
Hyperbolic random maps

by

Gourab Ray

B.Stat., Indian Statistical Institute, 2008
M.Stat., Indian Statistical Institute, 2010

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

The Faculty of Graduate and Postdoctoral Studies

(Mathematics)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

July 2014

c© Gourab Ray 2014



Abstract

Random planar maps have been an object of utmost interest over the last
decade and half since the pioneering works of Benjamini and Schramm, An-
gel and Schramm and Chassaing and Schaeffer. These maps serve as models
of random surfaces, the study of which is very important with motivations
from physics, combinatorics and random geometry.

Uniform infinite planar maps, introduced by Angel and Schramm, which
are obtained as local limits of uniform finite maps embedded in the sphere,
serve as a very important discrete model of infinite random surfaces. Re-
cently, there has been growing interest to create and understand hyperbolic
versions of such uniform infinite maps and several conjectures and proposed
models have been around for some time. In this thesis, we mainly address
these questions from several viewpoints and gather evidence of their exis-
tence and nature.

The thesis can be broadly divided into two parts. The first part is
concerned with half planar maps (maps embedded in the upper half plane)
which enjoy a certain domain Markov property. This is reminiscent of that
of the SLE curves. Chapters 2 and 3 are mainly concerned with classification
of such maps and their study, with a special focus on triangulations. The
second part concerns investigating unicellular maps or maps with one face
embedded in a high genus surface. Unicellular maps are generalizations of
trees in higher genera. The main motivation is that investigating such maps
will shed some light into understanding the local limit of general maps via
some well-known bijective techniques. We obtain certain information about
the large scale geometry of such maps in Chapter 4 and about the local limit
of such maps in Chapter 5.
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Preface

The new results of this thesis are based primarily on four research articles:
[9, 12, 81, 82]. Article [12] is joint work with Omer Angel. Paper [9] is joint
work with Omer Angel, Guillaume Chapuy and Nicolas Curien. Articles
[81, 82] are independent works of the author of this thesis.

The results of [12] are presented in Chapter 2, that of [82] in Chapter 3.
The material of [81] is collected in Chapter 4. Finally the results in [9] form
the basis of Chapter 5.
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Chapter 1

Introduction

1.1 Definitions

We begin with some basic definitions of the objects we shall work with.

Definition 1.1.1. A map is a proper embedding of a connected (multi)graph
on a compact orientable surface viewed up to orientation preserving home-
omorphisms from the surface to itself. Further, the embedding is such that
the complement of the embedding is a union of disjoint topological discs.

Let us clarify few terms in Definition 1.1.1. By a proper embedding, we
mean the embedding is such that the edges do not cross each other. From
the classification of surfaces theorem (see [73], Theorem 1 or [32]), we know
that every compact orientable surface can be viewed as a connected sum of a
finite number of tori. Thus the reader can imagine the surfaces on which we
embed the graphs to be just a connected sum of finite number of tori (which
we sometimes refer to as handles) and the number of handles is called the
genus of the underlying surface of the map. When the genus is 0, that is the
underlying surface of the map is a sphere, the map is called a planar map.
We shall think of a planar map as being embedded in the plane instead of
the sphere. A major portion of this thesis is concerned with maps embedded
in the half-plane, that is in R× R+ (more in Chapter 2).

Definition 1.1.1 is more topological in nature and there exist other equiv-
alent ways to define maps. We refer the interested reader to [78] for a more
fundamental approach. We also mention here that maps on non-orientable
surfaces have also been studied (see [26, 55, 78]), but such maps are not the
focus of this thesis and hence is not part of Definition 1.1.1.

For infinite graphs, there are certain extra assumptions about the em-
bedding. A map is one-ended if the complement of any finite subset of
the map has precisely one infinite connected component. A map is locally
finite if all the vertex degrees are finite. We shall only consider maps which
are locally finite and one-ended in this thesis. We shall also mark one
oriented edge of the map as the root edge. Sometimes in the literature,
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1.1. Definitions

Figure 1.1: Left: A map with a boundary. Right: A map with a
simple boundary. The boundary edges and vertices are marked red.

maps are defined to be face rooted or corner rooted (see [13, 34]). However,
we shall stick to edge rooted maps in this thesis.

The connected components of the complement of the embedding are
called faces. So as per Definition 1.1.1, the faces are homeomorphic to discs.
Further, the graphs can have multiple edges or self-loops. The number of
edges incident to a face is called the degree of a face. A face of degree 3 is
called a triangle, that of degree 4 a quadrangle and so on. A map is called
a triangulation if all its faces are triangles except possibly a face which
is identified to be external to the map. A triangulation with no external
face will be referred to as the triangulation of the surface. The collection
of edges incident to the external face is called the boundary of the map
(see Figure 1.1). Notice that the boundary of a map a priori might not
be a simple cycle. If a map has m boundary vertices, n non-boundary
vertices and the boundary forms a simple cycle then we shall refer to it as
a triangulation of an m-gon with n internal vertices.

For a finite map M , V (M), E(M) and F (M) will denote the set of its
vertices, edges and faces. For any finite set S, let |S| denote its cardinality.
For a finite map M with an underlying surface of genus g, recall Euler’s
formula for orientable surfaces:

|V (M)| − |E(M)|+ |F (M)| = 2− 2g

This formula can impose certain restriction of the genus on which a certain
class of maps can be embedded. For example, if we consider a triangulation
with n faces on a genus g surface, Euler’s formula gives that the maximal
genus surface on which it can be embedded is bn/4c (notice that for a trian-
gulation T , we have 3|F (T )| = 2|E(T )|). Similarly for a map with n edges
and one face, the maximal genus possible is bn/2c.

One can view suitable classes of maps as metric spaces with a suitable
metric on them. There are two possible ways to do this. The first one is
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1.1. Definitions

the local metric introduced by Benjamini and Schramm ([22]) which roughly
says that two maps are close if the combinatorial balls of radius r are iso-
morphic for large r. The second is the Gromov-Hausdorff distance which
views two finite maps as compact metric spaces induced by their appropri-
ately rescaled combinatorial graph distances and the distance between the
maps is computed by computing the Hausdorff distance between two iso-
metric embeddings of the maps in a common metric space and then taking
infimum over all such embeddings. After adding a suitable topology, we can
also define probability measures on such measure spaces and consider weak
limits of such measures as the class of maps we consider becomes large. Very
broadly speaking, proving existence of such limits and studying their geo-
metric properties have been a major theme of work in this field. The weak
limit in the local metric is called the local limit and that of the properly
rescaled metric in the Gromov-Hausdorff topology is called the scaling limit.

One of the simplest examples of scaling limits is perhaps the classical fact
that the simple random walk in Z when properly rescaled converges to one
dimensional standard Brownian motion. To be more precise let {Xn}n≥1

be the simple random walk in Z. Then 1√
n

(Xbntc)0≤t≤1 converges weakly to

(Bt)0≤t≤1 in the appropriate topology where Bt is the standard Brownian
motion at time t (see [29] for more.) Scaling limits will not be the focus of
this thesis but still let us mention that proving existence of scaling limits for
natural models of random graphs is an area of extensive ongoing research.
The theme of such works is that the graphs are viewed as properly rescaled
metric spaces and the goal is to find a continuum object as a limit of such
metric spaces in the above mentioned Gromov-Hausdorff topology. For ex-
ample, the scaling limits of Erdos-Renyi random graphs are obtained in [1],
the random tree in [4], minimal spanning trees in [2], random dissections in
[40] etc. For random triangulations and 2p-angulations for p ≥ 1, scaling lim-
its are obtained by LeGall ([70]) and the limiting object (which is universal
for all these class of maps and is conjectured to hold for odd p-angulations
as well) is called the Brownian map which forms the continuum analogue
of the uniform infinite maps. Independently, Miermont in [76] has obtained
the scaling limit results for quadrangulations using a different approach. A
fine exposition about the scaling limits of random maps can be found in [75].
Many basic properties of the Brownian map are still unknown and this is
an area of growing interest and extensive research.
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1.2. The local topology

1.2 The local topology

Let G∗ denote the space of all connected, locally finite rooted graphs. Then
G∗ is endowed with the local topology, where two graphs are close if large
balls around their corresponding roots are isomorphic. The local topology
is generated by the following metric: for G,G′ ∈ G∗, we define

d(G,G′) = (R+ 1)−1 where R = sup{r : Br(G) ∼= Br(G
′)}.

Here Br denotes the ball of radius r around the corresponding roots, and ∼=
denotes isomorphism of rooted maps. This metric on G∗ is non-Archimedian.
Finite graphs are isolated points, and infinite graphs are the accumulation
points. Sometimes e−R is used instead of (R + 1)−1 in the above definition
of the metric, but the actual metric is of little importance and we mainly
care about the topology induced by it.

The local topology on maps induces a weak topology on measures on G∗.
One such natural choice of measures is the Benjamini-Schramm limit of a
sequence of finite planar graphs [22], which is the weak limit of the laws of
these graphs with a uniformly chosen root edge. The work of Aldous and
Steele in the context of trees in [5] also deserves mention here. Let us give
a few examples.

• The n×n triangular (or square) lattice with the root chosen uniformly
converges to the infinite triangular (or square) lattice. This follows
from the observation that the cardinality of the set of boundary edges
is small compared to the total volume. Hence with high probability,
the root is not chosen from an edge close to the boundary in the finite
graphs

• The binary tree of level n with the root chosen uniformly converges
to what is popularly known as the canopy tree. This is because with
high probability, the root is near the highest level rather than at the
lower levels (see Figure 1.2).

• The Erdos-Renyi random graph with n vertices where two vertices are
connected by an edge independently with probability c/n converges to
the Galton-Watson tree with a Poisson(c) offspring distribution except
the root vertex which has size biased Poisson(c) offspring distribution.
Notice that the degree of the root in the limit is obtained by degree
biasing the limiting degree of a vertex in the Erdos-Renyi graph be-
cause we choose the root vertex with probability proportional to its
degree.
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1/2

1/4

1/8

1/16

Geometric(1/2) Galton-Watson
trees

Figure 1.2: Left: The critical Galton-Watson tree with
Geometric(1/2) offspring distribution conditioned to survive. Right:
A canopy tree which is the local limit of binary trees cut off at the
nth level. The numbers beside the vertices represent the probability
of them being the root. For example the probability of the leftmost
vertex in the bottom level has probability 1/2 of being the root and
so on.

• Consider a uniform rooted (embedded) tree with n edges (see [69] for
the precise formalism). The local limit as n→∞ is an object known
as the critical Galton-Watson tree conditioned to survive with
Geometric(1/2) offspring distribution (see [63]). The degree of the
root is given by a size biased Geometric (1/2) offspring distribution.
It has an infinite spine with critical Galton-Watson trees attached on
both sides (see Figure 1.2)

We can endow any class of planar maps with the above local topol-
ogy (with the graph isomorphism replaced by map isomorphism). Physicists
were interested in random surfaces and their geometry. More about this
background motivation is in Section 1.3.

Let Tn be uniformly distributed among all triangulations of the sphere
with n faces. Then the weak limit of Tn as n→∞ forms a natural candidate
for a discretized version of random surfaces. Its existence was proved by
Angel and Schramm.

Theorem 1.2.1 (Angel, Schramm [13]). The weak limit of Tn exists. The
limiting object is an infinite, one-ended and planar triangulation.

Notice that the completion of the space of all triangulations of the sphere
with respect to the local topology a priori might not be one-ended: a limit
of a sequence of finite triangulations on the sphere may contain more than
one accumulation points. However, Theorem 1.2.1 ensures that the limiting
measure is supported on one-ended infinite triangulations of the sphere. The
limit is popularly known as the uniform infinite planar triangulation
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1.3. The big picture

or the UIPT in short. Similarly, existence of the local limit for quadrangu-
lations (called UIPQ) was proved by Krikun (see [65]).

Frequently we shall encounter measures of the following type. Let Tm,n
be a uniform distribution on triangulations of an m-gon with n internal
vertices. Then it is known that

Tm,n −−−→
n→∞

Tm,∞ −−−−→
m→∞

T∞,∞.

The first limit is an infinite triangulation in an m-gon, and the second
limit is known as the half-plane uniform infinite planar triangulation
(HUIPT). The same limits exist for quadrangulations (yielding the half-
plane UIPQ, see e.g. [44]) and many other classes of maps. These half-plane
maps have the interesting property that if we remove any simply connected
sub-map Q connected to the boundary, the distribution of the remaining
map after removing Q is the same as the original distribution of the half
plane map we started with. We call this property domain Markov and
define this precisely in Chapter 2. The name is chosen in analogy with the
related conformal domain Markov property that Schramm-Loewner evolu-
tion (SLE) curves have (a property which was central to the discovery of
SLE [85]). This property appears in some forms also in the physics literature
[6], and more recently played a central role in several works on planar maps
[7, 10, 20].

1.3 The big picture

The motivation for studying random planar maps comes from several direc-
tions. This section is devoted to give a rough sketch of the bigger picture in
the background and the history associated with this area of research.

1.3.1 Enumeration

Enumeration results of planar maps go back to the work of Tutte in the 60’s.
The main aim was to prove the four color theorem and the strategy was to
show that the number of planar maps and the number of four colorable
maps are the same. An array of results in this regard (see [31, 87–89])
were obtained by solving functional equations involving generating func-
tions. Generalization to maps on general surfaces were also obtained (see
[54, 55]). We roughly present below the general idea for this technique of
enumeration. Suppose we wish to enumerate the number of triangulations
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with n faces and an external face of degree m edges rooted on the boundary.
We define the following generating function:

F (x, y) =
∑

x#facesy#edges on the boundary

Now the triangle incident to the root edge has the third vertex (the ver-
tex which do not belong to the root edge) either on the boundary or the
third vertex is an internal vertex of the triangulation. If the third vertex
is a boundary vertex, it breaks up the triangulation into two independent
triangulations with a smaller number of faces and smaller boundary sizes.
Similarly, if the third vertex is an internal vertex, then the remaining trian-
gulation has one less face and one more boundary edge. This gives us the
required functional equation for F (x, y). Solving such an equation requires
a technique called the quadratic method (see [87–89] for details). The fol-
lowing proposition is an example of many results of similar flavor obtained
using this technique.

Proposition 1.3.1. For n,m ≥ 0, the number of rooted triangulations of a
disc with m+ 2 boundary vertices and n internal vertices is

φn,m+2 =
2n+1(2m+ 1)!(2m+ 3n)!

m!2n!(2m+ 2n+ 2)!
(1.3.1)

Note that this formula is for triangulations with multiple edges allowed,
but no self-loops (type II in the notations of [13]). The case of φ0,2 requires
special attention. A triangulation of a 2-gon must have at least one internal
vertex so there are no triangulations with n = 0, yet the above formula gives
φ0,2 = 1. This is reconciled by the convention that if a 2-gon has no internal
vertices then the two edges are identified, and there are no internal faces.

This makes additional sense for the following reason: Frequently a tri-
angulation of an m-gon is of interest not on its own, but as part of a larger
triangulation. Typically, it may be used to fill an external face of size m of
some other triangulation by gluing it along the boundary. When the exter-
nal face is a 2-gon, there is a further possibility of filling the hole by gluing
the two edges to each other with no additional vertices. Setting φ0,2 = 1
takes this possibility into account.

Using Stirling’s formula, the asymptotics of φn,m as n → ∞ are easily
found to be

φn,m ∼ Cmn−5/2

(
27

2

)n
. (1.3.2)

7



1.3. The big picture
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1
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1
1

0
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−2

Figure 1.3: An illustration of the Schaeffer bijection. Left: Figure
shows the way we move along the contour of the tree with 6 vertices
starting from the root vertex. This also introduces a natural contour
order between the vertices. Middle: Observe that the minimal label
in the tree is −1. We add a new vertex ∂ with label −2. For each
vertex encountered while moving around the contour, draw an arc
between the vertex and the next vertex in the contour order with
label one less. Draw an arc between vertices with label −1 and the
vertex ∂. Orient the edge between the root vertex and ∂ in one
of the two ways. Right: The rooted quadrangulation, pointed at ∂
with 7 vertices obtained by erasing the tree.

where Cm is given by

Cm+2 =

√
3(2m+ 1)!

4
√
πm!2

(
9

4

)m
∼ Cm1/29m.

The asymptotics in the above equation is obtained by using Stirling’s for-
mula. The power terms n−5/2 and m1/2 are common to many classes of
planar structures. They arise from the common observation that a cycle
partitions the plane into two parts (Jordan’s curve Theorem) and that the
two parts may generally be triangulated (or for other classes, filled) inde-
pendently of each other. Similar enumeration results for other classes of
planar maps were also obtained.

Later, bijective techniques were introduced due to Schaeffer et al (see
[37, 84]) to find different interpretations of enumeration formulas like Propo-
sition 1.3.1. The main theme of the bijections is to find a correspondence
between classes of planar maps and tree-like objects maybe with some ad-
ditional decorations on the vertices and edges. For example, the simplest of
such results is a bijection initially worked out by Cori and Vauquelin ([37])
and developed later by Schaeffer ([84]). The bijection popularly used is
that between rooted quadrangulations with n faces and a distinguished ver-
tex (sometimes called a rooted pointed quadrangulation) and labelled rooted
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trees with n edges. A labelled tree is a rooted tree where each vertex is
assigned a label such that the absolute value of the difference between the
labels in two adjacent vertices is at most 1 and the root vertex is assigned
label 0. The prescription to obtain the quadrangulation from the tree is
illustrated in Figure 1.3.

These beautiful bijections provide us with a method to analyze planar
maps via analyzing the corresponding labelled trees. For example the bijec-
tion illustrated in Figure 1.3 immediately gives that the number of rooted
quadrangulations of the sphere with n faces is given by

2

(n+ 2)

3n

(n+ 1)

(
2n

n

)
where the factor

(
2n

n

)
1

n+1 counts the number of trees with n edges, 3n

counts the number of labellings, the factor (n+2)−1 comes from the fact that
the quadrangulation can be pointed in one of its n+2 vertices and the factor
2 comes from orienting the root in one of the two directions. Furthermore,
the labels on the vertices are the distances between the vertices and the
pointed vertex up to an added constant. This enables us to analyze the
distances in the map by looking at the labelling function. See [75] for a
comprehensive survey of this approach.

1.3.2 Universality

The polynomial correction term n−5/2 in the asymptotic formula in (1.3.2)
also appears if we replace triangulations by quadrangulations or any rea-
sonable class of maps. This is no coincidence and suggests that the large
scale properties of random maps are universal and do not depend upon the
local properties. The results in [70, 76] which depicts the universality of the
Brownian Map illustrates this fact. This sort of universality results and con-
jectures are similar flavor to convergence of random walk to the Brownian
motion for a wide class of walks.

Simple random walk is also conjectured to behave similarly in the local
limit of random maps. Here is a conjecture which has been open for quite
some time. Let X0, X1, . . . be the simple random walk on the UIPT or
UIPQ.

Conjecture 1.3.2. Show that almost surely, the graph distance between Xn

and X0 grows like n1/4 up to poly-logarithmic fluctuations.
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Note that the exponent of 1/4 is not yet proved and the best known upper
bound is 1/3 for the UIPQ obtained in [20]. Recently, the work of Gurel-
Gurevich and Nachmias (see [59]) shows that if we consider a sequence of
finite planar graphs (might be random) where the root is chosen uniformly,
and if the distribution of the root vertex has exponential tail, then the local
limit is recurrent. Previously, the same result was proved for bounded degree
graphs by Benjamini and Schramm in [22].

If we enter the world of conformal embeddings of random maps then
things are much less clear. A finite triangulation can be embedded in the
sphere in many ways such that the embedding is conformally invariant.
One popular way is to use the circle packing theory. For precise questions,
we refer to [18], Section 3.2. Very recently, some information about the
conformal structure of the boundary of the half planar maps have been
obtained in [38]. The very recent work in [77] also deserves mention here.

1.3.3 Quantum gravity

The motivation to understand random surfaces, keeping aside the aesthetic
interests, also comes from the physics literature. Developing the theory of
two dimensional quantum gravity requires one to extend the Feynman path
integrals to integrals over surfaces. This motivates the study of random
surfaces and allows one to wonder: what is the geometry of a large typical
surface? If we look into the discrete world of lattices, there is a priori no
particular reason to prefer the Z2 lattice over say the triangular lattice or
the hyperbolic plane.

One way to make sense of the above question is to consider uniform
measures on all possible finite surfaces and then take weak limits of such
measures. For example, all possible triangulations of a surface can be viewed
as a discretized version of a 2-dimensional manifold and the local limit of
such objects can be viewed as a discretized model of an infinite random
surface. Hence, Theorem 1.2.1 suggests that the UIPT or UIPQ are natural
candidates for such a model.

One can consider many models of statistical mechanics (for example the
Ising model or the Bernoulli percolation model) on a random surface. A
connection between dimensions of random fractal objects (for example the
critical Bernoulli percolation cluster or the critical Ising model clusters) in
the fixed surface (for example, Z2) and a random surface has been conjec-
tured in [64]. The formula is

∆−∆0 =
∆(1−∆)

k + 2
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where 2 − 2∆ is the dimension of the random fractal object in a random
surface and 2 − 2∆0 is the dimension of the random fractal object in the
deterministic surface. The parameter k depends upon the model of statisti-
cal mechanics in question. Some progress in this area has been made using
the multiplicative cascades (see [23]) and the Gaussian free field (see [47]).
On models of random surfaces such as the UIPQ, such a formula has been
verified for pioneer points of random walk (see [20]) and that of the Bernoulli
percolation critical cluster (see [10]). However, much is not known in this
area as of now.

1.4 Percolation on random maps

Bernoulli percolation is one of the simplest models of statistical mechanics
that one can consider. This is the main motivation behind understanding be-
havior of percolation clusters on random maps. Recall that the Bernoulli(p)
site percolation model on a graph is defined as follows: for every vertex in
the graph is colored black with probability p or white with probability 1−p.
We consider the percolation model on random graphs and we are interested
in quenched statements about the percolation model. This means we are
interested in statements about the percolation clusters conditioned on the
map. As usual, the critical percolation probability pc is the infimum over p
such that for almost all triangulations there exists an infinite cluster with
probability 1 for Bernoulli(p) site percolation on the triangulation.

Recall that the dual graph of a planar map is a graph with a vertex
corresponding to each face and two vertices are joined by an edge if the
corresponding faces in the primal graph have a common adjacent edge (see
Figure 1.4). Site percolation on triangulations are nicer to analyze in the
sense that we can consider the interface between two clusters. The interface
is a path in the dual graph, that uses exactly the dual edges of edges with
differently colored endpoints. Since faces are triangles, dual vertices have
degree 3, and either two or none of the three dual edges are part of an in-
terface. Thus the interfaces can not intersect each other. In a triangulation,
the interfaces form cycles, simple paths or infinite lines. The simple paths
must start at the boundary and end at the boundary.

Theorem 1.4.1 (Angel [7, 8]). Almost surely, the critical site percolation
probability on the UIPT is 1/2. Almost surely, the critical site percolation
probability for the half plane UIPT is also 1/2.

Thus, the site percolation probability matches with that of the triangular
grid. The structure of the critical percolation cluster around the root vertex
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Figure 1.4: An illustration of an interface between a black and a
white cluster for percolation in a half planar triangulation.

for half plane models as well as bond and face percolation models on the
half plane UIPT is studied in [10]. The scaling limit of the critical interface
in the full plane UIPT is studied in [41]. Some similar results for uniform
infinite planar maps were obtained in [74].

1.5 Unicellular maps

Unicellular maps are maps with a single face. In genus 0, maps with a
single face are nothing but plane embedded trees. So unicellular maps can
be thought of as a generalization of plane trees in higher genera. The set of
all unicellular maps of genus g and n edges will be denoted by Ug,n.

In this thesis, random permutations will play a crucial role in Chap-
ter 4. So there will be two notions of cycles floating around: one for cycle
decomposition of permutations and the other for maps and graphs. To avoid
confusion, we shall refer to a cycle in the context of graphs as a circuit.
A circuit in a planar map is a subset of its vertices and edges whose image
under the embedding is topologically a closed loop. A circuit is called con-
tractible if its image under the embedding on the surface can be contracted
to a point and not contractible otherwise. Recall that since we wanted the
complement of the embedding to be disjoint union of discs, in higher genus
the underlying graph of unicellular maps must contain circuits. Also notice
that every circuit in a unicellular map is non-contractible.

There are alternate equivalent ways of defining an unicellular map. One
way is to take a polygon with 2n edges and then glue together pairs of
edges in the boundary of the polygon (to ensure orientability, one must glue
together edges in the opposite directions in any cyclic orientation of the
polygon.)

One can iteratively delete all the leaves of a unicellular map and then
erase the degree 2 vertices as in Figure 1.6 and obtain a unicellular map
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Figure 1.5: A unicellular map and its underlying graph.

Delete leaves
iteratively

Erase degree 2
vertices

Figure 1.6: The process of obtaining a scheme of a unicellular
map.

with each vertex degree at least 3. Such a map is called the scheme or
the skeleton of the unicellular map. Clearly, the scheme carries all the
information about the topology of the unicellular map. Thus, a unicellular
map can be decomposed into its scheme and a forest corresponding to every
edge in the scheme (see Figure 1.6).

We can explore the contour of a unicellular map in the same way as
we do in a plane tree: we start from any corner, and continue exploring
the corners of the face until we come back to the corner we started with
(see Figure 1.7). This gives a cyclic order (called the face order) to the
half-edges in the unicellular map. However observe that at every vertex,
the half edges adjacent to it can be ordered in an anti clockwise manner
which we call the vertex order. Notice that for a plane tree, the vertex order
of edges around a vertex always coincides with their face order. However,
in a higher genus unicellular map, the face order of edges around a vertex
may not coincide with their vertex order giving rise to intertwinings. These
intertwinings in some sense carry the information of the underlying topology
of the unicellular maps.
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Figure 1.7: The way of exploring the face in unicellular map.

One can think of starting from a plane tree then iteratively gluing to-
gether vertices in the correct fashion so that the number of faces remain 1
at any step. Using Euler’s formula it is easy to see that this gluing gives
rise to a higher genus unicellular map. Using this heuristic, Chapuy in [33]
obtained a recursive formula for the number of unicellular maps of genus g
which is recursive only in the genus.

2g|Ug,n| =
g−1∑
p=0

(
n+ 1− 2p

2g − 2p+ 1

)
|Up,n|

The idea of iterative gluing can also be used to recover the enumeration
formula (see [33])

|Ug,n| = Cat(n)
1

22g

∑
λ∈Ln+1−2g(n+1)

(n+ 1)!∏
imi!imi

, (1.5.1)

where Cat(n) = 1
n+1

(
2n

n

)
is the nth Catalan number and the sum is over

all the partitions λ of n + 1 of size n + 1 − 2g such that each part has odd
number of elements and mi is the number of parts with i elements. The
enumeration formula in eq. (1.5.1) is known as the Lehmann-Walsh formula
[91].

This idea of obtaining a unicellular map of higher genus by gluing to-
gether vertices in a lower genus unicellular map was further simplified in [34]
and a very simple bijection between unicellular maps and special classes of
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objects called C-decorated trees were obtained. This bijection in [34] forms
the main tool for obtaining the results in Chapters 4 and 5.

We finish this subsection by mentioning that unicellular maps have ap-
peared frequently in the field of combinatorics in the past few decades. They
are related to representation theory of symmetric group, permutation fac-
torization, matrix integrals computation and also the general theory of enu-
meration of maps. See the introduction section of [25, 33] for a nice overview
and see [68] for connections to other areas of mathematics and references
therein.

1.6 Hyperbolic random maps

There has been a growing interest in constructing hyperbolic versions of
the uniform infinite planar maps. The uniform infinite planar maps are
parabolic in the sense that they can be conformally embedded in the full
plane (see [22, 61]). Is there a way to naturally construct a random map
which looks more like the hyperbolic plane?

One construction of such a possible measure supported on infinite hyper-
bolic maps which can be found in [19]. Consider the supercritical Galton-
Watson tree and condition it to survive to obtain an infinite tree. Now
for every edge in the tree, attach independent edge weights uniform on
{−1, 0, 1}. Assign label 0 to the root vertex and the label of any vertex v
can be obtained by summing the edge weights along the geodesic joining the
root vertex and v.

Notice that there are infinitely many faces in the tree and in every face,
the corners can be given a natural order corresponding to exploring the
corners in a clockwise direction similarly as in Figure 1.3. For every corner
c with label l, draw an edge between the vertex corresponding to c and
the first corner in the clockwise order whose associated vertex has label
l − 1. Now consider the quadrangulation obtained only by the edges added
between vertices in the tree. Such a quadrangulation is named Stochastic
hyperbolic infinite quadrangulation or SHIQ. The fact that the edges
are non-crossing and the resulting map is a quadrangulation is a consequence
of the results in [36].

It is easy to see that the SHIQ is almost surely a locally finite, one ended
quadrangulation with exponential volume growth. Many question about the
SHIQ remain open, see [19] Section 6.3 for details.

A half planar version of hyperbolic triangulations was constructed in
[12] which forms the basis of Chapter 2. The geometry of these maps were
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further studied in [82] and it was shown that these maps possess exponential
volume growth and anchored expansion. Recently in [11], the speed of simple
random walk and return probabilities are also studied on such maps.

Another recent construction of planar hyperbolic triangulation called
stochastic hyperbolic planar triangulation was obtained by Curien in
[39]. He obtained a one-parameter family T κ where the parameter κ ∈
[0, 2/27) with κ = 2/27 corresponding to the UIPT. These objects are con-
structed using some of the ideas in Chapter 2. Results about volume growth
and random walk speed are also obtained for these maps in [39]. The natural
question that arises from these constructions is to obtain finite approxima-
tions for such maps analogous to the uniform infinite planar maps.

The idea is to look into random maps in a high genus surface. Gamburd
and Makover showed (see [52, 53]) that if we choose a random triangulation
with n faces and no restriction on the genus, typically, the genus is the
maximal possible which is bn/4c. The conjecture is that if we restrict to a
genus Cn where 0 < C < 1/4, then the local limit obtained is topologically
planar and is hyperbolic. The intuition behind such a conjecture is that in
higher genus triangulations, the average degree is higher than 6, which gives
rise to negative curvature in the limiting maps, provided the distributional
limit is planar.

Conjecture 1.6.1 below appears in this form in [39]. Fix θ ≥ 0 and
suppose we look at Tbθnc,n which is the set of rooted triangulation of genus
bθnc and n vertices and let Tbθnc,n be a uniformly picked element from it
with root ρn. Now observe that the degree of the root vertex is continuous
in the local topology since we pick the root with probability proportional to
its degree. Now if Tbθnc,n converges to T κ then

E((deg(ρn))−1) =
1

6(n+ 2g − 2)|Tbθnc,n|
∑

t∈Tbθnc,n

∑
x∈V (t)

deg(x)
1

deg(x)

=
n

6(n+ 2g − 2)
−−−→
n→∞

1

6(1 + 2θ)
= E(deg(ρκ)−1) (1.6.1)

where ρk is the root of T κ.

Conjecture 1.6.1. (Benjamini and Curien [39]) For any θ ≥ 0, let κ ∈
(0, 2/27] be such that E(deg(ρκ)−1) = (6(1 + 2θ))−1 where ρκ is the root of
T κ. Then

Tbθnc,n
(d)−−−→

n→∞
T κ

Of course, similar conjectures can be coined for quadrangulations or
other reasonable classes of planar maps. To prove that the local limit is
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Qn UIPQ

LTn LT∞

Φn Φ∞

Figure 1.8: Illustration of the construction of UIPQ in [43].

topologically a plane, we have to prove with high probability we do not see
non-contractible cycles near the root.

