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Abstract 

In shear wall buildings, walls serve as the seismic force resisting system while the gravity-load 

system consists of columns that are primarily designed to carry the weight of the building 

through frame action and are not detailed for seismic ductility. Design codes require the gravity-

load system to be checked for deformation compatibility as the building deforms laterally. The 

process of checking the columns for adequate deformability still requires more work. 

In addition to flexural deformations, components such as shear strain and rotation of the 

foundation contribute significantly to lateral deformations in the wall plastic hinge zone. Shear 

strains in flexural shear walls are analytically shown to be a result of large vertical tensile strains 

in areas with inclined cracks. Based on this theory, a simple design-oriented method for 

estimating shear strain profile of flexural shear walls is formulated, the accuracy of which is 

verified against experimental results from works of other researchers. 

Rotation of shear wall foundations is studied through performing about 2000 Nonlinear Time-

History Analysis (NTHA) considering the nonlinear interaction between the foundation and the 

underlying soil. Behaviour of shear walls accounting for foundation rotation is explained with 

emphasis on relative wall to foundation strengths. A simple method for obtaining the monotonic 

foundation moment-rotation response is formulated which is then used in a simple step-by-step 

method for estimating foundation rotation in a given shear wall building. 

Curvature demand on columns pushed to a given wall deformation profile is studied using a 

structural analysis algorithm specifically designed for the task. In the absence of wall shear strain 

or significant foundation rotation, column curvature demand is found to remain close to the wall 

maximum curvature. Wall shear strain and foundation rotation are found to cause severe increase 

to column curvature demand. In a parametric study on column curvature demand, parameters 

including wall length, column length, height of column plastic hinge zone, first storey height, 

fixity of the column at grade level, and the effect of members framing into the column are 

studied. Several simple expressions for estimating column curvature demand are derived that can 

be implemented in design. 
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esh : Reinforcing steel strain at the onset of strain hardening

eθy : Foundation rotational stiffness embedment factor

fc : Concrete stress

fʹc : 28-day concrete compressive strength

fcr : Concrete cracking strength in tension

Fu : Reinforcing steel ultimate tensile strength

Fy : Reinforcing steel yield strength

G : Soil shear modulus of elasticity

G0 : Small-strain soil shear modulus of elasticity

Geff : Effective soil shear modulus of elasticity

H : Storey height

h1 : First storey height

hf : Floor height

Hst : Wall uniform storey height

Hw : Total wall height

hw : Wall height

Ie : Wall gross second moment of inertial

Ig : Wall effective second moment of inertial

Iy : Foundation second moment of inertia
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k : Factor relating wall shear strain to curvature

ke : Initial elastic stiffness of QzSimple1 soil springs

Ke : Effective foundation rotational stiffness

Koc : Secant foundation rotational stiffness to the point with Moc and θoc

kθ : Soil reaction modulus

Kθy : Initial elastic foundation rotational stiffness accounting for foundation embedment

Kʹθy : Initial elastic foundation rotational stiffness resting on the soil surface

L : Foundation length

l : Column length

L0 : Clear span of members framing  into the column

le : Length of heavily reinforced regions at the ends of rectangular walls

lpc : Plastic hinge length of damaged column with uniform inelastic curvatures over the height

lpc* : Plastic hinge length of undamaged column with linearly varying inelastic curvatures over the height

lpw* : Wall plastic hinge length with linearly varying inelastic curvatures over the height

lw : Wall length

Lw
: Shear wall length

lw : Wall length

m : Wall lumped mass at floor slab levels

M : Bending moment

M85 : Foundation overturning strength assuming a uniform stress block with bearing pressure of 0.85qult at 

the "toe" of the foundation

Mb : Bending moment at column base

Melastic : Bending moment at the onset of inelastic behaviour

Mn : Nominal bending strength

Moc
: Overturning capacity of the foundation assuming uniform stress block at factored soil bearing 

capacity

MRSA
: Maximum bending moment demand of the wall with a fixed base calculated from response spectrum 

analysis using 70% of the uncracked flexural stiffness

My : Wall probable flexural strength accounting for steel strain hardening

N : Number of storeys

n : QzSimple1 material type factor

P : Compressive axial force carried by the shear wall uniformly distributed over the height of the wall in 

Chapter 3, compressive load on foundation in Chapter 4, compressive axial load on cross-section

Pf : Factored compressive axial load demand

Pi : Column storey force

Pns : Net steel force

Pr max : Maximum factored compressive axial resistance

Ps : Axial load associated with seismic forces

q : Uniform bearing pressure underneath the foundation under gravity load (service) condition in 

Chapter 3, soil bearing pressure in Chapter 4

qa
: Allowable uniform bearing pressure underneath the foundation under gravity load (service) condition

qf
: Factored toe bearing pressure used to size the foundation for overturning

qmax : Maximum soil bearing pressure at the "toe" of the foundation
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qult
: Ultimate soil bearing capacity used in nonlinear dynamic analysis

qunif. : Uniform bearing pressure of soil equivalent rectangular stress block

Rf
: Ratio of maximum wall bending moment at base from RSA to foundation overturning capacity

Rw
: Ratio of maximum wall bending moment at base from RSA to wall bending moment strength at base

s : Uniform foundation settlement due to compressive axial load on shear wall

Testimate
: Estimated first period of vibration of the wall-foundation system using square root of sum of squares 

of fundamental periods of the fixed base wall and the flexible foundation supporting a rigid wall

tf : Wall flange thickness

Tf : First mode period of the wall-foundation system with the wall assumed to be rigid

Tmodel
: First mode vibration period of the wall-foundation system from model

Ts : First mode period of wall-foundation structure

tw : Wall web thickness

Tw : First mode period of the fixed-base wall

V : Shear force in members framing into the column induced due to framing action

Vi : Column storey shear force

Vs
Soil shear wave velocity

wf : Wall flange width

Z : Compressive displacement of QzSimple1 soil springs

Z50 : Displacement at which 50% of the ultimate soil bearing capacity is mobilized

Ze : Elastic compressive displacement of QzSimple1 soil springs

Zmax : Maximum soil compressive displacement at the "toe" of the foundation

Zp : Plastic compressive displacement of QzSimple1 soil springs

α : Soil equivalent rectangular stress block pressure factor in Chapter 4, ratio of column flexural 

stiffness to that of the members framing into it in Chapter 7

α1 : Equivalent rectangular concrete stress block factor

αw : Wall effective second moment of inertia factor

β : Soil equivalent rectangular stress block compression depth factor

β1 : Equivalent rectangular concrete stress block factor

γ : Soil equivalent rectangular stress block maximum compressive displacement factor

γavg : Wall average first storey shear strain

γmax : Wall maximum shear strain at the base

γxy
: Shear strain of a single reinforced concrete element under biaxial stresses

Δ1
: Envelope of 1

st
 storey displacement

Δ10
: Envelope of 10

th
 storey displacement

Δ20 Envelope of 20
th

 storey displacement

Δ5 Envelope of 5
th

 storey displacement

Δi : Wall displacement at the top of i
th

 storey

Δs1 : Shear deformation at the top of the first storey

ε*cen. : Tensile strain at wall centroid

εc : Concrete strain

εʹc : Concrete strain at f́ c

εc
max : Maximum allowable concrete strain
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εcr : Concrete cracking strain in tension

εt
max : Wall maximum tensile strain

εv : Average storey vertical tensile strain

εx : Vertical tensile strain

θ : Principle strain angle measured from wall vertical axis in Chapter 2, column rotation at grade level in 

Chapter 7

θ1 : Column rotation occurring in first basement storey

θ2 : Column rotation occurring in second basement storey

θb : Base rotation

θelastic : Foundation rotation at the onset of inelastic behaviour

θoc
: Base rotation at which the foundation overturning capacity is mobilized

θp : Total inelastic rotation in the wall plastic hinge

θy : Base rotation at which wall yield bending strength is reached

ν : Soil Poisson's ratio

ρ : Mass density of soil in Chapter 3, reinforcing steel area as a ratio of gross concrete area in 

Chapters 2 & 5

φ : Curvature

φavg : Wall average storey curvature

Φc : Concrete material strength reduction factor

φd : Total column curvature demand

φmax : Wall maximum curvature

φplc : Curvature at onset of column plastic behaviour

φs : Seismic column curvature demand

φy : Wall yield curvature
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CHAPTER 1 Introduction 

1.1 Overview of Problem 

Reinforced concrete shear wall buildings are a common form of construction for mid-rise and 

high-rise buildings in Canada and many other countries around the world. Figure 1.1 shows a 

simple sketch of the major structural components of a typical shear wall building. The shear 

walls are the designated seismic-force-resisting-system (SFRS) of the building and are typically 

designed to resist the entire lateral seismic force demands on the building. The shear walls are 

also detailed to be sufficiently ductile for the expected displacement demands on the building.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Gravity-load columns connected to the shear walls with closely spaced floor slabs. 
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The structure surrounding the shear walls, which includes floor slabs, beams and columns is 

referred to as the gravity-load-resisting system (GLRS). The GLRS is typically not designed to 

resist any seismic forces because it is usually much more flexible than the SFRS; but must be 

able to tolerate the deformations of the building due to the design earthquake. When the GLRS 

consists of long-span flat plate slabs and slender columns as shown in Figure 1.1, the seismic 

displacements of the building with stiff shear walls will usually not put any significant demands 

on the very flexible GLRS. 

In Canada, gravity-load columns on the perimeter of shear wall buildings are often elongated in 

cross-section as shown in Figure 1.2 because such columns offer several architectural and 

structural benefits. Elongated columns can be more easily hidden inside partitions and therefore 

block less of the view from the windows. Elongated columns also reduce the slab span which in 

turn reduces the minimum slab thickness required for deflection control. Elongated columns 

however are much less flexible about the strong axis of bending making the GLRS much less 

flexible. 

The lateral flexibility of a column reduces as the level of axial compression applied to the 

column increases. Thus the gravity-load columns are the least flexible near the base of the 

building. This is exactly where the shear walls are expected to experience the largest inelastic 

deformation demands and where the special ductile detailing is provided in the shear walls. In 

Canada, gravity-load columns typically do not contain any ductile detailing – no confinement 

reinforcement and no anti-buckling ties. From a very simple perspective, it seems very 

inappropriate to provide extensive ductile detailing in shear walls that are subjected to relative 

low levels of axial compression stress, while providing no ductile detailing in the wall-like 

columns that are subjected to much higher levels of axial compression stress and are directly tied 

to the shear walls by the numerous closely-spaced floor slabs. Accurately determining the 

seismic deformation demands on the gravity-load columns over the critical plastic hinge region 

of shear wall buildings and ensuring that the demands are less than the capacity of the columns is 

the main subject of this thesis. 
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Figure 1.2 Schematic plan view of a shear wall building with elongated perimeter columns. 

 

1.2 Important Elements of the Problem 

Significant previous work has been done to relate the global seismic demand on shear wall 

buildings to the deformation demands at the base of shear walls. Dezhdar (2012) conducted 

numerous nonlinear response history analyses of shear wall buildings to establish the effective 

flexural rigidity EIe to be used in a linear dynamic (response spectrum) analysis to determine the 

maximum horizontal displacement at the top of a shear wall. He also reaffirmed that the method 

developed by Adebar et al. (2005) can be used to accurately determine the maximum curvature 

at the base of a shear wall from the maximum horizontal displacement at the top of the wall. 

Bohl and Adebar (2011) conducted numerous nonlinear finite element analyses to determine the 

exact profile of inelastic curvatures at the base of shear walls. Thus the flexural deformation 

demands on shear walls over the plastic hinge region at the base of the building are well known. 

The gravity-load columns are connected to the shear walls by closely spaced floor systems. The 

floor systems may be thin flat plate slabs as shown in Figure 1.1, or may include beams. When 

the floor system includes beams, the demands on the gravity-load columns may be increased to 

due frame action (transfer of bending moments from the floor to the columns); however, as the 
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slabs and beams crack, they will become more flexible in bending. A simple lower-bound model 

of the floor system is to ignore the out-of-plane bending stiffness and assume the floor acts a 

rigid in-plane link that imposes the lateral deformation of the shear walls on the gravity-load 

columns at the floor levels. Such a simple model would be very accurate for flat plat floor slabs 

that are connected to elongated columns bending about the strong axis. 

Figure 1.3 shows a cartoon view of a gravity-load column connected to a shear wall which is 

hinging at its base. Note that the slabs have to bend in order to achieve deformation 

compatibility. However, because the out-of-plane flexural stiffness of the slabs is relatively low, 

the slabs function mainly as a rigid links imposing the wall deformation profile onto the column. 

Bending of the slabs is idealized as concentrated hinges. The span of the slab is shown 

exaggeratedly short. 

 

 

 

 

 

 

 

 

 

Figure 1.3 Deformation demands on gravity-load column due to plastic hinging of shear wall –

column pushed to same lateral deformation as wall at flood slab levels. Floor slabs idealized as 

short-span rigid links due to their high in-plane stiffness. 

 

Large inelastic rotation due to inelastic curvatures in the plastic hinge region at the base of the 

wall causes lateral displacement at the top of the first storey that the second floor slab will 

impose on the gravity-load column. If the column is not flexible enough to tolerate the 
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displacement demand (e.g. because it is a large elongated column subjected to a large axial 

compression force), the imposed displacement may result in damage of the column in the form 

of concrete cover spalling, buckling of the outer layer of reinforcement, and fracturing of 

reinforcement subjected to tensile strains. Such damage to a gravity-load column may 

significantly reduce the axial load carrying capacity of the column. If the seismic performance 

and life-safety of the building are to be ensured, the level of damage to the gravity-load columns 

will have to be controlled. For this purpose, the seismic demand on the column has to be 

calculated and compared against the column deformation capacity. 

Factors that are expected to influence the deformation demands on the gravity-load columns 

include the level of deformation of the shear walls and length of the shear wall, which will 

influence the inelastic wall curvature profile, the spacing of the floor slabs, and the support 

conditions at the base of the column. Factors that are expected to influence the deformation 

capacity of the gravity load columns include the level of applied axial compression, geometry of 

the cross section, arrangement of reinforcement and the concentration of damage in the column. 

1.2.1 Wall shear strain 

Top displacement of typical cantilever shear walls is caused primarily by flexural deformations 

of the walls. Shear deformations of the wall usually contribute a negligible portion to the top 

wall displacement. On the other hand, the shear deformation in flexural walls tends to be 

concentrated in the plastic hinge region near the base. Such shear deformation may contribute a 

very significant amount to the horizontal displacement of the shear walls at a short distance up 

from the base of the walls.  

Figure 1.4 shows a cartoon view of a gravity-load column connected to a flexural shear wall with 

significant shear strain in the plastic hinge region. Wall shear strain produces significant lateral 

deformation at the second floor slab level that the floor imposes on the gravity load columns. If 

the column does not experience any shear deformation, the increased lateral displacement of the 

wall will increase the flexural damage to the columns. The effect of wall shear strain on column 

deformation demands needs to be considered. 
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Figure 1.4 Deformation demands on the gravity-load column due to wall shear strain - column 

pushed to the same lateral deformation of the wall at flood slab levels. 

 

1.2.2 Rotation of shear wall foundations 

Another possible source of significant deformation in cantilever shear wall buildings is the rigid 

body movement of the shear wall due to foundation rotation. While the foundation is usually 

assumed to be fixed at the soil level in the analysis of a building, shear wall foundations will 

rotate due to the applied overturning moment. The rotation is due to foundation uplift (separation 

of foundation from underlying soil on the tension side) and compressive displacement of soil at 

the “toe” of the foundation. 

Shown in Figure 1.5 is a cartoon view of a gravity-load column connected to a shear wall that 

experiences rigid body rotation due to rotation of the foundation. Although the shear wall is 

undeformed, it displaces horizontally and the floor slabs again impose that lateral displacement 

on the gravity-load columns at floor slab levels which may cause damage to the column. 
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Figure 1.5 Deformation demands on gravity-load column due to rotation of shear wall 

foundation – column pushed to the same lateral deformation as wall at flood slab levels.  Floor 

slabs idealized as short-span rigid links due to their high in-plane stiffness. 

 

1.3 Moment-Curvature Response of Gravity-load Columns 

The flexural behaviour of gravity-load columns is best represented by its moment-curvature 

response in combination with a model to account for the distribution of inelastic curvatures over 

the height of the column. An example moment-curvature response of a gravity-load column is 

shown in Figure 1.6. The onset of column nonlinear behaviour due to concrete cracking, the 

point of peak bending strength, and the column curvature capacity as governed by maximum 

compression strain of unconfined concrete are among the information that can be obtained from 

the moment-curvature response. Throughout this thesis, column curvature will be used to 

quantify the flexural deformation demands and flexural deformation capacity of the gravity-load 

columns.  
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Figure 1.6 Example column moment-curvature response. 

1.4 Main Parts of the Current Study 

Figure 1.7 presents a “road map” to determining the seismic deformation demands on gravity-

load columns. The first step is to define the lateral displacement profile of the shear walls. The 

flexural deformations of the shear walls are known from previous research. However very little 

is known about the shear deformation of shear walls and thus this is studied in detail 

in CHAPTER 2. Also, limited information is available on estimating the rotation of shear wall 

foundations so this is studied in CHAPTER 3 and CHAPTER 4.  

Once the displacement profile of the shear walls is known, the curvature demands on the gravity-

load columns must be determined accounting for the nonlinear bending moment-curvature 

response of the columns. A study on the bending moment- curvature response of typical gravity-

load columns is presented in CHAPTER 5, while the simplified analysis method that was 

developed for shear wall – rigid link – gravity-load column systems is presented in CHAPTER 6. 

In the third and final step, the effect of various wall and column parameters on column curvature 

demand is studied. 
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Figure 1.7 Main parts of the current study. 

 

1.5 Summary of Research Objectives 

The following are the main objectives of this dissertation sorted by research topic. 

1.5.1 Shear strains in flexural shear walls ( CHAPTER 2) 

 To better understand the mechanisms of shear strains in flexural shear walls through 

surveying the existing experimental literature on flexural shear walls. 

 To study the effect of the various parameters influencing shear strains in flexural walls 

using state-of-the-art experimentally-verified nonlinear finite element analysis. 
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 To develop a simple method that can be used to estimate shear strains in flexural shear 

walls. 

1.5.2 Foundation rotation of cantilever shear walls 

 To study the rotation of shear wall foundations through a series of Nonlinear Time-

History Analysis (NTHA) considering various soil types, wall and foundation parameters 

and building configurations, where both the shear walls and the underlying soil are 

modelled as nonlinear elements (see CHAPTER 3). 

 To develop a simple method for estimating foundation rotation in a given flexural shear 

wall building using the basic structural parameters and analytical tools available to the 

designer (see CHAPTER 4) 

1.5.3 Curvature demands on gravity-load columns in the plastic hinge region 

of shear wall buildings with flat plate floor slabs 

 To study the moment-curvature response of a broad range of gravity-load columns in 

order to better understand their nonlinear flexural behaviour (see CHAPTER 5). 

 To develop a simple structural analysis algorithm to analyze curvature demands in 

gravity-load columns in buildings with flat plate floor slabs under imposed lateral shear 

wall deformation profiles (see CHAPTER 6). 

 To investigate the seismic demands on gravity-load columns through a parametric study 

considering various column and wall parameters as well as building configurations 

(see CHAPTER 7). 

 To develop simple methods for estimating maximum curvature demand on gravity-load 

columns pushed to the lateral deformation profile of the shear wall given the basic 

information available to the designer (see CHAPTER 7). 
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1.6 Thesis Overview 

This thesis consists of eight chapters and four appendices. In terms of research topic, the thesis 

can be divided into three distinctive parts. The subject of shear strains in flexural shear walls is 

studied in CHAPTER 2. CHAPTER 3 and CHAPTER 4 deal with rigid body movement of shear 

walls due to rotation of their foundation. The main objective of this thesis which is estimating 

seismic demands on gravity-load columns connected to flexural shear walls with flat plate floor 

slabs is the topic of CHAPTER 5, CHAPTER 6, and CHAPTER 7. Results of CHAPTER 

2, CHAPTER 3, and CHAPTER 4 could then be used as an input to the methods developed 

in CHAPTER 7 for estimating seismic curvature demands on gravity-load columns. 

In CHAPTER 2, shear deformation of flexural shear walls is studied. The chapter begins with a 

literature review on experimental evidence of shear strains in flexural shear walls and the 

existing models for estimating shear strains in flexural shear walls. VecTor2 which uses the 

Modified Compression field Theory (MCFT) is chosen as the structural analysis platform and is 

proven to be a reliable tool for estimating shear strains in flexural shear walls by verifying it 

against selected experiments. A parametric study is conducted to identify critical factors that 

affect shear strains in the plastic hinge region of flexural shear walls. The results of the 

numerical study are then used towards the end of the chapter to develop a simple model for 

estimating shear strains in flexural shear walls the accuracy of which is then compared against 

experimental results. 

CHAPTER 3 presents results of Nonlinear Time-History Analysis (NTHA) on shear walls 

accounting for foundation rotation. The chapter begins with a selective literature review of 

existing numerical techniques for modeling soil-structure interaction. Nonlinear Winkler springs 

are chosen as the modelling approach implemented in OpenSees in order to carry out the NTHA. 

Nonlinear behaviour of the wall is modelled by constructing the wall cross-section out of 

nonlinear concrete and reinforcing steel fibres. 10 carefully picked ground motion records are 

chosen and altered to provide spectra which closely match the Uniform Hazard Spectrum (UHS) 

for Vancouver. A pilot study is conducted on the effect of geotechnical parameters such as soil 

type, stiffness, and strength on the response of shear walls accounting for foundation rotation. 

Other parameters studied include level of radiation damping in the soil, wall height, and mass 
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ratio (the ratio of the weight of the building supported directly by the shear wall to the total 

building weight). The Core NTHA was then designed based on the results of the parametric 

study. It included 5 types of soil and 5 shear walls of various bending strengths each supported 

on at least 5 foundations of various overturning strengths. Results of the NTHA of CHAPTER 3 

are then used to better understand the interaction between shear wall and foundation strengths. 

CHAPTER 4 utilizes the vast data obtained in CHAPTER 3 to formulate a simple step-by-step 

procedure for estimating foundation rotation in a shear wall building. A simple method for 

obtaining the monotonic foundation moment-rotation response is formulated first. An effective 

elastic rotational spring stiffness is then proposed that can be used at the base of the wall in a 

Response Spectrum Analysis (RSA) to estimate the total top wall displacement accounting for 

foundation rotation. Towards the end, a step-by-step method for estimating rotation of a shear 

wall foundation simple enough to be incorporated into design procedures is formulated. The 

chapter concludes with verifying the accuracy of the proposed method against NTHA results 

of CHAPTER 3. 

Since deformation profile of gravity-load columns is dominated by flexure, CHAPTER 5 is 

entirely dedicated to studying the moment-curvature response of reinforced concrete gravity-load 

columns. To obtain a reasonable range for the probable axial load on the columns, a series of 

column cross-sections are designed based on provisions of NBCC 2005 and ASCE 7-05. In 

addition to the amount of axial load, the effect of concrete strength and steel ratio is also 

examined by varying those parameters over their expected range. The effect of column damage 

in the form of concrete cover spalling, bar buckling and fracture and creep of concrete on the 

moment-curvature response are studied. The chapter concludes with a discussion on methods of 

finding the neutral axis depth in a column cross section. 

The main objective of CHAPTER 6 is to develop a structural analysis algorithm for analyzing 

curvature demands in gravity-load columns subjected to the imposed deformation profile of a 

wall assuming flexural stiffness of members framing into the column to be negligible compared 

to that of the column. At the beginning of the chapter, a selected number of publications by other 

researchers on the subject of plastic hinging of gravity-load columns are summarized. The 

concept behind development of the structural analysis procedure is then presented. Deformation 
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profile of the wall is divided into flexural and shear components with bilinear curvature and 

shear strain profiles assumed. Accuracy of the proposed structural analysis method is then 

compared against results from a sophisticated Finite Element (FE) program such as VecTor2. 

The structural analysis algorithm is further refined for computational efficiency towards the end 

of the chapter.  

CHAPTER 7 is primarily focused on estimating curvature demand on gravity-load columns 

connected to a flexural shear wall with flat plate floor slabs. A set of standard parameters are 

defined for the wall and the column and in each section, one of the parameters is varied keeping 

the rest at their standard value to investigate how that particular parameter influences column 

curvature demand. Parameters studied include wall shear strain, column length, wall length, 

height of column’s first storey, damage of the column cross-section, column plastic hinge height 

and flexibility of the column’s boundary condition at grade level. Several simple expressions are 

developed to estimate column curvature demand from wall maximum curvature using basic 

design parameters. At the end of the chapter, some guidance is provided on determining 

additional curvature demands induced in gravity-load columns due to flexural stiffness of 

members framing into the column to assist with decision-making on whether or not flexural 

stiffness of the framing members is negligible compared to that of the column. 

The thesis includes four appendices. Appendix A provides a detailed summary of the results of 

all of the NTHA carried out in CHAPTER 3. Appendix B and Appendix C show calculations for 

estimating the probable range of axial load on gravity load columns designed to provisions of 

NBCC 2005 and ASCE 7-05 respectively. Mathematical representation of the structural analysis 

algorithm developed in CHAPTER 6 to analyze column demands when pushed to the given 

displacement profile of a shear wall is presented in Appendix D.  
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CHAPTER 2 Shear Deformation of Flexural Shear Walls 

2.1 Overview of the Chapter 

Although shear deformations do not contribute significantly to the total displacement at the top 

of a flexural shear wall, they constitute a substantial portion of the wall’s displacement profile in 

the plastic hinge region where flexural deformations are relatively small. Wall shear strains are 

shown to be at their maximum in the first storey of the wall and that they may constitute up to 

one-half of the total wall displacement at the first floor slab level. Displacement demands on 

gravity-load columns are highly affected by wall displacement at the first few floor slab levels. 

Hence, shear deformation of flexural shear walls needs to be determined carefully if an accurate 

estimate of the deformation demands on the gravity-load system is to be made. 

The chapter begins with a brief introduction of VecTor2, the finite element analysis software 

used to model the flexural and shear behaviour of reinforced concrete walls. Accuracy of shear 

strains predicted by VecTor2 is verified against test results by Thomsen and Wallace (1995) and 

Brueggen (2009). General concepts of wall shear deformation are then examined by modeling a 

10-storey shear wall in VecTor2. The mechanism of formation of shear strains in the plastic 

hinge region of flexural shear walls is explained. Distribution of shear strain along the height of 

the wall is found to be similar to the curvature profile with the majority of the shear strain 

concentrated in the wall plastic hinge region. 

Towards the end of the chapter, a simple model is introduced that can accurately estimate 

average shear strain in each storey of a shear wall. The method is formulated such that it can be 

incorporated into a standard design procedure that can be used by designers. The average storey 

shear strains multiplied by the storey heights give the amount of shear deformation occurring in 

each storey which when added to the flexural deformations, gives the total wall deformation 

profile accounting for the correct flexural and shear deformations.  
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2.2 Experimental Evidence of Wall Shear Strain from Previous Researchers 

Evidence of wall shear deformation has been observed in tests on shear walls since the beginning 

of the last quarter of the 20
th

 century. Among the earliest observations on wall shear strain is the 

report by Wang et al. (1975) on testing of four three-storey squat walls with aspect ratio of 1.27. 

The ultimate objective of the experimental program was to develop practical methods for the 

seismic design of combined wall-frame structural systems. Wang et al. reported that shear 

deformation was not only significant for the walls tested but dominant at the levels of the first 

and second storeys. Shear stiffness reduced significantly as the wall yielded in flexure causing 

pinching of the shear force-shear strain response similar to the bending moment-curvature 

response. 

In 1976 (Phase I) and 1979 (Phase II), Oesterle et al. (1976 & 1979) conducted two series of 

tests on structural walls for the Portland Cement Association (PCA).  The objective of the testing 

program was to evaluate earthquake resistance of semi-slender structural walls. Two rectangular, 

nine barbell shaped, and two flanged walls were tested all with height to length ratio of 2.4. All 

specimens in Phase I carried minimal axial compressive load while those tested in Phase II had 

to sustain a significant axial compression between 7.3% and 13.4% of      . Even though the 

focus of the tests was on developing design procedures to ensure adequate flexural and shear 

strength and ductility and energy dissipation capacity, the report offered thought-provoking 

observations on wall shear deformation. Oesterle et al. observed that shear yielding (i.e. the point 

beyond which shear deformations started to grow rapidly) occurred simultaneously with flexural 

yielding and was not necessarily accompanied by yielding of shear reinforcement; in fact, 

significant shear deformations were observed even in walls “over-reinforced for shear”. 

In tests on squat structural walls with aspect ratios of 1.42 and 1.27 subjected to cyclic loading, 

Vallenas et al. (1979) also observed simultaneous yielding of the flexural and shear mechanisms. 

Despite the shear stress being constant over the height of the wall, shear yielding was only 

observed in areas were the flexural mechanism yielded. Vallenas et al. recognized the effect of 

diagonal cracks on reducing shear stiffness and increasing shear deformations of the wall. They 

also observed that shear deformation was almost a constant factor of flexural deformation for 
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monotonic loading while the ratio of shear to flexural deformations increased with number of 

load reversals and increased deformation intensity.  

Shear deformation has been observed not only in squat or semi-slender walls, but also in 

slenderer walls whose behaviour is dominated by flexure. Shiu et al. (1981) conducted a test to 

verify the effect of openings in walls on their seismic behaviour. Two 6-storey walls with aspect 

ratios of 2.9 were tested. Shiu et al. reported that despite the response of the walls being 

dominated by flexure, “shear deformation was dominant in the first storey region” where the 

flexural rotations were quite small. Shear distortions started to decrease and flexural rotations 

stated to increase in higher storeys such that at the second storey level, the contributions of 

flexural and shear deformations to the total deformation were almost equal. 

Thomsen and Wallace (1995) conducted cyclic tests on two rectangular walls and two T-shaped 

walls with aspect ratios of 3.1 with primary objective of evaluating the effectiveness of using a 

displacement-based procedure for designing reinforced concrete structural walls. The walls were 

subjected to a sustained compressive axial load of 7% to 10% of      . Thomsen and Wallace 

measured shear strains in each of their specimens’ four storeys and affiliated the large shear 

distortion observed in the first storey of all specimens with flexural and shear cracking resulting 

from development of large inelastic tensile strains in the web area. However, because shear 

deformations constituted a relatively small portion of the wall top displacement and the focus of 

the test was on wall behaviour and design, Thomsen and Wallace concluded that “The exclusion 

of shear deformations from analytical models is not critical for slender walls”.  

Dazio et al. (1999) conducted tests on 6 rectangular walls with aspect ratio of 2.3 and axial 

compressive loads between 5.7% and 10.8% of      . It was observed that while flexural 

deformations dominated the response of the walls, shear deformations were significant over the 

plastic hinge region of the walls. In addition, the ratio of shear to flexural deformations remained 

nearly constant over the entire inelastic drift range.  

In tests on walls with highly-confined boundary elements where the walls had an aspect ratio of 

4.0 and sustained an axial load of 0.10     , Hines (2002) also observed that ”the flexural and 

shear components of displacement are related to one another linearly at least at the displacement 
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peaks” and that large shear deformations were a result of the flexure-shear mechanism in the 

plastic hinge region. 

These general observations on wall shear deformation were not restricted to walls loaded in their 

plane of symmetry. For their two U-shaped specimens with aspect ratio of 2.8 or 2.6 subjected to 

multidirectional loading, Beyer et al. (2008) confirmed that “the ratio of shear to flexural 

displacements Δs/Δf at peak displacements remains approximately constant over the entire 

ductility range”; “however, the magnitude of the Δs/Δf  ratio varied strongly with the direction of 

loading.” They also confirmed that “the shear deformations were concentrated in the plastic 

hinge region at the base of the wall undergoing inelastic deformations” and that “the contribution 

of the shear displacements was largest when a wall section was under net tension”.  

Brueggen (2009) tested a T-shaped wall with aspect ratio of 3.2 under multidirectional cyclic 

loading with 0.03      sustained axial compressive force and confirmed that “the larger shear 

deformations toward the base provide an indication of the effect that plastic hinging and flexural 

damage have on shear deformations and reducing shear stiffness.” Brueggen also mentioned that 

the ratio of shear to flexural deformations remained approximately constant over the inelastic 

drift range. What distinguishes Brueggen’s work from the work of other researchers is 

illustrating the similarity between the shapes of the curvature and shear strains profiles of the 

wall and recognizing the direct link between curvature and shear strain. Brueggen also 

emphasized on the importance of capturing the shear deformation profile of the wall and not 

only the total shear deformation at the top. 

A general trend that can be observed more or less in all of the existing experimental literature of 

wall shear strain is the link between formation of a flexural plastic hinge and development of 

large shear strains. This evidence has been stated in various forms such as flexural yielding 

resulting in simultaneous shear yielding, nearly constant shear deformation to flexural 

deformation ratio over the entire deformation range, or shear strain and curvature profiles of the 

flexural shear walls having the same shape. Shear strains are proven to constitute a substantial 

amount of the lateral deformation of flexural shear walls especially in the plastic hinge region. If 

the correct deformation profile of the shear wall is to be determined, the amount of shear 

deformation must be quantified. 
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2.3 Existing Models for Estimating Wall Shear Deformation 

Oesterle et al. (1984) correlated web crushing strength to the deformations within the hinging 

region of structural reinforced concrete walls. Oesterle et al. based their analytical model on a 

truss analogy with 45 degree concrete compression struts, vertical tensile reinforcement carrying 

flexural tension, horizontal reinforcement acting as tension ties, and flexural compression carried 

by both concrete and longitudinal reinforcement. Due to the complexity of the relationship 

between shear distortion, flexural rotation, and total drift within the plastic hinge region, an 

experimental approach was used to produce a formula for estimating shear distortion. An 

empirical equation obtained from linear regression analysis on test results reported by Oesterle et 

al. (1976 & 1979) was proposed for estimating the ratio of shear distortion to total drift in the 

plastic hinge region. Axial compressive load (N) on the wall was considered the main parameter 

controlling the contribution of shear distortion to total drift in the plastic hinge region as shown 

in the following expressions by Oesterle et al. 

           
 

     
   

        
 

     
       

Eq 2.1 

And 

        

     
 

     
       

 

Eq 2.2 

where γ is the average shear distortion occurring within the hinge region and δ is the total drift 

ratio within the hinge region. Oesterle et al. also pointed out the strong link between shear 

distortion and average vertical strains resulting from curvature to conclude that “shear distortions 

and flexural rotations are coupled” but did not base their analytical model on this observation. 

Although Oesterle et al. realized the importance of focusing on inter-storey drifts within the 
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plastic hinge zone rather than just the top wall displacement and provided a simple model for 

predicting the interaction of flexural, shear, and axial loads, the proposed model lacks generality 

in that it is based on test results of fairly squat walls with aspect ratio of 2.4. Shear distortions are 

assumed to account for 52% of the total drift in the plastic hinge region for all walls under axial 

load exceeding 0.09      regardless of other properties such as wall length and concrete 

compression depth in the plastic hinge zone. This may result in inaccurate prediction of drifts 

due to shear distortion in slender walls. 

Although the linear relationship between the total (top) flexural and shear deformations of 

flexural walls had been confirmed prior to 2002, Hines (2002) was among the first to utilize this 

approximation to propose a simple model for estimating shear deformation of a wall from its 

flexural deformation. In Hines’s model, the concrete cracking pattern in the plastic hinge zone is 

used to derive a geometric relationship between total flexural and shear deformation of the wall. 

In this model, the ratio of total shear to flexural deformation is given as a constant factor of the 

aspect ratio of the wall whose shear transfer mechanism does not undergo severe damage. To 

account for the reduced shear stiffness of walls designed with inadequate shear reinforcement or 

walls experiencing shear failure, Hines added an empirical multiplier calculated from the ratio of 

the wall’s shear capacity to resist diagonal tension and compression to the applied shear force 

respectively. For the walls tested by Hines himself, the model in its final form is given below 
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Eq 2.3 

where Δs and Δf are the total shear and flexural deformations respectively, D is the total length of 

the wall, L is the shear span, and the term in the bracket is the multiplier accounting for  

additional shear displacement from loss of strength of the shear-carrying mechanism. 

Despite the simplicity of the final model, cumbersome derivations are required to formulate the 

proportionality constant (i.e. the 0.25 in the expression above) for the relationship between the 

ratio of shear to flexural displacements and aspect ratio of various walls. Furthermore, the 

cracking pattern of the plastic hinge region must also be known which makes Hines’s model less 

attractive to a designer. Even though Hines’s model captures the fundamentals of the interaction 

between the flexural and shear deformations of walls and provides a valuable insight into the 
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mechanisms of shear deformation, it is formulated to evaluate total top wall displacement and 

hence cannot be used to predict inter-storey drifts resulting from shear deformation in the plastic 

hinge region.  

Brueggen (2009) appears to be the first to recognize the similarity between curvature and shear 

strain profiles due to concentration of shear strains in the plastic hinge region where large 

curvatures are encountered. In Brueggen’s method, shear strain is proportional to curvature with 

a proportionality factor called C constant over the entire inelastic drift range. The ratio of the 

flexural to shear stiffness of the wall at yielding is then used to calculate C. Equations below 

summarize Brueggen’s model. 
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Eq 2.4 

Flexural stiffness at yielding is the yield bending moment divided by the yield curvature. The 

shear stiffness is calculated from the expression for shear stiffness of cracked reinforced concrete 

beams by Park and Paulay (1975). For 45 degree cracks, this equation is given below in terms of 

the area ratio of shear reinforcement (ρv), steel elastic modulus, steel to concrete modular ratio 

(n), and width (bw) and depth (d) of the wall. 

      
  

      
      

Eq 2.5 

This shear stiffness is multiplied by the shear span of the wall to give the desired units for C.  

Brueggen’s method is capable of predicting shear strain profile of the wall and not just the total 

shear displacement at the top. However, calculating the shear stiffness which is needed to 

estimate C requires having an estimate of the crack angle best representative of the plastic hinge 

zone which is generally not available to the designer. Brueggen suggests assuming 45 degree 

cracks for simplicity. Based on her report, the model does an acceptable job of estimating shear 

strains assuming 45 degree cracks; but, if the actual crack angles observed during tests are used 

in estimating wall shear stiffness from the general expression by Park and Paulay (1975), the 

accuracy of the prediction of shear strains is improved. 
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Despite its elegance in relating shear strain to curvature and being “intended for use by structural 

engineers”, Brueggen’s method is not simple enough to be used by the designer. Its shortcoming 

is in estimating the wall shear stiffness using an elastic truss model, for two reasons. First is that 

the elastic truss model does not account for the interaction between flexural and shear 

deformations in reinforced concrete members. In formulating their expression for shear stiffness 

of cracked reinforced concrete beams, Park and Paulay assumed infinitely rigid tension and 

compression truss cords. This means that shear deformation is assumed to be decoupled from 

flexural rotation which is not a realistic assumption. In addition, the derivation of the expression 

assumes significant elongation of shear reinforcements and shortening of compression struts 

whereas in flexural walls with adequate shear (horizontal) reinforcement, horizontal strains in 

the web are negligible and relatively small compressive strains are observed in the compression 

struts.  Park and Paulay’s expression for shear stiffness is not intended to account for shear strain 

resulting from large vertical tensile strains and because Brueggen’s model is based on the same 

equation, neither does Brueggen’s model capture shear strain coming from large vertical tensile 

strains. Secondly, estimating shear stiffness of flexural walls from Park and Paulay’s expression 

requires knowledge of the probable crack angles in the plastic hinge region which is not 

available to the designer. Assuming a 45 degree crack angle reduces the accuracy in estimating 

wall shear strain and is not a viable solution to the problem. 

Even though the link between the magnitudes of shear strain and vertical tensile strain had been 

observed in tests conducted by Vallenas et al. (1979), Oesterle et al. (1984), and Thomsen and 

Wallace (1995), Beyer et al. (2011) were the first to utilize this experimental observation directly 

to formulate a model for predicting shear deformation of walls. Beyer et al.’s method uses the 

geometry of the Mohr strain circle for a reinforced concrete membrane element under biaxial 

stress in conjunction with a plastic hinge model to estimate the ratio of shear to flexural 

displacements at the top of the wall. Similar to Hines’s, Beyer et al.’s model assumes that the 

ratio of flexural to shear displacement at the top of the wall remains approximately constant for 

walls in which the shear transfer mechanism is not degrading in strength; an observation made in 

tests by Vallenas et al. (1979), Dazio (1999), and others. To incorporate this observation into the 

model, the contribution of horizontal strains and diagonal compression strains to shear strain of 

flexural walls is neglected which results in shear strain and vertical strain being proportional for 

a given crack angle. Furthermore, the assumption of linear variation of strain across the length of 
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the wall along with constant concrete compression depth in the plastic hinge region makes 

vertical strains proportional to curvature. Both flexural and shear displacement at the top of the 

wall are then calculated from a plastic hinge model with constant curvature equal to maximum 

curvature of the wall assumed over a certain height. Beyer et al.’s model for the ratio of total 

shear to flexural displacement is given below 

  

  
    

  
     

 

  
 

Eq 2.6 

where εm is the vertical tensile strain at the centroid of the wall section, φ is the maximum 

curvature of the wall, Hn is the total height of the wall, and β is the crack angle outside the fan 

area in the plastic hinge zone. 

Despite its attractive concept, Beyer et al.’s method can only be used to estimate the total shear 

displacement of the wall at the top and is not formulated to give the shear strain profile or the 

shear deformation profile of the wall. Although the method is valuable to evaluation of shear 

wall behaviour, it cannot be used to estimate additional storey drift demands due to presence of 

shear strains in the plastic hinge region. Apart from that, the model still requires an estimate of 

the crack angle best representative of the fanned crack pattern within the plastic hinge zone. 

Beyer et al. suggest either assuming a 45 degree crack angle or estimating the crack angle from a 

complex equation presented by Collins and Mitchell (1997). The 45 degree crack angle 

assumption is too simplistic and gives inaccurate prediction of shear deformation; Beyer et al. 

compared predicted shear deformation of several walls against those observed during tests using 

the plastic hinge crack angles observed during the tests and yet, the accuracy of the prediction 

was not convincing. The equation given by Collins and Mitchell for predicting the crack angle 

requires knowledge of wall parameters that are not generally available to the designer and does 

not solve the problem. 

In summary, Hines’s and Beyer et al.’s models are not formulated to provide the shear strain 

profile or the distribution of shear deformation along the height of the wall. Because Oesterle et 

al.’s model is an empirical model based on a narrow range of wall tests all with aspect ratio of 

2.4, the model lacks accuracy when used to estimate shear deformations in taller walls. The 

proportionality constant relating curvatures to shear strains provided Brueggen’s model is 
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derived from an expression for estimating shear stiffness of beams which does not capture shear 

softening resulting from presence of large tensile strains in a diagonally cracked web of flexural 

walls and hence, falls short of providing an accurate estimate of shear deformation. The need for 

a simple but accurate model for estimating shear deformation profile of flexural walls is 

therefore obvious.  

2.4 Finite Element Analysis of Reinforced Concrete Structures Using 

VecTor2 

VecTor2 was selected as the nonlinear finite element software for this research as it uses the 

state-of-the-art material models for cracked reinforced concrete subjected to axial, shear, and 

bending. VecTor2 uses the Disturbed Stress Field Model (DSFM) formulated by Vecchio (2000) 

which is a refinement of the Modified Compression Field Theory (MCFT) introduced by 

Vecchio and Collins (1986).  

The MCFT determines the average and local strains and stresses of the concrete and 

reinforcement, and the widths and orientation of cracks throughout the load-deformation 

response of an element. Based on this information, the failure mode of the element can also be 

determined. The concrete model accounts for the reduction of compressive strength and stiffness 

due to transverse cracking and tensile straining. The reduction in concrete cracking strength due 

to transverse compressive stresses is also accounted for.  

The theory utilizes a set of simplifying assumptions most important of which are uniformly 

distributed and rotating cracks, using average strains over a gage length including several cracks, 

compatibility of average concrete and reinforcement strains and negligible shear stress in 

reinforcement. The theory also assumes the orientation of principal average strain, θε, and that of 

principal average stress, θσ, to be the same. Principle tensile and compressive concrete strains 

can then be determined using Mohr’s circle for strains. To satisfy force equilibrium, summation 

of concrete and steel stresses is set equal to the applied stress resultants on the element. Local 

stress conditions at cracks are also considered to make sure steel reinforcement can bear the 

extra tensile stress carried through concrete tension stiffening elsewhere.  
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Adding constitutive relations for both concrete and steel makes the MCFT ready for FE 

implementation. However, VecTor2 uses a modified version of the theory called the Disturbed 

Stress Field Model (DSFM) introduced by Vecchio (2000). The DSFM addresses systematic 

deficiencies of the MCFT in predicting the response of certain structures and loading scenarios 

by accounting for the effect of shear slip on the state of stress and strains of 2D reinforced 

concrete membrane elements. Further information on the DSFM can be found in the VecTor2 

manual (see Wong and Vecchio (2002)) and is therefore excluded from this discussion. 

In VecTor2, the constitutive relationship used for reinforcing steel in tension has an initial linear-

elastic response, a yield plateau, and a linear strain-hardening phase until rupture which can be 

easily fitted to the measured bare bar stress-strain relationships of the reinforcement. 

VecTor2 uses three-node constant strain triangular elements with six degrees of freedom (DOF) 

and four-node plane stress rectangular elements with eight DOF to model concrete with 

distributed reinforcement and uses two-node truss bar elements with four DOF to model discrete 

steel reinforcement. 

2.4.1 Previous works on verification of VecTor2 

Vecchio first introduced the DSFM in 2000. The analytical method has been used by many 

researchers studying the behaviour of reinforced concrete structures since and has gained 

appreciable popularity. Among the early attempts to validate DSFM as a reliable analysis 

platform for reinforced concrete structures was the work published by Vecchio et al. (2001). 

Vecchio et al modeled tests on RC panels, beams, and shear walls using the DSFM. The DSFM 

was found to provide accurate estimates of strength, load-deformation response, and failure 

mode of the tests modeled with superior accuracy to the predictions made previously using the 

MCFT. 

Palermo and Vecchio (2004) used VecTor2 to model two flexural walls with aspect ratio of 2.4, 

two semi-slender walls with aspect ratio of 2.0, and two squat walls with aspect ratios less than 

1.0 in order to further validate VecTor2 and the DSFM as a reliable finite element (FE) analysis 

tool for RC structures subjected to reverse cyclic loading. To simplify their analytical model, 

Palermo and Vecchio used only rectangular elements with distributed steel reinforcement to 
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construct their FE model. Despite their simple modeling procedure, the FE model accurately 

predicted the load-deformation response and the failure mechanism observed during the test. 

Palermo and Vecchio also mentioned that “The analyses indicated that slender walls, controlled 

by flexural mechanisms, are generally a test for reinforcement models, whereas squat walls, 

demonstrating shear-dominant behaviour, are a better test for concrete models.” 

Following the publication in 2004, Palermo and Vecchio (2007) published a summary of their 

work in validating VecTor2 and the DSFM. After modeling a combination of slender, 

slender/squat, and squat walls totalling to more than 20 wall tests, they reported that the FE 

element analysis provided simulations that were in substantial agreement with the test results in 

terms of peak strength, post-peak response, ductility, energy dissipation, and failure mechanism 

despite using only low-powered rectangular elements with distributed steel reinforcement to 

construct their models. 

Despite the numerous works on validating the DSFM and VecTor2 as reliable analysis tools for 

predicting strength, stiffness, and failure mechanism of RC structures subjected to cyclic 

loading, to the author’s knowledge, VecTor2 has not been verified for its accuracy in predicting 

various deformation components of a shear wall, specifically wall shear strain. In Section 2.5, 

shear strains obtained from VecTor2 are compared with those recorded in experiments to 

validate Vector2 as an appropriate analysis tool for predicting shear strains in flexural shear 

walls. 

2.5 Verification of VecTor2 for Predicting Shear Strains in Walls 

A summary of the available experimental literature with measurement of shear deformation is 

summarized by Beyer et al (2011). It is therefore beneficial to use this reference in choosing tests 

to validate Vector2 for predicting shear deformation in slender shear walls. The majority of the 

walls tested fall in the boundary range between slender and squat walls based on their aspect 

ratio. For this reason, only walls with aspect ratios of 3.0 or higher are chosen which narrows the 

choice down to tests carried out by Thomsen and Wallace (1995), Hines (2002), and Brueggen 

(2009). Hines only reported the total shear deformation of the wall specimens at the top and did 

not measure the distribution of shear strains or shear deformations over the height of the wall 
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specimens; hence, his work cannot be used for the purpose of validating the analytical model 

used in this study. 

2.5.1 Specimens RW2 and TW2 tested by Thomsen and Wallace (1995) 

Thomsen and Wallace (1995) tested two rectangular specimens and two T-shaped specimens all 

with an aspect ratio of 3.0 subjected to reverse cyclic loading. Only one rectangular specimen 

(RW2) and one T-shaped specimen (TW2) are chosen here. In this section, Specimens RW2 and 

TW2 are simulated in VecTor2 to validate the shear strains predicted by the FE program against 

those observed in the tests. 

The wall specimens were quarter scaled models of a 4-storey wall. The length of the wall 

specimens was 1220 mm and their total height was 4880 mm. Specimen TW2 had thin 

reinforced concrete plates constructed at floor slab levels to account for the effect of the floor 

slabs on crack pattern and other wall parameters. The average axial compressive stress applied to 

the walls during the test was 7% and 7.5% of   
    for specimens RW2 and TW2 respectively. 

See Thomsen and Wallace (1995) for further details on cyclic loading routine, instrumentation, 

specimen construction, and test set-up. 

FE models of the two specimens were constructed in VecTor2 using only rectangular elements 

with distributed reinforcing steel. The FE models were loaded using support displacements at the 

top to simulate the effect of hydraulic jacks pushing and pulling the test specimens. Stress-strain 

relationship for reinforcing steel was adjusted to match the bare bar characteristics reported by 

Thomsen and Wallace (1995).  

Figure 2.1 shows a schematic view of the finite element model for specimen RW2 with each 

colour representing a different reinforcement arrangement embedded in the same concrete 

material with   
  of 31.2 MPa. Although in Thomsen and Wallace’s test report different concrete 

strengths were reported for different concrete pours, concrete strength of 31.2 MPa reported for 

the first storey of the specimen was used throughout the entire finite element model for 

simplicity. All of the steel reinforcement was modeled as distributed steel in reinforced concrete 

membrane elements. 
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Figure 2.1 FE model for specimen RW2 in FormWorks (diagonal truss elements were modeled 

solely to simulate the procedure used by Thomsen and Wallace to measure average storey shear 

strain and have negligible stiffness). 

 

Because the test was conducted in displacement-control mode, the push load at the top of the FE 

model was simulated using uniform support displacements along the top row of nodes of the 

model. The bottom row of the pedestal was fixed against movement using pin supports. The 

black diagonal elements are extremely thin truss bars modeled to simulate the shear strain 

computation mechanism used in the Thomsen and Wallace’s test (explained later in the section). 
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Figure 2.2 shows a schematic view of the FE model for specimen TW2 in both 2D and 3D 

views. Thickness of the rectangular elements in the slab region was increased to simulate the 

effect of slabs on wall behaviour. Vertical steel ratio of the slab region was reduced accordingly 

such that the total amount of vertical steel in the slab region was equal to that of the adjacent 

regions of the wall. This ensured that the slabs did not add to flexural strength of the model. 

Extremely thin truss bars shown in black were again modeled to simulate the shear strain 

measurement mechanism used in the test report by Thomsen and Wallace. 

A simple displacement-control pushover analysis was performed on the FE models despite the 

loading routine of the actual test being reverse cyclic. This meant that the results from the 

pushover analysis of the FE model had to be compared with the envelope of the hysteretic 

response observed during the tests. 

Figure 2.3a shows a schematic of the deformed FE model at 2% lateral drift (deformation 

magnifier=5.0). Orientations of the red lines indicate the orientation of the cracks and their width 

is a coarse representation of the crack width.  

To distinguish between flexural and shear components of the wall deformation, flexural 

deformations were computed by integrating curvatures over the height of the wall and then 

subtracted from the total deformation profile to obtain shear deformations. Because VecTor2 

does not output curvatures, curvature profile of the wall also had to be calculated. If the slope of 

the straight line connecting the two nodes on the ends of a single row of nodes is considered to 

be the average rotation of the wall at that elevation, then the average curvature along a row of 

elements would be the change of rotation (slope) between the two rows of nodes which bound a 

row of elements. Average element curvatures calculated in this manner are plotted in Figure 2.3c 

and the flexural deformations obtained from integrating those curvatures over the height of the 

wall are shown in Figure 2.3b as the dotted line. The displacement profile of the specimen 

measured during the test is also plotted in Figure 2.3b which is in very good agreement with total 

displacement profile obtained from FE analysis. Subtracting flexural deformations from the total 

deformation profile resulted in shear deformations which were converted into average shear 

strains over the height of each row of elements (see Figure 2.3d). 
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Figure 2.2 2D and 3D views of the 2D FE model for specimen TW2 in FormWorks. 

 

It is important to note the similarity in the shape of the curvature and the shear strain diagrams 

for specimen RW2. VecTor2 analysis showed that shear strains were concentrated in the plastic 

hinge region of the wall where large vertical tensile strains were encountered. This agrees with 

the observation reported by Thomsen and Wallace in the test report. 
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Figure 2.3 FE analysis results on specimen RW2 at 2% drift: a) cracking pattern, b) FE vs. 

observed displacement profile during testing, c) curvature profile, and d) shear strain profile. 

a) 
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Similar observations were made in the case of specimen TW2 and hence, corresponding figures 

for specimen TW2 are excluded for brevity. 

As the objective of this section is to verify the accuracy of shear strains predicted using Vector2, 

shear strains from FE analyses are compared to those measured during the tests. Average panel 

shear distortion (strain) was measured using strain measurements of an X-type configuration.  

Figure 2.4 shows the expressions that Thomsen and Wallace used to calculate shear distortion. 

Although this method of calculating average shear strain does not give the actual average shear 

strain of a panel due to the assumption of uniform curvature over the panel height, the same 

method is used to calculate average shear strain of the FE model to make comparison possible. 

This is done by modeling extremely thin truss-bar elements in X-type configuration shown in 

black in Figure 2.1 and substituting the deformed and un-deformed lengths of the truss-bars in 

the equation for average panel shear strain shown in Figure 2.4. 

Figure 2.5 compares average panel shear strains obtained from FE results against those observed 

in the test at five different global drift (top displacement) levels. Top displacements of the FE 

model were matched to those observed during the test to make the comparison easier. As shown 

in Figure 2.5, VecTor2 was able to predict the average panel shear strain of the first storey quite 

accurately. The accuracy of the prediction was not as impressive in the case of average panel 

shear strain of the second storey. However, because the magnitude of the shear strain in the 

second storey was much smaller and hence less significant, it was concluded that VecTor2 is 

able to predict flexural and shear deformation profiles of a rectangular shear wall with good 

accuracy. 

Figure 2.6 compares average panel shear strains obtained from FE analysis with test results for 

specimen TW2. VecTor2 was able to predict the average first storey shear strain with great 

accuracy when the flange was in compression. The accuracy of the prediction of the first storey 

shear strain was less accurate but still acceptable when the flange was in tension. VecTor2 

predictions of the second storey average shear strains was not very accurate; however, because 

the magnitude of the second storey shear strain is relatively small compared to that of the first 

storey, the less accurate predictions of second storey shear strains can be neglected.  



32 

 

 

 

 

 

 

 

 

 

 

    √                

    √                

     
   

           
       

   
 

Figure 2.4 Measurement of average panel shear distortion by Thomsen and Wallace (1995). 

 

Figure 2.7 compares the relationship between average first storey shear strain and curvature 

obtained from test results and FE analysis. During the test, total shear deformation of the wall 

panels in each storey was measured using strain gages mounted on the diagonals of the wall 

panel in an X-type configuration. The differential change in the length of the diagonals was 

assumed to be solely due to shear deformation of the panel. In other words, curvature 

distribution over each storey height was assumed to be constant which leads to over-estimating 

shear deformations and strains. First storey average curvature was calculated assuming all the 

inelastic rotation takes place in the first storey. Total first storey deformation was divided by the 

storey height to give the total inelastic rotation from which average storey curvature was 
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calculated. This procedure for calculating average first storey curvature overestimates curvature 

because some part of the first storey total deformation is inevitably due to shear. However, for 

the purpose of comparison, average first storey shear strain and curvature from FE analysis were 

calculated using the approach taken by Thomsen and Wallace to be consistent. 

 

 

 

 

 

 

 

 

 

Figure 2.5 Comparison of average panel shear strain from FE model and test results for 

specimen RW2. 

 

Based on Figure 2.7, VecTor2 was able to predict average first storey shear strains of the two 

specimens with good accuracy. There is an evident correlation between curvature and shear 

strains plotted in Figure 2.7. Shear strains seem to increase with curvature nearly proportionally. 

Thomsen and Wallace attributed this to shear strains being a result of large vertical tensile strains 

combined with diagonal cracking and damage of concrete. The larger the curvatures get, the 

larger the tensile strains become and hence, more shear strain is generated. This strong link 

between shear strains and curvature is used as the basis for formulating a simple model for 

estimating shear strain later on in this chapter. 
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Figure 2.6 Comparison of average panel shear strain from FE model and test results for 

specimen TW2. 

 

 

 

 

 

 

 

 

 

 

Figure 2.7 Proportionality of average first storey shear strain and curvature for specimens RW2 

and TW2. 
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2.5.2 Specimen NTW1 tested by Brueggen (2009) 

Another experimental work that was used to verify the accuracy of shear strains predicted by 

VecTor2 is the work of Brueggen (2009). Brueggen presented results of multi-directional 

loading of two T-shaped walls as a part of her PhD dissertation. The two specimens named 

NTW1 and NTW2 had aspect ratios of 3.2 and 1.6 respectively which makes specimen NTW2 a 

squat wall. Hence, only specimen NTW1 is considered here. Despite the test specimen being 

subjected to multi-directional loading, test data obtained for loading parallel to the web is used 

here because VecTor2 is a 2D FE analysis software. 

Specimen NTW1 was a T-shaped wall with overall length of 2286 mm (90”), flange width of 

1829 mm (72”) and equal web and flange thicknesses of 152.4 mm (6”). The overall height of 

the specimen was 7315 mm (288”) comprising 4 storeys. The specimen was subjected to a 

sustained axial compressive load of 2.7% of       in addition to its self-weight. Floor slabs were 

constructed at storey levels to account for the effect of presence of floor slabs on the specimen’s 

cracking pattern and behaviour.  

FE model of the specimen was constructed in VecTor2 using only rectangular elements with 

distributed reinforcing steel. Width of the rectangular elements located in the floor slab region 

was increased to model the effect of the floor slab on stiffness and cracking pattern of the model. 

The FE model was loaded using support displacements at the top to simulate the effect of 

hydraulic jacks pushing and pulling the test specimen at the top. Stress-strain relationship for 

reinforcing steel was adjusted to match the bare-bar characteristics reported in the test. Perfect 

bond between reinforcement and concrete material was assumed. Figure 2.8 shows 2D and 3D 

schematic views of the FE element model for specimen NTW1. 
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Figure 2.8 2D and 3D schematic views of FE model for specimen NTW1 in FormWorks. 

 

Brueggen measured curvature and shear strain over 4 panels along the height of the first storey, 2 

panels in the second storey, and 1 panel in the third and fourth storeys each with panel height 

being almost equal to the storey height. Curvature and shear strain profiles calculated from 

measurements during testing of specimen NTW1 with flange in tension are shown in Figure 2.9. 

The detailed instrumentation layout made observation of the direct link between curvature and 

shear strain possible. Curvature and shear strain profiles have similar shapes. High values of 

shear strain are concentrated in the plastic hinge region where large inelastic curvatures are 

encountered. This test evidence supports the theory of proportionality of curvature and shear 
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strain in flexural walls; a theory which is used to formulate a simple model for estimating shear 

strains in flexural walls later in this chapter. 

 

  

 

 

 

 

 

 

 

 

 

Figure 2.9 Strong link between curvature and shear strain profiles at various global drift levels 

observed during testing of specimen NTW1 with flange in tension. 

 

Curvature and shear strain profiles of specimen NTW1 with flange in tension at 1.5% global drift 

obtained from VecTor2 are plotted in Figure 2.10. Although VecTor2 did not predict wall 

maximum curvature and shear strain with great accuracy, it was able to capture the general trend 

of the curvature and shear strain profiles rather well. Similar observation in terms accuracy of 

VecTor2 predictions is made at other drift levels, hence the reason for excluding similar plots at 

other global drift levels. 
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Figure 2.10 VecTor2 prediction of curvature and shear strain profiles of specimen NTW1 with 

flange in tension at 1.5% global drift. 

 

Deformation components of specimen NTW1 with its flange in tension predicted by VecTor2 

are compared to those reported by Brueggen in Figure 2.11. As for the test results, the values 

reported by Brueggen as flexural, shear, and total deformation at the four storey levels are 

plotted. VecTor2 predictions of shear and total deformation are the output data from the FE 

analysis directly. In order to obtain flexural deformations fromVecTor2 analysis, the slope of the 

straight line connecting the two points on the faces of the wall was assumed to represent total 

rotation at that particular level. Curvature was assumed to be constant over the height of each 

row of elements and was calculated by dividing the change in rotation from the bottom to the top 

of the row of elements by elements’ height. Curvatures were then integrated to obtain flexural 

deformations. Deformation profiles obtained from VecTor2 and those reported by Brueggen 

were compared at matching total top displacement. Based on Figure 2.11, VecTor2 was able to 

predict both the flexural and shear deformation profiles with excellent accuracy when the FE 

model was pushed to the same total top displacement observed during the test. 
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Figure 2.11 VecTor2 predictions of deformation components of specimen NTW1 with flange in 

tension at a) 0.5%, b) 1.0%, c) 1.5%, and d) 2.0% global drift. 

 

2.5.3 Summary of verification study 

Based on the evidence provided in the previous two sections, it is therefore concluded that 

Vector2 is a reliable tool for predicting shear deformation of flexural walls even without going 

through the complexity of modeling truss-bars, bond or link elements, or other advanced 

modeling techniques. Furthermore, both test results revealed a direct link between shear strains 

and curvatures. Shear strains grew as more curvature was induced in the wall. The shape of the 

curvature and shear strain profiles also looked similar. This observation was further confirmed in 

analytical modeling using VecTor2. The close relation between shear strains and curvature will 

be used later in this chapter to develop a simple method for estimating shear strains in flexural 

walls. 
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2.6 Example 10-storey Rectangular Wall 

To further explore and better understand the behaviour of combined flexure and shear 

deformation of shear walls, a 10-storey rectangular wall was modeled in VecTor2.  

Figure 2.12 shows the VecTor2 FE model. Storey height was 2743 mm. The wall cross-section 

was 5500 mm by 300 mm. Concrete strength was chosen to be 40 MPa. The regions at the ends 

of the wall (shown in red) were more heavily reinforced for additional strength and curvature 

capacity. Vertical reinforcement in the end regions of the wall was modeled using three sets of 

truss-bars (shown in green) totalling to a vertical steel ratio of 2%. In the same region, 1% 

distributed horizontal reinforcement and 0.5% distributed out-of-plane reinforcement was 

provided. 0.5% distributed steel was modeled in all the three directions over the web region of 

the wall (shown in yellow). 

When a shear wall cracks under extreme deformation, the cracks usually do not propagate 

through floor slabs. Flexural (horizontal) cracks tend to form right above a floor slab and turn 

into flexural-shear (inclined) cracks as they move away from the slab. To account for the effect 

of the floor slabs on deformation profile of the shear wall, thickness of the elements located in 

the slab region was increased from 300 mm to 1500 mm with the element heights being equal to 

203 mm (8”). Distributed vertical steel in the slab region was reduced to 0.1% so that it did not 

add to the total vertical steel and hence the flexural strength of the wall; however, distributed 

horizontal steel was kept at 0.5% to account for contribution of slab horizontal reinforcement to 

restraining horizontal expansion of the wall. Slab elements are shown in grey in Figure 2.12. 

The bottom row of nodes was fixed against movement. Lateral load was applied at the top row of 

nodes using support displacements in order to carry out a displacement-controlled pushover 

analysis. Vertical point-loads totalling to a force of 0.10      were applied at the top of the wall 

and maintained throughout the analysis. Material models described in Section 2.2 were used to 

carry-out a monotonic pushover analysis with displacement steps of 5 mm. Sections below 

present analysis results and describe the observed behaviour of the FE model. 
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Figure 2.12 FE model of the 10-storey rectangular 

wall in FormWorks: a) elevation, b) lateral load 

modeled as support displacements at the top, and c) 

fixed support at the bottom. 

 

2.6.1 Calculating flexural and shear deformations 

Figure 2.13a shows the cracking pattern of the wall at 2% global drift. Thickness of the red lines 

within each element is an indicator of crack width while their orientation represents the crack 

angle. It is seen that floor slab regions have not cracked and hence serve their purpose of 

restraining crack propagation and force formation of flexural (horizontal) cracks right above 

each floor slab.  
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Figure 2.13 10-storey rectangular wall a) cracking pattern, b) deformation profile, c) curvature 

profile, and d) shear strain profile at 2% global drift. 
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Wall crack pattern is also a good visual tool for measuring wall plastic hinge length. The area 

with thicker red lines which indicate wider cracks is the plastic hinge region of the wall which in 

this case extends about two storeys high. 

Wall total deformation profile at 2% global drift is shown in Figure 2.13b. The dashed line in the 

same figure indicates flexural deformations which were computed as follows. The slope of the 

line connecting the two end-points of each row of nodes was used as the average rotation (slope) 

of the wall at that level. Curvature was assumed to be constant over the height of each row of 

elements and was calculated as the change in average wall rotation between the two rows of 

nodes bounding the row of elements under consideration divided by the element height. 

Figure 2.13c shows the curvature profile of the wall. It can be seen that inelastic curvatures are 

concentrated in the first two storeys of the wall which means that wall plastic hinge length is two 

storeys high. Curvatures were then integrated twice to obtain wall flexural deformations (i.e. 

shown as the dashed line in Figure 2.13b. 

Flexural deformations were then subtracted from total displacement profile to obtain shear 

deformations. Assuming constant shear strains over the height of elements, shear deformations 

were converted to the shear strain profile of the wall shown in Figure 2.13d. Note that due to the 

fixed-base condition of the wall and the assumed perfect bond between concrete and steel 

reinforcement, no additional deformation due to shear slip or bar slip occurred. 

Inelastic curvatures in the plastic hinge region of the wall vary approximately linearly as 

demonstrated by the dashed line in Figure 2.13c. Variation of shear strain in the wall plastic 

hinge region is also approximately linear. Note that smaller shear strains observed in the first 

three rows of elements is due to boundary effects caused by the fixed-base condition of the wall. 

The similarity in the shapes of Figure 2.13c and Figure 2.13d indicates that shear strain and 

curvature are closely related and approximately proportional. This observation is in agreement 

with test results reported in the literature presented at the beginning of this chapter. In fact, this 

direct link between curvature and shear strain is the basis for the simple methods for estimating 

wall shear strain presented in the remainder of this chapter. 



44 

 

2.6.2 General observations on shear wall behaviour 

Figure 2.14 shows strain profiles across the length of the wall at mid-height of the first storey at 

2% global drift. Figure 2.14b reveals that vertical strain profile across the length is close to a 

straight line which suggests plane sections remain plane after bending of the wall. This 

observation holds true throughout the wall plastic hinge region other than in the first few rows of 

elements near the base. It is also another indication of the behaviour of the wall being dominated 

by flexure.  

Element shear strains at first storey mid-height are plotted in Figure 2.14a. It is seen that shear 

strains are concentrated on the tension side of the wall with minimal shear strain observed on the 

compression side. The first two elements on the tension side fell into the wall’s end-regions 

where higher vertical steel was provided to model an end-column. Presence of large amount of 

steel forced cracks to be flatter (i.e. closer to horizontal) which resulted in smaller shear strains 

in the end-regions. Flexural-shear (inclined) cracks were observed throughout the web area with 

lower percentage of distributed vertical steel where high levels of shear strain were observed. 

Shear strains become smaller moving towards the compression zone due to decreasing vertical 

strains. See Section 2.7.1 for the combined effect of the crack angle and vertical strain on shear 

strain development. 

The dashed line in Figure 2.14a is the average shear strain of the corresponding row of elements. 

Average shear strain of each row of elements at 2% global drift is plotted in Figure 2.15 

alongside the shear strain profile obtained from subtracting flexural deformations from total 

deformations. It is obvious that the two approaches yield very similar results for the wall shear 

strain profile which proves that the assumptions made for calculating wall curvature profile and 

flexural deformations are valid. 

Plotted in Figure 2.14c are the horizontal strains. It is striking that horizontal strains are more 

than an order of magnitude smaller than vertical strains. Nearly zero horizontal strains exist on 

the tension side and those observed on the compression side do not compare with vertical or 

shear strains. This observation holds true throughout the wall plastic hinge length and is used 

later as a simplifying assumption in developing a simple model for estimating wall shear strain. 
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Figure 2.14 10-storey rectangular wall strains across the length at 2% global drift: a) shear 

strain, b) vertical strain, and c) horizontal strain at first storey mid-height. 
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Figure 2.15 Comparison of shear strain profiles obtained from nodal displacements and average 

element shear strain. 

 

Concrete stresses across the mid-height of the first storey are plotted in Figure 2.16 at 2% global 

drift. Figure 2.16a shows that very small shear stresses exist on the tension side of the wall 

despite the large shear strains encountered in that region. Due to large tensile strains and 

extensive opening of cracks on the tension face, very little shear can be transferred through the 

cracks compared to the shear carried on the compression side. This suggests that shear strains 

observed were not driven by shear stress.  

A similar observation holds true for horizontal stresses plotted in Figure 2.16c. Horizontal 

stresses on the tension face of the wall are about two orders of magnitude smaller than the ones 

on the compression side. 
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Figure 2.16 10-storey rectangular wall concrete stresses across the length at 2% global drift: a) 

shear stress, b) vertical stress, and c) horizontal stress at first storey mid-height. 
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From Figure 2.16b it can be seen that vertical tensile stresses over the majority of the tension 

side of the wall were small compared to vertical compressive stresses on the compression end. 

This was because at 2% global drift, due to very high tensile strains, concrete’s contribution 

from tension stiffening was very small and hence, the only tensile stresses were those carried by 

the steel. Having nearly constant element tensile stresses in the web confirms that the vertical 

web steel had fully yielded. No element vertical stress is shown in the tension end because the 

vertical reinforcement of the end regions was modeled as truss-bars. 

When the gravity system is to be checked for sufficient flexibility against imposed lateral 

deformations, it is only the deformation profile at floor slabs that are of importance since the 

gravity system is connected to the shear wall system by floor slabs. Average storey shear strain 

is a particularly useful measure of the shear deformation occurring in each storey. Expressing 

shear deformation as average storey shear strain which is equivalent to the storey shear drift is a 

good way to determine the proportion of flexural and shear deformation in each storey.  

Figure 2.17 shows the growth in average storey shear strain with global drift for the first three 

storeys of the wall. Clearly, shear strains in the first and second storeys increased dramatically as 

the wall was pushed while average shear strain of the third storey did not undergo noticeable 

change. This can be explained by looking at the curvature and shear strain profiles of the wall. 

 

 

 

 

 

 

 

 

Figure 2.17 10-storey wall average shear strains at various global drift levels. 
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The plastic hinge length of the wall was two storeys high. After the wall yield curvature had 

been reached at the base, any further drift was a result of concentration of inelastic curvature in 

the plastic hinge zone while the elastic curvatures remain nearly constant. Increase in curvature 

forced an increase in vertical strains in the plastic hinge region which caused growth of shear 

strains as the wall was pushed beyond yielding. In this example, because the first two storeys 

were within the plastic hinge zone, their average shear strains kept increasing while in the third 

storey where curvatures remained nearly elastic, average shear strain did not change with global 

drift. 

Since shear strains are a result of large vertical strains accompanied by inclined cracks, it is 

useful to plot average storey shear strains against maximum tensile strain (Figure 2.18). A trend 

similar to Figure 2.17 is observed which was mainly due to global drift being approximately 

linear in wall maximum tensile strain after the wall had yielded at its base. 

 

 

 

 

 

 

 

Figure 2.18 10-storey rectangular wall average shear strain at various maximum tensile strains. 

 

The purpose of this section was to explain the general behaviour of shear deformation of flexural 

walls. The fundamental observations discussed in this section are utilized in formulating a simple 

method for estimating shear strain in flexural shear walls in the following section. 
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2.7 A Simple Method for Estimating Average Storey Shear Strain 

A simple method for estimating average shear strain in each storey of a flexural shear wall is 

presented and its accuracy is examined using the 10-storey rectangular wall example described 

in the previous section. For this purpose, each storey of the rectangular wall is treated as a single 

biaxial stress Reinforced Concrete (RC) element having a shear strain close to the average storey 

shear strain. The following sections describe the method. 

2.7.1 Shear strain of a biaxial stress RC element 

Figure 2.19 shows the definition of axes used to measure total strains in a biaxial stress RC 

element. The X axis is parallel to the longitudinal axis of the wall and vertical reinforcements. 

Horizontal reinforcements are parallel to the Y axis. It is assumed that several cracks form over a 

single element so that all formulation could be made for average strains over a gage length equal 

to the element dimensions. Cracks form an angle Ө with the X axis.  

 

 

 

 

 

Figure 2.19 Definition of strain axes for a bi-axial stress reinforced concrete element. 

 

According to Figure 2.14, for a RC element located on the tension side of a shear wall’s plastic 

hinge region, horizontal strains are a couple of orders of magnitude smaller than vertical strains. 

Note that according to the same figure, this is the location where large shear strain is 

concentrated. If horizontal strains are neglected in comparison with vertical strains, the Mohr 

circle of strains for such an element can be approximated as the one shown in Figure 2.20. 
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Figure 2.20 Mohr’s circle for strains of a biaxial stress element with near zero horizontal strain. 

 

Having made this simplifying assumption, shear strain of such an element is given by 

                   Eq 2.7 

Where εx is the vertical tensile strain and Ө is the principle strain angle measured from the 

vertical axis. Eq 2.7  shows that shear strain of a typical biaxial stress RC element located on the 

tension side in a shear wall’s plastic hinge region is comprised of the combination of two parts. 

First is the vertical strain εx. The larger the vertical strain, the greater the element shear strain 

will be. Secondly, the steeper (smaller than 90°) the principle strain angle is, more shear strain 

will be produced for the same vertical strain. This is consistent with both the theory and the 

literature review of experimental evidence presented earlier in this chapter. 

If an entire storey of the shear wall is to be modeled as a single biaxial stress element, estimates 

of the average storey vertical strain and the average storey principle strain angle need to be made 

for Eq 2.7 to give a good estimate of the average storey shear stress. The procedure for 

estimating average storey vertical strain and principle strain angle is present in the next two 

sections. 
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2.7.2 Estimating average storey vertical strain 

Figure 2.14 showed that vertical strains vary approximately linearly across the wall length (i.e. 

plane sections remain plane after bending). This observation holds true throughout the plastic 

hinge region where the majority of the shear strain occurs. With the assumption of linearly 

varying vertical strain across the wall length, vertical strain profile across the wall section can be 

found knowing the curvature and the concrete compression depth (see Figure 2.21). In this case, 

the average vertical strain across the section would be the vertical strain of the centroidal axis 

given by 

     
  
 

    
Eq 2.8 

In this equation,   is the curvature at the desired location,    is the wall length, and c is the 

concrete compression depth. According to Figure 2.13, inelastic curvatures concentrated in the 

wall plastic hinge region vary approximately linearly which means the value of the average 

storey curvature would be equal to the curvature at storey mid-height. Furthermore, if concrete 

compression depth does not change significantly over the height of the storey, linear variation of 

curvature would result in linear variation of vertical strain of the centroidal axis. Hence, if 

concrete compression depth is relatively constant over the storey height, the value of the 

curvature at storey mid-height and an appropriate value for the concrete compression depth can 

be used to obtain the average storey vertical strain. 

 

 

 

 

 

Figure 2.21 Linearly varying vertical strain assumption (i.e. plane sections remain plane). 
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Figure 2.22 shows concrete compression depth of the 10-storey rectangular wall cross-section 

obtained using three different methods. The triangular marks are data points obtained from linear 

interpolation between tensile and compressive vertical strains at the ends of the wall from the 

VecTor2 model. The solid line is obtained from section analysis using Response-2000. The 

dashed line is the ultimate concrete compression depth calculated using the equivalent 

rectangular stress block for concrete for the axial load of 0.1      applied to the section. As 

expected, the ultimate concrete compression depth envelopes results obtained from section 

analysis. Also, the variation of concrete compression depth from the ultimate value is not great 

for curvatures between 1.5 and 4.0 rad/km which is the range of curvatures observed throughout 

the wall plastic hinge range (see Figure 2.13). This suggests that the ultimate concrete 

compression depth is a good estimate for ‘c’ to be used in Eq 2.7. Note that using a smaller value 

for ‘c’ will result in a larger vertical strain which will give a larger (safer) estimate of average 

storey shear strain for the same average principle strain angle Ө.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.22 Concrete compression depth of the 10-storey rectangular wall section. 
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Data points obtained from VecTor2 however suggest noticeably smaller concrete compression 

depth than the ultimate value. The reason lies in the fundamental differences of analysis 

assumptions made by VecTor2 and the simple section analysis such as Response-2000. VecTor2 

is a FE analysis program which accounts for concrete strength enhancement resulting from 

confinement or a biaxial state of stress. This means that at large maximum concrete compressive 

strains, concrete compressive stresses can exceed     by more than 25%. Being able to sustain 

higher compressive stresses meant that less concrete area was needed to carry the axial load 

imposed on the wall which resulted in smaller concrete compression depth. 

This explanation can be further enhanced by looking at Figure 2.23. Up to a curvature of 3.5 

rad/km, the moment-curvature plots obtained from VecTor2 and Response-2000 are quite 

similar. As maximum curvature exceeds 4.0 rad/km, bending moment strength given by 

Response-2000 starts to decrease as concrete goes into the compression-softening region of its 

stress-strain relation while the strength obtained from VecTor2 keeps increasing due 

confinement in the horizontal and out-of-plane directions and their strength enhancement effects 

on concrete. This effect also results in curvature capacities obtained from the two methods to be 

different. If a large number of elements across the length are used in VecTor2 and strength 

enhancement is neglected, the two moment-curvature responses will converge. 

 

 

 

 

 

 

 

 

 

Figure 2.23 Moment-curvature response of the 10-storey rectangular wall section. 
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2.7.3 Estimating average storey strain angle 

Element principle strain angles for the first three storeys of the 10-storey rectangular wall 

described in Section 2.6 are plotted in Figure 2.24 at 2% global drift. The rows of elements in the 

slab region have been excluded from the plots due to their distinct properties. 

A similar pattern can be observed for variation of principle strain angle across the length of the 

wall. Neglecting the first three rows of elements in the first storey due to effects of fixity at the 

base, element principle strain angle tends to be relatively constant over the majority of the 

tension (left) side of the wall and abruptly deceases to near-zero values in the compression zone. 

The same pattern is seen throughout the second and third storeys with even less scatter in 

element principle strain angles. Note that elements with high shear strains are all on the tension 

side where variation of principle strain angle across the length is minimal. This suggests that 

taking the average of element principle strain angles over the tension zone of each storey can 

give a good estimate of the average storey principle strain angle to be used in Eq 2.7.  

Figure 2.25 shows the average principle strain angles calculated for the first three storeys of the 

10-storey rectangular wall at various global drift levels with the first three rows of elements of 

the first storey neglected to exclude effects of the fixed base. The angles range from 73° to 84°. 

Average principle strain angle of the first storey keeps dropping as global drift increases. The 

same behaviour is observed in the second storey beyond 1% global drift when the plastic hinge 

length has developed well above the first and into the second storey. Average principle strain 

angle of the third storey does not undergo noticeable change with global drift which is mainly 

due to strains remaining elastic in that region (i.e. wall plastic hinge does not extend into the 

third storey). 

With the average storey principle strain angles in hand and the average storey vertical strain 

calculated using average storey curvature and ultimate concrete compression depth, average 

storey shear strain can be estimated using Eq 2.7. Average shear strains for the first three storeys 

of the 10-storey rectangular wall were estimated at various global drifts and compared against 

the values obtained from VecTor2. The results are summarized in Figure 2.26 in terms of global 

drift and in Figure 2.27 in terms of maximum tensile strain at the base of the wall. 
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Figure 2.24 10-storey rectangular wall element strain angles at 2% global drift for: a) 1
st
, b) 2

nd
, 

and c) 3
rd

 storeys. 
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Figure 2.25 10-storey rectangular wall average storey strain angles from VecTor2. 

 

As shown in Figure 2.26 and Figure 2.27, the simple method was capable of estimating average 

shear strain of the first storey with impeccable accuracy. An almost exact match was achieved 

between global drifts of 0.75% and 1.50%. The accuracy of the prediction decreased in the case 

of the second storey; however, the simple method still picked-up the pattern in variation in 

average storey shear strain with global drift (and maximum tensile strain) quite well. Also, the 

relatively smaller magnitude of average shear strains of the second storey compared to those 

encountered in the first storey makes the error in the estimation less significant. In addition, the 

simple method always gave a larger estimate of average storey shear strain which was 

reasonably conservative. As for the third storey, the simple method estimated almost double the 

amount of observed shear strain mainly due to using too small of a compression depth. However, 

the magnitude of the shear strains where so small that they can be entirely discarded. 

The simple method for estimating average storey shear strain using average principle strain angle 

and average centroidal strain described earlier proved to be very accurate in this example and 

hence, a promising start to developing a simple model for estimating average shear strain of 

flexural shear walls. In the following sections, basic concepts introduced in this section are 

applied to a series of analysis on flexural shear walls with diverse properties. The analysis results 

are then combined to shape the shear strain model in its final form. 
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Figure 2.26 Estimating shear strain of the 10-storey rectangular wall at various global drift 

levels using average storey strain angles obtained from VecTor2. 
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Figure 2.27 Estimating shear strain of the 10-storey rectangular wall at various maximum tensile 

strains at the base using average storey strain angles obtained from VecTor2. 
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2.8 Parametric Study on Average Storey Principle Strain Angle 

Section 2.7 showed that accurate estimates of average storey shear strain can be made by using 

the average vertical strain of the centroidal axis and the average storey principle strain angle in 

Eq 2.7. Average storey centroidal vertical strain was in turn calculated using the ultimate 

concrete compression depth and the average storey curvature assuming plane sections remain 

plane. The average of element principle strain angles in each storey was used as the strain angle 

in Eq 2.7 to make the estimate. 

