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Abstract 
 Lung cancer is the leading cause of cancer death in Canada and worldwide. A late stage 

of diagnosis in conjunction with a lack of effective treatment options are largely responsible for 

the poor survival rates of lung cancer. Histological subtypes of lung cancer are known to respond 

differently to standard therapies, suggesting they are distinct diseases. A better understanding of 

the molecular alterations and underlying biology of lung cancer subtypes is therefore necessary 

for the development of novel detection and treatment strategies in order to improve patient 

prognosis. We hypothesize that lung adenocarcinoma (AC) and squamous cell carcinoma 

(SqCC) arise through disparate patterns of molecular alterations and that these differences 

underlie unique biological mechanisms that contribute to subtype development, phenotypes and 

response to therapy.  

 

 In this thesis, I apply multidimensional integrative 'omics approaches to characterize the 

genomic and epigenomic landscapes of AC and SqCC and elucidate differential patterns of 

alterations and subtype specific gene disruptions causal to NSCLC and the development of 

specific subtypes. The integration of DNA copy number, methylation, gene and miRNA 

expression data on AC and SqCC tumors and patient matched non-malignant tissue identified 

several subtype specific alterations and revealed unique oncogenic pathways associated with AC 

and SqCC that can be successfully targeted by existing therapies. By combining genomic 

analyses with manipulation of candidate genes in vitro and in vivo, we validated the contribution 

of candidate genes to tumorigenesis and determined the mechanisms through which they 

contribute to disease pathogenesis. In addition to revealing differentially disrupted genes and 

pathways we also identified numerous alterations common to both subtypes.  

 

 Collectively, this work has further characterized the landscape of molecular alterations 

that define AC and SqCC, and the mechanisms through which these alterations contribute to 

subtype tumorigenesis. This work has identified novel candidate genes involved in subtype 

tumorigenesis as well as miRNAs with potential as diagnostic biomarkers for lung cancer. Taken 

together, these findings underscore the importance of tailoring treatment strategies to the 

histological subtype based on the underlying biology of that subtype. 
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Chapter 1: Introduction 
 

1.1 Lung cancer 

 Lung cancer is the leading cause of cancer death in the world, with an estimated 25,500 

new cases and 20,200 deaths in Canada in 2013, accounting for 27% of all cancer related deaths- 

more than breast, prostate and colon cancer combined [1, 2]. Surgery is the best curative option 

and standard of care for patients with localized disease. However, the majority of patients 

(>80%) present with locally advanced or metastatic disease for which platinum doublet 

chemotherapy and radiation are the standard treatment. Despite recent advances in diagnosis and 

treatment, such as the development of targeted therapies, the 5-year survival rate of lung cancer 

has failed to improve significantly over the last 30 years, and remains a meager 18% [1, 2]. This 

modest improvement is largely attributed to two factors; a lack of early detection strategies, and 

the modest survival benefits and inability of current treatment strategies to cure patients with 

disseminated disease.  

 

 Tobacco smoke exposure is the main etiological factor associated with lung cancer, with 

smokers having a 14 fold increased risk of developing lung cancer compared to never smokers 

[3]. However only 10-20% of smokers develop lung cancer, and with the success of smoking 

cessation programs, there is an increasing percentage of lung cancers (25%) that arise in 

individuals who never smoked [4, 5]. Other factors known to influence lung cancer risk include 

carcinogens such as arsenic, radon and asbestos, a family history of lung cancer, second hand 

smoke and viral infection (Human papillomavirus and Epstein Barr Virus) [4, 6].  

 

1.2 Lung cancer subtypes/ histopathology of NSCLC 

 Histologically, lung cancer is classified into two broad categories; small-cell lung cancer 

(SCLC), occurring in approximately 15% of patients and the more prevalent NSCLC, which 

accounts for roughly 85% of cases [7]. NSCLC itself is a heterogeneous disease comprised of 

phenotypically diverse and regionally distinct neoplasias that differ in their cell of origin, growth 

pattern and location within the lung, and can be further subdivided into 3 major histological 

subtypes: adenocarcinoma (AC), squamous cell carcinoma (SqCC) and large cell carcinoma, of 
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which AC and SqCC are the predominant subtypes, and the focus of this thesis [7]. Within the 

last few decades, there has been a dramatic shift in the global trends of lung cancer histology, 

with a steady decline in SCLC and SqCC, making AC the most prevalent subtype of lung cancer. 

These changes are largely believed to be due to widespread changes in cigarette composition 

(lower tar and nicotine content) which has led to a change in smoking behavior, with smokers 

smoking more frequently and inhaling deeper in an attempt to achieve the same effect, causing 

tobacco carcinogens to be deposited further into the lung periphery. 

 

 Adenocarcinoma is the most common histological subtype of lung cancer, accounting for 

40-50% of all lung cancer cases and typically arises in the glandular epithelium of the lung 

periphery from type II pneumocytes or Clara cells [4, 8]. Substantial heterogeneity exists within 

AC, with >90% of adenocarcinomas consisting of two or more histological subtypes and being 

classified as mixed subtype [9]. With advances in the field of lung adenocarcinoma, including 

the development of targeted therapies and the identification of prognostic subsets, there was a 

need for improvement in histological stratification. Therefore, in 2011 the International 

Association for the Study of Lung Cancer (IASLC), American Thoracic Society (ATS) and 

European Respiratory Society (ERS) developed a new classification for AC in which invasive 

ACs are classified according to the predominant subtype: acinar, lepidic, micropapillary, 

papillary or solid and have significant differences in prognosis [8].Lepidic tumors are the most 

indolent subtype.  Acinar and papillary predominant tumors have an intermediate clinical 

behaviour while solid and micropapillary tumors are associated with poor prognosis suggesting 

early stage patients with these histologies may benefit from adjuvant therapy [8].  

 

 Squamous cell carcinoma comprises 20% of all lung cancer cases, is strongly associated 

with a history of smoking and develops primarily in the central airways and segmental bronchi 

[7, 9]. It is believed that SqCC develops through a stepwise transformation of the normal 

epithelium. This process begins with hyperplasia of basal cells, followed by squamous 

metaplasia, various degrees of dysplasia (mild, moderate and severe) and then carcinoma in situ 

(CIS) before eventually developing into a malignant carcinoma [10]. Each stage can be 

characterized by increased morphological and cytological changes. Well differentiated squamous 
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tumors are characterized by cell keratinization, intracellular bridges and keratin pearl formation, 

and while less heterogeneous than AC, can also be further sub-classified into basaloid, papillary, 

clear cell and small cell types [9]. 

 

 Until recently, NSCLC was treated as a single disease with a "one size fits all" 

therapeutic approach determined exclusively by disease stage due to the similar therapeutic 

effects of conventional chemotherapeutic agents. However, evidence from clinical trials has 

demonstrated that tumor histology influences response rates, toxicity and progression free 

survival of chemotherapy and targeted drugs such as bevacizumab, pemetrexed and epidermal 

growth factor receptor tyrosine kinase inhibitors (EGFR-TKI's) [11, 12], such that histology is 

now recognized as an important factor in treatment selection [13]. The disparate clinical 

behaviours of AC and SqCC suggest distinct molecular mechanisms underlie these phenotypic 

differences and highlight the importance of understanding the biology and molecular origins of 

lung cancer subtypes. 

 

1.3 Molecular pathology of lung cancer 

 Lung tumors harbor hundreds to thousands of molecular alterations that result in the 

activation of oncogenes and inactivation of tumor suppressor genes, leading to the deregulation 

of fundamental cellular processes and promoting malignancy [14-18]. These include but are not 

limited to gene and miRNA expression changes, copy number alterations, aberrant DNA 

methylation, and sequence mutations. In the past two decades, there has been extensive effort to 

identify and characterize the landscape of driver alterations that contribute to lung tumorignesis 

in an attempt to better understand the underlying biology of lung tumors and identify novel 

therapeutic targets [15, 18, 19].  

 

1.3.1 Gene expression  

 Gene expression signatures have shown the ability to define and distinguish histological 

subtypes, [20-24] morphological subtypes within AC [20, 21] and SqCC [25] as well as 

distinguish tumor from non-malignant tissue [26-29], yet their clinical utility is limited due to the 

lack of overlap between subtype signatures. Interestingly, functional overlap between subtype 



4 

 

specific signatures has been observed, suggesting disruption of specific pathways is selected for 

rather than specific genes. Deregulation of antioxidant proteins, detoxification genes and 

overexpression of cytokeratins and cytokeratin-regulatory genes (GSTT1, CEL, and PRDX6) 

often characterize SqCC tumors [20-24], whereas disruption of surfactant-related and small 

airway-associated genes (SFTPA2, SFTPB, MUC1, and NAPSA) are typically altered in AC [20-

24, 30, 31]. These functions are largely associated with the histological properties of the cells of 

origin from which these subtypes develop, further highlighting the contribution of histology to 

tumorigenesis. Due to the large number of passenger alterations within tumors, gene expression 

studies alone are limited in their ability to discriminate genes and pathways implicated in 

tumorigenesis. 

 

1.3.2 Copy number alterations  

 DNA copy number alterations (CNAs) are a prominent mechanism of gene disruption in 

NSCLC [18, 32-39]. Although very few CNAs occur exclusively in a single subtype, many 

regions are altered at significantly different frequencies between subtypes and therefore deemed 

regions of subtype specific CNA [33, 34, 36]. For example, a recent analysis of over 2000 

tumors identified 13 subtype-specific regions with at least a 25% difference in the frequency of 

alteration between subtypes [39]. Amidst all copy number studies, the most prominent and 

consistent difference between subtypes is amplification of 3q in SqCC [32, 33, 35, 38, 40-43]. 

Given the large size of some amplicons/regions of deletion, integration of gene expression data is 

useful in identifying of candidate oncogenes or tumor suppressors.  

 

1.3.3 DNA methylation 

 Epigenetic marks such as DNA methylation are important regulators of somatically 

heritable changes in gene expression. DNA methylation is a tissue-specific and inherently 

reversible gene regulatory alteration targeted for chemoprevention, treatment and as potential 

diagnostic and prognostic biomarkers in malignant and non-malignant tissues [44]. DNA 

methylation profiling of NSCLC has identified hundreds of aberrantly methylated genes [45-49]. 

However, to date most genome-wide epigenetic studies lack corresponding gene expression level 

data, which in the context of determining functional consequences of DNA methylation 
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alterations to lung cancer biology, is limiting. In SqCC, integration of global DNA methylation 

and expression profiles indicate methylation of HOXA2 and HOXA10 may have prognostic 

relevance[14]. In AC, aberrantly methylated genes are enriched for cell differentiation, cell cycle 

regulation, epithelial to mesenchymal transition and RAS and WNT signaling pathways [50].  

 

1.3.4 DNA mutations 

 Advances in whole genome sequencing technologies have enabled high throughput 

identification of mutations, copy number aberrations, and structural alterations such as gene 

fusions and chromosomal rearrangements in a genome-wide, unbiased manner. Sequencing 

studies have revealed lung cancer to have one of the highest mutation rates of all cancers, as well 

as immense mutational heterogeneity both within and between patients [17, 51-53]. For example, 

a single AC tumor was found to have over 50,000 variants, 391 of which affected coding 

sequences [54]. Frequently mutated genes in lung cancer include TP53, BRAF, ERBB2, KRAS, 

EGFR, PIK3CA, PTEN, CDKN2A, NF1, FGFR4, KEAP1 and RB1 [15, 55]. In addition to 

mutations, a number of gene fusions have been identified, including EML4-ALK, KIF5B-RET 

and multiple ROS1 fusions. The discovery of improved responses and outcomes with EGFR 

TKIs in lung cancer patients harboring EGFR mutations, and the profound clinical benefit of 

targeted therapies in other cancers launched the search for additional actionable alterations in 

lung cancer and marked the beginning of a new era in NSCLC in which NSCLC are further 

defined by their driver alterations.  

 

1.3.5 Non-coding RNAs 

 MicroRNAs (miRNAs) are small 18-25nt long non-coding RNAs (ncRNAs) that 

negatively regulate gene expression post-transcriptionally through transcript degradation or 

translational repression [56]. A single miRNA is capable of regulating hundreds of protein 

coding genes, and a gene can similarly be targeted by numerous miRNAs. miRNAs regulate 

numerous biological process, including but not limited to proliferation, apoptosis, metabolism, 

epithelial to mesenchymal transition, differentiation and cellular development, and are frequently 

deregulated in tumorigenesis [56, 57]. The pathogenesis of lung cancer has been associated with 

the deregulation of several miRNAs, including loss of the well known tumor suppressive miRNA 
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let-7, which targets KRAS and is associated with poor prognosis in lung cancer. Similar to gene 

expression, miRNA signatures can accurately separate histological subtypes and are thought to 

be as good or even superior to global mRNA expression profiles in their ability to accurately 

classify NSCLC subtypes [57]. Array based miRNA profiling studies have shown miR-205 to be 

a highly specific marker for SqCC, while AC specific miRNAs have been shown to associate 

with mutation patterns.  For example, miR-155 is upregulated exclusively in AC with wildtype 

EGFR and KRAS, while miR-21 and miR-25 are upregulated in EGFR mutant AC and miR-495 is 

up-regulated in KRAS positive AC [58-60]. Based on these and other findings, miRNAs may be 

just as important to tumour biology and therapeutics as protein coding transcripts. 

 

1.4 Integrative genomics and a systems biology approach to gene discovery 

 As a gene can be disrupted by a variety of mechanisms, to accurately determine gene 

disruption status, multiple mechanisms of disruption need to be interrogated. While the 

application of single dimensional analyses (expression, copy number, or mutation studies alone) 

are informative for identifying disrupted genes, they often overlook genes disrupted at low 

frequencies and are not capable of distinguishing causal from passenger events [61]. The 

integration of multiple dimensions of 'omics data provides a more comprehensive understanding 

of the genetic mechanisms affecting a tumor as it not only enables the identification of genes 

with concurrent DNA and expression alterations which are more likely to be driver alterations, 

but also genes disrupted by multiple mechanisms (indicative of selection) but at low frequencies 

by any single mechanism [61]. This is particularly relevant for the identification of frequently 

altered pathways, as signaling pathways are often disrupted at multiple and distinct points in 

different tumors as opposed to the frequent alteration of a single gene within a given pathway. 

Large scale, high throughput genomic profiling studies such as that of the National Cancer 

Institute's The Cancer Genome Atlas (TCGA) project reinforces the concept of assessing 

multiple 'omics dimensions to characterize tumors and further our understanding of the 

alterations that underlie their development. 
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 Given the survival benefit associated with targeted therapies, the ability to accurately 

identify driver/actionable alterations within a tumor is critical. However, due to the substantial 

heterogeneity, high mutational load of lung cancer and tissue specific nature of molecular 

alterations such as DNA methylation, this can only be truly accomplished through the individual 

analysis of patient genomes with reference to that patient's matched non-malignant tissue. An 

individualized approach reduces the probability of overlooking driver genes that are disrupted in 

only a small subset of tumors, and would otherwise be missed using conventional approaches in 

which tumor and normal samples are grouped.  Moreover, consideration of multiple dimensions 

enables the identification of genes with concordant DNA and expression alterations. A multi-

dimensional integrative approach on a tumor by tumor basis is therefore ideal for identifying the 

molecular mechanisms and signaling pathways that contribute to tumorigenesis. 

 

1.5 Thesis theme and rationale 

 The theme of this thesis is to characterize the genetic and epigenetic alterations and 

signaling pathways that define and distinguish AC and SqCC in order to improve our 

understanding of the genetic basis of the major subtypes of NSCLC. As histological subtypes 

display distinct clinical features and differential responses to treatment, knowledge of the 

molecular mechanisms underlying these differences will lead to the development of novel 

subtype specific therapeutic and detection strategies, and potentially alter clinical management 

and patient prognosis. Previous attempts to discern the genetic differences between AC and 

SqCC have been limited in their ability to identify unique causal subtype specific disruptions due 

to small sample sizes, a lack of patient matched non-malignant tissue and single dimension 

analyses in which tumors are grouped for analysis. As a result, our understanding of the 

molecular mechanisms that contribute to tumorigenesis and how these differ between subtypes is 

limited. A genome wide, integrative multi-'omics approach in combination with functional 

analysis will provide 1) a comprehensive analysis of the recurrent alterations characteristic of 

AC and SqCC and 2) insight into how these alterations deregulate specific signaling pathways 

and biological processes and contribute to subtype pathogenesis.  
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1.6 Objectives and hypotheses 

 The objective of this work is to characterize the genetic alterations, genes and pathways 

that contribute to tumorigenesis and the differential development of histological subtypes using a 

multi-dimensional integrative analysis in combination with functional validation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              

 

This is based on the following hypotheses: 

1. AC and SqCC arise through distinct molecular mechanisms, which can be identified through 

integrative analysis of AC and SqCC genomes. 

2. These different patterns of genetic and epigenetic alterations underlie unique biological 

mechanisms that contribute to subtype development, phenotypes and response to therapy.  

 

 

1.7 Specific aims and thesis outline 

 To address the questions of 1) what are the genetic, molecular and biological similarities 

and differences between AC and SqCC, 2) how these differences contribute to tumorigenesis and 

subtype biology and 3) whether any of the identified subtype specific alterations have potential 

therapeutic, prognostic or diagnostic implications, we devised the following specific aims. 

 

 

Aim 1: Identify DNA and miRNA alterations that are shared or specific to lung cancer 

subtypes. 

 Chapters 2 and 5 describe genome wide comparisons of DNA alterations (copy number 

and methylation) with concordant expression changes and miRNA expression differences 

between subtypes, respectively. At the time Chapter 2 was submitted for publication, a large 

scale multi-dimensional integrative analysis and comparison of subtypes on high resolution 

platforms had yet to be performed. Given the recent observations of subtype specific indications 

for EGFR TKIs, pemetrexed and bevacuzimab, a comprehensive analysis of the genetic and 

epigentic alterations and subsequent genes and pathways differentially disrupted between AC 

and SqCC was warranted. Our integrative analysis identified numerous subtype specific 

alterations in concordance with hypothesis 1. To date, miRNA profiling studies of lung cancer 
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subtypes have been limited by the use of microarray platforms which depend on an a priori 

knowledge of miRNAs and as a result are limited to a few hundred miRNAs, and a lack of 

profiles for patient matched non-malignant tissue. At the time of publication of this thesis, an 

unbiased, genome wide comparison of miRNA expression between subtypes had yet to be 

performed. In Chapter 5, we performed miRNA sequencing on  22 SqCC and 66 AC tumor and 

non-malignant tissue pairs and identified miRNAs differentially altered and expressed between 

subtypes, as well as a list of miRNAs deregulated in greater than 90% of all cases irrespective of 

histology. In all chapters of this thesis, genomic findings were validated in multiple independent 

datasets in order to ensure findings were reproducible and not merely an artifact of our dataset or 

analysis. 

 

 

Aim 2: Elucidate genes and pathways involved in subtype tumorigenesis and delineate the 

biological significance of their disruption. 

 Upon the identification of subtype specific alterations, I next sought to understand how 

these alterations contribute to tumorigenesis. This was achieved through in vitro and in vivo 

manipulation of candidate genes followed by phenotype assessment and interrogation of the 

pathways and biological processes affected by gene disruption. Chapter 3 is an in depth analysis 

of one of the subtype specific gene findings from Chapter 2. In this study we assessed the 

frequency and functional consequences of disruption of our candidate gene (KEAP1) as well as 

the other components of the E3 ubiquitin ligase complex of which it is a part of. The results from 

this analysis revealed that disruption of any one complex component was sufficient to impair 

complex function and that differential patterns of complex components disruption characterize 

AC and SqCC. 

 

 In chapter 4, I focused on the most significant region of amplification in our AC cohort 

and identified a novel candidate oncogene (YEATS4) that is frequently amplified and 

overexpressed in both AC and SqCC. Manipulation of this gene in lung cancer cell lines and 

xenograft models impaired tumor growth, while overexpression in bronchial epithelial cells was 

sufficient to induce malignant transformation. Downstream analysis revealed a role for this gene 
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in the regulation of the p21-p53 pathway. Although initially identified in AC, our candidate gene 

was found to be amplified and overexpressed at similar frequencies in both subtypes in multiple 

independent cohorts, highlighting one of the many shared alterations between subtypes. 

 

 Our genome wide analysis of miRNA expression in Chapter 5 identified several subtype 

specific miRNAs. miRNAs can target hundreds of mRNAs and stringent target prediction of the 

only AC specific miRNA to validate in the TCGA identified two intriguing predicted targets. 

The final aim of this chapter was to determine whether these predicted targets are true targets of 

our AC specific miRNA and assess the effect of miRNA overexpression on tumorigenesis. The 

findings in this chapter demonstrate the ability of our analysis approach to identify biologically 

relevant miRNAs involved in tumor biology and subtype development, and provide evidence in 

support of hypothesis 2. 

 

 

Aim 3: Determine the clinical relevance of gene/pathway disruption 

 The final aim of this thesis was to assess the potential clinical relevance of alterations 

identified in Aim 1 and 2. In Chapter 2 we confirmed in silico findings that suggested SqCC 

tumors would be sensitive to HDAC inhibitors. Similarly, dose response assays performed in 

Chapters 3 and 4 demonstrate that gene disruption significantly sensitized cell lines to a IKBKB 

inhibitor and cisplatin, respectively. The identification of miRNAs ubiquitously altered in 

NSCLC tumors and the stability of miRNAs in blood highlights the potential of these miRNAs 

as blood based biomarkers for the detection of lung cancer. Taken together, these findings 

demonstrate the clinical relevance and potential application of characterizing shared and subtype 

specific alterations. 
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Chapter 2: Divergent genomic and epigenomic landscapes underscore the 

selection of different oncogenic pathways during subtype development 
 

2.1 Introduction 

 Evidence from recent clinical trials has demonstrated that histological subtypes of NSCLC 

respond differently to both targeted drugs and newly developed chemotherapies, possibly related 

to differences in cell derivation and pathogenetic origins[12, 62, 63]. One of the most striking 

examples is the folate antimetabolite pemetrexed, which exhibits superior efficacy and is 

restricted for use in patients with non-SqCC, presumably due to the higher expression of 

thymidylate synthase in SqCC tumors [12, 64, 65]. Likewise, numerous studies have associated a 

higher response rate upon treatment of AC with the EGFR tyrosine kinase inhibitors Gefitinib 

and Erlotinib, reflecting the higher prevalence of EGFR mutations in this subtype [13, 62]. These 

discrepancies in tumor biology and clinical response emphasize the need to determine the 

underlying genetic, epigenetic and metabolic similarities and differences between the NSCLC 

subtypes in order to define more appropriate avenues for therapeutic intervention. 

 

 Initial gene expression profiling studies were able to segregate AC and SqCC tumors into 

their respective histologic groupings based on multi-gene models; however, critical events in 

tumorigenesis may be masked by reactive changes when examining expression profiles alone 

[20, 66]. Conversely, DNA copy number or DNA methylation changes corresponding with gene 

expression changes are often regarded as evidence of causality. These alterations are critical 

events driving progression and other cancer phenotypes [67-69]. Since SqCC and AC develop 

from distinct cell lineages in different regions of the lung, the range of genetic alterations 

required for tumor initiation may occur in a lineage-restricted manner. For example, the 

amplification of the lineage survival oncogenes SOX2 and TITF1/NKX2-1 have recently been 

identified as key events specific to the development of lung SqCC and AC, respectively [18, 70]. 

However, these genes alone are insufficient to explain the phenotypic diversity of the subtypes, 

suggesting that the vast majority of genes responsible for their differential development remain 

unknown. Although subtype specific differences have been observed across all 'omics levels, low 

genome coverage and/or small sample sizes have been limiting [33-35, 43, 49]. Moreover, gene 
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discovery on its own provides little information regarding tumor biology, and studies 

interrogating how differentially disrupted genes interact to perturb signaling pathways within 

subtypes are rare. 

 

 In this study, we performed a large-scale analysis of primary NSCLC tumors (261 total;169 

AC and 92 SqCC), integrating DNA copy number, methylation and gene expression profiles to 

identify critical subtype-specific molecular features. The characterization of the genomic and 

epigenomic landscapes of AC and SqCC revealed an astounding number of differences at the 

DNA level with subsequent gene expression changes that are selected for during subtype-specific 

lung tumor development. Importantly, we identified key oncogenic pathways disrupted by these 

alterations that likely serve as the basis for differential behaviors in tumor biology and clinical 

outcomes. Lastly, through prognostic analysis and in silico screening of candidate therapeutic 

compounds using subtype-specific pathway components, we show how these findings may 

influence our approach to the clinical management of NSCLC. 

 

 

2.2 Methods 

 

2.2.1 DNA samples 

Formalin-fixed, paraffin embedded and fresh-frozen tissues were collected from St. Paul’s 

Hospital, Vancouver General Hospital and Princess Margaret Hospital following approval by the 

Research Ethics Boards. Hematoxylin and eosin stained sections for each sample were graded by 

a lung pathologist for use in selecting regions for microdissection. DNA was isolated using 

standard procedure with proteinase K digestion followed by phenol-chloroform extraction as 

previously described [71]. All samples were collected under informed, written patient consent 

and anonymized as approved by the University of British Columbia-British Columbia Cancer 

Agency Research Ethics Board (REB number H04-60060). Patient information is located in 

Appendix A2.  
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2.2.2 Tiling path array comparative genomic hybridization 

Array hybridization was performed as previously described [72-74]. Briefly, equal amounts 

(200-400 ng) of sample and single male reference genomic DNA were differentially labelled 

with cyanine-5 dCTP and cyanine-3 dCTP, respectively and cohybridized to the SMRT array 

v.2, which includes over 32,000 BACs spotted in triplicate and has a resolution of approximately 

80kb (BCCRC Array Laboratory, Vancouver, BC). Hybridized arrays were imaged using a 

charge-coupled device (CCD) camera system and analyzed using SoftWoRx Tracker Spot 

Analysis software (Applied Precision). Systematic biases were removed from all array data files 

using a stepwise normalization procedure as previously described [75, 76]. SeeGH software was 

used to combine replicates and visualize all data as log2 ratio plots [77]. Stringently, all replicate 

spots with a standard deviation above 0.075 or signal to noise ratios below three were removed 

from further analysis. The probes were then positioned based on the human March 2006 (hg18) 

genome assembly, with removal of the X and Y chromosomes. Genomic imbalances (gains and 

losses) within each sample were identified using aCGH-Smooth [78] with lambda and breakpoint 

per chromosome settings of 6.75 and 100, respectively.  

 

2.2.3 DNA methylation analysis 

For 30 AC samples, 30 patient-matched non-malignant lung samples, 13 SqCC samples and 18 

non-patient matched bronchial epithelia samples, all of which were fresh frozen (Sample Set # 2, 

Appendix A1), DNA methylation profiling was performed using the Illumina Human 

Methylation27 chip. Five hundred nanograms of DNA from each sample was analyzed by this 

technology. Normalized β-values were obtained and only those with a detection p-value of ≤0.05 

were used. When comparing tumor samples (AC/SqCC) and normal non-malignant samples (AC 

non-malignant parenchyma and bronchial epithelia), probes were deemed aberrantly methylated 

if the absolute difference between tumor and the average of the appropriate normal samples was 

≥0.15. 

 

2.2.4 Comparison of subtype alteration frequencies 

Regions of differential copy number alteration between AC and SqCC genomes were identified 

as follows. Each array element was scored as 1 (gain/amplification), 0 (neutral/retention), or -1 
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(loss/deleted) for each individual sample. Values for elements filtered based on quality control 

criteria were inferred by using neighbouring probes within 10 Mb. Probes were then aggregated 

into genomic regions if the similarity in copy number status between adjacent probes was at least 

90% across all samples from the same subtype. The occurrence of copy number 

gain/amplification, loss/deletion, and retention at each locus was then compared between AC and 

SqCC data sets using the Fisher’s exact test. Testing was performed using the R statistical 

computing environment on a 3 x 2 contingency table as previously described, generating a p-

value for each probe [72]. Benjamini-Hochberg multiple hypothesis testing correction based on 

the number of distinct regions was applied and resulting p-values ≤0.01 were considered 

significant. Adjacent regions within 1 Mb which matched both the direction of copy number 

difference and statistical significance were then merged. Finally, regions had to be altered in 

>20% of samples in a group and the difference between groups >10% to be considered subtype 

specific. 

 

A similar approach was used for determining subtype-specific DNA methylation alterations. 

Frequencies of hypermethylation and hypomethylation for each probe were compared using a 

Fisher's exact test, followed by a Benjamini-Hochberg multiple testing correction. A corrected p-

value cut-off of p<0.05 was used to deem a probe differentially methylated between the two 

groups. Due to the smaller number of probes that passed multiple testing correction, no 

frequency criteria was applied. 

 

2.2.5 Gene expression microarray analysis  

Fresh-frozen lung tumors were obtained from Vancouver General Hospital as described above. 

Microdissection of tumor cells was performed and total RNA was isolated using RNeasy Mini 

Kits (Qiagen Inc). Samples were labeled and hybridized to a custom Affymetrix microarray 

according to the manufacture’s protocols (Affymetrix Inc, Sample Set # 3,Appendix A1). In 

addition, RNA was obtained from exfoliated bronchial cells of lung cancer free individuals 

obtained during fluorescence bronchoscopy (Sample Set # 5, Appendix A1) [79]. All individuals 

were either current or former smokers. Expression profiles were generated for all cases using the 

Affymetrix U133 Plus 2 platform (Affymetrix Inc). All data was normalized using the Robust 



15 

 

Multiarray Average (RMA) algorithm in R [80]. In addition, publically available datasets 

downloaded from the Gene Expression Omnibus were used: Affymetrix U133 Plus 2 expression 

data was downloaded for accession numbers GSE3141 (Sample Set # 4, Appendix A1) [81] and 

GSE8894  (Sample Set #6, Appendix A1) [82]. 

 

2.2.6 Statistical analysis of gene expression data  

Gene expression probes were mapped to March 2006 (hg18) genomic coordinates and those 

within the regions of copy number difference between the subtypes were determined. 

Comparisons between expression levels for AC and SqCC tumors were performed using the 

Mann-Whitney U test. As the direction of gene expression difference was predicted to match the 

direction of copy number difference, one tailed p-values were calculated. A Benjamini-Hochberg 

multiple hypothesis testing correction was applied based on the total number of gene expression 

probes analyzed for each region. Probes with a corrected p-value ≤ 0.001 were considered 

significant. If multiple probes mapped to the same gene, the one with the lowest p-value was 

used. Resulting genes were then mapped to the corresponding probes on the Affymetrix U133 

Plus 2 array in order to compare their expression in a second set of NSCLC tumors (GSE3141, 

Sample Set # 4) against normal bronchial epithelial cells. If multiple probes were present for a 

gene, the one with the strongest p-value was used. All comparisons were performed using a one-

tailed t-test with unequal variances in Excel and genes with a p<0.001 were considered 

significant. The fold-change for tumors versus normal tissues was then determined in order to 

determine genes expressed in the direction predicted by copy number.  

 

Principal component analysis was performed using expression data for the three independent 

tumor data sets (described above, Sample Sets #3, 4, 6) in MATLAB. All genes of interest with 

probes on the corresponding arrays were used. Briefly, the first and second principal components 

were generated from the original dataset. In the subsequent validation in secondary datasets, 

these principal components are then used to weight the expression data for a gene based on the 

original distribution. The Receiver Operating Characteristic (ROC) area under the curve (AUC) 

analysis was performed to determine the ability of principle component 1 to separate the AC and 
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SqCC samples into their appropriate histological groups. Calculations were performed using 

GraphPad Prism software.  

 

Connectivity Map (http://www.broad.mit.edu/cmap/) analysis was performed using the up and 

downregulated genes specific to each subtype as previously described [83]. 

 

2.2.7 Survival analysis 

Survival analysis was performed using the statistical toolbox in Matlab. Expression data for each 

gene were sorted and survival times compared between the top 1/3 and bottom 1/3 in expression 

using a publicly available gene expression microarray dataset with survival data (Sample Set #6, 

Appendix A1). Two tailed p-values were generated using a Mantel-Cox log test and those < 0.05 

were considered significant. Kaplan-Meier plots were then generated for each gene of interest. 

 

2.2.8 Network identification 

Functional identification of gene networks and canonical signalling pathways was performed 

using Ingenuity Pathway Analysis program (Ingenuity Systems). AC and SqCC specific gene 

lists were imported as individual experiments using the Core Analysis tool. The analysis was 

performed using Ingenuity Knowledge Database with the Affymetrix U133 Plus 2 platform as 

the reference set and was limited to direct and indirect relationships. 

 

2.2.9 Human lung tissue microarray case selection 

To determine the expression of ERCC1, KEAP1 and SOX2 in primary NSCLC, we selected 330 

NSCLCs (AC, n=220; SqCC, n=110) from surgically resected lung cancer specimens from the 

Lung Cancer Specialized Program of Research Excellence Tissue Bank at The University of 

Texas M.D. Anderson Cancer Center. We used archived, formalin-fixed, paraffin-embedded 

(FFPE) tumor tissue samples placed in tissue micro-array (TMA). The tumor tissue samples were 

collected between 1997 and 2003, and were histologically analyzed and classified using the 2004 

WHO classification system [7]. The characteristics of these TMAs have been previously 

described in detail [84, 85]. 

