
KERNEL ESTIMATION OF THE DRIFT COEFFICIENT OF A DIFFUSION

PROCESS IN THE PRESENCE OF MEASUREMENT ERROR

by

WOOYONG LEE

B.Econ., Korea University, 2012

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate and Postdoctoral Studies

(Statistics)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

June 2014

© Wooyong Lee, 2014



Abstract

Diffusion processes, a class of continuous-time stochastic processes, can be used to model

time-series data observed at discrete time points. A diffusion process can be completely char-

acterized by two functions, called the drift coefficient and the diffusion coefficient. For the

nonparametric estimation of these two functions, Bandi and Phillips (2003) proved consis-

tency and asymptotic normality of Nadaraya-Watson kernel estimators of the drift and the

diffusion coefficient.

In some cases, we observe the time-series data with measurement error. For instance, it

is a well-known fact that we observe the financial time-series data with measurement errors

(Zhou, 1996). For the nonparametric estimation of the drift and the diffusion coefficients in the

presence of measurement error, some works are done for the estimation of integrated volatil-

ity, which is the integral of the diffusion coefficient over a fixed period of time, but little work

exists on the estimation of the drift and the diffusion coefficients themselves. In this thesis,

we focus on the estimation of the drift coefficient, and we propose a consistent and asymptoti-

cally normal Nadaraya-Watson type kernel estimator of the drift coefficient in the presence of

measurement error.
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This thesis is an original and unpublished work of the author, Wooyong Lee, under the super-

vision of Dr. Nancy Heckman and Dr. Priscilla Greenwood.

The research question and the estimator are established earlier by Nancy Heckman, Priscilla
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Chapter 1

Introduction

A continuous-time stochastic process can be used to model time-series data that are observed

at discrete time points. For example, Felsenstein (1985) uses Brownian motion to model evo-

lutionary history of species, and Andersen et al. (2001) use a continuous-time semimartingale

to model variability of exchange rates.

In this thesis, we focus on a specific type of continuous-time stochastic process, namely, a

diffusion process. A diffusion process is a solution to a stochastic differential equation, and it

is used to describe many kinds of time-series data such as price data of financial instruments

(see e.g. Aı̈t-Sahalia, 1996). A stochastic differential equation has the form

dXt = µ(t, Xt)dt + σ(t, Xt)dWt,

where the function µ and the nonnegative function σ are two deterministic functions from

[0, ∞)×R to R, called the drift coefficient and the diffusion coefficient respectively, and Wt is

a stochastic process called Brownian motion. A solution to this stochastic differential equation

with an initial value random variable Y is a stochastic process {Xt | t ≥ 0} satisfying X0 = Y

and

Xt = Y +
∫ t

0
µ(s, Xs)ds +

∫ t

0
σ(s, Xs)dWs, t ≥ 0.

The solution must satisfy additional conditions, introduced later in Definition 1.6. The integral∫ t
0 σ(s, Xs)dWs is an example of what is called stochastic integration, which we define later in

1



Definition 1.5.

As a solution to a stochastic differential equation, a diffusion process can be completely

characterized by the drift coefficient µ and the diffusion coefficient σ. In addition, µ determines

the expected value of the (random) change in Xt over an infinitesimal amount of time, and σ

determines the variance of the (random) change in Xt over an infinitesimal amount of time.

Therefore, the statistical goal when using a diffusion model is to estimate these two functions.

The theme of this thesis is to propose a statistical method to estimate the drift coefficient

nonparametrically in the presence of measurement error, in which case the discrete-time ob-

servations do not provide exact values of the latent continuous-time process. In addition, we

consider the simpler form of the stochastic differential equation, that µ and σ are not functions

of t and Xt but functions of Xt only, in which case the stochastic differential equation is said to

be time-homogeneous:

dXt = µ(Xt)dt + σ(Xt)dWt. (1.1)

In this chapter, we introduce background knowledge used to formally define our research

question and our estimator. We first introduce Brownian motion, which is used to define

the stochastic integrals considered here. Then we use stochastic integration to construct a

stochastic differential equation and its solution, which is called a diffusion process. After that,

we discuss stationarity and ergodicity for diffusion processes, the properties we assume in

our study in later chapters. Lastly, we discuss kernel estimation, a nonparametric estimation

method we use in order to estimate the drift coefficient µ. The review of existing literature and

the statement of our research question in relation to the literature will be given in Section 2.1.

For discussing relevant background knowledge related to stochastic processes, we use

Karatzas and Shreve (1991), Øksendal (1992) and Kutoyants (2004). Øksendal (1992) is a text-

book on stochastic integration and stochastic differential equations intended for graduate stu-

dents and non-experts while Karatzas and Shreve (1991) offer a more abstract and rigorous

treatment of these areas. Kutoyants (2004) studies statistical problems for stationary and er-

godic diffusion processes. For an introduction to kernel estimation, we use Simonoff (1996)

and Hardle (1990) and the references therein, which give an overview for graduate students

and applied statisticians while giving further references for more advanced treatment of the

2



subject.

1.1 Brownian Motion

We introduce Brownian motion first. The sequence of subsets {Ft | t ≥ 0} of a σ-algebra F

will denote a filtration with the time-index t. All random processes are assumed to be defined

on the same probability space, when required.

Definition 1.1 (Karatzas and Shreve, 1991, page 47) Defined on a probability space (Ω,F , P), a

stochastic process is said to be Brownian motion if it is a continuous Ft-adapted stochastic process

{Wt,Ft ; t ≥ 0} such that

1. W0 = 0 almost surely, and

2. For any 0 ≤ s < t, the increment Wt−Ws is independent of Fs and is normally distributed with

mean 0 and variance t− s.

Brownian motion is also called the Wiener process, which is why it is usually denoted with

a W. From condition 2 of the above, for discrete times t1 < t2 < · · · < tn, the Brownian motion

increments {Wt2 −Wt1 , Wt3 −Wt2 , . . . , Wtn −Wtn−1} are independent and normally distributed

random variables.

1.2 Stochastic Integration

Stochastic integration is an integration with respect to a stochastic process, in contrast to

Lebesgue integration which is an integration with respect to a measure. In this section, we

restrict our discussion to stochastic integration with respect to Brownian motion, although

stochastic integration is defined for more general classes of stochastic processes including mar-

tingales.

To understand the definition of stochastic integration, recall that the Riemann integral of

an integrable function can be characterized by the limit of integrals of step functions which

converge to the integrable function. The stochastic integral is defined in a similar way: we

first define the stochastic integral of a simple process, which is similar to a step function, and

3



then we define the stochastic integral of a stochastic process as a limit of the stochastic integrals

of simple processes that converge to the process in a suitable norm.

Now we introduce this construction formally. For ease of exposition, we only consider

stochastic integration over the time-interval [0, T]. Its extension to a generic time-interval [S, T]

is straightforward. We first define a simple process and then define the stochastic integral of a

simple process.

Definition 1.2 (Karatzas and Shreve, 1991, page 132) Defined on a probability space (Ω,F , P), a

stochastic process {St | t ≥ 0} is said to be a simple process if there exists a strictly increasing sequence

of real numbers {ti}∞
i=0 with t0 = 0 and tn → ∞ as well as a sequence of random variables {ξi}∞

i=0

such that

St = ξk for tk ≤ t < tk+1,

where supn≥0 |ξn(ω)| ≤ C < ∞ for every ω ∈ Ω and ξn is Ftn -measurable for every n ≥ 0.

Definition 1.3 (Karatzas and Shreve, 1991, page 132) The stochastic integral of the simple process

{St | t ≥ 0} with respect to Brownian motion {Wt | t ≥ 0} over [0, T] is defined as

∫ T

0
St dWt ≡

N−1

∑
k=0

ξk
(
Wtk+1 −Wtk

)
+ ξN (WT −WtN ) ,

where N is an integer such that tN ≤ T < tN+1.

Note that the ξ’s and {Wt} need not be independent and that the stochastic integral is a ran-

dom variable. Having defined stochastic integrals for simple processes, the next step is to

define a class of stochastic processes that are well approximated by simple processes. We in-

troduce the following class of stochastic processes, L2([0, T]), which is conceptually similar to

the L2 space of random variables.

Definition 1.4 (Øksendal, 1992, page 18) L2([0, T]) is defined as the class of Ft-adapted stochastic

processes {Vt,Ft ; t ≥ 0, Vt defined on (Ω,F , P)} such that

E

(∫ T

0
V2

t dt
)
< ∞.
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The following result states that every stochastic process in L2([0, T]) can be approximated

by a simple process, in an “L2 norm”.

Lemma 1.1 (Øksendal, 1992, page 19) For {Vt | t ≥ 0} ∈ L2([0, T]), there exists a sequence of

simple processes
{
{S(n)

t | t ≥ 0}
∣∣∣ n = 1, 2, . . .

}
⊆ L2([0, T]) such that

lim
n→∞

E

(∫ T

0

(
Vt − S(n)

t

)2
dt
)
= 0.

Then we define the stochastic integral of a stochastic process in L2([0, T]) as a limit of the

stochastic integrals of the simple processes that converge to the process, as follows.

Definition 1.5 (Øksendal, 1992, page 21) The stochastic integral of {Vt | t ≥ 0} ∈ L2([0, T]) with

respect to Brownian motion {Wt | t ≥ 0} over [0, T] is defined as

∫ T

0
Vt dWt ≡ lim

n→∞

∫ T

0
S(n)

t dWt,

where the limit is the almost sure limit and
{
{S(n)

t | t ≥ 0}
∣∣∣ n = 1, 2, . . .

}
⊆ L2([0, T]) is a sequence

of simple processes as in Lemma 1.1.

One can show that this stochastic integral is well-defined, that is, that the limit is indepen-

dent of the choice of S(n)
t ’s (Øksendal, 1992, page 21). In addition, the limiting random variable

has a finite second moment (Øksendal, 1992, page 21).

We conclude this section by stating some basic properties of stochastic integration. These

properties are obvious when the stochastic process in the integrand is simple. For generic

stochastic processes in L2([0, T]), the properties can be proven via the limit argument.

Lemma 1.2 (Øksendal, 1992, page 22) For real S ≤ R ≤ T and α and β, stochastic processes

{Vt | t ≥ 0} and {Ut | t ≥ 0} in L2([0, T]) and Brownian motion {Wt | t ≥ 0}, the following

5



hold almost surely.

∫ T

S
Vt dWt =

∫ R

S
Vt dWt +

∫ T

R
Vt dWt,∫ T

S
(αVt + βUt) dWt = α

∫ T

S
Vt dWt + β

∫ T

S
Ut dWt,

E

(∫ T

S
Vt dWt

)
= 0,

E

([∫ T

S
Vt dWt

]2
)

= E

(∫ T

S
V2

t dt
)

.

1.3 Stochastic Differential Equation

In this section, we formally introduce stochastic differential equations and their solutions,

which are called diffusion processes. Then, in the next section, we define stationarity and

ergodicity for diffusion processes, the properties we assume in our study in later chapters.

As stated earlier, we consider the time-homogeneous stochastic differential equation given in

(1.1).

Let {Wt | t ≥ 0} be Brownian motion defined on a probability space (Ω,F , P) and Y be a

real-valued random variable also defined on (Ω,F , P) and independent of Brownian motion.

We define an augmented filtration Ft, t ≥ 0, based on the filtration

Gt ≡ σ
(
Y , {Ws | 0 ≤ s ≤ t}

)
, t ≥ 0,

and the collection of all subsets of measure zero:

N ≡
{

N ⊆ Ω
∣∣∣ ∃G ∈

⋃
t≥0

Gt with N ⊆ G and P(G) = 0
}

.

Then an augmented filtration Ft, t ≥ 0, is defined by

Ft ≡ σ
(
Gt ∪N

)
, t ≥ 0.

With this notation, we define a (strong) solution to a stochastic differential equation as

follows.
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Definition 1.6 (Karatzas and Shreve, 1991, page 285) A strong solution {Xt | t ≥ 0} to the stochas-

tic differential equation in (1.1) on the probability space (Ω,F , P) with respect to Brownian motion

{Wt | t ≥ 0} and the initial value random variable Y is defined as a stochastic process with continuous

sample paths such that

1. Xt is adapted to the augmented filtration Ft.

2. P(X0 = Y) = 1.

3. P
(∫ t

0

(
|µ(Xs)|+ σ2(Xs)

)
ds < ∞

)
= 1 for every 0 ≤ t < ∞.

4. The following holds almost surely for all t ∈ [0, ∞):

Xt = X0 +
∫ t

0
µ(Xs)ds +

∫ t

0
σ(Xs)dWs.

In contrast, a weak solution is a stochastic process that has the same distribution as a strong

solution but that is not necessarily adapted to the augmented filtration Ft, that is, not neces-

sarily a function of {Wt} and Y both defined on (Ω,F , P).

As in the study of ordinary differential equations, we are interested in existence and unique-

ness conditions for solutions of stochastic differential equations. First, the following defines

the uniqueness of a strong solution.

Definition 1.7 (Karatzas and Shreve, 1991, page 286) We say strong uniqueness holds for the pair

(µ, σ) if, when {Xt | t ≥ 0} and {Yt | t ≥ 0} are both strong solutions to the stochastic differential

equation in (1.1) with the initial value random variable Z, we have P(Xt = Yt ; t ≥ 0) = 1.

One well-known condition that ensures existence of the unique strong solution is the fol-

lowing.

Theorem 1.1 (Øksendal, 1992, page 48) Suppose that the initial value random variable Y is inde-

pendent of Brownian motion {Wt | t ≥ 0} and satisfies E(Y2) < ∞. Also suppose that, for every

x, y ∈ R, there exist constants C and D such that

|µ(x)− µ(y)| + |σ(x)− σ(y)| ≤ C|x− y|, and

|µ(x)| + |σ(y)| ≤ D(1 + |x|).
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Then the stochastic differential equation in (1.1) has a unique strong solution.

There are other conditions that give the existence and uniqueness of a strong solution. For

example, as Bandi and Phillips (2003, page 244) point out, if µ and σ are twice continuously

differentiable and if σ2(x) > 0 for all x, then a unique strong solution exists by the following

theorems in Karatzas and Shreve (1991): Theorem 2.5 (page 187), Theorem 5.15 (page 341) and

Corollary 3.23 (page 310).

1.4 Stationarity and Ergodicity

In this section, we define stationarity and ergodicity of diffusion processes, which we assume

in later chapters. In order to define them, we first define recurrence, positive recurrence and

null recurrence, which are defined not only for a diffusion process but also for a generic real-

valued stochastic process.

Definition 1.8 (Kutoyants, 2004, page 39) Let {Vt} be a real-valued stochastic process, and let τa ≡

inft≥0{Vt = a} and τb
a ≡ inft≥τa{Vt = b}. We define inf φ ≡ ∞.

1. The process {Vt} is said to be recurrent if P(τb
a < ∞) = 1 for all a, b ∈ R.

2. The process {Vt} is said to be positive recurrent if it is recurrent and E(τb
a ) < ∞ for all a, b ∈ R.

3. The process {Vt} is said to be null recurrent if it is recurrent and E(τb
a ) = ∞ for all a, b ∈ R.

When it comes to a strong solution of a time-homogeneous stochastic differential equation

given in (1.1), there are conditions on µ and σ that are related to recurrence, positive recurrence

and null recurrence of the corresponding strong solution. Below we give a necessary and

sufficient condition on µ and σ for a strong solution to be recurrent or positive recurrent. Note

that we only have a sufficient condition (but not a necessary condition) for the null recurrence.

Lemma 1.3 (Kutoyants, 2004, page 40) A strong solution {Xt | t ≥ 0} to the time-homogeneous

stochastic differential equation in (1.1) is recurrent if and only if

S(x) ≡
∫ x

0
exp

{
−2

∫ y

0

µ(z)
σ2(z)

dz
}

dy
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satisfies limx→−∞ S(x) = −∞ and limx→∞ S(x) = ∞.

In addition, {Xt | t ≥ 0} is positive recurrent if and only if it additionally satisfies

G ≡
∫ ∞

−∞

1
σ2(y)

exp
{

2
∫ y

0

µ(z)
σ2(z)

dz
}

dy < ∞.

Also, the solution process is null recurrent if it is recurrent and G = ∞.

A positive recurrent strong solution {Xt} has the following properties. First, there exists a

random variable X whose probability density function is fX, called the invariant density, such

that Xt
d−→ X as t → ∞. In addition, a positive recurrent strong solution {Xt} is ergodic, that

is, for any measurable function h such that
∫
|h(x)| fX(x)dx < ∞, we have, almost surely,

1
T

∫ T

0
h(Xs)ds −→

∫
h(x) fX(x)dx as T → ∞.

The following theorem summarizes this discussion and gives the analytical form of the

invariant density fX for a positive recurrent strong solution {Xt}.

Theorem 1.2 (Kutoyants, 2004, page 40) If a strong solution {Xt | t ≥ 0} to the time-homogeneous

stochastic differential equation in (1.1) is positive recurrent, then {Xt | t ≥ 0} is ergodic with the

invariant density

fX(x) =
1

Gσ2(x)
exp

{
2
∫ x

0

µ(y)
σ2(y)

dy
}

,

where G is as in Lemma 1.3.