One standard way to attack such a problem is via the bijective techniques
due to Schaeffer et al. For example, the UIPQ can be constructed using the
bijective techniques as illustrated in [43]. Roughly, the idea is as follows:
we know that finite quadrangulations Qn with n faces are in bijection Φn

with a uniform labelled tree LTn with n edges. Then one can take the
weak limit over n for the trees to easily obtain a uniform infinite labelled
tree LT∞. The local limit of a uniformly picked tree with n edges is the
critical Galton-Watson tree conditioned to survive (see Figure 1.2). The
label of a vertex v of the uniform infinite labelled tree defined by assigning
i.i.d. uniform {−1, 0, 1} edge weights to every edge and then summing these
weights along the (unique) path from the root to v with the root vertex
assigned label 0. Now one can obtain a quadrangulation from LT∞ by using
a similar recipe Φ∞ used for the SHIQ: join each corner c with label l to the
immediately next corner in the clockwise contour of the tree with label l−1.
Thus we have the commutative diagram in Figure 1.8. Note that the arrow
connecting UIPQ and LT∞ in Figure 1.8 is correct provided the recipe Φ∞
is continuous in the local topology which can be seen easily and is proved
in [43].

One can hope to undertake a similar strategy for the high genus case
as well. There exists a bijection between quadrangulations of genus g and
labelled unicellular maps due to Chapuy, Marcus and Schaeffer (see [35]), but
obtaining the local limit of labelled unicellular maps is not so straightforward
as the genus 0 case. As a first step to solve this problem using this approach,
we find the local limits of unicellular maps in high genus in Chapter 5. But
it is no longer clear whether the labels are obtained just by adding i.i.d.
edge weights as was the situation in the genus 0 case since the presence of
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1.6. Hyperbolic random maps

cycles in unicellular maps makes understanding the distribution of the labels
non-trivial. Thus these results alone do not suffice and we need new ideas
to pursue this apporach.
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Chapter 2

Classification of half planar
maps

1 The primary goal of this work is to classify all probability measures on half-
planar maps which are domain Markov, and which additionally satisfy the
simpler condition of translation invariance. As we shall see, these measures
form a natural one (continuous) parameter family of measures.

We shall consider many different classes of planar maps in this chapter.
We focus on triangulations, where all faces except possibly the external face
are triangles, and on p-angulations where all faces are p-gons (except possibly
the external face). We denote by Hp the class of all infinite, one-ended, half-
planar p-angulations. However, it so transpires that Hp is not the best class
of maps for studying the domain Markov property, for reasons that will be
made clear later. At the moment, to state our results let us also define H′p
to be the subset of Hp of simple maps, where all faces are simple p-gons
(meaning that each p-gon consists of p distinct vertices). Note that — as
usual in the context of planar maps — multiple edges between vertices are
allowed. However, multiple edges between two vertices cannot be part of
any single simple face. We shall use H and H′ to denote generic classes of
half-planar maps, and simple half-planar maps, without specifying which.
For example, this could also refer to the class of all half-planar maps, or
maps with mixed face valencies.

2.1 Translation invariant and domain Markov
measures

The translation operator θ : H → H is the operator translating the root
of a map to the right along the boundary. Formally, θ(M) = M ′ means
that M and M ′ are the same map, except that the root edge of M ′ is the
the edge immediately to the right of the root edge of M . Note that θ is a

1The results in this section are taken from the paper [12] and is joint work with Omer
Angel.
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2.1. Translation invariant and domain Markov measures

Q M M̃

Figure 2.1: Left: A finite map Q. Centre: part of a map M
containing Q with 2 edges along the boundary. Right: the resulting
map M̃ . The domain Markov property states that M̃ has the same
law as M .

bijection. A measure µ on H is called translation invariant if µ ◦ θ = µ.
Abusing language, we will also say that a random map M with law µ is
translation invariant, even though typically moving the root of M yields a
different (rooted) map.

The domain Markov property is more delicate, and may be informally
described as follows: if we condition on the event that M contains some finite
configuration Q and remove the sub-map Q from M , then the distribution of
the remaining map is the same as that of the original map (see Figure 2.1).

We now make this precise. Let Q be a finite map in an m-gon for some
finite m, and suppose the boundary of Q is simple (i.e. is a simple cycle
in the graph of Q), and let 0 < k < m be some integer. Define the event
AQ,k ⊂ H that the map M contains a sub-map which is isomorphic to Q,
and which contains the k boundary edges immediately to the right of the
root edge of M , and no other boundary edges or vertices. Moreover, we
require that the root edge of Q corresponds to the edge immediately to the
right of the root of M . On this event, we can think of Q as being a subset
of M , and define the map M̃ = M \Q, with the understanding that we keep
vertices and edges in Q if they are part of a face not in Q (see Figure 2.1).
Note that M̃ is again a half-planar infinite map.

Definition 2.1.1. A probability measure µ on H is said to be domain
Markov, if for any finite map Q and k as above, the law of M̃ constructed
from a sample M of µ conditioned on the event AQ,k is equal to µ.

Note that for translation invariant measures, the choice of the k edges
to the right of the root edge is rather arbitrary: any k edges will result in
M̃ with the same law. Similarly, we can re-root M̃ at any other determinis-
tically chosen edge. Thus it is also possible to consider k edges that include
the root edge, and mark a new edge as the root of M̃ .
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2.2. Main results

This definition is a relatively restrictive form of the domain Markov
property. There are several other natural definitions, which we shall discuss
below. While some of these definitions are superficially stronger, it turns
out that several of them are equivalent to Definition 2.1.1.

2.2 Main results

Our main result is a complete classification and description of all probability
measures onH′p which are translation invariant and have the domain Markov
property.

Theorem 2.2.1. Fix p ≥ 3. The set of domain Markov, translation invari-

ant probability measures on H′p forms a one parameter family {H(p)
α } with

α ∈ Ip ⊂ [0, 1). The parameter α is the probability of the event that the
p-gon incident to any fixed boundary edge is also incident to p− 2 internal
vertices.

Moreover, for p = 3, I3 = [0, 1), and for p > 3 we have (α0(p), 1) ⊂ Ip
for some α0(p) < 1.

We believe that Ip = [0, 1) for all p although we have been able to prove
this fact only for p = 3. We emphasize here that our approach would work
for any p provided we have certain enumeration results. See Section 2.10 for
more on this.

We shall normally omit the superscript (p), as p is thought of as any fixed

integer. The measures H(p)
α are all mixing with respect to the translation

θ and in particular are ergodic. This actually follows from a much more
general proposition which is well known among experts for the standard
half planar random maps, but we could not locate a reference. We include
it here for future reference.

Proposition 2.2.2. Let µ be domain Markov and translation invariant on
H. Then the translation operator is mixing on (H, µ), and in particular is
ergodic.

Proof. Let Q,Q′ and AQ,k, AQ′,k′ be as in Definition 2.1.1. Since events of
the form AQ,k are simple events in the local topology (recall discussion in
Section 1.2), it suffices to prove that

µ(AQ,k ∩ θn(AQ′,k′))→ µ(AQ,k)µ(AQ′,k′)

as n → ∞ where θn is the n-fold composition of the operator θ. However,
since on AQ,k the remaining map M̃ = M \ Q has the same law as M ,
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2.2. Main results

and since θn(AQ′,k′) is just θn
′
(AQ′,k′) in M̃ , for some n′, we find from

the domain Markov property that for large enough integer n, the equality
µ(AQ,k ∩ θn(AQ′,k′)) = µ(AQ,k)µ(AQ′,k′) holds.

An application of Proposition 2.2.2 shows that the measures in the set

{H(p)
α : α ∈ I} are all singular with respect to each other. This is because

the density of the edges on the boundary for which the p-gon containing it
is incident to p− 2 internal vertices is precisely α by translation invariance.
Note that the domain Markov property is not preserved by convex combi-
nations of measures, so the measures Hα are not merely the extremal points
in the set of domain Markov measures.

Note also that the case α = 1 is excluded. It is possible to take a limit
α→ 1, and in a suitable topology we even get a deterministic map. However,
this map is not locally finite and so this can only hold in a topology strictly
weaker than the local topology on rooted graphs. Indeed, this map is the
plane dual of a tree with one vertex of infinite degree (corresponding to
the external face) and all other vertices of degree p. As this case is rather
degenerate we shall not go into any further details.

In the case of triangulations we get a more explicit description of the

measures H(3)
α , which we use in a future paper [82] to analyze their geometry.

This can be done more easily for triangulations because of readily available
and very explicit enumeration results. We believe deriving similar explicit
descriptions for other p-angulations, at least for even p is possible with a
more careful treatment of the associated generating functions, but leave this
for future work. This deserves some comment, since in most works on planar
maps the case of quadrangulations q = 4 yields the most elegant enumerative
results. The reason the present work differs is the aforementioned necessity
of working with simple maps. In the case of triangulations this precludes
having any self loops, but any triangle with no self loop is simple, so there
is no other requirement. For any larger p (including 4), the simplicity does
impose further conditions. For example, a quadrangulation may contain a
face consisting of two double edges.

We remark also that forbidding multiple edges in maps does not lead
to any interesting domain Markov measures. The reason is that in a finite
map Q it is possible that there exists an edge between any two boundary
vertices. Thus on the event AQ,k, it is impossible that M̃ contains any edge
between boundary edges. This reduces one to the degenerate case of α = 1,
which is not a locally finite graph and hence excluded.

Our second main result is concerned with limits of uniform measures on
finite maps. Let µm,n be the uniform measure on all simple triangulations
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of an m-gon containing n internal (non-boundary) vertices (or equivalently,
2n+m−2 faces, excluding the external face). Recall we assume that the root
edge is one of the boundary edges. The limits as n→∞ of µm,n w.r.t. the
local topology on rooted graphs (formally defined in Section 1.2) have been
studied in [13], and lead to the well-known UIPT. Similar limits exist for
other classes of planar maps, see e.g. [65] for the case of quadrangulations. It
is possible to take a second limit as m→∞, and the result is the half-plane
UIPT measure (see also [44] for the case of quadrangulations). A second
motivation for the present work is to identify other possible accumulation
points of µm,n. These measures would be the limits as m,n → ∞ jointly
with a suitable relation between them.

Theorem 2.2.3. Consider sequences of non-negative integers ml and nl
such that ml, nl → ∞, and ml/nl → a for some a ∈ [0,∞]. Then µml,nl
converges weakly to H(3)

α where α = 2
2a+3 .

The main thing to note is that the limiting measure does not depend on
the sequences {ml, nl}, except through the limit of ml/nl. A special case
is the measure H2/3 which correspond to the half-planar UIPT measure.
Note that in this case, a = 0, that is the number of internal vertices grows
faster than the boundary. Note that the only requirement to get this limit
is ml = o(nl). This extends the definition of the half-planar UIPT, where
we first took the limit as nl →∞ and only then let ml →∞.

The other extreme case α = 0 (or a =∞) is also of special interest. To
look into this case it is useful to consider the dual map. Recall that the
dual map M∗ of a planar map M is the map with a vertex corresponding
to each face of M and an edge joining two colours faces (that is faces which
share at least an edge), or more precisely a dual edge crossing every edge
of M . Note that for a half-planar map M , there will be a vertex of infinite
degree corresponding to the face of infinite degree. All other vertices shall
have a finite degree (p in the case of p-angulations). To fit into the setting
of locally finite planar maps, we can simply delete this one vertex, though
a nicer modification is to break it up instead into infinitely many vertices
of degree 1, so that the degrees of all other vertices are not changed. For
half planar triangulations this gives a locally finite map which is 3-regular
except for an infinite set of degree 1 vertices, each of which corresponds to
a boundary edge. We can similarly define the duals of triangulations of an
m−gon, where each vertex is of degree 3 except for m degree 1 vertices.

For a triangulation of an m−gon with no internal vertices (n = 0), the
dual is a 3 regular tree with m leaves. Let T be the critical Galton-Watson
tree where a vertex has 0 or 2 offspring with probability 1/2 each. We add a
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leaf to the root vertex, so that all internal vertices of T have degree 3. Then
the law of M∗ under µm,0 is exactly T conditioned to have m leaves. Hence,
this measure has a weak limit known as the critical Galton-Watson tree
conditioned to survive (see Section 1.2). This is the law of the dual map M∗

under H0. Observe that in H0, α = 0, hence the probability that the triangle
incident to any boundary edge has the third vertex also on the boundary is
1. As before, note that the only condition on ml, nl in Theorem 2.2.3 to get

this limiting measure is that nl = o(ml). For p > 3 the measure H(p)
0 has a

similar description using trees with p− 1 or 0 offspring.
Note that Theorem 2.2.3 gives finite approximations of Hα for α ∈

[0, 2/3], so it is natural to ask for finite approximations to Hα for α ∈
(2/3, 1)? In this regime, the maps behave differently than those in the

regime α < 2/3 or α = 2/3. Maps with law H(3)
α are hyperbolic in nature,

and for example have exponential growth (we elaborate on the difference in
Section 2.8 and investigate this further in [82]). Following the discussion
in Section 1.6, we make the following conjecture similar in lines to Conjec-
ture 1.6.1:

Conjecture 2.2.4. Let Tnl,gl,pl be a uniformly picked triangulation of genus
gl, nl vertices and pl boundary vertices rooted at the boundary. Also assume
gl/nl → θ for some θ ≥ 0 and pl = o(nl). Then Tnl,gl,pl converges weakly
to Hα where α ≥ 2/3 and is only a function of θ. Further if θ = 0 then
α = 2/3.

As indicated in Section 2.13, a similar phase transition is expected for
p-angulations as well. Thus, we expect a similar conjecture about finite
approximation to hold for any p, and not only triangulations.

Organization We prove the classification theorem for triangulations in
Sections 2.6 and 2.7 and for p-angulations in Section 2.10 and also discuss
the variation of maps with non-simple faces. In Section 2.12 we examine
limits of uniform measures on finite maps, and prove Theorem 2.2.3.

2.3 Other approaches to the domain Markov
property

In this section we discuss alternative possible definitions of the domain
Markov property, and their relation to Definition 2.1.1. The common theme

24



2.3. Other approaches to the domain Markov property

Figure 2.2: Possibilities when removing a sub-map Q connected
to the boundary. The red part is CM which is identified with CQ.
Left: Q consists of a single triangle. Right: Q consists of two
faces in a general map. The shaded areas are the holes — finite
components of the complement of Q.

is that a map M is conditioned to contain a certain finite sub-map Q, con-
nected to the boundary at specified locations. We then remove Q to get a
new map M̃ . The difficulty arises because it is possible in general for M̃
to contain several connected components. See Figure 2.2 for some ways in
which this could happen, even when the map Q consists of a single face.

To make this precise, we first introduce some topological notions. A
sub-map of a planar map M is a subset of the faces of M along with the
edges and vertices contained in them. We shall consider a map as a subset
of the sphere on which it is embedded.

Definition 2.3.1. A sub-map of a planar map is said to be connected if
it is connected as a subset of the sphere. A connected sub-map E of a half
planar map M is said to be simply connected if its union with the external
face of M is a simply connected set in the sphere.

Let Q denote a finite planar map, and let some (but at least one) of its
faces be marked as external, and the rest as internal. We assume that the
internal faces of Q are a connected set in the dual graph Q∗. One of the
external faces of Q is singled out, and a non-empty subset CQ containing
at least one edge of the boundary of that external face is marked (in place
of the k edges we had before). Note that CQ need not be a single segment
now. Fix also along the boundary of M a set CM of the same size as CQ,
consisting of segments of the same length as those of CQ and in the same
order. We consider the event

AQ = {Q ⊂M,∂M ∩ ∂Q = CM},

that Q is a sub-map of M , with CQ corresponding to CM . Figure 2.2 shows
an example of this where Q has a single face.
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On the event AQ, the complement M \ Q consists of one component
with infinite boundary in the special external face of Q, and a number of
components with finite boundary, one in each additional external face of Q.
Let us refer to the components with finite boundary sizes as holes. Note
that because M is assumed to be one-ended, the component with infinite
boundary size, which is denoted by M̃ is the only infinite component of
M \ Q. All versions of the domain Markov property for a measure µ state
that

conditioned on AQ, the infinite component of M \Q has law µ.

However, there are several possible assumptions about the distribution of
the components of M \Q in the holes. We list some of these below.

1. No additional information is given about the distribution of the finite
components.

2. The finite components are independent of the distribution of the infi-
nite component.

3. The finite components are independent of the distribution of the infi-
nite component and of each other.

4. The law of the finite components depends only on the sizes of their
respective boundaries (i.e. two maps Q with holes of the same size give
rise to the same joint distribution for the finite components).

It may seem at first that these are all stronger than Definition 2.1.1,
since our definition of the domain Markov property only applies if Q is
simply connected, in which case there are no finite components to M \ Q.
This turns out to be misleading. Consider any Q as above, and condition on
the finite components of M \ Q. Together with Q these form some simply
connected map Q̄ to which we may apply Definition 2.1.1. Thus for any set
of finite maps that fill the holes of Q, M̃ has law µ. Since the conditional
distribution of M̃ does not depend on our choice for the finite components,
the finite components are independent of M̃ . Thus options 1 and 2 are both
equivalent to Definition 2.1.1, and the simple-connectivity condition for Q
may be dropped.

In the case of p-angulations with simple faces, we have a complete clas-
sification of domain Markov measures. Along the proof, it will become clear
that those in fact also satisfy the stronger forms 3 and 4 of the domain
Markov property. This shows that for simple faced maps, every definition
of the domain Markov property gives the same set of measures. If we allow
non-simple faces, however, then different choices might yield smaller classes.
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For example, if a non-simple face surrounds two finite components of the
map, then under the domain Markov property as defined above, the parts
of the map inside these components need not be independent of each other.

2.4 Peeling

Let us briefly describe the concept of peeling which has its roots in the
physics literature [6, 92], and was used in the present form in [7]. It is a
useful tool for analyzing planar maps, see e.g. applications to percolation
and random walks on planar maps in [8, 10, 20]. While there is a version
of this in full planar maps, it takes its most elegant form in the half plane
case.

Consider a probability measure µ supported on a subset of H and con-
sider a sample M from this measure. The peeling process constructs a
growing sequence of finite simply-connected sub-maps (Pi) in M with com-
plements Mi = M \Pi as follows. (The complement of a sub-map P contains
every face not in P and every edge and vertex incident to them.) Initially
P0 = ∅ and M0 = M . Pick an edge ai in the boundary of Mi. Next, remove
from Mi the face incident on ai, as well as all finite components of the com-
plement. This leaves a single infinite component Mi+1 = M̃i, and we set
Pi+1 = M \Mi+1.

If µ is domain Markov and the choice of ai depends only on Pi and
an independent source of randomness, but not on Mi, then the domain
Markov property implies by induction that Mn has law µ for every n, and
moreover, Mn is independent of Pn. We will see that this leads to yet another
interesting viewpoint on the domain Markov property.

In general, it need not be the case that
⋃
Pi = M (for example, if the

distance from the peeling edge ai to the root grows very quickly). However,
there are choices of edges ai for which we do have

⋃
Pi = M a.s. One way

of achieving this is to pick ai to be the edge of ∂Mi nearest to the root of M
in the sub-map Mi, taking e.g. the left-most in case of ties. Note that this
choice of ai only depends on Pi and this strategy will exhaust any locally
finite map M .

Let Qi = Mi−1 \Mi = Pi \ Pi−1 for i ≥ 1. This is the finite, simply
connected map that is removed from M at step i. We also mark Qi with
information on its intersection with the boundary of Mi−1 and the peeling
edge ai−1. This allows us to reconstruct Pi by gluing Q1, . . . , Qi. In this
way, the peeling procedure encodes an infinite half planar map by an infinite
sequence (Qi) of marked finite maps. If the set of possible finite maps is
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denoted by S, then we have a bijection Φ : H → SN. It is straightforward
to see that this bijection is even a homeomorphism, where H is endowed
with the local topology on rooted graphs (see Section 1.2), and SN with the
product topology (based on the trivial topology on S).

Now, if µ is a domain Markov measure on H, then the pull-back mea-
sure µ∗ = µ ◦Φ−1 on SN is an i.i.d. product measure, since the maps Mi all
have the same law, and each is independent of all the Qjs for j < i. How-
ever, translation invariance of the original measure does not have a simple
description in this encoding.

2.5 Preliminaries

2.5.1 Boltzmann distribution

We will also sometimes be interested in triangulations of discs where the
number of internal vertices is not fixed, but is also random. The following
measure is of particular interest:

Definition 2.5.1. The Boltzmann distribution on rooted triangulations of
an m-gon with weight q ≤ 2

27 , is the probability measure on the set of finite
triangulations with a finite simple boundary that assigns weight qn/Zm(q) to
each rooted triangulation of the m-gon having n internal vertices, where

Zm(q) =
∑
n

φn,mq
n.

where φn,m is given by eq. (1.3.1). From the asymptotics of φ as n→∞
we see that Zm(q) converges for any q ≤ 2

27 and for no larger q. The precise
value of the partition function will be useful, and we record it here:

Proposition 2.5.2. If q = θ(1− 2θ)2 with θ ∈ [0, 1/6], then

Zm+2(q) =
(
(1− 6θ)(m+ 1) + 1

) (2m)!

m!(m+ 2)!

(
1− 2θ

)−(2m+2)
.

In particular, at the critical point q = 2/27 we have θ = 1/6 and Z takes
the values

Zm+2 = Zm+2

(
2

27

)
=

(2m)!

m!(m+ 2)!

(
9

4

)m+1

.

The proof can be found as intermediate steps in the derivation of φn,m in
[56]. The above form may be deduced after a suitable reparametrization of
the form given there.
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Figure 2.3: Basic building blocks for triangulations. Left: the
event Aα. Centre and right: the two events of type Aβ.

2.6 Half planar triangulations

For the sake of clarity, we begin by proving the special case p = 3 of The-
orem 2.2.1 of half planar triangulations. In the case of triangulations, the
number of simple maps and corresponding generating functions are known
explicitly, making certain computations simpler. Somewhat surprisingly, the
case of quadrangulations is more complex here, and the generating function
is not explicitly known. Apart from the lack of explicit formulae, the case
of general p presents a number of additional difficulties, and is treated in
Section 2.10.

Theorem 2.6.1. All translation invariant, domain Markov probability mea-
sures on H′3 form a one parameter family of measures Hα for α ∈ [0, 1).
Moreover, in Hα the probability that the triangle containing any given bound-
ary edge is incident to an internal vertex is α.

In what follows, let µ be a measure supported on H′3, that is translation
invariant and satisfies the domain Markov property. We shall first define a
certain family of events and show that their measures can be calculated by
repeatedly using the domain Markov property. Let T ∈ H′3 denote a trian-
gulation with law µ. Let α be the µ-measure of the event that the triangle
incident to a fixed boundary edge e is also incident to an interior vertex (call
this event Aα, see Figure 2.3). The event depends on the boundary edge
chosen, but by translation invariance its probability does not depend on the
choice of e. As stated, our main goal is to show that α fully determines the
measure µ.

For i ≥ 1 define p
(r)
i,k (resp. p

(l)
i,k) to be the µ-measure of the event that the

triangle incident to a fixed boundary edge e of T is also incident to a vertex
on the boundary to the right (resp. left) at a distance i along the boundary
from the edge e and that this triangle separates k vertices of T that are not
on the boundary from infinity. Note that because of translation invariance,
these probabilities only depends on i and k and hence we need not specify
e in the notation. It is not immediately clear, but we shall see later that

p
(l)
i,k = p

(r)
i,k (see Corollary 2.6.4 below). In light of this, we shall later drop

the superscript.
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2.6. Half planar triangulations

The case i = 1, k = 0 is of special importance. Since there is no trian-
gulation of a 2-gon with no internal vertex, if the triangle containing e is
incident to a boundary vertex adjacent to e, then it must contain also the
boundary edge next to e. (See also the discussion in Section 2.5.1.) We call
such an event Aβ, shown in Figure 2.3. By translation invariance, we now

see that p
(r)
1,0 = p

(l)
1,0. We shall denote β = p

(r)
1,0 = p

(l)
1,0.

In what follows, fix α and β. Of course, not every choice of α and β is
associated with a domain Markov measure, and so there are some constraints
on their values. We compute below these constraints, and derive β as an
explicit function of α for any α ∈ [0, 1).

Let Q be a finite simply connected triangulation with a simple boundary,
and let B ( ∂Q be a marked, nonempty, connected segment in the boundary
∂Q. Fix a segment in ∂T of the same length as B, and let AQ be the event
that Q is isomorphic to a sub-triangulation of T ∈ H′3 with B being mapped
to the fixed segment in ∂T , and no other vertex of Q being mapped to ∂T .
Let F (Q) be the set of faces of Q, V (Q) the set of vertices of Q (including
those in ∂Q), and V (B) the set of vertices in B, including the endpoints.

Lemma 2.6.2. Let µ be a translation invariant domain Markov measure on
H′3. Then for an event AQ as above we have

µ(AQ) = α|V (Q)|−|V (B)|β|F (Q)|−|V (Q)|+|V (B)| (2.6.1)

Furthermore, if a measure µ satisfies (2.6.1) for any such Q, then µ is
translation invariant and domain Markov.

Remark 2.6.3. |V (Q)| − |V (B)| is the number of vertices of Q not on the
boundary of T . This shows that the probability of the event AQ depends only
on the number of vertices not on the boundary of T and the number of faces
of Q, but nothing else.

The proof of Lemma 2.6.2 is based on the idea that the events Aα and
Aβ form basic “building blocks” for triangulations. More precisely, there
exists some ordering of the faces of Q such that if we reveal triangles of Q in
that order and use the domain Markov property, we only encounter events
of type Aα, Aβ. Moreover, in any such ordering the number of times we
encounter the events Aα and Aβ are the same as for any other ordering.
Also observe that, for every event of type Aα encountered, we add a new
vertex while for every event of type Aβ encountered, we add a new face.
Thus the exponent of Aα counts the number of “new” vertices added while
the exponent of Aβ counts the number of “remaining” faces.
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Γ Γ ΓΓ

Q′
Q1 Q2

Q1

Q2

Figure 2.4: Cases in the inductive step in the proof of
Lemma 2.6.2.

Proof of Lemma 2.6.2. We prove (2.6.1) by induction on |F (Q)|: the num-
ber of faces of Q. If |F (Q)| = 1, then Q is a single triangle, and B contains
either one edge or two adjacent edges. If it has one edge, then the triangle
incident to it must have the third vertex not on the boundary of T . By
definition, in this case µ(AQ) = α and we are done since |V (Q)| = 3 and
|V (B)| = 2. Similarly, if B contains two edges, then |V (B)| = 3 and AQ is
just the event Aβ, with probability β, consistent with (2.6.1).

Next, call the vertices of Q that are not in B new vertices. Suppose
|F (Q)| = n, and that we have proved the lemma for all Q′ with |F (Q)| < n.
Pick an edge e0 from B (there exists one by hypothesis), and let Γ be the
face of Q incident to this edge. There are three options, depending on where
the third vertex of Γ lies in Q (see Figure 2.4):

• the third vertex of Γ is internal in Q,
• the third vertex of Γ is in ∂Q \B,
• the third vertex of Γ is in B.

We treat each of these cases separately.
In the first case, we have that Q′ = Q − Γ is also a simply connected

triangulation, if we let B′ include the remaining edges from B as well as the
two new edges from Γ, we can apply the induction hypothesis to Q′. By the
domain Markov property, we have that

µ(AQ) = µ(AΓ)µ(AQ|AΓ) = αµ(AQ′).

This implies the claimed identity for Q, since Q′ has one less face and one
less new vertex than Q.

In the case where the third vertex of Γ is in ∂Q\B, we have a decompo-
sition Q = Γ∪Q1∪Q2, where Q1 and Q2 are the two connected components
of Q\Γ (see Figure 2.4). We define Bi, to contain the edges of B in Qi, and
one edge of Γ that is in Qi. We have that |F (Q)| = |F (Q1)|+ |F (Q2)|+ 1,
and that the new vertices in Q1 and Q2 except for the third vertex of F (Q)
together are the new vertices of Q. By the domain Markov property, con-
ditioned on AΓ, the inclusion of Q1 and of Q2 in T are independent events
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with corresponding probabilities µ(AQi). Thus

µ(AQ) = αµ(AQ1 |AΓ)µ(AQ2 |AΓ)

= αµ(AQ1)µ(AQ2) = α|V (Q)|−|V (B)|β|F (Q)|−|V (Q)|+|V (B)|,

as claimed.
Finally, consider the case that the third vertex of Γ is in B. As in the

previous case, we have a decomposition Q = Γ ∪ Q1 ∪ Q2, where Q1 is the
triangulation separated from infinity by Γ, and Q2 is the part adjacent to
the rest of T (see Figure 2.4.) We let B1 consist of the edges of B in Q1 and
let B2 be the edges of B in Q2 with the additional edge of Γ. We then have

µ(AQ) = µ(AQ1)µ(AQ1∪Γ|AQ1)µ(AQ|AQ1∪Γ).

By the induction hypothesis, the first term is

α|V (Q1)|−|V (B1)|β|F (Q1)|−|V (Q1)|+|V (B1)|.

By the domain Markov property, the second term is just β. Similarly, the
third term is α|V (Q2)|−|V (B2)|β|F (Q2)|−|V (Q2)|+|V (B2)|. As before we have that
|F (Q)| = |F (Q1)|+ |F (Q2)|+1, and this time |V (Q)|−|V (B)| = (|V (Q1)|−
|V (B1)|) + (|V (Q2)| − |V (B2)|), since the new vertices of Q are the new
vertices of Q1 together with the new vertices of Q2. The claim again follows.

Note that in the last case it is possible that Q1 is empty, in which case
Γ contains two edges from ∂Q. All formulae above hold in this case with no
change.

For the converse, note first that since the events AQ are a basis for the
local topology on rooted graphs, they uniquely determine the measure µ.
Moreover, the measure of the events of the form AQ do not depend on the
location of the root and so µ is translation invariant. Now observe from
Remark 2.6.3 that the measure of any event of the form AQ only depends
on the number of new vertices and the number of faces in Q. Now suppose
we remove any simple connected sub-map Q1 from Q. Then the union of
new vertices in Q1 and Q \Q1 gives the new vertices of Q. Also clearly, the
union of the faces of Q1 and Q \ Q1 gives the faces of Q. Hence it follows
that µ(AQ|AQ1) = µ(AQ\Q1

), and thus µ is domain Markov.

Corollary 2.6.4. For any i, k we have

pi,k := p
(r)
i,k = p

(l)
i,k = φk,i+1α

kβi+k (2.6.2)
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Proof. This is immediate because the event with probability pi,k is a union of
φk,i+1 disjoint events of the form AQ, corresponding to all possible triangu-
lations of an i+ 1-gon with k internal vertices. A triangulation contributing
to φk,i+1 has k internal vertices by the Euler characteristic formula, 2k+i−1
faces. The triangle that separates it from the rest of the map is responsible
for the extra factor of β.

Since the probability of any finite event in H′3 can be computed in terms
of the peeling probabilities pi,k’s, we see that for any given α and β we
have at most a unique measure µ supported on H′3 which is translation
invariant and satisfies the domain Markov property. The next step is to
reduce the number of parameters to one, thereby proving the first part of
Theorem 2.6.1. This is done in the following lemma.

Lemma 2.6.5. Let µ be a domain Markov, translation invariant measure
on H′3, and let α,β be as above. Then

β =

{
1
16(2− α)2 α ≤ 2/3,
1
2α(1− α) α ≥ 2/3.

Proof. The key is that since the face incident to the root edge is either of
type α, or of the type with probability pi,k for some i, k, (with i = 1, k = 0
corresponding to type β) we have the identity

α+
∑
i≥1

∑
k≥0

(
p

(r)
i,k + p

(l)
i,k

)
= 1.

In light of Corollary 2.6.4 we may write this as

1 = α+ 2
∑
i

βi
∑
k

φk,i+1(αβ)k = α+ 2
∑
i

βiZi+1(αβ).

From Proposition 2.5.2 we see that the sum above converges if and only if
αβ ≤ 2

27 . In that case, there is a θ ∈ [0, 1/6] with αβ = θ(1 − 2θ)2. Using
the generating function for φ (see e.g. [56]) and simplifying gives the explicit
identity

(2θ + α− 1)

√
1− 4θ

α
= 0. (2.6.3)

Thus θ ∈ {1−α
2 , α4 }. Of these, only one solution satisfies θ ∈ [0, 1/6] for

any value of α. If α ≤ 2/3, then we must have θ = α/4 which yields

β =
1

4

(
1− α

2

)2
=

1

16
(2− α)2
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If α ≥ 2/3 one can see from (2.6.3) that the solution satisfying θ ∈ [0, 1/6]
is θ = (1− α)/2 which in turn gives

β =
α(1− α)

2
.

