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Abstract

Client-side JavaScript is increasingly used for enhancing web application func-
tionality, interactivity, and responsiveness. Through the execution of JavaScript
code in browsers, the DOM tree representing a webpage at runtime, can be in-
crementally updated without requiring a URL change. This dynamically updated
content is hidden from general search engines. We present the first empirical study
on measuring and characterizing the hidden-web induced as a result of client-side
JavaScript execution. Our study reveals that this type of hidden-web content
is prevalent in online web applications today: from the 500 websites we ana-
lyzed, 95% contain client-side hidden-web content; On those websites that con-
tain client-side hidden-web content, (1) on average, 62% of the web states are
hidden, (2) per hidden state, there is an average of 19 kilobytes of data that is
hidden from which 0.6 kilobytes contain textual content, (3) the DIV element is
the most common clickable element used (61%) to initiate this type of hidden-web
state transition, and (4) on average 25 minutes is required to dynamically crawl 50
DOM states. Further, our study indicates that there is a correlation between DOM
tree size and hidden-web content, but no correlation exists between the amount of
JavaScript code and client-side hidden-web.
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Chapter 1

Introduction

General web search engines cover only a portion of the web, called the visible
or indexable web, which consists of the set of web pages reachable purely by
following URL-based links.

There is, however, a large body of valuable web content that is not accessi-
ble by simply following hypertext links. Well-known examples include dynamic
server-side content behind web forms [3, 29], reachable through application-specific
queries. This portion of the web, not reachable through search engines, is gener-
ally referred to as the invisible or hidden web, which, in 2001, was estimated to
be 500 times larger than the visible web [5]. More recently, form-based hidden
web content has been estimated at several millions of pages [3, 17].

With the wide adoption of client-side programming languages such as JavaScript
and AJAX techniques to create responsive web applications, there is a new type of
hidden-web that is growing rapidly. Although there has been extensive research
on detecting [3, 20, 29] and measuring [5, 15] hidden-web content behind web
forms, hidden-web induced as a result of client-side scripting has gained limited
attention so far.

JavaScript is the dominant language for implementing dynamic web appli-
cations. Today, as many as 97 of the top 100 most visited websites [1], have
client-side JavaScript [31], often consisting of thousands of lines of code per
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application. JavaScript is increasingly used for offloading core functionality to
the client-side and achieving rich web interfaces. In most Web 2.0 applications,
JavaScript code extensively interacts with and incrementally updates the Doc-
ument Object Model (DOM) at runtime in order to present new state changes
seamlessly. Changes made dynamically to the structure, contents or styles of the
DOM elements are directly manifested in the browser’s display. This event-based
style of interaction is substantially different from the traditional URL-based page
transitions through hyperlinks, where the entire DOM is repopulated with a new
HTML page from the server for every user-initiated state change.

1.1 Objective
Our goal is to measure the pervasiveness and characterize the nature of hidden-

web content induced by client-side JavaScript in today’s web applications. There-
fore, the main focus of our study is to understand how client-side scripting lan-
guages, specially JavaScript , contributes to hidden-web content by measuring the
percentage of hidden-web in websites. In addition, we attempt to identify any
correlation between the hidden web content and the DOM size along with the
JavaScript custom code size.

For simplicity, we will refer to this type of hidden-web content as client-side
hidden-web throughout the thesis. To the best of our knowledge, we are the first
to conduct an empirical study on this topic.

1.2 Contributions
Our study makes the following main contributions:

• A systematic methodology and tool, called JAVIS, to automatically analyze
and measure client-side hidden-web content;

• An empirical study, conducted on 500 online websites, pointing to the ubiq-
uity and pervasiveness of this type of hidden-web content in today’s web-
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sites. Our results show that 95% of the websites we analyzed contain some
degree of client-side hidden-web content; On those websites with client-
side hidden-web, on average (1) 62% of the crawled web states are hidden,
(2) there is around 19 kilobytes of DOM content that is hidden per hid-
den state whereas 0.6 kilobytes are only content, (3) the DIV element is
the most commonly used (61%) clickable type contributing to client-side
hidden-web content;

• A discussion of the implications of our empirical findings. Our study indi-
cates that there is a possible correlation between the size of the DOM tree
and the hidden-web content, but surprisingly, no strong correlation exists
between the amount of JavaScript code and client-side hidden-web.

The results of our study were published as a full paper [4] in the Proceed-
ings of the International Conference on Web Engineering (ICWE) in 2013, which
received the Best Paper Award.

1.3 Thesis Organization
In Chapter 2, we provide background information regarding web applications,
particularly with respect to the use of client-side JavaScript , along with the mo-
tivation to conduct this study. Chapter 3 discusses the related work in this area
of research. Chapter 4 describes in detail the experimental methodology used to
measure the hidden-web content induced by JavaScript . In Chapter 5, the method
used to pursue our research questions along with how we analyze the collected
data to perform the evaluation is provided. Chapter 6 presents the results ac-
quired from this study and answers the research questions. Chapter 7 discusses
the implications our results have on web application programmers, testers, and
tool developers, and some of the validity threats in our study. Finally, Chapter 8
concludes our work and presents future research directions.
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Chapter 2

Background and Motivation

2.1 The Hidden-Web
With the rapid growth of data embedded inside web applications, the Internet has
become a main source of information today. To retrieve relative information from
billions of existing web applications, search engines require a means to crawl and
index the data efficiently and effectively.

In reality, search engines employ what is called crawlers or spiders. These
crawlers automatically inspect web pages and create a copy of the visited pages.
These actions are repeated daily to index useful content within the web application
or simply update the resources in order to facilitate future searching. Therefore,
search engines only recall data within pages which were previously toured by
crawlers.

A question regarding search engines and indexing is, how much of the Web
content can be searched and retrieved by the current search engines? In order to
answer this question, we first explain two divisions of the Web: The Visible Web

and the Hidden Web.
The visible Web (also known as the surface/indexable Web) [5] is the portion

of the Web where search engines are capable to index and retrieve the content.
In contrast, the hidden Web (also known as the deep/invisible Web, deepnet, or
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darknet) [5, 29] is the part in which conventional search engines are not able to
index the content and thus, it is invisible to the users through search engines.

There are eight major causes for the deep Web: dynamic content, unlinked

content, private text, contextual Web, limited access content, scripted content,
non-HTML/text content and text content using Gopher/FTP protocol. Each of
these causes are described as the following:

Dynamic Content. Dynamic content refers to dynamic generation of informa-
tion which are returned in response to a submitted query or accessed only
through a form.

This type of content is associated with forms, databases and the data store
within the databases. Once the user completes a form and submits it, re-
lated information corresponding to the search query is retrieved from the
databases and presented. Today many websites are using databases and
forms to benefit from the advantages it provides for both users and the web-
site owners.

A web application might be composed of one or many databases either en-
tirely connected or independent. Either way, it is very difficult for crawlers
to gain access to the databases and extract information. Thus, the informa-
tion reserved inside databases are indeed aggregated to the hidden-web.

Unlinked Contents. Any information staged within web pages which are not
linked to by other pages become hidden from the user. Clearly, if the web
page is not linked to other web pages of a website, crawlers won’t gain
any access to them since there is no connection between the web pages to
continue with the crawling.

Private Websites. Private websites are described as websites that require regis-
tration and login (password-protected resources). Today, many of the web-
sites require their users to acquire a username and password to be able to
obtain access after signing in. This can be seen in forums and social net-
works where people tend to communicate with another.
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One of the goals of requesting registration and logging in is to protect the
user’s information and responses from adversaries. Although it is rationale,
yet it prevents the crawlers from reaching the content within the websites
and therefore, the data shift towards the hidden-web.