Now we discuss stationarity. We first define stationarity for a generic stochastic process.

A (strictly) stationary process is a stochastic process whose joint probability distributions are

invariant under the shift of the time-indices, as defined below.

Definition 1.9 (Karatzas and Shreve, 1991, page 103) A stochastic process {Vt} is said to be strictly

stationary if, for any n ∈N, any time-indices t1, . . . , tn and any s ∈ R,

(Vt1 , . . . , Vtn)
d
= (Vt1+s, . . . , Vtn+s),

where the symbol “ d
=” means both sides have the same distribution.
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Now we relate stationarity to a diffusion process. If a strong solution to (1.1), {Xt}, is

positive recurrent (so that the invariant density fX, defined in Theorem 1.2, exists) and the

initial value random variable Y has the density function equal to fX, then the strong solution

{Xt} is strictly stationary (Kutoyants, 2004, page 2). For this reason, the invariant density fX

is also called the stationary density.

In the next section, we discuss kernel estimation, the last background information we need

to provide in order to formally define our research question and our estimator.

1.5 Kernel Estimation

We will introduce what is called the Nadaraya-Watson estimator as our estimator for the drift

coefficient. The Nadaraya-Watson estimator is the first widely used kernel estimator for cross-

sectional data (Nadaraya, 1964, and Watson, 1964). Suppose that we have independent bivari-

ate data, (x1, y1), . . . , (xn, yn), from the distribution of (X, Y) from the regression model

Y = m(X) + ε (1.2)

where m is a function and ε is a random variable such that E(ε|X = x) = 0 and Var(ε|X =

x) = σ2(x). Therefore, the function m represents the conditional expectation of Y given X. The

Nadaraya-Watson estimator estimates m(x) = E(Y|X = x) for each fixed x. In this section, we

introduce the estimator using the overview of Simonoff (1996, Chapter 5) and the references

therein.

Note that the conditional expectation E(Y|X = x) is given by

E(Y|X = x) =
∫

y fY|X=x(y)dy =
∫

y
fX,Y(x, y)

fX(x)
dy, (1.3)

where fY|X=x, fX,Y and fX are conditional, joint and marginal densities, respectively. We can

obtain the Nadaraya-Watson estimator if we substitute for fX(x) and fX,Y(x, y) in (1.3) with

the kernel density estimates, which we define in what follows.

We first define the kernel density estimate of fX(x). Note that we have observed indepen-

dent and identically distributed data, x1, . . . , xn, where xi ∈ R for each i, having a common
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density fX. The kernel density estimate f̂n(x) of fX(x) is defined as

f̂n(x) ≡ 1
nh

n

∑
i=1

K
(

xi − x
h

)
, (1.4)

where K : R → R is called the kernel function and h is a positive constant called the band-

width. Both K and h are chosen by the user. Parzen (1962) proved that f̂n(x) is a consistent

estimator of fX(x) in the L2 norm if fX is continuous at x. To emphasize that we choose h

according to n but choose K independent of n, we will sometimes write h = hn.

Theorem 1.3 (Parzen, 1962, page 1069) Suppose that the kernel K : R → R is a bounded Borel

measurable function such that

lim
z→∞
|zK(z)| = 0,

∫ ∞

−∞
|K(y)|dy < ∞ and

∫ ∞

−∞
K(y)dy = 1.

If hn → 0 and nhn → ∞ as n→ ∞, then

lim
n→∞

E

((
f̂n(x)− fX(x)

)2
)
= 0

for every x at which fX is continuous.

Parzen (1962) gave the order of the asymptotic variance of f̂n(x), but not that of the asymptotic

bias. Rosenblatt (1956) derived orders of the asymptotic bias and the variance for nonnegative

K and twice differentiable fX. In addition, he found that using a symmetric K makes the bias

converge to 0 in a higher order, which is why people often use symmetric kernels.

We can generalize the univariate kernel density estimate to a multivariate density estimate.

Here we introduce a special case of the bivariate kernel density estimate used to derive the

Nadaraya-Watson estimator. The product kernel density estimate of the joint density from the

independent and identically distributed data, (x1, y1), . . . , (xn, yn), where (xi, yi) ∈ R2 for each

i, is defined as

f̂n(x, y) ≡ 1
nhxhy

n

∑
i=1

Kx

(
xi − x

hx

)
Ky

(
yi − y

hy

)
, (1.5)

where Kx and Ky are kernels and hx and hy are bandwidths. Discussion of a more general form

of the multivariate kernel density estimate can be found in Simonoff (1996, Chapter 4).
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Now we define the Nadaraya-Watson estimator following the derivation of Simonoff (1996,

page 134), which is a simplified version of the derivation of Watson (1964). Recall the expres-

sion (1.3) of the conditional expectation E(Y|X = x). If we substitute for fX(x) and fX,Y(x, y)

in (1.3) with the kernel density estimates (1.4) and (1.5), set hx in (1.5) to be equal to h in (1.4)

and choose Ky so that
∫

Ky(z)dz = 1 and that
∫

zKy(z)dz = 0 (for instance, if Ky is symmetric

about zero), we derive the Nadaraya-Watson estimator:

m̂(x) =
∑n

i=1 K
( xi−x

h

)
yi

∑n
i=1 K

( xi−x
h

) . (1.6)

We note that Watson (1964) provided the estimator for the case of xi ∈ Rd where d ∈ N, in

which the kernel K is appropriately defined according to the value of d.

Nadaraya (1964) proved consistency of m̂(x) when Y is bounded. Among many other

results of the consistency of m̂(x) for unbounded Y, we state the following.

Theorem 1.4 (Hardle, 1990, Proposition 3.1.1) Suppose that the following three conditions hold:

1. the regression model (X, Y) satisfies fX(x) > 0 and E(Y2) < ∞,

2. the kernel K satisfies
∫
|K(u)|du < ∞ and lim|u|→∞ uK(u) = 0,

3. the sequence of bandwidths {hn} satisfies hn → 0 and nhn → ∞.

Then m̂(x)
p−→ m(x) as n→ ∞ for every x at which all of m(·), fX(·) and σ2(·) are continuous.

We note that the use of the Nadaraya-Watson estimator is not restricted to model (1.2).

For example, Hall and Hart (1990) studied estimating E(Y|X = x) by the Nadaraya-Watson

estimator when ε i’s in the data are not independent, but rather a stationary process indexed

by i. Robinson (1983) considered time-series data, z1, . . . , zn, from a discrete-time stochas-

tic process {Zi}n
i=1. He studied estimating E(Zi+p | Zi, . . . , Zi+p−1) for some p ∈ N by the

Nadaraya-Watson estimator, setting yi = zi+p and xi = (zi, . . . , zi+p−1). Researchers also stud-

ied estimating statistical objects in continuous-time models, including diffusion processes, by

the Nadaraya-Watson estimator. We refer to studies that used the Nadaraya-Watson estimator

for estimation of the drift and the diffusion coefficients of a diffusion process in Section 2.1.
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The Nadaraya-Watson estimator m̂(x), defined in (1.6), can be generalized to what is called

the local polynomial estimator. Note that, for a fixed x, the estimator m̂(x) is the solution to

the following weighted least square problem:

m̂(x) = argmin
z

n

∑
i=1

(yi − z)2K
(

xi − x
hn

)
.

Generalizing this, the local polynomial estimator of degree p ≥ 0 is defined (Stone, 1977, and

Cleveland, 1979), for each x, as

m̂LP(x) ≡ β̂x
0 + β̂x

1(x− xi) + . . . + β̂x
p(x− xi)

p

where

(βx
0, . . . , βx

p) = argmin
β0,...,βp

n

∑
i=1

(
yi − β0 − β1(x− xi)

2 − . . .− βp(x− xi)
p)2

K
(

xi − x
hn

)
.

If p = 0, then m̂LP equals m̂. Stone (1977) proved that m̂LP(x) is consistent when p = 1.

Ruppert and Wand (1994) derived the asymptotic bias and variance of m̂LP(x) for p ≥ 1.

Their key assumptions are that m is (p + 2)-times differentiable at x with continuous (p + 2)nd

derivative, that x is an interior point of the support of fX, that fX is continuous at x and that the

kernel K has compact support (Ruppert and Wand, 1994, Theorem 4.1). In addition, they also

derived the asymptotic bias and variance of the multivariate generalization of m̂LP(x) when

x ∈ Rk and p = 1, 2, under similar key assumptions (Ruppert and Wand, 1994, Theorem 3.2).

Lastly, we discuss the choice of the bandwidth h. From Theorem 1.4, we can see that many

sequences of hn’s satisfy the conditions of Theorem 1.4. Therefore, given the sample size n,

we have great freedom in choosing hn. But this choice is important: as Simonoff (1996) writes

(page 151), the shapes of the function estimates m̂ and m̂LP are strongly dependent on h. Larger

h leads to a function estimate that is close to the least squares degree p polynomial. Therefore,

we require a finite sample method of choosing h.

We will discuss the bandwidth choice criteria in detail in Section 2.4, so we don’t give the

details here. To summarize that section, the goal of the choice of h is to minimize the mean

squared error of the estimator. We consider the bandwidth h be good if either it minimizes the
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asymptotic mean squared error or it minimizes what is called the prediction error. We intro-

duce a bandwidth choice method, called “cross-validation”, in Section 2.4. In cross-validation,

we choose the bandwidth as a minimizer of an estimate of prediction error.

We note that the dependence structure of the ε’s affects the asymptotic mean squared er-

ror of the estimator and thus our choice of the bandwidth, if we choose the bandwidth as a

minimizer of the asymptotic mean squared error. For example, Hall and Hart (1990) proved

that the asymptotic variance of the Nadaraya-Watson estimator depends on the dependence

structure of the ε’s when we observe data (x1, y1), . . . , (xn, yn) with xi = i/n.

If we use cross-validation, we should use an appropriate estimate of prediction error ac-

cording to the dependence structure of the ε’s. For model (1.2), a widely-used estimate of

prediction error is the estimate computed by the “leave-one-out” cross-validation:

P̂E(h) ≡
n

∑
i=1

(
m̂(−i)(xi)− yi

)2
, (1.7)

where

m̂(−i)(x) ≡
∑j∈Ai

K
(

xj−x
h

)
yj

∑j∈Ai
K
(

xj−x
h

) (1.8)

and Ai ≡ {1, . . . , n} ∩ {i}C. That is, m̂(−i) is the Nadaraya-Watson estimator, defined in (1.6),

computed with the ith observation removed.

However, (1.7) may give an inaccurate estimate of prediction error if the data are generated

from a model other than (1.2), which may lead to an unsatisfactory choice of the bandwidth.

For example, if ε i’s in model (1.2) are correlated, using (1.7) for such model tends to give a

bandwidth that undersmooths the data (i.e. too small bandwidth) when the ε’s are positively

correlated and give one that oversmooths the data when negatively correlated (see e.g. Chu

and Marron, 1991, and Hart, 1994, and the references therein). Chu and Marron (1991) modi-

fied (1.7) for use for the dependent ε’s, which Burman, Chow, and Nolan (1994) also proposed

for use in the analysis of time-series data. We will introduce their estimate in Section 2.4. For

another approach, Hart (1994) proposed to, roughly speaking, modify the set Ai in (1.8) to be

Ai = {1, . . . , i− 1} and also modify (1.7) according to the dependence structure of the ε’s.

We have now introduced all the concepts necessary to introduce our research question
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and our estimator. In the next chapter, we discuss our research question, the estimation of

the drift coefficient µ of a positive recurrent and strictly stationary diffusion process when we

observe Xti ’s with additive measurement errors at discrete times t1, . . . , tn, and we introduce

our Nadaraya-Watson estimator of µ.
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Chapter 2

Kernel Estimation of the Drift

Coefficient of a Diffusion Process in the

Presence of Measurement Error

2.1 Introduction

Financial time-series data such as stock prices, interest rates and derivative prices can be mod-

eled as diffusion processes. A diffusion process is completely characterized by two functions,

the drift coefficient which is related to the expected return of an asset for an infinitesimal

amount of time and the diffusion coefficient which is related to the variance of the return for

an infinitesimal amount of time. When we model time-series data as a diffusion process, we

are interested in estimating these two functions as they completely characterize the underlying

process. In addition, the diffusion coefficient integrated over time, which is called integrated

volatility, has also received attention as a risk measure of an asset (see e.g. Andersen et al.,

2001).

Recently, analysis of ultra-high frequency data revealed an ugly fact that we observe fi-

nancial time series data with measurement errors, called microstructure noise in the financial

econometrics literature, which is negligible compared to the observed return in low sampling

frequency but has a significant effect in high sampling frequency (Zhou, 1996). While there are
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approaches that deal with the measurement error problem in the integrated volatiliy estima-

tion literature (see e.g. Zhang, Mykland, and Aı̈t-Sahalia, 2005), there are few papers, to our

knowledge, that incorporate the measurement error problem in the estimation of the drift and

the diffusion coefficients. In this chapter, we focus on estimation of the drift coefficient, and

we provide a nonparametric estimator of the drift coefficient that is consistent and asymptoti-

cally normal in the presence of measurement error under the assumption that the underlying

process is stationary.

Integrated volatility is defined as the integral of the squared diffusion coefficient with re-

spect to time over a fixed time period, which is identical to the integrated quadratic variation

of the process. Integrated volatility represents variability of a financial instrument for a given

period of time, for example, variability of a stock price within a day. A widely used estimator

of integrated volatility proposed by Andersen et al. (2001) is the realized volatility estimator,

which is simply the sum of squared instantaneous returns. The theory of quadratic variation

tells that the realized volatility estimator is an unbiased and consistent estimator of integrated

volatility when there is no measurement error. For details about the realized volatility estima-

tor, see e.g. Andersen et al. (2009).

However, according to Zhang, Mykland, and Aı̈t-Sahalia (2005), researchers knew that the

performance of the realized volatility estimator is not satisfactory when the measurement error

is present and the data are sampled at high frequency. So the researchers purposely used low-

frequency data to avoid estimation problems. Zhang, Mykland, and Aı̈t-Sahalia (2005) for-

malized this approach, which they call the subsampling method, and proposed an estimator

of integrated volatility which uses the subsampling method. They first chose a subsampling

frequency by minimizing the mean squared error of the realized volatility estimator when the

measurement error is present. Then they split the high frequency data into subdata with the

chosen subsampling frequency and with different starting times. For example, if the data are

sampled hourly and the subsampling frequency is 24 hours, they would create 24 subdata

where the kth subdata contain values at hour k every day. After that, they obtained an estimate

by using the realized volatility estimates obtained from all subdata.

Other approaches proposed to deal with the measurement error problem in the context of

integrated volatility estimation are that of Barndorff-Nielsen et al. (2008), who proposed the
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realized kernel estimator which computes the kernel-weighted average of autocorrelations of

the process, and that of Jacod et al. (2009) who proposed the preaveraging estimator which

uses an average of the returns computed at low sampling frequency.

In the literature of the estimation of the drift and the diffusion coefficients, the diffusion

process is usually assumed to be time-homogeneous, that is, the drift and the diffusion coeffi-

cients are not functions of time, but rather functions of the value of the process only, and that

the process is stationary. Early work on the nonparametric estimation of the two functions

includes that of Florens-Zmirou (1993) who provided a Nadaraya-Watson kernel estimator of

the diffusion coefficient with the uniform kernel, Aı̈t-Sahalia (1996) who estimated the diffu-

sion coefficient nonparametrically under the parametric specification of the drift coefficient,

and Stanton (1997) who proposed a Nadaraya-Watson kernel estimator of the drift and the

diffusion coefficients. Later, Bandi and Phillips (2003) provided Nadaraya-Watson kernel es-

timators of the drift and the diffusion coefficients under more general conditions, including

non-stationarity, and proved consistency and asymptotic normality of their estimators.

As we stated earlier, in contrast to estimation of integrated volatility, there are few studies,

to our knowledge, that consider estimation of the drift and the diffusion coefficients in the

presence of measurement error. An exception is Bandi, Corradi, and Moloche (2009), who

consider a standard deviation of the measurement error that converges to zero as the sampling

frequency increases to infinity. In our paper, we focus on estimation of the drift coefficient and

consider a less restrictive form of the measurement error. We extend the result of Bandi and

Phillips (2003) and propose a Nadaraya-Watson type kernel estimator of the drift coefficient

which is consistent and asymptotically normal in the presence of independent measurement

errors of mean zero and bounded variance.

The structure of the chapter is as follows. In Section 2.2, we introduce our assumptions and

define our estimator, and we state the consistency and asymptotic normality of our estimator.

