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Abstract

The essential dimension of an algebraic group G is a measure of the complex-

ity of G-torsors. One of the central open problems in the theory of essential

dimension is to compute the essential dimension of PGLn, whose torsors cor-

respond to central simple algebras up to isomorphism. In this thesis, we

study the essential dimension of groups of the form G/µ, where G is a reduc-

tive algebraic group satisfying certain properties, and µ is a central subgroup

of G. In particular, we consider the case

G = GLn1 × · · · ×GLnr

where each ni a power of a single prime p, which is a generalization of the

group PGLpa = GLpa /Gm. We will see that torsors for G/µ correspond to

tuples of central simple algebras satisfying certain properties. Surprisingly,

computing the essential dimension of G/µ becomes easier when r ≥ 3.

Using techniques from Galois cohomology, representation theory and the

essential dimension of stacks, we give upper and lower bounds for the essential

dimension of G/µ. To do this, we first attach a linear ‘code’ Cµ to the central

subgroup µ, and define a weight function on Cµ. Our upper and lower bounds

are given in terms of a minimal weight generator matrix for Cµ. In some cases

we can determine the exact value of the essential dimension of G/µ.
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This dissertation is original, unpublished, independent work by the Author,

S. Cernele.
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1 Introduction

1.1 Background

Informally, the essential dimension of an object is the minimum number of

algebraically independent variables required to define that object. Essential

dimension was introduced by Buhler and Reichstein ([BR97]) in 1997, and

the definition has since been generalized by Reichstein ([R00]) and Merkurjev

([BF03]). For the definition of essential dimension see §2, and for recent

surveys see [R10] and [M13].

Let k be a base field of characteristic zero. The essential dimension of an

algebraic group G/k is the maximum essential dimension of an element of the

first Galois cohomology set H1(K,G), over all field extensions K/k. For ex-

ample, H1(K,PGLn) can be identified with central simple algebras of degree

n over K (up to isomorphism), and so edk(PGLn) is the minimum number of

algebraically independent variables needed to define a central simple algebra

of degree n over any field extension of k. For n ≥ 5 and odd, from [LRRS03]

we have

edk(PGLn) ≤ 1

2
(n− 1)(n− 2)

and if ab | n for some a > 1, from [R00, Theorem 9.3 & Proposition 9.8a] we

have

edk(PGLn) ≥ 2b

Stronger results are known for a ‘local version’ of essential dimension at

a prime p, called essential p-dimension. We denote essential p-dimension by

edk(G; p), and by definition edk(G; p) ≤ edk(G).

In the case where G = PGLn, if n = pab with (p, b) = 1 then

edk(PGLn; p) = edk(PGLpa ; p)

and so we can reduce to studying only central simple algebras of p-primary
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degree.

Every central simple algebra of index p becomes a cyclic algebra after a

prime-to-p extension of the base field; from this one can deduce

edk(PGLp; p) = 2

(see [RY00, Lemma 8.5.7]). When a ≥ 2 we have the following result:

(a− 1)pa + 1 ≤ edk(PGLpa ; p) ≤ p2a−2 + 1

The lower bound is from [M10] and the upper bound is from [Ru11].

The set H1(K,G) where G = GLpa /µps (s < a) corresponds to central

simple algebras of degree pa and exponent dividing ps. The essential p-

dimension of GLpa /µps was studied in [BM12], where the authors show:

edk(GLpa /µps ; p) ≤ 2p2a−2 − pa + pa−s

edk(GLpa /µps ; p) ≥

(a− 1)2a−1 if p = 2 and s = 1

(a− 1)pa + pa−s otherwise

In this paper we will study the essential dimension of a certain class of

groups, including the groups G/µ where G = GLpa1 × . . . × GLpar for some

prime p, and µ ≤ Z(G). The Galois cohomology of G/µ is related to r-

tuples of central simple algebras; see Section 3. Surprisingly, computing the

essential dimension becomes easier when r ≥ 3.

Let Cµ be the submodule of Zr consisting of all r-tuples (x1, . . . , xr) ∈ Zr

such that λx11 · . . . · λxrr = 1 for all (λ1, . . . , λr) ∈ µ. Let Cµ be the (finite)

image of Cµ under the natural surjection

Zr → Z /pa1 Z× · · · × Z /par Z

If (c1, . . . , cr) ∈ Cµ then write c = (u1p
k1 , . . . , urp

kr) with ui ∈ (Z / pai Z)∗
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and 0 ≤ ki ≤ ai, and define the ‘weight of c’, denoted w(c), by

w(c) =
r∑
i=1

(ai − ki).

The main result of this paper is the following. Let (Y1, . . . , Yt) be a

generating set of Cµ such that
t∑
i=1

w(Yi) is minimal. Let M =
t∑
i=1

pw(Yi).

Then

edk(G/µ) ≥M + (r − t)− p2a1 − . . .− p2ar

and for many choices of µ (when r ≥ 3), equality holds.

1.2 Notation

We will now introduce some notation before stating our main results. The

major notation is summarized in the tables throughout this section. We

begin by defining some standard notation in the table below.

Table 1: General Notation

Notation Definition and Assumptions

k Base field of characteristic zero.

p Positive prime integer.

Z(B) Center of the group B.

X(A) Character lattice of the diagonalizable group A.

Br(K) Brauer group of the field K.

jth Galois cohomology group of B over K.

Hj(K,B) We assume B is abelian for j > 1.
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Good references for more information on the Brauer group include [GS06]

and [BO13]. For the the definition and properties of Galois cohomology,

consult [S97].

We now proceed to define the groups and maps we will study in this

paper. For i = 1, . . . , r, let Gi be a reductive linear algebraic group with

Z(Gi) ≤ Gm. In other words, we are once and for all identifying Z(Gi) with

a subgroup of Gm, so that we may have the identity character: Z(Gi) ↪→ Gm.

Denote Gi = Gi/Z(Gi) and consider δiK : H1(K,Gi) → H2(K,Z(Gi)) ≤
Br(K) for any K/k. Here δiK is the coboundary map induced from the

sequence

1→ Z(Gi)→ Gi → Gi → 1

for any K/k, see [S97, Section I.5].

We will assume that the image of δiK consists of elements of p-primary

order for some prime p. Let pai be the maximal index of δiK(E) (over all K/k

and E ∈ H1(K,Gi)), and let pbi be the maximal exponent of δiK(E) (over all

K/k and E ∈ H1(K,Gi)). We make the following additional assumptions:

i) For each i, bi ∈ {1, ai}.

ii) Either Z(Gi) = Gm for all i, or Z(Gi) = µpbi for all i. In particular,

Z(G1)× · · · × Z(Gr) is either connected or finite.

Let ni = pai .

Example 1.1. Examples of groups Gi satisfying bi ∈ {1, ai} and having

Z(Gi) ∈ {Gm, µpbi} include:

a) GLni
and SLni

for p arbitrary, ai ≥ 1 (bi = ai). In this caseGi = PGLni
,

and H1(K,PGLni
) classifies central simple algebras of degree n over K.

The coboundary map sends a central simple algebra to its Brauer class

in Br(K).

b) For p = 2, GOni
, Oni

, GSPni
, and SPni

when ai ≥ 1 (bi = 1), and GO+
ni

and SOni
when ai ≥ 2 (bi = 1). In these cases H1(K,Gi) classifies
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central simple algebras of degree ni with involution (of the first kind)

satisfying certain properties. The coboundary map sends a central

simple algebra A with involution to the Brauer class of A in Br(K)

(see [KMRT98, Section 29]). Note that the groups GOn, On and SOn

when p 6= 2 have a trivial coboundary map; we discuss these groups

further in Appendix C.

c) E6 (simply connected) for p = 3, ai = 3 (bi = 1).

d) Non-abelian finite p-groups Gi where Z(Gi) ∼= µp and the dimension

of a minimal faithful representation of Gi is ni (see [KM08, Theorem

4.4]). In this case, ai ≥ 1 and bi = 1.

We summarize the notation related to the groups Gi in the table below.

Table 2: Notation for the Groups Gi

Notation Definition and Assumptions

r Positive integer.

Gi

(i = 1 . . . r)

Reductive linear algebraic group.

Z(Gi) ≤ Gm.

Gi

(i = 1, . . . , r)
Gi/Z(Gi).

δiK

The coboundary map H1(K,Gi)→ H2(K,Z(Gi))

induced from the sequence 1 → Z(Gi) → Gi →
Gi → 1.

We assume every element of im(δiK) has p-primary

order.

ai
Maximum index of an element in im(δiK) over all

K/k.

