantly affect the spread of respiratory 

infections within the hospital setting. Research is needed to explore the effect of targeted 

control strategies on disease transmission in hospital settings.  

 

The purpose of this thesis is to develop a realistic contact network of a hospital, in order 

to create targeted and optimized control strategies in the hospital setting.  

 

1.7 Hypotheses 

1. Patterns of contact in the Canadian hospital setting will reflect the heavy-tailed 

distributions of contacts found in other healthcare settings. 

2. Simulations using contact networks show a large heterogeneity in disease 

trajectory, reflecting the patterns seen in previous outbreaks of SARS, for 

example. 

2. Control strategies simulated which target highly connected individuals will be 

more efficient than random strategies in the scenarios tested. 
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1.8 Research Goals 
 

This thesis has four distinct research chapters, prefaced by an introduction to network 

modeling in public health.  

 

The research goals of this thesis are to: 

 

1. Create and validate a flexible tool for network generation in hospital settings 

 

2. Analyze patterns of contact in a large Canadian hospital to create a realistic hospital 

network 

 

3. Utilize the network to evaluate the efficacy of control strategies 
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2. Network Modeling Introduction 
 

2.1 Introduction to Mathematical Models 
 

Mathematical disease modeling has become increasingly relevant in the area of pandemic 

preparedness, combining the fields of mathematics, statistics, and public health in order 

predict the impact of outbreaks, and the efficacy of various intervention strategies. The 

mathematical tools being developed have the potential to be applied to emerging 

infectious diseases within small communities, across Canada, and worldwide.  

 

Network modeling is a subset of mathematical disease modeling, which simulates disease 

spread on networks. The benefit of network modeling is that it is able to capture non-

homogenous rates of contact within populations and communities, a feature that isn’t 

present in traditional compartmental modeling. Originally utilized in epidemiology to 

simulate the unique and heterogeneous dynamics of STI spread, network modeling is 

currently utilized to capture the spread of a variety of diseases, from bacterial infections 

to respiratory illnesses.  

 

Network models can be utilized to study the patterns of transmission of a disease, as well 

as optimize control strategies to a population. Because pandemics are relatively rare 

occurrences, we are limited in our evidence supporting or refuting infection control 

strategies. Modeling allows for the simulations of thousands of possible scenarios, 

providing robust evidence to aid in policy decision-making.   

 

 

2.2 Terminology 
 

A few common terms are used in network modeling, and will be utilized throughout this 

thesis.  



	
  
	
  

	
   10 

2.2.1 Node 
	
  
A node is the respresentation of a person, object, or place, in the network. In the context 

of network epidemiology, a node in a network typically represents an individual. A 

network typically contains multiple nodes, representing the population being studied.  

 

Nodes can be assigned parameters that are unique to the individual or a subpopulation 

within the network. In disease modeling, these can include transmissibility parameters 

and recovery rates. Additionally, nodes can be removed from the network, representing 

vaccination.  

2.2.2 Edge 
	
  
Nodes are connected by edges. These edges can represent many types of interactions, 

from face-to-face meetings to sexual contact, depending on the transmission of the 

disease to be simulated.  

2.2.3 Degree  
	
  
Each node has a number of edges attached to it, known as its degree. The distribution of 

degrees across the population is known as the degree distribution.  

 

Degree distributions take many shapes, depending on the population and type of edge 

studied. Degree distributions are often approximated by probability distributions. Some 

of the most common include Poisson, lognormal, gamma, and power-law distributions.  

 

Power-law and Poisson distributions are represented in Figure 1.1, with associated 

networks in Figure 1.2 Poisson degree distributions are indicated by a normal distribution 

of contacts among the population, with the majority of individuals having the average 

contact number in the population. Scale-free networks indicate a high number of 

individuals with low contact numbers, with a small number of individuals with a very 

high degree. These high-degree individuals in networks are often called “super-

spreaders,” in the context of epidemiology. 
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Figure 1.1 Degree distributions of A. Poisson or normal distributed network and B. 

Power law distributed network. Nodes in this visualization are referred to as firms. 

 

 
        Source: Hearnshaw, 2013 

 

 

 

Figure 1.2 Generated networks with degree of A. Poisson distribution and B. Power 

law distribution. 
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2.3 Network Generation 
 

Networks in epidemiological modeling can be constructed using theoretical assumptions, 

real data, or a combination of the two. Measures of degree, as well as association are 

needed. 

 

Networks that are based primarily on theoretical assumptions of contact are called 

stylized networks. Although less applicable to real-world problems, these networks allow 

for a controlled environment to validate models and test theoretical assumptions.  

 

Few studies have generated complete data of a contact network. Because we need both 

the measures of degree as well as who comes into contact with whom on an individual 

level, these data are difficult to obtain. Sexual health surveys and RFID technology have 

been the most successful at obtaining real network data (Jolly, Muth, Wylie, & Potterat, 

2001; Isella et al., 2011). Although informative for small communities, these data would 

be difficult to obtain on a large scale. 

 

Most studies utilize a combination of data source and theory to approximate networks. 

Survey, census, and direct observation data have been useful for informing network 

parameters. Based on the questions asked (i.e. How many individuals do you come into 

contact with?), these data can often be used to approximate a degree distribution. Without 

complete network data, we have no information on who comes into contact with whom. 

Thus, nodes are either connected randomly or by probabilities of association, which can 

be obtained from the dataset or other sources (i.e. Who do you come into contact with?).  

 

Within a network, there may exist distinct types of nodes that differ in degree distribution 

and measures of association. In public health, these types of nodes could represent sexual 

orientation, occupation, or age class, for example. Approximated networks that contain 

multiple types of nodes are known as multitype networks (Newman, 2003). Degree 

distributions and association parameters are approximated from data independently for 

each type of node, and then utilized to create a network that includes all types. Multitype 
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networks allow for the specification of distinct degree distributions and mixing patterns 

for each node type, creating a network more closely aligned with a network derived 

directly from data.  

 

 

2.4 Disease Spread on the Network 
 

Disease spread on a network is simulated through bond percolation, where a disease will 

move through the network by edges, or bonds (Meyers, 2007). Unlike traditional 

compartmental models where there is equal probability of exposure throughout the 

population, exposure through network models require a susceptible individual to be 

connected to an infected individual by an edge. If connected, an individual can become 

infected by transmission probability, T. Thus, the outcome of the disease is dependent on 

both the transmissibility of the disease, T, and the structure of the network (Newman, 

2002). 

 

The transmission probability, T, is derived from the R0 of the disease and network density 

(Meyers, 2007). When simulating intervention strategies that reduce disease transmission, 

such as wearing masks or hand washing, T is reduced by a corresponding percentage. 

This reduction in transmission can be implemented for all connections in the network 

(simulating a population-wide intervention), or for specific connections between nodes 

(simulating an intervention for high risk individuals, for example).  

 

The structure of a network is critical to the dynamics of disease spread upon it (Keeling, 

2005). These structural properties may include distribution of contacts, or the patterns in 

which the contacts are organized, known as clustering. The presence of super-spreaders 

in power-law distributions, for example, confers a lack of epidemic threshold; meaning 

transmission at even an extremely low rate could cause an epidemic (Pastor-Satorras & 

Vespigniani, 2001).  
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Models simulating social distancing and vaccination confer changes to the network, and 

impact the outcome of disease spread. Social distancing is the reduction of social 

interactions in a population, which can be achieved by a variety of measures depending 

on the disease and population, but may include: school closures, travel restrictions, 

abstinence and staffing changes. Social distancing has been proposed as a control strategy 

to mitigate the impact of pandemic influenza  (Roth & Henry, 2011). It is simulated by 

removing edges between nodes, either randomly or according to node type. This leads to 

a decrease in network density, which results in reduced disease spread on the network.  

 

Vaccination can also be simulated on the network, a measure that prevents an individual 

from contracting and transmitting a disease. Thus, simulating vaccination effectively 

removes nodes entirely from the network, because their edges to other nodes cannot 

contribute to disease spread. Depending on the nodes that are vaccinated, density may 

increase or decrease. For example, removing a highly connected node would decrease 

density, while removing a node with a single connection would increase overall network 

density.   

 

2.5 Hospital Models to Date 
 

Network modeling for hospital settings have been recently developed for a range of 

diseases and uses. A theoretical approach (Meyers, Newman, Martin, & Schrag, 2003) 

first explored the application of network theory on hospital networks. The study lacked 

real data to parameterize the network, instead using assumptions of caregiver, ward and 

patient structure. The model didn’t propose distinction among hospital personnel. 

Simulating the spread of M. pneumoniae demonstrated the importance of caregiver 

contact patterns in the control of these outbreaks. 

 

Medical records were first explored as a data source to inform contact networks in 

hospital settings (Liljeros, Giesecke, & Holme, 2007). Inpatients were connected if they 

were on the same ward within a specified time period, varied depending on the disease 

studied. Although this model excluded HCW interactions, it provided valuable insight 
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into the non-homogenous mixing patterns of inpatients, and provided insight into 

effective control measures for infections such as MRSA. 

 

Building on the use of medical records for network development, a combination of EMR 

data and assumptions of HCW activity were utilized to approximate the social network in 

a hospital setting (Ueno & Masuda, 2008). Patient records documenting assigned 

caregivers were utilized: Patients and their assigned physicians and nurses were 

connected, along with nurses of the same ward. This study added a new level of detail to 

the hospital network. Because the assumptions of contact are primarily determined from 

patient care, this study ignores patterns of HCW interaction not recorded in a patient 

chart, such as social interaction and meetings. With this model, it was found that medical 

doctors were the key spreaders of disease on the network, and strategies to reduce the 

travel of doctors throughout the hospital would impact epidemic size more than direct 

isolation of patients.   

 

In order to capture both work related and social contacts within the hospital, direct 

observation was used to create a contact network (Polgreen et al., 2010). Each occupation 

was observed for approximately 40 hours, and the HCW’s contacts were recorded, 

including their occupation and duration of contact. Contact was defined as coming within 

0.9 meters of another HCW, approximating a distance sufficient for droplet transmission. 

A network was created by randomly connecting HCW nodes, using the probabilities of 

association between HCW types derived from the observational data. Although a much 

more detailed network than those derived from EMR data, the method of network 

generation failed to capture the heterogeneity within HCW classes, only between. The 

simulations on the network involved testing the efficacy of vaccination strategies that 

preferentially target the most highly connected HCWs, a strategy that, although difficult 

to implement, may lead to a higher efficacy with a lower vaccination rate.  

 

Wearable sensor (RFID) technology has been used to capture real network information in 

hospital settings, collecting data at an individual resolution on who comes into contact 

with whom in a hospital setting. This technology was first utilized in a hospital setting to 
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measure HCW interactions within a pediatric ward (Isella et al., 2011). Contact in this 

study was defined as face-to-face interaction of approximately one meter for at least 20 

seconds Simulations were not conducted on the network, although observations from the 

network structure suggested that nurses play a central role in infection spread and should 

be prioritized.  

 

Mote based sensoring, a similar technology, was used to create a contact network in the 

medical intensive care unit (MICU) (Hornbeck et al., 2012), based on physical contact for 

at least 30 seconds. Hand hygiene compliance was simulated on the network, and the 

relative effect of the compliance of either highly connected or random individuals was 

compared. It demonstrated that these highly connected HCWs can have a much greater 

effect on disease spread if noncompliant, compared to less connected HCWs.  

 

RFID technology was again used to create a contact network of HCW contact in a 

geriatric unit (Vanhems et al., 2013). Contact in this study was defined as face-to-face 

interaction of approximately one meter for at least 20 seconds. Although no simulations 

were performed, the presence of peripatetic highly connected and mobile HCWs were 

identified. 

 

Electronic medical records were used to create a network of patient contacts across the 

entire hospital (Cusumano-Towner, Li, Tuo, Krishnan, & Maslove, 2013). Patients were 

connected either through sharing of a room, or sharing of a HCW within a 2-hour period. 