2.7 Existence

As we have determined β in terms of α, and since Lemma 2.6.2 gives all
other probabilities pi,k in terms of α and β, we have at this point proved
uniqueness of the translation invariant domain Markov measure with a given
α < 1. However we still need to prove that such a measure exists. We
proceed now to give a construction for these measures, via a version of
the peeling procedure (see Section 2.4). For α ≤ 2/3, we shall see with
Theorem 2.2.3 that the measures Hα can also be constructed as local limits
of uniform measures on finite triangulations.

In light of Lemma 2.6.2, all we need is to construct a probability mea-
sure µ such that the measure of the events of the form AQ (as defined in
Lemma 2.6.2) is given by (2.6.1).

If we reveal a face incident to any fixed edge in a half planar triangulation
along with all the finite components of its complement, then the revealed
faces form some sub-map Q. The events AQ for such Q are disjoint, and
form a set we denote by A. If we choose α and β according to Lemma 2.6.5,
then the prescribed measure of the union of the events in A is 1.

Let α and let β be given by Lemma 2.6.5. We construct a distribution
µr on the hull of the ball of radius r in the triangulation (which consists of
all faces with a corner at distance less than r from the root, and with the
holes added to make the hull).

Repeatedly pick an edge on the boundary which has at least an endpoint
at a distance strictly less than r from the root edge in the map revealed so
far. Note that as more faces are added to the map, distances may become
smaller, but not larger. Reveal the face incident to the chosen edge and
all the finite components of its complement. Given α and β we pick which
event in A occurs by (2.6.1), independently for different steps. We continue
the process as long as any vertex on the exposed boundary is at distance
less than r from the root. Note that this is possible since the revealed
triangulation is always simply connected with at least one vertex on the
boundary, the complement must be the upper half plane.

Proposition 2.7.1. The above described process almost surely ends after
finitely many steps. The law of the resulting map does not depend on the
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order in which we choose the edges.

Proof. We first show that the process terminates for some order of explo-
ration. The following argument for termination is essentially taken from [7].
Assume that at each step we pick a boundary vertex at minimal distance
(say, k) from the root (w.r.t. the revealed part of the map), and explore
along an edge containing that vertex. At any step with probability β > 0
we add a triangle such that the vertex is no longer on the boundary. Any
new revealed vertex must have distance at least k + 1 from the root. More-
over, any vertex that before the exploration step had distance greater than
k to the root, still has distance greater than k, since the shortest path to any
vertex must first exit the part of the map revealed before the exploration
step. Thus the number of vertices at distance k to the root cannot increase,
and has probability β > 0 of decreasing at each step. Thus almost surely
after a finite number of steps all vertices at distance k are removed from the
boundary. Once we reach distance r, we are done.

The probability of getting any possible map T is a monomial in α and β,
and is the same regardless of the order in which the exploration takes place
(with one α for each non-boundary vertex of the map, and a β term for the
difference between faces and vertices). It remains to show that the process
terminates for any other order of exploration. For some order of exploration,
let νi(T ) be the probability that the process terminated after at most i steps
and revealed T as the ball of radius r. For i large enough (larger than the
number of faces in T ) we have that νi(T ) = µr(T ). Summing over T and
taking the limit as i → ∞, Fatou’s lemma implies that limi

∑
T νi(T ) ≥∑

µr(T ). However, the last sum must equal 1, since for some order of
exploration the process terminates a.s.

It is clear from Proposition 2.7.1 that µr is a well-defined probability
measure. Since we can first create the hull of radius r and then go on to
create the hull of radius r+ 1, (µr) forms a consistent sequence of measures.
By Kolmogorov’s extension Theorem, (µr)r∈N can be extended to a measure
Hα on H′3. Also, we have the following characterization of Hα for any simple
event of the form AQ as defined in Lemma 2.6.2.

Lemma 2.7.2. For any AQ and B as defined in Lemma 2.6.2,

Hα(AQ) = α|V (Q)|−|V (B)|β|F (Q)|−|V (Q)|+|V (B)| (2.7.1)

We alert the reader that such a characterization is not obvious from the
fact that the events of the form {Br = T} have the Hα measure exactly as
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asserted by Lemma 2.7.2 where Br denotes the hull of the ball of radius r
around the root vertex. Any finite event like AQ can be written in terms of
the measures of Hα(Br = T ) for different T ∈ T by appropriate summation.
However it is not clear a priori that the result will be as given by (2.7.1).

Proof of Lemma 2.7.2. Since Q is finite, there exists a large enough r such
that Q is a subset of Br. Now we claim that µr(AQ) is given by the right
hand side of (2.7.1). This is because crucially, µr is independent of the
choice of the sequence of edges, and hence we can reveal the faces of Q first
and then the rest of Br. However the measure of such an event is given by
the right hand side of (2.7.1) by the same logic as Proposition 2.7.1. Now
the lemma is proved because Hα(AQ) = µr(AQ) since Hα is an extension of
µr.

We now have all the ingredients for the proof of Theorem 2.6.1.

Proof of Theorem 2.6.1. We have the measures Hα constructed above which
are translation invariant and domain Markov (this follows from the second
part of Lemma 2.6.2). If µ is a translation invariant domain Markov measure,
then by Lemmas 2.6.2, 2.6.5 and 2.7.2, µ agrees with Hα on every event of
the form AQ, and thus µ = Hα for some α.

2.8 The phase transition

In the case of triangulations, we call the measures Hα subcritical, critical and
supercritical when α < 2

3 , α = 2
3 , and α > 2

3 respectively. We summarize
here for future reference the peeling probabilities pi,k and pi = 2

∑
k≥0 pi,k

for every α ∈ [0, 1). Recall that θ is defined by αβ = θ(1−2θ)2 and θ ∈ [0, 1
6 ].

Critical case: α = 2
3 This case is the well-known half plane UIPT (see

[7]) Here β = 1
9 and θ = 1

6 . The two possible values of θ coincide at 1
6 and

hence β = 1
9 . Using Corollary 2.6.4 and Proposition 2.5.2, we recover the

probabilities

pi,k = φk,i+1

(
1

9

)i( 2

27

)k
pi =

2

4i
(2i− 2)!

(i− 1)!(i+ 1)!

(2.8.1)

Note that in H2/3 we have the asymptotics pi ∼ ci−5/2 for some c > 0.
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Sub-critical case: α < 2
3 Here θ = α/4 and hence β = (2−α)2

16 . Using
Corollary 2.6.4 and Proposition 2.5.2, we get

pi,k = φk,i+1

(
2− α

4

)2i(α
4

(
1− α

2

)2
)k

pi =
2

4i
(2i− 2)!

(i− 1)!(i+ 1)!
·
((

1− 3α

2

)
i+ 1

) (2.8.2)

As before, we get the asymptotics pi ∼ ci−3/2 for some c = c(α) > 0. Note
that pi is closely related to a linearly biased version of pi for the critical
case.

Super-critical case: α > 2/3 Here θ = 1−α
2 and hence β = α(1−α)

2 .
Using Corollary 2.6.4 and Proposition 2.5.2, we get

pi,k = φk,i+1α
i+2k

(
1− α

2

)i+k
pi =

2

4i
(2i− 2)!

(i− 1)!(i+ 1)!
·
(

2

α
− 2

)i
((3α− 2)i+ 1)

(2.8.3)

Here, the asymptotics of pi are quite different, and pi has an exponential
tail: pi ∼ cγii−3/2 for some c and γ = 2

α − 2. The differing asymptotics of
the connection probabilities pi indicate very different geometries for these
three types of half plane maps. These are almost (though not quite) the
probabilities of edges between boundary vertices at distance i.

2.9 Non-simple triangulations

So far in this chapter, we have only considered one type of map: triangula-
tions with multiple edges allowed, but no self loops. Forbidding double edges
combined with the domain Markov property, leads to a very constrained set
of measures. The reason is that a step of type α followed by a step of type
β can lead to a double edge. If µ is supported on measures with no multiple
edges, this is only possible if αβ = 0. As seen from the discussion above,
this gives the unique measure H0 which has no internal vertices at all. A
similar phenomenon occurs for p-angulations for any p ≥ 3, and we leave
the details to the reader.

In contrast, the reason one might wish to forbid self-loops is less clear.
We now show that on the one hand, allowing self-loops in a triangulation
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leads to a very large family of translation invariant measures with the domain
Markov property. On the other hand, these measures are all in an essential
way very close to one of the Hα measures already encountered. The reason
that uniqueness breaks as thoroughly as it does, is that here it is possible
for removal of a single face to separate the map into two components, one
of which is only connected to the infinite part of the boundary through the
removed face. We remark that for triangulations with self loops, the stronger
forms of the domain Markov property discussed in Section 2.3 are no longer
equivalent to the weaker ones that we use.

Let us construct a large family of domain Markov measures as promised.
Our translation invariant measures on triangulations with self-loops are
made up of three ingredients. The first is the parameter α ∈ [0, 1) which
corresponds to a measure Hα as above. Next, we have a parameter γ ∈ [0, 1)
which represents the density of self loops. Taking γ = 0 will result in no
self-loops and the measure will be simply Hα. Finally, we have an arbitrary
measure ν supported on triangulations of the 1-gon (i.e. finite triangulations
whose boundary is a self-loop, possibly with additional self-loops inside).
From α, γ and ν we construct a measure denoted Hα,γ,ν . More precisely, we
describe a construction for a triangulation with law Hα,γ,ν .

Given α, take a sample triangulation T from Hα. For each edge e of T ,
including the boundary edges, take an independent geometric variable Ge
with Hα,q,ν(Ge = k) = (1− q)qk−1. Next, replace the edge e by Ge parallel
edges, thereby creating Ge − 1 faces which are all 2-gons. In each of the
2-gons formed, add a self-loop at one of the two vertices, chosen with equal
probability and independently of the choices at all other 2-gons. This has
the effect of splitting the 2-gon into a triangle and a 1-gon. Finally, fill each
self-loop created in this way with an independent triangulation with law ν
(see Figure 2.5).

Proposition 2.9.1. The measures Hα,q,ν defined above are translation in-
variant and satisfy the domain Markov property. For α > 0, these are all
the measures on half planar triangulations with these properties.

Recall that we use α to denote the probability of the event of type α
that the triangle incident on any boundary edge also contains an internal
vertex. The case of triangulations with α = 0 is special for reasons that will
be clearer after the proof, and is the topic of Proposition 2.9.2. In that case
we shall require another parameter, and another measure ν ′. This will be
the only place where we shall demonstrate domain Markov measures that
are not symmetric w.r.t. left-right reflection.
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Figure 2.5: Non-uniqueness for triangulation with self-loops.
Starting with a triangulation with simple faces (left), each edge
is replaced by a geometric number of parallel edges with a self-
loop at one of the two vertices between any pair (greater than 1
at the bold edges). Independent maps with arbitrary distribution
are added inside the self-loops (shaded). Note that multiple edges
may occur on the left (but not self-loops).

Coming back to the case α > 0, note that since ν is arbitrary, the struc-
ture of domain Markov triangulations with self-loops is much less restricted
than without the self-loops. For example, ν could have a very heavy tail for
the size of the maps, or for the degree of the vertex in the self-loop, which
will affect the degree distribution of vertices in the map. However, the mea-
sures Hα,q,ν are closely related to Hα, since the procedure described above
for generating a sample of Hα,q,ν from a sample of Hα is reversible. Indeed,
if we take a sample from Hα,q,ν and remove each loop and the triangulation
inside it, we are left with a map whose faces are triangles or 2-gons. If we
then glue the edges of each 2-gon into a single edge, we are left with a simple
triangulation. We refer to this operation as taking the 2-connected core of
the triangulation, since the dual of the triangulation contains a unique infi-
nite maximal 2-connected component, which is a subdivision of the dual of
the triangulation resulting from this operation. Clearly the push-forward of
the measures Hα,q,ν via this operation has law Hα. Thus Hα does determine
in some ways the large scale structure of Hα,q,ν .

Proof of Proposition 2.9.1. Translation invariance is clear as Hα is transla-
tion invariant, the variables Ge and triangulations in the self-loops do not
depend upon the location of the root.

To see that Hα,q,ν is domain Markov, let T be a half planar triangulation
with law Hα,q,ν . Let core(·) denote the 2-connected core of a map, and
observe that core(T ) is a map with law Hα from which T was constructed.
Let Q be a finite simply connected triangulation (which may contain non-
simple faces), and let AQ be the event as defined in Lemma 2.6.2. To
establish the domain Markov property for Hα,q,ν , we need to show that
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conditionally on AQ, T̃ = T\Q (as defined in Section 2.1) has the same law as
T . On the event AQ, a corresponding event Acore(Q) that core(Q) ⊂ core(T )

also holds. Moreover, on these events, core(T̃ ) = core(T ) \ core(Q) has law
Hα, since Hα is domain Markov. We therefore need to show that to get from
core(T )\core(Q) to T̃ each edge is replaced by a Geom(q) number of parallel
non-simple triangles with ν-distributed triangulations inside the self-loops.
Any edge of core(T ) \ core(Q) is split in T̃ into an independent Geom(q)
number of parallel edges. Indeed, for edges not in core(Q) this number is
the same as in T , and for edges in the boundary of Q, the number is reduced
by those non-simple triangles that are in Q, but is still Geom(q) due to the
memory-less property of the geometric variables. The triangulations inside
the self-loops are i.i.d. samples of ν, since they are just a subset of the ones
in T which are i.i.d. and ν-distributed.

For the second part of the proposition, note first that if µ is domain
Markov, then the push-forward of µ w.r.t. taking the core is also domain
Markov, hence must be Hα for some α ∈ [0, 1) by Theorem 2.6.1.

Fix an edge along the boundary, let q be the probability that the face
containing it is not simple. By the domain Markov property, conditioned on
having such a non-simple face and removing it leaves the map unchanged
in law, and so this is repeated Geom(q) times before a simple face is found.
Removing all of these faces also does not change the rest of the map, and so
this number is independent of the multiplicity at any other edge of the map.
Similarly, the triangulation inside the self-loop within each such non simple
face is independent of all others, and we may denote its law by ν. Since
any edge inside the map may be turned into a boundary edge by removing
a suitable finite sub-map, the same holds for all edges.

To see that µ = Hα,q,ν , it remains to show that the self-loops are equally
likely to appear at each end-point of the 2-gons and are all independent.
The independence follows as for the triangulations inside the self-loops. To
see that the two end-points are equally likely (and only to this end) we
require α > 0. The configuration shown in Figure 2.6 demonstrates this.
After removing the face on the right, the self-loop is at the right end-point
of a 2-gon on the boundary. Removing the triangle on the left leaves the
self-loop on the left end-point, and so the two are equally likely.

As noted above, the case α = 0 is special. In this case, no boundary
edge has its third vertex internal to the triangulation. Note that this is not
the same as saying that the triangulation has no internal vertices - they
could all be inside self-loops, which are attached to the boundary vertices.
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2.10. Simple and general p-angulations

A B

Figure 2.6: Exploring in different orders shows that self-loops are
equally likely to be at each end-point of a 2-gon. Conditioning on
face A and removing it leaves a non-simple face along the boundary
with the self-loop at the left vertex. Removing instead face B leaves
the self-loop on the right vertex.

The contraction operation described above still necessarily yields a sample
T of H0. Similarly, each edge of T must correspond to an independent,
geometric number of edges in the full map, and the triangulations inside the
corresponding self-loops must be independent.

However, without steps of type α we cannot show that the the two choices
for the location of the self-loop in 2-gons are equally likely. Indeed, since all
2-gons connect a pair of boundary vertices, it is possible to tell them apart.
Adding the self-loop always on the left vertex will not be the same as adding
it always on the right. This reasoning leads to a complete characterization
also in the case α = 0. In each 2-gon the self-loop is on the left vertex with
some probability γ ∈ [0, 1], and these must be independent of all other 2-
gons. The triangulations inside the self-loops are all independent, but their
laws may depend on whether the self-loop is on the left or right vertex in
the 2-gon, so we need to specify two measures νL, νR on triangulations of
the 1-gon. Thus we get the following:

Proposition 2.9.2. A domain Markov, translation invariant triangulation
with α = 0 is determined by the intensity of multiple edges q, the probability
γ ∈ [0, 1] that the self-loop is attached to the left vertex in each 2-gon, and
probability measures νL, νR on triangulations of the 1-gon.

2.10 Simple and general p-angulations

Here we prove the general case of Theorem 2.2.1. The proof is similar to
the proof of Theorem 2.6.1, with some additional complications: There are
more than the two types of steps α and β, and the generating function for
simple p-angulations is not explicitly known. There are implicit formulae
relating it to the generating function for general maps with suitably chosen
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(b) (c) (d)(a)

Figure 2.7: Building blocks for quadrangulations and general p-
angulations. Shown: an event of type A5 for p = 9 and the three
building blocks for p = 4.

weights for various face sizes, which are fairly well understood in the case of
even p. For quadrangulations, even more is known. In [83], the problem of
enumerating 2-connected loopless near 4-regular planar maps (see [83] for
exact definitions) is considered. This is easily equivalent to our problem of
enumerating simple faced quadrangulations with a simple boundary. The
generating function is computed there in a non-closed form. With careful
analysis, this might lead to explicit expressions analogous to the ones we
have for the triangulation case at least for the case of quadrangulations.
We have not been able to obtain such expressions, and thus our descrip-
tion of the corresponding Hα’s still depends on an undetermined parameter
β = β(α). Instead, uniqueness is proved by a softer argument based on
monotonicity. The proof of existence used for triangulations goes through
with no significant changes, but is now conditional on the existence of a
solution to a certain equation.

Proof of Theorem 2.2.1. As before, let µ be a probability measure supported
on the set H′p of half planar simple p-angulations which is translation in-
variant and satisfies the domain Markov property. The building blocks for
simple p-angulations, taking the place of Aα and Aβ, will be the events
where the face incident to the root edge consists of a single contiguous seg-
ment from the infinite boundary, together with a simple path in the interior
of the map closing the cycle, with the path in any fixed position relative to
the root (see Figure 2.7(a)). The number of internal vertices can be anything
from 0 to p− 2. Let the µ-measure of such an event with i internal vertices
(call the event Ai) be αi for i = 0, . . . , p − 2. For example, in the case of
p = 3 we have α1 = α and α0 = β. We shall continue to use α for αp−2, i.e.
the µ-probability that the face on the root edge contains no other boundary
vertices. Note that there are several such events of type Ai, which differ
only in the location of the root. However because of translation invariance,
each such event has the same probability αi. For quadrangulations (p = 4),
there are three possible building blocks, shown in Figure 2.7(b–d).

We have a generalization of Lemma 2.6.2, that shows that the measure
µ is determined by α0 . . . , αp−2, leaving us with p − 1 degrees of freedom.
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2.10. Simple and general p-angulations

Figure 2.8: The event B4 for p = 6. Depending on the order of
exploration, its probability is found to be α2

3 or α4α2.

However, before doing that, let us reduce these to two degrees of freedom.
For any i = 1, . . . , p − 2, consider the event Bi defined as follows (see e.g.
Figure 2.8):

(i) The face incident to the root edge has i − 1 internal vertices and
its intersection with the boundary is a contiguous segment of length
p− i+ 1 with the leftmost of those vertices being the root.

(ii) The face incident to the edge to the left of the root edge has i
internal vertices, its intersection with the boundary is a contiguous
segment of length p− i, with the root vertex being the right end-point.

(iii) The two faces above share precisely one common edge between
them which is also incident to the root vertex.

The probability µ(Bi) can be computed by exploring the faces incident to
the root edge, and with the edge to its left in the two possible orders.
We find that α2

i−1 = αiαi−2, and hence the numbers {α0, . . . , αp−2} form
a geometric series, leaving two degrees of freedom. In order to simplify
subsequent formulae we reparametrize these as follows. Denote

βp−2 = α0, γp−2 = αp−2

so that the geometric series is given by αi = γiβp−2−i. This is consistent
with the previous definition of β in the case p = 3.

Lemma 2.10.1. Let µ be a measure supported on H′p which is translation
invariant and domain Markov. Let Q be a finite simply connected simple
p-angulation and 2 ≤ k < |∂Q|. As before, AQ,k is the event that Q is
isomorphic to a sub-map of M with k consecutive vertices being mapped to
the boundary of M . Then

µ(AQ,k) = α
|V (Q)|−k
1 α

|F (Q)|−|V (Q)|+k
0 = β(p−2)|F (Q)|−|V (Q)|+kγ|V (Q)|−k.

(2.10.1)
Furthermore, if µ satisfies (2.10.1) for any such Q and k, then µ is transla-
tion invariant and domain Markov.
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2.10. Simple and general p-angulations

The proof is almost the same as in the case of triangulations, and we
omit some of the repeated details, concentrating only on the differences.

Proof. We proceed by induction on the number of faces of Q. If Q has
a single face, then we are looking at one of the events Ai. Then the face
connected to the root sees i new vertices. The measure of such an event is αi
which is equal to α0(α1/α0)i since {α0, . . . , αp−2} form a geometric series.
Hence (2.10.1) holds.

In general, the face Γ connected to the root can be connected to the
boundary of Q and to the interior of Q in several possible ways. Q \ Γ has
several components some of which are connected to the infinite component
of M \Q and some are not. We shall explore the components not connected
to the infinite component of M \Q first, then the face Γ and finally the rest
of the components. Note that in every step of exploration if we encounter
an event of type Ai, we get a factor of αv1α

f−v
0 for the probability, where

v is the number of new vertices added and f is the number of new faces
added since {α0, α1, . . . , αp} are in geometric progression. Notice that the
number of new vertices in all the components and Γ add up to that of Q
and similarly the number of faces in all the components and Γ also add up
to that of Q. Also in each component the number of faces is strictly smaller
than Q. Hence we use induction hypothesis to finish the proof of the claim
similarly as in Lemma 2.6.2.

Returning to the proof of Theorem 2.2.1, let Zm(x) =
∑

i≥0 ψ
(p)
m,ix

i be
the generating function for p-angulations of an m-gon with weight x for each
internal vertex. The probability of any particular configuration for the face
containing the root is found by summing (2.10.1) over all possible ways of
filling the holes created by removal of the face. A hole which includes k ≥ 2
vertices from the boundary of the half planar p-angulation and has a total

boundary of size m can be filled in ψ
(p)
m,n ways with n additional vertices. A

p-angulation of an m-gon with n internal vertices has m+2n−2
p−2 faces, and so

each of these contributes a factor of

β(p−2)|F (Q)|−|V (Q)|+kγ|V (Q)|−k = βn+k−2γn+m−k.

to the product in (2.10.1). Summing over p-angulations, these weights add
up to

βk−2γm−kZm(βγ).

Now, suppose there are a number of holes with boundary sizes given by a
sequence (mi) involving (ki) boundary vertices respectively (see Figure 2.9).
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2.10. Simple and general p-angulations

Figure 2.9: A possible configuration for the root face in a 13-
angulation. The hole parameters (ki,mi) from left to right are
(4, 5), (2, 2), (5, 7). There are j = 5 vertices exposed to infinity, so
the probability of this configuration is α5 ·(β2γZ5)·(Z2)·(β3γ2Z7).

Since any p-angulation can be placed in each of the holes and the weights
are multiplicative, the total combined probability of all ways of filling the
holes is ∏

i

βki−2γmi−kiZmi(βγ).

This must still be multiplied by a probability αj of seeing the face containing
the root conditioned on any compatible filling of the holes (see Figure 2.9).
Thus we have the final identity R(β, γ) = 1, where we denote

R(β, γ) =
∑

αj
∏
i

βki−2γmi−kiZmi(βγ), (2.10.2)

where the sum is over all possible configurations for the face containing the
root edge, and (mi, ki) and j are as above.

For any possible configuration for the face at the root, and each hole it
creates we have ki ≥ 2 (since k = 1 would imply a self-loop) and mi ≥ ki
(since k counts a subset of the vertices at the boundary of the hole). We
also have αj = γjβp−2−j , and so each term in R is a power series in β, γ
with all non-negative coefficients. In particular, R is strictly monotone in
β and γ, and consequently for any γ there exists at most a single β so that
R(β, γ) = 1.

As an example of (2.10.2), consider the next simplest case after p = 3,
namely p = 4. Here, there are 8 topologically different configurations for the
face attached to the root, shown in Figure 2.10. Of those, in the leftmost
shown and its reflection the hole must have a boundary of size at least 4.
In all others, the hole or holes can be of any even size. summing over the
possible even sizes, we get the total

R = γ2 +
4γ

β
Z − 2γβZ2(βγ) +

3

β2
Z2,
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2.10. Simple and general p-angulations

Figure 2.10: Possible faces incident to a boundary edge for quad-
rangulations. The first three may also be reflected to give the 8
topologically distinct possibilities. The holes (shaded) can have
boundary of any even length.

where Z =
∑

k≥2 β
kZk(βγ) is the complete generating function for simple-

faced quadrangulations with a simple boundary.

To get existence of the measures H(p)
α , we need to show that for any

γ = α1/(p−2) there exists a β so that R(β, γ) as defined in (2.10.2) equals
1. By monotonicity, and since R(0, γ) = γp−2 < 1 (the only term with no
power β corresponds to the event Ap−2 with probability α), it suffices to
show that some β satisfies 1 ≤ R(β, γ) < ∞. Note that just from steps of
type A0 and Ap−2 we get R(β, γ) ≥ βp−2 + γp−2. Thus for β close to 1 we
have R(β, γ) > 1, provided it is finite. We prove this holds at least for α
sufficiently close to 1:

Proposition 2.10.2. For any p ≥ 4, and any α ∈ (α0(p), 1) there is some

β so that R(β, α1/(p−2)) > 1, and so the measure H(p)
α exists for α > α0(p).

Proof. To see that Zm(q) <∞ for small enough q we need that the number
of p-angulations grows at most exponentially. For triangulations or even p
this is known from exact enumerative formulae. For any p-angulation we
can partition each face into triangles to get a triangulation of the m-gon.
The number of those is at most exponential in the number of vertices. The
number of p-angulations corresponding to a triangulation is at most 2 to the
number of edges, as each edge is either in the p-angulation or not. Thus we
get a (crude) exponential bound also for odd p.

It is easy to see that there exists a 0 < qc < 1 such that Zm(q) <∞ for
q < qc 6= 0. We expect Zm(qc) < ∞ as well, though that is not necessary
for the rest of the argument. Now we need some general estimate giving
exponential growth of Zm. Fix any q < qc. Note that ψm,n ≥ ψm+p−2,n−p+2

by just counting maps where the face containing the root is incident to no
other boundary vertices. Thus Zm(q) ≥ qp−2Zm+p−2(q), and so Zm(q) ≤
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2.11. Non-simple p-angulations

Cq−m for some constant C > 0, provided it is finite. Of course, this crude
bound does not give the correct rate of increase for Z as m→∞.

In each term of (2.10.2), the mi − ki are bounded, but while keeping
them fixed, the ki’s could take any value (subject to parity constraints for
even p). Fixing mi − ki and summing over the possibilities for the ki’s we
see that R(β, γ) < ∞ provided that

∑
m β

mZm(βγ) < ∞. Now Zm(q) is
an increasing function of q as long as it is finite since all the coefficients of
Zm are non-negative integers. Thus we have for β = qc/(4γ), any choice of
γ > 1/2 and the estimate on Zm found above,∑
m

βmZm(βγ) =
∑
m

βmZm

(qc
4

)
<
∑
m

(
qc
4γ

)m
Zm

(qc
2

)
<
∑
m

(2γ)−m <∞

(2.10.3)
Thus for a choice of γ close to 1 and β = qc/4γ we have R(β, γ) < ∞ and
R(β, γ) ≥ βp−2 + γp−2 > 1.

Having found a γ so that R(β, γ) = 1, we know the probability that the
map contains any given finite neighborhood of the root. The rest of the
construction is similar to the triangulation case as described in Section 2.7
with no significant changes.

Based on the behavior in the case of p = 3, we expect the measures
Hα to exist for all α < 1. Moreover, we expect that R(qc/γ, γ) > 1 when
γp−2 = α > αc and that for smaller γ the maximal finite value taken by R
is exactly 1 where αc will be a critical value of α at which a phase transition

occurs analogous to the triangulation case. We see below that H(4)
α exists

for α ≤ 3
8 , and a similar argument holds for other even p (when there are

explicit enumeration results).

2.11 Non-simple p-angulations

Finally, let us address the situation with p-angulations with non-simple faces.
In the case of p-angulations for p > 3, uniqueness breaks down thoroughly,
and a construction similar to Section 2.9 applies. For even p self-loops are
impossible since a p-angulation is bi-partite. However, inspection of the
construction of Hα,q,ν shows that it works not because of the self-loop, but
because it is possible for a single face to completely surround other faces of
the map.

Consider first the case p = 4, and suppose we are given a measure µ
supported on H4 satisfying translation invariance and the domain Markov
property. Take a sample from µ, and replace each edge by an independent
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2.11. Non-simple p-angulations

Figure 2.11: Non-uniqueness for quadrangulations: each edge is
replaced with a geometric number of parallel edges. In each 2-gon
an internal 2–gon is added at a uniformly chosen endpoint, and
filled with an independent finite (possibly empty) quadrangulation.

geometric number of parallel edges. In each of the 2-gons created, add
another 2-gon attached to one of the two vertices with equal probability,
thereby creating a quadrangle. Fill the smaller 2-gons with i.i.d. samples
from an arbitrary distribution supported on quadrangulations of 2-gons (see
Figure 2.11). As with triangulations, this results in a measure which is
domain Markov and translation invariant.

Hence we see that faces which completely surround other faces of the map
prevent us from getting only a one-parameter family of domain Markov mea-
sures. For triangulations and quadrangulations, the external boundary of
such a face can only consist of 2 edges (i.e. there are precisely two edges con-
necting the face to the infinite component of the complement). Removing
such faces and identifying the two edges results in a domain Markov map
with simple faces, which falls into our classification. Similarly to Propo-
sition 2.9.1, it is possible to get a complete characterization of all domain
Markov maps on quadrangulations in terms of α, the density γ of non-simple
faces, and a measure ν on quadrangulations in a 2-gon.

For p ≥ 5, things get messier. Similar constructions work for any p > 3,
with inserted 2-gons for even p, and any combination of 2-gons and self-
loops for p odd. However, here this no longer gives all domain Markov
p-angulations. A non-simple face can have external boundary of any size
from 2 up to p − 1 (with parity constraint for even p). Thus it is not
generally possible to get a p-angulation with simple faces from a general
one. Removing the non-simple faces leaves a domain Markov map with
simple faces of unequal sizes. It is possible to classify such maps, and these
are naturally parametrized by a finite number of parameters, since we must
also allow for the relative frequency of different face sizes. Much of such a
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classification is similar to the proofs of Theorems 2.2.1 and 2.6.1, and we do
not pursue this here.

2.12 Approximation by finite maps

We prove Theorem 2.2.3, identifying the local limits of uniform measures on
finite triangulations in this section. Here, we are concerned only with the
measures Hα on triangulations for critical and sub-critical α ≤ 2/3. Recall
from the statement of the theorem, that we have sequences (ml)l∈N, (nl)l∈N
of integers such that ml/nl → a for some a ∈ [0,∞] and ml, nl → ∞. We
show that µml,nl — the uniform measure on triangulations of an m-gon with
n internal vertices — converges weakly to Hα where α = 2

2a+3 . To simplify
the notation, we drop the index l from the sequences ml and nl and assume
that m is implicitly a function of n. Note that since [0,∞] is compact, it
follows that {Hα}α≤2/3 are all the possible local limits of the µm,ns.

Here is an outline of the proof: A direct computation shows that the
µm,n measure of the event that the hull of the ball of radius r is a particular
finite triangulation T converges to the Hα measure of the same event (for
any T ), as given by Lemma 2.7.2. While a priori this only gives convergence
in the vague topology, since the limit Hα is a probability measure, it actually
follows that µm,n is a tight family of measures and hence converges weakly.
Thus we show the convergence of the hulls of balls. Note that the hulls of
balls around the root always have a simple boundary.