Continued on next page...
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Table 2: Notation for the Groups Gi (continued)

Notation Definition and Assumptions

bi

Maximum exponent of an element in im(δiK) over

all K/k.

We assume bi ∈ {1, ai}.
If |Z(Gi)| <∞ then we assume Z(Gi) ∼= µpbi .

ni pai .

We now proceed to define the groups whose essential dimension we are

interested in, and some of their related structures. Let

G = G1 × · · · ×Gr, and G = G/Z(G) =
r∏
i=1

Gi.

Let µ be a subgroup of Z(G) (in particular, µ ≤ Gr
m), and let

δK : H1(K,G)→ H2(K,Z(G)/µ)

be the coboundary map induced from the sequence 1→ Z(G)/µ→ G/µ→
G→ 1. We will compute bounds on the essential dimension of G/µ over k.

From µ ≤ Z(G) we get a surjective map X(Z(G)) → X(µ) given by

restricting a character of Z(G) to µ. We define

Cµ = ker (X(Z(G)) � X(µ))

and observe that Cµ ∼= X(Z(G)/µ).

Note that X(Z(G)) is a Z-module of rank r, and comes with a canonical

coordinate system. This coordinate system is determined by r generators,

which are the r maps Z(G) → Z(Gi) ↪→ Gm. Thus we can think of an

6



element of Cµ as an r-tuple (z1, . . . , zr), where

zi ∈

Z if Z(Gi) ∼= Gm

Z / pbi Z if Z(Gi) ∼= µpbi

and we can write Cµ explicitly as:

Cµ = {(c1, . . . , cr) ∈ X(Z(G)) | λc11 · . . . · λcrr = 1 for all (λ1, . . . , λr) ∈ µ} .

Set F = µpb1 ×· · ·×µpbr ≤ Z(G), and for any subgroup τ of Z(G), define

τf = τ ∩F . Given µ ≤ Z(G), we define the code associated to µ, denoted Cµ,

to be the image of Cµ under the natural surjection X(Z(G)) � X(Z(G)f ).

In other words, Cµ is the code given by reducing the ith coordinate in each

element of Cµ modulo pbi . Note that this construction is trivial in the case

where |Z(G)| < ∞, since in this case we assumed Z(G) = F and hence

Cµ = Cµ.

Remark 1.2. Cµ can be identified with X(Z(G)f/µf ), and thus if α and β

are subgroups of Z(G), then αf = βf if and only if Cα = Cβ.

We will now assign ‘weights’ to the elements of our code. Let µ ≤ Z(G)

with associated code Cµ. Define a map vi : Z /pbi Z → Z as follows. For

z ∈ Z /pbi Z, if z = 0 then define vi(z) = ai. Otherwise, write z = upk with

u invertible in Z /pbi Z and 0 ≤ k < bi, and define vi(z) = k.

For an element z = (z1, . . . , zr) ∈ Cµ, we define the weight of z, denoted

w(z) to be:

w(z) =
r∑
i=1

(ai − vi(zi))

Remark 1.3. In the case where ai = bi = 1 for all i, w(z) is the usual

Hamming weight of z.

Remark 1.4. Since we assumed bi ∈ {1, ai}, our weight function has the

following important property. Suppose that for i = 1, . . . , r, Ei is a central

7



simple algebra with index pai and exponent pbi , and zi ∈ Z /pbi Z. Then

ind(E⊗zii ) = pai−vi(zi), and further if z = (z1, . . . , zr) ∈ Cµ then

ind(E⊗z11 ⊗ · · · ⊗ E⊗zrr ) ≤
r∏
i=1

ind(E⊗zii ) = pw(z)

We summarize the notation related to the group G/µ and the code asso-

ciated to µ in the following table.

Table 3: Notation Related to G and µ

Notation Definition and Assumptions

G

G1 × · · · ×Gr.

We assume Z(G) is finite or connected.

G G/Z(G).

µ Subgroup of Z(G).

Cµ

The Z-module given by ker (X(Z(G))→ X(µ)).

Explicitly, Cµ is given by:{
(c1, . . . , cr) ∈ X(Z(G)) | λc11 · . . . · λcrr = 1,

∀ (λ1, . . . , λr) ∈ µ

}

Continued on next page...
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Table 3: Notation Related to G and µ (continued)

Notation Definition and Assumptions

Cµ

Image of Cµ under the map

X(Z(G))→ X(µpb1 × · · · × µpbr )

induced from µpb1 × · · · × µpbr ↪→ Z(G).

Equivalently, Cµ is the Z-module given by

reducing the ith coordinate of Cµ modulo pbi , for

i = 1, . . . , r.

Cµ is called the code associated to µ.

w

w : Cµ → Z
(u1p

k1 , . . . , urp
kr) 7→

∑
uipki 6=0

(ai − ki)

Here, ui ∈ (Z / pbi Z)∗ and 0 ≤ ki ≤ bi.

δK

The coboundary map

H1(K,G)→ H2(K,Z(G)/µ)

induced from the sequence

1→ Z(G)/µ→ G/µ→ G→ 1.
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1.3 Main Results

We will now state the main results of this paper. We begin with a result

explaining the significance of the code associated to µ.

Theorem 1.5. Let µ, τ ≤ Z(G) and K/k. If Cµ = Cτ (or equivalently, if

µf = τf) then there is an isomorphism of functors H1(−, G/µ)→ H1(−, G/τ).

In particular, the essential dimension and essential p-dimension of G/µ de-

pend only on the code Cµ.

A generator matrix Y of a code is a matrix whose rows generate the code,

and if Y is a generator matrix, then Yi denotes the ith row of the matrix and

yij denotes the entry in the ith row and jth column.

Definition 1.6. Let Y be a generator matrix for Cµ, with rows Y1, . . . , Yt.

We say that Y is minimal if, for any other generator matrix Z of Cµ with

rows Z1, . . . , Zl,
t∑
i=1

w(Yi) ≤
l∑

i=1

w(Zi).

We can now state upper and lower bounds on the essential dimension of

G/µ, where µ ≤ Z(G). Recall that, by Theorem 1.5, we are free to replace

µ with any τ ≤ Z(G) such that Cµ = Cτ .

Theorem 1.7. Let µ ≤ Z(G) and let Y be a minimal generator matrix for

Cµ with rows Y1, . . . , Yt.

1. edk(G/µ; p) ≥

(
t∑
i=1

pw(Yi)

)
− d− dim(G)

2. edk(G/µ) ≤

(
t∑
i=1

pw(Yi)

)
− d+ edk(G)

where d =

t, if Z(G) is connected;

0, if Z(G) is finite.
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Although the upper and lower bounds in Theorem 1.7 never meet, for

many families of subgroups µ the term
t∑
i=1

pw(Yi) appearing in both the upper

and lower bound is much larger than any of the other terms in either formula.

Definition 1.8. Let Y be a generator matrix for Cµ. We say that Y is very

acceptable if:

1. Each yij equals −1, 0 or 1 in Z /pbi Z.

2. Y contains no column of all zeroes.

3. For each i, the Hamming weight of Yi is at least f(p), where

f(p) =


5, if p = 2

4, if p = 3

3, otherwise

When Gi has a faithful representation of dimension ni such that Z(Gi)

acts by the identity character (for example, every Gi in Example 1.1), we can

sometimes use very acceptable generator matrices to find a stronger upper

bound.

Theorem 1.9. Suppose that Gi has a faithful representation of dimension ni

such that Z(Gi) acts by the identity character, for all i. Let µ ≤ Z(G) and let

Y be a very acceptable minimal generator matrix for Cµ with rows Y1, . . . , Yt.

Suppose additionally that for all 1 ≤ i, j, k ≤ r, we have ai < aj + ak (or

equivalently, ni < nj · nk). Then

edk(G/µ) = edk(G/µ; p) =

(
t∑
i=1

pw(Yi)

)
− d− dim(G)

where d =

t, if Z(G) is connected;

0, if Z(G) is finite.

11



Remark 1.10. The conditions in Theorem 1.9 that for all 1 ≤ i, j, k ≤ r,

ai < aj + ak, and that Y is very acceptable can be replaced by assuming Y

is an acceptable generator matrix. The definition of an acceptable generator

matrix is more complicated to describe; see Section 6.

Example 1.11. A motivating example to keep in mind is the following. Let

n1 = n2 = · · · = nr = pa for r ≥ 5 and a ≥ 1, and let Gi
∼= GLni

for

1 ≤ i ≤ r. Let µ < Z(G) be defined by:

µ := {(λ1, . . . , λr) ∈ Z(G) | λ1 · . . . · λr = 1}

Thus Cµ = 〈(1, 1, . . . , 1)〉 ≤ X(Z(G)) = Zr. By Theorem 1.9, we have

ed(G/µ) = ed(G/µ; p) = pra − rp2 + r − 1

See Section 7 for a generalization of this example.