Although not as effective in capturing the spread of respiratory pathogens, using EMRs 

were useful in this context for modeling the spread of contact-transmitted bacterial 

pathogens throughout the hospital. The model was unique in testing the impact of the 

disease starting in different parts of the hospital. It revealed parts of the hospital that can 

most propagate an epidemic, including the emergency department, where individuals can 

be transferred to many wards in the hospital after admission. 

 

Another hospital-wide network was constructed through EMR data and the hospital 

layout (Curtis et al., 2013), utilizing a range of distance and time parameters to define 
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contact. Simulations on the network compared vaccination policies targeting HCWs 

based on mobility throughout the hospital or degree. It was found that vaccinating the 

most mobile individuals is as effective and more feasible, than vaccinating those with the 

highest degree. 

 

Although sensor technologies are the most accurate in informing hospital contact 

networks, it is not currently feasible or cost-effective to implement a wearable sensor 

study on a hospital-wide scale. Thus, EMR data has been utilized to approximate these 

networks. Healthcare records provide evidence of formal interactions such as physician 

visits and procedures, but fail to capture face-to-face social interactions and meetings 

between HCWs. These types of informal face-to-face contacts are often sufficient for the 

transmission of respiratory infections through both droplets and aerosols, and therefore 

may be significant in the spread of respiratory-transmitted pathogens in the hospital 

setting. Methods to create a realistic hospital-wide contact network are needed to model 

the spread of respiratory pathogens. Capturing the heterogeneity in HCW contact rates, as 

well as informing accurate simulations, can contribute to more optimized and effective 

control strategies in the hospital setting.  
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3. Development of a Stylized Network 
 

3.1 Introduction 
 

Given the complex organizational structures of hospitals, contact patterns of healthcare 

workers in hospital settings are thought to be highly heterogeneous. Recent studies 

involving wearable sensors, direct observation, and electronic medical records have 

confirmed this, suggesting the potential for superspreaders in the hospital setting 

(Vanhems et al., 2013), and differences in contact patterns between occupations (Isella et 

al., 2011). Because of this heterogeneous environment, quantifying networks of contacts 

in a hospital is crucial for effective and optimized infection control. 

 

Networks have been informed through direct observation and wearable sensors within a 

single ward or unit in the hospital setting (Polgreen et al., 2010; Hornbeck et al., 2012, 

Isella et al. 2011; Vanhems et al., 2013). Although effective in capturing the individual-

level resolution of contact diversity in small settings, these methods are not currently 

feasible to develop hospital-wide networks. Healthcare records have been utilized to 

approximate hospital-wide contact networks (Liljeros et al., 2007; Ueno & Masuda, 

2008; Cusumano-Towner et al., 2013; Curtis et al., 2013), but fail to capture non-

recorded contact, such as social interaction or staff meetings. A new methodology is 

needed to create a realistic hospital contact network, which is both feasible on a large 

scale and accurate in capturing all work and social interaction in the hospital setting. 

 

Multitype networks (Newman, 2003) are a type of data-informed network, which allow 

for the specification of both intra- and inter- group contact patterns and rates. These 

networks have been theoretically applied in epidemiology (Allard, Noël, Dubé, & 

Pourbohloul, 2009; Vazquez, 2006), but haven’t yet been utilized to capture the complex 

network dynamics of HCWs in hospitals. Approaching a hospital contact network as a 

multitype network allows for the specification of a distinct contact and HCW mixing 

pattern for each occupation within the hospital. Rather than informing the network 
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directly through sensors, observation, or medical records, we can use a simple set of 

parameters for each occupation to produce a network of the entire hospital.  

 

The goal of this chapter is to develop a tool that generates multitype contact networks for 

hospital settings. This framework will account for the heterogeneity in contact patterns 

and mixing both within occupations and across the hospital, and allow for the flexible 

application of the model to a variety of hospital settings. For demonstration and proof of 

concept, two stylized networks will be generated. 

 

3.2 Methods 

3.2.1 Terminology 
  

The hospital network is composed of nodes and edges. Each node represents a healthcare 

worker within the hospital, and is categorized as a physician, nurse, or other healthcare 

worker (HCW). Currently, patients are excluded from the hospital network, but could be 

added in future iterations of this network.  

 

An edge represents a connection between nodes. The connection, for the purpose of this 

thesis, is defined as face-to-face contact within 1 meter for at least two minutes, which is 

taken from the definition of direct HCW contact utilized in the CONNECT survey. This 

level of contact is sufficient to meet the minimum requirements for exposure to 

respiratory droplets (Bischoff, Swett, Leng, & Peters, 2013).  

 

The degree of a node is the number of edges connected to it. In this network, the degree 

represents the number of contacts a healthcare worker has. The degree distribution is the 

pattern or distribution of the number of contacts a node has, across a population or 

subgroup.  
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3.2.2 Network Attributes 
	
  
There are two primary attributes of the network generation tool that are utilized as the 

primary input, and distinguish it from previously developed network generation tools. 

 

3.2.2.1 Occupational Degree Distribution 

Each occupation is assigned a unique degree distribution, characterizing the 

contact patterns of that group. Degree distributions can incorporate the shape of 

the distribution (i.e. Poisson or scale-free), and magnitude (mean degree of the 

population), for each occupation. The ability to incorporate distinct degree 

distributions for each subpopulation is a primary attribute of the network 

generation code.  

 

3.2.2.1 Mixing Patterns 

The next attribute addressed in the network is the ability to specify mixing 

patterns between occupations. This determines the proportion of HCWs that will 

be connected to others within their occupation, and those outside their occupation. 

Thus, we can specify whether mixing is assortative.  

 

For each occupation of type i (either physician, nurse, or other), there exists Ni, 

the sum of degrees across individuals of occupation i. The parameter pij represents 

the proportion of Ni connected to HCW type j. Thus, there are 9 pij combinations 

in a hospital network of 3 occupations: Nurses, physicians, and others.  

 

Table 3.1 Table of association parameters. 
                                    Incoming Connection 

 

Outgoing 

Connection 

 Physicians Nurses Other HCW 

Physicians ppp ppn ppo 

Nurses pnp pnn pno 

Other HCW pop pon poo 
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The proportional constraints are not symmetric (pij does not equal pji). This is 

because Ni is different for each occupation. For example, if there is a higher total 

degree (Ni) for physicians, the probability of a nurse connecting to a physician is 

higher than a physician connecting to a nurse. Although the proportions aren’t 

symmetric, the number of edges of type i connecting with j must equal the 

number of edges of type j connecting with type i. Thus the following must be 

satisfied prior to network generation:  

 

Ni*pij=Nj*pji.  

 

When deriving these parameters directly from a network, the agreement of these 

parameters is inherent. Because these parameters may not agree when taken from 

other datasets, a forcing mechanism is built into the stylized code to ensure this 

constraint.    

3.2.3 Network Generation 
 

Network generation code was developed in MATLAB. Code is included in Appendix A.  

 

3.2.3.1 Inputs 

A set of input parameters are required to initialize the generation function:  

 

Population size: Numerical value for total population, and size of each occupation 

Degree distribution: Including type and magnitude for each occupation.  

Association parameters: Estimated values of pij  

 

3.2.3.2 Process 

a) The first step assigns a specific degree to each node of the subgroup 

according to the input degree distributions. Thus, individuals are given a 

pre-determined number of ‘stubs,’ or unconnected degrees. 
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b) An empty adjacency matrix is created. Adjacency matrices are a method 

of recording network structure where row and column indices represent 

each node in the network, and a connection is marked by a “1” in the 

corresponding row and column combination of the connected individuals. 

An example of an adjacency matrix is found in Figure 3.2.   

 

Figure 3.2 Depiction of an adjacency matrix and corresponding 

network. 

 

          
       Source: Merrill 2008 

 

c) Assigned values of pij are multiplied by Ni to calculate the number of 

connections between each HCW-type. Thus, before the connection process 

starts, there are a pre-determined number of edges designated for each 

connection type (physician-physician, physician-nurse, nurse-nurse, etc). 

A forcing mechanism ensuring Ni*pij=Nj*pji is incorporated which 

currently prioritizes nurse-nurse and physician-physician association 

parameters, but can be altered depending on the association of interest. 

The mechanism of forcing is included in the code (Appendix A) 

 

d) Nodes are connected randomly. First, one of the six edge types is 

randomly selected (i.e. nurse-nurse, nurse-physician, etc.). Then, 

individuals are selected randomly within the corresponding HCW type(s). 

Only individuals with unconnected stubs remaining can be selected. HCW 

pairs that are already connected can’t be connected again, ensuring that 

self-loops won’t occur. 

linked to process and outcomes. These insights can guide the optimal application of
limited public resources to improve agency performance. Network analysis is used
extensively to understand dynamics within private sector organizations,6,7 but there
has been limited application in public sector management.8,9

We conducted a study to assess the feasibility of using organizational network
analysis in a local public health department. The goal of the research was to describe
the flow of information in the department and assess the technique’s suitability for
use in public health management. The network analysis was conducted using the
Organizational Risk Analyzer.10 This software is uniquely appropriate for examin-
ing organizations because it allows organizational systems to be modeled as
interlocking networks of people, knowledge, resources, and tasks.

MATERIALS AND METHODS

A network comprises a set of nodes connected by edges that represent some
relationship between them. These nodes and edges are typically organized into
adjacency matrices, where rows and columns represent people or things. Within
each cell, numbers represent the presence or absence of an edge (i.e., a relation) or
the frequency or strength of a relation. Figure 1 displays a matrix and the resulting
graph in which node A (that may represent a person, a group, or some resource like
a computer) has a relationship with C and D but no relationship with B. The results
of a network analysis are reports containing network measurements and graphical
displays depicting the relationships between nodes.

Setting and Sample The study was conducted in a local health department serving a
mixed urban/suburban county with a population of approximately 300,000. At the
time of the study, the department consisted of 156 employees within five divisions
and nine general program areas. The employees delivered a full range of public
health services including environmental services. They represented a range of public
health titles and programmatic specialization and adequately represented current
public health workforce issues such as an aging workforce. The department was
large enough to allow analysis at the program level as well as at the full
organizational level.

Data Collection A survey based on conventional network questions to measure
work-related relationships and communication11 was administered to every
employee (N=156). The response rate was 93%. Each respondent indicated his/
her relationship with all other employees in response to four questions: (1) Do you

FIGURE 1. Example of an adjacency matrix representing network relationships with the graph
resulting from the data. 1=relationship, 0=no relationship.

ORGANIZATIONAL NETWORK ANALYSIS TO SUPPORT PUBLIC HEALTH MANAGEMENT 573
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e) The nodes selected to be connected are recorded in the adjacency matrix, 

indicated by an entry of “1” in the row/column combinations associated 

with the HCW. A stub is removed from each individual’s assigned degree.  

 

f) Steps [d-e] continue until there are no more stubs left to connect within the 

connection type, or all individuals with stubs remaining have already been 

connected. 

 

3.2.3.3 Outputs 

The final outputs are generated and saved for each process: 

 

Adjacency Matrix: Final adjacency matrix corresponding to the hospital 

network. 

Error: Error rate is calculated as the number of unconnected stubs, divided by 

assigned stubs, for the entire network 

Clustering coefficient: The clustering coefficient is a measure of randomness 

in the network, and is calculated using a corresponding MATLAB function 

 

3.2.3.4 Ensembles of Networks 

As described in the network generation process, the method of connecting 

each node is inherently random. Thus, even with identical input parameters, 

any two iterations of the generation algorithm can result in different network 

structure.  

 

The input parameters are primarily utilized in specifying two main 

components: how many other individuals a HCW comes in contact with, and 

what occupations they are in contact with. For example, a randomly selected 

nurse node n has the following assignment: 2 physicians, 5 nurses, and 1 

HCW. Thus, we know how many contacts of each occupation a HCW has, but 

we do not assign the specific HCW. This is where the randomness of the 
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process enters: Within each connection assignment, an individual can become 

connected with any other HCW of the assigned occupation, given they have 

unconnected stubs corresponding. Nurse node n, for example, can be 

connected with any 2 physicians in the network, as long as those physicians 

have available stubs for a nurse connection.  

 

Therefore, although the process is random, the network will retain its assigned 

parameters, regardless of network structure.  