We start with a simple estimate on relative enumerations on the number
of triangulations of a polygon.

Lemma 2.12.1. Suppose m,n→∞ so that m/n→ a for some a ∈ [0,∞].
Then for any fixed j, k ∈ Z,

lim
n,m→∞

φn−k,m−j
φn,m

=

(
(a+ 1)2

(2a+ 3)2

)j (
2(a+ 1)2

(2a+ 3)3

)k
Proof. By applying Stirling’s approximation to (1.3.1), we have for m,n
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large

φn,m+2 =
2n+1(2m+ 1)!(2m+ 3n)!

(m!)2n!(2m+ 2n+ 2)!

∼ c1
2n+1(2m+ 1)!

(m!)2

(
(2m+ 3n)2m+3n+1/2

(2m+ 2n+ 2)2m+2n+5/2nn+1/2

)

∼ c22n4m
√
m

(
27

4

)n(9

4

)m
n−5/2

(
1 +

2m

3n

)2m+3n (
1 +

m

n

)−2m−2n

(2.12.1)

Taking the ratio, we have

φn−k,m+2−j
φn,m+2

∼
(

2

27

)k (1

9

)j (1 + m
n )2j+2k

(1 + 2m
3n )2j+3k

×(
1 + 2m−2j

3n−3k

1 + 2m
3n

)2m+3n(
1 + m−j

n−k
1 + m

n

)−2m−2n

. (2.12.2)

An easy calculation shows that the product of the last two terms in the right
hand side of (2.12.2) converges to 1. Indeed, if a is finite then the first tends
to e−2j+2ak and the second to e2j−2ak. If a =∞ then after shifting a factor

of
(

n
n−k

)2m
from the first to the second, the limits are e−2j and e2j .

The result follows by taking the limit and using the fact that m/n con-
verges to a.

Let AQ, V (Q), F (Q), V (B) be as in Lemma 2.6.2, and note that AQ
makes sense also when looking for Q as a sub-map of a finite map.

Lemma 2.12.2. Suppose m,n → ∞ with m/n → a for some a ∈ [0,∞].
Then

lim
m,n

µm,n(AQ) =

(
2

2a+ 3

)|V (Q)|−|V (B)|( a+ 1

2a+ 3

)2(|F (Q)|−|V (Q)|+|V (B)|)
.

Remark 2.12.3. If we make the change of variable α = 2(2a+ 3)−1, then
Lemma 2.12.2 gives us

lim
m,n

µm,n(AQ) = α|V (Q)|−|V (B)|
(

(2− α)2

16

)(|F (Q)|−|V (Q)|+|V (B)|)
.

From Lemma 2.12.2 we can immediately conclude that the µm,n-measure
of AQ converges to the Hα measure of the corresponding event.
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Corollary 2.12.4. Suppose m,n→∞ with m/n→ a for some a ∈ [0,∞].
Then we have

lim
m,n

µm,n(AQ) = Hα(AQ)

where α = 2
2a+3 .

Proof of Lemma 2.12.2. It is clear that the number of simple triangulations
of an m + 2-gon with n internal vertices where AQ occurs is φn−k,m+2−j
where j = 2|V (B)| − |∂Q| − 2 where |∂Q| is the number of vertices in the
boundary of Q, and k = |V (Q)| − |V (B)|. Then from Lemma 2.12.1, we
have

lim
m,n

µm,n(AQ) = lim
n,m

φn−k,m+2−j
φn,m+2

=

(
(1 + a)2

(2a+ 3)2

)j (
2(a+ 1)2

(2a+ 3)3

)k
From Euler’s formula, it is easy to see that |F (Q)| = 2|V (B)| − |∂Q| − 2.
This shows j + k = |F (Q)| − |V (Q)| + |V (B)|. Using all this, we have the
Lemma.

Proof of Theorem 2.2.3. Corollary 2.12.4 gives convergence for cylinder events.
Since Hα is a probability measure, the result follows by Fatou’s lemma.

2.13 Quadrangulations and beyond

Can we get similar finite approximations for H(p)
α for p > 3? We think it is

possible to prove such results based on enumeration of general p-angulations
with a boundary, which is available for p even. We believe that similar results
should hold for any p, though do not see a way to prove them. Let us present
here a recipe for quadrangulations. For higher even p there are additional
complications as the core is no longer a p-angulation and results on maps
with mixed face sizes are needed.

Let us first consider quadrangulations with a simple boundary. Denote
by Q2m,n the space of quadrangulations with simple boundary size 2m and
number of internal vertices n (note that since the quadrangulation is bipar-
tite, the boundary size is always even). Let q2m,n = |Q2m,n| be its cardinal-
ity. Enumerative results are available in this situation (see [30]). We alert
the reader that our notation is slightly different from [30]: they use q̃2m,n

for quadrangulations with a simple boundary and n denotes the number of
faces, not the number of internal vertices. Using Euler’s formula one can
easily change from one variable to the other. Doing that, we get:

q2m,n = 3n−1 (3m)!

m!(2m− 1)!

(2n+ 3m− 3)!

n!(n+ 3m− 1)!
(2.13.1)
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Now suppose m/n→ a for some a ∈ [0,∞] where m and n are sequences
such that m → ∞ and n → ∞. Let ν2m,n be the uniform measure on all
quadrangulations of boundary size 2m and n internal vertices. A straight-
forward computation similar to Lemmas 2.12.1 and 2.12.2 gives us for any
finite Q,

lim
m,n

ν2m,n(AQ) =

(
4(1 + 3a)3

27(2 + 3a)3

)|F (Q)|
·
(

9(2 + 3a)

4(1 + 3a)2

)|V (Q)|−|V (B)|
(2.13.2)

where V (Q) is the set of vertices in Q, V (B) is the set of vertices of Q on the
boundary of M , and F (Q) is the set of faces in Q (by Euler’s characteristic,
the “change” in the boundary length when removingQ is 2(|V (Q)|−|V (B)|−
|F (Q)|)).

The limit (2.13.2) in itself is not enough to give us distributional conver-
gence of ν2m,n, as we are missing tightness. It is possible to get tightness for
ν2m,n using the same ideas presented for example in [13, 65] or the general
approach found in [21]. The key is that it suffices to show the tightness
of the root degree. The interested reader can work out the details and we
shall not go into them here. Instead, throughout the remaining part of this
section, we shall assume that the distributional limits of ν2m,n exist. We
remark here that when a = 0 the limiting measures of the events described
by (2.13.2) matches exactly with that of the half planar UIPQ measure (see
[44]) and that for a = ∞ we get the dual of a critical Galton-Watson tree
conditioned to survive. Thus in these two extreme cases, the distributional
limit has already been established.

To handle all a, we define the operator core : H4 → H′4, which is the
reverse of the process used to define the measures Hα,q,ν in Section 2.9, and
acts on the dual by taking the 2-connected core. Formally, any face which
is not simple must have an external double edge connecting it to the rest of
the map (and a 2-gon inside it). The core operator removes every such face,
and identifies the two edges connecting it to the outside. This operation is
defined in the same way on quadrangulations of an m-gon. As discussed in
Section 2.9, if µ is domain Markov on H4 then µ ◦ core−1 is domain Markov
on H′4.

Let µ = lim ν2m,n as m,n → ∞ with m/n → a ∈ [0,∞]. We first
observe that µ is domain Markov and translation invariant. This follows
from (2.13.2) and the converse part of Lemma 2.10.1.

Next, observe that the events Ai for i = 0, 1, 2 are not affected by core.
This is because in each of them, the face containing the root is a simple face,
and so is not contained in any non-simple face. At this point from (2.13.2),
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we obtain β2 = (4(1+3a)3)/(27(2+3a)3) and γ/β = (9(2+3a))(4(1+3a)2).
Thus,

µ(A2) =
3

4(1 + 3a)(2 + 3a)
µ(A0) =

4

27

(
1 + 3a

2 + 3a

)3

.

From the first we see that as a goes from 0 to ∞ we get α ∈ [0, 3
8 ].

Solving for a in terms of α = µ(A2) and plugging in we find β =
√
µ(A0) =

2
27(
√

3 + α − √α)3, which decreases from
√

4/27 to
√

1/54 as α increases
from 0 to 3/8.

This gives the measures H(4)
α as the the core of the limit of uniform

measures on non-simple quadrangulations. Since the core operation is con-
tinuous in the local topology, this is also the limit of the core of uniform

quadrangulations. This does not give H(4)
α as a limit of uniform measures

on non-simple quadrangulations, since the number of internal vertices in
the core of a uniform map from Q2m,n is not fixed. Thus the above only
proves the limit when n is taken to be random with a certain distribution
(though concentrated and tending to infinity in proportion to m.) It should
be possible to deduce (though we have not proved it) that uniform simple

quadrangulations converge to H(4)
α by using a local limit theorem for the

distribution of the size of the core (see [15, 16]).

The above indicates that a phase transition for the family H(4)
α occurs

at α = 3/8, similar to the case p = 3. We can similarly compute the
asymptotics of pk as in Section 2.8 and see that pk ∼ ck−5/2 for α = 3/8
and pk ∼ ck−3/2 for α < 3/8. This indicates different geometry of the maps.
All these hints encourage us to conjecture that a similar picture of phase

transition do exist for the measures H(p)
α for all p > 3.
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Chapter 3

Half planar maps: geometry

2 As a continuation of Chapter 2, we shall study the geometry of domain
Markov half planar random maps and also analyze percolation on them. We
shall focus mainly on half planar triangulation and the main tool will be the
peeling process. Recall that Theorem 2.2.1 for p = 3 gives the classification
result for domain Markov half planar triangulations. Also recall the param-
eter α which denotes the probability that the triangle incident to the root
edge has the other vertex not on the boundary. Recall the phase transition
as described in Section 2.8. In this chapter, we focus on the subcritical and
supercritical phases of domain Markov half planar triangulations, and an-
alyze this phase-transition in more detail. In particular, we obtain results
for volume growth, isoperimetry and geometry of percolation clusters in the
supercritical and subcritical phases of these maps. Finally, we extract some
information about the behavior of random walk on these maps from these
geometric informations.

We introduce some new notations which will be used throughout this
chapter. A step of the form (L, i) (resp. (R, i)) is the event that the triangle
incident to the root edge is attached to a vertex on the boundary which is
at a distance i to the left (resp. right) of the root edge along the bound-
ary (see Figure 3.2). We shall also talk about such events with the root
edge replaced by any fixed edge on the boundary of the map. Because of
translation invariance, the measures of such events do not depend on the
edge we want to consider and it was also shown in Chapter 2 that for any
fixed i ≥ 1, the measures of (L, i) and (R, i) are the same. Let pi,k denote
the measure of the event that a step of the form (L, i) or (R, i) occurs and
the triangle incident to the root edge separates k internal vertices of the
map from infinity. Let pi =

∑
k pi,k. We will use some of the asymptotics

of pi described in Section 2.8. In particular recall that pi ∼ ci−3/2 in the
subcritical phase and on the other hand, pi ∼ exp(−c′i) in the supercritical
phase for some positive constants c, c′.

2The results of this chapter are from the paper [82]
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Chapter 3. Half planar maps: geometry

Figure 3.1: An illustration (artistic) of the geometry of a subcrit-
ical half planar triangulation to the left and that of supercritical to
the right. The blue edges in the subcritical map is the boundary of
the map.

α-step i vertices i vertices.

Figure 3.2: Left: An α-step. Centre: A step of the form (R, i).
Right: A step of the form (L, i). The gray area denotes some
unspecified triangulation.
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3.1. Main results

3.1 Main results

3.1.1 Geometry

We present below the results obtained in this chapter first for supercritical
and then for subcritical maps. Roughly, the behavior of supercritical maps
are hyperbolic: they have exponential volume growth and anchored expan-
sion which will imply transience of simple random walk. The subcritical
maps behave, in view of their geometry, roughly like the critical Galton-
Watson tree conditioned to survive (see [63]). They have quadratic volume
growth, and infinitely many cut-sets of finite size. All the terms stated in
this paragraph will be defined rigorously below.

We remark here that the geometric properties are certainly very different
from the critical uniform infinite half planar triangulation (UIHPT). For
results of similar nature regarding the UIHPT, see [7, 8, 10]. Predictably,
the asymptotics of pi stated in Section 2.8 play a crucial role in proving the
results stated below for different regimes of the parameter α.

Supercritical

Roughly, the geometry of maps in the supercritical regime can be viewed
as a collection of supercritical trees one attached to each of the boundary
vertices with some horizontal segments being added (see Figure 3.3). Hence,
we can expect exponential volume growth, large cut-sets and positive speed
of random walk on these maps. In this chapter, we confirm some of these
heuristics.

Throughout this subsection, we assume α ∈ (2/3, 1). For a set X, |X|
denotes its cardinality, and by an abuse of notation, for any finite graph or
map G, |G| will denote its number of vertices. The ball of radius r in a map
denotes the sub-map formed by all the faces which have at least one vertex
incident to it which is at a distance strictly less than r from the root vertex
along with all the edges and vertices incident to them. Recall that the hull
of radius r is the ball of radius r along with all the finite components of its
complement. Note that since the half planar maps are one-ended, there will
be at most one infinite component in the complement of the ball and the
hull is always a simply connected sub-map. The internal boundary of a
simply connected sub-map is the set of vertices and edges in the sub-map
which is incident to at least one finite face which is not in the sub-map.
Clearly, the internal boundary of a hull is a connected simple path in the
map. We denote the hull of radius r around the root of a map with law Hα

by Br(α) and its internal boundary by ∂Br(α).
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3.1. Main results

Figure 3.3: An very rough intuition of the geometry of supercritical
maps.

We first show exponential volume growth of the hull and the boundary
of the hull.

Theorem 3.1.1. There exists some positive constants 1 < c < C depending
only on α such that almost surely,

lim sup
|∂Br(α)|
Cr

= 0 and lim inf
|∂Br(α)|

cr
=∞ (3.1.1)

and also,

lim sup
|Br(α)|
Cr

= 0 and lim inf
|Br(α)|
cr

=∞ (3.1.2)

Having established the exponential volume growth, we ask if there are
small cut-sets in the map. The usual parameter to look for in this situa-
tion is the Cheeger constant but since our maps are random and any finite
configuration does occur almost surely somewhere in the map, the correct
parameter to consider is the anchored expansion (see [72] Chapter 6).

For a graph G, let V (G) denote its set of vertices. For any graph G, and
a subset of vertices S ⊂ V (G), let |∂ES| denote the number of edges in G
with one vertex in S and another in V (G) \S. Also let |S|E denote the sum
of the degrees of the vertices in S. The anchored expansion constant
i∗E(G) of a graph G is defined as follows:

lim inf
n→∞

{ |∂ES|
|S|E

;S ⊂ V (G) is connected, v ∈ S, |S|E ≥ n
}

= i∗E(G)

Although we specify a vertex v in the above definition, the definition is inde-
pendent of the choice of v. If i∗E(G) > 0, we say G has anchored expansion.

Theorem 3.1.2. A half planar triangulation with law Hα for α ∈ (2/3, 1)
has anchored expansion almost surely.
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3.1. Main results

We remark here that the exponential lower bound for the volume growth
can be concluded from anchored expansion, but we prove it using a different
procedure involving an exploration process because we use the same explo-
ration process to study the subcritical maps and also we get an upper bound
on the volume growth using this method.

It is shown in [90] that for bounded degree graphs having anchored ex-
pansion, the random walk has positive speed, that is, the graph distance
between the position of the walker after the nth step and the starting posi-
tion grows linearly. Unfortunately our maps are not bounded degree maps,
so we cannot directly translate the result. However we can conclude using
Theorem 3.5 of [86] and Theorem 3.1.2 that

Corollary 3.1.3. Simple random walk on a map with law Hα is transient
almost surely if α ∈ (2/3, 1).

We believe that the random walk does have positive speed almost surely
for supercritical maps and in fact the walker should move away from the
boundary at linear speed. What we need to do to prove this is to control
the slowing down of the walk due to the presence of high degree “traps” in
the map.

Subcritical

Throughout this subsection, α ∈ [0, 2/3). The journey of understanding
subcritical triangulations begins with a result about their cut-sets. A cut-
set of an infinite rooted graph G is a connected subgraph of G which when
removed breaks up G into two or more connected components, the root
being in the finite component.

Proposition 3.1.4. In a half planar triangulation with law Hα where α ∈
[0, 2/3), there exists infinitely many cutsets each of which consists of a single
edge almost surely.

Because of the domain Markov property, the above proposition means
that a triangulation distributed as a subcritical Hα has i.i.d. copies of finite
triangulation each of which share only a single edge with each other (see
Figure 3.1). Proposition 3.1.4 and the Nash-Williams criterion for recurrence
(see [71] Proposition 9.15) immediately implies

Corollary 3.1.5. Simple random walk on a half planar triangulation with
law Hα is recurrent almost surely for α ∈ (0, 2/3).
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3.1. Main results

It is interesting to study the dual maps of these maps. As described in
Chapter 2, we make such a dual map locally finite by breaking the infinite
degree vertex corresponding to the infinite face into infinitely many leaves.
Hence the dual almost surely consists of i.i.d. sequence of 3-regular graphs
(with leaves) connected to each other by a single edge. For α = 0, it can
actually be seen that the dual is a critical Galton-Watson tree conditioned
to survive (see Chapter 2) and hence, the maps for different values of α can
be seen as an “interpolation” between the UIHPT and critical trees. In fact,
we believe that the scaling limit of such maps in the sense of local Gromov-
Hausdorff topology exists and is the infinite non-compact continuum random
tree (CRT). This can be viewed as the tangent cone at the root of the
compact Aldous CRT (see [42]). In fact from this heuristic, we expect that
the random walk behaves more or less similarly as a random walk in the
critical tree conditioned to survive. The spectral dimension of the subcritical
maps should be almost surely 4/3 and should follows from much more general
results for strongly recurrent graphs studied in [17, 66].

As can be expected from Proposition 3.1.4, the boundary size of the hull
of radius r is a tight sequence. We prove a stronger result: the boundary
sizes of the hull has exponential tail.

Theorem 3.1.6. Let α ∈ [0, 2/3). Then there exists some positive constant
c > 0 (depending only on α) such that

Hα(|∂Br(α)|) > n) < e−cn

for all n ≥ 1.

The following central limit theorem shows that the volume growth is
quadratic: another tree-like behavior.

Theorem 3.1.7. Suppose α ∈ [0, 2/3). Then

|Br|
r2
→ S1/2(α)

in distribution where S1/2(α) is a stable random variable with parameter 1/2
and its other parameters depend only upon α and nothing else.

3.1.2 Percolation

We are mainly interested in quenched statements about Bernoulli site per-
colation on random triangulations: take a half planar triangulation T with
law Hα and color each vertex independently black with probability p or
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white with probability 1 − p. A black (resp. white) cluster is a connected
component induced by the black (resp. white) vertices on the map. Given a
half planar map, denote the percolation measure on it by Pp and the expec-
tation by Ep. Let Pp denote the overall measure induced by the percolation
configuration on such random maps and let Ep denote the expectation with
respect to the measure Pp. It is understood that in these notations there
is a hidden parameter α which we shall drop to lighten notation. As usual,
define pc to be the infimum over p such that there exists an infinite black
cluster Pp-almost surely. Further, we will also be interested in

pu = inf{p ∈ (0, 1] : there exists an unique infinite cluster Pp-almost surely}

Further history of the study of percolation of random maps is discussed in
Section 1.4.

Notice that it is immediate to see via Proposition 3.1.4 that percolation
is uninteresting in the subcritical maps (in this case pc = 1 almost surely.) It
was conjectured (see [24]) by Benjamini and Schramm that on non-amenable
quasitransitive graphs, pc < pu. For supercritical maps, because of anchored
expansion as depicted by Theorem 3.1.2, we would expect a similar behavior.

Theorem 3.1.8. Fix α ∈ (2/3, 1). Then Hα-almost surely,

(i) pc = 1
2

(
1−

√
3− 2

α

)
(ii) pu = 1

2

(
1 +

√
3− 2

α

)
Also, Hα-almost surely, there is no infinite black cluster Ppc-almost surely
and there is an unique infinite black cluster Ppu-almost surely.

Note that pc < pu almost surely in the regime α ∈ (2/3, 1). It is interest-
ing to note that as α→ 2/3, both pc → 1/2 and pu → 1/2. But in the regime
(pc, pu) we have more than one infinite cluster. One can easily conclude via
ergodicity of these maps with respect to translation of the root along the
boundary (see Chapter 2) that the number of infinite black or white clusters
is actually infinite almost surely. The next Theorem shows that the number
of black or white clusters in fact have positive density along the boundary.
Let W∞k , B∞k be the number of infinite white and black clusters respectively
which share at least vertex with a vertex which is within distance k from
the root along the boundary.
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Theorem 3.1.9. Fix α ∈ (2/3, 1) and suppose p ∈ (pc, pu) where pc,pu are
as in Theorem 3.1.8. There exists a positive constant ρ > 0 such that almost
surely,

W∞k
k
→ ρ,

B∞k
k
→ ρ (3.1.3)

The constant ρ is in fact half of the probability of the event of having an
infinite interface starting from a boundary edge (see Section 3.1.2 for more
details.)

A ray in an infinite percolation cluster is a semi-infinite simple path in
the cluster starting from a vertex closest to the root with ties are broken
arbitrarily. Two rays r1 and r2 are equivalent if there is another ray r3

which intersect both these rays infinitely many times. An end of a cluster
is an equivalence class of rays. Let END(C) denote the space of ends of a
percolation cluster C. We shall define a metric on END(C) as follows: for
any two rays ξ and η on C, define the distance between them as

d(ξ, η) = inf{1/n, n = 1 or ∀X ∈ ξ,∀Z ∈ η,∃ a component K of

C \Bn, |X \K|+ |Z \K| <∞}
It is easy to deduce that END(C) does not depend on the choice of the
vertex around which we consider the graph-distance balls and that END(C)
equipped with this metric is compact.

Theorem 3.1.10. Fix α ∈ (2/3, 1). Assume pc, pu are as in Theorem 3.1.8
and fix p ∈ (pc, pu). Then Hα-almost surely, the subgraph formed by each
infinite cluster has no isolated end and has continuum many ends Pp-almost
surely.

Organization: The chapter is organized as follows. In Section 3.2 some
preliminary background material is provided. In Section 3.3 results about
geometry are proved. For the supercritical case: Theorem 3.1.1 is proved in
Section 3.3.2, Theorem 3.1.2 is proved in Section 3.3.2. For the subcritical
case, Theorems 3.1.6 and 3.1.7 are proved in Section 3.3.2. For percolation,
Theorems 3.1.8–3.1.10 are proved in Section 3.4. Some open problems are
discussed in Section 3.5.

3.2 Preliminaries

In this Section we gather some results which we are going to need. The
reader might skip this Section in the first reading and come back to it when
it is referred to in the subsequent Sections.

61



3.2. Preliminaries

3.2.1 Free triangulations

Recall the Boltzmann distribution defined in Definition 2.5.1. Also recall a
freely distributed triangulation with parameter q of an m-gon will be referred
to as a free triangulation with parameter q of an m-gon. We will need
few estimates on free triangulations in this chapter.

Let Im(q) denote the number of internal vertices of a freely distributed
triangulation of an m-gon with parameter q.

Proposition 3.2.1. Fix θ ∈ [0, 1/6) and let q = θ(1− 2θ)2. Fix an integer
m ≥ 2.

(i) E(Im(q)) = (m−1)(2m−3)2θ
(1−6θ)m+6θ = 4θ

(1−6θ)m+O(1)

(ii) V ar(Im(q)) = (m−1)(2m−3)m(1−2θ)
((1−6θ)m+6θ)2(1−6θ)

= 2(1−2θ)
(1−6θ)3

m+O(1)

Proof. Note the following identity

E(Im(q)) =
q(Z ′m(q))

Zm(q)
= q(logZm)′(q)

Putting q = θ(1− 2θ)2 and using Proposition 2.5.2, we obtain after an easy
computation

E(Im(q)) =
(m− 1)(2m− 3)2θ

(1− 6θ)m+ 6θ

The proof of (ii) is a similar computation and is left to the reader to verify.

We would need the following estimates whose proof is postponed to ap-
pendix A.

Lemma 3.2.2. Fix θ ∈ [0, 1/6) and suppose q = θ(1 − 2θ)2. Suppose Y
is a variable supported on N \ {0} such that P(Y = k) ∼ ck−3/2 for some
constant c > 0. Then there exists positive constants cθ, c

′
θ depending upon θ

such that

(i) P(Y + IY+1 > x) ∼ cθ√
x

(ii) E(Y + IY+1)1{Y+IY+1<x} ∼ c′θ
√
x

as x→∞.
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3.2.2 Stable random variables

The theory of stable random variables play a vital role in our subsequent
analysis. Fix α ∈ (0, 2]. An independent sequence X1, X2, . . . is said to
follow a stable distribution of type α if Sn = X1 + . . .+Xn satisfies

Sn
(d)
= n1/αXn + γn

for some sequence γn and the distribution of X1 is not concentrated around
0. See for example [49] Chapter VI or [48] for more details.

We shall be needing the following classical result. This can be found in
[48].

Theorem 3.2.3. Suppose X1, X2, . . . are i.i.d. with a distribution that sat-
isfies

1. limx→∞ P(X1 > x)/P(|X1| > x) = θ ∈ [0, 1]

2. P(|X1| > x) = x−αL(x)

where α < 2 and L is slowly varying. Let Sn = X1 + . . . Xn. an = inf{x :
P(|X1| > x) ≤ n−1} and bn = nE(X11|X1|≤an). As n→∞ (Sn−bn)/an → Y
in distribution where Y is a stable random variable of type α.

We are specially interested in the case α = 1/2. It turns out that we can
add a constant to a variable following a stable distribution of type α where
α 6= 1 such that γn = 0 for all n in its definition (see [49]). After such a
centering, its density can be explicitly written as

(2πx3)−1/2 exp(−1/2x)1{x>0} (3.2.1)

This is known as the Lévy distribution.

3.2.3 Peeling

Let us recall the concept of peeling introduced in Section 2.4. We only focus
on triangulations in this section and to that end let us investigate what
happens when we perform peeling on triangulations.

Suppose we have a sample T from Hα for some α ∈ (0, 1]. We will
construct a growing sequence of simply connected sub-maps Pn containing
the root with the complement Tn defined as the set of faces in T not in Pn
along with the edges and vertices incident to them (note that Tn is also a
half planar triangulation because Pn is simply connected.) Next we choose
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an edge en on the boundary of Tn and reveal the triangle incident to it along
with all the finite components of the complement.

Start with P0 to be empty and T0 = T . At the nth peeling step, we pick
an edge en on the boundary of Tn and add the triangle in Tn incident to en
along with the finite components of the complement (if there is any) to Pn+1.
Define Tn+1 to be the complement of Pn+1. For all n, Tn is distributed as Hα

via the domain Markov property. By abuse of notation, sometimes we shall
re-root Tn on some other edge on the boundary of Tn and the distribution of
Tn does not change by translation invariance. Further note that the triangle
revealed in the peeling step is either of the form described by an α-step or
is of the form (L, i) or (R, i) for i ≥ 1 (see Figure 3.2.) Recall that if the
peeling step is of the form (L, i) or (R, i), the finite triangulation of the (i+1)
gon separated from infinity by the triangle incident to en is distributed as a
free triangulation of the i+ 1-gon with parameter given αβ where β is given
by eqs. (2.8.2) and (2.8.3).

Recall also that the choice of en depends only on Pn and we are free to
choose any edge on the boundary of Pn for the next peeling step. We shall
exploit this freedom of choice of en to prove the different results stated in
Section 3.1.

3.3 Geometry

3.3.1 Peeling algorithm

Recall from the discussion in Section 3.2.3 that we are free to choose the edge
en on which we apply the nth peeling step. We now describe an algorithmic
procedure to choose the edges in such a way that at a certain (random)
step, we reveal the hull of the ball of radius r around the root vertex. The
algorithm follows the idea developed in [7] for analyzing the volume growth
of the full plane UIPT, but we modify it appropriately for the half plane
versions. We take up the notations of Section 3.2.3. Further recall that the
hull of the ball of radius r around the root is denoted by Br.

Recall that the internal boundary of a simply connected sub-map is the
set of vertices and edges in the sub-map which is incident to at least one
finite face which is not in the sub-map. Let τ0 = 0 and let P0 be the root
vertex. Suppose we have defined a (random) time τr so that Pτr = Br for
some r ≥ 1. In particular, the internal boundary of Pτr is ∂Br. The idea is
to iteratively peel the edges in ∂Br till none of the vertices in ∂Br remain
in the boundary of Tn.
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Pn

Tn

Pn

Free triangulation of
a 3-gon

Tn

Pn

Free triangulation of a 5-
gon

Figure 3.4: An illustration of peeling at the nth step. The gray
area denote the peeled part Pn. The red vertices and edges denote
the internal boundary of Pn.

Algorithm: Suppose we have described the process up to step n such
that τr ≤ n < τr+1. Now look for the left most vertex v of ∂Br which
remains in the internal boundary of Pn at step n and perform a peeling
step on the edge to the right of v in the boundary of Tn. If there is no
vertex v of ∂Br left in the boundary of Tn+1, define n+ 1 = τr+1 and
Pτr+1 = Br+1.

The algorithm proceeds in such a way that for every vertex of ∂Br, we
keep on peeling at an edge incident to that vertex until it goes inside the
revealed map. Hence at step τr, we reveal nothing but the hull of the ball
of radius r for every r ≥ 1. Recall that internal boundary of Pn is the set of
edges and vertices which are incident to at least one face not in Pn. Let Xn

denote the number of vertices in the internal boundary of Pn at the nth step.
It is easy to see that Xn itself is not a Markov chain because the transition
probabilities very much depend on the position of the edge on which we are
peeling. However, a bit of thought reveals that Xτr is in fact an irreducible
aperiodic Markov chain. We record the above observations in the following
Proposition.

Proposition 3.3.1. For r ≥ 1, Pτr described in the algorithm above is the
same as Br and Xτr = |∂Br|. Also, the sequence {Xτr}r≥1 is an irreducible
aperiodic Markov chain.

Following the idea of [7], we estimate the size of the boundary by ana-
lyzing Xn separately for α in subcritical and supercritical regimes. Observe
that ∆Xn = Xn+1 − Xn ≤ 1 for any n. Note also that ∆Xn has different
behavior of tails in the subcritical and supercritical regimes:

Hα(∆Xn < −i) ≈
{
i−1/2 α < 2/3

exp(−ci) α > 2/3
(3.3.1)
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for some constant c > 0 and a large non negative integer i < Xn. Thus,
conditioned on Xn, ∆Xn has negative expectation if Xn is not too small in
the subcritical regime. This tells us that Xn has a drift towards 0 as soon
as it gets large which implies it should be a tight sequence. However in the
supercritical regime Lemma 3.3.2 below shows that ∆Xn has positive con-
ditional expectation, which implies that Xn grows linearly. This constitutes
the key point of difference between the two regimes which is made rigorous
in the following Sections 3.3.2 and 3.3.3.

3.3.2 Supercritical

In this subsection, we prove Theorem 3.1.1 and hence we assume α > 2/3
throughout this subsection. Further, we shall also borrow the notations from
Sections 3.2.3 and 3.3.1.

As mentioned before, we will perform the peeling algorithm performed in
Section 3.3.1 and analyze the quantity ∆Xn. To that end, we shall approx-
imate ∆Xn by a sequence of auxiliary variables X̃n such that the variables
∆X̃n = ˜Xn+1 − X̃n for n ≥ 1 form an i.i.d. sequence with ∆X̃n = −i if
a step of the form (L, i) or (R, i) occurs in the (n + 1)th peeling step and
∆X̃n = 1 if an α step occurs in the (n + 1)th peeling step. Clearly, from
definition, Xn > X̃n since if in a peeling step the triangle revealed has the
third vertex not on the internal boundary of Pn, ∆Xn > ∆X̃n.