The rest of this report is structured as follows. In §2 we discuss some

preliminaries on essential dimension, including the definition. Then in §3
we study the Galois cohomology of G/µ and prove Theorem 1.5. In §4, we

will discuss codes and minimal generator matrices, and in §5 we discuss the

relationship between codes and subgroups of the Brauer group and prove

Theorem 1.7. In §6 we prove Theorem 1.9. In §7 we discuss an interesting

example, and in §8 we look at a class of codes where we can find acceptable

minimal generator matrices. Throughout, all diagrams are commutative, G

and G are groups of the form described in this section, and µ denotes a

subgroup of Z(G).
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2 Preliminaries

2.1 Essential Dimension and Canonical Dimension

In this section we will give the definition of essential dimension and essential

p-dimension. All fields are assumed to contain our base field k. Let F be a

covariant functor from Fieldsk to Sets. If we have a field extension given

by L
i
↪→ K and α ∈ F(L), then we write (α)K for F(i)(α) ∈ F(K).

Let K/k be a field extension and α ∈ F(K). If K/L is a field extension,

then we say α descends to L if there exists α0 ∈ F(L) that that (α0)K = α.

The essential dimension of α (over k), denoted edk(α), is defined to be the

minimum value of trdegk(L) over all fields L such that such that α descends

to L.

The essential dimension of F (over k), denoted edk(F) is defined to be

the maximum value of edk(α), where K runs over all field extensions of k

and α ∈ F(K).

Essential p-dimension is defined similarly, for a covariant functor F from

Fieldsk to Sets. If K/L and α ∈ F(K) then we say α p-descends to L if

there exists α0 ∈ F(L) and a finite exenstion K ′/K of degree prime-to-p,

such that (α0)K′ = (α)K′ . The essential p-dimension of α (over k), denoted

edk(α; p), is defined to be the minimum value of trdegk(L) over all fields

L such that such that α p-descends to L. The essential p-dimension of F ,

denoted edk(F ; p), is defined to be the maximum value of edk(α; p), where

K runs over all field extensions of k and α ∈ F(K). We have from the

definitions that edk(F) ≥ edk(F ; p).

For an algebraic group G, the essential dimension (resp. p-dimension) of

G is defined to be the essential dimension (resp. p-dimension) of the Galois

cohomology functor edk(H
1(−, G)). For example, by Hilbert’s Theorem 90

H1(K,GLn) = 0 for all K, and hence edk(GLn) = edk(GLn; p) = 0 (for any

p).

It is clear from the definitions that for any group G, edk(G) ≥ edk(G; p).

13



However, for some groups edk(G) is strictly greater than edk(G; p) for any

prime p; for an example, see [D10].

We now recall some results from the theory of essential dimension.

Theorem 2.1. [BF03, Lemma 1.9] Let F , T be functors from Fieldsk to

Sets. If there is a surjective morphism of functors F � T then

edk(T ) ≤ edk(F).

Theorem 2.2. [S97, III.4.3, Lemma 6] Let G be a reductive linear algebraic

group, and N be the normalizer of the maximal torus in G. Then the induced

map in cohomolgy H1(−, N) → H1(−, G) is surjective. In particular, by

Theorem 2.1,

edk(G) ≤ edk(N).

Let G be a linear algebraic group.

Definition 2.3. A representation ρ : G → GL(V ) is called generically free

if there exists a dense open subset U ⊂ V such that the geometric stabilizer

of every point x of U is trivial.

Remark 2.4. Note that if V is a faithful representation of G, then G acts

generically freely on the vector space End(V ). This is because, with U =

Aut(V ) ⊂ End(V ), it is easy to see that the geometric stabilizer of every

point in U is trivial. In particular, generically free representations always

exist for linear algebraic groups.

Theorem 2.5. [BF03, Proposition 4.11] Suppose G has a generically free

repesentation ρ : G→ GL(V ). Then

edk(G) ≤ dim(V )− dim(G).

A special case of essential dimension is canonical dimension. For a functor

F : Fieldsk → Sets, we define the detection functor DF : Fieldsk → Sets

as follows. For a field K,

14



DF(K) =

{∗}, if F(K) 6= ∅;

∅, if F(K) = ∅.

We define the canonical dimension (resp. p-dimension) of F to be the

essential dimension (resp. p-dimension) of DF , and denote it by cdimk(F)

(resp. cdimk(F ; p)). For more on canonical dimension, including the defini-

tion of the canonical dimension of an algebraic group (which will not be used

in this paper), see [M13, Section 4].

2.2 Quotient Stacks

A good reference for background on quotient stacks is [M13, Section 5].

Let 1 → D → H → H → 1 be an exact sequence of algebraic groups

over k, where D is diagonalizable and central in H. For any K/k, let

dK : H1(K,H) → H2(K,D) be the coboundary map. Let K/k and E ∈
H1(K,H), and view E as an H-torsor over K. In particular, E is an H-

scheme via the map H → H. We define a fibered category over the category

of schemes over K (called the quotient stack for the action of H on E) and

denote it by [E/H]. The objects over a scheme X are diagrams (T, π, φ)

given by:

T
φ
//

π
��

E

X

where φ is H-equivariant and π is an H-torsor. A morphism between objects

(T, π, φ) and (T ′, π′, φ′) over X is a G-equivariant morphism from T to T ′

satisfying the obvious commuting relationships over E and X.

Remark 2.6. (See [M13, Section 5c]) If L/K is a field extension, then an

object (T, π, φ) of [E/H](L) induces an H-equivariant map from T to EL

over L, which in particular implies that EL is the image of T under the
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induced map in cohomology H1(L,H) → H1(L,H). It follows that for any

field L/K,

[E/H](L) 6= ∅ ⇐⇒ EL is in the image of H1(L,H)→ H1(L,H)

⇐⇒ dL(EL) = 0 ∈ H2(L,D)

We now have a functor F : FieldsK → Sets given by

F(L) = ([E/H](L)) / ≈

for any L/K. This allows us to define edK([E/H]) = edK(F), edK([E/H]; p) =

edK(F ; p), cdimK([E/H]) = cdimK(F), and cdimK([E/H]; p) = cdimK(F ; p).

The following theorem provides a relationship between the essential di-

mension of an algebraic group and the essential dimension of certain quotient

stacks.

Theorem 2.7. (See [M13, Section 5]) Let 1 → D → H → H → 1 be an

exact sequence of algebraic groups, with D central and diagonalizable. Then

1. edk(H; p) ≥ max
A,L

(cdimL([A/H]; p)) + edk(D; p)− dim(H)

2. edk(H) ≤ max
A,L

(cdimL([A/H])) + edk(D) + edk(H)

Here, L runs over all field extensions of k, A ∈ H1(L,H).

Proof. Choose K/k and E ∈ H1(K,H). Then edk(H; p) ≥ edK(H; p) and

from [BRV11, Corollary 3.3] (see also [M13, Corollary 5.7]), we have:

edK(H; p) ≥ edK([E/H]; p)− dim(H).

To complete the proof of the lower bound, we must show edK([E/H]; p) =

cdimK([E/H]; p) + edk(D; p). If D ∼= (µp)
t for some t then the result follows

from [M13, Theorem 5.11]. One can check that their proof holds with only
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trivial modifications in the general case when D is only assumed to be central

and diagonalizable. Alternatively, if we assume the image of H1(−, H) →
H2(−, D) consists only of elements of p-primary order (which is true in all

of our applications), then using [M13, Theorem 5.11] and [KM08, Theorem

4.4 & Remark 4.5] we can deduce the result for a particular (E,K) with

cdimK([E/H]; p) = max
A,L

(cdimL([A/H]; p)); see Corollary B.4 in Appendix

B.

The upper bound can be deduced from [M13, Corollary 5.8 & Proposition

5.10]. For completeness we provide a direct proof in Appendix B.
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3 Galois Cohomology of G/µ

In this section we will discuss the Galois Cohomology of G/µ, and prove a

stronger version of Theorem 1.5. The following theorem is a more general

version of [N11, Theorem 5.1.3].