 

http://www.broad.mit.edu/cmap/�
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2.2.10 Immunohistochemical analysis  

The immunohistochemical analysis was done using commercially available antibodies against 

KEAP1 (dilution1:25; Proteintech), ERCC1 (dilution 1:25; Labvision) and SOX2 (dilution 1:50; 

R&D system). Immunohistochemical staining was done using an automated stainer (Dako, Inc.) 

with 5-μm-thick TMA sections from FFPE tissues. Tissue sections were deparaffinized and 

hydrated. Antigen retrieval was done in pH 6.0 citrate buffer in a decloaking chamber (121°C × 

30 seconds, 90°C × 10 seconds) and washed on Tris buffer. Peroxide blocking was done at 

ambient temperature with 3% H2O2 in methanol. The slides were incubated with primary 

antibody (KEAP1 and ERCC1 for 60 minutes; SOX2 for 90 minutes) at ambient temperature and 

washed with Tris buffer, followed by incubation with biotin-labeled secondary antibody for 30 

minutes (EnVision Dual Link System-HRP-Dako for KEAP1 and ERCC1; LSAB system-Dako 

for SOX2). The immunostaining was developed with 0.5% 3,3′- diaminobenzidine, freshly 

prepared with imidazole-HCl buffer (pH 7.5) containing hydrogen peroxide and an antimicrobial 

agent (Dako) for 5 minutes, and then the slides were counterstained with hematoxylin, 

dehydrated, and mounted. 

 

Nuclear ERCC1, cytoplasmic KEAP1, and nuclear SOX2 expressions were quantified using a 

four-value intensity score (0, 1+, 2+, or 3+) and the percentage (0-100%) of the extent of 

reactivity. An immunohistochemical expression score was obtained by multiplying the intensity 

and reactivity extension values (range, 0-300), and these expression scores were used to 

determine expression levels. 

 

2.2.11 Trichostatin A dose-response analysis  

The effect of HDAC inhibitor Trichostatin A, (Cayman Chemicals) on six NSCLC cell lines; 

three AC (H3255, H1395 and A549) and three SqCC lines (HCC95, HCC15 and H520) was 

assessed by cell viability assays. Cells were plated in triplicate in 96 well plates at optimal 

densities for growth (A549 at 2000 cells/well, HCC95, HCC15 and H520 at 3000 cells/well, and 

H3255 and H1395 at 6000 cells/well). Cells were subjected to a series of 2-fold dilutions of 

Trichostatin A prepared in cell growth media with DMSO. The experimental concentrations 

ranged from 100 uM to 109 pM and the final DMSO concentration for treated and untreated 
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(control) cells was 1%. Blank wells contained equal volumes of growth media with 1% DMSO. 

Cells were incubated for 72 hours at 37°C and then treated with 10 μl of Alamar Blue cell 

viability reagent (Invitrogen) according to manufacturer’s instructions. The reaction product was 

quantified by measuring absorbance at 570 nm with reference to 600 nm using an EMax plate 

reader (Molecular Devices). The response of treated cells was measured as a proportion of the 

viability of untreated cells, with the mean background subtracted treatment absorbance divided 

by the mean background subtracted untreated absorbance for each concentration. Dose response 

curves and IC50 values were generated in Graph Pad v5 using the proportionate response of all 

20 drug concentrations. Experiments were repeated in quadruplicate and differences in IC50 

values were assessed by a student’s t-test with a p-value <0.05 considered significant. 

 

 

2.3 Results 

 

2.3.1 Assessment of global genomic instability in AC and SqCC 

 Based on the differing exposure of cells in the central (SqCC) and peripheral (AC) 

airways to tobacco carcinogens, which has been linked to the induction of DNA mutations and 

broad chromosomal instability, we first sought to determine whether global genetic or epigenetic 

instability was more prevalent in one subtype. Whole genome copy number profiles and DNA 

methylation profiles were generated and compared for 261 NSCLC FFPE tumors; 169 AC and 

92 SqCC (Sample Set #1, Appendix A1) and 30AC, 13SqCC, 30 non-malignant lung 

parenchyma samples (AC reference) and 18 histologically normal exfoliated bronchial epithelial 

cell samples (SqCC reference), from patients with NSCLC, respectively (Sample Set #2, 

Appendix A1). 

  

 Unlike the genome, which is identical for most normal cells in the body, the epigenome 

differs between tissue types [86, 87]. Cancer genomes exhibit global hypomethylation to varying 

degrees depending on the tissue of origin [88]. DNA methylation profiles are also influenced by 

mutational profiles within different cancer types, as DNA hyper- and hypomethylation 

alterations are known to be related to tissue and genetic background [89] as well as smoking 



19 

 

behavior [90]. Given the differing mutational spectra of the two NSCLC subtypes and their 

differing cells of origin, we investigated the overall DNA methylation level of 30 AC and 13 

SqCC samples relative to appropriately matched normal cells (exfoliated broncial epithelial 

cells). Analysis of 27,578 CpG dinucleotides probes within >13000 CpG islands revealed DNA 

methylation in the bronchial epithelia and SqCC tumors to be slightly lower than in the normal 

lung or AC tumors (Figure 2.1A). This trend is mirrored and exaggerated in the CpG 

dinucleotides outside of CpG islands, suggesting that the cells of the central airway are globally 

hypomethylated relative to the cells of the peripheral airways, whether cancerous or not (Figure 

2.1B, Mann Whitney U test, p<0.0001).  

 

 The relative genomic instability in AC and SqCC, calculated as the average number of 

altered probes per sample; gained, lost, and neutral probes, and differentially methylated probes 

(Tumor βvalue- respective normal β value) was assessed for each tumor using a Mann-Whitney 

U test. No significant differences in differential methylation at CpG and non CpG island probes 

or copy number between the two subtypes were found (Figure 2.1C-F), consistent with previous 

findings [91]. This analysis demonstrates that neither subtype has a proclivity for gain, loss, 

hypo- or hypermethylation of DNA and therefore any observed differences in alteration 

frequency at a given locus can be attributed to subtype specific selection of genes within altered 

regions and not to different degrees of random genomic instability associated with tumor 

development. 

 

 
  



20 

 

Figure 2.1 

 

 

          
Figure 2.1. Global genetic and epigenetic instability of AC and SqCC 

Comparison of DNA methylation averages between AC, histologically normal lung parenchyma, 

SqCC, and bronchial epithelia for CpG island probes (A) and non-CpG island probes (B). β-

value is defined by the methylated signal/total signal for each probe. Average differential 

methylation levels at CpG islands (C) and non CpG islands (D) for 30AC and 13 SqCC. 

Percentage of BAC clones of each state calculated for each sample. Box plots illustrate the 

percentage of clones with gain/amplification, loss/deletion or neutral, in AC (E) and SqCC (F). 

No significant differences in genetic or epigenetic instability between subtypes was observed, 

Mann-Whitney U test, p>0.05.  Box plots depict the 25th, median and 75th percentile, whiskers 

represent the 5th and 95th percentile and dots show those samples outside theses cutoffs. 
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2.3.2 Disparate genetic and epigenetic landscapes characterize lung SqCC and AC 

 Although NSCLC subtypes exhibit similar levels of genomic instability, if specific genetic 

pathways are involved in their differential development, differences in the genomic alterations 

selected during tumorigenesis should be present. To determine if genetic alterations unique to 

each NSCLC subtype exist, we looked for recurrent regions of aberration in each group. For 

copy number, samples were grouped by subtype and probes were aggregated into regions based 

on similar copy number status. The frequency of alteration across autosomes was determined and 

compared between subtypes using the Fisher’s exact test with multiple testing correction and a 

cut-off of <0.01 considered significant. To be considered subtype specific, we required regions to 

be altered in >20% of samples from a subtype group and have a difference between groups of 

>10%. Figure 2.2 displays the resulting genomic landscapes of AC and SqCC and highlights the 

corresponding regions of difference between subtypes. 294 regions of copy number disparity 

between SqCC and AC were identified, 205 of which were SqCC specific, and 89 that were AC 

specific (For specific regions, see supplemental digital content, available online 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0037775) . Although 

some regions overlapped, the character of the alteration (i.e. gain vs. loss) was specific to a 

subtype. Since the alteration status between the subtypes differed strongly, we classified these as 

subtype-specific copy number alterations. In total, these alterations covered approximately 550 

Mbp of the genome, ranging in size from large segments on chromosome arms (64.8 Mbp on 4q) 

to discrete peaks only kilobases in size (0.05 Mbp in multiple places). 

 

 For DNA methylation, tumor methylation levels were compared to the average of available 

normal reference tissue profiles. The frequency of probe hypermethylation and hypomethylation 

(tumor–normal ≥ ±0.15) in AC and SqCC samples was compared using the Fisher’s exact test. 

Following correction for multiple comparisons, 2708 probes corresponding to 2384 genes were 

found to be differentially methylated (p<0.05) (See supplemental digital content for probes). The 

SqCC group contained markedly more recurrently hyper- and hypomethylated loci than the AC 

group, similar to the disparity in the numbers of subtype-specific copy number-regulated genes. 

In fact, only 8% (217) of the 2708 significant probes were more frequently altered in AC, the rest 

being more commonly hyper- or hypomethylated in SqCC. 

http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0037775�
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Figure 2.2 

 

 
Figure 2.2. Genomic landscapes of lung AC and SqCC. 

Alteration frequencies for 169 AC (red) and 92 SqCC (blue) across the human genome. Solid 

vertical black lines represent chromosome boundaries whereas dotted black lines represent 

chromosome arm boundaries. The frequency of copy number gain and loss are denoted in the top 

and middle panel, respectively. The significance of copy number disparity (inverse p-value 

corrected for multiple comparisons) between subtypes is depicted in the bottom panel. Black 

lines represent statistically different regions (p<0.01) whereas grey lines are not significant. 
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2.3.3 Gene disruptions are selected in a subtype specific manner  

 The identification of DNA copy number and methylation disparities between NSCLC 

subtypes suggests that genes within these regions may be preferentially selected during 

tumorigenesis and thus responsible for the differential development and pathological 

characteristics of the subtypes. To identify the potential target genes of these alterations, we 

integrated DNA copy number and methylation with gene expression levels, with the hypothesis 

that genes targeted by subtype-specific alterations would 1) be differentially expressed between 

AC and SqCC, 2) have an expression pattern matching the direction of the alteration and 3) be 

aberrantly expressed in tumors relative to normal tissue (matching the direction of the alteration), 

suggesting a role in tumor development. Gene expression profiles were generated for a subset of 

tumors analyzed by array CGH and DNA methylation (20 SqCC and 29 AC tumors, Sample Set 

#3, Appendix A1). An independent cohort of 53 SqCC and 58 AC lung tumors and 67 exfoliated 

bronchial cell samples from cancer-free individuals (Sample Sets #4 and #5, Appendix A1) were 

used to identify expression differences between tumors and normal cells. 

 

 Genes located within each subtype-specific copy number alteration were identified and the 

expression levels between SqCC and AC and tumor and normal samples compared to determine 

those that were differentially expressed (Mann Whitney U test, p<0.001, after multiple testing 

correction). 4669 and 2050 unique genes mapped to the SqCC and AC subtype- specific copy 

number alterations, respectively. After applying all three criteria for defining candidate subtype-

specific copy number alteration regulated targets, 447 SqCC-specific and 71 AC-specific genes, 

corresponding to a total of 492 unique genes were identified as subtype specific. Expression 

analysis of the 2384 genes with differential methylation revealed 32 AC candidate genes and 297 

SqCC genes that were differentially expressed between subtypes and tumor and normal tissue 

(See supplemental digital content for lists). In both the copy number and methylation analysis, 

some genes were disrupted in both subtypes, however their patterns of disruption were specific 

to a subtype, suggestive of opposing roles (oncogenic vs. tumor suppressive) depending on 

cellular context and therefore considered to be subtype-specific targets. Genes meeting all our 

criteria may represent critical alterations driving the development of each subtype. 
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2.3.4 Different oncogenic pathways are associated with AC & SqCC  

 Cellular pathways and processes specifically disrupted in individual subtypes may reveal 

key oncogenic mechanisms driving the differential development of AC and SqCC. After 

identifying the genes differentially altered between subtypes, we next wanted to investigate their 

biological functions. To discover subtype-related networks of biologically related genes we 

performed Ingenuity Pathway Analysis (IPA) on the 71 AC and 447 SqCC specific copy number 

alteration regulated targets. SqCCs exhibited disruptions in gene networks that function in 

regulating DNA replication, recombination and repair, with additional roles in lymphoid tissue 

structure and development (Figure 2.3, Table 2.1). Genes involved in the top SqCC network 

were associated with the binding and modification of histone protein H4, as well as the 

regulation of the NFKB complex (Figure 2.3b). In contrast, the primary networks in AC 

displayed functions associated with cell-to-cell signaling, development, and drug metabolism 

(Table 2.1). 

 

2.3.5 Epigenetically regulated genes complement genetically regulated genes 

 To determine whether the subtype specific epigenetically-regulated genes carried out 

functions similar to those subtype-specific genes discovered by the DNA copy number analysis, 

pathway disruption analysis was performed on the methylation regulated genes. The most 

significant epigenetically regulated gene network in AC was involved in cell cycle, cell death, 

and cellular development. This is partly in contrast to the top AC network of copy number 

regulated genes, which have functions associated with tissue development, but also possess cell 

signaling and hematological system functions in common. The overall degree of similarity 

between AC- specific genes that are genetically or epigenetically regulated is quite small, likely 

due to the low number of AC-specific genes identified (potential reasons for this are discussed 

below). In contrast, the SqCC gene networks in both analyses are very similar. For example, 

DNA replication, recombination and repair are highly featured functions of genes identified by 

both DNA copy number and DNA methylation analyses of SqCC. Genes involved in 

immunological disease and lymphoid tissue structure and development were also prominent.  
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Figure 2.3 

 

 
Figure 2.3. Gene networks involved in the development of SqCC and AC.  

Ingenuity Pathway Analysis identified biologically related networks from the subtype specific 

genes deregulated by subtype-specific copy number alterations. The top resultant gene networks 

for each subtype are displayed; (A) AC network related to HNF4 signaling. (B) SqCC network of 

potential interactions between multiple histone regulating genes. Solid lines denote direct 

interactions, dotted lines represent indirect gene interactions. Network components highlighted in 

red are upregulated whereas those in green are downregulated. Those not highlighted are used to 

display relationships. Molecules are represented as follows; corkscrews represent enzymes, y-

shaped molecules are transmembrane receptors, barbells are regulators of transcription, thimble-

shaped molecules are transporters, kinases are triangular, and circular molecules encompass all 

other gene products. 

A B 
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Table 2.1 Top subtype specific networks associated with genes deregulated by copy number 

Network Molecules in Network Score 
Focus 

Molecules Top Functions 

AC 1 

APEH, ATP13A3, BRIP1, C22ORF28, CDC40, CDC42EP3, CNBP, 
CTDSPL2, DAPK2, DLL3, GTF2H3, GTPBP3, HNF4A, IGSF8, ITGA10, 

ITGB1, JAG2, LCMT2, LSG1, MAPK14, MIB1, MPHOSPH9, NAT13, 
OPA1, PARP, PARP11, PITPNB, PLDN, SMAD2, SNX5, STAT4, 

TGFB1, UBA5, UMPS, WHSC1L1 40 19 

Tissue Development, Cell-To-Cell 
Signaling and Interaction, Hematological 

System Development and Function 

AC 2 

ATP2C1, beta-estradiol, BMP4, BRWD1, Ca2+, CD9, CD53, CD160, 
CENPM, cyclic AMP, EIF3J, EIF4A2, FYTTD1, GJA1, GJA5, hCG, 
IL15, MAPT, MIR21, MRPL3, MYO1B, NR3C1, NUDT17, PTPRU, 
S1PR5, SGPP1, SHBG, TCEB1, TIPIN, TM2D2, TTBK1, TTBK2, 

UBR2, UBXN7, VEGFA 30 16 

Drug Metabolism, Endocrine System 
Development and Function, Lipid 

Metabolism 

AC 3 

ADAP1, ASH2L, BAG4, Beta ark, C16ORF53, CSDA, DENND4A, 
DPY30, DUSP3, DUSP9, ELANE, FSH, Histone h3, HIVEP1, LSP1, 

LY96, MAPK1, MLL3 ,NFkB (complex), NOTCH2NL, PCYT1A, PDC, 
PDZK1, Pka, PPAP2A, PPP1R2, PPP1R9A, PRLH, PTPN7, RGS5, 

RIOK3, RLN2, S1PR3, SETD1A, ST8SIA1 17 10 

Cardiovascular System Development and 
Function, Organismal Development, Tissue 

Morphology 

SqCC 1 

ACTL6A, ASF1B, BAG4, Basc, BLM, BRD4, CD3, CHAF1A, CUL3, 
DCUN1D1, ECSIT, Histone h4, Importin alpha, Importin beta, KPNA1, 

KPNA4, LGALS7, LTBR, MIB1, MSH6, NFkB (complex), NUP62, 
PCYT1A, PNKD, RECQL, RELB, RFC2, RFC4, RNF7, SAE1, SETD8, 

SH3RF1, SIAH2, SLC25A4, TNFRSF13C 44 29 

DNA Replication, Recombination, and 
Repair, Cell Cycle, Lymphoid Tissue 

Structure and Development 

SqCC 2 

Alcohol group acceptor phosphotransferase, Alpha tubulin, ATF5, 
CAMK2N2, CaMKII, CLINT1, COPS7A, CSDA, CSTA, DNAJB11, 

FBXO45, FOXL2, HDL, HNRNPM, Hsp70, Hsp90, IL11, IL6ST, 
MAPK1, MAPK9, MAPK12, OTX1, Pak, PAK2, POMC, PPM1F, 
PPP5C, Sapk, SORBS2, STAR, STAT, TNPO1, TNPO2, TOM1L1, 

Ubiquitin 34 25 

Nervous System Development and Function, 
Organismal Development, Endocrine System 

Development and Function 

SqCC 3 

ACTR2, ARHGAP26, Arp2/3, CLDND1, CYFIP2, DOT1L, EFNA5, 
EHBP1, EHD3, FCHO2, FXR1, H1FX, Histone H1, Histone h3,histone-

lysine N-methyltransferase, KLHL24, LARP1B, LRRC58, MIR124, Nfat, 
NMD3, P38 MAPK, Pka, PLEKHA2, PPM1L, PTMS, Rac, RANBP1, Ras 

homolog, SETD7, SH3BP1, SMC4, UHRF1, WHSC1L1, XPO1 29 25 

Cell Morphology, Cell-To-Cell Signaling 
and Interaction, Cellular Development 
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  Of particular interest was the enrichment of aberrantly methylated genes in the small 

cell lung cancer signaling pathway (genes known to be deregulated in small cell lung cancer) 

(Figure 2.4a). This was the most significantly enriched canonical pathway affected by DNA 

methylation alterations and is of interest because both of these lung cancers (SCLC and SqCC) 

arise in the central airways with similar exposure to cigarette smoke carcinogens. E2F1 is among 

the hypomethylated and overexpressed genes represented in this pathway, and is known to be 

overexpressed in SCLC and to drive expression of EZH2 which is also overexpressed in SCLC 

[92, 93]. To explore this pathway further, we investigated whether EZH2 was more highly 

expressed in SqCC than AC tumors. As expected, we found that EZH2 was expressed at a 

significantly higher level in SqCC tumors than AC tumors (Mann Whitney U test p<0.0001), 

demonstrating the biological consequence of E2F1 disruption (Figure 2.4B). These findings 

could reflect the key role of EZH2 and the polycomb group, a protein complex involved in DNA 

methylation [92] in the pathogenesis of SqCC.  
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Figure 2.4 

 

 

 

 
Figure 2.4. Epigenetically altered SqCC genes are significantly enriched for SCLC signaling. 
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Figure 2.4. Epigenetically altered SqCC genes are enriched for SCLC signaling.  

(A) SCLC signaling components are altered at levels of the pathway by DNA methylation in 

SqCC. Hypomethylated and overexpressed genes are shown in red, hypermethylated and 

underexpressed genes are shown in green. (B) EZH2 expression in 58 AC tumors and 53 SqCC 

tumors. As predicted, EZH2 expression is higher in SqCC tumors compared to AC tumors,  

Mann-Whitney U test (p<0.0001). (C) FHIT is significantly more methylated in SqCC (n=13) 

and AC (n=30) tumors (Mann-Whitney U test, p<0.05).  

 

 

2.3.6 Concerted genetic and epigenetic disruption of subtype- specific genes 

 In order to determine if both DNA copy number and DNA methylation aberrations 

simultaneously disrupted any genes, we combined the subtype-specific gene lists derived using 

the two analytical approaches described above. None of the 71 genes altered by copy number in 

AC or the 32 genes associated with DNA methylation overlapped. This was not surprising given 

the observed lack of similarity at the level of function/network analysis, and could be due in part 

to the extensive heterogeneity within AC. Combining the 447 copy-number associated genes 

with the 297 DNA methylation genes from SqCC yielded an overlap of 38 genes (Table 2.2). 

These genes exhibit frequent concurrent genetic, epigenetic, and subsequent gene-expression 

alterations that discriminate them from AC tumors. Notably, loss of the well-known 3p tumor 

suppressor gene (TSG) FHIT which is associated with smoking  and has been investigated as a 

potential biomarker for centrally-occurring lung cancers (Figure 2.4c), and amplification of the 

recently identified lineage specific oncogene BRF2 were among these genes, highlighting their 

importance in the development of SqCC. In addition to genes previously associated with lung 

cancer, TSGs and oncogenes known to be deregulated in other cancer types such as PRDM2 and 

SIAH2 were also altered at the genetic, epigenetic and gene expression levels. Interestingly, 

seven genes (ATP2C1, PCYT1A, ZWILCH, CENTB2, BAG4, PARP11 and CSDA) were disrupted 

by gene-dosage in one subtype and DNA methylation in the other. Such multidimensional 

disruption is indicative of strong selective pressures, suggesting these genes may play a pivotal 

role in tumor biology.  
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Table 2.2. Genes demonstrating concerted genetic and epigenetic disruption in SqCC 
Gene SqCC Copy Number Status SqCC Methylation Status 
CFI Loss and Underexpressed Hypermethylated and Underexpressed 

CYFIP2 Loss and Underexpressed Hypermethylated and Underexpressed 
FHIT Loss and Underexpressed Hypermethylated and Underexpressed 
GLRB Loss and Underexpressed Hypermethylated and Underexpressed 

LRP2BP Loss and Underexpressed Hypermethylated and Underexpressed 
LTC4S Loss and Underexpressed Hypermethylated and Underexpressed 
OTUD4 Loss and Underexpressed Hypermethylated and Underexpressed 
PRDM2 Loss and Underexpressed Hypermethylated and Underexpressed 
SGPP2 Loss and Underexpressed Hypermethylated and Underexpressed 

ARMC8 Gained and Overexpressed Hypomethylated and Overexpressed 
BAG4 Gained and Overexpressed Hypomethylated and Overexpressed 
BRF2 Gained and Overexpressed Hypomethylated and Overexpressed 

C3orf26 Gained and Overexpressed Hypomethylated and Overexpressed 
CENTB2 Gained and Overexpressed Hypomethylated and Overexpressed 

CSDA Gained and Overexpressed Hypomethylated and Overexpressed 
EXOSC5 Gained and Overexpressed Hypomethylated and Overexpressed 
FBXO27 Gained and Overexpressed Hypomethylated and Overexpressed 
KLK13 Gained and Overexpressed Hypomethylated and Overexpressed 

MGC2408 Gained and Overexpressed Hypomethylated and Overexpressed 
MRPL51 Gained and Overexpressed Hypomethylated and Overexpressed 

NCK1 Gained and Overexpressed Hypomethylated and Overexpressed 
PCYT1A Gained and Overexpressed Hypomethylated and Overexpressed 

PDXP Gained and Overexpressed Hypomethylated and Overexpressed 
PPAN Gained and Overexpressed Hypomethylated and Overexpressed 

RAD51AP1 Gained and Overexpressed Hypomethylated and Overexpressed 
RECQL Gained and Overexpressed Hypomethylated and Overexpressed 
RELB Gained and Overexpressed Hypomethylated and Overexpressed 

RNF185 Gained and Overexpressed Hypomethylated and Overexpressed 
RPL35A Gained and Overexpressed Hypomethylated and Overexpressed 
RPS27A Gained and Overexpressed Hypomethylated and Overexpressed 
RSRC1 Gained and Overexpressed Hypomethylated and Overexpressed 
SAE1 Gained and Overexpressed Hypomethylated and Overexpressed 

SFRS10 Gained and Overexpressed Hypomethylated and Overexpressed 
SHOX2 Gained and Overexpressed Hypomethylated and Overexpressed 
SIAH2 Gained and Overexpressed Hypomethylated and Overexpressed 
SMEK2 Gained and Overexpressed Hypomethylated and Overexpressed 
SNRPB Gained and Overexpressed Hypomethylated and Overexpressed 

SNRPD2 Gained and Overexpressed Hypomethylated and Overexpressed 
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2.3.7 Subtype specific genes are responsible for AC and SqCC phenotypes 

 Next, we sought to confirm that the genes differentially disrupted at the genomic and 

epigenomic level are responsible for the different biological characteristics of AC and SqCC. 

Since they are regulated by subtype specific alterations, we hypothesized that the expression 

levels of these genes should be able to accurately segregate NSCLC tumors into distinct AC and 

SqCC groups. As predicted, when using the expression values for the 49 NSCLC tumors from 

our data set, principle component analysis with the 778 unique genetically and/or epigenetically 

deregulated genes clearly delineated distinct subtype specific clusters (Figure 2.5a). A receiver 

operating characteristic (ROC) area under the curve (AUC) value of 0.9690 (P<0.0001) 

confirmed that principle component 1 was a strong discriminator of the subtypes (Figure 2.5a). 

Given that these genes were uncovered based on differences between the subtypes, this finding 

was not surprising. Therefore, to validate the role of these genes in subtype development, we 

applied the same analysis to two independent publically available sample sets. The first consisted 

of 111 (58 AC and 53 SqCC, Sample Set #3) and the second of 138 clinical lung tumors (62 AC 

and 76 SqCC, Sample Set #6) [82]. Strikingly, this analysis was also able to separate the AC and 

SqCC samples with a substantial accuracy (ROC AUC values of 0.9076 and 0.9442, P<0.0001, 

respectively) (Figure 2.5b and c). Validation of our subtype specific genes in these large, 

independent panels of NSCLC tumors from separate institutions provides further evidence that 

the genes regulated by subtype specific genomic and epigenomic disruptions are responsible for 

driving the differential development of AC and SqCC. Furthermore, our results highlight the 

impact of this novel integrative genome, epigenome and transcriptome analysis in identifying 

robust target genes that can be used as biomarkers of disease. 
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Figure 2.5 

 

 
 

Figure 2.5. Subtype specific genes explain AC and SqCC phenotypes.  
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Figure 2.5. Subtype specific genes explain AC and SqCC phenotypes. 

Principal components analysis of all genes demonstrating expression differences between 

subtypes as a result of genetic and/or epigenetic alterations in: (A) 49 NSCLC tumors (29 AC, 20 

SqCC) used for gene discovery in this study, publically available data from (B) 111 NSCLC 

tumors (58 AC and 53 SqCC, Sample Set #3-Duke,) and (C) 138 NSCLC tumors (62 AC and 76 

SqCC, Sample Set #6- Samsung,). Red circles indicate AC samples, blue circles indicate SqCC 

samples. Strong separation of tumors along principal component 1 is observed in all sets, 

demonstrating the contribution of these genes to the differential phenotypes. The respective ROC 

curves for each dataset using the respective principle component 1 values for each sample are 

shown on the right. AUC values of 0.9690, 0.9076 and 0.9442 for A, B and C, respectively, 

suggest the gene expression signature is accurately discriminates subtypes. 

 

 

2.3.8 Subtype-specific genetic differences are translated to the protein level 

 To confirm that the genome and transcriptome differences between subtypes affects the 

relative protein levels of the identified genes, we performed immunohistochemical (IHC) 

analysis on an independent panel of >200 lung tumors. Protein levels for three subtype specific 

genes with available antibodies validated for IHC were analyzed: ERCC1 (inactivated in AC), 

KEAP1 (inactivated in AC) and SOX2 (activated in SqCC) (Figure 2.6). Average protein levels 

for all three genes were significantly different between subtypes in the direction predicted by our 

integrative analysis (Figure 2.6a, d, and g, p<0.001, unpaired t test with Welch's correction). The 

average nuclear ERCC1 expression and cytoplasmic KEAP1 expression were significantly lower 

in AC tumors (ERCC1:43.45±5.389, N = 175 and KEAP1:126.5 ±4.179, N = 184) compared to 

SqCC tumors (ERCC1: 79.99±9.095, N = 106 and KEAP1:160.9 ±5.401, N = 110) consistent 

with these genes being inactivated in AC. Conversely, nuclear levels of SOX2, a SqCC lineage 

specific oncogene were significantly higher in SqCC (206.5±8.839, N = 106) than AC (70.39± 

6.342, N = 170). These data demonstrate that the genomic, epigenomic and expression 

differences between subtypes are translated to the protein level, supporting the hypothesis that 

these changes have a functional consequence on the phenotypes of AC and SqCC. 
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Figure 2.6 

 

 
 
Figure 2.6. Subtype-specific genomic differences are reflected at the protein level.  

Immunohistochemical analysis of protein levels for ERCC1 (A–C), KEAP1 (D–F) and SOX2 

(G–I) in squamous and adenocarcinoma lung tumors. Average immunohistochemical protein 

expression levels for each subtype are plotted ± SEM of each group. Representative 

microphotographs showing tumoral cells (arrows) with higher levels of expression of nuclear 

ERCC1 (B and C), cytoplasmic KEAP1 (E and F) and nuclear SOX2 (H and I) in squamous cell 

carcinomas (B, E and H) compared to lung adenocarcinomas (C, F, and I). Images are of samples 

reflecting the average protein expression for each group (ERCC1: SqCC = ~80, AC =~43; 

KEAP1: SqCC = ~161, AC = ~126; SOX2: SqCC = ~207, AC = ~70). Magnification 200x. * 

and ** = p<0.001 and p<0.0001, two-tailed unpaired t test with Welch’s correction, respectively. 
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2.3.9 Subtype-specific genes are associated with distinct clinical characteristics  

 In an attempt to elucidate the influence of our subtype specific genes on the clinical 

characteristics of AC and SqCC we determined the survival associations using a Mantel-Cox log 

rank test for each of the 778 subtype specific genes in AC, SqCC and NSCLC as a whole in 

sample set #6 which has overall survival information available for 138 cases (62 AC and 76 

SqCC). Since these genes are responsible for defining the distinct biology of these diseases, we 

reasoned that their expression should only correlate with clinical features in one subtype and not 

the other subtype or NSCLC (AC + SqCC) as a whole. 131 AC and 46 SqCC specific genes had 

significant (p <0.05) associations with overall survival (Table 2.3). Remarkably, the associations 

were completely specific to an individual subtype as no genes were correlated with survival in 

the same manner across both subtypes. Six genes (DSG2, PLAC2, ATP9A, TPM4, CD9 and 

PSMD11) were significantly associated with survival in both subtypes; however, they displayed 

opposing survival patterns, with low expression associated with poor survival in one subtype and 

high expression with poor survival in the other (Figure 2.7). Thus, although associated with 

survival in both subtypes, these genes exhibit distinct subtype-specific associations. 