There has been extensive research on estimating wall plastic hinge length resulting in several 

empirical relations readily available to the design engineer. Top displacement of a shear wall can 

be calculated using Response Spectrum Analysis (RSA) or other equivalent static methods. 

Contribution of shear deformation to the top displacement of a flexural wall is negligible in 

comparison to the total flexural deformation. With the wall plastic hinge length (height of 

linearly varying inelastic curvatures) and yield curvature available, one can obtain wall 

maximum curvature and hence the curvature profile of the wall in the plastic hinge region to 

meet the desired inelastic rotation demand. Ultimate concrete compression strain depth can also 

be computed easily by a simple section analysis using equivalent stress block for concrete. This 

means that average storey centroidal vertical strain can be calculated from information already 

available to the designer.  

As for the principle strain angles however, if FE analysis is not conducted, average storey 

principle strain angles need to be estimated using other methods to make estimating average 

storey shear strain using Eq 2.7 possible. In this section, parameters that could potentially 

influence the average storey strain angle are identified and the effect of each parameter on the 

average storey strain angle is examined. This will facilitate formulating the simple method for 

estimating average storey shear strain of flexural shear walls presented in Section 2.9. To 

simplify the estimation process, a single value for the average strain angle is used throughout the 

wall plastic hinge region. The average strain angle is back-calculated such that an exact estimate 

of the value of average first storey shear strain is achieved. The same angle is then used to 

estimate average storey shear strain in storeys above the first storey and the accuracy of the 

estimation is compared against values obtained from VecTor2. 
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2.8.1 Effect of vertical compressive stress 

The first parameter to be investigated is the amount of compressive vertical stress on the wall. 

The amount of axial load carried by the wall can significantly disturb the magnitude and 

distribution of vertical strains over the entire wall and hence, it can possibly affect average storey 

shear strains. Axial stress is expressed as a percentage of concrete compressive strength,    , 

with 5% being a low value, 10% being an average value, and 20% as a high value. 

Analysis was conducted on both rectangular and flanged walls. Table 2.5 and Table 2.6 

summarize properties of rectangular and flanged walls considered respectively. All walls were 

10 storeys tall with a uniform storey height of 2743 mm. Wall length was kept constant at 5500 

mm which resulted in a wall aspect ratio of 5.0. Compressive axial load was applied at the top of 

the wall resulting in constant average axial stress throughout the walls’ height. Point loads in the 

form of support displacements were applied at the top of the walls and the walls were pushed to 

large displacement ductility.  

Additional vertical and horizontal reinforcing steel was provided in the end 450 mm of the 

rectangular walls to increase both strength and ductility. Flange width of the flanged walls was 

2000 mm with uniform stress distribution over the flange area due to the 2D limitation of 

VecTor2. Vertical reinforcement in the end-regions of rectangular walls and flange region of 

flanged walls was modeled as truss-bars to ensure continuity of vertical steel strain in those 

regions. 0.5% distributed reinforcing steel was modeled in all three orthogonal directions of the 

web region of both rectangular and flanged walls.  

To restrict cracks from propagating through the floor slabs, the width of elements in the slab 

region was chosen to be five times the width of the wall web region such that the high axial in-

plane stiffness of the slab prevented it from cracking. However, to make sure that vertical steel in 

the slab did not add to flexural stiffness and strength of the wall because of the 2D analysis space 

in VecTor2, vertical reinforcement in the slab region was chosen to be one-fifth of that modeled 

in the web region of the wall to compensate for the slab width being five times the web 

thickness. All other parameters were kept constant as axial compressive stress varied from 5% to 

20% of concrete compressive strength. 
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Wall ID

Cross-section 

(mm)

Elevation 

Layout

P/f'cAg 

(%)

Concrete 

Properties

Reinforcing

Steel 

Properties

ρx ρy ρz ρx ρy ρz ρx ρy ρz

10STRW-P5 5 f'c=40 MPa 1.0% 2.0% 0.5% 0.5% 0.5% 0.5% 0.5% 0.1% 0.5%

10STRW-P10 10 1.0% 2.0% 0.5% 0.5% 0.5% 0.5% 0.5% 0.1% 0.5%

10STRW-P20 20 1.0% 2.0% 0.5% 0.5% 0.5% 0.5% 0.5% 0.1% 0.5%

End Regions Web Region

Fy=400 MPa 

Fu=640 MPa 

Es=200 GPa 

Esh=3 GPa 

esh=0.007

Hw=27432 mm 

Hst=2743 mm 

10 storey wall

VecTor2 

default 

values used 

for other 

parameters

Distributed Steel Reinforcement Layout

Slab Region
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Wall ID Cross-section (mm)

Elevation 

Layout

P/f'cAg 

(%)

Concrete 

Properties

Reinforcing

Steel 

Properties

ρx ρy ρz ρx ρy ρz ρx ρy ρz

10STFW-P5 5 f'c=40 MPa 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.1% 0.5%

10STFW-P10 10 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.1% 0.5%

10STFW-P20 20 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.1% 0.5%

Distributed Steel Reinforcement Layout

Flange Region Web Region Slab Region

Hw=27432 mm 

Hst=2743 mm 

10 storey wall

Fy=400 MPa 

Fu=640 MPa 

Es=200 GPa 

Esh=3 GPa 

esh=0.007

VecTor2 

default 

values used 

for other 

parameters
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Table 2.3 and Table 2.4 summarize analysis results for rectangular and flanged walls 

respectively. All the parameters needed to make an estimate of average storey shear strain using 

Eq 2.7 are given in the tables. As expected, ultimate concrete compression depth ‘c’ increased 

dramatically as the average compressive axial stress on the wall was increased from 5% to 20% 

of     in rectangular walls. This was because larger concrete area was needed to carry the 

additional axial load imposed on the wall. However, the change in concrete compression depth 

was not as great in the case of flanged walls due to the large flange width except for the case 

with an axial load of 0.20      where the compression depth exceeded the flange depth and 

caused a large increase in concrete compression depth due to relatively small web width. 

Average storey curvatures were computed by fitting a straight line to the inelastic curvatures in 

the wall plastic hinge region. Average centroidal vertical strain, ε
*
cen, was then computed from

average storey curvature and the ultimate concrete compression depth. As described earlier, the 

average strain angle was back-calculated such that an exact estimate of the value of average first 

storey shear strain was achieved. The same angle was then used to estimate average storey shear 

strain in storeys above the first storey. Because the plastic hinge region did not extend into the 

third storey in any case, only results for the first 2 storeys are presented. The back-calculated 

average strain angles are close to the average of element principle strain angles in the first storey 

of the wall in all cases. Furthermore, the two parameters demonstrate a similar trend. Estimations 

of second storey average shear strain using the average strain angle back-calculated to give a 

perfect match for average first storey shear strain are also reasonably close to those obtained 

from VecTor2. These statements hold true both rectangular and flanged walls. 

To further examine the effect of average compressive stress one average strain angle, the back-

calculated average strain angles are plotted against wall maximum tensile strain. Figure 2.28 and 

Figure 2.29 show these results for rectangular and flanged walls respectively. In both cases, the 

average strain angle decreased as the wall maximum tensile strain increased. This means that 

more shear strain per unit vertical strain was achieved at higher maximum tensile strains. 

According to Figure 2.28, higher levels of average compressive axial stresses on the wall 

resulted in smaller average strain angles. However, the effect was not seen to be substantial. A 

similar observation was made for the case of flanged walls with the average strain angle being 

affected by the average axial compressive stress even less than the case of rectangular walls. 
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Wall Type Drift εt
max c (mm) γVecTor2

Φavg

(rad/km)

ε
*

cen. γEstimate γVecTor2

Φavg

(rad/km)

ε
*

cen. γEstimate

Back-

calculated

VecTor2

0.50% 0.0076 724 0.0001 0.90 0.0018 0.0001 0.0002 0.49 0.0010 0.0001 88.5 83.1

0.75% 0.0090 724 0.0007 1.46 0.0030 0.0007 0.0002 0.53 0.0011 0.0003 83.1 82.7

1.00% 0.0131 724 0.0013 2.26 0.0046 0.0013 0.0003 0.75 0.0015 0.0004 81.9 80.5

1.25% 0.0165 724 0.0021 2.95 0.0060 0.0021 0.0006 1.02 0.0021 0.0007 80.5 79.4

1.50% 0.0203 724 0.0031 3.73 0.0075 0.0031 0.0010 1.42 0.0029 0.0012 78.8 77.3

1.75% 0.0233 724 0.0040 4.37 0.0089 0.0040 0.0015 1.88 0.0038 0.0017 77.8 75.9

2.00% 0.0250 724 0.0053 4.86 0.0098 0.0053 0.0020 2.21 0.0045 0.0024 75.9 74.3

0.50% 0.0077 1062 0.0001 0.92 0.0016 0.0001 0.0002 0.49 0.0008 0.0001 87.9 82.3

0.75% 0.0081 1062 0.0006 1.46 0.0025 0.0006 0.0002 0.56 0.0009 0.0002 83.7 83.6

1.00% 0.0120 1062 0.0011 2.15 0.0036 0.0011 0.0003 0.68 0.0012 0.0003 81.6 81.5

1.25% 0.0159 1062 0.0018 2.98 0.0050 0.0018 0.0005 1.03 0.0017 0.0006 80.0 80.2

1.50% 0.0196 1062 0.0027 3.69 0.0062 0.0027 0.0008 1.29 0.0022 0.0009 78.3 78.6

1.75% 0.0228 1062 0.0035 4.34 0.0073 0.0035 0.0012 1.59 0.0027 0.0013 77.3 78.0

2.00% 0.0250 1062 0.0045 5.01 0.0085 0.0045 0.0016 2.10 0.0036 0.0019 76.1 74.2

0.50% 0.0049 1754 0.0002 0.75 0.0007 0.0002 0.0002 0.49 0.0005 0.0001 82.8 80.9

0.75% 0.0079 1754 0.0003 1.52 0.0015 0.0003 0.0002 0.56 0.0006 0.0001 83.9 84.6

1.00% 0.0114 1754 0.0009 2.28 0.0023 0.0009 0.0002 0.76 0.0008 0.0003 79.3 79.9

1.25% 0.0143 1754 0.0014 2.92 0.0029 0.0014 0.0003 1.01 0.0010 0.0005 77.3 79.1

1.50% 0.0184 1754 0.0021 3.78 0.0038 0.0021 0.0005 1.31 0.0013 0.0007 75.3 77.2

1.75% 0.0217 1754 0.0028 4.49 0.0045 0.0028 0.0007 1.48 0.0015 0.0009 73.9 76.0

2.00% 0.0231 1754 0.0041 5.00 0.0050 0.0041 0.0018 1.78 0.0018 0.0021 75.6 73.6

Average first 

storey strain

angle (deg)

1st storey

10STRW-P20

2nd storey

10STRW-P5

10STRW-P10
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Wall Type Drift εt
max c (mm) γVecTor2

Φavg

(rad/km)

ε
*

cen. γEstimate γVecTor2

Φavg

(rad/km)

ε
*

cen. γEstimate

Back-

calculated

VecTor2

0.29% 0.0084 199 0.0001 0.72 0.0018 0.0001 0.0001 0.33 0.0008 0.0001 87.7 83.6

0.44% 0.0092 199 0.0004 1.13 0.0029 0.0004 0.0001 0.34 0.0009 0.0001 85.9 84.2

0.55% 0.0107 199 0.0009 1.44 0.0037 0.0009 0.0002 0.36 0.0009 0.0002 83.2 82.7

0.69% 0.0127 199 0.0013 1.49 0.0038 0.0013 0.0002 0.34 0.0009 0.0003 80.4 81.4

0.83% 0.0150 199 0.0018 2.03 0.0052 0.0018 0.0002 0.41 0.0010 0.0004 80.5 80.7

0.96% 0.0170 199 0.0022 2.56 0.0065 0.0022 0.0004 0.71 0.0018 0.0006 80.7 80.3

1.10% 0.0189 199 0.0028 2.77 0.0071 0.0028 0.0006 0.66 0.0017 0.0007 79.2 79.6

0.29% 0.0083 309 0.0001 0.73 0.0018 0.0001 0.0001 0.33 0.0008 0.0001 87.6 83.5

0.44% 0.0090 309 0.0004 0.99 0.0024 0.0004 0.0002 0.34 0.0008 0.0001 85.6 83.7

0.55% 0.0100 309 0.0008 1.26 0.0031 0.0008 0.0002 0.34 0.0008 0.0002 82.6 81.9

0.69% 0.0121 309 0.0013 1.64 0.0040 0.0013 0.0002 0.37 0.0009 0.0003 81.1 80.9

0.83% 0.0146 309 0.0017 2.18 0.0053 0.0017 0.0003 0.52 0.0013 0.0004 81.2 80.5

0.96% 0.0166 309 0.0022 2.48 0.0060 0.0022 0.0004 0.55 0.0013 0.0005 80.0 79.2

1.10% 0.0208 309 0.0030 3.18 0.0078 0.0030 0.0006 0.82 0.0020 0.0008 79.5 77.9

0.29% 0.0049 843 0.0002 0.57 0.0011 0.0002 0.0002 0.33 0.0006 0.0001 84.7 80.5

0.44% 0.0086 843 0.0002 1.14 0.0022 0.0002 0.0002 0.34 0.0007 0.0001 86.7 84.3

0.55% 0.0092 843 0.0006 1.37 0.0026 0.0006 0.0002 0.36 0.0007 0.0002 83.7 83.4

0.69% 0.0114 843 0.0010 1.48 0.0028 0.0010 0.0002 0.34 0.0007 0.0002 79.8 80.9

0.83% 0.0138 843 0.0015 2.04 0.0039 0.0015 0.0002 0.41 0.0008 0.0003 79.4 79.5

0.96% 0.0159 843 0.0019 2.40 0.0046 0.0019 0.0003 0.48 0.0009 0.0004 78.8 79.4

1.10% 0.0183 843 0.0024 2.82 0.0054 0.0024 0.0004 0.58 0.0011 0.0005 78.0 78.8

10STFW-P20

2nd storey

10STFW-P5

10STFW-P10

Average first 

storey strain

angle (deg)

1st storey
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Figure 2.28 Effect of compressive axial stress level on average first storey strain angle of 10-

storey rectangular walls. 

Figure 2.29 Effect of compressive axial stress level on average first storey strain angle of 10-

storey flanged walls. 

It is therefore concluded that the effect of average axial compressive stress on the wall on the 

average strain angle is not substantial and does not require further attention. 
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2.8.2 Effect of vertical steel ratio 

Figure 2.14 demonstrated that horizontal strains in the web region were a couple of orders of 

magnitude smaller than vertical strains in the region. With the horizontal reinforcement of the 

web region not highly stressed, investigating their influence on the average strain angle is un-

necessary. 

Because vertical strains come into play directly in Eq 2.7 and on the tension side of the wall, 

vertical reinforcements play a key role in magnitude and distribution of vertical strains, the 

amount vertical steel is the next parameter to be studied. Looking back at Figure 2.14 one can 

see that the majority of the shear strain is concentrated in elements in the web-region of the wall. 

Therefore, there is no point in investigating the influence of vertical steel amount in the end 

regions of rectangular walls or in the flange region of flanged walls on the average principle 

strain angle. Vertical steel in the web region on the other hand are severely stressed which 

demands a study on their effect on the average principle strain angle. 

Analysis was conducted on both rectangular and flanged walls with their properties summarized 

in Table 2.5 and Table 2.6 respectively. The walls were essentially the same as those presented 

in Section 2.8.1 with an average compressive axial stress of 0.10     . The amount of 

distributed vertical steel in the web region was varied from 0.25% to 1.00% as the extremes with 

0.50% chosen as an intermediate value.  

Table 2.7 and Table 2.8 present analysis results for rectangular and flanged walls respectively. 

As expected, walls with larger amount of distributed vertical steel in the web had a larger 

concrete compression depth. This was because a larger concrete compression resultant force was 

required to balance the extra tensile stresses caused by the addition of distributed steel in the 

web. All the parameters needed for estimating average storey shear strains are given in the 

tables. 

Again, with the average principle strain angles adjusted to give the exact first storey average 

shear strain, estimates of the second storey average shear strain is within a reasonable tolerance 

and the back-calculated average strain angles are close to the average of element principle strain 

angles over the first storey obtained from VecTor2. 
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Wall ID

Cross-section 

(mm)

Elevation 

Layout

P/f'cAg 

(%)

Concrete 

Properties

Reinforcing

Steel 

Properties

ρx ρy ρz ρx ρy ρz ρx ρy ρz

10STRW-WS25 10 f'c=40 MPa 1.0% 2.0% 0.5% 0.25% 0.5% 0.5% 0.5% 0.1% 0.5%

10STRW-WS50 10 1.0% 2.0% 0.5% 0.50% 0.5% 0.5% 0.5% 0.1% 0.5%

10STRW-WS100 10 1.0% 2.0% 0.5% 1.00% 0.5% 0.5% 0.5% 0.1% 0.5%

Hw=27432 mm 

Hst=2743 mm 

10 storey wall

Fy=400 MPa 

Fu=640 MPa 

Es=200 GPa 

Esh=3 GPa 

esh=0.007

VecTor2 

default 

values used 

for other 

parameters

Distributed Steel Reinforcement Layout

End Regions Web Region Slab Region
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Wall ID Cross-section (mm)

Elevation 

Layout

P/f'cAg 

(%)

Concrete 

Properties

Reinforcing

Steel 

Properties

ρx ρy ρz ρx ρy ρz ρx ρy ρz

10STFW-WS25 10 f'c=40 MPa 0.5% 0.5% 0.5% 0.25% 0.5% 0.5% 0.5% 0.1% 0.5%

10STFW-WS50 10 0.5% 0.5% 0.5% 0.50% 0.5% 0.5% 0.5% 0.1% 0.5%

10STFW-WS100 10 0.5% 0.5% 0.5% 1.00% 0.5% 0.5% 0.5% 0.1% 0.5%

Distributed Steel Reinforcement Layout

Flange Region Web Region Slab Region

Hw=27432 mm 

Hst=2743 mm 

10 storey wall

Fy=400 MPa 

Fu=640 MPa 

Es=200 GPa 

Esh=3 GPa 

esh=0.007

VecTor2 

default 

values used 

for other 

parameters



7
1
 

T
a
b

le
 2

.7
 A

n
aly

sis resu
lts: 1

0
-sto

re
y
 rectan

g
u
lar w

alls w
ith

 v
ario

u
s am

o
u
n
ts o

f d
istrib

u
ted

 

v
ertical rein

fo
rcem

en
t in

 th
e w

eb
 reg

io
n

 (N
o
te: v

alu
es o

f ‘c’ rep
o
rted

 w
ere u

sed
 to

 b
ack

-

calcu
late th

e av
erag

e sto
re

y
 strain

 an
g
le an

d
 d

o
 n

o
t rep

resen
t th

e actu
al co

n
crete co

m
p
ressio

n
 

d
ep

th
 o

f th
e w

all at th
e g

iv
en

 g
lo

b
al d

rift). 

Wall Type Drift εt
max c (mm) γVecTor2

Φavg

(rad/km)

ε
*

cen. γEstimate γVecTor2

Φavg

(rad/km)

ε
*

cen. γEstimate

Back-

calculated

VecTor2

0.50% 0.0082 941 0.0001 0.90 0.0016 0.0001 0.0002 0.49 0.0009 0.0001 87.8 85.7

0.75% 0.0092 941 0.0007 1.65 0.0030 0.0007 0.0002 0.60 0.0011 0.0003 83.3 84.1

1.00% 0.0140 941 0.0014 2.52 0.0046 0.0014 0.0003 0.86 0.0016 0.0005 81.7 80.7

1.25% 0.0173 941 0.0020 3.24 0.0059 0.0020 0.0004 1.29 0.0023 0.0008 80.7 79.6

1.50% 0.0211 941 0.0028 3.79 0.0069 0.0028 0.0007 1.19 0.0021 0.0009 78.7 78.3
1.75% 0.0241 941 0.0036 4.56 0.0083 0.0036 0.0009 1.66 0.0030 0.0013 78.1 77.4

2.00% 0.0254 941 0.0049 5.09 0.0092 0.0049 0.0014 1.98 0.0036 0.0019 76.0 75.9

0.50% 0.0077 1062 0.0001 0.92 0.0016 0.0001 0.0002 0.49 0.0008 0.0001 87.9 82.3

0.75% 0.0081 1062 0.0006 1.46 0.0025 0.0006 0.0002 0.56 0.0009 0.0002 83.7 83.6

1.00% 0.0120 1062 0.0011 2.15 0.0036 0.0011 0.0003 0.68 0.0012 0.0003 81.6 81.5

1.25% 0.0159 1062 0.0018 2.98 0.0050 0.0018 0.0005 1.03 0.0017 0.0006 80.0 80.2

1.50% 0.0196 1062 0.0027 3.69 0.0062 0.0027 0.0008 1.29 0.0022 0.0009 78.3 78.6

1.75% 0.0228 1062 0.0035 4.34 0.0073 0.0035 0.0012 1.59 0.0027 0.0013 77.3 78.0

2.00% 0.0250 1062 0.0045 5.01 0.0085 0.0045 0.0016 2.10 0.0036 0.0019 76.1 74.2

0.50% 0.0043 1260 0.0002 0.72 0.0011 0.0002 0.0003 0.49 0.0007 0.0001 84.8 78.8

0.75% 0.0073 1260 0.0003 1.41 0.0021 0.0003 0.0002 0.61 0.0009 0.0001 85.6 82.0

1.00% 0.0101 1260 0.0009 2.05 0.0030 0.0009 0.0003 0.90 0.0013 0.0004 81.9 79.6

1.25% 0.0132 1260 0.0014 2.66 0.0040 0.0014 0.0006 1.13 0.0017 0.0006 80.1 79.0

1.50% 0.0170 1260 0.0022 3.47 0.0052 0.0022 0.0009 1.57 0.0023 0.0010 78.3 77.0

1.75% 0.0201 1260 0.0031 4.20 0.0063 0.0031 0.0013 2.08 0.0031 0.0015 76.9 75.5

2.00% 0.0231 1260 0.0041 5.01 0.0075 0.0041 0.0018 2.55 0.0038 0.0021 75.6 73.6

1st storey 2nd storey

Average 1st 

storey strain

angle (deg)

10STRW-WS25

10STRW-WS50

10STRW-WS100
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Wall Type Drift εt
max c (mm) γVecTor2

Φavg

(rad/km)

ε
*

cen. γEstimate γVecTor2

Φavg

(rad/km)

ε
*

cen. γEstimate

Back-

calculated

VecTor2

0.29% 0.0113 286 0.0002 0.87 0.0022 0.0002 0.0001 0.33 0.0008 0.0001 87.4 78.8

0.44% 0.0117 286 0.0004 1.19 0.0029 0.0004 0.0002 0.34 0.0008 0.0001 85.9 77.7

0.55% 0.0137 286 0.0006 1.48 0.0036 0.0006 0.0002 0.34 0.0008 0.0001 85.5 76.8

0.69% 0.0142 286 0.0009 1.66 0.0041 0.0009 0.0002 0.34 0.0008 0.0002 83.6 80.0

0.83% 0.0169 286 0.0014 2.19 0.0054 0.0014 0.0002 0.37 0.0009 0.0002 82.8 79.8
0.96% 0.0182 286 0.0019 2.47 0.0061 0.0019 0.0003 0.42 0.0010 0.0003 81.5 79.8

1.10% 0.0202 286 0.0025 2.82 0.0070 0.0025 0.0003 0.51 0.0012 0.0005 80.0 79.6

0.29% 0.0083 309 0.0001 0.73 0.0018 0.0001 0.0001 0.33 0.0008 0.0001 87.6 83.5

0.44% 0.0090 309 0.0004 0.99 0.0024 0.0004 0.0002 0.34 0.0008 0.0001 85.6 83.7

0.55% 0.0100 309 0.0008 1.26 0.0031 0.0008 0.0002 0.34 0.0008 0.0002 82.6 81.9

0.69% 0.0121 309 0.0013 1.64 0.0040 0.0013 0.0002 0.37 0.0009 0.0003 81.1 80.9

0.83% 0.0146 309 0.0017 2.18 0.0053 0.0017 0.0003 0.52 0.0013 0.0004 81.2 80.5

0.96% 0.0166 309 0.0022 2.48 0.0060 0.0022 0.0004 0.55 0.0013 0.0005 80.0 79.2

1.10% 0.0208 309 0.0030 3.18 0.0078 0.0030 0.0006 0.82 0.0020 0.0008 79.5 77.9

0.29% 0.0064 356 0.0002 0.63 0.0015 0.0002 0.0002 0.33 0.0008 0.0001 87.0 80.3

0.44% 0.0079 356 0.0003 1.03 0.0025 0.0003 0.0002 0.34 0.0008 0.0001 87.1 82.8

0.55% 0.0088 356 0.0006 1.27 0.0030 0.0006 0.0002 0.36 0.0009 0.0002 84.0 81.3

0.69% 0.0107 356 0.0010 1.35 0.0032 0.0010 0.0002 0.34 0.0008 0.0003 81.1 80.2

0.83% 0.0128 356 0.0015 1.97 0.0047 0.0015 0.0003 0.51 0.0012 0.0004 81.3 79.6

0.96% 0.0148 356 0.0019 2.36 0.0057 0.0019 0.0004 0.68 0.0016 0.0005 80.9 79.5

1.10% 0.0171 356 0.0024 2.75 0.0066 0.0024 0.0006 0.84 0.0020 0.0007 80.0 79.0

10STFW-WS25

10STFW-WS50

10STFW-WS100

1st storey 2nd storey

Average 1st 

storey strain

angle (deg)
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Average strain angles are plotted against wall maximum tensile strain in Figure 2.30 and 

Figure 2.31 for rectangular and flanged walls respectively. Average strain angles reduced as the 

wall maximum tensile strain increased meaning that more shear strain per unit average centroidal 

vertical strain was observed. Although the average strain angle decreased slightly as the amount 

of distributed vertical steel was varied, the influence of vertical steel amount is considered not to 

be critical. 

Figure 2.30 Effect of amount of distributed reinforcement in the web region of average first 

storey strain angle of 10-storey rectangular walls. 
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Figure 2.31 Effect of amount of distributed reinforcement in the web region of average first 

storey strain angle of 10-storey flanged walls. 

2.8.3 Effect of wall length 

Shear walls are designed and built in a broad range of lengths. It is therefore important to study 

the effect of wall length on the average principle strain angle. Wall lengths of 4, 6, 8, 10, and 12 

m were chosen to carry out the parametric study. Both rectangular and flanged walls were 

considered in the analysis. Table 2.9 and Table 2.10 show properties of rectangular and flanged 

walls analyzed respectively. All the walls were loaded with axial compression at the top 

producing a uniform compressive stress of 0.10     . Wall thickness was held constant at 300 

mm while the length was varied from 4 m to 12 m. Zones at the end of the rectangular walls had 

more vertical, horizontal, and confinement reinforcement for the walls to be able to be pushed to 

large maximum curvatures. Flange width of the flange walls increased from 1 m to 3 m as the 

length increased from 4 m to 12 m. 

To keep the wall aspect ratio the same, height of the wall was increased in proportion to wall 

length to achieve an aspect ratio of 4.13. Effect of wall aspect ratio on the average strain angle is 

studied in Section 2.8.4. Similar to the approach taken in previous sections, the average principle 

strain angle was back-calculated to give the exact average first storey shear strain. The same 
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angle was then used to compute average second storey shear strain which was then compared to 

the value obtained from VecTor2. 

Table 2.11 shows analysis results for rectangular walls. Effect of wall length on flexibility of the 

wall was the most obvious, as expected. At the same maximum tensile strain, shorter walls had 

larger curvatures due to the combined effect of smaller concrete compression depth. Wall plastic 

hinge length increased with wall length. At maximum tensile strain of 0.02, plastic hinge length 

of the 6STRW-L4 was 1750 mm while the 18STRW-L12 demonstrated a plastic hinge length of 

3750 mm. Similar trends were seen in analysis results for the flanged walls shown in Table 2.12. 

Plastic hinge length of the 6STFW-L4 was 3500 mm at maximum tensile strain of 0.027 while 

the 18-STFW-L12 had a plastic hinge length of 7500 mm at the same maximum tensile strain. 

Because the flange width was increased with wall length, concrete compression depth did not 

undergo a dramatic change and never exceeded the flange thickness of 500 mm as the wall 

length was increased.  
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Wall ID Cross-section

lw 

(mm)

le 

(mm)

tw 

(mm)

Hw 

(m)

Storey 

Height 

(m)

Number 

of 

Storeys

P/f'cAg 

(%)

Concrete 

Properties

Reinforcing

Steel 

Properties

ρx ρy ρz ρx ρy ρz ρx ρy ρz

6STRW-L4 4000 500 300 16.50 2.75 6 10 f'c=40 MPa 1.0% 3.0% 1.0% 0.5% 0.5% 0.5% 0.5% 0.1% 0.5%

9STRW-L6 6000 500 300 24.75 2.75 9 10 1.0% 3.0% 1.0% 0.5% 0.5% 0.5% 0.5% 0.1% 0.5%

12STRW-L8 8000 1000 300 33.00 2.75 12 10 1.0% 3.0% 1.0% 0.5% 0.5% 0.5% 0.5% 0.1% 0.5%

15STRW-L10 10000 1000 300 41.25 2.75 15 10 1.0% 3.0% 1.0% 0.5% 0.5% 0.5% 0.5% 0.1% 0.5%

18STRW-L12 12000 1000 300 49.50 2.75 18 10 1.0% 3.0% 1.0% 0.5% 0.5% 0.5% 0.5% 0.1% 0.5%

Distributed Steel Reinforcement Layout

End Regions Web Region Slab Region

Fy=400 MPa 

Fu=640 MPa 

Es=200 GPa 

Esh=3 GPa 

esh=0.007

VecTor2 

default 

values used 

for other 

parameters
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Wall ID Cross-section
lw 

(mm)

tw 

(mm)

tf 

(mm)

wf 

(mm)

Hw 

(m)

Storey 

Height 

(m)

Number 

of 

Storeys

P/f'cAg 

(%)

Concrete 

Properties

Reinforcing 

Steel 

Properties

ρx ρy ρz ρx ρy ρz ρx ρy ρz

6STFW-L4 4000 300 500 1000 16.50 2.75 6 10 f'c=40 MPa 0.5% 1.0% 0.5% 0.5% 0.5% 0.5% 0.5% 0.1% 0.5%

9STFW-L6 6000 300 500 1500 24.75 2.75 9 10 0.5% 1.0% 0.5% 0.5% 0.5% 0.5% 0.5% 0.1% 0.5%

12STFW-L8 8000 300 500 2000 33.00 2.75 12 10 0.5% 1.0% 0.5% 0.5% 0.5% 0.5% 0.5% 0.1% 0.5%

15STFW-L10 10000 300 500 2500 41.25 2.75 15 10 0.5% 1.0% 0.5% 0.5% 0.5% 0.5% 0.5% 0.1% 0.5%

18STFW-L12 12000 300 500 3000 49.50 2.75 18 10 0.5% 1.0% 0.5% 0.5% 0.5% 0.5% 0.5% 0.1% 0.5%

VecTor2 

default 

values used 

for other 

parameters

Distributed Steel Reinforcement Layout

Flange Region Web Region Slab Region

Fy=400 MPa 

Fu=640 MPa 

Es=200 GPa 

Esh=3 GPa 

esh=0.007
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Table 2.11 Rectangular walls: analysis results on the effect of wall length on average storey 

principle strain angle (Note: values of ‘c’ reported were used to back-calculate the average storey 

strain angle and do not represent the actual concrete compression depth of the wall at the given 

global drift). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.32 shows the effect of length of rectangular walls on the average storey principle strain 

angle. Other than the clear reduction of the average strain angle with increasing maximum 

tensile strain, no other explicit trend can be seen. 

Wall ID Drift εt
max lpw

* 

(mm)
c (mm) Ө° γVecTor2

Φavg 

(rad/km)

ε*
cen. γEstimate γVecTor2

Φavg 

(rad/km)

ε*
cen. γEstimate

0.73% 0.0153 1000 800 86.5 0.0003 1.83 0.0022 0.0003 0.0003 0.81 0.0010 0.0001

1.09% 0.0189 1750 800 81.6 0.0010 2.77 0.0033 0.0010 0.0004 0.85 0.0010 0.0003

1.48% 0.0238 2500 800 79.8 0.0019 4.21 0.0051 0.0019 0.0004 0.89 0.0011 0.0004

1.88% 0.0276 2750 800 77.0 0.0030 5.16 0.0062 0.0030 0.0004 0.91 0.0011 0.0005

2.24% 0.0309 3000 800 76.2 0.0038 6.06 0.0073 0.0038 0.0004 0.99 0.0012 0.0006

2.61% 0.0347 3000 800 75.2 0.0046 6.75 0.0081 0.0046 0.0004 1.00 0.0012 0.0007

2.91% 0.0376 3250 800 74.8 0.0053 7.61 0.0091 0.0053 0.0005 1.16 0.0014 0.0008

0.48% 0.0118 1000 1334 87.0 0.0002 1.08 0.0018 0.0002 0.0003 0.58 0.0010 0.0001

0.73% 0.0150 2000 1334 86.0 0.0004 1.71 0.0028 0.0004 0.0003 0.61 0.0010 0.0001

0.99% 0.0171 2750 1334 82.5 0.0010 2.30 0.0038 0.0010 0.0003 0.63 0.0010 0.0003

1.37% 0.0219 3250 1334 79.3 0.0021 3.15 0.0053 0.0021 0.0003 0.73 0.0012 0.0005

1.49% 0.0236 3500 1334 79.0 0.0023 3.49 0.0058 0.0023 0.0004 0.82 0.0014 0.0005

1.74% 0.0275 3750 1334 78.6 0.0029 4.15 0.0069 0.0029 0.0005 0.97 0.0016 0.0007

1.98% 0.0306 3750 1334 76.6 0.0039 4.60 0.0101 0.0051 0.0006 1.01 0.0022 0.0011

0.36% 0.0027 0 1839 81.1 0.0003 0.48 0.0010 0.0003 0.0003 0.44 0.0009 0.0003

0.55% 0.0133 500 1839 77.7 0.0007 0.71 0.0015 0.0007 0.0003 0.45 0.0010 0.0004

0.74% 0.0165 1500 1839 81.6 0.0008 1.19 0.0026 0.0008 0.0003 0.46 0.0010 0.0003

0.94% 0.0184 2000 1839 80.1 0.0012 1.51 0.0033 0.0012 0.0007 0.47 0.0010 0.0004

1.12% 0.0201 3000 1839 78.9 0.0019 2.11 0.0046 0.0019 0.0007 0.50 0.0011 0.0004

1.30% 0.0218 3250 1839 76.8 0.0026 2.37 0.0051 0.0026 0.0008 0.55 0.0012 0.0006

1.52% 0.0252 3500 1839 76.0 0.0032 2.81 0.0090 0.0048 0.0009 0.63 0.0020 0.0011

0.29% 0.0024 0 2124 82.5 0.0002 0.27 0.0008 0.0002 0.0002 0.36 0.0010 0.0003

0.44% 0.0032 0 2124 74.3 0.0006 0.35 0.0010 0.0006 0.0003 0.36 0.0010 0.0006

0.59% 0.0159 1250 2124 83.1 0.0006 0.84 0.0024 0.0006 0.0003 0.37 0.0011 0.0003

0.75% 0.0174 2000 2124 83.0 0.0008 1.14 0.0033 0.0008 0.0006 0.38 0.0011 0.0003

0.90% 0.0188 3000 2124 82.6 0.0012 1.56 0.0045 0.0012 0.0006 0.40 0.0012 0.0003

1.04% 0.0204 3000 2124 80.3 0.0017 1.68 0.0048 0.0017 0.0006 0.41 0.0012 0.0004

1.21% 0.0228 3500 2124 79.3 0.0023 2.00 0.0084 0.0033 0.0008 0.49 0.0021 0.0008

0.24% 0.0024 0 2412 83.5 0.0002 0.20 0.0007 0.0002 0.0002 0.31 0.0011 0.0003

0.36% 0.0029 0 2412 79.1 0.0004 0.27 0.0010 0.0004 0.0003 0.31 0.0011 0.0004

0.49% 0.0148 750 2412 82.1 0.0006 0.55 0.0020 0.0006 0.0002 0.31 0.0011 0.0003

0.63% 0.0163 1500 2412 83.6 0.0006 0.77 0.0027 0.0006 0.0006 0.32 0.0011 0.0003

0.75% 0.0176 3000 2412 83.5 0.0008 0.95 0.0034 0.0008 0.0006 0.34 0.0012 0.0003

0.87% 0.0186 3500 2412 83.2 0.0012 1.37 0.0049 0.0012 0.0005 0.39 0.0014 0.0003

1.01% 0.0203 3750 2412 81.2 0.0017 1.52 0.0079 0.0025 0.0006 0.44 0.0023 0.0007

12STRW-L8

15STRW-L10

18STRW-L12

1st storey 2nd storey

6STRW-L4

9STRW-L6
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Table 2.12 Flanged walls: analysis results on the effect of wall length on average storey 

principle strain angle (Note: values of ‘c’ reported were used to back-calculate the average storey 

strain angle and do not represent the actual concrete compression depth of the wall at the given 

global drift). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A very similar story is observed by looking at variation of the average storey principle strain 

angle of flanged walls and how they are influenced by wall length (see Figure 2.33). It is 

concluded that wall length does not considerably affect the average storey angle. 

Wall ID Drift εt
max lpw

* 

(mm)
c (mm) Ө° γVecTor2

Φavg 

(rad/km)

ε*
cen. γEstimate γVecTor2

Φavg 

(rad/km)

ε*
cen. γEstimate

0.73% 0.0159 1500 437 85.8 0.0005 2.08 0.0033 0.0005 0.0005 0.83 0.0013 0.0002

1.09% 0.0179 2000 437 83.2 0.0010 2.65 0.0041 0.0010 0.0006 0.86 0.0013 0.0003

1.48% 0.0209 3250 437 80.8 0.0021 4.00 0.0063 0.0021 0.0006 1.04 0.0016 0.0005

1.88% 0.0248 3500 437 80.3 0.0027 4.84 0.0076 0.0027 0.0007 1.18 0.0019 0.0007

2.24% 0.0283 3750 437 80.0 0.0032 5.62 0.0088 0.0032 0.0009 1.38 0.0022 0.0008

2.61% 0.0316 3750 437 79.7 0.0037 6.24 0.0098 0.0037 0.0012 1.44 0.0022 0.0008

3.03% 0.0340 4500 437 78.8 0.0046 7.18 0.0112 0.0046 0.0021 2.20 0.0034 0.0014

0.61% 0.0168 1000 485 84.7 0.0006 1.19 0.0030 0.0006 0.0006 0.58 0.0015 0.0003

1.01% 0.0205 3000 485 83.1 0.0015 2.44 0.0061 0.0015 0.0007 0.66 0.0017 0.0004

1.41% 0.0243 3500 485 80.0 0.0028 3.07 0.0077 0.0028 0.0009 0.79 0.0020 0.0007

1.82% 0.0284 4250 485 78.9 0.0039 3.83 0.0096 0.0039 0.0017 1.16 0.0029 0.0012

2.22% 0.0304 5000 485 76.4 0.0056 4.31 0.0108 0.0056 0.0032 1.66 0.0042 0.0022

2.63% 0.0336 5500 485 75.6 0.0067 4.86 0.0122 0.0067 0.0049 2.15 0.0054 0.0030

3.03% 0.0360 6000 485 74.3 0.0081 5.31 0.0133 0.0081 0.0060 2.62 0.0066 0.0040

0.45% 0.0163 1000 485 85.2 0.0005 0.87 0.0031 0.0005 0.0006 0.45 0.0016 0.0003

0.76% 0.0191 2250 485 83.7 0.0011 1.43 0.0050 0.0011 0.0007 0.47 0.0017 0.0004

1.06% 0.0222 3750 485 81.4 0.0023 2.14 0.0075 0.0023 0.0009 0.64 0.0023 0.0007

1.36% 0.0253 4750 485 79.4 0.0036 2.61 0.0092 0.0036 0.0016 0.99 0.0035 0.0014

1.67% 0.0262 5000 485 75.8 0.0052 2.74 0.0096 0.0052 0.0029 1.11 0.0039 0.0021

1.97% 0.0298 5750 485 75.7 0.0062 3.22 0.0113 0.0062 0.0040 1.56 0.0055 0.0030

2.27% 0.0326 6250 485 75.0 0.0072 3.57 0.0125 0.0072 0.0053 1.88 0.0066 0.0038

0.46% 0.0170 1250 481 85.1 0.0006 0.72 0.0033 0.0006 0.0006 0.37 0.0017 0.0003

0.70% 0.0191 2750 481 85.0 0.0012 1.52 0.0069 0.0012 0.0007 0.39 0.0017 0.0003

0.95% 0.0216 4000 481 81.4 0.0024 1.69 0.0076 0.0024 0.0010 0.56 0.0025 0.0008

1.19% 0.0238 5000 481 79.4 0.0035 1.97 0.0089 0.0035 0.0019 0.83 0.0037 0.0015

1.43% 0.0250 5500 481 76.5 0.0049 2.12 0.0096 0.0049 0.0031 1.01 0.0045 0.0023

1.67% 0.0284 6250 481 76.4 0.0057 2.47 0.0112 0.0057 0.0039 1.33 0.0060 0.0031

1.92% 0.0300 7000 481 75.3 0.0068 2.66 0.0120 0.0068 0.0058 1.58 0.0071 0.0040

0.38% 0.0108 1500 478 84.4 0.0006 0.52 0.0029 0.0006 0.0006 0.32 0.0017 0.0003

0.59% 0.0184 1750 478 83.9 0.0009 0.79 0.0044 0.0009 0.0007 0.32 0.0018 0.0004

0.79% 0.0202 4500 478 82.8 0.0019 1.36 0.0075 0.0019 0.0008 0.53 0.0029 0.0008

0.99% 0.0221 5000 478 80.3 0.0030 1.52 0.0084 0.0030 0.0017 0.66 0.0036 0.0013

1.19% 0.0241 6000 478 78.7 0.0040 1.73 0.0095 0.0040 0.0027 0.92 0.0051 0.0021

1.39% 0.0261 6250 478 77.1 0.0050 1.88 0.0104 0.0050 0.0035 1.03 0.0057 0.0027

1.60% 0.0267 7500 478 75.4 0.0061 1.98 0.0110 0.0061 0.0054 1.26 0.0069 0.0039

12STFW-L8

15STFW-L10

18STFW-L12

1st storey 2nd storey

6STFW-L4

9STFW-L6
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Figure 2.32 Effect of length of rectangular walls on the average storey principle strain angle. 

 

 

 

 

 

 

 

 

 

Figure 2.33 Effect of length of flanged walls on the average storey principle strain angle. 
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2.8.4 Effect of wall aspect ratio 

Wall aspect ratio (height to length ratio) is the most detrimental parameter to a wall’s failure 

mechanism. Walls with aspect ratios of 2.0 or smaller are more likely to fail in shear mechanism 

while taller walls fail in flexural mechanisms such as bar buckling, concrete crushing, and steel 

fracture. The amount of shear action in a wall also appears in the cracking pattern; hence, it 

seems likely that wall aspect ratio would affect the average principle strain angle. 

To study the influence of wall aspect ratio on the average principle strain angle, rectangular and 

flanged walls having aspect ratios of 2.06, 4.13, 6.19, and 8.25 were chosen. Table 2.13 and 

Table 2.14 list properties of rectangular and flanged walls used in this analysis respectively. The 

cross-section of the walls is the same as the 8 m long walls in Section 2.8.3, namely, 12STRW-

L8 and 12STFW-L8, while various aspect ratios were achieved by changing the number of 

storeys of the walls. 

Table 2.15 presents analysis results for the rectangular walls of different aspect ratios. Wall 

flexibility increased dramatically with wall aspect ratio. This was because walls with larger 

aspect ratios had a larger plastic hinge length. At maximum tensile strain of 0.02, the wall with 

an aspect ratio of 2.06 had a plastic hinge length of 1750 mm while at the same maximum tensile 

strain, the wall that had an aspect ratio of 8.25 demonstrated a plastic hinge length of 5750 mm. 

Concrete compression depth however stayed the same for all walls because the sectional 

properties where the same. Similar observations hold true for the flanged walls (see Table 2.16). 

Average storey principle strain angle was adjusted to give the exact first storey average shear 

strain. The second storey average shear strain was then calculated using the same principle strain 

angle and compared to that obtained from VecTor2. Figure 2.34 shows the effect of wall aspect 

ratio on the average principle strain angle. Compared to the parameters studied in the previous 

sections, wall aspect ratio has the most profound effect on the average strain angle. Walls with 

smaller aspect ratios had a smaller average strain angle producing more shear strain per unit 

mean vertical strain. This can be associated with the larger average shear stress in the walls with 

smaller aspect ratios which resulted in a smaller concrete stress angle in individual elements. 

Because in VecTor2 concrete stress angle and the total strain angle are the same, the decrease in 

the concrete stress angle of individual elements resulted in a smaller average strain angle. 
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Wall ID Cross-section
Hw 

(m)

Storey 

Height 

(m)

Number 

of 

Storeys

P/f'cAg 

(%)

Concrete 

Properties

Reinforcing 

Steel 

Properties

ρx ρy ρz ρx ρy ρz ρx ρy ρz

6STRW-L8 16.5 2.75 6 10 f'c=40 MPa 1.0% 3.0% 1.0% 0.5% 0.5% 0.5% 0.5% 0.1% 0.5%

12STRW-L8 33.0 2.75 12 10 1.0% 3.0% 1.0% 0.5% 0.5% 0.5% 0.5% 0.1% 0.5%

18STRW-L8 49.5 2.75 18 10 1.0% 3.0% 1.0% 0.5% 0.5% 0.5% 0.5% 0.1% 0.5%

24STRW-L8 66.0 2.75 24 10 1.0% 3.0% 1.0% 0.5% 0.5% 0.5% 0.5% 0.1% 0.5%

Distributed Steel Reinforcement Layout

End Regions Web Region Slab Region

Fy=400 MPa 

Fu=640 MPa 

Es=200 GPa 

Esh=3 GPa 

esh=0.007

VecTor2 

default 

values used 

for other 

parameters
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Wall ID Cross-section
Hw 

(m)

Storey 

Height 

(m)

Number 

of 

Storeys

P/f'cAg 

(%)

Concrete 

Properties

Reinforcing 

Steel 

Properties

ρx ρy ρz ρx ρy ρz ρx ρy ρz

6STFW-L8 16.5 2.75 6 10 f'c=40 MPa 0.5% 1.0% 0.5% 0.5% 0.5% 0.5% 0.5% 0.1% 0.5%

12STFW-L8 33.0 2.75 12 10 0.5% 1.0% 0.5% 0.5% 0.5% 0.5% 0.5% 0.1% 0.5%

18STFW-L8 49.5 2.75 18 10 0.5% 1.0% 0.5% 0.5% 0.5% 0.5% 0.5% 0.1% 0.5%

24STFW-L8 66.0 2.75 24 10 0.5% 1.0% 0.5% 0.5% 0.5% 0.5% 0.5% 0.1% 0.5%

VecTor2 

default 

values used 

for other 

parameters

Distributed Steel Reinforcement Layout

End Regions Web Region Slab Region

Fy=400 MPa 

Fu=640 MPa 

Es=200 GPa 

Esh=3 GPa 

esh=0.007
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Table 2.15 Rectangular walls: analysis results for the effect of wall aspect ratio on the average 

principle strain angle (Note: values of ‘c’ reported were used to back-calculate the average storey 

strain angle and do not represent the actual concrete compression depth of the wall at the given 

global drift). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.35 shows the effect of wall aspect ratio on the average strain angle of flanged walls. 

Although the effect is less dramatic than the case of the rectangular walls, a similar trend can be 

observed. Ratio of the shear to flexural deformation of the walls was severely affected by the 

wall aspect ratio. Walls with smaller aspect ratios had larger first storey shear-to-flexure 

deformation ratio. This is shown in Figure 2.36 and Figure 2.37 for rectangular and flanged walls 

respectively. At large maximum tensile strains, the flanged walls with aspect ratios of 2.06 and 

4.13 encountered more shear deformation than flexural in the first storey.  

Wall ID Drift εt
max lpw

* 

(mm)
c (mm) Ө° γVecTor2

Φavg 

(rad/km)

ε*
cen. γEstimate γVecTor2

Φavg 

(rad/km)

ε*
cen. γEstimate

0.48% 0.0177 1500 1839 77.5 0.0013 1.25 0.0027 0.0013 0.0005 0.42 0.0009 0.0004

0.61% 0.0196 1750 1839 76.6 0.0016 1.47 0.0032 0.0016 0.0005 0.42 0.0009 0.0005

0.73% 0.0218 2000 1839 75.9 0.0020 1.74 0.0038 0.0020 0.0005 0.43 0.0009 0.0005

0.85% 0.0233 2250 1839 74.6 0.0026 1.99 0.0043 0.0026 0.0005 0.44 0.0009 0.0006

0.97% 0.0250 2750 1839 74.2 0.0032 2.44 0.0053 0.0032 0.0005 0.45 0.0010 0.0006

1.09% 0.0271 3000 1839 73.3 0.0040 2.78 0.0060 0.0040 0.0005 0.49 0.0011 0.0007

1.21% 0.0315 3000 1839 73.0 0.0046 3.19 0.0069 0.0046 0.0006 0.50 0.0011 0.0007

0.36% 0.0027 0 1839 81.1 0.0003 0.48 0.0010 0.0003 0.0003 0.44 0.0009 0.0003

0.55% 0.0133 500 1839 77.7 0.0007 0.71 0.0015 0.0007 0.0003 0.45 0.0010 0.0004

0.74% 0.0165 1500 1839 81.6 0.0008 1.19 0.0026 0.0008 0.0003 0.46 0.0010 0.0003

0.94% 0.0184 2000 1839 80.1 0.0012 1.51 0.0033 0.0012 0.0007 0.47 0.0010 0.0004

1.12% 0.0201 3000 1839 78.9 0.0019 2.11 0.0046 0.0019 0.0007 0.50 0.0011 0.0004

1.30% 0.0218 3250 1839 76.8 0.0026 2.37 0.0051 0.0026 0.0008 0.55 0.0012 0.0006

1.52% 0.0252 3500 1839 76.0 0.0032 2.81 0.0090 0.0048 0.0009 0.63 0.0020 0.0011

1.01% 0.0162 2000 1839 84.1 0.0006 1.37 0.0030 0.0006 0.0006 0.48 0.0010 0.0002

1.33% 0.0181 3750 1839 82.5 0.0012 2.12 0.0046 0.0012 0.0006 0.64 0.0014 0.0004

1.70% 0.0212 4250 1839 78.9 0.0023 2.57 0.0056 0.0023 0.0008 0.83 0.0018 0.0007

2.02% 0.0247 5250 1839 78.1 0.0030 3.17 0.0069 0.0030 0.0012 1.34 0.0029 0.0013

2.34% 0.0275 6000 1839 76.6 0.0040 3.64 0.0079 0.0040 0.0023 1.82 0.0039 0.0020

2.71% 0.0314 6250 1839 75.8 0.0049 4.18 0.0090 0.0049 0.0033 2.16 0.0047 0.0025

3.03% 0.0361 6750 1839 74.6 0.0062 4.86 0.0105 0.0062 0.0040 2.68 0.0058 0.0034

1.26% 0.0155 2500 1839 85.9 0.0005 1.51 0.0033 0.0005 0.0006 0.49 0.0011 0.0002

1.42% 0.0162 3500 1839 85.8 0.0006 1.87 0.0040 0.0006 0.0005 0.58 0.0012 0.0002

1.59% 0.0168 4250 1839 84.7 0.0008 2.07 0.0045 0.0008 0.0005 0.75 0.0016 0.0003

1.76% 0.0176 5000 1839 82.0 0.0014 2.27 0.0049 0.0014 0.0005 0.98 0.0021 0.0006

1.92% 0.0189 5750 1839 80.7 0.0018 2.51 0.0054 0.0018 0.0006 1.28 0.0028 0.0009

2.11% 0.0204 5750 1839 80.2 0.0021 2.70 0.0058 0.0021 0.0008 1.36 0.0029 0.0010

2.27% 0.0218 5500 1839 79.6 0.0023 2.85 0.0062 0.0023 0.0011 1.33 0.0029 0.0011

2nd storey

6STRW-L8

12STRW-L8

18STRW-L8

24STRW-L8

1st storey
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Table 2.16 Flanged walls: analysis results for the effect of wall aspect ratio on the average 

principle strain angle (Note: values of ‘c’ reported were used to back-calculate the average storey 

strain angle and do not represent the actual concrete compression depth of the wall at the given 

global drift). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.38 plots the value of shear deformation in the first storey of the rectangular walls 

against maximum tensile strain. Despite the difference in wall aspect ratios, the magnitude of the 

shear deformation is not affected. All the data points fall on a curve close to straight line. A 

similar observation is made for the flanged walls reported (see Figure 2.39). The explanation to 

this lies in the combination of the effect of the average storey principle strain angle and the 

average storey centroidal strain used to calculate average first storey shear strain from Eq 2.7. 

 

Wall ID Drift εt
max lpw

* 

(mm)
c (mm) Ө° γVecTor2

Φavg 

(rad/km)

ε*
cen. γEstimate γVecTor2

Φavg 

(rad/km)

ε*
cen. γEstimate

0.36% 0.0163 1250 485 81.0 0.0011 0.94 0.0033 0.0011 0.0010 0.41 0.0014 0.0005

0.55% 0.0206 1750 485 81.2 0.0015 1.31 0.0046 0.0015 0.0011 0.42 0.0015 0.0005

0.73% 0.0228 2500 485 80.2 0.0022 1.76 0.0062 0.0022 0.0011 0.45 0.0016 0.0006

0.91% 0.0272 3250 485 80.1 0.0030 2.42 0.0085 0.0030 0.0013 0.53 0.0019 0.0007

1.09% 0.0297 3750 485 79.2 0.0039 2.80 0.0099 0.0039 0.0014 0.69 0.0024 0.0010

1.27% 0.0316 4250 485 77.9 0.0049 3.12 0.0110 0.0049 0.0018 0.91 0.0032 0.0014

1.45% 0.0326 4500 485 76.0 0.0061 3.27 0.0115 0.0061 0.0022 1.04 0.0036 0.0019

0.45% 0.0163 1000 485 85.2 0.0005 0.87 0.0031 0.0005 0.0006 0.45 0.0016 0.0003

0.76% 0.0191 2250 485 83.7 0.0011 1.43 0.0050 0.0011 0.0007 0.47 0.0017 0.0004

1.06% 0.0222 3750 485 81.4 0.0023 2.14 0.0075 0.0023 0.0009 0.64 0.0023 0.0007

1.36% 0.0253 4750 485 79.4 0.0036 2.61 0.0092 0.0036 0.0016 0.99 0.0035 0.0014

1.67% 0.0262 5750 485 76.2 0.0052 2.83 0.0100 0.0052 0.0029 1.41 0.0049 0.0026

1.97% 0.0298 5750 485 75.7 0.0062 3.22 0.0113 0.0062 0.0040 1.56 0.0055 0.0030

2.27% 0.0326 6250 485 75.0 0.0072 3.57 0.0125 0.0072 0.0053 1.88 0.0066 0.0038

0.51% 0.0070 1500 485 85.1 0.0004 0.63 0.0022 0.0004 0.0005 0.47 0.0017 0.0003

0.77% 0.0170 1750 485 86.7 0.0005 1.14 0.0040 0.0005 0.0005 0.48 0.0017 0.0002

1.01% 0.0190 3750 485 84.9 0.0012 1.85 0.0065 0.0012 0.0006 0.62 0.0022 0.0004

1.25% 0.0207 4250 485 82.2 0.0021 2.09 0.0073 0.0021 0.0009 0.75 0.0026 0.0007

1.52% 0.0238 5250 485 81.5 0.0027 2.53 0.0089 0.0027 0.0016 1.14 0.0040 0.0012

1.78% 0.0256 6000 485 79.8 0.0037 2.80 0.0098 0.0037 0.0029 1.47 0.0052 0.0019

2.02% 0.0267 6250 485 78.0 0.0046 2.94 0.0103 0.0046 0.0036 1.60 0.0056 0.0025

0.76% 0.0127 2250 485 88.5 0.0002 1.04 0.0037 0.0002 0.0004 0.49 0.0017 0.0001

0.94% 0.0161 3500 485 88.0 0.0004 1.56 0.0055 0.0004 0.0004 0.56 0.0020 0.0001

1.12% 0.0179 4000 485 86.2 0.0008 1.80 0.0063 0.0008 0.0005 0.66 0.0023 0.0003

1.29% 0.0188 4250 485 84.2 0.0014 1.92 0.0067 0.0014 0.0005 0.72 0.0025 0.0005

1.47% 0.0207 5750 485 83.6 0.0018 2.26 0.0079 0.0018 0.0010 1.19 0.0042 0.0009

1.65% 0.0223 6000 485 82.9 0.0022 2.45 0.0086 0.0022 0.0015 1.32 0.0046 0.0012

1.82% 0.0237 6250 485 82.2 0.0026 2.62 0.0092 0.0026 0.0021 1.45 0.0051 0.0014

1st storey 2nd storey

6STFW-L8

12STFW-L8

18STFW-L8

24STFW-L8
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Figure 2.34 Effect of aspect ratio of rectangular walls on the average principle strain angle. 

 

 

 

 

 

 

 

 

Figure 2.35 Effect of aspect ratio of flanged walls on the average principle strain angle. 

 

Walls with smaller aspect ratios had a larger average shear stress over their cross-section which 

resulted in a smaller concrete stress angle and hence, smaller principle strain angle in individual 

elements. This meant that elements in the walls with smaller aspect ratios could have had more 

shear strain per unit vertical strain.  
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Figure 2.36 Effect of aspect ratio of rectangular walls on 1
st
 storey shear to flexural drift ratio. 

 

 

 

 

 

 

 

 

Figure 2.37 Effect of aspect ratio of flanged walls on 1
st
 storey shear to flexural drift ratio. 

 

However, plastic hinge length of the wall was also significantly affected by wall aspect ratio. 

Walls with larger aspect ratios had longer plastic hinge lengths. At the same maximum tensile 

strain, the curvatures at the base of the walls were also the same because the cross-sections were 

identical. With a larger plastic hinge length, average curvature of the first storey was greater for 

taller walls which resulted in a larger average centroidal strain. 
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Figure 2.38 Influence of aspect ratio of rectangular walls on 1
st
 storey shear deformation. 

 

 

 

 

 

 

 

 

Figure 2.39 Influence of aspect ratio of flanged walls on 1
st
 storey shear deformation. 

 

In summary, although the shorter walls had a smaller average strain angle increasing average 

shear strain, they had a smaller average centroidal strain reducing average shear strain. The 

combination of these two factors was such that it made the walls with the very different aspect 

ratios have nearly the same first storey shear deformation at a given maximum tensile strain. 
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2.8.5 Effect of number of floor slabs in the wall plastic hinge region 

Floor slabs alter the concrete cracking pattern in shear walls. Generally, cracks do not propagate 

through the slabs because of the large in-pane axial stiffness of the slabs. This forces inclined 

cracks to stop below the floor slab and start as flexural cracks above the slab. Since crack angle 

is tied to strain angle in VecTor2, the effect of presence of floor slabs in the wall plastic hinge 

region needs to be investigated. 

For this purpose, a 10 m long rectangular wall with a width of 300 mm was chosen. The wall had 

2% vertical and 1% horizontal and out-of-plane distributed reinforcement in its end region that 

was 1 m long on each face of the wall. 0.5% distributed steel was provided in all three directions 

in the web region. Width of the floor slab region was 1500 mm with 0.5% distributed horizontal 

and out-of-plane steel. 0.1% vertical steel was provided in the slab region so that the slab vertical 

steel did not exceed the vertical steel modeled in the web region. Axial load producing uniform 

compressive stress of 0.10      was applied at the top of the wall while the wall was pushed by 

point loads at the top. The wall was 60.5 m (22 storeys) high. Length and height of the wall were 

proportioned to achieve a relatively large plastic hinge length with several slabs at the base of the 

wall falling in the plastic hinge zone. At 2% global drift, wall plastic hinge was more than 3 

storeys high. The wall with uniform floor slab spacing served as the standard case. To study the 

effect of number of slabs in the plastic hinge region on the average strain angle, the second and 

third floor slabs were removed one after the other and the same pushover analysis was 

conducted. 

Figure 2.40 shows the cracking pattern of the walls with 3, 2 and 1 slab in the plastic hinge 

region. The orientation of the lines in each element is parallel to the element concrete stress 

angle and the width of the line is representative of crack width. Note how inclined cracks stop 

underneath the floor slabs and start as flexural (horizontal) cracks above with cracks not 

penetrating through the slab. 

Table 2.17 summarizes the analysis results for the three walls considered in this section. Despite 

the similarities in the results for plastic hinge length and the relation between maximum 

curvature and global drift, the average principle strain angles slightly differed from wall to wall 

(see Figure 2.41). 
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Table 2.17 Analysis results for the effect of number of slabs in the plastic hinge region of wall 

15STRW-L10 on the average principle strain angle (Note: values of ‘c’ reported were used to 

back-calculate the average storey strain angle and do not represent the actual concrete 

compression depth of the wall at the given global drift). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.41 Effect of number of slabs in the plastic hinge region of wall 15STRW-L10 on the 

average principle strain angle. 

global drift Φmax (rad/km) lpw
*
 (mm) c (mm) ε

t
max γave θ°

0.52% 1.60 5250 1979 0.0129 0.0003 87.9

0.88% 2.29 7000 1979 0.0183 0.0011 84.9

1.24% 2.97 8250 1979 0.0238 0.0018 83.5

1.60% 3.67 9250 1979 0.0294 0.0027 82.2

1.96% 4.33 9750 1979 0.0348 0.0037 81.1

0.52% 1.47 5250 1979 0.0118 0.0004 87.2

0.88% 2.20 6750 1979 0.0176 0.0011 84.5

1.24% 2.82 8000 1979 0.0226 0.0019 82.6

1.61% 3.41 9000 1979 0.0273 0.0028 81.5

1.98% 4.11 9500 1979 0.0330 0.0043 79.3

0.52% 1.51 4500 1979 0.0121 0.0003 87.5

0.88% 2.20 6750 1979 0.0177 0.0011 84.7

1.24% 2.79 7750 1979 0.0224 0.0020 82.5

1.61% 3.42 8750 1979 0.0275 0.0027 81.6

1.97% 4.04 9250 1979 0.0324 0.0041 79.5

1st storey

3 slabs in 

wall 

plastic 

hinge 

region

2 slabs in 

wall 

plastic 

hinge 

region

1 slab in 

wall 

plastic 

hinge 

region
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The average principle strain angle dropped a couple of degrees when the first floor slab was 

excluded. The reason for this can be explained comparing the cracking pattern of the two walls 

(see Figure 2.40). Since in VecTor2 concrete stress angle and the total strain angle are forced to 

be equal, crack pattern is a good indication of element strain angles. The wall with the most 

number of slabs in the plastic hinge region had a larger (closer to horizontal) average crack angle 

which resulted in a larger average strain angle. As the floor slabs were removed one by one, the 

average crack angle became smaller (closer to vertical) causing more shear strain per unit 

vertical strain in each element resulting in a smaller average principle strain angle. 

2.9 Shear Strain Model 

The simple method for estimating wall shear strain presented in Section 2.7 proved to yield 

accurate estimations of shear strain for the case of the 10-storey rectangular wall example when 

average storey principle strain angles observed during the VecTor2 analysis were used. To be 

able to estimate the average storey principle strain angle that would result in accurate estimation 

of shear strains of a given wall, a parametric study was carried out in Section 2.8 with the final 

conclusion being that the average first-storey principle strain angle was not overly sensitive to or 

significantly affected by any of the parameters considered. Figure 2.42 summarizes the entire 

data on average 1
st
 storey principle strain angles of all the walls considered in the parametric 

study against the recorded maximum tensile strain. Note that the average first-storey principle 

strain angles were back-calculated to give the exact average first storey shear strain observed in 

the VecTor2 analysis. 

The average principle strain angle decreased with maximum tensile strain which translated to 

more shear strain per unit vertical strain according to Eq 2.7. Despite this observed trend, a 

constant average principle strain angle of 75 degrees is chosen as an input parameter to the 

proposed shear strain model. From Figure 2.42, it is obvious that the proposed constant 75 

degree average principle strain angle is a lower bound for the true average principle strain angle 

at lower maximum tensile strains resulting in over-estimation of shear strain per unit vertical 

strain. However, because at small maximum tensile strains shear strains are deemed to be small, 

the errors are thought to be negligible. At higher maximum tensile strains, the proposed constant 
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75 degree average principle storey strain angle offers nearly an average value for the observed 

average principle strain angles resulting in a more accurate estimation of average storey shear 

strains.  

 

 

 

 

 

 

 

Figure 2.42 Summary of average strain angles from parametric study. 

 

The proposed model for estimating wall shear strain in its final form is presented in Eq 2.9. If a 

principle strain angle of 75 degrees is substituted in Eq 2.7 and the vertical tensile strain in the 

same equation is replaced by    from Eq 2.8, then shear strain at any level along the height of the 

wall can be estimated as 

   ( 
  
 

   )                   ( 
  
 

   )   
Eq 2.9 

In this equation,    is the length of the wall, c is the concrete compression depth, and   is the 

curvature of the wall at the point of interest. If the concrete compression depth is considered to 

be approximately constant over the plastic hinge length, shear strain would then become 

proportional to curvature as shown below. 

     Eq 2.10 

Where 
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       ( 
  
 

   ) 
Eq 2.11 

This will result in the shapes of the curvature and shear strain profiles to be the same which is 

consistent with observations made in tests by Beyer et al. (2008), Brueggen (2009), and many 

others. The accuracy of the proposed model in predicting average storey shear strain is verified 

in the following sections. 

2.9.1 Verification of the proposed shear strain model using walls considered 

in the parametric study 

In this section, the accuracy of the proposed shear strain model for estimating average 1
st
 and 2

nd
 

storey shear strains of the walls considered in the parametric study is examined. Ultimate 

concrete compression depth is calculated from a section analysis using the material stress-strain 

curves and equivalent concrete rectangular stress block. Average storey curvature is obtained 

from curvature profiles obtained from the VecTor2 analysis. These two parameters were used 

alongside the length of the wall to make predictions of the average storey shear strain using 

Eq 2.10. 

Estimates of average storey shear strain are plotted against average storey shear strains obtained 

from the Vector2 analyses in Figure 2.43. Data points falling below the 45 degree line indicate 

over-estimation of shear strain by the proposed shear strain model and vice versa. It can be seen 

that the model provides an upper bound or a safe estimate for the average 1
st
 storey shear strains 

observed in the VecTor2 analyses while it gives a closer to average estimation of the average 2
nd

 

storey shear strain. 
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Figure 2.43 Verification of the proposed shear strain model for predicting average shear strain in 

a) first storey and b) second storey of walls considered in the parametric study. 

 

2.9.2 Verification of the proposed shear strain model using real test data 

To further examine the accuracy of the proposed shear strain model, it is used to estimate shear 

strains observed in experiments by other researchers. 

The first set of specimens considered here are two of the specimens tested by Thomsen and 

Wallace (1995), namely, RW2 and TW2 with both flange in tension and compression all of 

which had a height to length ratio of 3.0. During the test, average storey shear strain was 

measured using an X configuration of potentiometers assuming constant curvature distribution 

over the storey height. This meant that no differential change in lengths of the diagonals was 
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attributed to flexural deformation of the panel. Hence, to compare the reported shear strains to 

those predicted by the model, reported shear strains from the tests had to be corrected. For this 

purpose, measurements of total rotation in the first storey (called base rotation in the test report) 

was used to estimate flexural deformation occurring in the first storey assuming the centre of the 

rotation being located at two-thirds of the storey height from the top of the storey. The obtained 

flexural deformation was then subtracted from measured total deformation of the first storey 

which had already been corrected for strain penetration effects to get the true shear deformation 

of the first storey. Average shear deformation of the first storey would then be the total shear 

deformation of the first storey divided by the storey height. 

In order to estimate shear strains observed during the tests using the shear strain model, base 

rotation was divided by the first storey height to get the average first storey curvature. Concrete 

compression depth was calculated from a section analysis and first storey average shear strain 

was then calculated using Eq 2.10. The estimated shear strains are plotted against those observed 

during the test in Figure 2.44a. 

Another test data used to verify the accuracy of the proposed shear strain model were results for 

specimen NTW1, a T-shaped wall with aspect ratio of 3.2 under bi-directional loading, tested by 

Brueggen (2009) and five rectangular walls with aspect ratios of 2.4, WSH2 to WSH6, tested by 

Dazio (1999). Since curvature had been measured over smaller intervals over the height of the 

wall for these specimens, shear deformations reported in the test were considered an accurate 

representation of the true shear strain. In other words, measurement of the distribution of 

curvature over the height of the plastic hinge region made determination of the centre of rotation 

possible. This approach accurately distinguished between contributions of flexure (curvature) 

and shear strain to the total first storey deformation. With the average curvature known from the 

curvature profiles given in the test reports and the concrete compression depth calculated from 

section analysis, Eq 2.10 was then used to estimate average first storey shear strain. Estimated 

average first storey shear strains for these specimens are also plotted against those observed 

during the test in Figure 2.44a. 

All the data plotted in Figure 2.44a are for walls whose behaviour and mode of failure was 

dominated by flexure. Adequate shear reinforcement was provided for all of those walls to 
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prevent yielding of the shear reinforcement and ensure that maximum bending strength was 

reached well before shear failure occurred. According to this figure, the proposed shear strain 

model very accurately estimated the average first storey shear strains observed during the test. 

The scatter of the test data on either side of the perfect match line is minor throughout the range 

of data which suggests that the proposed shear strain model predicted shear strains with 

consistent accuracy at all levels of global drift. 

Another set of test data used to examine the accuracy of the proposed shear strain model was the 

data from phases I and II of Portland Cement Association (PCA) tests carried out by Oesterle et 

al. (1976 &1979). The testing program included rectangular, barbell shaped, and flanged walls 

all with aspect ratio of 2.4 subjected to sustained axial compressive loads between 0.3% and 

13.7% of       under reverse cyclic loading. A few specimens were tested under monotonic 

loading and hence, are excluded from this study. The specimens included here are R1, R2, B1, 

B3, B2, B5R, F1, B6, B7, and F2. Some specimens were excluded because of lack of accuracy in 

measurement of deflection components during the test as explained next. 

Plastic hinge length of all of the specimens fell within the first 1.83 m (6ft) of the specimen and 

hence, it is desired to estimate the average shear strain observed within this region. Several 

mechanisms contributed to the total deformation of the specimen at the top of the plastic hinge 

length. The first was the sliding of the three construction joints located below the 6ft level, the 

first one at the base, the second at 3ft level, and the third just below the 6ft level. Measurement 

of sliding along construction joints was not always accurate for all specimens which resulted in 

some specimens being excluded from this study. Flexural deformations were calculated using 

measured rotations at the base, over the bottom 3ft, and over the bottom 6ft of the specimen. In 

order to calculate flexural deformations from measured rotations, Oesterle et al. assumed the 

rotation to be concentrated at the mid-height of each measurement panel while in this study, 

centre of rotation was assumed to be located at 0.6 times of the panel height from the top of the 

panel to offer a more realistic representation of the actual curvature distribution. Deformations 

due to sliding of construction joints and flexural deformations were then subtracted from 

measured total deformations to obtain the true shear deformation of the specimens. Total plastic 

hinge shear deformation was then divided by the plastic hinge length (1.83 m or 6ft) to obtain 

average plastic hinge shear strain. Average plastic hinge curvature obtained from measurements 
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of rotation was then used to estimate average plastic hinge shear strain using the proposed shear 

strain model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.44 Estimates of average plastic hinge shear strain observed in tests by other 

researchers: a) flexure-dominated walls, and b) walls governed by formation of a shear failure 

mechanism. 

 

Results of the prediction are plotted in Figure 2.44b. The wide scatter of data points on either 

side of the perfect match line indicated that the model was much less accurate in predicting shear 

strains of specimens from the PCA tests. The model generally underestimated the observed shear 

strain. The explanation is rather simple. The specimens were subjected to high shear stresses 
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because of their small height to length ratio. This resulted in excessive yielding of shear 

reinforcement and sliding along diagonal cracks. Yielding of (horizontal) shear reinforcement 

meant that horizontal strains were no longer negligible in comparison to vertical strain hence 

defying the basic assumption made in the derivation of Eq 2.7. The extra shear strain induced 

because of yielding of shear reinforcements could not be captured by the proposed shear strain 

model, neither could the model capture the additional shear strain caused by sliding along 

diagonal cracks. 

It is therefore concluded that the proposed shear strain model can estimate shear strains of 

flexural walls with great accuracy as long as the aspect ratio is large enough and adequate shear 

reinforcement is provided to ensure flexure-dominated response where shear strains induced due 

to slippage along diagonal cracks and yielding of shear reinforcement are negligible in 

comparison to those resulting from large tensile vertical strains in the web. Since the input 

parameters required to make estimates of shear strain are readily available to designers, the 

method proves to be one that can be easily implemented into standard design procedures. 

2.10 Conclusions 

The following conclusions can be drawn based on the material presented in this chapter: 

1. Experiments on flexural shear walls have shown that although shear deformation 

constitutes a minor portion of the total wall displacement at the top, its contribution to the 

wall deformation profile within the plastic hinge region is significant compared to that of 

flexural deformation; a phenomenon that is of great importance when calculating 

deformation demands on the gravity load system. 

 

2. The direct link between curvature and shear strain of flexural walls observed in tests by 

other researchers is demonstrated in FE analysis. Wall curvature and shear strain profiles 

were shown to be similar in shape with shear strains growing rapidly after formation of a 

flexural hinge in the wall. The interaction between flexural and shear deformations is 

further explained using fundamental structural mechanics theory. 
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3. VecTor2 was proven to be a reliable tool for predicting shear strains in flexural 

reinforced concrete walls. Shear strains observed in VecTor2 analysis were concentrated 

in areas where flexural yielding occurred which complies with the behaviour observed in 

tests by other researchers. 

 

4. VecTor2 analyses carried out in this chapter revealed that horizontal strains in the web 

region of flexural walls were negligible compared to vertical and shear strains. Shear 

strains were concentrated in area with large vertical tensile strains. Based on this 

observation, the main source of shear strains in flexural walls was identified as presence 

of large vertical strains in areas with diagonal cracks. 

 

5. The average principle strain angle in the plastic hinge region of walls considered in the 

parametric study proved not to be overly sensitive to parameters such as vertical steel 

ratio, axial compressive load carried by the wall, wall length, wall height-to-length ratio, 

and presence of floor slabs within the plastic hinge region. 

 

6. A simple model for estimating shear strains in flexural walls was presented. The only 

input parameter to the model is an average tensile strain which can be easily calculated 

by the designer from wall curvature profile. The model proved to be reliable and accurate 

in estimating shear strains observed in tests on flexural shear walls with adequate shear 

reinforcement. Given the curvature profile of the wall, in addition to average storey shear 

strains, the model can also give the shear strain profile along the height of the wall plastic 

hinge region. 
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CHAPTER 3 Nonlinear Analysis of Shear Walls 
Accounting for Foundation Rotation 

3.1 Introduction 

It is a standard structural analysis procedure to model shear walls resting on spread footings with 

fully-fixed boundary conditions such that no rotation could occur in the support. In reality 

however, no matter how large and oversized a foundation is, some amount of rotation will occur 

under eccentric loading. Sizeable foundation rotation may take place under seismic loading as a 

result of either uplift or compressive displacement of the underlying soil, or in most 

circumstances, a combination of the two. Magnitude of the rotation incurred is highly dependent 

on the foundation overturning strength relative to the wall bending strength. Large foundations 

supporting weak walls are less susceptible to large rotations while weaker foundations 

supporting stronger walls are more likely to experience large rotations.  

Rotation of the shear wall foundation changes the displacement profile of the building which 

results in additional deformation demands on the gravity-load system. Therefore, quantifying the 

amount of foundation rotation that can take place in a wall’s foundation is essential to ensuring 

that the gravity-load system is capable of resisting the deformation demands during seismic 

excitation. In order to understand the behaviour of shear walls accounting for foundation rotation 

and to be able to make a good estimate of foundation rotation, the full spectrum of relative wall-

to-foundation strengths will therefore have to be studied. 

The term “rocking” has been extensively used in the literature to refer to the oscillations of a 

rigid block on a solid surface in which case the block can only rotate by lifting off from the 

surface simply called liftoff. The rocking problem is a good realistic representation of 

foundations resting on solid ground such as rock. Despite the fact that foundation flexibility due 

to compression of the underlying soil is not captured by the rocking problem, the word “rocking” 

has been repeatedly used to refer to oscillations of foundations on soft grounds such as soils. In 

this study however, because foundation’s flexibility is considered to result from both separation 
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of the foundation from the underlying soil on the tension side (i.e. liftoff) and compressive 

displacement of the soil on the compression side, the term rocking is only used to refer to the 

classical rigid block rocking case.  

Previous research on rotational behaviour of foundations shows that accounting for the 

flexibilities in the foundation can be used as an effective way of resisting earthquake effects. 

Works of Housner (1963) and Priestley et al. (1978) are two examples of such evidence. Despite 

this, uncertainties still remain regarding controlling negative effects of foundation rotation such 

as permanent soil displacements and increase in building displacements due to rotation of the 

foundation. Sections below summarizes the available numerical tools for modelling foundation 

flexibility and the existing methods for estimating foundation rotation of a given shear wall. 

3.1.1 Dynamic response of foundations in the elastic range 

Dorby and Gazetas (1986) were the first to provide a solution for the dynamic response of 

arbitrarily shaped foundations in full contact with an elastic half-space resembling a deep 

homogeneous soil deposit. Dimensionless charts were provided to assist with calculation of 

stiffness and damping coefficients of the foundation. Dorby et al. (1986) then verified the 

analytical formulations of Dorby and Gazetas (1986) against free vibration tests on surface 

foundation on moist sand. Gazetas (1991) presented algebraic formulas for stiffness and 

damping coefficients of surface and embedded foundations on/in an elastic half-space. The 

accuracy of the formulation was verified against experiments by Gazetas and Stokoe (1991). 

3.1.2 Existing approaches to numerical modeling of soil-structure interaction 

A method for modeling soil-structure interaction that has gained popularity among researchers 

because of its simple concept is the use of macro-element models. In this method, nonlinear 

vertical, horizontal, and rotational stiffnesses of a foundation are embedded into an element 

called a macro-element placed underneath the foundation. Development of such a model requires 

considerable calibration of numerical parameters against test results to accurately capture the 

nonlinear material behaviour and the existing coupling of stiffnesses in various directions. 

Paolucci et al. (2007), Grange et al. (2008), and Figini et al. (2011) were among the researchers 
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who developed a macro-element model for simulating the hysteretic rotational response of 

foundations. Gajan and Kutter’s (2009a) Contact Interface Model (CIM) is also a form of a 

macro-element. 

Despite the analytical elegance of macro-element models and their effectiveness in predicating 

experimental results, they do not seem to have gained much popularity with design engineers. 

The need for calibration of the model against test results of the soil under consideration requires 

financial resources that are usually not available to small and medium size projects. 

An alternative numerical solution to the seismic response of structures accounting for foundation 

rotation has come in the form of modeling the soil as a 3D finite element (FE) mesh with 

stiffness and strength characteristics of the soil material embedded in the elements. An example 

of such approach is the work by Anastasopoulos et al. (2011). They developed a simplified 

constitutive model for analysis of the cyclic response of shallow foundations based on a 

kinematic hardening constitutive model with Von Mises failure criterion capable of modelling 

both the low-strain stiffness and ultimate resistance of clays and sands. The constitutive model 

was proven to be able to predict results of centrifuge tests on clay under cyclic loading and tests 

on sand with acceptable accuracy. The model is made suitable for implementation in commercial 

FE codes such as ABAQUS through a user subroutine.  

Among the various numerical approaches to modeling soil-structure interaction, the Beam‐on‐

Non‐linear‐Winkler‐Foundation (BNWF) method has been repeatedly used by researchers. In 

this method, the foundation is modeled as a beam resting on a bed of vertical nonlinear springs 

with compression characteristics adjusted to represent the behaviour of the soil material. The gap 

elements between the foundation and the soil springs allow the foundation to separate from the 

soil simulating uplift while viscous dampers model radiation damping accounting for the energy 

that radiates away from the foundation and into the soil as a result of impact. The method owes 

its popularity to its concept being easily understandable to engineers who are not geotechnical 

experts and the numerical modeling being more visual. Performance indicators such as amount 

of lift-off and maximum soil compressive displacement can be readily obtained from the model 

which makes the method more attractive to design engineers. 
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The use of nonlinear Winkler springs for modeling soil-structure interaction has been recognized 

in FEMA 356 (see Figure 3.1). Modeling the foundation on a series of vertical springs results in 

the rotational and the vertical stiffnesses of the foundation to become coupled. In order to 

account for the correct coupling, the soil underneath the end-regions at the toes of the foundation 

has to be made stiffer. FEMA 356 defines the length of the end-regions as one-sixth of the 

foundation width and provides expressions for calculating the stiffness per unit length of 

foundation in those regions. The remainder of the required vertical stiffness is evenly distributed 

over the middle region of the foundation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Distribution of vertical stiffness underneath the foundation as per guidelines on 

FEMA 356 – Figure from FEMA 356. 
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Harden et al. (2005) carried out an in depth study on application of nonlinear Winkler springs to 

modeling the cyclic response of shallow foundations. Model parameters, including material 

models and stiffness distribution underneath the foundation were calibrated against a suite of 

tests considering foundations on both clay and sand type material. In a following publication, 

Harden et al. (2006) investigated the relationship between strength reduction and increase in 

displacement of systems with flexible foundations to balance the benefits versus consequences of 

foundation rotation in a performance based earthquake engineering context. Ugalde et al. (2010) 

used nonlinear Winkler springs to model the response of bridges on shallow foundations 

accounting for rotational flexibility of the foundation. Anderson (2003), Filiatrault et al. (1992), 

and Le Bec (2003) also used nonlinear Winkler springs to model the interaction between the 

foundation and the underlying soil. The work of these researchers is discussed in more detail 

later on as the direction of this research has been influenced by them.  