Contextual Web. Refers to pages with content varying by different access con-
texts. This means that based on the different access types, for example the
location of the user or the IP address, different content is presented. Since
the web page might contain and display a variety of details and data, search
engines will be able to index a partial of the data and the rest grow inside
the hidden-web.

Limited Access Content. Limited access content is sites that limit access to their
pages in a technical way. What is meant by technical way, are any means
that prohibit search engines from inspecting the web pages such as CAPTH-
CAs or using the robots exclusion standard.

CAPTCHAs are usually used to detect whether it is a real user or simply
a robot. To pursue this, each time a random statement (either a questions
is asked or a word ) is generated by default which the user has to type.
Since the statements are generated randomly, robots cannot reply and thus,
the website will not be browsed. Regarding the exclusion standard, web
developers have the ability to block out the crawlers from investing their
web applications.

Scripted Content. Scripted content is any type of information that is produced by
scripting languages such as the most popular scripting language, JavaScript
. This content is usually generated dynamically and since the search engines
do not execute JavaScript code they become hidden content.

Non-HTML/Text Content. Non-HTML/text content is textual contents encoded
within multimedia. It is obvious, that any text embedded within videos,
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audio and images cannot be searchable since they are not crawled in the
beginning.

Although there are many reasons behind hidden-web content as mentioned
above, yet only a few of them are studied. These studies [3, 11, 12, 20, 22, 29, 30].
mostly focus on the portion of hidden-web content behind forms and databases
and other causes have gained little attention. In this study, we focus on the content
dynamically generated by scripting languages and in particular by JavaScript . As
mentioned before, our goal is to understand how JavaScript contributes to and
correlates with hidden content on the web.

2.2 JavaScript Background
With the wide adoption of client-side programming languages such as JavaScript
and AJAX techniques to create responsive web applications, there is a new type of
hidden-web that is growing rapidly.

JavaScript plays an important role when interacting with web applications.
It is the language of the browser and by writing JavaScript code, we can simply
generate dynamic code and thus, enhance the responsiveness and interactions of
the web applications.

Although JavaScript might have many disadvantages, such as increasing vul-
nerability in web applications and browsers, yet the advantages overweight them.
One of the most powerful abilities it provides is the capability of easily modifying
the DOM tree.

By using a JavaScript function, the developer can simply gain access to any
DOM element within the web page. Once the element is obtained, based on the
purpose any sort of alteration can be carried out. These modifications can be of
any sort such as removing or appending new nodes to an element, modifying the
textual content of the element, altering the attributes of the element or their values
and so on. A clear example of DOM modification is provided in section 2.4.

The JavaScript engine interprets and executes the relative code and the DOM
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tree will be updated. Once the update is complete, the browser interprets the new
DOM tree and the web page is reconstructed containing new data.

2.3 Document Object Model (DOM)
The fundamental and main part of a web application is the HTML elements. These
elements are the crucial components for a web application to exist. There is no
limitation on how and where to use the elements and it only varies in terms of the
design and functionality of the web page.

The DOM, is a model representing the structure of the HTML elements. It
describes how the elements are connected with each other, and how you can gain
access to them.

By calling an element within a web page with its appropriate name, the devel-
oper can yield knowledge of its attributes, their values and the text it holds. In the
DOM tree, each element is referred to as a node. A node can be either of these two
cases: be both a parent node and a child node or only be a child node. The DOM
tree will also present the attribute nodes. In other words, not only the elements
and text are added to the DOM tree, but also the attributes of the elements can be
appended.

One of the powerful advantages the DOM tree provides for the developer is
the ability to walk the DOM tree, identify the element she desires and modify
it. This action can be pursued easily by simply obtaining a node. However, in
order to alter the DOM tree, specific API (Application Programming Interface)
are required. These API are used in scripting languages such as JavaScript , for
example “getElementById(‘news’)” in the following example.

2.4 Hidden-content Example
We present a simple example of how JavaScript code can induce hidden-web
content by dynamically changing the DOM tree. Figure 2.1 depicts a JavaScript
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1 $(document).ready(function() {
2 $('div.update').click(function() {
3 var updateID = $(this).attr('rel');
4 $.get('/news/', { ref:updateID },
5 function(data) {
6 $(updateID+'Container').append(data); }); })←↩

});

Figure 2.1: JavaScript code for updating the DOM after a click event.

<body><h1>Sports News</h1>
<p><span id="sportsContainer"></span></p>
<div class="update" rel="sports">Update!</div>

</body>

Figure 2.2: The initial DOM state.

code snippet using the popular jQuery library.1 Figure 2.2 illustrates the initial
state of the DOM before any modification has occurred.

Once the page is loaded (line 1 in Figure 2.1), the JavaScript code attaches an
onclick event-listener to the DIVDOM element with class attribute ‘update’
(line 2). When a user clicks on this DIV element, the anonymous function asso-
ciated with the event-listener is executed (lines 2–8). The function then sends an
asynchronous call to the server (line 4), passing a parameter read from the DIV
element (i.e., ‘sports’) (line 3). On the callback, the response content from the
server is injected into the DOM element with ID ‘sportsContainer’ (line
6).

The resulting updated DOM state is shown in Figure 2.3. All the data retrieved
and injected into the DOM this way will be hidden content as it is not indexed by
search engines. Although the effect of client-side scripting on the hidden-web is
clear, there is currently a lack of comprehensive investigation and empirical data
in this area.

1 http://jquery.com
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<body>
<h1>Sports News</h1>
<p><span id="sportsContainer">
<h3>US GP: Vettel fastest in Austin second ←↩

practice</h3>
<p>Vettel produced an ominous performance</p></←↩

span></p>
<div class="update" rel="sports">Update!</div>

</body>

Figure 2.3: The updated DOM tree after clicking on ‘Update!’.

2.5 Client-Side Hidden-Web Content
Client-side scripting empowers achieving dynamic and responsive web interfaces
in today’s web applications. The most widely used language for client-side script-
ing is JavaScript , which is an event-driven dynamic and loosely typed interpreted
programming language.

JavaScript is supported by all modern web browsers across multiple plat-
forms including desktops, game consoles, tablets, and smartphones. Through
JavaScript , the client-side runtime DOM tree of a web application can be dy-
namically updated with new structure and content. These updates are commonly
initiated through event-listeners, AJAX callbacks, and timeouts. The new content,
either originated from the server-side or created on the client-side, is then injected
into the DOM through JavaScript to represent the new state of the application.

Although DOM-based manipulation through JavaScript increases responsive-
ness of web applications, these dynamically injected contents end up in the hidden-
web portion of the web. The main reason is that crawling such dynamic content
is fundamentally more challenging and costly than crawling classical multi-page
web applications, where states are explicit and correspond to pages that have a
unique URL assigned to them. Moreover it is a basis for AJAX-based web appli-
cations, which has become very popular in the past decade.

AJAX (Asynchronous JavaScript and XML) is an umbrella term for some
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technologies which allow asynchronous server communication without requesting
a completely new version of the page. Some well-known representative examples
include Gmail and Google Docs.