Interestingly, low levels of CD9 expression have been previously implicated in the poor 

prognosis of lung cancer patients [94]. However, we now show that this association is subtype 

specific, with low levels of CD9 correlated with poor prognosis in SqCC and high levels with 

poor prognosis in AC (Figure 2.7). Importantly, only eight genes that were associated with 

survival in one of the subtypes were also significant when analyzing NSCLC as a whole, 

providing further evidence to the importance of treating the subtypes as separate disease entities 

and underscoring the potential clinical relevance of subtype specific alterations. 
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Table 2.3 Genes demonstrating a significant association with survival 

  
AC (n=62) NSCLC (n=138) SqCC (n=76) 

Probe Set ID Gene Symbol P Value 

Median 
Survival 

(Low) 

Median 
Survival 
(High) P Value 

Median 
Survival 

(Low) 

Median 
Survival 
(High) P Value 

Median 
Survival 

(Low) 

Median 
Survival 
(High) 

235053_at --- 0.0144 16.9405 49.44151 0.17068 24.50015 49.4357 0.53886 39.27745 Undefined 
238277_at --- 0.03738 33.81425 Undefined 0.71096 49.43922 45.26797 0.3616 51.27054 34.00295 
235288_at --- 0.00853 24.33483 Undefined 0.51286 51.27393 Undefined 0.25026 51.27537 34.00406 
235772_at --- 0.00036 21.33842 Undefined 0.2415 34.00001 42.80249 0.30358 45.27746 31.14234 
240969_at --- 0.14949 24.50005 Undefined 0.57797 51.27273 39.00354 0.01258 Undefined 23.63333 
1559360_at --- 0.37749 49.4449 27.2 0.0207 Undefined 29.13404 0.03775 Undefined 28.8752 
240527_at --- 0.38033 49.44523 Undefined 0.3844 55.36737 39.00058 0.04488 Undefined 23.63478 
238580_at --- 0.31036 33.8017 42.806 0.10849 Undefined 28.10062 0.02382 Undefined 28.10747 
225318_at --- 0.01158 21.33602 Undefined 0.00396 24.50067 Undefined 0.13721 28.86847 Undefined 
236010_at --- 0.02674 33.80404 Undefined 0.85402 39.26732 42.80081 0.32808 39.26707 31.14145 
238281_at --- 0.00073 19.83424 Undefined 0.30314 28.86707 42.80193 0.12523 Undefined 31.13674 
1560625_s_at --- 0.35725 39.60002 24.5 0.10421 49.43598 28.36731 0.00727 Undefined 28.1056 
202394_s_at ABCF3 0.04375 Undefined 24.13333 0.73065 49.43428 51.27379 0.24315 34.00969 Undefined 
212895_s_at ABR 0.73575 42.83241 28.36667 0.95439 42.8039 39.26733 0.03852 17.0087 Undefined 
1554390_s_at ACTR2 0.0024 Undefined 22.57662 0.41497 42.80818 34.00004 0.42825 31.13862 51.27873 
209321_s_at ADCY3 0.37955 39.00968 24.50383 0.07318 39.0035 Undefined 0.01947 14.46667 Undefined 
205268_s_at ADD2 0.0208 24.33711 Undefined 0.05083 34.00914 51.26791 0.18153 34.00443 Undefined 
223145_s_at AKIRIN2 0.0042 Undefined 19.83365 0.39962 45.26702 39.27015 0.32392 39.60958 Undefined 
224982_at AKT1S1 0.03429 Undefined 21.33333 0.26164 Undefined 33.80263 0.42188 Undefined 39.27398 
236626_at ALG1 0.28678 33.80035 55.3923 0.38036 Undefined 34.00052 0.04702 Undefined 28.1 
1559640_at ANKFN1 0.03854 24.1401 Undefined 0.20954 28.36686 51.2675 0.6613 Undefined 39.6 
208074_s_at AP2S1 0.02846 Undefined 24.33346 0.0408 Undefined 31.1347 0.55993 Undefined 39.27003 
206632_s_at APOBEC3B 0.47521 49.4339 33.80355 0.10034 39.60002 Undefined 0.01601 28.87687 Undefined 
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AC (n=62) NSCLC (n=138) SqCC (n=76) 

Probe Set ID Gene Symbol P Value 

Median 
Survival 

(Low) 

Median 
Survival 
(High) P Value 

Median 
Survival 

(Low) 

Median 
Survival 
(High) P Value 

Median 
Survival 

(Low) 

Median 
Survival 
(High) 

223665_at ARPM1 0.0041 55.37556 16.93581 0.03967 Undefined 28.86709 0.81962 33.8 31.90115 
202872_at ATP6V1C1 0.04422 39.60013 21.33399 0.60693 45.27069 33.80082 0.79845 45.27323 51.29902 
216129_at ATP9A 0.0126 27.20467 Undefined 0.85486 51.26829 42.80025 0.01832 Undefined 28.1 
220488_s_at BCAS3 0.0401 27.21179 55.39337 0.37157 28.36738 39.60042 0.75453 39.60025 33.80295 
229177_at C16orf89 0.02698 29.14723 55.37189 0.53278 31.90096 45.2675 0.7107 39.27301 34.00405 
219114_at C3orf18 0.02553 20.30096 Undefined 0.14933 28.86671 42.80078 0.80837 45.273 Undefined 
220218_at C9orf68 0.03902 29.13582 Undefined 0.80718 49.44241 39.60069 0.21869 Undefined 31.13333 
1553693_s_at CBR4 0.10425 33.57563 Undefined 0.94272 39.26718 29.13397 0.0402 Undefined 23.63478 
202047_s_at CBX6 0.03347 24.33355 Undefined 0.00724 24.3334 Undefined 0.20137 28.86884 Undefined 
1553886_at CCDC108 0.2563 27.2001 49.43969 0.37501 51.26785 42.80266 0.00775 Undefined 14.4692 
226723_at CCDC23 0.84863 49.46235 39.00205 0.0259 Undefined 28.3667 0.00063 Undefined 21.00575 
201005_at CD9 0.02904 Undefined 22.56753 0.53697 39.00059 51.2691 0.03468 28.87073 Undefined 
235117_at CHAC2 0.02397 49.43635 19.83681 0.85201 49.44391 51.26889 0.52374 39.27526 Undefined 
218566_s_at CHORDC1 0.0101 Undefined 19.1687 0.50217 42.8012 29.13335 0.14139 31.90955 51.28971 
208925_at CLDND1 0.0018 Undefined 22.57001 0.4322 Undefined 45.2716 0.67328 39.61269 Undefined 
230609_at CLINT1 0.03465 24.3392 Undefined 0.57718 39.27082 49.43703 0.05689 39.27138 17.00452 
216295_s_at CLTA 0.00431 Undefined 24.13618 0.75029 45.26681 39.60227 0.15425 23.63333 Undefined 
206158_s_at CNBP 0.02958 Undefined 22.56982 0.86081 49.43538 51.27565 0.36265 31.13497 Undefined 
221676_s_at CORO1C 0.00315 Undefined 21.33395 0.57564 39.60005 51.27283 0.30983 28.1 51.28618 
217889_s_at CYBRD1 0.01382 Undefined 29.13997 0.90114 45.26687 51.27134 0.25109 28.1 51.26834 
223385_at CYP2S1 0.68764 28.36735 29.13414 0.16294 28.86693 Undefined 0.02874 17 Undefined 
226745_at CYP4V2 0.3883 Undefined 39.61238 0.04372 Undefined 39.00442 0.6401 28.10529 39.27164 
1555301_a_at DIP2A 0.88767 Undefined 55.38224 0.08636 Undefined 31.13481 0.02417 Undefined 31.14654 
202514_at DLG1 0.00817 Undefined 24.33561 0.65233 Undefined 51.27229 0.75011 34.00781 Undefined 



38 

 

  
AC (n=62) NSCLC (n=138) SqCC (n=76) 

Probe Set ID Gene Symbol P Value 

Median 
Survival 

(Low) 

Median 
Survival 
(High) P Value 

Median 
Survival 

(Low) 

Median 
Survival 
(High) P Value 

Median 
Survival 

(Low) 

Median 
Survival 
(High) 

213707_s_at DLX5 0.02338 20.30062 42.80028 0.44252 33.57163 33.80075 0.23382 34.00095 Undefined 
209187_at DR1 0.11236 Undefined 39.00756 0.4124 Undefined 39.26692 0.04499 Undefined 23.63478 
1553105_s_at DSG2 0.00731 Undefined 21.33333 0.57155 Undefined 51.27133 0.01533 31.13771 Undefined 
204455_at DST 0.02439 Undefined 24.5 0.47177 55.36794 45.27146 0.94676 39.60211 51.30379 
227103_s_at ECE2 0.03216 Undefined 24.50024 0.61781 45.2674 39.26885 0.27278 23.63333 51.28227 
219787_s_at ECT2 0.04794 Undefined 27.20217 0.96564 39.60003 45.27416 0.9103 39.27167 31.9 
227540_at EEFSEC 0.12983 33.80965 55.37667 0.08076 33.80235 55.36909 0.03373 23.63478 Undefined 
208264_s_at EIF3J 0.01706 Undefined 19.83377 0.45044 Undefined 33.80004 0.78744 39.26773 33.80045 
210213_s_at EIF6 0.01797 Undefined 21.33505 0.24002 42.80152 28.86696 0.64135 34.00444 28.86746 
1555274_a_at EPT1 0.00473 Undefined 24.13482 0.79192 55.36992 51.26965 0.37729 39.27466 51.27142 
224576_at ERGIC1 0.13149 Undefined 28.36758 0.0231 Undefined 29.1339 0.59119 39.27742 33.80355 
218481_at EXOSC5 0.01974 49.43491 21.33395 0.31024 49.43857 33.80179 0.96215 45.27775 33.8022 
215133_s_at FAM153A/B 0.10274 Undefined 22.56667 0.03727 Undefined 23.63367 0.07532 Undefined 31.13787 
211623_s_at FBL 0.0136 Undefined 22.56795 0.26212 55.37016 33.8006 0.69323 Undefined 51.2858 
225737_s_at FBXO22 0.02196 Undefined 19.16994 0.60894 39.60087 33.80066 0.83565 34.00913 39.27489 
228220_at FCHO2 0.00771 42.80089 20.3 0.53555 33.80002 34.00015 0.11278 17.00242 51.27968 
218880_at FOSL2 0.03719 42.80044 21.3341 0.11227 Undefined 31.1347 0.86562 34.00245 39.27724 
219170_at FSD1 0.48502 39.00755 24.5 0.19504 33.80163 Undefined 0.02367 28.10747 Undefined 
205384_at FXYD1 0.02207 24.50712 Undefined 0.11755 28.36939 51.26727 0.62167 33.81213 45.27641 
217398_x_at GAPDH 0.00599 Undefined 21.33395 0.29288 Undefined 33.80167 0.94368 Undefined Undefined 
225161_at GFM1 0.00928 Undefined 19.1687 0.21403 Undefined 39.26803 0.52363 34.01822 31.13856 
218473_s_at GLT25D1 0.02424 Undefined 20.3 0.73697 45.27217 49.44348 0.24779 33.80179 51.26929 
235678_at GM2A 0.23687 42.81498 19.83333 0.61717 42.80336 Undefined 0.0219 22.5 Undefined 
214431_at GMPS 0.0474 Undefined 27.2023 0.43364 49.43901 33.80168 0.29773 Undefined 31.90064 
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210761_s_at GRB7 0.01647 Undefined 28.37302 0.33651 45.27118 33.80045 0.23033 39.60983 Undefined 
213911_s_at H2AFZ 0.01466 Undefined 24.50124 0.94486 49.43829 39.60273 0.48193 39.27751 33.80045 
206194_at HOXC4 0.05237 24.33779 Undefined 0.02445 24.33492 Undefined 0.18757 22.50201 39.60027 
217805_at ILF3 0.00013 Undefined 24.33919 0.06694 Undefined 33.80253 0.80721 34.00397 28.1 
201389_at ITGA5 0.02179 Undefined 20.3 0.09358 42.80019 28.86712 0.79504 33.80209 39.27456 
239695_at JAK1 0.0454 29.13355 Undefined 0.48185 34.00013 42.80262 0.68832 31.9 45.27641 
202417_at KEAP1 0.05737 Undefined 27.2 0.91753 45.26791 49.4404 0.04781 39.6006 Undefined 
213208_at KIAA0240 0.43129 24.50348 39.62181 0.02893 22.50118 55.36901 0.03511 28.10483 Undefined 
226328_at KLF16 0.01845 Undefined 22.56667 0.79878 39.00306 45.27031 0.06192 33.81203 Undefined 
221986_s_at KLHL24 0.03703 21.33523 Undefined 0.02229 24.13362 Undefined 0.11447 28.87458 51.27145 
225267_at KPNA4 0.03218 Undefined 24.3359 0.64512 Undefined 39.60009 0.49027 45.27188 33.80006 
34031_i_at KRIT1 0.08207 42.80441 33.57252 0.92975 39.6014 39.60017 0.04527 28.87493 Undefined 
209008_x_at KRT8 0.0298 Undefined 22.56667 0.18157 55.37109 28.1 0.81381 39.27259 28.1 
216952_s_at LMNB2 0.01254 Undefined 12.46667 0.91158 55.37024 Undefined 0.29715 34.00048 Undefined 
240936_at LOC100287290 0.0142 22.56894 Undefined 0.92029 45.27692 39.00242 0.36183 51.27015 31.90132 
229187_at LOC283788 0.28723 28.36682 Undefined 0.20841 Undefined 39.60002 0.027 Undefined 34.00403 
202736_s_at LSM4 0.00474 Undefined 24.34862 0.71931 39.60217 33.80062 0.45598 34.0006 Undefined 
224656_s_at LUZP6/MTPN 0.00987 Undefined 29.13705 0.60054 Undefined 34.00004 0.09512 39.61736 Undefined 
242838_at MAP6D1 0.3869 42.81631 Undefined 0.05706 33.56682 Undefined 0.03499 34.00369 Undefined 
200712_s_at MAPRE1 0.00286 Undefined 12.46868 0.40758 49.43642 34.00003 0.29926 17 39.26873 
204825_at MELK 0.02125 55.37232 22.5686 0.53408 49.43576 33.80078 0.58503 51.30354 Undefined 
224725_at MIB1 0.00118 Undefined 19.17769 0.3179 55.36692 33.80026 0.62303 34.0042 Undefined 
231975_s_at MIER3 0.00445 Undefined 28.37263 0.0452 Undefined 33.80143 0.40189 39.60096 34.00044 
224784_at MLLT6 0.58994 29.13854 39.00102 0.06093 31.90083 49.43717 0.00102 17 Undefined 
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223086_x_at MRPL51 0.00434 Undefined 21.33395 0.45839 42.80053 33.80126 0.5265 39.60044 51.27282 
204331_s_at MRPS12 0.00082 Undefined 24.13416 0.45616 49.43749 39.27097 0.09454 34.02697 Undefined 
213380_x_at MST1P9 0.81968 22.57145 33.80789 0.04798 Undefined 33.80322 0.00081 Undefined 22.50201 
205455_at MST1R 0.69461 24.50304 33.8026 0.19801 Undefined 39.00408 0.01155 Undefined 34.0004 
226856_at MUSTN1 0.03969 21.33717 49.43585 0.62207 42.80249 51.26764 0.4065 Undefined 51.27849 
228846_at MXD1 0.00339 Undefined 19.83333 0.01847 Undefined 22.50033 0.6546 Undefined 39.63075 
212462_at MYST4 0.10006 28.37113 Undefined 0.01361 28.86671 Undefined 0.64988 39.60051 Undefined 
217745_s_at NAA50 0.03094 Undefined 28.36976 0.89708 49.43981 45.27204 0.8809 39.60787 33.8019 
204725_s_at NCK1 0.0232 Undefined 29.14091 0.45144 45.26871 Undefined 0.08955 31.13754 Undefined 
208969_at NDUFA9 0.01447 49.43586 21.33395 0.52469 42.8016 33.80242 0.82327 39.26987 39.60899 
219396_s_at NEIL1 0.04625 27.22196 55.37556 0.20662 33.56729 49.43815 0.40991 31.1358 Undefined 
218036_x_at NMD3 0.00253 Undefined 24.33426 0.24537 Undefined 33.80111 0.73953 45.2738 39.27156 
205129_at NPM3 0.00325 Undefined 24.5 0.16436 Undefined 31.90049 0.80558 51.27316 33.80546 
207740_s_at NUP62 0.03487 Undefined 24.33683 0.18146 55.37659 31.90033 0.95715 34.00119 39.27398 
215952_s_at OAZ1 0.03153 Undefined 28.37069 0.83043 45.26775 51.26712 0.14832 31.90753 Undefined 
1567245_at OR5J2 0.55999 39.00086 Undefined 0.29774 39.00273 24.33406 0.00638 Undefined 14.13568 
220669_at OTUD4 0.28954 39.61079 27.2 0.00609 Undefined 31.13369 0.03617 Undefined 31.90056 
207634_at PDCD1 0.05585 28.36714 Undefined 0.03491 31.13376 Undefined 0.48531 39.62476 Undefined 
202212_at PES1 0.00027 Undefined 19.16994 0.1771 Undefined 39.26986 0.76431 34.00568 33.80504 
201600_at PHB2 0.00212 Undefined 12.46749 0.26775 49.43491 31.90047 0.58147 39.6005 33.8036 
226846_at PHYHD1 0.85006 49.47308 33.80646 0.12844 Undefined 33.80158 0.02709 Undefined 31.90501 
204297_at PIK3C3 0.01335 Undefined 24.14054 0.14753 45.26707 29.13394 0.59912 Undefined 33.8 
202522_at PITPNB 0.00512 42.80212 11.6 0.44106 42.80204 31.90069 0.61958 34.00213 39.27623 
219584_at PLA1A 0.1342 24.13645 Undefined 0.01409 28.1017 Undefined 0.30541 39.28778 51.273 
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244374_at PLAC2 0.0089 24.33367 Undefined 0.9082 39.00066 34.00004 0.02157 Undefined 31.14163 
201411_s_at PLEKHB2 0.02874 Undefined 27.20319 0.15134 Undefined 29.13356 0.37245 33.80401 51.27426 
217841_s_at PPME1 0.02953 Undefined 28.36886 0.13805 Undefined 39.26963 0.69668 Undefined 33.80063 
201979_s_at PPP5C 0.01205 Undefined 27.20299 0.12645 Undefined 33.80025 0.83953 39.6096 33.80045 
203056_s_at PRDM2 0.03028 29.13442 Undefined 0.26908 31.13423 45.27053 0.26807 34.00161 28.10422 
200707_at PRKCSH 0.0038 Undefined 27.20319 0.94375 39.60022 45.26917 0.38645 33.80392 45.27737 
206445_s_at PRMT1 0.01499 Undefined 27.20435 0.14026 Undefined 33.80131 0.29468 Undefined 33.80116 
201267_s_at PSMC3 0.00053 Undefined 29.14001 0.09155 Undefined 34 0.97923 39.60516 39.2773 
208777_s_at PSMD11 0.03359 Undefined 28.36795 0.91385 49.43483 55.36745 0.03752 34.01822 Undefined 
204748_at PTGS2 0.12298 Undefined 29.13333 0.03916 Undefined 31.90193 0.15653 Undefined 28.87493 
222981_s_at RAB10 0.03622 49.44053 19.83377 0.98263 49.43854 51.27597 0.58024 34.00554 Undefined 
202483_s_at RANBP1 0.00028 Undefined 19.16994 0.29456 55.37286 39.27082 0.69617 39.60904 33.8021 
1552482_at RAPH1 0.85588 28.37231 39.00947 0.24756 Undefined 39.60089 0.0052 Undefined 34.00609 
205091_x_at RECQL 0.01306 Undefined 29.14178 0.65705 45.26784 39.60024 0.56676 45.27521 39.27466 
205205_at RELB 0.00024 Undefined 12.46826 0.0613 42.80261 28.10416 0.42162 31.90878 51.28158 
220334_at RGS17 0.9146 49.44602 29.13333 0.19007 49.43744 28.36678 0.00478 Undefined 21.00575 
202129_s_at RIOK3 0.01461 Undefined 29.13465 0.93382 42.80218 34.00016 0.14088 23.63333 51.29828 
203022_at RNASEH2A 0.01996 Undefined 27.20329 0.91781 39.60158 39.60411 0.86278 39.27691 31.1415 
204208_at RNGTT 0.03237 Undefined 29.13469 0.12068 Undefined 33.80109 0.63752 Undefined 51.28576 
234243_at RPF1 0.01228 19.83474 Undefined 0.91676 39.26867 42.80095 0.10884 39.26785 22.5 
200022_at RPL18 0.04181 Undefined 27.20692 0.02266 Undefined 28.10041 0.63984 Undefined Undefined 
230695_s_at RSPH9 0.21092 33.81375 33.56745 0.28838 33.80153 33.57037 0.04879 31.13333 Undefined 
230378_at SCGB3A1 0.59364 33.80097 55.38584 0.09802 31.13412 55.36957 0.00959 28.88063 Undefined 
238017_at SDR16C5 0.24231 42.81232 24.33362 0.03907 Undefined 34.00241 0.39325 Undefined 34.00689 
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57703_at SENP5 0.00984 Undefined 22.56849 0.88425 49.43804 39.6003 0.4657 34.00108 31.13936 
205637_s_at SH3GL3 0.03148 22.56814 Undefined 0.06137 29.13336 Undefined 0.99496 51.2827 45.27023 
214437_s_at SHMT2 0.00877 Undefined 24.5004 0.45624 49.43966 33.80165 0.71676 39.27181 31.14163 
227791_at SLC9A9 0.41764 33.80973 55.38054 0.05746 28.36677 Undefined 0.04263 28.10127 Undefined 
233759_s_at SMEK2 0.04774 Undefined 29.13447 0.57193 39.0003 51.27423 0.11077 39.27633 Undefined 
202690_s_at SNRPD1 0.02425 Undefined 27.20323 0.42348 55.36969 33.80201 0.75276 51.27334 39.60742 
200826_at SNRPD2 0.00192 Undefined 24.13475 0.0512 Undefined 31.90002 0.20704 Undefined 28.86667 
208608_s_at SNTB1 0.00764 Undefined 24.50541 0.11671 Undefined 33.56895 0.31805 39.27284 Undefined 
234005_x_at STK36 0.4891 Undefined 29.13392 0.04193 Undefined 33.80256 0.2361 Undefined 31.90206 
200870_at STRAP 0.01224 Undefined 22.56753 0.88866 55.37286 51.27355 0.30975 39.60044 Undefined 
217834_s_at SYNCRIP 0.00745 Undefined 27.20213 0.09284 49.43463 31.13375 0.83177 45.29099 51.2942 
217839_at TFG 0.00023 Undefined 11.6 0.10494 Undefined 33.8009 0.78479 Undefined 51.28579 
207332_s_at TFRC 0.00253 Undefined 19.1687 0.93278 42.80181 51.26735 0.50376 39.6108 33.8 
203235_at THOP1 0.54289 39.60594 27.20092 0.56371 39.60616 49.43707 0.03206 34.01432 Undefined 
1552522_at TIGD4 0.08266 24.14291 49.43914 0.46013 Undefined 34.00004 0.0356 Undefined 34.00185 
224413_s_at TM2D2 0.04324 42.80067 28.36803 0.56527 45.2677 33.80005 0.60526 31.9124 39.60534 
236430_at TMED6 0.03763 24.50075 55.37892 0.39659 34.00011 55.37017 0.62181 33.80344 39.62128 
225766_s_at TNPO1 0.00087 Undefined 24.1406 0.05921 Undefined 31.13516 0.82285 Undefined 33.80204 
217960_s_at TOMM22 0.00386 Undefined 24.34083 0.42893 Undefined 39.60017 0.71248 39.60655 39.27185 
201512_s_at TOMM70A 0.00499 Undefined 19.1687 0.20854 Undefined 39.26963 0.88668 34.0042 39.27171 
213011_s_at TPI1 0.0212 Undefined 22.56767 0.26103 Undefined 31.13388 0.79194 Undefined Undefined 
212481_s_at TPM4 0.02596 Undefined 22.57022 0.63006 55.37739 39.27207 0.02658 17 Undefined 
236020_s_at TRUB1 0.0006 24.33376 Undefined 0.01604 29.13403 Undefined 0.76752 31.13333 39.60318 
1557073_s_at TTBK2 0.65558 55.46281 39.00417 0.72421 39.60268 51.27788 0.03372 31.13436 Undefined 
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211337_s_at TUBGCP4 0.0071 Undefined 12.46667 0.68162 55.37233 51.27741 0.20628 34.00365 Undefined 
214007_s_at TWF1 0.02118 Undefined 11.60108 0.7189 42.80104 39.60032 0.09158 31.13565 Undefined 
222601_at UBA6 0.04354 39.60059 22.56767 0.11044 Undefined 33.80161 0.46036 51.29911 45.27548 
227413_at UBLCP1 0.01242 42.80171 24.13996 0.11705 Undefined 34.00001 0.80738 45.26912 Undefined 
225655_at UHRF1 0.02933 Undefined 27.20192 0.44667 Undefined 39.60386 0.7462 39.27203 33.80063 
216775_at USP53 0.37925 27.20326 33.80577 0.05508 51.26675 29.13395 0.00277 Undefined 17 
229369_at VSIG2 0.01852 20.30096 Undefined 0.30675 31.90264 45.26791 0.60017 39.27796 34.00913 
219060_at WDYHV1 0.02266 Undefined 24.33353 0.68566 49.44061 39.267 0.19027 39.60983 Undefined 
208775_at XPO1 0.0335 Undefined 29.13592 0.84698 Undefined 51.27005 0.79137 34.01252 33.80342 
207757_at ZFP2 0.00983 21.33607 Undefined 0.65835 31.90012 42.80369 0.17654 39.26719 34.01328 
241793_at ZMYND17 0.44512 33.56949 28.36771 0.55572 49.43697 27.20028 0.02879 Undefined 22.50407 
232117_at ZNF471 0.16299 Undefined 22.56779 0.01829 Undefined 33.57015 0.02274 Undefined 22.5 
238454_at ZNF540 0.02493 28.37374 Undefined 0.15849 31.13421 42.80043 0.81279 33.81307 34.00037 
218349_s_at ZWILCH 0.01393 Undefined 27.20322 0.70174 42.80079 39.26778 0.44344 34.01252 51.27434 
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Figure 2.7 
 

 
 
Figure 2.7 CD9 expression is associated with differences in survival in AC and SqCC tumors.  

The prognostic value of CD9 expression levels was evaluated in 53 SqCC tumors and 58 AC 

tumors. Poor prognosis is significantly associated (Mantel-Cox log test, p<0.05) with low CD9 

levels in SqCC (A) and  high CD9 in AC (B). Survival of the 1/3 lowest CD9 expressers is 

shown in red, and the top 1/3 is shown in blue.  

 

 

2.3.10 Defining putative treatment strategies tailored to lung cancer subtypes using in 

silico screening of candidate therapeutic compounds 

 Lastly, after defining and validating our AC and SqCC specific cancer genes, we applied 

these findings to define potential treatment strategies tailored to each lung cancer subtype. Using 

our subtype specific genes, we queried the Connectivity Map (CMAP) database to identify 

compounds that could "reverse" the expression direction of each subtype signature. CMAP 

consists of thousands of gene expression profiles from different cancer cell lines treated with a 

vast collection of small molecules [83]. By comparing the subtype specific signatures of up and 

down regulated genes with preexisting response signatures, CMAP identifies small molecules 

whose effects on gene expression changes are positively or negatively correlated. Negative 

correlation scores imply that the matched molecules have a mode of action that can reverse the 

expression direction of query genes, and therefore serve as potential therapeutic compounds. 

Using this in silico screening approach, we identified numerous instances (cell line/treatment 

B A 
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combination) that were significantly correlated with both our AC and SqCC specific gene 

signatures. SqCC had an expression signature that was negatively correlated with multiple 

HDAC and PI3K/ mTOR inhibitors including trichostatin A, vorinostat (also known as SAHA), 

LY-294002 and MS-275 - all HDAC inhibitors as well as quinostatin, sirolimus (also known as 

Rapamycin) and wortmannin - all PI3K/mTOR inhibitors. These findings were interesting given 

that the alteration of histone modifying enzymes was the major network disrupted in SqCC and 

we observed concerted disruption of PRC2 components, which are responsible for de novo 

methylation. In addition, PIK3CA activation (mutation and/or amplification) is known to occur 

more frequently in SqCC than AC [95] and many downstream components of this pathway were 

also altered specifically in SqCC. Conversely, CMAP analysis for AC was not very informative, 

as none of the negatively correlated molecules shared the same functions.  

 

 To confirm the results of the CMAP analysis, we treated a panel of six NSCLC cell lines 

(three AC and three SqCC) with the HDAC inhibitor Trichostatin A, the most significant 

negatively correlated HDAC inhibitor from the SqCC analysis. Importantly, we selected the 

available cell lines that best represented their respective clinical tumor subtypes by performing 

principle component analysis with the subtype-specific genes using publically available gene 

expression profiles for a large panel of NSCLC cell lines (Figure 2.8A). As predicted by the in 

silico analysis, SqCC cell lines were on average, five times more sensitive to Trichostatin A than 

AC cell lines (SqCC avg. IC50 =69nM, AC avg. IC50 = 346 nM, Mann-Whitney U Test, p < 0.05) 

(Figure 2.8B), validating the clinical relevance of subtype specific alterations. 
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Figure 2.8 

 

  
 

 
 
Figure 2.8 SqCC cell lines are more sensitive to Trichostatin A than AC cell lines.  

(A) Selection of cell lines for in vitro assays by PCA analysis of two lung cancer cell line 

datasets.  Red indicates AC cell lines, blue SqCC cell lines and green NSCLC cell lines. (B) 

Dose-response analysis of  the HDAC inhibitor Trichostatin A on the relative viability of AC 

(A549, H3255 and H1395) and SqCC (H520, HCC15 and HCC95) cell lines. Each curve was 

generated from the average data points from four separate experiments. Vertical error bars 

represent SEM. Student's t test p =0.0002; all AC replicate IC50 values vs. all SqCC replicate 

IC50 values. (C) Table with the average IC50 and SEM for each cell line tested derived from 

four separate experiments. Replicate experiments were highly repeatable. 

A 

B 

p= 0.0002 
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2.4 Discussion 

 The emergence of tumor cells from normal precursors is thought to involve a complex 

interplay between genetics and cell lineage [96]. Due to the different cell types involved as well 

as the attributes of an individual cell’s local environment, it is logical to assume different 

mechanisms are required for tumorigenesis of each lung cancer subtype. Previous studies suggest 

that distinct patterns of DNA alteration exist for AC and SqCC; however, the specific genes 

responsible for the different tumor phenotypes are largely unknown [33-35, 38]. At the time of 

publication, this study provide the first comprehensive investigation of the key genetic and 

epigenetic alterations distinguishing AC and SqCC lung tumors at the gene level. Through the 

integration of whole-genome DNA copy number, DNA methylation, and gene expression data, 

we identified 778 genes altered in a subtype-specific manner. These genes are associated with 

distinct gene networks, providing insight into the signaling pathways that contribute to subtype 

tumorigenesis. Furthermore, subtype-type specific changes were found to be correlated with 

clinical outcomes and revealed novel putative treatment strategies for SqCC. 

 

 While no difference in the percentage of AC or SqCC genomes altered by copy number 

was observed, SqCC tumors were found to be more hypomethylated, suggesting that the 

epigenetic machinery is highly deregulated in SqCC (Figure 2.1). There is precedent for this 

finding, as altered global methylation is thought to be a consequence of exposure to the 

carcinogens found in tobacco smoke [89, 90, 97]. Global hypomethylation, such as that caused 

by cigarette smoke, is also known to be associated with chromosomal instability. We identified a 

greater number of  subtype specific alterations linked to both DNA copy number and DNA 

methylation in SqCC than AC. The reason for this is unclear, but may be indicative of similar 

selective pressures in the SqCC tumors that facilitate the development of recurrent alterations, 

whereas increased cellular and/or genetic heterogeneity in AC due to the different histological 

subtypes results in a greater diversity of alterations. Heterogeneity of clinical characteristics may 

also contribute to this discrepancy, as lung cancer in non-smokers are more likely to appear as 

AC tumors, and cigarette smoke can contribute to specific genetic or epigenetic alterations [4, 

79]. Although 22.5% of our AC tumors were from never smokers, no significant differences in 

copy number were identified between AC tumors from ever and never smokers (data not shown).  
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  The identification of subtype-specific copy number and methylation alterations with 

concordant expression changes demonstrate that different genetic pathways are involved in the 

pathogenesis of AC and SqCC. Previously identified lineage specific oncogenes including SOX2 

and BRF2 were identified, validating our approach [70, 98]. Although some of the regions and 

genes altered by copy number have previously been shown to be important in NSCLC 

development, our findings suggest their newfound importance to a specific lung cancer subtype. 

For example, previously identified oncogenes NOTCH3 and FOXM1 were gained and 

overexpressed specifically in SqCC while the tumor suppressor KEAP1 was deleted and 

underexpressed specifically in AC [99-101]. This is the first report suggesting these previously 

established lung cancer-associated genes are actually involved in subtype-specific tumorigenesis.  

  

 A gene network-based analysis of our subtype specific alterations revealed additional 

insights into the differential oncogenic mechanisms driving the pathogenesis of AC and SqCC. 

The top SqCC gene network associated with subtype specific copy number alterations was 

associated with DNA replication, recombination and repair, while SqCC specific genes altered 

by methylation were associated with the small cell signaling pathway. Of particular interest was 

the finding that the transcription factor E2F1,one of the deregulated components of this pathway, 

exhibited SqCC-specific hypomethylation and overexpression. E2F1 is upregulated in SCLC 

tumors [93], and suppresses apoptosis and induces expression of EZH2, an oncogenic polycomb 

histone-methyltransferase [92]. Our observation that EZH2 expression is significantly higher in 

SqCC than AC, along with the preferential disruption of polycomb group proteins in SqCC 

further supports the relevance of this pathway to SqCC, especially given the identification of 

SqCC specific deregulation of numerous histone modifying enzymes by copy number alterations. 

Histones are fundamental building blocks of eukaryotic chromatin and are involved in a myriad 

of cellular processes, including replication, repair, recombination and chromosome segregation 

[102-104]. Recently, global alterations of histone modification patterns have been reported in 

human cancers, with alterations occurring more frequently in SqCC than AC, consistent with our 

findings [105, 106]. Our data suggest that direct deregulation of histone modification enzymes 

including ASF1B, PRMT1, SAE1, SET8, CHAF1A and UHRF1 may drive this phenomenon and 

play a key role during the development of lung SqCC. As histone modifications also play an 
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essential role in DNA replication, there may be a synergistic effect between the histone 

modifying genes and replication/recombination associated genes that contribute to tumor 

development. 

 

 The top gene network detected as perturbed in AC tumors contained genes mainly involved 

in regulating tissue development and cell-to-cell signaling and known to be targeted by the 

transcription factor HNF4a. HNF4a regulates a large set of genes in a cell-specific manner and is 

necessary for cell differentiation and maintenance of a differentiated epithelial phenotype [107]. 

In other carcinomas, deregulation of HNF4a leads to increased cellular proliferation, progression 

and dedifferentiation [108-110]. This suggests that HNF4a may act as a tumor suppressor in 

epithelial carcinogenesis [107]. Interestingly, although HNF4a itself was not affected, we found 

that numerous downstream targets of this gene are downregulated specifically in AC. This may 

have the same net affect as inactivation of HNF4a itself and lead to increased cellular 

proliferation during AC tumorigenesis. 

 

 Interestingly, we identified numerous genomic regions that showed opposite patterns of 

alteration in each lung cancer subtype. For example, a discrete alteration spanning 2.4 Mbp on 

chromosome bands 8p12-11.23 was commonly gained in SqCC and lost in AC, while PARP11 

was upregulated in SqCC by DNA hypomethylation and downregulated in AC by copy number 

loss, implying that these regions/genes may play opposite roles during the development of the 

individual NSCLC subtypes, acting as TSGs in AC and as oncogenes in SqCC. Importantly, 

these differentially altered genes may be indicative of disparate clinical outcomes depending on 

which subtype they are disrupted in. CD9 was one of six genes that displayed opposite patterns 

of alteration (gained/overexpressed in SqCC and copy loss/underexpression AC) along with 

differential survival; high expression of this gene was correlated with favorable survival in 

SqCC, whereas low expression was associated with good survival in AC (Figure 2.7). Together, 

these results indicate that the genes involved in defining clinical characteristics are largely 

exclusive to individual NSCLC subtypes and influenced by the acquisition of distinct genetic 

alterations during tumor development, underscoring the importance of separating AC and SqCC 

when assessing genes involved in predicting patient prognosis and other clinical outcomes. This 
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information will become particularly important as targeted therapeutic strategies based around 

these genes develop. For example, since activated MEK1 and MEK2 phosphorylate and activate 

ERK (MAPK1) [111], the differential deregulation of MAPK1 in AC (inactivated) and SqCC 

(activated) tumors may be an important consideration in determining the efficacy of MEK 

inhibitors in lung cancer subtypes.  