Allotey and El Naggar (2003) presented an analytical solution to the foundation moment-rotation 

response considering all possible states including uplift-only, yield-only, and combined uplift 

and yield states. Their work also uses the nonlinear Winkler spring concept but with a 

continuous bed of springs instead of using a discrete number of springs underneath a rigid 

foundation. The work of Allotey and El Naggar is further discussed in Section 4.1.1. 

3.1.3 Existing design procedures for accounting for foundation rotation 

The most complete form of existing design procedures for incorporating soil-structure 

interaction into structural design can be found in the series of publication by the Federal 

Emergency Management Agency (FEMA). FEMA 273 introduces a simple method for 

accounting for flexibility of the foundation in structural analysis (see Figure 3.2). In this method, 

the interaction between the structural component of the foundation and the soil on which it rests 

is modeled using uncoupled elasto-plastic rotational and translational springs. Guidelines are 

provided for choosing the stiffness of each of the springs. The stiffnesses are calculated using 

equations for elastic stiffness of a rigid plate resting on a half-space elastic material such as the 

ones formulated by Gazetas (1991) but with an effective soil shear modulus (G) used instead of 

the initial shear modulus (G0). G0 can be estimated from the soil mass density and shear wave 

velocity as follows. 
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  Eq 3.1 

FEMA 273 also provides an alternate formula for estimating G0 using the effective stress and 

blow count normalized for 1.0 ton per square foot confining pressure and 60% energy efficiency 

of hammer. The effective shear modulus that must be used to estimate the foundation rotational 

stiffness would then vary from 50% to 20% of G0 depending on the effective peak acceleration 

of the ground motion. In the absence of detailed geotechnical data, FEMA 273 instructs the 

designer to use half and twice the best estimates of stiffness to account for the variability in soil 

properties. Guidelines are also provided for choosing the soil ultimate bearing capacity. Ultimate 

overturning strength of the foundation can then be calculated using the soil ultimate bearing 

capacity for the vertical load resisted by the foundation. 

In FEMA 356 which superseded FEMA 273, it is stated that the soil shear modulus reduction 

factors recommended by FEMA 273 provisions overestimate the modulus reduction effects for 

site classes A, B, and C. According to provisions of FEMA 356, for these three site classes, the 

minimum shear modulus reduction factor is 0.60 and rapidly increases towards unity with 

decreasing effective peak acceleration. Revisions to the soil shear modulus reduction factors 

were primarily implemented to avoid overestimating the reductions in design forces due to 

accounting for the flexibility of the foundation. Having smaller reductions on the soil shear 

modulus which results in a stiffer foundation would reduce the first mode of vibration period of 

the system in turn increasing the base shear and design forces. Nevertheless, FEMA 356 also 

requires upper and lower bounds to be applied to soil properties and analysis to be made with 

both sets of parameters to bound the problem. 

Guidelines of FEMA 273 are applied in FEMA 274 in a demonstrative example where a shear 

wall building is analyzed. Adding rotational flexibility of the foundation to the model is shown 

to lengthen the period of the structure which results in reduction in load demands on the shear 

wall at the expense of larger building displacements. It is recognized that rotation of the 

foundation relaxes demands on the shear wall and is a suitable mechanism for resisting 

earthquake forces provided that the gravity-load frame can maintain its load-carrying capacity 

despite the additional displacements. 
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Figure 3.2 (a) Idealized elasto-plastic load-deformation behavior for soils (b) Uncoupled spring 

model for rigid footings – Figure from FEMA 273. 

3.1.4 Selected experiments on rotational response of foundations by other 

researchers 

Numerous tests have been performed on the rotational response of foundations among which, 

one of the most valuable is a series of tests known as the TRISEE tests presented in Negro et al. 

(1998) and Negro et al. (2000). Further reference is made to this test in Section 3.2.6. The 

TRISEE tests have been used as the basis for developing numerical models for rotational 

response of shallow foundations by many researchers. Macro-element models of Paolucci et al. 

(2007), Grange et al. (2008), and Figini et al. (2011) were all partly calibrated to match the 

TRISEE test results. Allotey and El Naggar (2003) validated their solution for the foundation 

moment rotation response against the TRISEE tests. 
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Another set of tests on foundation rotations that has been referred to by many researchers is the 

centrifuge tests carried out by Gajan and Kutter (2008). Gajan and Kutter conducted several 

centrifuge experiments to study the rotational behavior of shallow footings supported by sand 

and clay soil stratums, under slow lateral cyclic loading and dynamic shaking. The experiments 

showed that the ratio of the total foundation area (A) to the minimum bearing area required to 

resist the vertical load (Ac) can be directly correlated with the foundation’s rotational behaviour. 

Foundations with A/Ac of about 10 did not suffer large permanent settlements as a result of 

rotation, had sufficient self-centering ability, and dissipated seismic energy corresponding to 

about 20% damping ratio. Results of the 2008 tests were further discussed in Gajan and Kutter 

(2009b). 

Algie (2011) conducted a series of experiments on foundations embedded in Auckland residual 

clay. Some of the results and findings from Algie’s work are presented in Pender et al. (2013). 

Forced vibration tests were performed on the foundations using an eccentric mass shaker 

mounted on top of the frame supported by two foundations. Snap-back tests were also performed 

by first pulling the frame to a specific displacement and then suddenly releasing it so that the 

foundations would rock freely. Further reference is made to Algie’s work in Section 3.2.6 

regarding soil damping. 

3.1.5 Anderson (2003) 

Anderson investigated the behaviour of 7, 15 and 30 storey shear walls accounting for 

foundation rotation. In his study, the walls were elastic with masses lumped at floor slab levels. 

Wall stiffness and mass were adjusted such that the first period of vibration of the fixed-base 

wall was 0.1N where N was the number of storeys. The percentage of the floor mass’ weight 

supported directly by the shear wall was called Mass Ratio (MR). Three different mass ratios of 

0.2, 0.4, and 0.6 were chosen for each wall-foundation combination. 5% viscous damping was 

assigned to the wall elements to account for energy dissipation due to flexural deformation of the 

shear wall. 

All foundations were square with 21 soil springs equally spaced underneath. An initial study 

with the footings constructed from linear elastic beam elements revealed that no appreciable 
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flexural deformation occurred in the footing and hence, all footings were modeled to be rigid in 

bending. The soil springs were elastic-perfectly plastic (EPP) with a gap element that could 

simulate foundation lift-off. Two types of soil were chosen, rock and clay. The rock had very 

high stiffness and strength (qult=10MPa and E=10000 MPa) and hence, most of the foundation 

rotation on rock came from foundation lift-off. The clay was much softer and weaker 

(qult=3.6MPa and E=60 MPa) causing most of the foundation rotation to come from yielding of 

the soil springs in compression. The foundations were sized for overturning strengths 

corresponding to R values of 1.0, 1.5, 2.0, and 3.5. R was defined as the ratio of the elastic 

bending demand obtained from the equivalent static forces given by NBCC 1995 to the 

foundation overturning strength. The size of the foundation was also checked for service load 

conditions with the allowable soil bearing pressure being one-third of the ultimate soil bearing 

capacity but the static or serviceability condition never governed the size of the foundation. 

Elastic stiffness of the springs was chosen such that the elastic rotational stiffness of the 

foundation matched that given by Veletsos and Wei (1971). No damping was assigned to the soil 

spring or the gap elements. In other words, radiation damping of the soil was ignored to enhance 

rotations of the foundation. 

Dynamic analysis was performed using 11 ground motions records modified to match the 

spectrum given in NBCC 1995. The mean of the envelope responses resulting from each of the 

11 ground motion records were used for studying the behaviour of various structures considered 

in his study. 

Figure 3.3 summarizes the results of Anderson’s study. As expected, structures with foundations 

designed for larger R values experienced more rotation and therefore, more increase to their 

global drift. For all cases, walls with larger mass ratios experienced more foundation rotation. 

This was again not surprising as foundations with larger mass ratios require a smaller foundation 

size to achieve a certain R value. As the buildings became taller, the top displacement response 

of the wall-foundation structure became less sensitive to the mass ratio. It was therefore 

concluded that shorter buildings are more susceptible to foundation rotation than taller ones. 

Comparing analysis results for 30 storey structures on rock and clay, a much larger increase in 

global drift was observed in structures on rock than ones on clay. 
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Figure 3.3 Drift ratio versus foundation R value: (a) 7-storey structure on rock foundation, (b) 

15-storey structure on rock foundation, (c) 30-storey structure on rock foundation, and (d) 30-

storey structure on clay foundation - Figure from Anderson (2003). Note: Values of R in the 

figure legends represent the ratio of the elastic moment to the wall bending strength. 

 

For the 7 and 15 storey walls on rock, global drift of the elastic wall on an R=3.5 foundation was 

compared to that of a nonlinear EPP wall with a fixed base. The wall had a value of R also equal 

to 3.5 with R in this case being the ratio of the elastic moment to the wall bending strength. It 

was shown that foundation rotation can significantly increase global drifts of the system 

compared to the global drift of a fixed-base structure. Anderson therefore concluded that in such 

cases, the foundation overturning strength must be higher than the bending capacity of the wall 

to reduce foundation rotation and force a flexural hinge to form in the wall. 

Anderson’s work was crucial in showing what an impact the amount of vertical load supported 

by the foundation (i.e. mass ratio) has on the behaviour of shear walls with flexible foundations. 

Also, Anderson proved that shorter buildings are far more susceptible to increased deformations 
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due to foundation rotation than taller buildings. However, in his work, Anderson either 

considered elastic shear walls on nonlinear inelastic foundations or a nonlinear wall with a fixed-

base. The rationale behind focusing on elastic shear walls with flexible foundations was that 

elastic shear walls could induce much larger moments into the foundation and therefore 

produced more rotation. Although this correctly represented the worst case scenario, it took 

away the opportunity to study the interaction between wall bending strength and foundation 

overturning capacity. In reality, both the shear wall and the foundation are nonlinear and 

inelastic. Therefore, an obvious follow-up to Anderson’s study would be one that accounts for 

nonlinear behaviours of both the wall and the foundation. 

3.1.6 Other Canadian research on shear walls with flexible foundations 

Filiatrault et al. (1991) published results of a study on the behaviour of a typical wall-type 

reinforced concrete structure with a foundation that was unable to develop a plastic hinge in the 

wall. The structure was a 21 storey core-type reinforced concrete building located in seismic 

zone 4 as specified in NBCC 1995. The core sat on a 17 x 17 m square footing. Three different 

models were used to analyze the building’s behaviour under the action of horizontal ground 

motion. Model 1 consisted of the elastic core wall sitting on a rigid or fixed foundation. Model 2 

had a footing that was capable of yielding in flexure sitting on soil springs that could simulate 

soil yielding in compression and foundation uplift in addition to the inelastic core wall capable 

of producing a flexural hinge. Model 3 incorporated all of the features of Model 2 with the 

addition of truss and beam elements to include the effect of the parking structure with peripheral 

retaining walls in the first two storeys of the building. 

Nine ground motion records from SMCAT 1989 were chosen that had peak horizontal 

accelerations and peak horizontal velocities within the range specified by NBCC 1990 for 

seismic zone 4. From these nine records, two which had an acceleration response spectrum 

similar to that in NBCC 1980 were chosen to be used in the structural analysis. Because the 

response spectra of the two chosen records were a bit jagged, fundamental period of the structure 

was varied by 10% either way and the highest value of the response was reported. 
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The structural analysis platform chosen was DRAIN-2D. Soil elements were modeled using 

axial truss elements as hangers. The elements were stressed in tension and possibly yielded in 

tension to model the soil compressive behaviour. Elastic buckling of the truss elements at very 

low compressive forces was used to model foundation uplift. The soil was assumed to be hard 

till with a shear modulus of 200 MPa, a Poisson’s ratio of 0.2, and an ultimate bearing capacity 

of 1.5 MPa. Properties of the individual hangers were adjusted so that the elastic rotational 

stiffness of the foundation matched that of an equivalent circular foundation given by Das (1983) 

as follows. 

   
    

 

      
 

Eq 3.2 

Among the three models, Model 3 had the smallest top displacement and not the fixed-base 

Model 1 as the forces in the parking structure slabs prevented large bending moments to occur at 

foundation level. Model 2 had the largest top displacement. Another important observation in 

this work was that introduction of a flexible foundation reduced the wall base shear much less 

than it reduced the bending moment demand on the wall. Shear demand in Model 3 was the 

highest because of the large forces induced in the floor slabs of the parking structure. 

Because in none of their original analysis the overall building overturning stability was 

compromised, Filiatrault et al. repeated some of the analysis with a magnified ground motion 

record that had a 40% increase compared to the original record. Compared to the original ground 

motion, the magnified ground motion resulted in 39% increase in base shear demand, 288% 

increase in maximum top displacement, and an 18% increase in bending moment demand. To 

consider the worst case scenario, length of the footing was reduced to be equal to the length of 

the core wall and the magnified earthquake was applied to the structure. Surprisingly, the 

maximum top displacement increased by only 12% compared to the case with the full foundation 

size. The uplift of the foundation was even reduced compared to the 17 m square foundation 

case. Despite the lower foundation overturning resistance, shear forces kept increasing. Even in 

this extreme case, the stability of the structure was not compromised and the structure did not 

collapse. 
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The work published by Filiatrault et al. explained some key points of the fundamental behaviour 

of walls with flexible foundations especially considering the simple analysis tools used. A 

continuation of their work could improve on the following aspects. The soil spring backbone 

curve was elastic perfectly-plastic (EPP) which was a good approach considering the numeric 

tools available at the time. With the new models available such as the QzSimple1 material in 

OpenSees, the cyclic response of the soil can be modeled accounting for compression softening 

of the soil resulting a more sophisticated unloading and loading pattern. EPP flexural elements 

were used to model the wall whereas modeling the flexural behaviour of the wall using a 

nonlinear fibre section could yield a more realistic representation of the wall’s behaviour. With a 

fibre section, the nonlinear moment-curvature response of the wall will be accounted for. Also, 

over strength of the wall due to steel strain hardening which could intensify foundation rotation 

will be automatically accounted for. Filiatrault et al. investigated the behaviour of a single wall 

with a certain flexural strength sitting on two foundation sizes. To better understand the 

interaction between wall flexural strength and foundation overturning resistance, a broader study 

is required which considers more wall-foundation combinations. 

A recent Canadian publication on foundation rotations is the work of Le Bec (2009). In his 

Master’s thesis, Le Bec studied the seismic behaviour of ductile reinforced concrete walls with 

flexible foundations. Parts of the results were also published in Koboevic et al. (2010). The study 

focused on a 10-storey rectangular shear wall which was part of a reinforced concrete building 

with six walls in total (three in each direction). Response Spectrum Analysis was performed on a 

3D model of the building following provisions of NBCC 2005. The most heavily loaded wall 

was then designed and detailed for force levels corresponding to RdRo of 5.6. The same wall was 

then modeled in OpenSees using detailed fibre sections assigned to beam-column elements. Only 

13% of the weight of the floor mass was supported directly by the wall and the rest was 

supported by the gravity-load columns (i.e. a mass ratio of 0.13). 

Two sand-type soil profiles were considered which had properties corresponding to the average 

(550 m/s) and lower-bound (360 m/s) shear wave velocity for site class C as specified in NBCC 

2005. The lower bound soil was softer and weaker. The wall’s foundation was sized keeping 

equal overhangs in both directions. Three different foundation sizes were designed for the wall 

assuming a uniform stress block with the soil’s ultimate bearing capacity at the toe of the 
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foundation. The smallest foundation was designed for an overturning strength corresponding to 

the factored wall bending strength (RdRo=5.6). The midsized foundation was designed for the 

nominal wall bending strength (RdRo=4.6). The largest foundation had an overturning capacity 

equivalent to RdRo=2.0.  

Nonlinear Winkler springs were used to simulate the interaction between the foundation and 

underlying soil in OpenSees. The portion of the foundation directly underneath the wall was 

modeled as a rigid beam because of the wall’s high in-plane bending stiffness would prevent the 

foundation from bending. Foundation overhangs were modeled as elastic beams as no hinging is 

supposed to occur in a well-designed foundation. The QzSimple1 material for sand was used for 

the soil springs. Smaller spring spacing was used closer to the foundation toes than that used in 

the middle strip of the foundation following recommendations of FEMA 356 such that both the 

elastic vertical and rotational stiffnesses of the group of soil springs matched the elastic stiffness 

properties of the foundation on the given soil. Soil suction was eliminated to increase foundation 

rotation but radiation damping was included in the soil springs. 

10 earthquake records were selected from the database of simulated ground motions proposed by 

Atkinson (2009) which had response spectra close to the NBCC 2005 spectrum. Although the 

individual response spectra were quite jagged, the mean of the 10 followed the NBCC spectrum 

nicely. 

The general conclusion was that accounting for soil-structure interaction decreases the seismic 

force demands without increasing the top displacement of the wall significantly. As the soil was 

weakened and softened and the foundations became smaller, force demands kept decreasing and 

top wall displacements increased but maximum top wall displacement always remained 

comparable to that of the fixed-base wall. Maximum soil compressive displacement rarely 

exceeded 45 mm, a fairly small amount considering the size of the foundation. The results 

showed that “foundation rocking has great potential to reduce the seismic force demand on 

building structures and can provide an interesting alternative energy dissipation mechanism”. 

The results from this study describe accounting for flexibility in the foundation as a promising 

energy dissipation mechanism for the structures considered. It must be noted that the analysis 

was done on a very ductile wall (RdRo=5.6) while it is the stronger walls with much lower values 
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of RdRo that are more susceptible to foundation rotation as they are capable of inducing larger 

bending moments in the foundation. Furthermore, in all of the cases considered, the foundation 

was either stronger than the wall or as strong as. The more critical cases certainly are ones in 

which the foundation is weaker than the wall. Also, the wall’s mass ratio was 0.13 which is a 

lower bound of the probable vertical load resisted by a typical wall. The smaller vertical load 

resulted in a larger foundation needed to achieve a certain foundation overturning strength. 

Therefore, a larger axial load will result in smaller a foundation and consequently more severe 

rotation. In addition, the two soil profiles considered in the study were fairly strong and stiff. 

Permanent soil deformations may become problematic in the case of weaker and softer soils. 

3.1.7 Discussion 

Analytical tools for studying soil-structure interaction have been developed and used by many 

researchers. Among the numerical tools, the use of nonlinear Winkler springs seems to have 

gained more popularity as it is relatively simple to understand and implement. It also is capable 

of including all types of rotational nonlinearity such as soil yielding and foundation uplift. 

Nonlinear Winkler springs along with gap elements which can model the separation between the 

soil and the footing are used in this study to model the nonlinear rotational behaviour of the 

foundation. 

The existing vast literature on foundation rotation has been mostly focused on the behaviour of 

the soil-foundation interaction. This type of work includes most of the experiments carried out 

on flexible foundations and the development of numerical models that have followed. The 

literature on the influence of foundation rotation on the response of the superstructure and 

particularly shear walls is scarce. The few examples of works of other researchers that have 

focused on the response of shear walls accounting for foundation rotation presented earlier 

confirms that a limited range of combinations of wall and foundation strengths have been 

studied. This study aims at using modern analytical tools to simulate the nonlinear behaviour of 

both the soil and the wall and study various combinations of wall to foundation relative strengths 

to better understand the behaviour of shear walls accounting for foundation rotation and to be 

able to estimate the amount of foundation rotation in a given wall-foundation system. 
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Most of the previous works have focused on one or two types of soil. It has been shown that for 

a softer and weaker soil, most of the nonlinearity in the foundation comes from soil compression 

while on stronger and stiffer mediums such as rock, almost all of the rotation is a result of uplift. 

It is of interest therefore to study the behaviour of wall-foundation systems on a number of soil 

types ranging from clay to rock to observe the transition from the compression-dominated 

behaviour to the uplift-dominated cases. 

Simple design-friendly methods such as the one described in FEMA 273 have been developed 

which account for flexibility of the foundation and incorporate its effects in structural design. 

The method described in FEMA 273 uses a single elasto-plastic spring to model the rotational 

response of the foundation. This approach does not realistically capture the mechanisms 

resulting in that flexibility such as foundation uplift and soil yielding in compression. Moreover, 

foundation rotational stiffness varies greatly with foundation rotation which makes prediction of 

the actual hysteretic response using a single elasto-plastic spring impossible. The method is 

primarily aimed at making conservative estimates of the maximum displacement demands 

accounting for flexibility of the building’s supports. 

The objective of CHAPTER 3 is to better understand the interaction between nonlinear 

behaviours of both the shear wall and the soil through Nonlinear Time-History Analysis (NTHA) 

of a broad range of shear wall strengths and foundation overturning capacities on various soil 

types. CHAPTER 4 uses the results of NTHA of CHAPTER 3 to formulate a simple design-

oriented method for predicting foundation rotation of a given wall-foundation system. The 

optimal goal of the research presented in CHAPTER 3 and CHAPTER 4 is to provide step-by-

step guidelines for predicting the response of shear walls accounting for foundation rotation 

based on results of NTHA on a broad range of wall-foundation systems and soil types. 

3.2 Numerical Modeling and Analysis Method 

In order to accurately capture the behaviour of shear walls accounting for foundation rotation 

without adding unnecessary complexities into the numerical modeling, certain assumptions had 

to be made on both the material and system levels. Material characteristics such as stiffness, 

strength, and cyclic behaviour needed to be chosen such to represent the real response accurately 
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but yet be simple enough to be formulated in finite element (FE) structural analysis. To narrow 

down the scope of this study, only the 2D response of such wall-foundation systems was studied. 

OpenSees was chosen as the modeling and analysis platform for the study as it has a diverse 

library of materials and elements and is well suited to NTHA. Figure 3.4 shows a schematic view 

of the structural modeling. Assumptions made on material properties and numerical modeling 

procedures are described in the following sections. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Schematic view of 2D modeling of shear walls with a flexible foundation. 

3.2.1 Modeling of the shear wall 

Walls of three different heights having 5, 10, and 20 storeys were considered in this study with 

total heights of 15.7, 29.7, and 57.7 m respectively. The walls were modeled as elastic flexural 

members having a flexural stiffness calculated from uncracked section properties. All walls had 

their seismic mass and its associated compressive axial load on the wall lumped at floor slab 
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levels and uniformly distributed over the height. These sets of walls were used to conduct a pilot 

study on wall height to determine which wall height was more severely affected by the negative 

effects of foundation rotation (see Section 3.5). The behaviour of 10-storey walls was found to 

be more critically affected by accounting for foundation rotation and therefore, the Core NTHA 

focused on 10-storey walls.  

A group of four nonlinear 10-storey walls of various bending strengths were designed for this 

study. Figure 3.5 shows the cross-section of the nonlinear 10-storey walls. Other shear wall 

specifications are given in Table 3.1. The walls were 5.5 m long and 6.0 m wide having a 

footprint close to being square. First storey height was 4.5 m since most 10-storey buildings have 

lobbies or mezzanines with high ceilings. The uniform storey height above was 2.8 m. Seismic 

mass was lumped at floor slab locations and was adjusted such that the elastic fundamental 

period of the wall with a fixed base was 0.1N with N being the number of storeys (i.e. first mode 

period of 1.0 sec for 10-storey walls). Axial compressive load on the wall resulting from gravity 

was expressed as a percentage of the weight of the seismic mass lumped at floor slab levels 

called the Mass Ratio (MR), and was uniformly distributed over the height of the wall. All four 

nonlinear 10-storey walls had a MR of 0.4 as standard.  

Web steel reinforcement ratio was kept constant at 0.25%. Steel ratio of the flanges was constant 

in the first 3 storeys where the plastic hinge was expected to form and decreased linearly over 

the fourth to seventh storeys to a constant value of 0.5% in the top three storeys. The 

considerable variation among flange vertical steel ratios of the walls within the plastic hinge 

region was intended to investigate the effect of wall bending strength on the wall-foundation 

system behaviour. Wall bending strength could have been increased by keeping the flange steel 

ratio the same while increasing the wall length. This option was considered not to be suitable as 

wall length affects wall plastic hinge length significantly which would have made comparison of 

performance parameters of various walls difficult. To avoid introducing wall length as an 

additional parameter, wall bending strength was increased by increasing the flange steel ratio and 

keeping the wall cross-section the same. Even though the steel ratio in the flange of wall 10R13 

is too high for practical purposes, it is considered acceptable for the purpose of this study. 
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Figure 3.5 Cross-section of nonlinear 10-storey shear walls (dimensions in millimetres) – 

bending takes place about the X-X axis. 

 

Maximum elastic bending moment demand of the walls was estimated using Response Spectrum 

Analysis (RSA) of an elastic wall with the same geometry as the nonlinear walls but with 

flexural stiffness equal to 70% of the uncracked wall stiffness. The spectrum used in the RSA 

was the 2475 year return period Uniform Hazard Spectrum (UHS) given in Figure 3.13. The wall 

bending strength at full yield was then expressed as 

   
    

  
 

Eq 3.3 

Where MRSA is the maximum elastic bending moment demand from RSA and My is the probable 

bending strength of the wall accounting for steel strain hardening. The elastic bending moment 

demand was found to be 488,275 kN.m. Figure 3.6 shows the envelopes of wall moment-

curvature responses for the four walls. Note the difference in the yield moment strength among 

the walls. Rw was then incorporated into the wall’s ID. For example, wall 10R13 is a 10-storey 

shear wall with an Rw of 1.3. In general, the focus has been on strong walls (i.e. walls with 
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relatively small values of Rw) since stronger walls induce larger moments in the foundation and 

hence are more prone to additional displacements from rotation of their foundation. 

 

Table 3.1 Specifications of nonlinear 10-storey shear walls. 

 

 

 

 

 

 

 

 

 

 

The probable bending strength of the wall was defined as the average of bending moment 

envelopes at the base of the wall obtained from NTHA of the fixed-base wall subjected to the 10 

spectrally-matched ground motions. The effect of steel strain hardening was therefore included 

in calculation of the probable bending strength of the wall. Since all of the walls considered in 

this study were flanged walls, the probable bending strength of the wall was very close to the 

wall nominal strength after the entire vertical steel in the tension flange of the wall had yielded 

(see Figure 3.6). The probable wall bending strength is therefore denoted as My. Table 3.2 

summarizes the factored, nominal, and probable bending strengths of the four nonlinear walls 

considered in this study. Values of Rw calculated based on each of the three definitions for wall 

10R27 10R20 10R17 10R13

Base 0 41550 1.09% 2.63% 3.55% 5.45%

1st 4.5 37395 1.09% 2.63% 3.55% 5.45%

2nd 7.3 33240 1.09% 2.63% 3.55% 5.45%

3rd 10.1 29085 0.97% 2.19% 2.93% 4.46%

4th 12.9 24930 0.85% 1.76% 2.32% 3.47%

5th 15.7 20775 0.73% 1.33% 1.71% 2.48%

6th 18.5 16620 0.61% 0.90% 1.10% 1.48%

7th 21.3 12465 0.49% 0.49% 0.49% 0.49%

8th 24.1 8310 0.49% 0.49% 0.49% 0.49%

9th 26.9 4155 0.49% 0.49% 0.49% 0.49%

10th 29.7 ----- ----- ----- ----- -----

Flange reinforcing steel ratio

Floor

Compressive 

Axial Force 

Carried by the 

Shear Wall        

(kN)

Height 

(m)
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bending strength are given in Table 3.3. Note that values of Rw calculated using the probable 

wall bending strength are used in the remainder of this study wherever reference is made to Rw. 

 

Table 3.2 Factored, nominal, and probable bending strengths of the four nonlinear walls 

considered in the NTHA (note: wall factored bending strength was calculated using material 

strength reduction factors of 0.65 and 0.85 for concrete and the reinforcing steel respectively). 

 

 

 

 

 

Table 3.3 Values of Rw calculated using the various definitions of wall bending strength. 

 

 

 

 

 

Nonlinear fibre elements were used to construct the cross-section of the shear walls. Concrete04 

material based on the work of Popovics (1973) was used to define the stress-strain relationship 

of the concrete material. Concrete compressive strength was chosen to be 30 MPa with the 

secant modulus of concrete calculated as 4500√    (in MPa units). The value used for concrete 

crushing strain was 0.0035 in compression. Concrete strain at maximum compressive stress was 

calculated using the concrete secant modulus to be 0.0021. Tensile strength was chosen to be 1.9 

MPa. The cyclic response of the stress-strain relationship also accounted for cumulative 

compressive strains due to crushing (compressive stresses beyond fʹc) as well as concrete tension 

Wall ID

Factored 

Strength 

(kN.m)

Nominal 

Strength 

(kN.m)

Probable 

Strength 

(kN.m)

10R13 327700 374900 375000

10R17 249000 281900 302548

10R20 211100 235600 261219

10R27 150500 161100 190796

Wall ID

Rw based on 

Factored 

Strength

Rw based 

on Nominal 

Strength

Rw based on 

Probable 

Strength

10R13 1.49 1.30 1.30

10R17 1.96 1.73 1.61

10R20 2.31 2.07 1.87

10R27 3.24 3.03 2.56
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stiffening. Table 3.4 summarizes the various input parameters for the concrete material model. In 

the table,     is the concrete compressive strength,     is the concrete strain at    ,     is the 

maximum permissible concrete compressive strain,    is the secant stiffness of concrete in 

compression,    is the concrete tensile strength,    is the concrete strain at   , and the residual 

stress parameter is the loading point value defining the exponential curve parameter to define the 

residual stress simulating concrete tension stiffening. 

 

 

 

 

 

 

 

 

 

Figure 3.6 Plastic hinge zone bending moment-curvature envelopes of the four nonlinear 10-

storey shear walls. 

 

Steel01 material (bilinear stress-strain relationship) was used to model the reinforcing steel in the 

fiber sections. Yield strength of 400 MPa and elastic modulus of 200 GPa were assumed. The 

secondary slope of the steel stress-strain relationship defining the strain hardening response was 

set to 1% of the initial elastic slope. Other parameters were kept at their default values suggested 

by the program. Unloading of the steel fibers loaded to beyond their yield capacity occurs with a 

slope parallel to the initial elastic slope of the stress-strain curve. Input parameters for the steel 

material models are listed in Table 3.5 where Fy is the yield strength, E is the elastic modulus of 

steel, and parameters a1 to a4 are parameters defining the hysteretic behaviour of the steel. 
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Table 3.4 Input parameters for the concrete material model. 

 

 

 

 

 

 

The fiber sections were then assigned to force-based beam-column elements with 5 integration 

points to construct the shear wall model. 3% of critical damping was assigned to the beam-

column elements. 

 

Table 3.5 Input parameters for the steel material model. 

 

 

 

 

 

Fiber models are very useful in predicting flexural deformations of structural members but 

cannot capture shear deformations. However, once the flexural deformation profile of the wall is 

obtained, inelastic shear deformations in the plastic hinge region of the wall can be estimated 

using the procedure described in CHAPTER 2 and added to the flexural deformation profile if 

need be. Wall shear deformation is neglected in this chapter since flexural behaviour of the wall 

accounting for foundation rotation is of interest. 

Fy (MPa) 400

E (MPa) 200,000

Parameter a1 0

Parameter a2 1

Parameter a3 0

Parameter a4 1

Steel01 Material in OpenSees

f'c (MPa) 30

e'c -0.0021

ecu -0.0035

Ec (MPa) 24647

ft (MPa) 1.9

et 7.7E-05

Residual stress parameter 0.1

Concrete04 Material in OpenSees
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3.2.2 Modeling of the footing 

In this study, footing is referred to the structural element designed to transfer the loads from the 

shear wall to the underlying soil called the foundation. Flexibility of the foundation therefore 

refers to the flexibility of the underlying soil material and not the flexural rigidity of the footing 

on which the wall rests. 

In a study on seismic behaviour of reinforced concrete ductile shear walls accounting for 

foundation rotation, Koboevic et al. (2010) modeled the portion of the footing directly 

underneath the wall to be rigid and used elastic beam elements for the footing overhangs. This 

modeling procedure seems realistic as the wall will significantly stiffen the footing out of its 

plane and hence assuming the footing to be rigid in that region is reasonable. Also, footing depth 

must be designed to prevent any damage to the footing in the event of an earthquake which 

justifies the use of elastic beam elements to model footing overhangs. However, such a detailed 

model for the footing does not contribute a great deal to the accuracy of the overall predicted 

response of the wall-foundation structure. Footings of core walls are usually 1.5 m to 2.5 m deep 

and the boundaries of the wall are often not far away from the edges of the footing. Furthermore, 

the portion of the footing directly underneath the core is stiffened by the core wall and will 

remain nearly rigid. This suggests that very little deformation will be induced in the footing itself 

as a result of its rotation. Anderson (2003) did some initial analysis with the walls sitting on 

elastic footings and discovered that the results were very similar to the cases were the footings 

were assumed to be perfectly rigid. In another paper on walls with flexible foundations by 

Filiatrault et al. (1992), the footing was also assumed to be rigid. In this study, footings are 

assumed to be rigid ignoring their flexural deformations. This would eliminate the need for 

designing footings of different sizes with various thicknesses. Assuming the footings to be rigid 

eliminates yet another parameter from the study which makes comparison of results easier and 

makes for better understanding of the behaviour of wall-foundation systems.  

3.2.3 Modeling of the soil-structure interaction 

To simulate the nonlinear behaviour of the soil and the interaction between the footing and the 

underlying soil, nonlinear Winkler springs were used (see Figure 3.4). A series of nonlinear soil 
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elements were spread underneath the footing with the properties of the elements adjusted to best 

represent the behaviour of the soil in both elastic and nonlinear phases of the response. 

QzSimple1 material readily available in OpenSees was chosen for this study. Each soil element 

constructed using this material is composed of a nonlinear spring in parallel with a viscous 

damper both in series with a gap element which connects to the footing. The nonlinear spring in 

the QzSimple1 material was formulated to mimic the monotonic backbone curves for the 

compressive force-displacement response at the tip of drilled shafts in clay and driven piles in 

sand. Even though the material was formulated based on experimental results for piles and 

drilled shafts, the local response underneath a spread footing is similar to that at the tip of a 

caisson or pile. The extensive use of the model by other researchers to model the soil-structure 

interaction underneath a foundation confirms this statement. Works of Le Bec (2009), Koboevic 

et al. (2010), Algie (2011), and publications such as PEER report 2005/04 are examples of 

studies done on foundation rotation with the QzSimple1 material used as Winkler springs. 

The footing was fixed against horizontal movement as shown schematically in Figure 3.4 

ignoring the interaction of the thickness of the footing with the soil and the frictional interaction 

of the underlying soil with the underside of the footing. This modeling assumption ignores any 

damping resulting from soil-structure interaction in the horizontal direction. Also, sliding of the 

foundation is neglected. Both of these phenomena reduce the rotational excitation of the 

foundation and were therefore excluded from the numerical model. Horizontal movements of the 

footing was ignored in numerical simulations of shear walls accounting for foundation rotation 

carried out by Filiatrault (1991), Anderson (2003), Le Bec (2009), and Koboevic (2010). 

Neglecting the soil-structure interaction in the horizontal direction in this study will therefore 

make for better comparison of the results with observations made in previous research.  

Figure 3.7 shows the non-dimensional monotonic response backbones of the QzSimple1 

material. Z50 is the displacement at which 50% of the ultimate bearing capacity is mobilized. The 

only inputs to the model are Z50 defining the initial elastic stiffness and qult being the ultimate 

bearing capacity. The sand curve starts with a much stiffer response but quickly softens whereas 

the clay keeps a nearly constant elastic stiffness up to the point where about 50% of the ultimate 

bearing capacity is mobilized. However, in reality, sand is usually much stiffer and much 

stronger than clay. 
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Figure 3.7 Non-dimensional backbone curves defining the QzSimple1 material used for soil 

springs. 

 

Deformation of the soil spring in monotonic compression is divided into two parts one being the 

elastic deformation which is recoverable upon unloading and the other being the plastic soil 

deformation which cannot be recovered after unloading. Therefore, total deformation of the soil 

spring (Z) can be decomposed into the elastic portion (Ze) and the plastic portion (Zp) as follows. 

        
Eq 3.4 

Elastic displacement at any given load (q) would be 

   
 

  
 

Eq 3.5 

where ke is the initial elastic stiffness of the soil element. The plastic displacement is given by 
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Eq 3.6 

In this equation, qult is the ultimate bearing capacity of the soil, Z50 is the displacement at which 

a bearing pressure of 0.50qult is mobilized and C, n and Cr are constants related to the type of the 
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soil whether sand or clay. Cr is the fraction of qult beyond which the soil will exhibit inelastic 

deformation. For bearing pressure less than Cr.qult, Zp will be zero. C and n are numeric constants 

that define the compression softening of the backbone curve. Values of the constants used for 

clay and sand type soils are summarized in Table 3.6. 

 

Table 3.6 QzSimple1 material constants for clay and sand type soils. 

 

 

 

For clay type soils, even though Cr is 0.2, the plastic displacement component of the soil remains 

small compared to the elastic displacement component up to a bearing pressure of  0.5qult. This is 

because the value of n and C for clay type soils are such that the soil spring starts to soften only 

at very high bearing pressures. The elastic stiffness however is maintained only up to 0.2qult. The 

value of Cr for sand type soils is 0.3 hence the plastic component will start to develop at bearing 

pressure of 0.3qult. In this case, n and C are such that the soil spring softens and the plastic 

displacement component grows rapidly beyond pressures of 0.3qult. Softening of sand type soils 

is so quick that it produces a visible kink in the backbone curve (see Figure 3.7). 

As for the cyclic response of the QzSimple1 material, as long as the compressive displacement 

stays below the linear limit (i.e. 0.2qult for clay and 0.3qult for sand), no residual displacement is 

produced in the soil. When the nonlinear spring is compressed beyond the linear elastic range, 

unloading will occur on a line parallel to the initial linear part of the backbone curve. At high 

compressive stresses such as 85% qult, a very small portion of the displacement is recovered once 

the load has been reversed (i.e. little rebound of the soil).  

Soil suction (or tension) was completely neglected even though in reality some suction can 

develop. This decision was made so to enhance the cyclic rotational motion of the foundation. 

Cyclic behaviour of the nonlinear spring in compression and lack of suction allows for 

significant accumulation of non-recoverable soil compressive displacement. Because the 

Clay Sand

Cr 0.2 0.3

n 1.2 5.5

C 0.35 12.3
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nonlinear part of the soil displacement does not rebound or is not cyclic, little damping needs to 

be associated with the nonlinear soil springs. This is different than radiation damping which 

accounts for radiation of energy away from the wall-foundation system upon impact on the soil. 

Properties of the viscous damper inherent in the QzSimple1 material were adjusted to capture 

soil radiation damping. The subject of soil radiation damping is discussed in Section 3.2.6. 

Gazetas (1991) first introduced equations for computing the uncoupled elastic translational and 

rotational stiffnesses of a rigid foundation sitting on an elastic half-space medium. Gazetas’ 

formulations for the uncoupled vertical translational stiffness     and the rotational stiffness 

     of a rectangular foundation as summarized in ATC-40 and PEER report 2005/04 are as 

follows. 
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Eq 3.7 
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Eq 3.8 

In the equations above, G is the elastic shear modulus of the soil, ν is the Poisson’s ratio, L is the 

foundation length, B is the foundation width, and Iy is equal to      ⁄ . These stiffnesses are 

surface stiffnesses as if the foundation is placed on the surface of the soil. To consider the effect 

of embedment on foundation stiffness, Gazetas proposed multipliers to be applied to the surface 

stiffnesses. 
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Eq 3.9 
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Eq 3.10 

Where d is the thickness of the foundation and D is the depth at which the foundation is placed. 

The total uncoupled stiffnesses would then be. 

         Eq 3.11 
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            Eq 3.12 

For a given foundation size, a sufficient number of closely spaced soil elements are necessary to 

accurately capture the soil response. In a parametric study, Koboevic et al. (2010) discovered 

that the number of springs modeled did not have a noticeable effect on the results when the 

spacing between the springs was less than 12% of the length of the foundation. In this study, soil 

springs were spaced at 0.5 m and uniformly along the entire length of the foundation. Since the 

wall length is 5.5 m, the smallest realistic foundation length would also be 5.5 m. A constant 

spring spacing of 0.5 m translates to 9% of the length of the smallest foundation which is less 

than 12% and therefore acceptable. 

With uniform spacing of identical soil springs, either the vertical elastic stiffness or the rotational 

elastic stiffness can be matched to the values given by equations Eq 3.11 and Eq 3.12 

respectively. A detailed methodology presented in PEER 2005/04 suggests modeling stronger 

soil springs near the ends of the foundation such that both the elastic vertical and elastic 

rotational stiffnesses of the foundation could be matched to the values given by Gazetas’ 

equations. Even though a complete formulation is given for spacing of the springs, length of the 

end regions etc., uniformly spaced identical soil springs were used in this study to reduce 

complexity.  

Because the rotational motion of the foundation is the focus of this chapter, stiffness of the soil 

springs was adjusted such that the uncoupled rotational stiffness given by Gazetas’ formula for 

an effective soil shear modulus of elasticity Geff was achieved. This resulted in an uncoupled 

vertical elastic stiffness greater than that proposed by Gazetas; however, because the input 

excitation was horizontal, little or no vertical vibration was expected and hence, this 

simplification did not reduce from the accuracy and credibility of the analysis results. The major 

parameter affected by using a higher elastic vertical stiffness was the initial settlement of the 

foundation due to gravity loads which for a well-sized foundation would be much smaller than 

vertical deformations induced due to severe rotation of the foundation. See Section 3.2.4 for soil 

properties used for the QzSimple1 soil elements and further explanation on how the elastic 

stiffness of individual soil springs were adjusted to match the desired initial foundation rotational 

stiffness given by Gazetas. 
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3.2.4 Soil properties used in NTHA 

In order to carry out a series of nonlinear time-history analysis (NTHA) to study the effect of 

foundation rotation on deformation profile of shear walls, an informed decision needed to be 

made on the types and properties of the soil. This was done by considering soil properties used 

by previous researchers, personal communication with geotechnical experts, information 

available in standard soil mechanics literature, and provisions of building codes. 

Table 3.7 summarizes soil parameters used by previous researchers to study foundation rotations. 

It is obvious that even for a similar type of soil, the properties used by various researchers are 

greatly different. 

 

Table 3.7 Soil properties used by previous researchers to study foundation rotation. 

 

 

 

 

 

 

This is not surprising however because of the massive variation in soil conditions and various 

methods of evaluating soil stiffness and strength. It seems that in terms of type, the soils used are 

generally either clay, sand, or till. Therefore, it is worthwhile to focus on identifying the upper 

and lower bounds of the properties of each type of soil. 

It is a common practice in geotechnical engineering to estimate the elastic shear modulus of soils 

from shear wave velocity (see Eq 3.13). Typical values of soil elastic modulus and Poisson’s 

ratios are given in Table 3.8 and Table 3.9. Also, bearing capacity of foundations can be 

estimated from bearing capacity equations available in the literature using cohesion c and the 

Type of Soil Author(s) E (MPa) Geff (MPa) qult (MPa) ν

Soft Clay Ghalibafian (2006) 125 43.0 0.04 0.45

Clay Anderson (2003) 60 20.7 3.60 0.45

Clay Gazetas and Apostolu (2004) 20 6.90 2.67 0.45

Upper bound site class C Koboevic et al. (2010) 1780 710 1.70 0.25

Lower bound site class C Koboevic et al. (2010) 700 270 1.10 0.25

Sand 90% relative density PEER report 2005/04 22.5 8.65 1.10 0.30

Hard Till Filiatrault et al. (1992) 480 200 1.50 0.20

Rock Anderson (2003) 10000 4167 10.0 0.20

Note: Bold numbers are given by the authors and those non-bold are calculated.
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internal friction angle   for the soil. Clays are assumed to have zero or minimal internal angle of 

friction and resist load only due to cohesion. On the other hand, sands are deemed to have zero 

or minimal cohesion and be able to provide bearing only through interlocking of grains or their 

internal friction angle. Typical values of soil internal friction angle given by Das (2001) are 

presented in Table 3.10. 

In a personal communication with Dr. Wijewickreme at the University of British Columbia, a set 

of lower bound and upper bound properties for each type of soil was obtained. The data is 

summarized in Table 3.11. 

 

Table 3.8 Typical values for soil elastic modulus – Data from Das (2001). 

  

 

 

 

The small strain elastic shear modulus was calculated as follows, 

      
  Eq 3.13 

 

Table 3.9 Typical values of soil Poisson’s ratios – Data from Das (2001). 

 

 

 

 

Type of Soil E (kPa)

Soft Clay 1,800-3,500

Hard Clay 6,000-14,000

Loose Sand 10,000-28,000

Dense Sand 35,000-70,000

Type of Soil ν

Loose Sand 0.2-0.4

Medium Sand 0.25-0.4

Dense Sand 0.3-0.45

Silty Clay 0.2-0.4

Soft Clay 0.15-0.25

Medium Clay 0.2-0.5
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Where Vs is the small-strain shear wave velocity and ρ is the density of the soil. The elastic 

modulus, E, could then be calculated from the effective shear modulus G and the Poisson’s ratio, 

ν, using 

          Eq 3.14 

 

Table 3.10 Typical values of internal friction angle of soils – Data from Das (2001). 

 

 

 

 

 

 

 

Table 3.11 Soil properties obtained through personal communication with Dr. Wijewickreme. 

 

 

 

 

Su shown in Table 3.11 is the undrained cohesion of clay. The undrained cohesion is used 

because in the event of an earthquake, there is not sufficient time for the excess pore water 

pressure to dissipate through seepage and hence, loading conditions would be close to the 

undrained testing condition.  

Bearing capacity is generally a property of the foundation and not a property of the soil. Footing 

shape and depth considerably influence the bearing capacity of a foundation. For the purpose of 

Type of Soil ɸ (deg)

Loose 27-30

Medium 30-35

Dense 35-38

Loose 30-35

Medium 35-40

Dense 40-45

Sandy Gravel 34-48

Silts 26-35

Sand:  angular grains

Sand:  rounded grains

Type of Soil Vs (m/s) ρ (kg/m3) G0 (MPa) ν Emax (MPa) Su (kPa) ɸ (deg) qult (kPa)

Clay (NC-OC) 40-200 1200-1800 1.92-72 0.4-0.5 5.38-216 10-100 ----- 89-650

Sand (loose 

to very dense)
100-500 1700-2200 17-550 0.25-0.35 42.5-1485 ----- 30-44 1170-15000

Till 600-1000 2000-2200 720-2200 0.2 1728-5280 ----- 38-50 4630-57000
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this study, all of the footings will be square footings and will be placed at the same depth. Hence, 

using a constant ultimate bearing capacity qult independent of the foundation size for each type of 

soil is reasonable. Also, it reduces the number of parameters to be studied and makes for better 

comparison of results. 

There are a number of formulations for estimating the ultimate bearing capacity of foundations. 

Meyerhof (1953) suggested the use of an effective foundation length to account for eccentricity 

of the applied load. Meyerhof’s formulation is as follows. 

                         
 

 
            

Eq 3.15 

In this equation, c is the cohesion of the soil, λ terms are shape and depth factors, γ is the unit 

weight of the soil, and the N factors can be found knowing the internal friction angle of the soil. 

L′ is the effective foundation length defined as L-2e where ‘e’ is the eccentricity of the load. The 

upper and lower bound ultimate bearing capacities shown in Table 3.11 are then calculated using 

Meyerhof’s method for a 12.5 m by 12.5 m located at a depth of 2.0 m assuming an eccentricity 

of 2.5 m or   ⁄ . 

A set of realistic soil parameters had to be chosen if the results of the study were to be a good 

representative of the common professional practice. Therefore, the help of a professional 

geotechnical consultant was needed. Ernest Naesgaard, an experienced and well-known 

geotechnical consultant in Vancouver, was asked to assist with the choice of soil parameters for 

this study. After considering the behaviour of various types of soil in cyclic compression, 

appropriate stiffness and strength parameters, factor of safety associated with bearing capacity, 

and the basis for sizing of the foundation given a set of soil properties, five types of soil were 

chosen for the core study. The soils ranged from medium clay through three types of sand to 

rock. Table 3.12gives the properties of the 5 soil types. In this table, qult is the ultimate bearing 

capacity used to define nonlinear soil springs in OpenSees (see Figure 3.7), qf is the factored soil 

bearing capacity of the soil used to calculate the foundation overturning capacity as shown in 

Figure 3.10, qa is the allowable soil bearing stress under service load conditions, Vs is the small 

strain shear wave velocity, G0 is the small strain shear modulus, and Geff is the effective shear 

modulus of elasticity used to calibrate the stiffness of the QzSimple1 soil springs in OpenSees. 
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Table 3.12 Soil properties used in NTHA. 

 

 

 

 

 

Figure 3.8 compares stiffness and strength parameters chosen for Clay with properties used for 

clay type soils by other researchers. The scatter in properties used by other researchers is 

obvious. The stiffness parameter chosen for clay is in the middle of the range of stiffnesses used 

by others. In terms of strength, the Clay is closer to the lower bound. Properties of clay also fall 

within the range of clay properties suggested by Dr. Wijewickreme. Note that values on the 

vertical axis of the figure are Geff and not G0. Values of G0 suggested by Dr. Wijewickreme 

reported in Table 3.11 are divided by 2 to get the corresponding Geff. Stiffness and strength 

parameters used for the three Sand soils are compared with properties of sand type soils used by 

other researchers in Figure 3.9. Again, the scatter of soil properties is obvious. However, 

stiffness and strength properties chosen for the three Sand soils cover the range of soil strength 

and stiffnesses used by other researchers.  

The overturning capacity of the foundation was calculated using a factored bearing strength (qf) 

as opposed to the ultimate bearing capacity (see Figure 3.10). This was to reflect the factor of 

safety that a geotechnical consultant would apply to the ultimate bearing capacity reported to the 

structural designer. The factor of safety accounts for uncertainties in the soil material and also 

prevents excessive settlements. In this study, the factor of safety on soil bearing capacity was 

chosen to be 2.0 resulting in qf being equal to 0.5qult. This reduction will have little effect on the 

calculated overturning strength of a foundation if the depth of the compression block (L-2e) is 

small compared to the lever arm (e) which would be the case for a large foundation on a strong 

soil. For a small foundation on relatively weak soil however, using a smaller bearing capacity 

will reduce the lever arm and consequently, the foundation overturning capacity to a greater 

extent. In other words, lightly loaded foundations on stronger soils will have a smaller 

Clay Loose Sand Medium Sand Dense Sand Rock

qult (kPa) 400 400 800 1600 20000

qf (kPa) 200 200 400 800 10000

qa (kPa) 133 133 267 533 7000

Vs (m/s) 200 325 360 760 >760

G0 (MPa) 43.1 57.1 186 825 5555

Geff (MPa) 21.5 21.5 70.0 311 5555
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overstrength and heavily loaded foundations on weaker soils will have a larger overstrength 

because of using qf instead of qult in evaluating the foundation overturning strength. 

 

 

 

 

 

 

 

 

Figure 3.8 Comparison of stiffness and strength properties of Clay used in this study with values 

used for clay type soils by other researchers. 

 

 

 

 

 

 

 

 

Figure 3.9 Comparison of stiffness and strength properties of the three types of Sand used in this 

study with values used for sand type soils by other researchers. 
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The factored overturning capacity of the foundation is expressed as Rf defined as 

   
    

   
 

Eq 3.16 

Where MRSA is the maximum elastic bending moment demand from Response Spectrum 

Analysis (RSA) and Moc is the factored foundation overturning capacity as shown in Figure 3.10. 

In each set of analysis, the foundation was sized for a certain Rf ranging from 1.3 to 3.4 but it 

was ensured that the allowable bearing stress was not exceeded under service load conditions. 

The allowable stress check did not govern for the range of foundation sizes considered here.  

 

 

 

 

 

Figure 3.10 Uniform stress block used to calculate foundation overturning capacity. 

 

Note that because the factored bearing capacity qf is used in calculating Moc instead of qult, the 

ultimate overturning capacity of the foundation Mult would be larger than Moc. The ratio of 

Mult/Moc is a measure of foundation overstrength. Foundation overstrength would be greater for 

larger foundations on softer soils. In such cases, the percentage increase in the lever arm of the 

resultant soil reaction force obtained from the uniform stress block of Figure 3.10 would be 

larger if qult is substituted for qf. For foundation sizes and soil properties used in this study, 

foundation overstrength ranged from 1.0 to 1.8. It is important to note the difference between the 

definitions of Rf and Rw as Rw was calculated using the probable wall bending strength in Eq 3.3 

and therefore, Rw is a closer measure of the maximum bending strength of the wall. Structural 

engineers can make relatively accurate estimates of the probable bending strength of a shear wall 

as concrete and steel strengths can be estimated with much greater accuracy compared to the soil 

ultimate bearing capacity. Structural engineers are usually provided with a factored bearing 
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capacity for the soil and therefore, estimating the ultimate overturning capacity of a foundation is 

much more difficult for a structural engineer; hence the reason for defining Rw using the wall’s 

probable bending strength and Rf using the foundation’s factored overturning capacity. 

The clay QzSimple1 model was used to model Clay soil springs while the sand QzSimple1 

model was used for Loose, Medium, and Dense Sand. Elastic-Perfectly Plastic (EPP) springs 

along with gap elements were used to model Rock as the rock was expected to remain fairly 

elastic under compression up to the point of crushing. To define the backbone curve of the 

QzSimple1 soil springs in monotonic compression (Figure 3.7), the ultimate bearing capacity 

(qult) and the deformation at 50% of qult Z50 were needed. The ultimate bearing capacities used 

were the values given in Table 3.12. Values of Z50 were chosen to match the elastic rotational 

stiffness of the foundation to that given by Gazetas’ formula (Eq 3.12) using the effective shear 

modulus Geff as explained next. 

For Clay where the clay QzSimple1 material was used, the backbone curve of an individual soil 

spring had a constant slope up to 0.2qult. The initial elastic stiffness of the springs was therefore 

equal to 
       

   
. For a given foundation size, Z50 was then adjusted such that the initial elastic 

rotational stiffness matched the stiffness obtained from Gazetas’ equation (Eq 3.12) using Geff as 

reported in Table 3.12. This is illustrated in Figure 3.11. Note that Geff for Clay is half of G0. 

 

 

 

 

 

 

 

 

Figure 3.11 Calibrating the stiffness of the Qzsimple1 clay material for Clay. 
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For the three types of Sand, the sand QzSimple1 model was used. Initial slope of the non-

dimensional backbone curve of the sand QzSimple1 material is about 2.65 times that of the clay 

QzSimple1 material. The sand material maintains this large initial stiffness up to 0.3qult and then 

softens rapidly (see Figure 3.7). The large initial slope is a good realistic model for the behaviour 

of sands as they tend to be very stiff initially and then soften quite fast. Z50 for the three sands 

was therefore adjusted such that the initial elastic foundation rotational stiffness would match the 

value given by Gazetas’ equation (Eq 3.12) using G0 reported in Table 3.12 as the soil shear 

modulus. Values of Geff for the three types of sand define the slope of the line connecting the 

origin to the point of [Z50,0.5qult] and are therefore equal to       ⁄ . This is further illustrated in 

Figure 3.12. 

 

 

 

 

 

 

 

 

Figure 3.12 Calibrating the stiffness of the Qzsimple1 sand material for the three types of Sand. 

 

Soil shear modulus of elasticity and Poisson’s ratios needed to calculate the initial elastic 

rotational stiffness of the foundations as modeled in the NTHA using Gazetas’s equation 

(Eq 3.8) are given in Table 3.13. Note that values of G are equal to Geff for Clay and Rock and 

equal to G0 for the three types of Sand. This is consistent with the definitions presented in 

Figure 3.11 and Figure 3.12. Foundation sizes for the Core NTHA are summarized in Table 3.16. 

Foundation sizes for other parts of the study can be found in Appendix A. 
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Table 3.13 Soil stiffness properties needed to calculate the initial elastic rotational stiffness of 

the foundations as modeled in the NTHA. 

 

 

 

Properties of Clay and Loose Sand were chosen such that for a given foundation size, the only 

difference in the foundation response would come from the difference in the shape of the two 

backbone curves. This was done by giving both soils the same ultimate bearing capacity but G0 

of the Loose Sand being 2.65 times the Geff of the Clay. This exercise was intended for studying 

the effect of the shape of the soil backbone curve on foundation response. In other words, for 

Clay and Loose Sand where qult is the same, for the same foundation size, Z50 for both the Clay 

and the Loose Sand would be the same; however, the foundation on Loose Sand would be 2.65 

times stiffer in the initial elastic range.  

Because EPP springs were used to model Rock, elastic stiffness of the springs were adjusted 

such that the initial elastic foundation rotational stiffness would match that given by Gazetas’ 

equation (Eq 3.12) using G0. Note that Geff and G0 are the same for Rock as little or no softening 

is expected for Rock up until the point of crushing. 

Backbone curves of soil springs used in each set of analysis are given Appendix A. 

3.2.5 Input ground accelerations used in nonlinear time-history analysis 

Ground motions used to carry out NTHA were taken from Dezhdar (2012). Dezhdar did a 

comprehensive study on the selection of ground motions for his work. He chose 40 ground 

motion records from the PEER database based on soil class, distance, magnitude, and best fit to 

the 2475 year return period uniform hazard spectrum (UHS) for Vancouver. 10 of those ground 

motions all with a 0.005 sec time-step were chosen for this study. The original acceleration 

records of the ground motions are given in Appendix A. Refer to Dezhdar (2012) for more 

details on the basis for selecting input ground motion records. 

Clay Loose Sand Medium Sand Dense Sand Rock

G (MPa) 21.5 57.1 186 825 5555

ν 0.30 0.30 0.30 0.30 0.20
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To reduce the scatter in the NTHA to be able to compare the structure’s response from individual 

earthquake records, the 10 ground motions were modified to closely match the UHS over periods 

ranging from 0 to 10 sec. This was done by breaking the ground motion down into a number of 

its fundamental mode shapes in the frequency domain and then scaling the amplitude of each 

mode shape to match the target UHS at that the corresponding modal period.  

Figure 3.13 shows the pseudo acceleration and displacement response spectra from the 10 

modified ground motions. Note how close the pseudo acceleration response spectra of the 

individual ground motions are to the UHS. The individual displacement spectra however show 

noticeable deviation from that for the UHS. This is not surprising as the ground motions were 

modified with the UHS spectral accelerations as the matching target. Another contributing factor 

was that accelerations needed to be integrated twice to be converted to displacements. The 

average of the displacement spectra however follows that for the UHS quite closely except for 

periods greater than 8.0 sec where it starts to drop. Overall, the modified ground motions are 

expected to provoke responses in the structure that are very close to the demands from the UHS 

over a wide range of periods.  

Despite the convenience of using spectrally-matched ground motions, some of the original 

ground motions’ characteristics such as low-frequency content are lost in the process of 

modifying the ground motion records to match the target UHS (see Appendix A).  To justify the 

use of spectrally-matched ground motions in NTHA, the original ground motions were 

uniformly scaled to best match the UHS over a period range of 0.5 sec to 2.5 sec. This is deemed 

to be a reasonable period range for 10-storey shear walls accounting for foundation flexibility. 

The matching was done such that the area under the pseudo accelerations from various ground 

motions matched that of the UHS between period of 0.5 sec and 2.5 sec. 

Figure 3.14 shows a summary of the accuracy of the scaling process. Despite the significant 

deviation of the individual earthquake spectra from the UHS, the average of the 10 uniformly-

scaled records follows the UHS closely. For scaling accuracy of individual records refer to 

Appendix A. 
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Figure 3.13 a) Pseudo acceleration, and b) displacement response spectra from the 10 modified 

(spectrally-matched) ground motions with 5% critical damping used in the NTHA. 

 

The ground motions imposed on the foundation of a structure can differ from the free-field 

motion due to averaging of variable ground motions across the foundation slab, wave scattering, 

and embedment effects. In FEMA 440, these effects are referred to as kinematic interaction 

effects, and tend to be important for buildings with relatively short fundamental periods (less 

than 0.5 sec), large plan dimensions, or basements embedded 3 m or more in soil materials. 
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FEMA 440 provides guidelines for calculating a ratio of response spectra (RRS) factor which is 

used to modify the original free-field motion. The RRS is calculated depending on the period of 

vibration, foundation size and shape, and foundation embedment. For simplicity and to reduce 

the number of parameters of the study, kinematic effects are neglected in this study and the free-

field ground motion is used as an input to the NTHA. 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 Pseudo acceleration response spectra of the 10 uniformly-scaled ground motions 

with 5% critical damping used to justify the use of spectrally-matched ground motions in NTHA. 

 

3.2.6 Soil damping 

The viscous damper embedded in the soil element shown in Figure 3.4 and the QzSimple1 

material in OpenSees is intended to capture radiation damping due to dissipation of energy 

through the soil upon foundation impact. Too little damping could result in unrealistic large 

foundation rotations while too much damping could underestimate foundation rotation and hence 

wall maximum displacement. The amount of damping assigned to the soil elements is therefore a 

crucial parameter and needs attention. 
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Evidence of radiation damping has been observed by other researchers in experiments. In tests 

known as the TRISEE test on high density (HD) and low density (LD) Ticino sand, Negro et al. 

(1998) measured dampings between 1% and 6% of critical damping based on the initial elastic 

rotational stiffness. Figure 3.15 summarizes damping ratios observed during the TRISEE test 

against the maximum rotation that the foundation achieved. The effective damping ratio was 

seen to drop quite quickly with increasing foundation rotation as a smaller length of the 

foundation was in contact with the underlying soil at larger rotations. Results on LD sand 

produced more damping as the LD sand was softer and weaker than the HD sand which resulted 

in larger compressive displacements in the soil and a larger contact area of the foundation.  

Figure 3.16 shows equivalent damping calculated based on the secant stiffness to the point of 

maximum rotation. As the foundation starts to rock and uplift and soil yielding in compression 

take place, rotational stiffness decays severely (see Figure 3.17). Because the secant stiffness to 

the point of maximum rotation was much smaller than the initial elastic stiffness, the calculated 

equivalent damping was much larger than that obtained based on elastic stiffness. Note that in 

the QzSimple1 elements in OpenSees, the damping ratio is always related to the elastic stiffness 

of the foundation and therefore, damping values in Figure 3.15 are the focus.  

 

 

 

 

 

 

 

 

 

Figure 3.15 Elastic equivalent damping based on the initial elastic stiffness observed in the TRISEE 

tests – Figure from Negro et al. (1998). 
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Figure 3.16 Equivalent damping based on the secant stiffness observed in the TRISEE tests – Figure 

from Negro et al. (1998). 

 

 

 

 

 

 

 

 

Figure 3.17 Rotational stiffness for the two sand specimens from the TRISEE tests - Figure from 

Negro et al. (1998). 

 

Gajan and Kutter (2008) present their observations on energy dissipation in centrifuge tests 

carried out on foundations supported on sand and clay. Normalized energy dissipation was 

expressed as the damping ratio calculated following the definition by Kramer (1996) as follows: 
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  ⁄      
           

      
 

Eq 3.17 

 

Gajan and Kutter defined A as the total foundation area and Ac as the minimum foundation area 

required to resist the vertical load applied onto the foundation. With this definition, foundations 

with A/Ac between 1.5 and 3.0 showed 25% to 30% damping, those with A/Ac in the range of 3 

to 8 had 15% to 25% damping, and foundation with A/Ac between 8 and 15 demonstrated a 

damping ratio ranging from 15% to 20%.  

Algie (2011) conducted a series of tests on Auckland residual clay. Algie followed Kramer’s 

definition of damping given in Eq 3.17. Algie reports damping ratios between 8% and 15% 

observed during the forced-vibration testing phase. In the snap-back testing phase, because no 

distinct “loop” could be observed in the moment-rotation hysteresis, Kramer’s definition could 

not be applied. Instead, Algie used the logarithmic decrement method given in Chopra (2007) to 

evaluate the amount of damping. Damping ratios as high as 50% were recorded during the snap-

back tests with the average of the damping ratios being around 25% based on the logarithmic 

decrement method. 

Two factors that could have contributed to the damping values observed in Algie’s test being so 

large are explained below. First is the shape of the foundations which were 2.0 m long and 0.4 m 

wide and 0.4 m deep. This long and narrow shape meant that soil friction against foundation 

side-walls was much larger compared to that of a foundation with nearly square footprint. 

Second, it is important to note that the type of damping associated with QzSimple1 elements in 

OpenSees is elastic viscous damping which has to be calculated based on the initial elastic 

stiffness of the foundation. Damping ratios calculated using Kramer’s definition or the 

logarithmic decrement method account for the change in the system’s natural frequency with 

increased foundation rotation which is perfectly suitable for flexible foundations. However, the 

damping ratio calculated from the latter two formulations is expressed in terms of the average 

system frequency of vibration over one cycle which is definitely very different than the system’s 

natural frequency calculated using the initial elastic stiffness. This becomes evident comparing 

damping ratios recorded in the TRISEE tests using the elastic vs. secant stiffnesses (compare 

Figure 3.15 to Figure 3.16). While damping ratios for LD sand calculated using the elastic 
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stiffness remained below 5%, the ones calculated based on the secant stiffness exceeded 30%. 

Use of the logarithmic decrement method to find the equivalent damping ratio could have been 

another reason for the high levels of damping observed in Algie’s test. 

To further justify the level of damping associated with the soil elements in the NTHA, a pilot 

study on soil damping was performed. Wall 10R20 was modeled with a 12.5 m square 

foundation on a soil with ultimate bearing capacity of 1.54 MPa and effective shear modulus Geff 

of 126 MPa. The level of damping assigned to the soil elements was then varied from 0 to 30% 

in increments of 5%. For each level of damping in the soil, NTHA was done with the 10 

spectrally-matched ground motions. Figure 3.18 shows the average of top wall displacements 

from the 10 ground motions. Top wall displacement keeps decreasing at a steady rate as soil 

damping is increased. 

 

 

 

 

 

 

 

 

 

Figure 3.18 Average of top displacement envelopes of wall 10R20 with a 12.5 m square 

foundation with various soil damping ratios. 

 

Figure 3.19a shows the time-history response of the wall’s top displacement from EQ7 for soil 

damping of 0%, 5%, and 10%. When no damping was included in the soil, the maximum wall 

top displacement occurred at about 30.47 sec and was 547 mm. This was despite the strong 

shaking period of the input ground motioned having ended well before 20 sec. The figure 
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suggests that because no soil damping was considered, the structure went into an unrealistically 

undamped cyclic motion in which the amplitude of the vibration kept increasing. When as little 

as 5% damping was added to the soil elements, the peak top wall displacement occurred at 19.51 

sec (within the strong shaking time period of the input ground motion) and was 460 mm. The 

amplitude of the oscillation of the structure started decreasing as the input ground motion died 

down demonstrating a much more realistic behaviour. Increasing the soil damping further to 

10% did not affect the time of occurrence of maximum top wall displacement; however, the 

amplitude of oscillation of top wall displacement decreased noticeably. For EQ3 on the other 

hand (Figure 3.19b), the time of occurrence of the maximum top wall displacement did not seem 

to be affected by soil damping. From the 10 spectrally-matched ground motions, lack of 

radiation damping in the soil did not result in unrealistically undamped oscillation of the wall for 

8 of the records. In 1 of the remaining 2 cases, 5% damping was sufficient to eliminate the 

unrealistically-undamped oscillations while in the other, at least 10% damping was needed (see 

Appendix A for complete results). 

Since viscous damping is incorporated in the QzSimple1 elements and the damping ratio is 

expressed in terms of the initial elastic stiffness, results of Figure 3.15 are the most relevant to 

this study. 5% of the critical damping based on the initial elastic stiffness of the foundation was 

used in the remainder of this study to account for soil damping as this level of damping 

effectively eliminated unrealistically undamped behaviour in the pilot study and agreed with the 

TRISEE test results. Using a lower damping in the soil would result in larger foundation 

rotations and hence would be conservative in estimating additional wall displacements due to 

rotation of the foundation. 

Damping associated with foundation-soil interaction either from hysteretic behaviour of the soil 

or radiation damping can significantly supplement damping that occurs in a structure due to 

inelastic action of structural components. According to FEMA 440, these foundation damping 

effects tend to be important for stiff structural systems such as shear walls particularly when the 

underlying soil is relatively soft. FEMA 440 provides guidelines for estimating the effective 

system damping accounting for foundation damping based on a single degree of freedom 

representation of the system. In this study however, damping of the nonlinear walls and 
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foundation damping are kept constant at 3% and 5% respectively and the input accelerations to 

the NTHA have been matched to response spectra corresponding to 5% damping. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19 Time-history response of wall 10R20 with a 12.5 m square foundation from 

spectrally-matched a) EQ7, and b) EQ3 for various levels of damping in the soil. 

 

3.2.7 Roadmap to the NTHA 

A summary of all of the Nonlinear Time-History Analysis (NTHA) performed in this chapter is 

presented in Table 3.14. A total of 202 wall-foundation structures were modeled and each ran 

with 10 ground motion inputs. Sample analysis results are presented in the following sections. 

Table 3.14 can be used as a guide to the NTHA results presented in Appendix A. 
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Table 3.14 Summary of nonlinear time-history analysis preformed in this chapter. 

 

 

 

 

 

 

 

 

 

 

 

3.3 Sensitivity of Wall-foundation System Response to Soil Properties 

A set of soil parameters was chosen to be used in a pilot study to investigate the sensitivity of the 

response of shear walls with flexible foundations to properties of the soil. Table 3.15 summarizes 

the chosen soil parameters. Soil properties chosen represent a broad set of soil properties ranging 

from the upper-bound clays, a variety of sands and lower-bound tills. Wall 10R20 supported on a 

12.5 m square foundation was then modeled on each soil type. The ultimate overturning capacity 

of the foundation for the combined seismic and gravity loads was calculated assuming a uniform 

bearing pressure of qult over the effective bearing length equal to L-2e with e being the 

eccentricity of the load. Foundation size was chosen such that the ratio of the elastic bending 

moment demand MRSA to the ultimate overturning capacity of the foundation was between 2.0 

and 4.0 for the chosen values of qult to ensure large nonlinear rotation of the foundation. 

Group
Parameter 

Studied

Input 

Ground 

Motion

No. of 

Storeys

Mass 

Ratio
Soil Type Rw Rf

No. 

of 

Cases

No. 

of 

NTHA

1 Soil Type SM (10) 10 0.4 CL (15) 2.0 2.0 -> 4.0 (1) 15 150

2
Scatter of 

Results
US (10) 10 0.4 DS, RK (2) 1.3 1.9 -> 3.4 (5) 10 100

3

Wall 

Height and 

Mass Ratio

SM (10)
5, 10, 20 

(3)

0.4, 0.6 

(2)
RK El. 1.3 -> 3.4 (7) 42 420

4 SM (10) 10 0.4
CL, LS, MS, 

DS, RK (5)

El., 1.3, 1.7, 

2.0, 2.7 (5)
1.7 -> 3.3 (5) 125 1250

5 SM (10) 10 0.4
CL, LS, MS, 

DS, RK (5)
1.3 1.3, 1.6 (2) 10 100

Total 202 2020

Notes:

SM =  Spectrally Matched

US =  Uniformly Scaled

CL =  Clay

LS =  Loose Sand

MS =  Medium Sand

DS =  Dense Sand

RK =  Rock

El. = Elastic

NTHA = Nonlinear Time-history Analysis

Core NTHA
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Table 3.15 Soil properties used in parametric study on soil properties. 

  

 

 

 

3.3.1 Effect of soil type 

To investigate the sensitivity of the response of shear walls accounting for foundation rotation to 

soil properties, wall l0R20 (see Section 3.2.1) with a 12.5 m square foundation was modeled on 

the 5 types of soil introduced in Table 3.15. Vertical load supported by the foundation was 41550 

kN. Figure 3.20 shows the envelope of the response of soil springs in compression for the 5 

types of soil. The initial stiffness of the springs was adjusted such that the initial elastic 

rotational stiffness of the foundation matched the stiffness given by Gazetas. The figure 

demonstrates how diverse the soils are in terms of stiffness and strength. Foundation bending 

moment-rotation response of the 12.5 m square foundations is given in Figure 3.21. Moment-

rotation curves are less diverse than the backbone response of individual springs in terms of 

strength. This is due to the different compression depths among various types of soil. With 

weaker soil springs, a greater number of springs were required to sustain the vertical load on the 

wall but the reduction in the lever arm of the resultant force was not proportional to the ultimate 

strength of soil springs. Hence, the difference between the calculated overturning capacities of 

the foundations on various types of soil was not as big as the difference among the individual 

soils’ ultimate bearing capacity. 

 

 

 

 

Soil 1 Soil 2 Soil 3 Soil 4 Soil 5

E (MPa) 107 187 327 571 1000

G (MPa) 43 73 126 215 370

ν 0.25 0.28 0.30 0.33 0.35

qult (kPa) 501 877 1535 2686 4700
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Figure 3.20 Backbone curve of soil springs in monotonic compression for the 5 types of soil 

introduced in Table 3.15. 

 

 

 

 

 

 

 

 

 

Figure 3.21 Foundation bending moment-rotation response of a 12.5 m square foundation on the 

5 types of soil introduced in Table 3.15. 

 

NTHA was carried out using the spectrally matched ground motions. Figure 3.22 shows the 

average of top displacement and global drift envelopes from the 10 ground motions. As soils get 
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softer and weaker, wall displacements increase initially. However, despite Soil 2 is stronger and 

stiffer than Soil 1, the wall on Soil 1 experiences smaller maximum deformations. This 

seemingly counter-intuitive observation can be explained by looking at the average of maximum 

soil compressive displacements given in Figure 3.23. The slopes of the soil deformation 

envelopes near the toe of the foundation were found to be proportional to wall global drift 

envelope. As the soils were initially weakened and softened, the “toe” of the foundation started 

to “dig in” more and more increasing the top displacement of the wall. However, Soil 1 was so 

weak and so soft that it required a very large compression depth to support the wall’s vertical 

load; hence, resulting in a less rounded soil deformation profile and consequently smaller ground 

slopes at the toe of the foundation. 

 

 

 

 

 

 

 

 

Figure 3.22 Average of top displacement and global drift envelopes of wall 10R20 with a 12.5 

m square foundation on various soil types subjected to spectrally-matched ground motions. 

 

Another contributor to Soil 1 resulting in less top wall displacement than Soil 2 is the portion of 

top displacement resulting from flexural deformation of the wall (see Appendix A). Because Soil 

1 was so weak, the foundation could not induce substantial bending moments into the wall which 

lead to minimal (almost uncracked) flexural deformation of the wall while the wall on soil 2 had 

greater flexural deformations due to larger moment demands transmitted into the wall because of 

the stronger soil. This meant that bending of the wall itself did not contribute much to the wall 

top displacement of the wall on Soil 1. 
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Figure 3.23 Average of maximum soil compressive displacement profiles for a 12.5 m 

foundation on various soil types subjected to spectrally-matched ground motions. 

 

For all types of soil however, the top displacements of the wall increased considerably compared 

to the fixed-base case. The increase was more than 200% for the wall on Soil 2. The difference 

in wall top displacements among the different types of soil however is small bearing in mind the 

extreme diversity in soil strength and stiffness which suggest that behaviour of shear walls on 

flexible foundations is not greatly sensitive to the properties of the soil underlying the 

foundation. The complete set of results is given in Appendix A. 

3.3.2 Effect of soil stiffness 

To investigate the effect of soil stiffness on the behaviour of shear walls with flexible 

foundations independent of the soil ultimate bearing capacity, the 5 soil types in Table 3.15 were 

modified such that they all had the ultimate bearing capacity of Soil 3 (1535 kPa) with all other 

parameters unchanged. The soils were then identified by their stiffness (G). Figure 3.24 shows 

the backbone curve for the soil springs in monotonic compression. Note how all the curves have 

the same strength but different initial stiffnesses. Foundation bending moment-rotation response 

is plotted in Figure 3.25. Because the ultimate bearing capacity of all 5 soils was the same, all 

curves will eventually result in the same overturning capacity even though the softer soils will 

need a larger rotation to develop the full overturning capacity.  
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Figure 3.24 Backbone curve of the soil springs in monotonic compression used to investigate 

the effect of soil stiffness at a constant soil strength. 

The five structures were run through NTHA with the 10 spectrally-matched ground motions. 

Average of wall top displacement and global drift envelopes are given in Figure 3.26. Wall 

deformation keeps increasing as the soil gets softer. The softest soil results in the largest top wall 

displacement. 

 

 

 

 

 

 

 

 

Figure 3.25 Foundation bending moment-rotation response of a 12.5 m square foundation on 

soils with various stiffnesses but the same strength. 
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Figure 3.26 Average of top displacement and global drift envelopes of wall 10R20 with a 12.5 

m square foundation on soils with various stiffnesses but the same strength subjected to 

spectrally-matched ground motions. 

 

Soils with the three largest stiffnesses seem to give similar maximum top wall displacements 

while there was a noticeable jump in top displacement when the soil is further softened. This was 

mainly because the rate of transition of the soil backbone curve from the elastic into the inelastic 

range was greatly influenced by the initial stiffness (see Figure 3.24). Even though the stiffness 

was reduced linearly, the shape of the backbone curve for the two softest soil springs was 

noticeably different than the other three. 

Overall, soil stiffness is found to influence the behaviour of shear walls with flexible 

foundations; however, even though the stiffness of the soil was reduced by almost 9 times, the 

top wall displacement on the softest soil was only 60% larger than that on the stiffest. It is 

therefore concluded that lateral displacement of shear walls with flexible foundations is not 

critically sensitive to soil stiffness. The complete set of results is given in Appendix A. 

3.3.3 Effect of soil ultimate bearing capacity 

The final soil parameter studied was the soil ultimate bearing capacity. To investigate the effect 

of soil ultimate bearing capacity on deformation of shear walls with flexible foundations 
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independently of soil stiffness, 5 different soils were considered. All soils had the stiffness of 

Soil 3 in Table 3.15 but the ultimate bearing capacity changed from that of Soil 1 to Soil 5. The 

backbone curve in monotonic compression for the soil springs used to model these 5 soils is 

given in Figure 3.27. Note how the initial slope of the curves (i.e. stiffness of the spring) is 

identical for all 5 curves with the only difference being their strengths. 

Despite the great difference among the 5 soil spring backbone curves, the difference in the 

bending moment-rotation responses of the foundation on these 5 different soils is much less (see 

Figure 3.28). The foundations on the first three strongest soils have a very similar response while 

there is a gap between the responses of foundations on the two weaker soils. Even though the 

reduction in the soil ultimate bearing capacity was nearly uniform, foundation moment-rotation 

responses did not seem to vary in proportion to the soil ultimate bearing capacity. This is 

attributed to the relative size of the compression zone to the foundation length.  

 

 

 

 

 

 

 

 

 

Figure 3.27 Backbone curve of the soil springs in monotonic compression used to investigate 

the effect of soil ultimate bearing capacity at constant soil stiffness. 
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Figure 3.28 Foundation bending moment-rotation response of a 12.5 m square foundation on 

soils with various ultimate bearing capacities but the same stiffness. 

 

The bending moment sustained by the foundation and its underlying soil is the product of the 

wall’s axial compressive load and the lever arm between the centreline of the wall and the 

location of the resultant soil reaction. The weaker the soil gets, the larger the compression depth 

gets and hence, the smaller the lever arm. For the first three strongest soils, the increase in the 

soil compression depth was small relative to the foundation size and therefor, the overturning 

capacity did not reduce by much. As the soils got weaker, the compression depth was forced to 

grow to the point that the resultant soil reaction force was much closer to the centreline of the 

wall reducing the lever arm and consequently the resisting bending moment significantly. This 

was confirmed by looking at how the compression depth c (given in Appendix A) changed with 

soil ultimate bearing capacity. 

Figure 3.29 shows the NTHA results for the 12.5 m square foundation on the 5 soils with 

different ultimate bearing capacities. It is striking how the four strongest soils result in similar 

top wall displacements while the wall on the weakest soil has the lowest top displacement of 

them all. This counter-intuitive observation can be explained by looking the maximum soil 

compressive displacement profile underneath the foundation (Figure 3.30). 
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Figure 3.29 Average of top displacement and global drift envelopes of wall 10R20 with a 12.5 

m square foundation on soils with various ultimate bearing capacities but the same stiffness 

subjected to spectrally-matched ground motions. 

 

The maximum soil compressive displacement profile of the 4 stronger soils is quite rounded. 

This is because the soils were strong enough to support the axial load from the wall over a 

smaller bearing area. This resulted in the maximum soil compressive displacement profile to be 

steeper near the toes of the foundation and increase maximum foundation rotation and 

consequently, wall top displacement. The weakest soil on the other hand was so weak that it 

required a very large area of soil bearing to withstand the wall’s axial load which resulted in 

large compressive displacements over much larger areas under the foundation. This made the 

maximum soil compressive displacement profile to be quite flat and reduced maximum 

foundation rotation. As a result, top wall displacement on the weakest soil was smaller than 

those on all stronger soils. 

It is therefore concluded that decreasing the soil ultimate bearing capacity initially increases wall 

top displacement but as the soil gets very weak, wall top displacement starts to decrease as the 

maximum compressive displacement profile of the soil becomes flatter reducing foundation 

rotation. 
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Figure 3.30 Average of maximum soil compressive displacement profiles for various soil 

ultimate bearing capacities from spectrally-matched ground motions. 

 

Despite the extreme variation in soil strength (almost by a factor of 10), the variation in the 

envelope of top wall displacement is nowhere as dramatic. Hence, deformation of shear walls 

with flexible foundation is not overly sensitive to soil strength. 