In Section 2.3, we compare our estimator to the existing nonparametric estimators of the drift

coefficient, especially those proposed by Bandi and Phillips (2003). In Section 2.4, we discuss

the bandwidth choice problem of our estimator. In Section 2.5, we describe our simulation

study. We will prove the consistency and asymptotic normality result in Section 2.6.
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2.2 Statement of the Main Result

We consider the following stochastic differential equation

dXt = µ(Xt)dt + σ(Xt)dWt (2.1)

where µ and σ are real-valued functions called the drift and the diffusion coefficients respec-

tively, {Wt | t ≥ 0} is Brownian motion defined on a probability space (Ω,F , P). A real-valued

initial value random variable, X0, is also defined on (Ω,F , P) and independent of Brownian

motion. To define a strong solution (a sample path solution) to (2.1), we define an augmented

filtration Ft, t ≥ 0, based on the filtration

Gt ≡ σ
(
X0 , {Ws | 0 ≤ s ≤ t}

)
, t ≥ 0,

and the collection of all subsets of measure zero:

N ≡
{

N ⊆ Ω
∣∣∣ ∃G ∈

⋃
t≥0

Gt with N ⊆ G and P(G) = 0
}

.

Then an augmented filtration Ft, t ≥ 0, is defined by

Ft ≡ σ
(
Gt ∪N

)
, t ≥ 0.

A strong solution to (2.1) is a process {Xt | t ≥ 0} adapted to the augmented filtration

{Ft | t ≥ 0} such that the following almost surely holds:

Xt = X0 +
∫ t

0
µ(Xs)ds +

∫ t

0
σ(Xs)dWs, (2.2)

which is the integrated version of (2.1). See Karatzas and Shreve (1991, page 285) for a formal

definition of a strong solution.

Our objective is to provide a consistent and asymptotically normal Nadaraya-Watson type

kernel estimator of µ(x) from observations of a sample path of the solution process {Xt | t ≥ 0}

sampled discretely in time and with additive measurement error. To formalize the setting,
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suppose that we observe the values of a sample path of the solution process {Xt} at times

t ∈ {t1, . . . , tn | tk ∈ [0, T]} for some time span T > 0 and that the times are equispaced, i.e.

ti = i∆ for some ∆ > 0. Then we suppose that we observe {Yi∆}n
i=1 such that

Yi∆ ≡ Xi∆ + ε i∆ (2.3)

where {ε i∆}n
i=1 are values from a process {εt | t ≥ 0} which is independent of {Xt}.

Our objective is to estimate µ(x) from {Yi∆}n
i=1. Our key idea is to estimate µ(x) by aver-

aging the Yi∆’s neighboring in time, expecting that the averaging reduces the noise caused by

ε i∆’s and reveals the latent solution process {Xt | t ≥ 0}. Formally speaking, we construct a

new stochastic process by averaging the Yi∆’s in m blocks, each of size r, as in Definition 2.1

below.

Definition 2.1 For fixed ∆ > 0 and r and n ∈N, let Ȳr,∆
j be the arithmetic average of the Yi∆’s over i

such that (j− 1)r < i ≤ jr. In other words, for j = 1, . . . , m ≡ bn/rc (the largest integer no greater

than n/r),

Ȳr,∆
j ≡ 1

r

r

∑
i=1

Y[(j−1)r+i]∆.

In addition, we define X̄r,∆
j and ε̄r,∆

j similarly as the arithmetic averages of the Xi∆’s and the ε i∆’s over i

such that (j− 1)r < i ≤ jr, respectively.

Our estimator of µ(x), given in Definition 2.2 below, is a weighted average of the discrete

slopes (Ȳr,∆
j+2 − Ȳr,∆

j+1)/r∆ with j = 1, . . . , m− 2.

Definition 2.2 Let K : R→ R be a known function and h > 0. Let

µ̂Ȳ (x) ≡
1

m−2 ∑m−2
j=1

Ȳr,∆
j+2−Ȳr,∆

j+1
r∆

1
h K
(

Ȳr,∆
j −x

h

)
1

m−2 ∑m−2
j=1

1
h K
(

Ȳr,∆
j −x

h

) ≡
NȲ1,...,Ȳm

(x)
DȲ1,...,Ȳm−2

(x)
≡ NȲ (x)
DȲ (x)

.

Note that the jth summand ofNȲ (x) contains Ȳr,∆
j , in the argument of K, and the difference

Ȳr,∆
j+2 − Ȳr,∆

j+1 (not Ȳr,∆
j+1 − Ȳr,∆

j ). We chose these indices (j, j + 1, j + 2) to make our asymptotic

calculations easier: with these indices, the difference Ȳr,∆
j+2 − Ȳr,∆

j+1 depends on values of Xt + εt

20



with t in [(jr + 1)∆, (j + 2)r∆], while Ȳr,∆
j depends on values of Xt + εt for t in a different

interval. When it comes to the finite-sample performance, we saw in our simulation, which is

not included in Section 2.5, that the shifts increase the mean squared error of our pre-averaging

estimator. We will discuss this issue more concretely in Chapter 3.

Our proof of consistency and asymptotic normality of µ̂Ȳ(x) requires that the observation

time lag ∆ tends to zero and the observation time span T = n∆ tends to infinity as the number

of observations n tends to infinity. These assumptions are necessary. As Bandi and Phillips

(2003) note, without the condition ∆ → 0, we suffer from what is called the aliasing problem:

“different continuous-time processes may be indistinguishable when we observe the process

discretely in time.” If ∆ is fixed and n tends to infinity, the data form a discrete-time pro-

cess. We may be able to deduce some properties of the discrete time process. But we cannot

identify what continuous-time process generated the data, as there is usually more than one

continuous-time process that can generate the discrete-time process.

They also note that, without the condition n∆ → ∞, we cannot obtain a consistent estima-

tor of µ(x) in general, even if the process is observed without measurement error. In addition

to these assumptions on ∆, our proof requires similar conditions for the averaged process: the

time lag between the two adjacent averages, r∆, tends to zero and the number of blocks n/r

tends to infinity.

Now we introduce the assumptions.

Assumption 2.1 As n → ∞, the sequence of positive real numbers {∆n}∞
n=1 and the sequence of

positive integers {rn}∞
n=1 satisfy ∆n → 0, n∆n → ∞, rn → ∞, rn∆n → 0 and n/rn → ∞.

We will often denote mn ≡ n/rn, which represents the number of blocks (which equals the

number of Ȳr,∆
j ’s).

Assumption 2.2 The functions µ and σ are Borel-measurable and twice continuously differentiable

on R. In addition, σ2(x) > 0 for all x ∈ R.

Assumption 2.2 is a sufficient condition for the existence and uniqueness of a strong solu-

tion of the stochastic differential equation (2.1), as discussed in Bandi and Phillips (2003, page

244).
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Assumption 2.3 The solution process {Xt} is positive recurrent and strictly stationary. Let fX be the

stationary density. The functions µ, σ and fX satisfy

∫
µ2(x) fX(x)dx < ∞ and

∫
σ2(x) fX(x)dx < ∞.

Note that, if the solution process {Xt} is positive recurrent, there exists a random variable

X whose probability density function is fX, called the stationary density, such that Xt
d−→ X

as t → ∞. If we let the initial value random variable X0 have the density function fX, then

{Xt} is strictly stationary (Kutoyants, 2004, page 2).

Note that Assumption 2.2 and the positive recurrence assumption in Assumption 2.3 imply

that fX is continuous: if {Xt} is positive recurrent, fX is given by

fX(x) =
1

Gσ2(x)
exp

{
2
∫ x

0

µ(y)
σ2(y)

dy
}

, (2.4)

where G is a normalizing constant (Kutoyants, 2004, Theorem 1.16, page 40).

Assumption 2.4 The kernel K ∈ L2(R) is bounded, symmetric, nonnegative and continuously dif-

ferentiable. Its derivative, K′, is bounded and is in L1(R). In addition,

∫ ∞

−∞
K(x)dx = 1 and

∫ ∞

−∞
s2K(s)ds < ∞.

Assumption 2.5 The error process {εt} is independent of {Xt}, and the εt’s are independent across t.

Also, E(εt) = 0 for all t, and there exists a finite, positive constant σ2
ε such that supt Var(εt) ≤ σ2

ε .

In the literature, the ε i∆n ’s with i in 1, . . . , n are usually assumed to be independent and

identically distributed and that E(ε i∆n) = 0. Some authors assume that Var(ε i∆n) = σ2
ε for all

i and n (see Zhang, Mykland, and Aı̈t-Sahalia, 2005, among others). In contrast, some papers

in the literature, and most of the papers in the rounding error literature according to Jacod

et al. (2009), assume that Var(ε i∆n) = anσ2
ε for all i where an → 0 as n→ ∞ (see Bandi, Corradi,

and Moloche, 2009, among others). Our Assumption 2.5 includes both specifications as special

cases.

Now we introduce our main result.
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Theorem 2.1 Suppose Assumptions 2.1 to 2.5 hold, and suppose

(i)
(

n∆n

hn

)2

rn∆n ln(1/rn∆n) = o(1),

(ii) n∆nhn → ∞, and

(iii)
n

h3
nr2

n
= o(1).

Let K2 ≡
∫

K2(s)ds and ν2 ≡
∫

s2K(s)ds. Then the following consistency and asymptotic normality

results hold for every x ∈ {y | fX(y) > 0}.

1. µ̂Ȳ (x) −→ µ(x) in probability as n→ ∞.

2. If n∆nh5
n = o(1), then

√
(n− rn)∆nhn {µ̂Ȳ (x)− µ(x)} d−→ N

(
0, K2

σ2(x)
fX(x)

)
.

3. If n∆nh5
n = O(1), then

√
(n− rn)∆nhn

{
µ̂Ȳ (x)− µ(x)− h2

nΓµ(x)
} d−→ N

(
0, K2

σ2(x)
fX(x)

)

where

Γµ(x) = ν2 ×
(

µ′(x)
f ′X(x)
fX(x)

+
1
2

µ′′(x)
)

.

The conclusions 1 and 2 give consistency and asymptotic normality of µ̂Ȳ(x). The conclusion

3 gives asymptotic bias and variance, which are useful for the choice of the bandwidth h.

Bandi and Phillips (2003) provided consistency and asymptotic normality of the Nadaraya-

Watson estimator of µ when one observes a sample path of a recurrent diffusion process {Xt}

sampled discretely in time and without measurement error. We prove consistency and asymp-

totic normality of our estimator by showing that the difference between our estimator and

their estimator converges to 0 asymptotically, under our stronger assumptions. The full proof

of Theorem 2.1 can be found in Section 2.6.
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We finish this section by considering simple sufficient conditions so that ∆n, rn and hn

satisfy the conditions of Theorem 2.1. Suppose ∆n = n−δ, rn = nρ and hn = n−η for some

positive real numbers δ, ρ and η. We study conditions on δ, ρ and η so that the conditions of

Theorem 2.1 are satisfied.

To begin with, from Assumption 2.1, we have

0 < ρ < δ < 1. (2.5)

Also, from condition (i) of Theorem 2.1, we have

(ρ− δ)n2−3δ+2η+ρ ln n = o(1),

that is, since ρ 6= δ by (2.5), we have 2− 3δ + 2η + ρ < 0, or

η <
3
2

δ− 1
2

ρ− 1. (2.6)

Condition (ii) becomes 1− δ− η > 0, or

η < 1− δ. (2.7)

Condition (iii) becomes 1 + 3η − 2ρ < 0, or

η <
1
3
(2ρ− 1). (2.8)

In addition, for the condition of Theorem 2.1’s conclusion 2, that n∆nh5
n = o(1), we require

η >
1
5
(1− δ). (2.9)

Lastly, for the condition of Theorem 2.1’s conclusion 3, that n∆nh5
n = O(1), we require

η ≥ 1
5
(1− δ). (2.10)
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For example, suppose that δ = 0.9 and ρ = 0.58, which satisfies (2.5). Then the conditions

in Equations (2.6) to (2.8) are satisfied provided

0.02 ≤ η < 0.0533.

Equation (2.9) is satisfied if η > 0.02 and Equation (2.10) is satisfied if η = 0.02. Table 2.1 shows

values of ∆n, rn and hn for δ = 0.9, ρ = 0.58 and η = 0.02, when n = 5000, 10000, 15000.

Table 2.1: The values of ∆n, rn, mn and hn when δ = 0.9, ρ = 0.58 and η = 0.02.

n ∆n = n−0.9 rn = n0.58 mn ≈ n0.42 rn∆n = n−0.32 hn = n−0.02

5,000 0.00047 139 35 0.0655 0.8434

10,000 0.00025 208 48 0.0525 0.8318

15,000 0.00017 264 56 0.0461 0.8250

Remark: The distribution of {X̄r,∆
j } is not clear, although we suspect that the marginal

distribution of X̄r,∆
j converges in distribution to the marginal distribution of Xt under the con-

ditions of Theorem 2.1. We can prove adapting the proof of Theorem 2.1 that

1
mn−2 ∑mn−2

j=1
X̄rn ,∆n

j+2 −X̄rn ,∆n
j+1

rn∆n
1
hn

K
(

X̄rn ,∆n
j −x

hn

)
1

mn−2 ∑mn−2
j=1

1
hn

K
(

X̄rn ,∆n
j −x

hn

) −
1

mn−2 ∑mn−2
j=1

X(j+1)rn∆n−Xjrn∆n
rn∆n

1
hn

K
(

X(j−1)rn∆n−x
hn

)
1

mn−2 ∑mn−2
j=1

1
hn

K
(

X(j−1)rn∆n−x
hn

)

converges to 0 in probability as n → ∞, where the two terms on the left-hand side are con-

structed by replacing Ȳj’s in Definition 2.2 with X̄j’s and with Xt’s, respectively.

2.3 Comparison to the Existing Estimators

Recall that our Theorem 2.1 is based on the result of Bandi and Phillips (2003). Our pre-

averaging estimator is similar to their estimator which they call the “double-smoothing es-

timator”, and we compare the two in this section. After that, we discuss the “subsampling

method”, which is used to estimate integrated volatility when measurement error is present.

The subsampling method can also be applied to estimation of the drift coefficient, so we will

compare it to our pre-averaging estimator.

25



We first compare the double-smoothing estimator of Bandi and Phillips (2003) with our

estimator. Suppose that we observe the time-equispaced data {Yi∆}n
i=1. Both estimators are of

the form

∑w
j=1

1
h K
(

Wkern
j −x

h

)
Wslope

j

∑w
j=1

1
h K
(

Wkern
j −x

h

) .

In our pre-averaging estimator,

w = m− 2, Wkern
j = Ȳr,∆

j and Wslope
j =

Ȳr,∆
j+2 − Ȳr,∆

j+1

r∆
.

In the double-smoothing estimator of Bandi and Phillips (2003),

w = n− 1, Wkern
j = Yj∆ and Wslope

j =
1

Nl,∆
j

∑
k:|Yk∆−Yj∆|≤l

Y(k+1)∆ −Yk∆

∆
, (2.11)

where l ∈ R+ and Nl,∆
j is the number of Yk∆’s such that |Yk∆ − Yj∆| ≤ l. Note that l can be

interpreted as the bandwidth of the uniform kernel.

Bandi and Phillips (2003) also define the usual Nadaraya-Watson estimator and call it the

“single-smoothing estimator” to contrast it to the double-smoothing estimator. The single-

smoothing estimator (that is, the usual Nadaraya-Watson estimator) is defined by setting

w = n− 1, Wkern
j = Yj∆ and Wslope

j =
Y(j+1)∆ −Yj∆

∆
. (2.12)

Note that the single-smoothing and the double-smoothing estimators were introduced for the

case of no measurement error, that is, the case where εt = 0 for all t, in which case we have

Yi∆ = Xi∆.

We note three differences between the double-smoothing estimator and our estimator.

First, the double-smoothing estimator pre-averages Yi∆’s such that |Yi∆ − Yj∆| ≤ l for each

j before computing the kernel-weighted average. This is similar to our pre-averaging Yi∆’s

such that (j − 1)r < i ≤ jr for each j. A difference is that the double-smoothing estimator

pre-averages Yi∆’s according to their values while our estimator pre-averages Yi∆’s according

to their time-indices (the i∆’s).
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Second, while both estimators use averaging for Wslope
j , our estimator uses the averaged

value, Ȳr,∆
j , for Wkern

j while the double-smoothing estimator uses a single observation, Yj∆.

Third, the double-smoothing estimator was introduced and studied for the case of no mea-

surement error, so its consistency in the presence of measurement error is not yet established.

In contrast, Theorem 2.1 states that our estimator is consistent in the presence of measurement

error as well as in the case of no measurement error (that εt = 0 for all t satisfies Assump-

tion 2.5). Our simulation study will indicate that, for finite samples, the double-smoothing

estimator has higher mean squared error than our estimator when there is measurement error.

Now we discuss the subsampling method, which Zhang, Mykland, and Aı̈t-Sahalia (2005)

studied for estimation of integrated volatility, and compare it to our pre-averaging approach.

Using notation in (2.1), integrated volatility is defined as
∫ b

a σ2(Xt)dt for some fixed time pe-

riod [a, b]. When we observe data {Xti}n
i=1 where a = t1 < t2 < . . . < tn = b, Andersen

et al. (2001) proposed ∑n−1
i=1 (Xti+1 − Xti)

2, called the realized volatility estimator, as an estima-

tor of the integrated volatility. They showed that ∑n−1
i=1 (Xti+1 − Xti)

2 converges to
∫ b

a σ2(Xt)dt

in probability as n tends to infinity.