 

 The specific alterations selected during the development of each subtype may influence 

treatment outcomes and therefore play a role in clinical management. To demonstrate how our 

genomic findings can be used to define treatment strategies tailored to lung cancer subtypes and 

attempt to elucidate novel subtype specific treatment strategies, we performed CMAP analysis 

on our AC and SqCC specific gene signatures to identify compounds that can potentially reverse 

the expression of these genes. While the results for AC were uninformative, CMAP analysis of 

SqCC genes identified numerous HDAC and PI3K/mTOR inhibitors as compounds that could 

potentially induce a gene expression signature negatively correlated with that associated with 

SqCC. The HDAC inhibitor result was remarkable as the alteration of histone modifying 

enzymes was the most prominent network disrupted in this subtype, providing a biological basis 

for this finding. Furthermore, cancer cells with elevated activity of E2F1 have been shown to be 

highly susceptible to HDAC inhibitor induced cell death and HDAC inhibitors such as SAHA 

have been shown to suppress the activity of EZH2 [112, 113]. As E2F1 and EZH2 are both 

upregulated in SqCC (Figure 2.4b & c), this data suggests that treatment with HDAC inhibitors, 

in conjunction with standard chemotherapy, could be a promising avenue for disease treatment. 

In addition, since PIK3CA activation (mutation and/or amplification) is known to occur more 

frequently in SqCC the finding of multiple PI3K/mTOR inhibitors as potential therapeutics for 

SqCC is logical [95, 114]. Together, this data demonstrates the potential to use information about 

the underlying molecular biology of cancer subtypes to make informed decisions about clinical 

management strategies, and suggests that HDAC and PI3K/mTOR inhibitors, in combination 

with current treatment regimes, may provide a novel treatment tailored to lung SqCC. 
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2.5 Conclusions 

 Fundamental differences in tumor biology may be a primary factor determining the 

differential outcomes and response to therapies of lung cancer subtypes. A better understanding 

of the molecular mechanisms underlying subtype development is therefore essential to 

improving the poor prognosis of lung cancer. Our high-resolution integrative analysis of NSCLC 

genomes and epigenomes delineated novel tumor subtype-specific genetic and epigenetic 

alterations responsible for driving the differential pathogenesis and phenotypes of AC and SqCC. 

The specific genes and networks identified in this study provide essential starting points for 

elucidating mechanisms of tumor differentiation and developing tailored therapeutics for lung 

cancer treatment. More generally, our results confirm at the molecular level that these lung 

cancer subtypes are distinct disease entities and highlight how biological differences between AC 

and SqCC can influence patient outcome and response to therapy. When designing new 

treatment strategies and testing new drugs in clinical trials, these subtype differences as well as 

the biological pathways should be taken into account. 

  



52 

 

Chapter 3: Genetic disruption of KEAP1/CUL3 E3 ubiquitin ligase complex 

components is a key mechanisms of NF-κB pathway activation in lung cancer 
 

3.1 Introduction 

 Our multi-dimensional integrative analysis of AC and SqCC genomes identified for the 

first time, subtype specific patterns of alteration of several previously established lung cancer 

associated genes, highlighting their newfound importance in subtype tumorigenesis. Among 

these genes was Kelch-like ECH-associated protein 1 (KEAP1), a substrate adaptor protein that 

binds substrates to an E3-ubiquitin ligase complex comprised of Cullin 3 (CUL3) and Ring box 1 

(RBX1) and was found to be preferentially lost in AC(Figure 3.1). The ubiquitin-proteasome 

pathway plays an essential role in maintaining normal cellular functions by controlling the 

abundance of several proteins and preventing undesired downstream effects. The most well 

characterized substrate of the KEAP1/CUL3 ubiquitin E3 ligase complex is NRF2 [115-117]. In 

response to oxidative stress, NRF2 stimulates transcription of cytoprotective genes that scavenge 

harmful reactive molecules, preventing cellular damage [118]. Interestingly, lung specific Keap1 

knockout in mice was shown to protect against cell damage caused by cigarette smoke by 

enabling Nrf2 accumulation and increased expression of its target genes [119]. NRF2 has also 

been implicated in cancer cell resistance to chemotherapeutics by its activation of drug-

metabolizing and drug-efflux proteins [118]. 

 

 NF-κB is a transcription factor that acts as a critical regulator of genes implicated in cell 

proliferation and survival, angiogenesis, epithelial to mesenchymal transition as well as 

inflammatory and immune responses [120-122]. The NF-κB pathway is activated in over 60% of 

lung cancers, however, the genetic mechanisms underlying its activation remain largely 

unknown [120, 123-126]. In the cytoplasm, NF-κB is bound by inhibitory proteins (I-kappaB), 

but upon stimulation, the kinase IKBKB phosphorylates IκB, releasing its inhibition, and 

enabling NF-κB translocation to the nucleus where it exerts its effects (Figure 3.1) [15]. 

Recently, Lee et al. implicated the KEAP1 E3-ligase complex in the regulation of NF-κB 

signaling, by demonstrating that KEAP1 binds IKBKB drawing it to the E3-ligase complex for 

ubiquitination and degradation [101]. As IKBKB is known to promote tumorigenicity through 
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phosphorylation-mediated inhibition of tumor suppressors and upregulation of NF-κB signaling, 

these findings further implicate the dysregulation of KEAP1 and the E3-ligase complex in 

NSCLC tumorigenesis and suggest disruption of this complex may underlie the high frequency 

of NF-κB activation in lung cancer.  

 

 

 

Figure 3.1 

 
 

Figure 3.1 The role of the KEAP1/CUL3 ubiquitin ligase complex  

(A) When complex components are intact, KEAP1 facilitates binding of NRF2 or IKBKB which 

promotes their ubiquitination. This complex prevents accumulation of IKBKB and subsequent 

NF-κB activation. (B) Disruption of any complex component compromises function leading to 

stabilization and accumulation of IKBKB, and aberrant activation of NF-κB. 

A 

B 
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 Inactivating somatic mutations, loss of heterozygosity and hypermethylation of KEAP1 

have been reported at varying frequencies (3-41%) in lung tumors and cell lines, and low KEAP1 

expression is associated with poor patient outcome [84, 127-132]. However, the moderate 

frequency of KEAP1 gene disruption alone is not sufficient to explain the high (>60%) frequency 

of NF-κB activation observed in lung cancer [124]. The ability of the E3-ligase complex to 

ubiquitinate IKBKB was found to be most efficient when all three complex components were 

expressed and intact, suggesting disruption of even a single component compromises function. 

Although somatic DNA alterations have been observed in the genes encoding some of these 

complex components, the frequency of genetic and/or epigenetic disruption of complex 

components and whether complex component gene disruptions are a key mechanism of NF-κB 

activation in lung cancer is unknown [101]. Given the importance of the NF-κB pathway in lung 

cancer and the lack of inquiry into the role of the other complex components in lung cancer, we 

sought to determine the subtype specific patterns and biological effect of component disruption. 

 

 We hypothesize that somatic disruptions of CUL3 (2q36.2) and RBX1 (22q13.2), in 

addition to KEAP1 (19p13.2) occur frequently in lung tumors, representing a prominent genetic 

mechanism that may be responsible for IKBKB accumulation and stimulation of NF-κB, and that 

genetic disruption of any one E3-ubiquitin ligase complex component is sufficient to result in 

tumorigenic NF-κB activation due to loss of complex function and subsequent accumulation of 

IKBKB [15, 101, 133]. In this study, we 1) investigated whether these complex components and 

IKBKB (8p11.21) exhibit gene dosage and expression alterations and the frequencies at which 

they occur in multiple independent tumor cohorts, 2) investigated whether the complex 

components display subtype specific disruption, and 3) assessed the functional consequence of 

complex disruption on NF-κB activity, as these genetic events may be significant contributors to 

the NF-κB activation commonly observed in lung cancer. 
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3.2 Methods  

 

3.2.1 Non-small cell lung cancer (NSCLC) samples   

261 lung tumors (169 adenocarcinomas (AC) and 92 squamous cell carcinomas (SqCC)) were 

accrued from Vancouver General Hospital (Vancouver) and Princess Margaret Hospital 

(Toronto) following ethics approval with patient consent (Chapter 2 and Sample Set #1, 

Appendix A1). Tissue sections were microdissected with the guidance of lung pathologists. 

Matched non-malignant lung tissue was also obtained for a subset of the primary tumors 

collected. DNA for all 261 samples was extracted using standard phenol-chloroform procedures. 

RNA was extracted from tumor and matched non-malignant tissues using RNeasy Mini Kits 

(Qiagen Inc.). NSCLC cell lines (H1650, HCC827, H3255, H358, H23, HCC95, H2347, and 

H2122) were obtained from ATCC or the laboratory of AFG and cultivated as previously 

described [134]. These cell lines were fingerprinted to confirm their identity [61]. Human 

bronchial epithelial cells (HBEC-KT) were provided by Dr. John Minna (University of Texas 

Southwestern Medical Center at Dallas) and maintained as previously described [98]. Primary 

non-malignant human bronchial epithelial (NHBE) lung cells were obtained from Lonza. 

 

3.2.2 Determination of gene dosage and expression levels 

Copy number status (gain, loss, or neutral) for the KEAP1, CUL3, RBX1, and IKBKB loci was 

determined for each tumor sample and 63 NSCLC cell lines by array comparative genomic 

hybridization (array CGH) using the whole genome tiling path array (SMRT v.2, BCCRC Array 

Laboratory, Vancouver, BC) as previously described in Chapter 2 and [76, 135, 136]. Gene 

expression levels of KEAP1, CUL3, RBX1, and IKBKB were determined using custom Agilent 

gene expression microarrays in 35 AC and 13 SqCC lung tumors and corresponding matched 

non-malignant tissues. Genes were classified as over or underexpressed if the fold change in 

mRNA expression levels in tumors relative to matched non-malignant tissues was greater or less 

than 2 fold. Gene expression for KEAP1, CUL3, RBX1, and IKBKB was also assessed in an 

additional, distinct cohort of 49 NSCLC (29 AC and 20 SqCC) tumors with matched CGH 

profiles using custom Affymetrix arrays to determine the contribution of copy number on gene 

expression (Sample Set #3, Appendix A1). The association between copy number and gene 
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expression was assessed by segregating these 49 NSCLC tumors into those with and without 

copy number alterations for each gene as previously described [76]. Expression levels were 

compared in both groups using a U test with a p-value less than 0.05 considered significant. The 

probe with the highest median intensity across all tumor samples was assessed for each gene. 

 

3.2.3 Copy number analysis of external cohorts 

Publically available NSCLC data was downloaded to further explore the frequency and subtype 

specificity of genomic disruption at the KEAP1, CUL3, RBX1, and IKBKB loci. Affymetrix SNP 

250K data for 383 matched tumor non-malignant NSCLC pairs were accessed from the dbGaP 

Genotypes and Phenotypes database (Study Accession: phs000144.v1.p1). Affymetrix SNP 6.0 

array profiles were obtained for 232 NSCLC tumors and matched non-malignant tissue (155 

SqCC, 77 AC, GSE25016) and 54 NSCLC cell lines, 27 of which overlapped with cell lines 

profiled on the SMRT array, from the Wellcome Trust Sanger Institute CGP Data Archive 

(sanger.ac.uk/genetics/CGP/Archive/). Copy number profiles were generated using Partek 

Genomics Suite software. For tumor profiles, the patient matched non-malignant sample was 

used as a baseline for defining copy number alterations, whereas SNP profiles derived from 72 

cytogenetically normal HapMap individuals were used as a reference for the cell line data [137]. 

In total, 570 tumors and 90 NSCLC cell lines (combination of lines profiled on the SNP and 

SMRT array) were analyzed for copy number alterations. The Broad Institute's Tumorscape 

database (www.broadinstitute.org/tumorscape) was also accessed to investigate copy number 

status at these four gene loci [138]. 

 

3.2.4 Multi-dimensional analysis of complex component disruption in the TCGA  

Level 3 Affymetrix SNP6 copy number, HM27K DNA methylation and whole exome 

sequencing data was downloaded for all available AC and SqCC tumors. Analysis of DNA 

methylation data was limited to those cases with profiles of the matched non-malignant tissue 

(54 SqCC and 48 AC). Genes were identified as aberrantly methylated if the delta beta value 

(normal Beta value subtracted from the tumor Beta value) was greater than ± 0.15. 
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3.2.5 Western blot assessment of total and phospho- IKBKB and NF-κB protein levels  

 IKBKB protein levels were assessed in 8 NSCLC cell lines with various combinations of 

KEAP1, CUL3, or RBX1 genomic loss or IKBKB genomic gain using antibodies from Cell 

Signaling (IKBKB #2678, p-IKBKB #2697, NF-κB: #4764, p-NF-κB: #3033, and GAPDH 

#2118). Western blots were performed following standard procedures as previously described 

[98]. Cells were washed with cold PBS and lysed in RIPA buffer with complete protease 

inhibitor cocktail (Roche, Basel Switzerland). Protein lysates were quantified using the BCA 

assay (Fisher Scientific). Lysates were diluted and boiled for electrophoresis then transferred to a 

polyvinylidene membrane. Membranes were blocked in 5% skim milk or 5% BSA in Tris 

buffered saline containing Tween 20 (TBS-T) (according to the manufacturer's instructions) and 

then incubated with primary antibody (1:1000) at 4°C overnight. Following three washes in 

TBS-T, membranes were incubated with HRP conjugated secondary antibody (Cell Signaling, 

cat. #7074, 1:20000) for 1 hour at room temperature. Antibody binding was visualized by 

enhanced chemiluminescence (Thermo Scientific) after three washes in TBS-T. 

 

3.2.6 Immunohistochemistry (IHC) staining for IKBKB protein levels  

5 µm thick sections were cut from 13 formalin fixed, paraffin embedded tumor specimens with 

various states of genomic disruption to the E3-ubiquitin ligase complex genes or IKBKB,based 

on copy number profiles. IHC to determine protein expression of IKBKB was performed as 

previously described [98]. Briefly, slides were deparaffinized in xylene and rehydrated with 

graded ethanol washes. Antigen retrieval was performed using a decloaking chamber with 

sodium citrate buffer pH 6.0, after which endogenous peroxidase activity was blocked using 3% 

H2O2 for 30 minutes at room temperature. Sections were blocked with goat serum for 3 hours at 

room temperature and then incubated overnight at 4°C with 32 µg/ml of anti-IKBKB mouse 

monoclonal primary antibody (EMD4 Biosciences, cat. OP134, San Diego, CA, USA). Prior to 

incubation with an anti-mouse HRP-streptavidin conjugated secondary antibody (DAKO, cat. 

K4000), four five minute washes in TBS-T were performed to remove unbound primary 

antibody. Detection of antibody binding was assessed using diaminobenzidine (Sigma Aldrich, 

cat. D4293). Slides were counterstained with hematoxylin for visualization. Intensity of staining 

was scored using a 0-3+ system based on the consensus of 3 observers (KT, LP, JCE). The mean 
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staining intensity for each tumor section was judged as follows:  0 - no staining, 1 - weak 

intensity, 2 - moderate intensity, 3 - strong staining. 

 

3.2.7 siRNA-mediated complex component knockdowns 

On-Target plus SMART pool siRNAs targeting KEAP1, RBX1, CUL3, and a non-targeting 

control pool of siRNAs were purchased from Thermo Scientific. One day prior to transfection, 

HBEC-KT cells were plated in regular growth media (antibiotic free) at a density of 200,000 

cells/well in six well plates. Transfections were performed using an siRNA concentration of 100 

nm according to the Thermo Scientific DharmaFECT siRNA transfection protocol. 

DharamaFECT 1 transfection reagent (Dharmacon) was used at a concentration of 0.2 µl/100 µl 

media. After 12 hours, transfection media was replaced with regular growth media. RNA was 

harvested from cells at 48 hours post transfection using the Trizol method (Invitrogen) and 

protein lysates were prepared using RIPA buffer 72 hours post transfection. Knockdown 

efficiencies were measured by qPCR with the following TaqMan assays from Applied 

Biosystems and using 18S rRNA as an endogenous control:  Hs99999901_s1 (18S), 

Hs00202227_m1 (KEAP1), Hs00180183_m1 (CUL3), and Hs00360274_m1 (RBX1). Western 

blots were performed as above to measure total and phospho-IKBKB and NF-κB protein levels.  

 

3.2.8 NF-κB target gene analysis   

Expression of nine genes transcriptionally controlled by NF-κB (CCND1, CXCR4, MMP2, 

TRAF1, MMP9, BCL2L11, CXCL13, PTGS2 and CXCL12) - as annotated in the Ingenuity 

Pathway Analysis database (Ingenuity® Systems) were analyzed in 48 NSCLC tumors with 

deregulated KEAP1, CUL3, RBX1 or IKBKB expression levels (2-fold or greater). Wilcoxon 

signed-rank tests were used to compare NF-κB target gene expression in tumors versus their 

matched non-malignant lung tissues. NF-κB target genes were considered upregulated if 

expression levels were significantly elevated in tumors relative to matched non-malignant tissues 

(Wilcoxon p <0.05). 
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3.2.9  IKBKB inhibition in NSCLC cell lines   

Cell viability assays were performed to measure the effect of IKBKB inhibition by a cell 

permeable, competitive ATP inhibitor, IKK-2 inhibitor IV (Calbiochem cat. #401481) on five 

NSCLC cell lines (H3255, H2122, H23, HCC95 and H1650). Cells were plated in triplicate in 96 

well plates at optimal densities for growth (H2122 and H23 at 2000 cells/well, H1650 and 

HCC95 at 3000 cells/well, and H3255 at 5000 cells/well) and subjected to a series of 2-fold 

dilutions of IKBKB inhibitor prepared in cell growth media and DMSO. The experimental 

inhibitor concentrations ranged from 500 µM to 244 nM and the final DMSO concentration for 

treated and untreated (control) cells was 1%. Blank wells contained equal volumes of growth 

media with 1% DMSO. Cells were incubated for 72 hours at 37°C and then treated with 10µl of 

Alamar Blue cell viability reagent (Invitrogen) according to manufacturer's instructions. The 

reaction product was quantified by measuring absorbance at 570 nm with reference to 600 nm 

using an EMax plate reader (Molecular Devices). The average absorbance readings for blank 

wells were subtracted from all treatment and control wells and technical replicates were 

averaged. The response of treated cells was measured as a proportion of the viability of untreated 

cells, with the mean background subtracted treatment absorbance divided by the mean 

background subtracted untreated absorbance for each inhibitor concentration. Dose response 

curves and IC50 values were generated in Graph Pad v5 using the proportionate response of all 12 

drug concentrations. Experiments were repeated in triplicate and differences in IC50 values were 

determined using a student's t-test with a p-value < 0.05 considered significant. 
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3.3 Results 

 

3.3.1 Disruption of E3-ubiquitin ligase complex components in NSCLC  

 261 tumors were screened for DNA copy number alterations at the KEAP1, CUL3, and 

RBX1 loci. A significant proportion of tumor samples (103 of 261, 39%) showed genomic loss in 

at least one of the complex associated genes (Figure 3.2A). KEAP1 was the most frequently 

disrupted complex component, undergoing genomic loss in 23% of lung tumors analyzed (Figure 

3.2A). Strikingly, 69% (71 of 103) of the tumors harboring copy number alterations had 

alterations affecting only one of the genes assessed. Gene expression analysis revealed aberrant 

expression in at least one of the complex component genes in 40% of tumors analyzed (19 of 48) 

and of those with aberrant expression, 84% (16 of 19) had only one of the genes affected (Figure 

3.2A). At the expression level, RBX1 was the most frequently altered complex component,  

underexpressed in 21% of tumors analyzed (Figure 3.2A). We also detected a high frequency of 

IKBKB DNA copy number gain and mRNA overexpression (23% and 35% of tumors, 

respectively) (Figure 3.2A). When IKBKB status was taken into account, the frequency of 

NSCLC disruption at any of the KEAP1, CUL3, RBX1 and/or IKBKB loci rose to 54% (141 of 

261 tumors, Figure 3.2A) at the gene copy number level and 63% (30 of 48 tumors, Figure 3.2A) 

at the expression level. Even with the inclusion of IKBKB, the majority of tumors exhibited 

complex or IKBKB genetic disruption at only one gene locus (Figure 3.2B and 3.2C). Frequent 

genetic disruption of E3-ubiquitin ligase complex components or IKBKB (73%) was also evident 

in NSCLC cell lines (Table 3.1). 

 

 To determine whether complex component and IKBKB gene dosage alterations are 

regulating gene expression, we integrated DNA copy number and gene expression data for the 

complex genes, and IKBKB in an additional set of 49 NSCLC tumors. KEAP1, RBX1 and CUL3, 

expression was significantly lower in tumors with genomic loss compared to those without loss 

(U test, p=0.00076, p=0.00116, and p=0.00339, respectively, Figure 3.3A-C), whereas IKBKB 

gene expression was elevated in tumors with gain compared to those without (U test, p=0.0143, 

Figure 3.3D). These findings demonstrate that dosage alterations affect mRNA expression levels, 

and therefore, likely contribute to E3-ligase complex disruption. 
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Figure 3.2 

 
Figure 3.2 Frequent disruption of the KEAP1 E3-ligase complex and IKBKB in NSCLC.  

(A) Summary of DNA copy number and gene expression alterations in NSCLC tumors. (B) 

Copy number analysis of 261 lung tumors revealed frequent loss of KEAP1, RBX1, and CUL3, as 

well as frequent gain of IKBKB (141/261, 54%). Vertical columns indicate individual tumor 

samples and only samples with ≥1 alterations are shown. (C) mRNA expression profiles for 48 

lung tumors revealed frequent underexpression of complex components and overexpression of 

IKBKB (30/48, 62.5%). Expression was considered altered if tumor/matched non-malignant 

tissue was changed >2 fold. (D) KEAP1, CUL3, and IKBKB exhibit significant differences in 

copy number alteration patterns between AC and SqCC (Fisher's exact test, p < 0.05). 
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Table 3.1 Copy Number status of complex components in multiple independent cohorts 

Gene Cell Lines (n=90) 
dbGAP  
(n=383) 

GSE25016 
(n=232) 

KEAP1  39% loss 23% loss 18.5% loss 
CUL3 17% loss 3% loss 18.5% loss 
RBX1 39% loss 11% loss 10% loss 

IKBKB 28% gain 11% gain 23% gain 
Any 73% 34% 52% 

 

 

 

Figure 3.3 

 

Figure 3.3. Association between gene expression and copy number in clinical lung tumors.  

Box and whisker plots demonstrating KEAP1 (A), RBX1 (B), CUL3 (C) and IKBKB (D) 

expression levels in tumors with and without genetic disruption. Tumors were grouped based on 

copy number status for each gene (gain, loss, neutral) and expression levels were compared 

between groups using a U test with a p-value < 0.05 considered significant.  Whiskers show the 

min and max, while boxes illustrate the 25th, median and 75th percentile. 
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 In addition to the tumor data generated using array comparative genomic hybridization, 

we analyzed copy number profiles derived from publically available SNP array data from the 

dbGaP Genotypes and Phenotypes database (n=383) and GSE25016 (n=232) both of which had 

matched non-malignant tissue for all cases, and a panel of 90 NSCLC cell lines. Consistent with 

our findings, frequent genomic disruption to the E3-ubiquitin ligase complex components and 

IKBKB was observed in all external cohorts (Table 3.1). 73% of cell lines harboured DNA 

alterations encompassing at least one complex component or IKBKB, whereas 34% and 52% of 

tumors had disruption. We further interrogated the copy number status of KEAP1, CUL3, RBX1, 

and IKBKB genes in the Broad Institute's Tumorscape database [138]. This revealed that CUL3 

was significantly deleted in 12% of all 3131 tumors in the database and in 13% percent of all 

NSCLC specimens (n=733), of which 5.4% had focal CUL3 deletions. Similarly, IKBKB was 

significantly amplified in 22% of the all tumors and 28% of NSCLC specimens, of which 12% 

contained focal IKBKB DNA amplifications. KEAP1 and RBX1 were not significantly deleted in 

the Tumorscape database. Together, these results support our observation that KEAP1 complex 

components and IKBKB undergo frequent copy number alterations in NSCLC.  

 

 

3.3.2 Complex components are differentially altered in AC and SqCC subtypes 

 As distinct patterns of DNA alterations exist for AC and SqCC, we sought to determine 

whether complex component disruption displays subtype specific patterns of alteration. While 

both subtypes of NSCLC showed high frequency of complex component and IKBKB gene 

disruption, the pattern of gene disruption differed between these subtypes (Figure 3.2D and 

Table 3.2). KEAP1 loss appears to be the main mechanism of complex disruption in lung AC, 

accounting for 64% of cases with complex disruption, and is more prevalent in AC than in the 

SqCC subtype (Fisher's exact test, p = 0.0075, Table 3.2). In contrast, CUL3 loss and IKBKB 

gain occurred more often in the SqCC than AC subtype of lung tumors (Fisher's exact test, p = 

4.926 x 10-6 and p = 8.446 x 10-7, respectively, Table 3.2). Gain of IKBKB was the most frequent 

alteration in SqCC, occurring in 57% of cases, followed closely by CUL3 loss in 44% of cases 

with complex component disruption.  
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 To confirm these subtype specific findings, we interrogated complex component and 

IKBKB copy number in The Cancer Genome Atlas (TCGA) and GSE25016 cohorts, both of 

which have CN data for AC and SqCC. The same trends in component disruption were observed 

across all three datasets; with KEAP1 and RBX1 loss being more prevalent in AC and CUL3 loss 

and IKBKB gain more frequent in SqCC (Table 3.2). Statistically significant differences between 

the frequency of component alteration was observed for all components in the GSE25016 dataset 

and for KEAP1 and CUL3 in the TCGA (Table 3.2). Analysis of external cohorts corroborated 

the subtype specific patterns of alteration we observed and demonstrate for the first time that the 

mechanisms of KEAP1/CUL3 complex disruption are subtype specific. 

 

 
Table 3.2 Frequency of KEAP1 complex copy number alterations in AC and SqCC 

 Frequency in AC Frequency in SqCC Fishers Exact Test  

Gene BCCRC TCGA GSE BCCRC TCGA GSE BCCRC TCGA GSE 

KEAP1 
50/169 
(29.6%) 

48/277 
(17.3%) 

27/77 
(35.1%) 

10/92 
(10.9%) 

20/201 
(10%) 

16/155 
(10.3%) 

0.0075 0.02427 1.1x10-5 

CUL3 
13/169 
(7.7%) 

4/277 
(1.4%) 

6/77 
(7.8%) 

28/92 
(30.4%) 

27/201 
(13.4%) 

37/155 
(24%) 

4.93x10-6 1.36x10-7 0.00233 

RBX1 
31/169 
(18.3%) 

29/277 
(10.5%) 

14/77 
(18.2%) 

8/92 
(8.7%) 

11/201 
(5.5%) 

9/155 
(5.8%) 

0.24 0.06495 0.0047 

IKBKB 
20/169 
(11.8%) 

44/277 
(16.2%) 

11/77 
(14.3%) 

39/92 
(42.4%) 

46/201 
(22.9%) 

42/155 
(27.1%) 

8.45x10-7 0.05248 
 

0.0312 

ANY 78/169 
(45.6%) 

99/277 
(35.7%) 

41/77 
(53.2%) 

64/92 
(69.6%) 

78/201 
(38.8%) 

79/155 
(51%) 

   

 

 

3.3.3 Other genetic and epigenetic mechanisms of complex component disruption 

 Given our hypothesis, we focused on measuring gene dosage alterations that could 

account for disruption of the E3-ubiquitin ligase complex and its downstream consequences. 

However, as mutations and hypermethylation of KEAP1 have been described in lung cancer and 

these events are known to downregulate KEAP1 expression [84, 128, 129, 132], we next sought 

to determine whether IKBKB and complex components were frequently altered by other genetic 

or epigenetic mechanisms. To assess the contribution of DNA methylation and gene mutation to 

complex disruption, we analyzed 408 tumors (230 AC and 178 SqCC) for which mutation data 
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was available and 102 tumors with matched non-malignant tissue (54 SqCC and 48 AC) and 

HM27K methylation profiling from the TCGA. KEAP1 was the most frequently mutated 

component, mutated in 17% (40/230) of AC and 12% (22/178) of SqCC. All other complex 

components were infrequently mutated; 3.4% for CUL3, 0.5% for RBX1 and 2.2% for IKBKB. 

Interestingly, mutations in CUL3 were significantly more frequent in SqCC ( 6% vs. 1.5%, 

Fisher's Test p=0.011), further supporting the notion that CUL3 is preferentially disrupted in 

SqCC. None of the complex components or IKBKB were hypo- or hypermethylated in any of the 

samples assessed. The rarity of aberrant methylation across all complex components and the lack 

of mutations in CUL3, RBX1 and IKBKB further supports the notion that copy number is the 

primary genetic mechanism through which these genes are deregulated. The high frequency of 

KEAP1 mutations, and mutual exclusivity with copy loss underscores the selective inactivation 

of KEAP1and highlights its importance in lung tumor biology. 

 

3.3.4 Functional consequences of genetic complex disruption   

 Since IKBKB protein levels would be directly affected by E3-complex function, we 

assessed IKBKB protein levels in NSCLC cell lines with and without complex disruption to 

measure the consequence of complex disruption. Immunoblotting for IKBKB in non-malignant 

human bronchial epithelial (NHBE) cells and a panel of 8 NSCLC cell lines revealed elevated 

expression levels in lines with genomic loss of KEAP1, CUL3, RBX1, or gain of IKBKB (Figure 

3.4A). No correlation between the number of disrupted components and the levels of IKBKB 

were observed. To directly assess the effect of complex component integrity on IKBKB and NF-

κB activity, we performed siRNA mediated knockdowns of KEAP1, CUL3 and RBX1 in non-

malignant, bronchial epithelial cells. We achieved at least 80% knockdown for all three genes 

and observed an increase in phospho-IKBKB and phospho- NF-κB levels in the knockdowns 

relative to the non-targeting control, providing evidence that complex disruption directly 

regulates NF-κB signaling  (Figure 3.4B).  
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Figure 3.4. 

 

 

  

 

Figure 3.4. IKBKB protein expression in NSCLC.  

 (A) Western blot depicting IKBKB protein expression in eight cell lines with varying degrees of 

genetic disruption to KEAP1 E3-ligase complex components and/or IKBKB (as determined from 

copy number profiles of 90 NSCLC cell lines). NHBE is a non-malignant human bronchial 

epithelial lung line that provides a baseline for IKBKB expression. The number of disrupted 

genes for each line is indicated above the cell line. (B) Western blot depicting the effects of 

transient siRNA knockdown of KEAP1, RBX1, and CUL3, on total and phospho- IKBKB and 

NF-κB protein levels. (C) qRT-PCR analysis of three NFkB transcriptional targets upon siRNA 

knockdown of individual complex components. 

 

 

A 

B C 
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 In an attempt to determine whether genetic disruption of complex components affects the 

relative protein levels of IKBKB, we performed immunohistochemistry (IHC) on a panel of 13 

lung tumors with various states of complex component disruption. Staining for IKBKB revealed 

protein expression in both complex disrupted and undisrupted tumors; however, the vast inter- 

and intratumor heterogeneity in staining and potential non-specific antibody binding limited our 

ability to identify significant correlations between IKBKB protein levels and E3-complex genetic 

disruption (data not shown, available as Supplemental Digital Content online at 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164321/). 

  

 As we were unable to discriminate differences in IKBKB protein levels between complex 

disrupted and non disrupted tumors by IHC, we sought to determine whether loss and 

underexpression of  E3-ligase complex components activates NF-κB signaling. Expression of 

nine well characterized transcriptional targets of NF-κB were analyzed in the 48 NSCLC tumor 

pairs for which complex component disruption could be determined. Of the nine genes, four - 

BCL2L11, CXCL13, MMP9, and TRAF1 were significantly up-regulated in tumors with 

underexpression of a complex component or overexpression of IKBKB as compared to their 

matched non-malignant lung tissue (Figure 3.5). Assessment of the same NF-κB target genes 

following siRNA knockdown confirmed these genes to be overexpressed relative to non-

targeting controls (Figure 3.4C), supporting our hypothesis that complex disruption leads to 

activation of NF-κB signaling. 

  

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164321/�
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Figure 3.5 

 

Figure 3.5. Activation of NF-κB targets in tumors with complex components disruption  

(A-D) Box plots demonstrating four examples of NF-κB target genes (BCL2L11, CXCL13, 

MMP9, TRAF1) that are significantly upregulated in tumors with complex component disruption, 

relative to matched non-malignant lung tissues (Wilcoxon sign rank test, p ≤ 0.001). Copy 

number status of the NF-κB target gene loci was determined in these tumors to ensure that 

overexpression was not due to dosage changes of the target genes. Whiskers show the min and 

max values, while boxes illustrate the 25th, median and 75th percentile. 