Because of the exponential tail, the variables ∆X̃n in the supercritical
regime has finite variance. Further its expectation turns out to be positive.

Lemma 3.3.2.
E(∆(X̃n)) =

√
3α− 2

√
α (3.3.2)

In particular, E(∆(X̃n)) > 0 for α ∈ (2/3, 1).

Proof of Lemma 3.3.2 is an easy computation which is provided in ap-
pendix A.

Lemma 3.3.3. There exists a constant c > 0 such that almost surely

c < lim inf
Xn

n
≤ lim sup

Xn

n
≤ 1 (3.3.3)

Proof. lim supXn/n ≤ 1 follows trivially because ∆Xn ≤ 1. Since the steps
in ∆(X̃i) are i.i.d. with finite mean, strong law of large numbers imply that
X̃n/n →

√
3α− 2

√
α > 0 almost surely as n → ∞. The required lower

bound now follows from the fact that Xn > X̃n by definition.
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Recall that step τr in the peeling algorithm marks the step when the hull
of the ball of radius r is revealed. We now state some estimates on τr. The
first part of the following Lemma 3.3.4 is essentially rephrasing Lemma 4.2
of [7]. Further, we remark that Lemma 3.3.4 is valid for any α ∈ [0, 1) and
we shall use it again when dealing with the subcritical case in Section 3.3.3.

Lemma 3.3.4. For any r ≥ 0,

(i) There exists some constants A > 1 and A′ > 0 such that for any
integer n ≥ 1,

P(∆τr > An||Xτr | = n) < exp(−A′n) (3.3.4)

(ii) For any integer k ≥ 1 and integers 1 ≤ l ≤ l′

P(∆τr > k||Xτr | = l) ≤ P(∆τr > k||Xτr | = l′).

Proof. The number of steps required for a vertex on ∂Br to go inside the
revealed map is a geometric random variable (we wait till a step of the form
(L, i) occurs for some i ≥ 1.) Thus ∆τr is a sum of at most n i.i.d. geometric
variables. Thus part (i) follows from a suitable large deviations estimate.

An easy coupling argument can be used to prove part (ii). To see this, let
us consider two marked contiguous segments S with l vertices and S′ with
l′ vertices on the boundary with the left most vertex being the root vertex.
We can now perform the peeling algorithm described in Section 3.3.1 until
all the vertices in S is inside the revealed map. Clearly, if at some step,
some vertices of S are still not swallowed by the revealed map, then some
vertices of S′ are also not swallowed.

Lemma 3.3.4 along with Lemma 3.3.3 shows that almost surely for some
positive constants a, a′ and for all but finitely many r

a′τr+1 < Xτr+1 < ∆(τr) < aXτr < aτr. (3.3.5)

For the first and last inequality in the above display, we used Lemma 3.3.3,
for the third inequality, we used Lemma 3.3.4 and for the second inequality
we observe that the vertices of ∂Br+1 are added only one at a time. This in
turn shows that

Lemma 3.3.5. There exists constants 1 < c < C such that almost surely

lim inf c−rτr = ∞
lim supC−rτr < ∞
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Let Vn denote the number of vertices in the revealed map Pn in the nth
step of the peeling algorithm. Our main goal is to estimate Vτr in order
to prove Theorem 3.1.1. Now suppose Sn = Vn − Xn. Then it is easy
to see just from the description of the algorithm that Sn is a sum of n
i.i.d. random variables each of which is distributed as Y + IY+1 where Y =
−∆X̃n1∆X̃n 6=1 and IY+1 is distributed as a the number of internal vertices
of a free triangulation of a (Y + 1)-gon with parameter αβ. Notice that
this definition makes sense for all values of α, not for just the supercritical
regime. However in the supercritical regime, the exponential tail of Y entails
that Y has finite expectation. Further conditioned on Y , the expectation of
IY+1 is 4θY/(1 − 6θ) + O(1) via Proposition 3.2.1 where θ is given by the
relation θ(1− 2θ)2 = αβ. Thus Y + IY+1 has finite expectation.

Proof of Theorem 3.1.1. Recall that |Br| = Vτr . Now since Sn is a sum of
i.i.d. random variables with finite mean, Sn/n converges almost surely. This
fact along with (3.3.5) and Lemma 3.3.5 completes the proof.

Anchored expansion

Now we turn to the proof of Theorem 3.1.2.
Recall that internal boundary of a simply connected sub-map with a

simple boundary is the set of vertices and edges in the sub-map which is
incident to at least one face which do not belong to the sub-map. Also recall
that distance between two vertices on the boundary along the boundary is
the number of edges on the boundary between the vertices. Clearly, distance
along the boundary is at most the graph distance in the whole map. We
show in the following lemma that the graph distance between vertices on
the boundary in the whole map is at least linear in the distance between
them along the boundary.

Lemma 3.3.6. Let v be a vertex at distance n ≥ 1 along the boundary
from the root vertex on a map with law Hα where α ∈ (2/3, 1). There
exists a constant t(α) > 0 depending only on α such that the probability
of the distance between v and the root being smaller than t(α)n is at most
exp(−cn) for some c > 0.

Proof. Let us assume without loss of generality that v is to the right of the
root vertex. We use the peeling algorithm described in Section 3.3.1 and
reveal the hulls of radius r for r ≥ 1 around the root vertex. Recall the
notations Pn which denotes the revealed map after n peeling steps and τr
which denotes the step in which we finish exploring the hull of radius r. Now
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k vertices

< tk vertices

i vertices

j vertices

k vertices

Figure 3.5: Left: An illustration of a t-bad segment. The segment
consisting of blue vertices is a t-bad segment. The gray area is
some fixed finite triangulation. Right: The red vertices form a
(k, i+ j)-separating loop

the vertices of the boundary to the right of the root vertex which goes inside
the peeled map is entirely determined by the last step and is easily seen to
have exponential tail and a finite expectation depending only on α. Hence
the probability that v is in the hull of radius at most tn around the root
vertex is at most the probability of the event that the sum of tk independent
variables with finite expectation and exponential tail is larger than k. The
latter event has probability exp(−ck) for some c > 0 if t is small enough
(depending only on α) by a suitable large deviations estimate.

A connected segment X on the boundary of the map containing the root
edge is said to be a t-bad segment for some t > 0 if there exists a simply
connected sub-map Q with a simple boundary whose intersection with the
boundary of the map is X and the internal boundary has at most t|X|
vertices (see Figure 3.5).

Lemma 3.3.7. For small enough t (depending on α), there exists finitely
many t-bad segments almost surely.

Proof. Let us fix a connected segment X of length k containing the root
edge. The event that X is t-bad is contained in the event that the distance
(in the whole map) between the leftmost and the rightmost vertices in X
is at most tk. If t > 0 is small enough this event has probability at most
exp(−ck) for some c > 0 using Lemma 3.3.6 and translation invariance.
Since there are at most k connected segments of length k containing the
root, the rest of the proof follows from Borel-Cantelli.

We restate a Lemma which was proved in Chapter 2.
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Lemma 3.3.8. Fix α ∈ [0, 1) and β is given by eqs. (2.8.2) and (2.8.3). Let
Q be a simply connected triangulation with k + i+ j vertices and boundary
size i+ j. Let T be a sample from Hα. The event that Q is a sub-map of T
with a marked connected segment with i vertices on the boundary of Q being
mapped to a marked connected segment on the boundary of T with i vertices
and no other vertex of Q being mapped to the boundary of T has probability

αk+jβi+k−2

We call a simple cycle in a half planar map a (k, l) separating loop if it
has l vertices, its intersection with the boundary forms a connected segment
containing the root edge and it separates k internal vertices of the map from
infinity.

Lemma 3.3.9. Fix α ∈ (2/3, 1). There exists a constant c(α) depending
upon α such that Hα-almost surely there are finitely many (k, l)-separating
loops with l < c(α)k.

Proof. Recall that φn,m denotes the number of triangulations of an m-gon
with n internal vertices. From Lemma 3.3.8 and union bound, the probabil-
ity that there exists a (k, l)-separating loop with i vertices on the boundary
of the map is at most

iφk,lα
k+j

(
α(1− α)

2

)k+i−2

(3.3.6)

where the factor i comes from the fact that the root can be any one of
the edges of the intersection of the separating loop with the boundary. Let
j = l − i. Now it is easy to see from eq. (2.12.1) that

φk,l < (27/2)k9l
(

1 +
2l

3k

)2l+3k

k−5/2
√
l (3.3.7)

Combining (3.3.6) and (3.3.7) and summing over i < l where l < tk, we get
that the probability of existence of a (k, l)-separating loop is at most

l5/2k−5/2 ·
(

27α2(1− α)

4

)k
·
(

9α(1− α)

2

)l
·
(

1 +
2t

3

)(2t+3)k

·
(

2

1− α

)tk
< exp(−ck) (3.3.8)

for some constant c > 0 if t is small enough. To see this, observe that
α2(1−α) < 4/27 and α(1−α) < 2/9 if α ∈ (2/3, 1). The sum of the bound
in (3.3.8) over k > l/t and then over l is finite. The rest of the proof follows
from Borel-Cantelli.
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For S ⊂ V (G), recall that the notation |S|E denotes the sum of the
degrees of the vertices in S and ∂ES denotes the number of edges which are
incident to one vertex in S and another in G \ S.

Proof of Theorem 3.1.2. Consider a connected set of vertices S containing
the root vertex such that |S|E > n and suppose ∂ES < t2|S|E for some
t > 0. By an abuse of notation, denote by S the finite map induced by S
and without loss of generality assume it contains the root edge. Add to S
all the faces which share at least one vertex with S along with the edges
and vertices incident to it. Then add all the connected finite components of
the complement and call the resulting finite triangulation S. Note that S is
simply connected with a simple boundary with |S| > n and the vertices and
edges in the boundary of S form a separating loop. Suppose the internal
boundary of S has j vertices. From the definition of ∂ES: j < ∂ES < t2|S|E .
Let i be the number of vertices of S on the boundary of the map and suppose
k = |S| − i− j. Now the assumption ∂ES < t2|S|E and Euler’s formula for
S yields

k >
1− 5t2

6
|S|E −

2i

3
(3.3.9)

If i < t|S|E then i+j < tCk for some universal constant C > 0 using (3.3.9)
which can occur for finitely many n almost surely via Lemma 3.3.9 if t is
small enough. If i > t|S|E then j < ti and this can occur for finitely many
n almost surely via Lemma 3.3.7.

Proofs of Lemmas 3.3.7 and 3.3.9 and Theorem 3.1.2 in fact says that
the probability of the existence of a set with small boundary containing the
root vertex is exponentially small. We record it here for future reference.

Proposition 3.3.10. There exists a t > 0 depending upon α such that the
probability that there exists a connected set of vertices S containing the root
vertex such that |S|E > n and ∂ES < t|S|E is at most exp(−cn) for some
c > 0.

3.3.3 Subcritical

In this section we prove Theorem 3.1.6. We shall use the notations of Sec-
tions 3.3.1 and 3.3.2 and α ∈ [0, 2/3) throughout this section. Recall that in
this regime, probability that a peeling step of the form (L, i) or (R, i) occurs
for i ≥ k is roughly k−1/2.
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Boundary size estimates

To understand the boundary sizes, we need to understand the variables Xτr

for r ≥ 1. As a warm up we prove Proposition 3.1.4 first.

Proof of Proposition 3.1.4. From the definition, Xn ≤ n+2 for all n ∈ N. If
at step numbers 2k and 2k+1, events: ∪j>2k+2{(R, j)} and ∪j>2k+2{(L, j)}
happen respectively then X2k+2 = 2. But this event has probability at least
c/k for some c > 0 and for different k’s these events are independent by the
domain Markov property. The proof follows by Borel-Cantelli.

We know via Proposition 3.3.1 thatXτr is an irreducible aperiodic Markov
chain with state space a N \ {0, 1}. We now show that {Xτr}r≥1 is a tight
sequence with exponential tail. Suppose Nk for k ≥ 0 denote the number of
vertices in the internal boundary of Pτr+k which do not belong to ∂Br.

Lemma 3.3.11. For any r ≥ 0, k ≥ 1,n ≥ 1

P(Nk > n|Xτr) < exp(−Bn)

for some positive constant B. In particular, this bound is independent of the
conditioning.

Proof. First fix an n0 large enough such that

α− 1

2

bn0/2c∑
i=1

ipi < −ε

for some ε > 0 where pi is given by eq. (2.8.2) (observe that such a choice of
n0 exists due to the heavy tail of pi.) The above choice of n0 depends only
on α. Now choose an integer n > n0. Let ∆Nk := Nk+1 − Nk for k ≥ 1.
Observe that Nk increases by at most 1 in any step because of the evolution
of Xk and N0 = 0. This has several implications. Firstly, this implies that
it is enough to consider k > n or otherwise the requested probability is 0.
Secondly, if Nk > n, then for some integer 1 ≤ j ≤ k, Nj is equal to n0. Let
M = max{1 ≤ j ≤ k : Nj = n0}. Finally, we must have M ≤ k − n + n0.
Now note that

P(Nk > n,M = j) < P(Ni ≥ n0 for all j ≤ i ≤ k) (3.3.10)

Now for any i > j, conditioned on Ni ≥ n0, there are at least n0/2 vertices
of the internal boundary of Pτr+k which do not belong to ∂Br either to the
left or right of the edge we perform the (i+ 1)th peeling step because of the
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way the exploration process evolves. Hence it is clear that conditioned on
Ni ≥ n0, ∆(Ni) is dominated by a variable D with E(D) < −ε because of
the choice of n0. Thus,

P(Ni ≥ n0 for all j ≤ i ≤ k) < P

(
k−j∑
i=1

Di > 0

)
< γk−j (3.3.11)

for some 0 < γ < 1 depending only on n0 where {Di}i≥1 are i.i.d. copies of
D and the last inequality of (3.3.11) follows from suitable large deviations
estimate. Now using (3.3.10) and (3.3.11),

P(Nk > n|Xτr) =

k−n+n0∑
j=1

P(Nk > n,M = j) <

k−n+n0∑
j=1

γk−j < exp(−Bn)

(3.3.12)

for some B > 0 for large enough n. Decrease B suitably so that the requested
bound is true even for smaller values of n.

We remarked before that Lemma 3.3.4 is true for any value of α. We
shall now use this fact and induction to prove Theorem 3.1.6.

Proof of Theorem 3.1.6. First, get hold of the constants A > 1, A′ > 0, B >
0 such that Lemma 3.3.4, part (i) and Lemma 3.3.11 are true for n ≥ 1.
Now fix a C such that 0 < C < B. Then choose a large N to ensure that
for all n > N ,

max{exp(−A′n2), An2 exp(−Bn), exp(−Cn2)} < 1

3
exp(−Cn).

We shall prove that for all n > N , the Theorem is true for the above choice of
C > 0 by induction on r. Note that for r = 0, the Theorem is true trivially
since Xτ0 = X0 = 1. Now assume, the Theorem is true for r′ = r − 1
for any n > N for above choice of C,N . Now recall the notation Nj from
Lemma 3.3.11 and observe that Nj = Xj for j ≥ ∆τr. Clearly, for n > N ,
using Lemma 3.3.11

P(Xτr > n,∆τr−1 = j|Xτr−1) < P(Nj > n|Xτr−1) < exp(−Bn) (3.3.13)

Now for any choice of n > N , using (3.3.13),

P(Xτr > n) < P(Xτr−1 > n2) + P(∆τr−1 > An2|Xτr−1 ≤ n2) +
An2∑
j=1

exp(−Bn)

< exp(−Cn2) + exp(−A′n2) +An2 exp(−Bn) (3.3.14)

< exp(−Cn) (3.3.15)
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where (3.3.14) follows from induction step, Lemmas 3.3.4 and 3.3.11. Also,
(3.3.15) follows from the choice of N . The proof is completed by induction.

Hull Volumes

First, we wish to estimate the growth rate of τr. Note that conditioned on
Xτr the distribution of ∆(τr) depends only on Xτr and not r. It is easy to see
that Zr := (Xτr ,∆τr) is an irreducible aperiodic Markov chain. Using Theo-
rem 3.1.6 and Lemma 3.3.4 it is not difficult to see that the sequence {Zr}r≥1

forms a tight sequence. Hence, Zr has a stationary probability distribution.
Let us denote the marginal of the second coordinate of this stationary dis-
tribution by π. It is also easy to see using Theorem 3.1.6 and Lemma 3.3.4
that π has exponential tail and hence finite expectation. If we start the
Markov chain {Zr}r≥1 from stationarity, ergodic theorem gives us that τr/r
converges almost surely to

∑
i≥0 iπ(i). However if we start the Markov chain

{Zr}r≥1 from any fixed number, it is still absolutely continuous with respect
to the corresponding chain starting from stationarity. This argument proves

Lemma 3.3.12. Almost surely,

τr
r
→
∑
i≥0

iπ(i)

Recall the notation Y,Z, {Sn}n≥1 from Section 3.3.2. Recall that the
volume of the triangulation revealed at the n-th step of peeling is given by
Vn = Sn +Xn. We wish to estimate Vτr = |Br|. Recall that Sn is a sum of
n i.i.d. copies of W where W = Y + IY+1. From Lemma 3.2.2 part (i), we
conclude P(W > x) ∼ cαx

−1/2 as x → ∞ for some constant cα depending
on α.

Lemma 3.3.13. For some sequence of real numbers an and bn

Vn − bn
an

⇒ S (3.3.16)

where S follows a stable distribution of type 1/2. Also an ∼ cn2 and bn ∼
c′n2 for some positive constants c, c′.

Proof. Note that since Xn ≤ n and since Vn = Sn+Xn, it is enough to prove
the result with Vn replaced by Sn. Since Sn is a sum of i.i.d. sequence of
variables, each of which is distributed as W , we apply Theorem 3.2.3. Recall
from Theorem 3.2.3, the centering sequence an = inf{t : P(W > t) ≤ 1/n}.
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Recall that we also obtained the tail estimate of W , P(W > x) ∼ cαx−1/2. It
is easy to see from this tail estimate of W that an ∼ c2

αn
2. The asymptotics

of bn is provided in Lemma 3.2.2 part (ii).

We need one final lemma before we prove the theorem. Recall the dis-
tribution π from Lemma 3.3.12.

Lemma 3.3.14. Vτr/Vbγrc converges in probability to 1 where γ =
∑

i≥0 iπ(i).

Proof. Observe that it is enough to prove Sτr/Sbγrc converges to 1 in prob-
ability. Notice that since Sr is nondecreasing in r, for any η > 0 and ε > 0,
we have

P(|Sτr/Sbγrc − 1| > η, (1− ε)γr < τr < (1 + ε)γr)

< P
(
Sb(1+ε)γrc − Sb(1−ε)γrc

Sbγrc
> η, (1− ε)γr < τr < (1 + ε)γr

)
(3.3.17)

Recall that a stable law is absolutely continuous (see [49], Chapter VI.1,
Lemma 1) and hence via Lemma 3.3.13 we can conclude both {Sr/r2}r≥1

and {r2/Sr}r≥1 form a tight sequence in r. Further notice that τr/γr → 1
almost surely via Lemma 3.3.12. Combining all these pieces, it is easy to
see that for any η > 0, there exists an ε > 0 such that the right hand side of
eq. (3.3.17) can be made smaller than any prescribed δ > 0 for large enough
r. The details are left to the reader.

Proof of Theorem 3.1.7. Notice Vτr = |Br|. Also observe

Vτr − bbγrc
abγrc

=
Vbγrc − bbγrc

abγrc
+
Vbγrc

abγrc

(
Vτr
Vbγrc

− 1

)
(3.3.18)

The first term of eq. (3.3.18) converges to a stable random variable of type
1/2 via Lemma 3.3.13. The second term in eq. (3.3.18) converges to 0
in probability via Lemma 3.3.14. The proof follows combining these two
facts.

3.4 Percolation

In this Section, we prove Theorems 3.1.8–3.1.10. We will use the peeling
procedure and use the notations Pn, Tn introduced in Section 3.2.3. Along
with revealing the face on the edge we peel, we might also reveal the color
of the new vertex (if any) revealed. It will be useful to consider several
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boundary conditions, which specifies the colors of the boundary vertices. If
we consider a percolation configuration on the whole graph including the
boundary vertices, we say it is a random i.i.d. boundary condition.

Algorithm: We start with the root vertex black and every other vertex
on the boundary white. At the n+1th step, we perform a peeling step
at the edge on the boundary of Tn with a black vertex to the right and
a white vertex to the left. We stop at the nth step if there is no black
vertex left on the boundary of Tn.

A simple topological argument shows that the event that the above al-
gorithm stops is the same as the event that the black cluster containing the
root vertex is finite. Now consider the following variable B. If the peeling
step is an α-step and a black vertex is revealed set B = 1. If the peeling
step is of the form (R, i), set B = −i. Otherwise set B = 0. The following
Lemma is a simple computation which essentially follows from Lemma 3.3.2.

Lemma 3.4.1.

Ep(B) = αp− 1

2
(α−√α

√
3α− 2) (3.4.1)

In particular, Ep(B) > 0 if and only if p > 1/2(1−
√

3− 2/α).

The following proof is essentially follows the idea of [10]. We add it for
completeness. Recall the notation Tn from Section 3.2.3.

Proof of Theorem 3.1.8( for pc). Assume the boundary condition: the root
vertex is black and the rest of the vertices on the boundary are white. Start
with B0 = 1 and suppose Bk is the number of black vertices left in the
boundary of Tk. Clearly Bk+1 −Bk are i.i.d. with the same distribution as
B. Lemma 3.4.1 shows that Bk eventually goes to 0 almost surely if and only
if p ≤ 1

2(α−√α
√

3α− 2). Modifying the proof to a random i.i.d. boundary
is an easy exercise of imitating Proposition 9 of [10] and is left to the reader.
The almost sure existence of a black cluster if p > 1

2(α−√α
√

3α− 2) follows
from ergodicity of the map with respect to translation of the root as proved
in Proposition 2.2.2.

Corollary 3.4.2. With random i.i.d. boundary condition, Hα-almost surely,

pu ≤ 1/2(1 +
√

3− 2/α) (3.4.2)
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Proof. Assume p ≥ 1/2(1 +
√

3− 2/α). Consider the event E that there are
two infinite black clusters. Then one of the components of the complement
of one of them must be infinite. Then the vertices in this component which
connect to the infinite black cluster must be white. This means that there
is also an infinite white cluster since the map is locally finite and one ended
almost surely. Since white clusters are finite almost surely in the given
regime of p (using Theorem 3.1.8 (i) and symmetry), E has probability
0.

One can define an interface between the black and white clusters of a
percolation configuration. More precisely, there is a well defined path in
the dual configuration which separates the white and black clusters (see
Figure 1.4). We are interested in the interfaces which are connected to
the boundary. These are the interfaces which start on those edges on the
boundary which have a black and a white vertex incident to it. Interfaces
mark the boundary between a white and a black cluster on both its side. An
interface might be finite or infinite. Finite interface separate finite clusters
from infinity while infinite interfaces correspond to an infinite black cluster
on one side and an infinite white cluster on the other. So in particular, if
p ∈ [0, pc] ∪ [pu, 1], every interface is finite almost surely.

In the following exploration procedure The vertices whose colors have
not been revealed yet will be called free vertices.

Algorithm 2: We start with the root vertex colored white, the vertex
incident to the right of the root edge colored black and every other
vertex on the boundary free. Now we start performing peeling on the
root edge.

Suppose after n steps of peeling, the boundary of Tn consists of free
vertices except for a finite contiguous white segment followed by a
finite contiguous black segment to the right of the white segment. We
now peel on the unique boundary edge of Tn connecting the black and
white segments. If after a peeling step the third vertex of the face
revealed is free, we reveal its color. If the triangle revealed swallows
all the black vertices to the right (resp. white vertices to the left) and
the revealed third free vertex is white (resp. black), then we reveal
the colors of the vertices along the boundary to the right (resp. left)
of revealed third vertex until we find a black (resp. white) vertex.
Notice that after such a step, we are again left with a boundary which
consists of free vertices except for a finite contiguous white segment
followed by a finite contiguous black segment to its right. We can now
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continue this procedure.

Suppose we have a random i.i.d. boundary condition. Let I be the event
that there is an infinite interface starting from the root edge.

Lemma 3.4.3. If p ∈ (1/2(1−
√

3− 2/α), 1/2(1 +
√

3− 2/α)), then

Pp(I) > 0.

Proof. Suppose we are on the event that the root vertex is colored white, the
vertex incident to the right of the root edge colored black. Now we perform
algorithm 2. Let Bk be the size of the black connected segment and Wk be
that of the white connected segment at the kth step of the algorithm. Recall
the definition of the variable B defined in Lemma 3.4.1. Conditioned on Bk,
Bk+1 stochastically dominates a variable which has the same distribution as
(Bk + B)+ + 1{Bk+B≤0} and Bk+1 − Bk are independent for every k. The
domination comes from the fact that if a white segment is swallowed, we
add a geometric p number of black vertices to Bk which we ignore in the
prescribed expression. Now for p in the given range, E(B) > 0, hence Bk
forms a random walk with a positive drift. This implies Bk → ∞ almost
surely. Similarly by symmetry, Wk → ∞ almost surely for p in the given
range. All this implies the event {Bk > 1,Wk > 1 for all k ≥ 0} has positive
probability. But Bk > 1 and Wk > 1 for all k ≥ 0 implies that the interface
we started with is infinite. This completes the proof.

Recall the notations W∞k , B∞k the number of black and white infinite
clusters respectively which has least one vertex on the boundary within
distance k along the boundary from the root vertex.

Proof of Theorem 3.1.8 (for pu) and Theorem 3.1.9. Fix a number p in the
following range: p ∈ (1/2(1−

√
3− 2/α), 1/2(1+

√
3− 2/α)). Let Ek be the

number of edges within distance k from the root edge along the boundary
such that there is an infinite interface starting from that edge. Now note
that the measure Pp is ergodic with respect to translation of the root. Hence
Birkhoff’s ergodic theorem implies that almost surely,

Ek
k
→ Pp(I). (3.4.3)

Note that W∞k +B∞k = Ek + 1 and also |W∞k −B∞k | ≤ 1. Hence,

W∞k /k → ρ and B∞k /k → ρ

where ρ = Pp(I)/2 > 0 from Lemma 3.4.3. This proves Theorem 3.1.9 as
well as shows that pu ≥ 1/2(1 +

√
3− 2/α).
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Now we turn to the proof of Theorem 3.1.10. We will need the following
technical Lemma which can be easily shown using optional stopping The-
orem. For details, we refer the reader to [51] Corollary 9.4.1 and Exercise
9.13.

Lemma 3.4.4. Let X1, X2, . . . be an i.i.d. sequence of random variables
such that E(X1) > 0 and E(exp(λX1)) exists for values of λ in a neighbor-
hood around 0. Let Sn =

∑n
i=1Xi. Then for any k > 0 there exists some

constant c > 0 such that

P(∪n≥1{Sn ≤ −k}) < exp(−ck)

Lemma 3.4.5. Fix p ∈ (pc, pu). The Pp probability that the root vertex
is contained in an infinite black cluster with one end or an infinite white
cluster with one end is 0.

Proof. Suppose without loss of generality the color of the root vertex is
black and we shall prove that the probability that this vertex is contained
in an infinite black cluster with one end is 0. Reveal vertices to the left
and right of this vertex along the boundary until we find a white vertex on
both sides. In the exploration we describe now, there will be a contiguous
finite white segment followed by a contiguous finite black segment followed
by a contiguous finite white segment on the boundary and the rest of the
vertices on the boundary are free. We shall peel alternately at the two edges
connecting the black and the white segments to the left and to the right.
If at any step we swallow all the black vertices we stop. If we swallow all
the white vertices to the left (resp. to the right), we reveal black vertices
to the left (resp. to the right) along the boundary until we find a white
vertex. Consider the sequence of maps Tn. Define the root edge of this map
to be the same root edge as in the previous step if it has not been swallowed
in that step. If it is swallowed, define the edge in the middle of the black
segment in the boundary of Tn oriented from left to right to be the new root
edge.

Lemma 3.4.6. The root edge is swallowed finitely many times almost surely
in the above described exploration.

Proof. Notice that on the event we stop the exploration, the Lemma is true
by definition. Let Ln (resp. Rn) be the distance between the root vertex
and edge to the left (resp. right) on which we perform the nth peeling step
in the above described exploration and let Bn = Ln + Rn be the length of
the black segment. Clearly, the sequence {∆Bn}n≥1 is an i.i.d. sequence of
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Tn

T∞

n→∞

Figure 3.6: An illustration of the proof of Lemma 3.4.5. The gray
area to the left denotes the revealed part in the exploration.

variables with each of which is distributed as B. Recall that B has positive
expectation in the given regime of p (using Lemma 3.4.1). Hence using
standard large deviation estimates, on the event that we do not stop the
exploration, the probability of Bn ≤ tn for small enough t has probability
at most exp(−cn) for some constant c > 0.

Now consider the event En that the root edge is swallowed in the nth
step and is swallowed again in some step after the nth step. On the event
Bn > tn if the root edge is swallowed in the nth step, then by description
of the exploration both Ln and Rn are at least tn/2 − 1. If the root edge
is swallowed again, then either {Lk}k≥n or {Rk}k≥n has to reach 0 starting
from at least tn/2−1. This event has probability at most exp(−c′n) for some
c′ > 0 via Lemma 3.4.4 since Ln as well as Rn has i.i.d. increments with
positive expectation in every alternate step until the root edge is swallowed.
Combining the pieces, we see that En has probability at most exp(−c′′n) for
some c′′ > 0 which means En occurs for finitely many n by Borel-Cantelli
lemma. This completes the proof.

Let T be a map with law Pp and we perform the above exploration. Let
Bn be the number of black vertices on the boundary of Tn. On the event
that Bn → ∞, Tn converges almost surely to a sub map T∞ of T since
the root edge is swallowed finitely often almost surely via Lemma 3.4.6
(see Figure 3.6). However, on the event Bn →∞, from the domain Markov
property, the distribution of the map Tn converges to a map with law Pp with
all boundary vertices black and the rest of the vertices are not revealed. This
map almost surely contains an infinite white cluster with the given range of
p via Theorem 3.1.8. However this means that the cluster containing the
root has at least two ends almost surely on the event that the cluster is
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infinite.

Corollary 3.4.7. Every infinite cluster does not contain an isolated end
almost surely.

Proof. We prove the corollary for an infinite cluster containing the root
vertex. The proof for any infinite cluster is an easy exercise using the domain
Markov property, and is left to the reader. Suppose with positive probability
there is an infinite cluster in T containing the root vertex which has an
isolated end. This implies that with positive probability there exists an r
such that T \Br(α) has an infinite cluster incident to the boundary with one
end. This is a contradiction because of Lemma 3.4.5 and domain Markov
property.

Proof of Theorem 3.1.10. Corollary 3.4.7 shows that each infinite cluster do
not contain an isolated end. Since END is compact, the non-isolated points
form a perfect subset via the Cantor Bendixson Theorem. Hence this implies
that the set of ends has cardinality of the continuum. (see [67]).

3.5 Open questions

We conclude with several open problems for possible future research. In
Theorem 3.1.1, it is shown that the volume growth is exponential. A natural
question is: what is the exact rate of growth of the volume? We expect
similar behavior as exhibited by a supercritical Galton-Watson tree.

Question 3.5.1. Suppose α ∈ (2/3, 1). Show that almost surely,

log |Br(α)|
r

→ c

for some constant c depending only on α. Show further that |Br(α)|/cr
converges to some non-degenerate random variable.

In Theorem 3.1.10 it is shown that the supercritical percolation clus-
ters in the regime p ∈ (pc, pu) have uncountably many ends. It would be
interesting to know how a supercritical percolation cluster behaves.

Question 3.5.2. Fix α ∈ (2/3, 1) and p ∈ (pc, pu). Does the supercritical
percolation cluster have exponential volume growth? Anchored expansion?
Is the simple random walk on it transient?