However, the realized volatility estimator does not give an accurate estimate of the inte-

grated volatility when the data are observed with measurement errors and when the data are

sampled at high frequency, i.e. when the ti+1− ti’s are small. Zhang, Mykland, and Aı̈t-Sahalia

(2005) showed that, when we observe data {Yti = Xti + εti}n
i=1 where the εti ’s are independent

and identically distributed with mean zero and variance s2
ε ,

n−1

∑
i=1

(Yti+1 −Yti)
2 = 2ns2

ε + Op(n1/2)

(Zhang, Mykland, and Aı̈t-Sahalia, 2005, page 1395, Equation 5). This proves that the realized

volatility estimator does not converge in probability to the integrated volatility in the presence

of measurement error.

As Zhang, Mykland, and Aı̈t-Sahalia (2005) noted, in order to avoid this estimation prob-

lem of the realized volatility estimator, researchers used the data sampled at lower frequency,

namely, the data {Ytk , Yt2k , . . .} for some k > 1 instead of {Yt1 , Yt2 , . . .}, to compute the realized

volatility estimate. When considering Yt(i+1)k − Ytik = (Xt(i+1)k − Xtik) + (εt(i+1)k − εtik) for each i
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for some large k, the difference Xt(i+1)k − Xtik is relatively larger in magnitude than εt(i+1)k − εtik .

This yields ∑i(Yt(i+1)k −Ytik)
2 ≈ ∑i(Xt(i+1)k −Xtik)

2 when k is large. Recall that ∑i(Xt(i+1)k −Xtik)
2

is a consistent estimator of the integrated volatility. Zhang, Mykland, and Aı̈t-Sahalia (2005)

formalized this ad-hoc approach and proposed to choose k as the minimizer of the asymp-

totic mean squared error of the estimator ∑i(Yt(i+1)k − Ytik)
2, and they called this approach the

subsampling method.

We compare the subsampling method to our pre-averaging approach by considering hourly-

observed stock price data. Our pre-averaging approach with the block size of a day obtains

Ȳ’s that are average daily prices. In contrast, the equivalent subsampling method uses daily

closing prices to construct the subsampled data.

Recall that the estimators of Bandi and Phillips (2003), defined in (2.11) and (2.12), use

{Yi∆}n
i=1 as data while our pre-averaging estimator, defined in Definition 2.2, uses {Ȳr,∆

j }m
j=1

where m = n/r and r is the block size. We can apply the subsampling method to the estimators

of Bandi and Phillips (2003) by using {Yjr∆}m
j=1 as the data instead of {Yi∆}n

i=1. Our simulation

study, which will be given in Section 2.5, indicates that applying the subsampling method

leads to much lower mean squared errors for the estimators of Bandi and Phillips (2003). The

estimators of Bandi and Phillips (2003) without subsampling have higher mean squared errors

than our estimator. However, the mean squared errors of the estimators with subsampling are

about the same as ours.

2.4 Bandwidth Choices

In Section 2.2, we stated Theorem 2.1, that µ̂Ȳ is a consistent and asymptotically normal es-

timator of µ in the presence of measurement error under some conditions. We can see that

many sequences of {hn} and {rn} satisfy the conditions of the theorem. Hence, it is desirable

to have a principle of the choice of h and r given the sample size n. We discuss the choice of h

in Section 2.4.1 and the choice of r in Section 2.4.2.
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2.4.1 Choice of the kernel bandwidth h

The kernel bandwidth choice criterion has been extensively studied in the literature, at least in

certain circumstances such as analysis of cross-sectional data. For an overview of bandwidth

choice methods, see e.g. Jones, Marron, and Sheather (1996) and the references therein. In

this subsection, we discuss the two popular methods to choose h, the plug-in method and

the cross-validation method, in the context of our estimator. After that, we briefly introduce

a bandwidth choice method recently proposed by Bandi, Corradi, and Moloche (2009). This

method is explicitly intended for kernel estimators of the drift coefficient µ and the diffusion

coefficient σ of a diffusion process.

The plug-in method requires an expression for the asymptotic mean squared error of the

estimator and the existence of hopt, the h that minimizes the asymptotic mean squared error.

We then “plug into” the expression for hopt estimates of all unknown quantities. This yields

ĥopt, the plug-in bandwidth. In the context of our estimator, we first obtain the asymptotic bias

and the asymptotic variance of µ̂Ȳ (x) using conclusion 3 of Theorem 2.1:

asymptotic bias = h2Γµ(x) (2.13)

and

asymptotic variance =
K2σ2(x)/ fX(x)

(n− r)∆h
.

The asymptotic mean squared error (AMSE) of our estimator is, then, the sum of the squared

asymptotic bias and the asymptotic variance:

AMSE(x) = h4Γ2
µ(x) +

K2σ2(x)/ fX(x)
(n− r)∆h

.

Now we find the bandwidth h that minimizes the AMSE. When Γ2
µ(x) 6= 0, differentiation

yields the minimizer of the AMSE, hopt(x):

hopt(x) =

(
K2σ2(x)/ fX(x)

4Γ2
µ(x)

)1/5

×
(

n
n− r

)1/5

×
(

1
n∆

)1/5

. (2.14)

When Γ2
µ(x) = 0, the AMSE decreases to 0 as h approaches infinity.
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While it is reasonable to take hopt(x) given by (2.14) as the bandwidth for our estimator, in

practice the values of Γµ(x), σ2(x) and fX(x) are not known. The plug-in bandwidth is gotten

by plugging estimates of Γµ(x), σ2(x) and fX(x) into (2.14). The estimates of these unknowns

can be obtained either parametrically or nonparametrically. The “ideal” bandwidth, hopt(x), is

called the oracle bandwidth and is often used in simulation studies as a gold standard.

Our simulation study in Section 2.5 indicates that the cross-validation bandwidth, which is

discussed below, exhibits better finite sample performance than the oracle bandwidth. There-

fore, we do not consider estimating Γµ(x), σ2(x) and fX(x) to calculate the plug-in bandwidth,

and we recommend using the cross-validation bandwidth instead of the plug-in bandwidth.

The cross-validation method of choosing h attempts to minimize what is called the pre-

diction error as follows. We can think of our estimator µ̂Ȳ (x) as a predictor of (Xt+δ − Xt)/δ

given that Xt = x. In this perspective, we choose the bandwidth h so that the resulting estima-

tor µ̂Ȳ (x) has the least error in predicting (Xt+δ − Xt)/δ given Xt = x, where the prediction

error is estimated using the data.

To compute an estimate of the prediction error, we can use what is called the H-block

cross-validation method proposed by Chu and Marron (1991) and further developed by Bur-

man, Chow, and Nolan (1994), who coined the name “H-block”. The H-block cross-validation

modifies the well-known leave-one-out cross-validation (Stone, 1974), used for independent

data, for use with stationary time-series data. In cross-validation, in order to estimate the pre-

diction error, one predicts a data value by using information in a portion of the data set, called

the training data. Ideally, the training data and the target data value are independent. In

leave-one-out cross-validation, one constructs the training data by omitting one observation.

In H-block cross-validation, one omits 2H more observations, H neighboring observations in

the past and H neighboring observations in the future. The objective of omitting the additional

2H observations is to weaken the dependence between the target data value and the training

data: if the time between the two is large enough, we expect that the autocorrelation between

the two is close to zero. This expectation is valid if the time-series data are stationary, which

we assume in Assumption 2.3.

Now we formally describe the cross-validation bandwidth choice method based on H-
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block cross-validation in the context of our estimator. We estimate the prediction error by

P̂E(h ; H) ≡
m−1

∑
k=1

(
µ̂
(k,H)

Ȳ

(
Ȳr,∆

k

)
−

Ȳr,∆
k+1 − Ȳr,∆

k

r∆

)2

(2.15)

where H is an integer and µ̂
(k,H)

Ȳ

(
Ȳr,∆

k

)
is our drift coefficient estimator µ̂Ȳ (x) evaluated at

x = Ȳr,∆
k calculated by removing the terms j = k− H, . . . , k + H of the sums in Definition 2.2,

that is,

µ̂
(k,H)

Ȳ

(
Ȳr,∆

k

)
≡

∑j∈AH
k

Ȳr,∆
j+2−Ȳr,∆

j+1
r∆

1
h K
(

Ȳr,∆
j −Ȳr,∆

k
h

)
∑j∈AH

k

1
h K
(

Ȳr,∆
j −Ȳr,∆

k
h

)
for the set of indices AH

k = {1, . . . , m− 2} ⋂ {k− H, . . . , k + H}C. The integer H is chosen so

that the correlation between Ȳr,∆
k and Ȳr,∆

j ’s with j ∈ AH
k is “weak enough”. For the implemen-

tation, H can be chosen by looking at the empirical autocorrelation function.

The value (Ȳr,∆
k+1 − Ȳr,∆

k )/r∆ in (2.15) is called the target data value. Recall that we want to

choose h so that the resulting estimator µ̂Ȳ (x) has the least error in predicting (Xt+δ − Xt)/δ

given Xt = x. The target data value (Ȳr,∆
k+1 − Ȳr,∆

k )/r∆ is considered an estimate of the value

(Xt+δ − Xt)/δ when t = (k − 1)r∆ and δ = r∆. Since we cannot observe the underlying

process {Xt}, we use the pre-averaged process for the target data value expecting that the pre-

averaged process is close to the underlying process. We choose the target data value not to

depend on h in order to prevent interaction between µ̂
(k,H)

Ȳ

(
Ȳr,∆

k

)
and the target data value.

The cross-validation bandwidth hcv is the minimizer of P̂E(h ; H):

hcv ≡ argmin
h

P̂E(h ; H). (2.16)

The simulation study in Section 2.5 indicates that the mean integrated squared error of our pre-

averaging estimator with hcv is smaller than that of our estimator with the oracle bandwidth

hopt(x) in (2.14). Based on this simulation result, we recommend using (2.16) as a bandwidth

choice criterion over the plug-in bandwidth.

We finish this subsection by introducing a recently proposed bandwidth choice method in

Bandi, Corradi, and Moloche (2009), which is explicitly developed to jointly choose the band-

31



widths for the estimators of the drift and the diffusion coefficients of a diffusion process. Their

method relies on residuals of the fits being approximately independent and normally dis-

tributed. Their method consists of two stages, and the first stage is as follows. Given the time-

equispaced time-series data {Xi∆}n
i=1 generated from a diffusion process and the bandwidths

(hdr, hdi f ) applied to the estimators of the drift and the diffusion coefficients respectively, they

define the scaled residuals

r̂i∆ =
X(i+1)∆ − Xi∆ − µ̂(Xi∆; hdr)∆

σ̂(Xi∆; hdi f )
√

∆

for i = 1, . . . , n − 1 where µ̂(. ; hdr) and σ̂(. ; hdi f ) are kernel estimates of the drift and the

diffusion coefficients. Then they choose (h∗dr, h∗di f ) ∈ (0, ∞)× (0, ∞) by

(h∗dr, h∗di f ) = argmin
hdr ,hdi f

sup
x
|Fr̂(x)−Φ(x)| (2.17)

where Fr̂ is the empirical distribution function of r̂ and Φ is the distribution function of a

standard normal random variable. The justification for this first step is as follows. For small

∆, the drift coefficient µ and the diffusion coefficient σ can be treated as constants in each time

interval of [i∆, (i + 1)∆], i = 1, . . . , n− 1. We denote such constants by µi∆ and σi∆. Then, from

(2.2), we have

X(i+1)∆ − Xi∆ ≈
∫ (i+1)∆

i∆
µi∆dt +

∫ (i+1)∆

i∆
σi∆dWt,

and so
X(i+1)∆ − Xi∆ − µi∆∆

σi∆
√

∆
≈ 1√

∆

∫ (i+1)∆

i∆
dWt =

W(i+1)∆ −Wi∆√
∆

d
= Zi,

where {Zi}n−1
i=1 are independent and identically distributed standard normal random vari-

ables.

After choosing the bandwidth in (2.17), they proceed to the second stage. Here we just

introduce the main idea of their second stage. The kernel estimators of the drift and the dif-

fusion coefficients have conditions on the convergence rates of the bandwidth for consistency

and asymptotic normality, for example, conditions (i), (ii) and (iii) and the additional condi-

tion in conclusion 2 of Theorem 2.1 for our estimator. They construct three random variables
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that depend on (h∗dr, h∗di f ), the bandwidths chosen in the first step. They derive the asymptotic

distribution of a functional of these random variables when (h∗dr, h∗di f ) do not satisfy at least

one of the conditions. They use this functional and its asymptotic distribution to determine if

any of the conditions are violated. If so, they use the values of the three random variables to

determine how to adjust h∗dr and h∗di f .

2.4.2 Choice of the block size r

Note first that pre-averaging is a form of smoothing. According to our simulation study using

the oracle bandwidth hopt(x) defined in (2.14), there is a bias-variance tradeoff in choosing the

block size r (see Figure 2.8). This tradeoff is similar to the well-known tradeoff for the choice

of the bandwidth h: a large value of r is likely to produce a constant function estimate of µ and

result in large bias but small variance. On the other hand, a small value of r is likely to result

in small bias but large variance.

Therefore, one might think of choosing r by the plug-in method or the cross-validation

method. However, there are complications in using these approaches. For the plug-in method,

we cannot use AMSE for the choice of r because we do not have an asymptotic result that

contains r. For the cross-validation method, there are two complications. First, there is a com-

putational issue. If we use the cross-validation method, we should minimize the prediction

error with respect to both r and h. However, this two-dimensional optimization problem is

computationally burdensome considering that the measurement error problem is often con-

sidered for high-frequency data. Second, finding target data values that do not depend on r

is not easy. In choosing h, we proposed in (2.15) to use the Ȳr,∆
j ’s. However, when we choose

both h and r, using these Ȳr,∆
j ’s in the targets may lead to unsatisfactory choices.

Because of these problems, we recommend using an ad-hoc choice of r, just as researchers

estimating integrated volatility used when choosing the subsampling frequency before Zhang,

Mykland, and Aı̈t-Sahalia (2005) formalized the subsampling approach. A sensible ad hoc

choice of r would be one considering any periodicity of the data. For example, in our simula-

tion study in which we generated daily observed data with five business days per week, we

chose r = 5 to yield weekly averages.
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2.5 Simulation Study

In this section, we carry out a simulation study to assess finite sample performance of our es-

timator. We simulate data with two kinds of underlying models for the drift coefficient, µ, one

with linear drift coefficient and one with nonlinear drift coefficient, and with the methods of

choosing h and r discussed in Section 2.4. We consider the following two kinds of underlying

models:

dXt = 0.858× (0.086− Xt)dt + 0.157
√

Xt dWt, (2.18)

dXt = −(Xt − 1)(Xt + 1)2dt + 2dWt. (2.19)

The process defined by (2.18) is called a Cox-Ingersoll-Ross (CIR) process and is used as an

underlying model for a short-term interest rate process. The value of a CIR process at time

t equals the annual interest rate, and the time is measured in days, with a year being 250

days (counting business days only). Following the parameter choice of Chapman and Pearson

(2000), we use the parameter values (0.858, 0.086, 0.157) in (2.18) to match the solution pro-

cess’s monthly (i.e. 21st-order) autocorrelation, unconditional mean and unconditional vari-

ance to the corresponding sample quantities of the dataset of Aı̈t-Sahalia (1996). The dataset

is seven-day Eurodollar deposit rates observed daily from June 1, 1973 to February 25, 1995

(total of 5505 observations). The Eurodollar deposit rate is known to move in close connection

with short-term interest rates such as T-bill rates (Aı̈t-Sahalia, 1996, page 539). We use the pro-

cess defined by (2.19) to study the performance of our estimator when the true drift coefficient

is nonlinear. It is straightforward to check that each of the models (2.18) and (2.19) satisfies

Assumptions 2.2 and 2.3, so that the unique solution process exists and is positive recurrent.

We generated 1,000 discretely-observed independent sample paths for each of (2.18) and (2.19)

at time increments of ∆ = 1/250, which represents daily observations assuming 250 business

days a year, and with the number of observations n = 5505, which is the sample size of the

dataset of Aı̈t-Sahalia (1996). The top panels in Figures 2.1 and 2.2 depict sample paths of the

processes defined by (2.18) and (2.19) with these values of ∆ and n.

In order to generate sample paths of the model (2.18), we first note that the analytical forms
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of the stationary density and the transition density are known. When generating each sample

path, we used the package sde in R (Iacus, 2009) to generate an initial value by a random

draw from the stationary density, to generate the first observation by a random draw from the

transition density given the initial value, to generate the second observation by a random draw

from the transition density given the first observation, and so on. Then the data generated by

this procedure have the same distribution as the distribution of the discretely observed data

of model (2.18).

For model (2.19), we note that the analytical form of the stationary density is known (Equa-

tion 2.4), but the analytical form of the transition density is unknown. When generating each

sample path, we again used the package sde in R, which first obtains an initial value by a ran-

dom draw from the stationary density, then implements a numerical approximation method

proposed by Milstein to generate the discretely-observed sample paths. Milstein’s method

uses the first-order and the second-order derivatives of µ and σ. For details on Milstein’s

method, see e.g. Iacus (2008, Chapter 2, page 81, Equation 29).