 

To examine the potential variation in the network due to the random 

generation process, steps [b-g] of the code are repeated over 1,000 iterations, 

and the results stored as an ensemble of networks in 3-d matrix form. Step [a] 

is not repeated to ensure consistent degree distribution input across networks. 

 

3.2.3.5 Scenario Input 

Two hospital network scenarios were created as a demonstration and proof of 

concept. Input parameters were based on the distribution of non-admin 

hospital personnel across three major Canadian hospitals (Johnston 2012), and 

a total hospital size of 500. Thus, the networks include 70 physicians, 310 

nurses, and 120 other HCWs. The association parameters of pij were assigned 

as pnn =0.4, pdd =0.05, and pon=0.4, corresponding to nurse-nurse, doctor-

doctor, and other-nurse connections, respectively. The degree distribution 

parameters are summarized in Table 3.2. Two contrasting sets of degree 

distributions were chosen, and are referred to as Scenarios 1 and 2. Scenario 1 

contains degree distributions of the same shape (Poisson), but differ in 

parameter value lambda (λ), the average rate of contact. Scenario 2 contains 

degree distributions that differ in both shape and rate of contact. Physicians 

were assigned a power law distribution with an exponential cutoff, with power 

law scaling parameter alpha (α), minimum value xmin, and exponential scale 

value lambda (λ). Nurses were assigned a Poisson distribution with average 
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rate lambda (λ). Other HCWs were assigned a lognormal distribution, with 

mean parameter mu (µ), and standard deviation value sigma (σ).  

 

Table 3.2 Input parameters for degree distributions. 
 Scenario 1  Scenario 2 

Physicians Poisson (λ =25) Power law (λ =0.027, α =0.4, 

xmin=1) 

Nurses Poisson (λ =8) Poisson (λ = 8) 

Other HCW Poisson (λ =13) Lognormal (µ =2.4, σ =0.5) 

 

3.3 Results 
 

The network generation code successfully created two ensembles of 1,000 networks 

corresponding to Scenarios 1 and 2, reflecting the assigned degree and association 

parameters. Density plots of the generated degree distributions used in all iterations of the 

generation process are visualized in Figure 3.3.  

 

Error over the 1,000 iterations of the network can be visualized in Figure 3.4. Scenario 1 

had a significantly lower mean error rate of 0.002 compared to 0.021 for Scenario 2 (t=-

212.58, p<0.001), though mean error rates for both scenarios were below 5%. 	
  

 

Average clustering coefficients across the network were calculated, and can be visualized 

in Figure 3.5. Overall, these values were very low. A mean of 0.03 corresponds to  

Scenario 1, while a mean of 0.04 was calculated for Scenario 2.  

 

A random selection of one network from each scenario was visualized in Gephi (Figures 

3.6 and 3.7). These are ensembles 158 of 1,000 from Scenario 1 and 675 of 1,000 from 

Scenario 2. The size of the node corresponds to its degree, while the colour corresponds 

to occupation. 
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The visualization of Scenario 1 ensemble network 158 contains 500 nodes and 2833 

edges, with a mean degree of 11.33. Within occupations, the mean degree of physicians, 

nurses, and others corresponds to 24.96, 7.85, and 12.38, respectively. 

 

The visualization of Scenario 2 ensemble network 675 contains 500 nodes and 2747 

edges with a mean degree of 10.99. Within occupations, the mean degree of physicians, 

nurses, and others corresponds to 24.27, 7.69, and 11.75, respectively.  

 

 

Figure 3.3 Probability density plot of the degree distributions generated for Nurses, 

Physicians, and other HCWS for Scenarios 1 and 2. 
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Figure 3.4. Density plot of error for Scenarios 1 and 2.  

 
 

Figure 3.5 Clustering coefficients for Scenarios 1 and 2. 
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Figure 3.6 Visualization of Scenario 1 ensemble network 158. Red, blue, and green 

nodes represent physicians, other HCWs, and nurses, respectively. 
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Figure 3.7 Visualization of scenario 2 ensemble network 675. Red, blue, and green 

nodes represent physicians, other HCWs, and nurses, respectively. 
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3.4 Discussion 
 

Capturing the heterogeneous contact networks of healthcare workers in hospital settings 

is a challenge. Current high-resolution networks are only available for a single unit or 

ward, while hospital-wide networks only account for work related interactions and ignore 

any social or informal contact. 

 

The network generation process developed in this chapter effectively produces multi-type 

networks of a hospital based on input parameters of degree and association. These 

parameters are flexible and easily extracted from pre-existing data sources. Many studies 

already provide potential input parameters, which can also be derived by survey, sensor, 

or observational data. 

 

The error rate was below 5% for both scenarios, indicating that the code is effective in 

using assigned degree distributions as input. The significantly higher error in Scenario 2 

is likely due to the scale free distribution of physicians, which includes extreme degree 

values of 80 or more (Figure 3.3). The low clustering coefficients for the networks 

additionally indicate that the randomness of the algorithm is intact.  

 

This tool can be applied to create hospital networks of any size and combination of input 

parameters, given the availability of data. With the increase in surveys, sensor, and RFID 

technologies exploring the social interactions of the hospital, there is likely an abundance 

of scenarios to apply it.   
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4. Simulations on the Stylized Network 
 

4.1 Introduction 
 

Simulations of disease spread on networks have been utilized to understand transmission 

patterns, plan vaccination strategies, and optimize infection control. Simulations are able 

to demonstrate and predict a range of all possible outcomes, providing a valuable data 

source for policy decision-making.  

 

This chapter simulates disease spread on the previously developed stylized hospital 

contact networks. Using the stylized networks, this chapter provides a contrast between 

networks of different structure, but similar mean degree. A range of scenarios and 

parameters were tested, confirming theoretical thresholds and the accuracy in the 

simulation process.  

 

4.2 Methods 

4.2.1 Model Characteristics 
 

Simulations on the network will utilize an S-I-R model, where an individual node moves 

through three disease states of susceptible, infected, and recovered. All individuals start 

in the susceptible class. If susceptible, individuals may become infected by a diseased 

neighbor with a probability of the disease transmissibility, T. Once infected, the node is 

moved to the infected class, for disease duration D. All infected individuals are 

contagious for the duration of illness, and can infect neighbours according to the 

transmissibility value, T. Once infected for the disease duration D, individuals move to 

the recovered state, where they are not susceptible to another infection. Individuals 

remain in the recovered state for the remainder of the simulation, indicating permanent 

immunity after recovery (although this is a short-term simulation). Natural and disease-

related deaths are not simulated in this model, the former because this is a short-term 

simulation, and the latter because we do not need this metric for our analyses, and 

recovered individuals exhibit similar (non-infectious) behavior as those who have died. 
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S-I-R models can be approximated to many diseases including influenza and measles, by 

altering model parameters and assumptions of immunity and death rate. 

  

The mechanism of disease spread on the network is explained through percolation 

theory. Unlike traditional compartmental models where there is an equal probability of 

exposure to an infected individual throughout the population, exposure through network 

models require a susceptible individual to be connected to an infected individual by an 

edge. This means that the outcome of the disease is dependent on both the 

transmissibility of the disease, T, and the structure of the network.  

 

4.2.2 Network Parameters 
	
  
A primary parameter which determines the fate of an outbreak is the transmissibility T, 

which is the probability that an infected individual will effectively transmit the disease to 

a susceptible individual, given they have contact (Meyers, 2007).  

 

R0 is related to transmissibility as a function of the degree distribution (1), where k and k2 

represent the degree and squared degree, respectively. 

 

R0 = T (mean (k2) / mean (k) -1)   (1) 

 

Based on the structure of the networks, there exists a critical transmissibility, Tc , which 

represents the threshold transmissibility past which a disease can spread throughout the 

network, and under which it cannot effectively spread. Tc is a function of the mean 

degree and mean squared degree (2) 

 

Tc = mean (k) / mean (k2) – mean (k)  (2) 

 

 

The transmissibility, T, represents the probability of infection for the duration of illness. 

Because the duration of illness lasts more than 1 day (or timestep), in most scenarios, 
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another parameter is used to reflect the probability of infection per day, B. This value is a 

function of the duration of infection D and the transmissibility value T (3). 

 

 

T = 1 - (1 - B)D   (3) 

 

4.2.3 Simulation 
	
  
Simulation code was developed in MATLAB and can be found in Appendix B.  

4.2.3.1 Inputs 

Adjacency matrix: Directly imported. Can be created using network generation 

algorithm or other source 

Population sizes: Numerical value for each subgroup, reflecting what corresponds 

to the adjacency matrix 

Disease duration: The number of timesteps (days, in this case) that an infected 

individual is infectious for 

Initial case: Whether the initial infection starts from a physician, nurse, or other 

HCW, or if this is a random selection 

Beta: Probability of infection per timestep. Calculated from the transmissibility T 

value and disease duration 
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4.2.3.2 Process 

a) Adjacency matrix and population sizes are used to create lists of “neighbors” 

or contacts of each node in the network 

 

b) The initial case is randomly selected based on input parameters, and the 

percolation process begins. 

 

c) Within each timestep: 

a. Neighbours are re-evaluated for susceptibility based on new infections 

b. Infected nodes infect their susceptible neighbors with probability B 

c. Infected individuals move to the recovered stage if they have been 

infected for the disease duration. 

 

d) The process runs until the number of infected individuals reaches 0 

 

4.2.3.3 Outputs 

Outbreak size: Total number of individuals who became infected in the 

population 

Additional Outputs: The simulation process can produce a variety of outputs, 

from a simple measure of attack size, to individual infection trajectories. Outputs 

are customized for each research question.  
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4.3 Results 
 

The calculated critical network parameters for scenarios 1 and 2, generated in the 

previous chapter, are summarized in Table 1. A disease duration D = 6 days was assigned 

for all simulations. 

 

Table 4.1 Critical transmissibility and corresponding transmission probabilities for 

Scenarios 1 and 2. 
 Critical Transmissibility Corresponding B 

Scenario 1 0.070 0.012 

Scenario 2 0.063 0.011 

 

Three simulations were conducted, exploring transmissibility, network size, and initial 

infection.  

4.3.1 Transmissibility Simulations 
 

The behavior of disease spread across a range of beta (B) values was tested. 

Transmissibility values were selected across a gradient ranging from 0 to 0.1, 

representing values below, at, and above the critical threshold. Simulations were run 

1,000 times at each value. 

 

The mean outbreak size for each B value is plotted for both Scenarios 1 and 2 in Figure 

4.1. As transmissibility increases, the mean outbreak size increases, approaching the total 

population size of 500 in both scenarios. A sharp increase in outbreak size occurs above 

the critical transmissibility value for each scenario. This demonstrates the significance of 

this threshold value in a disease’s ability to effectively spread throughout a contact 

network. 
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Figure 4.1 Mean outbreak size over 1,000 simulations across a range of beta for 

Scenarios 1 and 2. Arrow indicates approximate critical value. 

 
 

 

A density curve showing the distribution of outbreak sizes over 1,000 simulations for 

each B value was plotted for each scenario. Curves were plotted on the same graph, and 

divided into high values (Figure 4.2) and low values (Figure 4.3).  

 

Figure 4.2 demonstrates two primary characteristics of the disease simulations. First, 

when the epidemic fails to spread at all past the first individual, this is indicated with an 

outbreak size of 1. In every simulation, there is always a probability that the epidemic 

fails to spread beyond the first or second individual. Thus, there is a spike in density at 

the low outbreak size for all B values.  

 

Additionally, Figure 4.2 shows that as B increases above the threshold, there is less 

variation in outbreak size. This is because when B increases, the premature dieout of an 

epidemic is less likely due to the high probability of transmission at every connection. In 

other words, the disease is more likely to spread throughout the entire network rather than 

only affect a portion of it. A larger variation in outbreak size can be seen as 
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transmissibility decreases in this figure: values are not below threshold in this figure, so 

an outbreak is possible, but smaller outbreaks or disease die out are more likely at these 

values.   