3.4 Scatter in Wall Maximum Response  

Section 3.2.5 introduced ground motion records that would be used to carry out the NTHA. 10 

ground motion records were chosen and modified to match the UHS over a period range from 0 

to 10 sec. Although spectrally-matched records are a very good tool for estimating the mean 

response of a certain structure, certain natural characteristics of a real ground motion such as 

low-frequency cycles and repetitive kicks will be lost during the matching process as a result of 

adding a number of higher frequency waves to the original ground motion record. Gazetas and 

Apostolou (2004) concluded that “the nature of seismic excitation (specifically its frequency 

composition and, especially, the presence of a sequence of long duration impulsive cycles) is the 

controlling factor of the response of a specific system”. It is therefore necessary to quantify the 

amount of scatter between the response of a wall-foundation structure to the spectrally-matched 

and the original records uniformly scaled in the relevant period range to roughly match the UHS. 

To do so, the original ground motion records were uniformly scaled to best match the UHS 
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between periods of 0.5 and 2.5 seconds (see Section 3.2.5) and used to perform NTHA. Only 

wall 10R13 was considered as it was the strongest nonlinear fibre model wall and hence caused 

more rotation of the foundation. Among the five soil types, only Rock and Dense Sand were 

used as they were the two strongest soils and required the smallest foundations to achieve a 

certain Rf and hence, enhanced rotational action in the foundation. 

Figure 3.31 presents a summary of average and maximum top wall displacement and global 

drifts along with their respective standard deviations among the 10 uniformly-scaled and 

spectrally-matched ground motions. For both Dense Sand and Rock, the average responses from 

both spectrally-matched and uniformly-scaled ground motions are quite close. This was 

promising as the objective of using spectrally-matched ground motions for the Core NTHA was 

to get a good estimate of the average response. This observation confirms that spectrally-

matched ground motions give a reliable estimate of the average wall response. 

Standard deviation of the top wall response from uniformly-scaled ground motions is larger than 

that from spectrally-matched records for both Dense Sand and Rock. This is not surprising as 

spectrally-matched records’ response spectra match the UHS throughout the period range while 

that of the uniformly-scaled records bounce around and considerably vary from the UHS within 

the matching period range of 0.5 to 2.5 seconds (compare Figure 3.13 and Figure 3.14). 

However, the uniformly-scaled records paint a more realistic picture of how much scatter in the 

top wall displacement might occur depending on the ground motions used. The inevitable scatter 

in the top wall response must not be ignored when designing a building in real life. The purpose 

of this study however is to understand the fundamentals of the behaviour of shear walls 

accounting for foundation rotation and for that, studying the mean or the average of various 

system response parameters is sufficient. Therefore, only spectrally-matched records are used in 

the remainder of this chapter. 
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Figure 3.31 Comparison between the scatter in top displacement of wall 10R13 from NTHA 

using spectrally-matched and uniformly-scaled ground motions on a) Dense Sand, and b) Rock. 

 

A rather different trend is observed when the maximum response of walls on Dense Sand and 

Rock are compared. The maximum response of walls on Dense Sand from the 10 uniformly-

scaled ground motions is consistently larger than that obtained from NTHA using the 10 

spectrally-matched records. On the other hand, the two maximum response lines are quite close 

to each other for analysis carried out on Rock. This observation can be explained by comparing 
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the basic mechanisms of foundation rotation on Dense Sand and on Rock. When the foundation 

was placed on Dense Sand, two factors contributed to the nonlinearity of the foundation response 

one being yielding of the soil under compression and the other being foundation liftoff. For Rock 

however, the soil elements were so stiff and so strong that they very rarely yielded and if 

yielding occurred, only one or two soil elements at the foundation toe yielded as opposed to 

foundations on Dense Sand where numerous soil elements yielded in each rotational cycle. This 

meant that the nonlinearity in the moment-rotation response of foundations on Dense Sand was 

due to both liftoff and yielding of the soil while the nonlinearity in the response of foundation on 

Rock was almost entirely due to liftoff. Maximum compressive displacement of the soil elements 

in the highly nonlinear range is quite sensitive to the individual ground motions’ characteristics 

such as the number of strong kicks (see Section 3.6.5). Therefore, maximum response of walls 

with foundations on Dense Sand was more sensitive to the type of scaling performed on the 

original ground motion records than those with foundations on Rock. 

3.5 Effects of Wall Height and Mass Ratio (MR) 

Anderson (2003) showed that the response of shear walls with a flexible foundation is greatly 

influenced by wall height and mass ratio (MR), the ratio of the vertical force supported by the 

wall to the total seismic weight lumped at floor slab location. Shorter walls were shown to 

experience more increase in their top displacement due to foundation rotation than taller walls. 

Also, a larger mass ratio was found to increase top wall displacement because of the smaller 

foundation size needed to achieve a certain overturning strength.  

First mode period of the wall-foundation structure can vary significantly with building height. 

Participation factors of higher modes will also increase as the building gets taller. It is therefore 

necessary to study the effect of building height on the response of shear wall buildings with 

flexible foundations before making a decision on what wall height and mass ratio to consider for 

the Core NTHA of this study.  

Flexural deformation of shorter walls is much smaller as shorter walls are stiffer. Therefore, the 

percentage increase in top displacement of shorter walls due to foundation rotation is likely to be 

larger. 5-storey shear walls are therefore studied to investigate this phenomenon. Flexural 
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behaviour of shear walls taller than 10 storeys includes a significant contribution from higher 

modes. Taller walls are more flexible; hence, top displacement of taller walls is likely to be less 

severely affected by foundation rotation. 20-storey shear walls are also studied to verify this 

theory. 

Mass ratio determines the vertical load supported by the foundation and is a deciding factor in 

sizing the foundation for overturning capacity. Therefore, mass ratio is also expected to have a 

noticeable impact on the behaviour of shear walls with flexible foundations. Smaller mass ratios 

or smaller vertical loads on the foundation require larger foundation sizes to achieve a certain 

overturning capacity and therefore reduce foundation rotation. Mass ratios greater than 0.6 are 

unlikely to occur in the real world considering the geometry of shear wall buildings. The 

tributary floor area of the shear wall as a ratio of the total floor area is usually less than 0.6. Two 

mass ratios of 0.4 and 0.6 were investigated with 0.4 being the average value and 0.6 

representing the upper bound. Foundations with mass ratios of 0.6 support high vertical loads 

and are therefore smaller in length which increases foundation rotation. 

All of the NTHA in this section was done for foundations on Rock since stronger soils require 

smaller foundations to achieve a certain overturning capacity or Rf and will therefore encounter 

more foundation rotation. Also, because of the large allowable bearing stress of Rock, it could be 

ensured that even for mass ratio of 0.6, uniform bearing stress underneath the foundation under 

service conditions was lower than the allowable and that the service load condition did not 

govern the sizing of the foundation.  

Only elastic walls were considered in this section for two reasons. First is that elastic walls 

theoretically have infinite strength and can therefore induce much larger bending moments in the 

foundation compared to the more realistic nonlinear fibre model walls with certain yield 

strength. Larger bending moment demands on the foundation will result in more severe 

foundation rotation and will therefore represent the most critical case. Secondly, it would have 

been difficult to compare the flexural behaviour of nonlinear walls with different heights even if 

they all had the same Rw because of the complexities introduced by using a nonlinear fibre 

model for the walls. Walls of various lengths would have been required for each wall height 

which would have resulted in walls with considerably different plastic hinge lengths.  
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All of the walls had a seismic mass equivalent to 10387 kN per storey lumped at floor slab 

levels. Static weight supported directly by the shear wall was adjusted independently of the 

seismic mass to achieve the desired mass ratio. First storey height of all walls was 4.5 m with the 

rest of the storeys being 2.8 m tall. Flexural stiffness of the walls was adjusted such that the first 

mode vibration period was equal to 0.5 sec for the 5-storey, 1.0 sec for the 10-storey, and 2.0 sec 

for the 20-storey walls (i.e. 0.1 times the number of storeys). Seven different foundation sizes 

were chosen for each wall height and mass ratio to achieve Rf’s ranging from 1.3 to 3.5. Rf was 

calculated relative to the bending moment demand from RSA of the fixed-base wall. The elastic 

bending moment demands for the 5, 10 and 20-storey walls were 288, 488, and 962 MN.m 

respectively.  

Figure 3.32 summarizes average maximum top wall displacement and global drift from all 

NTHA. Despite the absolute values of top wall displacement of the taller walls being larger than 

those of the shorter walls, the increase in top wall displacement compared to the fixed-base case 

was smaller. For the 5-storey wall with MR=0.6, for Rf = 2.6, the increase in top wall 

displacement compared to the fixed base case is more than 350% while for the 20-storey wall 

with MR=0.6, this increase is about 100% at the same Rf. 

Response of the 5-storey walls seemed not to be sensitive to the mass ratio as the results for mass 

ratios of 0.4 and 0.6 are very similar. This is attributed to the relatively small vertical load 

supported by the 5-storey walls resulting in a large foundation needed to achieve a certain Rf. 

Mass ratio had a much more distinct effect on 10 and 20-storey walls. At lower Rf’s, top 

displacement of 10-storey walls increased with the mass ratio because of the smaller foundation 

required to achieve a given Rf. As Rf further increased, the walls with MR=0.6 had such small 

foundations that the foundation isolated the wall at the base preventing the seismic excitation to 

affect the wall and therefore, at large Rf’s, walls with MR=0.6 had smaller top displacements 

than those with MR=0.4. This isolation of the wall due to very small foundation occurred at 

much lower Rf’s for the 20-storey buildings which is the reason for all 20-storey walls with 

MR=0.6 having smaller top displacements than those with MR=0.4.  
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Figure 3.32 Average of maximum global drift and top displacement from NTHA using 

spectrally-matched ground motions for mass ratios of 0.4 and 0.6 for a) 5-storey, b) 10-storey, 

and c) 20-storey Elastic walls. 
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Because all of the foundations were on Rock which had a very high ultimate bearing capacity, 

the vertical load could be supported by a very small length of the foundation close to the “toe”. 

This meant that compression depth of the foundation was very small and that the foundations 

could almost stand on their “toe”. This fact contributed to the foundations of the taller walls 

being so small. On a softer and weaker soil, it is more likely that taller walls will require larger 

foundations as a larger compression depth will be needed to support the gravity load. This 

confirms that rotation of foundation of taller walls is much more critical on stronger soils, which 

is why only foundations on Rock are studied in this section. It also shows that on softer and 

weaker soils, taller buildings are even less prone to increased deformations due to foundation 

rotation. 

The decision was made to focus on 10-storey walls with a mass ratio of 0.4 for the rest of this 

chapter. Mass ratio of 0.6 was deemed uncommon and rarely encountered in conventional shear 

walls buildings. Significant contribution of higher modes to the response of 20-storey buildings 

make for less foundation rotation as foundation rotation which is the focus of this chapter is a 

first-mode behaviour. Even though the response of the 5-storey walls was the most first-mode 

dominated, such short buildings did not seem to represent the common height of modern shear 

wall building construction. Most modern five-storey buildings are built with a concrete structure 

in the first one or two storeys and the higher floors are typically constructed as a wood frame 

building. Complete NTHA results are presented in Appendix A. 

3.6 Core NTHA 

The Core NTHA was done on 10-storey walls using spectrally-matched ground motions. For 

each wall, five different foundation sizes were chosen to get Rf’s ranging from 1.7 to 3.3 for each 

of the five soil types. Walls 10R13 were also analyzed with two stronger foundations with Rf’s 

close to 1.3 and 1.5 to capture the onset of significant foundation rotations. Table 3.16 

summarizes lengths of square footings modeled in the Core NTHA. The following sections 

summarize the results of the Core NTHA. 
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Table 3.16 Length of square footings modeled in the Core NTHA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L = B (m)

Rf 10R13 only All 10-storey walls

1.3 26.5 -----

1.5 24.5 -----

1.8 ----- 22.5

2.0 ----- 21.5

2.3 ----- 20.5

2.7 ----- 19.5

3.2 ----- 18.5

1.3 22.5 -----

1.5 20.5 -----

1.8 ----- 18.5

2.0 ----- 17.5

2.3 ----- 16.5

2.7 ----- 15.5

3.2 ----- 14.5

1.3 20.5 -----

1.6 17.5 -----

1.9 ----- 15.5

2.2 ----- 14.5

2.4 ----- 13.5

2.8 ----- 12.5

3.4 ----- 11.5

1.3 18.5 -----

1.7 14.5 -----

1.9 ----- 12.5

2.1 ----- 11.5

2.3 ----- 10.5

2.6 ----- 9.5

2.9 ----- 8.5

Clay and 

Loose 

Sand

Medium 

Sand

Walls modeled on footing

Dense 

Sand

Rock
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3.6.1 General observations 

Complete analysis results of the Core NTHA are presented in Appendix A. This section presents 

results that demonstrate the general trends and conclusions that could be drawn based on the 

results. Only one type of soil (Medium Sand) is chosen and analysis results for walls 10R13 and 

10R27 are presented. Despite this, all of the observations made in this section hold true for other 

types of soil and other walls. 

Figure 3.33 compares the average of displacement envelopes for the two walls. Wall 10R13 

experienced larger displacements compared to wall 10R27. This was because wall 10R13 was 

much stronger than wall 10R27 which resulted in larger bending moments being transferred into 

the foundation. This in turn caused larger foundation rotations which increased lateral 

displacement of the wall. 

In addition to absolute lateral displacement, the increase in displacement due to foundation 

rotation relative to the fixed-base wall was much greater for wall 10R13 than wall 10R27. This 

observation had two reasons. One was that because wall 10R13 was much stronger, it 

experienced less nonlinear action and smaller hinge rotations in the fixed-base case compared to 

the weaker wall 10R27 so it had a larger fixed-base top displacement to start with. This could 

also be explained using the effective elastic flexural stiffness needed to achieve the correct top 

displacement of the nonlinear walls. For wall 10R13, the effective stiffness was close to 0.90EcIg 

while for wall 10R27; this figure was close to 0.60EcIg. The second reason was that because wall 

10R27 was much weaker, it transferred smaller moments into the foundation resulting in smaller 

foundation rotations. This meant that the portion of the wall total displacement due to foundation 

rotation was much smaller for wall 10R27 than that for wall 10R13. 
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Figure 3.33 Average of displacement envelopes from 10 NTHA using spectrally-matched 

ground motions for walls a) 10R13, and b) 10R27 on Medium Sand along with top 

displacements from RSA using various effective stiffnesses. 

 

A similar observation can be made for averages of inter-storey drift envelopes of the two walls 

(see Figure 3.34). Note that values of average inter-storey drifts are plotted at the top of the 

storey and average of foundation rotation envelopes are plotted at the base. Larger foundation 

rotations for wall 10R13 made the drift profile of the wall start at relatively large values at the 

base. Because the wall was stronger, smaller (mostly elastic) curvatures occurred along the 

height of the wall resulting in a much smaller part of the wall rotation being due to flexural 

deformation of the wall. This caused the drift profile to become close to being constant above the 

second storey. For wall 10R27 on the other hand, foundation rotations were small but because 

the wall was weak, significant hinging occurred in the wall. This caused the drift profile to keep 

increasing up until the seventh storey. Even though for both walls maximum drift envelopes 

were close to 1.0%, the shape of the drift profile was highly dependent on wall strength. A 

gravity-load frame connected to wall 10R27 would have less rotation demands near the base. 
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Figure 3.34 Average of inter-storey drift envelopes from 10 NTHA using spectrally-matched 

ground motions for walls a) 10R13, and b) 10R27 on Medium Sand. (Note: base rotation values 

are plotted at h=0 and values of average interstory drift are plotted at the top of the storey.) 

 

Figure 3.35 shows average of bending moment envelopes for the two walls. The fixed-base wall 

10R13 yielded at its base which means that the maximum bending moment at its base is close to 

its yield strength but slightly higher due to overstrength from steel strain hardening. 10R13 walls 

on flexible foundations did not yield because the wall yield strength was higher than the 

foundation overturning strength. This means that 10R13 walls on flexible foundation remained 

elastic and that the majority of the wall lateral displacement was due to foundation rotation and 

not flexural deformation of the wall. Because wall 10R27 was relatively weak, all 10R27 walls 

on flexible foundations yielded. This was the case even for foundations with Rf larger than 2.7. 

This was because Rf was calculated using qf and not qult. Even for the weakest foundation 

(Rf=3.2), the actual overturning capacity of the foundation calculated using qult was still larger 

than the wall’s yield strength. This explains why for the 10R27 walls, a greater part of the total 

lateral displacement comes from flexural deformation of the walls. 
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Figure 3.35 Average of bending moment envelopes from 10 NTHA using spectrally-matched 

ground motions for walls a) 10R13, and b) 10R27 on Medium Sand along with base bending 

moment estimates from RSA using various effective stiffnesses. 

 

Shear forces were less affected by rotation of the foundation compared to bending moments 

(Figure 3.36). Average of shear force envelopes of 10R13 walls started to reduce as the 

foundations got weaker and weaker but the maximum reduction in base shear was only 20% 

compared to the 40% reduction in average bending moment envelopes. Even less of an effect 

was observed in shear force envelopes of walls 10R27. Presence of a flexible foundation limited 

the maximum bending moment in the wall foundation system when the wall was stronger than 

the foundation. A flexible foundation however did not directly limit the maximum shear force in 

the wall-foundation system as no shear release was introduced into the system. Presence of a 

flexible foundation can change the first mode period of vibration significantly. Maximum 

bending moment at the base of the system is largely driven by the first mode behaviour of the 

system. A considerable portion of the shear force demand however comes from higher modes 

which are much less affected by introduction of a flexible foundation. 
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Figure 3.36 Average of shear force envelopes from 10 NTHA using spectrally-matched ground 

motions for walls a) 10R13, and b) 10R27 on Medium Sand along with base shear force 

estimates from RSA using various effective stiffnesses. 

 

The behaviour of shear walls with flexible foundations can be further explained  by comparing 

the wall yield strength with the monotonic moment-rotation response of the foundation (see 

Figure 3.37). Note that the actual hysteretic moment-rotation response of the foundation will 

differ from the monotonic response as loading and unloading in the soil nonlinear range causes 

accumulation of residual displacements in the soil. The monotonic response envelopes the actual 

hysteretic response and is therefore a useful tool for comparing the behaviour of wall-foundation 

systems with various foundation strengths.  

In addition to the wall yield strength and the foundation moment-rotation responses, two sets of 

dots are shown. The hollow dots show the rotations at which the foundation strengths (calculated 

using qf) are mobilized. Bending moments keep increasing beyond the hollow dots. This is 

because the actual soil springs can be stressed up to qult and the stresses can move further 

towards the toe of the foundation increasing the eccentricity of the resultant vertical force. 
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Figure 3.37 Average of maximum foundation rotations (θb) from 10 NTHA using spectrally-

matched ground motions for walls a) 10R13, and b) 10R27 on Medium Sand plotted on the 

foundation moment-rotation envelope, along with rotations at which the calculated bending 

moment capacity of the foundation is mobilized (θoc). 

 

The solid dots are plotted on the monotonic moment-rotation response at the average of 

maximum rotation values from each earthquake. Note that in reality, the solid dots must be 

plotted on the hysteretic response and not the monotonic response. Plotting the solid dots on the 

monotonic response has caused the bending moment value of the dots to be somewhat higher 
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than the actual bending moment induced in the foundation. This is because the monotonic 

response is stiffer than the actual hysteretic response. 

For wall 10R13, because in all 5 cases the wall was stronger than the foundation, maximum 

bending moment in the system was governed by the foundation strength and the foundation 

rotation was dictated by the system displacement demands. This also shows why in none of the 

cases the 10R13 wall yielded. As for the 10R27 wall, in all 5 cases the foundation ultimate 

strength was larger than the wall yield strength which is why in all cases, the wall yielded. In this 

case, the maximum bending moment in the wall-foundation system was governed by the bending 

strength of the wall (yield strength plus any overstrength due to steel strain hardening). Observe 

how the solid dots are close to but slightly above the line representing the yield moment of the 

wall. The difference in the vertical ordinates of the solid dots and the wall yield strength can be 

attributed to two reasons. One is the wall overstrength from steel strain hardening. The second is 

the fact that the solid dots must be plotted on the hysteretic moment-response of the foundation 

and not the monotonic rotation response and hence their vertical ordinate is unrealistic. 

The last set of plots discussed in this section is maximum soil compressive displacement plots 

(Figure 3.38). The curves are the average of maximum soil compressive displacements recorded 

in each of the 10 ground motions applied to each wall-foundation combination. Even the 

maximum soil compressive displacement curve for each individual ground motion does not 

represent the deformed shape of the soil at any point in time. However, the slope of the curves 

near the toes of the foundation is a good indicator of maximum foundation rotation. Therefore, 

the slopes of the curves near the toes of the foundation in Figure 3.38 are good approximations 

of the average of maximum foundation rotation for each wall-foundation combination. 

Because wall 10R13 was much stronger than wall 10R27, it transferred much larger moments 

into the foundations. Larger bending moments to be resisted by the foundation under a constant 

axial load meant larger eccentricities which in turn resulted in smaller soil compression depths 

for the same foundation. With a reduced area of contact between the foundation and the soil, the 

contact pressure increased resulting in larger soil compressive displacements. Hence the curves 

for wall 10R13 are much more rounded than those for wall 10R27. 
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In addition to the compressive displacement at the toe, the compressive displacement at the 

foundation centreline was also much larger for wall 10R13. This was a consequence of rounding 

of the soil underneath the foundation. When the soil is compressed far into its nonlinear zone, the 

rebound or the recoverable displacement is very small compared to the total displacement. With 

the surface of the soil remaining rounded even after the foundation has lifted off in load reversal, 

the contact area between the foundation and the soil is reduced increasing the contact pressure 

and consequently, increasing the compressive displacement underneath the centreline of the 

foundation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.38 Average of maximum soil compressive displacement envelopes from 10 NTHA 

using spectrally-matched ground motions for walls a) 10R13, and b) 10R27 on Medium Sand. 
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3.6.2 Global drift and top wall displacement 

Increase in top wall displacement is the most convenient parameter that can indicate how much 

the shear wall’s deformation profile is affected by foundation rotation. Top wall displacement is 

widely used as the performance parameter in performance based seismic design. In addition, 

many other system demands such as hinge rotation are related to top wall displacement. 

Therefore, it is important to study the effect that foundation rotation has on top wall 

displacement. 

Average of top wall displacement envelopes from each of the 10 spectrally-matched ground 

motions are plotted in Figure 3.39 for walls 10R13 and 10R27, the strongest and the weakest 

nonlinear walls respectively. In general, foundation rotation increases top wall displacement as 

expected. Top displacement of wall 10R27 experienced a much smaller increase relative to the 

top displacement of the fixed-base wall. Two factors contributed to this outcome. The first and 

the more important was that wall 10R27 was not strong enough to impose large bending 

moments on the foundation and hence, the foundation could not be pushed to large rotations. The 

second contributing factor is that the displacement of the fixed-base wall 10R27 was larger to 

begin with because of more severe hinging of the fixed-base wall. 

Walls 10R13 however experience a much more severe top displacement increase. This was due 

to both the top displacement of the fixed-base wall being smaller to begin with and the stronger 

wall 10R13 being able to impose much larger bending moments on the foundation forcing it to 

undergo larger nonlinear rotations. Maximum increase in top displacement of wall 10R13 

relative to the fixed-base case was about 160% compared to 50% for wall 10R27. 

For Clay and the three sands, top displacement starts to grow as Rf becomes larger or the 

foundation becomes weaker but the curves tend to flatten and reach a plateau. As the foundations 

became smaller, maximum soil compressive deformations started to grow but the roundedness of 

the soil surface underneath the foundation did not grow beyond a certain point and in some 

cases, the surface began to become less rounded. This caused the slopes of the soil surface at the 

toe of the foundation not to grow beyond a certain point which limited foundation rotation and 

consequently, top wall displacement. 
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Figure 3.39 Average of maximum global drift and top wall displacement from NTHA using 

spectrally-matched ground motions for a) wall 10R13, and b) wall 10R27. 

 

For Rock however, top wall displacement kept increasing as the foundation got weaker and not 

only the curves do not tend to reach a plateau, they appear to take off. Because the Rock was 

very strong and very stiff causing the soil compression depth to be very small compared to the 

foundation length, no appreciable foundation overstrength could be gained by using qult instead 
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of qf. For the other four types of soil, significant inherent overstrength existed because of 

considerable change in the lever arm of the resultant vertical force beneath the foundation if Rf 

was calculated using qult instead of qf. This means that once a foundation on Rock lifts off, 

bending moment at the base of the wall will remain constant while foundation rotation may keep 

increasing. In addition, no damping was associated with foundations on Rock because 

compressive deformation of the Rock material was minimal. 

Despite the obvious increase in top wall displacement, in no case the wall-foundation became 

unstable. In other words, rotation of the foundation did not compromise overturning stability of 

the wall-foundation system. If the increase in top wall displacement due to foundation rotation is 

to be controlled, the results presented in Figure 3.39 can be used to decide on maximum 

allowable Rf or the weakest allowable foundation size. Such limits must be imposed considering 

the strength of the wall and the soil type on which the foundation is being placed. 

3.6.3 Base rotation 

Foundation rotation causes large drifts at the base of the wall. This concentrated rotation is 

critical to the demands on the gravity-load system of the building. The additional lateral 

deformation at the first few floor slab levels due to foundation rotation puts substantial rotation 

demands at the base of gravity-load columns which can reduce the deformability or ductility of 

the gravity-load system and consequently, the building as a whole. Therefore, base rotation 

needs to be studied and quantified. 

Average of base rotation envelopes recorded in the Core NTHA for walls 10R13 and 10R27, the 

strongest and the weakest nonlinear walls respectively, are plotted in Figure 3.40. As expected, 

wall 10R13 experienced much larger foundation rotations than wall 10R27. The stronger wall 

could induce larger bending moments into the foundation forcing it to rotate more whereas the 

weaker wall yielded and hinged before it could push the foundation into severely nonlinear 

rotations. The stronger the foundation or the smaller the Rf, the smaller was the rotation of the 

foundation as expected. It is important to note that even with a very strong foundation (i.e. R f of 

1.3), there still was a noticeable amount of foundation rotation. It is therefore necessary to 

account for foundation rotation no matter how big the foundation might be. 
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Figure 3.40 Average of maximum base rotations from NTHA using spectrally-matched records 

for walls 10R13 and 10R27. 

 

Among the 5 soil type, Rock seems to have a distinctive behaviour as foundation rotation keeps 

increasing with Rf while in other soils, it starts to reach a plateau and level out beyond a certain 

Rf. As discussed in the previous section, this is because foundations on Rock have no inherent 

overstrength and that no radiation damping was associated with foundations on Rock. It is 

obvious that foundations on rock type soils are the most susceptible to rocking. 

NBCC 2005 limits Rf to 2.0. While at that Rf the average of foundation rotation envelopes of 

wall 10R27 are around 0.1%, those of wall 10R13 are in the order of 0.5%. CSA A23.3-04 limits 

Rf to 2.6. At this Rf, wall 10R13 can have an average of foundation rotation envelopes as high as 

0.9% in the case of Rock. Both NBCC 2005 and CSA A23.3-04 state that foundations do not 

need to be proportioned for forces greater than those associated with an Rf of 2.0 and 2.6 

respectively. While these limits seem to be adequate in the case of a weaker wall such as wall 

10R27, they are certainly unconservative for a strong wall such as wall 10R13. Not only the 

limits shall be lowered, but also foundation rotation must be included in the deformation profile 

of the building and all building components designed to withstand the effect of additional 

deformations due to foundation rotation. 
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3.6.4 Interaction between shear wall and foundation strengths 

As seen in the previous section, the relative wall to foundation strength is critical to the 

behaviour of a wall-foundation system. This section further elaborates on the effect that the 

relative wall to foundation strength has on key wall-foundation system behaviour parameters. 

Examples demonstrated here are for Clay but the conclusion can well be generalized to other soil 

types. 

Figure 3.41 shows average of maximum first storey and top wall displacements for all walls on 

Clay. Top displacement is a good indicator of the wall behaviour while the first storey 

displacement is critical in determining deformation demands that would be critical to the gravity-

load system of a shear wall building. As expected, lateral displacement of fixed-base walls 

increases as the walls get weaker or Rw becomes larger. The weaker the wall is, the sooner the 

plastic hinging forms and the larger the inelastic rotations. The exact opposite trend is observed 

for walls with flexible foundations. Lateral displacement of the walls decreases with Rw. The 

total displacement of the wall can be divided into that due to foundation rotation and that from 

flexural deformation of the wall. Stronger walls hinge at much greater bending moments and 

encounter smaller inelastic rotations and therefore have less flexural deformation. However, 

stronger walls transfer much greater moments into the foundation which results larger foundation 

rotations and hence, larger portion of their deformation is due to foundation rotation. The 

balance between lateral deformation from wall flexure and foundation rotation is such that 

weaker walls will end up having smaller lateral deformations because of experiencing less 

foundation rotation despite having larger flexural deformations. 

Another useful way of looking at the interaction between wall and foundation strengths is by 

studying the various rotation components (Figure 3.42).  

Foundation rotation steadily decreases as the walls become weaker (or Rw becomes larger). 

Average first storey interstory drift of the walls with flexible foundations also decreases steadily 

as walls become weaker. Despite the wall plastic hinge forming in the first storey, the majority 

of the lateral deformation in the first storey is due to foundation rotation since inelastic 

curvatures in the wall plastic hinge region have to be integrated twice over the height to produce 

flexural deformation.  
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Figure 3.41 Average of maximum a) first storey displacement, and b) top displacement of walls 

on various foundation sizes on Clay from NTHA using spectrally-matched records. (Note: 

results for elastic walls are plotted as Rw=1.0) 

 

Average interstory drift of the top storey decreases as the walls get weaker in general but the rate 

of decrease varies such that for some values of Rf, the drift values either remain constant or 

increase slightly as the walls become weaker. This is a consequence of transitioning from 

stronger walls where the majority of the deformation is due to foundation rotation to weaker 

walls where most of the deformation is flexural. For the same Rf, strong walls will transfer much 

larger moments into the foundation that results in much larger foundation rotations and hence 

have larger drifts than weak walls that cannot induce large moments in the foundation. For 

intermediate walls however, the walls are still strong enough to significantly yield the soil 

underneath the foundation and cause large foundation rotations but are weak enough to 

encounter significant hinging and flexural deformation. The combination of the two results in 

intermediate walls having almost the same or in some cases larger rotations than even the 

strongest wall. 

Figure 3.43 shows average of maximum soil compressive displacements. As expected, stronger 

walls cause larger compressive displacements in the soil because they are able to transfer larger 

bending moments into the foundation. Larger moment demands result in smaller compression 

depth and hence, larger bearing stress which then translate into larger soil compressive 

displacements. For all fixed-base walls, because the entire wall lateral deformation is flexural, all 

deformation components keep increasing as the walls get weaker as expected.  
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Figure 3.42 Average of maximum a) base rotation, b) first storey interstory drift, c) top storey 

interstory drift, and d) global drift of walls on various foundation sizes on Clay from NTHA 

using spectrally-matched records. (Note: results for elastic walls are plotted as Rw=1.0) 

 

There is an important trend that can be observed in all deformation components. As the walls 

become weaker or Rw increases, the gap between the deformation components of walls with 

flexible foundations and the fixed-base wall decreases. For example, global drift of wall 10R13 

for Rf=3.2 is twice (or 100% larger than) that of the fixed-base wall while global drift of wall 

10R27 for the same Rf is only 30% larger than that of the fixed base case. This is partly because 

global drift of the fixed-base 10R27 wall is greater that the 10R13 wall and partly because the 

10R13 wall forces more rotation in the foundation because of its higher strength. 

In conclusion, stronger walls are more susceptible to foundation rotation as larger bending 

moments transferred into the foundation cause larger foundation rotations and that the resulting 

increase in wall deformation components compared to the fixed-base case are relatively much 

higher than that for weaker walls. 
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Figure 3.43 Average of maximum soil compressive displacement a) at the toe, and b) 

underneath the centreline of the foundation for walls on various foundation sizes on Clay from 

NTHA using spectrally-matched records. (Note: results for elastic walls are plotted as Rw=1.0) 

3.6.5 Permanent deformations in the soil 

Deformation of the soil underneath the foundation is an important measure of assessing the 

amount of damage below the foundation due to its rotation. Any yielding of the soil beneath the 

foundation would be hard to detect or repair and hence, excessive soil damage must be 

prevented. Permanent soil deformation may cause permanent building tilt and unrecoverable 

foundation settlement both of which would affect the serviceability of the building. 

To study the extent of soil damage observed in the Core NTHA, the case of the 10R13 wall 

resting on a foundation with Rf=3.2 on Clay (i.e. the strongest nonlinear wall on the softest soil 

with the highest Rf) was chosen. The Elastic wall would have been more critical but a nonlinear 

wall was chosen to account for softening of the wall in flexure due to cracking.  

Table 3.17 gives a summary of critical components related to permanent deformations in the soil. 

The first column in the table lists the residual top displacements at the end of the NTHA. 

Because ground motions may have stronger kicks in one particular direction, resulting 

permanent deformation of the soil underneath the foundation will not necessarily be 

symmetrical. This may result in residual foundation rotation and hence, residual building top 

displacements. The largest residual top displacement observed was 21.9 mm for EQ8 which 

translates to a global drift of 0.07%. This value is very small and very unlikely to affect building 

serviceability or cause any concern with the building’s structural integrity. 
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Table 3.17 Residual top wall displacement and maximum soil compressive displacements for 

wall 10R13 on Clay with Rf=3.2 from NTHA using the 10 spectrally-matched records. 

 

 

 

 

 

 

 

 

 

The second and the third columns list residual displacements of the soil underneath the wall 

centreline and at the foundation toe respectively. Even though all of the ground motions used 

were scaled to match the same spectrum, there is a great amount of scatter in the residual toe 

displacement. This matter is explained in the remainder of this section comparing EQ2 and EQ6 

which produced the smallest and the largest soil compressive displacements. Note that values 

reported in the table are maximum soil displacements and not residual soil displacements. Soil 

elements rebound if the load has been lifted off or reduced. The rebound takes place at the elastic 

stiffness. Therefore, significance of the soil rebound relative to the maximum soil displacement 

is dependent on how far into the nonlinear range the soil was pushed. The more the number of 

nonlinear soil compression cycles, the less significant the rebound will be compared to the 

maximum compressive displacement. 

Figure 3.24 shows maximum soil compressive displacement profiles and the resting position of 

the foundation at the end of the NTHA for EQ2 and EQ6. Maximum soil deformation profiles 

along with the resting position of the foundation for each of the 10 input ground motions is 

provided in Appendix A. 

Input GM Δresidual
top (mm) Δmax

CL (mm) Δmax
toe (mm)

EQ1 8.3 -17.2 -62.5

EQ2 5.0 -14.1 -41.9

EQ3 1.3 -16.7 -57.4

EQ4 10.7 -22.3 -77.4

EQ5 3.5 -21.6 -70.0

EQ6 0.3 -28.9 -97.9

EQ7 9.6 -18.0 -63.4

EQ8 21.9 -19.2 -64.7

EQ9 11.7 -19.6 -73.0

EQ10 2.1 -15.6 -47.4

Min. 0.3 -14.1 -41.9

Max. 21.9 -28.9 -97.9

Avg. 7.4 -19.3 -65.6

St. Dev. 6.5 4.2 15.7
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Figure 3.44 Maximum soil compressive displacement and residual foundation displacement of 

wall 10R13 on Clay with Rf=3.2 from NTHA using spectrally-matched EQ2 and EQ6 

 

Maximum soil compressive displacement profile produced by EQ2 is much flatter than that 

produced by EQ6. The difference in the degree to which the soil underneath the foundation 

ratchets down is closely related to characteristics of the input ground motion and explains the 

scatter in the response of walls with flexible foundations. 

To start, take the residual displacement underneath the centreline of the wall. Because the soil 

underneath the foundation is less rounded from EQ2, the contact area between the foundation 

and the soil is larger than the case of EQ6. Larger contact area means lower bearing stresses and 

hence lower residual displacements. This can be confirmed by looking at the soil bearing stress 

distribution underneath the foundation for the two ground motions shown in Figure 3.45a. The 

foundation is in contact with the soil along almost its entire length after EQ2 which results in the 

maximum bearing pressure being just above 0.4qult which is within the elastic response range of 

the clay elements. Soil bearing pressure at the end of EQ6 is as high as 0.8qult far beyond the 

elastic response limit and into the nonlinear response range. 

A similar explanation can be provided for the difference in maximum soil compressive 

displacement at the toes of the foundation resulting from the two input ground motions. Because 

the maximum soil compressive displacement profile resulting from EQ2 is less rounded, 

compression depth of the foundation under eccentric loading is larger than the case of EQ6. 

Larger compression depth means smaller bearing stresses and hence, smaller soil compression. 
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Figure 3.45 Bearing stress distribution underneath wall 10R13 on Clay with Rf=3.2 from NTHA 

using spectrally-matched EQ2 and EQ6 at a) the end of NTHA, and b) time of occurrence of 

maximum soil compressive displacement. 

 

Taking a look at the soil bearing stress distribution at the time of occurrence of maximum toe 

compressive displacement (Figure 3.45b) confirms the hypothesis.  The smallest compression 

depth from EQ2 is more than 9250 mm long while the number reduces to 7500 mm for EQ6. 

This difference does not look dramatic but the effect that it has on the increase in maximum soil 

displacements at the toe is quite profound. This decrease in compression depth resulted in 

increase in the bearing pressure from about 0.8qult for EQ2 to about 0.9qult for EQ6. Considering 

how flat the backbone curve for the clay elements are beyond 0.85qult (see Figure 3.7), this 

seemingly small change in bearing pressure causes a huge difference in maximum soil 

compressive displacement especially when cyclic softening of the soil is added to the equation. 
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Figure 3.46 Displacement time-histories of the soil element a) underneath wall CL, and b) at 

foundation toe of wall 10R13 on Clay with Rf=3.2 from NTHA using spectrally-matched EQ2 

and EQ6. 

 

Looking at the time-history response of the soil elements can provide further insight into 

behaviour of flexible foundations and the scatter in residual soil displacements. Figure 3.46a 

shows the time-history response of the soil element located at the wall centreline during EQ2 and 

EQ6. For both input ground motions, the response starts at the same static soil settlement of 

about 9 mm. Maximum compressive displacement experience by the element during EQ2 is 

about 15 mm. Under EQ6, compressive displacement of the same element keeps getting larger 

and larger with time as the soil ratchets down and surface of the soil underneath the foundation 

becomes more and more rounded. A similar explanation can be provided for the response of the 

soil element at the toe of the foundation (Figure 3.46b). The major difference is that the soil 

element rebounds significantly after the strong shaking of the input ground motion has passed. 
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Cyclic ratcheting of the soil and progressive rounding of the soil surface underneath the 

foundation can be seen in the time-history bearing pressure response of the soil element 

underneath the wall centreline (Figure 3.47a).  

The reason for EQ6 causing much more rounding of the soil, underneath the foundation can be 

best explained by looking at the time-history response of the bearing stress of the soil element at 

the toe of the foundation (Figure 3.47b). EQ6 caused the soil element to experience bearing 

stresses in excess of 0.8qult (the threshold for highly nonlinear soil response) six times while this 

figure was reduced to only two for EQ2. The instances when this occurred are marked with dots 

on the plot. Despite both EQ2 and EQ6 being fitted to the same spectrum, EQ6 was such that it 

forced the element at the toe of the foundation to undergo much more cyclic softening and 

accumulate more compressive displacement than the EQ2. A similar difference in bearing stress 

demand was observed in all of the soil elements farther than about a quarter of the foundation’s 

length from the wall centreline. Accumulation of compressive displacements in the soil elements 

lead to much more rounding of the soil surface due to EQ6. 

It is therefore concluded that the response of walls with flexible foundations is largely dependent 

on the input ground motion and that is because the cyclic compressive displacement of the soil 

and the degree of rounding of the soil surface are highly sensitive to the input ground motion. 

This phenomenon also explains the much greater scatter in the response of walls with flexible 

foundations compared to walls with a fixed base. 

The maximum residual building tilt observed in the Core NTHA was 0.07% which is highly 

unlikely to be problematic. Maximum soil compressive displacement at the foundation toe was 

less than 100 mm which considering the foundation length of 18500 mm does not seem too 

worrying. Maximum permanent compressive displacement underneath the centreline of the 

foundation observed in the Core NTHA was 29 mm (9 mm of which was due to settlement of the 

soil under service conditions). An extra permanent settlement of 20 mm does not seem to affect 

serviceability of the building by much and certainly not be a life-safety concern. 

 

 



189 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.47 Vertical reaction time-histories of the soil element a) underneath wall CL, and b) at 

foundation toe of wall 10R13 on Clay with Rf=3.2 from NTHA using spectrally-matched EQ2 

and EQ6. 

 

Having explained the mechanism of accumulation of soil compressive displacement, Figure 3.48 

summarizes maximum soil compressive displacements at the toe and underneath the centreline 

of the foundation obtained from the Core NTHA. Only results for walls 10R13 and 10R27, the 

strongest and the weakest nonlinear walls are shown here. As expected, the smaller the 

foundation got, the average bearing pressure on the soil increased resulting in more soil 

compressive displacement. Also, softer and weaker soils such as Clay and Loose Sand 

experienced more compressive displacement than Dense Sand for obvious reasons. Compressive 

displacements of the Rock are not meaningful as properties of Rock were chosen to have 

minimal compressive displacement; however, the results are included for completeness.  
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Figure 3.48 Average of maximum soil compressive displacement at a) foundation toe, and b) 

wall centreline from the Core NTHA for walls 10R13 and 10R27. 

 

Stronger wall 10R13 induced larger moments into the foundation and forced larger compressive 

displacements of the soil while the weaker wall 10R27 yielded before putting a very high 

bending demand on the foundation. 
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The average of maximum soil compressive displacement from the 10 spectrally-matched ground 

motions recorded in the Core NTHA was less than 60 mm at the toe of the foundation and less 

than 40 mm underneath the centreline. While neither of those two numbers sound worrying or 

large enough to hinder serviceability of the building after an earthquake, Figure 3.48 can be used 

as a guide if maximum probable soil compressive displacements are to be controlled.  

3.6.6 Period lengthening due to rotation of the foundation 

As the wall begins to rock, the rotational stiffness of the foundation starts to deteriorate because 

of both soil yielding in compression at the “toe” of the foundation and liftoff. This softening of 

the wall’s support at the base causes the effective fundamental period of vibration of the wall-

foundation system to grow; a phenomenon that has been observed in all foundation rotation 

related research. Therefore, studying the variation of the effective wall-foundation system period 

may provide a good insight into the behaviour of shear walls with flexible foundations. 

Effective periods of wall-foundation systems analysed in the Core NTHA are given in 

Figure 3.49. Data points shown in the figure were obtained from the average of displacement 

spectra for the 10 spectrally-matched ground motions (see Figure 3.13). Note that displacement 

values in the displacement spectra are displacements at first modal heights and not top wall 

displacements. Modal heights can be found from modal analysis and depend on the distribution 

of mass and stiffness along the height of the wall. For the four nonlinear walls considered here, 

the first modal height was found to be 0.76 times the wall height and the elastic lateral 

displacement at the modal height was 0.667 times the top wall displacement. Average of top wall 

displacement envelopes from each of the 10 spectrally-matched ground motions were multiplied 

by 0.667 to get their corresponding displacement values at first modal height. Effective period of 

the system was then read from the average of displacement spectra for the displacement value at 

the first modal height. 

It is important to note that the displacement at first modal height to top wall displacement ratio 

of 0.667 applies only to an elastic wall with the same mass and stiffness distribution along its 

height as the nonlinear walls. In reality, this ratio would be generally higher as foundation 

rotation and wall hinging causes most of the inelastic rotation to be concentrated near the base 
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with less bending of the wall near the top. The ratio varied from 0.70 to 0.75 for the Core 

NTHA. However, because the intent is to find the fundamental vibration period of an equivalent 

elastic structural system that would have the same top displacement as the nonlinear walls of the 

Core NTHA analysis, the ratio of 0.667 is used in this section. This approach will also be useful 

in estimating the top displacement of a nonlinear wall with a flexible foundation using an elastic 

system with the appropriate fundamental period of vibration (see Section 4.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.49 Increase in effective period of the wall-foundation system due to foundation rotation 

for wall a) 10R13, b) 10R17, c) 10R20, and d) 10R27. 
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Looking at Figure 3.49, it is obvious that the stronger the wall is, the more the period 

lengthening relative to the period of the fixed-base wall. The stronger walls could induce larger 

bending moments in the foundation forcing more rotation in the foundation and therefore, more 

softening of the base. The average of the ratio of effective system period to the fundamental 

period of the fixed-base wall was 1.68, 1.54, 1.39, and 1.15 for walls 10R13, 10R17, 10R20, and 

10R27 respectively.  

For all walls however, more period lengthening was observed when the foundations were weaker 

(or Rf was larger). For the same wall strength, the weaker the foundation got, the more the wall 

was able to push the foundation into soil yielding and uplift resulting in more period lengthening. 

3.6.7 Reduction in maximum bending moment and shear force due to 

rotation of the foundation 

Rotation of the foundation can limit the maximum bending moment at the base of the wall. Shear 

force demands at the base of the wall could potentially reduce due to foundation rotation. A 

reduction in design forces on the wall could benefit the design and hence needs careful attention. 

Figure 3.50 summarizes the reduction in maximum bending moment demand at the base of walls 

10R13 and 10R27 (the strongest and the weakest nonlinear walls) observed in the Core NTHA. 

A parameter called moment reduction factor (MRF) is defined as the ratio of maximum bending 

moment demand of the wall with a flexible foundation to that of the fixed-base wall both 

obtained from NTHA. In other words, the average of base bending moment envelopes from each 

set of 10 spectrally-matched ground motions would be the average of base bending moment 

envelopes of the fixed-base wall multiplied by the MRF. 

Hardly any reduction in wall bending moment demand can be observed for walls 10R27 

regardless of the soil type. This is because the wall was so weak that it always yielded regardless 

of the foundation strength. Even when wall 10R27 had a foundation with Rf greater than 2.7, the 

foundation overstrength due to the use of qf instead of qult in calculating Rf was still strong 

enough to develop the yield bending capacity of the wall. The trend observed with walls 10R13 

was totally different. When the foundation had an Rf close to 1.3 and was able to develop the 

yield bending capacity of the wall, MRF was close to 1.0. As the foundation became weaker, it 
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could no longer develop the wall’s yield bending capacity and therefor, MRF started to drop. 

Among the five soil types, the largest reduction in bending moment demand was observed for 

Rock because foundations on Rock had minimal overstrength beyond their liftoff capacity. Walls 

on Clay experienced less reduction in bending moment demand as foundations on Clay had a 

significant overstrength due to Rf being calculated from qf and not qult. Therefore, attention 

should be given to the foundation moment-rotation response and the probable overstrength of the 

foundation when deciding on reducing bending moment demands on the shear wall.  

 

 

 

 

 

 

 

 

 

Figure 3.50 Reduction in wall maximum bending moment demand due to foundation rotation 

observed in the Core NTHA for walls 10R13 and 10R27. 

 

To study the effect of foundation rotation on base shear demand of the wall, a parameter called 

shear reduction factor (SRF) is defined as the ratio of base shear demand of the wall with a 

flexible foundation to that of the fixed-base wall both obtained from NTHA. Figure 3.51 shows 

SRF’s for walls 10R13 and 10R27 obtained from the Core NTHA. Not only did wall 10R27 not 

experience a reduction in base shear demand, but its base shear demand increased slightly due to 

rotation of the foundation which shows that in some cases, MRF and SRF can be very different. 
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Some reduction in base shear demand was observed in walls 10R13 but the reduction in base 

shear demand was much less than that in the maximum bending moment demand. As an 

example, the lowest MRF was around 0.5 for wall 10R13 on a foundation with Rf of nearly 3.0 

on Rock while SRF of the same wall was 0.8. This shows that the effect of foundation rotation 

on bending moment and shear force demands can be very different. 

 

 

 

 

 

 

 

 

 

Figure 3.51 Reduction in wall base shear demand due to foundation rotation observed in NTHA 

 

To further illustrate this observation, the ratios of SRF to MRF obtained from the Core NTHA 

are plotted in Figure 3.52 or walls 10R13 and 10R27. Except for a few data points that are just 

below 1.0, the ratio is greater than 1.0 which means that less reduction was observed in wall base 

shear than bending moment demand.  

Figure 3.50 and Figure 3.51 can therefore be used as a reference for deciding on what bending 

moment and shear force reduction factors to use for a given wall-foundation system. 
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Figure 3.52 Ratio of shear to moment reduction factors for walls 10R13 and 10R27 obtained 

from the Core NTHA. 

3.7 Summary and Conclusions 

The main conclusions drawn from this chapter are as follows: 

1. Response of shear walls accounting for foundation rotation was shown not to be overly 

sensitive to input soil properties. A parametric study revealed that for the same foundation 

size, when the soil properties varied between their extremes within the realistic range of Rf 

for the given soil strength, the top wall displacement was affected by as little as 20%. Soil 

response parameters such as permanent deformations in the soil, on the other hand, were 

more severely affected by the change in the input soil properties. 

 

2. Maximum top wall displacement and foundation rotation proved to be sensitive to soil 

damping. Soil damping was also shown to affect the hysteretic response of the wall as in 

undamped or unrealistically underdamped systems, the amplitude of the oscillations kept 

increasing even after the strong motion phase of the input ground motion record had passed.   
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3. The mean wall response calculated using spectrally-matched ground motions agreed well 

with that obtained using uniformly-scaled ground motions; however, scatter of the results 

among the 10 input ground motions was larger for uniformly-scaled records. 

 

4. Mass ratio was found to have a significant impact on the response of walls when foundation 

rotation was accounted for. Systems with larger mass ratios needed a smaller foundation to 

achieve certain foundation strength and therefore experienced larger foundation rotation. 

Shorter walls were shown to be more susceptible to foundation rotation as the percentage 

increase in their deformation components compared to the fixed base case was higher than 

that of taller walls. Similar observations had been made by Anderson (2003) for elastic walls 

sitting on a bed of elastic-perfectly plastic (EPP) soil springs. 

 

5. Wall-to-foundation strength ratio proved to be a key parameter in predicting the response of 

shear walls accounting for foundation rotation. In systems where the shear wall strength was 

smaller than the foundation overturning capacity (i.e. hinging shear walls), maximum 

bending moment demand of the system was governed by the shear wall strength. Such 

systems showed smaller foundation rotations because hinging of the shear wall limited the 

bending moment acting on the foundation. Systems in which the shear wall was stronger than 

the foundation (i.e. non-hinging shear walls) were much more susceptible to large foundation 

rotations. Maximum bending moment demand in such systems was governed by the 

foundation ultimate overturning capacity. 

 

6. Inter-storey drift profile of wall-foundation systems with hinging shear walls was close to 

that of the fixed-base wall in terms of both magnitude and shape while inter-storey drift of 

systems with non-hinging shear walls was closer to being uniform over the building height. 

In systems with hinging shear walls, a much larger portion of the top wall displacement was 

due to bending of the wall. In systems with non-hinging shear walls, larger rotations induced 

in the foundation substantially increased the building’s drift profile in the lower storeys 

causing the inter-storey drift profile to become close to being uniform over the wall height. 
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7. Allowing the foundation to rotate increased the effective first mode period of vibration 

compared to the fixed-base wall. The increase in effective first mode period was much more 

pronounced for systems with stronger shear walls as larger rotations induced in the 

foundation softened the foundation response more than the case of systems with hinging 

shear walls. 

 

8. In general, accounting for rotation of shear wall foundations reduces bending moment 

demands on the shear wall. The reduction in maximum bending moment demand is larger in 

systems with non-hinging shear walls where the foundation overturning capacity is smaller 

than the bending strength of the wall. Introducing a flexible foundation resulted in a much 

smaller reduction in shear force demand on the wall compared to the reduction in bending 

moment demand. In some cases, even larger shear forces were induced in the shear wall with 

a flexible foundation compared to the fixed-base wall. The need for different moment and 

shear reduction factors is therefore obvious. 

 

9. Permanent soil deformations were shown to be sensitive to certain properties of the input 

ground motion such as the number and direction of large pulses in the ground motion record. 

Maximum soil permanent deformation was 30 mm at the wall centreline and 100 mm at the 

“toe” of the foundation. Maximum residual top wall displacement recorded was 22 mm 

which corresponds to a global drift of 0.07%. In general, systems with non-hinging shear 

walls experienced larger permanent soil deformations as larger bending moments were 

induced into the foundation. 

 

10. None of the structures analyzed in this study experienced or even came close to collapse. The 

increase in wall deformation due to rotation of the foundation was not big enough to threaten 

the stability of the system. However, the shape of the drift profile of the wall was 

significantly affected by accounting for foundation rotation. Displacement profile of the wall 

generally increased due to foundation rotation which may put significant deformation 

demands on the gravity-load system of the building. In some cases, considerable permanent 

displacements were observed in the soil which must be considered in evaluating the 

building’s seismic performance. 



199 

 

CHAPTER 4 Simple Methods for Predicting the Response 
of Shear Walls Accounting for Foundation Rotation 

CHAPTER 3 presented the results of Nonlinear Time-History Analysis (NTHA) on a broad 

range of shear walls with flexible foundations and explained the effect of major system 

parameters on the response of shear walls with flexible foundations. This chapter is geared 

towards using the knowledge obtained from studying the data from NTHA presented 

in CHAPTER 3 to formulate a step-by-step procedure for predicting foundation rotation of a 

given wall-foundation system. 

The chapter begins with predicting the foundation moment-rotation response envelope as it was 

found in CHAPTER 3 to be a key factor in understanding the behaviour of the wall-foundation 

system. A simple method for estimating the total top wall displacement is proposed and 

calibrated to NTHA results of CHAPTER 3. The total top wall displacement is then broken up 

into its three major components, namely, elastic top displacement, top displacement from wall 

hinging, and top displacement from foundation rotation. Other sources of displacement such as 

wall shear strain and wall rocking at its interface with the foundation due to bar slip are ignored. 

A simple design-oriented procedure is proposed for estimating each of the major top wall 

displacement components taking into account the relative strengths of the foundation and wall. 

In the end, the accuracy of the proposed step-by-step procedure for predicting the response of 

shear walls accounting for foundation rotation is examined by making estimates of foundation 

rotations recorded in the NTHA of CHAPTER 3. 

The concepts behind developing the procedure are validated. The proposed procedure is shown 

to be of good accuracy for engineering design and suitable for implementation in standard design 

procedures. Limitations of the work done in this chapter are discussed in Section 8.5. 
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4.1 Foundation Moment-Rotation Response 

As concluded in CHAPTER 3, foundation moment-rotation response is quite useful in 

explaining and predicting the response of shear walls with flexible foundations. Although the 

actual hysteretic response is highly dependent on how far into the nonlinear range the soil is 

pushed and the number of nonlinear cycles in the soil elements, the monotonic foundation 

response which will envelope the actual hysteretic response is relatively simple to predict. The 

monotonic foundation response can be directly or indirectly used to estimate key response 

factors such as maximum bending moment induced in the wall-foundation system, maximum 

foundation rotation, maximum soil compressive displacement, and a few other useful 

parameters. It is also useful in determining which is the major energy dissipation mechanism in 

the system, wall yielding or soil yielding and foundation uplift. Sections below describe a few of 

the existing methods for developing the foundation moment-rotation response and provide new a 

method for predicting the monotonic moment-rotation response of a given foundation. 

4.1.1 Allotey and El Naggar’s method for predicting foundation moment-

rotation response 

Siddharthan et al. (1992) presented a rigid-plastic model for seismic tilting of rigid retaining 

walls in which the response of the soil in compression was approximated by an elastic perfectly 

plastic (EPP) curve. The method proposed solutions for the uplift-only and yield-only cases. The 

work of Allotey and El Naggar (2003) is based on the same EPP assumption for the soil 

response; however, it provides a general solution for all cases including circumstances with 

combined soil yielding and foundation uplift. 

Figure 4.1 (originally from FEMA 274) demonstrates the concept behind Allotey and El 

Naggar’s method. Variation of strain along the foundation length is linear (i.e. rigid foundation). 

As can be seen, states 5 and 6 shown in the figure include both lift-off and soil yielding. The 

solution was provided for a foundation of length B and a unit width resting on a soil with 

ultimate bearing capacity of qu and reaction modulus kν sustaining a vertical load P. Note that 

Allotey and El Naggar refer to the foundation length as B while in this study, foundation length 
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is denoted as L and B is the foundation width. B in Allotey and El Naggar’s notation is 

substituted for L to keep the notations of this study consistent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Schematics of the different states of foundation moment-rotation response - Figure 

from Allotey and El Naggar (2003). 

 

The method introduces three non-dimensional parameters as follows: 

  
   

  
 

Eq 4.1 

 

  
 

   
 

Eq 4.2 
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Eq 4.3 

 

Where Ψ is a measure of the foundation initial elastic rotational stiffness, χ is an indicator of how 

heavily the foundation is loaded vertically, and MqL is the normalized bending moment relating 

the actual bending moment M to foundation length and the soil ultimate bearing capacity. With 

the parameters defined, the complete moment-rotation response is expressed as 

 

Allotey and El Naggar identify χ as being critical to the foundations behaviour. Foundations with 

χ less than 0.5 experience uplift before soil yielding and their design is not governed by the soil 

bearing capacity demand. In foundations with χ greater than 0.5, soil yielding occurs prior to 

uplift and soil bearing capacity is the governing design factor. Another important observation on 

χ is that the theoretical maximum bending moment capacity of the foundation occurs at χ = 0.5. 

Any other value of χ would result in a smaller ultimate bending moment capacity. 
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Eq 4.4 
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Allotey and El Naggar’s method provides a complete closed-form solution for the foundation 

moment-rotation response. The major assumptions in the development of the formulas are linear 

variation of soil strain (i.e. rigid foundation), zero soil suction, and EPP behaviour for the soil 

under compression both of which are reasonable. EPP behaviour may not provide a good 

representation of the behaviour of many soils in compression. In addition, a simpler numerical 

approach is more likely to gain acceptance by the design codes and engineers. Therefore, there is 

a need for further simplification to the procedure for obtaining the foundation moment-rotation 

response. Sections 4.1.2 to 4.1.4 introduce the concept behind the proposed method for 

estimating the foundation moment-rotation response. 

4.1.2 Soil spring backbone curves 

The cyclic response of the soil is quite complex to predict mainly because of the sensitivity of 

the amount of nonlinear soil deformation accumulation due to cyclic softening of the soil to the 

input ground motion. To simplify the process, this section and the subsequent sections in this 

chapter focus on formulating a simple method for predicting the response of shear walls with 

flexible foundation taking into account the response of the soil in monotonic compression. 

QzSimple1 material in OpenSees introduced in Section 3.2.3 is used to simulate the response of 

the soil. See Figure 3.7 for backbone curves of QzSimple1 material for clay and sand type soils. 

4.1.3 Foundation response in elastic range 

The rotational stiffness of the foundation in its linear elastic range is given by Gazetas as 

follows. 

            
Eq 4.5 
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Eq 4.6 
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Eq 4.7 

Where 
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Eq 4.8 

In these equations, L is the foundation length, B is the foundation width, d is the thickness of the 

foundation, D is the depth at which the foundation is placed, ν is the Poisson’s ratio of the soil, 

and G is the shear modulus of elasticity of the soil. The soil reaction modulus (compressive 

displacement per unit pressure) which would result in an elastic stiffness equal to that given by 

Gazetas would be 

   
   

  
 

Eq 4.9 

If the clay QzSimple1 material is used, Geff must be substituted for G in Eq 4.7 as Geff will result 

in the correct initial rotational stiffness of foundations on clay type soils (see  

Figure 3.11). If the sand QzSimple1 material is used, G0 must be used as the shear modulus in 

Eq 4.7 as the initial rotational stiffness of foundations on sand type soils is governed by G0 (see 

Figure 3.12). This way, Kθy will always be equal to true initial rotational stiffness of the 

foundation and kθ will represent the initial elastic reaction modulus of the soil. Z50 (the 

displacement required to mobilize 0.5qult) could then be calculated from the soil reaction 

modulus as follows. 

    
    

   
 for clay 

Eq 4.10 

    
    

   
      for sand 

Eq 4.11 

The 2.65 factor for sand is incorporated to adjust for the ratio of       ⁄  for sand (compare 

Figure 3.12 to Figure 3.11). As soon as either the foundation lifts off or the soil at the “toe” of 

the foundation enters the nonlinear response phase, the response of the foundation begins to 

soften and Gazetas’ elastic stiffness is no longer valid. To find the elastic response limit of the 

foundation, two scenarios need to be considered. The first is the case where lift-off occurs prior 

to nonlinear soil response at the “toe” of the foundation (see Figure 4.2a). This is more likely to 
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be the case for foundations bearing a small axial load. In this case, the elastic response limit 

θelastic can be calculated as follows. 

         
  

     
 

Eq 4.12 

Provided that 

     
  

  
                                        

Eq 4.13 

The second scenario is when lift-off is preceded by nonlinear soil response at the “toe” of the 

foundation (Figure 4.2b). This is more likely to be the case for foundations bearing a large axial 

load in which case, the elastic response limit is calculated as follows. 

         
 

 
[      

 

    
] 

Eq 4.14 

Provided that 

     
  

  
                                        Eq 4.15 

Where Zmax is the compressive displacement of the soil at the “toe” of the foundation and can be 

calculated as 

      
        

  
             

        

  
          

Eq 4.16 

The bending moment at the foundation’s elastic limit would then be 

                       
Eq 4.17 
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Figure 4.2 Elastic response limit of foundations: a) liftoff occurring prior to nonlinear soil 

behaviour (low axial load), and b) nonlinear soil behaviour occurring prior to liftoff (high axial 

load). 

4.1.4 Equivalent rectangular stress block (ERSB) concept 

Unlike the linear range, predicting the nonlinear response of foundations is much more complex. 

The actual bearing pressure distribution underneath the foundation will no longer be linear and 

the location of the resultant force from the soil bearing pressure distribution can no longer be 

calculated as easily as that in the elastic range. The onset of lift-off is greatly dependent on the 

magnitude of compressive axial force on the wall and the stiffness of the underlying soil. The 

compression depth of the foundation, the length of the foundation which is in contact with the 

soil at a given rotation, is also not easy to determine.  

To overcome these complexities, a general method is developed that can predict foundation 

rotation for a given eccentricity (or bending moment). The method uses a concept similar to the 

equivalent rectangular stress block used in section analysis of reinforced concrete members. The 

distinctions are that the soil monotonic compression response is used instead of the concrete 

stress-strain relationship and that no soil tension (or suction) is considered. 

Figure 4.3 demonstrates the equivalent rectangular stress block concept for a foundation of 

length L and width B sitting on a soil with an ultimate bearing pressure of  qult. A snapshot of the 

actual bearing pressure distribution underneath the footing at a large rotation is shown in solid 

line. Because no tension or suction was included, the bearing pressure has dropped to zero where 
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lift-off has occurred. The compression depth of the foundation and the maximum bearing 

pressure are shown as ‘c’ and qmax (as a ratio of qult) respectively. The location of the centroid of 

the area underneath the actual soil bearing pressure is shown as the dotted line. The dashed line 

is the equivalent rectangular bearing pressure distribution for the given actual bearing pressure. 

The rectangular block has a maximum bearing pressure of qunif. (as a ratio of qult) and width of 

‘a’. The area enclosed by the dashed line is equal to the area underneath the solid line. This 

ensures that both the actual and the equivalent rectangular bearing pressure distributions produce 

the same resultant force. In addition to the magnitude of the resultant bearing pressure, the 

location of the resultant force from the two bearing pressure distributions are also identical as the 

equivalent rectangular block is placed such that its centroid coincides with that of the actual 

bearing pressure distribution. In summary, the two bearing pressure distributions in Figure 4.3 

have the same resultant axial force and the same resultant bending moment. 

 

 

 

 

 

 

 

 

 

Figure 4.3 Equivalent rectangular stress block concept for soil bearing pressure. 

 

In order to study the relationship between the equivalent rectangular and the actual soil bearing 

pressure distribution in the nonlinear range, a few parameters need to be defined. α is the ratio of 



208 

 

the constant bearing pressure of the equivalent uniform stress distribution to the maximum actual 

soil bearing pressure at the “toe”. β is the ratio of the depth of the equivalent uniform bearing 

pressure distribution to the actual bearing pressure depth (see Figure 4.3 for visual definitions of 

α and β). To get the foundation rotation for a given stress distribution, the maximum soil 

compressive displacement also needs to be known to combine with the actual compression 

depth. Hence, a third parameter is defined as follows. 

  
    

   
 

Eq 4.18 

Where Zmax is the maximum soil compressive displacement at the toe and Z50 is the displacement 

at which 50% of qult is mobilized (see Eq 4.10 and Eq 4.11 for definition of Z50). 

To formulate a general method that could be applied to any rectangular foundation with any size, 

aspect ratio, and axial load, all the necessary calculations were performed in a non-dimensional 

space. 

Consider a foundation with length L and width B with 100 equally-sized soil elements placed 

underneath the foundation and the axial load P applied to it. For any certain amount of rotation θ 

imposed on the foundation, the compression depth ‘c’ was found that would result in vertical 

force equilibrium. Once force equilibrium was established, the magnitude of the axial load 

multiplied by the distance from the wall centreline to the location of the resultant bearing 

pressure gave the bending moment required to impose the rotation. θ was then increased 

gradually to conduct a pushover analysis on the foundation and sweep the entire range of 

foundation response from elastic to highly nonlinear soil responses. In each sweep, the three 

parameters α, β, and γ were recorded. 

Figure 4.4 shows the behaviour of the three parameters for a foundation sitting on a series of 

Clay QzSimple1 elements. Three curves are shown in each plot each for a given axial load. Note 

that the highest axial load considered results in a uniform bearing pressure under service load 

conditions equal to 0.30qult. This is considered to be the upper limit of allowable soil bearing 

pressure under service condition for most deformable soils such as clay and sand. All three 

parameters proved to be independent of the magnitude of the axial load applied to the foundation 
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beyond the foundation lift-off which falls into the elastic response range of the foundation. Note 

that the elastic response of the foundation was solved in Section 4.1.3. A similar trend was 

observed for foundations sitting on Sand QzSimple1 elements (see Figure 4.5). Response of the 

foundation on Sand elements prior to lift-off is not shown in Figure 4.5.  

With this observations, the numerical values of the three parameters are tabulated in Table 4.1 

for both Clay and Sand type soils at various ratios of qunif./qult. Below is a step by step procedure 

for estimating the moment-rotation response of any rectangular foundation on either Clay or 

Sand type soils. 

1. Choose a value of 
      

    
 and calculate qunif. 

2. Find ‘a’ from vertical force equilibrium as follows 

  
 

        
 

Eq 4.19 

 

3. Calculate the bending moment as 

 

      Eq 4.20 

where 

  
   

 
 Eq 4.21 

4. Calculate the rotation as 

 

  
    

 
   

   

 
 Eq 4.22 

5. Repeat steps 1 through 4 for other values of 
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Figure 4.4 Variation of the three key parameters of the equivalent rectangular pressure block 

concept with vertical compressive load for clay type soils. 

 

The bending moment at 
      

    
      is very close to maximum bending moment that the 

foundation can resist (without considering any soil suction). Therefore, it is safe to assume that 

the foundation moment-rotation response is a flat line beyond 
      

    
     . 
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Figure 4.5 Variation of the three key parameters of the equivalent rectangular pressure block 

concept with vertical compressive load for sand type soils. 
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Table 4.1 Equivalent rectangular stress block parameters for Clay and Sand type soils. 

 

 

 

 

 

 

 

 

4.1.5 Example predicted foundation moment-rotation curves 

The accuracy of foundation moment-rotation response predicted using the simple method 

described in the previous sections is verified against moment-rotation responses obtained from 

pushover analysis carried out in OpenSees. Figure 4.6a compares moment-rotation responses of 

a 19 m square foundation sustaining a vertical compressive force of 41550 kN on Clay in 

OpenSees with that obtained using the simple procedure outlined in the previous sections. 

Figure 4.6b repeats the comparison for a 15 m square foundation on Medium Sand. 

For both Clay and Medium Sand, the elastic solution and the points in the low and medium 

nonlinear soil response ranges match the response obtained from OpenSees. In the high 

nonlinear soil response stages (large rotations) however, the response obtained from OpenSees 

gives larger bending moments than those predicted using the simple method. This is attributed to 

the inevitable inclusion of a small amount of soil suction (about 0.005qult) in the soil elements in 

OpenSees to facilitate the numerical procedures required to achieve convergence in each analysis 

time step. This minimum suction is included in the analysis even if zero soil suction is assigned 

to the soil elements and cannot be avoided.  

qunif./qult α = qunif./qmax β = a/c γ = Zmax/Z50 α = qunif./qmax β = a/c γ = Zmax/Z50

0.40 0.78 0.69 1.2 0.88 0.82 0.9

0.45 0.78 0.70 1.3 0.86 0.83 1.3

0.50 0.79 0.70 1.5 0.86 0.83 1.6

0.55 0.80 0.70 1.8 0.85 0.83 2.1

0.60 0.81 0.71 2.0 0.86 0.83 2.6

0.65 0.82 0.72 2.3 0.86 0.83 3.1

0.70 0.84 0.73 2.6 0.87 0.83 3.8

0.75 0.86 0.74 2.9 0.88 0.84 4.7

0.80 0.88 0.76 3.5 0.89 0.85 5.8

0.85 0.91 0.78 4.3 0.91 0.85 7.3

0.90 0.94 0.82 5.7 0.93 0.87 9.8

0.95 0.97 0.87 9.3 0.96 0.90 14.9

Clay Sand
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Figure 4.6 Example: verification of the proposed equivalent uniform soil bearing pressure 

method for estimating moment-rotation response of a) a 19 m square footing on Clay and b) a 15 

m square footing on Medium Sand (see Section 3.2.4 for soil specifications). 

 

The amount of suction in each soil element increases as the gap between the soil spring and the 

foundation increases and consequently, the bending moment resisted by the foundation increases 

steadily at a slow rate. This artificial foundation over-strength becomes problematic only at 

foundation rotations greater than 0.02 rad while the maximum foundation rotation recorded in 
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the NTHA in CHAPTER 3 was less than 0.012 rad and well below 0.02. This phenomenon is 

considered to be a limitation of the QzSimple1 model. Despite this fact, it does not hinder the 

legitimacy of the Nonlinear Time-History Analysis (NTHA) done with QzSimple1 elements in 

this study because the recorded foundation rotations did not exceed 0.012. 

Note how well the envelope of the foundation moment-rotation response can be estimated using 

five or six points and with some simple calculations using information that is readily available to 

the designer. It must not be forgotten that the hysteretic moment-rotation response of a 

foundation is highly dependent on the number of highly nonlinear soil compression cycles and 

that the proposed method only predicts the envelope of the hysteretic response. However, as will 

be shown, the envelope of the foundation moment-rotation response is very useful in estimating 

foundation rotation of a given wall-foundation system as described earlier in CHAPTER 3. 

Importance of the foundation moment-rotation response is further illustrated in Section 4.3. 

4.2 Estimating Top Wall Displacement 

This section presents a simple method for estimating top displacement of a given shear wall 

accounting for rotation of its foundation. It must be noted that whenever the term top wall 

displacement is used, it stands for the total wall deformation resulting from rotation of the 

foundation plus the flexural deformation of the wall. Other possible sources of wall deformation 

such as shear strain or bar slip are not accounted for. 

Figure 4.7 shows the concept behind the simple method for estimating top displacement of walls 

with flexible foundation presented in this section. On the left hand side, a state of the art 

modeling technique for simulating the wall-foundation system is shown. The wall is made out of 

sections with reinforced concrete fibres having nonlinear stress-strain relationships for both steel 

reinforcement and concrete. The foundation is sitting on QzSimple1 soil elements which can 

simulate foundation liftoff and the nonlinear behaviour of the soil in cyclic compression and 

radiation damping. This type of numerical model was subjected to NTHA in CHAPTER 3 with 

ground motions spectrally-matched to the Uniform Hazard Spectrum (UHS).  
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On the right hand of the figure, an elastic wall with the same height and the floor mass 

distribution is shown which has an elastic rotational spring of stiffness Ke at its base. Response 

Spectrum Analysis (RSA) can be carried out on this simplified structure using the UHS as the 

input spectrum. Resources needed to carry out such numerical modeling are readily available to 

any designer. The goal of this section is to provide the appropriate elastic stiffness of the wall 

and the rotational spring at the base of the simplified structure such that the two structures shown 

in Figure 4.7 would have the same top displacement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Estimating top displacement of nonlinear shear walls with a flexible foundation from 

RSA of an equivalent elastic wall with a rotational spring at its base. 

 

To start, an effective flexural stiffness must be chosen for the elastic wall in the simplified 

structure. Results of the Core NTHA presented in Section 3.6 will be used to formulate the 
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method; therefore, flexural stiffness of the wall in the simplified structure needs to be adjusted 

for each of the four nonlinear walls used in the Core NTHA. Flexural stiffness of the elastic wall 

in the simplified structure was chosen such that the top displacement of the fixed-base elastic 

wall from RSA matched the average of top displacement envelopes obtained from NTHA of the 

nonlinear fixed-base walls subjected to the 10 spectrally-matched ground motions. 

Figure 4.8 summarizes the process of choosing the effective flexural stiffness for the elastic wall. 

RSA was carried out on a 10 storey wall with 6 different elastic stiffnesses for the wall as a ratio 

of the wall’s uncracked gross moment of inertial to get the solid curve in Figure 4.8. Average top 

displacement envelopes obtained from NTHA for the four nonlinear walls using the 10 

spectrally-matched ground-motions were then plotted as dots on the solid curve. The interpolated 

appropriate effective stiffnesses are shown on the same figure as a ratio of the uncracked gross 

flexural stiffness. As expected, the weaker the wall, the more the expected nonlinear action and 

therefore, the more the equivalent elastic wall needed to be softened. 

 

 

 

 

 

 

 

 

Figure 4.8 Effective flexural stiffness of elastic 10-storey shear walls to match the average 

maximum top displacement of the fixed-base nonlinear walls from NTHA. 

 



217 

 

Dezhdar (2012) investigated the parameters influencing the effective stiffness of shear walls and 

showed that the parameter influencing the effective stiffness the most was the ratio of elastic 

force demand to strength (i.e. Rw in this study). Dezhdar reports that as Rw increases from 1.0 to 

5.0, the effective stiffness of the elastic wall as a ratio of the uncracked gross stiffness reduces 

from 1.0 to 0.5. This is consistent with the results shown in Figure 4.8 as the effective stiffness 

ratios ranged from 0.87 to 0.62 while Rw varied from 1.3 to 2.7. The following equation was 

recommended to be incorporated in CSA A23.3-14 based on the work of Dezhdar. The term 

      ⁄  is equivalent to Rw as defined in this study. 

  
  

        
    

  
          

Eq 4.23 

With the effective flexural stiffness of the wall selected from Figure 4.8, elastic walls with 

appropriate effective flexural stiffness were analyzed using RSA over a wide range of stiffnesses 

for the elastic rotational spring at their base to generate the four curves shown in Figure 4.9. The 

figure shows the curves over the entire range of rotational spring stiffnesses used. Note how 

above a certain elastic rotational stiffness, the maximum top wall displacement remains nearly 

constant and very close to that of the fixed-base wall. 

 

 

 

 

 

 

 

 

Figure 4.9 Top displacements of elastic 10-storey shear walls with appropriate effective flexural 

stiffness obtained from RSA with various elastic rotational spring stiffnesses at the base.   
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In the next step, the appropriate rotational spring stiffness required to match the average of top 

displacement envelopes from the Core NTHA was interpolated from the curves in Figure 4.9. 

This was done for each of the four nonlinear walls and for each of the five soil types and for each 

of the five smallest foundation sizes (i.e. the five largest Rf’s) modeled on each type of soil 

considered in the Core NTHA. This generated 100 data points (see Figure 4.12) which were then 

used to formulate a simple equation for the effective stiffness of the elastic rotational spring that 

must be used at the base of the simplified structure in Figure 4.7 to get the correct top wall 

displacement.  

To explain general trends observed in the data, data points for clay are presented next. 

Figure 4.10 shows the 20 data points for clay. On the top plot, the data points are grouped by 

foundation strength and plotted against wall strength. On the bottom plot, the same data points 

are presented but this time the data points for the same wall strength are connected and plotted 

against foundation strength. 

The vertical axis of both plots in Figure 4.10 is Ke/Koc. Ke is the effective elastic rotational 

spring stiffness required for the simplified structure to have the target top displacement of the 

complex structure obtained from NTHA. Koc is the secant stiffness of the foundation moment-

rotation response to the point of calculated overturning capacity. In other words, 

    
   

   
 

Eq 4.24 

Where Moc is the foundation overturning capacity calculated using a uniform soil stress block of 

qf=0.5qult and θoc is the rotation at the point with ordinate of Moc on the foundation moment-

rotation response. From the simple method for estimating the foundation moment-rotation 

response presented in Section 4.1, Koc could be calculated using the basic soil and foundation 

properties available to the designer.  

Figure 4.10a shows that Ke/Koc is strongly influenced by the wall strength. Stronger walls 

(smaller Rw’s) induced larger base bending moments that increased foundation rotation. 

Therefore, a softer elastic rotational spring was needed for the simplified structure. Figure 4.10b 

reveals that Ke/Koc is also dependent on the foundation strength. Values of Ke/Koc are larger for 



219 

 

stronger foundations (smaller Rf’s). This not surprising as stronger foundations are likely to 

experience less softening of the soil and therefore, their secant stiffness is less reduced compared 

to their Koc. Weaker walls resulted in larger secant stiffnesses because wall yielding prevented 

large bending moments to be transferred to the foundation which made for smaller foundation 

rotation and therefore, less softening of the foundation response. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 Variation of effective stiffness of the elastic rotational base spring of the simplified 

structure with a) wall strength, and b) foundation strength for foundations on Clay. 
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Ke/Koc is therefore a function of both wall strength and foundation strength. In Figure 4.11, the 

same 20 data points of Figure 4.10 are plotted against Rw/Rf. The term Rw/Rf translates to the 

foundation to wall strength ratio. The data points seem to follow a single curve reasonably well. 

In this case, an exponential curve gives a good fit with a convergence factor of 0.95 (see 

Figure 4.11b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 Variation of effective stiffness of the elastic rotational base spring of the simplified 

structure with relative foundation to wall strength for foundations on Clay. 
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The trend observed above in clay foundations and the conclusions made for clay equally apply to 

data points from the other 4 types of soil. Figure 4.12 presents all of the 20 data points for the 

five types of soil totaling 100 data points. From Figure 4.12a, it is obvious that when data points 

for all five soil types are put together, they do not quite follow the nice trend that was observed 

by looking at data points for a single soil type. The data points which seem to deviate a lot from 

the rest are those for Loose Sand while the rest are not far off from an exponential curve (see 

Figure 4.12b). This can be explained by comparing properties of Clay and Loose Sand. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Variation of effective stiffness of the elastic rotational base spring of the simplified 

structure with relative wall to foundation strength for foundations on all five types of soil. 
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Strength and effective stiffness of Loose Sand were deliberately chosen to be the same as those 

for Clay to study the effect of the shape of the backbone curve for the soil elements on the 

response of shear walls with flexible foundations. For each wall, even for the same foundation 

size, the averages of top wall displacement envelopes were considerably different for Clay and 

Loose Sand despite the two foundations having the same Rf. This was solely because of the 

fundamental differences in the hysteretic behaviour of QzSimple1 clay and sand models. Loose 

Sand elements were much stiffer than clay elements in the elastic range but beyond 0.30qult, they 

softened rapidly which resulted in severe ratcheting down of the soil surface beneath the 

foundation. Clay elements on the other hand started with a lower elastic stiffness but held on to 

most of that initial stiffness up to 0.50 qult. Also because soil rebound always occurred with the 

initial elastic stiffness, Loose Sand elements experienced a much smaller rebound than Clay 

elements. These fundamental differences in loading and unloading stiffnesses lead to the soil 

surface underneath the foundation to be much more rounded for Clay than for Loose Sand with 

the foundations on Loose Sand having experienced a larger permanent compressive 

displacement underneath their centreline. The surface of the soil being more rounded for Clay 

caused larger foundation rotations and consequently larger top wall displacements than the case 

where the same wall-foundation system was placed on Loose Sand (compare results for Clay and 

Loose Sand in Appendix A). Having drastically different target displacements in the 

interpolation process used to get Ke resulted in the data for Loose Sand to stand out from the rest 

of the pack. Therefore, Loose Sand data was eliminated from the curve fitting process in 

Figure 4.12b.  

Another way of explaining the drastically different behaviour of the Loose Sand data is to 

compare the foundation moment-rotation response of a foundation on Loose Sand with 

foundations of the same Rf on other types of soil. Figure 4.13 shows moment-rotation responses 

of a foundation with Rf of 2.0 on Clay, Loose Sand, and Medium Sand. The rotation at which the 

factored overturning capacity is reached (θoc) is marked with a hollow circle. Note that the slope 

of the line connecting the origin to the hollow dots is Koc. 

Average of foundation rotation envelopes from NTHA of each foundation supporting wall 

10R13 is marked with the solid dots. The foundations on Clay and Medium Sand experienced 

larger rotations than the foundation on Loose Sand. The larger the foundation rotation, the softer 
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the elastic rotational spring at the base of the simplified structure needs to be to match the total 

top wall displacement of the nonlinear wall-foundation system. In other words, Ke is closely 

related to the slope of the line connecting the origin to the point marked with the solid dot. The 

foundations on Clay and Medium Sand have almost the same Koc and because the slopes of the 

lines connecting the origin to the solid dots on the two moment-rotation response are also close, 

the two foundations will end up having values of Ke/Koc which are very close to one another. 

Koc of the foundation on Loose Sand is smaller than the other two foundations. In addition, the 

foundation experienced a much smaller average rotation from NTHA. This means that Ke of the 

foundation on Loose Sand would be larger than the other two foundations. Both of these effects 

contribute to the value of Ke/Koc for the foundation on Loose Sand being much larger than those 

for the foundations on Clay and Medium Sand. 

 

 

 

 

 

 

 

 

 

Figure 4.13 Comparison of moment-rotation responses, θoc and θb of foundations with Rf of 2.0 

on Clay, Loose Sand, and Medium Sand supporting wall 10R13. 