We then added independent and identically normally distributed measurement errors to

the generated discretely-observed sample paths. For model (2.18), we took 0.002 as the stan-

dard deviation of our measurement errors. This value is an estimate of the standard deviation

of the measurement error of the dataset of Aı̈t-Sahalia (1996), proposed by Jones (2003, page

812). We note that the value 0.002 is 5.7% of the unconditional standard deviation of the so-

lution process of (2.18). We also set the standard deviation of the measurement error added

to model (2.19) to be 5.7% of the unconditional standard deviation of the solution process of

(2.19), that is, to be 0.0661. The second panels of Figures 2.1 and 2.2 depict sample paths of the

processes defined by (2.18) and (2.19) with measurement errors added.

Using these sample paths with additive measurement errors, we estimated the drift co-

efficient by our pre-averaging estimator in Definition 2.2 (which we denote “Avg”) and the

double-smoothing and the single-smoothing estimator of Bandi and Phillips (2003), which are

defined in (2.11) and (2.12) respectively and which we denote “BPD” and “BPS”, respectively.

We also combined the subsampling method explained in Section 2.3 with the BPS and the BPD

estimators, and we denote these as “BPSs” and “BPDs”. In Avg, we chose r = 5 (see Defini-

tion 2.1 for the definition of r), which means we took weekly averages assuming 5 business
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days a week. In BPSs and BPDs, we used the weekly closing prices (i.e. every fifth value) in

order to construct subsampled data. The third and fourth panels of each of Figures 2.1 and 2.2

depict, respectively, averaged and subsampled sample paths of the process defined by each of

(2.18) and (2.19).

For all estimators, we used the standard normal kernel for estimation. The estimators

were evaluated pointwise at each point in the grid which consists of 100 equispaced points

ranging from the 20th percentile to the 80th percentile of the invariant density fX defined in

Assumption 2.3.

For each candidate estimator, we used the oracle bandwidth defined in (2.14). Note that

all estimators have the same oracle bandwidths because they have the same asymptotic biases

and variances. We used the cross-validation bandwidths defined in (2.16) for Avg, BPSs and

BPDs estimators. We didn’t use the cross-validation bandwidths for BPS and BPD due to the

high computational cost. However, it will become evident from the simulation result using

the oracle bandwidths, summarized in Table 2.2, that BPS and BPD have much larger mean

squared errors than those of Avg, BPSs and BPDs. When calculating the cross validation band-

width defined in (2.16) for Avg, BPSs and BPDs, we set H = 150 by the observation that, for

most sample paths, the empirical autocorrelation functions of the averaged and the subsam-

pled data reached zero before the time lag reaches 150. In addition, for BPSs and BPDs, we

used Y’s instead of Ȳ’s in the target data value of (2.15). In other words, the P̂E for BPSs and

BPDs using the subsampled data {Yjr∆}m
j=1 is defined by

P̂E(h ; H) ≡
m−1

∑
j=1

(
µ̂
(j,H)
BP

(
Yjr∆

)
−

Y(j+1)r∆ −Yjr∆

r∆

)2

,

where µ̂
(j,H)
BP is either the BPSs or the BPDs estimator. The superscript (j, H) has the same

meaning as that of µ̂
(k,H)

Ȳ

(
Ȳr,∆

k

)
in (2.15) for the Avg estimator.

In order to solve the minimization problem of (2.16), for each sample path, we first calcu-

lated D = maxi Yi∆ −mini Yi∆ where Yi∆ is defined in (2.3), and we found the local minimum

by looking at bandwidths in the grid of length 30, {D/30, 2D/30, . . . , D}. If there were

multiple bandwidths that attain local minima, we took the the largest bandwidth, which is a
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common practice when using cross-validation. In our simulation result, a grid of 30 values

was fine enough to detect the local minima. We obtained an interior minimizer of P̂E(· ; H)

for Avg and BPSs estimators for every sample path we generated. Figure 2.3 contains density

plots of the selected bandwidths. For the sample paths generated by model (2.18), the average

value of D was 0.176. For model (2.19), the average value was 5.41. These values are reflected

in the scales of the horizontal axes in Figure 2.3.

For BPDs, recall that we need to choose both h and l, where l is defined in (2.11). We chose

to minimize P̂E(· ; H) with respect to h with the restriction that l = h. This is motivated by the

fact that, as Bandi and Phillips (2003) noted, choosing {ln}, the bandwidth sequence of l ac-

cording to the sample size n, so that hn/ln → C > 0 yields smaller asymptotic variance for the

double-smoothing estimator than that of the single-smoothing estimator (Bandi and Phillips,

2003, Remark 5). In our simulation study, for some sample paths, the curve h 7→ P̂E(h ; H)

for the BPDs estimator evaluated at the grid of the bandwidths {D/30, 2D/30, . . . , D} was

monotonically decreasing in h. In this case, we picked D as the bandwidth. We see this in Fig-

ure 2.3 by the additional modes on the right side of the density plot of the BPDs bandwidths.

Since D is random, the bandwidths equal to D form a smooth mode in the density plots. The

number of h’s whose values were set to D was 365 for model (2.18) and 214 for model (2.19).

Whenever h = D, the BPDs function estimate was a constant function. There was very little

variation in the intercept across such constant function estimates. For example, the standard

deviation of the intercepts for model (2.19) was 0.07, which is small considering that the drift

coefficient of model (2.19) ranges from -1 to 1 at our evaluation points.

Now we present the simulation results. Table 2.2 summarizes the estimated expected inte-

grated squared errors (ISE) of the estimators. For each combination of the model, the estima-

tor and the bandwidth choice method, we approximated the ISE for each sample path by an

invariant-density-weighted sum of the squared errors over the equispaced grid of length 100

on which the estimators were evaluated, and we provided the mean of the 1,000 ISEs along

with the standard error of the mean in Table 2.2.

According to the table, if we use the oracle bandwidth, our Avg estimator has a smaller

mean ISE than any other listed estimators except for the BPDs estimator. If we use the cross-

validation bandwidth, our Avg estimator has smaller mean ISE than the BPSs estimator and
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ISE, Model (2.18) ISE, Model (2.19)
Estimator Oracle CV Oracle CV

BPS 1.474 (0.048) — 94.8 (2.1) —
BPD 0.628 (0.022) — 50.9 (1.5) —
BPSs 0.479 (0.012) 0.187 (0.010) 48.9 (1.1) 27.84 (0.8)
BPDs 0.194 (0.016) 0.283 (0.011) 27.2 (0.8) 22.67 (0.8)
Avg 0.327 (0.008) 0.138 (0.006) 38.0 (1.0) 24.37 (0.7)

Table 2.2: Means (and standard errors, i.e. standard deviations/
√

1000 ) of the integrated
squared errors (ISEs) of candidate estimators over 1,000 sample paths. Labels “BPS” and
“BPD” stand for the single-smoothing and the double-smoothing estimators of Bandi and
Phillips (2003), respectively. Label “Avg” stands for the pre-averaging estimator. The “s”
after a label means the estimator is combined with the subsampling method.

has smaller mean ISE than BPDs for model (2.18) and larger for model (2.19). Except for BPDs

in model (2.18), the cross-validation bandwidths have smaller mean ISEs than the oracle band-

widths.

Figures 2.4 to 2.7 depict the pointwise mean squared errors (MSEs), i.e. the means of the

1,000 pointwise squared errors, for each estimator over the grid of evaluation points, for both

bandwidths and for both models (2.18) and (2.19). According to the MSE plots, an estimator

which has smaller mean ISE than another estimator in Table 2.2 tends to have smaller point-

wise MSEs at almost all evaluation points.

We see that the MSE is small around x = 0.072 in Figures 2.4 and 2.5 and around x = −0.2

and x = 1 in Figures 2.6 and 2.7. To understand why the MSEs are small around these points,

in the asymptotic bias and variance defined in (2.13), we set h equal to the oracle bandwidth

hopt(x), defined in (2.14). Then we obtain that

AMSE(x) ∝
σ8/5(x)Γ2/5

µ (x)

f 4/5
X (x)

.

Note that Γ2/5
µ is nonnegative as Γ2

µ is nonnegative. It follows that the points where the MSE

is small correspond to points where fX(x) is large or Γµ(x) is small. In Figures 2.4 and 2.5,

around x = 0.072, Γµ(x) equals zero and fX attains its maximum. In Figures 2.6 and 2.7, Γµ(x)

equals zero around x = −0.2 and fX attains its maximum around x = 1.

We can rewrite Γµ(x) using the analytical form of fX(x) in (2.4), calculating f ′X(x) and
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simplifying the expression for Γµ(x) to

Γµ(x) = ν2 ×
(

2µ′(x)× µ(x)/σ(x)− σ′(x)
σ(x)

+
1
2

µ′′(x)
)

.

From this expression, we can see that Γµ(x) = 0 whenever 4µ′(x) × (µ(x) − σ(x)σ′(x))+

µ′′(x)σ2(x) = 0. In particular, if the drift coefficient µ is linear so that µ′ is constant and µ′′

is zero, then Γµ(x) = 0 if and only if µ(x) = σ(x)σ′(x). This condition is equivalent to the

condition that f ′X(x) is zero.

Considering the oracle bandwidth, we see from the bottom panels of Figures 2.4 and 2.6

and the Γµ curve in Figure 2.9 that hopt(x) is very large when Γµ(x) is close to zero. Recall that

the asymptotic bias obtained from Theorem 2.1 is equal to h2Γµ(x), as in (2.13). That Γµ(x)

is close to zero means that the asymptotic bias is very small, which means we choose large h

in order to reduce the asymptotic variance without suffering much from the increase in the

asymptotic bias.

One may notice that the MSE curve slightly increases at the point where hopt(x) attains its

maximum. The point corresponds to the one at which Γµ(x), and hence the asymptotic bias,

is nearly zero. When Γµ(x) is nearly zero, if we choose a very large h, the asymptotic variance

and hence the AMSE are close to zero. However, the finite-sample bias is not necessarily zero

even if the asymptotic bias is zero. Therefore, unlike the AMSE, the MSE curve calculated from

the simulations does not equal to zero. In fact, we see a slight increase in MSE for a very high

choice of the bandwidth.

Next, we present a simulation result that indicates the bias-variance tradeoff of the block

size r, where r is defined in Equation (2.3). Figure 2.8 depicts pointwise squared bias and

variance of the Avg estimator with the oracle bandwidth under different values of r, namely

r = 2, 5, 10, 20, 40, 60, for model (2.19). It is clear from Figure 2.8 that the squared bias is

increasing in r and the variance is decreasing in r. Note that the sharp increase in the bias

and the sharp decrease in the variance at x ≈ −0.2 is due to a very high value of the oracle

bandwidth, hopt.

We provide the plots only for (2.19) because we can clearly see by plots the bias-variance

tradeoff of r for (2.19) as its drift coefficient is nonlinear. We obtained similar results for (2.18),
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that the bias is increasing in r and that the variance is decreasing in r.

Returning to Table 2.2, it indicates whether an estimator has smaller ISE than another es-

timator “on average”. To make “pathwise” comparisons of ISEs, we construct Figures 2.10

to 2.17. Each plot is a scatterplot of 1,000 points, each point representing a pair of pathwise

ISEs of the two estimators indicated in the plot. For instance, Figure 2.10 is a scatterplot of

1,000 pairs of pathwise ISEs of the Avg and the BPSs estimators, where each pair (i.e. each

point in the scatterplot) corresponds to each of 1,000 sample paths of model (2.18). According

to the figures, the pathwise comparisons give conclusions that are consistent with Table 2.2, in

other words, an estimator which has smaller mean ISE than another estimator tends to have

smaller pathwise ISEs. From Figures 2.10, 2.12, 2.14 and 2.16, the Avg estimator has smaller

pathwise ISE than BPSs for, respectively, 825, 513, 679 and 549 out of 1,000 sample paths. From

Figures 2.11, 2.13, 2.15 and 2.17, the ISE is smaller than BPDs for, respectively, 267, 782, 282

and 464 out of 1,000 sample paths.

We can make similar statements about the oracle and the cross-validation bandwidth, that

is, the cross-validation bandwidth tends to have smaller pathwise ISEs than the oracle band-

width. As an example, Figures 2.18 and 2.19 compare pathwise ISEs of the Avg estimator with

the oracle and the cross-validation bandwidths for models (2.18) and (2.19). From Figures 2.18

and 2.19, the Avg estimator with the cross-validation bandwidth has smaller pathwise ISEs

than the estimator with the oracle bandwidth for, respectively, 741 and 852 out of 1,000 sample

paths.

One may notice that some points in Figures 2.13 and 2.17 form straight horizontal lines in

the plots. Those points correspond to sample paths for which the bandwidth h for the BPDs

estimator was equal to D = maxi Yi∆−mini Yi∆, where Yi∆ is defined in (2.3) (recall the discus-

sion about the additional modes of the density plot of the BPDs bandwidths in Figure 2.3). We

mentioned earlier that, when we chose h = D, the resulting function estimate was a constant

function estimate with little variation in its intercept across such constant function estimates.

Therefore, when we take D as the bandwidth, the pathwise ISE of the BPDs estimator has little

variation across the sample paths. Hence the points form a straight horizontal line, where the

values of pathwise ISEs of the BPDs estimator are almost fixed at some level at the Y-axis.
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2.6 Proof of Theorem 2.1

In this section, we provide a full proof of Theorem 2.1. In order to clarify the argument, we first,

in Section 2.6.1, give a overall scheme of the proof and derive key statements that are sufficient

to prove Theorem 2.1. Then we prove those key statements in Sections 2.6.2 and 2.6.3.

2.6.1 Structure of the proof

Bandi and Phillips (2003) showed that their single-smoothing estimator, defined in (2.12), is

a consistent and asymptotically normal estimator of µ when we observe a sample path of a

recurrent solution process {Xt} sampled discretely in time and without measurement error.

We prove Theorem 2.1 by showing, under the conditions of this theorem, that the difference

between our estimator computed from the Yi∆’s and the single-smoothing estimator of Bandi

and Phillips (2003) computed from the Xi∆’s converges to 0 in probability. This subsection

presents the overall scheme of this proof.

To begin with, we introduce the single-smoothing estimator of Bandi and Phillips (2003)

more explicitly and state their results of its consistency and asymptotic normality. For nota-

tional convenience, in order to relate the consistency and asymptotic normality results for their

estimator to our estimator, we present the estimator of Bandi and Phillips (2003) when the ob-

servation time lag is r∆ and the number of observations is m − 1, that is, when we observe

{X(j−1)rn∆n}
m−1
j=1 .

Definition 2.3 The single-smoothing estimator µ̂X of the drift coefficient µ proposed by Bandi and

Phillips (2003) is defined by

µ̂X(x) ≡
1

m−2 ∑m−2
j=1

Xjr∆−X(j−1)r∆
r∆

1
h K
(

X(j−1)r∆−x
h

)
1

m−2 ∑m−2
j=1

1
h K
(

X(j−1)r∆−x
h

)
≡
NX0,...,X(m−2)r∆

(x)
DX0,...,X(m−3)r∆ (x)

≡ NX(x)
DX (x)

.

We state the consistency and asymptotic normality result of µ̂X(x) not for a recurrent dif-

fusion process but for a positive recurrent diffusion process, in order to relate the result to our

estimator.
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Theorem 2.2 (Bandi and Phillips, 2003) Suppose that

(i) ∆n → ∞ and n∆n → ∞ as n→ ∞,

(ii) Assumption 2.2 holds,

(iii) The solution process {Xt} is positive recurrent (so that the stationary density fX exists), and

(iv) The kernel K satisfies Assumption 2.4 except for our additional requirement that K′ is bounded.

In addition, suppose

(
n∆n

hn

)2

rn∆n ln(1/rn∆n) = o(1) and n∆nhn → ∞.

Then the following consistency and asymptotic normality results hold whenever fX(x) > 0.

1. µ̂X(x) −→ µ(x) almost surely as n→ ∞.

2. If n∆nh5
n = o(1), then

√
n∆nhn {µ̂X(x)− µ(x)} d−→ N

(
0, K2

σ2(x)
fX(x)

)
,

where K2 is as in Theorem 2.1.

3. If n∆nh5
n = O(1), then

√
n∆nhn

{
µ̂X(x)− µ(x)− h2

nΓµ(x)
} d−→ N

(
0, K2

σ2(x)
fX(x)

)
,

where Γµ(x) is as in Theorem 2.1.

Note that Assumptions 2.1 and 2.3 include conditions (i) and (iii) of Theorem 2.2, respec-

tively. Thus Theorem 2.2 holds under Assumptions 2.1 to 2.4 as well.

We will prove consistency and asymptotic normality of our estimator µ̂Ȳ (x) based on The-

orem 2.2 and the following theorem.

Theorem 2.3 (Bandi and Phillips, 2003) Suppose conditions (i) − (iv) of Theorem 2.2 hold, and

suppose (
1
hn

)2

rn∆n ln(1/rn∆n) = o(1).
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Then, for each x such that fX(x) > 0, we have

DX (x) −→ fX(x) almost surely,

where fX(x) is as in Assumption 2.3.