 

Figure 4.3 contrasts with Figure 4.2 in that, below the threshold, variation in outbreak 

size increases with B. This is because the transmissibility values in Figure 3 are below or 

approaching the threshold transmissibility value. As transmissibility approaches the 

critical value, there is a higher likelihood of disease transmission past the initial one or 

two infections. With decreasing transmissibility, simulations show a high density of 

outbreak sizes of low values, demonstrating the high likelihood of disease burnout upon 

introduction to the network. 

 

Figure 4.2 Density curve of outbreak sizes at beta values above the threshold: 

ranging from 0.2 to 0.1.  
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Figure 4.3 Density curve of outbreak sizes at beta values ranging from below the 

threshold value to just above: 0.004 to 0.016. 

 

4.3.2 Network Size Simulations 
 

In the next set of simulations, the effect of network size on attack rate was explored. 

Three contrasting transmissibility values were used, corresponding to low, medium, and 

high R0. Summarized in Table 4.2, these values were calculated from network parameters 

of scenarios 1 and 2.  

 

Table 4.2 Low, medium, and high transmissibility parameters used for simulations. 
 B T  R0 

Low  0.01 0.03 Scenario 1 0.42 

Scenario 2 0.47 

Medium  0.02 0.10 Scenario 1 1.43 

Scenario 2 1.59 

High 0.05 0.25 Scenario 1 3.78 

Scenario 2 4.18 
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Using the network generation algorithm from Chapter 1, additional networks were 

created of sizes 1000 and 2000, preserving the subgroup proportions and parameters set 

in the original networks. Simulations were run 1,000 times for each of the high, medium, 

and low transmissibility levels. Histograms representing the range of outbreak sizes for 

network sizes 500, 1000, and 2000 can be found in Figures 4.4, 4.5, and 4.6, respectively.  

 

Overall these results show a similar distribution of outbreak size across network sizes, 

with consistently low outbreak sizes at a low transmissibility, high outbreak sizes at high 

transmissibility (with a small probability of burnout), and medium-range and highly 

variable outbreak sizes with medium transmissibility.  

 

Distributions were compared side-by-side as mean attack rate, which is calculated as a 

percentage of infected individuals of the total population (Figure 4.7). Statistically, these 

comparisons were evaluated. There was no significant difference in mean attack rate 

between network sizes of 500, 1000, and 2000 in the high transmissibility simulations: 

Scenario 1 (ANOVA, f=1.90, p=0.15), Scenario 2 (ANOVA, f=0.30, p=0.74). Similar 

results were found for the medium transmissibility simulations: Scenario 1 (ANOVA, 

f=0.52, p=0.59) Scenario 2 (ANOVA, f=0.26, p=0.77). At low transmissibility, 

significant differences between mean attack rate were found between all network sizes 

for both Scenarios 1 (ANOVA, f=776.34, p<0.0001) and 2 (f=614.8, p<0.0001).  

  

The effect of network structure on attack rate was investigated. Comparisons between 

scenarios 1 and 2 are summarized in tables 4.3, 4.4, and 4.5 for network sizes of 500, 

1000, and 2000, respectively. At medium and high transmissibility levels, network 

structure significantly affects mean attack rate. This effect is not seen at low 

transmissibility levels.  
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Figure 4.4 Distribution of outbreak sizes for the network size of 500, using low (A), 

medium (B), and high (C) transmissibility values, for scenarios 1 and 2. 
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Figure 4.5 Distribution of outbreak sizes for the network size of 1,000, using low (A), 

medium (B), and high (C) transmissibility values, for scenarios 1 and 2. 
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Figure 4.6 Distribution of outbreak sizes for the network size of 2,000, using low (A), 

medium (B), and high (C) transmissibility values, for scenarios 1 and 2. 
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Table 4.3 Comparison of mean outbreak size and attack rates between Scenarios 1 

and 2 for network size 500. 
 Low T Medium T High T 

Scenario 1 1.37 (0.27%) 26.33 (5.27%) 355.37 (71.07%) 
Scenario 2 1.46 5 (0.29%) 39.92 (7.98%) 330.71 (66.14%) 

p-value 0.056 (t = -1.915) <0.0001 (t = -5.499) <0.001  (t = 3.524) 

 

Table 4.4 Comparison of mean outbreak size and attack rates between Scenarios 1 

and 2 for network size 1000. 
 Low T Medium T High T 

Scenario 1 1.39 (0.14%) 48.39 (4.84%) 724.00 (72.40%) 

Scenario 2 1.40 (0.14%) 77.10 (7.71%) 663.05 (66.31%) 

p-value 0.905 (t =-0.120) <0.0001 t = -5.810) <0.0001 (t = 4.337) 

 

Table 4.5 Comparison of mean outbreak size and attack rates between Scenarios 1 

and 2 for network size 2000. 
 Low T Medium T High T 

Scenario 1 1.39 (0.069%) 101.92 (5.10%) 1475.0 (73.75%) 

Scenario 2 1.50 (0.07%) 151.71 (7.59%) 1305.67 (65.28%) 

p-value 0.037 (t = -2.09) <0.0001 (t = -4.985) <0.0001 (t = 6.111) 
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Figure 4.7 Comparisons of the distribution of attack rates between network sizes for 

high, medium, and low transmissibility scenarios.  
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4.3.3 Initial Infection Simulations 
 

Because each occupation has a distinct degree distribution, the impact of a disease 

starting with physicians vs. nurses, for example, may be significant. The impact of initial 

infection occupation on outbreak size was tested for both networks, at the previously set 

transmissibility levels of low, medium and high.  

 

Each simulation was repeated 1,000 times and the results are summarized in Figures 4.8, 

4.9, and 4.10 for low, medium and high transmissibility levels, respectively. Violin plots 

with an overlaid boxplot were used to visualize the distribution in outbreak sizes for each 

trial.  

 

Mean outbreak size significantly differed between initial infection occupations of 

physician, nurse, and healthcare worker for both scenarios 1 and 2 (ANOVA, p<0.0001). 

Tukey pairwise comparisons between each HCW combination revealed significant 

differences between all pairwise comparisons (Table 4.6).  

 

Figure 4.8 Comparison of the distribution in outbreak sizes for simulations with 

initial infection starting with a physician, nurse, and other HCW at low 

transmissibility. White circles indicate mean. 
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Table 4.6 Tukey pairwise comparisons for all combinations. 95% Confidence 

interval. 
 Pair P-Value 

Scenario 1 Other HCW- Doctor    <0.0001 

Nurse- Doctor <0.0001 

Nurse- Other HCW     <0.0001 

Scenario 2 Other HCW- Doctor    <0.0001 

Nurse- Doctor <0.0001 

Nurse- Other HCW     <0.001 

 

At medium transmissibility levels, mean outbreak sizes were also significantly different 

according to occupation start, for both scenarios 1 and 2 (ANOVA, p <0.0001). Tukey 

pairwise comparisons between HCW-types revealed significant differences between each 

comparison for both scenarios (Table 4.7).  

 

Figure 4.9 Comparison of the distribution in outbreak sizes for simulations with 

initial infection starting with a physician, nurse, and other HCW at medium 

transmissibility.  
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Table 4.7 Tukey pairwise comparisons for all combinations at medium 

transmissibility. 95% Confidence interval. 
 Pair P-Value 

Scenario 1 Other HCW-Doctor    <0.001 

Nurse-Doctor <0.0001 

Nurse- Other HCW     <0.0001 

Scenario 2 Other HCW-Doctor    <0.0001 

Nurse-Doctor <0.0001 

Nurse- Other HCW     <0.01 

 

At high transmissibility, mean outbreak size significantly differed between outbreaks 

starting with physicians, nurses, and healthcare workers for both Scenarios 1 and 2 

(ANOVA, p<0.0001). Tukey pairwise comparisons between each HCW-type revealed 

significant differences between all pairwise comparisons (Table 4.7), except for the 

other-Nurse comparison for Scenario 2.  

 

Figure 4.10 Comparison of the distribution in outbreak sizes for simulations with 

initial infection starting with a physician, nurse, and other HCW. High 

transmissibility.  
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Table 4.8. Tukey pairwise comparisons for all combinations at high transmissibility. 

95% Confidence interval. 
 Pair P-Value 

Scenario 1 Other HCW-Doctor    <0.0001 

Nurse-Doctor <0.0001 

Nurse- Other HCW     <0.0001 

Scenario 2 Other HCW-Doctor    <0.0001 

Nurse-Doctor <0.0001 

Nurse- Other HCW     0.941 

 

4.4 Conclusions 
 

The stylized simulations in this chapter demonstrate the ability of the network generation 

algorithm to produce networks that contrast in disease trajectory, allowing for the 

accurate capture of disease dynamics in different hospital settings. These simulations also 

confirmed the importance of disease transmission, network structure, and initial infection 

on the outcome of disease introduction in a population. Further, the findings were robust 

across different network sizes in the majority of scenarios, indicating that findings for one 

hospital may be applied to other settings, given similar subgroup degree characteristics.  

 

4.4.1 Transmissibility Simulations 
 

The simulations were effective in validating the percolation process created in MATLAB. 

The critical threshold of transmission calculated from the network aligned with observed 

critical values. These simulations also demonstrated the importance of the critical 

threshold for epidemic spread.  
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4.4.2 Network Size Simulations 
 

The next simulations confirmed that that results may be robust in the case of uncertain or 

changing population size. Additionally, conclusions for a small hospital may be 

applicable to hospitals of a larger size, assuming similar degree distribution 

characteristics for subgroups, and a transmissibility above the critical threshold.  

 

The significance of network structure on disease trajectory was also demonstrated. 

Scenarios 1 and 2 have similar mean degrees and critical transmissibility values, but 

differ in network structure. Scenario 1 is generated from three Poisson distributions, 

while Scenario 2 includes scale free, Poisson, and lognormal distributions. It was found 

that at medium and high transmissibility values, these networks had a significantly 

different mean outbreak size. Thus, it is important to obtain accurate input degree 

distribution data in the network generation process, as it significantly affects disease 

outcomes for medium and high transmissibility scenarios.  

 

4.4.3 Initial Infection Simulations 
 

Finally, it was found that the disease trajectory and success in spreading throughout the 

population is significantly affected by the starting occupation in most scenarios tested. At 

all transmissibility levels and both scenarios, the mean outbreak size was significantly 

higher when the disease started with physicians, compared to starting with other 

occupations. Physicians were assigned the highest mean degree among the subgroups. 

Therefore, it is apparent that the highly connected nature of the physician subgroups 

significantly affects the disease trajectory, if the outbreak starts with individuals within 

this subgroup. 
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5. Contact Patterns and Network Development for a Large 
Canadian Hospital  
	
  

5.1 Introduction 
 

Understanding the movement and contact patterns within hospital settings allows for 

more targeted and effective infection control interventions, and aids in the generation of 

contact networks for disease modeling and simulation. 

 

Current studies have utilized electronic medical records to examine spatial movement 

throughout the hospital. Although these methods may provide information on a subset of 

hospital interaction, they fail to capture social or casual movement, such as visits to the 

cafeteria or meetings (Liljeros et al., 2007; Ueno & Masuda, 2008; Cusumano-Towner et 

al., 2013; Curtis et al., 2013). 

 

Contact patterns for healthcare workers have also been examined through RFID tags, 

mote-based sensoring, and direct observation (Polgreen et al., 2010; Hornbeck et al., 

2012; Isella et al. 2011; Vanhems et al., 2013), suggesting the potential for 

superspreaders in the hospital setting (Vanhems et al., 2013), and differences in contact 

patterns between occupations (Isella et al., 2011). These studies are currently only within 

a single ward or unit, and thus are limited in generalizability to an entire hospital setting. 

 

In addition to contact, it is important to note the patterns of movement throughout the 

hospital. This may reveal locations that can more readily propagate infection spread 

during outbreak scenarios, and may be targets in control strategies.  

 

In order to better understand contact patterns in a hospital setting, this research chapter 

utilizes survey results from a large Canadian hospital. Both spatial movement and contact 

rates are analyzed in order to identify either locations or patterns in contact that may be 

targeted in infection control. Additionally, these observations are used to develop a 
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realistic contact network of a hospital, to be utilized for further disease modeling and 

simulation.  