 

 

3.3.5 Pharmacological inhibition of IKBKB   

 Overexpression of IKBKB can contribute to a malignant phenotype through activation of 

the NF-κB signaling pathway and consequential effects on cell growth. We hypothesized cells 

dependent on this pathway would be more sensitive to IKBKB inhibition than those without 

complex alterations and normal IKBKB protein levels. IKBKB inhibition experiments revealed 

H1650, an AC line without genomic loss of any complex component, had reduced sensitivity (as 

measured by cell viability) to IKBKB inhibition (IC50 13.41) than H2122 and H23 (IC50 8.19 and 

6.59, respectively) which have multiple components altered (student's t-test, p < 0.05) (Figure 

B A 

C D 
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3.6). H3255 and HCC95 showed insensitivity to inhibition compared to H1650 (student's t-test, p 

< 0.05), however these two cell lines have the highest IKBKB protein expression levels of the 

cell lines we tested, which likely contributed to their relative resistance to this competitive 

inhibitor. Replicate experiments were highly reproducible, with similar trends in sensitivity 

observed across all replicates. 

 

 

Figure 3.6 

 

 
 

Figure 3.6. Pharmacological inhibition of IKBKB in NSCLC cell lines   

Dose response assays were performed to measure the effect of IKBKB inhibition on viability of 

5 NSCLC cell lines. H2122, H23, H3255, and HCC95 harboured genetic alterations to either 

IKBKB and/or one or more complex components while H1650 was not altered at the DNA level.  

Error bars represent the standard error of the mean of replicate experiments. IKBKB protein 

expression as measured by western blot and the IC50s of each cell line are shown in the table. 



70 

 

3.4 Discussion 

 The NF-κB pathway is aberrantly activated in the majority of lung cancers and is 

essential in KRAS driven mouse models of lung tumorigenesis [123-126]. NF-κB signaling 

contributes to tumorigenesis via its promotion of cell proliferation and survival [120-122]. In 

order for NF-κB to become active, inhibition by IκB must be released. This is achieved through 

phosphorylation of IκB by the kinase, IKBKB [139]; hence, IKBKB has a critical role in NF-κB 

activation [101, 139]. In fact, constitutive IKBKB activity has been postulated to drive the 

aberrant NF-κB activation observed in cancer [121]. Despite what is known about the cascade of 

protein signaling events that result in NF-κB activation, the genetic mechanisms responsible for 

the aberrant activation of NF-κB signaling in lung cancer are not well understood. In this study, 

we hypothesized that genetic disruption and loss of function of the KEAP1 E3-ubiquitin ligase 

complex, which regulates IKBKB protein levels, is a major mechanism of IKBKB accumulation 

and consequential NF-κB activation in lung cancer. 

 

 These results provide evidence that somatic E3-ligase complex disruption is a prominent 

genetic mechanism of NF-κB activation in lung cancer that compromises the ability of cells to 

degrade the NF-κB activator, IKBKB. We discovered a remarkably high frequency of both 

genetic disruption and gene expression changes for the genes encoding E3-ligase protein 

components (KEAP1, RBX1, and CUL3) as well as the gene encoding the complex's oncogenic 

substrate, IKBKB. We found that genetic disruption of the complex genes alters mRNA 

expression and results in elevated IKBKB protein levels, demonstrating the consequence of 

complex disruption. Moreover, we demonstrated evidence of NF-κB activation in complex 

compromised lung tumors and showed the importance of IKBKB protein expression in driving 

the lung cancer phenotype. 

 

 Although genetic and epigenetic disruption of KEAP1 has been reported in lung cancer 

before, to our knowledge, this is the first study to comprehensively characterize somatic gene 

dosage alterations to the CUL3, RBX1, and IKBKB loci in a large cohort of clinical lung tumors. 

The strikingly high frequency of copy number and gene expression alterations observed in our 

study highlights the importance of these E3-ubiquitin ligase complex components and also 
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IKBKB in lung cancer. The recurrent nature of DNA copy number alterations at the complex 

component loci and their effects on gene expression are strong evidence that these genes are 

targeted for dosage alterations as opposed to passengers of alterations targeting other genes. In 

addition, the high proportion of disrupted lung tumors observed to have genetic alterations 

affecting a single component only, at both the copy number (67%, Figure 3.2B) and gene 

expression levels (73%, Figure 3.2C), suggests that disruption of only a single complex 

component is sufficient to compromise complex function and promote NF-κB signaling through 

abnormal IKBKB accumulation. Interestingly, we observed differential complex component 

disruption patterns in AC and SqCC subtypes (Figure 3.2D). Although E3-ubiquitin ligase 

complex disruption occurs in both subtypes, the differences in the component genes 

preferentially altered suggests that complex disruption is achieved by different means.  

 

 Examination of IKBKB protein levels in NSCLC cell lines revealed high expression in 

lines harboring genetic disruption to at least one complex component or IKBKB, whereas the 

non-malignant lung line (NHBE) and a line without genetic disruption (H1650) showed very low 

or undetectable levels. The E3-ligase complex was considered to be genetically intact in H1650 

as neither underexpression of KEAP1, RBX1, and CUL3, or overexpression of IKBKB relative to 

NHBE cells was observed. This suggests there are no genetic or epigenetic alterations affecting 

the complex components or IKBKB in this cell line and the observed IKBKB levels were 

consistent with H1650 having a functioning E3-ligase complex, supporting our hypothesis. 

Therefore, in addition to affecting gene expression, copy number losses of the loci coding for 

complex components and gains of IKBKB appear to influence IKBKB protein expression. A 

trend towards higher IKBKB expression in lines with more complex components/IKBKB 

alterations was not evident, suggesting genetic disruption of a single component is sufficient to 

result in loss of complex function and IKBKB accumulation (Figure 3.4A). This finding is 

consistent with the observation that the majority of tumors exhibiting complex disruption have 

only one complex component altered, further supporting the idea that single component 

disruption is sufficient to produce an oncogenic effect. 
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 We have conclusively demonstrated elevated IKBKB protein expression in NSCLC cell 

lines with complex disruption, however, measuring this effect directly in tumor tissue sections 

was not a straightforward task due to the extent of heterogeneity in tumor staining intensity 

across and within individual tumors which likely reflects the heterogeneous nature of lung tumor 

specimens. Due to this innate tumor heterogeneity, unlike cell lines, we were unable to conclude 

whether or not there was a significant correlation between E3-ligase complex disruption and 

IKBKB protein levels in vivo. Examples of tumor staining are available in Supplemental Digital 

Content 6, available online at http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164321/. 

 

 To investigate the direct consequence of complex disruption on IKBKB accumulation 

and NF-κB activity, we performed siRNA knockdowns on the individual complex coding genes 

(KEAP1, RBX1, and CUL3). Consistent with our hypothesis, we observed elevated levels of 

activated IKBKB and NF-κB as well as elevated expression of NF-κB target genes upon 

complex component disruption in HBEC cells (Figure 3.4B and C). Since phospho-NF-κB is an 

indicator of active NF-κB signaling, these results clearly illustrate the functional consequence of 

E3-ligase complex disruption. Our work provides evidence to support the hypothesis that genetic 

loss of the complex component encoding genes causes downregulation in their expression, and 

that loss of expression of these genes results in increased levels of activated IKBKB and NF-κB.  

 

 A number of reports have detailed the critical role of IKBKB protein in driving NF-κB 

activation, and the importance of IKBKB to cancer cell viability is emphasized by the 

development of IKBKB inhibitors as a strategy for tempering NF-κB signaling [121, 133, 139]. 

We found that IKBKB inhibition reduced NSCLC cell viability and that cells without complex or 

IKBKB disruption, which we hypothesized to be less dependent on IKBKB expression for 

growth, were indeed more insensitive to IKBKB inhibition, as were cells with high endogenous 

levels of IKBKB protein (Figure 3.6). In addition to cell experiments to verify the importance of 

E3-ligase complex disruption in lung cancer, we analyzed the expression levels of several NF-κB 

target genes in tumors with complex disruption to measure its effect on NF-κB activity. Despite 

the possibility that other mechanisms could also contribute to the transcription of the NF-κB 

target genes, we observed a significant increase in the expression of NF-κB target genes in 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164321/�
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complex compromised tumors (Figure 3.5). Together, these findings support our hypotheses and 

demonstrate the biological significance of complex disruption and subsequent IKBKB 

overexpression in lung cancer biology. 

 

3.5 Conclusions 

 Our analyses have revealed remarkably frequent genetic disruption and aberrant 

expression of not only KEAP1, but all members of the KEAP1 E3-ubiquitin ligase complex and 

IKBKB in lung cancer. For the first time we show that AC and SqCC acquire copy number 

alterations to different components of the E3-complex or IKBKB which suggests the genetic 

mechanisms of complex disruption that promote NF-κB activation may be subtype specific. 

Moreover, we have shown that IKBKB protein expression is elevated in NSCLCs with genetic 

loss of KEAP1, CUL3 or RBX1 or gain of IKBKB, and that knockdown of complex components 

leads to an accumulation of active IKBKB and NF-κB, demonstrating the functional 

consequence and significance of complex disruption. We have also provided evidence of NF-κB 

activity, a downstream effect of IKBKB accumulation, in complex disrupted tumors and cell 

lines. Collectively, our findings suggest that prominent genetic disruption to the E3-ubiquitin 

ligase complex and its oncogenic substrate, IKBKB, play a major role in driving the aberrant NF-

κB activation that is characteristic of lung tumorigenesis but that this activation occurs via 

different mechanisms depending on the subtype. 
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Chapter 4: YEATS4 is a novel oncogene amplified in non-small cell lung 

cancer that regulates the p53 pathway  
 

4.1 Introduction 

 Within the last decade, characterization of lung cancer genomes has revealed a number of 

genes critical to tumorigenesis, resulting in significant changes to lung cancer treatment and a 

subsequent increase in progression free and overall survival for a subset of these patients. These 

successes have prompted a search for additional driver alterations, and have identified a number 

of recurrently mutated genes including TP53,EGFR, CDKN2A, PTEN, NRAS, BRAF, PIK3CA, 

DDR2, KEAP1and NRF2 as well as gene fusions encompassing RET and ROS tyrosine kinases 

[15, 55, 140-142]. Despite these discoveries, approximately 50% of lung cancers harbor no 

known targetable alterations, highlighting the need for a better understanding of the biology 

underlying lung tumorigenesis [55, 142].  

 

 In addition to somatic mutations, copy number alterations such as recurrent 

amplifications and deletions occur in almost all lung cancers [18, 76]. DNA amplification 

directly contributes to oncogene activation and the promotion of tumorigenesis, particularly for 

tumors driven by oncogene addiction. Oncogenes amplified at the DNA level therefore make 

ideal therapeutic targets as unlike loss of function tumor suppressor genes (TSG), they have the 

potential to be targeted directly. In NSCLC, recurrent amplifications of several regions activate 

known oncogenes. These include; 1q21.2 (ARNT), 3q26.3-q27 (PIK3CA & SOX2), 5p15.33 

(TERT), 7p11.2 (EGFR), 7q31.1(MET), 8p12 (FGFR1) 8q24.21 (MYC), 12q14.1 (CDK4), 

14q13.3 (NKX2-1) [18, 70, 95, 122, 143-145]. In chapter 2, numerous regions of frequent 

amplification were identified, some of which were highly specific to a subtype like 3q and others 

such as 12q and 20q that were frequently altered in both AC and SqCC. In an attempt to identify 

novel oncogenes involved in NSCLC tumorigenesis, we integrated DNA copy number and gene 

expression data in order to identify candidate driver genes within highly recurrent amplicons. 
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 Our approach was based on the rationale that oncogenes selectively amplified and 

biologically relevant to NSCLC tumor biology would: i) span regions of frequent high level 

amplification, ii) undergo frequent overexpression and iii) exert pro-tumorigenic functions in 

vitro and in vivo. Our analysis identified a recurrent amplicon at 12q15, within which we 

identified the candidate oncogene YEATS4/GAS41 (YEATS domain containing 4, glioma-

amplified sequence 41). In vivo and in vitro functional assays were performed to characterize the 

biologic effects and investigate the oncogenic mechanism of YEATS4 in lung tumorigenesis. 

Based on the frequency of YEATS4 amplification and overexpression in NSCLC tumors and cell 

lines, its role in viability, anchorage independent growth, senescence and tumor formation, we 

propose that YEATS4 is novel candidate oncogene in lung cancer.  

  

 

4.2 Methods 

 

4.2.1 NSCLC  tumor samples and cell lines  

261 formalin-fixed paraffin embedded and fresh-frozen lung tumors (169 AC and 92 SqCC) 

were obtained under informed, written consent with approval from the University of British 

Columbia-BC Cancer Research and University of Toronto Ethics Board from patients 

undergoing surgical resection at the Vancouver General Hospital and the Princess Margaret 

Hospital in Toronto [146]. Tissue sections were micro-dissected with the guidance of lung 

pathologists and matched non-malignant lung tissue obtained for a subset of the primary tumors. 

DNA was extracted using standard phenol-chloroform procedures. RNA was extracted from 

tumor and matched non-malignant normal tissue using RNeasy Mini Kits (Qiagen) or Trizol 

reagent (Invitrogen). Quality and quantity of genomic material was assessed using a NanoDrop 

1000 spectrophotometer and by gel electrophoresis and/or by Agilent 2100 Bioanalyzer. 

Demographic information for this cohort is summarized in Appendix A2. NSCLC cell lines 

H1993, H1355, H226, A549 were obtained from American Type Culture Collection and 

HCC4011 from Dr. Adi Gazdar (University of Texas Southwestern Medical Center at Dallas) 

and fingerprinted to confirm their identity [147]. All lines were cultured in RPMI-1640 medium 

supplemented with 10% fetal bovine serum and 0.1% Penicillin-Streptomycin (Invitrogen). 
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Immortalized normal human bronchial epithelial cells (HBEC) with (HBEC-KT53) and without 

p53 knockdown (HBEC-KT), courtesy of Dr. John Minna, were cultured in K-SFM media 

supplemented with 50ng/μl BPE and 5 ng/μl EGF (Invitrogen). Demographic data for the panel 

of cell lines used in this study can be found at 

http://edrn.jpl.nasa.gov/ecas/data/dataset/urn:edrn:UTSW_MutationData 

 

4.2.2 Array comparative genomic hybridization and GISTIC analysis  

Copy number profiles were generated for 261 NSCLC tumors using whole-genome tiling path 

array comparative genomic hybridization (aCGH), and were processed as previously described in 

Chapter 2. Probes were mapped to the March 2006 (Hg18) genomic coordinates, X and Y 

chromosomes removed and aCGH-Smooth was used to segment and smooth log2 ratio values 

[78]. The corresponding segments and ratio values were analyzed using the GISTIC algorithm 

[148] and gene pattern software (http://www.broadinstitute.org/cancer/software/genepattern/ )  to 

identify regions of significant amplification across samples. Amplification threshold of 0.8, join 

segment size of 2, qv threshold 0.05 and removal of the X chromosome were the settings applied 

for analysis. 

 

4.2.3 Gene expression profiling and data integration  

Gene expression profiles were generated using custom Agilent microarrays for a subset (35 AC 

and 13SqCC)  of the 261 tumors which had sufficient quantity and quality material for both 

tumor and matched non-malignant tissue. Data was normalized using the Robust Multiarray 

Average algorithm in R [80]. Genes were classified as over- or underexpressed if the mRNA fold 

change in tumors relative to matched non-malignant was greater or less than 2-fold. Mann-

Whitney U tests with Benjamini Hochberg correction p<0.05 were used to compare expression 

of 12q15 genes between tumor and non-malignant tissue in 83 AC  pairs (EDRN cohort) and 

determine whether increased gene dosage resulted in increased gene expression. A Spearman's 

correlation conducted using MATLAB software was used to determine the strength of the 

correlation between copy number and expression, with a coefficient >0.55 considered significant. 

 

 

http://edrn.jpl.nasa.gov/ecas/data/dataset/urn:edrn:UTSW_MutationData�
http://www.broadinstitute.org/cancer/software/genepattern/�
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4.2.4 Analysis of external cohorts 

Amplification of YEATS4 was assessed in six publically available datasets. Affymetrix SNP 6 

data from GSE25016, Early Detection Research Network (EDRN), the Broad Institute and 

TCGA were downloaded and segmented using Partek Genomics Suite Copy Number, Paired 

Analysis Workflow, using the matched non-malignant profiles as a copy number baseline for 

each tumor and the following parameters; signal to noise >0.3, minimum of 50 markers per 

segment, p-value threshold of 10-7 for the statistical difference between intensities of adjacent 

segments and for significance of deviation of intensities in tumor tissue from intensities in non-

malignant lung. An additional dataset with array CGH profiles from Memorial Sloan Kettering 

was segmented using the break point algorithm FAÇADE [149]. Data from the Sanger Institute's 

Cancer Cell Line Project was used to investigate the prevalence of YEATS4 amplification in 

human cancer cell lines. Copy gain was defined as 2.3 to 5 copies and amplification as greater 

than 5 copies. YEATS4 expression was also assessed in the EDRN and TCGA data sets. The 

details of all datasets used in this chapter are listed in Appendix A3. 

 

4.2.5 Plasmids and generation of stably expressing YEATS4 lines 

Lentiviral short hairpin RNA constructs targeting YEATS4 were purchased from Open 

Biosystems. Lentiviral production and infection were performed as previously described [98]. 

Five independent pLKO.1 lentiviral shRNA constructs targeting YEATS4; shY4-1 

(TRCN0000013143) shY4-2 (TRCN0000013144)  shY4-3 (TRCN0000013145), shY4-4 

(TRCN0000013146)  and shY4- 5 (TRCN0000013147) were tested for their ability to reduce 

YEATS4 mRNA and protein expression. NSCLC cell lines were transfected with constructs 

containing a single shRNA targeting YEATS4 (shY4) or an empty vector control (PLKO). 

YEATS4 knockdown was confirmed by quantitative real-time PCR (RT-qPCR). shY4-1 resulted 

in the greatest degree of knockdown and was used for all subsequent experiments. Stably 

transfected lines were maintained in growth media supplemented with puromycin, 0.8 μg/ml 

(A549), 1 μg/ml (H1355, HCC4011, H226) or 1.5 μg/ml (H1993).  
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Ectopic expression of YEATS4 was achieved using Invitrogen's Ultimate ORF (clone IOH2880) 

following manufacturer's instructions. The YEATS4 gene insert was shuttled from a 

pENTRTM221 entry vector to the lentiviral destination vector pLenti6.3/V5-DEST by LR 

recombination. Lentiviral vector viral stock was produced by transfecting H293FT cells using 

Invitrogen's ViraPower TMHiPerformTM Lentiviral Expression System. HBEC-KT and HBEC-

KT53 lines seeded in 6 well plates were transformed with virus expressing YEATS4 or an empty 

vector (EV) and stable transformants were selected following two weeks of treatment with 

2μg/ml Blasticidin. Transfected lines were maintained in growth media containing 2μg/ml 

blasticidin. YEATS4 expression was confirmed by qRT-PCR and western blotting. 

 

4.2.6 Quantitative reverse transcriptase PCR 

RT-qPCR was performed on SDS7900HT (Applied Biosystems) using the ∆∆Ct method with 

18S rRNA expression levels used as a reference for normalization. Validation of 18S as an 

appropriate reference gene for lung cancer is described in [150]. Reverse transcription was 

performed using the High Capacity cDNA Reverse Transcription kit (Applied Biosystems) 

according to manufacturer's instructions. TaqMan gene expression assays and master mix used 

were: YEATS4 (Hs00232423_m1), 18S (Hs99999901_s1) and Gene Expression Master Mix 

(4369016). RT-qPCR was  performed on a reaction volume of 15μl containing 0.2 ng of cDNA 

and using default thermal cycling conditions (2 mins at 50°C, 10 min at 95°C and 40 cycles of 

15sec at 95°C and 1 min at 60°C). Data was analyzed using 7500 Fast System Software v1.4 

with auto calibration and outliers removed. Samples were analyzed with reference to their 

matched control, with an RQ of greater than 2 used to define overexpression. Expression array 

findings were validated in a cohort of 59AC pairs for which RNA was available for both the 

tumor and matched non-malignant tissue. Of the 59 AC pairs analyzed, 35 of the sample pairs 

were profiled by expression array. A Pearson correlation was used to determine the concordance 

between array data and RT-qPCR results. 

 

 



79 

 

4.2.7 siRNA mediated knockdown of CDKN1A 

On-Target plus SMART pool siRNA targeting CDKN1A (L-003471-00) and a non-targeting 

control (NTC) pool (D-001810-10) were purchased from Thermo Scientific. siRNA knockdown 

of CDKN1A was performed on H1993, H1355 and H226 PLKO and shY4 cell lines as described 

in Chapter 3. One day prior to infection, cells were seeded in six well plates at a density of 

125,000 cells/well for senescence and 200,000 cells/well for lysates and collected 48 and 72 

hours post transfection, respectively. Knockdown efficiency was assessed by western blot. 

 

4.2.8 Western blot  

Protein lysates were collected and western blots performed as previously described [151]. 

Membranes were incubated with primary antibodies against YEATS4 (W-21, Santa Cruz), 

MDM2 (HDM2-232, Santa Cruz), p53 (ab7757 AbCam), p21 (#2946 Cell Signaling), p14 

(#2407 Cell Signaling), phospho p53 (#9284 Cell Signaling), cleaved PARP (#9541 Cell 

Signaling), pRb807/811 (Cell Signaling# #9308), p27/kip1 (#2552 Cell Signaling) and GAPDH 

or B-Actin as loading controls (#2118 and #4970 respectively, Cell Signaling). Following 

primary antibody incubation, membranes were incubated with anti-mouse or anti-rabbit HRP 

conjugated secondary antibodies (Cell Signaling #7074, 7076) and visualized by enhanced 

chemiluminescence.  

 

4.2.9 Cell viability  

MTT assays were used to assess cell viability following shRNA knockdown and overexpression 

of YEATS4. Cells were seeded in triplicate in 96 well plates at optimal densities for growth (2000 

cells/well for H1993, HBEC-KT, HBEC KT-53, 2500 cells/well for H1355, H226, A549 and 

4000 cells/well for HCC4011). Media only wells were plated to serve as absorbance blanks to 

normalize wells. Viability was measured over five consecutive days by the addition of 10ul MTT 

reagent (every 24 hours) and incubated for an additional four hours, followed by the addition of 

100ul of 20% SDS to solubilize the MTT dye.  Plates were quantified by spectrophotometry 

(EMax plate reader, Molecular Devices) at 570nm with reference to 650nm. Experiments were 

performed in triplicate. 
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4.2.10 Colony formation 

Anchorage independent growth was assessed in all transfected cell lines by the soft agar method. 

Single cell suspensions were prepared in growth medium with 10% FBS and 0.3% low melting 

point agarose, and seeded in triplicate at 1000 cells/well in 12 well plates and cultured for 14 

days at 37°C. Colonies were stained with MTT and counted, with colony formation is reported as 

the mean ± SEM normalized to the average of the control (PLKO) of triplicate experiments. 

 

4.2.11 Cellular senescence 

Beta- galactosidase (βgal) activity at pH 6 was used as a measure of cellular senescence. Cells 

were plated in triplicate in 6 well plates at concentrations such that 24 hours later they were 

roughly 50% confluent and processed according to the manufacturer's instructions (Senescent 

Cells Histochemical staining kit, Sigma). Cells were visualized by a phase contrast microscope 

and images taken of three areas within each well. The percent of senescent cells was calculated 

and differences between PLKO and shY4 were assessed by a student's t-test with a p-value <0.05 

considered significant. 

 

4.2.12 Dose response assay 

To measure the effect of YEATS4 manipulation on cisplatin and nutlin sensitivity, cell viability 

assays were performed as described in Chapter 3. Cells were plated in triplicate in 96 well plates 

at optimal densities for growth (H226, A549, HBEC KT and KT53 at 2500 cells/well, H1993 

and H1355 at 4000 cells/well, and HCC4011 at 6000 cells/well) and subjected to a series of 20, 

2-fold dilutions of cisplatin or nutlin inhibitor prepared in cell growth media with final 

concentration of 1% DMSO. The experimental inhibitor concentrations ranged from 333 µM to 

635 pM for cisplatin and 100µm to 191pm for nutlin. Experiments were repeated in triplicate and 

differences in IC50 values were determined using a student's t-test with a p-value < 0.05 

considered significant.  
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4.2.13 Mouse models 

Tumor forming ability of H1993 and H1355 shY4 and PLKO cells was assessed in Crl:nu-

foxn1nu mice. Subcutaneous flank injections of 3x106 cells in 50μl of PBS were injected into 6-

week old mice obtained from The Jackson Laboratory. Tumor size and volume was measured by 

palpation 11 days following injection and every 6-8 days thereafter. Experiments were 

terminated once tumors reached a volume of 400 mm3 or became ulcerated. Tumor burden 

between mice injected with YEATS4 KD (n=10) cells and those expressing and empty vector 

(PLKO) (n=10) was assessed using a student's T-test. 

 

4.2.14  Pathway analysis and gene set enrichment 

Following knockdown, gene expression profiles for H1993, H1355 and H226 shY4 and PLKO 

cells were generated using Illumina HT12 expression microarrays and normalized using BRB 

array tools. A list of over- and underexpressed genes (2-fold difference) for each knockdown line 

relative to empty vector controls were generated. Genes altered in all lines in the same direction 

were considered for target gene analysis using Ingenuity Pathway Analysis software. A pre-

ranked gene set enrichment analysis was performed on fold change data for all genes for each 

cell line using the C3 transcription factor gene set to determine which transcription factor target 

genes were affected by YEATS4 knockdown.  

 

4.2.15 Survival analysis  

Survival analysis was performed using a Mantel-Cox log test in Matlab with p-values <0.05 

considered significant. Director's Challenge data was sorted by YEATS4 expression and survival 

times between the top and bottom tertiles of expression compared and Kaplan-Meier plots 

generated. 
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4.3 Results 

 

4.3.1 Recurrently amplified regions in NSCLC 

 Copy number profiles for 169 AC and 92 SqCC were generated using aCGH as described 

in Chapter 2. Significant regions of high level amplification (log2 ratio >0.8) were identified 

using the Genomic Identification of Significant Targets in Cancer (GISTIC) algorithm which 

calculates significance scores by considering both the amplitude and frequency of copy number 

alterations [148]. GISTIC analysis of all 261 samples (NSCLC) identified 3 significant regions 

of focal amplification; 7p11.2 (q=0.00075), 8p12 (q= 0.036) and 12q15 (q=0.036). Subtype 

specific analysis revealed 2 regions of amplification across the 169 AC tumors; 12q15 (q= 

4.5x10-5) and 20q13.33 (q=0.017) and 6 regions across the 92 SqCC tumors; 1p34.2 (q= 0.044), 

3q27.1 (q=1.4 x 10-10), 7p11.2 (q=0.029), 8p11.23 (q=0.0042), 8p12 (q=0.0042)  and 14q13.3 

(q=0.03) (Fig. 4.1A-C). Amplification of these regions have been previously described in 

NSCLC indicating our tumors display patterns of alteration characteristic of lung cancer [18, 55, 

152, 153].  

 

 While none of the regions identified were common between all three analyses, all of the 

regions identified in NSCLC were also significant in a subtype specific manner (Figure 4.1A-C). 

Further examination of these amplicons revealed that known oncogenes EGFR and BRF2, both 

of which are known to be preferentially amplified in SqCC, [114] [98] were driving selection of 

the 7p11.2 and 8q12 amplicons, respectively. Intriguingly, the primary target of 12q15 

amplification, which is believed to be MDM2- a ubiquitin ligase that targets TP53 for 

proteasomal degradation, and when overexpressed results in aberrant p53 inactivation, was 

excluded from both the focal and wide peak boundaries. The exclusion of MDM2 from this focal 

region suggested that a gene other than MDM2 may be driving selection of this amplicon. This 

combined with the fact that all other regions harbored known oncogenes 7p11.2 (EGFR), 

8p11.23 (FGFR1), 8p12 (BRF2) 14q13.3 (NKX2-1), 20q13.3 (EEF1A) or are known to be 

subtype specific regions of amplification (1p34.2 and 3q in SqCC) [18, 55] prompted us to 

further explore the 12q15 amplicon. 
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Figure 4.1 

 

 
 

Figure 4.1. Recurrent amplifications in NSCLC.  

GISTIC plots for (A) 261 NSCLC, (B) 169 AC and (C) 92 SqCC. Chromosomes are depicted as 

rows and chromosome numbers are indicated. Red peaks indicate frequently amplified regions 

and the green vertical line indicates the false discovery rate threshold (q=0.05). Peaks extending 

beyond this line indicates a significant region. X-axis indicates the GISTIC score scale. Genomic 

coordinates and the genes located within the 12q15 amplicon are shown below. 
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4.3.2 Identification of YEATS4, the target of 12q15 amplification 

 The peak amplified region of 12q15 spanned a 432 kb interval (68,030,736-68,462,888) 

and contained 7 genes; LYZ, YEATS4, FRS2, CCT2, LRRC10, BEST3, RAB3IP, none of which 

have been previously implicated in lung tumorigenesis. Based on the notion that selectively 

amplified oncogenes would demonstrate elevated expression, we integrated copy number and 

gene expression data for adenocarcinoma tumors and matched non-malignant tissue. Due to the 

limited size of our dataset with both copy number and expression data, identification of the 

12q15 driver gene was performed in the largest dataset available (EDRN, n=83). Of the 7 genes 

within the amplicon, only YEATS4 was both gained/amplified and concomitantly overexpressed 

in lung tumors relative to matched non-malignant tissues (Figure. 4.2A-C). While YEATS4 has 

not been previously described in lung cancer, it is a well-established oncogene in cancers of 

neural origin [154, 155] and frequently amplified in liposarcomas [156]. 

 

4.3.3 YEATS4 is frequently amplified and overexpressed in NSCLC 

 YEATS4 was amplified in 18% (47/261) and overexpressed in 31% (15/48) of cases from 

our cohort. While 12q15 was not significant in the GISTIC analysis of our 92 SqCC cases, to 

conclusively determine whether amplification of YEATS4 was specific to AC, we compared 

copy number and expression data for both subtypes. Although no statistical difference in 

YEATS4 copy number or expression was observed between subtypes (Figure. 4.2D-F), AC 

tumors had a higher number of copies and greater fold change in expression compared to SqCC 

tumors. This suggests that while copy gain is a frequent event in both subtypes, it is likely a 

broader amplification event that occurs at a lower amplitude in SqCC relative to AC, which is 

why 12q15 failed to be identified by GISTIC in SqCC tumors. Analysis of external datasets with 

both AC and SqCC data supported our findings, with gain /amplification and overexpression 

occurring at similar frequencies in both data sets (Table 4.1), indicating that amplification and 

overexpression of YEATS4 is not subtype specific.  
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 To gain further insight into the prevalence of YEATS4 amplification, we investigated 

YEATS4 copy number and expression in publically available NSCLC tumor datasets. YEATS4 

was gained (2.3-5 copies) or amplified (> 5 copies) at various frequencies across the five 

datasets, ranging from 5-22% and 0.4-5% respectively (Table 4.1). A broader analysis of 508 

human cancer cell lines revealed YEATS4 copy gain/amp in 43/128 (33.6%) of lung cancer cell 

lines and in 122/508 (24%) of all cancer cell lines (Table 4.1). Expression analysis of the EDRN 

and TCGA data sets, revealed YEATS4 was overexpressed at comparable frequencies to our 

dataset; 18% (15/83) and 33% (14/42), respectively (Table 4.1). Taken together, these results 

show YEATS4 is frequently gained and overexpressed in NSCLC, irrespective of subtype. 

 

 To validate array findings and verify YEATS4 is upregulated at the transcript level, we 

assessed YEATS4 expression by quantitative reverse transcriptase PCR (RT-qPCR) in a panel of 

59 lung ACs relative to matched non-malignant tissue and in 18 NSCLC cell lines (2 SqCC and 

16 AC) with reference to an immortalized normal human bronchial epithelial (HBEC) line. 15/59 

(25.4%) tumors and 8/18 (44.4%) cell lines showed a two-fold or greater increase in YEATS4 

expression relative to their matched control. Moreover, analysis of the 35 AC samples with 

expression data revealed a strong correlation between array findings and PCR results (r=0.75, 

P<0.001, Pearson Correlation, data not shown), validating array findings and confirming 

frequent overexpression of YEATS4. Western blotting of cell lines with and without YEATS4 

amplification revealed increased YEATS4 expression in lines with amplification, demonstrating 

that amplification drives overexpression at both the mRNA and protein level (Figure. 4.2G). 

Multivariate analysis of YEATS4 revealed no significant associations with age, sex, stage, 

smoking status or race. Survival analysis of the Director's challenge expression datasets [157] 

revealed a trend towards poorer survival in patients with YEATS4 amplification, however failed 

to reach statistical significance (p>0.05, data not shown).  
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Figure 4.2 

 

 
Figure 4.2 YEATS4 is the target of 12q15 amplification.  

 (A) Comparison of mRNA expression in 83 AC tumors and matched non-malignant tissue from 

the EDRN (p=0.0092). (B) YEATS4 expression between tumors with gain/amplification and 

tumors with neutral copy number (p<0.0001). (C) Spearman's correlation of copy number and 

expression for tumors with copy number alterations of YEATS4 (r=0.59, p=0.009). Comparison 

of YEATS4 copy number (D), expression (E) and fold change (F) between AC and SqCC. 