Theorem 3.1. Suppose Z(G) is a torus and let µ ≤ Z(G). From µ ↪→ Z(G)

we get G/µ � G, and hence an induced map in cohomology H1(K,G/µ)→
H1(K,G) for any K/k. Then

H1(K,G/µ)→ H1(K,G)

is injective, and identifies H1(K,G/µ) with r-tuples (E1, . . . , Er), with Ei ∈
H1(K,Gi), such that for all χ = (c1, . . . , cr) ∈ Cµ,

δ1
K(E1)⊗c1 ⊗ · · · ⊗ δrK(Er)

⊗cr = 0 ∈ Br(K)

Note that δiK(Ei)
⊗ci is always well-defined since exp(δiK(Ei)) | pbi.

Corollary 3.2. From µf ↪→ µ we get G/µf � G/µ, and hence an induced

map in cohomology γ : H1(K,G/µf )→ H1(K,G/µ) for any K/k. The map

γ is a bijection.

We can use these two results to prove Theorem 3.4, which is a stronger

version of Theorem 1.5.

Definition 3.3. Two codes are called (linearly) equivalent if one can be

obtained from the other by repeatedly performing the following operations:

1. Permuting entries i and j in every vector of the code, for any i, j with

Gni
∼= Gnj

.

2. Multiplying the ith entry in every vector of the code by any λ ∈
(Z /pbi Z)∗, for any i with Gi

∼= GLni
.

18



Theorem 3.4. Let µ, τ ≤ Z(G) and K/k. If Cµ is equivalent to Cτ , then

there is an isomorphism of functors H1(−, G/µ) → H1(−, G/τ). In partic-

ular, the essential dimension and essential p-dimension of G/µ depend only

on Cµ up to equivalence.

Proof of Theorem 3.4. In the case where Cµ = Cτ , the result is immediate

from Corollary 3.2 and Remark 1.2. Now using the definition of equivalence

and induction, we may assume Cµ is obtained from Cτ by either permuting

entries i and j where Gi
∼= Gj, or by multiplying the ith entry in every vector

of Cτ by some λ ∈ (Z /pbi Z)∗, for some i with Gi
∼= GLni

. In the former

case, the automorphism of G which swaps Gi with Gj sets up an isomorphism

G/µ ∼= G/τ and the result follows. In the latter case we must have that Z(G)

is a torus, and using the description of H1(K,G/µ) given by Theorem 3.1,

it is easy to check that

H1(K,G/µ) → H1(K,G/τ)

(E1, . . . , Er) 7→ (E1, . . . , Ei−1, [E
⊗λ
i ], Ei+1, . . . , Er)

is an isomorphism. Here, [E⊗λi ] means the algebra of degree ni which is

Brauer equivalent to E⊗λi (such an algebra is unique up to isomorphism).

We will now prove Theorem 3.1 and Corollary 3.2, beginning with a

number of elementary results from Galois cohomology. Throughout, we will

identify H2(K,Gr
m) with

r∏
i=1

H2(K,Gm) in the usual way.

Remark 3.5. Let a = (a1, . . . , ar) ∈ X(Gr
m). Then the induced map in

cohomology is easily seen to be given by:

a∗ :
r∏
i=1

H2(K,Gm)→ H2(K,Gm)

(x1, . . . , xr) 7→ xa11 · xa22 · . . . · xarr
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Proposition 3.6. (See [N11, Lemma 5.1.2]) Let K/k be a field extension.

1. If i : A ↪→ B is injective, where A and B are diagonalizable groups,

then i∗ : H2(K,A) → H2(K,B) is injective. In particular, we can

identify H2(K,A) as a subgroup of H2(K,B).

2. Suppose A ≤ Gr
m, thus giving X(Gr

m/A) a coordinate system. Then the

image of the map H2(K,A)→ H2(K,Gr
m) identifies H2(K,A) with the

subgroup of H2(K,Gm)r consisting of r-tuples (A1, . . . Ar) such that for

all χ = (c1, . . . , cr) ∈ X(Gr
m/A),

Ac11 ⊗ · · · ⊗ Acrr = 0 ∈ H2(K,Gm)

Proof. 1. Put A into any exact sequence 1 → A → Gl
m → Gl

m /A → 1.

Then since Gl
m /A is a split torus, we use the long exact sequence in

cohomology and Hilbert’s Theorem 90 to get:

0→ H2(K,A)→ H2(K,Gl
m)

It follows that H2(K,A) → H2(K,Gr
m) is injective. Now, choose any

embedding j : B ↪→ Gq
m. Then A

i
↪→ B

j
↪→ Gq

m and we get the following

diagram:

H2(K,A)
i∗ //

(j◦i)∗
��

H2(K,B)

j∗ww

H2(K,Gq
m)

From our previous argument we know that (j ◦ i)∗ is injective, and

hence so is i∗.

2. From 1 → A → Gr
m

p→ Gr
m /A → 1 we get the induced sequence in

cohomology

H2(K,A)→ H2(K,Gr
m)

p∗→ H2(K,Gr
m /A)
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By part (1), we can identify H2(K,A) with its image in H1(K,Gr
m),

and by exactness this image equals ker(p∗). Let Y = (Y1, . . . , Yr) ∈
H2(K,Gr

m). Since Gr
m /A is diagonalizable, p∗(Y ) = 0 if and only if

χ∗(p∗(Y )) = 0 for all χ ∈ X(Gr
m /A) ≤ X(Gr

m). If χ = (a1, . . . , ar) ∈
X(Gr

m/A) then by Remark 3.5, χ∗(p∗(Y )) = Y ⊗a11 ⊗ · · · ⊗ Y ⊗arr , and

the result follows.

Proof of Theorem 3.1. We argue as in [N11, §5.1]. Consider the following

diagram:

1 −−−→ Z(G) −−−→ G −−−→
r∏
i=1

Gi −−−→ 1

τ

y y ∥∥∥
1 −−−→ Z(G)/µ −−−→ G/µ

π−−−→
r∏
i=1

Gi −−−→ 1

Since Z(G)/µ is a split torus, we can use the long exact sequences in

cohomology and Hilbert’s Theorem 90 to get the following diagram with

exact rows:

H1(K,
r∏
i=1

Gi)
(δ1K ,...,δ

r
K)

−−−−−−→ H2(K,Z(G))∥∥∥ τ∗

y
0 −−−→ H1(K,G/µ)

π∗−−−→ H1(K,
r∏
i=1

Gi)
δK−−−→ H2(K,Z(G)/µ)

By [S97, I.5, Proposition 42], π∗ is injective. Thus we may identify

H1(K,G/µ) with the set of r-tuples (E1, . . . , Er), Ei ∈ H1(K,Gi), such

that (δ1
K(E1), . . . , δrK(Er)) ∈ ker τ∗. From the exact sequence

1→ µ→ Z(G)
τ→ Z(G)/µ→ 1
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ker(τ∗) equals

im
(
H2(K,µ)→ H2(K,Z(G))

)
Viewed inside Br(K)r, this is the same as the image of the map H2(K,µ)→
H2(K,Gr

m). Since the exponent of δiK(Ei) divides pbi and Cµ is obtained

from Cµ by reducing the ith coordinate modulo pbi , the result follows from

Proposition 3.6.2.

Proof of Corollary 3.2. The result is trivial if Z(G) is finite since in this case

we assumed µ = µf . Thus assume Z(G) is a torus. Consider the following

diagram:

H1(K,G/µ)
γ
//

π∗
��

H1(K,G/µf )

πf∗vv

H1(K,G)

By Theorem 3.1, π∗ and πf∗ are injective. Since exp(δiK(Ei)) | pbi , then also

by Theorem 3.1 π∗ and πf∗ have the same image. It follows that γ is a

bijection.

In the sequel, δK will continue to denote the coboundary mapH1(K,G)→
H2(K,Z(G)/µ).

Definition 3.7. For any K/k and E ∈ H1(K,G) we have a map

ΨE,K : Cµ → Br(K)

χ 7→ χ∗ ◦ δK(E)

Clearly ΨE,K factors through ΨE,K : Cµ → Br(K) by definition of Cµ. In

the sequel, if (c1, . . . , cr) ∈ Cµ (or Cµ) and Ei ∈ H1(K,Gi) for all i, then we

will write

[δ1
K(E1)⊗c1 ⊗ · · · ⊗ δrK(Er)

⊗cr ]
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to mean the Brauer class of

[δ1
K(E1)⊗c

′
1 ⊗ · · · ⊗ δrK(Er)

⊗c′r ]

where (c′1, . . . , c
′
r) is any set of integer representatives for (c1, . . . , cr) respec-

tively.

We end this section with the following result, which follows easily from

the proof of Theorem 3.1.

