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Abstract

Physical and geochemical heterogeneities in mine waste rock complicate the prediction and
assessment of waste rock effluent water quantity and quality. The objective of this research
is to provide a holistic conceptual understanding of the hydrological and geochemical
processes that control effluent water quantity and quality, and the complex interactions
among processes at the field scale. To this end, a prodigious dataset from three experimental
waste-rock piles at the Antamina Cu-Zn-Mo skarn-deposit mine was compiled and analyzed.
Analyses included solid-phase mineralogy and physical characteristics; effluent and pore-

water hydrology and geochemistry; and an aqueous tracer study.

The instrumented piles (36 m x 36 m x 10 m) are each composed of a single rock type and
are exposed to almost identical atmospheric conditions, isolating the effect of rock type on
hydrological regimes. Physical waste rock heterogeneities result in highly variable
hydrology that is strongly dependent on material particle size distributions and especially the
presence of large boulders. The hydrological regimes include wide ranges of velocities for
matrix flow (<2-12 cm/day), preferential flow (40-2000 cm/day), and pressure-induced
wetting fronts (7-105 cm/day), all of which are strongly influenced by antecedent water
content and precipitation patterns resulting from a two-season (wet/dry) climate.
Evaporation is also highly variable among waste rock types on annual (24%-75% of

precipitation) and multi-year timescales (28%-59% of precipitation).

Mineralogical heterogeneities result in material-specific, temporally and spatially variable

circum-neutral to acidic geochemical conditions (pH 4.6-8.5). Other geochemical controls



on solute concentrations include precipitation and dilution of secondary minerals, sorption,
and pH effects from CO, degassing. Furthermore, hydrology strongly influences effluent
aqueous geochemistry, leading to solute concentrations and loadings that can fluctuate by
several orders of magnitude between wet and dry seasons (e.g., Pile 2 Cu loadings:
August-2010, 1.8x107 mg/(kg-wk); February-2011, 1.6x10™ mg/(kg-wk)). Hydrological
controls on aqueous geochemistry include seasonal solute accumulation; solute flushing
through matrix flow paths of variable velocities; mixing and dilution at the pile base; and

seasonal changes in moisture content that control internal CO, concentrations. The results

highlight the need to account for unsaturated hydrology during the prediction and assessment

of aqueous geochemistry from waste rock.
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This research is presented in four body chapters, one of which has been published
(Chapter 4), and three of which are more detailed compilations that will be divided into

several publications and submitted for peer review in the near future (Chapters 2, 3, and 5).

e A version of Chapter 4 entitled Rapid seasonal transition from neutral to acidic
drainage in a waste rock test pile at the Antamina Mine, Peru was co-authored by
Roger Beckie, Bevin Harrison, K. Ulrich Mayer, and Leslie Smith, underwent peer
review, and was published in 2012 in the Proceedings of the 9™ International

Conference on Acid Rock Drainage. (Peterson et al., 2012).

This research is part of a collaboration among researchers at The University of British
Columbia (UBC), Teck Metals Limited's Applied Research and Technology Group, The
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joint 2012-2013 flow data post-processing with Mehrnoush Javadi. Daniel Bay and Nathan
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(Chapter 3). Laura Laurenzi compiled the database employed for PHREEQC modeling
presented in Chapter 5, as well as the initial input files, which I modified. Sharon Blackmore
and I, with the help of Michael Gupton and the Antamina Mine staff and with the advice
from our research supervisors Roger Beckie, K. Ulrich Mayer, and Leslie Smith, designed
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Chapter 1: Introduction and project description

1.1 Introduction

Surface mining operations such as strip mining, open-pit mining and mountaintop removal have
greatly increased the production of mine waste rock from mining operations in recent decades.
This, in turn, has led to environmental, societal and regulatory challenges because contaminated
waters from mine waste, commonly in the form of acid rock drainage (ARD) or neutral rock
drainage (NRD), can significantly harm local and regional ecosystems and communities (e.qg.,
Duhigg, 2009; Solomon 1995; Thornton, 1996; York, 2010). For example, approximately 2,000
abandoned mine sites on United State National Forest Service lands 'present significant
environmental or human health problems due to a release, or threat of a release, of a hazardous
substance, pollutant, or contaminant' and will cost approximately $2.1 billion USD to mitigate

(USDA, 2014).