5.2 Methods 
 

Healthcare workers at three major Canadian hospitals completed a questionnaire 

regarding hospital movement and contact as a part of a major research project, named the 

CONNECT study. A total of 3,048 HCWs responded to the survey, of approximately 

8,000 contacted. Respondents chose one of 15 occupations, which were further 

aggregated into four groups: Nurses, Physicians, other HCWs, and Admin/support staff. 

54% of responses were from the largest of the three hospitals. Because locations vary 

between hospitals, and staffing procedures likely differ, the largest hospital was chosen to 

conduct the movement and contact analysis for this study.  

 

For location-based analyses, all occupation groups were included. For the contact 

analysis and network generation process, only the healthcare workers (nurses, physicians 

and others) were included. 

 

Methods were divided into two sections: Survey analysis and network development.  

5.2.1. Survey Analysis 
 

5.2.1.1 Location Data  

Each respondent recorded the hours and minutes spent per location in the hospital, 

per week. Locations were categorized as inpatient, outpatient, mixed, no patients, 

or public area. Data for a total of 234 locations in the largest hospital were 

analyzed in the hospital for frequency of visits and length of stay.  

 

5.2.1.2 Contact Data  

To examine HCW-HCW interactions, survey data for the self-reported average 

daily number of HCW contacts was utilized. A contact, from the questionnaire, is 

defined as spending two minutes within 1 meter of another HCW. All non-admin 

occupations were analyzed.  
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5.2.2 Network Development 
 

The model parameters of degree distribution and association values, explained in Chapter 

3, will be approximated from the survey data. The multi-type network generation 

algorithm (Chapter 3) will then be used to create a contact network of the hospital.  

 

5.2.2.1 Degree Distribution 

Fitting of the data was done by maximum likelihood methods using the fitdistr 

function in R. Weibull, exponential, lognormal, gamma were tested for each 

distribution, and the model which minimized the Akaike Information Criteria 

(AIC) was chosen. The AIC is a standard metric used to compare the fit of data to 

a distribution, and the model with the lowest value is considered to be the best fit.  

 

5.2.2.2 Association Values 

Because the survey does not ask which type of HCW an individual comes in 

contact with, there are not sufficiently detailed data to inform the association 

values, directly. We can infer approximate values from the hospital demographic 

proportions, and an assumption that all HCWs may come into contact with all 

other HCWs.  

 

5.2.2.3 Network Generation 

The association values and degree distribution are then used in the multi-type 

network generation algorithm (Chapter 3), and an ensemble of 1,000 networks is 

generated. Error rates and clustering coefficients are recorded for the ensemble.  
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5.3 Results 

5.3.1 CONNECT Analysis 
	
  

5.3.1.1 Location Analysis 

 

For each location, the number of respondents who visited per week, and mean 

hours per week spent in the location, were plotted (Figure 5.1), and colored by 

location type.  

 

It is apparent that a significant portion of hospital movement occurs in public 

spaces. The four most frequently visited locations represent the cafeteria, lobby 

café, and coffee shops, though the length of time of these visits is shorter relative 

to other locations visited. Additionally, inpatient locations have a greater number 

of visits per week compared to outpatient locations (Figure 5.2).  

 

For all HCWs, the number of locations visited per week was compared between 

occupations (Figure 5.3). A significant difference was found between the number 

of locations visited for physicians, nurses, other HCW, and Admin/support staff 

(p<0.0001). Nurses were found to be significantly lower in number of locations 

visited compared to physicians, other HCW and Admin/support staff. Tukey 

pairwise comparisons are summarized in Table 5.1, revealing that nurses are 

significantly less mobile throughout the hospital compared to other HCWs. 
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Figure 5.1 Locations in the hospital plotted by total visits per week, and mean hours 

spent for each location. Color represents location type. 
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Figure 5.2 Locations in the hospital plotted by total visits per week, and mean hours 

spent for each location. Coloured and plotted by location type. 
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Figure 5.3 Distribution of the number of locations visited per week, by HCW type. 
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Table 5.1 Tukey pairwise comparisons for number of locations visited weekly, by 

HCW type. 

Comparison P-value 

Other HCW- Admin 0.96 

Nurse- Admin <0.001 

Physician- Admin 0.84 

Nurse- Other HCW 0.001 

Physician- Other HCW 0.98 

Physician- Nurse 0.002 

 

 

5.3.1.2 Contact Analysis 

The patterns of between-HCW contact were analyzed from the survey data, for all 

non-admin occupations. When compared by occupation (Figure 5.4), physicians 

were found to have significantly lower mean HCW contact rates than both nurses 

and other HCWs, while nurses and HCWs don’t significantly differ in mean 

occupation (ANOVA, p<0.01, Table 5.2).  

 

 

Figure 5.4 Distribution of reported HCW contact number between HCWs, nurses 

and physicians. 
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Table 5.2 Tukey pairwise comparisons for each occupation comparison. 

Comparison P-value 
Nurse- Other HCW 0.39 

Physician- Other HCW 0.002 

Physician-Nurse 0.01 

 

5.3.2 Network Parameterization 
	
  

5.3.2.1 Degree Distribution 

The distribution of contact number, or degree distribution, for each occupation is 

visualized in Figure 5.5. Four different statistical distributions were tested for 

each occupation, and AIC values were generated (Table 5.3). The best statistical 

fit for each occupation was plotted alongside the histogram (Figures 5.6, 5.7, 5.8). 

Physicians were best fit with a lognormal distribution, while the gamma 

distribution fit both other HCWs and nurses. 

 

Figure 5.5 Histogram of the distribution of contact number, by HCW type. 
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Table 5.3 AIC values for the statistical distribution fit.  
 Physician Nurse Other HCW 

Lognormal 732.63 4225.17 1270.11 

Weibull 742.57 4235.49 1274.13 

Exponential 754.98 4409.43 1322.36 

Gamma 738.03 4212.32 1267.12 

 

Figure 5.6 Histogram of physician degree distribution with fitted lognormal curve. 

 
 

Figure 5.7 Histogram of nurse degree distribution with fitted gamma curve. 

 
 

Figure 5.8 Histogram of other HCW degree distribution with fitted gamma curve. 
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5.3.2.2 Association Parameters 

The demographics for the hospital studied indicate an estimated population of 650 

physicians, 1405 nurses, and 750 other HCWs. From these values, all possible 

connections between each combination of occupation were calculated and 

summarized in Table 5.4.  

 

Edge counts are divided by the total number of edges involving each occupation, 

which generates the association values. These values are described as the 

probability that an individual of occupation (row) is connected with an individual 

of occupation (column), rather than another occupation (Table 5.5). This matrix is 

asymmetric because the total number of edges involving each occupation differs. 

The sum of all outgoing association values is 1, because the edge must connect to 

one of the three occupations.  

 

Table 5.4 Edge counts for each HCW combination. 
 Physicians Nurses Other HCW Total 

Physician 210925 913250 487500 1611675 

Nurses 913250 986310 1053750 2953310 

HCW 487500 1053750 280875 1822125 

 

Table 5.5 Association parameters for the hospital network. 
 Physicians Nurses Other HCW Total 

Physician 0.13 0.57 0.30 1.0 

Nurses 0.31 0.33 0.36 1.0 

HCW 0.27 0.58 0.15 1.0 

 

 

 

 

 



	
  
	
  

	
   61 

5.3.3 Network Generation 
 

Utilizing the developed parameters and the network generation algorithm (Appendix A), 

a contact network was created. The network contains 2,805 nodes, reflecting the hospital 

size of non-admin personnel. The average degree for the entire network was 15.9. By 

occupation, the average degrees for nurses, physicians, and other HCWs were 16.1, 13.1, 

and 18.1, respectively. A visualization of the network was created in Gephi (Figure 5.9).  

 

Error and clustering coefficients were evaluated over 1,000 iterations of the network 

generation process. Error in the process was below the significant threshold, at 0.003 

(Figure 5.10), which indicates that the degree and association parameters from the survey 

data are in agreement. Clustering coefficients were also low at 0.008, confirming that the 

randomness of the connection algorithm was preserved (Figure 5.11).  
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Figure 5.9 Contact network representing a large Canadian hospital, 2,805 nodes. 

Red, blue and green nodes represent physicians, other HCW and nurses, 

respectively.  
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Figure 5.10 Density plot of the error rate over 1,000 iterations of the network 

generation process. 

 

 
 

 

Figure 5.11 Clustering coefficients over 1,000 iterations of the network generation 

process. 
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5.4 Discussion 
 

The analysis of the CONNECT data revealed patterns of movement and contact in major 

Canadian hospitals.  

 

First, the most frequent locations visited by HCWs in the hospital were public spaces. 

The cafeteria, lobby café, and coffee shops made up the four most frequently visited 

locations. Although the length of time of these visits is shorter relative to other locations 

visited, the large proportion of the hospital that mixes in these locations may propagate 

disease spread in outbreak scenarios. In outbreak scenarios, cutting off these non-

essential movements may aid in reducing infection transmission throughout the hospital. 

 

Inpatient locations were found to have a greater number of visits per week compared to 

outpatient locations. Because of higher acuity of illness in inpatients settings, a greater 

diversity of HCWs may be in contact with the patient. This indicates that there may be a 

higher risk of disease spread in inpatient settings compared to outpatient settings. Staff 

cohorting in inpatient areas in outbreak scenarios would reduce the number of visits per 

location, per week, reducing the potential for disease propagation by HCWs. 

 

The analyses of movement and HCW contact showed that nurses may be important for 

transmission within ward settings, but are not key spreaders throughout the hospital, due 

to their low number of average locations visited. Other HCWs may be the most important 

for superspreading events, having a high mobility throughout the hospital, as well as a 

high HCW-contact rate. Occupations that fall in this category include respiratory 

therapists and patient care attendants. Physicians, although mobile throughout the 

hospital, have an overall low HCW contact rate, in comparison.  

 

The differences in HCW-contact were quantified in the fitted degree distributions, and 

were utilized in the network generation process. Degree distributions revealed gamma 

and lognormal distributions, indicating that all HCW types have a heavy right-tailed 
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distribution, meaning there are highly connected individuals in each occupation group, 

but the majority of connections are of lower degree. Thus, the presence of 

“superspreaders” in the hospital setting is possible for each of the HCW occupations, but 

the majority of HCWs have a lower number of connections. Targeting the highly 

connected individuals in each HCW-type for either contact-reduction or transmission-

reduction measures may lead to efficient infection control in outbreak scenarios, though 

identifying these individuals may be challenging.  

 

These parameters were effectively utilized to create a contact network of the hospital 

setting, representing the face-to-face interactions between subsets of the HCW 

population. This network can be utilized for modeling disease transmission in this 

Canadian hospital, and optimize and evaluate control measures. 
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6. Modeling Control Strategies in a Hospital Setting 
6.1 Introduction 
 

Evidence-based decision making for hospital infection control is a challenge, particularly 

for respiratory transmitted diseases. Respiratory diseases such as SARS and influenza 

have been propagated through hospital settings, but measurements of disease outcome 

and control measures are not consistent, and the incidence of these outbreaks is relatively 

rare (Varia et al., 2003; Voirin, Barret, Metzger, & Vanhems, 2009; Lee et al., 2003). 

Because of this, we currently lack evidence to supplement policy decision-making, and 

must rely on intuitive conclusions based on a handful of outbreak scenarios.  

 

Mathematical modeling can be useful to aid in decision making for hospital infection 

control and outbreak planning. Because simulations can be run on a range of scenarios, 

the effect of an intervention can be studied on multiple diseases. Additionally, all 

possible outcomes of the disease trajectory can be explored due to repeated simulations, 

providing decision-makers with robust results that capture the full spectrum of possible 

outcomes.  

 

Modeling respiratory infections to aid hospital decision-making has been utilized for 

vaccine planning (Polgreen et al., 2010), but more complex interventions involving 

transmission reduction and social distancing measures have yet to be studied.  