Lemma 3.8. Let K/k and c = (c1, . . . , cr) ∈ Cµ. Let δiK : H1(K,Gi) →
H2(K,Z(Gi)), and view H2(K,Z(Gi)) ≤ Br(K) via the inclusion Z(Gi) ↪→
Gm. If E = (E1, . . . , Er) ∈ H1(K,G) with each Ei ∈ H1(K,Gi), then

ΨE,K(c) = [δ1
K(E1)⊗c1 ⊗ · · · ⊗ δrK(Er)

⊗cr ]
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4 On Minimal Generator Matrices

The Z-module Cµ can be thought of as a Z /pb Z-module, where b := max{b1,

. . . , br}. In this section we will develop some preliminary algebraic results

for this context. In particular, we show in Example 4.8 that if we replaced

our weight function w with the weight function pw, then the set of minimal

generator matrices would remain unchanged. We assume for simplicity that

generating sets are ordered and do not contain 0.

Let R be a local ring, I the unique maximal ideal of R, and let M be

a finitely generated R-module. For m ∈ M , let m denote the image of m

in M/IM . The following lemma can be deduced from Nakayama’s Lemma,

and is an immediate consequence of [AM69, Proposition 2.8].

Lemma 4.1. The set {m1, . . . ,mt} is a generating set of minimal size for

M as an R-module if and only if {m1, . . . ,mt} is a basis for M/IM as an

R/I-vector space.

Let w : M → Z≥0 be a function with w(m) 6= 0 if m 6= 0. For each

generating set B = {m1, . . . ,mt} of M , we define

w(B) := (w(m1), . . . , w(mt), 0, 0, . . . ) ∈ ZN

We define word(B) to be the element of ZN obtained by rearranging the entries

of w(B) in decreasing order, and we call word(B) the w-profile of B.

Remark 4.2. If B is arranged in weight-decreasing order, then word(B) =

w(B).

If γ is a w-profile of M , we call a generating set Bγ = {β1, . . . , βl} a

representative generating set for γ if the w-profile of Bγ equals γ.

We put a partial order ≤ on ZN as follows. For γ, β ∈ ZN, γ ≤ β if γi ≤ βi

for all i ≥ 1, where γi denotes the ith component of γ ∈ ZN. Let Prof(M)

(or, Profw(M)) denote the set of w-profiles of generating sets of M .
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Theorem 4.3. (Prof(M),≤) has a unique minimal element, and this ele-

ment is comparable to every other element.

Proof. Prof(M) has no infinite descending totally ordered chain, so it suffices

to show that there is a unique minimal element. Towards a contradiction,

suppose X and Y are representative generating sets for distinct minimal

elements of Prof(M). By Lemma 4.1, both X and Y must have the same

size, say t. Thus write X = {x1, . . . , xt} and Y = {y1, . . . , yt} with w(x1) ≥
· · · ≥ w(xt) and w(y1) ≥ · · · ≥ w(yt). Suppose s is minimal such that

w(xi) = w(yi) for all i > s. Since by assumption the w-profiles of X and Y

are distinct, s ≥ 1. Without loss of generality, assume w(xs) < w(ys).

We can extend the set {xs, . . . , xt} to a minimal generating set of M

by adding elements of Y . That is, for some J = {j1, . . . , js−1} ⊂ Y with

w(j1) ≥ w(j2) ≥ · · · ≥ w(js−1), we have that

{j1, . . . , js−1, xs, . . . , xt}

is a basis for M/IM as an R/I-vector space. By Lemma 4.1,

Γ := {j1, . . . , js−1, xs, . . . , xt}

generates M as an R-module.

We will now compare the weights of the elements of Γ with the weights

of the elements of Y . By construction, w(xi) = w(yi) for s + 1 ≤ i ≤ t,

and w(xs) < w(ys) by assumption. Since J is an ordered subset of Y and

w(y1), . . . , w(ys−1) are the largest s − 1 weights of elements in Y , we have

w(ji) ≤ w(yi) for 1 ≤ i ≤ s − 1. Thus we have w(Γ) < w(Y ) = word(Y ).

It remains to show that word(Γ) < word(Y ), since this would contradict the

minimality of Y .

Let ji = xi for s ≤ i ≤ t so that we may write

Γ := {j1, . . . , js−1, js, . . . , jt}.
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If there exists a, b with a < b such that w(ja) < w(jb), then we swap these two

elements to get a new generating set Γ′. We must show that w(Γ′) < word(Y ),

since then after finitely many such swaps we obtain a generating set Γ′′, which

is just Γ rearranged into weight-decreasing order. Thus inductively we would

have w(Γ′′) < word(Y ), and hence:

word(Γ) = word(Γ
′′) = w(Γ′′) < word(Y ).

Note that the first inequality is true because Γ and Γ′′ contain the same

elements, and the second equality follows from Remark 4.2.

Since Γ only changes in positions a and b, it is enough to show that

w(jb) ≤ w(ya) and w(ja) < w(yb) (note that the second inquality is automat-

ically strict). Since w(Γ) < w(Y ), we have w(ja) ≤ w(ya) and w(jb) ≤ w(yb),

and since Y is in decreasing order, we have w(yb) ≤ w(ya). Thus the first

inequality follows from w(jb) ≤ w(yb) ≤ w(ya), and the second inequality

follows from w(ja) < w(jb) ≤ w(yb).

Corollary 4.4. A generating set B = {m1, . . . ,ml} of M minimizes
l∑

i=1

w(mi)

if and only if word(B) is the minimal element of Prof(M).

Corollary 4.5. Suppose we form a generating set of M inductively as fol-

lows: Select m1 ∈ M with m1 6= 0 such that w(m1) is minimal. Suppose

m1, . . . ,mi have been selected. Then select mi+1 such that w(mi+1) is mini-

mal among all elements m ∈M such that m /∈ 〈m1, . . . ,mi〉. Continue until

it is not possible to select another element. Then the w-profile of the resulting

generating set is the minimal element of Prof(M).

Example 4.6. [KM08, Remark 4.7] Take R = Fp, G a finite p-group, D

to be the elements of exponent at most p in Z(G) and M = X(D), where

X(D) is the group of characters of D. For x ∈M , define w(x) to be the least

dimension of a representation of G, say Vx, such that D acts by x. Then if
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{x1, . . . , xt} is the basis provided by the greedy algorithm in Corollary 4.5,

then Vx1 ⊕ · · · ⊕ Vxt is a faithful representation of G of minimal dimension.

Corollary 4.7. Suppose τ : M → Z is a function such that τ(m1) ≥
τ(m2) iff w(m1) ≥ w(m2). Then the generating sets {b1, . . . , bt} that mini-

mize
t∑
i=1

τ(bt) are precisely those whose w-profile is the minimal element of

Prof(M).

Example 4.8. Take R = Z /pb Z, with M and w to be arbitrary. Taking

τ to be the function pw and applying Corollary 4.4 and Corollary 4.7 shows

that choosing a generating set {m1, . . . ,mt} of M that minimizes
t∑
i=1

w(mi)

is the same as choosing a generating set {m′1, . . . ,m′l} of M that minimizes
l∑

i=1

pw(m′i).
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5 Codes and the Brauer Group

In this section we will prove Theorem 1.7, which gives formulas for bounds

on the essential dimension of G/µ involving the weights of elements of the

associated code Cµ. We do this by establishing a relationship between Cµ

and the image of the coboundary map δK : H1(k,G)→ H2(K,Z(G)/µ), and

using this relationship to construct our bounds.

Recall from Definition 3.7 that for any K/k and E ∈ H1(K,G) we have

a map ΨE,K : Cµ → Br(K) given by

ΨE,K : Cµ → Br(K)

χ 7→ χ∗ ◦ δK(E)

where δK denotes the coboundary map H1(k,G) → H2(K,Z(G)/µ). De-

fine TE,K ≤ Br(K) to be the (finite) image of ΨE,K . Let {t1, . . . , tl} be a

generating set of TE,K with
l∑

i=1

ind(ti) minimal, and define

ind(E,K) =
l∑

i=1

(ind(ti)− 1)

We will prove the following theorem.

Theorem 5.1. Let µ ≤ Z(G), and let Y be a minimal generator matrix for

Cµ with t rows. Then

max
E,K

(ind(E,K)) =

(
t∑
i=1

pw(Yi)

)
− t

We can use this to prove Theorem 1.7 as follows. Since TE,K is a p-group

for any K/k and E ∈ H1(K,G), by [KM08, Theorem 2.1 & Remark 2.9]
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(and applying Remark 2.6 and Corollary 4.5) we have:

cdimK([E/G]; p) = cdimK([E/G]) = ind(E,K).