In modern web applications, however, the client-side state is determined dy-
namically through changes in the DOM that are only visible after executing the
corresponding JavaScript code. The major search giants, have currently little or
no support for dynamic analysis of JavaScript code due to scalability and security
issues. They basically crawl and extract hypertext links and index the resulting
HTML code recursively.
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Chapter 3

Related Work

In order to discuss previous work in more details, we classify the related work
into two major categories: (1) crawling the hidden-web, and (2) measuring the
hidden-web.

3.1 Crawling the Hidden-Web
Crawling techniques have been studied since the advent of the Web itself [6, 7, 9,
16, 28]. Web crawlers find and index millions of HTML pages daily by searching
for hyperlinks. Yet a large amount of data is hidden behind web queries and
therefore, extensive research has been conducted towards finding and analyzing
the hidden-web, also called deep-web, behind web forms [3, 11, 12, 20, 22, 29,
30].

The main focus in this line of research is on exploring ways of detecting query
interfaces and accessing the content in online databases, which is usually behind
HTML forms. HiWE [29] is one of the very first proposed hidden-web crawlers
which tries a combination of different query values for HTML forms.

Ntoulas et al. [27] focus on an effective hidden-web crawler that discovers
and downloads pages by simply generating queries based on pre-defined search
policies. Barbosa et al. [3] propose an adaptive crawling strategy to locate online
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databases by searching extensively through web forms, avoiding crawling any
unrelated pages.

Carvalho et al. [12] present a method, called SmartCrawl, for retrieving in-
formation behind HTML forms by automatically generating agents that fill out
forms. Similarly, Palmieri et al. [20] automatically generate fetching agents to
identify hidden-web pages by filling out HTML forms.

Liakos and Ntoulas [21] have recently proposed a topic-sensitive hidden-web
crawling approach. Khare et al. [18] provide a comprehensive survey of the
research work in search interfaces and keywords.

This line of research is merely concerned with server-side hidden-web content
(i.e., in databases). On the contrary, exploring the hidden-web induced as a result
of client-side scripting has gained very little attention so far.

Alvarez et al. [2] discussed the importance and challenges of crawling client-
side hidden-web. Mesbah et al. [24, 25] were among the first to propose an auto-
mated crawler, called CRAWLJAX, for eAJAX-based web applications. CRAWL-
JAX automates client-side hidden-web crawling by firing events and analyzing
DOM changes to recursively detect a new state. Duda et al. [13] presented how
DOM states can be indexed. The authors proposed a crawling and indexing algo-
rithm for client-side state changes.

3.2 Measuring the Hidden-Web
Researchers have reported their results of measuring the hidden-web behind forms.
In 2001, Bergman [5] reported a study indicating that the hidden-web was about
500 times larger than the visible web.

In 2004, Chang et al. [8] measured hidden-web content in online databases
using a random IP-sampling approach, and found that the majority of the data in
such databases is structured.

In 2007, He et al. [15] conducted a study using an overlap analysis technique
between some of the most common search engines such as Yahoo!, Google, and
MSN and discovered that 43,000-96,000 deep websites existed. They presented
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an informal estimate of 7,500 terabytes of hidden data, which was 500 times larger
than the visible web, which supported the earlier results by Bergman. All this re-
lated work focuses on measuring server-side hidden-web behind forms.

To the best of our knowledge, we are the first to study and measure client-side
hidden-web.
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Chapter 4

Methodology

In this chapter, the research questions and the fundamentals of the methodology
considered for this study are each explained separately in the following sections.
It should be noted, the approach used for analyzing the subjects of the experiments
are explained in full description in the next chapter.

4.1 Research Questions
The main goal of our empirical study is to measure the pervasiveness and charac-
terize the nature of hidden-web content induced by client-side scripting. By un-
derstanding these characteristics we gain knowledge of how much information is
hidden, whether it is possible to reduce this amount of hidden content and transfer
them towards visible content. It should be noted that we only focus on the onclick
event type in this study since it is most widely used among web application.

Our research questions are formulated as follows:

RQ1: How pervasive is client-side hidden-web in today’s web applications?

RQ2: How much content is typically hidden due to client-side scripting?

RQ3: Which clickable elements contribute most to client-side hidden-web con-
tent?
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RQ4: Are there any correlations between the degree of client-side hidden-web
and a web application’s characteristics?

4.2 Experimental Design
To investigate the pervasiveness of hidden content due to client-side scripting
(RQ1), we examine all the 500 websites and count the percentage of websites
that exhibit client-side hidden-web content. In addition, for each of those web-
sites that does contain hidden-web content, we measure what percentage of the
crawled states is hidden.

To measure the amount of content that is hidden (RQ2), we compute the total
and average of hidden content in terms of differences between each hidden state
and its previous state regardless of whether it is hidden or visible. It should be
noted, we consider two cases, hidden content only containing the textual differ-
ences and hidden content comprising of both textual and DOM differences.

Regarding RQ3, we analyze the distribution of the elements used among all
web applications at first. Furthermore, we classify the clickable elements that
exercising them results in hidden states in our analysis to address this research
question. In other words, we assess what type of DOM elements are commonly
used in practice by web developers that induce this type of dynamic JavaScript
-driven state change.

In order to answer RQ4, we analyze correlations between the client-side hidden-
web content and the average DOM size along with custom JavaScript code of each
website examined. In the next chapter, technical details of our analysis approach
are explained clearly.

4.3 Experimental Objects
In this study, we analyze 500 unique websites in total. To obtain a representa-
tive pool of websites, similar to other researchers [19, 31], we select 500 unique
websites from Alexa’s Top Sites [1] (henceforth referred to as ALEXA). However,
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ALEXA contains websites that are exactly the same (same domain) but hosted
in different countries. Therefore, for multiple instances of the same domain on
Alexa’s top list (e.g., www.google.com, www.google.fr), we only include and count
one instance. This leads to a total number of 400 objects in our list.

Since the 400 websites are all selected from ALEXA based on popularity, we
gather another 100 random websites additionally using Yahoo! random link gen-
erator (henceforth referred to as RANDOM), which is also used in other studies
[10, 23]. The purpose of taking this action is to gain a more generalizable conclu-
sion after evaluating the results.

It should be noted all the 500 websites (henceforth referred to as TOTAL) were
crawled and analyzed throughout February 2013.
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Chapter 5

Client-Side Hidden-Web Analysis

Figure 5.1 depicts our client-side hidden-web content analysis technique which is
composed of three main steps: (1) dynamically crawling each given website, (2)
classifying the detected state changes into visible and hidden categories, and (3)
conducting characterization analyses of the hidden states. Each step is described
in the subsequent subsections.

5.1 Event-Driven Dynamic Crawling

5.1.1 State Exploration.
To automate the crawling step, we use and extend our AJAX crawler, called CRAWL-
JAX [25]. CRAWLJAX is capable of automatically exploring JavaScript -induced
DOM state changes through a dynamic event-based crawling technique. Our ap-
proach for automatically exploring a web application’s state space is based on
our CRAWLJAX [25] work. CRAWLJAX is a crawler capable of automatically ex-
ploring JavaScript -induced DOM state changes through an event-driven dynamic
crawling technique. It exercises client-side code, detects and executes clickables
that lead to various dynamic states of Web 2.0 AJAX-based web applications. By
inserting random or user-specified data and firing events on the web elements and
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Figure 5.1: Overview of our client-side hidden-web analysis.

analyzing the effects on the dynamic DOM tree in a real browser before and after
the event, the crawler incrementally builds a state-flow graph (SFG) [25] captur-
ing the client-side states and possible event-based transitions between them. This
state-flow graph is defined as follows:

A state-flow graph SFG for an AJAX-based website A is a label, directed
graph, denoted by a 4 tuple < r,V ,E,L > where:

r is the root node (called Index) representing the initial state when A has been
fully loaded into the browser.