 

Values of Ke could have been normalized by the initial elastic stiffness of the foundation given 

by Gazetas’ equation (i.e. Kθy) instead of Koc (see Figure 4.14). In this case, the data points for 

Clay and Loose Sand are spread over the same area. This can be explained by looking at 
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Figure 4.13 again. The initial stiffness of the foundation on Clay is smaller than that of the 

foundation on Loose Sand. However, Ke of the foundation on Clay is also smaller than that of 

the foundation on Loose Sand because the average foundation rotation from NTHA of the 

foundation on Clay is larger. This results in the values of Ke/ Kθy of the two foundations to be 

close to one another.  

As the soil gets stronger and stiffer, the initial rotational stiffness of the foundations with the 

same Rf grows so quickly reducing the Ke/ Kθy to extremely low values. The data points in 

Figure 4.14 are so scattered that makes good curve fitting impossible. Hence, it was decided to 

normalize Ke by Koc as values of Koc of foundations with the same Rf on different soils were 

closer to one another than values of Kθy.  

It has to be said though that the accuracy of the curve fitted to the data in Figure 4.12 is not as 

impressive as that for any individual soil such as the one presented in Figure 4.11b for Clay. 

Nonetheless, the general trend of the data points is captured especially for cases of small Rw/Rf 

(i.e. stronger walls on weaker foundations) were foundation rotation is critical. 

 

 

 

 

 

 

 

 

 

Figure 4.14 Variation of effective stiffness of the elastic rotational spring used in RSA to 

estimate top wall displacement accounting for foundation rotation with relative wall to 

foundation strength for foundations all five types of soil. 
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Figure 4.15  shows estimates of top wall displacement using Ke obtained from the fitted 

exponential curve of Figure 4.12b. The estimates are compared against target displacements 

from NTHA. The exponential curve seems to predict the appropriate elastic stiffness of the 

rotational spring of the simplified structure with very good accuracy. The average of absolute 

relative errors in predicting top wall displacement was only 7%.  

As a concept, the exponential curve fitted to the data works very well. However, as a design 

procedure that could be easily implemented by engineers, the exponential curve might be labeled 

too cumbersome. In order to overcome this issue, a second method for estimating Ke is proposed. 

Instead of using the best fitted curve to estimated Ke/Koc, a bilinear trendline was fitted to the 

data (see Figure 4.16). The equation for this bilinear trendline curve is 

 

 

 

 

 

 

 

 

 

Figure 4.15 Accuracy of estimates of top wall displacement of nonlinear walls with flexible 

foundations using Ke from the best fit exponential curve. 

 

  

   
                

  

  
     

Eq 4.25 
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Figure 4.17 compares estimates of top wall displacement from the simplified structure using Ke 

obtained from the bilinear trendline with target top wall displacements from NTHA. Despite the 

simplicity of the bilinear curve equation, the estimated points fall reasonably close to the exact 

match line. The average of absolute relative error went up from 7% for the exponential curve to 

8% for the bilinear trendline. The negligible decrease in accuracy seems to be a small price to 

pay for the simplicity of the bilinear trendline compared to the exponential curve; hence, the 

bilinear trendline is shown to be the suitable option for developing design procedures. 

 

 

 

 

 

 

 

 

Figure 4.16 Simple bilinear trendline used for estimating equivalent stiffness of the elastic 

rotational spring at the base of the simplified structure. 

 

So far in this section, estimating the top wall displacement has required performing an RSA of 

the shear wall with an elastic rotational spring at its base. Having to perform an RSA on a 

building with more than one core is not as simple as running the same analysis of a single shear 

wall. Such procedure requires more sophisticated modeling and can be quite time-consuming. 

Eliminating the need for doing an RSA will therefore make the method more attractive to the 
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design engineer. A simpler method for estimating top wall displacement given the appropriate 

stiffness of the elastic rotational spring at the base of the wall is proposed next. 

A simple seismic analysis method that is well accepted by codes and design engineers is the use 

of response spectra given the first mode period of the building. The method of course ignores the 

contribution of higher modes to the response of the building. Higher mode effects are then 

captured by applying various modification coefficients to different wall response components 

whether they are deformations or forces. Since top displacement of flexural shear walls is 

governed mostly by their first mode of vibration, it seems logical to estimate the top wall 

displacement from a given displacement spectrum using a first mode period that accounts for 

period lengthening due to foundation rotation.  

 

 

 

 

 

 

 

 

 

Figure 4.17 Accuracy of estimates of top wall displacement of nonlinear walls with flexible  

foundations using Ke from the simple bilinear trendline. 

 

Figure 4.18 shows the concept behind estimating the first mode period of the wall-foundation 

system by combining the first mode period of the wall with a fixed-base and that of the rigid wall 

with an elastic rotational spring at its base. Calculating the first mode period of the fixed-base 

structure is simple once an effective elastic flexural stiffness is chosen. Design codes often have 
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guidelines for getting the effective wall flexural stiffness as a portion of the flexural stiffness of 

the uncracked gross section based on Rw. The first mode period of the rigid wall with an elastic 

rotational spring at its base is called Tf shown in Figure 4.18. First mode period of the combined 

wall-foundation system Ts is approximately equal to the square root of sum of squares of the two 

periods. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18 Estimating fundamental period of the wall-foundation system from first mode 

periods of the fixed-base wall and the rigid wall with an elastic rotational spring at its base. 

 

Given the first mode period of the wall-foundation system, one can get the displacement at the 

first modal height directly from the displacement spectrum (in this case, from Figure 3.13b). 

Note that the displacements given in the displacement spectrum are displacements at first modal 

height and not the top wall displacement. The ratio of the displacement at first modal height and 

top wall displacement is a constant which depends on the distribution of mass and stiffness over 
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the height of the wall. The ratio is commonly referred to as λ1. The value of λ1 for the 10-storey 

walls of this study was 0.76. 

Effective rotational spring stiffnesses required to match the top wall displacement from NTHA 

using RSA of the simplified structure are compared to those back-calculated to result in an 

effective wall-foundation system period to give the target top wall displacement from the 

displacement spectrum in Figure 4.19. The two approaches give effective rotational stiffnesses 

which are remarkably close. The only difference between the two approaches is that the RSA 

considered the contribution of the first 5 modes of the system while the latter only considered 

first mode behaviour. The fact that the two effective rotational spring stiffnesses are very similar 

confirms the theory that the top displacement response of walls with flexible foundations is 

dominated by their first mode behaviour. This means that the simple bilinear trendline presented 

earlier can be used to get Ke from Rw/Rf but instead of having to carry out an RSA, top wall 

displacement can be obtained from the displacement spectrum using the effective first mode 

period of the wall-foundation system. 

 

 

 

 

 

 

 

 

 

Figure 4.19 Comparison between effective rotational spring stiffnesses required to match the top 

wall displacement from NTHA using RSA with a linear elastic rotational spring at the base of 

the wall and using an effective wall-foundation system period required to give the target top wall 

displacement from the displacement spectrum. 
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4.3 A Simple Method for Estimating the Displacement Profile of Shear Walls 

Accounting for Foundation Rotation 

This section presents a simple method for estimating the seismic displacement demands on shear 

walls accounting for foundation rotation. Figure 4.20 shows the major components that 

contribute to the top displacement of shear walls. Section 4.2 presented a simple method for 

estimating the total top displacement for a given wall-foundation system. Note that deformations 

due to shear strains have been ignored since their contribution to top wall displacement is small 

(see CHAPTER 2). In the subsequent sections, a simple way of estimating the elastic portion of 

the top wall displacement is presented first. Then a simple logical method is formulated to 

estimate foundation rotation of a given wall-foundation system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20 Major components of top displacement of shear walls with flexible foundations.  
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4.3.1 Elastic displacements 

Elastic displacements are defined as the portion of the wall’s flexural deformation that is not due 

to plastic hinging of the wall. In other words, elastic displacements of the wall are defined as the 

total wall flexural deformation minus the deformations from accumulation of inelastic curvatures 

in the wall’s plastic hinge region. Because the four nonlinear walls considered in this study were 

flanged walls, the point of full yield when the entire vertical reinforcement in the tensile flange 

has yielded was very pronounced on the section’s moment-curvature response (see Figure 3.6). 

Even though the four walls have very different post-cracking flexural stiffnesses, the point of full 

yield occurs at almost the same curvature of approximately 0.56 rad/km as can be seen in 

Figure 3.6. Any curvatures greater than 0.56 rad/km would then be inelastic.  

Figure 4.21 shows the average of curvature envelopes from Nonlinear Time-History Analysis 

(NTHA) for the four nonlinear walls with a fixed base. Inelastic curvatures are shown with the 

dashed green line for each wall. Note that 5 beam-column elements were modeled in each storey 

of the wall which is the reason for the curvature profiles being step-wise. In reality, inelastic 

curvatures have a close to linear distribution over the height of the plastic hinge zone such as that 

shown by the dashed green line. Inelastic curvatures enclosed by the dashed green lines can then 

be integrated over the height of the wall to obtain the flexural deformation of the wall due to 

hinging at the base and the inelastic top wall displacement Δi. On the same figure, curvature 

profiles from Response Spectrum Analysis (RSA) of the wall with the appropriate effective 

flexural stiffness from Figure 4.8 is given with the dashed blue line. Integrating curvatures from 

the solid blue line and the dashed blue line will therefore result in the same top wall 

displacement. Section 3.6 revealed that both the displacement and bending moment profiles of 

the 10-storey walls were governed by the walls’ first mode of vibration. This means that 

maximum bending moment at the base of the wall and maximum top wall displacement occurred 

very close in time. The post-yielding bending moment resisted by the nonlinear walls increases 

with curvature at a very small rate to the point that it can be said it remains almost constant 

beyond the point of full yield (see Figure 3.6). If the curvature profiles of the nonlinear 10-storey 

walls are also close in shape to first mode curvature profile of an elastic wall, elastic component 

of top displacement of the nonlinear walls can be estimated directly from first mode curvatures 

as follows. 
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Figure 4.21 Average of curvature envelopes from NTHA, curvature profile from RSA with the 

effective flexural stiffness to match average of top wall displacement envelopes from NTHA, 

curvature profile from RSA with appropriate effective stiffness divided by Rw, and inelastic 

curvatures of the fixed base walls a) 10R13, b) 10R17, c) 10R20, and d) 10R27. 
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Eq 4.26 

In this equation, Δt is the total top wall displacement from NTHA which is also the top 

displacement from RSA with the appropriate wall flexural stiffness, MRSA is the maximum 

bending moment from RSA and My is the wall probable bending strength. The approach linearly 

scales the total top displacement of the elastic wall to get the elastic portion of the top wall 

displacement of the nonlinear wall. A similar approach is accepted in CSA A23.3-04 for 

estimating the elastic top wall displacement due to seismic loads. 

Estimates of the elastic component of top displacement of the four fixed-base nonlinear 10-

storey walls using Eq 4.26 are given in Figure 4.22. The elastic component of the top wall 

displacement was calculated by subtracting the top wall displacement due to inelastic curvatures 

from the total top wall displacement from NTHA. As can be seen, the method underestimates the 

elastic component of the top wall displacement. The reason becomes evident when comparing 

the estimated elastic curvature profile of the four fixed-base walls (the solid red lines in 

Figure 4.21) with the elastic curvatures. The red line consistently underestimates the elastic 

curvatures.  

Had the shape of the walls’ elastic curvatures been close to that of the first mode response of an 

elastic wall with uniform stiffness, the method would have provided near to exact results. Elastic 

curvatures of the nonlinear walls vary quite a bit above the wall’s plastic hinge zone. There is a 

jump in curvature when moving from the top of a storey to the bottom of the storey above. This 

can be explained by looking at Figure 4.23 which shows the moment-curvature response of wall 

10R13 throughout its height. As can be seen, the variation in the sectional response of the wall 

throughout its height is very large. This is entirely due to the sectional response of reinforced 

concrete walls being sensitive to the amount of vertical steel and axial compression resisted by 

the wall. Vertical steel ratio of the wall’s flanges varies quite significantly (see Table 3.1). Axial 

load on the wall also varies considerably throughout its height. Both of these reasons contribute 

to the great variation in the wall’s sectional response over its height. The nonlinear walls 

becoming progressively softer and weaker above the plastic hinge zone has resulted in the shape 

of the wall’s curvature profile to be very different than the first mode curvatures of an elastic 

wall with uniform stiffness over its height. Note that the wall is not yielding over the upper 



234 

 

storeys as the curvatures stay well below the yield curvature. The wall is cracked in the upper 

storeys but the vertical reinforcing steel in the tensile flange has not yielded. 

 

 

 

 

 

 

 

 

 

Figure 4.22 Estimates of the elastic component of top displacement of the four nonlinear walls 

with a fixed-base obtained by dividing the total top wall displacement by Rw.  

 

Underestimating the elastic displacements is conservative from a seismic design view point. A 

smaller estimated elastic displacement results in a larger inelastic rotation demand on the wall 

which is conservative for shear wall design. Using a similar method in a design code such as 

CSA A23.3-04 therefore seems reasonable. 

So far only fixed-base nonlinear walls were considered. Next, a similar approach is applied for 

estimating elastic displacements of walls accounting for foundation rotation. 

The method simply scales down the total top wall displacement based on the maximum bending 

moment at the base of the wall relative to the maximum bending moment from RSA. The 

method will therefore give exact results when estimating elastic displacements of an elastic wall 

with uniform flexural stiffness over the height having a plastic hinge at its base.  
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To apply the method to walls with flexible foundations, total top wall displacement must again 

be scaled down based on the maximum bending moment demand on the wall. Two scenarios 

must be considered when determining the maximum bending moment demand in a given wall-

foundation system. First, if the wall’s bending strength is smaller than the foundation 

overturning strength (i.e. hinging wall), maximum bending moment of the system will be 

governed by the wall and will be equal to the wall’s probable bending strength My (including the 

effect of steel strain hardening). In this case, the total top wall displacement must be divided by 

Rw as shown in Eq 4.26. Second, if the wall is stronger than the foundation (i.e. non-hinging 

wall), maximum bending moment demand of the wall-foundation system will be equal to the 

foundation overturning strength. In this case, the total top wall displacement must be divided Rf. 

Note that Rf is calculated using the factored bearing capacity (qf) of the soil while in reality, the 

ultimate overturning capacity of the foundation must be calculated using qult. Using qf for 

calculating the foundation overturning strength will therefore result in a smaller maximum 

bending strength which translates to smaller elastic displacements and a more conservative wall 

design. 

 

 

 

 

 

 

 

 

 

 

Figure 4.23 Variation of moment-curvature response of wall 10R13 over its height. 

Floor 
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In summary, elastic component of top displacement of a walls accounting for rotation of its 

foundation can be calculated as follows. 

   
  

           
 

Eq 4.27 

Estimates of the elastic component of top displacement of the four nonlinear walls considered is 

compared against those observed in the NTHA for all five soil types and all foundation sizes 

paired with each wall in Figure 4.24. Inelastic component of the top wall displacement due to 

plastic hinging of the wall was calculated similar to that of the fixed-base walls explained earlier 

in this section. Contribution of foundation rotation to top wall displacement was calculated by 

multiplying the average of foundation rotation envelopes by the wall height. Again, since the 

response of the 10-storey walls was dominated by their first mode of vibration, maximum top 

wall displacement, maximum bending moment at the base, and maximum foundation rotation 

occurred very close in time. This confirms that it is valid to combine the maximum values of the 

three components of the top wall displacement algebraically. Elastic top wall displacement 

observed in NTHA was then calculated by subtracting the displacements due to average of 

maximum foundation rotation and average of inelastic curvature envelopes from the average 

maximum top wall displacement. 

The predictions are scattered on either side of the exact match line. The points below the exact 

match line represent cases where the elastic component of the top wall displacement was 

underestimated. The shape of the elastic curvature profile of the nonlinear walls being 

dramatically different from the first mode curvature profile of an elastic wall with uniform 

flexural stiffness is the major contributor to this underestimation as explained earlier.  

In many cases however, the method overestimated elastic displacements which would be 

unconservative for designing the wall. Elastic displacements of the stronger walls are more 

overestimated than that of the weaker walls. The explanation is rather simple. If the walls were 

stronger than the foundation or Rw was smaller than Rf, the total top wall displacement was 

divided by Rf to get the elastic component of the top wall displacement. This meant that the total 

top displacement of two walls with different Rw’s supported on the same foundation was divided 

by the same Rf as long as both walls had Rw’s smaller than Rf. At the same time, between the 
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two walls, the one with the smaller Rw (stronger wall) had a larger total top displacement 

because it could induce larger foundation rotations. Therefore, the elastic displacement of the 

stronger wall was more overestimated than that of the weaker wall. 

 

 

 

 

 

 

 

 

 

Figure 4.24 Estimates of the elastic component of the top displacement of the four nonlinear 

walls from the Core NTHA obtained using Eq 4.27. 

 

Eq 4.27 is therefore unable to distinguish between walls of various strengths as long as the wall 

is stronger than the foundation or in other words, Rw is smaller than Rf. To overcome this 

deficiency, the term 1/Rw is added to Rf in the denominator of Eq 4.27 to get the following 

equation. 

   
  

           
 
  

 
 

Eq 4.28 

Note that for large values of Rw, the term 1/Rw would be small compared to Rf or Rw and that Rw 

would still be the greater of the two terms in the denominator of Eq 4.28. This modification will 

therefore not affect cases with large values of Rw or systems with hinging shear walls. 
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Estimates of the elastic component of top displacements of the four nonlinear walls considered in 

the Core NTHA are given in Figure 4.25. Addition of the term 1/Rw successfully reduced the 

estimated elastic component of the top wall displacement for systems with non-hinging shear 

walls without affecting the estimates for systems with hinging shear walls. Most of the data 

points are now below the exact match line which translates to reasonably underestimating the 

elastic displacements and a reasonably conservative wall design. Only a few of the data points 

are above the line which is considered insignificant. It is therefore concluded that the method 

presented in Eq 4.28 is suitable for estimating the elastic component of top displacements of 

shear walls accounting for rotation of their foundation. 

 

 

 

 

 

 

 

 

 

Figure 4.25 Estimates of the elastic component of the top displacement of the four nonlinear 

walls from the Core NTHA obtained using Eq 4.28. 

 

With the elastic component of the top wall displacement in hand, the remainder of the top 

displacement demand needs to be divided between top displacement due to foundation rotation 

and top displacement due to hinging of the wall. Two scenarios may occur one where the 

foundation is strong enough to yield the wall and one where the wall is stronger than the 

foundation and does not hinge. The two scenarios are explained in the following two sections. 
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4.3.2 Hinging shear wall 

Whether the shear wall is likely to yield or not can be determined from the foundation moment-

rotation response. Figure 4.26 shows an example moment-rotation response of a wall-foundation 

system where the foundation is stronger than the wall. In such a system, the wall will yield under 

severe seismic excitation and a considerable portion of the top displacement will come from 

inelastic rotations of the wall plastic hinge and therefore, the wall hinge rotation needs to be 

determined. 

 

 

 

 

 

 

 

 

 

Figure 4.26 Example of a hinging wall with a flexible foundation – estimating the base rotation 

demand from the foundation moment-rotation response. 

 

The foundation moment-rotation response becomes quite flat beyond the point of           ⁄  

    . The foundation bending moment at the point of           ⁄       (called M85) is used as 

the foundation strength in determining if the wall is likely to yield or not. The reason for 

choosing M85 to distinguish between hinging and non-hinging shear walls is that beyond this 

point, the increase in the bending moment resisted by the foundation is small. The accuracy of 

the estimated foundation rotation was found not to be sensitive to this assumption. 
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If the wall is weaker than the foundation, it will limit the maximum bending moment induced in 

the system. With the maximum bending moment known, foundation rotation (θb) can be 

estimated directly from the moment-rotation response as shown in Figure 4.26. Since the wall 

may have some overstrength beyond its yield bending moment, it is probable that the actual 

bending moment induced in the foundation is larger than the wall yield strength resulting in a 

larger θb. However, the variation in the maximum bending moment induced in the foundation 

will not make a big difference in the estimated θb as the slope of the foundation moment-rotation 

response at the point of its intersection with the line showing the wall yield strength is relatively 

steep. This is because the foundation has not yet entered its highly nonlinear behaviour range.  

Because the foundation moment-rotation response envelopes the actual hysteretic foundation 

response, it does not account for softening of the response due to hysteretic compression of the 

soil. Again, since the wall is not strong enough to force significant nonlinear rotational cycles in 

the foundation, the actual foundation rotation will be only slightly larger than that estimated 

from the envelope response. In addition, underestimating the foundation rotation will result in a 

larger hinge rotation demand for a given total top wall displacement demand and hence, the 

approach would be conservative. 

With foundation rotation estimated, the portion of the top displacement due to foundation 

rotation will simply be the foundation rotation multiplied by the wall height. The elastic top 

displacement can be estimated using the method described in Section 4.3.1. In this case, the total 

top wall displacement can be divided by Rw to estimate the elastic portion of the top wall 

displacement. With the wall top displacement due to foundation rotation and the elastic top 

displacement subtracted from the total top wall displacement demand, the inelastic top wall 

displacement is obtained. The inelastic top wall displacement can in turn be used to calculate the 

inelastic rotation demand in the wall’s plastic hinge zone.  

4.3.3 Non-hinging shear wall 

In a system where the foundation is not strong enough to yield the wall such as the example 

shown in Figure 4.27, the wall will remain elastic and hence, the inelastic top wall displacement 

will be zero. Note that again, foundation strength is considered to be M85 (instead of the actual 
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maximum bending moment that the foundation can resist assuming a uniform stress block of qult 

at its “toe”) and compared to My to determine if the wall hinges or not. 

In this case, the total top wall displacement can be divided by Rf + 1/Rw to calculate the elastic 

component of the top wall displacement as described in Section 4.3.1. The elastic top 

displacement can then be subtracted from the total top wall displacement to get the top wall 

displacement due to foundation rotation. Foundation rotation demand would then be the non-

elastic top displacement divided by the height of the wall.  

 

 

 

 

 

 

 

 

 

Figure 4.27 Example of a non-hinging shear wall with a flexible foundation – estimating the 

maximum wall bending moment demand from the foundation moment-rotation response. 

 

As the method presented at the end of Section 4.3.1 mostly underestimates elastic displacements 

of the wall, the non-elastic portion of the top wall displacement will be overestimated in most 

cases. This results in overestimating the foundation rotation which is reasonably conservative 

and desirable for implementation in design procedures and codes. 
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4.3.4 Prediction of foundation rotation from NTHA results 

This section combines all of the previous sections of this chapter and demonstrates the simple 

step by step method for predicting the response of shear walls accounting for foundation 

rotation. The ultimate goal of the proposed simple method is to predict the top wall displacement 

and foundation rotation of a given wall-foundation system with good accuracy. The accuracy of 

the proposed method is examined by making predictions of the foundation rotations recorded in 

NTHA on 10-storey walls presented earlier in CHAPTER 3. 

Top wall displacement was estimated using the method described in Section 4.2. Foundation 

moment rotation response was approximated by 5 points obtained using the equivalent 

rectangular soil stress block concept presented in Section 4.1. Maximum bending moment 

induced in the system was taken as either My or M85 depending on whether the wall hinged or 

not, respectively. Elastic displacements of the wall were estimated using the method described in 

Section 4.3.1. If the wall did not hinge, the elastic top wall displacement was subtracted from the 

total top wall displacement to give the top wall displacement due to foundation rotation. This 

displacement value was then divided by the wall height to get the foundation rotation. If the wall 

hinged, then foundation rotation was obtained directly from the foundation moment-rotation 

response for the given wall bending strength. Estimated foundation rotations are then compared 

to those recorded in NTHA. 

Figure 4.28 shows the accuracy of the proposed method. Data points for hinging and non-

hinging shear walls have been distinguished from one another. As expected, non-hinging shear 

walls (i.e. stronger shear walls) induce more rotation in the foundation. Figure 4.28a shows the 

predictions with the total top wall displacement estimated using the exponential fit (see 

Figure 4.12b). The method seems to predict foundation rotation with reasonable accuracy. The 

average of absolute relative error in prediction was 29% with a standard deviation of 26%. 

Predictions of top wall displacement used to get data points in Figure 4.28b were done using the 

bilinear trendline (see Figure 4.16 or Eq 4.25). Again, the method proves to be reasonably 

accurate in predicting foundation rotation. In this case, the average of absolute relative error was 

30% with a standard deviation of 27%. Given how simpler the bilinear trendline is compared to 

the exponential fit, it is the obvious choice for implementation in any design procedure. 
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Figure 4.28 Estimating foundation rotation demand with top wall displacement demands 

obtained using Ke from a) best fit exponential curve, and b) simple bilinear trendline. 

 

The accuracy of the method is remarkable considering the simplicity of all of the steps involved. 

Bear in mind that all of the information used as an input to the method are readily available to 

the design engineer.  
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The method as presented is aimed at making the most accurate predictions with errors on each 

side of the exact match line. For implementation in codes and standard design procedures, a 

more conservative approach may be desired. To achieve this, the best fit bilinear trendline in 

Figure 4.16 can be replaced by a more conservative bilinear envelope curve to consistently 

overestimate top wall displacement. 

4.4 Summary and Conclusions 

A summary of the main contributions of this chapter is as follows. 

1. A step-by-step method was formulated to obtain the monotonic moment-rotation 

response of a given foundation using geotechnical information available to the design 

engineer. It was shown that an excellent approximation of the foundation moment-

rotation response can be made by obtaining as few as five points along the curve. The 

equivalent rectangular stress block concept widely used for nonlinear sectional analysis 

of reinforced concrete structures was applied to nonlinear soil bearing pressure 

distribution underneath a foundation. Even though the method was formulated for the 

QzSimple1 material available in OpenSees, the use of the equivalent rectangular stress 

block concept for simulating nonlinear bearing pressure distribution underneath a 

foundation can be generalized to other soil Winkler models with a different backbone 

curve shape. 

 

2. Total top displacement of walls with flexible foundations was estimated using Response 

Spectrum Analysis (RSA) of a simplified structure with an elastic wall having an 

effective flexural stiffness supported by an elastic rotational spring at its base. Effective 

stiffness of the elastic rotational spring was formulated based on the ratio of the 

foundation overturning strength to the wall yield strength. 

 

3. The method used in CSA A23.3-04 for estimating the elastic component of the top 

displacements of nonlinear shear walls with a fixed-base was expanded to account for 

flexibility in the wall foundation. The modifications made to the concept were proven to 
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increase the accuracy of the method in accounting for the rotation of shear wall 

foundations. 

 

4. A complete method was developed for estimating the rotation of shear wall foundations 

for a given wall-foundation system. The method takes into account the relative wall-to-

foundation strengths. In systems with hinging shear walls, foundation rotation is obtained 

directly from the foundation moment-rotation response. In systems with non-hinging 

shear walls, the elastic component of the top wall displacement is first estimated using 

the foundation overturning capacity as the maximum bending moment demand in the 

system and an effective wall flexural stiffness assuming a first mode behaviour. Total top 

wall displacement is in turn estimated from RSA of a simplified structure with an elastic 

wall supported on an elastic rotational spring. The elastic top wall displacement is then 

subtracted from the total top wall displacement and the result divided by the wall height 

to get the foundation rotation. The method was proven to have good accuracy for 

engineering practice. 
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CHAPTER 5 Moment-Curvature Response of Reinforced 
Concrete Gravity-load Columns 

5.1 Introduction 

Due to the large axial compressive load resisted by gravity-load columns, very little shear strains 

develop in the column. Gravity load columns may have elongated cross-sections with cross-

section lengths close to the buildings’ typical storey height.  Despite this, the large compressive 

axial force that needs to be resisted by the column prevents large tensile strains and consequently 

large shear strains from developing as elongated columns need a large concrete compression 

depth to resist the compressive axial load because of their narrow cross-sectional width. 

Assuming shear strains are negligible in the column (see Section 6.7), deformation of gravity-

load columns will be dominated by flexure. This makes the moment-curvature response of the 

column the obvious tool for investigating its structural behaviour. Bending moments induced in 

the column due to forces exerted on it at floor slab levels can be converted to curvatures using 

the moment-curvature response of the columns. Curvatures in turn could be integrated over the 

column height to calculate the lateral displacement profile of the column. Also, various damage 

levels such as concrete cover spalling, yielding of vertical reinforcement, and crushing of 

concrete can be related to curvature and be depicted from the moment-curvature response.  

Because the moment-curvature response of the column is used to estimate deformation demands 

on columns in CHAPTER 6, this chapter is dedicated to studying the sectional response of 

gravity-load columns to better understand and simulate the flexural behaviour of gravity-load 

columns. In this chapter, the uniaxial moment-curvature behaviour of reinforced concrete 

column sections sustaining a compressive axial force is studied. Various column cross-sections, 

concrete strengths, reinforcement ratios, and axial loads are considered and the influence of each 

parameter on column’s flexural behaviour is investigated. Long-term effects of sustained axial 

load and effects of concrete cover spalling and loss of vertical reinforcement due to either 

buckling or fracturing on moment strength and curvature capacity are also studied. 
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5.2 Moment-Curvature Behaviour of Reinforced Concrete Columns 

As described earlier, assuming shear strains are negligible in gravity-load columns, structural 

behaviour of the columns will be dominated by flexure. Flexural response of a reinforced 

concrete section is best represented by the section’s moment-curvature response. This section 

presents results of a parametric study that was undertaken to better understand the moment-

curvature response of gravity-load columns. The following sections present the study 

parameters, assumptions, methods of analysis, and findings of the parametric study. 

5.2.1 Probable compressive axial load on gravity-load columns accompanied 

by seismic forces 

Designing the column cross-section for the maximum probable axial load demand from the 

governing gravity load combination offers a good starting point for sizing a gravity-load column. 

Estimating the axial load demand is usually done by assuming a tributary slab area for the 

column based on floor plans. The dead and live loads from the tributary area are then calculated 

for all floors slabs above and multiplied by appropriate load factors given in the design code 

being used. The designer then proportions the column dimensions and reinforcements so that the 

axial load capacity of the column considering material strength reduction factors exceeds the 

load demand. This simple approach usually provides a good starting point for sizing the columns 

and in many cases, columns sized using this simple method turn out not to need any further 

modification to resist demands from other load-cases. 

For seismic design however, using the axial load demand just mentioned will be overly 

conservative; hence, building codes have different load factors for earthquake load 

combinations. Furthermore, live loads are reduced to account for the probability of maximum 

occupancy and other uncertainties requiring the column to resist lower axial load levels 

accompanied by seismic demands. The objective of this section is to investigate the seismic axial 

load demand on a wide range of columns designed according to common practice. Calculations 

of this section are based on the provisions of National Building Code of Canada (NBCC 2005) 

and the American Society for Civil Engineers (ASCE 7-05) manual as representatives of North 

American design standards.  
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To consider a variety of building configurations, different values for design parameters had to be 

chosen based on common practice and rule-of-thumb. Square columns of 400, 750, and 1000 

mm sides were used for 10, 30, and 50-storey buildings respectively. Two slab thicknesses of 

178 mm (7”) and 254 mm (10”) were considered. 25 kN/m
3
 was used for unit weight of 

reinforced concrete. The load tributary area of the column was then calculated assuming a span 

of 30 times the thickness of the slab on either side (i.e. total tributary area of 900 times the 

square of slab thickness for interior columns). Storey height was fixed at 2.75 m. To account for 

variation in occupancy and use, both residential and office applications were studied. Weight of 

partitions and mechanical equipment on the floor slabs was adjusted to suit the type application 

of the building. 

A23.3-04 refers to the maximum factored axial compressive resistance of a column as Prmax. It 

was assumed that the columns were designed such that the total axial load demand from the 

gravity load-case was equal to Prmax. Axial load from the seismic load-case Ps was then 

expressed as a ratio of Prmax. Details of calculations based on NBCC 2005 and ASCE 7-05 are 

given in Appendix B and Appendix C respectively.  

Final results are summarized in Table 5.1. The ratio Ps/Prmax varied by less than 10% when the 

design was based on either NBCC 2005 or ASCE 7-05 considering the broad range of building 

configurations. The difference in the seismic load-case DL factor between the two codes (1.0 in 

NBCC 2005 and 1.2 in ASCE 7-05) caused Ps/Prmax to be higher for ASCE 7-05.  Ps/Prmax varied 

between 70% and 75% for columns designed to NBCC 2005 while it ranged from 80% to 89% 

when the design was based on ASCE 7-05. 

It was assumed that the preliminary section design was such that the column was proportioned to 

have exactly the same axial capacity as the demand gravity load. However, this is not the case in 

real practice and columns end up having much higher axial strength than the demand gravity 

loads due to rounding up of column dimensions and reinforcement sizes. This will cause Prmax to 

increase and hence, the actual Ps/Prmax to be somewhat less than the values shown in Table 5.1. 

Therefore, the range of Ps/Prmax used in the rest of this chapter is taken to be from 65% to 85%. It 

is assumed to vary from 65% to 75% using NBCC 2005 and from 75% to 85% in ASCE 7-05. 
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Table 5.1 Typical ratios of compressive axial load on gravity-load columns from seismic load-

case to that from gravity load-case based on provisions of a) NBCC 2005, and b) ASCE 7-05. 

 

 

 

 

 

 

 

 

Compressive strength of the gross concrete cross-section (     ) is extensively used by 

engineers as an indication of the column’s axial load-carrying capacity. It is therefore useful to 

express the seismic axial load demand as a ratio of the gross concrete cross-section’s 

compressive strength. Table 5.2 provided ratios of        ⁄ for the same set of building 

configurations considered earlier.     is assumed to be 60MPa as the mid-range for 28-day 

compressive strength of concrete used in mid-rise and high-rise buildings. Values of 

       ⁄ vary from about 20% to 55% based on both NBCC 2005 and ASCE 7-05.  

 

 

 

 

 

 

a)

PS / Prmax 178 254 178 254

10 72% 74% 70% 72%

30 74% 75% 72% 73%

50 75% 74% 73% 74%

Residential Office

Slab Thickness (mm) Slab Thickness (mm)

# of 

Storeys

b)

PS / Prmax 178 254 178 254

10 85% 88% 80% 84%

30 87% 89% 82% 85%

50 89% 89% 84% 85%

Residential Office

Slab Thickness (mm) Slab Thickness (mm)

# of 

Stories
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Table 5.2 Typical ratios of compressive axial load on gravity-load columns from seismic load-

case to compressive strength of the gross concrete cross-section assuming 28-day concrete 

compressive strength of 60 MPa based on provisions of a) NBCC 2005, and b) ASCE 7-05. 

 

 

 

 

 

 

 

 

5.2.2 Column cross-section aspect ratios 

Considering the fact that column cross-sectional dimensions significantly affect their flexural 

stiffness and deformability, columns with cross-sections of several lengths were analyzed. 

Figure 5.1 shows column dimensions considered to represent the range of aspect ratios 

encountered in a typical architectural or construction plans. 

To account for the effect of steel reinforcement on stiffness and flexural capacity, three different 

reinforcement ratios of 1, 2, and 3% of the gross cross-section of the column were considered. 

These numbers represent the range of the amount of reinforcement used in common practice 

considering practicality and construction efficiency. The total amount of reinforcing steel was 

distributed evenly along the perimeter of the column cross-section. 

Three different concrete strengths of 40, 60, and 80 MPa were used. Parabolic stress-strain 

relation was assumed for concrete (refer to Section 5.2.3for further details) and the maximum 

permissible compressive concrete strain was taken to be 0.0035, 0.0033, and 0.0031 for 40, 60, 

and 80 MPa concrete respectively (see Ozbakkaloglu, and Saatcioglu (2004) for more details). 

a)

PS /fʹcAg 178 254 178 254

10 18% 47% 21% 53%

30 18% 42% 20% 47%

50 19% 42% 21% 46%

Residential Office

Slab Thickness (mm) Slab Thickness (mm)

# of 

Stories

b)

PS /fʹcAg 178 254 178 254

10 20% 52% 21% 56%

30 20% 48% 21% 51%

50 21% 48% 23% 51%

Residential Office

Slab Thickness (mm) Slab Thickness (mm)

# of 

Stories
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A study of the probable axial load on gravity column was carried out in Section 5.2. It was 

shown that the axial load used along with seismic loads varies from 67% to 89% of Prmax. Three 

axial load levels of 65%, 75%, and 85% of Prmax were used to study the influence of axial 

compression on sectional behaviour of gravity columns under seismic deformation demands. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Column cross-sections used in the study of moment-curvature behaviour.
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5.2.3 Sectional analysis procedure 

In order to study the column flexural behaviour under a certain axial load, a typical section 

analysis program was developed using MATLAB. Plane sections were assumed to remain plane 

after bending which resulted in linear variation of strain across the height of the column cross-

section. Elastic-perfectly plastic (EPP) behaviour was assumed for steel reinforcement assuming 

that the effect of steel strain hardening is incorporated as a part of seismic load factors in 

building codes (e.g. Rsh in NBCC 2005). Steel yield strength was kept constant at 400 MPa with 

elastic modulus of 200,000 MPa which gave the steel yield strain of 0.002 for both tension and 

compression. Steel rupture strain was taken as 0.05.  

A more complex stress-strain relationship was used for concrete. Concrete behaviour in tension 

was assumed to be linear up until the cracking strength. Concrete tension stiffening was modeled 

for tensile strains beyond the cracking strain. Equations below show the analytical parameters 

used to model concrete behaviour in tension. Eq 5.4 is the tension stiffening model by Bentz 

(2000). 

         √                         Eq 5.1 

         √                     Eq 5.2 

    
   
   

 
Eq 5.3 

   
   

  √           
 

Eq 5.4 

In the equations above, Ect is the secant stiffness for concrete, fcr is the tensile cracking strength, 

    is the cracking strain, and fc is the tensile concrete stress.  

For compression, Popovic’s formula (Eq 5.5) was used where parameter ‘k’ defines concrete 

compression softening behaviour and parameter ‘n’ accounts for the effect of concrete strength 

on the shape of the stress-strain curve. See Collins and Mitchell (1991) for more details. 
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Eq 5.5 
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Analysis stopped when maximum permissible compressive concrete strain was reached. 0.0035, 

0.0033, and 0.0031 were used as maximum permissible concrete strains for 40, 60, and 80 MPa 

concrete respectively (see Ozbakkaloglu, and Saatcioglu (2004) for more details). Due to high 

axial compression, section failure was governed by crushing of concrete fibres on the outer side 

of the compression zone. In other words, steel rupture did not occur prior to concrete crushing. 

No material resistance factors were applied and the results represent nominal column strength.  

5.2.4 Moment-curvature analysis results 

Figure 5.2 shows analysis results of Section A (see Figure 5.1 for Section A dimensions) for 

axial load level of 0.75 Prmax. As expected, response of the section with various concrete 

strengths and reinforcing steel ratios vary considerably in terms of ultimate bending strength and 

flexural stiffness. To facilitate comparison of different curves and finding trends in the flexural 

behaviour of the section, analysis results were normalized to reduce the range of variation of 

numerical values. Bending moment were normalized by the moment strength (Mn) and curvature 

values were multiplied by EIg/Mn where EIg is the slope of the initial elastic segment of the 

moment-curvature curve which was obtained by dividing the moment value at a curvature of 

0.15 rad/km by the corresponding curvature. Normalized moment-curvature responses for 

Section A with an axial load of 0.75 Prmax are normalized and plotted in Figure 5.3. 
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Figure 5.2 Moment-curvature analysis results for Section A for axial load of 0.75 Prmax. 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Normalized moment-curvature response of Section A for axial load of 0.75 Prmax. 
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As seen in Figure 5.3, the initial slope of the normalized moment-rotation response of Section A 

with the various concrete strengths and reinforcement ratios is 1.0 and all the curves have a 

maximum normalized moment value of 1.0. However, the normalized curvature value at which 

the ultimate bending strength occurs varies for the different curves. 

5.2.5 A simple approximate approach 

It was desired to study the trends in flexural behaviour of column sections to find a simple way 

of approximating the column moment-curvature response to facilitate structural analysis of 

gravity-load columns connected to shear walls. The manner in which data was normalized in 

Section 5.2.4 forced the curves to be identical in their linearly elastic portion with all having a 

primary slope of unity. As nonlinear behaviour was triggered, curves started to deviate from the 

initial straight line at different points and followed an inconsistent path thereafter. Although the 

overall scatter in the normalized coordinates was not great, ultimate curvature points which are 

critical in design varied considerably (see Figure 5.3). However, for the same concrete strength, 

steel reinforcement ratio, and axial load as a fraction of Prmax, normalized moment-curvature 

plots appeared to be identical for all cross-sections regardless of the aspect ratio or column 

dimensions. This phenomenon is demonstrated in Figure 5.4 for an axial load of 0.75 Prmax using 

concrete strength of 40 MPa and 1% steel reinforcement ratio. 

On the same plot, a fifth order polynomial is fitted to the actual curve using the least square of 

errors method. It is visually proven that a fifth order polynomial is almost an exact representation 

of the column moment-curvature behaviour. A similar procedure was followed for other load 

levels and other sectional properties. It was observed that this observation applied to all other 

columns considered in this study.  

To further examine the flexural behaviour of gravity columns, for each case, a fifth order 

polynomial was fitted to the original normalized moment-curvature plots and the polynomial 

parameters were recorded. Corrections had to be made to ensure that the fitted curve passed 

through the origin (a simple axis transformation). Final curve-fitting results are summarized in 

Table 5.3. 
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Figure 5.4 Normalized moment-curvature plots for Sections A, B, C, and D for concrete strength 

of 40 MPa and steel reinforcement ratio of 1% at an axial load of 0.75Prmax (see Figure 5.1 for 

definition of Sections A through D). 

 

Table 5.3 Summary of curve-fitting results for normalized moment-curvature response 

 

 

 

 

 

 

 

 

 

40 60 80 40 60 80 40 60 80
1% 1.14 1.04 0.93 1.06 0.91 0.78 0.96 0.81 0.78

2% 1.10 1.00 0.89 1.01 0.89 0.78 0.93 0.83 0.81

3% 1.06 0.96 0.86 0.98 0.87 0.78 0.92 0.86 0.85

1% -0.542 -0.110 0.524 -0.198 0.610 1.608 0.297 1.278 1.680

2% -0.415 0.107 0.821 0.028 0.796 1.717 0.462 1.175 1.451

3% -0.277 0.322 1.102 0.174 0.917 1.712 0.527 1.003 1.164

1% 0.129 -0.318 -1.175 -0.184 -1.212 -2.879 -0.711 -2.169 -2.930

2% 0.016 -0.620 -1.707 -0.439 -1.523 -3.164 -0.913 -2.017 -2.548

3% -0.122 -0.942 -2.249 -0.602 -1.733 -3.215 -0.966 -1.717 -2.021

1% -0.0121 0.1713 0.6206 0.0991 0.6165 1.7051 0.3208 1.1893 1.7898

2% 0.0327 0.3414 0.9891 0.2172 0.8308 1.9882 0.4235 1.1295 1.5741

3% 0.0934 0.5430 1.4030 0.2956 0.9913 2.0962 0.4409 0.9495 1.2200

1% -0.0002 -0.0269 -0.1090 -0.0144 -0.1072 -0.3580 -0.0483 -0.2367 -0.4125

2% -0.0070 -0.0604 -0.1956 -0.0344 -0.1594 -0.4499 -0.0685 -0.2371 -0.3784

3% -0.0174 -0.1053 -0.3039 -0.0490 -0.2044 -0.4997 -0.0722 -0.2052 -0.2997

1% 3.78 2.94 2.34 3.14 2.37 1.79 2.62 1.94 1.57

2% 3.03 2.50 2.06 2.64 2.12 1.68 2.30 1.84 1.52

3% 2.66 2.22 1.85 2.35 1.93 1.60 2.13 1.77 1.49

a1

a2

a3

f'c (MPa)

a5

(ΦEIg/Mn)max

a4

P = 0.75 Prmax

f'c (MPa)

P = 0.85 Prmax

f'c (MPa)

P = 0.65 Prmax

ρ
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The great variation in polynomial parameters means that a separate moment-curvature analysis 

and curve-fitting must be carried out for each individual column. Expressing the column 

moment-curvature response as a fifth-order polynomial however is suitable for structural 

analysis programing. This concept is used in CHAPTER 6 to analyze the demands on gravity-

load columns due to deformation of the shear wall. 

5.3 Effect of Creep on Column Moment-Curvature Response 

Creep is defined as the increase in concrete strain under sustained axial compression. In a 

reinforced concrete section, sustained axial load causes the concrete to soften with time 

decreasing the axial load carried by the concrete and transferring more of the axial load to the 

steel reinforcement. Therefore, reinforcement strain will in turn increase accelerating yielding of 

the vertical steel when the column is bent under imposed seismic deformations. The rate of creep 

is rather fast at early stages of loading and decreases exponentially with time such that only one 

year after loading, 95% of the total creep has already occurred.  

Figure 5.5 demonstrates the effect of creep on concrete stress-strain relation. Creep is usually 

quantified using the creep coefficient (Ct) defined in Eq 5.6. Creep coefficient gives the long-

term strain as a multiple of the elastic strain. It can also be used to express the effective long-

term stiffness as multiple of the secant modulus as shown in Eq 5.7. 

   
      

        
 

Eq 5.6 

      
 

   

    
 

Eq 5.7 

Ct can be as high as 3 but a creep coefficient of 2 was chosen as a typical value to investigate the 

effect of creep on long-term concrete moment-curvature response. 
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A 305x1220 mm column with 1% vertical reinforcement uniformly distributed around the 

perimeter of the column made of 40 MPa concrete subject to an axial compression equal to 

0.5      was used to investigate the effect of creep on column flexural behaviour. Low vertical 

steel accompanied by high axial force was chosen to exaggerate the increase in vertical steel 

strain as concrete softened. In other words, this combination represents the worst case scenario 

for the unbeneficial long-term effects on flexural response of a gravity-load column. 

 

 

 

 

 

 

 

 

 

Figure 5.5 Effect of creep on concrete stress-strain relation. 

 

Section analysis was carried out in two steps. In the first, the axial load was applied and long-

term concrete stress-strain relation in Figure 5.5 was used alongside elastic-perfectly plastic 

(EPP) stress-strain relation for the steel to solve for the uniform section strain ε*
 that balances the 

applied axial force. In the second step, section curvature was increased assuming linear variation 

of strain over the section length (i.e. plane sections were assumed to remain plane after bending). 

Because during a seismic event short-term concrete response properties apply, additional forces 

due to bending of the section were calculated using the short-term concrete response shown in 

Figure 5.5. To do this, the origin of the short-term concrete stress-strain curve was shifted to the 
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point with abscissa           and the axial load excluded from calculations. The origin of the 

steel stress-strain relation was transferred to point with abscissa   . At any additional curvature 

level, section strain profile was found such that no net axial force resulted from adding forces 

from concrete and steel fibers. Bending moment was then calculated about the centroidal axis of 

the member where the axial load was applied in the first step. Curvature was increased until 

concrete was crushed at total compressive strain of 0.0035 or in other words, when concrete 

strain due to bending the column added to           exceeded maximum permissible concrete 

compressive strain. Analysis results are given in Figure 5.6. 

 

 

 

 

 

 

 

 

 

Figure 5.6 Effect of creep on concrete moment-curvature response. 

 

Section uniform compressive strain    was found to be 1.76e-3 accounting for the long-term 

response of concrete while it was 0.67e-3 when short-term concrete response was used. Even in 

this worst-case scenario, vertical reinforcement did not yield due to the sustained axial 

compression but uniform section compressive strain increased dramatically. This resulted in the 

vertical reinforcement yielding in compression much sooner when the section was bent which in 

turn dropped the moment strength by 5%. However, column maximum curvature capacity was 
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increased by 3% which was because yielding of vertical steel in the compression zone at lower 

curvatures decreased the concrete compression depth allowing larger section curvatures before 

concrete crushing. Influence of concrete creep on column drift capacity is considered negligible 

since neither the curvature capacity nor moment strength is influenced by much. 

5.4 Effect of Damage to the Column on Moment-Curvature Response 

During sever seismic excitation in which a shear wall building bends violently back and forth, 

gravity-load columns are subjected to cyclic deformations imposed on them due to bending of 

the shear wall. This action causes stress reversal at the two faces of the column one being in 

compression and the other in tension at a time and the other way around in the next half of the 

cycle. As the seismic waves propagate through the building site, vibrations become larger in 

magnitude due to both occurrence of maximum acceleration and softening of the shear wall 

which when combined with cyclic deformation causes damage to the gravity column. Under 

compression, the typical forms of damage observed in gravity-load columns are spalling of 

concrete cover, buckling of vertical reinforcement in the absence of anti-buckling ties, and 

eventually crushing of concrete. On the tension side, damage will be in the form of cracking of 

concrete and fracturing of the vertical steel. Vertical reinforcements buckled and then 

straightened in the next half of the cycle are prone to early tensile fracture. 

It is desired to study the effect of various stages of damage on the moment-curvature behaviour 

of gravity-load columns. Two column cross-sections with dimensions of 610 x 610 mm and 305 

x 1830 mm were considered. For the results to be consistent and comparable, axial load was 

chosen to be 0.4      and vertical reinforcement ratio was kept at 2% of the gross cross-section 

with the reinforcing bars distributed uniformly along the perimeter of the cross-section. 40 MPa 

concrete was used to model column cross-section with 0.0035 as the maximum compressive 

concrete strain. The distance from the column face to the centre of the outset layer of 

reinforcement was kept constant at 60 mm which was then considered as the thickness of the 

concrete cover. 

Two damage stages were considered. In the first damage stage, concrete cover was lost on both 

compression (top) and tension (bottom) faces of the column and vertical reinforcement had 
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buckled under compression. In the second, concrete cover and outer layer reinforcing bars were 

lost on both faces of the cross-section to model the damaging effect of cyclic loading 

deformation. Figure 5.7 shows a schematic view of the 305 x 1830 mm column at various 

damage levels. Moment strength and curvature capacity of the damaged sections are then 

compared to that of the undamaged column. 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Different levels of damage of column cross-section: a) undamaged section, b) 

concrete cover lost on both column faces and compression steel bars buckled, c) concrete cover 

and the outer layer of reinforcement lost. 

 

Moment curvature responses of the two cross-sections are plotted in Figure 5.8 and Figure 5.9 

respectively. In both cases it is observed that damage to the column both softens and weakens 

the section response. For the 610 x 610 mm column, strength loss due to damage was 48% while 

the 305 x 1830 mm column lost only 23% of its strength due to the same level of damage. A 

rather similar trend is observed when considering loss of section flexural stiffness due to 

damage. This is because the width of the 610 x 610 mm column is twice as large as that of the 



262 

 

305 x 1830 mm column resulting in more concrete being lost due to cover spalling. In addition, a 

much larger proportion of the section’s total steel is placed along the faces of the 610 x 610 mm 

column compared to the 305 x 1830 mm column resulting in a larger proportion of 

reinforcement being lost due to damage. 63% of the vertical reinforcements of the 610 x 610 mm 

column were placed at the faces of the cross-section and lost due to various levels of damage 

while only 25% of the 305 x 1830 mm column’s vertical reinforcements were placed near the 

faces of the section. Loss of the outer tensile steel layer did not affect either the strength or the 

stiffness as much as loss of concrete area due to cover spalling and that was because tensile steel 

was stressed well below yielding at the column strength point due to presence of high axial load 

on the column. However, since less tensile reinforcement was present at damage level 2, 

compression depth of the cross-section became smaller which lead to a higher curvature capacity 

under fixed   
   . 

 

 

 

 

 

 

 

 

 

  

Figure 5.8 Effect of different stages of damage (cover loss and bar buckling/rupture) on 

moment-curvature response of a 305 x 1830 mm column section. 
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It is concluded that as columns grow in length (cross-section height), less reduction in strength 

results due to damage because columns of greater length have lower portion of their vertical 

reinforcement concentrated at the outer layers close to the two faces of the section and that less 

portion of the gross cross-section is lost due to cover spalling. 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 Effect of different stages of damage (cover loss and bar buckling/rupture) on 

moment-curvature response of a 610 x 610 mm column section. 

 

Based on the results presented in Figure 5.8 and Figure 5.9, the effect of damage on column’s 

maximum curvature capacity is not as substantial as its effect on  bending strength. As concrete 

cover was lost the section became shorter and more flexible but because the same axial force had 

to be sustained by the smaller section, the depth of the concrete compression zone was not 

noticeably affected. Because curvature capacity was assumed to be governed by maximum 

concrete compressive strain, minimal change in compression depth at a constant maximum 

permissible concrete strain resulted in curvature capacities of the damaged section and the 

undamaged sections to be close. 

 

 



264 

 

5.5 Neutral Axis Depth of Gravity-load Columns at Failure 

In building codes, failure of a concrete column is usually characterized by exceeding a maximum 

concrete strain. As an example, in NBCC 2005, the maximum permissible concrete compressive 

strain in absence of confining reinforcement is 0.0035. When a gravity column is bent to its 

ultimate capacity according to the code, concrete strain at the extreme compression fiber would 

be 0.0035 and the axial load would be resisted by the resultant forces from concrete and steel 

fibres. The curvature at which the column cross-section fails however depends on the depth of 

the compression zone or in other words the neutral axis depth. Assuming plane sections remain 

plane after bending, curvature at failure would be the maximum concrete compressive strain 

εc
max

 divided by the section neutral axis depth c. Hence, at a fixed maximum concrete 

compressive strain, the smaller the neutral axis depth is, the higher column curvature capacity 

will be resulting in a more flexible section. 

Because in this study columns are assumed to fail once a certain curvature is exceeded which can 

also be expressed as a certain neutral axis depth, this section examines various methods that can 

be used to calculate the neutral axis depth and hence curvature capacity of gravity columns. 

Provisions of NBCC 2005 are used whenever the exact results are compared against a simplified 

approach used in a building code. Section 5.2 revealed that for columns designed to NBCC 2005 

provisions, axial load accompanied by seismic demands ranged between 65% and 75% of Prmax. 

Assuming that columns are designed to have just enough strength to carry Pf (the axial load 

resulting from gravity load combination), Prmax will be equal to Pf but if the column is over-

designed, then Prmax will be greater that Pf. Hence the range of column axial load can practically 

vary from 60% to 75% of Prmax.  

Another measure of the intensity of the axial compression is the load as a fraction of gross 

concrete strength      . It is useful to convert the axial load combined with seismic effects (Ps) 

expressed as a fraction of Prmax to one that is expressed as a ratio of concrete gross strength 

which gives a better feel for the magnitude of the axial load. Maximum permissible concrete 

compressive strain was considered to be 0.0035 regardless of concrete strength which is the way 

NBCC 2005 treats concrete sections. Figure 5.10 shows the extreme bounds of the results of this 

conversion for three levels of steel reinforcement as a ratio of the gross cross-section. 
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Figure 5.10 Seismic axial load demand as a ratio of gross concrete compressive strength. 

 

As expected, the higher Ps/Pf is, the larger         will be. As more steel reinforcement is added 

to the section, Prmax and consequently Pf and Ps become larger while       remains constant 

resulting in larger         . At lower concrete strengths effect of addition of steel reinforcement 

was more pronounced. It is concluded that         varies from 25% to 45% for the broad range 

of columns considered in this study. 

With the probable axial compressive load on the column determined, one can calculate the strain 

profile and therefore the neutral axis depth of the column cross-section at failure. Several 

methods can be used to obtain the compression depth of a column cross-section at failure each 

based on some simplifying assumptions but all assuming linear strain profile over cross-section 

length (or depth). Three most commonly used methods are presented here. 

The first and the most elaborate method is sectional analysis. In this method, the cross section is 

divided into a fine mesh of stripes or fibres. Material properties and stress-strain relation for both 

concrete and steel are then assigned to the corresponding fibres. At a certain section strain 

profile, strain is calculated for each fibre and then translated into stress using material 

constitutive relation. Stress is then multiplied by the fibre area and integrated to calculate axial 
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load and bending moment about the centroidal axis. This method is expected to give near exact 

results for all section strains (curvatures) including the state near to column failure. 

The second method is section analysis using the equivalent stress block defined by the two 

factors α1 and β1 which define the intensity of the concrete stress and depth of the stress block 

respectively. The two factors are calculated such that the resultant force of the stress block is 

equivalent to that obtained from integrating concrete stress over the compression depth of the 

section and hence can only be used at the ultimate state. Contribution of steel reinforcement to 

both axial compression and bending moment can then be added to the resultant of concrete stress 

to obtain the total reaction of the section. Predicting neutral axis depth using is method is also 

expected to be of good accuracy. 

The third method is rather simple and is the one given in NBCC 2005. This method ignores the 

effect of steel reinforcement on section neutral axis depth assuming the net steel force is 

negligible at column failure. Eq 5.8 shows the formula used in NBCC 2005 to calculate neutral 

axis depth. 

  
  

          
 

Eq 5.8 

The code equation simply uses a force balance between the applied axial compression and 

resultant of the concrete stress. This method can give a good approximation of the neutral axis 

depth of the column at failure as long as the net steel force is negligible. If this turns out not to be 

the case, then Eq 5.9 must be used. 

  
      

           
 

Eq 5.9 

where Pns is the net steel force.  

Because in this study failure of the column cross-section is detected when a certain curvature 

threshold is exceeded and at a fixed maximum concrete strain, curvature can be linked to neutral 

axis depth. Further attention is given to prediction of section compression depth at failure. 

Results obtained from the code simplified approach are compared against those from more 
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rigorous analysis to ensure that the code provision is safe for the broad range of columns sections 

considered in this study. 

It is common practice to distribute column reinforcement evenly around the perimeter of the 

section. In the case of elongated column sections with narrow width, this construction method 

results in uniformly distributed reinforcement along the column length (i.e. equally spaced rows 

of reinforcing bars each having the same amount of steel). It is therefore reasonable to assume 

that reinforcement is distributed evenly over the length of elongated columns. Note that, it is the 

elongated columns that are expected to have a lower curvature capacity due to developing longer 

compression zone at failure. Variation of net steel force as a ratio of full yield strength and gross 

concrete strength with neutral axis depth is shown in Figure 5.11 and Figure 5.12 respectively. 

Elastic-perfectly plastic behaviour was assumed for steel and maximum compressive concrete 

strain was fixed at 0.0035. As expected and can be seen on the figures below, the net steel force 

vanished when neutral axis depth was at section mid-length and the steel forces on either sides of 

the neutral axis cancelled each other out.   

 

 

 

 

 

 

 

 

 

Figure 5.11 Variation of the net steel force as a ratio of section full yield strength with section 

compression depth. 
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Figure 5.12 Variation of the net steel force as a ratio of gross concrete strength with section 

compression depth. 

 

To express the net steel force as a ratio of gross concrete strength, various concrete strengths and 

steel ratios were used. The net steel force as a ratio of gross concrete force was the greatest when 

concrete strength was the lowest and steel ratio the highest and vice versa; hence, Figure 5.12 

shows the extreme bounds of the net steel force at column failure that can be encountered in the 

broad range of column cross-sections considered in this study. The results suggest that as long as 

the section neutral axis depth falls between 45% and 60% of the column length, Eq 5.8 is 

capable of predicting the neutral axis depth at failure with acceptable precision. 

To investigate whether the error in Eq 5.8 is on the safe side or not, compression depth of a 1220 

mm long column section was calculated using both Eq 5.8 and the exact solution accounting for 

the net steel force. In order to make general conclusions, three concrete strengths of 40, 60 and 

80 MPa combined with three steel ratios of 1, 2 and 3% was used. The results are presented in 

Figure 5.13. 
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Figure 5.13 Accuracy of calculation of neutral axis depth of a 1220 mm long column section at 

failure neglecting steel forces for concrete strength of: a) 40 MPa, b) 60 MPa, and c) 80 MPa. 
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As expected and explained earlier, all of the curves meet when neutral axis depth is equal to half 

of the section length and the contribution of steel reinforcements on opposite sides of the neutral 

axis cancel each other out. Also the higher the steel reinforcement ratio is, the greater the error in 

the code simplified method will be. 

It was shown earlier in this section that          is expected to vary between 25% and 45%. 

Based on this observation and the results presented in Figure 5.13, it is seen that the simplified 

code approach always suggests a larger neutral axis depth than the exact value. At a fixed 

maximum permissible concrete strain, the larger the neutral axis depth is, the lower the curvature 

capacity will be and hence, the code approach will always underestimate column curvature 

capacity. In other words, when the column is assumed to fail when a certain curvature capacity is 

exceeded, it will always be safe if column curvature capacity is calculated using the neutral axis 

depth suggested by the code. Although always on the safe side, the error in code prediction can 

be substantial at high axial load and hence column curvature capacity will be greatly 

underestimated. The more accurate section analysis method is recommended in those 

circumstances. 

5.6 Summary and Conclusions 

Listed below are the main findings of this chapter: 

1. The seismic axial load demand was shown to vary from 25% to 45% of the compressive 

strength of the gross concrete cross-section considering a broad range of concrete 

strengths, steel ratios and building configurations. 

 

2. The shape of the column moment-curvature response under the same average vertical 

stress was shown to be the same for columns with the same concrete strength and steel 

ratio regardless of the aspect ratio of the column’s cross-section. Furthermore, the shape 

of the moment-curvature response was shown to be accurately approximated using a 5
th

 

order polynomial. 
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3. Accounting for long-term effects of sustained compressive axial load was shown not to 

significantly affect either curvature capacity or bending strength of gravity-load columns. 

 

4. Damage of the column cross-section was shown to have much more of an adverse effect 

on the column’s bending strength than its curvature capacity. 

 

5. Neglecting the net steel force resultant in section analysis of column cross-sections was 

shown to result in a larger concrete compression depth and consequently a smaller 

curvature capacity. 
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CHAPTER 6 Structural Analysis of Gravity-load Columns 
Connected to Shear Walls with Flat Plate Floor Slabs 

6.1 Introduction 

As explained in CHAPTER 1, seismic deformations of the shear wall imposed on the gravity-

load resisting system of the building induces additional curvature demands in the gravity-load 

columns. In shear wall building with flat plate floor slabs, flexural stiffness of the thin flat plate 

floor slabs is usually not large enough to induce significant curvature demands on the columns 

near the top of the building due to frame action of the floor slabs (see Section 7.11). Therefore, 

in such systems with the wall developing a plastic hinge at its base, maximum column seismic 

curvature demand is also expected to occur at the base of the column. As will be proven later in 

the chapter, curvature demand at the base of the column is governed mostly by the lateral 

deformation of the wall at the top of the first storey and becomes progressively less influenced 

by the displacements at higher floors. Shear strains in a flexural wall are the largest in the plastic 

hinge zone (see CHAPTER 2). In addition, foundation rotation adds a constant drift to the 

deformation profile of the wall which increases the displacement at the lower levels 

significantly. All of these effects contribute to the maximum column curvature demand 

occurring within the wall plastic hinge zone or simply at the base of the column.  

To ensure that the gravity-load system can withstand the imposed shear wall deformations, 

seismic curvature demands need to be estimated and compared to the columns’ curvature 

capacity. This chapter aims at providing a structural analysis algorithm for evaluating seismic 

demands on gravity-load columns of shear wall buildings with flat plate floor slabs within the 

wall plastic hinge region. A nonlinear structural analysis methodology is proposed and verified 

against a sophisticated finite element analysis program. The method is further optimized for 

accuracy as well as computational efficiency. The simple analysis procedure is then used to 

perform a parametric study on seismic demands on gravity-load columns of shear wall buildings 

with flat plate floor slabs in CHAPTER 7. 
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6.2 Literature Review on the Behaviour of Gravity-load Column under 

Combined Axial Compression and Flexural Loading 

To better model the nonlinear behaviour of gravity-load columns for the purpose of structural 

analysis, a number of tests on reinforced concrete columns under combined axial compression 

and bending are studied. Sections below briefly introduce the tests and provide a summary of the 

key observations made and conclusions drawn from the experiments.  

6.2.1 Ibrahim and MacGregor (1996) 

Ibrahim and MacGregor tested 20 high-strength (60 to 90 MPa) and ultra-high-strength (115 to 

130 MPa) concrete columns. 14 specimens had rectangular cross-sections and 6 were triangular. 

5 of the columns had no reinforcing steel (i.e. plain concrete). The tie reinforcement of 

rectangular columns satisfied or exceeded the minimum requirements of Section 7.10.5 of ACI 

318-M895 and Clause 7.6.5 of the Canadian Code CAN3 A23.3-M46 but it never complied with 

either code’s requirements for columns in seismic regions. In other words, none of the specimens 

were detailed for seismic ductility. The specimens were then subjected to a combined axial 

compression and flexure. Specimens were loaded such that the location of the neutral axis was 

kept fixed at a selected location within the specimens. 

Plain concrete rectangular specimens failed suddenly and in an explosive manner. This 

behaviour was more severe for the case of ultra-high-strength specimens. Spalling of the 

concrete cover was more gradual for high-strength than ultra-high-strain specimens and occurred 

at maximum compression strains between 0.0034 and 0.0043. 

Bending moment dropped after concrete cover spalling. For well-confined specimens, the 

moment reached a second peak after cover spalling which depended on lateral confinement and 

concrete strength. For poorly-confined specimens, the small increase bending in capacity of the 

confined core could not compensate for the loss of cross section due to cover spalling. 

Rectangular specimens showed that the effectiveness of lateral confinement after cover spalling 

was slightly reduced by increasing concrete strength.  
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In conclusion, failure of high-strength concrete columns with tie spacing equal to the least 

column dimension was shown to be sudden and brittle while well-confined columns could 

sustain the applied loads through large deformations. 

6.2.2 Lloyd and Rangan (1996) 

Lloyd and Rangan conducted an experimental study on the behaviour and strength of high-

strength concrete columns under eccentric compression. 36 specimens in total were tested half of 

which had a 175 mm square section and the other half consisted of 300x100 mm column sections 

loaded in bending about the weak axis. Two concrete mixes producing concrete strengths of 

about 60 and 95 MPa were used. 4 mm ties spaced at 60 mm were provided as lateral 

reinforcement. 

The general mode of failure observed was flexural with concrete spalling in the compression 

zone. Columns with large load eccentricities experienced sheet spalling of concrete while ones 

with smaller eccentricities and larger concrete strengths suffered shear-like failure across the 

column depth.  

The provided lateral reinforcement was not sufficient to prevent buckling of the longitudinal 

reinforcement in the case of specimens with smaller eccentricities. These specimens failed in a 

sudden and brittle manner with little or no post-peak deformation capacity regardless of concrete 

strength. On the other hand, the provided lateral reinforcement prevented buckling of the 

longitudinal reinforcement in the case of specimens with higher eccentricities. These columns 

cracked and deformed significantly prior to failure and exhibited a somewhat ductile behaviour. 

Even though the spacing of the lateral reinforcement was less than the column’s shortest cross-

sectional dimension, the provided lateral reinforcement failed to ensure considerable ductile 

behaviour beyond the point of concrete cover spalling. It is therefore reasonable to conclude that 

gravity load columns not detailed for seismic ductility do not demonstrate reliable post-peak 

ductility. 
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6.2.3 Legeron and Paultre (2000) 

In their experimental program, Legeron and Paultre tested 6 high-strength 305 mm square 

concrete columns under cyclic flexure and constant axial load. The main parameters in the study 

were the level of column axial load and the volumetric ratio of confinement steel. Three axial 

load levels of 15, 25, and 40% of       were selected expecting failure modes to vary from 

yielding and possibly rupture of the tensile reinforcement at lower axial load levels to crushing 

of concrete at high axial loads. Tie configuration was kept constant with the tie spacing being 

either 130 mm or 60 mm. A tie spacing of 60 mm provided 95% of the confinement steel 

required by the ACI code. The specified concrete strength was 100 MPa. 

At failure, the section just above the base of the column was undamaged for about 40 mm. This 

was due to the confinement provided by the foundation. The length of the damaged region (i.e. 

plastic hinge zone) at the bottom of the column increased with axial load. The plastic hinge 

length varied from approximately one column depth to over three column depths as axial load 

increased from 10% to 40% of      . 

At lower axial load levels, concrete spalled off just after yielding of the tensile steel while at 

higher axial loads, concrete cover spalling was observed before yielding was reached.  

The specimens with the lowest axial load level exhibited a ductile behaviour and were able to 

sustain large inelastic cyclic displacements. Energy dissipation capacity and ductility were 

decreased with increase in axial load. As expected, specimens with larger volumetric ratio of 

confinement steel had more energy dissipation capacity and ductility. 

Bending moment at the base of the columns dropped after cover spalling and even in specimens 

with lower axial loads, larger top displacements did not result in base moments higher than that 

recorded at the onset of cover spalling. It is therefore concluded that bending moment at cover 

spalling must be used as bending moment strength of gravity-load columns. 

Note that typical concrete gravity-load columns are not detailed for seismic ductility and usually 

have much less confinement steel than the specimens tested by Legeron and Paultre (2000). Tie 

spacing is often equal to the column’s smallest dimension. Hence, typical gravity-load columns 

cannot be expected to have a ductile behaviour and dissipate considerable hysteretic energy.  
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6.2.4 Bae and Bayrak (2003) 

Bae and Bayrak investigated the accuracy of the rectangular stress block parameters specified in 

ACI 318-02 in predicting axial load and bending moment strengths of high strength concrete 

columns  with 66 MPa <   <140 MPa. ACI provisions were proven to give unsafe estimates of 

the column axial and bending capacities for high strength concrete. This phenomenon was 

attributed to early cover spalling in high strength concrete columns. 

Reviewing test results of 224 specimens available in the literature, Bae and Bayrak reported that 

the maximum section compressive strain at the onset of cover spalling ranged from 0.0022 to 

0.0048. Presence of transverse (confinement) reinforcement was likely to lower the cover 

spalling strain. Considering all the data reported in the literature and choosing a safer lower-

bound approach, Bae and Bayrak adopted a fixed cover spalling strain of 0.0025 in their study. 

Based on an analytical study, two strength reduction factors were proposed, namely,   and   to 

account for the effect of cover spalling on axial and flexural strengths respectively. It was found 

that cover thickness, section size, and the amount and distribution of longitudinal reinforcement 

did not influence   and   .   was shown to be constant up to a concrete strength of 80 MPa and 

reduced as concrete strength was increased.    remained constant up to a concrete strength of 60 

MPa and decreased beyond that point as concrete strength was further increased.    decreased 

more rapidly at higher axial load levels. 

Bae and Bayrak then applied both the ACI 318-02 provisions and their own strength reduction 

factors to the 224 test specimens available in literature and demonstrated that their method gives 

a safer estimate of axial and flexural strengths of high as well as normal strength concrete 

columns. 

6.2.5 Bae and Bayrak (2008) 

Bae and Bayrak conducted an experimental study aimed at understanding the mechanisms of 

formation of plastic hinges in gravity-load columns. Their literature review had shown somewhat 

contradictory observations by other researchers on the parameters affecting the formation of 

plastic hinges in reinforced concrete members. Prior to Bae and Bayrak (2008), axial load was 
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not thought to play a major role in defining the plastic hinge length of gravity-load columns. 

This was mainly because most of the experimental studies had been done on beams where axial 

loads are not critical. Therefore, their research was aimed at reconciling the differences 

encountered in previous research resulting in development of an expression that can be used to 

estimate plastic hinge length of columns more accurately for various axial load levels. 

Plastic hinge length is key to determining the ductility of columns. It defines the region over 

which inelastic curvatures are distributed. These inelastic curvatures make up the majority of the 

column’s nonlinear flexural rotation. Since columns have little shear deformation, flexural 

deformations dominate their total displacement profile and hence, need to be estimated with 

great accuracy if drift capacity of the column is of concern. 

In the four specimens that Bae and Bayrak tested, the effect of axial load on plastic hinge length 

(  ) was evident.    increased with increasing axial load. It was also observed that as concrete 

compressive strains reached a critical value, concrete cover spalled off. Subsequently, yielding 

of longidunal steel on the compression side occurred which was followed by crushing of the 

concrete core. These accumulations of damage lead to formation of the plastic hinge.   

Bae and Bayrak then carried out an analytical study to formulate an empirical expression for 

estimating   . They assumed that the plastic hinge length was equal to the length over which the 

longitudinal steel on the compression side yields minus the undamaged region just above the 

base of the column due to stub confinement. A sectional analysis with core concrete modeled as 

confined concrete and cover concrete modeled as unconfined concrete was used. Based on 

observations by previous researchers, it was assumed that maximum moment capacity is reached 

prior to formation of a plastic hinge and that the magnitude of concrete compressive strains 

experienced by the core when maximum moment capacity is reached at the critical section of the 

column can give a good indication of formation of a plastic hinge.  

Bae and Bayrak proposed the following expression for estimating plastic hinge length of 

concrete columns. 
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Eq 6.1 

In this equation, h is the depth (length) of the column, P is the axial load, P0 is the axial load 

capacity of the column, As is the total area of longitudinal steel, Ag is the gross concrete area, 

and L is the distance from the critical section to the point of contra-flexure. 0.25 is added to 

account for the undamaged region due to stub confinement. The increase in the plastic hinge 

length with increase in axial load and longitudinal reinforcement ratio is clearly depicted in this 

expression. The proposed expression was proven to give accurate estimates of    for the four 

columns tested by Bae and Bayrak. 

6.2.6 Discussion and Summary 

A vast amount of experimental studies on gravity-load reinforced concrete columns are available 

in the literature a number of which were selected here based on axial load, concrete strengths, 

and reinforcement details most representative of gravity-load columns and presented earlier. The 

following are conclusions or evidence that all or most of the tests considered here share in 

common. 

Concrete cover spalling has been shown to considerably reduce the column bending moment 

capacity. Gravity-load columns were shown not to have appreciable ductility beyond the point of 

cover spalling. The onset of cover spalling was shown to vary considerably and be highly 

influenced by the magnitude of the axial load on the column, amount of transverse 

reinforcement, concrete strength and the axial load eccentricity and therefore very hard to 

predict. Results from all tests reached the consensus that failure of gravity-load columns is not 

ductile.  

If a plastic hinge model is to be used to model the response of the column beyond its peak 

bending moment, certain assumptions need to be made on the length and the distribution of 

inelastic curvatures over the height of the plastic hinge. The tests studied earlier showed that for 

an undamaged column with no cover spalling, curvatures varied almost linearly over the plastic 

hinge length. If the column experienced cover spalling, then the curvatures were almost constant 

over the damaged zone or the plastic hinge zone. Section 6.3 introduces the same concept and 
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elaborates on the assumptions made on curvature distribution over the height of the column’s 

plastic hinge zone. Assumptions on column plastic hinge length are stated as needed throughout 

the chapter. 

It must be noted however that from a performance-based engineering viewpoint, some damage to 

the shear wall might be acceptable as shear walls are designed for ductility. Gravity-load 

columns on the other hand are primarily designed to withstand the weight of the building and are 

not detailed for seismic ductility. Therefore, excessive damage to the gravity-load system 

directly impacts life-safety of the building and must be avoided. Even though the behaviour of 

the column beyond the point of peak bending strength or after concrete cover spalling is modeled 

in this chapter, attention needs to be paid to the damage associated with any curvature demand 

on the column in the column’s plastic response range. 

6.3 Inelastic Curvature Concentration in Gravity-Load Columns 

When a gravity-load column sustaining substantial axial compression is pushed with a horizontal 

point load from floor slabs due to deformation of the SFRS, bending moments along the height 

of the column induce a curvature profile that will result in the displacement profile imposed by 

the SFRS. At small deformations, the column behaves almost as an elastic beam-column with a 

constant flexural stiffness. As the deformation increases, maximum bending moment at the base 

of the column becomes progressively greater causing the bottom part of the column to soften due 

to both softening of concrete and yielding of steel in compression and yielding of the tensile 

steel. This makes the fixed end of the column to behave nonlinearly while the parts above remain 

elastic. This results in a curvature profile that is no longer uniformly varying. More curvature 

gets concentrated at the base of the column and less in the upper parts. At the ultimate state just 

before failure, excessive curvatures at the base of the column can cause vertical steel bars to 

buckle under compression, concrete cover to spall off and tensile steel bars to fracture. Losing 

the concrete cover and the outer layer of vertical reinforcement over a certain height makes the 

fixed end of the column even more flexible resulting in highly concentrated curvature in that 

region. Damage can also be in the form of diagonal cracking due to combination of shear and 

flexure. This damaged softened zone is known as the column plastic hinge zone. 
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Inelastic curvature concentration in gravity-load columns can be further explained using a typical 

moment-curvature response of a column (Figure 6.1). The initial linear part of the curve is the 

region where both concrete and reinforcing steel are behaving linearly. As curvature is increased, 

concrete starts to soften causing the moment-curvature response to curve downward. Yielding of 

steel (either in compression or tension) starts near the peak strength point. Bending moment 

strength starts to decay past the peak strength point. This strength loss is due to concrete losing 

strength due to excessive compressive strain. The column is assumed to fail with concrete 

crushing at concrete maximum compressive strain of 0.0035 if no confinement reinforcement is 

provided. Flexural stiffness of the gravity-load column or the slope of the moment curvature 

response is nearly constant over the elastic range. Stiffness starts to decay due to softening and 

concrete and yielding of steel which results in larger curvatures for the same moment increment 

compared to the elastic region. This causes significant curvature concentration at the base of a 

gravity-load column pushed to deformation profile of the SFRS. 

 

 

 

 

 

 

 

 

 

Figure 6.1 Moment-curvature response of a gravity-load column. (Note: damage to column 

includes spalling of concrete cover and buckling of outer reinforcement on compression face.) 
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If seismic demands on gravity-load columns are to be studied, a logical analytical model has to 

be implemented to capture inelastic curvature concentration on the plastic hinge zone. This can 

be done by assuming a certain curvature distribution along the height of the inelastic behaviour 

region and associating addition of curvature with certain stiffness. 

As for the assumption on curvature distribution, it is best to select a model that is a close 

representation of how gravity-load columns behave when pushed laterally in tests carried out on 

gravity columns (see Section 6.2). For this purpose, two scenarios are considered (see 

Figure 6.2). 

When the column cross-section does not experience damage in the inelastic behaviour zone and 

the section maintains its original dimensions, maximum bending moment occurs at the base of 

the column and inelastic curvatures are expected to be distributed linearly over the column 

plastic hinge region. When the column suffers damaged in the inelastic behaviour region 

(whether the damage is in the form of losing concrete cover, bar buckling under compression or 

bar fracturing under tension), the damaged section becomes much softer than the rest of the 

column causing even more curvature concentration in the damaged region. Sections in the 

damaged region end up having almost the same properties and a uniform crack pattern is 

observed over the height of the damaged zone. This suggests that it is reasonable to assume a 

uniform inelastic curvature over the height of the damaged region. 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Assumptions on inelastic curvature distribution in the column plastic hinge zone: a) 

undamaged column, b) damaged column. 
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To simplify the structural modelling and analysis procedure, perfectly plastic post-peak 

behaviour is assumed as can be seen in Figure 6.1. Plastic curvature zone is used for the term 

plastic hinge zone interchangeably throughout the rest of this chapter. Since the purpose of this 

chapter is estimating the curvature demand on gravity-load columns pushed to a certain lateral 

displacement profile, obtaining the real bending moment profile at column failure is not of 

interest provided that the curvature profile accurately resembles the real case. This issue is 

described in detail in Section 6.4 where structural modeling and analysis procedure is presented. 

6.4 Nonlinear Structural Analysis Procedure  

When the Seismic Force Resisting System (SFRS) of a building deforms in the event of an 

earthquake, slabs force gravity-load columns to undergo the same amount of lateral deflection at 

storey levels as that of the wall or “go along for the ride”. This means that columns are pushed to 

certain displacements at floor levels putting a flexibility or curvature demand on the columns. A 

nonlinear structural analysis algorithm is developed which given the moment-curvature 

behaviour of the column and the imposed lateral displacement profile at floor levels can analyze 

the curvature demand throughout the height of the column.  

To analyze the column under a specified lateral displacement profile defined at floor levels, the 

column can be modelled as a cantilever beam-column neglecting the rotational restraint provided 

by the slabs. Appropriate boundary conditions at the base and adequate number of floors above 

the base must be modelled to get a reasonable estimate of the curvature demand within the wall 

plastic hinge zone. In this section, a 5-storey cantilever column fixed at the base is used to 

demonstrate the structural analysis procedure.  

Figure 6.3 shows a schematic view of the idealized structures. The column is connected to the 

SFRS (shear wall) at storey levels. If the slabs are thought of as a rigid link due to their high in-

plane stiffness, they exert lateral horizontal storey forces (P) on the column causing it to undergo 

the same deformation as the shear wall at that floor slab levels. The storey forces then produce 

bending moments (M) along the column height and from the bending moment diagram, the 

curvature (Φ) profile can be obtained knowing the moment-curvature behaviour of the column. 

Neglecting shear deformation of the column, curvatures can then be integrated to obtain the 
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displacement profile along the height of the column. The column can be divided into several 

equally sized elements along the height of each storey to facilitate numerical integration. 

Curvature is considered to be constant over the height of the element and is computed using the 

bending moment at elements’ mid-height. The problem in hand will then be finding the set of 

storey forces (P) which produce the target displacements (Δ) at corresponding floor slab levels. 

 

 

 

 

 

 

 

 

 

Figure 6.3 Idealized column structure: a) storey forces and displacement profile, b) shear force 

diagram. 

 

A mathematical presentation of the structural analysis algorithm is given in Appendix D. Floor 

displacements (Δ) are considered to be a function of storey shears (V). First order Taylor series 

expansion is applied to the floor displacements (Δ) and multi-variant Newton-Raphson iteration 

procedure is adapted to solve for the unknown storey shears (V) which will result in the desired 

displacement profile. The simple fifth order polynomial approximation for column’s moment-

curvature response presented in Section 5.2.5 is used. A pushover analysis is then performed 

with the column pushed to deformation profiles of the wall at progressively larger global drifts 
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until column curvature capacity is reached. See Section 6.5 for more on wall displacement 

profile. 