In what follows, we will prove that the following statements hold under Assumptions 2.1

to 2.5 in Section 2.2 and conditions (i), (ii) and (iii) of Theorem 2.1. Recall the definition of

µ̂Ȳ(x) = NȲ(x)/DȲ(x), in Definition 2.2.

DȲ (x)−DX (x) = op(1) and (2.20)√
n∆nhn {NȲ (x)−NX (x)} = op(1). (2.21)

Then Theorem 2.1 follows from these statements and Theorems 2.2 and 2.3. First, since n∆nhn →

∞ as in condition (ii) of Theorem 2.1, Equation (2.21) implies

NȲ (x)−NX (x) = op(1). (2.22)

Then (2.20) and (2.22) along with Theorems 2.2 and 2.3 imply Theorem 2.1’s conclusion 1 since,

for every x ∈ {y | fX(y) > 0},

µ̂Ȳ (x) =
NȲ (x)
DȲ (x)

=
NX (x) + op(1)
DX (x) + op(1)

p−→ µ(x).

To prove Theorem 2.1’s conclusion 2, where n∆nh5
n = o(1), we use (2.20) and (2.21) along with

Theorems 2.2 and 2.3 to write

√
n∆nhn {µ̂Ȳ (x)− µ(x)} =

√
n∆nhn NȲ (x)
DȲ (x)

−
√

n∆nhn µ(x)

=

√
n∆nhn NX (x) + op(1)
DX (x) + op(1)

−
√

n∆nhn µ(x)

=
√

n∆nhn

{ NX (x) + op(1)
DX (x) + op(1)

− µ(x)
}

d−→ N
(

0, K2
σ2(x)
fX(x)

)
,
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by Theorem 2.2’s conclusion 2. We can prove Theorem 2.1’s conclusion 3 similarly.

In summary, if we prove (2.20) and (2.21) under Assumptions 2.1 to 2.5 and conditions (i),

(ii), (iii) of Theorem 2.1, then the conclusions of Theorem 2.1 follow. In the remainder of this

section, we prove (2.20) and (2.21). The proof uses the following preliminary lemmas.

2.6.2 Preliminary lemmas

Lemma 2.1 The following hold.

1. Under Assumption 2.4, K is globally Lipschitz, that is, there exists a finite constant M > 0 such

that |K(x)− K(y)| ≤ M|x− y| for all x, y ∈ R. In addition, we can take M ≡ supx K′(x).

2. Under Assumption 2.5, the following inequalities hold for all j and n:

(
E(|ε̄rn,∆n

j |)
)2
≤ E([ε̄rn,∆n

j ]2) ≤ σ2
ε

rn
.

Proof :

1. The conclusion follows directly from the fact that K is continuously differentiable and

that K′ is bounded.

2. The first inequality is from the fact that the L1 norm (that is, expectation of the absolute

value) is bounded by the L2 norm. For the second inequality, since E(ε̄rn,∆n
j ) = 0, we have

E([ε̄rn,∆n
j ]2) = Var(ε̄rn,∆n

j ). Then independence of εt’s and the boundedness of Var(εt)

allow us to write

Var(ε̄rn,∆n
j ) =

1
r2

n

rn

∑
i=1

Var(ε [(j−1)rn+i]∆n) ≤
σ2

ε

rn
. �

Lemma 2.2 Under Assumptions 2.2 and 2.3, for any real 0 ≤ a < b,

{
E

(∣∣∣∣∫ b

a
µ(Xs)ds

∣∣∣∣)}2

≤ E

([∫ b

a
µ(Xs)ds

]2
)
≤ E(µ2(X0)) (b− a)2,

{
E

(∣∣∣∣∫ b

a
σ(Xs)dWs

∣∣∣∣)}2

≤ E

([∫ b

a
σ(Xs)dWs

]2
)
≤ E(σ2(X0)) (b− a).
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Proof : The first inequality of each line is by the fact that the L1 norm is bounded by the L2

norm. We now prove the second inequality of the first line. By applying Hölder’s inequality

to |µ| × 1,

[∫ b

a
µ(Xs)ds

]2

≤
[∫ b

a
|µ(Xs)|ds

]2

≤
∫ b

a
µ2(Xs)ds

∫ b

a
ds = (b− a)

∫ b

a
µ2(Xs)ds.

Therefore,

E

([∫ b

a
µ(Xs)ds

]2
)
≤ (b− a)E

(∫ b

a
µ2(Xs)ds

)
= (b− a)

∫ b

a
E(µ2(Xs))ds.

In addition, since E(µ2(Xs)) = E(µ2(X0)) as {Xt} is stationary,

(b− a)
∫ b

a
E(µ2(Xs))ds = (b− a)

∫ b

a
E(µ2(X0))ds = E(µ2(X0))(b− a)2.

This proves the second inequality of the first line. We can use the same reasoning to prove

the second inequality of the second line if we first use the following property of stochastic

integration:

E

([∫ b

a
σ(Xs)dWs

]2
)

= E

(∫ b

a
σ2(Xs)ds

)
. �

Remark : We denote

Mb
a ≡

∫ b∆

a∆
µ(Xs)ds and W b

a ≡
∫ b∆

a∆
σ(Xs)dWs. (2.23)

Then Lemma 2.2 can be rewritten as E
((
Mb

a
)2
)
≤ E(µ2(X0)) (b− a)2∆2 and E

((
W b

a
)2
)
≤

E(σ2(X0)) (b− a)∆.

Lemma 2.3 Suppose that Assumptions 2.1 to 2.3 hold. Define

κn ≡ max
j≤mn

sup
(j−1)rn∆n≤s≤jrn∆n

|Xs − X(j−1)rn∆n |

and

γn ≡ max
j≤mn

E

((
X̄rn,∆n

j − X(j−1)rn∆n

)2
)

.
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Then the following hold.

(i) For any nonnegative numerical sequence {an} such that limn→∞ an(rn∆n ln(1/rn∆n))1/2 = 0,

limn→∞ anκn = 0 a.s.

(ii) maxj≤mn |X̄
rn∆n
j − X(j−1)rn∆n | ≤ κn.

(iii) maxj≤mn |X̄
rn∆n
j+1 − X̄rn∆n

j | ≤ 3κn.

(iv) There exists a finite constant β such that γn ≤ βrn∆n.

(v) maxj≤mn E(|X̄rn∆n
j − X(j−1)rn∆n |) ≤

√
γn.

(vi) maxj≤mn E(|X̄rn∆n
j+1 − X̄rn∆n

j |) ≤ 3
√

γn.

Proof : We first prove (i). As Bandi and Phillips (2003, page 267) point out, by Levy’s modulus

of continuity of diffusions, we have

P
(

lim sup
n→∞

κn

(rn∆n ln(1/rn∆n))1/2 = C
)
= 1

where C is a suitable constant (Karatzas and Shreve, 1991, Theorem 9.25, Chapter 2, page 114).

Therefore, we have, for a nonnegative sequence an such that an(rn∆n ln(1/rn∆n))1/2 → 0,

P
(

lim sup
n→∞

anκn = 0
)
= 1.

Since both an and κn are nonnegative, (i) follows. Next, to prove (ii), it suffices to notice that,

for any j,

|X̄rn∆n
j − X(j−1)rn∆n | ≤

1
rn

rn

∑
i=1
|X(j−1)rn∆n+i∆n − X(j−1)rn∆n | ≤

1
rn

rn

∑
i=1

κn = κn.

We can prove (iii) using (ii) and the definition of κn as follows: for any j,

|X̄rn∆n
j+1 − X̄rn∆n

j | ≤ |X̄rn∆n
j+1 − Xjrn∆n |+ |Xjrn∆n − X(j−1)rn∆n |+ |X̄

rn∆n
j − X(j−1)rn∆n | ≤ 3κn.

Now we prove (iv). Note first that, by (2.2), we have the following on a set of probability
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1:

X̄rn,∆n
j − X(j−1)rn∆n =

1
rn

rn

∑
i=1

∫ (j−1)rn∆n+i∆n

(j−1)rn∆n

µ(Xs)ds +
1
rn

rn

∑
i=1

∫ (j−1)rn∆n+i∆n

(j−1)rn∆n

σ(Xs)dWs

≡ A + B. (2.24)

Then we have E
(
(X̄rn,∆n

j − X(j−1)rn∆n)
2
)
≤ 2E(A2) + 2E(B2), for A and B defined in (2.24),

since the above equality holds almost surely and since (A+ B)2 ≤ 2A2 + 2B2. We now expand

A2:

(
1
rn

rn

∑
i=1

∫ (j−1)rn∆n+i∆n

(j−1)rn∆n

µ(Xs)ds

)2

=
1
r2

n

rn

∑
i=1

rn

∑
k=1

∫ (j−1)rn∆n+i∆n

(j−1)rn∆n

µ(Xs)ds
∫ (j−1)rn∆n+k∆n

(j−1)rn∆n

µ(Xs)ds.

(2.25)

We use the Cauchy-Schwarz inequality, Lemma 2.2 and the fact that i, k ≤ rn to bound the

expectation of the absolute value of the ikth summand of (2.25) by

√√√√E

([∫ (j−1)rn∆n+i∆n

(j−1)rn∆n

µ(Xs)ds
]2
)√√√√E

([∫ (j−1)rn∆n+k∆n

(j−1)rn∆n

µ(Xs)ds
]2
)
≤ E(µ2(X0))r2

n∆2
n.

This bound is uniform in i and k, so E(A2) is bounded by E(µ2(X0))r2
n∆2

n. In exactly the same

way, we can bound E(B2) by E(σ2(X0))rn∆n. Then E
(
(X̄rn,∆n

j − X(j−1)rn∆n)
2
)

is bounded by

2E(µ2(X0))r2
n∆2

n + 2E(σ2(X0))rn∆n ≤ βrn∆n

for some constant β since E(µ2(X0)) and E(σ2(X0)) are finite and rn∆n → 0. This bound is

uniform in j, so (iv) follows.

Next, (v) follows directly from the fact that the L1 norm is bounded by the L2 norm and

that the square root function f (x) =
√

x is monotonically increasing. Lastly, we can prove

(vi) using (v), the argument of (ii) and the argument in the proof of (iv) to bound E(|Xjrn∆n −

X(j−1)rn∆n |) by
√

γn. �

Now we are ready to present the proof of (2.20) and (2.21).
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2.6.3 Proof of Equation (2.20)

Suppose Assumptions 2.1 to 2.5 and conditions (i), (ii), (iii) of Theorem 2.1 hold. Instead of

proving (2.20), we prove the stronger statement, that

DȲ (x)−DX (x) = op

(
1√

n∆nhn

)
.

First, the Lipschitz continuity of the kernel K implies

|DȲ (x)−DX (x)| ≤ 1
mn − 2

mn−2

∑
j=1

1
hn

∣∣∣∣∣K
(

Ȳrn∆n
j − x

hn

)
− K

(X(j−1)rn∆n − x
hn

)∣∣∣∣∣
≤ M

mn − 2

mn−2

∑
j=1

|Ȳrn,∆n
j − X(j−1)rn∆n |

h2
n

, (2.26)

where M is as in Lemma 2.1. In addition, using the definition of Ȳrn,∆n
j and (ii) of Lemma 2.3,

we have

|Ȳrn,∆n
j − X(j−1)rn∆n | = |X̄

rn,∆n
j − X(j−1)rn∆n + ε̄rn,∆n

j | ≤ κn + |ε̄rn,∆n
j |. (2.27)

Combining (2.26) and (2.27), we can bound |DȲ (x)−DX (x)| by

|DȲ (x)−DX (x)| ≤ Mκn

h2
n

+
M

mn − 2

mn−2

∑
j=1

|ε̄rn,∆n
j |
h2

n
.

We now study the orders of the two terms of this bound. We show that

κn

h2
n
= oa.s.

(
1

n∆nhn

)
and

1
mn − 2

mn−2

∑
j=1

|ε̄rn,∆n
j |
h2

n
= op

(
1√

n∆nhn

)
, (2.28)

which will complete the proof since n∆nhn → ∞ as in condition (ii) of Theorem 2.1. For the

first claim of (2.28), we use condition (i) of Theorem 2.1, which says (n∆n/hn)× (rn∆n ln(rn∆n))

→ 0. This condition together with (i) of Lemma 2.3 yields n∆nhn × κn/h2
n = (n∆n/hn)× κn =

oa.s.(1). Then this implies that the first term is oa.s.(1/(n∆nhn)), since n∆nhn → ∞ by condition

(ii) of Theorem 2.1.

For the second claim of (2.28), since E(|ε̄rn,∆n
j |) ≤ σε/

√
rn for all j by Lemma 2.2, we can
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bound its expectation by σε/(h2
nr1/2

n ), which is o(1/
√

n∆nhn) since

n∆nhn ×
1

h4
nrn

=
n

h3
nr2

n
× rn∆n = o(1)× o(1)

by condition (iii) of Theorem 2.1 and the assumption that rn∆n → 0 (see Assumption 2.1).

Therefore, the L1 norm of the second term is o(1/
√

n∆nhn), implying that it is op(1/
√

n∆nhn).

�

2.6.4 Proof of Equation (2.21)

In order to prove (2.21) under the conditions, we first define the following 3 terms. Recall the

definition of NȲ(x) in Definition 2.2 and NX in Definition 2.3.

NȲ,X̄(j) ≡
(

Ȳrn ,∆n
j+2 − Ȳrn ,∆n

j+1

)
K

 Ȳrn ,∆n
j − x

hn

− (X̄rn ,∆n
j+2 − X̄rn ,∆n

j+1

)
K

 X̄rn ,∆n
j − x

hn

 ,

NX̄,X(j) ≡
(

X̄rn ,∆n
j+2 − X̄rn ,∆n

j+1

)
K

 X̄rn ,∆n
j − x

hn

− (X(j+1)rn∆n − Xjrn∆n

)
K
(X(j−1)rn∆n − x

hn

)
,

NX,X(j) ≡
(

X(j+1)rn∆n − Xjrn∆n

)
K
(X(j−1)rn∆n − x

hn

)
−
(

Xjrn∆n − X(j−1)rn∆n

)
K
(X(j−1)rn∆n − x

hn

)
.

Then we have the following equality:

√
n∆nhn {NȲ (x)−NX (x)} =

√
n∆nhn

(mn − 2)rn∆nhn

mn−2

∑
j=1

{
NȲ,X̄(j) +NX̄,X(j) +NX,X(j)

}
.

Then, to prove (2.21), we note that

√
n∆nhn

(mn − 2)rn∆nhn
=

mn

mn − 2
× 1√

n∆nhn
,

and we show that each of

mn−2

∑
j=1
NȲ,X̄(j) ,

mn−2

∑
j=1
NX̄,X(j) and

mn−2

∑
j=1
NX,X(j) (2.29)
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is op
(√

n∆nhn
)
. Sometimes we treat the three sums in (2.29) all at once using the notation

NZ,W(j). Note that NZ,W(j) can be rewritten in the form

NZ,W(j) = Zinc
j × K

(
Zkern

j − x

hn

)
− W inc

j × K

(
Wkern

j − x

hn

)

= Zinc
j ×

[
K

(
Zkern

j − x

hn

)
− K

(
Wkern

j − x

hn

)]
+ (Zinc

j −W inc
j )× K

(
Wkern

j − x

hn

)
≡ NZ,W,kern(j) + NZ,W,inc(j). (2.30)

We shall call NZ,W,kern(j) the kernel difference term and NZ,W,inc(j) the increment difference

term. To be precise, the following table lists the Z’s and W’s for each NZ,W(j).

Table 2.3: The list of Z’s and W’s for each N (j).

Zinc
j W inc

j Zkern
j Wkern

j

NȲ,X̄(j) Ȳrn,∆n
j+2 − Ȳrn,∆n

j+1 X̄rn,∆n
j+2 − X̄rn,∆n

j+1 Ȳrn,∆n
j X̄rn,∆n

j

NX̄,X(j) X̄rn,∆n
j+2 − X̄rn,∆n

j+1 X(j+1)rn∆n − Xjrn∆n X̄rn,∆n
j X(j−1)rn∆n

NX,X(j) X(j+1)rn∆n − Xjrn∆n Xjrn∆n − X(j−1)rn∆n X(j−1)rn∆n X(j−1)rn∆n

Note that Zkern
j = Wkern

j for NX,X(j), which means that NX,X,kern(j) is equal to zero. We

must show that the two kernel difference and the three increment difference terms, summed

over j, are all op
(√

n∆nhn
)
. In what follows, we prove it. We first study the orders of the kernel

difference terms, and then we study those of the increment difference terms. When studying

each difference term, we study that of NȲ,X̄ first, and then we study that of NX,X and that of

NX̄,X. We proceed in this order because the study of the terms of NȲ,X̄ is simplest and the

study of those of NX̄,X is most delicate.