 

Using the network model developed for a large Canadian hospital (Chapter 5), the spread 

of three contrasting diseases will be studied. Control strategies involving transmission 

reduction interventions, vaccination, and social distancing will be evaluated and 

optimized. 
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6.2 Methods 
 

Simulations were run using the CONNECT hospital contact network developed in 

Chapter 5. This hospital network contains 2,805 HCW nodes: 650 physicians, 1405 

nurses, and 750 other HCWs. The average degree of the network is 16. “Contact” 

between HCWs represents two minutes spent within one meter of each other, which is 

sufficient interaction for exposure to respiratory droplets and aerosolized particles 

(Bischoff et al., 2013). Association and connection parameters were derived from survey 

results, and quantify differences in contact between subgroups of the hospital including 

nurses, physicians and other HCWs. 

 

First, simulations over a range of disease transmissibility values were run on the entire 

network without intervention, to demonstrate the critical transmissibility and general 

characteristics of an epidemic at baseline. For clarity in comparisons, duration of 

infection was kept constant at D = 6 days. The initial infection was selected randomly 

from all the individuals in the network.   

 

To demonstrate the contrast in infection spread between diseases, parameters were 

chosen that represent a range of diseases. R0s and corresponding transmissibility values 

were assigned to approximate SARS-like illness (R0=0.9) (Meyers et al., 2005), 

influenza- like illness (R0=1.5) (Fraser et al., 2009), and measles- like illness (R0=5) 

(Mossong & Muller, 2000). Although the R0 of 0.9 corresponding to SARS is in the 

lower range of estimates of the disease (Meyers et al., 2005), we will assume a disease 

with R0 of 0.9 as a SARS-like illness for contrast.   

 

Control strategies were then evaluated for these diseases. Three types of interventions 

were tested in this study: Transmission-reducing interventions, vaccination, and social 

distancing. All simulations were run 1,000 times to capture the range in possible 

outcomes. 
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First, transmission intervention strategies were simulated on the network. Because this 

network models face-to-face interactions, the most realistic intervention to simulate is the 

wearing of masks. This model does not include physical contact, thus transmission 

measures such as hand washing cannot be accurately simulated. 

 

Estimates of the efficacy of surgical and N95 masks for filtering particles from infected 

individuals vary. Measures range from as low as 25% when surgical masks have become 

ineffective or misused (Weber et al., 1993), to upwards of 90%, in scenarios where 

employees are fitted and correctly using N95 masks (Qian, Willeke, Grinshpun, 

Donnelly, & Coffey, 1998).  

 

The reduction in transmission due to mask wearing was calculated by multiplying the 

baseline transmissibility rate by the mask efficacy rate, and then calculated the 

corresponding B value (Table 6.1). This value is used for interactions within the 

population or between sub-groups targeted for intervention. 

 

Table 6.1 Transmissibility values and corresponding B for each level of efficacy. 

R0 T B No 

intervention 

B 25% 50 75 90 

0.9 0.040 0.007 0.005 0.003 0.002 0.001 

1.5 0.066 0.011 0.008 0.006 0.003 0.001 

5 0.220 0.041 0.030 0.019 0.009 0.004 

 

Next, vaccination strategies were simulated on the network. This is achieved by removing 

the targeted nodes and all connected edges from the network, because vaccinated 

individuals cannot become infected or transmit the disease. Two strategies were tested. 

The first selected random individuals from the network, both across the entire hospital, 

and within occupations.  

 

An alternate strategy was defined as prioritizing individuals with the highest degree, or 

number of contacts to other HCWs. This strategy was tested for subgroups and the entire 
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hospital, at identical coverage levels. Thus, targeted vaccination meant immunizing the 

most connected 25%, 50%, 75% and 90% of HCWs.  

 

Social distancing is simulated in the hospital model by randomly removing edges 

between HCWs. Because the targeted social interactions are likely non-specific to the 

HCW’s occupation, or contact number, disconnections are randomly chosen across all 

individuals in the network. The simulated distancing measures range from removing 5% 

to 75% of the total edges in the network. The low social distancing measure of 5% is 

likely feasible through education during the flu season on limiting casual social 

interactions. More extreme distancing measures that may reach the highest distancing 

measures include cancelling in-person meetings, limiting cafeteria and coffee visits, and 

discouraging social hospital activities.  

 

A more targeted approach to altering the social network, known as staff cohorting, was 

simulated. This occurs when HCWs who are usually assigned to work in multiple 

locations in the hospital are restricted to working in a single location. This type of 

intervention would theoretically reduce a fraction of the edges of the targeted individuals. 

To simulate this measure, we assume that the highest connected HCWs are the 

individuals who work in multiple locations, and thus will be targeted for staff cohorting. 

A previous study (Hornbeck et al., 2012) determined that the individuals with a high 

degree in the hospital network were the most mobile, simply due to the diversity in 

contacts.  Individuals in the network with a degree greater than 30 were assumed to work 

in multiple locations, for the context of this simulation. These individuals were targeted 

for the staff cohorting simulation, and were reduced in degree by a proportion. The 

reduction in degree aims to simulate the reduction in contacts an individual would have if 

staff were cohorted to work in reduced locations.  In total, 292 individuals had a degree 

greater than 30, approximately 10% of the population.  
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6.3 Results 
 

The critical transmissibility value for the CONNECT network was found to be (T= 

0.044), and corresponding probability of infection was (B= 0.008). 

6.3.1 Baseline Simulations 
 

First, simulations without intervention were conducted for a range of transmissibility 

values from T=0 to T=0.47, to examine the outbreak size both above and below the 

critical threshold of T=0.044.  

 

Density curves of outbreak size for each simulation were plotted in Figures 6.1 and 6.2. 

Figure 6.1 contains density curves of the lower range of transmissibility values tested. As 

transmissibility approaches zero, outbreak size becomes increasingly concentrated at 1, 

meaning little to no disease spread occurs at these transmissibility values. Figure 6.2 

contains density curves for transmissibility values above the critical threshold. As the 

transmissibility value increases above the threshold, outbreak size increases in number 

and density, approaching infecting the total hospital size of 2,805.  

 

Mean outbreak size for each simulation was plotted in Figure 6.3. With increasing 

transmissibility, the mean outbreak size increases. Below the critical value of 0.044, little 

to no infection spread will occur. Once transmissibility is above the critical value of 

0.0440, mean outbreak size increases and approaches the total hospital size of 2,805. 
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Figure 6.1 Density curves of outbreak sizes for simulations with transmissibility 

values ranging from 0 to 0.06. 

 
 

Figure 6.2 Density curves of outbreak sizes for simulations with transmissibility 

values ranging from 0.14 to 0.47. 
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Figure 6.3 Mean outbreak sizes over a range of transmissibility values. 

 
 

Simulations corresponding to the low, medium and high R0 illnesses were explored in 

depth. Each scenario was run for 1,000 iterations and histograms of the results were 

summarized in Figures 6.4, 6.5, and 6.6, respectively. Significant differences were found 

between mean outbreak size of the low, medium and high R0 illnesses (ANOVA, F=	
  3656 

p<0.0001). 

 

For the low R0 illness, the majority of outbreak sizes were below 10 (Figure 6.4). Out of 

2,805 individuals in the network, the disease didn’t spread to greater than 200 

individuals. The mean outbreak size for the simulations was 4.2 individuals (Table 6.3). 

Because the R0 is below the critical threshold of 1, epidemic scenarios on the network are 

not possible on a large-scale.  

 

The medium R0 illness demonstrated outbreak sizes that were divided: approximately 

75% of the scenarios showed spread similar to that of the low R0 illness, while the 

remaining scenarios showed a medium-level spread of illness between 450 and 800 

individuals in the network. The probability of an epidemic of the medium R0 illness >200 

individuals in the network is 0.26, with a mean outbreak sizes of 162 (Table 6.3). The 

just-above critical threshold R0 of 1.5 for the medium R0 illness means that there is still a 

high likelihood of little to no disease spread, but there is an ability to propagate infection 

through a large fraction of the network.  
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Finally, simulations of the high R0 illness show a low incidence of little to no disease 

spread (Figure 6.6), and the majority of simulations spreading past 2,000 infections. The 

mean outbreak size across simulations was 1902. The probability of an epidemic of the 

high R0 illness >200 individuals in the network is 0.81 (Table 6.3). The high R0 and 

corresponding transmissibility of the measles-like illness means that with each interaction 

simulated in the network, there is a much higher chance of disease spread compared to 

the less transmissible diseases, which is reflected in the elevated mean outbreak size and 

epidemic probability.  

 

With these simulations, there are no interventions simulated, thus the chances of an 

epidemic are very high. In the following simulations, interventions will be compared.  

 

Table 6.2 Corresponding R0, transmissibility and B values for SARS-, influenza-, 

and measles- like illness.  
 R0 T B 

SARS-like 0.9 0.0396 0.0067 

Influenza-like 1.5 0.0660 0.0113 

Measles-like 5 0.2200 0.0406 
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Figure 6.4 Histogram of outbreak sizes over 1,000 simulations for the low R0 illness. 

 
Figure 6.5 Histogram of outbreak sizes over 1,000 simulations for the medium R0 

illness. 

 
Figure 6.6 Histogram of outbreak sizes over 1,000 simulations for the high R0 illness.  
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Table 6.3 Mean outbreak sizes and probability of an epidemic for the three disease 

scenarios tested.  

R0 Mean outbreak size (no 

intervention) 

Probability of an 

Epidemic >200 

0.9 4.2 0 

1.5 162.4 0.26 

5 1901.5 0.81 

 

6.3.2 Transmission Interventions 
 

First, transmission intervention strategies were simulated on the network. Results 

summarized in Table 6.4 show that for mask efficacies of 50% and greater, targeting 

nurses has the same impact as targeting the entire hospital in preventing a hospital 

outbreak, for the medium R0 illness. The low R0 illness has no probability of an epidemic 

regardless of the intervention. Successful intervention for the high R0 illness only occurs 

when all HCWs are targeted with a 90% efficacy.  
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Table 6.4 Probability of epidemic (shaded grey), or mean outbreak size (if 

probability of epidemic is zero). Grey shading indicates unsuccessful intervention. 

R0=0.9 25% Efficacy 50 75 90 

All HCWs 2.02 1.43 1.16 1.06 

Physicians 3.15 2.18 2.20 1.97 

Nurses 2.22 1.58 1.29 1.16 

Other HCW 2.48 2.20 1.84 1.68 

 

R0=1.5 25 50 75 90 

All HCWs 0.04 2.38 1.38 1.13 

Physicians 0.16 0.12 0.07 0.07 

Nurses 0.07 3.20 1.58 1.34 

Other HCW 0.14 0.06 0.01 0.001 

 

R0=5 25 50 75 90 

All HCWs 0.73 0.53 0.11 1.60 

Physicians 0.81 0.74 0.70 0.65 

Nurses 0.76 0.60 0.39 0.20 

HCW 0.80 0.72 0.66 0.61 

 

 

6.3.3 Vaccination Strategies 
 

Vaccination strategies were simulated and compared on the CONNECT network. Because 

we do not have data on pre-existing vaccinations or immunity of this population, the 

vaccination coverage will be instead referred to as “preextisting immunity”, meaning that 

the percentages indicated are not for vaccination coverage, but immunity at the start of an 

epidemic.  

 

The first vaccination strategy tested targets individuals randomly, either within subgroups 

or the hospital as a whole. At preexisting immunity rates of 75% or greater, it is just as 
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effective to target nurses, compared to targeting the entire hospital, for the medium R0 

illness. Hospital-wide vaccination was required to prevent disease spread for the high R0 

illness, at a rate of 75% or greater.  

 

Next, the degree-based strategy was tested, which targets those with the highest degree, 

or number of contacts to other HCWs. Results indicate that prioritizing HCWs based on 

their connectivity is more effective than random vaccination for disease containment 

(Table 6.6). For the medium R0 illness, vaccinating the highest connected nurses was 

effective at preventing an epidemic at coverage rates as low as 25%. With the random 

targeting strategy, nurses would have to be vaccinated at 75% or greater to confer the 

same results (Table 6.5). With hospital-wide vaccination, only 25% coverage is required 

to prevent an epidemic using the targeted strategy, compared to 50% for random 

vaccination.  
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Table 6.5 Probability of an epidemic (shaded) and mean outbreak size, where 

probability of epidemic is zero, for preexisting immunity at three different R0 

values. Random vaccination strategy. 