If rank(Cµ) = t then we can find a subgroup τ ≤ Z(G) with rank(Cτ ) = t

and Cτ = Cµ. Thus by Theorem 1.5 we may assume rank(Cµ) = t, and hence

edk(Z(G)/µ) = edk(Z(G)/µ; p) = t− d, where

d =

t, if Z(G) is connected;

0, if Z(G) is finite.

Theorem 1.7 is now an immediate consequence of Theorem 5.1 and Theorem

2.7. Thus, it suffices to prove Theorem 5.1, which is the content of the

remainder of this section.

As in [KM08], if 1→ D → H → H → 1 is an exact sequence of algebraic

groups with D central and diagonalizable, and χ ∈ X(D), let Rep(χ)(H)

denote the category of all finite dimensional representations ρ of H such that

ρ(z) is scalar multiplication by χ(z) for all z ∈ D. In particular, we have the

categories:

1. Repχ(G) corresponding to the exact sequence 1→ Z(G)→ G→ G→
1, where χ ∈ X(Z(G)).

2. Repχ(Gi) corresponding to the exact sequence 1 → Z(Gi) → Gi →
Gi → 1, where χ ∈ X(Z(Gi)).

3. Repχ(G/µ) corresponding to the exact sequence 1→ Z(G)/µ→ G/µ→
G→ 1, where χ ∈ X(Z(G)/µ) ∼= Cµ.

Let dK : H1(K,H)→ H2(K,D) be the coboundary map. If K/k is a field

extension and E ∈ H1(K,H) then for any χ ∈ X(D) and V ∈ Rep(χ)(H)

we have that ind(χ∗ ◦ dK(E)) divides dim(V ) (see [M13, Theorem 6.1.1]).

Indeed, we have the diagram:
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1 −−−→ Gm −−−→ GL(V ) −−−→ PGL(V ) −−−→ 1

χ

x x x
1 −−−→ D −−−→ H −−−→ H −−−→ 1

which gives the following in cohomology:

H1(K,PGL(V )) −−−→ Br(K)x χ∗

x
H1(K,H)

dK−−−→ H2(K,D)

Since the image of H1(K,PGL(V )) → Br(K) consists of classes of algebras

of index dividing dim(V ), we see ind(χ∗ ◦ dK(E)) | dim(V ). Thus for any

χ ∈ X(D),

ind(χ∗ ◦ dK(E)) | gcd
{

dim(V ) | V ∈ Rep(χ)(H)
}

Theorem 5.2. [KM08, Theorem 4.4 & Remark 4.5] Let 1 → D → H →
H → 1 as above. Then there exists a field K/k and E ∈ H1(K,H) such that

for any χ ∈ X(D) we have

ind(χ∗ ◦ dK(E)) = gcd
{

dim(V ) | V ∈ Rep(χ)(H)
}

Since we are studying only reductive groups in characteristic zero, this

can be reduced to

ind(χ∗ ◦ dK(E)) = gcd
{

dim(V ) | V irreducible, V ∈ Rep(χ)(H)
}

Before using this to prove Theorem 5.1, we need one more preliminary

result. Recall that pai and pbi were defined to be the maximum index and

exponent respectively of δiK(E) over all E ∈ H1(K,Gi) and K/k. We now

prove a lemma which says that they can both be attained by the same torsor.
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Lemma 5.3. For each i, there exists K/k and E ∈ H1(K,Gi) such ind(δiK(E)) =

pai and exp(δiK(E)) = pbi.

Proof. Let V be a generically free representation of Gi. Then there exists

a ‘friendly’ subset U ⊂ V (see [BF03, Theorem 4.7]), ie a dense open Gi-

invariant subset U ⊂ V such that the categorical quotient U/Gi exists and

U → U/Gi is a Gi-torsor. Then the generic fiber of this Gi-torsor gives

a Gi torsor E with base K = k(U/Gi) (ie E ∈ H1(K,Gi)). By [GMS03,

Example 5.4], E is versal. By [KM08, Theorem 4.4 & Remark 4.5] and the

discussion preceding Theorem 5.2 above, ind(δiK(E)) is the maximum value

of ind(δiL(A)) over all L/k and A ∈ H1(L,Gi), ie. ind(δiK(E)) = pai .

Let pci be the exponent of δiK(E) ∈ Br(K). Consider the natural trans-

formation

H1(−, Gi)
δi−→ H2(−, Z(Gi))

P→ H2(−, Z(Gi))

where P is the map sending A to A⊗p
ci for any A ∈ H2(L,Z(Gi)) and any

L/k. This natural transformation is a cohomological invariant of Gi, and

in fact lands in H2(−, µpbi ) ⊂ H2(−, Z(Gi)). By construction, this invariant

evaluates to the class of zero when applied to the versal torsor E ∈ H1(K,Gi)

and hence by [GMS03, Theorem 12.3], the invariant is identically zero. In

particular, δiL(E) has maximal exponent over all L/k and A ∈ H1(L,Gi),

and hence bi = ci as required.

Recall that for the exact sequence 1 → Z(G)/µ → G/µ → G → 1, we

have the notation d = δ and χ∗ ◦ dK(E) = ΨE,K(χ).

Proof of Theorem 5.1. Recall that {Y1, . . . , Yr} is assumed to be a minimal

generating set of Cµ. If K/k, E = (E1, . . . , Er) ∈ H1(K,G), and χ =

(c1, . . . , cr) ∈ Cµ, then it follows from Remark 1.4 and Lemma 3.8 that

ind(ΨE,K(χ)) = ind([E⊗c11 ⊗ · · · ⊗ E⊗crr ]) ≤ pw(χ). Since {ΨE,K(Y1), . . . ,
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ΨE,K(Yr)} generate TE,K , the inequality

max
E,K

(ind(E,K)) ≤

(
t∑
i=1

pw(Yi)

)
− t

follows immediately.

It remains to prove

max
E,K

(ind(E,K)) ≥

(
t∑
i=1

pw(Yi)

)
− t

We may assume that k is algebraically closed. It suffices to find K/k and

E ∈ H1(K,H) such that ind(ΨE,K(χ)) ≥ pw(χ) for all χ ∈ Cµ, or equivalently

that ind(ΨE,K(χ)) = pw(χ) for all χ ∈ Cµ (here χ means the image of χ in

Cµ). Indeed, then

ΨE,K : Cµ → TE,K

will be an isomorphism, and ind(E,K) will be the minimum value of

l∑
i=1

(
pw(χi)

)
− l

over all generating sets χ1, . . . , χl of Cµ. By Example 4.8 this value is

t∑
i=1

(
pw(Yi)

)
− t.

By Theorem 5.2, we can find K/k and E ∈ H1(K,G) such that for all

χ ∈ Cµ,

ind(ΨE,K(χ)) = gcd
(

dim(V ) | V irreducible, V ∈ Rep(χ)(G/µ)
)

If χ ∈ Cµ, then via the inclusion Cµ ↪→ X(Z(G)) we can view χ ∈
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X(Z(G)). We can view a representation of G/µ as a representation of G via

the morphism G � G/µ. If V is a representation of G such that Z(G) acts

by τ ∈ X(Z(G)), then it is easy to see that V is a well-defined representation

of G/µ precisely when τ ∈ Cµ. It follows that for any χ ∈ Cµ, the functor

F : Rep(χ)(G/µ) → Rep(χ)(G)

V 7→ V

is an isomorphism of categories. Thus

ind(ΨE,K(χ)) = gcd
{

dim(V ) | V irreducible, V ∈ Rep(χ)(G)
}

(1)

Since k is algebraically closed, a representation V of G decomposes as

V = V1 ⊗ · · · ⊗ Vr, where Vi is an irreducible representation of Gi for i =

1, . . . , r. If χ = (c1, . . . , cr) ∈ Cµ then Z(Gi) acts on Vi by the character

(ci) ∈ X(Z(Gi)).

If Ji is any set of integers for 1 ≤ i ≤ r, then one can easily check the

following gcd result:

gcd
ji∈Ji,i=1,...,r

{j1 · . . . · jr} = gcd
j1∈J1
{j1} · . . . · gcd

jr∈Jr
{jr}

Applying this result with Ji = {dim(W ) | W ∈ Rep(ci)(G)}, (1) reduces to:

ind(ΨE,K(χ)) =
r∏
i=1

(
gcd

{
dim(Vi) | Vi irreducible, Vi ∈ Rep(ci)(Gi)

})
.