V is a set of vertices representing the states. Each v ∈ V represents a runtime
DOM state in A.

E is a set of (directed) edges between vertices. Each (v1,v2) ∈ E represents
a clickable c connecting two states if and only if state v2 is reached by
executing c in state v1.

L is a labelling function that assigns a label, from a set of event types and DOM
element properties, to each edge.

SFG can have multi-edges and be cyclic.
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CRAWLJAX is also capable of crawling traditional URL-based websites. It
is fully configurable in terms of the type of elements that should be examined
or ignored during the crawling process. For more details about the architecture,
algorithms or capabilities of CRAWLJAX the interested reader is referred to [25,
26].1

5.1.2 Crawling Configuration.
We have extended, modified, and configured CRAWLJAX for this study as follows:

Maximum states. To constrain the state space and still acquire a representative
sample for our analysis, we define an upper limit on the number of states to
crawl for each website, namely, 50 unique DOM states.

Setting the maximum number of DOM states to 50, is based on a pilot study
conducted beforehand. Since it was only a pilot study, 10 random websites
with different rankings were selected and crawled for four rounds. At the
first round the maximum state crawling configuration was set to 25 states
and in each round afterwards, 25 more states were added. Therefore, each
website was crawled with 25, 50, 75 and 100 states. However, it should be
noted that not all websites resulted to 75 or 100 unique DOM states. In those
cases that did include 100 distinctive states, the hidden-web state percentage
was no different from the hidden-web state percentage of the crawls with
50 states. Therefore, by analyzing the hidden-web state percentage and the
number of states of all four rounds, the conclusion was to set the maximum
states to 50.

Crawling depth. Similar to other studies [15], we set the crawling depth to 3.

Candidate clickables. Traditionally, forms and anchor tags pointing to valid URLs
were the only clickables capable of changing the state (i.e., by retrieving a

1 http://crawljax.com
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new HTML page from the server after the click). However, in modern web-
sites, web developers can potentially make any HTML element to act as
a clickable by attaching an event-listener (e.g., onclick) to that element.
Such clickables are capable of initiating DOM mutations through JavaScript
code. In our analysis, we include the most commonly used clickable ele-
ments, namely: A, DIV, SPAN, IMG, INPUT and BUTTON.

Event type. We specify the event type to be click. This means the crawler
will generate click events on DOM elements that are spotted as candidate
clickables, i.e., elements potentially capable of changing the DOM state.

Randomized crawling. In order to get a simple random sample, we randomize
the crawling behaviour in terms of selecting the next candidate clickable for
exploration.

Once the tool is configured, we automatically select and crawl each exper-
imental object, and save the resulting state-flow graph containing the detected
states (DOM trees) and transitional edges (clickables).

5.2 Classification
As shown in Figure 5.1, for each website crawled, we classify the detected states
into two categories: visible and hidden. Our client-side hidden-web analysis is
largely based on the following two assumptions:

1. A valid URL-based state transition can be crawled and indexed by search
engines and, therefore, it is visible;

2. A non-URL-based state transition is not crawled nor indexed by search en-
gines and thus, it ends up in the hidden-web; For instance, the DOM update
presented in Figure 2.3, as a result of clicking on the DIV element of Fig-
ure 2.2, is hidden.
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To classify the crawled states, we traverse the inferred state-flow graph of each
website. For each state, we analyze all the incoming edges (i.e., clickables). If
none of the incoming edges is a valid URL-based transition, we consider that state
to be a hidden state. Otherwise, it is visible.

Each edge contains information about the type of clickable element that caused
a state change. Our classification uses that information to decide which resulting
states are hidden as follows:

Anchor tag (A). The anchor tag can produce both visible and hidden states, de-
pending on the presence and URL validity of the value of its HREF attribute.
For instance, clicking on <A HREF=‘www.eg.com/news/’> results in
a visible state, whereas <A HREF=‘#’ onclick= ‘updateNews();’>

can produce a hidden state.

IMG. The image tag is also interesting since it can result in a visible state when
embodied in an anchor tag with a valid URL; For every edge of IMG type,
we retrieve the parent element from the corresponding DOM state. If the
parent element is an anchor tag with a valid URL, then we categorize the
resulting state as visible, otherwise the state is hidden.

Other element types. Per definition, DIV, SPAN, INPUT, and BUTTON do not
have attributes that can point to URLs, and thus, the resulting state changes
are all categorized as hidden.

5.3 Characterization Analysis
We will analyze the following characteristics:

5.3.1 Hidden-Web Quantity
Hidden-web Quantity: Once the explored states are categorized, we annotate the
hidden states on the state-flow graph to measure the amount of hidden-web data in
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those states. We traverse the annotated state-flow graph, starting from Index, and
for each annotated hidden state, we compute the differences between the previous
state (which could be a visible or hidden state) and the annotated hidden state
using the unix difference. To measure the amount of data that can be hidden, the
differentiation method computes merely the additions in the target (hidden) state.
For each website, JAVIS saves all the differences in a file and measures the total
size in bytes.

5.3.2 Clickable Types
Clickable types: To investigate which clickable type (i.e., A, DIV, SPAN, IMG,
INPUT and BUTTON) contribute most to hidden-web content in practice, JAVIS

examines the annotated state-flow graph and gathers the edges that result in hid-
den states. It then calculates, for each element type, the mean of its contribution
portion to the hidden-web percentage.

5.3.3 Correlations
Correlations: Further, we measure the average DOM string size as well as the
custom JavaScript code (excluding common libraries such as jQuery, Dojo, Ext,
etc) of each website. To examine the relationship between these measurements
and the client-side hidden-web content, we use R [14] to calculate the non-parametric
Spearman correlation coefficients (r) as well as the p-values (p), and plot the
graphs. We present combinations that indicate a possible correlation.

Before going into details regarding each each aspect, a brief description of
how we intend to evaluate them is described. We use the Pearson correlation

which is a widely used measure of linear dependency between two variables.
The Pearson correlation coefficient is obtained by dividing the covariance of

the two variables by the product of their standard deviations. The more it is close
to +1, the more positive (increasing) linear relationship exists, and the more it is
close to -1, the more negative (decreasing) linear relationship exists. As it ap-
proaches zero there is less of a relationship (closer to uncorrelated). We should
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note that a high correlation does not necessarily infer a causal relationship between
the variable, though it can indicate the potential existence of causal relations.

DOM Size: To find the dependence and effectiveness of DOM elements (Href,
Div, Span, Img, Input and Button) on the percentage of invisibility, we study the
statistical relationship between the DOM elements as random variables and the
hidden-web rate. It should be noted that a web site containing a huge amount of
elements that directs to large DOM size does not necessarily contribute to higher
invisibility rate and vice versa. The DOM size obtained for each web application
is an average of the total DOM size and is presented in terms of kilo bytes.

JavaScript code size: In order to find the correlation between JavaScript code
size and hidden-web, a tool is used with the specific purpose of measuring this
parameter. Although many tools exist that can aid us in this regard yet we chose
the Web Developer tool which is an open source tool which easily provides us
with the information required.

With the aid of this tool, the JavaScript code size is can be obtained as com-
pressed or uncompressed size in kilo bytes based on the users opinion and there-
fore, in our case we use the compressed size. Note that the JavaScript code size
provided by Web Developer includes all the script files which can be constituted
of any JavaScript library used for that web application along with the custom
JavaScript files written by the developer.