 

R0=0.9 25% Coverage 50 75 90 

All HCWs 1.90 1.45 1.16 1.08 

Physicians 3.10 2.97 2.40 2.60 

Nurses 2.40 1.92 1.50 1.28 

Other HCW 3.40 2.63 2.16 1.96 

 

R0=1.5 25% Coverage 50 75 90 

All HCWs 0.03 2.34 1.37 1.11 

Physicians 0.20 0.16 0.11 0.09 

Nurses 0.15 0.01 2.52 1.77 

Other HCW 0.17 0.12 0.04 0.01 

 

R0=5 25% Coverage 50 75 90 

All HCWs 0.75 0.58 19.07 1.76 

Physicians 0.84 0.80 0.80 0.80 

Nurses 0.78 0.73 0.58 0.47 

Other HCW 0.81 0.79 0.75 0.76 

 

 

For the high R0 illness, targeted vaccination of subgroups was not sufficient for disease 

containment. This is likely because the transmissibility is high enough that all 

occupations must be partially covered. Hospital wide, targeted vaccination was still more 

effective than randomized vaccination. Vaccinating the top 50% of connected individuals 

was sufficient to prevent epidemic spread throughout the hospital, compared to 75% for 

the random vaccination.  

 



	
  
	
  

	
   79 

Table 6.6 Probability of an epidemic (shaded) and mean outbreak size, where 

probability of epidemic is zero, for three different R0 values. Percentages represent 

vaccination of the top percent of connected individuals in the population. 

R0=0.9 25% Coverage 50 75 90 

All HCWs 1.25 1.09 1.04 1.00 

Physicians 2.19 2.30 2.24 2.30 

Nurses 1.46 1.29 1.22 1.23 

Other HCW 1.95 1.90 1.90 1.90 

 

R0=1.5 25% Coverage 50 75 90 

All HCWs 1.68 1.20 1.06 1.01 

physicians 0.09 0.09 0.08 0.08 

Nurses 2.63 1.64 1.38 1.42 

Other HCW 0.02 0.003 0.002 0.01 

 

R0=5 25% Coverage 50 75 90 

All HCWs 0.42  2.33 1.19 1.03 

Physicians 0.79 0.78 0.77 0.78 

Nurses 0.72 0.45 0.30 0.26 

Other HCW 0.78 0.72 0.71 0.72 

 

6.3.4 Social Distancing Interventions 
 

The next type of intervention to be evaluated was social distancing, achieved by 

removing edges within the network structure. A large fraction of HCWs visit public 

spaces such as the cafeteria, and coffee shops (Chapter 5), indicating that many of the 

contacts that occur within the hospital may be social and non-essential to hospital 

functioning. In an outbreak scenario, measures to limit non-essential social interactions in 

hospital settings may lead to a decrease in network density, and thus reduced disease 

propagation.  
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Results from the simulations show that generalized social distancing measures are not 

sufficient at preventing epidemic spread for the high R0 illness, even in the most extreme 

scenario of 75%. As expected, epidemic spread failed to occur in the low R0 illness, 

regardless of intervention. For the medium R0 illness, social distancing measures of 50% 

were sufficient to prevent epidemic spread of the disease 

 

Table 6.7 Probability of an epidemic (shaded) and mean outbreak size, where 

probability of epidemic is zero, for a range of social distancing intervention levels. 
 5% 

Distancing 

10% 25% 50% 75% 

R0=0.9 3.51 3.12 2.04 1.51 1.17 

R0=1.5 0.21 0.18 0.04 2.45 1.28 

R0=5 0.83 0.79 0.74 0.57 0.14 

 

A more targeted approach to altering the social network, known as staff cohorting, was 

simulated by reducing highly connected individuals in the network by a percentage. 

Results were summarized in Table 6.8. For the medium R0 illness, cohorting at 75% 

successfully prevented an epidemic. No cohorting measure was sufficient to prevent an 

epidemic for the high R0 illness.  

 

Table 6.8 Probability of an epidemic (shaded) and mean outbreak size, where 

probability of epidemic is zero, for a range of cohorting levels. 
 5%  10% 25% 50% 75% 

R0=0.9 3.45 3.06 2.66 2.08 1.88 

R0=1.5 0.24 0.23 0.16 0.02 5.94 

R0=5 0.86 0.81 0.84 0.82 0.82 

 

The social distancing and staff cohorting interventions may be used together in an 

outbreak scenario to maximize efficacy. This was tested for each combination of 

interventions levels (Table 6.9). When utilized together, cohorting at 50% and social 
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distancing at 25% is sufficient to prevent epidemic spread of the medium R0 illness. 

These levels are more feasible than 75% cohorting and 50% distancing, which would be 

necessary if utilized separately.  
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Table 6.9 Probability of an epidemic (shaded) and mean outbreak size, where 

probability of epidemic is zero, for a combination of distancing and cohorting 

measures. 

R0=0.9 5% 

Cohorting 

10% 25% 50% 75% 

5% 

Distancing 

3.49 3.02 2.17 2.00 1.82 

10% 2.62 2.70 2.28 1.94 1.67 

25% 1.96 1.89 1.77 1.55 1.47 

50% 1.48 1.39 1.35 1.31 1.28 

75% 1.15 1.150 1.12 1.14 1.14 

 

R0=1.5 5% 

Cohorting 

10% 25% 50% 75% 

5% 

Distancing 

0.19 0.16 0.10 0.01 4.66 

10% 0.15 0.12 0.06 0.002 3.88 

25% 0.03 0.02 0.003 3.65 2.28 

50% 2.34 2.03 1.92 1.66 1.62 

75% 1.36 1.30 1.32 1.28 1.22 

 

R0=5 5% 

Cohorting 

10% 25% 50% 75% 

5% 

Distancing 

0.81 0.83 0.81 0.80 0.77 

10% 0.79 0.78 0.80 0.78 0.75 

25% 0.75 0.74 0.72 0.73 0.70 

50% 0.54 0.53 0.50 0.47 0.42 

75% 0.09 0.08 0.03 0.001 3.41 
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6.4 Discussion 
 

The results from this study show that occupation-targeted strategies for infection control 

are often equally as effective as general hospital control measures, and require fewer 

resources, particularly for the medium R0 illness. 

 

For the medium R0 illness, targeting nurses for mask-wearing is equally as effective in 

preventing an outbreak compared to targeting the entire hospital, assuming the masks can 

prevent transmission by at least 50%. This is a reduction of 1,400 individuals when 

targeting only nurses, leading to more concentrated resources and supply costs. 

 

If random vaccination for the medium R0 illness achieves 75% immunity levels, it is 

equally as effective to target nurses (n=1405) as the entire hospital (n=2805), which 

means a savings of approximately 1,000 vaccines. When prioritizing HCW vaccination 

based on their number of contacts, only 25% of nurses need to be vaccinated to prevent 

epidemic spread, which is equally as effective as targeting the entire hospital at 25%. 

Although vaccinating 25% vs. 75% of the population is cost effective, gathering the data 

necessary to prioritize individuals based on contact rate is very resource intensive. 

 

Occupation targeted strategies were not effective for the high R0 illness. Masks must 

achieve a 90% reduction in infection transmission, and be worn by the entire hospital, to 

prevent an epidemic. Additionally, both random and contact-targeted vaccination 

strategies must achieve 75% and 50% hospital-wide immunity, respectively, to prevent 

epidemic spread. Although vaccination for many high R0 diseases, such as measles, is 

often a condition of employment for hospital personnel, these results demonstrate the 

control challenges an emerging and highly infectious disease may pose in a hospital 

setting. 

 

Social network interventions of social distancing and staff cohorting were effectively 

simulated. When implemented separately, high levels of compliance for both measures 

were required to prevent epidemic spread of the medium R0 illness, and the interventions 
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were not effective in preventing an epidemic for the high R0 illness. When used in 

combination, more feasible levels of 50% cohorting and 25% distancing were sufficient 

to prevent epidemic spread of the medium R0 illness.  

 

Distancing of 25% may be achieved by measures such as cancelling face-to-face 

meetings, limiting cafeteria and coffee shop visits, and discouraging causal social contact 

in the face of an outbreak. Staff cohorting at 50% may be achieved by altering staffing 

procedures to prevent HCWs from working in multiple wards. 

 

Regardless of intervention strategy, the low R0 illness did not spread to epidemic levels in 

the hospital. This is due to the below-threshold R0. Although local spread of low R0 

diseases such as SARS is possible, as demonstrated in outbreaks in Toronto and Hong 

Kong (Varia et al., 2003, Voirin et al., 2009), illnesses with R0 < 1 are incapable of 

spreading to a significant proportion of individuals in the hospital network. Additionally, 

many of the HCW cases of SARS were directly acquired from patients, a factor not 

addressed in the current simulations. 

 

Given challenges to vaccination compliance, prioritizing individuals by occupation or 

degree may lead to more effective control strategies. Further research on how to 

efficiently target highly connected individuals for intervention strategies is needed.  
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7. Conclusion 
 

The results of this thesis build upon previous work exploring the contact patterns of 

healthcare workers in hospital settings, and propose a novel approach to creating a 

hospital-wide contact network. Additionally, control strategies including social distancing 

measures, not previously simulated in the hospital setting, were explored. The concluding 

chapter of this thesis will review the principal findings in the context of current literature, 

discuss strengths and limitations, propose applications of the findings, and suggest future 

work.  

 

7.1 A Tool for Network Modeling 
 

Contact networks in the hospital setting are a challenge to capture. Direct observation and 

sensor technologies have been effective in measuring face-to-face contact of healthcare 

workers in the hospital setting, but have only been used within single units or wards. 

Attempts to create hospital-wide networks have utilized electronic medical records 

(Liljeros et al., 2007; Ueno & Masuda, 2008; Cusumano-Towner et al., 2013; Curtis et 

al., 2013), but fail to capture off-the-record interactions such as social contact and staff 

meetings.  

 

The results of this research successfully created a tool for network generation in a 

hospital setting. Measures of degree and association are utilized as inputs, allowing for 

the capturing of all social and work-related interactions, as well as differences in mixing 

between occupations in the hospital. Error rates were low for the generation process, even 

in the extreme scenarios used in Chapter 3.  

 

The input parameters of degree and association are commonplace in literature involving 

social networks and contact patterns. For example, Isella et al. (2010) used sensor 

networks to measure both degree distribution and mixing patterns among the ward. These 

metrics can be directly used as input in the generation algorithm. Thus, this tool can 
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easily be applied to create networks of other hospitals, and potentially, other communities 

of interests. 

 

7.2 Revealing Patterns of Contact and Movement in a Large Canadian 
Hospital  
 

Self-reported survey data from a large Canadian hospital were analyzed, with questions 

regarding HCW contact rate and hospital movement patterns.  

 

It was found that physicians had significantly less HCW contact than nurses and other 

HCWs, where contact from the survey was defined as within one meter for two minutes 

or more. This agrees with a study by Isella et al. (2011), which found physicians to have 

the least number of contacts of the occupations surveyed, although measurements were 

only within a pediatric ward. Contact in this study was defined as within 1.5 meters for 

20 seconds or more. A contrasting study by Polgreen et al. (2010) found that nurses, 

resident physicians and fellows had the highest number of HCW contacts of the job 

categories observed. With this study, contact was defined as within 0.9 meters, but had no 

minimum time component. This suggests that physicians may have more frequent short 

interactions, and less contact of extended periods. In another study by Curtis et al. (2013), 

resident physicians and nurses were found to be the most frequently in the top 10% of 

contacts, again conflicting with our findings, though these assumptions of contact were 

based on movement patterns from electronic medical records, and fail to capture casual 

social contacts. 