Expression values for all plots are in log2 units. (G) Immunoblot of YEATS4 in NSCLC lines 

with and without amplification of 12q15. GAPDH was used as a loading control.
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Table 4.1 Frequency of YEATS4 gain and amplification across multiple datasets       

Data Set  Histology  # Samples 

with CN  

Gain (n)  

(2.3-5 copies)  

Freq Gain 

(%)  

Amplification (n)  

(>5 copies) 

Freq Amp 

(%) 

Samples with 

Expression (n) 

Samples 

with OE 

Freq OE 

(%) 

BCCRC  AC & SqCC  169,92 28,19 16.5,20.1 5,2 3.0, 2.2 35,13 11, 4 31,30 
EDRN  AC  83 18 21.7 4 4.8 83 15 18 

GSE25016 AC & SqCC  77,155 10,22 13, 14.2 0,1 0, 0.6 N/A N/A N/A 
dbGAP  AC  354 18 5.1 4 1.1 N/A N/A N/A 
MSKCC  AC  199 21 10.6 N/A N/A N/A N/A N/A 
Broad  NSCLC  473 28 5.9 8 1.7 N/A N/A N/A 
TCGA AC & SqCC 277,201 19,22 6.9,10.9 15,6 5.4,3.0 17,25 8, 6 32, 35 

Sanger LCCL NSCLC/SCLC 128 43 33.6 1 0.78 N/A N/A N/A 
Sanger cell 

lines 

All cancers 508 122 24 8 1.5 N/A N/A N/A 
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4.3.4 YEATS4 displays oncogenic properties in vitro and in vivo 

 YEATS4 encodes a protein found in a number of multi-subunit protein complexes 

involved in chromatin modification and transcriptional regulation and has also been shown to be 

involved in the regulation of TP53. To assess its oncogenic potential, YEATS4 was stably 

transfected into two immortalized HBEC lines; HBEC-KT and HBEC-KT53 (KT-YEATS and 

KT53-YEATS). Empty vector transfected cells were used as controls (KT-EV and KT53-EV). 

YEATS4 gene and protein expression was confirmed by qPCR and western blot (Fig. 4.3A-B). 

Relative to controls, ectopic expression of YEATS4 had no effect on viability and failed to 

induce anchorage independent growth in HBECs (data not shown), indicating that in normal, 

immortalized cells, YEATS4 overexpression alone is incapable of inducing colony formation. 

However, a dramatic inhibition of senescence in overexpressing cells relative to controls was 

observed in both lines (Student's t-test, p<0.05) (Fig. 3C-D), suggesting elevated YEATS4 

expression is capable of inducing a phenotype associated with malignant transformation. 



89 

 

Figure 4.3 

 
Figure 4.3. Overexpression of YEATS4 induces a malignant phenotype.  

Ectopic expression of YEATS4 increases (A) mRNA expression (mean± SEM of triplicate 

replicates) and (B) protein levels relative to EV controls. GAPDH was used as a loading control. 

(C) β-Gal staining for cellular senescence in EV and YEATS4 expressing HBECs. Cells stained 

blue indicate senescence. Original magnification, 10x. (D) Quantification of cellular senescence 

in YEATS4 and control cells. The mean of the proportion of senescent cells (senescent cells/total 

cells) for YEATS4 and EV lines is shown for triplicate experiments ± SEM. ** p<0.01, Student's 

t-test. 
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 Complimentary knockdown experiments using lentiviral shRNAs were performed in lung 

cancer cell lines with (H1993, H1355, H226) and without (A549, HCC4011) YEATS4 

amplification and various p53 backgrounds. Empty vector transfected cells were used as controls 

(PLKO) and knockdown was confirmed by qPCR and western blotting (Figure 4.4A-B). 

Knockdown significantly decreased cell viability in H1993 and H1355 (p=0.0127 and  p=0.0172, 

respectively), both of which harbour YEATS4 amplification and mutant p53 (Figure 4.4C), but 

had no effect on A549, HCC4011 or H226 lines (p = 0.428, p = 0.45 and p = 0.49, respectively) 

which do not harbor YEATS4 amplification (A549 &H4011), or have YEATS4 amplification with 

wild type (wt) p53 (H226) (Figure 4.4C). Similarly, knockdown resulted in a significant decrease 

in anchorage-independent colony formation in H1993 (p = 7.26 x10-6) and H1355 (p = 6.06 x 10-

10) cells, but not in A549 (p = 0.97), H4011 (p = 0.21) or H226 (p = 0.74) cells, indicating wt p53 

may abrogate the effect of YEATS4 knockdown on viability and colony formation in lines with 

amplification (Figure 4.4D). A significant increase in senescence was observed in all three lines 

with amplification; H1993 (p = 5.71 x 10-6), H1355 (p = 0.0012) and H226 (p = 1.21 x10-13) as 

well as moderate increase in A549 (p = 2.99x 10-7). No difference in senescence was observed in 

HCC4011 (p = 0.06) (Figure 4.4E). The finding that A549 cells showed a modest increase in 

senescence is not surprising given the role of YEATS4 in the p53 pathway (discussed below) and 

the wt p53 background of this line, which enables pathway activation and cellular senescence.  

 

 To explore the oncogenic potential of YEATS4 in vivo, tumor formation in SCID mice 

was examined by subcutaneous flank injections of H1993 and H1355 control and shY4 cells. 

Tumor formation was significantly reduced in shY4 cells of both cell lines at all time points 

(Figure 4.4F,G). Our results demonstrate that knockdown of YEATS4 in cell lines with 

amplification effectively inhibits tumor growth, with a significant inhibition in viability, tumor 

and anchorage independent growth and increased cellular senescence, strongly supporting 

YEATS4 as an oncogene in NSCLC. 
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Figure 4.4 

 
 
Figure 4.4. YEATS4 knockdown impairs growth and induces senescence. 
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Figure 4.4. YEATS4 knockdown impairs growth and induces senescence.  

shRNA targeting YEATS4  significantly reduces (A) mRNA expression and (B) protein levels in 

all cell lines relative to controls (PLKO). GAPDH was used as a loading control. (C) Viability of 

cell lines with knockdown (shY4) relative to controls as measured by MTT. (D) Colony 

formation ability of shY4 cell lines relative to controls. (E) Quantification of cellular senescence 

based of β-Gal staining. Values reported as mean ± SEM of triplicate experiments.* p<0.05, ** 

p<0.01, *** p<0.001, Student's t-test of shY4 cells relative to PLKO. (F,G)  Effect of YEATS4 

knockdown on tumor growth in mice injected with H1993 or H1355 PLKO and shY4 cells. Error 

bars indicate SEM of each group of 10 mice, * p<0.05 

 

 

4.3.5 YEATS4 suppresses p53 and p21 

 Inactivation of the p53 pathway is one of the most frequent alterations in lung cancer, 

with somatic mutations occurring in approximately 50% of all cases [114, 158]. p53 is a key 

tumor suppressor that regulates cell cycle, DNA repair, apoptosis, and senescence and inhibits 

aberrant proliferation and the propagation of damaged cells. A study by Park et al, showed that 

under normal, unstressed conditions, YEATS4 binds to and inhibits the promoters of p14 and p21, 

subsequently repressing the p53 tumor suppressor pathway [159]. To assess whether this 

interaction occurs in NSCLC, we assessed these proteins in cell lines with YEATS4 manipulation. 

Upon YEATS4 knockdown, p21 and p53 protein levels were increased, with the greatest 

increases in expression of p21 and p53 observed in cell lines harbouring YEATS4 amplification 

or wt p53 respectively (Figure 4.5A). No change in p14 levels was observed upon knockdown. 

Overexpressing lines showed a modest reduction of p21 and p14 as well as a reduction of p53 

levels in HBEC-KT (Figure 4.5B). MDM2 levels remained unchanged following knockdown or 

overexpression of YEATS4, indicating that the observed changes in p21, p14 and p53 were a 

direct result of YEATS4 manipulation.  

 

4.3.6 YEATS4 alters the sensitivity of cell lines to cisplatin and nutlin 

 To determine whether the downstream effects of YEATS4 manipulation alters cellular 

sensitivity to chemotherapy, cell lines were treated with serial dilutions of cisplatin, a commonly 
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prescribed first line chemotherapy for lung cancer patients that crosslinks DNA triggering 

apoptosis, or nutlin, a cis-imidazoline analog that inhibits the interaction of p53 and MDM2, 

stabilizing p53. Based on the observed effects on p53 and p21 protein levels following 

manipulation of YEATS4 expression and the notion that cells with YEATS4 amplification may be 

dependent on YEATS4 for growth and survival, we hypothesized that HBEC-KT/KT53-Y cells 

would be more resistant to treatment, while shY4 cells harbouring YEATS4 amplification would 

be more sensitive.  

 

 As expected, HBEC-KT-YEATS and HBEC-KT53-YEATS lines were significantly 

more resistant to both cisplatin and nutlin than their control counterparts (Figure 4.5C; Table 

4.2). Differences in sensitivity were less consistent in the lung cancer cell lines, likely due to the 

fact these cell lines harbour numerous genomic alterations which could influence drug 

sensitivities. While H1993 shY4 cells were significantly more sensitive to cisplatin (IC50 

PLKO:11.45 vs. shY4:8.65) (Figure 4.5D) supporting our hypothesis, knockdown in both H1355 

and H226, showed the opposite trend resulting in greater resistance relative to controls (Table 

4.2). As anticipated, A549 and HCC4011 shY4 cells showed no difference in sensitivity. As 

specimens with mutant p53 are resistant to nutlin, only A549 and H226 were treated. Similar to 

the cisplatin results, A549 shY4 cells showed no significant difference in sensitivity to nutlin 

(PLKO: 7.58 vs. shY4:6.91, p=0.84), while H226 shY4 cells were unexpectedly significantly 

more resistant (PLKO:3.27, shY4:4.33, p=0.033) (Table 4.2). Analysis of lung cancer cell line 

IC50 data from the Sanger drug sensitivity project failed to reveal a significant association 

between YEATS4 amplification and response to cisplatin or nutlin. However, based on the fact 

that transformed bronchial epithelial cells which harbour minimal genetic alterations were 

significantly more resistant to cisplatin and nutlin following overexpression of YEATS4, and  

H1993 shY4 cells (which harbor the greatest amplification of YEATS4) were more sensitive to 

cisplatin compared to controls, we feel this data supports the notion that YEATS4  alters the in 

vitro sensitivity of lung cells to cisplatin and nutlin. 
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Figure 4.5 

 
Figure 4.5. YEATS4 alters p21 and p53 protein levels.  
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Figure 4.5. YEATS4 alters p21 and p53 protein levels.  

(A) Knockdown of YEATS4 increases expression of p21 in cell lines with YEATS4 

amplification and increases p53 in all lines that express p53. (B) Overexpression of YEATS4 

reduces p14 and p21 levels in both HBEC lines, and p53 only in the HBEC KT line. Dose-

response curves of HBEC KT (C) and H1993 (D) cells treated with 2-fold dilutions of cisplatin 

for 72 hours. Viability is shown as a proportion of treated cells against untreated controls (mean 

± SEM of triplicate experiments). (E) Immunoblot of PLKO and shY4 cell lines treated with 

40μM of Cisplatin for 0, 24 or 48 hours. Cisplatin treatment induces apoptosis as measured by 

the increase in cleaved PARP, p53 and phosphorylated p53 (Ser15). GAPDH was used as a 

loading control for all blots. 

 

 
Table 4.2 Cisplatin and Nutlin IC50s 

  Cisplatin Nutlin  

Cell Line YEATS4 IC50 SEM t Test IC50 SEM t Test Trend 

H1993 PLKO 11.45 1.11      

H1993 shY4 8.649 0.488 0.004    Sensitive 

H1355 PLKO 9.111 0.491      

H1355 shY4 15.91 0.905 1.6E-06    Resistant 

H226 PLKO 5.788 0.276  3.266 0.130   

H226 shY4 9.965 0.716 0.0003 4.325 0.376 0.033 Resistant in both 

A549 PLKO 10.88 0.452  7.58 0.316   

A549 shY4 11.4 0.705 0.204 6.908 0.123 0.084 Not significant 

H4011 PLKO 8.952 0.326      

H4011 shY4 10.32 0.566 0.055    Not significant 

HBEC KT EV 11.09 1.472  16.55 1.405   

HBEC KT YEATS 17.32 0.696 0.007 26.01 2.696 0.023 Resistant in both 

HBEC KT53 EV 15.41 1.612  19.63 1.367   

HBEC KT53 YEATS 20.38 0.718 0.029 24.85 1.385 0.034 Resistant in both 
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4.3.7 Sensitivity to cisplatin is not mediated solely through the p53-p21 pathway 

 To gain further insight into the potential mechanisms of altered sensitivity to cisplatin, 

cell lines were treated with 40μM cisplatin and protein lysates collected at 0, 24 and 48 hours 

post treatment. As expected, cisplatin treatment resulted in an increase in p53, p53 Ser15 

phosphorylation (a marker of stabilization), p21 and induced apoptosis as measured by cleaved 

PARP in HBECs. However, no differences between HBEC-EV and HBEC-YEATS cells were 

observed for any of the proteins examined (data not shown). In shY4 cells with amplification, 

treatment with cisplatin led to a greater induction of p53 and phospho-p53 (Ser15), and in H226 

also led to a significant increase in p21 levels relative to control cells (Figure 4.5E). As no 

significant differences in protein levels were observed, despite a significant increase in resistance 

following OE, our results suggests that while the p53-p21 signaling pathway may be involved, 

resistance is likely mediated through the interaction of YEATS4 with other signaling pathways.  

 

4.3.8 Knockdown phenotypes are independent of p21 signaling in mutant p53 cells 

 To explore the effect of increased p21 expression on the observed phenotypes, siRNA 

knockdown of CDKN1A was performed on shY4 and PLKO cells for cell lines with YEATS4 

amplification. Knockdown of CDKN1A showed no effect on viability or colony formation in any 

of the lines (data not shown), but significantly altered senescence levels in the presence of wt 

p53 (Figure 4.6A). CDKN1A siRNA reduced senescence in both H226 shY4 and PLKO cells 

relative to non-targeting control siRNA treated cells, such that the percent of senescent H226 

shY4-p21 cells was similar to H226 PLKO-NTC (Figure 4.6A). These experiments suggest that 

in a wildtype p53 background, the increase in senescence following YEATS4 knockdown occurs 

in a p53 dependent manner and is the direct result of increased p21expression. As CDKN1A 

knockdown failed to rescue viability, colony formation and senescence in cell lines with mutant 

p53, these findings further support the notion that the phenotypes observed following YEATS4 

knockdown are not solely due to changes in p53-p21 signaling. Based on these findings, and the 

prominent role of Rb in senescence, we next investigated whether the increased senescence 

following YEATS4 knockdown could be due to altered Rb signaling. Modest reductions in Rb 

Ser807/811 phosphorylation following YEATS4 knockdown were observed, however in mutant 

p53 cell lines this does not appear to be due to increased levels of p27 (Figure 4.6B). 
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Figure 4.6 

 
Figure 4.6. Senescence induced by YEATS4 is dependent on p21 in wildtype p53 cells.  

(A) Quantification of  percent senescent cells following siRNA mediated knockdown of p21 in 

PLKO and shY4 cells. * p<0.05, Student's t-test. Values reported as mean ± SEM of triplicate 

experiments. (B)  Knockdown of YEAST4 leads to reduced  Rb Ser807/811 phosphorylation and 

p27 in p53 mutant cells. B-actin was used as a loading control. 

 

 

 

 

 



98 

 

4.3.9 Identification of additional cellular networks regulated by YEATS4 

 In an attempt to gain a better understanding of other pathways YEATS4 is involved in, we 

performed expression profiling on shY4 and PLKO cells for the three cell lines with YEATS4 

amplification. To identify significantly enriched pathways/networks and gene sets affected by 

YEATS4 knockdown, Ingenuity Pathway Analysis (IPA) and Gene Set Enrichment Analysis 

(GSEA) were performed. A total of 32 genes (27 overexpressed and 5 underexpressed, Table 

4.3) were differentially expressed between knockdown and control cells across all three cell 

lines. Due to the small number of input genes, none of the significantly enriched canonical 

pathways passed multiple testing correction. However, network analysis, which assesses 

regulatory relationships existing between genes and proteins, identified two networks associated 

with pro-tumorigenic functions; (1) cancer and  (2) cell death, survival, cell cycle and cell 

morphology. These networks were centered around known targets or binding partners of YEATS4 

including p53, CDKN1A and MYC (Figure 4.7), further supporting our in vitro findings. Pre-

ranked GSEA revealed significant enrichment of a number of transcription factor gene sets 

including MYCN, which has been shown to be a binding partner of YEATS4 and all 6 serum 

response factor (SRF) gene sets. SRF is a ubiquitously expressed transcription factor implicated 

in cell proliferation, differentiation, metastasis and clinically associated with castration-resistant 

prostate cancer [160, 161]. Interestingly, PDLIM7 which contains a serum response element and 

is transcribed upon induction of SRF, was shown to inhibit p53 and p21 through the inhibition of 

MDM2 self ubiquitination. While neither MYCN, SRF or PDLIM7 were differentially disrupted 

at the mRNA level following knockdown, our downstream analysis suggests the target genes of 

these two transcription factors could be involved in YEATS4 mediated tumorigenesis and warrant 

investigation in future studies to elucidate additional mechanisms through which YEATS4 

promotes tumorigenesis.  
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Table 4.3 Differentially altered genes following knockdown of YEATS4 used for Ingenuity Pathway Analysis 

Gene Direction of change 
YEATS4 Underexpressed 
MUC1 Underexpressed 

SCNN1A Underexpressed 
ST3GAL5 Underexpressed 

KLHL5 Underexpressed 
CRABP2 Underexpressed 

LOC283267 Underexpressed 
TINP1 Underexpressed 

FNDC3A Underexpressed 
LOC100128196 Underexpressed 

NSA2 Underexpressed 
ACOT7 Underexpressed 
S100A4 Underexpressed 
NKD2 Underexpressed 

MRPL35 Underexpressed 
SULT1A3 Underexpressed 

ISCA1 Underexpressed 
LOC100132658 Underexpressed 

DENND2D Underexpressed 
MGC42367 Underexpressed 

LIN7C Underexpressed 
LOC400061 Underexpressed 

SLC1A6 Underexpressed 
DDX12 Underexpressed 
RRAD Underexpressed 
PPIL5 Underexpressed 

TNFSF12 Underexpressed 
CAMTA1 Overexpressed 
RRAGD Overexpressed 

TMEM158 Overexpressed 
TAGLN Overexpressed 
GLIPR1 Overexpressed 
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Figure 4.7 

 
Figure 4.7. Gene networks associated with YEATS4 knockdown.  
Ingenuity Pathway Analysis was used to identify biologically related gene networks from the 34 

genes with differential expression across all three cell lines (H1993, H1355, H226) following 

knockdown. One of the top networks- cell death, survival, cell cycle and cell morphology related 

to p53, CDKN1A, TNF and MYC signaling is displayed. Solid lines denote direct interactions 

while dotted lines represent indirect relationships. Components highlighted in red are 

upregulated while those in green are downregulated.  
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4.4 Discussion 

 While single dimensional genomic analyses have been instrumental in cancer gene 

discovery, this type of analysis often overlooks genes disrupted at low frequencies, and is 

unlikely to distinguish causal from passenger events. The integration of multiple parallel 

genomic dimensions enables the identification of genes with concurrent DNA and expression 

alterations, which are likely selected for due to their roles in driving cancer phenotypes [61]. 

Towards this end, we integrated copy number and gene expression data in an attempt to identify 

novel oncogenes important in lung tumorigenesis. While our analysis revealed gains/ 

amplifications in a number of regions previously reported in NSCLC, the amplicon at 12q15 was 

the only one without a candidate driver gene located within the amplicon boundaries and was 

therefore the only regions we pursued further. Integration of expression and copy number data 

for the 7 genes located within 12q15 identified YEATS4 as the candidate target gene of this 

amplicon. 

 

 First identified and isolated in the glioblastoma multiforme cell line TX3868, YEATS4 is 

a highly conserved nuclear protein essential for cell viability that is frequently amplified in 

gliomas, astrocytomas and liposarcomas [154, 156, 162]. A member of a protein family 

characterized by the presence of an N-terminal YEATS domain, YEATS4 shares high homology 

with transcription factor family members AF-9 and ENL [163]. Like other family members, 

YEATS4 is involved in chromatin modification and transcriptional regulation through its 

incorporation into multi-subunit complexes; specifically the human TIP60/TRRAP and SRCAP 

complexes [164, 165], which mediate the incorporation of an H2A variant histone protein into 

nucleosomes, altering chromatin structure and controlling transcriptional regulation. 

 

 In addition to its role in transcriptional regulation, yeast two hybrid screens have revealed 

a number of YEATS4 binding partners. These include MYC, MYCN, TACC1, TACC2, NuMa, 

AF10, PFDN1 and KIAA1009 [166-170]. Analysis of expression data before and after YEATS4 

knockdown showed no effect on expression of any binding partners, suggesting that YEATS4 

does not control the expression of its binding partners at the mRNA level. To date, the majority 

of work surrounding YEATS4 has focused primarily on the identification of YEATS4 binding 
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partners with only a few studies having explored the phenotypic effects of YEATS4 

amplification, none of which have been performed in lung [159, 170].  

 

 Our study is the first to show gain/amplification and overexpression of YEATS4 in 

NSCLC and the first to implicate amplification of YEATS4 in lung cancer tumorigenesis. We 

observed frequent gain/amplification of YEATS4 in multiple independent tumor cohorts in 

addition to our own, as well as a strong correlation between gain and overexpression in both 

tumors and cell lines (Figure 4.2). Analysis of the catalogue of somatic mutations in cancer 

(COSMIC) revealed YEATS4 is rarely mutated in lung (0.23%) or any cancer type (0.17%) 

suggesting that DNA amplification is the predominant mechanism of activation. In addition to 

the genomic evidence supporting selection of YEATS4 in NSCLC, we demonstrate the oncogenic 

potential of YEATS4 both in vitro and in vivo (Figures 4.3&4.4). Ectopic expression resulted in a 

significant reduction in senescence, suggesting overexpression of YEATS4 is sufficient to induce 

phenotypic changes characteristic of malignant transformation, (Figure 4.3) while knockdown in 

cell lines with amplification and mutant p53 showed reduced viability and colony formation 

along with an increase in senescence, consistent with oncogenic function. While wt p53 

abrogates the effects on viability and colony formation on YEATS4 knockdown lines with 

amplification, a significant increase in senescence was still observed. In addition to these 

phenotypic effects, we also demonstrated that YEATS4 inhibits p21 thereby repressing p53 

activity, consistent with the findings of Park and Roeder who demonstrated this interaction in 

unstressed conditions [159]. siRNA-mediated knockdown of CDKN1A failed to rescue viability, 

colony formation and senescence in mutant p53 backgrounds suggesting the phenotypic effects 

of YEATS4 amplification occur through a mechanism other than p21. 

 

 MDM2, an E3 ubiquitin ligase, is the major negative regulator of p53, mediating its 

ubiquitination and subsequent degradation [171, 172]. Overexpression results in inactivation of 

p53 and is a common mechanism of p53 inactivation in cancer. MDM2 is frequently amplified 

and overexpressed in human cancers including lung cancer, and is largely considered to be the 

driver gene of the 12q15 amplicon [18, 173]. We were therefore intrigued to discover that 

despite being frequently gained in our dataset, MDM2 did not fall within the boundaries of the 
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12q15 amplicon identified in our cohort. This led us to postulate that an alternative oncogene 

was being selected in this region. When looking at high resolution copy number profiles, while 

the majority of cases showed identical copy number for both YEATS4 and MDM2, a small 

number of cases (3/83) had more copies of YEATS4 than MDM2, suggesting YEATS4 is selected 

as the target of amplification in these samples and that amplification of YEATS4 is not merely a 

passenger event of MDM2 amplification. Of note, 4/83 cases had higher level gain/amplification 

of MDM2 relative to YEATS4. For cancers with amplification of 12q15 spanning both YEATS4 

and MDM2, these genes may work synergistically to suppress p53, however further 

experimentation is required to investigate this hypothesis. Along with the many tumor promoting 

effects of YEATS4, of immediate clinical interest is our discovery of a YEATS4 dependent 

mechanism of reduced cisplatin and nutlin sensitivity, which appears to occur at least in part 

through inhibition of p21 and subsequent suppression of the p53 pathway.  

 

 In summary, we have shown that 12q15 is frequently amplified in both AC and SqCC 

and suggest that YEATS4, given its multiple oncogenic functions, is a novel oncogene involved 

in lung tumorigenesis. Our findings imply that MDM2 is not the sole driver gene targeted by 

amplification of 12q15 and that suppression of the p53 pathway can be achieved through 

amplification of YEATS4 via inhibition p21. For the first time, we demonstrate that YEATS4 

expression alters cisplatin and nutlin sensitivity. Additional investigation into the signaling 

pathways altered as a result of YEATS4 amplification will provide further insight into the 

mechanism underlying YEATS4-mediated tumorigenesis and its potential clinical relevance. 
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Chapter 5: Characterizing miRNA expression in lung adenocarcinoma and 

squamous cell carcinoma identifies miR-944 and miR-1287 as subtype specific 

miRNAs  
 

5.1 Introduction 

 The human genome is comprised of less than 2% protein coding genes, however more 

than 90% of the genome is transcribed, suggesting that the majority of the transcriptome is 

comprised of non-coding RNAs (ncRNAs) - transcripts that lack an open reading frame and as 

such do not encode a protein [174-176]. This by no means implies that ncRNAs lack function, 

but rather highlights the importance of looking beyond protein coding genes in order to improve 

our knowledge of normal and disease biology. While some are known to play important roles in 

the regulation of gene expression, splicing, epigenetic control, chromatin structure and nuclear 

transport, the function of most ncRNAs remains unknown [177, 178]. miRNAs are the most 

thoroughly investigated class of ncRNAs and are often located at chromosomal breakpoint 

regions, fragile sites, and minimal regions of loss of heterozygosity or amplification, making 

miRNA loci highly susceptible to genomic alterations and subsequently, de-regulated expression 

[179, 180]. To date, over 2000 human miRNAs have been identified [181] and a single miRNA 

is capable of affecting multiple protein coding genes. It is believed that over one third of the 

genome is regulated by at least one miRNA [182]. With roles in cellular functions from 

proliferation and apoptosis to cellular development and epithelial to mesenchymal transition, it is 

not surprising that miRNA deregulation has been linked to human diseases including cancer.  

 

 MicroRNAs (miRNAs) are small 18-25 nucleotide non-coding RNAs that negatively 

regulate gene expression post-transcriptionally through transcript degradation or translational 

repression [56]. miRNAs are known to be frequently deregulated in cancer as well as pre-

invasive lesions and circulate in bodily fluids (blood, sputum, urine etc.) with substantial 

stability, making them ideal candidates for non-invasive, early detection biomarkers. While 

protein coding genes remain the primary focus of current genomic and proteomic studies, the 

deregulation of several miRNAs (let-7a, miR-34, -125, -126 -221, -222, to name a few) have 
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been implicated in lung tumorigenesis [183-187], and in the past decade miRNA expression 

profiles have been associated with lung cancer prognosis, disease progression, survival, and 

outcome prediction, as well as subtype discrimination [58, 183, 188, 189]. However, these 

studies are limited by the use of microarray profiling which restricts the number of miRNAs 

assessed, small sample sizes, or the absence of patient matched non-malignant tissue. Moreover, 

expression profiling studies aimed at distinguishing differences between AC and SqCC have 

used minimal statistical criteria to identify differentially expressed miRNA, rarely including 

tumor/non-malignant fold change criteria and typically just correlating miRNA expression with 

clinical features. As such, an understanding of the recurrently altered miRNAs defining each 

subtype and how these miRNAs contribute to subtype specific tumorigenesis through the genes 

and pathways they affect is lacking. We hypothesize that similar to DNA level alterations, the 

differential deregulation of miRNAs and their consequential effects on genes and pathways may 

contribute to the disparate clinical phenotypes observed in AC and SqCC. 

 

 In this study we performed a genome wide, unbiased analysis of miRNA expression 

patterns in NSCLC subtypes. miRNA sequencing was performed on a cohort of 88 NSCLC 

tumors with matched non-malignant tissue (66 AC and 22 SqCC) and detailed clinical 

information. We identified miRNA panels capable of distinguishing tumor from non-malignant 

tissue (n=85) and AC from SqCC (n=47), and validated our findings in independent, external 

datasets. Network and pathway analysis was performed on the most robust mRNA targets of our 

validated miRNAs based on in silico target prediction algorithms. Consistent with our 

observations of protein coding genes (Chapter 2), pathway analysis of target genes disrupted by 

SqCC specific miRNAs revealed disruption of multiple histone modifying enzymes. In vitro 

analysis of miR-1287, an AC specific miRNA, confirmed RAD9A as a biological target and 

implicated miR-1287 in AC tumorigenesis. Overexpression of miR-1287 in HBECs and lung 

cancer cell lines resulted in reduced apoptosis and DNA damage repair, validating the ability of 

our approach to identify biologically relevant miRNAs. To our knowledge, this is the first study 

to 1) perform a genome wide unbiased comparison of miRNA expression profiles in AC and 

SqCC, and 2) identify the pathways and functions disrupted by these subtype specific miRNAs.  
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5.2 Methods 

 

5.2.1 NSCLC patients and samples 

88 fresh-frozen lung tumors (66AC and 22SqCC) with matched non-malignant tissue were 

obtained from treatment naïve patients undergoing surgical resection with curative intent 

(BCCRC cohort). Samples were collected from the Tumor Tissue Repository of British 

Columbia Cancer Agency under informed, written patient consent. Tissue sections were 

microdissected with the guidance of a lung pathologist to obtain >70% tumor cell content. Total 

RNA was extracted using Trizol reagent (Invitrogen) and then size fractionated to isolate small 

RNAs including miRNA.  

 

5.2.2 MicroRNA sequencing and data analysis 

miRNA sequencing libraries for the 88 fresh-frozen tumor pairs were constructed, bar-coded for 

multiplex sequencing and sequenced on the Illumina HiSeq 2000 platform using a plate-based 

protocol developed by the British Columbia Genome Sciences Center (BCGSC) [190]. Raw 

sequence reads were separated into individual samples based on their assigned indexes, adapter 

sequences removed and reads trimmed based on quality control metrics. High quality reads were 

aligned to the NCBI GRCh37 reference genome and miRBase v18 using the BWA algorithm. 

Reads were normalized as reads per kilobase of exon model per million mapped reads (RPKM). 

 

5.2.3 Identification of subtype specific miRNAs and NSCLC miRNAs 

Expression levels for identical miRNAs from different genomic locations were summed, leaving 

1372 unique miRNAs for examination. miRNAs with read counts <1 were considered 

undetected/not expressed and miRNAs with undetectable expression in all samples within a 

group were excluded from further analysis, resulting in 916 miRNAs for all tumors and normals, 

859 miRNA in AC and 753 miRNAs in SqCC for further analysis. The fold change in miRNA 

expression between tumor and normal pairs was calculated for each miRNA in each sample, and 

a 2-fold change in expression was used as a cutoff to define over- and underexpression. miRNAs 

without 2-fold over- or underexpression in any of the samples within a subtype were removed, 

leaving 513 miRNAs in AC and 419 miRNAs in SqCC.  
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To be considered subtype specific, miRNAs had to meet three criteria:  i) differential expression 

in tumors versus non-malignant tissue, as defined by a Wilcoxon Sign Rank with Benjamini-

Hochberg (BH) multiple testing correction p<0.05, ii) over- or underexpressed in at least 25% of 

samples within the subtype and a difference in frequency of aberrant expression >15% between 

subtypes, and iii) differential tumor expression and frequency of alteration between AC and 

SqCC as defined by permutation and Fisher's Exact tests with BH correction p<0.05. NSCLC 

miRNA were defined as i) differentially altered in tumors versus non-malignant tissue based on a 

Wilcoxon Sign Rank with Benjamini-Hochberg (BH) multiple testing correction p<0.05, ii) 

over- or underexpressed in at least 25% of samples and <15% difference in frequency between 

subtypes OR over-/underexpression in >50% of both subtypes, and iii) no difference in 

expression or frequency of alteration between AC vs SqCC, based on permutation and Fisher's 

Exact tests with BH correction p>0.05. 

 

5.2.4 Statistical analysis of miRNA expression data 

Unsupervised hierarchical clustering using Ward's method was performed on tumor samples only 

(n=88), and non-malignant samples only (n=88) using Partek Genomics Suite software. A 

Fisher's Exact test was performed to assess the distribution of subtypes in tumor and non-

malignant profiles, with a p<0.05 considered significant.  

 

Principal component analysis was performed using miRNA sequencing data for AC and SqCC 

tumors in Matlab. All 47 subtype specific miRNAs were used to generate the principal 

components. Receiver Operating Characteristic (ROC) area under the curve (AUC) analysis was 

performed in GraphPad Prism Software on subtype specific miRNAs to determine the ability of 

these miRNAs to accurately discriminate AC from SqCC (p<0.05).  

 

To identify miRNAs associated with clinical features (gender, smoking status, stage and 

histology), a multivariate analysis of variance (MANOVA) on the 88 tumors with miRNA 

sequencing data was performed in R. A p<0.05 was considered significant. MANOVA results 

were used to confirm that the variance in subtype specific miRNA expression was in fact due to 

histology. 
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5.2.5 Validation in external cohorts 

Level 3 miRNA sequencing data was obtained from the TCGA for use as an external cohort for 

validation. Expression profiles were processed as described for 'Level 3 data' in the TCGA data 

compendium (2011 Cancer Genome Atlas Network). Data was downloaded for all patients with 

tumor and matched non-malignant tissue, which at the time included 35 AC and 35 SqCC. 

Subtype specific and NSCLC miRNAs were assessed using the same criteria applied in our 

initial discovery cohort, and only those passing all criteria were considered validated.  