Although we obtain Pearson correlation coefficient between this aspect and
the hidden-web, yet we should keep in mind that the result might not be so re-
markable. This does not mean that if code size is small than it leads to more
hidden content and vice versa.

Categories: An advantage that ALEXA provides us with is the opportunity to
simply classify the collected web sites into the already specified categories de-
fined by them.
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ALEXA provides three different options to choose from the top best web site
title which are: 1) Top best web sites distributed Globally , 2) Top best web sites
based on Country and 3) Top best web sites based on Category. Since our goal
is to obtain comprehensive data, we selected the first option in order to present
us with the universal web sites. However, in order to understand the correlation
between the categories and hidden web, we sort the obtained web sites into the
pre-defined categories too.

There are 17 categories in general which can be found at Alexa’s web site,
yet for our purpose we manually grouped them into the different subjects and a
total of 15 categories were concluded. In our findings, we noticed that based on
Alexa’s assortment, one web site can be considered to be grouped into multiple
categories. It should also be noted that this action is not applied for RANDOM web
sites.

5.4 Tool Implementation
We have implemented our client-side hidden-web analysis approach in a tool
called JAVIS, which is open source and available for download along with all
our empirical data from: http://salt.ece.ubc.ca/content/javis/

JAVIS is implemented in Java, and is built as a plugin for CRAWLJAX [25].2

All our experiments were conducted on a Debian-based machine running Firefox
as the embedded browser for CRAWLJAX.

2 crawljax.com
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Chapter 6

Results

In this section, the results of our empirical study is provided. We present our
results in the following subsections, each corresponding to a research question as
formulated in Chapter 4, Methodology.

Table 6.2 depicts a representative small sample (20 websites) of the kind of
websites we have crawled and the type of data we have gathered, measured, and
analyzed in this study. These websites are randomly selected from our total pool
of 500 websites. The first 10 are taken from ALEXA and the second 10 from
RANDOM. It should be noted that the Total column in this table refers to both
the hidden DOM structure and the textual content whereas the Total Content only
refers to the hidden textual content. The Average column also refers to the average
hidden content and DOM structure per state. The complete set of our empirical
data containing all information in the table is available for download.1

6.1 Pervasiveness (RQ1)
To investigate the pervasiveness of client-side hidden-web, we crawled all the 500
websites and analyzed the findings. The results are obtained distinctively for each
website and as a whole for both set of websites: ALEXA and RANDOM.

1 http://salt.ece.ubc.ca/content/javis/
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 95% (476)

 5% (24)

Contains hidden−web content
No hidden−web content

Figure 6.1: Pie chart representing the percentage of websites exhibiting
client-side hidden-web content from all the 500 websites.

The pie chart in Figure 6.1 depicts the percentage of websites that fully or par-
tially exhibit client-side hidden-web content. This means, we consider a website
totally visible that does not contain any hidden content. In other words, if none of
the crawled states are hidden, the website is referred to as a visible website. Un-
fortunately, only 5% of the websites can be crawled by search engines and thus,
visible to the user. This fraction in comparison to the billions of websites that
exist today in the real world, is extremely small. In contrast, 95% (476/500) of the
websites analyzed exhibit some degree of client-side hidden-web content. What
we mean by some degree of hidden-web content, is that they have at least one or
more client-side hidden states.

In addition, we wanted to gain knowledge of what percentage of these 476
websites that lie in the portion of hidden websites, actually contain hidden-web
content. To pursue this task, we separated the websites based on the resources col-
lected and analyzed the results individually. Figure 6.2 presents three box plots
illustrating the hidden-web state percentages for the two resources ALEXA, RAN-
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Figure 6.2: Box plots of the percentage of client-side hidden-web states in
ALEXA, RANDOM, and TOTAL.

Table 6.1: Descriptive statistics of the percentage of client-side hidden-web
states in ALEXA, RANDOM, and TOTAL.

Resource Min 1st Qua. Median Mean 3rd Qua. Max

ALEXA 0 49 70 65.63 90 100
RANDOM 0 10 44 50.6 98 100
TOTAL 0 41 67 62.52 92 100

DOM, and in general as the TOTAL. For more clarity and exact percentages re-
garding the hidden content embedded within the web applications, Table 6.1 is
provided which presents the min, max, median, mean, and the 1st and 3rd quar-
tiles of the results per resource and in total.
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Table 6.2: Hidden-Web Analysis Results. The first 10 are from ALEXA, and the remaining 10 from RANDOM.
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1 Google 50 49 3 46 3 0 29 16 0 1 0 0 329 210 94 906 13 18 228
2 ESPN 50 49 12 37 6 0 26 2 6 9 0 0 161 196 75 4358 120 89 7565
3 AOL 50 49 8 41 5 1 18 22 3 0 0 0 203 170 82 4626 140 64 4727
4 Youtube 50 49 7 42 7 0 7 17 0 7 0 17 286 153 84 4230 153 86 530
5 Aweber 50 49 24 25 16 1 20 0 8 4 0 0 41 31 65 38 0 0.78 740
6 Samsung 50 49 3 46 2 0 42 3 1 0 0 1 96 267 92 1381 21 28 1274
7 USPS 50 49 8 41 5 1 33 7 3 0 0 0 200 258 82 563 6 11.5 317
8 BBC 50 49 41 8 25 0 3 3 16 2 0 0 142 112 16 293 6 6 794
9 Alipay 50 49 2 47 2 7 33 7 0 0 0 0 200 72 94 77 0 1.5 828
10 Renren 50 49 0 49 0 0 49 0 0 0 0 0 100 47 100 1613 3 33 152

11 EdwardRobertson 50 49 1 48 1 2 45 1 0 0 0 0 120 64 98 154 7 3.14 161
12 Rayzist 50 49 31 18 31 1 16 0 0 1 0 0 329 54 37 257 38 5.2 976
13 Metmuseum 50 49 3 46 3 0 2 0 0 44 0 0 54 87 94 935 68 19 364
14 JiveDesign 50 49 0 49 0 0 49 0 0 0 0 0 241 202 100 369 0 7.5 322
15 MTV 50 49 0 49 0 0 19 0 0 30 0 0 242 200 100 530 14 10.8 417
16 Challengeair 50 49 0 49 0 0 49 0 0 0 0 0 176 28 100 22 0 0.45 145
17 Mouchel 50 52 52 0 51 0 0 0 1 0 0 0 20 60 0 0 0 0 535
18 Sacklunch 50 49 45 4 3 0 3 0 42 1 0 0 121 83 8 166 6 3.39 236
19 Pongo 50 49 3 46 3 0 46 0 0 0 0 0 61 463 94 4229 58 83.3 713
20 MuppetCentral 50 49 17 32 8 0 32 0 9 0 0 0 254 224 65 4807 272 98.1 966
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ALEXA: For the 400 websites obtained from ALEXA, on average 65.63% of the
50 states we analyzed were client-side hidden-web. This high number can
be explained by the nature of such websites perhaps. These websites are
among the top most visited sites in the world. It is clear that the develop-
ers of many of these websites use the latest Web 2.0 technologies, such as
JavaScript , DOM, Ajax, and HTML5, to provide high quality features that
come with rich interaction and responsiveness.