Study of the kernel difference terms

We first study the orders of the kernel difference terms, summed over j. First, we show that

∑mn−2
j=1 NȲ,X̄,kern(j) is op

(√
n∆nhn

)
. We first use the Lipschitz continuity of K to bound its abso-

lute value: ∣∣∣∣∣mn−2

∑
j=1
NȲ,X̄,kern(j)

∣∣∣∣∣ ≤ mn−2

∑
j=1

M
hn
|Zinc

j | |Zkern
j −Wkern

j |, (2.31)
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where the Z’s and W’s are as in Table 2.3 and M is as in Lemma 2.1. Then we take the expecta-

tion of the bound (2.31), and we use the independence of {Xt} and {εt} and the independence

of εt’s to bound the jth summand of the right-hand side of (2.31) by

M
hn

E
(
|Ȳrn,∆n

j+2 − Ȳrn,∆n
j+1 ||ε̄

rn,∆n
j |

)
≤ M

hn

(
E(|X̄rn,∆n

j+2 − X̄rn,∆n
j+1 |) + E(|ε̄rn,∆n

j+2 − ε̄rn,∆n
j+1 |)

)
E(|ε̄rn,∆n

j |)

≤ M
hn

(
3
√

γn +
2σε√

rn

)
σε√
rn

, (2.32)

where the last inequality used Lemma 2.1 and (vi) of Lemma 2.3. Then, since γn ≤ βrn∆n by

(iv) of Lemma 2.3, the expression (2.32) is bounded further by a constant times

√
∆n

hn
+

1
rnhn

.

Therefore, E(|∑mn−2
j=1 NȲ,X̄,kern(j)|) is bounded by a constant times

mn
√

∆n

hn
+

mn

rnhn
=

n
√

∆n

rnhn
+

n
r2

nhn
,

since mn = n/rn as in Assumption 2.1. This bound is o
(√

n∆nhn
)

since

1√
n∆nhn

× n
√

∆n

rnhn
=

√
n

r2
nh3

n
= o(1)

by condition (iii) of Theorem 2.1 and since

1√
n∆nhn

× n
r2

nhn
=

n
r2

nh3
n
× h2

n√
n∆nhn

= o(1)× o(1)

by conditions (ii) and (iii) of Theorem 2.1 and since hn → 0 as in Assumption 2.1.

Next, we show that ∑mn−2
j=1 NX̄,X,kern(j), which is defined at the beginning of Section 2.6.4

and (2.30), is op
(√

n∆nhn
)
. We use the first order Taylor expansion of K and write NX̄,X,kern(j)
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as follows:

NX̄,X,kern(j) = Zinc
j K′

(
ξ j − x

hn

)(Zkern
j −Wkern

j

hn

)

=
(

X̄rn,∆n
j+2 − X̄rn,∆n

j+1

)
K′
(

ξ j − x
hn

)( X̄rn,∆n
j − X(j−1)rn∆n

hn

)
, (2.33)

where ξ j is a value between the values of X̄rn,∆n
j and X(j−1)rn∆n . We must show that the sum

of (2.33) over j is op
(√

n∆nhn
)
. First, we use the definition of Xt in (2.2) that Xt = X0 +∫ t

0 µ(Xs)ds +
∫ t

0 σ(Xs)dWs a.s. to write the increments of (2.33) as

X̄rn,∆n
j+2 − X̄rn,∆n

j+1 =
1
rn

rn

∑
i=1

(
X[(j+1)rn+i]∆n − X[jrn+i]∆n

)
=

1
rn

rn

∑
i=1

∫ [(j+1)rn+i]∆n

[jrn+i]∆n

µ(Xs)ds +
1
rn

rn

∑
i=1

∫ [(j+1)rn+i]∆n

[jrn+i]∆n

σ(Xs)dWs

=
1
rn

rn

∑
i=1
M(j+1)rn+i

jrn+i +
1
rn

rn

∑
i=1
W (j+1)rn+i

jrn+i ,

and

X̄rn,∆n
j − X(j−1)rn∆n =

1
rn

rn

∑
k=1

(
X[(j−1)rn+k]∆n − X(j−1)rn∆n

)
=

1
rn

rn

∑
k=1

∫ [(j−1)rn+k]∆n

(j−1)rn∆n

µ(Xs)ds +
1
rn

rn

∑
k=1

∫ [(j−1)rn+k]∆n

(j−1)rn∆n

σ(Xs)dWs

=
1
rn

rn

∑
k=1
M(j−1)rn+k

(j−1)rn
+

1
rn

rn

∑
k=1
W (j−1)rn+k

(j−1)rn
.

Recall the definition of M and W in the Remark after Lemma 2.2. Using these, we expand

(2.33) as follows:

(2.33) =
1
r2

n

rn

∑
i=1

rn

∑
k=1
M(j+1)rn+i

jrn+i M(j−1)rn+k
(j−1)rn

1
hn

K′
(

ξ j − x
hn

)
(2.34)

+
1
r2

n

rn

∑
i=1

rn

∑
k=1
M(j+1)rn+i

jrn+i W (j−1)rn+k
(j−1)rn

1
hn

K′
(

ξ j − x
hn

)
(2.35)

+
1
r2

n

rn

∑
i=1

rn

∑
k=1
W (j+1)rn+i

jrn+i M(j−1)rn+k
(j−1)rn

1
hn

K′
(

ξ j − x
hn

)
(2.36)

+
1
r2

n

rn

∑
i=1

rn

∑
k=1
W (j+1)rn+i

jrn+i W (j−1)rn+k
(j−1)rn

1
hn

K′
(

ξ j − x
hn

)
. (2.37)
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Throughout the calculations regarding (2.34) to (2.37), we will use the bounds based on the

Remark after Lemma 2.2, that, for some constant C, the L2 norms E

((
M(j+1)rn+i

jrn+i

)2
)

and

E

((
M(j−1)rn+k

(j−1)rn

)2
)

are bounded by Cr2
n∆2

n and that E

((
W (j+1)rn+i

jrn+i

)2
)

and E

((
W (j−1)rn+k

(j−1)rn

)2
)

are bounded by Crn∆n.

Note that, using boundedness of K′ and the Cauchy-Schwarz inequality, we can bound the

L1 norm of the ikth summand of (2.34) by

√
E

([
M(j+1)rn+i

jrn+i

]2
)

E

([
M(j−1)rn+k

(j−1)rn

]2
)
× M

hn
≤ CM

r2
n∆2

n
hn

.

By the same reasoning, we can bound the L1 norm of the ikth summand of (2.35) and (2.36) by

CM(rn∆n)3/2/hn. These bounds are uniform in i, j, k, so the L1 norm of (2.34) to (2.36) summed

over j is bounded by a constant times mn(rn∆n)3/2/hn = nr1/2
n ∆3/2

n /hn (recall mn = n/rn in

Assumption 2.1). In addition, by condition (i) of Theorem 2.1,

nr1/2
n ∆3/2

n
hn

=
n∆n

hn

√
rn∆n = o(1). (2.38)

Therefore, the L1 norm of (2.34) to (2.36) summed over j is o(1). This implies that it is o(
√

n∆nhn)

since n∆nhn → ∞ by condition (ii) of Theorem 2.1.

Now it remains to show that (2.37) summed over j is op
(√

n∆nhn
)
. It requires a more

delicate argument than (2.34) to (2.36). We first rearrange the sum of (2.37) over j as follows:

1
r2

nhn

rn

∑
i=1

rn

∑
k=1

mn−2

∑
j=1
W (j+1)rn+i

jrn+i W (j−1)rn+k
(j−1)rn

K′
(

ξ j − x
hn

)
. (2.39)

We derive the bound of the squared L2 norm of the ikth summand of the above. We first prove

that

E

[mn−2

∑
j=1
W (j+1)rn+i

jrn+i W (j−1)rn+k
(j−1)rn

K′
(

ξ j − x
hn

)]2


=
mn−2

∑
j=1

E

([
W (j+1)rn+i

jrn+i

]2 [
W (j−1)rn+k

(j−1)rn

]2
K′2
(

ξ j − x
hn

))
, (2.40)
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in other words, that

E

(
W (j+1)rn+i

jrn+i W (j−1)rn+k
(j−1)rn

1
hn

K′
(

ξ j − x
hn

)
W (l+1)rn+i

lrn+i W (l−1)rn+k
(l−1)rn

1
hn

K′
(

ξl − x
hn

))
= 0 (2.41)

for all j > l. In order to prove this, we use the fact that
∫ v1

u1
σ(Xs)dWs is independent of∫ v2

u2
σ(Xs)dWs and Xw whenever u2 ≤ v2 ≤ u1 ≤ v1 and w ≤ u1 ≤ v1. Since ξ j is a number

between X̄rn,∆n
j and X(j−1)rn∆n , the variable ξ j depends on those Xs’s such that (j− 1)rn∆n ≤

s ≤ jrn∆n. Thus, by independence, the left-hand side of (2.41) equals to

E
(
W (j+1)rn+i

jrn+i

)
E

(
W (j−1)rn+k

(j−1)rn

1
hn

K′
(

ξ j − x
hn

)
W (l+1)rn+i

lrn+i W (l−1)rn+k
(l−1)rn

1
hn

K′
(

ξl − x
hn

))
= 0,

because integrals with respect to Brownian motion, such as E
(
W (j+1)rn+i

jrn+i

)
, have mean zero.

This proves (2.41).

Then, by the boundedness of K′, (2.40) is bounded further by

M2
mn−2

∑
j=1

E

([
W (j+1)rn+i

jrn+i

]2 [
W (j−1)rn+k

(j−1)rn

]2
)
= M2

mn−2

∑
j=1

E

([
W (j+1)rn+i

jrn+i

]2
)

E

([
W (j−1)rn+k

(j−1)rn

]2
)

(2.42)

where we used the fact thatW (j+1)rn+i
jrn+i andW (j−1)rn+k

(j−1)rn
are independent. Applying the bounds

based on the Remark after Lemma 2.2, we can bound (2.42) by a constant times mr2
n∆2

n. This is

a bound of (2.40), so we can bound the L1 norm of (2.39) by a constant times

1
r2

nhn

rn

∑
i=1

rn

∑
k=1

√
mnr2

n∆2
n =

√
mnr2

n∆2
n

h2
n

=

√
nrn∆2

n
h2

n

(recall that mn = n/rn as in Assumption 2.1). We can rewrite the term inside the square root

as
nrn∆2

n
h2

n
=

nr1/2
n ∆3/2

n
hn

× r1/2
n ∆1/2

n
hn

.

Now we show that the right-hand side is o(1). We have shown that the first component is o(1)

in (2.38). For the second component, by condition (i) of Theorem 2.1 and the assumption that
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n∆n → ∞ (see Assumption 2.1),

√
rn∆n

hn
=

n∆n

hn

√
rn∆n ×

1
n∆n

= o(1)× o(1).

Therefore, the L1 norm of (2.39) is o(1) and thus o(
√

n∆nhn) as n∆nhn → ∞ by condition (ii)

of Theorem 2.1. This implies that (2.39) is op(
√

n∆nhn) as desired.

Study of the increment difference terms

We first show ∑mn−2
j=1 NȲ,X̄,inc(j), which is defined at the beginning of Section 2.6.4 and (2.30),

is op(
√

n∆nhn). We write Zinc
j −W inc

j = Dj+1 − Dj where Dj = Ȳrn,∆n
j+1 − X̄rn,∆n

j+1 = ε̄rn,∆n
j+1 . Then

we write

mn−2

∑
j=1
NȲ,X̄,inc(j) =

mn−2

∑
j=1

(Dj+1 − Dj)K

(
Wkern

j − x

hn

)
(2.43)

=
mn−2

∑
j=1

Dj+1K

(
Wkern

j − x

hn

)
−

mn−3

∑
j=0

Dj+1K

(
Wkern

j+1 − x

hn

)

= Dmn−1K

(
Wkern

mn−2 − x
hn

)
− D1K

(
Wkern

1 − x
hn

)

−
mn−2

∑
j=1

Dj+1

[
K

(
Wkern

j+1 − x

hn

)
− K

(
Wkern

j − x

hn

)]
. (2.44)

Then, the boundedness and the Lipschitz continuity of K and the boundedness of K′ yield

∣∣∣∣∣mn−2

∑
j=1
NȲ,X̄,inc(j)

∣∣∣∣∣ ≤ C

{
|Dmn−1|+ |D1|+

1
hn

mn−2

∑
j=1
|Dj+1||Wkern

j+1 −Wkern
j |

}
(2.45)

for a suitable constant C. Recall that Wkern
j+1 −Wkern

j = ε̄rn,∆n
j for NȲ,X̄,inc(j). We use the in-

dependence of {Xt} and {εt} and the independence of εt’s to bound the expectation of the

right-hand side of (2.45) further by a constant times

E(|ε̄rn,∆n
mn
|) + E(|ε̄rn,∆n

2 |) + 1
hn

mn−3

∑
j=1

E(|ε̄rn,∆n
j+2 |)E(|X̄rn,∆n

j+1 − X̄rn,∆n
j |).
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We use Lemma 2.1 and (iv) and (vi) of Lemma 2.3 to bound it further by a constant times

1√
rn

+
mn
√

∆n

hn
.

This bound is o
(√

n∆nhn
)

by the following. First, 1/
√

rn = o(1) by Assumption 2.1, which

implies it is o
(√

n∆nhn
)

as n∆nhn → ∞ by condition (ii) of Theorem 2.1. Also,

1√
n∆nhn

× mn
√

∆n

hn
=

√
n

r2
nh3

n
= o(1)

by condition (iii) of Theorem 2.1.

Next, we show ∑mn−2
j=1 NX,X,inc(j), which is defined at the beginning of Section 2.6.4 and

(2.30), is op(
√

n∆nhn). We first write Zinc
j −W inc

j = Dj+1 − Dj where Dj = Xjrn∆n − X(j−1)rn∆n .

Then, by (2.2), which is the definition of Xt that Xt = X0 +
∫ t

0 µ(Xs)ds +
∫ t

0 σ(Xs)dWs a.s., we

have the following equality almost surely:

Dj =
∫ jrn∆n

(j−1)rn∆n

µ(Xs)ds +
∫ jrn∆n

(j−1)rn∆n

σ(Xs)dWs =Mjrn∆n
(j−1)rn

+W jrn∆n
(j−1)rn

≡ Ej + Fj

(recall the definition ofM andW in the Remark after Lemma 2.2). Therefore, we have Zinc
j −

W inc
j = Dj+1 − Dj = (Ej+1 − Ej) + (Fj+1 − Fj) almost surely. We now write

mn−2

∑
j=1
NX,X,inc(j) =

mn−2

∑
j=1

(Ej+1 − Ej)K

(
Wkern

j − x

hn

)
+

mn−2

∑
j=1

(Fj+1 − Fj)K

(
Wkern

j − x

hn

)
≡ NX,X,e + NX,X, f . (2.46)

Note that NX,X,e and NX,X, f are of the same forms as (2.43), except for having Ej’s and Fj’s

instead of Dj’s, respectively. Now we show NX,X,e and NX,X, f are op(
√

n∆nhn).

First, for NX,X,e, we use the bound (2.45) to bound NX,X,e by a constant times

∣∣∣M(mn−1)rn
(mn−2)rn

∣∣∣+ ∣∣Mrn
0

∣∣+ 1
hn

mn−2

∑
j=1

∣∣∣M(j+1)rn
jrn

∣∣∣ ∣∣∣Xjrn∆n − X(j−1)rn∆n

∣∣∣ . (2.47)
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Since |Xjrn∆n − X(j−1)rn∆n | ≤ κn by the definition of κn in Lemma 2.3, we can bound (2.47) by

∣∣∣M(mn−1)rn
(mn−2)rn

∣∣∣+ ∣∣Mrn
0

∣∣+ κn

hn

mn−2

∑
j=1

∣∣∣M(j+1)rn
jrn

∣∣∣ . (2.48)

In addition, Lemma 2.2 and the Markov inequality imply that ∑mn−2
j=1

∣∣∣M(j+1)rn
jrn

∣∣∣ = Op(n∆n)

and thatMj+1
j = Op(rn∆n) for any j. Therefore, we can rewrite (2.48) as

Op(rn∆n) + Op(rn∆n) +
κn

hn
Op(n∆n).

This bound is op(1), which implies it is op
(√

n∆nhn
)

as n∆nhn → ∞ by condition (ii) of Theo-

rem 2.1, by the following. First, Op(rn∆n) = op(1) as rn∆n → 0 by Assumption 2.1. In addition,

(n∆n/hn)× κn = oa.s.(1) by condition (i) of Theorem 2.1 and (i) of Lemma 2.3, which implies

(κn/hn)×Op(n∆n) = (Op(n∆n)/hn)× κn = op(1).

For NX,X, f , defined in (2.46), we can bound the absolute value of NX,X, f , using the reason-

ing used from (2.43) to (2.44) and the boundedness of K, by a constant times

∣∣∣Wmn−1
mn−2

∣∣∣+ ∣∣∣W1
0

∣∣∣+ ∣∣∣∣∣mn−2

∑
j=1
W (j+1)rn

jrn

[
K
(

Xjrn∆n − x
hn

)
− K

(X(j−1)rn∆n − x
hn

)]∣∣∣∣∣ .

Lemma 2.2 and the Markov inequality imply that, for any j, W j+1
j = Op(

√
rn∆n) = op(1).