The key to understand the supercritical cluster in this regime is to under-
stand if the supercritical clusters have long thin cutsets which kills anchored
expansion.
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Chapter 4

Unicellular maps: large scale
structure

3 This chapter is concerned with looking into the large scale structure of
unicellular maps with genus proportional to the number of edges as the
number of edges becomes large. In particular, we prove in Theorem 4.1.1
and Corollary 4.1.2 that the typical distances and diameter are roughly
logarithmic in the number of edges. We also show that the map is locally
planar and prove Theorem 4.1.4 quantifying this fact. The motivation for
studying these maps is discussed in Section 1.6.

Let us first perform a small calculation. Suppose v is the number of
vertices in a unicellular map of genus g with n edges. Then Euler’s formula
yields

v − n = 1− 2g (4.0.1)

Observe from eq. (4.0.1) that the genus of a unicellular map with n edges
can be at most n/2. We are concerned in this chapter with unicellular maps
whose genus grows like θn for some constant 0 < θ < 1/2. Specifically, we
are interested in the geometry of a typical element among such maps as n
becomes large.

4.1 Main results

Recall Ug,n denotes the set of unicellular maps of genus g with n edges and
let Ug,n denote a uniformly picked element from Ug,n for integers g ≥ 0
and n ≥ 1. For a graph G, let dG(., .) denote its graph distance metric.
Our first main result shows that the distance between two uniformly and
independently picked vertices from Ug,n is of logarithmic order if g grows
like θn for some constant 0 < θ < 1/2.

3The results of this chapter are from [81].
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4.1. Main results

Figure 4.1: On the left: a unicellular map of genus 2. On the
right: its underlying graph.

Theorem 4.1.1. Let {gl, nl}l be a sequence in N2 such that {gl, nl} →
{∞,∞} and gl/nl → θ for some constant 0 < θ < 1/2. Suppose V1 and V2

are two uniformly and independently picked vertices from Ugl,nl. Then there
exists constants 0 < ε < C (depending only on θ) such that

(i) P(dUgl,nl (V1, V2) > ε log nl)→ 1 as l→∞.

(ii) P(dUgl,nl (V1, V2) > C log nl) < c(nl)
−3 for some c > 0.

We remark here that in the course of the proof of part (i) of Theo-
rem 4.1.1, a polynomial lower bound on the rate of convergence will be
obtained. But since it is far from being sharp and is not much more en-
lightening, we exclude it from the statement of the Theorem. For part (ii)
however, we do provide an upper bound on the rate. Notice that part (ii)
enables us to immediately conclude that the diameter of Ugl,nl is also of
order log n with high probability. For any finite map G, let diam(G) denote
the diameter of its underlying graph.

Corollary 4.1.2. Let {gl, nl}l be a sequence in N2 such that {gl, nl} →
{∞,∞} and gl/nl → θ for some constant 0 < θ < 1/2. Then there exists
constants ε > 0, C > 0 such that

P(ε log n < diam(Ugl,nl) < C log n)→ 1

as n→∞.

Proof. The existence of ε > 0 such that P(diam(Ugl,nl) > ε log n) → 1
follows directly from Theorem 4.1.1 part (i). For the other direction, pick
the same constant C as in Theorem 4.1.1. Let N be the number of pairs
of vertices (v, w) in Ugl,nl where the distance between them is least C log n.
From part (ii) of Theorem 4.1.1, E(N) < cn−1

l for some c > 0. Hence EN
converges to 0 as l→∞. Consequently, P(N > 0) also converges to 0 which
completes the proof.
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If the genus is fixed to be 0, that is in the case of plane trees, the ge-
ometry is well understood (see [69] for a nice exposition on this topic.) In
particular, it can be shown that the typical distance between two uniformly
and independently picked vertices of a uniform random plane tree with n
edges is of order

√
n. The diameter of such plane trees is also of order

√
n.

These variables when properly rescaled, converge in distribution to appro-
priate functionals of the Brownian excursion. This characterization stems
from the fact that a plane tree can be viewed as a metric space and the met-
ric if rescaled by

√
n (up to constants) converges in the Gromov-Hausdorff

topology (see [58] for precise definitions) to the Brownian continuum ran-
dom tree (see [4] for more on this.) The Benjamini-Schramm limit in the
local topology (see [13, 22] for definitions), of the plane tree as the number
of edges grow to infinity is also well understood: the limit is a tree with an
infinite spine with critical Galton-Watson trees of geometric(1/2) offspring
distribution attached on both sides (see Figure 1.2 and see [63] for details.)

Thus Theorem 4.1.1 depicts that the picture is starkly different if the
genus of unicellular maps grow linearly in the number of vertices. The main
idea behind the proof of Theorem 4.1.1 is that locally, Ug,n behaves like a
supercritical Galton-Watson tree, hence the logarithmic order. We believe
that the quantity dUgl,nl (V1, V2) of Theorem 4.1.1 when rescaled by log n
should converge to a deterministic constant. Further, we also believe that
the diameter of Ugl,nl when rescaled by log n should also converge to another
deterministic constant. This constant obtained from the rescaled limit of the
diameter should be different from the constant obtained as a rescaled limit
of typical distances. The heuristic behind this extra length of the diameter is
the existence of large “bushes” of order log n on the scheme of the unicellular
map (recall the definition of scheme in Chapter 1 and Figure 1.6), a behavior
reminiscent of Erdos-Renyi random graphs.

Tools developed for proving Theorem 4.1.1 also helps us conclude that
locally Ug,n is in fact planar with high probability which is our next main
result. In fact, we are also able to quantify up to what distance from the
root does Ug,n remain planar. This will be made precise in the next theorem.
A natural question at this point is what is the planar distributional limit of
Ug,n in the local topology. This is investigated in Chapter 5.

We now introduce the notion of local injectivity radius of a map. Re-
call that a circuit in a planar map is a subset of its vertices and edges whose
image under the embedding is topologically a loop. A circuit is called con-
tractible if its image under the embedding on the surface can be contracted
to a point. A circuit is called non-contractible if it is not contractible.
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Definition 4.1.3. The local injectivity radius of a planar map with root
vertex v∗ is the largest r such that the sub-map formed by all the vertices
within graph distance r from v∗ does not contain any non-contractible circuit.

In the world of Riemannian geometry, injectivity radius around a point
p on a Riemannian manifold refers to the largest r such that the ball of
radius r around p is diffeomorphic to an Euclidean ball via the exponential
map. This notion is similar in spirit to what we are seeking in our situation.
Notice however that a circuit in a unicellular map is always non-contractible
because it has a single face. Hence looking for circuits and looking for non-
contractible circuits are equivalent in our situation.

Theorem 4.1.4. Let {gl, nl} → {∞,∞} and gl/nl → θ for some constant
0 < θ < 1/2 as l→∞. Let Igl,nl denote the local injectivity radius of Ugl,nl.
Then there exists a constant ε > 0 such that

P (Igl,nl > ε log nl)→ 1

as l→∞.

The girth of a map is defined as the minimum of the circuit sizes in it.
The girth of Ug,n also deserves some comment. It is possible to conclude via
second moment method that the girth of Ugl,nl form a tight sequence. This
shows that there are small circuits somewhere in the unicellular map, but
they are far away from the root with high probability.

The main tool for the proofs is a bijection due to Chapuy, Feray and
Fusy ([34]) which gives us a connection between unicellular maps and cer-
tain objects called C-decorated trees which preserve the underlying graph
properties (details in Section 4.2.1.) This bijection provides us a clear road-
way for analyzing the underlying graph of such maps.

From now on throughout this chapter, for simplicity, we shall drop the
suffix l in {gl, nl}, and assume g as a function of n such that g → ∞ as
n→∞ and g/n→ θ where 0 < θ < 1/2.

Overview of the chapter: In Section 4.2 we gather some useful pre-
liminary results we need. Proofs and references of some of the results in
Section 4.2 are provided in appendices B and C. An overview of the strat-
egy of the proofs of Theorems 4.1.1 and 4.1.4 is given in Section 4.3. Part
(ii) of Theorem 4.1.1 along with Theorem 4.1.4 is proved in Section 4.4. Part
(i) of Theorem 4.1.1 is proved in Section 4.5.
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4.2 Preliminaries

In this section, we gather some useful results which we shall need.

4.2.1 The bijection

Chapuy, Féray and Fusy in ([34]) describes a bijection between unicellular
maps and certain objects called C-decorated trees. The bijection describes a
way to obtain the underlying graph of Ug,n by simply gluing together vertices
of a plane tree in an appropriate way. This description gives us a simple
model to analyze because plane trees are well understood. In this section
we describe the bijection in [34] and define an even simpler model called
marked trees. The model of marked trees will contain all the information
about the underlying graph of Ug,n.

For a graphG, let V (G) denote the collection of vertices and E(G) denote
the collection of edges of G. The subgraph induced by a subset V ′ ⊆ V (G)
of vertices is a graph (V ′, E′) where E′ ⊆ E(G) and for every edge e ∈ E′,
both the vertices incident to e is in V ′.

A permutation of order n is a bijective map σ from the set {1, 2, . . . , n}
to itself. As is classically known, σ can be written as a composition of
disjoint cycles. The length of a cycle is the number of elements in the
cycle. The cycle type of a permutation is an unordered list of the lengths of
the cycles in the cycle decomposition of the permutation. A cycle-signed
permutation of order n is a permutation of order n where each cycle in its
cycle decomposition carries a sign, either + or −.

Definition 4.2.1 ([34]). A C-permutation of order n is a cycle-signed
permutation σ of order n such that each cycle of σ in its cycle decomposition
has odd length. The genus of σ is defined to be (n − N)/2 where N is the
number of cycles in the cycle decomposition of σ.

Definition 4.2.2 ([34]). A C-decorated tree on n edges is the pair (t, σ)
where t is a rooted plane tree with n edges and σ is a C-permutation of order
n+ 1. The genus of (t, σ) is the genus of σ.

The set of all C-decorated trees of genus g is denoted by Cg,n. One can
canonically order and number the vertices of t from 1 to n+1. Hence in a C-
decorated tree (t, σ), the permutation σ can be seen as a permutation on the
vertices of the tree t. To obtain the underlying graph of a C-decorated
tree (t, σ), any pair of vertices x, y whose numbers are in the same cycle of
σ are glued together (note that this might create loops and multiple edges.)
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Figure 4.2: An illustration of a C-decorated tree. (a) A C-
permutation σ where each cycle is marked with a different color.
(b) A plane tree t with the vertices in the same cycle of σ joined
by an arrow of the same color as the cycle. Note that vertices
numbered 8 and 9 are fixed points in the C-permutation. (c) The
underlying graph of the C-decorated tree (t, σ). The root vertex is
circled.

The underlying graph of (t, σ) is the vertex rooted graph obtained from
(t, σ) after this gluing procedure. So there are N vertices of the underlying
graph of (t, σ), each correspond to a cycle of σ (see Figure 4.2). By Euler’s
formula, if the underlying graph of (t, σ) is embedded in a surface such that
there is only one face, then the underlying surface must have genus g given
by N = n+ 1− 2g.

For a set A, let kA denote k distinct copies of A. Recall that underlying
graph of a unicellular map is the vertex rooted graph whose embedding is
the map.

Theorem 4.2.3. (Chapuy, Féray, Fusy [34]) There exists a bijection

2n+1Ug,n ←→ Cg,n.
Moreover, the bijection preserves the underlying graph.

As promised, we shall now introduce a further simplified model which
we call marked tree to analyze the underlying graph of C-decorated trees.
Let P denote the set of ordered N -tuple of odd positive integers which add
up to n+ 1.

Definition 4.2.4. A marked tree with n edges corresponding to an N -tuple
λ = (λ1, . . . , λN ) ∈ P is a pair (t,m) such that t ∈ U0,n and m : V (t) → N
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is a function which takes the value i for exactly λi vertices of t for all i =
1, . . . , N . The underlying graph of (t,m) is the rooted graph obtained when
we merge together all the vertices of t with the same mark.

Given a λ ∈ P, let Tλ(n) be the set of marked trees corresponding to λ
and let Tλ(n) be a uniformly picked element from it. Now pick λ from P
according to the following distribution

P (λ = (λ1, λ2, . . . , λN )) =

∏N
i=1 λ

−1
i

Z
(4.2.1)

where Z =
∑

λ∈P(
∏N
i=1 λ

−1
i ).

Proposition 4.2.5. Choose λ according to the distribution given by (4.2.1).
Then the underlying graph of Ug,n and Tλ(n) has the same distribution.

Proof. First observe that it is enough to show the following sequence of
bijections

2N
⋃

λ=(λ1,...,λN )∈P

N∏
i=1

(λi − 1)!Tλ(n)
Ψ←→ N !Cg,n Φ←→ 2n+1N !Ug,n

where Φ and Ψ are bijections which preserve the underlying graph. This
is because for each λ ∈ P, it is easy to see that the number of elements in∏
i(λi−1)!Tλ(n) is (n+ 1)!

∏N
i=1 λ

−1
i and given a λ, the underlying graph of

an uniform element of
∏
i(λi−1)!Tλ(n) and Tλ(n) has the same distribution.

Now the existence of bijection Φ which also preserves the underlying
graph is guaranteed from Theorem 4.2.3. For Ψ, observe that the factor∏N
i=1(λi − 1)! comes from the ordering of the elements within the cycle of

C-permutations and the factor 2N comes from the signs associated with
each cycle of the C-permutations. The factor N ! comes from all possible
ordering each cycle type of a C-permutation which is taken into account in
the marked trees but not C-permutations. The proof is now complete by
putting the pieces together.

Because of Lemma 4.2.5 it is enough to look at the underlying graph
of Tλ(n) to prove the Theorems stated in Section 2.2 where λ is chosen
according to the distribution given by (4.2.1). Our strategy is to show that
a typical λ satisfies some “nice” conditions (which we will call condition (A)
later), condition on such a λ satisfying those conditions and then work with
Tλ(n).
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Recall N = n + 1 − 2g. Since g/n → θ where 0 < θ < 1/2, n/N →
(1 − 2θ)−1. Denote α = (1 − 2θ)−1. Clearly α > 1. The reader should
bear in mind that α will remain in the background throughout the rest of
the chapter. We also warn the readers not to confuse this α with the α in
Chapter 2.

4.2.2 Typical λ

Recall the definition of P from Section 4.2.1. Suppose C0, C1, C2, d1, d2 are
some positive constants which we will fix later. We say that an element in
λ = (λ1, λ2, . . . λN ) ∈ P satisfies condition (A) if it satisfies

(i) λmax < C0 log n where λmax is the maximum in the set {λ1, λ2, . . . λN}.
(ii) C1n <

∑N
i=1 λ

2
i <

∑N
i=1 λ

3
i < C2n.

(iii) d1n < |i : λi = 1| < d2n

The following Lemma ensures that λ satisfies condition (A) with high prob-
ability for appropriate choice of the constants. The proof is provided in
appendix B

Lemma 4.2.6. Suppose λ is chosen according to the distribution given by
(4.2.1). Then there exists constants C0, C1, C2, d1, d2 depending only upon
α such that condition (A) holds with probability at least 1 − cn−3 for some
constant c > 0.

Now we state a Lemma which will be useful later. Given a λ, we shall
denote by Pλ the conditional measure induced by Tλ(n).

Lemma 4.2.7. Fix a tree t ∈ U0,n and a λ ∈ P satisfying condition (A).
Fix I ⊂ {1, 2, . . . , N} such that |I| < n3/4. Condition on the event E that
the plane tree of Tλ(n) is t and S is the set of all the vertices in t whose
mark belong to I where S is some fixed subset of V (t) (S is chosen so that E
has non-zero probability.) Let {v, w, z} ⊂ V (t)\S be any set of three distinct
vertices in t and i /∈ I. Then

Pλ(m(v) = i|E) ∼ λi/n (4.2.2)

Pλ(m(v) = m(w)|E) � n−1 (4.2.3)

Pλ(m(v) = m(w) = m(z)|E) � n−2 (4.2.4)

Proof. Notice that |S| < C0n
3/4 log n because of part (i) of condition (A).

The proof of (4.2.2) follows from the fact that

Pλ(m(v) = i|E) =
(n− |S| − 1)!λi!

(n− |S|)!(λi − 1)!
=

λi
n− |S| ∼ λi/n
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since |S| < C0n
3/4 log n.

Now we move on to prove (4.2.3). Conditioned on S, t the probability
that v and w have the same mark j /∈ I with λj ≥ 3 is

(n− |S| − 2)!λj !

(n− |S|)!(λj − 2)!
∼ λj(λj − 1)

n2

All we need to prove is
∑

j /∈I λj(λj − 1) � n which is clear from part (ii) of

condition (A) and the fact that |I| < n3/4.
Proof of eq. (4.2.4) is very similar to that of eq. (4.2.3) and is left to the

reader.

4.2.3 Large deviation estimates on random trees

Galton-Watson trees

A Galton-Watson tree, roughly speaking, is the family tree of a Galton-
Watson process which is also sometimes referred to as a branching process
in the literature. These are well studied in the past and goes far back to
the work of Harris ([60]). A fine comprehensive coverage about branching
processes can be found in [14]. Given a Galton-Watson tree, we denote by
ξ the offspring distribution. Let P(ξ = k) = pk for k ≥ 1. Let Zr be the
number of vertices at generation r of the tree. We shall also assume

• p0 + p1 < 1

• E(eλξ) <∞ for small enough λ > 0.

We need the following lower deviation estimate. The proof essentially
follows from a result in [14] and is provided in appendix C.

Lemma 4.2.8. Suppose Eξ = µ > 1 and the distribution of ξ satisfies the
assumptions as above. For any constant γ such that 1 < γ < µ, for all r ≥ 1

P(Zr ≤ γr) < c exp(−c′r) + P(Zr = 0)

for some positive constants c, c′.

Random plane trees

A random plane tree with n edges is a uniformly picked ordered tree with
n edges (see [69] for a formal treatment.) In other words a random plane
tree with n edges is nothing but U0,n as per our notation. We shall need the
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following large deviation result for the lower bounds and upper bounds on
the diameter of U0,n. This follows from Theorem 1.2 of [3] and the discussion
in Section 1.1 of [3].

Lemma 4.2.9. For any x > 0,

(i) P (Diam(U0,n) ≤ x) < c exp(−c1(n− 2)/x2)

(ii) P (Diam(U0,n) > x) < c exp(−c1x
2/n)

where c > 0 and c1 > 0 are constants.

We shall also need some estimate of local volume growth in random plane
trees. For this purpose, let us define for an integer r ≥ 1,

Mr = max
v∈V (U0,n)

|Br(v)|

where Br(v) denotes the ball of radius r around v in the graph distance
metric of U0,n. In other words, Mr is the maximum over v of the volume of
the ball of radius r around a vertex v in U0,n. It is well known that typically,
the ball of radius r in U0,n grows like r2. The following Lemma states that
Mr is not much larger than r2 with high probability. Proof is provided in
appendix C.

Lemma 4.2.10. Fix j ≥ 1 and r = r(n) is a sequence of integers such that
1 ≤ r(n) ≤ n. Then there exists a constant c > 0 such that

P(Mr > r2 log2 n) < exp(−c log2 n)

4.3 Proof outline

In this section we describe the heuristics of the proofs of Theorems 4.1.1
and 4.1.4.

Let us describe an exploration process on a given marked tree starting
from any vertex v in the plane tree. This process will describe an increasing
sequence of subsets of vertices which we will call the set of revealed vertices.
In the first step, we reveal all the vertices with the same mark as v. Then
we explore the set of revealed vertices one by one. At each step when we
explore a vertex, we reveal all its neighbors and also reveal all the vertices
which share a mark with one of the neighbors. If a neighbor has already
been revealed, we ignore it. We then explore the unexplored vertices and
continue.
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We can associate a branching process with this exploration process where
the number of vertices revealed while exploring a vertex can be thought of as
the offsprings of the vertex. It is well known that the degree of any uniformly
picked vertex in U0,n is roughly distributed as a geometric(1/2) variable and
we can expect such behavior of the degree as long as the number of vertices
revealed by the exploration is small compared to the size of the tree. Now
the expected number of vertices with the same mark as a vertex is roughly
a constant strictly larger than 1 because of part (ii) of condition (A). Hence
the associated branching process will have expected number of offsprings a
constant which is strictly larger than 1. Thus we can stochastically dominate
this branching process both from above and below by supercritical Galton-
Watson processes which will account for the logarithmic order of typical
distances.

Once we have such a domination, observe that the vertices at distance at
most r from the root in the underlying graph of the marked tree is approxi-
mately the vertices in the ball of radius r around the root in a supercritical
Galton-Watson tree. Hence by virtue of the fact that supercritical Galton-
Watson trees have roughly exponential growth, we can conclude that the
number of vertices at a distance at most ε log n from the root in the under-
lying graph of the marked tree is � √n if ε > 0 is small enough. Hence
note that to have a circuit within distance ε log n in the underlying graph of
the marked tree, two of the vertices which are revealed within � √n many
steps must be close in the plane tree. But observe that the distribution of
the revealed vertices is roughly a uniform sample from the set of vertices in
the tree up to the step when at most roughly

√
n many vertices are revealed.

It is not hard to see from this that the probability of revealing two vertices
which are close in the plane tree up to roughly

√
n many steps is small. This

argument shows that the local injectivity radius is at least ε log n for some
small enough ε > 0.

The rest of the chapter is devoted to make these heuristics precise.

4.4 Lower bound and injectivity radius

Recall condition (A) as described in the behavior of Section 4.2.2. Pick a
λ satisfying condition (A). Recall that Tλ(n) denotes a uniformly picked
element from Tλ(n). Throughout this section we shall fix a λ satisfying
condition (A) and work with Tλ(n). Also recall that Tλ(n) = (U0,n,M)
where U0,n is a uniformly picked plane tree with n edges andM is a uniformly
picked marking function corresponding to λ which is independent of U0,n.
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Let dλ(., .) denote the graph distance metric in the underlying graph of
Tλ(n). In this section we prove the following Theorem.

Theorem 4.4.1. Fix a λ satisfying condition (A). Suppose x and y are
two uniformly and independently picked numbers from {1, 2, . . . , N} and Vx
and Vy are the vertices in the underlying graph of Tλ(n) corresponding to
the marks x and y respectively. Then there exists a constant ε > 0 such that

Pλ(dλ(Vx, Vy) < ε log n)→ 0

as n→∞.

Proof of Theorem 4.1.1 part (i). Follows from Theorem 4.4.1 along with Propo-
sition 4.2.5 and Lemma 4.2.6.

As a by-product of the proof of Theorem 4.4.1, we also obtain the proof
of Theorem 4.1.4 in this section.

Note that for any finite graph, if the volume growth around a typical
vertex is small, then the distance between two typical vertices is large. Thus
to prove Theorem 4.4.1, we aim to prove an upper bound on volume growth
around a typical vertex. Note that with high probability the maximum
degree in U0,n is logarithmic and λmax is also logarithmic (via condition (A)
part (i) and Lemma 4.2.9.) Hence it is easy to see using the idea described
in Section 4.3 that the typical distance is at least ε log n/ log log n with high
probability if ε > 0 is small enough. This is enough, as is heuristically
explained in Section 4.3, to ensure that the injectivity radius of Ug(n) is
at least ε log n/ log log n with high probability for small enough constant
ε > 0. The rest of this section is devoted to the task of getting rid of
the log log n factor. This is done by ensuring that while performing the
exploration process for reasonably small number of steps, we do not reveal
vertices of high degree with high probability.

Given a marked tree (t,m), we shall define a nested sequence R0 ⊆ R1 ⊆
R2 ⊆ . . . of subgraphs of (t,m) where Rk will be the called the subgraph
revealed and the vertices in Rk will be called the vertices revealed at
the kth step of the exploration process. We will also think of the number of
steps as the amount of time the exploration process has evolved. There will
be two states of the vertices of Rk: active and neutral. Along with {Rk},
we will define another nested sequence E0 ⊆ E1 ⊆ E2 ⊆ . . .. In the first
step, R0 = E0 will be a set of vertices with the same mark and hence E0 will
correspond to a single vertex in the underlying graph of (t,m). The subgraph
of the underlying graph of (t,m) formed by gluing together vertices with the
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same mark in Er will be the ball of radius r around the vertex corresponding
to E0 in the underlying graph of (t,m). The process will have rounds and
during round i, we shall reveal the vertices which correspond to vertices at
distance exactly i from the vertex corresponding to E0 in the underlying
graph of (t,m). Define τ0 = 0 and we now define τr which will denote
the time of completion of the rth round for r ≥ 1. Let Nr = Er \ Er−1.
Inductively, having defined Nr, we continue to explore every vertex in Nr in
some predetermined order and τr+1 is the step when we finish exploring Nr.
For a vertex v, mark(v) denotes the set of marked vertices with the same
mark as that of v. For a vertex set S, mark(S) = ∪v∈Smark(v). We now
give a rigorous algorithm for the exploration process.

Exploration process I

(i) Starting rule: Pick a number x uniformly at random from the
set of marks {1, 2, . . . , N} and let E0 = R0 = mark(x). Declare
all the vertices in mark(x) to be active. Also set τ0 = 0.

(ii) Growth rule:

1. For some r ≥ 1, suppose we have defined the nested subset
of vertices of E0 ⊆ . . . ⊆ Er such that Nr := Er \ Er−1 is
the set of active vertices in Er. Suppose we have defined the
increasing sequence of times τ0 ≤ . . . ≤ τr and the nested
sequence of subgraphs R0 ⊆ R1 ⊆ . . . ⊆ Rτr such that Rτr =
Er. The number r denotes the number of rounds completed
in the exploration process at time τr.

2. Order the vertices of Nr in some arbitrary order. Now we
explore the first vertex v in the ordering of Nr. Let Sv de-
note all the neighbors of v in t which do not belong to Rτr .
Suppose Sv has l vertices {v1, v2, . . . , vl} which are ordered in
an arbitrary way. For 1 ≤ j ≤ l, at step τr + j, define Rτr+j
to be the subgraph induced by V (Rτr+j−1) ∪mark(vj). At
step τr + l we finish exploring v. Define all the vertices in
Rτr+l \ Rτr to be active and declare v to be neutral. Then
we move on to the next vertex in Nr and continue.

3. Suppose we have finished exploring a vertex of Nr in step k
and obtained Rk. If there are no more vertices left in Nr,
define k = τr+1 and Er+1 = Rτr+1 . Declare round r + 1 is
completed and go to step 1.

4. Otherwise, we move on to the next vertex v′ in Nr according
to the pre-described order. Let Sv′ = {v1, v2, . . . , vl′} be the
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neighbors of v′ which do not belong to Rk. For 1 ≤ j ≤ l′,
at step k + j, define Rk+j to be the subgraph induced by
V (Rk+j−1) ∪mark(vj). Define all the vertices in Rk+l′ \ Rk
to be active and declare v′ to be neutral. Now go back to
step 3.

(iii) Threshold rule: We stop if the number of steps exceeds n1/10

or the number of rounds exceeds log n. Let δ be the step number
when we stop the exploration process.

Recall that Vx denotes the vertex in the underlying graph of Tλ(n) cor-
responding to the mark x. The following proposition is clear from the de-
scription of the exploration process and is left to the reader to verify.

Proposition 4.4.2. For every j ≥ 1, all the vertices with the same mark
in Ej \ Ej−1 when glued together form all the vertices at a distance exactly
j from Vx in the underlying graph of (t,m).

In step 0, define mark(x) to be the seeds revealed in step 0. At any
step, if we reveal mark(z) for some vertex z, then mark(z) \ z is called the
seeds revealed at that step. The nomenclature seed comes from the fact that
a seed gives rise to a new connected component in the revealed subgraph
unless it is a neighbor of one of the revealed subgraph components. However
we shall see that the probability of the latter event is small and typically
every connected component has one unique seed from which it “starts to
grow”.

Now suppose we perform the exploration process on Tλ(n) = (U0,n,M)
where recall that M is a uniformly random marking function which is com-
patible with λ on the set of vertices of U0,n and is independent of the tree
U0,n. Let Fk be the sigma field generated by R0, R1, R2, . . . , Rk.

The aim is to control the growth of Rk and to that end, we need to
control the size of mark(Sv) while exploring the vertex v conditioned up to
what we have revealed up to the previous step. It turns out that it will be
more convenient to condition on a subtree which is closely related to the
connected tree spanned by the vertices revealed.

Definition 4.4.3. The web corresponding to Rk is defined to be the union
of the unique paths joining the root vertex v∗ and the vertices closest to v∗

in each of the connected components of Rk including the vertices at which
the paths intersect Rk. The web corresponding to Rk is denoted by PRk .

As mentioned before, the idea is to condition on the web. Observe that
after removing the web from U0,n at any step, we are left with a uniformly
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v∗ v∗

Figure 4.3: The web is denoted by the red paths. On the left:
a general web structure. A priori the web structure might be very
complicated. Many paths in the web might pass through the same
vertex as is depicted here. On the right: A typical web structure

distributed forest with appropriate number of edges and trees. What stands
in our way is that in general the web corresponding to a subtree might be
very complicated (see Figure 4.3). The paths joining the root and several
components might “go through” the same component. Hence conditioned on
the web, a vertex might a priori have arbitrarily many of its neighbors be-
longing to the web. To show that this does not happen with high probability
we need the following definitions.

For any vertex u in t, the ancestors of u are the vertices in t along the
unique path joining u and the root vertex v∗. For any two vertices u, v in t
let u ∧ v denote the common ancestor of u and v which is farthest from the
root vertex v∗ in t. Let

C(u, v) = dt(u ∧ v, {u, v, v∗})
A pair of vertices (u, v) is called a bad pair if C(u, v) < log2 n (see Fig-
ure 4.4.)

Recall that we reveal some set of seeds (possibly empty) at each step of
the exploration process. Suppose we uniformly order the seeds revealed at
each step and then concatenate them in the order in which they are revealed.
More formally, Let (si0 , si1 , . . . , siki ) be the set of seeds revealed in step i or-
dered in uniform random order. Let S = (s10 , s11 , . . . , s1k1

, . . . , sδ1 , . . . , sδkδ ).

To simplify notation, let us denote S = (S0, S1, . . . , Sδ′) where δ′+ 1 counts
the number of seeds revealed up to step δ. The reason for such ordering is
technical and will be clearer later in the proof of Lemma 4.4.8.

Lemma 4.4.4. If S does not contain a bad pair then each connected compo-
nent of Rδ contains an unique seed and the web PRδ intersects each connected
component of Rδ at most at one vertex.
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v∗

v

v′

Figure 4.4: v∗ denotes the root vertex. (v, v′) is a bad pair if
either of red, green or blue part has at most log2 n many vertices.

Remark 4.4.5. In Lemma 4.4.10, we shall prove that the probability of S
containing a bad pair goes to 0 as n → ∞. This and Lemma 4.4.4 shows
that for large n, the typical structure of the web is like the right hand figure
of Figure 4.3.

Proof. Clearly, every connected component of Rδ must contain at least one
seed. Also note that every connected component of Rδ has diameter at most
2 log n because of the threshold rule. Since the distance between any pair of
seeds in Rδ is at least log2 n if S do not contain a bad pair, each component
must contain a unique seed.

Suppose at any arbitrary step there is a connected component C which
intersects the web in more than two vertices. Then there must exist a com-
ponent C ′ such that the path of the web joining the root and C ′ intersects C
in more than one vertex. This implies that the (unique) seeds of C and C ′

form a bad pair since the diameter of both C and C ′ are at most 2 log n.

Now we want to prove that with high probability, S do not contain a
bad pair. Observe that the distribution of the set of seeds revealed is very
close to a uniformly sampled set of vertices without replacement from the
set of vertices of the tree as long as Rδ �

√
n, because of the same effect

as the birthday paradox. We quantify this statement and further show that
an i.i.d. sample of size δ′ from the set of vertices do not contain a bad pair
with high probability.

We first show that the cardinality of the set Rδ cannot be too large with
high probability.

Lemma 4.4.6. Rδ = O(n1/10 log n)
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Proof. At each step at most λmax many vertices are revealed and λmax =
O(log n) via condition (A).

Given S, let S̃ = {S̃0, S̃1, . . . , S̃δ′} be an i.i.d. sample of uniformly picked
vertices from U0,n. First we need the following technical lemma.