As can be seen in Table 6.1, the minimum and maximum of hidden-web
are 0% and 100% respectively. It is obvious that some websites considered
using only hypertext links whereas others preferred using only the latest
technologies such as JavaScript to dynamically edit content. Therefore, the
websites are either totally visible (0% hidden content) or completely hidden
(100% hidden content). The first quartile, median and the 3rd quartiles
are 49%, 70% and 90% respectively. Compared to the RANDOM websites,
the first quartile and the median are much higher and this can be due to
extensive use of new technologies to increase popularity and be rated as top
best websites.

As we have discussed in Section 2, Background, these Web 2.0 techniques
contribute enormously to the creation of client-side hidden-web.

RANDOM: Similarly, an average 50.6% of the states from the RANDOM web-
sites constitute hidden states. These websites were purely randomly chosen
on the Web with no previous background information about them. In other
words, we do not have any idea about their rankings nor the functional-
ity they provide. We were expecting to witness a lower percentage here,
because (1) many websites on the Web might still be classical in nature,
without using any modern Web 2.0 techniques; (2) the developers prefer to
use more URL-based links for state transitions, rather than using JavaScript
to avoid ending up in the hidden-web share. We believe that 50.6% is still
a high number, pointing to the pervasiveness of client-side hidden-web on

30



the Web.

As discussed in the previous part and seen in Table 6.1, RANDOM in con-
trast to ALEXA has lesser percentage of hidden-web in the mean, median
and the first quartile. However, the third quartile of RANDOM differs in 8%.
Although 8% might not be significant now yet it should be noted that (1)
we only analyzed 100 random websites and if more random websites were
to be observed this can lead to a higher percentage and a greater difference;
(2) these websites do not have any sort of rankings. One possible reason-
ing for this difference can be explained such that if the web application is
using JavaScript and modern technologies, then it seems more calls to the
JavaScript code is made and thus, the DOM is modified more extensively.
However this might not be true for all websites.

TOTAL: When the results of ALEXA and RANDOM are combined in TOTAL, we
witness a total hidden-web state percentage of 62.52%. Interestingly, the
average of the TOTAL is very close to the average of ALEXA. It should be
noted that on average, 25 minutes is required to crawl all the 50 states of a
website while it takes 211 hours to crawl and classify all the 500 websites.

It is obvious that crawling more websites with a higher number of states and
different types of clickable elements can certainly lead to higher percentage
of hidden-web and of course doing so will be very time consuming and
expensive.

6.2 Quantity (RQ2)
In order to gain an understanding of the quantity of content in the client-side
hidden-web states, we measured the amount of hidden data as described in Section
5.3.

Table 6.3 shows the minimum, mean, and maximum amount of client-side
hidden-web content for all of the crawled hidden-web states, and per hidden-web
state in two cases: (1) includes both the DOM structure and the content, and (2)
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Table 6.3: Descriptive statistics of the average hidden-web content for all
states and per state.

Textual hidden content (KB) All hidden content (KB)
Hidden-Web Min Mean Max Min Mean Max

Per State 0 0.60 11.65 0 18.91 286.4
All States 0 27.6 536 0 869.7 13170

only the content is considered. For the first case, not only do we attempt to mea-
sure the pure content, but we also consider extracting the different elements or
attributes that either have been added, omitted or simply edited.

All hidden-web states crawled. For all the states crawled, we measured an aver-
age of 870 kilobytes of client-side hidden-web content including both DOM and
textual content while the textual content only is 27.6 KB. The minimum and maxi-
mum for the first case (including DOM and textual content) are 0, 13170 kilobytes
and 0 and 536 kilobytes for the latter case (only textual content).

It is visible from the table that the average size of all the hidden content is more
than 30 times larger than the average of the textual content only. This indicates
that an extensive amount of the HTML structure of the website is also altered in
addition to the content change. It should be noted that, a web application con-
taining many hidden states does not necessarily result to a huge textual difference
since one web application that is comprised of a few hidden state may conclude to
the same or even a larger amount of hidden content. We simply, obtain the content
differences and do not compare.

Per hidden-web state. Per hidden-web state, on average 19 kilobytes of DOM
and textual content exist while 0.6 was only textual content. Table 6.3 shows the
minimum and maximum for this case.

Similarly, the mean size of all the hidden content per state is more than 30
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times larger than the size of only the textual content. It is clear that every state
does not lead to the same amount of hidden content, i.e., one state can only con-
tribute to a few minor DOM and textual changes such as appending a new child
while another state can alter (append, delete or edit) many elements, attributes and
their text values.

We also attempted to analyze the textual content as well to have a better under-
standing of what sort of content are being altered. The textual content gathered
and observed are either a singular word, numbers, short messages or a whole sen-
tence.

The words are either (1) names of the countries so that the website can be used
worldwide and users can easily change the language of the website based on their
region, (2) help instructions to aid users in pursuing a task, (3) feedback or review
about an object or a subject, and (4) names of items, specially items that were
being sold in the website such as amazon or ebay.

The numbers range from one digit to ten digits long. These numbers act as IDs
and are usually seen in websites that sell items as discussed above. The short mes-
sages indicate the limits of either the (1) user, like how many times he can listen
to the songs; (2) the website like the expiration time of the website. The sentences
are either normal sentences describing a subject such as the value of team work or
they are questions. Either way, they are mainly providing information as news in
every aspect, e.g. health issues, science, animals, videos and images, actors and
stars, sports and so on.

6.3 Induction (RQ3)
To better understand what types of clickable elements web developers use in to-
day’s web applications that induce state changes in the browser, we analyzed
how much each clickable type contributes to the measured hidden-web state per-
centage. As a reminder, these elements can be either DIV, SPAN, INPUT,
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Figure 6.3: Pie chart displaying the use of different clickables throughout
the 500 websites.

BUTTON along with the IMG and A tags.
The usage distribution of different clickables can be seen in Figure 6.3. As can

be seen, approximately 40% of the websites use the DIV element (10327/27261),
followed by the A tag with 32% (8734/27261) regardless of being visible or hid-
den. The third most used element is the IMG tag with 19% considering both visible
and hidden states. The last three rated are SPAN, BUTTON and INPUT with 11%,
0.3% and 0.1% whereas 0.3% and 0.1% are being rounded down to zero.

As discussed in Section 5.3, the anchor tag (A) and the image element (IMG)
can induce both visible and hidden states. Just to remember, an anchor tag is
considered as an invisible element if it contributes to a new hidden state change
but without owning any valid URLs. Regarding the IMG tag, we assess the parent
tag of this element that directs to a new state change since we have observed
that it is set inside other tags. If the parent tag is a visible element, in other
words a visible anchor tag, the IMG tag is also considered as a visible element and
thus, the resulting state is a visible state. Otherwise the element itself is added
to the set of invisible elements and the state change is concluded as a hidden
state transition. However, to answer the third research question (RQ3), we only
consider the elements that cause hidden-states in our analysis.
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Figure 6.4: Pie chart showing hidden-web percentage behind different types
of clickables. ‘A INVIS’ represents anchor tags without a (valid)
URL. ‘MG INVIS’ represents IMG elements not embedded in an an-
chor tag with a (valid) URL.

Figure 6.4 depicts another pie chart specifically related to the different invis-
ible clickable types associated to hidden-web state percentage. We can see that
the DIV element has the highest contribution to the hidden-web state percentage
(61%), followed by SPAN (16.8%). Interestingly, the IMG and A element types
are also used quite often to induce client-side hidden content, with 14.7% and
6.9% each, respectively. Finally, BUTTON and INPUT contribute to less than one
percent of the hidden-web states with INPUT being the least.