The analysis procedure just mentioned however is valid only for the ascending part of the 

column moment-curvature response. In other words, for this algorithm to be able to find the 

storey forces resulting in the target displacements, column stiffness should be positive (i.e. 

additional bending moments needed for increase in curvature). Since for a column fixed at the 

base maximum bending moment always occurs at the base of the column, this condition holds 

true up until the element at the very bottom of the column reaches the column moment strength 

called the “yield” point. To model the strength decay portion of the column’s flexural behaviour, 

a plastic curvature model is used (see Section 6.3). The state of the column at “yielding” is 

recorded, that is, both the displacement and curvature profiles are stored. From thereafter, as the 

column is further pushed, to keep the maximum bending moment at the base constant at the 

column strength (i.e. perfectly plastic post-peak response), an inflection point is forced at the 

base of the column. This ensures no addition of moment at the base while the fixed (zero 

rotation) boundary condition at the base is still satisfied. Based on the state of the column at 

“yield”, moment-curvature relation for each element is modified using a simple axis 

transformation technique and used to calculate curvatures in excess of the state of the column at 

“yield”. Additional floor displacements beyond the “yield” state are now considered target 

displacements and additional storey forces and consequently additional curvatures are found to 

result in the target wall displacement profile.  

Although the bending moment diagram of the column at the end of the analysis will differ from 

the real case (i.e. strength decay resulting in bending moment at the base of the column at failure 

to be less than the column strength in reality), curvature profile is expected to represent the real 

case. Since the focus of this chapter is on quantifying curvature demands on gravity-load 

columns subject to specified lateral displacements, obtaining the real bending moment profile is 

not of interest. The accuracy of the proposed analysis method is compared to the results from a 

nonlinear finite element analysis of a 20-storey shear wall building in Section 6.6.  
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6.5 Wall Displacement Profile used in the Pushover Analysis  

When a column is tied to a shear wall at closely-spaced floor slabs, it is forced to follow the wall 

displacement profile at floor slab levels exhibiting a curvature profile very similar to that of the 

wall. Consequently, the shape of the wall deformation profile in terms of distribution of 

curvature and shear strains significantly influences curvature demands on the gravity-load 

column. To carry out a thorough pushover analysis on the column, wall displacements at floor 

slab levels must be increased with the correct proportions simulating the actual displacement 

profile that the column will be subjected to at various levels of global drift. For this purpose, 

flexural and shear deformation are treated separately. It is shown that bilinear curvature 

distribution along the height of the wall accurately resembles the post-yield wall deformation 

profile and can be used to carry out the pushover analysis described in the following sections. 

Since the shear strain profile of flexural shear walls are similar in shape to the curvature profile 

(see CHAPTER 2), shear strain profile of the wall is also assumed to be bilinear. 

6.5.1 Flexural deformation 

Elastic deformation profile of a uniform 20-storey shear wall is shown in Figure 6.4 due to its 1
st
 

mode static inertial forces, an inverted triangular (i.e. linearly varying) load, and a tip load. In 

order to do the modal analysis, the wall was modeled as a cantilever with uniform flexural 

stiffness of 475 GN.m
2
 and uniform floor height of 2.75 m with 45 tons of mass lumped at floor 

levels. The numbers were chosen such that the fundamental vibration period of the structure was 

1 second. Since for the other two cases the load profile was available, curvatures were readily 

computed from the bending moments and were then integrated to obtain the displacement 

profile. Curvature profiles are normalized to give a unit top displacement. 

Nonlinear deformations of a plastic hinge model with linearly varying curvature over the height 

of first 3 storeys and zero curvature above was then added to the elastic deformations (i.e. the 

plastic hinge length was chosen to be 3 floors high). Maximum nonlinear wall curvature was 

then tuned to get a displacement ductility factor of 2.0 (1/2 of the total top displacement being 

elastic) and 3.5 (1/3.5 of the total top displacement being elastic) respectively. The results are 

shown in Figure 6.5 and Figure 6.6 respectively. Note that elastic top displacement is one unit. 
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Figure 6.4 Elastic deformation and curvature profiles of a 20-storey shear wall. 

 

 

 

 

 

 

 

 

 

 

Figure 6.5  Total displacement and curvature profiles of a 20-storey shear wall at displacement 

ductility of 2.0. 
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Figure 6.6 Total displacement and curvature profiles of a 20-storey shear wall at displacement 

ductility of 3.5. 

 

When the response is elastic, while the displacement profiles resulting from the three pushover 

loads are very similar, curvature profile due to a tip load gives lower maximum curvature at the 

base of the wall because curvature is more evenly distributed over the height of the wall. 

Curvature profile resulting from a triangular load however agrees closely with the first mode 

response. Using a tip load to carry out a pushover analysis will then be un-conservative in terms 

of estimating maximum wall curvature in the elastic response stage. When nonlinear curvatures 

from a plastic hinge model were added to the elastic response, the deformation profiles became 

almost identical for all load types and the maximum curvature resulting from pushing the wall to 

the same top displacement using either of the load patterns became almost the same. Since shear 

walls are designed for high ductility and are expected to develop large inelastic curvatures, 

critical flexibility demands are accompanied by a highly nonlinear response. This suggests that 

as long as columns connected to the wall fail when the wall is demonstrating a high ductility, it 

does not matter what loading profile is used since maximum elastic curvatures are out-ruled by 

concentrated nonlinear curvatures at the base of the wall. 
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In order to develop a simple wall deformation model that can be used to carry out pushover 

analysis on the column, since the shape of the elastic deformation was proved to be insignificant; 

the point load push scenario discussed above is used. A point-load at the top of the wall will 

result in linear moment and curvature profiles. Adding linearly varying inelastic curvatures from 

a plastic hinge model to the elastic curvatures will then result in a bilinear curvature profile along 

the height of the wall. As the point-load at the top of the wall increases, maximum curvature at 

the base of the wall increases until it reaches the wall yield curvature. When the load is further 

increased, curvatures in the plastic hinge zone of the wall keep increasing while the elastic 

curvatures above remain almost the same. In a pushover analysis, maximum curvature at the 

base of the wall is increased until the column curvature capacity governed the by maximum 

permissible concrete strain is reached. 

6.5.2 Shear deformation (strain) 

Wall shear strain (deformation) is defined as the portion of the wall lateral displacement in 

addition to that resulting from integrating curvatures over the wall height (flexural deformation). 

Shear strain in the wall and consequently shear deformation is considerable when vertical 

reinforcements of the wall yield in zones with inclined flexural-shear cracks. Shear deformation 

become particularly important in the wall plastic hinge region or first few stories at the bottom of 

the wall where flexural displacements are rather small relative to the shear deformation. Because 

shear strain is a consequence of yielding of vertical reinforcement in flexure, it is expected to 

follow the pattern of the wall curvature profile. See CHAPTER 2 for more on distribution of 

shear strain along the height of the wall. 

In conclusion, bilinear curvature profile resulting from a tip load can accurately predict 

maximum wall curvature at ductility factors of 2 and greater and therefore will be used in the 

following sections whenever a column pushover analysis is required. Shear strain is also 

assumed to have a bilinear profile along the height of the wall with the same plastic hinge length 

as the curvature profile. As shear deformations in flexural shear walls are a result of large 

vertical tensile strains in the presence of inclined cracks, the amount of shear strain would be 

proportional to curvature at any point in the wall’s plastic hinge region. 
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6.6 A Demonstrative Example 

In this section, the accuracy of the nonlinear analysis method presented in Section 6.4 using the 

approximate wall deformation profile discussed in Section 6.5 is compared to that of a nonlinear 

finite element (FE) analysis program for a 20-storey shear-wall building. The FE analysis was 

done as a part of a Master’s Thesis by Alfredo Bohl (2006). Complete modeling details and 

analysis results can be found in the reference and hence are exempted from this document. Only 

general modelling assumptions and structural properties are reported here. It is shown that the 

proposed nonlinear analysis method is capable of predicting the curvature demand on gravity-

load columns with great accuracy and low computation cost using information available to a 

design engineer. It is also demonstrated that the approximate bilinear curvature and shear strain 

simplification used to model the wall deformation profile accurately represents the real 

deformation profile of a nonlinear shear wall. 

6.6.1 Finite element (FE) analysis procedure 

Bohl (2006) modelled a 20-storey reinforced concrete shear-wall using VecTor2. The cantilever 

wall had a cross-section of 7620x508 mm and carried an axial compressive force of 15484 kN. A 

gravity-load column 953 by 508 mm with 20-M25 as vertical reinforcement carrying an axial 

load of 7742 kN and fixed at the base was connected to the wall at floor slab levels using rigid 

links. Concrete strength for both the wall and the column was 40 MPa. The complete mesh 

consisted of 345 nodes, 20 rigid links, 242 rectangular elements, and 8 triangular ones. Denser 

mesh was used throughout the first 10 storeys of the structure while the mesh became 

successively courser above the 10
th

 floor. At the base, 24 elements along the wall length and 7 

along the height of each storey were used while these figures were reduced to 5 and 2 at the top 

respectively. As for the column, 3 elements along the column length and 7 along the storey 

height were used at the base with the numbers reducing to 1 and 2 at the top respectively. 

However, to account for additional flexural stiffness provided by the slab at floor levels, 

elements with 5 times the width of the column were modelled at floor slab levels. This procedure 

was followed only in the first 10 storeys of the structure with one element being as high as the 

slab thickness and the rest of the storey height being covered by 6 equally sized elements.  40 

MPa concrete and steel with yield strength of 400 MPa was used.  
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The system was subjected to a monotonically increasing lateral point load exerted at the top of 

the wall and a displacement-controlled pushover analysis was carried out with steps of 1 mm in 

wall top displacement. 

4 levels of global (top) drift of 0.5, 1.0, 1.5, and 2.0% are considered here to compare to the 

proposed structural analysis approach. There were 4 nodes (3 elements) along the length of the 

column. To obtain a value for lateral column displacement at each floor slab level, horizontal 

displacements of the corresponding 4 nodes were averaged. Even at 2.0% global drift, the 

vertical displacements of the 4 nodes just above the base of the column (location of maximum 

curvature concentration and nonlinearity) suggested that shear deformation was insignificant in 

the column (see Figure 6.7). This suggested that plane sections remained plane and that average 

curvatures could be obtained from the vertical displacements of the 2 nodes at the opposite faces 

of the column assuming constant curvature along the gage length equal to the height of the 

element below. This observation also confirms that no shear deformation was induced in the 

column. 

 

 

 

 

 

 

 

 

Figure 6.7 Vertical deformation profile at the base of the column at 2% global drift. 
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6.6.2 Bilinear wall model vs. deformation profile from FE analysis 

To carry out a pushover analysis using the proposed nonlinear structural analysis method 

described in Section 6.4, deformation profile of the shear wall needed to be generated at each 

push step and be used as an input to the structural analysis algorithm. Flexural and shear 

deformations were calculated separately and then combined to give the wall total lateral 

deformation profile. Bilinear profile was assumed for both curvature and shear strain. The 

resulting total deformation is then compared to that obtained from the FE example introduced in 

Section 6.6.1. 

Figures below summarize the results at 3 different global drift levels of 1%, 1.5%, and 2.0%. 

Curvatures were extracted from FE results using nodal displacements along the length of the 

wall with the assumption that the slope of the straight line connecting the nodes at the two ends 

of the wall length is the average section rotation. Average rotation values were then used to 

calculate average element curvatures which are plotted in Figure 6.8, Figure 6.9 and Figure 6.10. 

Note that the drops in wall curvatures from FE results at floor slab levels is because stiffer 

elements were used at floor slab levels to simulate the stiffening effect of the floor slab. Wall 

deformation value at each horizontal level was taken as the average of horizontal deformation of 

the nodes at that level.  

FE results suggested that wall plastic hinge length was 3 storeys high with a yield curvature at 

the top of the plastic hinge zone equal to 0.32 rad/km. Hence, for the approximate bilinear 

model, the same properties were used and the maximum wall curvature at the base was chosen to 

be equal to that obtained from FE results at each drift level. Maximum wall curvature at the base 

was treated as the push variable and increased linearly throughout the push until the column 

reached its curvature capacity. Since shear strain was a consequence of yielding of wall vertical 

reinforcement in flexure, just like the curvature profile, bilinear distribution was used for shear 

strain as well. Again, properties of the bilinear shear strain distribution were chosen based on the 

FE results in such a way that they account all of the wall horizontal deformation that could not 

be depicted by integrating wall curvatures over the height. Maximum shear strain at the base of 

the wall was then tied to wall maximum curvature and was increased monotonically with 

maximum wall curvature.   
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Figure 6.8 Flexural response from bilinear model vs. FE results at 1% global drift. 

  

 

 

 

 

 

 

 

 

 

Figure 6.9 Flexural from bilinear model vs. FE results at 1.5% global drift. 
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Figure 6.10 Flexural response from bilinear model vs. FE results at 2% global drift. 

 

Figures above suggest that the bilinear model closely followed the trend of the deformation 

profile of the FE shear wall. The accuracy of the model increased with the drift level. This was 

due to the wall encountering more nonlinear behaviour at higher drift levels increasing 

concentration of curvature in the plastic hinge zone. 

The displacement profile from the bilinear shear strain model is compared to that from FE wall 

in Figure 6.11. FE shear deformations were calculated by subtracting flexural deformations 

obtained from integrating curvatures over the height of the wall from the total lateral deflection 

profile. Shear strain at the top of the wall plastic hinge was chosen to be 0.0001 and was 

decreased linearly to zero at the top of the wall. Shear strain in the plastic hinge region of the 

wall was also varied linearly with maximum shear strain at the base of the wall being equal to 

0.00012 at wall yielding and 0.00215 when wall maximum curvature was 10 times the yield 

curvature. This resulted in shear strains to be proportional to curvature. 
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      a)                                                                           b) 

Figure 6.11 Shear deformations from bilinear shear strain profile vs. FE results at: a) 1.5%, and 

b) 2.0% global drifts. 

 

As shown in Figure 6.11, the proposed bilinear shear strain model accurately simulates the wall 

shear deformation profile in the first 5 storeys; however, the simple model underestimated shear 

deformation in the storeys above. It is proven in Section 6.9 that while maximum curvature 

demand on gravity-load columns is highly sensitive to wall deformation values at the first few 

floors levels, it is not affected by deflection values at higher levels. Therefore, the accuracy of 

the bilinear shear strain model was acceptable. This approximate model is used in the remainder 

of this study alongside the bilinear curvature distribution model whenever a pushover analysis is 

carried out. 

6.6.3 Solution using the proposed nonlinear structural analysis method 

The moment-curvature response of the column section is plotted in Figure 6.12. On the same 

figure, the fitted 5
th

 order polynomial approximation and the response used for modeling column 

behaviour are also plotted. Note that the modeled response has zero stiffness beyond the peak 
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strength of the column where a perfectly-plastic response was modeled with linear curvature 

variation over the column plastic hinge length. 

 

 

 

 

 

 

 

 

 

Figure 6.12 Column moment-curvature response. 

 

General analysis procedure is described in Section 6.3. The column was fixed at the base. 20-

storeys above the base were considered in the structural analysis and each storey was divided 

into 7 constant-curvature elements of identical size. Since the displacement profile of the wall 

was readily available, the steps corresponding to the selected global drift levels of 0.5%, 1.0%, 

1.5%, and 2.0% were directly inputted to the analysis program to obtain curvature profiles along 

the column height. Because at 2.0% global drift level the column had already “yielded” or 

passed the peak moment strength point, the load-step at which the column first “yielded” had to 

be found to obtain the state of the column at “yield”. It was found that the column “yielded” 

soon after the 1.5% global drift level at 1.54 % top drift. Looking at the FE analysis results at 

2.0% global drift suggested that the column plastic hinge length was close to the storey height; 

hence a value of 2.7 m was used as column plastic hinge length.  
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Analysis results are plotted and compared against those obtained from the original FE analysis in 

Figure 6.13. The sudden drops in curvature values at floor slab levels seen in the original FE 

results are due to modelling stiffer elements to account for the rotational rigidity provided by the 

slab. 

It is observed that the curvature profiles obtained from the proposed nonlinear structural analysis 

procedure closely follow the trend of those from the FE analysis. The maximum error in 

prediction of maximum curvature at the base of the column is 15% at 1.5% global drift. The 

predicted maximum curvatures however were always greater than those obtained from FE 

analysis which means the proposed analysis methodology gives a reasonably safe estimate of the 

maximum column curvature demand.  

6.7 Shear Strains in Gravity-Load Columns 

So far, it has been assumed that deformation of the column is solely due to flexure and any shear 

strain in the column has been neglected. This section examines this fundamental assumption. 

Figure 6.14 shows shear strain profiles of the wall and the column modeled by Bohl (2006) and 

introduced in Section 6.6.1 in the first 10 storeys at 2% global drift. It is clear that shear strains 

in the column are easily negligible compared to wall shear strains. 

The column experiencing much smaller shear strains is entirely attributed to the larger axial 

stress on the column. The wall in this example carried an axial load equivalent to           

while the column carried an axial load equal to          . As explained in CHAPTER 2, shear 

strains in flexural reinforced concrete members are generated in areas with large average tensile 

strains. Large compressive axial stresses on the column therefore considerably increase the 

concrete compression depth reducing the section average tensile strain which in turn decreases 

the formation of shear strains in the column. This is further confirmed in Figure 6.15 where the 

section strains at centroid of two columns with extremely different cross-section aspect ratios are 

compared. Both columns carried an axial load equal to          . In this case, the axial load 

proves to be so large that the section average strain remains negative (compressive) up to the 

maximum concrete compressive strain of 0.0035. This proves that shear strains are negligible 

even in columns with elongated cross-sections. 
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Figure 6.14 Shear strain profiles of the shear wall and the column introduced in Section 6.6.1 

modeled by Bohl (2006) at 2% global drift obtained from Vector2.  

 

 

 

 

 

 

 

 Figure 6.15 Comparison of average section strain of a 610x610 mm and a 2438x305 mm 

column cross-section both with 2% vertical steel ratio and concrete strength of 60 MPa carrying 

an axial load equivalent to 0.4      at various section maximum compressive strains. 
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6.8 Number of Constant Curvature Elements Required for an Accurate 

Estimate of Column Curvature Demand 

In the preceding section, the column was modeled with 7 constant curvature elements in each 

storey to make the analysis procedure similar to that carried out in the FE program. Bending 

moments due to storey forces were computed at elements’ mid height and then converted to 

curvature values using the column moment-curvature response. These curvature values were 

considered to be constant over the element height (constant curvature elements) and were then 

integrated to get the column displacement profile.  

When the storey shear force (moment gradient) is high, changes in bending moment values over 

the height of a single element can be significant. This effect becomes even more important in the 

column plastic hinge zone where large inelastic curvatures are concentrated. Elements in that 

region are very soft due to yielding of the column vertical steel in compression and softening of 

the concrete and hence, a small change in the moment value causes a great increase in element 

curvature. In that case, elements must be short enough or sufficient number of constant curvature 

elements must be used in a single storey to capture the correct column curvature demand.  

To investigate the effect of number of constant curvature elements required for an accurate 

estimate of column curvature demand, a column fixed at the base with 20 storeys modelled 

above the base was considered with the same structural configuration as the problem presented 

in Section 6.5. Figure 6.12 shows the approximate moment-curvature response of the column. To 

encounter significant curvature concentration at the base of the column, total floor displacements 

including wall shear deformation were imposed on the column.  

Because concentration of curvature occurred in the first storey in the case of a column fixed at 

the base, only the number of elements in the first storey was varied while 7 elements were used 

in the storeys above. The results may then be applied to other columns provided that sufficiently 

large number of constant curvature elements is used over the height of the storey in which 

column curvature concentration occurs. Figure 6.16 shows the global drifts at which the columns 

reached its curvature capacity versus the number of constant curvature elements used in the first 

storey.  
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Figure 6.16 Effect of number of constant curvature elements in the base storey on column drift 

capacity. (Note: The column was assumed to reach its drift capacity once the column curvature 

capacity governed by maximum permissible compressive concrete strain of 0.0035 was reached.) 

 

As the number of elements in the base storey was increased, maximum column curvature at the 

base was captured more accurately by the element at the base reducing the calculated column 

drift capacity defined as exceeding the column curvature capacity limited by concrete crushing 

strain. Based on the analysis results, column drift capacity did not have a pronounced decrease 

when the number of elements in the base storey increases beyond 80. Hence, using 80 constant 

curvature elements over the height of the storey in which column plastic curvatures occur gives 

an accurate estimate of column curvature demand. This guideline is followed in the remainder of 

this chapter. Although only 7 elements were used to model the storeys above the first floor, 

because in those regions column curvatures were in the linear elastic range of the moment-

curvature response, adding more elements did not increase the accuracy of column drift capacity 

estimation. 
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6.9 Number of Floors Required for an Accurate Estimate of Column 

Curvature Demand 

In this section, the effect of number of floors considered in modelling a non-linear column on the 

accuracy of the predicted curvature demand is investigated. To carry out the analysis, the column 

described in Section 6.6 was used; a 20-storey 953x508 mm column reinforced with 20 25-M 

reinforcing bars distributed along the perimeter and carrying an axial load of 7742 kN. Column 

plastic hinge height was taken to be equal to the column length (953 mm), wall plastic hinge 

length was 8.25 m (i.e. close to 3 floors high). Bilinear approximation was used to simulate the 

deformation profile of the wall in both flexure and shear. Two cases one with wall shear 

deformation included and the other excluding wall shear deformation were imposed on the 

column. Pushover analysis started with 3 floors modeled above the base. Number of floors 

modeled was increased until no further change in column curvature demand could be observed 

from modelling additional floors. A summary of the results is presented in Figure 6.17. 

 

 

 

 

 

 

 

 

 

Figure 6.17 Number of floors required for an accurate estimate of column inelastic drift 

capacity. (Note: The column was assumed to reach its drift capacity once the column curvature 

capacity governed by maximum permissible compressive concrete strain of 0.0035 was reached.) 
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Figure 6.17 shows that a minimum of 8 floors should be considered in the structural model used 

to predict curvature demands on the 20-storey column examined here. As additional storeys were 

modelled beyond the 8
th

 floor, no significant change in column curvature demand could be 

observed. Note that even with 5 storeys modeled, the error in estimating inelastic drift capacity 

was less than 2%. While drift capacity was highly sensitive to displacement values at the first 3 

floor, it was not noticeably affected by amount of displacement at higher floors. 

Because wall plastic hinge length was close to 3 storeys high, an unexpected fluctuation in 

inelastic drift capacity was observed when the number of floors modelled increased from 3 to 4 

but as the number of floors considered in the analysis increased beyond 5 floors, addition of a 

floor to the analysis model decreased the drift capacity. It should be noted that the scale of the 

drift capacity fluctuation is not great at all and that including only 5 floors in the analysis would 

have provided an accurate estimate for design purposes. It is concluded that at least 5 floors must 

be modeled to get the best estimate of the inelastic drift capacity of a multi-storey shear-wall 

building. The number of floors modelled must be a few more than the wall plastic hinge height. 

6.10 Summary and Conclusion 

Below is a summary of key contributions of this chapter. 

1. Reviewing the findings of a number of experiments on reinforced concrete columns 

under combined axial compression and bending revealed that gravity-load columns have 

very little ductility beyond the point of cover spalling. Inelastic curvatures were found to 

vary linearly over the column’s plastic hinge region prior to concrete cover spalling. 

After cover spalling, inelastic curvatures were found to be uniformly distributed over the 

height of the damaged region. 

 

2. A nonlinear structural analysis algorithm for estimating curvature demands in gravity-

load columns of shear wall buildings with flat plate floor slabs was formulated. The 

accuracy of the structural analysis procedure was verified against state of the art finite 

element analysis routine for reinforced concrete structures.  

 



303 

 

3. The bilinear model for wall curvature and shear strain profiles was shown to closely 

approximate flexural and shear deformation profiles of the wall obtained using the state 

of the art finite element analysis software for reinforced concrete structures. 

 

4. Shear strains in gravity-load columns were proven to be negligible and the deformation 

of the column was shown to be almost entirely due to flexure. The large axial 

compressive stresses on the column reduced the section average tensile strain which 

resulted in shear strains being close to zero even in the case of wall-like columns with 

elongated cross-sections. 

 

5. Column curvature demand was found to be very sensitive to the displacement of the 

lower floor slabs of the buildings and become less affected by displacement of the higher 

floor slabs. Including as few as five storeys in the structural analysis procedure provided 

accurate estimates of the column curvature demand. 
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CHAPTER 7 Parametric Study on Seismic Demands on 
Gravity-load Columns in Shear Wall Buildings with Flat 
Plate Floor Slabs 

7.1 Introduction 

In this chapter, a parametric study is conducted to examine and understand the effect of various 

column or wall parameters or building configurations on the seismic curvature demand on 

gravity-load columns. The structural analysis algorithm developed in CHAPTER 6 is used to 

estimate curvature demand on gravity-load columns within the plastic hinge region of shear wall 

building with flat plate floor slabs. A set of standard parameters is defined and in each section, 

variation of column curvature demand with respect to a single variable is studied keeping the rest 

constant at their standard value.  

Parameters studied include wall shear strain, height of column’s plastic hinge zone, column and 

wall lengths, effect of damage of the column, fixity of the column at grade level, and presence of 

a taller first storey. The most dominant parameters controlling curvature demand on gravity-load 

columns are identified which enables the designer to focus on quantifying these parameters with 

more accuracy to ensure that the gravity-load system can withstand the deformation demands 

dictated by the shear wall. Behaviour of gravity-load columns subjected to the imposed 

displacement profile of a shear wall is examined analytically in great detail. Wherever possible, 

simple expressions are developed for estimating the seismic curvature demand from wall 

maximum curvature given basic information available to the designer. 
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7.2 Standard Parameters 

In each of the following sections, the effect of a single parameter on column curvature demand is 

studied while keeping the rest of the variables at their standard value. For this purpose, a set of 

standard parameters is defined and in each subsection, variation of column curvature demand 

with respect to one of the parameters under consideration is studied. Table 7.1 summarizes 

standard parameters used throughout this chapter. Note that wall deformation profile imposed on 

the column was that of the FE example described in Section 6.6.2 except for when the parameter 

under consideration was a property of the shear wall. 

 

Table 7.1 Standard parameters for: a) gravity-load column, b) shear wall. 

a)  

 

 

 

 

 

b) 

  

 

 

 

 

Parameter Value Description

hw 54.86 m wall height (20 storeys)

hf 2.743 m floor height

bw 508 mm wall width

lw 7800 mm wall length

lpw* 8.23 m wall plastic hinge length

P 15484 kN wall axial load (0.1f'cAg)

Wall Parameters

Parameter Value Description

b 305 mm cross-section width (1 ft)

l 1830 mm cross-section length (6 ft)

f'c 40 MPa concrete strength in compression

εc
max

0.0035 concrete compressive strain capacity

Fy 400 MPa steel yield strength

ρ 2.0% vertical reinfrocement ratio

lpc* 610 mm height of linearly distributed plastic curvatures for undamaged column

lpc 305 mm height of uniformly distributed plastic curvatures for damaged column

P 9000 kN column axial compressive load (0.4f'cAg)

Column Parameters
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Figure 7.1 shows the real moment-curvature response of the standard column section used in the 

parametric study. Perfectly plastic behaviour was used to model moment-curvature response of 

the column beyond the peak bending strength. Damage was modeled as concrete cover spalling 

on both faces of the column and bar buckling on the compression face of the column (damage 

level 1 in Figure 5.8). The undamaged column “yielded” or reached its peak strength at curvature 

of 2.70 rad/km and failed due to concrete crushing at curvature of 3.25 rad/km. These figures 

were 2.60 rad/km and 3.20 rad/km for the damaged column respectively. 

 

 

 

 

 

 

 

 

 

Figure 7.1 Actual and modelled moment-curvature responses of the undamaged and damaged 

sections of the standard column. 

7.3 Wall Shear Strain (γwall) 

To study the influence of wall shear strain on column curvature demand, shear deformation of 

the wall example introduced in Section 6.6  was separated from flexural deformations. Two sets 

of pushover analysis were carried out, one with the column being pushed only with the wall’s 
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flexural deformation profile and the second with both flexural and shear deformation profiles. 

All other wall and column parameters were kept at their standard values. 

Figure 7.2 shows column pushover analysis results when no damage was modeled in the column. 

The column went into the plastic behaviour zone at curvature of 2.70 rad/km and failed due to 

concrete crushing when maximum curvature of 3.25 rad/km was reached. When wall shear 

deformations were excluded, column curvature demand remained fairly close to wall maximum 

curvature. When wall shear strain was included, maximum column curvature grew more rapidly 

than wall maximum curvature reducing drift capacity of the gravity-load column.  

 

 

 

 

 

 

 

 

 

 

Figure 7.2 Increase in column curvature demand due to wall shear strain. 

 

Including wall shear strain reduced global drift capacity by 34% compared to the case where no 

wall shear deformation existed. This observation can be further explained using curvature 

profiles at column failure (Figure 7.3). When no shear deformation was included in the analysis, 

both wall and column exhibited purely flexural behaviours and since the column was tied to the 
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wall at closely spaced floor slabs, wall and column curvature profiles remained nearly identical 

up to the commencing of column plastic behaviour (Figure 7.3a). As the column was pushed 

further, considerable curvature was added at the base of the column causing the column 

maximum curvature to deviate from that of the wall until the point of concrete crushing.  

When wall shear deformation was added to flexural deformations, since column behaviour was 

still dominated by flexure, it was forced to compensate for the extra imposed rotation by 

developing highly concentrated curvatures at its base. This caused the column maximum 

curvature to deviate from maximum wall curvature from the very beginning of the pushover 

analysis up to the point of column failure (Figure 7.3b). In other words, since wall shear 

deformation at the first few stories was substantial in comparison to flexural deformations at 

those levels, maximum column curvature being highly sensitive to the total lateral displacement 

at the first floor level caused an exponential increase in column curvature demand. Maximum 

column curvature being considerably greater than that of the wall resulted in the column going 

plastic at its base much earlier and reaching its curvature capacity at a much lower global drift 

compared to the case where no wall shear strain was included. 

Figure 7.4a shows the deformation profiles of both the shear wall and the column at failure when 

no wall shear strain was included. In this figure it is almost impossible to tell the two 

deformation profiles apart. Figure 7.4b shows the deformation profiles of both the shear wall and 

the column at failure when wall shear strain was included. It is obvious that including wall shear 

strain increased lateral deformation at the first floor level by almost 40% putting additional 

rotation demand on the column that was attached to the wall. This extra rotation demand 

required the column to exhibit higher curvature concentration at its base at lower global drift 

levels compared to the case where no wall shear strain was included which caused a huge 

reduction in column drift capacity. 

In conclusion, it was shown that accounting for the correct wall shear strain (deformation) is 

critical to estimating column curvature demand and hence attention should be paid to evaluating 

wall shear strain when estimating column curvature demands. It is therefore desirable to derive 

simple formulas that can estimate the additional column curvature demand due to wall shear 

strain. 
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Figure 7.3 Curvature profiles of the undamaged column when curvature capacity has been 

reached: a) no wall shear strain, b) 100% of standard wall shear strain included. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4 Deformation profiles at the point of column curvature capacity: a) no wall shear 

strain, b) 100% of wall shear strain applied (no column damage modeled). 
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7.3.1 Simple methods for estimating column curvature demand due to 

imposed wall deformation in the presence of wall shear strain 

As shown in Figure 7.5, the effect of a constant (uniform) wall shear strain can be treated as 

concentrated rotation of the column support. If wall shear strain is constant, then the wall shear 

deformation profile will be a straight line with a slope equal to the constant shear strain. The 

effect of such imposed deformation profile on the column is identical to the case where the floor 

slabs are fixed in place (i.e. modeled as pinned supports) and the base of the column rotated by 

an angle equal to the wall shear strain.  

Even though in reality, wall shear strain will not be constant over the height of the plastic hinge, 

if the plastic hinge is several storeys high, the variation of wall shear strain over the first storey 

can be ignored and an average wall shear strain over the first storey can be used. As long as the 

column remains fairly elastic or its flexural behaviour can be modeled using an effective elastic 

stiffness, the bending moment    required to rotate the base of the column by an amount equal 

to the wall shear strain   is 

   
   

 
   

Eq 7.1 

Using the standard moment distribution structural analysis procedure to analyze the elastic 

column structure, the final residual moment at the base of the column will be 

  (  
 

 
)  

 

 
   

     

 
   

Eq 7.2 

The resulting additional curvature demand at the base of the column due to wall shear strain will 

then be 

   
  

  
 

   

 
   Eq 7.3 
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Figure 7.5 Effect of wall shear strain on gravity-load columns treated as support rotation at the 

base of the column: a) scheme of the wall-column system, b) lateral deformation of floor slabs 

due to uniform wall shear strain, and c) bending of the gravity-load due to support rotation. 

 

In Figure 7.2, the estimated additional column curvature demand due to wall shear strain using 

Eq 7.3 is shown. The same line is shown in Figure 7.6 as Approx. 1. Note that the actual wall 

maximum shear strain at the base was substituted for   in Eq 7.3. Eq 7.3 accurately predicted the 

additional column curvature due to shear deformation of the wall as long as the column remained 

in the elastic range. As the column experiences inelastic bending, more curvature was 

concentrated at its base and because Eq 7.3 was formulated for an elastic column, it 

underestimates column curvature demand. 

An alternative way of using Eq 7.3 is to estimate   from the shear strain model formulated in 

Section 2.9 and presented in Eq 2.10 and Eq 2.11. Substituting for   in Eq 7.3 from the shear 

strain model presented in Section 2.9 gives the total column curvature demand as 

                
   

 
       

  
 

         Eq 7.4 
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Where      is the wall maximum curvature,    is the additional column curvature demand due 

to wall shear strain,    is the wall length and c is the wall ultimate concrete compression depth. 

Rearranging the equation above gives 

       [  
   

 
(
  
 

  )]      [  
     

 
] 

Eq 7.5 

Note that all of the parameters needed to estimated    are either readily available to the designer 

or can be easily calculated. The line labeled Approx. 2 in Figure 7.6 shows estimates of    for 

the column using the ultimate concrete compression depth for c. This line constantly 

overestimates column curvature demand up until the point of column failure where it meets the 

curvature demand obtained from the pushover analysis. Two phenomena contribute to this 

overestimation of column curvature demand. First is the fact that the shear strain model 

formulated in Section 2.7 somewhat overestimates wall shear strain. The second contributor is 

the use of ultimate wall concrete compression depth for c throughout the pushover analysis. Use 

of a smaller c will result in larger estimates of wall shear strain and subsequently, larger 

estimates of column curvature demand.  

If the correct value of c is calculated from sectional analysis and used in estimating    , column 

curvature demand at lower drift levels will be less overestimated. This is shown by the line 

labeled Approx. 3 in Figure 7.6. As expected, lower curvature demand is estimated at lower 

building drifts compared to that predicted by Approx. 2. Note that Approx. 2 and Approx. 3 are 

close to each other once the column experiences high nonlinear bending as the concrete 

compression depth approaches its ultimate value. 

Another approach to formulating a simple method for estimation of additional column curvature 

demand due to wall shear strain is to consider the curvature profile of the column when pushed 

to the displacement profile of the shear wall having considerable shear strain. In Figure 7.7, the 

wall curvature and shear strain profiles are shown. Note that the wall total deformation will be 

the sum of the flexural and shear deformation components obtained from integrating curvatures 

and shear strains over the height.  
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Figure 7.6 Estimating column curvature demand due to imposed wall deformation from wall 

maximum curvature in the presence of wall shear strain. 

 

Figure 7.7c shows the approximate column curvature profile. Because the column does not 

develop significant shear strain, it can only deform in flexure. For the wall and column to have 

the same deformation profile at floor slab levels, displacement from the hatched area on the 

column curvature profile must compensate for the wall shear deformation. Because the imposed 

deformation of the second floor slab is the most critical to column curvature demand at the base, 

attention will be focused on the wall-column system deformation compatibility at the second 

floor slab. Wall shear deformation at the second floor slab is given by 

           
Eq 7.6 

Where      is the average wall shear strain in the first storey and H is the first storey height. If 

the wall plastic hinge length is several storeys high,      can be conservatively replaced with the 

maximum wall shear strain at the base     . Hence 
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Figure 7.7 Schematics of a) curvature profile of the shear wall, b) shear strain profile of the 

shear wall, and c) curvature profile of the gravity-load column. 

 

           
Eq 7.7 

To satisfy deformation compatibility of the wall-column system at the second floor slab level, 

    must be equal to the flexural deformation from the hatched area on the column curvature 

profile. 

           
      

 

 
   

    
 

 
  Eq 7.8 

Rearranging gives 

   
     

   
    

    
 

  

 
    

   
 

 
Eq 7.9 

Note that a simplification was made assuming that the column plastic hinge length is 

considerably shorter than the first storey height. Estimations of column curvature demand using 

Eq 7.9 is shown in Figure 7.8 as the line labeled Approx. 4. The actual wall maximum shear 
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strain was used to predict wall curvature demand in this case. It is clear that Eq 7.9 can 

accurately estimate column curvature if the actual wall maximum shear strain is used. 

To further simplify the use of this approximate method, wall maximum shear strain is predicted 

from the simple shear strain model presented in Section 2.9 as follows. 
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Eq 7.10 

Where    is the wall length and c is the ultimate wall concrete compression depth. The total 

column curvature demand would then be 

               [     
       

   
 

] 

 
Eq 7.11 

 

 

 

 

 

 

 

 

 

 

Figure 7.8 Estimating column curvature demand due to imposed wall deformation from wall 

maximum curvature in the presence of wall shear strain. 
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Column curvature demand estimated using Eq 7.11 is shown in Figure 7.8 as Approx. 5. Eq 7.11 

constantly overestimates column curvature demand partly because the shear strain model 

somewhat overestimates wall shear strain and partly because the ultimate wall concrete 

compression depth is used throughout the pushover analysis. Approx. 6 on the same figure is 

made with the wall concrete compression depth calculated from section analysis at each wall 

maximum curvature. As expected, Approx. 6 is less conservative and converges to Approx. 5 at 

high wall maximum curvatures. 

In summary, the simple equations provided make reasonably conservative estimates of the 

column curvature demand using simple wall and column parameters readily available to the 

designer. The effect of wall shear strain on curvature demand of columns fixed at their base can 

therefore be taken into account to ensure the gravity frame system has adequate deformation 

capacity to tolerate the lateral displacements imposed on it by the shear wall.  

7.4 Column Length 

As the length to width ratio of a gravity-load column cross-section increases, maximum 

curvature that the cross-section can withstand decreases. This is because a certain concrete area 

is needed to resist the axial load on the column while it is being bent. The smaller the width of 

the column, the larger will be the compression depth which in turn accelerates concrete crushing 

at the compression face of the column. In other words, at a certain curvature, the column with the 

smaller compression depth will have smaller maximum compressive strain.  

It is intended to study the effect of column length on column curvature demand by subjecting 

five columns with various lengths to the deformations imposed by the shear-wall introduced in 

Section 6.6.2. Column cross-sections chosen are the same as those in Figure 7.9. Concrete 

strength of 40 MPa was chosen. To make comparison possible, columns sections were given 2% 

vertical reinforcement uniformly distributed around their perimeter all having to carry an axial 

load of 0.40     . Analysis was stopped when maximum concrete strain reached 0.0035. For 

simplicity, wall shear strain (deformation) was excluded from the analysis in this section. 
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Figure 7.9 Column cross-sections used to study the effect of column length on column curvature 

demand. 

 

Figure 7.10 shows pushover analysis results for the five columns studied. In the absence of wall 

shear strain, all column curvature profiles closely followed that of the wall up until softening and 

yielding of the elements at the base of the columns when maximum column curvature started to 

deviate from that of the wall. This was because the column could exhibit flexural deformations 

only and when it was subjected to wall deformations which had no shear component, the column 

being tied to the wall at closely spaced floor slabs was forced to demonstrate a curvature profile 

very similar to that of the wall. However the longer the column was, the sooner it reached its 

peak strength and the lower was the curvature capacity; hence global drift capacity was 

dramatically affected by column length. Figure 7.11a compares curvature profiles of the 1.8 m 

long column section to those of the wall at various global drift levels. The minor discrepancy 

between shear wall and column curvature profiles did not result in noticeable difference in 

deformation profiles of the two (see Figure 7.11b).  
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Figure 7.10 Reduction in column global drift capacity with increase in column length (no wall 

shear strain, no column damage). 

 

Table 7.2 gives a numerical summary of the pushover analysis results for the five columns at 

failure. Note that maximum curvature amplification factors at are close to unity which indicates 

that maximum column curvature demand is close to the wall maximum curvature. 
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Figure 7.11 Comparison of responses of the shear wall and the 1.8 m column section in the wall 

plastic hinge zone: a) curvature profiles, b) deformation profiles. (Note: No wall shear strain and 

no column damage were modeled.) 

 

To gain further insight into the flexural behaviour of columns of various cross-sectional lengths 

tied to a shear wall, pushover curves and moment-curvature responses of the 2.4 m and the 0.6 m 

column sections are compared in Figure 7.12 and Figure 7.13 respectively. 
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Table 7.2 Numerical summary of pushover analysis results for columns of various cross-

sectional lengths at the point of column failure (no wall shear strain, no column damage). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.12 Pushover analysis results for the 2.4 m and 0.6 m long column cross-sections (no 

wall shear strain, no column damage). 

 

 

Column 

Length 

(m)

Wall 

Maximum 

Curvature 

(rad/km)

Column 

Maximum 

Curvature 

(rad/km)

Global 

Drift

Normalized 

Global Drift

Column 

Maximum 

Curvature 

Amplification 

Factor

0.6 8.28 9.71 3.66% 1.000 1.17

0.9 5.79 6.56 2.69% 0.734 1.13

1.2 4.49 4.91 2.18% 0.596 1.09

1.8 2.76 3.26 1.51% 0.412 1.18

2.4 2.39 2.45 1.11% 0.304 1.03
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Figure 7.13 Moment-curvature response of the 2.4 m and 0.6 m long columns. 

 

According to Figure 7.12 both columns have the same maximum curvature as that of the wall up 

until the onset of column nonlinear behaviour at the element at the base of the column. Column 

stiffness at the base keeps decreasing as the column is pushed to the point when maximum 

bending moment at the base of the column reaches column’s moment strength and plastic 

behaviour is triggered. From thereafter, a plastic curvature model with linear curvature 

distribution over a height equal to the column length was added to elastic curvatures of the 

column structure with a forced inflection point at the base. Curvature profile and bending 

moments of this modified structure were then added to those of the column at the beginning of 

plastic behaviour. This ensured no addition of moment at the base of the column beyond the 

section strength while the zero rotation boundary condition at the base was maintained.  

However, maximum curvature demand of the 0.6 m column deviated more noticeably from wall 

maximum curvature compared to that of the 2.4 m wall. Also, the plastic behaviour zone of the 

0.6 column was larger than that of the 2.4 m column section. This can be explained by looking at 

Figure 7.13. Bending moments are normalized by the moment strength to make comparison of 
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the two curves easier. Loss of sectional flexural stiffness after the onset of nonlinear behaviour 

was more rapid in the case of the 0.6 m column section resulting in noticeable concentration of 

inelastic curvatures at the base of the column. Length of the column’s plastic behaviour zone was 

directly related to the curvature range from the peak point of the moment-curvature response to 

the point of concrete crushing. Because the 0.6 m long cross-section was more flexible, it had a 

longer plastic behaviour zone which resulted in a considerable additional drift capacity of the 

column coming from the plastic behaviour zone. 

In conclusion, all columns of various lengths tend to demonstrate the same pushover response in 

early stages of the push in the absence of wall shear strain. The longer the column length, the 

sooner its maximum curvature deviates from that of the wall which when combined with 

reduction in column curvature capacity with length, results in lower drift capacity. 

7.5 Wall Length (lpw*) 

The next parameter studied is the wall length which determines the length of the wall plastic 

hinge zone. Wall plastic hinge zone is the section at the base of the wall which undergoes 

significant yielding producing inelastic rotation. Inelastic curvatures concentrate in the plastic 

hinge region with the maximum at the base and are assumed to vary linearly over the wall plastic 

hinge length. With a fixed wall curvature capacity, the taller the plastic hinge is, the higher the 

building drift capacity will be. Wall plastic hinge length is usually expressed as multiples of wall 

length and varies between 1.0 to 1.6 times the wall length. 

To examine the effect of wall plastic hinge length on column global drift limit, four wall lengths 

of 7.8, 9.4, 10.9 and 12.5 m were chosen with wall plastic hinge length being equal to the wall 

length keeping the rest of the parameters at their standard value (see Table 7.1 for standard 

parameters). Pushover analysis was conducted using the analysis methodology described in 

Section 6.4 with no wall shear strain and no column damage considered. 

Figure 7.14 shows column pushover analysis for various wall lengths. It was observed that 

column global drift capacity increased as wall length became larger. This observation can be 

explained in a rather simple way. Because no wall shear strain was considered, column curvature 
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profiles followed that of the wall very closely throughout the pushover analysis. However, when 

wall length was larger, higher global drifts came at lower wall maximum curvatures. In other 

words, the slope of the wall curvature plots was inversely proportional to wall length making the 

longest wall the most flexible. This resulted in inelastic curvatures being distributed over a larger 

height and away from the base of the wall. This in turn reduced curvature concentration at the 

base of the column which demonstrated a curvature profile similar to that of the wall.  

Another observation is that column plastic behaviour starts at the same wall maximum curvature 

at which the column fails. In other words, if the point of column failure on the column pushover 

curve is projected onto that of the wall, it crosses the wall pushover curve at the point with the 

same curvature as that of the point of beginning of column plastic behaviour (see Figure 7.14). 

This suggests that one could calculate wall global drift at wall maximum curvature of Φplc 

defined in Figure 7.15 and get an accurate estimate of the column global drift capacity. 

 

 

 

 

 

 

 

 

 

 

Figure 7.14 Increase in column drift capacity with wall length (no wall shear strain, no column 

damage). 
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Figure 7.15 Moment-curvature response of the 1.8 m long column section. 

 

Shown in Table 7.3 is a numerical summary of pushover analysis results at the point of column 

failure. Note that column maximum curvature amplification factor is the same for all wall 

lengths considered. Wall length clearly affects column global drift capacity and hence, 

accounting for the correct wall plastic hinge length in calculating lateral deformation profile of 

the building is critical when column drift capacities are to be checked. 

 

Table 7.3 Numerical summary of column pushover analysis results at the point of column failure 

for the standard column connected to walls of various lengths (no wall shear strain, no column 

damage). 

 

 

 

 

lpw* 

(m)

Wall 

Maximum 

Curvature 

(rad/km)

Column 

Maximum 

Curvature 

(rad/km)

Global 

Drift

Normalized 

Global Drift

Column 

Maximum 

Curvature 

Amplification 

Factor

7.8 2.80 3.27 1.45% 0.725 1.17

9.4 2.79 3.26 1.63% 0.816 1.17

10.9 2.79 3.26 1.81% 0.906 1.17

12.5 2.81 3.26 2.00% 1.000 1.16
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7.6 Height of Column Plastic Hinge Zone (lpc*) 

Column plastic hinge region is the length of the column over which inelastic curvatures are 

generated due to yielding of vertical reinforcement in compression and concrete softening. 

Concrete cover is expected to spall over the height of column plastic hinge zone further reducing 

both the strength and stiffness of the column. Curvatures in the plastic behaviour region vary 

approximately linearly from the maximum at the base to the top. Height of the column plastic 

hinge region is usually estimated using expressions fitted to extensive experimental work and is 

believed to increase with axial load.  

In order to study the effect of height of column plastic hinge region on column curvature 

demand, 3 values of lpc* of 305, 610, and 1220 mm were used. Note that lpc* equal to 610 mm is 

the standards height of column plastic behaviour zone. Wall shear strain and damage to the 

column were excluded from the analysis. Other analysis parameters were kept at their standard 

values described in Table 7.1.  

Pushover analysis results are shown in Figure 7.16. As expected, column flexibility increases 

with height of the column plastic behaviour zone. The explanation is rather simple. Since column 

curvature capacity is limited by concrete crushing and hence is constant regardless of lpc*, at 

maximum column curvature, the column with the larger lpc* will have greater inelastic rotation. 

This is demonstrated in Figure 7.17 where column curvature profiles for lpc* of 305 mm and 

1220 mm at the point of column failure are compared. In both cases, column failure occurred 

when column maximum curvature reached 3.27 rad/km when concrete reached its maximum 

compressive strain. At that point, the column with the larger lpc* could concentrate more plastic 

curvature in the first floor which resulted in additional inelastic rotation and consequently 

additional global drift capacity. Although column curvatures vaguely followed the wall curvature 

pattern, there was a considerable deviation between the two. Column curvatures fluctuated 

around the bilinear wall curvature pattern with noticeable concentration at the base of the 

column. In Figure 7.18 the deformation profiles of the column and the wall are compared for the 

two cases of lpc* equal to 305 mm and 1220 mm. The difference in the curvature profiles does 

not translate to any noticeable difference in the deformation profiles. Note that both the wall and 

the column had the same deformation values at floor slab levels. 
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Figure 7.16 Effect of height of column plastic curvature zone on drift capacity (no wall shear 

strain, no column damage). 

 

 

 

 

 

 

 

 

 

 

Figure 7.17 Column curvature profiles at failure for different column plastic hinge heights (no 

wall shear strain, no column damage). 
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Figure 7.18 Comparison of deformation profiles of the shear wall and the 1.8 m column section 

in the wall plastic hinge region for column plastic hinge heights of 0.3 m and 1.2 m (no wall 

shear strain, no column damage). 

 

Although the effect of lpc* is not that great in this example (i.e. less than 5% change in column 

drift capacity ), column flexibility can be seriously affected by lpc* if the peak bending strength 

point and failure point on the column moment-curvature response are further apart. Hence, it is 

concluded that an accurate estimate of lpc* should be made if column drift capacity is to be 

calculated when the gap between the curvature at column peak bending strength and curvature 

capacity of the column is large. 

 

Table 7.4 Numerical summary of pushover analysis results at column failure for various values 

of lpc* (no wall shear strain, no column damage). 

 

 

 

 

 

lpc*     

(mm)

Wall 

Maximum 

Curvature 

(rad/km)

Column 

Maximum 

Curvature 

(rad/km)

Global 

Drift

Normalized 

Global Drift

305 2.65 3.27 1.47% 0.972

610 2.76 3.26 1.51% 1.000

1220 2.92 3.26 1.57% 1.041



328 

 

7.7 Effect of Damage to the Column on its Curvature Demand 

When the column is bent excessively in the event of an earthquake, various levels of damage 

occur at the base of the column where large curvatures are concentrated. Damage can be in the 

form cracking, losing the concrete cover, buckling of reinforcement under compression, and 

fracture of vertical reinforcement in tension. Having a weaker section at the base of the column 

which still needs to sustain the total axial load of the column can decrease column flexibility and 

its drift capacity. 

To study the effect of damage to the column on its drift capacity, two levels of damage are 

considered. The two levels of damage are shown in Figure 5.7 for the standard column. Damage 

level 1 entails loss of the concrete cover on both faces and buckling of vertical reinforcement on 

the compression face. In damage level 2, vertical reinforcement on the tension face of the section 

is ruptured in addition to the damage caused in level 1. Figure 5.8 shows moment-curvature 

responses of column cross-sections at various damage levels. Note that maximum curvature 

capacities are 3.25, 3.20 and 3.30 rad/km for the undamaged, damage level 1 and damage level 2 

sections respectively. 

Damage was assumed to occur at the base of the column over a length equal to the smallest 

column section dimension which in practice is nearly equal to the tie spacing. Pushover analysis 

was done on the column at each of the described damaged levels and the results were compared 

to those of the undamaged column. Moment-curvature response of the damaged section was 

assigned to elements at the base of the column over the height of lpc. Refer to Section 5.4 for a 

discussion on how damage to the section affected moment-curvature response of the column. 

Two sets of analysis were done one with no shear strain of the wall included and the other with 

shear deformation included in wall displacement profile. All other parameters were kept at their 

standard value (see Table 7.1).  

Figure 7.19 shows pushover analysis results of the column at various damage levels when no 

wall shear strain was included in the analysis. Maximum curvature demand of the undamaged 

column closely followed the wall maximum curvature up until softening of the column. 

Maximum curvature demands of the damaged columns however deviated from wall maximum 

curvature from the very beginning of the pushover curve. 
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Figure 7.19 Pushover analysis results of the standard column for various damage levels (no wall 

shear strain). 

 

This observation can be explained looking at curvature profiles of the three columns at the point 

of column failure. Figure 7.20a shows curvature profile of the undamaged column at failure. It is 

seen that column curvatures follow the trend of wall curvatures except for in the column plastic 

hinge zone where column curvatures are concentrated. Shown in Figure 7.20b and Figure 7.20c 

are curvature profiles at failure for the column at damage levels 1 and 2 respectively. In both of 

these cases column maximum curvature occurred at the top of the column damaged zone which 

required the inflection point to be placed at that point during the analysis to ensure no addition of 

maximum bending moment when modeling column post-peak behaviour. This was because 

column shear force was negative in the first storey which was in turn because the damaged 

column section was much softer than the undamaged section. Hence, curvatures reduced from 

top to the bottom of the first storey. The sudden jump in column curvature occurred at the point 

of transition from undamaged to damaged section. Since bending moments where continuous 

over the height of the column, for the same bending moment value, the softer damaged column 

section produced much larger curvatures than the undamaged section. Note that all three 

curvature profiles occurred at different global drift levels. 
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Figure 7.20 Comparison of wall and standard column curvature profiles at column failure: a) 

undamaged column, b) damage level 1, c) damage level 2 (no wall shear strain). 
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Figure 7.21 shows pushover analysis results for the standard column at various damage levels in 

the presence of wall shear strain. Column maximum curvature demand deviated from wall 

maximum curvature from the very beginning of the pushover curve which was the result of wall 

shear strain (see Section 7.3). As column damage progressed, column global drift capacity was 

reduced. 

 

 

 

 

 

 

 

 

 

Figure 7.21 Pushover analysis results of the standard column for various damage levels (wall 

shear strain included). 

 

Figure 7.22 compares wall and column curvature profiles at column failure for various column 

damage levels. Addition of wall shear strain put a large rotation demand at the base of the 

column. Despite the bottom part of the column being softer due to damage, shear force in the 

first storey was always positive which caused column maximum curvature to occur at the base. 

Curvature profile of the undamaged column was smooth despite the highly concentrated 

curvatures in the column plastic hinge zone while curvature profiles of the damaged columns 

experienced a sudden jump at the top of the damaged zone. Again, note that the figures represent 

the state of the column at different global drift levels (different wall maximum curvatures). 
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Figure 7.22 Comparison of wall and standard column curvature profiles at column failure: a) 

undamaged, b) damage level 1, c) damage level 2 (wall shear strain included). 



333 

 

Deformation profiles of the column and the wall in the first storey can give further insight into 

the effect of damage on column behaviour. Figure 7.4 shows deformation profiles of the 

undamaged column at failure with and without wall shear strain. Discussion of those results is 

presented in Section 7.3.  

Figure 7.23 compares wall and column deformation profiles at the point of column failure for 

damage level 1. Results are presented for both cases of no wall shear strain and with wall shear 

strain included. The global drift at which the column failed is also shown on the charts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.23 Comparison of wall and column deformation profiles at the point of column failure 

for damage level 1: a) no wall shear strain, b) wall shear strain included. 
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Comparing Figure 7.4a to Figure 7.23a reveals that damage of the column caused significant 

concentration of curvature at the base of column which translated into concentrated rotation at 

the base of the column. This caused deformation profiles of the wall and the column in the first 

storey to be distinct whereas the two were almost the same in the case of the undamaged column 

Figure 7.4a.  

As mentioned in Section 7.3, wall shear strain demanded extra rotation at the base of the column. 

Since the column could only deform in flexure, it had to distribute curvature along its height to 

accommodate the extra rotation demand. In this case, having a softer section at the base of the 

column helped concentrate curvatures and rotation at the base of the column but since less 

curvature existed in the undamaged parts of the column in the first storey, column global drift 

capacity was still less than the case of the undamaged column (compare Figure 7.4b to 

Figure 7.23b). Analysis results at the point of column failure are summarized in Table 7.5. 

 

Table 7.5 Summary of pushover analysis results demonstrating the effect of damage on column 

drift capacity: a) no wall shear strain, b) wall shear strain included. 

 

 a) 

 

 

 

 b) 

 

 

 

 

Damage 

level

Wall 

Maximum 

Curvature 

(rad/km)

Column 

Maximum 

Curvature 

(rad/km)

Global 

Drift

Normalized 

Global Drift

Column 

Maximum 

Curvature 

Amplification 

Factor

no damage 2.76 3.26 1.51% 1.000 1.18

level 1 1.94 3.23 1.19% 0.787 1.66

level 2 1.79 3.38 1.13% 0.749 1.89

Damage 

level

Wall 

Maximum 

Curvature 

(rad/km)

Column 

Maximum 

Curvature 

(rad/km)

Global 

Drift

Normalized 

Global Drift

Column 

Maximum 

Curvature 

Amplification 

Factor

no damage 1.42 3.28 1.00% 1.000 2.31

level 1 1.11 3.24 0.87% 0.877 2.92

level 2 1.09 3.37 0.87% 0.869 3.09
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Since damage of the column section has significant effect on column drift capacity, variation of 

column drift capacity with height of the damaged zone lpc is studied next. Three values of lpc 

equal to 0.3, 0.6, and 0.9 m were chosen. The 0.3 m value is the standard value used in previous 

analysis. Because bar buckling occurs in between two consecutive ties, it was deemed unrealistic 

to lose the bars at the compression face of the column over a height greater than tie spacing 

which was assumed to be equal to column section width of 0.3 m. Hence damage was only 

modeled in the form of loss of concrete cover to the centre of reinforcement over the length lpc. 

Figure 7.24 shows the pushover analysis results for the columns with various lpc’s. Note that wall 

shear strain was included in the analysis. At lpc equal to 0.3 m, drift capacity of the damaged 

column was less than that of the undamaged column. When lpc was further increased, because the 

column was able to distribute plastic curvatures over a greater height, more inelastic rotation 

could be resisted which caused the drift capacity of the damaged column to increase even 

beyond that of the undamaged column. 

 

 

 

 

 

 

 

 

 

 

Figure 7.24 Increase in column global drift capacity with lpc in the presence of wall shear strain 

(damage to the column was modeled as loss of concrete cover to the centre of reinforcement on 

both faces of the column). 
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Since the column has to withstand a certain axial load, concrete compression depth of the 

damaged section will be larger than that of the undamaged section reducing section curvature 

capacity. However, more inelastic curvature can be concentrated in the damaged zone of the 

column compared to the undamaged case which will increase column drift capacity.  

In conclusion, at small values of lpc, damage to the column always reduced column drift capacity. 

However, if lpc was large enough, additional inelastic rotation coming from concentration of 

plastic curvatures in column’s damaged zone could even increase column drift capacity 

especially in the presence of wall shear strain. 

7.7.1 Simple methods for estimating curvature demand of damaged columns 

due to imposed wall deformation in the presence of wall shear strain 

It is desirable to derive a simple method for estimating curvature demand of columns accounting 

for the effect of damage at the base of the column, particularly when significant wall shear strain 

exists. This can be done by comparing the curvature profiles of the wall and the column (see 

Figure 7.25). 

In a damaged column, inelastic curvatures will be concentrated in the damaged zone close to the 

base of the column. To satisfy deformation compatibility of the wall-column system, the 

column’s flexural deformation from the inelastic curvature concentrated in the damaged zone 

must be equal to the wall first storey shear deformation. 

                          
   

 
  Eq 7.12 

Where     is the average wall shear strain in the first storey. Note that if the wall plastic hinge 

length is several storeys high,     can be conservatively approximated by     . Rearranging 

gives 

   
      

      
   

  

 
    

   
 

Eq 7.13 
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If actual wall maximum curvature is added to    from Eq 7.13, column curvature demand will 

be estimated as shown by Apporx. 1 in Figure 7.26. The accuracy of the prediction confirms that 

the concept behind derivation of Eq 7.13 is correct. 

Eq 7.13 is very similar to Eq 7.9 with    
  replaced by    . Hence, if wall maximum shear strain is 

to be estimated from the shear strain model presented in Section 2.9, the total column curvature 

demand can be obtained similar to Eq 7.11 but with replacing    
  with     as follows. 

               [     
       

   
] 

Eq 7.14 

 

 

 

 

 

 

 

 

 

 

Figure 7.25 Schematics of a) curvature profile of the shear wall, b) shear strain profile of the 

shear wall, and c) curvature profile of the damaged gravity-load column 

 

The line labelled Approx. 2 in Figure 7.26 is obtained using the ultimate wall concrete 

compression depth in Eq 7.14 which results in overestimating of wall maximum shear strain and 
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consequently overestimation of column curvature demand. If wall concrete compression depth is 

calculated from section analysis at every wall maximum curvature, Approx. 3 will result which 

is less conservative as expected.  

Either of approximations 2 and 3 seems to grossly overestimate curvature demand of a damaged 

column. This deficiency is because the wall maximum shear strain was used instead of the wall 

average shear strain in the first storey. The accuracy of the prediction can be improved if the wall 

average curvature over the first storey height is used to estimate wall shear strain from the model 

presented in Section 2.9 instead of the wall maximum curvature used here. 

 

 

 

 

 

 

 

 

 

 

Figure 7.26 Estimating curvature demand of the damaged column from wall maximum 

curvature in the presence of wall shear strain. 
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7.8 Taller First Storey 

It is common to design high-rise concrete buildings that have a taller first or first few storeys. 

The taller storey(s) at the base usually functions as a shopping mall, mezzanine, lobby, or a 

ballroom and hence requires a higher ceiling than typical floors. In this type of construction, the 

first floor can be as high as 5 times a typical storey height. The column not being tied closely to 

the wall at the base by floor slabs can relax the constraints on column deformation profile; 

hence, a different flexural deformation profile can be expected of the column. 

To investigate the consequences of eliminating the first few floor slabs connecting the column to 

the wall, the standard wall and column section were considered with the first floor height being 

1, 2, 3, 4, and 5 times the typical. This meant that the first storey height was 2.7, 5.5, 8.2, 11.0, 

and 13.7 m respectively. Height of column plastic curvature zone was kept constant for all cases. 

To investigate the effect of damage of the column in addition to the influence of having a taller 

first storey, analysis were also carried out for damage level 1. Refer to Section 5.4 for definition 

of various levels of damage and a discussion on how damage to the section affected moment-

curvature response of the column. Analysis was done both including and excluding wall shear 

deformation since wall shear strain was proved to have significant effect on column maximum 

curvature demand.  

Figure 7.27 shows pushover curves for the undamaged column with various first storey heights 

for the case where no wall shear strain was included. As the first storey height increased from 

2.7 to 8.2 m, global drift capacity decreased. Since the wall deformation profile was purely 

flexural, connecting the column to the wall at closely spaced floor slabs enabled the wall to bend 

the column more gradually such that the column could distribute curvature over the bottom 8.2 

m of its height. When the first floor height was 8.2 m or in other words the second and third floor 

slabs were eliminated, bending moment diagram of the column had to be linear in the bottom 8.2 

m forcing significant curvature concentration at the base of the column which reduced column 

global drift capacity. 

The complete opposite trend was observed when column first storey height was increased 

beyond 8.2 m where column global drift capacity increased with first storey height. This can be 

explained bearing in mind that wall plastic hinge length was 8.2 m. In general, column maximum 
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curvature demand is highly sensitive to the target deformation value at first floor level which 

puts a certain rotation demand on the column. When column first storey height increased beyond 

wall plastic hinge length, because wall curvatures were elastic above the plastic hinge length, 

little rotation demand was added to the column while the taller first storey height of the column 

enabled it to distribute curvature more evenly throughout its height. This resulted in less 

concentration of curvature at the base of the column and hence higher global drift capacity. 

 

 

 

 

 

 

 

 

 

Figure 7.27 Pushover analysis results for columns with various first storey heights (no wall 

shear strain, no damage of the column). 

 

Figure 7.28 compares the wall curvature profile to that of the columns with various first storey 

heights at the point of column failure. Note how the difference in maximum curvatures of the 

wall and the column is related to global drift capacity. Pushover analysis results can be further 

explained by looking at the shape of column deformation profiles at failure. All column 

deformation profiles were normalized to give a unit deformation at 13.7 m above the base (see 

Figure 7.29a). From Figure 7.29c it is clear how column drift capacity is tied to the rotation 

demand at the base of the column. Higher rotation at the base resulted in decreases drift capacity. 
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Figure 7.28 Comparison of wall and column curvatures at failure for various column first storey 

heights of: a) 2.7 m, b) 8.2 m, c) 13.7 m (no wall shear strain, no damage of the column). 
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Figure 7.29 Comparison of shape of column deformation profiles at failure for various first 

storey heights of: a) 2.7 m, b) 8.2 m, c) 13.7 m (no wall shear strain, no damage of the column). 
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A similar trend was observed when column damage was modeled. However, the variation in 

column drift capacity with first storey height was relatively smaller. This was because having a 

softer section at the base of the column enabled the column to better resist curvature 

concentration at the base. 

Table 7.6 shows a summary of pushover analysis results at column failure for both cases of 

undamaged and damaged column. Although damage of the column generally reduced column 

drift capacity, the drops in drift capacity relative to the standard case of uniform storey height of 

2.7 m was less when column damaged was modeled. 

 

Table 7.6 Summary of pushover analysis results for columns with various first storey heights at 

failure for: a) undamaged column, b) damaged column (no wall shear strain). 

 

  a) 

 

 

 

 

  b) 

 

 

 

 

 

First 

Storey 

Height 

(m)

Wall 

Maximum 

Curvature 

(rad/km)

Column 

Maximum 

Curvature 

(rad/km)

Global 

Drift

Normalized 

Global Drift

2.7 2.76 3.26 1.51% 1.000

5.5 2.30 3.29 1.27% 0.841

8.3 1.97 3.27 1.15% 0.763

11.0 2.09 3.31 1.19% 0.790

13.7 2.26 3.25 1.25% 0.831

First 

Storey 

Height 

(m)

Wall 

Maximum 

Curvature 

(rad/km)

Column 

Maximum 

Curvature 

(rad/km)

Global 

Drift

Normalized 

Global Drift

2.7 1.94 3.23 1.19% 1.000

5.5 1.61 3.24 1.02% 0.858

8.3 1.47 3.23 0.97% 0.814

11.0 1.53 3.24 0.99% 0.833

13.7 1.63 3.27 1.03% 0.863
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A rather different behaviour was seen when wall shear strain was included in the wall 

deformation profile. In the presence of wall shear strain, global drift capacity of the column kept 

increasing with first storey height as shown in Figure 7.30. 

 

 

 

 

 

 

 

 

 

Figure 7.30 Pushover analysis results for columns with various first storey heights (wall shear 

strain included, no damage of the column). 

 

In the presence of wall shear strain, the column could still only deform in flexure and had to 

meet target displacement values at floor levels by distributing curvature over its height. Addition 

of wall shear strain put an extra rotation demand at the base of the column as discussed in detail 

in Section 7.3. As column first storey height became larger or in other words as floor slabs were 

eliminated, the column had the freedom to distribute curvature more evenly throughout a taller 

height which resulted in less curvature concentration at the base and consequently higher drift 

capacity. 

Figure 7.31 compares wall and column curvature profiles at the point of column failure. It is 

clearly seen how eliminating the lower floor slabs that connect the wall to the column relaxed the 

constraints on column deformation profile and allowed for a better curvature distribution over 

the height of the column.   
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Figure 7.31 Comparison of wall and undamaged column curvature profiles at failure for various 

column first storey heights of: a) 2.7 m, b) 8.2 m, c) 13.7 m (no wall shear strain). 
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Again, a similar trend was observed when column damage was modeled. Similar to the case with 

no wall shear strain, the variation in column drift capacity with first storey height was relatively 

smaller than that for the undamaged column.  

Table 7.7 shows a summary of pushover analysis results at column failure for both cases of 

undamaged and damaged column when wall shear strain was included. Although damage of the 

column generally reduced column drift capacity, the increase in drift capacity relative to the 

standard case of uniform storey height of 2.7 m was less when column damaged was modeled. 

 

Table 7.7 Summary of pushover analysis results for columns with various first storey heights at 

failure for: a) undamaged column, b) damaged column (wall shear strain included). 

 

 

  a) 

 

 

 

 

  b) 

 

 

 

 

 

First 

Storey 

Height 

(m)

Wall 

Maximum 

Curvature 

(rad/km)

Column 

Maximum 

Curvature 

(rad/km)

Global 

Drift

Normalized 

Global Drift

2.7 1.42 3.28 1.00% 1.000

5.5 1.57 3.29 1.02% 1.018

8.3 1.63 3.31 1.04% 1.040

11.0 1.80 3.27 1.10% 1.104

13.7 2.04 3.30 1.19% 1.191

First 

Storey 

Height 

(m)

Wall 

Maximum 

Curvature 

(rad/km)

Column 

Maximum 

Curvature 

(rad/km)

Global 

Drift

Normalized 

Global Drift

2.7 1.11 3.24 0.87% 1.000

5.5 1.18 3.22 0.87% 0.997

8.3 1.21 3.22 0.88% 1.011

11.0 1.34 3.21 0.93% 1.064

13.7 1.46 3.23 0.98% 1.115
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7.9 Fixity of the Column at the Base 

In the analysis results presented so far in this chapter, the column was assumed to be fully fixed 

against rotation at the base. Although this is an ideal assumption and the zero rotation condition 

at the base of the column does not exist in the real world, the model is a good representation of 

the case when the gravity-load column rests on very long basement walls (Figure 7.32). 

On the other hand, not all columns rest on shear walls. In buildings with basement levels, 

gravity-load columns usually continue below grade all the way to the foundation level. Basement 

storeys are surrounded by perimeter earth retaining walls. These walls make the entire basement 

storeys act like a solid box due to their high in-plane stiffness allowing basement floor slabs to 

have very little lateral deformation. If no beams run in between the columns and the floors are 

flat concrete slabs, they do not offer considerable resistance against column rotation; hence, out-

of-plane rotational rigidity of the slabs can be neglected. In such a building, having the column 

pinned at floor levels below the grade with no lateral deformation at the pin levels would be a 

good analytical model for column boundary conditions below grade (Figure 7.33). 

 

 

 

 

 

 

 

 

 

 

Figure 7.32 Column resting on a stiff basement walls: a) real structure, b) idealization. 



348 

 

 

 

 

 

 

 

 

 

 

Figure 7.33 Column continuing below grade: a) real structure, b) idealization. 

 

The two cases presented in the figures above are the extremes in terms of column boundary 

condition below grade level. In the presence of floor beams or slab bands, rotational rigidity of 

the members framing into the column at floor levels should be taken into account (see 

Section 7.11). However, comparing column behaviour in these two extreme cases will result in a 

better understanding of the importance of modelling the correct column boundary conditions. 

The same nonlinear structural analysis procedure used for columns fixed at the base can still be 

applied to columns with basement levels. The desired number of floors is added with the 

corresponding target displacement values set at zero at basement floor slabs.  

The first step is to determine how column global drift capacity is affected by the number of 

floors below the grade considered similar to the analysis carried out in Section 6.9. The standard 

column described in Section 7.2 was modeled with 0, 1, 2, 3, 4, and 5 levels below grade and 

pushed to failure. Summary of results is shown in Figure 7.34. 
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Figure 7.34 Effect of number of basement floors on column drift capacity. 

 

Four cases were studied. Two settings for wall shear strain (with and without including shear 

strain in wall deformation profile) were used and the analysis was done with and without 

modeling damage of the column. According to Figure 7.34, when the number of modeled 

basement floors increased beyond three, the change in column drift capacity was insignificant. It 

is then concluded that even if the building has more than three basement levels, modeling three 

floors below grade will give an accurate estimate of the column global drift capacity. 

When no shear strain was included in the wall deformation profile, modeling basement floors 

increased column drift capacity by less than 10% while when shear strain was added to wall 

flexural deformations, an additional 50% drift capacity was achieved. As mentioned earlier in 

this chapter, wall shear strain creates an additional rotation demand at the base of a column fixed 

at the grade level. When the column continued below grade, a significant part of the additional 

rotation demand due to wall shear strain was cancelled out by rotation of the column at grade 

level in the same direction. This enabled the column to exhibit the target displacement profile 

without needing to bend excessively at the grade level which resulted in additional drift capacity. 
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Figure 7.35 shows slope and deformation profiles of the standard column at failure when five 

floors below grade level were modeled. The column merely bends below the third basement 

level but has a rotation of more than 0.001 rad at the grade level. The deformation profiles shows 

how the column was sleeved against displacement at floor levels below grade due to presence of 

basement walls but was free to rotate. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.35 a) slope, and b) deformation profiles of the undamaged column with five basement 

floors at failure (no wall shear strain). 

 

To study the effect of column fixity at grade level, the four cases with the column continuing 

three floors below the grade were examined in more detail. Pushover analysis results for the 

undamaged and damaged columns when no wall shear strain was included are shown in 

Figure 7.36. It was shown in the previous sections of this chapter that for a column fixed at the 

base, maximum curvatures of the undamaged column and that of the wall were identical along a 
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great part of the pushover curve. Column maximum curvature demand was higher than wall 

maximum curvature at the point of column failure. When three basement levels were added, 

column maximum curvature demand dropped to be even less than wall maximum curvature for 

the majority of the curve and nearly equal to wall maximum curvature at column failure. In 

comparison to the fixed-base column, adding three basement levels increased column drift 

capacity from 1.51% to 1.67%. Drift capacity of the damaged column however did not increase 

after adding three basement levels which can be best explained by looking at curvature profiles 

of the column and the wall at the point of column failure (Figure 7.37). 

 

 

 

 

 

 

 

 

 

 

Figure 7.36 Pushover analysis results for the standard column continuing 3 levels below grade 

(no wall shear strain). 

 

It is striking to see that column maximum curvature occurs at the top of the first storey and not at 

the grade level. Since wall shear strain was excluded from the analysis, deformation profile of 

the wall was purely flexural. Flexural deformations result from integrating curvatures along the 

height of the wall and need more height to develop significant drifts than shear deformation. This 

causes the deformation at the first floor level to be much less than that of the second floor and 



352 

 

the levels above. With the column being free to rotate at the grade level, the column could 

accommodate the target displacement at first floor level without bending severely. But since the 

target deformation at the second floor level was considerably larger, the column was forced to 

concentrate inelastic curvatures on either side of the second floor slab to meet the target 

deformation profile of the wall. Because of this, the column plastic curvature model presented in 

Section 6.3 needed to be applied on both sides of the maximum column curvature location with 

the same assumptions on column plastic curvature distribution. 

 

  

 

 

 

 

 

 

 

 

 

Figure 7.37 Curvature profiles of the standard column with 3 basement levels at failure: a) 

undamaged column, b) damaged column (no wall shear strain). 

 

Having the maximum column curvature at the top of the first storey as opposed to the column 

plastic hinge being at the grade level in the case of the fixed-base column resulted in less 

contribution from column plastic curvatures to global drift capacity. This negative effect was 

balanced by the additional drift capacity gained from column being able to rotate at grade level. 
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Figure 7.38 shows pushover analysis results for the column with three basement levels when 

wall shear strain was included in the wall deformation profile. In the case of the undamaged 

column, maximum curvature demand was less than wall maximum curvature over a large part of 

the curve and increased to be greater than wall maximum curvature only when the column 

experienced highly nonlinear behaviour. In comparison to the case with the same column fixed 

at the base where column maximum curvature demand was always greater than wall maximum 

curvature, addition of three basement floors increased column drift capacity from 1.00% to 

1.51%. Wall shear strain increased the deformation at first floor level by a significant percentage 

which put a high rotation demand at the base of the column fixed at grade level. With the 

addition of basement, the column was allowed to rotate at grade level allowing the column to 

tolerate the rotation demand from wall shear strain without the need to bend excessively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.38 Pushover analysis results for the standard column continuing 3 levels below grade 

(wall shear strain included). 
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As for the damaged column, maximum curvature demand was consistently greater than wall 

maximum curvature but the difference between the two was much less than the case of the fixed-

base column. Drift capacity of the damaged column increased from 0.87% to 1.19% when three 

basement floors were added. The observed behaviour can be explained by comparing column 

and wall curvature profiles at the point of column failure (Figure 7.39). 

 

  

 

 

 

 

 

 

 

 

 

Figure 7.39 Curvature profiles of the standard column with 3 basement levels at failure: a) 

undamaged column, b) damaged column (wall shear strain included). 

 

Unlike the cases where no wall shear strain was included in the wall deformation profile, in the 

presence of wall shear strain, column maximum curvature occurred at the grade level similar to 

all cases with a fixed-base column. This means the global drift resulting from column plastic 

curvatures were similar to the cases of the columns with and without basement floors while 

having the column free to rotate at the grade level increased column drift capacity.  
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Table 7.8 summarizes column drift capacities for the entire parametric study carried out on the 

fixed-base standard column. Note that highlighted cells represent the standard case. 

 

Table 7.8 Summary of global drift capacity of the fixed-base standard column. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The entire parametric study that was done on the fixed-base standard column was repeated for 

the case where the column had 3 basement floors. Drift capacities of the standard column with 

three basement levels are summarized in Table 7.9. Again, the highlighted cells represent the 

standard case and hence have the same numeric value. 

Undamaged Damaged Undamaged Damaged

0.6 3.66% 2.57% 2.15% 1.83%

0.9 2.69% 1.86% 1.61% 1.38%

1.2 2.18% 1.47% 1.34% 1.06%

1.8 1.51% 1.19% 1.00% 0.87%

2.4 1.11% 0.79% 0.72% 0.57%

7.8 1.45% 1.14% 0.95% 0.85%

8.2 1.51% 1.19% 1.00% 0.87%

9.4 1.63% 1.25% 1.07% 0.93%

10.9 1.81% 1.37% 1.15% 1.00%

12.5 2.00% 1.48% 1.29% 1.08%

305 1.47% 1.09% 0.97% 0.82%

610 1.51% 1.19% 1.00% 0.87%

1220 1.57% 1.28% 1.03% 1.02%

0 1.51% 1.19% ----- -----

25 ----- ----- 1.32% 1.09%

50 ----- ----- 1.18% 1.00%

75 ----- ----- 1.06% 0.94%

100 ----- ----- 1.00% 0.87%

0 1.51% ----- 1.00% -----

1 ----- 1.19% ----- 0.87%

2 ----- 1.13% ----- 0.87%

2.7 1.51% 1.19% 1.00% 0.87%

5.5 1.27% 1.02% 1.02% 0.87%

8.3 1.15% 0.97% 1.04% 0.88%

11.0 1.19% 0.99% 1.10% 0.93%

13.7 1.25% 1.03% 1.19% 0.98%
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Table 7.9 Summary of global drift capacity of the standard column with three basements 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Comparing Table 7.9 to Table 7.8 one could tell the similarities and differences in column 

behaviour with and without basement levels. The trend in change of column global drift capacity 

with column length, wall plastic hinge length, height of column plastic hinge zone, and column 

damage level is the same for both the fix-based column and the one with three basements. 

Hence, the same logic used in previous sections to describe the behaviour of the fix-based 

column apply to the case were the column has three basement levels.  

Undamaged Damaged Undamaged Damaged

0.6 4.23% 2.00% 3.68% 2.02%

0.9 2.96% 1.72% 2.58% 1.69%

1.2 2.32% 1.48% 2.05% 1.41%

1.8 1.67% 1.19% 1.51% 1.19%

2.4 1.34% 1.02% 1.23% 1.02%

7.8 1.60% 1.15% 1.43% 1.13%

8.2 1.67% 1.19% 1.51% 1.19%

9.4 1.76% 1.24% 1.62% 1.24%

10.9 1.89% 1.30% 1.81% 1.38%

12.5 2.03% 1.40% 2.02% 1.49%

305 1.62% 1.13% 1.47% 1.12%

610 1.67% 1.19% 1.51% 1.19%

1220 1.74% 1.35% 1.57% 1.30%

0 1.67% 1.19% ----- -----

25 ----- ----- 1.84% 1.25%

50 ----- ----- 1.83% 1.32%

75 ----- ----- 1.64% 1.25%

100 ----- ----- 1.51% 1.19%

0 1.67% ----- 1.51% -----

1 ----- 1.19% ----- 1.19%

2 ----- 1.10% ----- 1.06%

2.7 1.67% 1.19% 1.51% 1.19%

5.5 1.82% 1.32% 1.41% 1.11%

8.3 1.50% 1.17% 1.30% 1.06%

11.0 1.43% 1.15% 1.32% 1.07%

13.7 1.47% 1.17% 1.39% 1.11%Fi
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However, while stepwise addition of wall shear strain to wall deformation profile progressively 

decreased the drift capacity of the fixed-base column, drift capacity of the column with three 

basements fluctuated as percentage of applied wall shear strain increased. This unexpected 

behaviour can be explained by looking at curvature profiles at column failure for different levels 

of wall shear strain (Figure 7.40).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.40  Curvature profiles of the undamaged standard column with three basement levels 

at failure: a) no wall shear strain applied (global drift = 1.67%), b) 50% of wall shear strain 

applied (global drift = 1.83%), c) 100% of wall shear strain applied (global drift = 1.51%). 
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When no wall shear strain was applied (Figure 7.40a), column maximum curvature was located 

at the top of the first storey as expected. At 50% applied wall shear strain (Figure 7.40b) the 

additional rotation demand at first floor level made the column maximum curvature occur at the 

base. Since at column failure shear force in the first storey was nearly zero, a lot of inelastic 

curvature was concentrated over the entire height of the first storey which increased column drift 

capacity significantly. This made the column to demonstrate its highest drift capacity when 50% 

of wall shear strain was applied. As the percentage of applied wall shear strain was further 

increased (Figure 7.40c) less inelastic curvature was accumulated in the first floor reducing wall 

global drift capacity.  

The trend in change of column drift capacity with height of the first storey is also different for 

the two cases of the fixed-base column and the one with three basements. The difference can be 

explained by looking at how wall deformation profile (column target displacements at floor 

levels) can be accommodated by column boundary conditions and first floor height. A similar 

approach used to describe the unexpected behaviour of the column with three basements at 

various levels of applied wall shear strain can be used to explain the trend in change of column 

flexibility with first storey height. The figures and discussion is therefore excluded from the text 

for brevity.  

A few summary figures are presented next to facilitate comparison between column behaviour 

with a fixed based and with three basements. The trend in variation of column global drift 

capacity with respect to height of column plastic curvature zone, wall plastic hinge length, and 

column damage level was so simple and so similar for both cases of column boundary conditions 

at grade level that is excluded from the summary figures below. Effect of column length, 

percentage of wall shear strain applied, and column first storey height is compared for the two 

cases of fixed-base column and the column with three basements in the figures below. As 

expected, columns continuing below grade reach their curvature capacity at a higher building 

global drift compared to the fixed-base columns. This is attributed to the added flexibility at the 

base of the column due to presence of basement floors. 
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Figure 7.41 Effect of column length on global drift capacity of the undamaged standard column. 