Lemma 4.4.7. Suppose a = a(n) and b = b(n) are sequences of positive
integers such that (a+ b)2 = o(n). Then for large enough n,

nb

∣∣∣∣∣ 1

b!

(
n− a
b

)−1

− 1

nb

∣∣∣∣∣ < 4

(
(a+ b)b
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)
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(
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))
where the third inequality follows because n−(a+b) > n/2 for large enough n
and a+b−j < a+b. The second last equality follows since b(a+b) = o(n) via
the hypothesis. The other direction follows from the fact that the expression
in the right hand side of eq. (4.4.1) is larger than 1/nb.

For random vectors X,Y let dTV (X,Y ) denote the total variation dis-
tance between the measures induced by X and Y .

Lemma 4.4.8.
dTV (S, S̃) < 4n−2/3
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Proof. First note that |S| < |Rδ| < n1/9 from Lemma 4.4.6. Let us denote
by (S1, S2, . . . Sd) the ordered set of seeds revealed in the first step after
uniform ordering. Then

dTV ((S1, . . . , Sd), (S̃1, . . . , S̃d)) < nd

∣∣∣∣∣ 1

d!

(
n

d

)−1

− 1

nd

∣∣∣∣∣ < 4n−7/9 (4.4.2)

where the factor nd in the first inequality of (4.4.2) comes from the definition
of total variation distance and the fact that there are nd many d-tuple of
vertices and the second inequality of (4.4.2) follows from Lemma 4.4.7 and
the fact that d < |S| < n1/9. We will now proceed by induction on the
number of steps. Suppose up to step t, (S1, . . . , Sm) is the ordered set of
seeds revealed. Assume

dTV ((S1, . . . , Sm), (S̃1, . . . , S̃m)) < 4mn−7/9 (4.4.3)

Recall Ft = σ(R0, . . . , Rt). Now suppose we reveal Sm+1, . . . , Sm+L in the
t+1th step where L is random depending upon the number of seeds revealed
in the t+1th step. Observe that to finish the proof of the lemma, it is enough
to prove that the total variation distance between the measure induced by
(Sm+1, . . . , Sm+L) conditioned on Ft and (S̃m+1, . . . , S̃m+L) (call this dis-
tance ∆) is at most 4n−7/9. This is because using induction hypothesis and
∆ < 4n−7/9, we have the following inequality

dTV ((S1, . . . , Sm+L), (S̃1, . . . , S̃m+L))

< dTV ((S1, . . . , Sm), (S̃1, . . . , S̃m)) + 4n−7/9 < 4(m+ 1)n−7/9. (4.4.4)

Thus (4.4.4) along with induction implies dTV (S, S̃) < 4n1/9n−7/9 < 4n−2/3

since δ′ < n1/9.
Let F ′t be the sigma field induced by Ft and the mark revealed in step

t + 1. To prove ∆ < 4n−7/9, note that it is enough to prove that the
total variation distance between the measure induced by Sm+1, . . . , Sm+L

conditioned on F ′t and (S̃m+1, . . . , S̃m+L) (call it ∆′) is at most 4n−7/9. But
if l many seeds are revealed in step t+ 1 (note l only depends on the mark
revealed) then a calculation similar to (4.4.2) shows that

∆′ < nl

∣∣∣∣∣ 1l!
(
n− |Rt| − 1

l

)−1

− 1

nl

∣∣∣∣∣ < 4n−7/9

where the last inequality above again follows from Lemma 4.4.7. The proof
is now complete.
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We next show that the probability of obtaining a bad pair of vertices in
the collection of vertices S̃ is small.

Lemma 4.4.9.

Pλ(S̃ contains a bad pair ) = O(n−1/10)

Proof. Let (V,W ) denote a pair of vertices uniformly and independently
picked from the set of vertices of U0,n. Let P be the path joining the root
vertex and V . Let A be the event that the unique path joining W and P
intersects P at a vertex which is within distance log2 n from the root vertex
or V . Since V and W have the same distribution and since there are at most
n2/9 pairs of vertices in S̃, it is enough to prove Pλ(A) = O(n−1/3 log2 n)

Recall the notation Mr of Lemma 4.2.10: Mr is the maximum over all
vertices v in U0,n of the volume of the ball of radius r around v. Let |P |
denote the number of vertices in P . Consider the event E = {Mbn1/3c <

n2/3 log2 n}. On E, the probability of {|P | < n1/3} is O(n−1/3 log2 n). Since
the probability of the complement of E is O(exp(−c log2 n)) for some con-
stant c > 0 because of Lemma 4.2.10, it is enough to prove the bound for
the probability of A on |P | > n1/3.

Condition on P to have k edges where k > n1/3. Observe that the
distribution of U0,n \ P is given by an uniformly picked of rooted forests
with σ = 2k + 1 trees and n− k edges. Hence if we pick another uniformly
distributed vertex W independent of everything else, the unique path joining
W and P intersects P at each vertex with equal probability. Hence the
probability that the unique path joining W and P intersects P at a vertex
which is at a distance within log2 n from the root or V is O(n−1/3 log2 n) by
union bound. This completes the proof.

Lemma 4.4.10.

Pλ(S contains a bad pair) = O(n−1/10)

Proof. Using Lemmas 4.4.8 and 4.4.9, the proof follows.

We will now exploit the special structure of the web on the event that
S do not contain a bad pair to dominate the degree of the explored vertex
by a suitable random variable of finite expectation for all large n. To this
end, we need some enumeration results for forests. Note that the forests we
consider here are rooted and ordered. Let Φσ,e denote the number of forests
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with σ trees and e edges. It is well known (see for example, Lemma 3 in
[27]) that

Φσ,e =
σ

2e+ σ

(
2e+ σ

e

)
(4.4.5)

We shall need the following estimate. The proof is postponed for later.

Lemma 4.4.11. Suppose e is a positive integer such that e < n. Suppose
d0, d1 denote the degree of the roots of two trees of a uniformly picked forest
with n− e edges and σ trees. Let j ≤ n− e. Then

max{P(d0 + d1 = j),P(d0 = j)} < 4j(j + 1)

2j

We shall now show the degree of an explored vertex at any step of the
exploration process can be dominated by a suitable variable of finite expec-
tation which do not depend upon n or the step number. Recall that while
exploring v we spend several steps of the exploration process which depends
on the number of neighbors of v which have not been revealed before.

In the following Lemmas 4.4.12 and 4.4.14, we assume vk+1 is the vertex
we start exploring in the (k + 1)th step of the exploration process.

Lemma 4.4.12. The distribution of the degree of vk+1 conditioned on Rk
such that Rk do not contain a bad pair is stochastically dominated by a
variable X where EX <∞ and the distribution of X do not depend on n or
k.

Proof. Consider the conditional distribution of the degree of vk+1 condi-
tioned on Rk as well as PRk . Without loss of generality assume PRk do
not contain n edges for then the Lemma is trivial. Note that PRk cannot
intersect a connected component of Rk at more than one vertex because
of Lemma 4.4.4. Suppose e < n is the number of edges in the subgraph
PRk ∪ Rk. It is easy to see that the distribution of U0,n \ (PRk ∪Rk) is a
uniformly picked element from the set of forests with σ trees and n−e edges
for some number σ. If vk+1 is not an isolated vertex in Rk (that is there is
an edge in Rk incident to vk+1), the degree of v is at most 2 plus the sum
of the degrees of the root vertices of two trees in a uniformly distributed
forest of σ trees and n− e edges. If vk+1 is an isolated vertex, the degree of
vk+1 is 1 plus the degree of the root of a tree in a uniform forest of σ trees
and n− e edges. Now we can use the bound obtained in Lemma 4.4.11 and
observe that the bound do not depend on the conditioning of the web PRk .
It is easy now to choose a suitable variable X. The remaining details are
left to the reader.
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Now we stochastically dominate the number of seeds revealed at a step
conditioned on the subgraph revealed up to the previous step by a variable
Y with finite expectation which is independent of the step number or n.

Lemma 4.4.13. Number of vertices added to Rj−1 the jth step of the explo-
ration process conditioned on Rj−1 is stochastically dominated by a variable
Y with EY < C where C is a constant which do not depend upon j or n.

Proof. Recall ri denotes the cardinality of the set {j : λj = i}. Now
note that because of the condition (A), we can choose ϑ > 1 such that∑

i≥3 ϑiri < d3n for some number 0 < d3 < 1. Since |Rk| < n1/9, the prob-
ability that the number of vertices added to Rj−1 in the jth step is i for
i ≥ 3 is at most iri/(n−n1/9) < ϑiri/n for large enough n using eq. (4.2.2).
Now define Y as follows:

P(Y = i) =

{
ϑ irin if i ≥ 3

1−∑i≥3 ϑ
iri
n := p2 if i = 2

Note further that

E(Y ) = 2p2 + ϑ
∑
i≥3

i2ri/n < 2p2 +
N∑
i=1

λ2
i /n < 2 + C2

from condition (A). Thus clearly Y satisfies the conditions of the Lemma.

Again, recall the definition of vk+1 from Lemma 4.4.12. The following
lemma is clear now.

Lemma 4.4.14. Let X,Y be distributed as in Lemmas 4.4.12 and 4.4.13
and suppose they are mutually independent. Conditioned on Rk such that
Rk do not have any bad pair, the number of vertices added to Rk when we
finish exploring vk+1 is stochastically dominated by a variable Z where Z is
the sum of X independent copies of the variable Y . Consequently EZ < C
where C is a constant which do not depend upon k or n.

Proof of Theorem 4.4.1. We perform exploration process I. Let rδ be the
maximum integer r such that τr < δ. Let Bλ

r (Vx) denote the ball of radius r
around the vertex Vx in the underlying graph of Tλ(n). Recall that because
of Proposition 4.4.2, Bλ

r (Vx) is obtained by gluing together vertices with
the same mark in Rτr = Er. Note that if |Bλ

bε lognc(Vx)| ≤ n1/9 then the

probability that Vy lies in Bλ
bε lognc(Vx) is O(n−8/9 log n) because of condition

102



4.4. Lower bound and injectivity radius

(A) part (i). Hence it is enough to prove Pλ(rδ < ε log n) → 0. Further,
because of Lemma 4.4.10, it is enough to prove Pλ(rδ < ε log n ∩ B) → 0
where B is the event that S do not contain a bad pair.

Consider a Galton-Watson tree with offspring distribution Z as specified
in Lemma 4.4.14 and suppose Zr is the number of offsprings in generation
r for r ≥ 1. Then from Lemma 4.4.14, we get

Pλ(rδ < ε log n ∩ B) < Pλ

bε lognc∑
k=1

Zk > n1/9

→ 0 (4.4.6)

if ε > 0 is small enough which follows from the fact that E(Zr) < Cr where
C is the constant in Lemma 4.4.14 and Markov’s inequality.

Now we finish the proof of Theorem 4.1.4.

Proof of Theorem 4.1.4. We shall use the notations used in the proof of
Theorem 4.4.1. Observe that if the ball of radius rδ in the underlying graph
of Tλ(n) contains a circuit, then two connected components must coalesce to
form a single component at some step k < δ. However this means that there
exists a bad pair. Thus on the event B, the underlying graph of Rδ do not
contain a circuit. Hence on the event B, the ball of radius ε log n contains
a circuit in the underlying graph of Tλ(n) implies rδ < ε log n. However
from eq. (4.4.6), we see that the probability of {rδ < ε log n ∩ B} → 0 for
small enough ε > 0. The rest of the proof follows easily from Lemmas 4.2.6
and 4.4.10 and Proposition 4.2.5.

Now we finish off by providing the proof of Lemma 4.4.11.

Proof of Lemma 4.4.11. It is easy to see that

P(d0 = j) =
Φσ+j−1,n−e−j

Φσ,n−e

where Φσ,n is given by eq. (4.4.5). A simple computation shows that

Φσ+j−1,n−e−j
Φσ,n−e

=
σ + j − 1

σ

1

2j

×
(

(n− e+ σ)
∏j−1
i=1 (1− i/(n− e))

(2(n− e) + σ − 1)
∏j+1
i=2 (1 + (σ − i)/2(n− e))

)
(4.4.7)
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Now we can assume (n − e + σ)/(2(n − e) + σ − 1) ≤ 1 (since e 6= n by
assumption). Also notice

1− i

n− e < 1 +
σ − i

2(n− e)
for i ≥ 1. Hence eq. (4.4.7) yields

Φσ+j−1,n−e−j
Φσ,n−e

≤ σ + j − 1

σ

1

2j

(
(1− 1/(n− e))∏j+1

i=j (1 + (σ − i)/2(n− e))

)

≤ σ + j − 1

σ

4

2j
≤ 4j

2j
(4.4.8)

which follows because
∏j+1
i=j (1+(σ−i)/2(n−e)) ≥ 1/4 since n−e ≥ j and for

the second inequality of (4.4.8), we use the trivial bound (σ+ j − 1)/σ ≤ j.
Further note that P(d0 = k, d1 = j − k) for any 0 ≤ k ≤ j is given by

Φσ+j−2,n−e−j/Φσ,n−e. Hence summing over k,

P(d0 + d1 = j) = (j + 1)
Φσ+j−2,n−e−j

Φσ,n−e
.

Now keeping n fixed, Φσ,n is an increasing function of σ, hence using the
bound obtained in (4.4.8), the proof is complete.

4.5 Upper bound

Throughout this section, we again fix a λ satisfying condition (A) as de-
scribed in Section 4.2.2. Recall dλ(., .) denotes the graph distance metric
in the underlying graph of Tλ(n). In this section we prove the following
Theorem.

Theorem 4.5.1. Fix a λ satisfying condition (A). Suppose V1 and V2 be
vertices corresponding to the marks 1 and 2 in Tλ(n). Then there exists a
constant C > 0 such that

Pλ(dλ(V1, V2) > C log n) = O(n−3)

Note that the distribution of Tλ(n) is invariant under permutation of the
marks. Hence the choice of marks 1 and 2 in Theorem 4.5.1 plays the same
role as an arbitrary pair of marks.

Proof of Theorem 4.1.1 part (ii). Proof follows from Theorem 4.5.1, Propo-
sition 4.2.5, and Lemma 4.2.6.
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To prove Theorem 4.5.1, we plan to use an exploration process similar
to that in Section 4.4 albeit with certain modification to overcome technical
hurdles. We start the exploration process from a vertex v1 with mark 1 and
continue to explore for roughly n3/4 steps. Then we start from the vertex
v2 with mark 2 and explore for another n3/4 steps. Since the sets of vertices
revealed are approximately uniformly and randomly selected from the set
of vertices of the tree, the distance between these sets of vertices should be
small with high probability, because of the same reasoning as the birthday
paradox problem. Then we show that the distance in the underlying graph
of Tλ(n) from the set of vertices revealed and 1 or 2 is roughly log n to
complete the proof. To this end, we shall find a supercritical Galton-Watson
tree whose offspring distribution will be dominated by the vertices revealed
in every step of the process.

However, if we proceed as the exploration process described in Sec-
tion 4.4, since an unexplored vertex has a reasonable chance of being a leaf,
the corresponding Galton-Watson tree will also have a reasonable chance of
dying out. However, we need the dominated tree to survive for a long time
with high probability. To overcome this difficulty, we shall invoke the follow-
ing trick. Condition on the tree U0,n to have diameter � log2 n. Consider
the vertex v∗ which is farthest from {v1, v2}. For each vertex we explore, we
reveal its unique neighbor which lie on the path joining the vertex and v∗
instead of revealing all the neighbors which do not lie in the set of revealed
vertices. Note that the revealed vertices by the exploration process now will
mostly be disjoint paths increasing towards v∗ and we shall always have at
least one child if the paths do not intersect. However the chance of paths
intersecting is small. Since expected size of mark(v) for any non-revealed
vertex v is larger than 1 throughout the process, we have exponential growth
accounting for the logarithmic distance. The rest of the Section is devoted
to rigorously prove the above described heuristic.

We shall now give a brief description of the exploration process we shall
use in this section which is a modified version of exploration process de-
scribed in Section 4.4. Hence, we shall not write down details of the process
again to avoid repetition, and concentrate on the differences with exploration
process I as described in Section 4.4.

Conditioning on the tree: For the proof of Theorem 4.5.1, we only need
randomness of the marking function M and not that of the tree U0,n. Hence,
throughout this section, we shall condition on a plane tree U0,n = t where
t ∈ U0,n such that

105



4.5. Upper bound

(i) diam(t) >
√
n/ log n.

(ii) Mblog3 nc ≤ log8 n.

where recall that Mr is as defined in Lemma 4.2.10: maximum over all
vertices v in U0,n of the volume of the ball of radius r around v. Let us call
this condition, condition (B). Although apparently it should only help if
the diameter of t is small, the present proof fails to work if the diameter is
too small and requires a different argument which we do not need. Note that
by Lemmas 4.2.9 and 4.2.10, the probability that U0,n satisfies condition (B)
is at least 1− exp(−c log2 n) for some constant c > 0. Hence it is enough to
prove Theorem 4.5.1 for the conditional measure which we shall also call Pλ
by an abuse of notation.

We start with a marked tree (t,m) where t satisfies condition (B). As
planned, the exploration process will proceed in two stages, in the first stage,
we start exploring from a vertex with mark 1 and in the second stage from
a vertex with mark 2.

Exploration process II, stage 1: There will be three states of vertices
active, neutral or dead. We shall again define a nested sequence of
subgraphs R0 ⊆ R1 ⊆ R2 ⊆ . . . which will denote the subgraph re-
vealed. Alongside {Rk}k=0,1,..., we will define another nested sequence
Q0 ⊆ Q1 ⊆ Q2 ⊆ . . . which will denote dead vertices revealed.

We shall similarly define the sequences {Nr}, {Er} and {τr} as in
exploration process I. We call v to be a v∗-ancestor of another vertex
v′ if v lies on the unique path joining v′ and v∗. The v∗-ancestor which
is also the neighbor of v is called the v∗-parent of v.

Starting Rule: We start from a vertex v1 with mark 1 and v2 with mark
2 (if there are more than one, select arbitrarily.) Let v∗ be a vertex
farthest from {v1, v2} in t (break ties arbitrarily.) Note that because
of the lower bound on the diameter via condition (B), dt(v1, v∗) and
dt(v2, v∗) are at least

√
n(3 log n)−1. Declare v1 to be active and let

R0 = {v1}. Declare all the vertices in mark(v1) \ v1 to be dead and
let Q0 = mark(v1) \ v1. Set τ0 = 0 and E0 = R0.

Growth rule: Suppose we have defined E0 ⊆ . . . ⊆ Er, τ0 ≤ . . . ≤ τr and
also R0 ⊆ . . . ⊆ Rτr such that Rτr = Er and Nr := Er \ Er−1 is the
set of active vertices in Er. Now we explore vertices in Nr in some
predetermined order and suppose we have determined Rk for some
k ≥ τr. We now move on to the next vertex in Nr. If there is no such
vertex, declare k = τr+1 and Er+1 = Rτr+1 .
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< log3 n

< log3 n

v v

v∗ v∗

Figure 4.5: Illustration of the death rule in exploration process
II. A snapshot of the revealed vertices when we are exploring the
circled vertex v is given. The black vertices and edges correspond
to neutral and active vertices, while the crosses correspond to dead
vertices. We are exploring v and mark(v) is denoted by the red
vertices. On the left: a red vertex comes within distance log3 n
of one the revealed vertices, hence death rule is satisfied. On the
right: two of the revealed vertices are within distance log3 n. Hence
death rule is satisfied.

Otherwise suppose v is the vertex to be explored in the k + 1th step.
Let v− denote the v∗-ancestor which is not dead and is nearest to v in
the tree t. If v− is already in Rk then we terminate the process.

Death rule: Otherwise, declare v− to be active, v to be neutral and let
Λ = mark(v−) \ v−. If any vertex u ∈ Λ is within distance log3 n
from Rk ∪ Qk ∪ v∗ or another u′ ∈ Λ, we say death rule is satisfied
(see Figure 4.5.) If death rule is satisfied declare all the vertices in
Λ to be dead and set Qk+1 = Qk ∪ Λ, Rk+1 = Rk ∪ v−. Otherwise
declare all the vertices in Λ to be active, set Rk+1 = Rk ∪mark(v−)
and Qk+1 = Qk.

Threshold rule: We stop if the number of steps exceed n3/4 or r exceeds
log2 n. Let δ denote the step when we stop stage 1 of the exploration
procedure.

Exploration process II, stage 2: Similarly as in stage 1, we start with
R′0 = v2 being active and Q′0 = mark(v2) \ v2 being dead. We proceed
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exactly as in stage 1, except for the following change: if v2 is a neighbor
of Rδ ∪Qδ, or while exploring v, if any of the vertices in mark(v−) is
a neighbor of Rδ ∪Qδ, we say a collision has occurred and terminate
the procedure.

We shall see later (see Lemma 4.5.9 and Corollary 4.5.10) that with high
probability, we perform the exploration for n3/4 steps and the number of
rounds is approximately log n in stage 1. Also in stage 2, collision occurs
with high probability and the number of rounds is at most log n with high
probability.

In what follows, we shall denote by X ′ in stage 2 the set or variable
corresponding to that denoted by X in stage 1 (for example, R′k, Q

′
k will

denote the set of revealed subgraphs and dead vertices respectively up to
stage k in stage 2 etc.)

Now we shall define a new tree TC which is defined on a subset of ver-
tices of t. The tree TC will capture the growth process associated with the
exploration process. We start with the tree t and remove all its edges so we
are left with only its vertices. The root vertex of TC is v1. For every step
of exploring v, we add an edge neighboring v and every vertex of mark(v−)
(where v− is defined as in growth rule) in TC if death rule is not satisfied.
Otherwise we add an edge between v and v− in TC . The vertices we connect
by an edge to v while exploring v is called the offsprings of v in TC similar
in spirit to a Galton-Watson tree. It is clear that TC is a tree (since we
terminate the procedure if v− ∈ Rk). Let Zr denotes the number of vertices
at distance r from v1 in TC . Clearly, if we glue together vertices with the
same mark which are at a distance at most r in TC , we obtain a subgraph
of the ball of radius r in the underlying graph of Tλ(n). We similarly define
another tree corresponding to stage 2 of the process which we call T ′C which
starts from the root vertex v2.

Lemma 4.5.2. The volume of Rδ ∪ Qδ is at most C0n
3/4 log n. Also the

volume of Rδ′ ∪ Qδ′ is at most C0n
3/4 log n where C0 is as in part (i) of

condition (A).

Proof. In every step, at most C0 log n vertices are revealed by condition
(A).

Define v1 and v2 to be the seeds revealed in the first step. While explor-
ing vertex v, we call the vertices in mark(v−) \ v− to be the seeds revealed
at that step if the death rule is not satisfied. Note that because of the
prescription of the death rule, seeds are necessarily isolated vertices (not a
neighbor of any other revealed neutral or dead vertex up to that step.)
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head

Figure 4.6: An illustration of a worm at a certain step in the
exploration process. The black vertices denote the vertices of the
worm, the crosses are the dead vertices and the head of the worm
is as shown. The circle is the v∗-ancestor of the head which is not
dead. This worm has faced death 5 times so far.

Definition 4.5.3. A worm corresponding to a seed s denotes a sequence
of vertices {w0, w1, w2, . . . , wd} such that w0 is s and wi+1 is the vertex wi−
for i ≥ 0.

Note that in the above definition, wi− depends on the vertices revealed
up to the time we explore wi in exploration process II. Note that in a worm,
wi+1 is a neighbor of wi if the v∗-parent of wi is not a dead vertex. If it is
a dead vertex we move on to the next nearest ancestor of wi which is not
dead. Note that the ancestors of wi which lie on the path joining wi+1 and
wi are necessarily dead. If there are p dead vertices on the path between w0

and the nearest v∗-ancestor of wd which is not dead, we say that the worm
has faced death p times so far (see Figure 4.6.) Call wd the head of the
worm. The length of the worm is the distance in U0,n between wd and w0.

We want the worms to remain disjoint so that conditioned up to the
previous step, the number of children of a vertex in the tree TC or T ′C
remain independent of the conditioning. Now for any worm, if wi ∈ Nr

(resp. wi ∈ N ′r), then it is easy to see that wi+1 ∈ Nr+1 (resp. wi+1 ∈ N ′r+1)
because of the way the exploration process evolves. Hence if none of the
worms revealed during the exploration process face a dead vertex, then the
length of each worm is at most log2 n from threshold rule. Since every seed
is at a distance at least log3 n from any other seed via the death rule, the
worms will remain disjoint from each other if death does not occur.

Unfortunately, many worms will face a dead vertex with reasonable
chance. But fortunately, none of them will face many dead vertices with
high probability. We say that a disaster has occurred at step k if after per-
forming step k, there is a worm which has faced death at least 16 times. The
following proposition is immediate from the threshold rule for exploration
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process II and the discussion above.

Proposition 4.5.4. If disaster does not occur, then the length of each worm
is at most log2 n + 16 and hence no two worms intersect during the explo-
ration process for large enough n.

We will now provide a series of Lemmas using which we will prove The-
orem 4.5.1. The proofs of Lemmas 4.5.5 and 4.5.7 are postponed to Sec-
tion 4.5.1 for clarity.

We start with a Lemma that shows that disaster does not happen with
high probability and consequently the length of each worm is at most log2 n+
16 with high probability.

Lemma 4.5.5. With Pλ-probability at least 1−cn−3 disaster does not occur
where c > 0 is some constant.

Lemma 4.5.6. Suppose disaster does not occur and r ≥ 0. Then in the tree
TC , for v ∈ Zr, dTC (v, v1) < 16r. Also in T ′C , for v ∈ Z ′r, dT

′
C (v, v2) < 16r.

Proof. We prove only for stage 1 as for stage 2 the proof is similar. The
Lemma is trivially true for r = 0. Suppose now the Lemma is true for r′ = r.
Now for any vertex in Zr and its offspring, the vertices corresponding to their
marks in the underlying graph of Tλ(n) must lie at a distance at most 16
because otherwise disaster would occur. Hence the distance of every vertex
in Zr+1 from v1 is at most 16r + 16 = 16(r + 1). We use induction to
complete the proof.

Let us denote by E (resp. E ′) the event that disaster has not oc-
curred up to step δ (resp. δ′). Let Fk denote the sigma field generated
by R0, . . . , Rk, Q0, . . . , Qk. Let F ′k = σ(R′0, . . . , R

′
k, Q

′
0, . . . , Q

′
k) ∨ Fδ. Let

vk+1 (resp. v′k+1) be the vertex we explore in the k + 1th stage in the
exploration process stage 1 (resp. stage 2).

Lemma 4.5.7. Conditioned on Fk (resp. F ′k) such that k < δ (resp. δ′)
and disaster has not occurred up to step k, the Pλ-probability that vk+1 in
TC (resp. T ′C) has

(i) no offsprings is 0.

(ii) at least 3 offsprings is at least k0 for some constant k0 > 0.

We now aim to construct a supercritical Galton-Watson tree which will
be stochastically dominated by both TC and T ′C . Consider a Galton-Watson
tree GW with offspring distribution ξ where

110



4.5. Upper bound

• P(ξ = 1) = (1− k0/2)

• P(ξ = 2) = k0/2

and k0 is the constant obtained in part (ii) of Lemma 4.5.7. Let ZGWr be the
number of offsprings in the r-th generation of GW . Lemma 4.5.7 and the
definition of GW clearly shows that Zr stochastically dominates ZGWr for
all r ≥ 1 if disaster does not occur up to step τr. Let rδ = max{r : τr < δ}
and similarly define rδ′ = max{r : τr < δ′}. Thus, we have

Lemma 4.5.8. For any integer j ≤ rδ (resp. j ≤ rδ′), Zj stochastically
dominates ZGWj on the event E (resp. E ′).

It is clear that the mean offspring distribution of GW is strictly greater
than 1 and hence GW is a supercritical Galton-Watson tree. Also GW is
infinite with probability 1.

Now we are ready to show that the depth of TC (resp. T ′C) when we
run the exploration up to time δ (resp. δ′) is of logarithmic order with high
probability.

Lemma 4.5.9. There exists a C > 0 such that

(i) Pλ((rδ > C log n) ∩ E) = O(n−3)

(ii) Pλ((rδ′ > C log n) ∩ E ′) = O(n−3)

Proof. We shall prove only (i) as proof of (ii) is similar. Because of Lem-
mas 4.5.2 and 4.5.8 we have for a large enough choice of C > 0,

Pλ((rδ > C log n) ∩ E) < Pλ

bC lognc∑
i=1

ZGWi ≤ C0n
3/4 log n


< Pλ

(
ZGWbC lognc ≤ C0n

3/4 log n
)

< n−3 (4.5.1)

where (4.5.1) follows by applying Lemma 4.2.8, choosing C > 0 large enough
and observing the fact that Pλ(Zr = 0) = 0 for any r from definition of
GW .

Recall that in stage 2, we stop the process if we have revealed a vertex
which is a neighbor of Rδ ∪ Qδ, and we say a collision has occurred. Let
us denote the event that collision does not occur up to step k by Ck. Since
δ ≤ bn3/4c implies either disaster has occurred in stage 1 or rδ > log2 n and
δ′ ≤ bn3/4c implies either disaster has occurred in stage 2 or r′δ > log2 n or
a collision has occurred we have the immediate corollary
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Corollary 4.5.10. On the event E, the Pλ-probability that δ ≤ bn3/4c is
O(n−3). On the event E ′∩Cδ′, the Pλ-probability that δ′ ≤ bn3/4c is O(n−3).

Now we are ready to prove our estimate on the typical distances. We
show next, that a collision will occur with high probability.

Lemma 4.5.11. Probability that a collision occurs before step δ′ is at least
1− cn−3 for some constant c > 0.

Proof. Let Q be the event that disaster does not occur up to step δ, δ =
bn3/4c+ 1. Let A(Rδ) be the set of v∗- parents of the heads of the worms in
Rδ. Since at each step at least one vertex is revealed, δ = bn3/4c+ 1 implies
the number of vertices revealed is at least n3/4. If disaster does not occur,
then from Lemma 4.5.5 and Proposition 4.5.4, the worms are disjoint and
each worm has length at most log2 n+ 16. Hence the number of vertices in
A(Rδ) is at least n3/4/(log2 n + 16). Also, the number of vertices in A(Rδ)
is at most C0n

3/4 log n from Lemma 4.5.2. For any k < δ′, conditioned on
the event Ck that no collision has occurred up to step k, the probability that
collision occurs in step k + 1 when we are exploring a vertex v is at least
(using Bonferroni’s inequality),∑
w∈A(Rδ)

Pλ(m(v) = m(w)|Ck,Q)−
∑

w,z∈A(Rδ)

Pλ(m(v) = m(w) = m(z)|Ck,Q)

>
c

n1/4 log2 n
− c log2 n√

n
(4.5.2)

>
c

n1/4 log2 n
(4.5.3)

for some constant c > 0. The first term of (4.5.2) follows from the lower
bound of (4.2.3). The second term of (4.5.2) follows from (4.2.4) and noting
that the number of terms in the sum is O(n3/2 log2 n). Since the bound on
the probability displayed in (4.5.3) is independent of the conditioning,

Pλ(Cδ′ ∩ δ′ = bn3/4c+ 1|Q) + Pλ(Cδ′ ∩ δ′ ≤ bn3/4c|Q)

<

(
1− c

n1/4 log2 n

)n3/4

+ Pλ(Cδ′ ∩ E ′ ∩ δ′ ≤ bn3/4c|Q) + Pλ((E ′)c|Q)

< exp(−c√n/ log2 n) +O(n−3) (4.5.4)

=O(n−3)
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where the bound on the second term in eq. (4.5.4) follows from Corol-
lary 4.5.10 and Lemma 4.5.5. The Lemma now follows because the prob-
ability of the complement of Q is O(n−3) again from Corollary 4.5.10 and
Lemma 4.5.5.

Proof of Theorem 4.5.1. Suppose we have performed exploration process I
stage 1 and 2. Let G be the event that rδ ≤ C log n, rδ′ ≤ C log n, disaster
does not occur before step δ or δ′ and a collision occurs. On the event G
the distance between V1 and V2 in the underlying graph of Tλ(n) is at most
32C log n+ 1 by Lemma 4.5.6. But by Lemmas 4.5.5, 4.5.9 and 4.5.11, the
complement of the event G has probability O(n−3).