In final, we learn from the results that the DIV element, in comparison to the
other elements, is more widely used in practice as a clickable.
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6.4 Correlations (RQ4)
As a part of our study, we intended to investigate whether there are any correla-
tions between the hidden-web and other characteristics of the web applications.
Therefore, we considered three aspects of the websites which are explained in full
details below. These aspects are ALEXA categories, DOM size and JavaScript
custom code size.

Figure 6.5 displays the relationship between the ALEXA categories with the
hidden-web state percentage and Figures 6-9 are scatter plots of DOM and JavaScript
size against the hidden-web state percentage and content.

Alexa Rank and Categories
For the websites obtained from ALEXA, we examined their rankings and cat-

egories (e.g., Business, Computers, Games, Health, etc)2, to learn whether any
correlation with respect to the degree of hidden-web content exist.

Figure 6.5 presents the contribution of each Alexa category toward the percent-
age of hidden-web. As can be seen, there are 15 categories in general. Websites
in the categories of Computers and Regional seem to contain the most client-side
hidden-web content. Websites in the Kids/Teen category have the least correlation.
The hidden-web percentage of other categories are in the range between 5 and 30
%. Note that each website can be a member of multiple categories on Alexa, and
therefore, the distribution shown in Figure 6.5 is merely an indication. We did not
witness any noticeable correlations with Alexa rank.

DOM Size and Hidden-Web State Percentage
We analyzed the DOM size corresponding to the web applications for both

ALEXA, RANDOM and as a TOTAL. As can be seen in Table 6.4, the minimum,
maximum and average of DOM size present in ALEXA web sites are 11, 826
and 146.2 kilobytes respectively. However, these amounts are less in websites

2http://www.alexa.com/topsites/category
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Figure 6.5: Bar chart of Alexa categories versus hidden-web state percent-
age.

obtained from RANDOM which are 7, 426 and 90.6 kilobytes respectively. It is
obvious that websites collected from ALEXA are based on popularity and ranking
and thus, contribute to more DOM size whereas RANDOM web sites are normal
web leading to less DOM size.

We also conducted a correlation analysis of the degree of hidden-web state
percentage with respect to the average DOM size, taken over all the crawled states.

Figure 6.6 depicts a scatter plot of the DOM size against the hidden-web state
percentage. In this figure, the DOM size has a weak correlation (r = 0.4) with
the hidden-web state percentage. A website that contributes to more hidden states
does not necessarily require to be composed of an enormous DOM tree. For ex-
ample, one website with 57% hidden-web state percentage has the highest DOM
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Table 6.4: Descriptive statistics of the DOM size in ALEXA, RANDOM, and
TOTAL.

DOM SIZE (KB)
Resources Min Mean Max

ALEXA 11 146.2 826
RANDOM 7 90.62 420

TOTAL 7 118.41 826

Table 6.5: Descriptive statistics of the JavaScript custom code size in
ALEXA, RANDOM, and TOTAL.

JAVASCRIPT SIZE (KB)
Resources Min Mean Max

ALEXA 1 116.44 586
RANDOM 0 57.26 417

TOTAL 0 86.85 586

size (more than 800 KB), whereas the DOM size of websites with higher hidden-
web percentage (90%) are less than 210 KB.

DOM Size and Hidden-Web Content
We also pursued to analyze the correlation between the degree of hidden-web

content with respect to the average DOM size, again considering all the crawled
states.

Figure 6.7 depicts a strong correlation (r = 0.65) between the DOM size with
the amount of hidden-web content. As can be seen in the plot, around 80% of
the websites with less than 200 KB of DOM size contribute to less than 500 KB
of hidden content. And as the DOM size grew larger, the hidden content also
expanded.

The correlation between these two parameters comes as no surprise, because
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Figure 6.6: Scatter plots of the DOM size versus hidden-web state percent-
age. ‘r’ represents the Spearman correlation coefficient and ‘p’ is the
p-value.

the larger the DOM tree, the more content there will be in a website. However,
for a web application with a large DOM tree, it is not clear which type of content
embedded within the application is more, the hidden content or visible content.

JavaScript Size and Hidden-Web State Percentage
First we analyzed the JavaScript custom code size corresponding to the web

applications for both ALEXA, RANDOM and as a TOTAL. As can be seen in
Table 6.5, the minimum, maximum and average of JavaScript code size present
in ALEXA websites are 1, 116.44 and 586 kilobytes respectively. Although there
might be web applications that use JavaScript often, yet there are web applications
which contain zero or very little JavaScript code, as can be seen in RANDOM web
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Figure 6.7: Scatter plots of the DOM size versus hidden-web content. ‘r’
represents the Spearman correlation coefficient and ‘p’ is the p-value.

applications. Some web application prefer generating dynamic content by using
JavaScript , while other web developers tend to provide simple web application
without the aid of JavaScript .

In Figure 6.8, around 80% of the websites have less than 100 KB of JavaScript
code while the hidden-web percentage related to those websites range from 0 to
100%. The JavaScript code size of the remaining 20%, vary between 100 and
586 KB.

Although we assumed if the client-side hidden-web state percentage is high,
the JavaScript code size will also be high, yet Figure 6.8 rejects our assumption
by presenting the weak correlation between these two parameters. A web appli-
cation does not fundamentally need to use and call many of the JavaScript code
to induce hidden states. One JavaScript function that modifies the DOM tree can
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Figure 6.8: Scatter plots of the JavaScript size versus hidden-web state per-
centage. ‘r’ represents the Spearman correlation coefficient and ‘p’ is
the p-value.

simply be executed many times by different elements and therefore, the results
will be more hidden states.

JavaScript Size and Hidden-Web Content
Figure 6.9 also pinpoints a weak monotonic correlation between the JavaScript

code with the hidden-web content. We expected to see a stronger correlation, be-
cause after all, it is JavaScript code that is the root cause of client-side hidden-web
content. One less likely reason to the low correlation can be due to the exclusion of
popular JavaScript libraries that were used within the web application. However,
this weak correlation can also be explained from another perspective.

As mentioned before, many websites use JavaScript today, yet they do not
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Figure 6.9: Scatter plots of the JavaScript size versus hidden-web content.
‘r’ represents the Spearman correlation coefficient and ‘p’ is the p-
value.

necessarily require to have a lot of JavaScript code in order to modify the DOM
tree and contribute to more hidden content. This behaviour can be explained us-
ing a simple example as the one used in Chapter 2, Background and Motivation.
Figure 2.1 is a piece of JavaScript code that can causes many hidden-web states
and thus, increases the hidden-web content although the amount of the code is
relatively small. In this simple example all the state updates are retrieved in small
HTML deltas from the server, and injected into the DOM tree through a small
piece of JavaScript code. In fact, we have witnessed this kind of behaviour in
many of the examined websites that have client-side hidden-web characteristics.

Although we have an idea about the correlation between the JavaScript and DOM
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size with the hidden-web content and state, yet more investigation is required in
this regard. Maybe by examining more websites and inspecting their JavaScript
and DOM, a more significant correlation can be met.
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Chapter 7

Discussion

In previous chapters, the approach proposed for this study, the hidden-web analy-
sis technique and the evaluation for 500 websites are explained clearly. We now
have an insight on how hidden-web is induced by client-side scripting languages
such as JavaScript from the results. However, as other studies, our study may not
be fully accurate and risk free. There might be some aspects in our study that may
be seen as validity threats which can influence the evaluation of our results and
affect our conclusions. These aspects are explained in the following sections.