 

 

 

 

 

 

 

 

 

 

Figure 7.42 Effect of percentage of applied wall shear strain on global drift capacity of the 

undamaged standard column. 
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Figure 7.43 Effect of taller first storey on global drift capacity of the undamaged standard 

column. 

 

7.9.1 Simple methods for estimating column curvature demand due to 

imposed wall deformation with column continuing below grade level 

The column continuing below grade through basement levels allows for rotation of the column at 

grade level and reduces column curvature demand. It is therefore beneficial to take advantage of 

this relaxation of column curvature demand in design. 

Figure 7.44 shows curvature profile of the column below grade. Note that the column was 

considered to be fixed against lateral displacement at basement floor slab levels due to presence 

of stiff basement walls. The curvature profile shown in the figure was obtained using moment 

distribution structural analysis procedure assuming that the column continues for several floor 

below grades and remains elastic in that region. The total rotation of the column at grade level 

could then be found by integrating column curvatures below grade or would simply be equal to 

the net area enclosed by the column curvature profile below grade. 
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Figure 7.44 Schematic curvature profile of a column continuing below grade level in a building 

with rigid basement walls. 

 

The net rotation occurring in the first basement storey would then be 

         (
     

 
 

     

 
)              

Eq 7.15 

The net rotation occurring in the second basement storey would be that occurring in the first 

divided by 3.5 and in the opposite direction to   . 

   
      

   
                    

Eq 7.16 
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Considering that the column curvature profile decreases in magnitude rapidly down the basement 

floors, it is accurate enough to consider only the first two basement storeys in calculating column 

rotation at the base. 

        
      

 
 

Eq 7.17 

If wall shear strain is treated as rotation of the column support (see Figure 7.5) then the rotation 

of the column at its base can simply be subtracted from average wall shear strain. If the storey 

heights above and below the grade are equal, a procedure similar to that used to derive Eq 7.3 

can be used to obtain the additional column curvature demand from wall shear strain. 

   
           

 
 Eq 7.18 

Wall maximum shear strain is used instead of wall average shear strain over the first storey 

assuming that wall plastic hinge length is several storeys high. 

Approx. 1 shown in Figure 7.45 gives estimates of column curvature demand using Eq 7.18. The 

prediction is quite accurate up until when the column experiences severe inelastic behaviour 

where column curvature demands are underestimated. 

This concept can be further simplified for design purpose if the wall shear strain model presented 

in Section 2.7 is used to get wall maximum shear strain. 
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Eq 7.19 

Hence, the total column curvature demand would be 
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Eq 7.20 
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Figure 7.45 Estimation of column curvature demand due to imposed wall deformation with 

column continuing below grade for several basement levels (wall shear strain included). 

 

If wall ultimate concrete compression depth is used, the line labelled Approx. 2 in Figure 7.45 

will result which consistently over estimates column curvature demand. If wall concrete 

compression depth is calculated from section analysis at each given wall maximum curvature, 

the line labelled Approx. 3 in Figure 7.45 will be obtained. Approx. 3 is less conservative than 

Approx. 2 at smaller wall maximum curvatures but converges to Approx. 2 at higher wall 

maximum curvatures as expected. 

Another approach would be to use the deformation compatibility of the wall-column system at 

the second floor level similar to that done to obtain Eq 7.9. Rotation of the base of the column θ 

due to column curvatures below grade can be directly deducted from wall shear strain as follows. 

   
      

   
 

 
Eq 7.21 
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The line called Approx. 4 in Figure 7.46 gives estimations of the column curvature demand 

using the actual wall maximum shear strain in Eq 7.21. As can be seen, the method does a good 

job of predicting column curvature demand except for when the column becomes highly 

nonlinear. 

To simplify the method even further, the shear strain model introduced in Section 2.7 is used for 

maximum wall shear strain. 
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Eq 7.22 

With some approximation, the equation above becomes 
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Eq 7.23 

The total column curvature demand will then be 

       [  
       

    
 

] 
Eq 7.24 

If the wall ultimate concrete compression depth is used throughout, the line labeled Approx. 5 in 

Figure 7.46 will result which consistently overestimates column curvature demand. If the wall 

concrete compression depth is calculated from section analysis at each given wall maximum 

curvature, the line called Approx. 6 in Figure 7.46 will be obtained.  Approx. 6 is less 

conservative than Approx. 5 at smaller wall maximum curvatures but converges to Approx. 5 at 

higher wall maximum curvatures as expected. Overestimation of column curvature demand in 

Approx. 5 and 6 is mainly because the shear strain model presented in Section 2.7 overestimates 

wall maximum shear strain. 

 

 

 



365 

 

 

 

 

 

 

 

 

 

 

Figure 7.46 Estimating column curvature demand due to imposed wall deformation with column 

continuing below grade for several basement levels (wall shear strain included). 

 

If the column is damaged, a similar strategy can be used to estimate column curvature demand 

by simply replacing    
  with    . 

   
      

   
 

Eq 7.25 

If the actual wall maximum shear strain is used in Eq 7.25, column curvature demand will be 

predicted as Approx. 1 in Figure 7.47. The method predicts column curvature demand 

reasonably accurately up until when the column demonstrates highly nonlinear behaviour. 

With the use of the shear strain model presented in Section 2.9, Eq 7.25 can be expanded as 

follows similar to the manner by which Eq 7.24 was obtained. 
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Figure 7.47 Estimation of column curvature demand due to combined effects of the imposed 

wall deformation with column continuing for several basement levels and column damage 

 

       [  
       

    
] 

Eq 7.26 

Again, if the wall ultimate concrete compression depth is used throughout, the line labeled 

Approx. 2 in Figure 7.47 will result which consistently over estimates column curvature demand. 

If the wall concrete compression depth is calculated from section analysis at each given wall 

maximum curvature, the line called Approx. 3 in Figure 7.47 will be obtained. Approx. 3 is less 

conservative than Approx. 2 at smaller wall maximum curvatures but converges to Approx. 2 at 

higher wall maximum curvatures as expected. 

In summary, the simple methods formulated in this section can reasonably accurately predict 

column curvature demand when the column is able to rotate at grade level due to presence of 

basement floors. Although the formulas were derived for the special case of uniform storey 

heights, the same concept can be used to obtain formulas for other cases. 
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7.10 Inter-storey Drift 

Inter-storey drift capacity is a useful parameter often used as a measure of column flexibility. In 

the analysis carried out in this chapter, because wall plastic hinge was modeled at the base, at the 

point of column failure, maximum inter-storey drift always occurred in the first storey. 

Therefore, in this study, maximum inter-storey drift is equivalent to the first storey drift. 

Table 7.10 and Table 7.11 give a summary of first storey drifts at column failure for the fixed-

base standard column and for the one with three basement level respectively. Comparing first 

storey drifts at column failure to the corresponding global drift capacities one can find similar 

trends in how the column flexibility varies with respect to various analysis parameters. Looking 

at the section in the tables where the effect of applied wall shear strain is studied or comparing 

the numbers for the case with no wall shear strain to those with wall shear strain shows what a 

tremendous effect wall shear strain on column inter-storey drift capacity. As before, numbers 

corresponding to the standard case are highlighted. 

In Figure 7.48 all data points from the analysis carried out in this chapter are plotted. Clearly, it 

is impossible to find a distinct relationship between maximum inter-story drift and global drift 

from this plot. However, it was found that while global drift ranged from 0.8% to 2.0%, inter-

storey drift varied from 0.2% to 1.0%. 

Because the columns were forced to have the same lateral deformation at floor slab levels as 

those of the wall, the relationship between maximum inter-storey drift and global drift at the 

point of column failure becomes independent of column parameters. In other words, this 

relationship only depends on the shape of the wall deformation profile and is not influenced by 

column parameters such as column length, column damage level, fixity of the column at the 

base, and height of column plastic hinge zone. This phenomenon is demonstrated in Figure 7.49. 

A straight line can be fitted to the data points which suggests that first-storey drift and global 

drift are proportional for the same wall; a consequence of assuming bilinear curvature 

distribution along the height of the wall. Shear strain changes the slope of the fitted straight line 

because wall shear strain changes the shape of the wall lateral deformation profile and hence the 

relationship between inter-storey and global drifts.  
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Table 7.10 Summary of first storey drift capacity of the fixed-base standard column. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Effect of wall plastic hinge length on the relationship between inter-storey and global drift is 

demonstrated in Figure 7.50. Again, walls with and without shear strain are distinguished 

because of the change in wall deformation profile due to various levels of wall shear strain 

included. 

Undamaged Damaged Undamaged Damaged

0.6 1.01% 0.67% 0.73% 0.60%

0.9 0.71% 0.45% 0.50% 0.40%

1.2 0.55% 0.33% 0.39% 0.27%

1.8 0.34% 0.24% 0.24% 0.19%

2.4 0.29% 0.19% 0.22% 0.15%

7.8 0.34% 0.24% 0.24% 0.19%

8.2 0.34% 0.24% 0.24% 0.19%

9.4 0.35% 0.25% 0.24% 0.20%

10.9 0.35% 0.25% 0.24% 0.20%

12.5 0.36% 0.27% 0.24% 0.20%

305 0.33% 0.23% 0.21% 0.17%

610 0.34% 0.24% 0.24% 0.19%

1220 0.36% 0.26% 0.27% 0.25%

0 0.34% 0.24% ----- -----

25 ----- ----- 0.31% 0.23%

50 ----- ----- 0.28% 0.21%

75 ----- ----- 0.25% 0.20%

100 ----- ----- 0.24% 0.19%

0 0.34% ----- 0.24% -----

1 ----- 0.24% ----- 0.19%

2 ----- 0.22% ----- 0.19%

2.7 0.34% 0.24% 0.24% 0.19%

5.5 0.50% 0.35% 0.40% 0.31%

8.3 0.56% 0.42% 0.51% 0.39%

11.0 0.68% 0.51% 0.63% 0.49%

13.7 0.80% 0.60% 0.77% 0.58%Fi
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Table 7.11 Summary of first storey drift capacity of the standard column with three basements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When the column had a taller first storey, maximum inter-storey drift still occurred in the first 

storey and was calculated by dividing the lateral deformation at the top of that storey by the 

corresponding storey height. This change in definition of maximum inter-storey height also 

changed the relationship between maximum inter-storey and global drifts (see Figure 7.51).  

Undamaged Damaged Undamaged Damaged

0.6 1.19% 0.49% 1.38% 0.68%

0.9 0.79% 0.41% 0.91% 0.54%

1.2 0.59% 0.33% 0.69% 0.42%

1.8 0.39% 0.24% 0.46% 0.32%

2.4 0.29% 0.19% 0.34% 0.25%

7.8 0.39% 0.24% 0.45% 0.32%

8.2 0.39% 0.24% 0.46% 0.32%

9.4 0.38% 0.24% 0.46% 0.32%

10.9 0.37% 0.22% 0.47% 0.33%

12.5 0.37% 0.22% 0.49% 0.33%

305 0.37% 0.22% 0.44% 0.30%

610 0.39% 0.24% 0.46% 0.32%

1220 0.41% 0.29% 0.49% 0.37%

0 0.39% 0.24% ----- -----

25 ----- ----- 0.48% 0.28%

50 ----- ----- 0.52% 0.33%

75 ----- ----- 0.48% 0.33%

100 ----- ----- 0.46% 0.32%

0 0.39% ----- 0.46% -----

1 ----- 0.24% ----- 0.32%

2 ----- 0.23% ----- 0.29%

2.7 0.39% 0.24% 0.46% 0.32%

5.5 0.77% 0.50% 0.63% 0.44%

8.3 0.79% 0.56% 0.70% 0.52%

11.0 0.85% 0.63% 0.80% 0.60%

13.7 0.97% 0.71% 0.93% 0.68%
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Figure 7.48 Relationship between inter-storey drift and global drift at column failure: all data 

points plotted. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.49 Relationship between inter-storey drift and global drift at column failure for all data 

points with lpw*=8.2m and first floor height of 2.74m. 
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Figure 7.50  Relationship between inter-storey drift and global drift for various wall plastic 

hinge lengths (first floor height=2.74m). 

 

 

 

 

 

 

 

 

 

 

Figure 7.51 Relationship between inter-storey drift and global drift for various first storey 

heights (wall plastic hinge length=8.2m). 
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7.11 Effect of Members Framing into the Column on its Curvature Demand 

So far in this chapter, the flexural stiffness of members framing into the column such as floor 

slabs or beams has been ignored as the framing members were modeled as pin-ended rigid links 

forcing the column to have the same horizontal deformation as that of the wall at storey levels. 

While this is a good approximation when the framing members are thin flat plate slabs, it 

underestimates column curvature demand in a building with relatively stiff beams running 

between columns. Assuming the building has uniformly-spaced identical floor slabs or framing 

members throughout its height, additional column curvature demand due to flexural stiffness of 

the framing members would be the largest in areas where the building drift is the largest. In a 

shear wall building with the wall hinging at the base, maximum building drifts occur near the top 

of the building. In that region, wall curvatures are elastic and almost negligible. The wall is not 

bent and undergoes rigid body movement. Storey height is often constant near the top of the 

building and floor slabs, beams, and columns do not change in cross-section. 

Figure 7.52 shows a scheme of the region near the top of a building with relatively thin framing 

members and relatively stiff columns. In this case, the framing members will bend in double 

curvature. If the flexural stiffness of the framing member is totally ignored, the column will not 

bend at all and will have a deformation profile identical to the wall. In this case, no curvature 

will be induced in the column. Accounting for flexural stiffness of these members forces the 

beam-column joints to rotate less than the wall drift    and puts the column in double curvature; 

hence, column curvature demand will no longer be zero. 

Figure 7.53 shows a similar scheme but for a building with very stiff beams framing into 

relatively flexible columns. If the beams are stiff enough, they will bend in single curvature and 

the beam-column joints will rotate in the opposite direction of the building drift. The columns 

will again bend in double curvature; however, the column curvature demand will be much 

greater than the case presented in Figure 7.52. 

This section provides a simple method for estimating additional column curvature demand due to 

flexural stiffness of members framing into the column near the top of a shear wall building. The 

objective of the section is to assist with the decision making on whether or not framing action 

causes significant additional curvature demands on the column.  
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Figure 7.52 Thin slabs framing into a relatively stiff gravity-load column. 

 

Because the building drift is uniform near the top of the building and the wall is not bent, little 

nonlinear behaviour is expected from other structural members in that region. No severe 

cracking is likely to occur in the columns, beams, floor slabs, or beam-column joints. Hence, the 

flexural behaviour of the members in that region can be accurately modeled using an effective 

elastic flexural stiffness. Elastic analysis can then be used to calculate additional column 

curvature demand resulting from the flexural stiffness of members framing into the column. This 

is a fundamental assumption on which the derivations in this section are based. 
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Figure 7.53 Stiff beams framing into a relatively flexible gravity-load column. 

 

Considering the frame ABDE and using slope-deflection formulation, the internal moments in 

the framing member AB and the columns BD and BE can be written in terms of the joint 

rotations (θ) and member chord rotation (Ψ) as follows. 

    
    
  

[           ] Eq 7.27 

    
    
 

[           ] 
Eq 7.28 

    
    
 

[           ] 
Eq 7.29 
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In the upper portion of a shear wall where wall curvatures are very small and storey drift is 

uniform, rotation of joint A is equal to the wall drift   . If storey heights are uniform and the 

column and the framing members do not change in cross-section, the clockwise rotation of the 

beam-column joints will be identical and equal to   . If axial deformation of the column and the 

framing members are ignored, the chord rotation of the column will be equal to    and the 

framing members will have zero chord rotation (i.e.          

Rotational equilibrium at joint B requires that 

              
Eq 7.30 

Hence 

    
  

         
     

 
        Eq 7.31 

Rearranging gives 
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] 
Eq 7.32 

Let   be the ratio of the effective flexural stiffness of the column to that of the framing members. 
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Eq 7.33 

Then 

   
    

    
   

Eq 7.34 

Eq 7.34 gives the beam-column clockwise rotation as a function of α and the wall drift. If α is 

equal to 1/6, then    will be zero. For values of α greater than 1/6 (i.e. stiffer columns),    will 

be positive resulting in a system deformation profile such as the one shown in Figure 7.52. If α is 
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smaller than 1/6 (i.e. flexible columns), then    will be negative and the system will deform 

similar to Figure 7.53.  

Substituting Eq 7.34 into Eq 7.28  gives the column bending moment demand as 
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Eq 7.35 

Column curvature demand will then be the bending moment demand on the column divided by 

its effective flexural rigidity. 
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Eq 7.36 

To check the accuracy of the previous derivation, an elastic model of the frame ABDE was built 

in SAP2000 with fixed values for H and   . The flexural stiffness of the framing members and 

the column was then changed to get various values of α.  

Figure 7.54 compares results from SAP2000 with estimates of column curvature demand 

obtained from Eq 7.36. As can be seen, the equation predicts column curvature demand very 

accurately for values of α greater than 3.0. Column curvature demand starts to increase rapidly 

for values of α smaller than 5.0 which is the case for buildings with relatively flexible columns 

and relatively stiff beams. As long as α remains greater than 20, additional column curvature 

demands due to framing action will be insignificant. Note that flexible columns have a large 

curvature capacity and hence can tolerate higher curvature demand. It is therefore concluded that 

Eq 7.36 provides an exact estimate of the additional column curvature demand due to flexural 

stiffness of framing members given the building drift and basic elastic properties of the structural 

members. 

Another effect that framing members may have on the column is exerting additional axial load 

on the column due to shear forces created in the framing members. For example, in Figure 7.52, 

because member AB is bent in double curvature, the shear force induced in member AB at point 

B will act as an additional axial compressive force on the column BE. This additional axial 

compression can reduce the column curvature capacity and hence, needs to be taken into 

account. Note that if a framing member similar to AB in terms of structural properties existed on 
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the right side of the column, the shear force from that member would have acted as an upward 

axial force on the column reducing the additional column compression force from member AB. 

However, if framing members are present on one side of the column only such as in corner 

columns or if the framing members on either side of the column are not structurally identical, 

there will be a resultant differential axial load on the column. 

 

 

 

 

 

 

 

 

 

Figure 7.54 Validation of the proposed method for estimating additional column curvature 

accounting for the effect of framing members. 

 

The additional axial load on the column can be derived using a similar approach to what was 

used earlier to find additional column curvature demand. In Figure 7.52, the additional axial 

compressive load on the column at point B will be equal to the shear force in member AB acting 

at end B. Again, this force can be obtained using slope deflection formulation as follows. 

For member AB, 

    
    
  

[           ]  
    
  

[      ] Eq 7.37 
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[      ] 
Eq 7.38 

Rotational equilibrium of member AB requires that    , the shear force in member AB at end B 

acting upward on member AB and downward on the column, be equal to 

    
       

  
 

    
  
 

        
Eq 7.39 

Incorporating Eq 7.32 into Eq 7.39 gives 
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)    

Eq 7.40 

or 

    
    
  
  

     

    
   

    
   

 
     

       
   

Eq 7.41 

Similar to column curvature demand, the additional axial load on the column from the framing 

member estimated by Eq 7.41 is compared against elastic analysis in SAP2000. As shown in 

Figure 7.55, Eq 7.41 accurately estimates the additional axial force demand on the column. Also, 

for values of α greater than 10, the additional axial load on the column due to framing action is 

negligible. 

In conclusion, this section provides simple equations for estimating additional curvature demand 

and axial load on columns resulting from framing action. It was assumed that the building has a 

uniform storey height with identical horizontal members framing into the column throughout the 

building height. It is only in this case that the effects of framing action on the column are most 

critical near the top of the building where the building drift is the highest. Other cases such as 

presence of a taller first storey or stiff framing members such as transfer girders in the lower 

floors of the building may prove to cause more severe framing action. Studying such 

circumstances has not been the subject of this section as the section is aimed at providing a 

simple decision making tool on the significance of framing action in estimating seismic demands 

on gravity-load columns in a typical shear wall building. 
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Figure 7.55 Validation of the proposed method for estimating additional column axial load 

demand from shear forces induced in the members framing into the column. 

7.12 Effect of Foundation Rotation 

Rotation of the shear wall foundation can significantly increase the wall lateral deformation at 

the top of the first storey or the displacement demand at the second floor slab which results in 

additional curvature demands on the column. In Section 7.3.1, it was shown that the effect of 

wall shear strain can be treated as rotation of the base of the wall by an amount equal to the first 

storey average shear strain (see Figure 7.5). A similar approach can then be used to estimate 

additional column curvature demand due to foundation rotation. This is done by substituting the 

average first storey shear strain    in Eq 7.3 by the foundation rotation    to get the following 

equation. 

   
  

  
 

   

 
    Eq 7.42 

 

 

H is the height of the first storey. Note that the additional column curvature demand has to be 

added to the wall maximum curvature and column curvature demand due to wall shear strain to 

obtain the total column curvature demand. 
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7.13 Summary and Conclusions 

1. In the absence of wall shear strain, as long as the column is tied to the shear wall with 

uniformly-spaced flat plate floor slabs, column curvature demand remains almost equal 

to the wall maximum curvature up until the point of formation of a plastic hinge at the 

base of the column. After plastic hinging of the column, column curvature demand would 

be larger than but close to the wall maximum curvature. 

2. Shear strains constitute a significant part of the wall’s deformation profile within the wall 

plastic hinge zone. Wall shear strain results in significant additional lateral displacement 

at the top of the first storey forcing large rotational demands on the columns. The 

additional rotation demand results in further curvature concentration at the base of the 

column increasing column curvature demand. Simple equations were developed to 

estimate additional column curvature demand due to wall shear strain. 

3. For a given average compressive axial stress on the column, the greater the length of the 

column cross-section, the smaller the column curvature capacity would be. Columns with 

elongated cross-sections require a larger concrete compression depth to withstand the 

axial load and hence, have a much smaller curvature capacity. Elongated columns will 

therefore reach their curvature capacity at lower building drifts. 

4. Shear walls with longer plastic hinge lengths distribute inelastic curvatures over a greater 

height. When connected to gravity-load columns with closely spaced floor slabs, walls 

with longer plastic hinge lengths bend the column more gradually over the height of the 

building reducing concentration of curvature at the base of the column. 

5. In general, columns with larger plastic hinge lengths reach their curvature capacity at 

higher building drifts. Gravity-load columns do not demonstrate a ductile behaviour 

beyond the point of peak bending strength. Therefore, the reduction in column curvature 

demand due to a larger column plastic hinge region does not result in a significant 

increase in building drift capacity. Height of the column plastic hinge region is therefore 

considered not to be a critical parameter in estimating column curvature demand or 

building drift capacity. 
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6. Column damage causes further concentration of inelastic curvatures at the base of the 

column and increases column curvature demand for given wall maximum curvature 

reducing the building drift at which the column curvature capacity is consumed. Simple 

expressions were developed for estimating column curvature demand taking into account 

the concentration of curvature at the base of the column due to damage of the column.  

7. In buildings with columns extending several floors up from grade level before framing 

into a floor slab, global drift capacity of the building governed by the columns reaching 

their curvature capacity can either increase or decrease due to presence of a taller first 

storey depending on level of wall shear strain and column boundary conditions at the 

grade level. 

8. Relaxing the fixity of the column at grade level due to the column continuing below 

grade reduces column curvature demand for a given wall maximum curvature. Column 

plastic hinge may form either at grade level or at the top of the first storey depending on 

the level of wall shear strain. Simple design-oriented expressions were formulated for 

estimating column curvature demand accounting for flexible boundary conditions of the 

column at grade level. 

9. Flexural stiffness of members framing into the column results in additional curvature and 

axial load demand on the column. Simple equations were formulated to estimate the 

additional curvature and axial load demand on columns near the top of shear wall 

buildings with uniform storey height and identical horizontal framing members 

throughout their height. The equations are intended for use as a decision-making tool on 

the significance of framing action in a given shear wall building. 

10. Rotation of the shear wall foundation can be treated similar to wall shear strain as both 

effects cause additional rotation of the column by increasing the lateral deformation of 

the shear wall at the second floor slab. A simple equation is provided for estimating 

additional column curvature demand due to rotation of the shear wall foundation. 
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CHAPTER 8 Summary of Contributions and 
Recommendations for Future Work 

8.1 Overview of Contributions 

The subject of this thesis is determining the seismic deformation demands on gravity-load 

columns over the height of the plastic hinge region of shear wall buildings and ensuring that the 

demands are less than the deformation capacity of the columns. As previous work had defined 

the flexural deformation of shear walls, this study focused on the two other very important 

deformation components of shear walls, namely shear deformation in the plastic hinge region of 

walls, and rigid body movement of walls due to foundation rotation. Both of these building 

deformation components are critical for estimating the deformation demands on gravity-load 

columns.  

Once the complete deformation profile of the shear walls has been defined, including the 

influence of flexural deformations, shear deformations and foundation rotation, an analysis must 

be done to determine the deformation demands on the gravity-load columns. A simple analysis 

procedure was developed to determine the deformation demands on gravity-load columns when 

the floor systems consist of flat plate slabs or the out-of-plane bending stiffness of the floor 

systems can be ignored for simplicity. The sections below elaborate on each of the three main 

contributions of this study. 

8.2 Shear Strains in Plastic Hinge Region of Flexural Shear Walls 

Experiments on flexural shear walls by other researchers have shown that although shear 

deformations constitute only a small portion of the top wall displacement, their contribution to 

the wall deformation profile within the plastic hinge zone is significant compared to flexural 

deformations. Therefore, shear deformations are critical to determining curvature demands on 
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gravity-load columns in shear wall buildings as they substantially increase the building 

deformation profile in the wall plastic hinge region. 

Despite the previous work on verification of the Modified Compression Field Theory (MCFT) 

and finite element program VecTor2, which uses the MCFT, for the prediction of wall stiffness, 

strength, hysteretic behaviour, and mode of failure, the accuracy of VecTor2 in predicting shear 

strains in the plastic hinge region of flexural walls had not previously been verified. Thus it was 

done as part of the current study by comparing predictions of VecTor2 with the results of large-

scale tests.  

The mechanisms leading to large shear strains in flexural walls were examined using VecTor2. 

Shear strain was found to be concentrated in areas with large vertical tensile strains in the 

presence of flexural-shear cracks. This was consistent with experimental evidence in the 

literature and further verified by VecTor2. The plane sections remain plane assumption was 

found to be valid in the wall plastic hinge zone resulting in vertical strains varying linearly over 

the wall length. Horizontal strains were found to be near zero and therefore negligible. Shear 

stresses were zero on the portion of the wall cross-section under tension where shear strains were 

the largest. Shear stresses were at their maximum on the compression side where shear strains 

were virtually zero. This observation confirmed that shear strains in flexural shear walls are not a 

consequence of shear stresses. 

Based on these observations, a simple model was developed to estimate shear strain profile 

within the plastic hinge regions of flexural shear walls using an average vertical strain and an 

average strain angle. Average vertical strain is estimated from concrete compression depth and 

wall curvature assuming linear variation of vertical strains across the wall length. A parametric 

study was conducted to examine the effect of parameters such as wall compressive axial load, 

vertical steel ratio, wall length, wall aspect ratio, and the number of slabs crossing the plastic 

hinge zone on the strain angle. None of the parameters were found to critically influence the 

strain angle and hence, an empirically derived strain angle of 75  was proposed. The proposed 

model was then used to predict shear strains observed in experiments on flexural shear walls by 

other researchers and found to be very accurate despite its simplicity and using only basic 

information available to structural designers. 
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8.3 Rotation of Shear Wall Foundations 

Rotation of shear wall foundations results in an increase in the wall lateral deformation profile 

which affects the curvature demands on the gravity-load columns. Behaviour of shear walls 

accounting for foundation rotation was studied through a total of about 2000 Nonlinear Time-

History Analysis (NTHA).  

Soil properties such as type, stiffness, and ultimate bearing capacity were shown to influence 

foundation rotation and permanent deformations of the wall; however, the top wall displacement 

was found to be much less sensitive to the input soil properties than the soil compressive 

displacement. As the soil became weaker and softer, foundation rotation stopped increasing 

while permanent soil compressive deformations kept increasing. The percentage increase in top 

wall displacement due to foundation rotation was shown to be larger for shorter height walls. 

Foundations bearing a smaller vertical load were shown to be less susceptible to foundation 

rotation as a larger foundation size was needed to achieve a certain overturning capacity than 

more heavily loaded foundations. 

A comprehensive study was conducted on five different 10-story shear wall buildings, where 

each building had five different size foundations designed on each one of five different soil 

types. Each combination of building (shear walls) – soil type – foundation size was subjected to 

10 ground motions and the results are reported systematically in Appendix A. This valuable data 

was used here to develop important conclusions that are needed to determine the demands on 

gravity-load columns, and was also used to develop significant changes to the foundation 

requirements of the 2015 Canadian building code (Adebar et al. 2014). 

Analysis of the results from the comprehensive study revealed that the wall bending strength 

relative to the foundation overturning strength can be used to explain the fundamentals of the 

wall-foundation system behaviour. In wall-foundation systems where the foundation is stronger 

than the wall (hinging shear walls), the maximum bending moment induced in the system is 

equal to the wall bending strength. In systems with a strong wall and a relatively weak 

foundation (non-hinging shear walls), the maximum system bending moment is governed by the 

foundation overturning capacity. Inter-storey drift profile of hinging shear walls was closer to 

that of a fixed-base wall while for non-hinging walls, large foundation rotation and relatively 
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small wall flexural deformation caused the inter-storey profile to be generally larger and closer 

to being constant over the building height. Softening of the soil in compression and separation 

between the footing and the underlying soil caused the effective system period of vibration to 

increase. The shift in the effective system period was larger for non-hinging shear walls as larger 

foundation rotation resulted in more softening of the foundation response. In general, accounting 

for foundation rotation was shown to reduce force demands on the shear wall. However, bending 

moment demands were reduced more than shear force demands and in some cases, the shear 

force demand was higher than that of the fixed-base wall. Hinging shear walls experienced 

smaller soil compressive displacements underneath their foundation as hinging of the wall 

limited the amount of bending moment resisted by the foundation. The shape of the maximum 

soil displacement profile underneath the foundation was found to have a significant effect on the 

amount of foundation rotation and was found to be sensitive to the shape of the backbone curve 

of the soil springs in compression.  

Since the nonlinear behaviour of the foundation could best be represented by its moment-rotation 

response, a simple step-by-step method for obtaining the monotonic foundation moment-rotation 

response was developed. The method applied the well-known equivalent rectangular stress block 

concept used in section analysis of reinforced concrete members to represent the soil bearing 

pressure distribution underneath the foundation. The method uses only basic information 

available to the designer and is simple enough for implementation in a design office. 

Results from the extensive NTHA carried out on shear walls considering foundation rotation 

were then used to formulate a procedure for estimating foundation rotation in a given wall-

foundation system. Effective stiffness of an elastic rotational spring was calibrated to give a 

good estimate of the top wall displacement through Response Spectrum Analysis (RSA) when 

placed at the base of an elastic model of the wall. With the top displacement known, a method 

for estimating the elastic portion of the top displacement was then formulated taking into account 

the relative strengths of the wall and the foundation. Using the foundation moment-rotation 

response obtained earlier and comparing the wall bending strength to the foundation overturning 

strength, a comprehensive rational method for estimating maximum foundation rotation was 

developed which is simple enough to be used by structural engineers. 



386 

 

8.4 Deformation Demands on Gravity-load Columns 

An investigation confirmed that shear strains are usually very small in gravity-load columns; 

therefore, the horizontal displacement demands on gravity-load columns will cause primarily 

flexural deformations of the columns. Moment-curvature relationships for the columns and an 

assumed plastic hinge model were used to model the flexural behaviour of the columns.  

To better understand the flexural behaviour of columns, moment-curvature response of a broad 

range of column cross-sections with various section aspect ratios, concrete strengths, vertical 

steel ratios and axial loads were studied. It was found that for a given concrete strength, steel 

ratio, and axial load as a ratio of the section’s factored axial capacity, the shape of the 

normalized non-dimensional moment-curvature response was independent of the cross-section 

size. In addition, a fifth-order polynomial was found to fit the shape with excellent accuracy 

which was then used in the developed nonlinear structural analysis algorithm. 

Damage of the column cross section in the form of concrete cover spalling and loss of vertical 

steel due to buckling and fracture was shown to reduce the section’s ultimate bending strength 

without severely affecting the curvature capacity. Accounting for long-term effects of the 

sustained axial load was shown not to have a significant effect on the moment-curvature 

response of the column as seismic load demands on the column are not sustained loads. Ignoring 

the vertical steel in estimating the ultimate concrete compression depth of columns was shown to 

give upper-bound estimates of the actual compression depth which is conservative when 

curvature capacity of the section is concerned given a fixed maximum permissible concrete 

compressive strain. 

A structural analysis algorithm was developed specifically for assessing curvature demands on 

gravity-load columns of shear wall buildings where the out-of-plane bending stiffness of the 

floor systems is ignored. Both flexural and shear deformations were considered to obtain the 

wall deformation profile used as an input to the structural analysis algorithm. Wall inelastic 

curvatures were assumed to vary linearly over the wall plastic hinge length. Shear strain profile 

of the wall was assumed to have a shape similar to the wall curvature profile. Plastic hinging of 

the column was incorporated into the structural analysis by assuming certain curvature 

distribution patterns over the column plastic hinge zone consistent with observations made in 
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tests by other researchers. It was shown that an accurate estimate of the column curvature 

demand in the plastic hinge region of shear wall buildings could be obtained by imposing the 

displacements of as few as three floor slabs on the column. The accuracy of the structural 

analysis algorithm was verified using state-of-the-art numerical modeling tools for reinforced 

concrete structures.  

A parametric study was conducted to evaluate the influence of various wall and column 

parameters on curvature demand on columns in the plastic hinge region of shear wall buildings 

with flat plate floor slabs. It was shown that in the absence of wall shear strain, curvature profiles 

of the wall and the column remained similar and that curvature demand of the column was 

always close to maximum wall curvature. Column curvature demand exceeded maximum wall 

curvature when plastic hinging occurred in the column. Based on tests by other researchers on 

gravity-load columns under combined compression and bending, columns fail shortly after the 

formation of a plastic hinge at the base of the column. This was further confirmed analytically as 

the column curvature demand reached the column curvature capacity soon after the plastic hinge 

occurred at the base of the column. 

Wall shear strain significantly added to the displacement at the second floor slab level. This 

additional displacement imposed an extra rotation demand on the column which caused column 

curvature demand to increase and be significantly larger than the wall maximum curvature. 

Simple design-oriented methods were proposed for estimating curvature demand in columns 

under imposed wall deformations with significant wall shear strain. The effect of wall foundation 

rotation on column curvature demand is very similar to that of wall shear strain as rotation of the 

wall foundation also imposes additional rotation demand on the column causing curvature 

concentration at the column base. Simple expressions were also developed for estimating column 

curvature demand due to rotation of the shear wall foundation. 

At a given average compressive axial stress on the column, columns with smaller cross-sectional 

lengths were shown to have larger curvature capacities. Column curvature demand at a given 

building drift was shown to decrease with an increase in the height of the wall plastic hinge as 

walls with larger plastic hinge lengths distribute inelastic curvatures over a larger height bending 

the column more gradually within the wall plastic hinge zone. Height of the column plastic hinge 
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hand did not seem to have a significant effect on the building drift at which column curvature 

capacity was reached. Gravity-load columns are heavily loaded in compression and the 

difference between curvature at peak bending strength (i.e. point of formation of a plastic hinge 

in the column) and curvature capacity governed by concrete crushing is small. This resulted in 

the column to have very little ductility beyond the point of formation of a plastic hinge. 

Damage of the column in the form of loss of concrete cover and buckling or fracturing of the 

vertical reinforcing steel was found to cause further concentration of curvature in the column’s 

damaged region increasing column curvature demand. Simple design-oriented equations were 

formulated to estimate column curvature demand considering curvature concentration due to 

damage of the column cross-section. 

Presence of a taller first storey was found to either increase or decrease curvature demand of the 

column depending on the level of shear strain in the wall. At lower wall shear strains, presence 

of a taller storey increased column curvature demand at a given global drift and vice versa. 

Fixity of the column at grade level against rotation was found to have a significant effect on 

column curvature profile. Maximum column curvature occurred at the second floor slab when 

the wall had minimal shear strain, while for all other cases, maximum column curvature always 

occurred at grade level. 

Members framing into the column were shown to potentially increase column curvature demands 

near the top of the building where inter-storey drifts are the highest. Simple formulas were 

developed for estimating curvature demand and additional compressive axial load on the column 

due to framing action of members framing into the column. The expressions developed serve as 

a useful decision-making tool on the significance of framing action in a given shear wall 

building.  

8.5 Recommendations for Future Work 

The first of the three parts of this thesis, on shear strains in the plastic hinge regions of flexural 

walls, was completed to the point that there is no obvious additional work needed. On the other 

hand, the second part of this thesis, on rotation of foundations, is such a large topic that all 
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possible questions could not have been answered if that had been the only topic of this thesis. In 

order to complete the other two parts of this thesis, the study on foundation rotation had to have 

a very limited scope.  

The majority of the nonlinear analyses were done on 10-storey shear walls because they were 

found to be more susceptible to foundation rotation than taller walls. Studying foundation 

rotation of shear walls of different heights is a natural extension to this research. Additional work 

is also needed on buildings with different mass ratios and using different soil characteristics and 

different nonlinear soil models. 

The effective stiffness of the elastic rotational spring used at the base of an elastic model of the 

wall to estimate top wall displacement accounting for foundation rotation presented in 

Section 4.2 was fitted to data gathered from 10-storey buildings only. Thus a similar study on 

other height walls would be a good continuation of this work and will further expand the rational 

method proposed for estimating foundation rotation. 

All nonlinear analyses were done in a 2D space so extending the work to 3D is another obvious 

follow-up to this research. Rotation of a shear wall’s foundation could be studied in a 3D space 

with the ground motion applied in two orthogonal horizontal directions to study the simultaneous 

rotational behaviour of the foundation about two orthogonal axes. 

Finally, the third part of this study was limited in scope to estimating curvature demands on 

columns in the plastic hinge region of shear walls with flat plate floor slabs. In such systems, 

faming action of the horizontal members framing into the column is negligible due to the low 

flexural stiffness of the flat plate floor slabs. Additional column curvature demands due to 

presence of stiff framing members such as beams or transfer girders are something that deserves 

additional study.  
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Appendix A Rotation of Shear Wall Foundations 

A.1 Input Ground Accelerations 

Original (un-scaled), spectrally-matched, and uniformly-scaled ground motion records used in 

the NTHA are given below. 
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Figure A.1 Original (un-scaled) input ground accelerations 
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Figure A.1 (continued) 
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Figure A.1 (continued) 
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Figure A.2 Input ground accelerations modified to match the target response spectrum 

throughout the entire range of vibration periods 
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Figure A.2 (continued) 
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Figure A.2 (continued) 
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Figure A.3 Input ground motions uniformly-scaled to achieve best match to the target response 

spectrum between vibration periods of 0.5 sec and 2.5 sec 
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Figure A.3 (continued) 
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Figure A.3 (continued) 
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Figure A.4 Response spectra of original (un-scaled) input ground motions and accuracy of 

uniformly-scaled input ground motions 
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Figure A.4 (continued) 
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Figure A.4 (continued) 

 

 

 



410 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.4 (continued) 
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Figure A.4 (continued) 
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A.2 Effect of Soil Properties on Rotation of Shear Walls Foundations 

Extended summary of results from NTHA on the effect of soil type, soil stiffness and soil 

ultimate bearing capacity are presented in the section below. 
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A.2.1 Soil type 

 

Table A.1 Shear wall specifications 

 

 

  

 

Table A.2 Summary of nonlinear dynamic analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) 249000

Rw 1.96

Soil Type Soil 1 Soil 2 Soil 3 Soil 4 Soil 5

E (MPa) 107 187 327 571 1000

Geff (MPa) 42.8 73 126 215 370

ν 0.25 0.28 0.3 0.33 0.35

qult (kPa) 501 877 1535 2686 4700

L (mm) 12500 12500 12500 12500 12500

B (mm) 12500 12500 12500 12500 12500

a (mm) 6635 3790 2165 1238 707

s (mm) 11.69 7.02 4.14 2.48 1.46

Moc (kN.m) 121851 180946 214700 233978 244995

θoc (rad) 0.0139 0.0143 0.0120 0.0099 0.0074

TEstimate (sec) 2.00 1.67 1.43 1.28 1.17

Tmodel (sec) 2.30 1.77 1.42 1.27 1.16

Δ1 (mm) 52.9 73.0 52.9 43.7 39.3

Δ10 (mm) 378 537 425 374 358

Avg. Max. θb (rad) 0.0114 0.0155 0.0108 0.0086 0.0075

Avg. Max. Uplift (mm) 40.8 114.8 97.5 84.8 77.8

Avg. Max. Comp. Disp. (mm) -126.4 -80.3 -37.7 -23.1 -15.8

Avg. Max. qmax/qult 99% 96% 90% 71% 53%
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Figure A.5 Average displacement envelopes of wall 10R20 with a 12.5 m square foundation on 

various soil types 

 

   

 

 

 

 

 

 

 

Figure A.6 Average drift envelopes of wall 10R20 with a 12.5 m square foundation on various 

soil types (Note: base rotation values are plotted at h=0 and values of average interstory drift are 

plotted at the top of the storey.) 
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Figure A.7 Average curvature envelopes of wall 10R20 with a 12.5 m square foundation on 

various soil types 

 

  

 

 

 

 

 

 

 

Figure A.8 Average wall a) shear force envelopes, and b) bending moment envelopes of wall 

10R20 with a 12.5 m square foundation on various soil types 
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Figure A.9 Bending moment versus base rotation of the 12.5m square foundation on various soil 

types 

 

 

 

 

 

 

 

 

Figure A.10 Average of maximum soil compressive displacement profiles for various soil types 
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A.2.2 Soil stiffness 

 

Table A.3 Shear wall specifications 

 

 

  

 

 

Table A.4 Summary of nonlinear dynamic analysis 

 

  

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) 249000

Rw 1.96

Soil Shear Modulus of Elasticity 43 MPa 73 MPa 126 MPa 215 MPa 370 MPa

E (MPa) 107 187 327 571 1000

Geff (MPa) 42.8 73 126 215 370

ν 0.25 0.28 0.3 0.33 0.35

qult (kPa) 1535 1535 1535 1535 1535

L (mm) 12500 12500 12500 12500 12500

B (mm) 12500 12500 12500 12500 12500

a (mm) 2165 2165 2165 2165 2165

s (mm) 11.69 7.01 4.14 2.48 1.46

Moc (kN.m) 214700 214700 214700 214700 214700

θoc (rad) 0.0340 0.0204 0.0120 0.0072 0.0042

TEstimate (sec) 2.00 1.67 1.43 1.28 1.17

Tmodel (sec) 1.97 1.65 1.42 1.27 1.16

Δ1 (mm) 89.6 77.9 52.9 47.8 46.7

Δ10 (mm) 660 586 425 397 399

Avg. Max. θb (rad) 0.0190 0.0164 0.0108 0.0096 0.0093

Avg. Max. Uplift (mm) 159.3 145.8 97.5 90.2 89.4

Avg. Max. Comp. Disp. (mm) -78.5 -59.1 -37.7 -30.0 -26.8

Avg. Max. qmax/qult 81% 84% 90% 93% 97%
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Figure A.11 Average displacement envelopes of wall 10R20 with a 12.5 m square foundation on 

various soil stiffnesses 

 

   

 

 

 

 

 

 

 

Figure A.12 Average drift envelopes of wall 10R20 with a 12.5 m square foundation on various 

soil stiffnesses (Note: base rotation values are plotted at h=0 and values of average interstory 

drift are plotted at the top of the storey.) 
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Figure A.13 Average curvature envelopes of wall 10R20 with a 12.5 m square foundation on 

various soil stiffnesses 

 

  

 

 

 

 

 

 

 

Figure A.14 Average wall a) shear force envelopes, and b) bending moment envelopes of wall 

10R20 with a 12.5 m square foundation on various soil stiffnesses 
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Figure A.15 Bending moment versus base rotation of the 12.5m square foundation on various 

soil stiffnesses 

 

 

 

 

 

 

 

Figure A.16 Average of maximum soil compressive displacement profiles for various soil 

stiffnesses 
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A.2.3 Soil ultimate bearing capacity 

 

Table A.5 Shear wall specifications 

 

 

  

 

Table A.6 Summary of nonlinear dynamic analysis 

 

  

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) 249000

Rw 1.96

Ultimate Bearing Capacity 0.50 MPa 0.88 MPa 1.54 MPa 2.69 MPa 4.70 MPa

E (MPa) 327 327 327 327 327

Geff (MPa) 126 126 126 126 126

ν 0.3 0.3 0.3 0.3 0.3

qult (kPa) 501 877 1535 2686 4700

L (mm) 12500 12500 12500 12500 12500

B (mm) 12500 12500 12500 12500 12500

a (mm) 6635 3790 2165 1238 707

s (mm) 4.14 4.14 4.14 4.14 4.14

Moc (kN.m) 121851 180946 214700 233978 244995

θoc (rad) 0.0049 0.0084 0.0120 0.0165 0.0209

TEstimate (sec) 1.43 1.43 1.43 1.43 1.43

Tmodel (sec) 1.58 1.50 1.42 1.42 1.42

Δ1 (mm) 39.9 58.4 52.9 52.3 48.1

Δ10 (mm) 291 444 425 427 398

Avg. Max. θb (rad) 0.0085 0.0122 0.0108 0.0106 0.0097

Avg. Max. Uplift (mm) 35.0 93.5 97.5 99.8 91.0

Avg. Max. Comp. Disp. (mm) -110.2 -63.8 -37.7 -32.8 -29.9

Avg. Max. qmax/qult 100% 98% 90% 64% 37%
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Figure A.17 Average displacement envelopes of wall 10R20 with a 12.5 m square foundation on 

various soil ultimate bearing capacities 

 

   

 

 

 

 

 

 

 

Figure A.18 Average drift envelopes of wall 10R20 with a 12.5 m square foundation on various 

soil ultimate bearing capacities (Note: base rotation values are plotted at h=0 and values of 

average interstory drift are plotted at the top of the storey.) 
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Figure A.19 Average curvature envelopes of wall 10R20 with a 12.5 m square foundation on 

various soil ultimate bearing capacities 

 

   

 

 

 

 

 

 

 

Figure A.20 Average wall a) shear force envelopes, and b) bending moment envelopes of wall 

10R20 with a 12.5 m square foundation on various soil ultimate bearing capacities 
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Figure A.21 Bending moment versus base rotation of the 12.5m square foundation on various 

soil bearing capacities 

 

 

 

 

 

 

   

 

Figure A.22 Average of maximum soil compressive displacement profiles for various soil 

bearing capacities 
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A.3 Parametric Study on Soil Damping 

Extended summary of NTHA results on the effect of soil damping on rotation of shear wall 

foundations is presented in this section. 
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Figure A.23 Top displacement time-histories for various levels of soil damping 
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Figure A.23 (continued) 
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Figure A.23 (continued) 
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Figure A.23 (continued) 
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Table A.7 Properties for wall 10R20 

 

 

 

 

 

Table A.8 Summary of parametric study on soil damping 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) 249000

Rw 1.96

Soil Damping 0% 5% 10% 15% 20% 25% 30%

E (MPa) 550 550 550 550 550 550 550

Geff (MPa) 212 212 212 212 212 212 212

ν 0.3 0.3 0.3 0.3 0.3 0.3 0.3

qult (kPa) 2500 2500 2500 2500 2500 2500 2500

Rf 2.10 2.10 2.10 2.10 2.10 2.10 2.10

L (mm) 12500 12500 12500 12500 12500 12500 12500

B (mm) 12500 12500 12500 12500 12500 12500 12500

a (mm) 1330 1330 1330 1330 1330 1330 1330

s (mm) 2.46 2.46 2.46 2.46 2.46 2.46 2.46

Moc (kN.m) 232065 232065 232065 232065 232065 232065 232065

θoc (rad) 0.0095 0.0095 0.0095 0.0089 0.0089 0.0089 0.0089

TEstimate (sec) 1.28 1.28 1.28 1.28 1.28 1.28 1.28

Tmodel (sec) 1.26 1.26 1.26 1.26 1.26 1.26 1.26

Δ1 (mm) 49.7 42.9 37.8 30.2 28.4 26.4 24.2

Δ10 (mm) 415 368 332 277 265 251 234

Avg. Max. θb (rad) 0.0099 0.0084 0.0072 0.0056 0.0051 0.0049 0.0044

Avg. Max. Uplift (mm) 99.0 81.9 68.5 51.9 46.1 44.0 39.0

Avg. Max. Comp. Disp. (mm) -25.2 -22.8 -21.0 -18.6 -17.7 -17.3 -16.4

Avg. Max. qmax/qult 95% 93% 87% 82% 79% 77% 75%
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Figure A.24 Average of displacement envelopes of wall 10R20 for various levels of soil 

damping 

 

 

 

 

 

 

 

 

 

Figure A.25 Average of drift envelopes of wall 10R20 for various levels of soil damping (Note: 

base rotation values are plotted at h=0 and values of average interstory drift are plotted at the top 

of the storey.) 



432 

 

 

 

 

 

 

 

 

 

 

Figure A.26 Average of curvature envelopes of wall 10R20 for various levels of soil damping 

 

 

 

 

 

 

 

 

 

Figure A.27 Average of a) shear force, and b) bending moment envelopes of wall 10R20 for 

various levels of soil damping 
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Figure A.28 Bending moment-rotation response of the foundation of wall 10R20 

 

 

 

 

 

 

 

Figure A.29 Average of maximum soil compressive displacements underneath the footing for 

wall 10R20 for various levels of soil damping 
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A.4 Scatter in the Response of Shear Walls Accounting for Foundation 

Rotation 

This section presents an extended summary of results from NTHA using uniformly-scaled 

ground motions for shear walls on Dense Sand and Rock. 
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A.4.1 Dense Sand 

 

Table A.9 Shear wall properties for wall 10R13 

 

 

 

 

Table A.10 Summary of nonlinear dynamic analyses for wall 10R13 on Dense Sand 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) 369000

Rw 1.32

Rf 1.9 2.2 2.4 2.8 3.4

E (MPa) 809 809 809 809 809

Geff (MPa) 311 311 311 311 311

ν 0.3 0.3 0.3 0.3 0.3

qa (kPa) 533 533 533 533 533

q (kPa) 173 198 228 266 314

qf (kPa) 800 800 800 800 800

qult (kPa) 1600 1600 1600 1600 1600

L (m) 15.5 14.5 13.5 12.5 11.5

B (m) 15.5 14.5 13.5 12.5 11.5

a (mm) 3351 3582 3847 4155 4516

s (mm) 0.26 0.28 0.29 0.31 0.33

Moc (kN.m) 252399 226824 200536 173367 145086

θoc (rad) 0.0009 0.0008 0.0007 0.0007 0.0006

θy (rad) 0.0130 0.0207 0.0338 0.0585 -----

TEstimate (sec) 1.00 1.01 1.03 1.04 1.07

Tmodel (sec) 0.96 0.96 0.97 0.98 0.99

Δ1 (mm) 18.8 26.2 33.2 34.4 32.7

Δ10 (mm) 201 246 287 283 266

Avg. Max. θb (rad) 0.0033 0.0050 0.0066 0.0070 0.0067

Avg. Max. Uplift (mm) 40.9 56.5 166.8 64.0 54.1

Avg. Max. Comp. Disp. (mm) -10.2 -15.9 -61.7 -24.0 -27.4

Avg. Max. qmax/qult 70% 77% 86% 89% 93%
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Figure A.30 Average of displacement envelopes for wall 10R13 on Dense Sand along with 

estimated top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.31 Average of drift envelopes for wall 10R13 on Dense Sand (Note: base rotation 

values are plotted at h=0 and values of average interstory drift are plotted at the top of the 

storey.) 
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Figure A.32 Average of curvature envelopes for wall 10R13 on Dense Sand 

 

 

 

 

 

 

 

 

 

Figure A.33 Average of a) shear force, and b) bending moment envelopes for wall 10R13 on 

Dense Sand along with estimated maximum quantities for the fixed-base wall from RSA using 

various effective stiffnesses 
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Figure A.34 Bending moment-rotation response of the foundation of wall 10R13 on Dense Sand 

 

 

 

 

 

 

 

Figure A.35 Average of maximum soil compressive displacements underneath the footing for 

wall 10R13 on Dense Sand 
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Figure A.36 Moment-curvature response of wall 10R13 along with average of maximum 

recorded curvatures at the base on Dense Sand 
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A.4.2 Rock 

 

Table A.11 Shear wall properties for wall 10R13 

 

 

 

 

Table A.12 Summary of nonlinear dynamic analyses for wall 10R13 on Rock 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) 369000

Rw 1.32

Rf 1.9 2.1 2.3 2.6 2.9

E (MPa) 20000 20000 20000 20000 20000

Geff (MPa) 8333 8333 8333 8333 8333

ν 0.2 0.2 0.2 0.2 0.2

qa (kPa) 3000 3000 3000 3000 3000

q (kPa) 266 314 377 460 575

qf (kPa) 10000 10000 10000 10000 10000

qult (kPa) 20000 20000 20000 20000 20000

L (m) 12.5 11.5 10.5 9.5 8.5

B (m) 12.5 11.5 10.5 9.5 8.5

a (mm) 332 361 396 437 489

s (mm) 0.06 0.06 0.07 0.07 0.08

Moc (kN.m) 252782 231406 209917 188276 166432

θoc (rad) 0.0025 0.0023 0.0021 0.0018 0.0015

θy (rad) 0.1000 0.1000 0.1000 0.1000 0.1000

TEstimate (sec) 0.94 0.95 0.95 0.95 0.96

Tmodel (sec) 0.94 0.95 0.95 0.95 0.96

Δ1 (mm) 24.8 24.9 33.4 39.6 46.3

Δ10 (mm) 228 220 272 307 344

Avg. Max. θb (rad) 0.0048 0.0049 0.0068 0.0083 0.0099

Avg. Max. Uplift (mm) 58.3 54.8 70.4 77.4 82.4

Avg. Max. Comp. Disp. (mm) -1.3 -1.3 -1.4 -1.4 -1.4

Avg. Max. qmax/qult 29% 33% 37% 42% 47%
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Figure A.37 Average of displacement envelopes for wall 10R13 on Rock along with estimated 

top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.38 Average of drift envelopes for wall 10R13 on Rock (Note: base rotation values are 

plotted at h=0 and values of average interstory drift are plotted at the top of the storey.) 
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Figure A.39 Average of curvature envelopes for wall 10R13 on Rock 

 

 

 

 

 

 

 

 

 

Figure A.40 Average of a) shear force, and b) bending moment envelopes for wall 10R13 on 

Rock along with estimated maximum quantities for the fixed-base wall from RSA using various 

effective stiffnesses 
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Figure A.41 Bending moment-rotation response of the foundation of wall 10R13 on Rock 

 

 

 

 

 

 

 

Figure A.42 Average of maximum soil compressive displacements underneath the footing for 

wall 10R13 on Rock 
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Figure A.43 Moment-curvature response of wall 10R13 along with average of maximum 

recorded curvatures at the base on Rock 
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A.5 Effect of Wall Height and Mass Ratio (MR) 

This section presents an extended summary of NTHA results on the effect of wall height and 

mass ratio on the response of shear walls accounting for foundation rotation. 
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A.5.1 5-Storey walls 

Table A.13 Shear wall properties for wall 5ElasticMR40 

 

 

 

 

 

Table A.14 Summary of nonlinear dynamic analyses for wall 5ElasticMR40 on Rock 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 5

Lw (mm) 5500

P (kN) 20775

MRSA (kN.m) 288000

My (kN.m) -----

Rw 1.00

Shear Wall Properties

Rf 1.4 1.6 1.8 2.1 2.2 2.4 2.7

E (MPa) 20000 20000 20000 20000 20000 20000 20000

Geff (MPa) 8333 8333 8333 8333 8333 8333 8333

ν 0.2 0.2 0.2 0.2 0.2 0.2 0.2

qa (kPa) 7000 7000 7000 7000 7000 7000 7000

q (kPa) 49 68 86 114 133 157 188

qf (kPa) 10000 10000 10000 10000 10000 10000 10000

qult (kPa) 20000 20000 20000 20000 20000 20000 20000

L (m) 20.5 17.5 15.5 13.5 12.5 11.5 10.5

B (m) 20.5 17.5 15.5 13.5 12.5 11.5 10.5

a (mm) 101 119 134 154 166 181 198

s (mm) 0.007 0.008 0.008 0.009 0.010 0.011 0.011

Moc (kN.m) 211891 180548 159614 138633 128117 117580 107014

θoc (rad) 0.00133 0.00134 0.00132 0.00129 0.00126 0.00123 0.00119

TEstimate (sec) 0.5006 0.5009 0.5012 0.5018 0.5022 0.5028 0.5035

Tmodel (sec) 0.5012 0.5015 0.5019 0.5024 0.5028 0.5033 0.5040

Δ1 (mm) 9.8 14.4 18.4 33.7 41.0 57.9 61.7

Δ5 (mm) 55 69 81 132 156 214 226

Avg. Max. θb (rad) 0.0012 0.0023 0.0033 0.0068 0.0085 0.0123 0.0132

Avg. Max. Uplift (mm) 23.5 40.0 50.7 91.3 105.4 140.7 137.9

Avg. Max. Comp. Disp. (mm) -0.67 -0.73 -0.72 -0.70 -0.69 -0.68 -0.67

Avg. Max. qmax/qult 9% 12% 13% 15% 17% 18% 20%
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Figure A.44 Average of displacement envelopes for wall 5ElasticMR40 on Rock along with 

estimated top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.45 Average of drift envelopes for wall 5ElasticMR40 on Rock (Note: base rotation 

values are plotted at h=0 and values of average interstory drift are plotted at the top of the 

storey.) 
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Figure A.46 Average of curvature envelopes for wall 5ElasticMR40 on Rock 

 

 

 

 

 

 

 

 

 

Figure A.47 Average of a) shear force, and b) bending moment envelopes for wall 

5ElasticMR40 on Rock along with estimated maximum quantities for the fixed-base wall from 

RSA using various effective stiffnesses 
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Figure A.48 Bending moment-rotation response of the foundation of wall 5ElasticMR40 on 

Rock 

 

 

 

 

 

 

 

Figure A.49 Average of maximum soil compressive displacements underneath the footing for 

wall 5ElasticMR40 on Rock 
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Table A.15 Shear wall properties for wall 5ElasticMR60 

 

 

 

 

 

Table A.16 Summary of nonlinear dynamic analyses for wall 5ElasticMR60 on Rock 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 5

Lw (mm) 5500

P (kN) 31163

MRSA (kN.m) 288000

My (kN.m) -----

Rw 1.00

Shear Wall Properties

Rf 1.3 1.5 1.8 2.0 2.3 2.6 3.1

E (MPa) 20000 20000 20000 20000 20000 20000 20000

Geff (MPa) 8333 8333 8333 8333 8333 8333 8333

ν 0.2 0.2 0.2 0.2 0.2 0.2 0.2

qa (kPa) 7000 7000 7000 7000 7000 7000 7000

q (kPa) 148 199 283 345 431 554 738

qf (kPa) 10000 10000 10000 10000 10000 10000 10000

qult (kPa) 20000 20000 20000 20000 20000 20000 20000

L (m) 14.5 12.5 10.5 9.5 8.5 7.5 6.5

B (m) 14.5 12.5 10.5 9.5 8.5 7.5 6.5

a (mm) 215 249 297 328 367 416 479

s (mm) 0.013 0.015 0.017 0.018 0.020 0.021 0.023

Moc (kN.m) 222583 190884 158979 142911 126728 110385 93808

θoc (rad) 0.00166 0.00156 0.00179 0.00163 0.00144 0.00121 0.00093

TEstimate (sec) 0.5015 0.5022 0.5035 0.5046 0.5061 0.5084 0.5119

Tmodel (sec) 0.5024 0.5032 0.5043 0.5053 0.5067 0.5089 0.5122

Δ1 (mm) 9.5 14.0 18.9 32.2 44.0 65.5 80.4

Δ5 (mm) 55 69 83 127 167 240 291

Avg. Max. θb (rad) 0.0011 0.0022 0.0034 0.0064 0.0091 0.0140 0.0174

Avg. Max. Uplift (mm) 14.5 26.3 34.7 60.2 76.7 104.0 112.1

Avg. Max. Comp. Disp. (mm) -0.80 -0.98 -1.00 -0.97 -0.95 -0.91 -0.87

Avg. Max. qmax/qult 16% 24% 30% 33% 37% 42% 48%
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Figure A.50 Average of displacement envelopes for wall 5ElasticMR60 on Rock along with 

estimated top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.51 Average of drift envelopes for wall 5ElasticMR60 on Rock (Note: base rotation 

values are plotted at h=0 and values of average interstory drift are plotted at the top of the 

storey.) 
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Figure A.52 Average of curvature envelopes for wall 5ElasticMR60 on Rock 

 

 

 

 

 

 

 

 

 

Figure A.53 Average of a) shear force, and b) bending moment envelopes for wall 

5ElasticMR60 on Rock along with estimated maximum quantities for the fixed-base wall from 

RSA using various effective stiffnesses 
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Figure A.54 Bending moment-rotation response of the foundation of wall 5ElasticMR60 on 

Rock 

 

 

 

 

 

 

 

Figure A.55 Average of maximum soil compressive displacements underneath the footing for 

wall 5ElasticMR60 on Rock 
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A.5.2 10-Storey walls 

Table A.17 Shear wall properties for wall 10ElasticMR40 

 

 

 

 

 

Table A.18 Summary of nonlinear dynamic analyses for wall 10ElasticMR40 on Rock 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) -----

Rw 1.00

Rf 1.3 1.4 1.7 1.9 2.1 2.3 2.6

E (MPa) 20000 20000 20000 20000 20000 20000 20000

Geff (MPa) 8333 8333 8333 8333 8333 8333 8333

ν 0.2 0.2 0.2 0.2 0.2 0.2 0.2

qa (kPa) 267 267 267 7000 7000 7000 7000

q (kPa) 121 153 198 266 314 377 460

qf (kPa) 10000 10000 10000 10000 10000 10000 10000

qult (kPa) 20000 20000 20000 20000 20000 20000 20000

L (m) 18.5 16.5 14.5 12.5 11.5 10.5 9.5

B (m) 18.5 16.5 14.5 12.5 11.5 10.5 9.5

a (mm) 225 252 287 332 361 396 437

s (mm) 0.01 0.02 0.02 0.06 0.06 0.07 0.07

Moc (kN.m) 379672 337556 295284 252782 231406 209917 188276

θoc (rad) 0.0029 0.0028 0.0026 0.0025 0.0023 0.0021 0.0018

θy (rad) ----- ----- ----- ----- ----- ----- -----

TEstimate (sec) 1.06 1.06 1.06 1.07 1.07 1.07 1.08

Tmodel (sec) 1.08 1.08 1.08 1.08 1.08 1.08 1.09

Δ1 (mm) 16.3 19.9 33.3 42.0 45.6 48.2 52.7

Δ10 (mm) 182 199 278 326 343 358 386

Avg. Max. θb (rad) 0.0028 0.0037 0.0068 0.0088 0.0096 0.0102 0.0113

Avg. Max. Uplift (mm) 50.4 59.3 96.5 108.2 109.4 106.1 105.8

Avg. Max. Comp. Disp. (mm) -1.4 -1.4 -1.4 -1.5 -1.5 -1.5 -1.4

Avg. Max. qmax/qult 21% 25% 29% 33% 36% 40% 44%
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Figure A.56 Average of displacement envelopes for wall 10ElasticMR40 on Rock along with 

estimated top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.57 Average of drift envelopes for wall 10ElasticMR40 on Rock (Note: base rotation 

values are plotted at h=0 and values of average interstory drift are plotted at the top of the 

storey.) 
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Figure A.58 Average of curvature envelopes for wall 10ElasticMR40 on Rock 

 

 

 

 

 

 

 

 

 

Figure A.59 Average of a) shear force, and b) bending moment envelopes for wall 

10ElasticMR40 on Rock along with estimated maximum quantities for the fixed-base wall from 

RSA using various effective stiffnesses 
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Figure A.60 Bending moment-rotation response of the foundation of wall 10ElasticMR40 on 

Rock 

 

 

 

 

 

 

 

Figure A.61 Average of maximum soil compressive displacements underneath the footing for 

wall 10ElasticMR40 on Rock 

 

 

 



458 

 

Table A.19 Shear wall properties for wall 10ElasticMR60 

 

 

 

 

 

Table A.20 Summary of nonlinear dynamic analyses for wall 10ElasticMR60 on Rock 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 62325

MRSA (kN.m) 488000

My (kN.m) -----

Rw 1.00

Shear Wall Properties

Rf 1.3 1.6 1.8 2.0 2.3 2.8 3.5

E (MPa) 20000 20000 20000 20000 20000 20000 20000

Geff (MPa) 8333 8333 8333 8333 8333 8333 8333

ν 0.2 0.2 0.2 0.2 0.2 0.2 0.2

qa (kPa) 7000 7000 7000 7000 7000 7000 7000

q (kPa) 399 565 691 863 1108 1475 1889

qf (kPa) 10000 10000 10000 10000 10000 10000 10000

qult (kPa) 20000 20000 20000 20000 20000 20000 20000

L (m) 12.5 10.5 9.5 8.5 7.5 6.5 5.5

B (m) 12.5 10.5 9.5 8.5 7.5 6.5 6.0

a (mm) 499 594 656 733 831 959 1039

s (mm) 0.09 0.10 0.11 0.12 0.13 0.14 0.15

Moc (kN.m) 373994 308709 275600 242032 207823 172676 139024

θoc (rad) 0.0023 0.0014 0.0013 0.0011 0.0009 0.0006 0.0005

θy (rad) ----- ----- ----- ----- ----- ----- -----

TEstimate (sec) 1.07 1.07 1.08 1.08 1.09 1.10 1.12

Tmodel (sec) 1.08 1.09 1.09 1.09 1.10 1.11 1.13

Δ1 (mm) 16.1 26.2 44.9 50.7 54.2 56.5 53.9

Δ10 (mm) 179 238 354 385 402 411 389

Avg. Max. θb (rad) 0.0028 0.0051 0.0094 0.0107 0.0115 0.0121 0.0116

Avg. Max. Uplift (mm) 32.7 51.8 86.7 88.9 84.5 76.8 58.1

Avg. Max. Comp. Disp. (mm) -1.8 -2.1 -2.2 -2.1 -2.1 -2.0 -5.9

Avg. Max. qmax/qult 40% 57% 66% 73% 83% 96% 100%
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Figure A.62 Average of displacement envelopes for wall 10ElasticMR60 on Rock along with 

estimated top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.63 Average of drift envelopes for wall 10ElasticMR60 on Rock (Note: base rotation 

values are plotted at h=0 and values of average interstory drift are plotted at the top of the 

storey.) 
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Figure A.64 Average of curvature envelopes for wall 10ElasticMR60 on Rock 

 

 

 

 

 

 

 

 

 

Figure A.65 Average of a) shear force, and b) bending moment envelopes for wall 

10ElasticMR60 on Rock along with estimated maximum quantities for the fixed-base wall from 

RSA using various effective stiffnesses 
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Figure A.66 Bending moment-rotation response of the foundation of wall 10ElasticMR60 on 

Rock 

 

 

 

 

 

 

 

Figure A.67 Average of maximum soil compressive displacements underneath the footing for 

wall 10ElasticMR60 on Rock 
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A.5.3 20-Storey walls 

Table A.21 Shear wall properties for wall 20ElasticMR40 

 

 

 

 

 

Table A.22 Summary of nonlinear dynamic analyses for wall 20ElasticMR40 on Rock 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 20

Lw (mm) 5500

P (kN) 83100

MRSA (kN.m) 961600

My (kN.m) -----

Rw 1.00

Shear Wall Properties

Rf 1.3 1.4 1.7 2.0 2.4 2.7 3.1

E (MPa) 20000 20000 20000 20000 20000 20000 20000

Geff (MPa) 8333 8333 8333 8333 8333 8333 8333

ν 0.2 0.2 0.2 0.2 0.2 0.2 0.2

qa (kPa) 7000 7000 7000 7000 7000 7000 7000

q (kPa) 243 305 395 532 754 921 1150

qf (kPa) 10000 10000 10000 10000 10000 10000 10000

qult (kPa) 20000 20000 20000 20000 20000 20000 20000

L (m) 18.5 16.5 14.5 12.5 10.5 9.5 8.5

B (m) 18.5 16.5 14.5 12.5 10.5 9.5 8.5

a (mm) 449 504 573 665 791 875 978

s (mm) 0.08 0.09 0.10 0.12 0.13 0.14 0.16

Moc (kN.m) 750011 664649 578663 491753 403391 358380 312554

θoc (rad) 0.0038 0.0031 0.0022 0.0018 0.0013 0.0011 0.0009

θy (rad) ----- ----- ----- ----- ----- ----- -----

TEstimate (sec) 2.01 2.01 2.02 2.03 2.04 2.05 2.07

Tmodel (sec) 2.01 2.01 2.02 2.03 2.04 2.05 2.07

Δ1 (mm) 20.2 30.5 40.5 53.2 63.8 70.5 72.0

Δ10 (mm) 184 244 303 380 446 485 494

Avg. Max. θb (rad) 0.0040 0.0064 0.0087 0.0115 0.0139 0.0154 0.0158

Avg. Max. Uplift (mm) 72.3 102.6 122.5 141.0 143.4 143.8 131.4

Avg. Max. Comp. Disp. (mm) -2.5 -2.8 -2.9 -3.0 -2.9 -2.9 -2.8

Avg. Max. qmax/qult 36% 45% 55% 67% 79% 88% 98%
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Figure A.68 Average of displacement envelopes for wall 20ElasticMR40 on Rock along with 

estimated top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.69 Average of drift envelopes for wall 20ElasticMR40 on Rock (Note: base rotation 

values are plotted at h=0 and values of average interstory drift are plotted at the top of the 

storey.) 
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Figure A.70 Average of curvature envelopes for wall 20ElasticMR40 on Rock 

 

 

 

 

 

 

 

 

 

Figure A.71 Average of a) shear force, and b) bending moment envelopes for wall 

20ElasticMR40 on Rock along with estimated maximum quantities for the fixed-base wall from 

RSA using various effective stiffnesses 
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Figure A.72 Bending moment-rotation response of the foundation of wall 20ElasticMR40 on 

Rock 

 

 

 

 

 

 

 

Figure A.73 Average of maximum soil compressive displacements underneath the footing for 

wall 20ElasticMR40 on Rock 
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Table A.23 Shear wall properties for wall 20ElasticMR60 

 

 

 

 

 

Table A.24 Summary of nonlinear dynamic analyses for wall 20ElasticMR60 on Rock 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 20

Lw (mm) 5500

P (kN) 124650

MRSA (kN.m) 961600

My (kN.m) -----

Rw 1.00

Shear Wall Properties

Rf 1.3 1.5 1.7 1.9 2.2 2.6 3.4

E (MPa) 20000 20000 20000 20000 20000 20000 20000

Geff (MPa) 8333 8333 8333 8333 8333 8333 8333

ν 0.2 0.2 0.2 0.2 0.2 0.2 0.2

qa (kPa) 7000 7000 7000 7000 7000 7000 7000

q (kPa) 798 943 1131 1381 1725 2216 2950

qf (kPa) 10000 10000 10000 10000 10000 10000 10000

qult (kPa) 20000 20000 20000 20000 20000 20000 20000

L (m) 12.5 11.5 10.5 9.5 8.5 7.5 6.5

B (m) 12.5 11.5 10.5 9.5 8.5 7.5 6.5

a (mm) 997 1084 1187 1312 1466 1662 1918

s (mm) 0.17 0.19 0.20 0.22 0.24 0.26 0.29

Moc (kN.m) 716912 649183 580424 510311 438365 363853 285592

θoc (rad) 0.0014 0.0012 0.0010 0.0008 0.0007 0.0005 0.0004

θy (rad) ----- ----- ----- ----- ----- ----- -----

TEstimate (sec) 2.03 2.03 2.04 2.05 2.07 2.10 2.14

Tmodel (sec) 2.03 2.04 2.05 2.06 2.07 2.10 2.14

Δ1 (mm) 21.5 32.7 36.3 40.5 48.6 51.3 57.3

Δ10 (mm) 194 263 281 300 351 363 399

Avg. Max. θb (rad) 0.0043 0.0069 0.0077 0.0087 0.0105 0.0111 0.0125

Avg. Max. Uplift (mm) 50.8 74.6 76.2 76.9 82.7 76.3 73.2

Avg. Max. Comp. Disp. (mm) -3.3 -4.2 -4.7 -5.4 -6.6 -7.2 -8.3

Avg. Max. qmax/qult 73% 90% 97% 100% 100% 100% 100%
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Figure A.74 Average of displacement envelopes for wall 20ElasticMR60 on Rock along with 

estimated top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.75 Average of drift envelopes for wall 20ElasticMR60 on Rock (Note: base rotation 

values are plotted at h=0 and values of average interstory drift are plotted at the top of the 

storey.) 
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Figure A.76 Average of curvature envelopes for wall 20ElasticMR60 on Rock 

 

 

 

 

 

 

 

 

 

Figure A.77 Average of a) shear force, and b) bending moment envelopes for wall 

20ElasticMR60 on Rock along with estimated maximum quantities for the fixed-base wall from 

RSA using various effective stiffnesses 
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Figure A.78 Bending moment-rotation response of the foundation of wall 20ElasticMR60 on 

Rock 

 

 

 

 

 

 

 

Figure A.79 Average of maximum soil compressive displacements underneath the footing for 

wall 20ElasticMR60 on Rock 
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A.6 Core NTHA – Summary of Results 

Sections below present an extended summary of the core NTHA for the five types of soil 

considered in this study. 
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A.6.1 Clay 

 

Table A.25 Properties of Clay 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.80 Soil spring responses in monotonic compression for Clay 

 

 

 

G0 (MPa) 43

Geff (MPa) 22

ν 0.3

E (MPa) 57

qult (kPa) 400

qf (kPa) 200

qa (kPa) 133

Vs (m/s) 200
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Table A.26 Shear wall properties for wall 10R27 

 

 

 

 

 

Table A.27 Summary of nonlinear dynamic analyses for wall 10R27 on Clay 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) 179000

Rw 2.73

Rf 1.8 2.0 2.3 2.7 3.2

E (MPa) 57 57 57 57 57

Geff (MPa) 22 22 22 22 22

ν 0.3 0.3 0.3 0.3 0.3

qa (kPa) 133 133 133 133 133

q (kPa) 82 90 99 109 121

qf (kPa) 200 200 200 200 200

qult (kPa) 400 400 400 400 400

L (m) 22.5 21.5 20.5 19.5 18.5

B (m) 22.5 21.5 20.5 19.5 18.5

a (mm) 9233 9663 10134 10654 11230

s (mm) 7.47 7.76 8.07 8.41 8.78

Moc (kN.m) 275615 245918 215351 183779 151040

θoc (rad) 0.0019 0.0018 0.0016 0.0014 0.0013

θy (rad) 0.0008 0.0009 0.0011 0.0014 0.0017

TEstimate (sec) 1.32 1.35 1.39 1.38 1.48

Tmodel (sec) 1.33 1.37 1.42 1.44 1.53

Δ1 (mm) 15.3 16.2 17.2 18.7 19.9

Δ10 (mm) 222 230 239 248 252

Avg. Max. θb (rad) 0.0011 0.0013 0.0016 0.0019 0.0023

Avg. Max. Uplift (mm) 4.8 6.3 8.2 10.8 13.7

Avg. Max. Comp. Disp. (mm) -19.5 -21.5 -23.7 -26.4 -29.6

Avg. Max. qmax/qult 48% 55% 62% 70% 79%
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Figure A.81 Average of displacement envelopes for wall 10R27 on Clay along with estimated 

top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.82 Average of drift envelopes for wall 10R27 on Clay (Note: base rotation values are 

plotted at h=0 and values of average interstory drift are plotted at the top of the storey.) 
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Figure A.83 Average of curvature envelopes for wall 10R27 on Clay 

 

 

 

 

 

 

 

 

 

Figure A.84 Average of a) shear force, and b) bending moment envelopes for wall 10R27 on 

Clay along with estimated maximum quantities for the fixed-base wall from RSA using various 

effective stiffnesses 
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Figure A.85 Bending moment-rotation response of the foundation of wall 10R27 on Clay 

 

 

 

 

 

 

 

Figure A.86 Average of maximum soil compressive displacements underneath the footing for 

wall 10R27 on Clay 
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Figure A.87 Moment-curvature response of wall 10R27 along with average of maximum 

recorded curvatures at the base on Clay 
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Table A.28 Shear wall properties for wall 10R20 

 

 

 

 

 

Table A.29 Summary of nonlinear dynamic analyses for wall 10R20 on Clay 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) 249000

Rw 1.96

Rf 1.8 2.0 2.3 2.7 3.2

E (MPa) 57 57 57 57 57

Geff (MPa) 22 22 22 22 22

ν 0.3 0.3 0.3 0.3 0.3

qa (kPa) 133 133 133 133 133

q (kPa) 82 90 99 109 121

qf (kPa) 200 200 200 200 200

qult (kPa) 400 400 400 400 400

L (m) 22.5 21.5 20.5 19.5 18.5

B (m) 22.5 21.5 20.5 19.5 18.5

a (mm) 9233 9663 10134 10654 11230

s (mm) 7.47 7.76 8.07 8.41 8.78

Moc (kN.m) 275615 245918 215351 183779 151040

θoc (rad) 0.0019 0.0018 0.0016 0.0014 0.0013

θy (rad) 0.0015 0.0018 0.0023 0.0033 0.0054

TEstimate (sec) 1.27 1.30 1.34 1.43 1.43

Tmodel (sec) 1.30 1.34 1.38 1.47 1.50

Δ1 (mm) 16.6 17.8 20.5 25.0 30.0

Δ10 (mm) 234 238 255 279 305

Avg. Max. θb (rad) 0.0019 0.0023 0.0029 0.0039 0.0053

Avg. Max. Uplift (mm) 16.8 20.5 26.8 36.5 49.2

Avg. Max. Comp. Disp. (mm) -26.3 -29.1 -33.2 -39.4 -48.4

Avg. Max. qmax/qult 62% 69% 78% 86% 92%
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Figure A.88 Average of displacement envelopes for wall 10R20 on Clay along with estimated 

top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.89 Average of drift envelopes for wall 10R20 on Clay (Note: base rotation values are 

plotted at h=0 and values of average interstory drift are plotted at the top of the storey.) 
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Figure A.90 Average of curvature envelopes for wall 10R20 on Clay 

 

 

 

 

 

 

 

 

 

Figure A.91 Average of a) shear force, and b) bending moment envelopes for wall 10R20 on 

Clay along with estimated maximum quantities for the fixed-base wall from RSA using various 

effective stiffnesses 
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Figure A.92 Bending moment-rotation response of the foundation of wall 10R20 on Clay 

 

 

 

 

 

 

 

Figure A.93 Average of maximum soil compressive displacements underneath the footing for 

wall 10R20 on Clay 
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Figure A.94 Moment-curvature response of wall 10R20 along with average of maximum 

recorded curvatures at the base on Clay 
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Table A.30 Shear wall properties for wall 10R17 

 

 

 

 

 

Table A.31 Summary of nonlinear dynamic analyses for wall 10R17 on Clay 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) 289000

Rw 1.69

Rf 1.8 2.0 2.3 2.7 3.2

E (MPa) 57 57 57 57 57

Geff (MPa) 22 22 22 22 22

ν 0.3 0.3 0.3 0.3 0.3

qa (kPa) 133 133 133 133 133

q (kPa) 82 90 99 109 121

qf (kPa) 200 200 200 200 200

qult (kPa) 400 400 400 400 400

L (m) 22.5 21.5 20.5 19.5 18.5

B (m) 22.5 21.5 20.5 19.5 18.5

a (mm) 9233 9663 10134 10654 11230

s (mm) 7.47 7.76 8.07 8.41 8.78

Moc (kN.m) 275615 245918 215351 183779 151040

θoc (rad) 0.0019 0.0018 0.0016 0.0014 0.0013

θy (rad) 0.0022 0.0029 0.0043 0.0080 0.0383

TEstimate (sec) 1.25 1.29 1.32 1.37 1.42

Tmodel (sec) 1.28 1.32 1.37 1.42 1.48

Δ1 (mm) 19.0 21.2 23.8 28.5 34.4

Δ10 (mm) 245 256 267 288 314

Avg. Max. θb (rad) 0.0027 0.0033 0.0040 0.0052 0.0066

Avg. Max. Uplift (mm) 29.3 35.3 42.4 53.6 65.4

Avg. Max. Comp. Disp. (mm) -31.7 -35.4 -39.8 -47.0 -56.8

Avg. Max. qmax/qult 70% 78% 85% 90% 93%



483 

 

 

 

 

 

 

 

 

 

 

Figure A.95 Average of displacement envelopes for wall 10R17 on Clay along with estimated 

top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.96 Average of drift envelopes for wall 10R17 on Clay (Note: base rotation values are 

plotted at h=0 and values of average interstory drift are plotted at the top of the storey.) 
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Figure A.97 Average of curvature envelopes for wall 10R17 on Clay 

 

 

 

 

 

 

 

 

 

Figure A.98 Average of a) shear force, and b) bending moment envelopes for wall 10R17 on 

Clay along with estimated maximum quantities for the fixed-base wall from RSA using various 

effective stiffnesses 



485 

 

 

 

 

 

 

 

 

 

Figure A.99 Bending moment-rotation response of the foundation of wall 10R17 on Clay 

 

 

 

 

 

 

 

Figure A.100 Average of maximum soil compressive displacements underneath the footing for 

wall 10R17 on Clay 
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Figure A.101 Moment-curvature response of wall 10R17 along with average of maximum 

recorded curvatures at the base on Clay 
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Table A.32 Shear wall properties for wall 10R13 

 

 

 

 

 

Table A.33 Summary of nonlinear dynamic analyses for wall 10R13 on Clay 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) 369000