In order to reclaim areas that have been impacted by mine waste effluent waters and more
importantly to ensure that negative environmental impacts are minimized in the future, a greater
understanding between the hydrological and geochemical waste rock processes must be
established. This includes hydrological processes such as flow and evaporation, which control
the timing and quantity of flow from waste rock dumps; the geochemical processes that produce
and neutralize acidity, mobilize metals into aqueous forms, and attenuate aqueous solutes
through solid phase precipitation and sorption; and the relationships between those hydrological

and geochemical processes.

The Antamina Mine in Ancash, Peru is the world’s third-largest open-pit Cu-Zn-Mo mine

(Figure 1.1). The waste rock dumps are currently hundreds of meters tall by hundreds of meters



wide and growing. By proposed mine closure in 2029, the mine is expected to produce 2.2
billion tonnes of waste rock (Harrison et al., 2012). The quartz-monzonite porphyry intrusion at
Antamina led to a skarn ore body hosted in carbonate limestone, marble, and hornfels (Escalante
et al., 2010; Lipten and Smith, 2004; Love et al., 2004; Redwood, 1999). These host rocks have
high neutralization potential and effluent water from the waste dumps is predicted to be net
neutral producing with a possibility of net acid generation from certain types of waste rock after
30-40 years (Golder 2004). This study is part of collaboration between the Comparfiia Minera
Antamina S.A., Teck Metals Limited's Applied Research and Technology Group, The University
of British Columbia (UBC), and The University of Alberta that characterizes hydrological,

geochemical, and microbiological properties of waste rock at Antamina.

The Antamina research program has developed one of the most thorough experimental set-ups
available for the characterization, linkage, and scaling of flow, evaporation, and geochemical
processes in waste rock. The multi-scale project includes several one-dimensional laboratory
column studies; forty-three 1 m tall, 300-kg field barrel experiments; five 36 m x 36 m x 10 m,
~20,000-tonne experimental waste-rock piles; and five 15 m x 15 m experimental cover study
cells. This study focuses specifically on the hydrology and geochemistry of three of the five
experimental waste-rock piles and associated field barrels, all of which are located at the mine

and are exposed to the distinct wet and dry seasons of the high Peruvian Andes.

The overall objective of this study is to increase our understanding of the relationships between
physical waste rock properties, meteorology, hydrological processes, and geochemical processes
that are applicable not only to Antamina but also in a variety of mine settings. To this end,
universal waste rock processes such as matrix and preferential flow, evaporation, and metal

mobilization and attenuation will be evaluated (Section 1.3). A greater understanding of these



processes will decrease uncertainty in water quantity and quality predictions, in turn helping
mine planners worldwide develop robust water management, storage, and treatment facilities in a
timely, cost-effective manner. The findings comprise a comprehensive data set that can also be
used to guide regulatory policy and to develop dumping and mine closure strategies, in turn
minimizing potentially negative environmental impacts of waste pile discharge for mines around

the world.

1.2 Literature review

Waste rock physical and mineralogical heterogeneity can lead to highly variable hydrological
and geochemical conditions in waste rock effluent, and the large-scale nature of waste-rock
dumps (i.e., up to hundreds of vertical meters) can complicate assessment of those conditions.
Therefore, research to gain a better understanding of the processes controlling the characteristics
of flow through waste rock has been the subject of recent investigation. This research is
motivated by the need to expand the conceptual understanding of complex unsaturated flow
systems found in waste rock in the manner of Pruess (1999), who described thick, fractured,
unsaturated zones that could be considered analogous to some waste rock systems, and Nichol et
al. (2005), who investigated complex unsaturated flow regimes in a similar experimental waste-

rock pile under different atmospheric conditions.

Large-scale (i.e., tens of me