By Lemma 5.3, there existsK/k and Ti ∈ H1(K,Gi) such that ind(δiK(Ti)) =

pai and exp(δiK(Ti)) = pbi . By Remark 1.4, if ci is the reduction of ci mod

pbi , then ind(δiK(Ti)
⊗ci) = pai−vi(ci). Note that, by Remark 3.5, δiK(Ti)

⊗ci =

ci∗ ◦ δiK(Ti), and so by the discussion preceding Theorem 5.2 applied to the
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exact sequence 1→ Z(Gi)→ Gi → Gi → 1,

gcd
{

dim(Vi) | Vi irreducible, Vi ∈ Rep(ci)(Gi)
}

is at least as large as ind(δiK(Ti)
⊗ci). Thus we have

gcd
{

dim(Vi) | Vi irreducible, Vi ∈ Rep(ci)(Gi)
}
≥ pai−vi(ci)

and hence,

ind(ΨE,K(χ)) ≥
r∏
i=1

pai−vi(ci) = p
∑r

i=1(ai−vi(ci)) = pw(χ)

as required.

Remark 5.4. In the case where the image of the coboundary map δK is well

understood, one can prove Theorem 5.1 using the theory of central simple

algebras; see Appendix A.

Remark 5.5. An alternate method to prove the lower bound on ed(G/µ; p)

in Theorem 1.7 would be to find a finite p-subgroup Y of G/µ and apply the

bound

ed(G/µ; p) ≥ ed(Y ; p)− dim(G/µ).

Suppose that for 1 ≤ i ≤ r, one can find a finite p-subgroup Hi ≤ Gi with

Z(Hi) = µpbi ≤ Z(Gi), and such that the maximal index and exponent

of the coboundary map H1(−, Hi/Z(Hi)) → H2(−, Z(Hi)) are pai and pbi

respectively. Then set H = H1 × · · · × Hr, so that we have H/µf ≤ G/µ.

Theorem 1.7 applies, and gives ed(H/µf ; p) ≥
t∑
i=1

pw(Yi). Combining this

with the bound for the essential dimension of a subgroup above yields:
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ed(G/µ; p) ≥ ed(H/µf ; p)− dim(G/µ)

≥
t∑
i=1

pw(Yi) − d− dim(G)

where d =

t, if Z(G) is connected;

0, if Z(G) is finite.

This shows that, if one found such subgroups Hi ≤ Gi, then the lower

bound on ed(G/µ; p) provided by computing the essential p-dimension of

H/µf would be the same as the lower bound in Theorem 1.7.

Computing the essential p-dimension of H/µf can be done using [KM08,

Theorem 4.1], which says that the essential p-dimension of a finite p-group

over k equals the minimal dimension of a faithful representation of that group.

This is used in [MR10, Theorem 1.2] to give a formula for the essential p-

dimension of a finite p-group purely in terms of its group structure. For

example, in the case Gi = GLp, one can take the group Hi to be any finite

non-abelian group of order p3, and the inclusion Hi ↪→ Gi given by any

faithful irreducible representation of Hi; see the group Γ defined in the proof

of [MR10, Theorem 1.5].
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6 An Upper Bound

In this section we will prove Theorem 1.9. Let H = GL(V1) × · · · × GL(Vr)

and H ′ = SL(V1) × · · · × SL(Vr) where Vi = kni . Then both H and H ′ act

naturally on the vector space

Vc1,...,cr = V ⊗c11 ⊗ · · · ⊗ V ⊗crr

where c1, . . . , cr ∈ {±1} (here, V −1 denotes the dual of V ). We denote such

a representation by ρ(c1,...,cr) : H → GL(Vc1,...,cr).

Theorem 6.1. Suppose r ≥ 3, 2 ≤ n1 ≤ . . . ≤ nr and nr ≤ n1·...·nr−1

2
. Then

the kernel of ρ(c1,...,cr) is central in H, and the action of H/ ker(ρ(c1,...,cr)) on

Vc1,...,cr is generically free in all but the following exceptional cases:

1. r = 3, n1 = 2, n2 = n3.

2. r = 4, n1 = n2 = n3 = n4 = 2.

3. r = 3, n1 = n2 = n3 = 3.

Proof. We first reduce to the case where (c1, . . . , cr) = (1, . . . , 1). Suppose

the theorem is true in this case, and let (c1, . . . , cr) ∈ {±1}r. By choosing

bases of V1, . . . , Vr we can identify Vi with V ⊗cii (we can take the identity

map if ci = 1). Define an automorphism:

σ : H → H

(h1, . . . , hr) 7→ (h∗1, . . . , h
∗
r)

where

h∗i =

hi if ci = 1;

(h−1
i )T if ci = −1

.
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Now ρ(c1,...,cr) is isomorphic to the representation ρ(1,...,1) ◦σ. Since Z(H) is a

characteristic subgroup, we see that the theorem holds for ρ(c1,...,cr) as well.

Denote ρ(1,...,1) and V(1,...,1) by ρ and V repectively. It remains to prove

the theorem is true for the representation ρ.

By [P87, Theorem 2], with the conditions in our theorem, the H ′/Z(H ′)

action on P(V ) is generically free. Thus the stabilizer in general position

for the H ′-action on V is central. Since a central element of H ′ either acts

trivially on V or non-trivially on all non-zero elements of V , we see that the

stabilizer in general position for the H ′-action on V is equal to the (central)

kernel of this action. It remains to extend this result to the H-action on V .

We may assume k = k for the purposes of checking whether a represen-

tation is generically free. Suppose v ∈ V is in general position and h ∈ H
stabilizes v. Write h = λ ·h′ with λ ∈ (k∗)r and h′ ∈ H ′. Then we must have

h′ acting by scalar multiplication on v, and hence h′ (mod Z(H ′))stabilizes

the image of v in P(V ). Thus h′ ∈ Z(H ′), and hence h ∈ Z(H). As before, a

central element of H either acts trivially on V or acts non-trivially on every

non-zero element of V , and so the stabilizer of a point v ∈ V in general

position equals the (central) kernel of ρ. Thus the H/ ker(ρ)-action on V is

generically free, as required.

We can now apply this to the essential dimension of G/µ, where µ is a

subgroup of Z(G) and Gi ≤ GL(Vi) is a faithful representation of dimension

ni whose central character is the identity character. In other words, with H

as above we have G ≤ H.

Let χ = (c1, . . . , cr) ∈ Cµ. For 1 ≤ j ≤ r, define ĉj to be the unique

integer such that ĉj ≡ cj mod pbj and −pbj/2 < ĉj ≤ pbj/2. Define a

representation ρχ of G by

Vχ =
r⊗
i=0

V
⊗ĉj
i

where V ⊗1
i is the standard representation, V ⊗0

i is the trivial representation,
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and V ⊗−1
i is the dual of Vi.

We define the set m(χ) by

m(χ) = {i | ci 6= 0}

Definition 6.2. We say that χ = (c1, . . . , cr) ∈ Cµ is acceptable if the fol-

lowing conditions hold:

1. −1 ≤ ĉj ≤ 1 for 1 ≤ j ≤ r.

2. max
i∈m(χ)

{ai} <
1

2

 ∑
j∈m(χ)

aj

 (note this implies |m(χ)| ≥ 3).

3. {ni}i∈m(χ) 6= {2, n, n}, {2, 2, 2, 2} or {3, 3, 3}, for any positive integer n.

By Theorem 6.1, if χ is acceptable then the stabilizer in general position

for ρχ equals ker ρχ, and if (g1, . . . , gr) ∈ ker ρχ then gi ∈ Z(Gi) for all

i ∈ m(χ).

Remark 6.3. The first condition in the definition of acceptable implies

dim(Vχ) = pw(χ) for any acceptable χ.

Definition 6.4. Let Y be a generator matrix for Cµ with rows Y1, . . . , Ym.

We say that Y is acceptable if for each j, 1 ≤ j ≤ r, there exists i such that

yij 6= 0 and Yi is acceptable.

Theorem 6.5. Suppose µ ≤ Z(G) and Cµ has an acceptable generator matrix

Y with rows Y1, . . . , Yt. Then

ed(G/µ) ≤
t∑
i=1

dim(VYi)− dim(G)− d

where d =

t, if Z(G) is connected;

0, if Z(G) is finite.
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Proof. Let zi = (ŷi1, . . . , ŷir) ∈ X(Z(G)) for 1 ≤ i ≤ t and let τ be the sub-

group of Z(G) such that Cτ is generated by z1, . . . , zt. Then by construction

Cµ = Cτ .

To each Yi, we have the associated representation ρYi : G→ GL(VYi). If Yi

is acceptable we have that the stabilizer in general position for ρYi is ker ρYi .