Therefore, it remains to show that

∣∣∣∣∣mn−2

∑
j=1
W (j+1)rn

jrn

[
K
(

Xjrn∆n − x
hn

)
− K

(X(j−1)rn∆n − x
hn

)]∣∣∣∣∣ = op

(√
n∆nhn

)
.

To show this, we show that its L2 norm is o
(√

n∆nhn
)
. Note that

E

(mn−2

∑
j=1
W (j+1)rn

jrn

[
K
(

Xjrn∆n − x
hn

)
− K

(X(j−1)rn∆n − x
hn

)])2


=
mn−2

∑
j=1

E

((
W j+1

j

)2
)

E

([
K
(

Xjrn∆n − x
hn

)
− K

(X(j−1)rn∆n − x
hn

)]2
)

by the same reasoning used to prove (2.41). In addition, using the Lipschitz continuity of K,
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we can bound the above further by a constant times

mn−2

∑
j=1

E

((
W j+1

j

)2
) E

(
(Xjrn∆n − X(j−1)rn∆n)

2
)

h2
n

≤ γn

h2
n

mn−2

∑
j=1

E

((
W j+1

j

)2
)

, (2.49)

where we used E
(
(Xjrn∆n − X(j−1)rn∆n)

2
)
≤ γn for the inequality, which can be proved adapt-

ing the proof of (iv) of Lemma 2.3. Then, since E((W j+1
j )2) ≤ E(σ2(X0))rn∆n by Lemma 2.2

(and the Remark after that) and γn ≤ βrn∆n by (iv) of Lemma 2.3, we can bound the right-

hand side of (2.49) further by a constant times

mnr2
n∆2

n
h2

n
=

nrn∆2
n

h2
n

(mn = n/rn as in Assumption 2.1). We must show that this bound is o(n∆nhn), which proves

that the L2 norm is o(
√

n∆nhn). The following proves it is o(n∆nhn):

1
n∆nhn

× nrn∆2
n

h2
n

=

(
n∆n

hn

)2

rn∆n ×
1

n∆nhn
× 1

n∆n
= o(1)× o(1)× o(1)

by conditions (i) and (ii) of Theorem 2.1 and the assumption that n∆n → 0 in Assumption 2.1.

Lastly, we show ∑mn−2
j=1 NX̄,X,inc(j), which is defined at the beginning of Section 2.6.4 and

(2.30), is op(
√

n∆nhn). By (2.2), which is the definition of Xt that Xt = X0 +
∫ t

0 µ(Xs)ds +∫ t
0 σ(Xs)dWs a.s., the increment terms Zinc

j = X̄rn,∆n
j+2 − X̄rn,∆n

j+1 and W inc
j = X(j+1)rn∆n + Xjrn∆n

satisfy the following equations almost surely:

X̄rn,∆n
j+2 − X̄rn,∆n

j+1 =
1
rn

rn

∑
i=1
M(j+1)rn+i

jrn+i +
1
rn

rn

∑
i=1
W (j+1)rn+i

jrn+i ,

X(j+1)rn∆n + Xjrn∆n = M(j+1)rn
jrn

+W (j+1)rn
jrn

(recall the definition ofM’s andW ’s in the Remark after Lemma 2.2). Therefore, we can write

Zinc
j −W inc

j =
1
rn

rn

∑
i=1

(
M(j+1)rn+i

jrn+i −M(j+1)rn
jrn

)
+

1
rn

rn

∑
i=1

(
W (j+1)rn+i

jrn+i −W (j+1)rn
jrn

)
.
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In addition, asM andW are simplified notation for integrals, we have

M(j+1)rn+i
jrn+i −M(j+1)rn

jrn
=
(
M(j+1)rn

jrn+i +M(j+1)rn+i
(j+1)rn

)
−
(
Mjrn+i

jrn
−M(j+1)rn

jrn+i

)
=M(j+1)rn+i

(j+1)rn
−Mjrn+i

jrn

and the same equation forW ’s. Then we can decompose Zinc
j −W inc

j as

Zinc
j −W inc

j =

(
1
rn

rn

∑
i=1
M(j+1)rn+i

(j+1)rn
− 1

rn

rn

∑
i=1
Mjrn+i

jrn

)
+

(
1
rn

rn

∑
i=1
W (j+1)rn+i

(j+1)rn
− 1

rn

rn

∑
i=1
W jrn+i

jrn

)
≡

(
Ej+1 − Ej

)
+
(

Fj+1 − Fj
)

.

Then, similarly to ∑mn−2
j=1 NX,X,inc(j), we can decompose ∑mn−2

j=1 NX̄,X,inc(j) as sum ofNX̄,X,e and

NX̄,X, f and show that each is op(
√

n∆nhn). Briefly, NX̄,X,e is bounded by a constant times

1
rn

rn

∑
i=1

∣∣∣M(mn−1)rn+i
(mn−1)rn

∣∣∣+ 1
rn

rn

∑
i=1

∣∣∣Mrn+i
rn

∣∣∣+ 1
rnhn

rn

∑
i=1

mn−2

∑
j=1

∣∣∣M(j+1)rn+i
(j+1)rn

∣∣∣ ∣∣∣X(j+1)rn∆n − Xjrn∆n

∣∣∣ ,

and NX̄,X, f is bounded by a constant times

1
rn

rn

∑
i=1

∣∣∣W (mn−1)rn+i
(mn−1)rn

∣∣∣+ 1
rn

rn

∑
i=1

∣∣∣W rn+i
rn

∣∣∣+ 1
rn

rn

∑
i=1

∣∣∣∣∣mn−2

∑
j=1
W (j+1)rn+i

(j+1)rn

[
K
(X(j+1)rn∆n − x

hn

)
− K

(Xjrn∆n − x
hn

)]∣∣∣∣∣ .

Applying, again, the reasoning used to study NX,X,e and NX,X, f to the above completes the

proof. �
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Figure 2.1: A sample path of the stochastic process defined by (2.18), with the linear drift
coefficient. Label ”Original” represents the process without measurement errors. Label ”Con-
taminated” represents the process with independent N(0, 0.0022)-distributed additive mea-
surement errors. Label ”Averaged” represents the averaged contaminated process with r = 5.
Label ”Subsampled” represents the subsampled process having 1/5 less sampling frequency
than the original process.
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Figure 2.2: A sample path of the stochastic process defined by (2.19), with the nonlinear drift
coefficient. Label ”Original” represents the process without measurement errors. Label ”Con-
taminated” represents the process with independent N(0, 0.06612)-distributed additive mea-
surement errors. Label ”Averaged” represents the averaged contaminated process with r = 5.
Label ”Subsampled” represents the subsampled process having 1/5 less sampling frequency
than the original process.
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Figure 2.3: Density plot of cross-validation bandwidths of the BPSs, BPDs and Avg estimator.
Labels “BPSs” and “BPDs” stand for the single-smoothing and the double-smoothing estima-
tor of Bandi and Phillips (2003), respectively, both combined with the subsampling method.
Label “Avg” stands for the pre-averaging estimator. The top panel corresponds to the model
(2.18), and the bottom panel corresponds to the model (2.19).
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Figure 2.4: Pointwise mean squared errors (MSE) of the estimators for the model (2.18) with
oracle bandwidths. Refer to the caption of Table 2.2 for definition of the labels. The “-o”
represents the oracle bandwidths are used. Label “AMSE” represents the asymptotic mean
squared error computed using the oracle bandwidth. The numbers of the vertical axis do not
apply to the AMSE. The bottom panel depicts oracle bandwidths, hopt(x) defined in (2.14),
according to the values of x.
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Figure 2.5: Pointwise mean squared errors (MSE) of the estimators for the model (2.18) with
cross-validation bandwidths. Refer to the caption of Table 2.2 for definition of the labels.
The “-cv” represents the cross-validation bandwidths are used. Label “AMSE” represents the
asymptotic mean squared error computed using the oracle bandwidth. The numbers of the
vertical axis do not apply to the AMSE.
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Figure 2.6: Pointwise mean squared errors (MSE) of the estimators for the model (2.19) with
oracle bandwidths. Refer to the caption of Table 2.2 for definition of the labels. The “-o”
represents the oracle bandwidths are used. Label “AMSE” represents the asymptotic mean
squared error computed using the oracle bandwidth. The numbers of the vertical axis do not
apply to the AMSE. The bottom panel depicts oracle bandwidths, hopt(x) defined in (2.14),
according to the values of x.
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Figure 2.7: Pointwise mean squared errors (MSE) of the estimators for the model (2.19) with
cross-validation bandwidths. Refer to the caption of Table 2.2 for definition of the labels.
The “-cv” represents the cross-validation bandwidths are used. Label “AMSE” represents the
asymptotic mean squared error computed using the oracle bandwidth. The numbers of the
vertical axis do not apply to the AMSE.
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Figure 2.8: Pointwise squared biases (the top panel) and pointwise variances (the bottom
panel) of the pre-averaging estimator with the oracle bandwidth (denoted by “Avg-o”) un-
der different values of the block size r for the model (2.19). The values of r are indicated in the
legend.
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defined in Theorem 2.1. The two top panels depict values of hopt(x) and Γµ(x) according to
the values of x for model (2.18). The two bottom panels depict the values for model (2.19).
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Figure 2.10: The log10-transformed pathwise invariant-density-weighted sum of squared
pointwise prediction errors of Avg and BPSs estimates for the model (2.18) with oracle band-
widths. The sum is computed along the grid of evaluation points described in Section 2.5.
Refer to the caption of Table 2.2 for definition of the labels. The “-o” represents the oracle
bandwidths are used. The black solid line is the 45 degrees line. 825 points out of 1,000 are
above the line.
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Figure 2.11: The log10-transformed pathwise invariant-density-weighted sum of squared
pointwise prediction errors of Avg and BPDs estimates for the model (2.18) with oracle band-
widths. The sum is computed along the grid of evaluation points described in Section 2.5.
Refer to the caption of Table 2.2 for definition of the labels. The “-o” represents the oracle
bandwidths are used. The black solid line is the 45 degrees line. 733 points out of 1,000 are
below the line.
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Figure 2.12: The log10-transformed pathwise invariant-density-weighted sum of squared
pointwise prediction errors of Avg and BPSs estimates for the model (2.18) with cross-
validation bandwidths. The sum is computed along the grid of evaluation points described in
Section 2.5. Refer to the caption of Table 2.2 for definition of the labels. The “-cv” represents
the cross-validation bandwidths are used. The black solid line is the 45 degrees line. 513 points
out of 1,000 are above the line.
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Figure 2.13: The log10-transformed pathwise invariant-density-weighted sum of squared
pointwise prediction errors of Avg and BPDs estimates for the model (2.18) with cross-
validation bandwidths. The sum is computed along the grid of evaluation points described in
Section 2.5. Refer to the caption of Table 2.2 for definition of the labels. The “-cv” represents
the cross-validation bandwidths are used. The black solid line is the 45 degrees line. 782 points
out of 1,000 are above the line.
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Figure 2.14: The log10-transformed pathwise invariant-density-weighted sum of squared
pointwise prediction errors of Avg and BPSs estimates for the model (2.19) with oracle band-
widths. The sum is computed along the grid of evaluation points described in Section 2.5.
Refer to the caption of Table 2.2 for definition of the labels. The “-o” represents the oracle
bandwidths are used. The black solid line is the 45 degrees line. 679 points out of 1,000 are
above the line.
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Figure 2.15: The log10-transformed pathwise invariant-density-weighted sum of squared
pointwise prediction errors of Avg and BPDs estimates for the model (2.19) with oracle band-
widths. The sum is computed along the grid of evaluation points described in Section 2.5.
Refer to the caption of Table 2.2 for definition of the labels. The “-o” represents the oracle
bandwidths are used. The black solid line is the 45 degrees line. 718 points out of 1,000 are
below the line.
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Figure 2.16: The log10-transformed pathwise invariant-density-weighted sum of squared
pointwise prediction errors of Avg and BPSs estimates for the model (2.19) with cross-
validation bandwidths. The sum is computed along the grid of evaluation points described in
Section 2.5. Refer to the caption of Table 2.2 for definition of the labels. The “-cv” represents
the cross-validation bandwidths are used. The black solid line is the 45 degrees line. 549 points
out of 1,000 are above the line.
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Figure 2.17: The log10-transformed pathwise invariant-density-weighted sum of squared
pointwise prediction errors of Avg and BPDs estimates for the model (2.19) with cross-
validation bandwidths. The sum is computed along the grid of evaluation points described in
Section 2.5. Refer to the caption of Table 2.2 for definition of the labels. The “-cv” represents
the cross-validation bandwidths are used. The black solid line is the 45 degrees line. 536 points
out of 1,000 are below the line.
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Figure 2.18: The log10-transformed pathwise invariant-density-weighted sum of squared
pointwise prediction errors of the pre-averaging estimator for the model (2.18). The sum is
computed along the grid of evaluation points described in Section 2.5. The “-o” and “-cv”
mean the oracle and the cross-validation bandwidths are used, respectively. The black solid
line is the 45 degrees line. 741 points out of 1,000 are above the line.
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Figure 2.19: The log10-transformed pathwise invariant-density-weighted sum of squared
pointwise prediction errors of the pre-averaging estimator for the model (2.19). The sum is
computed along the grid of evaluation points described in Section 2.5. The “-o” and “-cv”
mean the oracle and the cross-validation bandwidths are used, respectively. The black solid
line is the 45 degrees line. 852 points out of 1,000 are above the line.
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Chapter 3

Conclusion

In this thesis, we proposed a Nadaraya-Watson type kernel estimator of the drift coefficient of

a diffusion process. Our estimator is consistent and asymptotically normal when the data are

generated from a positive recurrent and strictly stationary diffusion process and are sampled

discretely in time and with additive measurement errors. Our consistency and asymptotic

normality result is built upon the result of Bandi and Phillips (2003), who proved consistency

and asymptotic normality of the Nadaraya-Watson estimator of the drift coefficient when the

data are generated from a recurrent diffusion process and are sampled discretely in time and

without measurement error.

We recommended using the H-block cross-validation, proposed by Chu and Marron (1991)

and Burman, Chow, and Nolan (1994), to choose the bandwidth h. Our simulation study in

Section 2.5 indicates that, when the data are observed with independent and identically dis-

tributed additive measurement errors, our estimator with the H-block cross-validation band-

width has smaller mean integrated squared error than our estimator with the oracle band-

width, which has much smaller mean squared error than the estimators of Bandi and Phillips

(2003) with the oracle bandwidth.

In our simulation study, as an alternative to our estimator, we also applied the subsampling

method to the estimators of Bandi and Phillips (2003) for estimation of the drift coefficient. Our

simulation study indicates that, when combined with the subsampling method, the estimators

of Bandi and Phillips (2003) have mean squared errors that are as small as our estimator.

Because we have errors of observation in our model, which are not considered by Bandi
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and Phillips (2003), we needed to reduce the noise caused by these errors in order to improve

the accuracy of the estimate of the drift coefficient. Our approach was to construct a pre-

averaged process {Ȳr,∆
j }, as in Definition 2.1. Alternatively, according to our simulation study,

the subsampling method seems to be another effective way to reduce the noise.

Our estimator offers wider applicability compared to the estimators developed for the case

of no measurement error, as we do often observe data with measurement errors. For example,

Zhou (1996) reported the presence of measurement error in foreign exchange rates data, and

Jones (2003) argued the presence of measurement error in the dataset of Aı̈t-Sahalia (1996), the

seven-day Eurodollar rates dataset.

Despite advantages of our proposed approach, the choice of the block size r and the choice

of the subsampling rate are largely unsolved issues. In practice, we rely on an ad-hoc choice

of r because of difficulties in using existing methods to choose r, as discussed in Section 2.4.2.

In addition, our estimator involves shifts of the time-indices, as discussed right after Defini-

tion 2.2, and the effect of the shifts on the performance of the estimator is not clear. In another

simulation study using the oracle bandwidth, which is not included in Section 2.5, we saw that

the shifts of the time-indices increase the mean squared error of our pre-averaging estimator.

However, the shifts of the time-indices do not seem necessarily to increase the mean squared

error. The simulation study not included in Section 2.5 indicates that applying the shifts of

the time-indices to the single-smoothing and the double-smoothing estimators, with subsam-

pling, of Bandi and Phillips (2003) decreases their mean squared errors. The investigation of

these issues could be a possible future research topic.

Another possible future research topic is estimation of µ(x) from time-irregularly observed

data. An advantage of using a continuous-time process over a discrete-time process is that a

continuous-time process allows us to consider time-irregularly observed data. For asymp-

totics, we can consider the situation where the time-difference between each pair of time-

adjacent observations is a random number between 0 and infinity.

Lastly, the H-block cross-validation is a bandwidth choice method for a finite-sample, i.e.

for a fixed n, and the asymptotic behavior of the H-block cross-validation bandwidth as n

tends to infinity is not studied yet. As n tends to infinity, we require {hn} to satisfy the condi-

tions (i), (ii) and (iii) of Theorem 2.1. The study of the asymptotic behavior of the sequence
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of H-block cross-validation bandwidths in relation to the conditions of Theorem 2.1 is another

possible future research topic.
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