 

5.2.6 Integration of DNA copy number and methylation with miRNA expression 

Affymetrix SNP 6.0 copy number and Illumina HM27K DNA methylation profiles were 

available for 77 (62 AC, 15SqCC) and 58 (45 AC, 13 SqCC) cases with miRNA sequencing, 

respectively. miRNA copy number and methylation status were integrated with expression data 

in order to determine the frequency of concerted DNA and expression alterations. Array data was 

processed as described in Chapter 2 and standard thresholds were used to define copy gain (>2.3 

copies), loss (<1.7 copies), DNA hypomethylation (∆β <-0.15) and hypermethylation (∆β>0.15). 

miRNAs were considered to be controlled by genetic or epigenetic mechanisms if concerted 

DNA disruption (copy number or DNA methylation changes) and miRNA expression changes 

were observed in a concordant direction (e.g. copy loss and underexpression) in >20% of cases. 

  

5.2.7 Target prediction, interaction networks and pathway analysis 

miRNAs identified as NSCLC or subtype specific were input into the microRNA Data 

Integration Portal v.2 (http://ophid.utoronto.ca/mirDIP), which integrates 13 microRNA target 

prediction algorithms and six microRNA prediction databases to predict miRNA-transcript 

(mRNA) interactions [191, 192]. For this study, we used stringent miRNA target prediction 

criteria by considering only predictions that were supported by at least six sources. Interactions 

between miRNAs and their predicted mRNA targets were then visualized as networks using 

NAViGaTOR v.2.14 (http://ophid.utoronto.ca/navigator) [193, 194]. Interaction networks were 

generated for subtype specific miRNAs as well as NSCLC miRNAs disrupted in >90% of cases. 

Pathway analysis was performed on all predicted mRNA targets (miRTarBase v3.5) of miRNAs 

disrupted in a subtype specific manner using Ingenuity Pathway Analysis. 
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5.2.8 Cell culture and manipulation of miR-1287 

Immortalized human bronchial epithelial cells courtesy of Dr. John Minna were maintained in 

KSFM supplemented with 5ng/μl EGF and 50ng/μl BPE. AC cell lines A549 and H1993 were 

obtained from the American Type Culture Collection and cultured and maintained in RPMI 

supplemented with 10% FBS and 0.1% penicillin-streptomycin (Invitrogen). HBECs and lung 

cancer cell lines were transfected with 20nM of miR-1287 mimic or a non-targeting control 

(Thermo Scientific) according to manufacturer's instructions. miR-1287 expression was verified 

by qRT-PCR 48 hours post-transfection and target gene expression by western blot 72 hours 

post-transfection. 

 

5.2.9 3'-UTR reporter assays 

A commercially available RAD9A 3'-UTR dual luciferase reporter plasmid (pEZX-RAD9A-

UTR) was purchased from GeneCopoeia. HBECs and lung AC cell lines were transfected with 

miR-1287 mimic or the non-targeting control for 24 hours and then the cells were transfected 

with the reporter vector. Luciferase assays were performed 48 hours later using the Luc-Pair miR 

Luciferase Assay kit (GeneCopoeia) and luminescence was measured on a luminometer. Firefly 

luciferase activity was normalized to Renilla luminescence to account for differences in 

transfection efficiency. 

  

5.2.10 qPCR of miRNA expression 

Quantitative real-time PCR analysis of miR-1287 was performed using the miRNA-specific 

TaqMan MicroRNA Assay Kit (Applied Biosystems) and an Applied Biosystems 7500 Fast Real 

Time PCR system. 10 nanograms of sample RNA was converted to cDNA using the TaqMan 

MicroRNA Reverse Transcription kit and 10μg of cDNA was combined with TaqMan Universal 

PCR Master Mix without AmpErase Uracil N-glycosylase and miRNA specific primers as per 

the manufacturer's instructions (Applied Biosystems). U6 small nuclear RNA was used as an 

endogenous control to normalize cDNA input. 
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5.2.11 Western blotting 

Protein lysates were collected and western blots performed as previously described [151]. 

Membranes were incubated with primary antibodies against RAD9A (ab70810, AbCam at 

1:1000) and TEAD3 (#13224, Cell Signaling at 1:1000) and GAPDH as a loading control 

(#2118, Cell Signaling at 1:50,000). Following primary antibody incubation, membranes were 

incubated with anti-rabbit HRP conjugated secondary antibodies (Cell Signaling #7076) and 

visualized by enhanced chemiluminescence.  

 

5.2.12 MTT assay 

MTT assays were performed as previously described [195] to assess cell viability following 

miR-1287 overexpression. Cells were seeded in triplicate in 96 well plates at optimal densities 

for growth (1000 cells/well for A549 and 1500 cells/well for H1993 and HBECs). 48 hours post 

transfection, viability was measured over five consecutive days and quantified by 

spectrophotometry. Experiments were performed in triplicate. 

 

5.2.13 Apoptosis, DNA damage and cell proliferation 

Apoptosis, DNA damage and cell proliferation were assessed by measurement of propidium 

iodide (PI) and Annexin staining, phospho-ɣH2AX and 5-bromo-2'-deoxyuridine (BrdU) 

incorporation, respectively (FITC Annexin V Apoptosis Detection Kit and Apoptosis, DNA 

Damage and Cell proliferation kit, BD Pharmigen). Cells were seeded in 6-well plates at a 

density of 1.5x105 for A549 and 2x105 for HBEC and H1993 and 24 hours after seeding they 

were transfected with miR-1287 mimic or non-targeting control. 48 hours after transfection, cells 

were treated with 10uM cisplatin for 4 hours, stained with BrdU and then allowed to recover for 

24 hours. Following recovery, cells were trypsinized, washed, and processed as per the 

manufacturer's instructions. Flow cytometry was performed using a FACSCanto II flow 

cytometer and analyzed with FACSDiva software (BD Biosciences). Results are reported as the 

average percent of positive staining cells ± SEM of triplicate experiments. 

 

 



111 

 

5.3 Results 

 

5.3.1 MiRNAs are differentially expressed between NSCLC tumors and non-malignant 

tissue and accurately segregate profiles based on malignancy. 

 Expression levels for 1372 unique miRNAs generated by miRNA sequencing of 176 

fresh-frozen NSCLC tumors and matched non-malignant tissues (66AC and 22 SqCC pairs, 

Table 5.1) were examined. To assess the similarity of miRNA expression profiles across tumors 

and matched non-malignant tissue, unsupervised hierarchical clustering was performed on 916 

miRNAs with detectable expression. Clustering revealed two distinct clusters; one comprised of 

all tumors and the other of all non-malignant tissues and two tumor samples, demonstrating that 

miRNA expression strongly differentiates tumors from normals (Figure 5.1A).  

 

 Based on the accuracy of clustering, we next sought to determine which miRNAs were 

differentially expressed between tumors and matched non-malignant tissue. 215 miRNAs met 

our criteria of being differentially altered in tumors vs. matched non-malignant tissue (Sign Rank 

with Benjamini-Hochberg correction p<0.05), and aberrantly expressed (2 fold or greater 

between tumor and normal) in at least 25% of samples. However, only 85 miRNAs had no 

significant difference in expression or frequency of alteration between subtypes (Fishers Exact 

test, BH p>0.05) and were deemed "true" NSCLC miRNAs. 18 miRNAs (12 OE, 6 UE, Table 

5.2) were altered in greater than 90% of all tumors, and principal component analysis of these 

miRNAs confirmed their ability to accurately discriminate tumors from non-malignant tissue 

(Figure 5.1B), highlighting the potential of these 18 miRNAs as biomarkers for NSCLC 

detection. Interestingly, PCA revealed tumors cluster more closely together than non-malignant 

tissues, suggesting there is greater inter-individual variance in miRNA expression in non-

malignant tissues than tumors (Figure 5.1B). 
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Figure 5.1 

 
Figure 5.1. miRNA expression profiles accurately segregate tumor and non-malignant tissue 

Clustering of 176 miRNA expression profiles (66 AC and 22 SqCC with matched non malignant 

tissue) revealed two distinct clusters associated with malignancy, one comprised of tumor 

samples (blue) and the other of all non-malignant tissues (red) and two tumor samples (A). 

Principal component analysis using expression of the 18 miRNAs altered in >90% of all cases 

accurately separated tumor and non-malignant tissue (B). Blue dots represent non-malignant 

tissue while red dots represent tumor samples. 

 

 

 

A. 

B. 
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Table 5.1 Patient demographics for all cases with miRNA sequencing data 

Feature AC (n=66) SqCC (n=22) Total (n=88) 
Stage    

I 41(62.1%) 7 (31.8%) 48 (54.5%) 
II 17 (25.8%) 10 (45.5%) 27 (30.7%) 
III 5 (7.6%) 4 (13.6%) 8 (9.1%) 
IV 2 (3.0%) 1 (4.5%) 3 (3.4%) 

Sex    
Female 44 (66.7%) 7 (31.8%) 51 (58%) 
Male 22(33.3%) 15 (68.2%) 37 (42%) 

Average Age 67 (45-90) 71 (58-86) 68 (45-90) 
Smoking Pack Years 47 48.6 47.4 
Years Quit 5.5 10.2 6.64 
 
 

 

Table 5.2 Alteration frequencies of the most frequently deregulated NSCLC miRNAs  

  
AC SqCC All Samples 

miRNA Alteration Freq OE Freq UE Freq OE Freq UE Freq OE Freq UE 
hsa-mir-210 OE 100% 0% 95% 0% 99% 0% 
hsa-mir-96 OE 98% 0% 100% 0% 99% 0% 

hsa-mir-130b OE 95% 0% 100% 0% 97% 0% 
hsa-mir-183 OE 94% 0% 100% 0% 95% 0% 
hsa-mir-345 OE 94% 2% 95% 0% 94% 1% 
hsa-mir-877 OE 94% 2% 95% 0% 94% 1% 
hsa-mir-331 OE 94% 0% 91% 5% 93% 1% 
hsa-mir-182 OE 94% 0% 86% 0% 92% 0% 
hsa-mir-708 OE 89% 0% 100% 0% 92% 0% 
hsa-mir-141 OE 92% 0% 86% 0% 91% 0% 

hsa-mir-193b OE 89% 3% 95% 0% 91% 2% 
hsa-mir-301b OE 89% 0% 95% 0% 91% 0% 
hsa-mir-144 UE 0% 98% 0% 100% 0% 99% 
hsa-mir-30a UE 0% 97% 0% 100% 0% 98% 
hsa-mir-451a UE 0% 97% 0% 91% 0% 95% 
hsa-mir-143 UE 0% 97% 0% 82% 0% 93% 
hsa-mir-486 UE 0% 94% 0% 86% 0% 92% 
hsa-mir-101 UE 0% 89% 0% 95% 0% 91% 
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5.3.2  Lung AC and SqCC display different patterns of miRNA expression 

 AC and SqCC develop through distinct patterns of genomic alterations affecting unique 

protein coding genes [146]. Therefore, we next sought to investigate whether miRNAs display 

subtype specific patterns of expression that can discriminate subtypes. Unsupervised hierarchical 

clustering of tumor and non malignant tissue independently revealed similar results; one of the 

clusters contained primarily AC samples, while the other cluster contained a mix of both AC and 

SqCC (Figure 5.2A-B). The distribution of AC and SqCC was significantly different between 

clusters in both tumors (Fisher's Exact test, p=0.0063) and non-malignant tissue (p=0.0097) 

suggesting that histological subtypes influence miRNA expression in tumors and non-malignant 

lung tissue. Analysis of AC and SqCC non-malignant tissue revealed 17 differentially expressed 

miRNAs (8 OE and 9 UE, permutation test BH p<0.05 and fold change >2), several of which 

have been implicated in cancer and two (miR-107 and miR-429) in NSCLC [196, 197]. 

 

 To identify miRNAs most likely involved in subtype specific tumorigenesis, we applied a 

series of statistical tests and fold change criteria to the 916 miRNAs with detectable expression. 

47 miRNAs met all of our criteria and were deemed subtype specific; 12 OE and 1 UE in AC 

and 25 OE and 4 UE in SqCC (Table 5.3). The majority of subtype specific miRNAs were 

overexpressed (37 vs. 5) and SqCC specific (29 vs. 13, Figure 5.2C&D). The increased number 

of SqCC specific miRNAs relative to AC specific miRNAs mirrors the findings in Chapter 2, in 

which a greater number of SqCC specific alterations were identified. In addition, we identified 5 

miRNAs (miR-203, -326, -375,-378a and -4662a) with bi-directional disruption (OE in one 

subtype and UE in the other or vice versa), suggesting that while these miRNAs are disrupted in 

both subtypes, they display subtype specific patterns of alteration. Area under the curve (AUC) 

analysis of individual miRNAs revealed 43/47 (91%) subtype specific miRNAs were able to 

distinguish between subtypes (p<0.05, Table 5.3), with 13 miRNAs having an AUC >0.8. Two 

miRNAs, miR-944 (OE in SqCC), and miR-375 (OE in AC and UE in SqCC), had AUCs over 

0.9 (0.9669 and 0.9001 respectively) suggesting that these miRNAs may be the most robust in 

discriminating subtypes (Figure 5.2 E&F). Interestingly, 4 of the 5 miRNAs with the highest 

AUCs (miR-944, -30b, -152 and -4652) were all overexpressed in SqCC indicating that miRNAs 

overexpressed in SqCC may be the most useful for differentiating subtypes.  
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Figure 5.2 

 
Figure 5.2. miRNAs are disrupted in a subtype specific manner that can discriminate between subtypes 

Hierarchical clustering of tumors (A) and non-malignant tissue (B) identifies two clusters, one 

comprised of primarily AC and the other of a mix of AC and SqCC. Venn diagram illustrating 

the differentially expressed miRNA in AC and SqCC relative to matched non-malignant tissue. 

Overexpressed miRNA are depicted in  (C) and underexpressed miRNA in (D). AUC curves of  

miR-944 (E) and miR-375 (F), the two subtype specific miRNA most accurate at discriminating 

AC and SqCC tumors. 
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Table 5.3  AUC results of all BCCRC subtype specific miRNA  

miRNA Alteration AUC pValue 
hsa-mir-1251 AC OE 0.6873 0.008792 
hsa-mir-1287 AC OE 0.7989 <0.0001 
hsa-mir-26b AC OE 0.7018 0.00477 
hsa-mir-3189 AC OE 0.8695 <0.0001 
hsa-mir-320b AC OE 0.7163 0.002492 
hsa-mir-320d AC OE 0.8457 <0.0001 
hsa-mir-4724 AC OE 0.7924 <0.0001 
hsa-mir-4728 AC OE 0.8526 <0.0001 
hsa-mir-489 AC OE 0.7225 0.001865 
hsa-mir-491 AC OE 0.7211 0.001991 
hsa-mir-551a AC OE 0.7255 0.001865 
hsa-mir-5698 AC OE 0.8354 <0.0001 
hsa-mir-204 AC UE 0.6784 0.0126 
hsa-mir-326 AC OE/SqCC UE 0.6419 0.04719 
hsa-mir-375 AC OE/SqCC UE 0.9001 <0.0001 
hsa-mir-203 AC UE/SqCC OE 0.7287 0.001386 
hsa-mir-378a AC UE/SqCC OE 0.7658 0.000202 
hsa-mir-4662a AC UE/SqCC OE 0.8119 <0.0001 
hsa-mir-105 SqCC OE 0.8233 <0.0001 
hsa-mir-1227 SqCC OE 0.836 <0.0001 
hsa-mir-1237 SqCC OE 0.7803 <0.0001 
hsa-mir-1295a SqCC OE 0.6798 0.01193 
hsa-mir-1343 SqCC OE 0.7107 0.003206 
hsa-mir-152 SqCC OE 0.8691 <0.0001 
hsa-mir-15b SqCC OE 0.7679 0.00018 
hsa-mir-1910 SqCC OE 0.7321 0.001172 
hsa-mir-3619 SqCC OE 0.6102 0.1232 
hsa-mir-3682 SqCC OE 0.7417 0.000724 
hsa-mir-378b SqCC OE 0.8281 <0.0001 
hsa-mir-4488 SqCC OE 0.6674 0.01924 
hsa-mir-4497 SqCC OE 0.6921 0.0072 
hsa-mir-4652 SqCC OE 0.8561 <0.0001 
hsa-mir-4713 SqCC OE 0.7314 0.001212 
hsa-mir-4778 SqCC OE 0.6646 0.02131 
hsa-mir-4787 SqCC OE 0.7094 0.003411 
hsa-mir-651 SqCC OE 0.6784 0.0126 
hsa-mir-663a SqCC OE 0.6977 0.005702 
hsa-mir-767 SqCC OE 0.8058 <0.0001 
hsa-mir-873 SqCC OE 0.7066 0.003858 
hsa-mir-876 SqCC OE 0.7163 0.002492 
hsa-mir-93 SqCC OE 0.6236 0.08374 
hsa-mir-942 SqCC OE 0.5634 0.3754 
hsa-mir-944 SqCC OE 0.9669 <0.0001 
hsa-mir-135a SqCC UE 0.7693 0.000166 
hsa-mir-181d SqCC UE 0.5909 0.2034 
hsa-mir-30b SqCC UE 0.75 0.000473 
hsa-mir-338 SqCC UE 0.6908 0.007626 
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5.3.3 Validation of differentially expressed miRNAs 

 Although a number of miRNA profiling studies have been performed in lung cancer, 

miRNA sequencing data is still quite limited. In order to validate the findings from our study and 

ensure we proceed with only the most robust targets, we downloaded miRNA sequencing data 

for 219 lung AC and 367 SqCC from the Cancer Genome Atlas (TCGA). We limited the 

validation cohort to only those tumors with patient matched non-malignant tissue and current or 

former smokers in order to replicate our original analysis; resulting in 33AC and 35 SqCC pairs 

for validation. Of our 85 NSCLC miRNAs, 76 were measurable in TCGA cohorts and 51% of 

these were validated as common to NSCLC. Of the 18 miRNAs that were altered in >90% of all 

NSCLC cases, 16 (89%) validated in the TCGA, with the other 2 (miR-301b, and -101) identified 

as subtype specific miRNAs in SqCC. Impressively, of the 16 miRNAs that validated as NSCLC 

miRNAs, all were altered in >70% of cases, and 3 (miR-210, -130, -183) were altered in >90%, 

suggesting this panel of miRNAs are robustly and recurrently altered in NSCLC (Table 5.4). 

Despite identifying a greater number of subtype specific miRNAs in the TCGA set (63 vs. 47), 

likely because of the increased SqCC cohort size, subtype specific miRNA validation in the 

TCGA dataset was surprisingly low, with only 27% of the 33 assessed miRNAs validating. All 

miRNAs, both subtype specific and NSCLC (n=48) that validated in the TCGA dataset are 

shown in Table 5.4. 
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Table 5.4 Subtype  specific and NSCLC miRNAs that validated in the TCGA cohort 

  
 Frequency of Alteration in BCCRC  Frequency of Alteration in TCGA 

miRNA Alteration 
 AC 
OE 

 AC 
UE 

 SqCC 
OE 

 SqCC 
UE 

 AC 
OE 

 AC 
UE 

 SqCC 
OE 

 SqCC 
UE 

miR-1287 AC OE 50.0% 1.5% 9.1% 9.1% 48.5% 0% 11.4% 22.9% 
miR-326 AC OE/SqCC UE 30.3% 12.1% 9.1% 50.0% 60.6% 6.1% 5.7% 65.7% 
miR-375 AC OE/ SqCC UE 65.2% 6.1% 13.6% 68.2% 69.7% 9.1% 8.6% 71.4% 

miR-1227 SqCC OE 22.7% 1.5% 59.1% 0% 9.1% 0% 42.9% 0% 
miR-1910 SqCC OE 15.2% 0% 54.5% 0% 0% 0% 42.9% 0% 
miR-651 SqCC OE 30.3% 15.2% 68.2% 0% 33.3% 0% 57.1% 11.4% 
miR-944 SqCC OE 31.8% 12.1% 95.5% 0% 39.4% 12.1% 85.7% 8.6% 

miR-1295a SqCC OE 12.1% 0% 40.9% 0% 9.1% 0% 45.7% 0% 
miR-338 SqCC UE 1.5% 66.7% 0% 100.0% 0% 54.5% 2.9% 85.7% 

let-7c NSCLC UE 1.5% 72.7% 0% 50.0% 0% 63.6% 2.9% 60.0% 
miR-1247 NSCLC UE 3.0% 77.3% 0% 59.1% 9.1% 63.6% 11.4% 51.4% 
miR-126 NSCLC UE 4.5% 50.0% 9.1% 40.9% 0% 51.5% 5.7% 68.6% 
miR-144 NSCLC UE 0.0% 98.5% 0% 100.0% 0% 87.9% 2.9% 80.0% 
miR-223 NSCLC UE 1.5% 74.2% 0% 50.0% 3.0% 36.4% 8.6% 42.9% 
miR-451a NSCLC UE 0% 97.0% 0% 90.9% 3.0% 81.8% 2.9% 85.7% 
miR-486 NSCLC UE 0% 93.9% 0% 86.4% 0% 81.8% 2.9% 85.7% 

miR-1180 NSCLC OE 40.9% 10.6% 27.3% 0% 51.5% 0% 51.4% 0% 
miR-1301 NSCLC OE 87.9% 0% 86.4% 0% 78.8% 0% 71.4% 0% 
miR-130b NSCLC OE 95.5% 0% 100.0% 0% 93.9% 0% 97.1% 0% 
miR-141 NSCLC OE 92.4% 0% 86.4% 0% 84.8% 0% 71.4% 2.9% 
miR-148a NSCLC OE 54.5% 1.5% 72.7% 0% 45.5% 0% 31.4% 8.6% 
miR-17 NSCLC OE 43.9% 0% 54.5% 0% 48.5% 0% 40.0% 0% 
miR-18a NSCLC OE 68.2% 0% 77.3% 0% 45.5% 6.1% 57.1% 2.9% 

miR-193b NSCLC OE 89.4% 3.0% 95.5% 0% 84.8% 0% 88.6% 2.9% 
miR-199a NSCLC OE 50.0% 3.0% 59.1% 0% 39.4% 0% 31.4% 8.6% 
miR-199b NSCLC OE 40.9% 3.0% 50.0% 9.1% 42.4% 0% 31.4% 5.7% 
miR-200c NSCLC OE 63.6% 0% 68.2% 0% 45.5% 0% 54.3% 0% 
miR-20a NSCLC OE 34.8% 3.0% 45.5% 0% 45.5% 6.1% 42.9% 0% 
miR-214 NSCLC OE 83.3% 3.0% 90.9% 4.5% 45.5% 6.1% 31.4% 11.4% 
miR-219 NSCLC OE 57.6% 6.1% 68.2% 0% 51.5% 3.0% 57.1% 0% 
miR-301a NSCLC OE 84.8% 0% 81.8% 0% 78.8% 0% 71.4% 0% 
miR-3127 NSCLC OE 59.1% 3.0% 59.1% 0% 81.8% 0% 71.4% 0% 
miR-324 NSCLC OE 80.3% 0% 81.8% 0% 72.7% 0% 57.1% 2.9% 
miR-335 NSCLC OE 31.8% 4.5% 40.9% 0% 33.3% 9.1% 40.0% 5.7% 

miR-3607 NSCLC OE 75.8% 1.5% 59.1% 9.1% 93.9% 0% 57.1% 8.6% 
miR-3677 NSCLC OE 45.5% 7.6% 54.5% 4.5% 69.7% 0% 71.4% 2.9% 
miR-4326 NSCLC OE 77.3% 0% 90.9% 0% 48.5% 0% 62.9% 0% 
miR-484 NSCLC OE 56.1% 1.5% 59.1% 0% 30.3% 3.0% 34.3% 5.7% 
miR-505 NSCLC OE 60.6% 1.5% 72.7% 0% 81.8% 0% 54.3% 2.9% 
miR-625 NSCLC OE 60.6% 4.5% 77.3% 0% 75.8% 0% 54.3% 2.9% 
miR-654 NSCLC OE 42.4% 19.7% 50.0% 9.1% 48.5% 6.1% 40.0% 5.7% 
miR-744 NSCLC OE 68.2% 0% 77.3% 0% 57.6% 0% 65.7% 0% 
miR-758 NSCLC OE 40.9% 15.2% 54.5% 4.5% 42.4% 3.0% 31.4% 8.6% 
miR-760 NSCLC OE 65.2% 0% 0% 77.3% 57.6% 0% 85.7% 0% 
miR-766 NSCLC OE 77.3% 1.5% 81.8% 0.0% 81.8% 0% 57.1% 5.7% 
miR-874 NSCLC OE 69.7% 3.0% 90.9% 4.5% 51.5% 0% 45.7% 8.6% 
miR-877 NSCLC OE 93.9% 1.5% 95.5% 0% 66.7% 0% 74.3% 0% 
miR-940 NSCLC OE 80.3% 3.0% 100.0% 0% 66.7% 0% 74.3% 0% 
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5.3.4 Copy number alterations contribute to aberrant miRNA expression 

 To determine whether differential expression of any of the validated miRNAs could be 

the result of recurrent DNA level alterations, we examined copy number status and DNA 

methylation levels of the 48 differentially expressed miRNAs. Due to the lack of miRNAs 

represented on the HM27K Illumina Methylation platform (only 110 miRNAs have probes), only 

4 of our validated miRNAs (miR-17, -18a, 20a and -219) were measurable, and none were 

frequently hypo- or hypermethylated in any of the cases. 62/66 AC and 15/22 SqCC samples 

with miRNA sequencing data also had copy number profiles. A number of the validated 

miRNAs mapped to similar genomic locations, including 1q24.3, 12p13.31, 13q31.3, 14q32.31, 

16p13 and 17q11.2, of which 1q, 14q32.31 and 17q11.2 are known to be recurrently amplified in 

NSCLC [37-39]. 9 miRNAs (miR-130b, -141, -148a, -301a, -484, -651, -940, -944 and -4326) 

had copy number alterations and concordant miRNA expression changes affecting >20% of 

cases, however, only miR-141 and miR-301a had a statistically significant association between 

copy number and expression (Mann Whitney U test, p<0.05). Together, our results suggest that 

while copy number alterations occur, they are not the driving force of over- or underexpression 

for the majority of the NSCLC and subtype specific miRNAs we identified. 

 

5.3.5 Predicted targets of subtype miRNAs are associated with distinct pathways 

 In an attempt to elucidate the signaling pathways and biological processes disrupted by 

our validated subtype specific miRNAs, we identified their predicted mRNA targets using 

miRDIP with stringent filtering criteria (prediction by 6 algorithms). The 5 OE SqCC miRNAs 

were predicted to target 849 unique genes, including known tumor suppressors and oncogenes 

HIF1a, EYA4, BCL2 and IGF1R. Visualization of miRNA-mRNA interactions in NAViGaTOR 

showed a number of mRNAs to be targets of multiple miRNAs, with 14 predicted to be targets of 

4 SqCC miRNAs (Figure 5.3). Pathway analysis of all SqCC predicted targets revealed 

enrichment of target genes in the epithelial to mesenchymal transition, molecular mechanisms of 

cancer, TGFB, PTEN and VEGF signaling pathways as well as post-translational modification, 

cell morphology and cellular movement and DNA replication, recombination and repair 

functions. The networks of these functions were centered around CUL3, JNK and histone 

proteins, respectively. 
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 Interestingly, miRNA-mRNA interactions of the two validated, bi-directionally altered 

miRNAs miR-326 and miR-375, revealed a large number (37/112) and significant enrichment of 

genes involved in cellular fate and organization (Fisher's Exact Test, p=2.2x10-12, Figure 5.4). 

Ingenuity Pathway Analysis of the 112 target genes further supported this finding, with tissue 

development, cell morphology, assembly and organization and cellular function and maintenance 

ranking as the top functions of these genes. These findings suggest that miR-326 and miR-375 

have differing roles within AC and SqCC and may play a role in maintaining cell function and 

lineage, providing insight into the reason for their differential disruption.  

 

5.3.6 Lung cancer prognostic genes are targeted by NSCLC miRNAs 

 To assess the prognostic implications of the NSCLC miRNAs altered in >90% of cases, 

we aligned the list of predicted mRNA targets for each miRNA from miRDIP to a curated list of 

1,066 lung cancer prognostic genes [198]. Of the 1,066 prognostic genes, 42 (4%) were predicted 

targets of the 16 validated miRNAs (Figure 5.5). The majority of miRNAs were highly 

connected to multiple prognostic genes. The RNA bindings protein QKI which regulates pre-

mRNA splicing and mRNA stability was the most targeted mRNA, predicted to be a target of 5 

unique miRNAs, highlighting the potential importance of this gene to NSCLC (Figure 5.6).  

Conversely, miR-141 and miR-182, both of which are frequently overexpressed were connected 

to the most prognostic genes (n=9). This data emphasizes the biological and prognostic relevance 

of these NSCLC miRNAs and further supports the potential of these miRNAs as biologically 

based biomarkers for lung cancer detection. 
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Figure 5.3 

 
Figure 5.3  miRNA-mRNA interaction network of overexpressed SqCC specific miRNA
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Figure 5.3 miRNA-mRNA interaction networks of overexpressed SqCC specific miRNAs 

Predicted mRNA targets of overexpressed SqCC specific miRNAs were identified using miRDIP 

and miRNA-mRNA interactions visualized in NAViGaTOR. Grey lines indicate miRNA-mRNA 

interactions and predicted targets are depicted as circular nodes with colouring corresponding to 

Gene Ontology terms associated with gene function. SqCC specific miRNA were predicted to 

target 849 unique genes, but only those genes targeted by multiple miRNAs are displayed.  

 

 

Figure 5.4 

 

Figure 5.4. Bi-directional miRNAs target genes involved in cellular fate and organization 

miRNA-mRNA interactions of the bi-directionally altered miRNA miR-326 and miR-375. 

Target genes are coloured based on their Gene Ontology functions and were significantly 

enriched for genes involved in cellular fate and organization (Fisher's test p<0.0001).
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Figure 5.5 

 
Figure 5.5 Predicted interaction between NSCLC miRNAs and lung cancer prognostic genes 

miRNAs frequently disrupted in NSCLC were input into miRDIP to identify predicted targets. 

The network of miRNA-mRNA interactions was visualized in NAViGaTOR, but restricted to 

those targets with known prognostic significance in lung cancer (n=1066). In total, the network is 

comprised of 13 miRNAs and 42 prognostic target genes with most miRNAs well connected to 

prognostic genes. miR-141 and miR-182 are the most highly connected to prognostic gene 

targets. Connections between miRNAs and mRNAs are illustrated by grey lines. Predicted 

targets are depicted as elliptical nodes with colouring corresponding to Gene Ontology terms 

associated with gene function. Vertical mRNA nodes represent genes frequently upregulated in 

the signature while wide nodes represent downregulated genes. Fuzzy green clusters depict all 

other predicted mRNA targets not associated with prognostic genes. 
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5.3.7 MiR-944 overexpression is highly specific to SqCC 

 Of the miRNAs regulated by copy number, miR-944 was the most frequently altered; 

gained and overexpressed in over 50% of SqCC cases and overexpressed without any known 

DNA alteration in another 40% of cases. miR-944 is lowly expressed in both AC and SqCC non-

malignant tissue (1.35 ± 0.23 RPKM in AC and 1.42 ± 0.34 RPKM in SqCC, Student's t test 

p=0.87), with no significant difference in expression between AC tumors and non-malignant 

tissue (7.7 ± 3.99 RPKM, Student's t- test, p=0.11, Figure 5.6A). However, in SqCC tumors, 

miR-944 expression is dramatically increased (258.8 ± 75.13 RPKM,) relative to both AC tumors 

(Student's t-test p=0.0014) and SqCC non-malignant tissue (Student's t-test p<0.001, Figure 

5.6A), with an average fold change of 172.8. A similar pattern of expression was seen in samples 

from the TCGA (Figure 5.6B). Given this dramatic difference in expression, it is not surprising 

miR-944 was the best miRNA to accurately distinguish between subtypes (BCCRC: AUC 

=0.967, p<0.0001, Figure 5.2E, TCGA: AUC=0.858, p<0.001, data not shown).  

 

 While miR-944 may be a useful marker for subtype discrimination given its subtype 

specificity and frequent overexpression in SqCC, we were curious as to the target genes and 

pathways predicted to be disrupted by this miRNA, and the contribution of miR-944 to SqCC 

tumorigenesis. miR-944 was predicted by miRDIP to target 305 unique mRNAs, including the 

tumor suppressors APC, EYA4 and NF1. Pathway analysis of miR-944 predicted targets revealed 

multiple networks associated with cellular development and cell death and survival, that were 

centered around ERK signaling, although ERK itself was not a predicted target (Figure 5.6C). 

miR-944 targets were also significantly enriched for the immune related functions of NF-κB and 

TGFβ signaling. The high frequency of miR-944 overexpression and the predicted disruption of 

key signaling pathways suggests that miR-944 may play a pivotal role SqCC tumorigenesis 
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Figure 5.6 

 
Figure 5.6 miR-944 overexpression is specific to SqCC and targets ERK signaling. 

miR-944 expression in AC and SqCC tumors and non-malignant tissue in the BCCRC (A) and 

TCGA (B) cohorts. Blue bars represent non-malignant tissue and red bars tumors. Error bars 

depict the standard error of the mean. (C) ERK signaling components are downregulated (shown 

in green) by the predicted targets of miR-944. Solid lines represent direct interactions while 

dotted lines represent indirect gene interactions. Corkscrews represent enzymes, three pronged 

shapes are kinases, thimble shapes are transporters, cylinders are ion channels and circular 

molecules encompass all other gene products.  
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5.3.8 MiR-1287 inhibits expression of RAD9A by binding its 3'-UTR 

 miR-1287 which was overexpressed in 50% of AC, was the only AC specific miRNA to 

validate in the TCGA. Target prediction of miR-1287 identified 5 predicted targets, 3 of which 

(RAD9A, TEAD3 and SLC8A1) were targeted exclusively in AC. Both RAD9A, a component of 

the 9-1-1 cell cycle checkpoint complex which plays a central role in DNA damage repair and 

cell cycle arrest, and TEAD3, a transcription factor involved in the Hippo signaling pathway have 

been implicated in tumorigenesis. Transfection of miR-1287 mimic oligonucleotides significantly 

reduced RAD9A but not TEAD3 protein levels compared to non-targeting control 

oligonucleotides (Figure 5.7A). To determine whether RAD9A is a direct target of miR-1287, a 

RAD9A 3'UTR dual luciferase reporter construct was co-transfected into cell lines with miR-

1287 mimic or control oligonucleotides and luciferase activity measured 48 hours post-

transfection. Overexpression of miR-1287 significantly reduced luciferase activity relative to the 

control olignonucleotides, confirming miR-1287 directly inhibits RAD9A (Figure 5.7B). Taken 

together, these results strongly suggest that miR-1287 post-transcriptionally inhibits RAD9A by 

directly binding the 3'-UTR of RAD9A mRNA and preventing translation.  