7.1 Threats to Validity
There are four validity threats: Internal Validity, External Validity, Construct Va-
lidity, and finally Conclusion Validity. We discuss the four validity threats in the
following subsections.

7.1.1 Internal Validity
Threats to internal validity concern any issues corresponding to how the subjects
are selected and treated during the experiment.

One of the factors that impacts internal validity in our study is sampling. If
the websites were selected manually by the author, the final results would have
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been non-exclusive and questionable. Thus, to reduce bias from our sampling, we
decided to select websites from ALEXA and RANDOM, where ALEXA provides us
with websites that are already ranked throughout the world and RANDOM provides
us random websites without our participation.

In addition, we restricted our analysis to the 400 websites gathered from ALEXA

based on popularity. Since the results may not hold for websites that are not popu-
lar, we considered analyzing website that are not ranked by gathering 100 websites
from RANDOM.

Another internal threat is sequentially selecting and crawling the clickable el-
ements from the candidate elements list. Although this issue might not seem
problematic, yet it indeed effects the percentage of hidden-web. Thus, to mitigate
this kind of threat, the list of candidate elements are shuffled before clicking. In
other words, we randomize the candidate clickable selection while crawling, to
make the state exploration of each website unbiased.

One way to mitigate the threats related to sampling is to select samples from
different aspects such as the countries they are hosted, categories they represent,
popularity and so on.

7.1.2 External Validity
External validity refers to the generalization of the study, whether the final result
can be generalized outside of the scope of the study.

In order to present generalizable results, we not only analyze websites ob-
tained from ALEXA, but also websites gathered from another resource, RANDOM.
In terms of representativeness, we collected data for a sample of 500 websites
from ALEXA where these websites are ranked as the most popular websites in the
world.

There are millions of web application that exist today and compared to them
we only examined a fraction. Therefore, the number of websites obtained for
evaluation (500) is limited and considered as another external threat.

In addition, there are other variables that are used in the setup of CRAWL-
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JAX that can affect the evaluation phase. Each of these variables are discussed
separately below:

Clickable Types: Through JavaScript event-driven programming any HTML
element can potentially become a clickable item. In this study we include
six of the most common HTML elements used as clickables. We made our
selection based on a small pilot study we conducted on ten Alexa websites.
Other clickable types (e.g., P, TD) could also induce client-side hidden-web
content, which we have not analyzed. The inclusion of other clickable types
can probably marginally increase the hidden-web percentage.

Event Types: Our study is constrained to the click event type. We believe this
is the most commonly used event type in practice for making event-driven
transitions in Web 2.0 apps. However, the DOM event model has many
other event types, e.g., mouseover, drag and drop, which can potentially
lead to hidden-web states.

In-code URLs: We make the assumption that if a transition is made through
JavaScript , then it is hidden. However, giant search engines such as Google,
parse the website’s static JavaScript code in search of valid URL’s in the
code to crawl. In our study, we do not explicitly take valid URLs in the code
into account.

Number of states examined: To be able to have a fair analysis in a reasonable
amount of time, we constrained the maximum number of states to crawl
for each website to fifty. There were a few websites that did not have that
many states to crawl. In these cases, we analyzed the websites according
to the number of crawled states. Choosing a different maximum number
could theoretically impact our evaluation results, although we do not have
any evidence that that would be the case (because of the randomization).

To alleviate the generalizability issue, we can analyze more websites along
with more states. Although increasing the maximum number of states and depth
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may not necessarily contribute to more hidden-web content, yet it is required to
gain more generalizable conclusions.

7.1.3 Construct Validity
As mentioned before the aim is to measure how often content is added to the
portion of hidden-web due to the client-side scripting languages used by web de-
velopers. In step 2 of Figure 5.1, the states in the state flow graph are classified
into two categories: visible-web lead to by hypertext links, and hidden-web lead
to by non-hypertext links. However, there might be some cases where the hidden
state is reached by external parties such as advertisers or adversaries. Today many
advertisement companies embed their own JavaScript code into web applications
with or without any permission and the crawler regardless of knowing where the
clickable element is obtained from, clicks on it and if state transition is seen, a
new state is added to the state flow graph.

In order to mitigate the construct validity, all advertisements or external code
not relating to the web application itself should be removed. Although this is
required yet it is a sensitive task and requires manual inspection.

7.1.4 Conclusion Validity
Conclusion validity is the degree to which the conclusions we reach about the re-
lationships between our data are reasonable. In this study based on the frequency
of the usage of client-side scripting languages, specifically JavaScript , a conclu-
sion that similar frequency is anticipated for the entire web is reached. The reason
behind this conclusion is that the web is constructed by web developers. A threat
regarding conclusion validity can be the fact that we did not take automated code
generation tools into consideration. However, in order to minimize this threat, our
JAVIS tool is open-source and available for download as well as all the empirical
data. Therefore, in terms of reproducibility, we provide all the necessity to fully
replicate our study.

To detract the conclusion validity we should take other sources of web con-
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struction such as automated code generation tools into consideration.

7.2 Implications
Our study shows that there is a considerable amount of data that is hidden due to
client-side scripting. It should also be noted that many of today’s advertisements
produce dynamic content which can lead to hidden content too. The hidden con-
tent is increasing rapidly as more developers adopt modern Web 2.0 techniques to
implement their web applications.

We believe more research is needed to support better understanding, analy-
sis, crawling, indexing, and searching this new type of hidden-web content. In
addition, web developers need to realize that by using modern techniques (e.g.,
JavaScript , AJAX, HTML5), a large portion of their content becomes hidden, and
thus unsearchable for their potential users on the web.
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Chapter 8

Conclusions and Future Work

With the advent of Web 2.0 technologies, an increasing amount of the web appli-
cation state is being offloaded to the client-side browser to improve responsiveness
and user interaction.

Through the execution of JavaScript code in the browser, the DOM tree repre-
senting a webpage at runtime, is incrementally mutated without requiring a URL
change. This dynamically updated content is inaccessible through general search
engines, and as a results it becomes part of the hidden-web portion of the Web.

We present the first empirical study on measuring and characterizing the hidden-
web induced as a result of client-side scripting.

Our study shows that client-side hidden-web is omnipresent on the web. From
the 500 websites we analyzed, 476 (95%) contained some degree of hidden-web
content. In those websites, on average 62% of the states were hidden, and per
hidden state, we measured an average of 19 kilobytes of hidden content whereas
0.6 kilobytes are textual content. The DIV element is the most commonly used
clickable to induce client-side hidden-web content, followed by the SPAN ele-
ment. This points to the importance including the examination of such elements
in modern crawling engines and going beyond link analysis in anchor tags.

As future work, our goal is to complement this study to gain more insight on
the size and growth of the hidden-web content. In order to achieve this goal, a few

49



enhancements have been considered which are discussed below separately.
One of the improvements is to expand the amount of experimental objects

obtained for this research so that the final results become more generalizable.
Therefore, instead of only considering 100 RANDOM web sites to analyze the
hidden content, we will increase this number to 400 random web sites generated
automatically using a single script.

Another modification is to increase the maximum number of states examined
per web site. As discussed in the previous chapters, we set the maximum number
of states to 50 whereas in future we will set this to 70 states. Although we are not
fully certain whether this will definitely increase the hidden web content, yet we
wish to analyze the results by considering this circumstance.

Another extension is to enhance our tool to automatically obtain the custom
JavaScript code within the web application. To pursue this task, we will attempt
to use a proxy to easily gain access to the custom JavaScript code within the
web page and record all the existing interactions, specially the custom JavaScript
code.
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