Rw 1.32

Rf 1.3 1.5 1.8 2.0 2.3 2.7 3.2

E (MPa) 57 57 57 57 57 57 57

Geff (MPa) 22 22 22 22 22 22 22

ν 0.3 0.3 0.3 0.3 0.3 0.3 0.3

qa (kPa) 133 133 133 133 133 133 133

q (kPa) 59 69 82 90 99 109 121

qf (kPa) 200 200 200 200 200 200 200

qult (kPa) 400 400 400 400 400 400 400

L (m) 26.5 24.5 22.5 21.5 20.5 19.5 18.5

B (m) 26.5 24.5 22.5 21.5 20.5 19.5 18.5

a (mm) 7840 8480 9233 9663 10134 10654 11230

s (mm) 6.52 6.97 7.47 7.76 8.07 8.41 8.77

Moc (kN.m) 387669 332824 275615 245918 215351 183779 151040

θoc (rad) 0.0024 0.0022 0.0019 0.0018 0.0016 0.0014 0.0013

θy (rad) 0.0020 0.0033 0.0080 0.0205 0.0626 ----- -----

TEstimate (sec) 1.13 1.17 1.22 1.25 1.29 1.34 1.39

Tmodel (sec) 1.11 1.15 1.25 1.29 1.34 1.39 1.46

Δ1 (mm) 14.6 17.7 23.7 26.3 29.0 34.2 36.0

Δ10 (mm) 208 224 256 268 280 307 306

Avg. Max. θb (rad) 0.0020 0.0028 0.0042 0.0048 0.0055 0.0067 0.0072

Avg. Max. Uplift (mm) 26.4 36.2 54.1 59.6 64.1 74.6 73.1

Avg. Max. Comp. Disp. (mm) -26.9 -31.9 -40.3 -44.3 -48.6 -56.3 -61.0

Avg. Max. qmax/qult 54% 66% 80% 86% 89% 92% 94%
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Figure A.102 Average of displacement envelopes for wall 10R13 on Clay along with estimated 

top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.103 Average of drift envelopes for wall 10R13 on Clay (Note: base rotation values are 

plotted at h=0 and values of average interstory drift are plotted at the top of the storey.) 
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Figure A.104 Average of curvature envelopes for wall 10R13 on Clay 

 

 

 

 

 

 

 

 

 

Figure A.105 Average of a) shear force, and b) bending moment envelopes for wall 10R13 on 

Clay along with estimated maximum quantities for the fixed-base wall from RSA using various 

effective stiffnesses 
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Figure A.106 Bending moment-rotation response of the foundation of wall 10R13 on Clay 

 

 

 

 

 

 

 

Figure A.107 Average of maximum soil compressive displacements underneath the footing for 

wall 10R13 on Clay 
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Figure A.108 Moment-curvature response of wall 10R13 along with average of maximum 

recorded curvatures at the base on Clay 
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Table A.34 Shear wall properties for wall 10Elastic 

 

 

 

 

 

Table A.35 Summary of nonlinear dynamic analyses for wall 10Elastic on Clay 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) -----

Rw 1.00

Rf 1.8 2.0 2.3 2.7 3.2

E (MPa) 57 57 57 57 57

Geff (MPa) 22 22 22 22 22

ν 0.3 0.3 0.3 0.3 0.3

qa (kPa) 133 133 133 133 133

q (kPa) 82 90 99 109 121

qf (kPa) 200 200 200 200 200

qult (kPa) 400 400 400 400 400

L (m) 22.5 21.5 20.5 19.5 18.5

B (m) 22.5 21.5 20.5 19.5 18.5

a (mm) 9233 9663 10134 10654 11230

s (mm) 7.47 7.76 8.07 8.41 8.78

Moc (kN.m) 275615 245918 215351 183779 151040

θoc (rad) 0.0019 0.0018 0.0016 0.0014 0.0013

θy (rad) ----- ----- ----- ----- -----

TEstimate (sec) 1.32 1.35 1.38 1.42 1.47

Tmodel (sec) 1.36 1.40 1.44 1.49 1.55

Δ1 (mm) 28.4 33.3 36.6 41.0 43.1

Δ10 (mm) 257 287 306 328 338

Avg. Max. θb (rad) 0.0055 0.0067 0.0074 0.0085 0.0090

Avg. Max. Uplift (mm) 76.7 88.9 93.0 97.8 92.8

Avg. Max. Comp. Disp. (mm) -47.9 -54.4 -59.7 -67.5 -73.7

Avg. Max. qmax/qult 87% 90% 93% 94% 95%
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Figure A.109 Average of displacement envelopes for wall 10Elastic on Clay along with 

estimated top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.110 Average of drift envelopes for wall 10Elastic on Clay (Note: base rotation values 

are plotted at h=0 and values of average interstory drift are plotted at the top of the storey.) 
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Figure A.111 Average of curvature envelopes for wall 10Elastic on Clay 

 

 

 

 

 

 

 

 

 

Figure A.112 Average of a) shear force, and b) bending moment envelopes for wall 10Elastic on 

Clay along with estimated maximum quantities for the fixed-base wall from RSA using various 

effective stiffnesses 
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Figure A.113 Bending moment-rotation response of the foundation of wall 10Elastic on Clay 

 

 

 

 

 

 

 

Figure A.114 Average of maximum soil compressive displacements underneath the footing for 

wall 10Elastic on Clay 
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Figure A.115 Summary of average maximum a) first storey displacements, and b) top 

displacements for 10 storey walls on Clay sorted by wall strength 

 

 

 

 

 

 

 

 

 

 

Figure A.116 Summary of average maximum a) base rotations, b) 1
st
 storey inter-storey drifts, 

c) top storey inter-storey drifts, and d) global drifts of 10 storey walls on Clay sorted by wall 

strength 
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Figure A.117 Summary of average maximum a) first storey displacements, and b) top 

displacements for 10 storey walls on Clay sorted by foundation size 

 

 

 

 

 

 

  

 

 

 

 

Figure A.118 Summary of average maximum a) base rotations, b) 1
st
 storey inter-storey drifts, 

c) top storey inter-storey drifts, and d) global drifts of 10 storey walls on Clay sorted by 

foundation size 
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Figure A.119 Summary of average maximum soil compressive displacement at a) foundation 

toe, and b) foundation centreline for 10 storey walls on Clay sorted by wall strength 

 

 

 

 

 

 

Figure A.120 Summary of average maximum soil compressive displacement at a) foundation 

toe, and b) foundation centreline for 10 storey walls on Clay sorted by foundation size 
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A.6.2 Loose Sand 

 

Table A.36 Properties of Loose Sand 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.121 Soil spring responses in monotonic compression for Loose Sand 

 

 

 

 

G0 (MPa) 57

Geff (MPa) 22

ν 0.3

E (MPa) 57

qult (kPa) 400

qf (kPa) 200

qa (kPa) 133

Vs (m/s) 325
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Table A.37 Shear wall properties for wall 10R27 

 

 

 

 

 

Table A.38 Summary of nonlinear dynamic analyses for wall 10R27 on Loose Sand 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) 179000

Rw 2.73

Rf 1.8 2.0 2.3 2.7 3.2

E (MPa) 57 57 57 57 57

Geff (MPa) 22 22 22 22 22

ν 0.3 0.3 0.3 0.3 0.3

qa (kPa) 133 133 133 133 133

q (kPa) 82 90 99 109 121

qf (kPa) 200 200 200 200 200

qult (kPa) 400 400 400 400 400

L (m) 22.5 21.5 20.5 19.5 18.5

B (m) 22.5 21.5 20.5 19.5 18.5

a (mm) 9233 9663 10134 10654 11230

s (mm) 2.82 2.93 3.05 3.17 3.31

Moc (kN.m) 275615 245918 215351 183779 151040

θoc (rad) 0.0022 0.0021 0.0019 0.0017 0.0016

θy (rad) 0.0005 0.0007 0.0011 0.0016 0.0023

TEstimate (sec) 1.32 1.35 1.39 1.38 1.48

Tmodel (sec) 1.14 1.16 1.17 1.19 1.21

Δ1 (mm) 13.5 14.1 15.2 16.4 18.3

Δ10 (mm) 208 215 222 224 229

Avg. Max. θb (rad) 0.0008 0.0010 0.0013 0.0017 0.0021

Avg. Max. Uplift (mm) 5.2 5.7 6.1 6.5 7.2

Avg. Max. Comp. Disp. (mm) -13.1 -17.1 -21.7 -26.9 -33.8

Avg. Max. qmax/qult 41% 47% 53% 60% 68%
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Figure A.122 Average of displacement envelopes for wall 10R27 on Loose Sand along with 

estimated top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.123 Average of drift envelopes for wall 10R27 on Loose Sand (Note: base rotation 

values are plotted at h=0 and values of average interstory drift are plotted at the top of the 

storey.) 
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Figure A.124 Average of curvature envelopes for wall 10R27 on Loose Sand 

 

 

 

 

 

 

 

 

 

Figure A.125 Average of a) shear force, and b) bending moment envelopes for wall 10R27 on 

Loose Sand along with estimated maximum quantities for the fixed-base wall from RSA using 

various effective stiffnesses 
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Figure A.126 Bending moment-rotation response of the foundation of wall 10R27 on Loose 

Sand 

 

 

 

 

 

 

 

Figure A.127 Average of maximum soil compressive displacements underneath the footing for 

wall 10R27 on Loose Sand 
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Figure A.128 Moment-curvature response of wall 10R27 along with average of maximum 

recorded curvatures at the base on Loose Sand 
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Table A.39 Shear wall properties for wall 10R20 

 

 

 

 

 

Table A.40 Summary of nonlinear dynamic analyses for wall 10R20 on Loose Sand 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) 249000

Rw 1.96

Rf 1.8 2.0 2.3 2.7 3.2

E (MPa) 57 57 57 57 57

Geff (MPa) 22 22 22 22 22

ν 0.3 0.3 0.3 0.3 0.3

qa (kPa) 133 133 133 133 133

q (kPa) 82 90 99 109 121

qf (kPa) 200 200 200 200 200

qult (kPa) 400 400 400 400 400

L (m) 22.5 21.5 20.5 19.5 18.5

B (m) 22.5 21.5 20.5 19.5 18.5

a (mm) 9233 9663 10134 10654 11230

s (mm) 2.82 2.93 3.05 3.17 3.31

Moc (kN.m) 275615 245918 215351 183779 151040

θoc (rad) 0.0022 0.0021 0.0019 0.0017 0.0016

θy (rad) 0.0015 0.0022 0.0032 0.0049 0.0087

TEstimate (sec) 1.27 1.30 1.34 1.43 1.43

Tmodel (sec) 1.11 1.12 1.13 1.15 1.17

Δ1 (mm) 14.6 16.0 17.6 19.5 22.4

Δ10 (mm) 213 215 222 229 239

Avg. Max. θb (rad) 0.0017 0.0021 0.0025 0.0031 0.0039

Avg. Max. Uplift (mm) 15.0 16.9 18.2 20.0 20.7

Avg. Max. Comp. Disp. (mm) -23.1 -28.6 -34.8 -42.8 -55.1

Avg. Max. qmax/qult 52% 58% 65% 72% 77%
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Figure A.129 Average of displacement envelopes for wall 10R20 on Loose Sand along with 

estimated top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.130 Average of drift envelopes for wall 10R20 on Loose Sand (Note: base rotation 

values are plotted at h=0 and values of average interstory drift are plotted at the top of the 

storey.) 
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Figure A.131 Average of curvature envelopes for wall 10R20 on Loose Sand 

 

 

 

 

 

 

 

 

 

Figure A.132 Average of a) shear force, and b) bending moment envelopes for wall 10R20 on 

Loose Sand along with estimated maximum quantities for the fixed-base wall from RSA using 

various effective stiffnesses 
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Figure A.133 Bending moment-rotation response of the foundation of wall 10R20 on Loose 

Sand 

 

 

 

 

 

 

 

Figure A.134 Average of maximum soil compressive displacements underneath the footing for 

wall 10R20 on Loose Sand 
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Figure A.135 Moment-curvature response of wall 10R20 along with average of maximum 

recorded curvatures at the base on Loose Sand 
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Table A.41 Shear wall properties for wall 10R17 

 

 

 

 

 

Table A.42 Summary of nonlinear dynamic analyses for wall 10R17 on Loose Sand 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) 289000

Rw 1.69

Rf 1.8 2.0 2.3 2.7 3.2

E (MPa) 57 57 57 57 57

Geff (MPa) 22 22 22 22 22

ν 0.3 0.3 0.3 0.3 0.3

qa (kPa) 133 133 133 133 133

q (kPa) 82 90 99 109 121

qf (kPa) 200 200 200 200 200

qult (kPa) 400 400 400 400 400

L (m) 22.5 21.5 20.5 19.5 18.5

B (m) 22.5 21.5 20.5 19.5 18.5

a (mm) 9233 9663 10134 10654 11230

s (mm) 2.82 2.93 3.05 3.17 3.31

Moc (kN.m) 275615 245918 215351 183779 151040

θoc (rad) 0.0022 0.0021 0.0019 0.0017 0.0016

θy (rad) 0.0027 0.0041 0.0065 0.0125 0.0417

TEstimate (sec) 1.25 1.29 1.32 1.37 1.42

Tmodel (sec) 1.08 1.10 1.11 1.13 1.15

Δ1 (mm) 16.6 17.5 19.8 21.1 23.0

Δ10 (mm) 217 218 227 224 230

Avg. Max. θb (rad) 0.0024 0.0027 0.0033 0.0037 0.0042

Avg. Max. Uplift (mm) 23.4 23.6 26.2 25.4 23.7

Avg. Max. Comp. Disp. (mm) -30.7 -35.2 -42.3 -49.5 -59.4

Avg. Max. qmax/qult 59% 64% 70% 74% 79%
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Figure A.136 Average of displacement envelopes for wall 10R17 on Loose Sand along with 

estimated top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.137 Average of drift envelopes for wall 10R17 on Loose Sand (Note: base rotation 

values are plotted at h=0 and values of average interstory drift are plotted at the top of the 

storey.) 
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Figure A.138 Average of curvature envelopes for wall 10R17 on Loose Sand 

 

 

 

 

 

 

 

 

 

Figure A.139 Average of a) shear force, and b) bending moment envelopes for wall 10R17 on 

Loose Sand along with estimated maximum quantities for the fixed-base wall from RSA using 

various effective stiffnesses 
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Figure A.140 Bending moment-rotation response of the foundation of wall 10R17 on Loose 

Sand 

 

 

 

 

 

 

 

Figure A.141 Average of maximum soil compressive displacements underneath the footing for 

wall 10R17 on Loose Sand 
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Figure A.142 Moment-curvature response of wall 10R17 along with average of maximum 

recorded curvatures at the base on Loose Sand 
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Table A.43 Shear wall properties for wall 10R13 

 

 

 

 

 

Table A.44 Summary of nonlinear dynamic analyses for wall 10R13 on Loose Sand 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) 369000

Rw 1.32

Rf 1.3 1.5 1.8 2.0 2.3 2.7 3.2

E (MPa) 57 57 57 57 57 57 57

Geff (MPa) 22 22 22 22 22 22 22

ν 0.3 0.3 0.3 0.3 0.3 0.3 0.3

qa (kPa) 133 133 133 133 133 133 133

q (kPa) 59 69 82 90 99 109 121

qf (kPa) 200 200 200 200 200 200 200

qult (kPa) 400 400 400 400 400 400 400

L (m) 26.5 24.5 22.5 21.5 20.5 19.5 18.5

B (m) 26.5 24.5 22.5 21.5 20.5 19.5 18.5

a (mm) 7840 8480 9233 9663 10134 10654 11230

s (mm) 6.52 6.97 2.82 2.93 3.05 3.17 3.31

Moc (kN.m) 387669 332824 275615 245918 215351 183779 151040

θoc (rad) 0.0026 0.0025 0.0022 0.0021 0.0019 0.0017 0.0016

θy (rad) 0.0019 0.0044 0.0119 0.0256 0.0646 ----- -----

TEstimate (sec) 1.13 1.17 1.22 1.25 1.29 1.34 1.39

Tmodel (sec) 1.01 1.02 1.05 1.06 1.08 1.09 1.11

Δ1 (mm) 11.7 15.7 18.1 20.3 21.9 23.3 23.2

Δ10 (mm) 181 203 207 215 222 224 214

Avg. Max. θb (rad) 0.0015 0.0024 0.0031 0.0036 0.0040 0.0044 0.0045

Avg. Max. Uplift (mm) 20.5 30.9 32.1 34.4 32.7 29.9 28.2

Avg. Max. Comp. Disp. (mm) -18.2 -28.6 -37.3 -43.2 -50.2 -57.6 -60.9

Avg. Max. qmax/qult 44% 54% 64% 69% 73% 77% 81%
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Figure A.143 Average of displacement envelopes for wall 10R13 on Loose Sand along with 

estimated top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.144 Average of drift envelopes for wall 10R13 on Loose Sand (Note: base rotation 

values are plotted at h=0 and values of average interstory drift are plotted at the top of the 

storey.) 
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Figure A.145 Average of curvature envelopes for wall 10R13 on Loose Sand 

 

 

 

 

 

 

 

 

 

Figure A.146 Average of a) shear force, and b) bending moment envelopes for wall 10R13 on 

Loose Sand along with estimated maximum quantities for the fixed-base wall from RSA using 

various effective stiffnesses 
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Figure A.147 Bending moment-rotation response of the foundation of wall 10R13 on Loose 

Sand 

 

 

 

 

 

 

 

Figure A.148 Average of maximum soil compressive displacements underneath the footing for 

wall 10R13 on Loose Sand 
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Figure A.149 Moment-curvature response of wall 10R13 along with average of maximum 

recorded curvatures at the base on Loose Sand 
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Table A.45 Shear wall properties for wall 10Elastic 

 

 

 

 

 

Table A.46 Summary of nonlinear dynamic analyses for wall 10Elastic on Loose Sand 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) -----

Rw 1.00

Rf 1.8 2.0 2.3 2.7 3.2

E (MPa) 57 57 57 57 57

Geff (MPa) 22 22 22 22 22

ν 0.3 0.3 0.3 0.3 0.3

qa (kPa) 133 133 133 133 133

q (kPa) 82 90 99 109 121

qf (kPa) 200 200 200 200 200

qult (kPa) 400 400 400 400 400

L (m) 22.5 21.5 20.5 19.5 18.5

B (m) 22.5 21.5 20.5 19.5 18.5

a (mm) 9233 9663 10134 10654 11230

s (mm) 2.82 2.93 3.05 3.17 3.31

Moc (kN.m) 275615 245918 215351 183779 151040

θoc (rad) 0.0022 0.0021 0.0019 0.0017 0.0016

θy (rad) ----- ----- ----- ----- -----

TEstimate (sec) 1.32 1.35 1.38 1.42 1.47

Tmodel (sec) 1.18 1.19 1.20 1.22 1.24

Δ1 (mm) 23.2 25.7 26.5 27.0 26.2

Δ10 (mm) 217 233 234 232 221

Avg. Max. θb (rad) 0.0044 0.0050 0.0052 0.0054 0.0053

Avg. Max. Uplift (mm) 51.2 51.9 46.9 39.8 33.0

Avg. Max. Comp. Disp. (mm) -49.9 -56.8 -62.0 -69.2 -72.3

Avg. Max. qmax/qult 70% 74% 77% 80% 82%
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Figure A.150 Average of displacement envelopes for wall 10Elastic on Loose Sand along with 

estimated top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.151 Average of drift envelopes for wall 10Elastic on Loose Sand (Note: base rotation 

values are plotted at h=0 and values of average interstory drift are plotted at the top of the 

storey.) 
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Figure A.152 Average of curvature envelopes for wall 10Elastic on Loose Sand 

 

 

 

 

 

 

 

 

 

Figure A.153 Average of a) shear force, and b) bending moment envelopes for wall 10Elastic on 

Loose Sand along with estimated maximum quantities for the fixed-base wall from RSA using 

various effective stiffnesses 
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Figure A.154 Bending moment-rotation response of the foundation of wall 10Elastic on Loose 

Sand 

 

 

 

 

 

 

 

Figure A.155 Average of maximum soil compressive displacements underneath the footing for 

wall 10Elastic on Loose Sand 
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Figure A.156 Summary of average maximum a) first storey displacements, and b) top 

displacements for 10 storey walls on Loose Sand sorted by wall strength 

 

 

 

 

 

 

 

 

 

 

 

Figure A.157 Summary of average maximum a) base rotations, b) 1
st
 storey inter-storey drifts, 

c) top storey inter-storey drifts, and d) global drifts of 10 storey walls on Loose Sand sorted by 

wall strength 
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Figure A.158 Summary of average maximum a) first storey displacements, and b) top 

displacements for 10 storey walls on Loose Sand sorted by foundation size 

 

 

 

 

 

 

  

 

 

 

 

Figure A.159 Summary of average maximum a) base rotations, b) 1
st
 storey inter-storey drifts, 

c) top storey inter-storey drifts, and d) global drifts of 10 storey walls on Loose Sand sorted by 

foundation size 
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Figure A.160 Summary of average maximum soil compressive displacement at a) foundation 

toe, and b) foundation centreline for 10 storey walls on Loose Sand sorted by wall strength 

 

 

 

 

 

 

Figure A.161 Summary of average maximum soil compressive displacement at a) foundation 

toe, and b) foundation centreline for 10 storey walls on Loose Sand sorted by foundation size 
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A.6.3 Medium Sand 

 

Table A.47 Properties of Medium Sand 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.162 Soil spring responses in monotonic compression for Medium Sand 

 

 

 

 

G0 (MPa) 186

Geff (MPa) 70

ν 0.3

E (MPa) 182

qult (kPa) 800

qf (kPa) 400

qa (kPa) 267

Vs (m/s) 360
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Table A.48 Shear wall properties for wall 10R27 

 

 

 

 

 

Table A.49 Summary of nonlinear dynamic analyses for wall 10R27 on Medium Sand 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) 179000

Rw 2.73

Rf 1.8 2.0 2.3 2.7 3.2

E (MPa) 182 182 182 182 182

Geff (MPa) 70 70 70 70 70

ν 0.3 0.3 0.3 0.3 0.3

qa (kPa) 267 267 267 267 267

q (kPa) 121 136 153 173 198

qf (kPa) 400 400 400 400 400

qult (kPa) 800 800 800 800 800

L (m) 18.5 17.5 16.5 15.5 14.5

B (m) 18.5 17.5 16.5 15.5 14.5

a (mm) 5615 5936 6295 6702 7164

s (mm) 1.02 1.07 1.12 1.17 1.24

Moc (kN.m) 267689 240248 211999 182786 152410

θoc (rad) 0.0017 0.0016 0.0014 0.0013 0.0011

θy (rad) 0.0002 0.0003 0.0006 0.0012 0.0020

TEstimate (sec) 1.21 1.23 1.26 1.29 1.33

Tmodel (sec) 1.10 1.11 1.12 1.13 1.15

Δ1 (mm) 12.8 14.0 15.2 16.8 19.8

Δ10 (mm) 203 215 221 228 239

Avg. Max. θb (rad) 0.0005 0.0009 0.0013 0.0018 0.0025

Avg. Max. Uplift (mm) 4.3 7.7 10.1 13.1 16.7

Avg. Max. Comp. Disp. (mm) -5.1 -7.8 -10.9 -14.8 -20.3

Avg. Max. qmax/qult 38% 46% 54% 64% 75%
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Figure A.163 Average of displacement envelopes for wall 10R27 on Medium Sand along with 

estimated top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.164 Average of drift envelopes for wall 10R27 on Medium Sand (Note: base rotation 

values are plotted at h=0 and values of average interstory drift are plotted at the top of the 

storey.) 
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Figure A.165 Average of curvature envelopes for wall 10R27 on Medium Sand 

 

 

 

 

 

 

 

 

 

Figure A.166 Average of a) shear force, and b) bending moment envelopes for wall 10R27 on 

Medium Sand along with estimated maximum quantities for the fixed-base wall from RSA using 

various effective stiffnesses 
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Figure A.167 Bending moment-rotation response of the foundation of wall 10R27 on Medium 

Sand 

 

 

 

 

 

 

 

Figure A.168 Average of maximum soil compressive displacements underneath the footing for 

wall 10R27 on Medium Sand 
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Figure A.169 Moment-curvature response of wall 10R27 along with average of maximum 

recorded curvatures at the base on Medium Sand 
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Table A.50 Shear wall properties for wall 10R20 

 

 

 

 

 

Table A.51 Summary of nonlinear dynamic analyses for wall 10R20 on Medium Sand 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) 249000

Rw 1.96

Rf 1.8 2.0 2.3 2.7 3.2

E (MPa) 182 182 182 182 182

Geff (MPa) 70 70 70 70 70

ν 0.3 0.3 0.3 0.3 0.3

qa (kPa) 267 267 267 267 267

q (kPa) 121 136 153 173 198

qf (kPa) 400 400 400 400 400

qult (kPa) 800 800 800 800 800

L (m) 18.5 17.5 16.5 15.5 14.5

B (m) 18.5 17.5 16.5 15.5 14.5

a (mm) 5615 5936 6295 6702 7164

s (mm) 1.02 1.07 1.12 1.17 1.24

Moc (kN.m) 267689 240248 211999 182786 152410

θoc (rad) 0.0017 0.0016 0.0014 0.0013 0.0011

θy (rad) 0.0011 0.0020 0.0037 0.0082 0.0271

TEstimate (sec) 1.15 1.17 1.26 1.23 1.28

Tmodel (sec) 1.06 1.07 1.08 1.09 1.11

Δ1 (mm) 14.9 17.6 20.6 24.2 30.0

Δ10 (mm) 215 228 241 254 278

Avg. Max. θb (rad) 0.0017 0.0024 0.0032 0.0042 0.0056

Avg. Max. Uplift (mm) 19.0 25.3 31.9 37.3 44.9

Avg. Max. Comp. Disp. (mm) -12.5 -16.8 -22.4 -28.6 -39.5

Avg. Max. qmax/qult 54% 63% 73% 80% 86%
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Figure A.170 Average of displacement envelopes for wall 10R20 on Medium Sand along with 

estimated top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.171 Average of drift envelopes for wall 10R20 on Medium Sand (Note: base rotation 

values are plotted at h=0 and values of average interstory drift are plotted at the top of the 

storey.) 
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Figure A.172 Average of curvature envelopes for wall 10R20 on Medium Sand 

 

 

 

 

 

 

 

 

 

Figure A.173 Average of a) shear force, and b) bending moment envelopes for wall 10R20 on 

Medium Sand along with estimated maximum quantities for the fixed-base wall from RSA using 

various effective stiffnesses 
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Figure A.174 Bending moment-rotation response of the foundation of wall 10R20 on Medium 

Sand 

 

 

 

 

 

 

 

Figure A.175 Average of maximum soil compressive displacements underneath the footing for 

wall 10R20 on Medium Sand 
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Figure A.176 Moment-curvature response of wall 10R20 along with average of maximum 

recorded curvatures at the base on Medium Sand 
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Table A.52 Shear wall properties for wall 10R17 

 

 

 

 

 

Table A.53 Summary of nonlinear dynamic analyses for wall 10R17 on Medium Sand 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) 289000

Rw 1.69

Rf 1.8 2.0 2.3 2.7 3.2

E (MPa) 182 182 182 182 182

Geff (MPa) 70 70 70 70 70

ν 0.3 0.3 0.3 0.3 0.3

qa (kPa) 267 267 267 267 267

q (kPa) 121 136 153 173 198

qf (kPa) 400 400 400 400 400

qult (kPa) 800 800 800 800 800

L (m) 18.5 17.5 16.5 15.5 14.5

B (m) 18.5 17.5 16.5 15.5 14.5

a (mm) 5615 5936 6295 6702 7164

s (mm) 1.02 1.07 1.12 1.17 1.24

Moc (kN.m) 267689 240248 211999 182786 152410

θoc (rad) 0.0017 0.0016 0.0014 0.0013 0.0011

θy (rad) 0.0030 0.0057 0.0132 0.0342 0.0821

TEstimate (sec) 1.13 1.16 1.18 1.22 1.26

Tmodel (sec) 1.04 1.05 1.06 1.07 1.09

Δ1 (mm) 17.7 21.8 24.5 26.3 32.0

Δ10 (mm) 223 246 255 252 280

Avg. Max. θb (rad) 0.0027 0.0037 0.0044 0.0049 0.0063

Avg. Max. Uplift (mm) 31.9 40.2 44.2 44.5 50.6

Avg. Max. Comp. Disp. (mm) -17.5 -24.1 -29.1 -32.4 -43.5

Avg. Max. qmax/qult 62% 71% 77% 82% 87%
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Figure A.177 Average of displacement envelopes for wall 10R17 on Medium Sand along with 

estimated top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.178 Average of drift envelopes for wall 10R17 on Medium Sand (Note: base rotation 

values are plotted at h=0 and values of average interstory drift are plotted at the top of the 

storey.) 
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Figure A.179 Average of curvature envelopes for wall 10R17 on Medium Sand 

 

 

 

 

 

 

 

 

 

Figure A.180 Average of a) shear force, and b) bending moment envelopes for wall 10R17 on 

Medium Sand along with estimated maximum quantities for the fixed-base wall from RSA using 

various effective stiffnesses 
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Figure A.181 Bending moment-rotation response of the foundation of wall 10R17 on Medium 

Sand 

 

 

 

 

 

 

 

 

Figure A.182 Average of maximum soil compressive displacements underneath the footing for 

wall 10R17 on Medium Sand 
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Figure A.183 Moment-curvature response of wall 10R17 along with average of maximum 

recorded curvatures at the base on Medium Sand 
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Table A.54 Shear wall properties for wall 10R13 

 

 

 

 

 

Table A.55 Summary of nonlinear dynamic analyses for wall 10R13 on Medium Sand 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) 369000

Rw 1.32

Rf 1.3 1.5 1.8 2.0 2.3 2.7 3.2

E (MPa) 182 182 182 182 182 182 182

Geff (MPa) 70 70 70 70 70 70 70

ν 0.3 0.3 0.3 0.3 0.3 0.3 0.3

qa (kPa) 233 233 267 267 267 267 267

q (kPa) 82 99 121 136 153 173 198

qf (kPa) 400 400 400 400 400 400 400

qult (kPa) 800 800 800 800 800 800 800

L (m) 22.5 20.5 18.5 17.5 16.5 15.5 14.5

B (m) 22.5 20.5 18.5 17.5 16.5 15.5 14.5

a (mm) 4617 5067 5615 5936 6295 6702 7164

s (mm) 0.87 0.94 1.02 1.07 1.12 1.17 1.24

Moc (kN.m) 371526 320619 267689 240248 211999 182786 152410

θoc (rad) 0.0023 0.0020 0.0017 0.0016 0.0014 0.0013 0.0011

θy (rad) 0.0021 0.0068 0.0220 0.0398 0.0709 ----- -----

TEstimate (sec) 1.03 1.06 1.10 1.12 1.15 1.18 1.23

Tmodel (sec) 0.97 0.98 1.00 1.00 1.02 1.03 1.05

Δ1 (mm) 10.4 16.0 21.2 27.1 30.1 30.6 35.1

Δ10 (mm) 175 198 223 258 273 265 286

Avg. Max. θb (rad) 0.0012 0.0025 0.0038 0.0051 0.0059 0.0061 0.0072

Avg. Max. Uplift (mm) 18.3 35.7 46.2 58.8 60.8 55.3 57.3

Avg. Max. Comp. Disp. (mm) -8.6 -15.9 -23.7 -31.8 -37.5 -41.1 -50.0

Avg. Max. qmax/qult 42% 56% 68% 76% 81% 85% 88%
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Figure A.184 Average of displacement envelopes for wall 10R13 on Medium Sand along with 

estimated top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.185 Average of drift envelopes for wall 10R13 on Medium Sand (Note: base rotation 

values are plotted at h=0 and values of average interstory drift are plotted at the top of the 

storey.) 
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Figure A.186 Average of curvature envelopes for wall 10R13 on Medium Sand 

 

 

 

 

 

 

 

 

 

Figure A.187 Average of a) shear force, and b) bending moment envelopes for wall 10R13 on 

Medium Sand along with estimated maximum quantities for the fixed-base wall from RSA using 

various effective stiffnesses 
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Figure A.188 Bending moment-rotation response of the foundation of wall 10R13 on Medium 

Sand 

 

 

 

 

 

 

 

Figure A.189 Average of maximum soil compressive displacements underneath the footing for 

wall 10R13 on Medium Sand 
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Figure A.190 Moment-curvature response of wall 10R13 along with average of maximum 

recorded curvatures at the base on Medium Sand 
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Table A.56 Shear wall properties for wall 10Elastic 

 

 

 

 

 

Table A.57 Summary of nonlinear dynamic analyses for wall 10Elastic on Medium Sand 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) -----

Rw 1.00

Rf 1.8 2.0 2.3 2.7 3.2

E (MPa) 182 182 182 182 182

Geff (MPa) 70 70 70 70 70

ν 0.3 0.3 0.3 0.3 0.3

qa (kPa) 267 267 267 267 267

q (kPa) 121 136 153 173 198

qf (kPa) 400 400 400 400 400

qult (kPa) 800 800 800 800 800

L (m) 18.5 17.5 16.5 15.5 14.5

B (m) 18.5 17.5 16.5 15.5 14.5

a (mm) 5615 5936 6295 6702 7164

s (mm) 1.02 1.07 1.12 1.17 1.24

Moc (kN.m) 267689 240248 211999 182786 152410

θoc (rad) 0.0017 0.0016 0.0014 0.0013 0.0011

θy (rad) ----- ----- ----- ----- -----

TEstimate (sec) 1.20 1.22 1.25 1.28 1.32

Tmodel (sec) 1.13 1.14 1.15 1.16 1.18

Δ1 (mm) 33.5 34.8 34.5 34.3 34.6

Δ10 (mm) 284 289 283 275 272

Avg. Max. θb (rad) 0.0067 0.0071 0.0071 0.0071 0.0072

Avg. Max. Uplift (mm) 86.9 82.5 74.2 66.6 59.3

Avg. Max. Comp. Disp. (mm) -38.9 -42.1 -44.4 -46.2 -50.8

Avg. Max. qmax/qult 77% 79% 83% 86% 89%
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Figure A.191 Average of displacement envelopes for wall 10Elastic on Medium Sand along 

with estimated top displacements of the fixed-base wall from RSA using various effective 

stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.192 Average of drift envelopes for wall 10Elastic on Medium Sand (Note: base 

rotation values are plotted at h=0 and values of average interstory drift are plotted at the top of 

the storey.) 
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Figure A.193 Average of curvature envelopes for wall 10Elastic on Medium Sand 

 

 

 

 

 

 

 

 

 

Figure A.194 Average of a) shear force, and b) bending moment envelopes for wall 10Elastic on 

Medium Sand along with estimated maximum quantities for the fixed-base wall from RSA using 

various effective stiffnesses 



551 

 

 

 

 

 

 

 

 

 

Figure A.195 Bending moment-rotation response of the foundation of wall 10Elastic on 

Medium Sand 

 

 

 

 

 

 

 

Figure A.196 Average of maximum soil compressive displacements underneath the footing for 

wall 10Elastic on Medium Sand 
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Figure A.197 Summary of average maximum a) first storey displacements, and b) top 

displacements for 10 storey walls on Medium Sand sorted by wall strength 

 

 

 

 

 

 

 

 

 

 

 

Figure A.198 Summary of average maximum a) base rotations, b) 1
st
 storey inter-storey drifts, 

c) top storey inter-storey drifts, and d) global drifts of 10 storey walls on Medium Sand sorted by 

wall strength 
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Figure A.199 Summary of average maximum a) first storey displacements, and b) top 

displacements for 10 storey walls on Medium Sand sorted by foundation size 

 

 

 

 

 

 

  

 

 

 

 

Figure A.200 Summary of average maximum a) base rotations, b) 1
st
 storey inter-storey drifts, 

c) top storey inter-storey drifts, and d) global drifts of 10 storey walls on Medium Sand sorted by 

foundation size 
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Figure A.201 Summary of average maximum soil compressive displacement at a) foundation 

toe, and b) foundation centreline for 10 storey walls on Medium Sand sorted by wall strength 

 

 

 

 

 

 

Figure A.202 Summary of average maximum soil compressive displacement at a) foundation 

toe, and b) foundation centreline for 10 storey walls on Medium Sand sorted by foundation size 

 

 

 

 

 



555 

 

A.6.4 Dense Sand 

 

Table A.58 Properties of Dense Sand 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.203 Soil spring responses in monotonic compression for Dense Sand 

 

 

 

 

G0 (MPa) 825

Geff (MPa) 311

ν 0.3

E (MPa) 809

qult (kPa) 1600

qf (kPa) 800

qa (kPa) 533

Vs (m/s) 760
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Table A.59 Shear wall properties for wall 10R27 

 

 

 

 

 

Table A.60 Summary of nonlinear dynamic analyses for wall 10R27 on Dense Sand 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) 179000

Rw 2.73

Rf 1.9 2.2 2.4 2.8 3.4

E (MPa) 809 809 809 809 809

Geff (MPa) 311 311 311 311 311

ν 0.3 0.3 0.3 0.3 0.3

qa (kPa) 533 533 533 533 533

q (kPa) 173 198 228 266 314

qf (kPa) 800 800 800 800 800

qult (kPa) 1600 1600 1600 1600 1600

L (m) 15.5 14.5 13.5 12.5 11.5

B (m) 15.5 14.5 13.5 12.5 11.5

a (mm) 3351 3582 3847 4155 4516

s (mm) 0.26 0.28 0.29 0.31 0.33

Moc (kN.m) 252399 226824 200536 173367 145086

θoc (rad) 0.0009 0.0008 0.0007 0.0007 0.0006

θy (rad) 0.0001 0.0001 0.0003 0.0008 0.0020

TEstimate (sec) 1.12 1.13 1.15 1.16 1.19

Tmodel (sec) 1.07 1.07 1.07 1.08 1.09

Δ1 (mm) 11.8 12.6 14.9 16.9 22.9

Δ10 (mm) 196 200 218 225 257

Avg. Max. θb (rad) 0.0003 0.0006 0.0011 0.0018 0.0033

Avg. Max. Uplift (mm) 2.4 5.3 9.8 15.2 25.1

Avg. Max. Comp. Disp. (mm) -1.6 -2.9 -4.9 -7.2 -12.5

Avg. Max. qmax/qult 36% 46% 60% 72% 87%
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Figure A.204 Average of displacement envelopes for wall 10R27 on Dense Sand along with 

estimated top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.205 Average of drift envelopes for wall 10R27 on Dense Sand (Note: base rotation 

values are plotted at h=0 and values of average interstory drift are plotted at the top of the 

storey.) 
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Figure A.206 Average of curvature envelopes for wall 10R27 on Dense Sand 

 

 

 

 

 

 

 

 

 

Figure A.207 Average of a) shear force, and b) bending moment envelopes for wall 10R27 on 

Dense Sand along with estimated maximum quantities for the fixed-base wall from RSA using 

various effective stiffnesses 



559 

 

 

 

 

 

 

 

 

 

Figure A.208 Bending moment-rotation response of the foundation of wall 10R27 on Dense 

Sand 

 

 

 

 

 

 

 

Figure A.209 Average of maximum soil compressive displacements underneath the footing for 

wall 10R27 on Dense Sand 
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Figure 8 Moment-curvature response of wall 10R27 along with average of maximum recorded 

curvatures at the base on Dense Sand 
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Table A.61 Shear wall properties for wall 10R20 

 

 

 

 

 

Table A.62 Summary of nonlinear dynamic analyses for wall 10R20 on Dense Sand 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) 249000

Rw 1.96

Rf 1.9 2.2 2.4 2.8 3.4

E (MPa) 809 809 809 809 809

Geff (MPa) 311 311 311 311 311

ν 0.3 0.3 0.3 0.3 0.3

qa (kPa) 533 533 533 533 533

q (kPa) 173 198 228 266 314

qf (kPa) 800 800 800 800 800

qult (kPa) 1600 1600 1600 1600 1600

L (m) 15.5 14.5 13.5 12.5 11.5

B (m) 15.5 14.5 13.5 12.5 11.5

a (mm) 3351 3582 3847 4155 4516

s (mm) 0.26 0.28 0.29 0.31 0.33

Moc (kN.m) 252399 226824 200536 173367 145086

θoc (rad) 0.0009 0.0008 0.0007 0.0007 0.0006

θy (rad) 0.0008 0.0018 0.0044 0.0108 0.0259

TEstimate (sec) 1.06 1.07 1.08 1.10 1.12

Tmodel (sec) 1.02 1.03 1.03 1.04 1.05

Δ1 (mm) 14.2 17.9 22.5 31.6 34.7

Δ10 (mm) 211 230 249 300 306

Avg. Max. θb (rad) 0.0015 0.0024 0.0037 0.0059 0.0068

Avg. Max. Uplift (mm) 18.0 26.7 37.5 53.0 54.9

Avg. Max. Comp. Disp. (mm) -5.9 -8.9 -12.9 -21.6 -23.8

Avg. Max. qmax/qult 60% 73% 84% 91% 94%
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Figure A.210 Average of displacement envelopes for wall 10R20 on Dense Sand along with 

estimated top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.211 Average of drift envelopes for wall 10R20 on Dense Sand (Note: base rotation 

values are plotted at h=0 and values of average interstory drift are plotted at the top of the 

storey.) 
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Figure A.212 Average of curvature envelopes for wall 10R20 on Dense Sand 

 

 

 

 

 

 

 

 

 

Figure A.213 Average of a) shear force, and b) bending moment envelopes for wall 10R20 on 

Dense Sand along with estimated maximum quantities for the fixed-base wall from RSA using 

various effective stiffnesses 
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Figure A.214 Bending moment-rotation response of the foundation of wall 10R20 on Dense 

Sand 

 

 

 

 

 

 

 

Figure A.215 Average of maximum soil compressive displacements underneath the footing for 

wall 10R20 on Dense Sand 
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Figure A.216 Moment-curvature response of wall 10R20 along with average of maximum 

recorded curvatures at the base on Dense Sand 
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Table A.63 Shear wall properties for wall 10R17 

 

 

 

 

 

Table A.64 Summary of nonlinear dynamic analyses for wall 10R17 on Dense Sand 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) 289000

Rw 1.69

Rf 1.9 2.2 2.4 2.8 3.4

E (MPa) 809 809 809 809 809

Geff (MPa) 311 311 311 311 311

ν 0.3 0.3 0.3 0.3 0.3

qa (kPa) 533 533 533 533 533

q (kPa) 173 198 228 266 314

qf (kPa) 800 800 800 800 800

qult (kPa) 1600 1600 1600 1600 1600

L (m) 15.5 14.5 13.5 12.5 11.5

B (m) 15.5 14.5 13.5 12.5 11.5

a (mm) 3351 3582 3847 4155 4516

s (mm) 0.26 0.28 0.29 0.31 0.33

Moc (kN.m) 252399 226824 200536 173367 145086

θoc (rad) 0.0009 0.0008 0.0007 0.0007 0.0006

θy (rad) 0.0030 0.0061 0.0123 0.0244 0.0497

TEstimate (sec) 1.04 1.05 1.06 1.08 1.11

Tmodel (sec) 1.00 1.00 1.01 1.02 1.03

Δ1 (mm) 18.4 23.2 29.2 35.7 38.1

Δ10 (mm) 225 254 284 312 319

Avg. Max. θb (rad) 0.0028 0.0040 0.0054 0.0070 0.0077

Avg. Max. Uplift (mm) 34.0 44.4 55.1 81.1 60.3

Avg. Max. Comp. Disp. (mm) -9.5 -13.6 -19.4 -24.8 -29.3

Avg. Max. qmax/qult 71% 80% 87% 92% 95%
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Figure A.217 Average of displacement envelopes for wall 10R17 on Dense Sand along with 

estimated top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.218 Average of drift envelopes for wall 10R17 on Dense Sand (Note: base rotation 

values are plotted at h=0 and values of average interstory drift are plotted at the top of the 

storey.) 
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Figure A.219 Average of curvature envelopes for wall 10R17 on Dense Sand 

 

 

 

 

 

 

 

 

 

Figure A.220 Average of a) shear force, and b) bending moment envelopes for wall 10R17 on 

Dense Sand along with estimated maximum quantities for the fixed-base wall from RSA using 

various effective stiffnesses 
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Figure A.221 Bending moment-rotation response of the foundation of wall 10R17 on Dense 

Sand 

 

 

 

 

 

 

 

Figure A.222 Average of maximum soil compressive displacements underneath the footing for 

wall 10R17 on Dense Sand 
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Figure A.223 Moment-curvature response of wall 10R17 along with average of maximum 

recorded curvatures at the base on Dense Sand 
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Table A.65 Shear wall properties for wall 10R13 

 

 

 

 

 

Table A.66 Summary of nonlinear dynamic analyses for wall 10R13 on Dense Sand 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) 369000

Rw 1.32

Rf 1.3 1.6 1.9 2.2 2.4 2.8 3.4

E (MPa) 809 809 809 809 809 809 809

Geff (MPa) 311 311 311 311 311 311 311

ν 0.3 0.3 0.3 0.3 0.3 0.3 0.3

qa (kPa) 500 500 533 533 533 533 533

q (kPa) 99 136 173 198 228 266 314

qf (kPa) 800 800 800 800 800 800 800

qult (kPa) 1600 1600 1600 1600 1600 1600 1600

L (m) 20.5 17.5 15.5 14.5 13.5 12.5 11.5

B (m) 20.5 17.5 15.5 14.5 13.5 12.5 11.5

a (mm) 2534 2968 3351 3582 3847 4155 4516

s (mm) 0.21 0.24 0.26 0.28 0.29 0.31 0.33

Moc (kN.m) 373253 301905 252399 226824 200536 173367 145086

θoc (rad) 0.0009 0.0009 0.0009 0.0008 0.0007 0.0007 0.0006

θy (rad) 0.0008 0.0050 0.0130 0.0207 0.0338 ----- -----

TEstimate (sec) 0.97 0.98 1.00 1.01 1.03 1.04 1.07

Tmodel (sec) 0.95 0.95 0.96 0.96 0.97 0.98 0.99

Δ1 (mm) 8.0 12.6 22.1 28.1 31.4 36.6 40.8

Δ10 (mm) 163 176 228 262 280 302 323

Avg. Max. θb (rad) 0.0006 0.0018 0.0040 0.0054 0.0062 0.0074 0.0085

Avg. Max. Uplift (mm) 9.8 25.0 48.3 61.3 63.8 67.4 66.8

Avg. Max. Comp. Disp. (mm) -2.6 -6.2 -13.6 -17.5 -20.5 -27.6 -30.9

Avg. Max. qmax/qult 38% 58% 77% 84% 89% 94% 96%
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Figure A.224 Average of displacement envelopes for wall 10R13 on Dense Sand along with 

estimated top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.225 Average of drift envelopes for wall 10R13 on Dense Sand (Note: base rotation 

values are plotted at h=0 and values of average interstory drift are plotted at the top of the 

storey.) 
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Figure A.226 Average of curvature envelopes for wall 10R13 on Dense Sand 

 

 

 

 

 

 

 

 

 

Figure A.227 Average of a) shear force, and b) bending moment envelopes for wall 10R13 on 

Dense Sand along with estimated maximum quantities for the fixed-base wall from RSA using 

various effective stiffnesses 
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Figure A.228 Bending moment-rotation response of the foundation of wall 10R13 on Dense 

Sand 

 

 

 

 

 

 

 

Figure A.229 Average of maximum soil compressive displacements underneath the footing for 

wall 10R13 on Dense Sand 
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Figure A.230 Moment-curvature response of wall 10R13 along with average of maximum 

recorded curvatures at the base on Dense Sand 
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Table A.67 Shear wall properties for wall 10Elastic 

 

 

 

 

 

Table A.68 Summary of nonlinear dynamic analyses for wall 10Elastic on Dense Sand 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) -----

Rw 1.00

Rf 1.9 2.2 2.4 2.8 3.4

E (MPa) 809 809 809 809 809

Geff (MPa) 311 311 311 311 311

ν 0.3 0.3 0.3 0.3 0.3

qa (kPa) 533 533 533 533 533

q (kPa) 173 198 228 266 314

qf (kPa) 800 800 800 800 800

qult (kPa) 1600 1600 1600 1600 1600

L (m) 15.5 14.5 13.5 12.5 11.5

B (m) 15.5 14.5 13.5 12.5 11.5

a (mm) 3351 3582 3847 4155 4516

s (mm) 0.26 0.28 0.29 0.31 0.33

Moc (kN.m) 252399 226824 200536 173367 145086

θoc (rad) 0.0009 0.0008 0.0007 0.0007 0.0006

θy (rad) ----- ----- ----- ----- -----

TEstimate (sec) 1.12 1.13 1.15 1.16 1.19

Tmodel (sec) 1.07 1.07 1.11 1.11 1.12

Δ1 (mm) 31.6 35.5 33.4 38.4 40.7

Δ10 (mm) 273 293 273 300 312

Avg. Max. θb (rad) 0.0063 0.0073 0.0068 0.0080 0.0086

Avg. Max. Uplift (mm) 78.4 82.5 70.1 73.4 70.5

Avg. Max. Comp. Disp. (mm) -21.0 -24.7 -24.0 -26.7 -29.7

Avg. Max. qmax/qult 84% 87% 91% 94% 97%
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Figure A.231 Average of displacement envelopes for wall 10Elastic on Dense Sand along with 

estimated top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.232 Average of drift envelopes for wall 10Elastic on Dense Sand (Note: base rotation 

values are plotted at h=0 and values of average interstory drift are plotted at the top of the 

storey.) 
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Figure A.233 Average of curvature envelopes for wall 10Elastic on Dense Sand 

 

 

 

 

 

 

 

 

 

Figure A.234 Average of a) shear force, and b) bending moment envelopes for wall 10Elastic on 

Dense Sand along with estimated maximum quantities for the fixed-base wall from RSA using 

various effective stiffnesses 
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Figure A.235 Bending moment-rotation response of the foundation of wall 10Elastic on Dense 

Sand 

 

 

 

 

 

 

 

Figure A.236 Average of maximum soil compressive displacements underneath the footing for 

wall 10Elastic on Dense Sand 
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Figure A.237 Summary of average maximum a) first storey displacements, and b) top 

displacements for 10 storey walls on Dense Sand sorted by wall strength 

 

 

 

 

 

 

 

 

 

 

 

Figure A.238 Summary of average maximum a) base rotations, b) 1
st
 storey inter-storey drifts, 

c) top storey inter-storey drifts, and d) global drifts of 10 storey walls on Dense Sand sorted by 

wall strength 
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Figure A.239 Summary of average maximum a) first storey displacements, and b) top 

displacements for 10 storey walls on Dense Sand sorted by foundation size 

 

 

 

 

 

 

  

 

 

 

 

Figure A.240 Summary of average maximum a) base rotations, b) 1
st
 storey inter-storey drifts, 

c) top storey inter-storey drifts, and d) global drifts of 10 storey walls on Dense Sand sorted by 

foundation size 
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Figure A.241 Summary of average maximum soil compressive displacement at a) foundation 

toe, and b) foundation centreline for 10 storey walls on Dense Sand sorted by wall strength 

 

 

 

 

 

 

Figure A.242 Summary of average maximum soil compressive displacement at a) foundation 

toe, and b) foundation centreline for 10 storey walls on Dense Sand sorted by foundation size 
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A.6.5 Rock 

 

Table A.69 Properties of Rock 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.243 Soil spring responses in monotonic compression for Rock 

 

 

 

 

G0 (MPa) 8333

Geff (MPa) 8333

ν 0.2

E (MPa) 20000

qult (kPa) 20000

qf (kPa) 10000

qa (kPa) 7000

Vs (m/s) >760
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Table A.70 Shear wall properties for wall 10R27 

 

 

 

 

 

Table A.71 Summary of nonlinear dynamic analyses for wall 10R27 on Rock 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) 179000

Rw 2.73

Rf 1.9 2.1 2.3 2.6 2.9

E (MPa) 20000 20000 20000 20000 20000

Geff (MPa) 8333 8333 8333 8333 8333

ν 0.2 0.2 0.2 0.2 0.2

qa (kPa) 7000 3000 3000 3000 3000

q (kPa) 266 314 377 460 575

qf (kPa) 10000 10000 10000 10000 10000

qult (kPa) 20000 20000 20000 20000 20000

L (m) 12.5 11.5 10.5 9.5 8.5

B (m) 12.5 11.5 10.5 9.5 8.5

a (mm) 332 361 396 437 489

s (mm) 0.06 0.06 0.07 0.07 0.08

Moc (kN.m) 252782 231406 209917 188276 166432

θoc (rad) 0.0025 0.0023 0.0021 0.0018 0.0015

θy (rad) 0.0000 0.0001 0.0001 0.0005 0.1000

TEstimate (sec) 1.01 1.01 1.01 1.02 1.02

Tmodel (sec) 1.05 1.05 1.06 1.06 1.06

Δ1 (mm) 11.4 11.7 13.6 18.5 31.1

Δ10 (mm) 194 197 203 221 289

Avg. Max. θb (rad) 0.0002 0.0004 0.0010 0.0023 0.0054

Avg. Max. Uplift (mm) 1.9 4.2 9.9 20.8 44.9

Avg. Max. Comp. Disp. (mm) -0.5 -0.7 -0.9 -1.2 -1.4

Avg. Max. qmax/qult 10% 16% 26% 38% 48%
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Figure A.244 Average of displacement envelopes for wall 10R27 on Rock along with estimated 

top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.245 Average of drift envelopes for wall 10R27 on Rock (Note: base rotation values are 

plotted at h=0 and values of average interstory drift are plotted at the top of the storey.) 
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Figure A.246 Average of curvature envelopes for wall 10R27 on Rock 

 

 

 

 

 

 

 

 

 

Figure A.247 Average of a) shear force, and b) bending moment envelopes for wall 10R27 on 

Rock along with estimated maximum quantities for the fixed-base wall from RSA using various 

effective stiffnesses 
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Figure A.248 Bending moment-rotation response of the foundation of wall 10R27 on Rock 

 

 

 

 

 

 

 

Figure A.249 Average of maximum soil compressive displacements underneath the footing for 

wall 10R27 on Rock 
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Figure A.250 Moment-curvature response of wall 10R27 along with average of maximum 

recorded curvatures at the base on Rock 
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Table A.72 Shear wall properties for wall 10R20 

 

 

 

 

 

Table A.73 Summary of nonlinear dynamic analyses for wall 10R20 on Rock 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) 249000

Rw 1.96

Rf 1.9 2.1 2.3 2.6 2.9

E (MPa) 20000 20000 20000 20000 20000

Geff (MPa) 8333 8333 8333 8333 8333

ν 0.2 0.2 0.2 0.2 0.2

qa (kPa) 3000 3000 3000 3000 3000

q (kPa) 266 314 377 460 575

qf (kPa) 10000 10000 10000 10000 10000

qult (kPa) 20000 20000 20000 20000 20000

L (m) 12.5 11.5 10.5 9.5 8.5

B (m) 12.5 11.5 10.5 9.5 8.5

a (mm) 332 361 396 437 489

s (mm) 0.06 0.06 0.07 0.07 0.08

Moc (kN.m) 252782 231406 209917 188276 166432

θoc (rad) 0.0025 0.0023 0.0021 0.0018 0.0015

θy (rad) 0.0014 0.1000 0.1000 0.1000 0.1000

TEstimate (sec) 1.01 1.01 1.01 1.02 1.02

Tmodel (sec) 1.01 1.01 1.01 1.02 1.02

Δ1 (mm) 16.3 22.5 29.9 41.1 48.3

Δ10 (mm) 211 241 273 339 374

Avg. Max. θb (rad) 0.0022 0.0039 0.0057 0.0083 0.0100

Avg. Max. Uplift (mm) 26.6 43.0 58.0 77.3 83.8

Avg. Max. Comp. Disp. (mm) -1.3 -1.4 -1.4 -1.4 -1.4

Avg. Max. qmax/qult 28% 35% 39% 44% 49%
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Figure A.251 Average of displacement envelopes for wall 10R20 on Rock along with estimated 

top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.252 Average of drift envelopes for wall 10R20 on Rock (Note: base rotation values are 

plotted at h=0 and values of average interstory drift are plotted at the top of the storey.) 
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Figure A.253 Average of curvature envelopes for wall 10R20 on Rock 

 

 

 

 

 

 

 

 

 

Figure A.254 Average of a) shear force, and b) bending moment envelopes for wall 10R20 on 

Rock along with estimated maximum quantities for the fixed-base wall from RSA using various 

effective stiffnesses 
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Figure A.255 Bending moment-rotation response of the foundation of wall 10R20 on Rock 

 

 

 

 

 

 

 

Figure A.256 Average of maximum soil compressive displacements underneath the footing for 

wall 10R20 on Rock 
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Figure A.257 Moment-curvature response of wall 10R20 along with average of maximum 

recorded curvatures at the base on Rock 
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Table A.74 Shear wall properties for wall 10R17 

 

 

 

 

 

Table A.75 Summary of nonlinear dynamic analyses for wall 10R17 on Rock 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) 289000

Rw 1.69

Rf 1.9 2.1 2.3 2.6 2.9

E (MPa) 20000 20000 20000 20000 20000

Geff (MPa) 8333 8333 8333 8333 8333

ν 0.2 0.2 0.2 0.2 0.2

qa (kPa) 3000 3000 3000 3000 3000

q (kPa) 266 314 377 460 575

qf (kPa) 10000 10000 10000 10000 10000

qult (kPa) 20000 20000 20000 20000 20000

L (m) 12.5 11.5 10.5 9.5 8.5

B (m) 12.5 11.5 10.5 9.5 8.5

a (mm) 332 361 396 437 489

s (mm) 0.06 0.06 0.07 0.07 0.08

Moc (kN.m) 252782 231406 209917 188276 166432

θoc (rad) 0.0025 0.0023 0.0021 0.0018 0.0015

θy (rad) 0.1000 0.1000 0.1000 0.1000 0.1000

TEstimate (sec) 0.99 0.99 0.99 0.99 1.00

Tmodel (sec) 0.99 0.99 0.99 0.99 1.00

Δ1 (mm) 21.0 25.4 35.9 39.0 53.6

Δ10 (mm) 224 246 301 314 401

Avg. Max. θb (rad) 0.0036 0.0047 0.0072 0.0080 0.0113

Avg. Max. Uplift (mm) 44.2 52.9 73.9 74.5 94.9

Avg. Max. Comp. Disp. (mm) -1.4 -1.4 -1.5 -1.4 -1.4

Avg. Max. qmax/qult 31% 34% 39% 44% 49%
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Figure A.258 Average of displacement envelopes for wall 10R17 on Rock along with estimated 

top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.259 Average of drift envelopes for wall 10R17 on Rock (Note: base rotation values are 

plotted at h=0 and values of average interstory drift are plotted at the top of the storey.) 
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Figure A.260 Average of curvature envelopes for wall 10R17 on Rock 

 

 

 

 

 

 

 

 

 

Figure A.261 Average of a) shear force, and b) bending moment envelopes for wall 10R17 on 

Rock along with estimated maximum quantities for the fixed-base wall from RSA using various 

effective stiffnesses 
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Figure A.262 Bending moment-rotation response of the foundation of wall 10R17 on Rock 

 

 

 

 

 

 

 

Figure A.263 Average of maximum soil compressive displacements underneath the footing for 

wall 10R17 on Rock 

 

 

 



598 

 

 

 

 

 

 

 

 

 

Figure A.264 Moment-curvature response of wall 10R17 along with average of maximum 

recorded curvatures at the base on Rock 
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Table A.76 Shear wall properties for wall 10R13 

 

 

 

 

 

Table A.77 Summary of nonlinear dynamic analyses for wall 10R13 on Rock 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) 369000

Rw 1.32

Rf 1.3 1.7 1.9 2.1 2.3 2.6 2.9

E (MPa) 20000 20000 20000 20000 20000 20000 20000

Geff (MPa) 8333 8333 8333 8333 8333 8333 8333

ν 0.2 0.2 0.2 0.2 0.2 0.2 0.2

qa (kPa) 7000 7000 3000 3000 3000 3000 3000

q (kPa) 121 198 266 314 377 460 575

qf (kPa) 10000 10000 10000 10000 10000 10000 10000

qult (kPa) 20000 20000 20000 20000 20000 20000 20000

L (m) 18.5 14.5 12.5 11.5 10.5 9.5 8.5

B (m) 18.5 14.5 12.5 11.5 10.5 9.5 8.5

a (mm) 225 287 332 361 396 437 489

s (mm) 0.02 0.02 0.06 0.06 0.07 0.07 0.08

Moc (kN.m) 379672 295284 252782 231406 209917 188276 166432

θoc (rad) 0.0031 0.0028 0.0025 0.0023 0.0021 0.0018 0.0015

θy (rad) 0.0008 0.1000 0.1000 0.1000 0.1000 ----- -----

TEstimate (sec) 0.94 0.94 0.94 0.95 0.95 0.95 0.96

Tmodel (sec) 0.94 0.94 0.94 0.95 0.95 0.95 0.96

Δ1 (mm) 7.1 15.2 25.4 29.2 32.2 44.4 53.5

Δ10 (mm) 157 180 232 253 264 334 391

Avg. Max. θb (rad) 0.0004 0.0025 0.0049 0.0058 0.0066 0.0094 0.0114

Avg. Max. Uplift (mm) 7.4 34.7 59.7 65.4 67.3 87.5 95.8

Avg. Max. Comp. Disp. (mm) -0.7 -1.3 -1.5 -1.5 -1.5 -1.4 -1.4

Avg. Max. qmax/qult 9% 25% 33% 36% 40% 44% 49%
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Figure A.265 Average of displacement envelopes for wall 10R13 on Rock along with estimated 

top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.266 Average of drift envelopes for wall 10R13 on Rock (Note: base rotation values are 

plotted at h=0 and values of average interstory drift are plotted at the top of the storey.) 
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Figure A.267 Average of curvature envelopes for wall 10R13 on Rock 

 

 

 

 

 

 

 

 

 

Figure A.268 Average of a) shear force, and b) bending moment envelopes for wall 10R13 on 

Rock along with estimated maximum quantities for the fixed-base wall from RSA using various 

effective stiffnesses 
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Figure A.269 Bending moment-rotation response of the foundation of wall 10R13 on Rock 

 

 

 

 

 

 

 

Figure A.270 Average of maximum soil compressive displacements underneath the footing for 

wall 10R13 on Rock 
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Figure A.271 Moment-curvature response of wall 10R13 along with average of maximum 

recorded curvatures at the base on Rock 
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Table A.78 Shear wall properties for wall 10Elastic 

 

 

 

 

 

Table A.79 Summary of nonlinear dynamic analyses for wall 10Elastic on Rock 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 10

Lw (mm) 5500

P (kN) 41550

MRSA (kN.m) 488000

My (kN.m) -----

Rw 1.00

Rf 1.3 1.4 1.7 1.9 2.1 2.3 2.6

E (MPa) 20000 20000 20000 20000 20000 20000 20000

Geff (MPa) 8333 8333 8333 8333 8333 8333 8333

ν 0.2 0.2 0.2 0.2 0.2 0.2 0.2

qa (kPa) 267 267 267 7000 7000 7000 7000

q (kPa) 121 153 198 266 314 377 460

qf (kPa) 10000 10000 10000 10000 10000 10000 10000

qult (kPa) 20000 20000 20000 20000 20000 20000 20000

L (m) 18.5 16.5 14.5 12.5 11.5 10.5 9.5

B (m) 18.5 16.5 14.5 12.5 11.5 10.5 9.5

a (mm) 225 252 287 332 361 396 437

s (mm) 0.01 0.02 0.02 0.06 0.06 0.07 0.07

Moc (kN.m) 379672 337556 295284 252782 231406 209917 188276

θoc (rad) 0.0029 0.0028 0.0026 0.0025 0.0023 0.0021 0.0018

θy (rad) ----- ----- ----- ----- ----- ----- -----

TEstimate (sec) 1.06 1.06 1.06 1.07 1.07 1.07 1.08

Tmodel (sec) 1.08 1.08 1.08 1.08 1.08 1.08 1.09

Δ1 (mm) 16.3 19.9 33.3 42.0 45.6 48.2 52.7

Δ10 (mm) 182 199 278 326 343 358 386

Avg. Max. θb (rad) 0.0028 0.0037 0.0068 0.0088 0.0096 0.0102 0.0113

Avg. Max. Uplift (mm) 50.4 59.3 96.5 108.2 109.4 106.1 105.8

Avg. Max. Comp. Disp. (mm) -1.4 -1.4 -1.4 -1.5 -1.5 -1.5 -1.4

Avg. Max. qmax/qult 21% 25% 29% 33% 36% 40% 44%
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Figure A.272 Average of displacement envelopes for wall 10Elastic on Rock along with 

estimated top displacements of the fixed-base wall from RSA using various effective stiffnesses 

 

 

 

 

 

 

 

 

 

Figure A.273 Average of drift envelopes for wall 10Elastic on Rock (Note: base rotation values 

are plotted at h=0 and values of average interstory drift are plotted at the top of the storey.) 
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Figure A.274 Average of curvature envelopes for wall 10Elastic on Rock 

 

 

 

 

 

 

 

 

 

Figure A.275 Average of a) shear force, and b) bending moment envelopes for wall 10Elastic on 

Rock along with estimated maximum quantities for the fixed-base wall from RSA using various 

effective stiffnesses 
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Figure A.276 Bending moment-rotation response of the foundation of wall 10Elastic on Rock 

 

 

 

 

 

 

 

Figure A.277 Average of maximum soil compressive displacements underneath the footing for 

wall 10Elastic on Rock 
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Figure A.278 Summary of average maximum a) first storey displacements, and b) top 

displacements for 10 storey walls on Rock sorted by wall strength 

 

 

 

 

 

 

 

 

 

 

Figure A.279 Summary of average maximum a) base rotations, b) 1
st
 storey inter-storey drifts, 

c) top storey inter-storey drifts, and d) global drifts of 10 storey walls on Rock sorted by wall 

strength 
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Figure A.280 Summary of average maximum a) first storey displacements, and b) top 

displacements for 10 storey walls on Rock sorted by foundation size 

 

 

 

 

 

 

  

 

 

 

 

Figure A.281 Summary of average maximum a) base rotations, b) 1
st
 storey inter-storey drifts, 

c) top storey inter-storey drifts, and d) global drifts of 10 storey walls on Rock sorted by 

foundation size 
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Figure A.282 Summary of average maximum soil compressive displacement at a) foundation 

toe, and b) foundation centreline for 10 storey walls on Rock sorted by wall strength 

 

 

 

 

 

 

Figure A.283 Summary of average maximum soil compressive displacement at a) foundation 

toe, and b) foundation centreline for 10 storey walls on Rock sorted by foundation size 
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A.7 Example Estimated Foundation Moment-rotation Response 

A.7.1 19.0 m square foundation on clay 

Step-by-step calculations required for estimating the envelope of the moment-rotation response 

of a 19.0 m square foundation on Clay supporting an axial load of 41550 kN are demonstrated in 

this section. 

The elastic rotational stiffness of the foundation is first calculated using Gazetas’ formulation 

shown below. Table A.80 gives a summary of parameters used to evaluate the elastic rotational 

stiffness. 
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The soil reaction modulus and Z50 can then be calculated as follows. 
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The next step is to determine the elastic response limit. 
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Table A.80 Summary of parameters needed to evaluate the elastic rotational stiffness of the 

foundation using Gazetas’ formulation 

 

 

 

 

 

 

 

Since qmax is greater than 0.2qult=80 kPa, soil nonlinear behaviour will occur before foundation 

lift-off. Therefore, the elastic response limit would be  

         
 

 
[
        

  
  

 

    
]               

The elastic response limit has been calculated as a negative number. This is because the uniform 

bearing pressure underneath the foundation under the action of the vertical load alone is 115 kPa 

which is larger than the elastic limit of the Clay QzSimple1 material. Therefore, in this case, the 

elastic response range is non-existent. In other words, nonlinear soil response is encountered as 

soon as the vertical load is applied on the foundation. 

The equivalent rectangular stress block concept is used, to obtain a few points on the moment-

rotation response in the nonlinear range. An arbitrary value of 
      

    
 is chosen and the uniform 

stress block depth is calculated from vertical force equilibrium as follows. 

  
 

        
 

The eccentricity of the resultant soil bearing pressure will be 

G0 (MPa) 43

Geff (MPa) 22

ν 0.3

L (m) 19.0

B (m) 19.0

D (m) 2.0

d (m) 2.0

Iy (m4) 10860

k'θy (kN.m/rad) 9.820E+07

eθy 1.56

Kθy (kN.m/rad) 1.532E+08
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Multiplying the resultant force by the eccentricity will then give the bending moment for the 

chosen 
      

    
. The foundation rotation for the chosen 

      

    
 is obtained as follows. 

  
    

 
   

   

 
 

β and γ are equivalent uniform stress block parameters defined and given in the body of the 

thesis. A number of 
      

    
 have to be chosen and the few steps above repeated to accurately trace 

the moment-rotation envelope. Bending moment can be considered to be constant after 
      

    
 

    . Table A.81 summarizes the parameters used to predict the moment-rotation response of the 

foundation in the nonlinear range. The data points along with the elastic response range are 

plotted in Figure A.248 and compared with the response obtained from OpenSees. 

 

Table A.81 Summary of predicting foundation moment-rotation response in the nonlinear range 

 

 

 

 

 

 

 

 

 

qunif./qult α β γ a (m) e (m) θ (rad) M (kN.m)

0.50 0.79 0.70 1.54 10.93 4.03 0.00139 167567

0.70 0.84 0.73 2.55 7.81 5.59 0.00337 232469

0.85 0.91 0.78 4.28 6.43 6.28 0.00737 261103

0.95 0.97 0.87 9.33 5.75 6.62 0.02001 275168
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Figure A.284 Estimated moment-rotation envelope response of a 19.0 m square footing on Clay 

carrying an axial load of 41550 kN 

 

A.7.2 15.0 m square footing on Medium Sand 

Step-by-step calculations required for estimating the envelope of the moment-rotation response 

of a 15.0 m square foundation on Medium Sand supporting an axial load of 41550 kN are 

demonstrated in this section. Because the procedure is similar to that for the clay foundation in 

the previous section, some details are eliminated for brevity. 

Table A.82 summarizes the parameters used to solve for the moment-rotation response of the 

foundation in the elastic range. Note that for Sand, G0, the initial (or small strain) soil shear 

modulus of elasticity is 2.65 times Geff. This is reflective of the realistic behaviour of sand type 

soils. The soil reaction modulus and Z50 can then be calculated as follows. 

   
   

  
       

    ⁄
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Table A.82 Summary of parameters needed to evaluate the elastic rotational stiffness of the 

foundation using Gazetas’ formulation 

 

 

 

 

 

 

 

The next step is to determine the elastic response limit. 

     
  

  
 

        

        
         

Since qmax is greater than 0.3qult=240 kPa, soil nonlinear behaviour will precede foundation lift-

off. Therefore, the elastic response limit would be  

         
 

 
[
        

  
  

 

    
]               

The bending moment at the elastic response limit would then be 

                                     

The data points used to estimate the moment-rotation response in the inelastic range are 

summarized in Table A.83. Figure A.285 compares the predicted moment-rotation response with 

that obtained from OpenSees. 
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Table A.83 Summary of predicting foundation moment-rotation response in the nonlinear range 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.285 Estimated moment-rotation envelope response of a 15.0 m square footing on 

Medium Sand carrying an axial load of 41550 kN 

 

 

 

 

 

qunif./qult α β γ a (m) e (m) θ (rad) M (kN.m)

0.40 0.88 0.82 0.91 8.66 3.17 0.000557 131791

0.55 0.85 0.83 2.08 6.30 4.35 0.001773 180837

0.70 0.87 0.83 3.83 4.95 5.03 0.004185 208863

0.85 0.91 0.85 7.31 4.07 5.46 0.009937 226997

0.95 0.96 0.90 14.91 3.64 5.68 0.023752 235906
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Appendix B Calculations for Probable Seismic 
Compressive Axial Force on Gravity-load Columns 
based on Provisions of NBCC 2005 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source of Load Residential Office

Mechanical Equipment (KPa) 0.25 0.5

Live Load (LL) (KPa) 1.9 3.1

Partitions  (KPa) 0.5 1.0

Partial Dead Load (DL)1 (KPa) 0.75 1.5

Total LL per Storey2 (KPa) 1.9 3.1

1. = mechanical equipment + partitions

2. = Live Load (LL)

# of Storeys Column Dimension (cm) Column Self Weight per Storey1 (KN)

10 40 11.00

30 75 38.67

50 100 68.75

1. = (column dimension cm / 100)
2 

x 2.75 m x 25 KN/m
3

Slab Thickness (in) 7 10

Probable Span1 (m) 5.33 7.62

Column Tributary Area2 (m2) 28.45 58.06

Slab Dead Load3 (KPa) 4.45 6.35

1. = slab thickness (in) x 2.54/100 (m/in) x 30

2. = probable span (m) x probable span (m)

3. = slab thickness x 2.54/100 (m) x 25 (KN/m
3
) 

Total LL1 (KN) 7 10 7 10

10 541 1103 882 1800

30 1622 3310 2646 5400

50 2703 5516 4410 9000

1. = total LL per storey (KPa) x # of storeys x column tributary area (m
2
)

Residential Office

Slab Thickness (in)Slab Thickness (in)

# of 

Storeys
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Total DL1 (KN) 7 10 7 10

10 1588 4233 1801 4668

30 5594 13528 6234 14834

50 10828 24050 11895 26228

1. = ((partial DL +slab DL) x column tributary area + column self weight) x # of storeys

# of 

Storeys

Residential Office

Slab Thickness (in) Slab Thickness (in)

Gravity Load Combination1,2 (KN) 7 10 7 10

10 2379 6002 2894 6996

30 7983 18939 9409 21580

50 15159 33671 17402 37619

1. NBCC 2005 Table 4.1.3.2.

2. = max{ 1.4DL , 1.25DL + 1.5LL}

Residential Office

Slab Thickness (in)

# of 

Storeys

Slab Thickness (in)

LL Reduction Factor1
7 10 7 10

10 0.49 0.43 0.49 0.43

30 0.41 0.38 0.41 0.38

50 0.38 0.36 0.38 0.36

Slab Thickness (in)

Residential Office

# of 

Storeys

Slab Thickness (in)

1 = 0.3 + (9.8 / (# of storeys x column tributary area (m
2
)))

1/2

Seismic Load Combination1,2 (KN) 7 10 7 10

10 1719 4470 2016 5055

30 5924 14148 6773 15847
50 11345 25038 12739 27839

1. NBCC 2005 Table 4.1.3.2.

2. = 1.0DL + 0.5LL x LL reduction factor

# of 

Storeys

Slab Thickness (in) Slab Thickness (in)

Residential Office

PS 
1/ Prmax

2,3
7 10 7 10

10 72% 74% 70% 72%

30 74% 75% 72% 73%

50 75% 74% 73% 74%

1. = seismic load combination (KN)

2. CSA Standard A23.3-04 Equations (10-8), (10-9), and (10-10)

3. = specified maximum axial load resistance = gravity load combination (KN)

Slab Thickness (in) Slab Thickness (in)

# of 

Storeys

Residential Office
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Appendix C Calculations for Probable Seismic 
Compressive Axial Force on Gravity-load Columns 
based on Provisions of ASCE 7-05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source of Load Residential Office

Mechanical Equipment (KPa) 0.25 0.5

Live Load (LL) (KPa) 1.92 3.1

Partitions  (KPa) 0.72 1.0

Partial Dead Load (DL)1 (KPa) 0.25 0.5

Total LL per Storey2 (KPa) 2.64 4.1

1. = mechanical equipment

2. = Live Load (LL) + Partitions

# of Storeys Column Dimension (cm) Column Self Weight per Storey1 (KN)

10 40 11.00

30 75 38.67

50 100 68.75

1. = (column dimension cm / 100)
2 

x 2.75 m x 25 KN/m
3

Slab Thickness (in) 7 10
Probable Span 1  (m) 5.33 7.62

Column Tributary Area 2  (m 2 ) 28.45 58.06

Slab Dead Load3 (KPa) 4.45 6.35

1. = slab thickness (in) x 2.54/100 (m/in) x 30

2. = probable span (m) x probable span (m)

3. = slab thickness x 2.54/100 (m) x 25 (KN/m
3
) 

Total LL1 (KN) 7 10 7 10

10 751 1533 1167 2381

30 2253 4599 3500 7142

50 3756 7665 5833 11903

Residential Office

Slab Thickness (in) Slab Thickness (in)

# of 

Stories

1. = total LL per storey (KPa) x # of storeys x column tributary area (m
2
)
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Total DL1 (KN) 7 10 7 10

10 1446 3942 1517 4087

30 5168 12657 5381 13092

50 10117 22599 10472 23325

Residential Office

Slab Thickness (in) Slab Thickness (in)

# of 

Stories

1. = ((partial DL +slab DL) x column tributary area + column self weight) x # of storeys

Gravity Load Combination1,2 (KN) 7 10 7 10

10 2216 5712 2567 6429

30 7643 18131 8697 20282

50 14543 32024 16299 35608

1. ASCE 7-05 2.3.2.

2. = max{ 1.4DL , 1.2DL + 1.6LL}

Residential Office

Slab Thickness (in) Slab Thickness (in)

# of 

Stories

LL Reduction Factor1,2
7 10 7 10

10 0.40 0.40 0.40 0.40

30 0.40 0.40 0.40 0.40

50 0.40 0.40 0.40 0.40

Residential Office

Slab Thickness (in) Slab Thickness (in)

# of 

Stories

1. ASCE 7-05 4.8.1.

2. = max{0.25 + 4.57/(4 x column tributary area (m2) x # of storeys) , 0.40}

Seismic Load Combination1,2 (KN) 7 10 7 10

10 1885 5037 2054 5381

30 6652 16108 7157 17139

50 12891 28651 13733 30370

1. ASCE 7-05 2.3.2.

2. = 1.2DL + 0.5LL

Residential Office

Slab Thickness (in) Slab Thickness (in)

# of 

Stories

PS 
1
/ Prmax

2,3
7 10 7 10

10 85% 88% 80% 84%

30 87% 89% 82% 85%

50 89% 89% 84% 85%

3. = specified maximum axial load resistance = gravity load combination (KN)

1. = seismic load combination (KN)

2. CSA Standard A23.3-04 Equations (10-8), (10-9), and (10-10)

Slab Thickness (in) Slab Thickness (in)

# of 

Stories

OfficeResidential
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Appendix D Mathematical Presentation of the Nonlinear 
Structural Analysis Algorithm used to Analyze Gravity-
load Columns under Imposed Lateral Deformations 

The column is connected to the shear wall at storey levels. If the slab is thought of as a rigid link, 

it exerts a lateral horizontal storey force (Pi) on the column causing it to undergo the same 

deformation as that of the shear wall at that floor slab levels. The storey forces then produce 

bending moments (M) along the column height and from the bending moment diagram, the 

curvature (Φ) profile can be obtained knowing the moment-curvature behaviour of the column. 

Neglecting shear deformation of the column, curvatures can then be integrated to obtain the 

displacement profile along the height of the column as follows. 

Δ(x) = ∫            
 

 
 
dx 

The column can be divided into several equally sized elements along the height of each storey to 

facilitate numerical integration. Curvature is considered to be constant over the height of the 

element and is computed using the bending moment at elements’ mid-height. The problem in 

hand will then be finding the set of storey forces (Pi) which produce the target displacements at 

corresponding floor slab levels.  

Floor displacements (Δi) are considered to be a function of storey shears (Vi) as follows. 

Δi = Fi(V1,V2,V3,V4,V5) 

A first order Taylor series expansion is applied to the floor displacements (Δi) and multi-variant 

Newton-Raphson iteration procedure is adapted to solve for the unknown storey shears (Vi) 

which will result in the desired target displacement profile. The following set of equations 

explains the iteration procedure for a 5-storey building. Note that i and j can assume any integer 

from 1 to 5. 
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    =   

 +∑
   

   

 

   
   

     
      

   

Rearranging the equation above gives, 

∑
   

   

 

   
   

    
    =   

   -  
   ∑

   

   

 

   
   

    
  

In a matrix format, the equation above can be written as 

[Kij][Vj]=[Cj] 

Where 

[Kij] is a 5x5 matrix containing the derivatives of the storey displacements with respect to storey 

shear forces at step “t” 

[Vj] is the 5x1 vector of storey shear forces 

[Cj] is the 5x1 vector of constants from   
   -  

   ∑
   

   

 

   
   

    
  

To solve for the revised storey forces, the equation above can be rearranged as 

[Vj]= [Kij]
-1 

[Cj] 

Analysis is triggered at an arbitrary storey shear values Vi
t 
(e.g. linearly varying storey shear 

forces along the height of the structure). At each step, the derivatives of the storey displacements 

with respect to each floor shear force (
   

   
) are found numerically, that is, a unit (e.g. 1 kN) shift 

is applied to each storey shear in turn and the variation in each floor displacement value is 

calculated respectively (the fundamental definition of the derivative). Revised storey shears Vi
t+1

 

are then used to calculate the displacements and iteration process is carried on until acceptable 

convergence accuracy is achieved. The algorithm is designed to take an approximate fifth-order 

polynomial as the input moment-curvature response of a column and run a pushover analysis by 

increasing storey displacements simulating the lateral deformation profile of a shear-wall pushed 
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with a point-load at the top. A point-load at the top of the wall will result in a linear moment 

profile and since the moment-curvature relationship for shear-walls can be approximated by a 

bilinear curve especially at low axial loads, a bilinear curvature profile along the height of the 

wall. As the point-load at the top of the wall increases, maximum curvature at the base of the 

wall increases until it reaches the “yield” curvature. When the load is further increased, 

curvatures in the plastic hinge zone of the wall keep increasing while the elastic curvatures 

above remain nearly unchanged. Maximum curvature at the base of the wall is increased until the 

column fails by concrete crushing. 

In order to keep the maximum bending moment constant at the base of the column, the storey 

force at the first floor level is evaluated in terms of the rest of the storey forces ensuring no 

addition of moment beyond state of the column at “yield”. The maximum additional curvature of 

the column plastic curvature model is then treated as an independent variable. At the end of each 

pushover analysis step, bending moments and curvatures are added up to obtain the total profiles 

along the height of the column.  

 

 

 

 

 

 

 

 

 