 

5.3.9 Overexpression of miR-1287 enables proliferation of damaged cells in LCCL 

 To investigate whether overexpression of miR-1287 is biologically relevant to the 

development of a malignant phenotype, we overexpressed miR-1287 in HBEC, A549 and H1993 

cell lines (Figure 5.7C). In HBECs, treatment of transfected cells with 10uM of cisplatin for four 

hours reduced proliferation and apoptosis, suggesting these cells may be undergoing senescence 

(Figure 5.7D and E). Conversely, overexpression in LCCLs had the opposite effect, inducing 

apoptosis and increasing proliferation relative to controls (Figure 5.7D and E). A greater 

proportion of miR-1287 OE cells were positive for both phospho ɣH2AX and BrdU in LCCLs, 

suggesting that in these lines, miR-1287 inhibits DNA damage repair through suppression of 

RAD9A, enabling proliferation of damaged cells. Induction of phenotypic changes in non-

malignant HBECs and AC cell lines suggests that overexpression of miR-1287 is associated with 

malignant changes.  
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Figure 5.7   

 
Figure 5. 7. miR-1287 induces a malignant phenotype through the suppression of RAD9A 

(A) Western blot analysis of TEAD3 and RAD9A following treatment with 20nM control or 

miR-1287 oligonucleotides. (B) Luciferase assays of pEZX-RAD9A-3'UTR reporter in indicated 

cells transfected with control olignonucleotides (black) or miR-1287 oligonucleotides (grey). (C) 

Levels of miR-1287 expression following transfection measured by qRT-PCR. Representative 

images of the effect of miR-1287 overexpression on apoptosis (D) and DNA damage repair 

(pH2AX) and proliferation (BrdU incorporation) following treatment with cisplatin. (E) Error 

bars represent standard error of the mean of triplicate experiments, *p<0.05, ***p<0.0001.   
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5.4 Discussion 

 Within the last decade, ncRNAs especially miRNAs, have emerged as key players in 

tumorigenesis due to their involvement in numerous biological processes. While several studies 

have shown that miRNA signatures can distinguish AC and SqCC, the majority of these studies 

focus only on miRNAs that are differentially expressed between tumor tissues, with little use of 

non-malignant tissue as a baseline [199-201]. A lack of investigation into the biological roles of 

these differentially altered miRNAs has resulted in a limited understanding of how miRNAs 

contribute to subtype tumorigenesis. In this study, we performed miRNA sequencing on a cohort 

of AC and SqCC tumors with patient matched non-malignant tissue in an attempt to generate the 

first unbiased and comprehensive analysis of miRNA deregulation in NSCLC subtypes and to 

identify subtype specific miRNAs that may contribute to the distinct clinical phenotypes of AC 

and SqCC. As smoking is known to lead to different patterns of genomic alterations and has been 

shown to influence miRNA expression patterns (Vucic et al., Unpublished), we limited our 

analysis to current and former smokers in order to eliminate the confounding effects of smoking. 

  

 Validation of profiling results is essential to ensure robust findings and eliminate 

potential artifacts. The TCGA is the largest public repository of lung AC and SqCC miRNA 

expression data, and the only one generated by sequencing. Despite hundreds of tumor profiles, 

fewer than 80 patient matched non-malignant tissues have profiles, significantly limiting the 

number of available cases for validation. Nevertheless, we used this cohort to validate the 85 

NSCLC and 47 subtype specific miRNAs we identified. The overall validation rate of our 

subtype specific and NSCLC miRNAs was surprisingly low (48/132, 36%). Analysis of the 

TCGA data revealed lower detection sensitivity (Vucic et al., unpublished), which could 

partially explain the poor validation rates, especially in AC where heterogeneity is known to be a 

major factor. Discrepancies in collection of non-malignant tissue and microdissection between 

our cohort and the TCGA's may also contribute to this disparity. Despite a low validation rate, 

we feel confident that the miRNAs that did validate represent the most robust candidates for 

further examination. As additional sequencing data emerges, validation in other cohorts will 

provide further insight into the most recurrently altered and differentially expressed miRNAs 

between subtypes. 
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  The identification of miRNAs that were aberrantly expressed in greater than 90% of 

cases suggests that these miRNAs are important in lung tumor biology, regardless of subtype. 

The high validation rate of these miRNAs in the TCGA (16/18), and the fact that several of these 

miRNAs have been previously implicated in tumorigenesis, confirms the importance of these 

miRNAs to lung tumor biology. Notably, miR-126, -130b, -144, -451a and -486 were identified 

in meta-analyses of miRNA profiling studies comparing tumor tissue to non-malignant tissue, 

further validating the prevalence of their disruption in NSCLC [202, 203]. These findings in 

conjunction with the observation that a number of lung cancer prognostic genes were predicted 

targets of these aberrantly expressed miRNAs (Figure 5.6), provides additional support to the 

relevance of these miRNAs in tumor biology and suggests they may be biologically relevant 

biomarkers. As miRNAs are known to circulate throughout the body with substantial stability, 

analysis of these miRNAs in blood samples and large sample cohorts to determine their potential 

as prognostic and/or diagnostic blood based biomarkers of lung cancer is warranted. 

 

 Hierarchical clustering of tumor and non-malignant tissue miRNA sequencing profiles 

revealed miRNA expression is associated with histology, in agreement with previous studies 

[199, 201, 204, 205]. Not surprisingly, it also suggests that heterogeneity amongst subtypes is 

present. The identification of subtype specific miRNAs demonstrates that like protein coding 

genes, disruption of distinct miRNAs underlie tumorigenesis of AC and SqCC. Despite a larger 

AC cohort, the majority of subtype specific miRNAs identified were SqCC specific, mimicking 

our findings in Chapter 2. The greater prevalence of overexpressed subtype specific miRNAs, 

suggests that most deregulated miRNAs function to suppress tumor suppressor genes. Of the 9 

validated subtype specific miRNAs, 4 (miR-326 OE in AC and UE in SqCC, -338 UE in SqCC, -

375 OE in AC and UE in SqCC and -944 OE in SqCC) have been previously identified as 

subtype specific, and all in the same subtype and same direction as we observed [204-207].  

 

 miR-375 is the only subtype specific miRNA to be implicated in tumorigenesis, let alone 

lung cancer. Loss of miR-375 expression has been observed in multiple cancer types and is 

associated with suppression of cancer hallmarks through the targeting of oncogenes including 

IFG1R, PDK1 and JAK2 [207]. While underexpression of miR-375 is most common, in breast 
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and prostate cancer, miR-375 is up-regulated relative to normal tissues and alters proliferation 

[208]. Interestingly, studies of esophageal cancer observed a similar pattern of subtype specific 

expression, with AC tumors having a 6-fold higher expression than SqCC tumors [209], however 

stable introduction of miR-375 into A549 lung AC cells failed to induce a significant inhibition 

in growth [210]. Taken together, these findings suggest that miR-375 functions as both a tumor 

suppressive and oncogenic miRNA and that its function is likely context dependent, supporting 

our observation of its bi-directional alteration in NSCLC subtypes. 

 

 To date, miRNA profiling studies have identified numerous miRNAs differentially 

expressed between AC and SqCC, and correlated these with clinical features such as survival and 

prognosis. However, none of these studies have assessed the functional consequences of this 

disruption. To provide insights into the differential oncogenic mechanisms disrupted by subtype 

specific miRNAs, we performed network and pathway analysis on miRDIP predicted targets of 

subtype specific miRNAs. The top SqCC gene networks were associated with post-translational 

modification and DNA replication, recombination and repair, corroborating the findings in 

Chapter 2 and further supporting the relevance of disruption to histone modifying enzymes in 

SqCC. In Chapter 3, analysis of the KEAP1-CUL3 E3 ubiquitin ligase complex revealed this 

complex to be differently altered between subtypes, with loss of CUL3 occurring preferentially 

in SqCC [151]. Interestingly, the most significant SqCC network disrupted by SqCC specific 

miRNAs was centered around multiple CUL proteins, specifically CUL2, CUL3 and CUL5. All 

three of these CUL proteins are components of different E3 ubiquitin ligase complexes that 

ubiquitinate key tumor suppressors and oncogenes including JAK2, TP53, HIF1a and NRF2 

[115, 117, 211-213]. As we demonstrated, loss of the Cullin component disrupts the function of 

the complex, leading to disruption of substrate regulation and promotion of tumorigenesis [151]. 

Mutation and copy loss of CUL3 in SqCC has been shown by us and others, however, our 

findings suggest that multiple cullin proteins may be underexpressed in SqCC due to aberrant 

miRNA expression. Validation of these proteins as direct targets of the predicted miRNA will be 

essential in further establishing the role of cullin proteins in SqCC tumorignesis. 
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 miR-944 was by far the most frequently deregulated SqCC specific miRNA we  

identified, overexpressed in 96% and 86% of the BCCRC and TCGA cohorts, respectively.  

Examination into the genomic coordinates of miR-944 revealed it to be located at 3q28. 

Amplification of 3q in SqCC is one of the most well characterized and consistent copy number 

differences between AC and SqCC [41], and offers an explanation into the frequent copy gain, 

overexpression and subtype specificity of miR-944. Interestingly, the miR-944 transcript is 

located within the TP63 transcript, a widely used immunohistochemical marker to define lung 

SqCC. This overlap with TP63 may explain why miR-944 was so accurate in discriminating 

subtypes and supports the notion that miR-944 could be a useful diagnostic biomarker for SqCC. 

The identification of disrupted ERK signaling by miR-944 predicted targets highlights a potential 

mechanism through which miR-944 may contribute to SqCC tumorigenesis. Given the high 

frequency of miR-944 disruption in SqCC, investigation into its biological relevance may 

provide novel insight into mechanisms of SqCC pathogenesis. 

 

 With only one AC specific miRNA validating, pathway analysis would be uninformative, 

especially given that we identified only 5 predicted targets. As two of the predicted targets have 

been implicated in tumorigenesis but little is known about miR-1287, we explored the role of 

miR-1287 in the pathogenesis of lung AC. We have shown a tumor promoting role of miR-1287, 

with overexpression in LCCLs promoting the survival and proliferation of damaged, genetically 

unstable cells. Conversely, overexpression in HBECs resulted in a reduction of apoptosis and 

proliferation, suggesting that non-malignant cells may induce a senescent state as a tumor 

suppressive mechanism, however this needs to be further explored. Moreover, we validated 

RAD9A as a target of miR-1287. RAD9A is a cell cycle checkpoint protein, and together with 

RAD1 and HUS1 forms the 9-1-1 complex, which plays a central role in activation of DNA 

damage induced checkpoints [214, 215]. In response to DNA damage, RAD17 loads the 9-1-1 

complex around DNA lesions, facilitating phosphorylation and activation of CHK1 kinase- the 

key event that determines cell survival following genotoxic stress [214, 215]. RAD9A is the key 

component of the 9-1-1 complex due to the presence of a nuclear localization sequence [215]. 

Single nucleotide polymorphisms within RAD9A are associated with an increased susceptibility 

for lung AC, further supporting a role for this gene in lung AC [216]. The identification of a 
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malignant phenotype associated with miR-1287 overexpression confirms that our analysis 

approach accurately identifies miRNAs involved in subtype tumor biology. Importantly, our 

findings highlight the contribution of miRNA dysregulation to lung cancer biology and suggests 

that analysis of the other subtype specific miRNAs, the functions of which are largely unknown, 

will provide further insight into the molecular mechanisms underlying AC and SqCC.  

 

 While our analysis identified numerous subtype specific and NSCLC miRNAs, we 

recognize that the stringent criteria we used may have excluded true subtype specific miRNAs. 

For example, miR-205 and miR-21 which have been reported to be overexpressed in SqCC and 

NSCLC respectively in numerous studies [60, 188, 202], failed to meet our criteria. Despite 

having significantly different expression between subtypes, miR-205 was not differentially 

altered and therefore was not considered subtype specific. Similarly miR-21, despite being 

frequently overexpressed in both subtypes (68% in AC and 77% in SqCC), was found to have 

significantly different expression between subtypes. The goal of this work was to identify 

miRNAs that were either significantly different between subtypes, or extremely similar. 

Therefore, although our list of miRNAs may not be comprehensive, we have shown that our 

criteria identifies biologically relevant miRNAs that may have use as biomarkers for the 

detection of lung cancer. 

  

 In conclusion, our study provides the first comprehensive sequencing analysis of miRNA 

expression in lung AC and SqCC. Collectively, our study confirms that similar to protein coding 

genes, miRNA deregulation occurs in both a subtype specific and non specific manner and that 

these disruption patterns can reveal novel insight into the biology and molecular mechanisms 

underlying tumorigenesis and contributing to their disparate clinical phenotypes. We have 

identified ubiquitously deregulated miRNAs that could be promising biomarkers for the 

detection of lung cancer as well as subtype specific miRNAs that accurately discriminate 

subtypes. For the first time, we illustrate the oncogenic pathways and functions associated with 

subtype specific miRNA deregulation, and implicate miR-1287 and its target RAD9A in AC 

tumorigenesis. Our findings underscore the importance of miRNAs to lung cancer biology and 

highlight the need to look beyond protein coding gene alterations.  
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Chapter 6: Conclusion 
 

6.1 Summary  

 Lung cancer is the leading cause of cancer related mortality, accounting for more deaths 

than breast, prostate and colon cancer combined [1, 2]. The five year survival rate of lung cancer 

has failed to improve significantly over the past decades, from 14% in 1994 to 18% in 2008, 

emphasizing the need for novel diagnostic and therapeutic strategies [2]. Genomic analyses of 

tumor genomes, especially recent characterization using high throughput sequencing 

technologies have identified numerous driver alterations contributing to tumorigenesis. However, 

driver alterations for up to 50% of cases remain to be elucidated, highlighting the need to 

improve our understanding of the molecular mechanisms underlying lung tumorigenesis. 

 

 Histological subtypes of lung cancer display disparate clinical phenotypes and responses 

to therapy, suggesting they are distinct diseases that arise through divergent molecular 

mechanisms. The goal of this work was to characterize the landscape of molecular alterations in 

AC and SqCC through the integration of multiple 'omics dimensions, and elucidate the 

mechanisms through which frequently deregulated genes and signaling pathways common to 

NSCLC or altered in a subtype specific manner contribute to tumorigenesis. Our analysis 

revealed several molecular alterations specific to a given subtype. Importantly, the findings from 

this work provide insights into novel potential therapeutic strategies for SqCC and identified 

potential diagnostic biomarkers for lung cancer treatment and prognosis. 

 

6.1.1 Identify molecular alterations common or specific to lung cancer subtypes. 

 NSCLC is a heterogeneous disease comprised of regionally distinct and phenotypically 

diverse tumors. Fundamental differences in tumor biology are thought to underlie the phenotypic 

differences of these tumors, and although previous studies have identified distinct patterns of 

alterations, the specific genes and signaling pathways responsible for the disparate clinical 

phenotypes are only just beginning to be identified. Therefore in Chapter 2, we integrated 

genome wide copy number and methylation with gene expression profiles for a cohort of 169 AC 

and 92 SqCC tumors to characterize the landscape of molecular alterations with concordant 
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expression changes specific to each subtype as these are most likely to be causal in 

tumorigenesis. Our analysis revealed 294 regions of copy number disparity of which 205 were 

specific to SqCC and 89 were AC specific as well as 2384 differentially methylated genes. After 

excluding genes without differential expression between tumors and non-malignant tissue, we 

identified 778 genetically or epigenetically deregulated subtype specific genes. From these genes 

we identified key oncogenic pathways disrupted in each subtype that likely serve as the basis for 

their differential biology and clinical outcomes. Downregulation of HNF4α target genes was the 

most common pathway specific to AC while SqCC tumors demonstrated disruption of multiple 

histone modifying enzymes and E2F1. In addition, several genes previously implicated in 

NSCLC such as ERCC1 and KEAP1 were found to display subtype specific patterns of 

alteration.  

 

 Within the past decade, miRNAs have emerged as critical regulators of gene expression, 

implicated in normal biological processes as well as tumorigenesis [56]. To date, miRNA 

profiling studies of  histological subtypes have been exclusively array based, limiting the number 

of miRNAs for interrogation. In Chapter 5 we performed miRNA sequencing on 66 AC and 22 

SqCC tumors with matched non-malignant tissue. We identified miRNAs recurrently altered in 

all cases regardless of subtype as well as 48 subtype specific miRNAs; 29 of which were SqCC 

specific, 13 that were AC specific and 5 that were disrupted in both subtypes, but in opposing 

directions. Similar to protein coding genes, subtype specific miRNAs were associated with 

distinct pathways and functions in each subtype and their expression accurately discriminates 

subtypes. Together these profiling studies revealed novel subtype specific patterns of alterations 

and provide insight into the specific genes that contribute to subtype tumorigenesis, further 

demonstrating that AC and SqCC develop through distinct pathways. 

  

6.1.2 Delineate the biological significance and clinical relevance of alterations. 

 Despite the existence of numerous profiling studies examining the pattern of alterations 

defining AC and SqCC, few studies have investigated the function and molecular mechanisms 

through which these subtype specific alterations contribute to subtype development and 

tumorigenesis. In chapters 3, 4 and 5 we assessed the clinical relevance of subtype specific 
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alterations by manipulating candidate genes identified by integrative analysis or miRNA 

sequencing in vitro and in vivo to delineate the biological significance of their disruption and 

elucidate the mechanism by which they contribute to disease pathogenesis.  

 

 Specifically, we show that the complex components of the KEAP1-CUL3 E3 ubiquitin 

ligase as well as its substrate IKBKB are differentially disrupted in AC and SqCC, with KEAP1 

loss characterizing AC tumors and CUL3 loss and IKBKB gain being preferential in SqCC. 

Importantly, disruption of a single complex component was sufficient to impair function, leading 

to the accumulation and aberrant activation of NF-κB signaling. In chapter 4 we identified 

12q13-15 and more specifically YEATS4 as amplified and overexpressed in >20% of NSCLCs. 

Overexpression of YEATS4 abrogated senescence while attenuation of YEATS4 in lung cancer 

cell lines reduced proliferation, colony formation and tumor growth and induced cellular 

senescence. Furthermore we demonstrate that YEATS4 acts as a negative regulator of the p21-

p53 pathway by inhibiting p21 and that YEATS4 expression affected the cellular response to 

cisplatin with increased levels associated with resistance and lower levels with sensitivity. 

Finally in chapter 5, we demonstrate the ability of our analysis approach to identify biologically 

relevant miRNAs by showing the effect of miR-1287 overexpression in normal immortalized 

bronchial epithelial cells and lung cancer cell lines. In addition to the identification of subtype 

specific miRNAs, we identified a panel of 16 miRNAs recurrently aberrantly expressed in 

tumors (>90%) regardless subtype and suggest that these miRNAs may be useful biomarkers for 

the detection of lung cancer. 

 

6.2 Conclusions 

 We hypothesized that 1) AC and SqCC arise through distinct molecular mechanisms, 

which can be identified through integrative analysis of AC and SqCC genomes and 2) that these 

different patterns of genetic and epigenetic alterations underlie unique biological mechanisms 

that contribute to subtype development, phenotypes and response to therapy. Our 

characterization of AC and SqCC genomes using an integrative 'omics approach revealed a 

number of subtype specific alterations with concordant expression changes as well as 

differentially expressed miRNAs. These differences were found to affect distinct oncogenic 
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pathways and accurately separate AC and SqCC samples, providing further evidence that these 

subtype specific genes are responsible for driving the differential development of AC and SqCC. 

These findings, support our hypotheses and are consistent with previous reports, but importantly 

they provide new insight into specific genes underlying subtype tumorigenesis. Functional 

analysis of frequently deregulated subtype specific and non-specific genes revealed the 

phenotypes associated with their disruption, and the molecular mechanisms through which they 

promote tumor development and progression. Through the characterization of these mechanisms, 

we were able to identify drugs whose sensitivity was altered by gene disruption, highlighting the 

clinical relevance of these genes. In addition to subtype specific genes, genes and miRNAs 

frequently disrupted across both subtypes were identified. This suggest that certain biological 

functions or cellular processes are essential to all lung tumors, regardless of subtype. 

Collectively, the findings from this thesis confirm that while certain molecular alterations are 

shared amongst histological subtypes, distinct alterations underlie their differential development, 

and clinical phenotypes. 

 

6.3 Significance and clinical implications 

 The success of EGFR TKIs in EGFR mutant lung AC, and the profound benefit of 

targeted therapies such as trastuzumab and imatinib in breast cancer and chronic myeloid 

leukemia, respectively demonstrated the potential survival benefit of targeted therapies and 

launched the search for additional actionable alterations in lung cancer. As a result, the landscape 

of genomic alterations defining AC and SqCC, has been extensively studied [15, 17, 18, 33-36, 

39, 51, 55, 153]. While a subset of the genes involved in lung cancer have been well 

characterized, including NKX2-1, PTEN, CDKN1A, PIK3CA, SOX2, KRAS and EGFR, the 

majority of genes responsible for tumorigenesis remain unknown. This is exemplified by the 

findings that roughly 50% of NSCLC tumors harbour no known driver gene/targetable alteration 

[142]. Moreover, the majority of studies describing the patterns of alterations in NSCLC 

subtypes focus primarily on gene identification, with little emphasis on elucidating the pathways 

and molecular mechanisms underlying subtype development. Therefore one of the most 

important findings from this thesis is the identification of novel subtype specific genes and 

uncovering the molecular mechanisms through which these genes are involved in tumorigenesis. 
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 Diverse patterns of genomic alterations suggests that AC and SqCC are distinct diseases.  

These findings have had significant impact on the clinical management on NSCLC, with the one 

size fits all approach no longer considered practical. Targeted therapies significantly improve 

survival of patients harbouring the specific alteration compared to standard chemotherapy; 

however patients will inevitably recur, such that targeted therapies are administered without 

curative intent. The development of novel, effective treatment approaches is desperately needed, 

especially for SqCC in which there are currently no targeted therapies approved for clinical use. 

This thesis identified several patterns of gene disruption associated with treatment sensitivity, the 

most clinically relevant of which was the finding that SqCC tumors/cell lines are more sensitive 

to HDAC inhibition than AC, offering a novel treatment strategy for this subtype with few 

effective treatment options. PI3K inhibitors were also identified as potentially effective in SqCC 

and the TCGAs characterization of SqCC tumors found the PI3K pathway was altered in 47% of 

cases [55], further supporting the role of this pathway in SqCC tumorigenesis. While the 

dependence of SqCC tumors on these pathways and specific alterations has yet to be functionally 

defined, our analysis has identified new therapeutic avenues worth exploring. Overall, this thesis 

illustrates the molecular differences that underlie AC and SqCC and highlights the importance of 

not only stratifying patients based on histology but also underlying tumor biology. 

 

6.4 Future directions 

 The findings of this work have generated several additional research avenues worth 

pursuing: i) understanding the mechanism of YEATS4 mediated tumorigenesis ii) discerning the 

contribution of miR-944 to SqCC tumorigenesis , iii) validation of the most frequently 

deregulated miRNAs as biomarkers for the early detection of lung cancer, iv) analysis of histone 

modifications in SqCC and v) integration of genomics data with features of the tumor 

microenvironment. Future work investigating these issues will be essential to further define the 

mechanisms underlying lung tumorigenesis and assess the potential of candidates as robust 

biomarkers for diagnosis or novel therapeutic targets. 
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6.4.1 Mechanisms of YEATS4 mediated tumorigenesis    

 Our analysis of YEATS4 revealed it contributes to tumorigenesis by altering numerous 

cellular processes. While we show that YEATS4 negatively regulates the p53-p21 pathway, in 

p53 mutant cell lines, knockdown of CDKN1A had no effect on viability, senescence or 

anchorage independent growth, and cisplatin sensitivity could not be associated with differences 

in p21 or p53, suggesting that these phenotypes are mediated through other pathways. Analysis 

of differentially expressed genes following knockdown identified the targets of MYC and SRF 

transcription factors to be significantly enriched. These findings provide a logical starting point 

to further investigate the mechanisms of YEATS4 mediated tumorigenesis. Elucidation of these 

mechanisms will be important in determining the clinical relevance of YEATS4 amplification in 

NSCLC. 

 

6.4.2 Validation of miRNAs as biomarkers for the detection of lung cancer 

 NSCLC patient survival improves dramatically to over 70% when tumors are detected at 

the earliest localized stage, emphasizing that the greatest survival benefits for lung cancer will be 

achieved through early detection [1]. Due to the time consuming and invasive nature of current 

early detection techniques such as bronchoscopy and low-dose computed tomography, as well as 

a lack of criteria (other than smoking) for identifying individuals at risk of lung cancer, early 

detection strategies are not widely available to the general public. Non-invasive diagnostic 

biomarkers therefore hold immense promise in improving lung cancer survival. miRNAs 

circulate in the blood with substantial stability, making them attractive targets for biomarkers. 

The identification of 16 miRNAs that were frequently disrupted in our NSCLC cases, validated 

in the TCGA and previously reported by others, suggests they may have potential as biomarkers. 

There are a number of criteria for robust, highly sensitive and specific biomarkers; however for 

this panel of miRNAs, the first step should involve analysis in blood samples to determine 

whether they are detectable, and the concordance between tumor and blood expression. 

Successful candidates should then be assessed in blood samples from patients with and without 

cancer as well as those from patients with benign lung disease to assess the ability of these 

miRNAs to discriminate between benign and malignant disease. Finally, validation in multiple 
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large independent cohorts will be essential for determining the clinical feasibility of remaining 

candidates. 

 

6.4.3 Contribution of miR-944 to SqCC tumorigenesis 

 miR-944 expression was frequently deregulated in SqCC (2 fold overexpression in >95%) 

and highly specific for SqCC tumors, accurately separating AC from SqCC with significant 

accuracy in both our datasets and the TCGA (AUC values of 0.9669 and 0.858, p<0.0001, 

respectively). Predicted targets of miR-944 include known tumor suppressors EYA4 and NF1. 

Together, these findings provide strong evidence supporting a role for miR-944 in SqCC 

tumorigenesis. In order to determine the biological relevance of miR-944 overexpression, its 

function and mechanism of action should be characterized in lung cancer cell lines and 

immortalized human bronchial epithelial cells by ectopic expression. There are currently no 

targeted therapies approved for clinical use in SqCC. The ubiquitous disruption of miR-944 

could therefore have significant clinical implications if it is found that miR-944 does in fact 

contribute to SqCC development.  

 

6.4.4 Global assessment of histone modifications in SqCC 

 Although this thesis integrated multiple 'omics dimensions (copy number, DNA 

methylation, gene and miRNA expression), several other mechanisms of gene disruption exist. 

These include sequence mutations (point mutations, insertions and deletions) which can alter 

gene function, gene fusions which create new oncogenic proteins, histone modifications which 

affect chromatin structure and accessibility and ncRNAs (long non-coding, antisense RNAs) 

which modulate gene expression. Post-translational modification of histone tails by acetylation 

and methylation play crucial roles in regulating chromatin structure and gene expression [104]. 

The polycomb repressive complex 2 (PRC2) is a histone methyltransferase comprised of 

numerous polycomb proteins that methylates histone H3 on Lysine 27 (H3K27me, me2 or me3), 

a mark that transcriptionally silences chromatin [217]. Components of this complex including 

EZH2- the catalytic subunit, were found to be frequently deregulated in SqCC likely leading to 

aberrant patterns of gene expression. High throughput approaches for the analysis of histone 

modifications are widely available, and a large public repository of histone modification data is 
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available through ENCODE [218]. Given the prominent disruption of histone modifying 

enzymes in SqCC, interrogation of the polycomb group proteins and histone modifications 

throughout the genome would likely reveal novel insights into SqCC pathogenesis.  

 

6.4.5 Integration of molecular and immunologic alterations to understand the 

contribution of the tumor microenvironment to tumorigenesis. 

 The immune system plays a key role in the early elimination of tumors, and its 

importance in tumorigenesis is becoming increasingly appreciated, with immune evasion now 

considered a hallmark of cancer [219]. The tumor microenvironment is a complex milieu in 

which cancer cells, stromal cells and tumor infiltrating leukocytes interact. Targeting immune 

cells within the microenvironment is a growing field, and immunotherapies for the treatment of 

lung cancers have shown clinical activity in NSCLC suggesting this immune modulation may be 

an effective treatment in lung cancer [220-222]. However, preliminary data show that only a 

subset of patients respond to PD-1 blockade. While EGFR mutations were recently found to 

activate the PD-1 pathway contributing to the immune escape of these tumors [223], it is largely 

unknown whether specific genomic subsets of lung tumors activate this or other immune 

pathways and may confer sensitivity to immunotherapies. The identification of immune related 

signaling pathways disrupted by subtype specific alterations suggests that the immune cell 

compartments and activation/suppression of these cells within the tumor microenvironement may 

differ between subtypes. Integration of genomics data with tumor microenvironment profiles will 

provide insight into how genomic alterations influence the immune compartment and may reveal 

novel therapeutic strategies for NSCLC. 
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Appendix 

Appendix A  Sample sets and demographic data of cohorts used in this thesis 

 

A.1 Samples sets used in Chapter 2 

 
 

A.2 Demographic data of BCCRC 261 AC and 92 SqCC with copy number profiles 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sample 
Set Cohort # 

Samples # AC # 
SqCC 

# Non-
Neoplasitic 

Lung Tissue 
Assay Type 

1 BC Cancer Agency - Vancouver 261 169 92 0 Copy Number - BCCRC Whole 
Genome Tiling Path Array CGH 

2 BC Cancer Agency - Vancouver 92 30 13 48 DNA Methylation - Illumina 
HumanMethylation27 chip 

3 BC Cancer Agency - Vancouver 49 29 20 0 Gene Expression - Custom 
Affymetrix 

4 GEO Duke University – GSE3141 111 58 53 0 
Gene Expression - Affymetrix 

GeneChip Human Genome 
U133 Plus 2.0 Array 

5 BC Cancer Agency – Vancouver 0 0 0 67 
Gene Expression - Affymetrix 

GeneChip Human Genome 
U133 Plus 2.0 Array 

6 GEO Samsung Medical Center -
GSE8894 138 62 76 0 

Gene Expression - Affymetrix 
GeneChip Human Genome 

U133 Plus 2.0 Array 

 AC (n=169) SqCC (n=92) 
Stage I 76 (44.9%) 32 (34.7%) 
 II 40 (23.6%) 32 (34.7%) 
 III 22 (13%) 14 (15.2%) 
 IV 27 (16%) 10 (10.9%) 
Sex Male 63 (37.3%) 66 (71.7%) 
 Female 106 (62.7%) 26 (28.3%) 
Age Median 66 69 
 Age Range 35-90 48-88 
Smoking Status Current smoker 48 (28.4%) 30 (32.6%) 
 Former smoker 80 (47.3%) 61 (66.3%) 
 Never smoker 38 (22.5%)  
 N/A 3 (1.8%) 1 (1.1%) 
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A.3 Datasets used to determine the prevalence and subtype specificity of YEATS4 amplification and overexpression 
DataSet Samples Platform Institute Website 

1 169 AC & 92 
SqCC tumors 

aCGH BCCRC http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31798 

2 35 AC & 13 SqCC 
with matched non-
malignant tissue 

Custom Affymetrix 
expression arrays 

BCCRC http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE31799 

3 59 AC with 
matched non-

malignant tissue 

qRT-PCR BCCRC N/A 

4 18 NSCLC cell 
lines 

qRT-PCR BCCRC N/A 

5 83 AC & matched 
non-malignant 

tissue 

SNP 6,  Illumina 
WG-6 v3 

BeadChip Arrays 

Early Detection Research 
Network (EDRN)/Canary 

Foundation 

http://edrn.nci.nih.gov/science-data 

6 155 SqCC & 77AC 
with matched non-
malignant tissue 

SNP 6 Max Plank Institute 
(GSE25016) 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25016 

7 354 AC with 
matched non-

malignant tissue 

SNP 6 Broad Institute- Database of 
genotypes and phenotypes 

http://www.broadinstitute.org/cgibin/cancer/publications/pub_pa
per.cgi?mode=view&paper_id=169 

8 199 AC with 
matched non-

malignant tissue 

Agilent 44K aCGH Memorial Sloan Kettering 
Cancer Center 

http://cbio.mskcc.org/Public/lung_array_data/ 

9 508 cell lines from 
multiple human 

cancers 

SNP6 Sanger Cell Line Project http://www.sanger.ac.uk/genetics/CGP/CellLines/ 

10 277 AC & 201 
SqCC; 25 AC & 17 

SqCC with non-
malignant tissue 

SNP6 and RNA seq The Cancer Genome Atlas https://tcga-data.nci.nih.gov/tcga/ 
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This Appendix lists all of the publications I contributed to during my degree that were either 

published, accepted, currently in submission or prepared for submission. In total there are 26 

publications. First or co-first authorships are underlined. 
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