	
  

Nurses visited significantly less locations in a typical week, but had an overall elevated 

contact rate, compared to other occupations. Although there is no current literature on 

HCW movement patterns to compare with, this finding is intuitive: nurses are often 

assigned to a single ward or unit for patient care. The “other” HCW category may be the 

most significant for superspreading events, having a high mobility throughout the 

hospital, as well as a high HCW contact rate. Occupations that fall in this category 

include respiratory therapists and patient care attendants. 
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The degree distributions for each occupation demonstrated a heavy-tailed distribution, 

with a small number of HCWs accounting for a large proportion of contacts. A similar 

distribution was found in a medical intensive care unit (Hornbeck et al., 2012). The 

heavy-tailed distribution of HCW contacts was again observed in hospital-wide networks 

by Vanhems et al. (2013), and Curtis et al. (2013). The distribution of the hospital setting 

implies that a select few HCWs are responsible for many of the contacts, and thus 

transmission within hospitals. Our results indicate that these “super-spreaders” may occur 

in any occupation, thus methods of identifying these individuals for prioritized 

vaccination or targeted control strategies would be effective. 

 

Location analyses showed that public spaces were visited the most frequently per week, 

including the cafeteria, lobby café, and coffee shops, although for a shorter length of 

time. Although again intuitive, this finding highlights a potential vulnerability of 

hospitals: given the vast overlap of HCWs at these locations, these locations could be 

significant facilitators of disease spread between otherwise unconnected wards or units.  

Approaching these high-traffic areas as sites for interventions such as hand-washing 

stations or mask distribution may be effective, as a large and diverse subset of the 

hospital population would be reached. Additionally, the interaction of HCWs with the 

general public in these spaces is likely, revealing a potential vulnerability for the 

propagation of infections circulating within hospitals to the surrounding community.  

 

Finally, it was found that inpatient locations have a greater number of visits per week 

compared to outpatient locations, indicating there may be a higher risk of disease spread 

in inpatient settings compared to outpatient settings. During outbreak scenarios, staff 

cohorting in inpatient areas can reduce the number of visits per location, per week, 

reducing the potential for enhanced disease propagation by HCWs who work in inpatient 

settings. 
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7.3 Evaluating Control Strategies 
 

Control strategies were evaluated on the Canadian hospital network created from survey 

data, and diseases with three contrasting R0s were compared. R0s and corresponding 

transmissibility values were assigned to approximate SARS-like illness (R0=0.9) (Meyers 

et al., 2005), influenza- like illness (R0=1.5) (Fraser et al., 2009), and measles- like illness 

(R0=5) (Mossong & Muller, 2000). Considering hospital-wide, occupation-based, and 

degree-based intervention strategies, the most resource efficient and effective strategies 

were identified.  

 

It was found that degree- based vaccination strategies may be more effective than random 

strategies for both the medium and high R0 illnesses. These findings complement 

previous work involving hospital vaccination strategies. Polgreen et al. (2010) tested a 

series of vaccination strategies: random vaccination, degree-based vaccination, as well 

vaccination of the occupation with the highest degree. Similar to our findings, the degree-

based strategy was the most effective. Curtis et al. (2013) compared both mobility-based 

and degree-based vaccination strategies with a random vaccination strategy, finding again 

the degree-based strategy to be most effective.  

 

Our conclusions align with current literature in that, although degree-based strategies are 

the most effective, it isn’t currently feasible to gather these data on an individual level. A 

more realistic approach may be targeting a highly connected occupation, such as nurses, 

which was found in our study to be effective for the medium R0 illness, and supported 

through simulations by Polgreen et al. (2010). Another approach not tested in our 

simulations, but found to be effective and feasible (Curtis et al., 2013), is targeting HCWs 

with the most mobility, rather than degree. 

 

Transmission intervention simulations yielded findings that suggest targeting the most 

connected occupations leads to similar efficacy with a reduction in resource use. These 

strategies were not effective for the high R0 illness. Hornbeck et al. (2012) simulated the 
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effects of hand-washing noncompliance in a hospital setting, but literature has not yet 

tested transmission-reduction measures in targeted populations. 

 

Social network interventions of social distancing and staff cohorting were also simulated. 

Levels of 50% cohorting and 25% distancing, used in combination, were required to 

prevent the epidemic spread of the medium R0 illness. Social distancing measures were 

not sufficient to prevent the epidemic spread of the high R0 illness. Distancing of 25% 

may be achieved through measures such as cancelling face-to-face meetings, limiting 

cafeteria and coffee shop visits, and discouraging causal social contact in the face of an 

outbreak. Staff cohorting at 50% may be achieved by altering staffing procedures to 

prevent HCWs from working in multiple wards.  

 

7.4 Strengths and Limitations 
 

The network generation algorithm is a strength of this study, in that it is able to capture 

the diversity in contact rates both within and between occupations, while remaining 

flexible in its applications. A previous studies by Polgreen et al. (2010) was flexible in its 

ability to use a range of association values for interactions between occupations, but was 

unable to capture diversity in degree distribution within occupations, only between. Other 

studies included intra-occupational degree diversity, but these studies were taken directly 

from observational or sensor data, which makes them unable to be applied to other 

hospital settings (Hornbeck et al., 2012; Isella et al. 2011; Vanhems et al., 2013). The 

strength of the current study is that we are able to capture the intra-occupational variation 

in degree distribution, while remaining flexible in the application to other hospitals. 

Another strength of this study was its attempts to simulate social distancing transmission 

reduction interventions, which haven’t previously been simulated in the hospital setting.  

 

A primary limitation of this study is that patients are not included in the current network. 

Although patients aren’t included in some recently developed hospital networks (Curtis et 

al., 2013), the inclusion of patients would further refine the patterns of transmission in the 

hospital setting, particularly because infections often begin with patients in these settings.  
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Secondly, because the rates of contact between HCWs are self-reported, there is a 

potential for a non-differential reporting bias in the results of this study. Because 

healthcare workers have long shifts, with many different types of contacts, they may be 

more likely to underreport their contacts. This would lead to a sparser graph, and 

consequently different conclusions regarding intervention efficacies. Confirming the 

findings of contact patterns through a hospital-wide RFID or observational study would 

validate the findings further.  

 

The final limitation identified in this study is the lack of detailed association data between 

healthcare workers. Because we did not ask in the survey, “who do you come into contact 

with,” we do not know which types of HCWs interact, or if there is assortative mixing. 

Although previous studies have suggested a non-random mixing of HCW occupations 

(Isella et al. 2011; Vanhems et al., 2013), the current study was unable to capture this 

through the survey data analyzed. 	
  

 

7.5 Applications of Findings 
 

These findings may aid in policy decisions for hospital control planning. Particularly, in 

the face of limited resources, this study suggests that targeting particular subgroups of the 

hospital setting is just as efficient as targeting the entire hospital. Additionally, it suggests 

that altering the usage of public spaces, or targeting these are intervention sites, may be 

most effective. The flexibility of this model means that it can be tailored to address a 

specific disease or scenario in a question, making it a potentially valuable tool in policy 

decision making. 

 

The multitype network tool developed in this study can be applied to capture contact 

networks in many different populations. This can include other hospitals, as well as other 

communities. This tool could be applied to other hospitals in an efficient way, given the 

availability of input data of association and degree. Additionally, the tool developed may 

be useful when applied to sexual networks, for example, where different subgroups may 
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represent different sexual orientations, with distinct degree and association components 

for each.  

7.6 Future Work 
 

Future work includes adding patients to the model. As explained previously, this would 

increase the simulation’s accuracy and account for all types of HCW infection. 

Additionally, as identified in Chapter 5, a large subset of the HCW population spends 

time in public hospital spaces. Utilizing this intersection between the community and 

hospital as a way of modeling the community as a whole would be interesting future 

work.  

 

Finally, refining the occupations further would lead to a more detailed network. For 

example, this would mean dividing the “Other HCW” category into respiratory therapists, 

physiotherapists, social workers, etc. The current diversity in contact rates within 

occupations may be explained by differences between more fine-grained subgroups 

within these occupation categories.  Further, this may reveal particular occupations 

within the current categories that contain the majority of superspreaders, which would 

provide a more targeted intervention population for degree based control strategies.  
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Appendices 
Appendix A: Network Generation Code 
	
  

	
  
	
  

1

% Network_Generation_Final
% Matlab pseudocode that uses the inputs of degree distribution, population
% sizes, and association parameters to create a network or ensemble of
% networks with error and clustering coefficients

% A
degree=csvread('DegreeList.csv'); %reads CSV of degree distributions

numd=650; %number of doctors
numn=1405; %number of nurses
numhcw=750; %number of other HCW

doctors= %assigns degree distribution of doctors
nurses= %assigns degree distribution of nures
hcw= %assigns degree distribution of
%other HCW

% B
adj=zeros(length(degree)); %creates adjacency matrix%subtract stubs from
%each individual

% C
% association parameters
pnn=0.4;
pnd=0.2;
pno=0.3;
pdn=0.3;
pdd=0.05;
pdo=0.75;
pon=0.4;
pod=(1/3);
poo=(1/3);

%calculate assigned stubs of each connection type
dd=round(sum(doctors)*pdd);
nn=round(sum(nurses)*pnn);
on=round(sum(hcw)*pon);
no=on;
nd=sum(nurses)-nn-no;
dn=nd;
do=(sum(doctors)-dn-dd);
od=do;
oo=(sum(hcw)-od-on);

%D-E
%starting the network generation process.

for i=1:n %n is the number of repetitions, if an ensemble is being created.
while %there are stubs left to connect, unless they have already been
    %connected, loop through this process:

type= randsample(1:6,1); %choose a random connection type (dd, nn, oo, do,
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2

%dn, or on)

if type==1 & %there are stubs left
    %find nodes that have remaining stubs
    n1=%select a random nurse
    n2=%select random doctor
    if %n1 and n2 have already been connected, restart
    %add entries to adjacency matrix
    %subtract stubs from each individual

elseif type==2 %there are stubs left
    %find nodes that have remaining stubs
    n1=%select a random nurse
    n2=%Select a random other hcw
    if %n1 and n2 have already been connected, restart
    %add entries to adjacency matrix
    %subtract stubs from each individual

elseif type==3 & %there are stubs left
    %find nodes that have remaining stubs
    n1=%select a random dr
    n2=%Select a random other hcw
    if %n1 and n2 have already been connected, restart
    %add entries to adjacency matrix
    %subtract stubs from each individual

elseif type==4 & %there are stubs left
    %find nodes that have remaining stubs
    n1=%select a random doctor
    n2=%select another random doctor
    if %n1 and n2 have already been connected, restart
    %add entries to adjacency matrix
    %subtract stubs from each individual

elseif type==5 & %there are stubs left
%find nodes that have remaining stubs
n1=%select a random nurse
n2=%select another random nurse
    if %n1 and n2 have already been connected, restart
    %add entries to adjacency matrix
    %subtract stubs from each individual

elseif type==6 & %there are stubs left
%find nodes that have remaining stubs
    n1= %Select a random other hcw
    n2= %Select a random other hcw
    if %n1 and n2 have already been connected, restart
    %add entries to adjacency matrix
    %subtract stubs from each individual
end
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3

end

%save the ensemble of networks
%calculate error
%calculate clustering coefficient
end

Published with MATLAB® 7.14
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Appendix B: Simulation Code 

	
  

1

% Simulation_Code_Final
% Matlab pseudocode that uses the inputs of adjacency matrix, population
% size, beta, disease duration, and initial case to run disease simulations
% on the network.

%A
adj=csvread('adjacencymatrix.csv'); %reads adjacency matrix created in
%network generation process

numd=650; %number of doctors
numn=1405; %number of nurses
numhcw=750;  % number of other HCWs

beta=0.01;
Duration=6;

for %all individuals in the population
    neighbors=%neighbors are extracted from adjacency matrisx;
end

%B
Init_case=%randomly select a first to infect

%C
while %there are infected individuals in the populatoin

   for %each infected node
       %select neighbors and infect at probability Beta

   newrecovereds= %find those who have been infected for 6 timesteps
    %remove them from the infected pool and add to recoverds

   end
end

attack(q)=Recovered(t);
probepid(o)=length(find(attack>200))

Published with MATLAB® 7.14