4.5.1 Remaining proofs

The proofs of both the Lemmas in this subsection are for stage 1 of the
exploration process as the proof for stage 2 is the same.

Proof of Lemma 4.5.5. Let s be a seed revealed in the kth step of explo-
ration process II . Suppose P denotes the set of vertices at a distance at
most log2 n + 16 from s along the unique path joining s and v∗. Note that
none of the vertices in P are revealed yet because of the death rule. If the
worm corresponding to s faces more than 16 dead vertices, then more than
16 dead vertices must be revealed in P during the exploration from step
k to δ. Conditioned up to the previous step, the probability that one of
the revealed vertices lie in P in a step is O(n−1(log2 n + 16)) from (4.2.3)
and union bound. Since this bound is independent of the conditioning, the
probability that this event happens at least 16 times during the process is
O(n−16 log32 n · n12) = O(n−4 log32 n) where the factor n12 has the justifi-

cation that

(bn3/4c
16

)
= O(n12) is the number of combination of steps by

which this event can happen 16 times. Observe that more than one vertex
may be revealed in P in a step, but the probability of that event is even
smaller. Thus taking union over all seeds, we see that the probability of dis-
aster occurring is O(n−13/4 log33 n) = O(n−3) using Lemma 4.5.2 and union
bound.

Proof of Lemma 4.5.7. It is clear that on the event of no disaster, every
explored vertex has at least the offspring corresponding to its closest non-
dead v∗-ancestor in the tree TC . This is because on the event of no disaster,
no two worms intersect. For stage 2, the closest non-dead v∗-ancestor cannot
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belong to Rδ∪Qδ because otherwise, the process would have stopped. Hence
(i) is trivial.

Now for (ii), first recall that condition (A) ensures that the number of
indices i such that λi ≥ 3 is at least (1 − d2)n. Now since the number of
vertices revealed up to any step k < δ is O(n3/4 log n), the number of vertices
left with mark i such that λi ≥ 3 is at least (1 − d2)n − O(n3/4 log n) >
(1 − d2)n/2 for large enough n. Note that the number of offsprings of v in
TC is at least 3 if the number of vertices with the same mark as v− is at
least 3 and death does not occur. Hence if we can show that the probability
of death rule being satisfied in a step is o(1), we are done.

To satisfy the death rule in step k + 1, a vertex in mark(v−) \ v− must
be within distance log3 n in the tree U0,n to another vertex in mark(v−)\v−
or Rk ∪Qk ∪ v∗. Now using of part (ii) of condition (B) and Lemma 4.5.2,
the number of vertices within log3 n of Rδ ∪Qδ ∪ v∗ is O(n3/4 log9 n). Hence
the probability that the death rule is satisfied is O(n−1/4 log9 n) = o(1) by
union bound. This completes the proof.
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Chapter 5

Unicellular maps: the local
limit

4 Our goal in this section is to identify explicitly the local limit of Ugn,n
where gn ∼ θn for θ ∈ (0, 1/2) as a super-critical geometric Galton-Watson
tree conditioned to survive.

5.1 Main results

We write Geom(ξ) to denote a random variable which follows the geometric
distribution with parameter ξ ∈ (0, 1). In other words,

P(Geom(ξ) = k) = (1− ξ)k−1ξ for k ≥ 1.

For any ξ ∈ (0, 1) we shall use Tξ to denote the Galton-Watson tree with off-
spring distribution Geom(ξ)− 1. We denote by T∞ξ the tree Tξ conditioned
to be infinite. For ξ < 1/2 this tree is super-critical and hence the condi-
tioning is in the classical sense. We define T∞1/2 to be the limit as n → ∞
of the critical tree T1/2 conditioned to have n edges. This limit is known to
exist in a much more general setting, see [63], Section 1.2 and Figure 1.2.

Theorem 5.1.1. Assume gn is such that gn/n→ θ with θ ∈ [0, 1/2). Then
we have the following convergence in distribution for the local topology:

Ugn,n
(d)−−−→

n→∞
T∞ξθ ,

where ξθ = 1−βθ
2 , and βθ is the unique solution in β ∈ [0, 1) of

1

2

(
1

β
− β

)
log

1 + β

1− β = (1− 2θ). (5.1.1)

4The results of this section are taken from the paper [9] and is joint work with Omer
Angel, Guillaume Chapuy and Nicolas Curien
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For θ = 0, the genus is much smaller than the size of the map, so it
is not surprising that the local limit is the same as that of a critical tree
conditioned to survive.

Note that the mean of the geometric offspring distribution in Theo-
rem 5.1.1 is given by (1 + βθ)/(1 − βθ) > 1 and in particular the Galton-
Watson tree is supercritical.

In order to prove Theorem 5.1.1 we first determine the root degree dis-
tribution of unicellular maps using the bijection of [34]. This is done in
Section 5.2, where we also obtain an asymptotic formula for |Ug,n|. This en-
ables us to compute in Section 5.4.1 the probability that the ball of radius r
around the root in Ugn,n is equal to any given tree. In Chapter 4 it is shown
that the local limit of unicellular maps is supported on trees. However, we
do not rely on this result. In Section 5.5 we show that the probabilities
computed below are sufficient to characterize the local limit of Ug,n.

5.2 Enumeration and root degree distribution

Recall the definition of C-decorated tree from Section 4.2.1 and also re-
call that the unicellular maps of genus g and n edges are in 2n+1 to one
correspondence between C-decorated trees of genus g and n edges (Theo-
rem 4.2.3)

Using this correspondence we will obtain the two main theorems of this
section, Theorems 5.2.1 and 5.2.2. Before stating these theorems we in-
troduce a probability distribution on the odd integers that will play an
important role in the sequel. For β ∈ (0, 1), we let Xβ be a random variable
taking its values in the odd integers, whose law is given by:

P(Xβ = 2k + 1) :=
1

Zβ

β2k+1

2k + 1
,

where

Zβ =
∑
k≥0

β2k+1

2k + 1
=

1

2
log

1 + β

1− β = arctanhβ.

It is easy to check that eq. (5.1.1) is equivalent to

E[Xβ] =
1

Zβ

β

1− β2
=

1

1− 2θ
. (5.2.1)

Theorem 5.2.1. Assume gn ∼ θn where θ ∈ (0, 1/2). Let βn be such that
E[Xβn ] = n

sn
+ o

(
n−1/2

)
and sn = n + 1 − 2gn. As n tends to infinity we
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have

|Ugn,n| ∼ Aθ
(2n)!

n!sn!
√
sn

(Zβn)sn

4gnβn+1
n

,

where Aθ = 2√
2πVar(Xβθ )

.

Note that βn → βθ. If gn = θn + o(
√
n) we may take βn to be just βθ

and not depend on n.

Proof. For s, n ≥ 1, let Ls(n+ 1) be the set of partitions of n+ 1 having s
parts, all of odd size. Recall that if λ is a partition of n+ 1, the number of
permutations having cycle-type λ is given by

(n+ 1)!∏
imi!imi

,

where for i ≥ 1, mi = mi(λ) is the number of parts of λ with size equal to
i. Therefore by Theorem 4.2.3, the number of unicellular maps of genus gn
with n edges is given by

|Ugn,n| = Cat(n)
2sn

2n+1

∑
λ∈Lsn (n+1)

(n+ 1)!∏
imi!imi

, (5.2.2)

where Cat(n) = (2n)!
n!(n+1)! is the nth Catalan number, i.e. the number of rooted

plane trees with n edges, the sum counts permutations, and the powers of 2
are from the signs on cycles of the permutation and since the correspondence
is 2n+1 to 1. Recall that this is the well-known Lehman-Walsh formula ([91])
as was described in eq. (1.5.1).

Now, let β ∈ (0, 1) and let X1, X2, . . . , Xs be i.i.d. copies of Xβ. By
the local central limit theorem [80, Chap.7], if n + 1 = sE[Xβ] + o(

√
s)

has the same parity as s, then P(
∑

i≤sXi = n + 1) ∼ As−1/2 where

A = 2/
√

2πVar(Xβ). The additional factor 2 comes from the fact that
the support of Xi are odd numbers. On the other hand, we have

P

∑
i≤s

Xi = n+ 1

 =
∑

k1+···+ks=n+1

ki odd

∏
i

βki

Zβ · ki

=
βn+1

(Zβ)s

∑
λ∈Ls(n+1)

s!∏
imi!imi

, (5.2.3)
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since s!∏
imi!

is the number of distinct ways to order of the parts of the

partition λ.
Therefore if, as in the statement of the theorem, we pick βn so that

E[Xβn ] = (n + 1)/sn + o(1/
√
n), noticing that βn → βθ and Var(Xβn) →

Var(Xβθ), it follows from eq. (5.2.2) and the last considerations that

|Ugn,n| ∼
1

22gn
Cat(n)

(n+ 1)!

sn!

(Zβn)sn
βn+1
n

Aθs
−1/2
n .

The following theorem gives an asymptotic enumeration of unicellular
maps of high genus with a prescribed root degree.

Theorem 5.2.2 (Root degree distribution). Assume gn ∼ θn with θ ∈
(0, 1/2), and let βθ be the solution of eq. (5.1.1). Then for every d ∈ N we
have

P (Ugn,n has root degree d) −−−→
n→∞

(
1− β2

θ

4

)
(1 + βθ)

d − (1− βθ)d
2dβθ

.

Equivalently, the degree of the root of Ugn,n converges in distribution to an

independent sum Geom(1+βθ
2 ) + Geom(1−βθ

2 )− 1.

Proof. As in the proof of Theorem 5.2.1, we see that the length of a uniformly
chosen cycle in a uniform random C-decorated tree with n edges and n +
1− 2gn cycles is distributed as the random variable X1 conditioned on the
fact that X1 + · · · + Xs = n + 1, where the Xi’s are i.i.d. copies of Xβ for
any choice of β ∈ (0, 1), and s = n+ 1− 2gn. This follows by writing down
the required probability distributions and using eqs. (5.2.2) and (5.2.3) and
Theorem 4.2.3. Using the local central limit theorem, we see that with βn
chosen according to Theorem 5.2.1, when n tends to infinity, this random
variable converges in distribution to Xβθ .

Since the permutation is independent of the tree, the probability that
a cycle contains the root vertex is proportional to its size. Therefore the
size of the cycle containing the root vertex converges in distribution to a
size-biased version of Xβθ , which is a random variable K with distribution
P(K = 2k + 1) = (1− β2

θ )β2k
θ , i.e. K = 2 Geom(1− β2

θ )− 1.
Now by Theorem 4.2.3, conditionally on the fact that the cycle containing

the root vertex has length 2k + 1, the root degree in Ugn,n is distributed as∑2k
i=0Di, where D0 if the degree of the root of a random plane tree of size

n, and (Di)i>0 are the degrees of 2k uniformly chosen distinct vertices of
the tree. It is classical, and easy to see, that when n tends to infinity
the variables (Di)i>0 converge in distribution to independent Geom(1/2)
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5.3. The low genus case

random variables, while D0 converges to Y +Y ′− 1, where Y, Y ′ are further
independent Geom(1/2) variables. All geometric variables here are also
independent of K.

From this it is easy to deduce that when n tends to infinity, the root
degree in Ugn,n converges in law to

∑K
i=0 Yi−1 where K is as above and the

Yi’s are independent Geom(1/2) variables. Since the probability that the
sum of ` i.i.d. Geom(1/2) random variables equals m is 2−m

(
m−1
`−1

)
, we thus

obtain that for all d ≥ 1, the probability that the root vertex has degree d
tends to:

1− β2
θ

βθ

∑
k≥0

β2k+1
θ 2−d−1

(
d

2k + 1

)
=

1− β2
θ

4βθ

(1 + βθ)
d − (1− βθ)d

2d
.

Remark 5.2.3. It may be possible to prove Theorem 5.2.2 using the enumer-
ation results for unicellular maps by vertex degrees found in [57], although
this would require some computations. Here we prefer to prove it using the
bijection of [34], since the proof is quite direct and gives a good understand-
ing of the probability distribution that arises. This is also the reason we
prove Theorem 5.2.1 from the bijection, rather than starting directly from
the Lehman-Walsh formula (5.2.2).

We now comment on a “paradox” that the reader may have noticed. For
any rooted graph G and any r ≥ 0 we denote by Br(G) the set of vertices
which are at distance less than r from the origin of the graph. In Ug,n the
mean degree can be computed as

lim
r→∞

1

|Br(Ug,n)|
∑

u∈Br(Ug,n)

deg(u) =
2n

v
−−−→
n→∞

2(1− 2θ)−1.

However, if one interchanges limn→∞ and limr→∞ a different larger result
appears. Indeed, easy arguments about Galton-Watson processes show that
in T∞ξθ we have

lim
r→∞

1

|Br(T∞ξθ )|
∑

u∈Br(T∞ξθ )

deg(u) =
2

1− βθ
.

5.3 The low genus case

Proof of Theorem 5.1.1 for θ = 0. As noted, the case g = 0 is well known.
We argue here that the local limit for g = o(n) is the same as for g = 0.
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Indeed, the permutation on the tree contains n+ 1− 2g cycles, and so has
at most 3g non-fixed points. (If cycles of length 2 were allowed this would
be 4g.) Since the permutation is independent of the tree, and since the
ball of radius r in the tree distance is tight, the probability that any vertex
in the ball is in a non-trivial cycle is o(1) (with constant depending on r).
In particular, the local limit of the unicellular map and of the tree are the
same.

5.4 The local limit

5.4.1 Surgery

Throughout this subsection, we fix integers n, g ≥ 0. Let t be a rooted plane
tree of height r ≥ 1 with k edges and exactly d vertices at height r.

Lemma 5.4.1. For any n, g, k, d, r ≥ 0 we have

|
{
m ∈ Ug,n : Br(m) = t

}
| = |

{
m ∈ Ug,n−k+d with root degree d

}
|.

Proof. The lemma follows from a surgical argument illustrated in Fig. 5.1:
if m ∈ Ug,n is such that Br(m) = t we can replace the r-neighborhood of the
root by a star made of d edges which diminishes the number of edges of the
map by k − d and turns it into a map of Ug,n−k+d having root degree d. To
be precise, consider the leaf of t first reached in the contour around t. The
edge to this leaf is taken to be the root of the new map.

Figure 5.1: Illustration of the surgical operation
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It is clear that this operation is invertible. To see that it is a bijection
between the two sets in question we need to establish that it does not change
the genus or number of faces in a map. One way to see this is based on an
alternative description of the surgery, namely that it contracts every edge
of t except those incident to the leaves, and it is easy to see that edge
contraction does not change the number of faces or genus of a map.

5.5 Identifying the limit

Recall that for ξ ∈ (0, 1) we denote by Tξ the law of a Galton-Watson tree
with Geom(ξ) − 1 offspring distribution. Note that when ξ ∈ (0, 1/2) the
mean offspring is strictly greater than 1 and so the process is supercritical,
and recall that T∞ξ is Tξ conditioned to survive. Plane trees can be viewed
as maps, rooted at the edge from the root to its first child. For every r ≥ 0,
if t is a (possibly infinite) plane tree we denote by Br(t) the rooted subtree
of t made of all the vertices at height less than or equal to r.

Proposition 5.5.1. Fix ξ ∈ (0, 1/2). For any tree t of height exactly r
having k edges and exactly d vertices at maximal height, we have

P
(
Br(T

∞
ξ ) = t

)
=

(
ξ(1− ξ)

)k+1−d(
(1− ξ)d − ξd

)
1− 2ξ

.

Note that the probability of observing t does not depend on r, but only
on the number of edges and vertices where t is connected to the rest of Tξ.

Proof. Since ξ ∈ (0, 1/2) the Galton-Watson process is supercritical and by
standard result the extinction probability pdie is strictly less than 1 and is
the root of x =

∑
k≥0 x

k(1− ξ)kξ in (0, 1). Hence

pdie =
ξ

1− ξ .

Next, fix a tree t of height exactly r with k edges and d vertices at height
r. By the definition of Tξ if ku denotes the number of children of the vertex
u in t we have

P(Br(Tξ) = t) =
∏
u

(1− ξ)kuξ = (1− ξ)kξk+1−d

where the product is taken over all the vertices of t which are at height less
than r. Conditioned on the event {Br(Tξ) = t}, by the branching property,
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5.5. Identifying the limit

the probability that the tree survives forever is (1 − pddie). Combining the
pieces, we get the statement of the proposition.

Proof of Theorem 5.1.1 for θ ∈ (0, 1/2). Under the assumptions of Theorem 5.1.1,
fix r and let t be a rooted oriented tree of height exactly r having k edges
and exactly d vertices at height r. By Lemma 5.4.1 we have

P(Br(Ugn,n) = t) =
|{m ∈ Ugn,n−k+d with root degree d}|

|Ugn,n|

=
|Ugn,n−k+d|
|Ugn,n|

· P(root degree of Ugn,n−k+d = d).

Applying Theorem 5.2.2 we have

P(root degree of Ugn,n−k+d = d) −−−→
n→∞

(
1− β2

θ

4βθ

)
(1 + βθ)

d − (1− βθ)d
2d

.

(5.5.1)
On the other hand, since n/s = (n − k + d)/(s − k + d) + o(1/

√
n) we can

apply Theorem 5.2.1 for the asymptotic of |Ugn,n−k+d| and |Ugn,n| with the
same sequence (βn) and get that

|Ugn,n−k+d|
|Ugn,n|

∼
(2n+ 2d− 2k)!n!s!Zd−kβn

(2n)!(n+ d− k)!(s+ d− k)!βd−kn

.

Since d, k are fixed, and using the facts that βn → βθ, Zβn → Zβθ and
s/n→ (1− 2θ), the last display is also equivalent to

|Ugn,n−k+d|
|Ugn,n|

∼
(
βθ(1− 2θ)

4Zβθ

)k−d
=

(
1− β2

θ

4

)k−d
, (5.5.2)

by the definition of βθ in eq. (5.2.1). Plugging (5.5.1) and (5.5.2) together
and using Proposition 5.5.1 we find that

P(Br(Ugn,n) = t) −−−→
n→∞

P(Br(T
∞
ξθ

) = t),

with ξθ = (1− βθ)/2.
Finally, note that the law of Br(T

∞
ξθ

) is a probability measure on the
set of finite plane trees. It follows that Br(Ugn,n) is tight, and converges in
distribution to Br(T

∞
ξθ

). Since r is arbitrary, this completes the proof of the
Theorem.
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5.6 Questions and remarks

Planarity. A consequence of Theorem 5.1.1 is that Ugn,n is locally a tree
(hence planar) near its root. More precisely, the length of a minimal non-
trivial cycle containing the root edge diverges in probability as n → ∞.
Note that a much stronger statement has been proved in Chapter 4 where
quantitative estimates on cycle lengths are obtained. As noted above, the
proof presented in this section does not rely on this result and our approach
is softer. Note that our method of proof only requires to prove convergences
of the quantities P(Br(Ugn,n) = t) when t is a tree since we were able to
identify these limits as coming from a probability measure on infinite trees.

Open questions. We gather here a couple of possible extensions of our
work.

Question 5.6.1. Find more precise asymptotic formulae for |Ug,n| as the
sequence {g, n} → {∞,∞}. Theorem 5.2.1 gives a first order approximation.

Question 5.6.2. Quantify the convergence of Ugn,n to Tξθ . In particular,
let rn = o(log n). Is it possible to couple Ugn,n with Tξθ so that Brn(Ugn,n) =
Brn(Tξθ) with high probability?
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mécanique statistique et en théorie des champs (Les Houches, 1994),
pages 77–193. North-Holland, Amsterdam, 1996.

[7] O. Angel. Growth and percolation on the uniform infinite planar tri-
angulation. Geom. Funct. Anal., 13(5):935–974, 2003.

[8] O. Angel. Scaling of percolation on infinite planar maps, I.
arXiv:math/0501006, 2005.

[9] O. Angel, G. Chapuy, N. Curien, and G. Ray. The local limit of uni-
cellular maps in high genus. Elec. Comm. Prob, 18:1–8, 2013.

[10] O. Angel and N. Curien. Percolations on random maps I: half-plane
models. Ann. Inst. H. Poincaré, 2013. To appear.
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Appendix A

Proof of lemma 3.2.2

Recall that Im(q) denotes the number of internal vertices of a free trian-
gulation of an m-gon and recall the variable θ used in Section 2.5.1 where
q = θ(1− 2θ)2.

Proof of Lemma 3.2.2 part (i). Without loss of generality assume x is an
integer. Let dθ = 4θ

(1−6θ) . For simplicity of notation let Im(q) = Im. Notice

that conditioned on Y = k, expectation of IY+1 is dθk + O(1) as k → ∞.
We want,

P(Y + IY+1 > x) =
∑
k≥1

P(IY+1 > x− k|Y = k)P(Y = k) (A.0.1)

The trick is to break the sum in (A.0.1) into sums over three subsets of
indices:

(i) A1 = {1 ≤ k ≤ bx/(1 + dθ)− x3/4c}
(ii) A3 = {k > bx/(1 + dθ) + x3/4c}
(iii) A2 = N \ (A1 ∪A3)

The sum over A2 is O(x−3/4) by bounding P(IY+1 > x− k|Y = k) by 1 and
using P(Y = k) ∼ ck−3/2. Now note∑

A1

P(IY+1 > x− k|Y = k)P(Y = k) (A.0.2)

<
∑
A1

P(IY+1 − E(IY+1|Y = k) > x3/4 +O(1)|Y = k)P(Y = k) (A.0.3)

<
∑
A1

V ar(IY+1|Y = k)

x3/2
P(Y = k) = O(x−1). (A.0.4)

where we used Proposition 3.2.1 part (i) for (A.0.3) and Chebyshev’s in-
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equality followed by Proposition 3.2.1 part (ii) for (A.0.4). Finally,∑
k∈A3

P(IY+1 > x− k|Y = k)P(Y = k) (A.0.5)

=
∑
k∈A3

P(Y = k)−
∑
k∈A3

P(IY+1 ≤ x− k|Y = k)P(Y = k) (A.0.6)

=
∑
k∈A3

P(Y = k)−O(x−1) (A.0.7)

where the bound in the second term in the right hand side of (A.0.7) fol-
lows in the same way as (A.0.4) using Chebyshev’s inequality and Propo-
sition 3.2.1 part (ii) plus the fact that the summands are 0 when k > x.
Finally it is easy to verify that

∑
k∈A3

P(Y = k) ∼ cθx
−1/2 for some con-

stant cθ > 0.

Proof of Lemma 3.2.2 part (ii). Note that

E((Y + IY+1)1{Y+IY+1<x}) =
x−1∑
k=1

(P(Y + IY+1 ≥ k)− P(Y + IY+1 ≥ x))

(A.0.8)
Now the asymptotics follows by using the asymptotics of part (i).

Proof of Lemma 3.3.2. Observe that the expected change is given by

α−
∑
i≥1

ipi = 1−
∑
i≥1

(i+ 1)pi

where pi is given by eq. (2.8.3) and the equality follows from the fact that∑
i≥1 pi = 1− α. Now from eq. (2.8.3),

∑
i≥1

(i+ 1)pi =
∑
i≥1

2Cat(i− 1)

(
2/α− 2

4

)i
((3α− 2)i+ 1) (A.0.9)

where Cat(n) = 1
n+1

(
2n

n

)
is the nth catalan number. The sum in the right

hand side of eq. (A.0.9) can be easily computed using generating functions
of catalan numbers. We leave this last step to the reader.
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Proof of lemma 4.2.6

We shall prove Lemma 4.2.6 in this section. We do the computation following
the method of random allocation similar in lines of [62]. For this, we need to
introduce i.i.d. random variables {ξ1, ξ2, . . .} such that for some parameter
β ∈ (0, 1)

P (ξ1 = i)

{
= βi

B(β)(i) if i is odd positive integer

= 0 otherwise
(B.0.1)

where B(β) = 1/2 log((1 + β)/(1 − β)). Recall that P is the set of all N -
tuples of odd positive integers which sum up to n+ 1. Observe that for any
z = (z1, . . . , zN ) ∈ P,

P (λ = z) = P (ξ1 = z1, . . . , ξN = zN |ξ1 + ξ2 + . . . ξN = n+ 1)

throughout this Section, we shall assume the following:

• {n,N} → {∞,∞} and n/N → α for some constant α > 1.

• For every n, the parameter β = β(n) is chosen such that E(ξ1) = m =
(n+ 1)/N

It is easy to check using (B.0.1) that there is a unique choice of such β
and β converges to some finite number βα such that 0 < βα < 1 as (n+1)/N
converges to α. Let ζN,j = ξj1 + . . . ξjN where j ≥ 1 is an integer. It is also

easy to see that for any integer j ≥ 1, Eξj1 = mj(n) for some function mj

which also converge to some number mjα as n→∞. Let σ2
j = V ar(ξj1). To

simplify notation, we shall denote ζN,1 by ζN and σ1 by σ.
We will first prove a central limit theorem for ζN .

Lemma B.0.3. We have,

ζN −Nm
σ
√
N

→ N(0, 1) (B.0.2)

in distribution as n→∞.
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Proof. Easily follows by checking the Lyapunov condition for triangular ar-
rays of random variables (see [48]).

We now prove a local version of the CLT asserted by Lemma B.0.3.

Lemma B.0.4. We have

P (ζN = n+ 1) ∼ 2√
2πNσ

Proof. Let ξi = (ξi−1)/2. Apply Theorem 1.2 of [45] for the modified arrays
{ξ1, . . . ξN}n≥1 and use Lemma B.0.3. The details are left for the readers to
check.

Lemma B.0.5. Fix j ≥ 1. There exists constants C1 > 1 and C2 > 1 (both
depending only on α and j) such that

P

(
C1n <

N∑
i=1

λji < C2n

)
> 1− c

n7/2
(B.0.3)

for some c > 0 which again depends only on α and j for large enough n.

Proof. It is easy to see that mj → mjα as n→∞. Notice that

P

(
N∑
i=1

λji > C2n,

N∑
i=1

λji < C1n

)
= P (ζN,j > C2n, ζN,j < C1n|ζN = n)

<
P (ζN,j > C2n, ζN,j < C1n)

P (ζN = n)
(B.0.4)

Choose C2 > mjα and C1 < mjα. Then for some c > 0, for large enough n,

P (ζN,j > C2n, ζN,j < C1n) < P (|ζN,j −mjN | > cn)

< E (ζN,j −mjN)8 (cn)−8 (B.0.5)

It is easy to see that E (ζN,j −mjN)8 = O(n4) since the terms involving

E(ξji − mj) vanishes and all the finite moments of ξ1 are bounded. Now
plugging in this estimate into eq. (B.0.5), we get

P (ζN,j > C2n, ζN,j < C1n) = O(n−4) (B.0.6)

Now plugging in the estimate of eq. (B.0.6) into eq. (B.0.4) and observing
that P (ζN = n) � N−1/2 via Lemma B.0.4, the result follows.
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Lemma B.0.6. There exists a constant C0 > 0 such that

P (λmax > C0 log n) = O(n−3)

Proof. Let ξmax be the maximum among ξ1, . . . , ξN . Note that

P(ξmax > C0 log n) < NP(ξ1 > C0 log n) = O(NβC0 logn) = O(n−7/2)
(B.0.7)

if C0 > 0 is chosen large enough. Now the Lemma follows from the estimate
of Lemma B.0.4. The details are left to the reader.

Lemma B.0.7. There exists constants 0 < d1 < 1 and 0 < d2 < 1 which
depends only on α such that P(d1n < |i : λi = 1| < d2n) < e−cn for some
constant c > 0 for large enough n.

Proof. The probability that |i : λi = 1| < d2n for large enough n for some
0 < d2 < 1 follows directly from the fact that |i : λi = 1| ≤ N . For the
upper bound,

P(|i : λi = 1| > d1n) = P

(
N∑
i=1

1λi=1 > d1n

)
<

P
(∑N

i=1 1ξi=1 > d1n
)

P(ζN = n)

(B.0.8)

Now P(ξi = 1)→ βα/B(βα) as n→∞. The Lemma now follows by choosing
d1 small enough, applying Lemma B.0.4 to the denominator in eq. (B.0.8)
and a suitable large deviation bound on Bernoulli variables. Details are
standard and is left to the reader.

Proof of Lemma 4.2.6. Follows from Lemmas B.0.5–B.0.7.
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Proofs of the lemmas in
section 4.2.3

In this section, we shall prove Lemmas 4.2.8 and 4.2.10.

Let pi denote P(ξ = i) for i ∈ N and denote the generating function by
ϕ(s) =

∑
i pis

i. Let µ = Eξ. Let Zn denote the number of offsprings in the
n-th generation of the Galton-Watson process

C.1 Critical Galton-Watson trees

We assume ξ has geometric distribution with parameter 1/2. Here µ = 1
and we want to show that Zr cannot be much more than r. The following
large deviation result is a special case of the main theorem of [79].

Proposition C.1.1. For all r ≥ 1 and k ≥ 1,

P(Zr ≥ k) <
3

2

(
1 +

1

ϕ′′(3/2)r/2 + 2

)−k
C.2 Supercritical Galton-Watson trees

Here µ > 1. Recall the assumptions

• 0 < p0 + p1 < 1

• There exists a small enough λ > 0 such that E(eλξ) <∞.

It is well known (see [60]) that Zn/µ
n is a martingale which converges almost

surely to some non-degenerate random variable W . Let ρ := P (limn Zn = 0)
be the extinction probability which is strictly less than 1 in the supercritical
regime.

The following results may be realized as special cases of the results in
[14], [50] and further necessary references can be found in these papers.
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C.3. Random plane trees

W if restricted to (0,∞) has a strictly positive continuous density which
is denoted by w. In other words, we have the following limit theorem:

lim
n

P(Zn ≥ xµn) =

∫ ∞
x

w(t)dt, x > 0

Also define γ := ϕ′(ρ) where 0 < γ < 1 in our case. Define β by the relation
γ = µ−β. It is clear that in our case β ∈ (0,∞). β is used to determine the
behavior of w as x ↓ 0. The following is proved in [14].

Proposition C.2.1. Let η := µβ/(3+β) > 1. Then for all ε ∈ (0, η), there
exists a positive constant Cε > 0 such that for all k ≥ 1,

|P(Zr = k)µr − w(k/µr)| ≤ Cε
η−r

kµ−r
+ (η − ε)−r (C.2.1)

for all r ≥ 1.

It can be shown (see [28]) that there exists positive constants A1 >
0, A2 > 0 such that A1x

β−1 < w(x) < A2x
β−1 as x ↓ 0. Using this and

eq. (C.2.1), we get

P(Zr = k) ≤ Ck
β−1

µrβ
+
η−r

k
+ ((η − ε)µ)−r (C.2.2)

Proof of Lemma 4.2.8. The proof is straightforward by summing k from 1
to γr the expression given by the right hand side of (C.2.2).

C.3 Random plane trees

Proof of Lemma 4.2.10. Note that it is enough to prove the bound for r ≤ n
because otherwise the probability is 0. It is well known that if we pick
an oriented edge uniformly from U0,n and re-root the tree there then the
distribution of this new re-rooted tree is the same as that of U0,n (see [46]).
Let V denote the root vertex of the new re-rooted tree and let Zj(V ) denote
the number of vertices at distance exactly j from V . It is well known that
the probability of a critical geometric Galton-Watson tree to have n edges
is � n−3/2. Using this fact and Proposition C.1.1 we get for any k ≥ 1 and
1 ≤ j ≤ r

P(Zj(V ) > k) < n3/2c exp(−c′k/j) < n3/2c exp(−c′k/r) (C.3.1)
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C.3. Random plane trees

and some suitable positive constants c, c′. Note that if Mr > r2 log2 n then
Zj(v) > r log2 n for some 1 ≤ j ≤ r and some vertex v ∈ U0,n. Using this
and union bound to the estimate obtained in (C.3.1), we get

P(Mr > r2 log2 n) < cn5/2r exp(−c′ log2 n) = O(exp(−c′ log2 n))

for some positive constants c and c′. This completes the proof.
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