Let ρ =
⊕

i ρYi and let (v1, . . . , vt) be in general position in V =
⊕

i VYi . In

particular, vi is in general position in VYi for all i. Then it follows from the

comments after Definition 6.2 that

Stabρ(v) =
r⋂
i=1

StabρYi vi

≤
⋂

i | Yi acceptable

StabρYi vi

=
⋂

i | Yi acceptable

ker ρYi

≤ Z(G)

where for the last containment we use the property that for each j there

exists i such that yij 6= 0 and Yi is acceptable. In particular, ker ρ ≤ Z(G).

Thus by construction we have ker ρ = τ , and hence the stabilizer in general

position for ρ : G → GL(W ) equals τ . It follows that ρ is a generically free

representation of G/τ , and hence

ed(G/τ) ≤
t∑
i=1

dim(VYi)− dim(G/τ)

By observing dim(G/τ) = dim(G) + d and applying Theorem 1.5 we get the

desired result.

Notice that a very acceptable generator matrix is acceptable. Theorem

1.9 follows from Theorem 6.5 by applying Remark 6.3 and the lower bound

39



in Theorem 1.7.
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7 Central Simple Algebras with Tensor Prod-

uct of Bounded Index.

7.1 General Results

Suppose p is a prime, r ≥ 1, a1, . . . , ar ∈ Z≥1, and z ∈ Z≥0. Consider the

functor F (a1,...,ar);z : Fieldsk → Sets given by

F (a1,...,ar);z(K) =


r-tuples (A1, . . . , Ar) of central simple K-algebras

up to isomorphism, such that deg(Ai) = pai ∀i,
and ind(A1 ⊗ . . .⊗ Ar) | pz.


This functor places a restriction on the index of a certain algebra, and

is reminiscent of the functor H1(−,GLpa /µps) discussed in the Introduction,

which places a restriction on the exponent of a certain algebra:

H1(K,GLpa /µps) =

{
central simple K-algebras A up to isomorphism

such that deg(A) = pa and exp(A) | ps

}

Projection to the first r algebras sets up an isomorphism of functors:

F (a1,...,ar,z);0 → F (a1,...,ar);z

and thus we may assume z = 0. We will also assume a1 ≤ a2 ≤ · · · ≤ ar.

The functor F (a1,...,ar);0 classifies r-tuples (A1, . . . , Ar) of central simple

algebras of specified degrees satisfying the splitting condition A1⊗· · ·⊗Ar = 1

in Br(K). If we ignored the condition that the tensor product is split, we

would be left with the functor T = H1(−,PGLa1) × · · · × H1(−,PGLpar ).

The essential dimension of this function is at most quadratic in the pai , that

is

edk(T ) < p2a1 + . . .+ p2ar

We will see in Theorem 7.2 below that, unless ar ≥ a1+· · ·+ar−1 or r ≤ 2, the
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leading term in the essential dimension of F (a1,...,ar);0 is pa1+···+ar . In other

words, when trying to descend a tuple of algebras satisfying the splitting

condition, enforcing the splitting condition may require significantly more

variables than would be needed to just define the algebras individually.

If we set Gi = GLni
(ni = pai), G = G1 × · · · ×Gr, and

µ = {(λ1, . . . , λr) ∈ Z(G) | λ1 · . . . · λr = 1}

then Cµ = [1, . . . , 1] and by Theorem 3.1 we have

F (a1,...,ar);0
∼= H1(−, G/µ).

Lemma 7.1. Let K/k be a field extension.

a) If r = 1 then Fa1;0(K) = {pt}.

b) If r ≥ 2 and ar ≥
r−1∑
i=1

ai (which is automatic if r = 2), then projection to

the first r − 1 algebras gives an isomorphism

γ : F (a1,...,ar);0 →
r−1∏
i=1

H1(−,PGLpai ).

Proof. Part a) is obvious. For part b), a tuple (A1, . . . , Ar) in F (a1,...,ar);0(K)

for some field K is uniquely determined by A1, . . . , Ar−1, since Ar is the

unique central simple algebra of degree par whose Brauer class is

(A1 ⊗ · · · ⊗ Ar−1)op

It follows that γ is injective. To see that γ is surjective, observe that for an
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arbitrary tuple (A1, . . . , Ar−1) in
r−1∏
i=1

H1(−,PGLpai ), we have

ind(A1 ⊗ · · · ⊗ Ar−1)op ≤
r−1∏
i=1

ind(Ai) ≤ pa1+···+ar−1 .

Thus the condition on the ai’s guarantees that the Brauer class

(A1 ⊗ · · · ⊗ Ar−1)op

will in fact have a representative central simple algebra Ar of degree par , and

thus (A1, . . . , Ar−1) is equal to γ(A1, . . . , Ar).

Theorem 7.2. If r ≥ 3, ar <
r−1∑
i=1

ai, and (pa1 , . . . , par) /∈ {(2, n, n)n∈Z,

(2, 2, 2, 2), (3, 3, 3)}, then

edk(F (a1,...,ar);0) = edk(F (a1,...,ar);0; p) = p
∑r

i=1 ai −
r∑
i=1

p2ai + r − 1

Proof. The matrix [1, . . . , 1] is an acceptable and minimal generator matrix

for Cµ. Since F (a1,...,ar);0
∼= H1(−, G/µ) we have

edk(F (a1,...,ar);0) = edk(G/µ)

edk(F (a1,...,ar);0; p) = edk(G/µ; p)

and so the result follows from Theorem 1.9.

Now let r ≥ 3, and a1 ≤ a2 ≤ · · · ≤ ar−1 such that (pa1 , . . . , par−1) /∈

{(2, n)n∈Z, (3, 3)}. Let ar =

(
r−1∑
i=1

ai

)
− 1. Then by Theorem 3.1
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F (a1,...,ar−1);ar(K) =


m-tuples (A1, . . . , Ar−1) of central simple k-algebras

up to isomorphism, such that deg(Ai) = pai ∀i and

A1 ⊗ . . .⊗ Ar−1 is not a division algebra.


Corollary 7.3. Let r ≥ 3, and a1 ≤ a2 ≤ · · · ≤ ar−1 such that (pa1 , . . . , par−1) /∈

{(2, n)n∈Z, (3, 3)}. Let ar =

(
r−1∑
i=1

ai

)
− 1. Then

edk(F (a1,...,ar−1);ar) = edk(F (a1,...,ar−1);ar ; p) = p2ar+1 −
r∑
i=1

p2ai + r − 1

Proof. Theorem 7.2 applies, and gives:

edk(F (a1,...,ar−1);ar) = edk(F (a1,...,ar−1);ar ; p)

= edk(F (a1,...,ar);0; p)

= pa1+···+ar −
r∑
i=1

p2ai + r − 1

= p2ar+1 −
r∑
i=1

p2ai + r − 1

7.2 Small Cases in Theorem 7.2

We now turn to the special cases from Theorem 7.2. Recall that r ≥ 3,

a1 ≤ a2 ≤ · · · ≤ ar. If we set Gi = GLni
(ni = pai) for 1 ≤ i ≤ r then this

functor is isomorphic to H1(−, G/µ), where Cµ = [1, 1, . . . , 1].

Remark 7.4. Note that in all cases, projection to the (r− 1)st algebra gives

a surjective morphism of functors from F (a1,...,ar−1);ar to H1(−,PGLpar−1 ).
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By Theorem 2.1, we get the lower bound

ed(F (a1,...,ar−1);ar ; p) ≥ edk(PGLpar−1 ; p)

We have a natural representation of G/µ given by W = V1 ⊗ · · · ⊗ Vr,

where each Vi is a vector space of dimension ni, and Gi acts on Vi. Outside

of the exceptional cases (pa1 , . . . , par) ∈ {(2, n, n)n∈Z, (2, 2, 2, 2), (3, 3, 3)}, this

representation is generically free. For the exceptional cases, one could try

replacing the representation W := V1⊗· · ·⊗Vr with W⊕W and checking if it

is generically free. However, we can find a better upper bound using normal-

izers of maximal tori, by instead finding an upper bound on this normalizer

and applying Theorem 2.2.

A maximal torus M in GLn is the set of diagonal matrices, and the

normalizer of M is M o Sn where Sn acts by permutation. Let T be a

maximal torus in GLn1 × · · · ×GLnr . Then T/µ is a maximal torus of G/µ.

One can check that the normalizer of T/µ has the form T/µ o S, where

S = Sn1 × · · · × Snr and each Sni
acts by permutation on Gi

⋂
T/µ.

Since T � T/µ we can identify X(T/µ) with a subgroup of X(T ). Recall

X(T ) = Zn1 × . . . × Znr . Then X(T/µ) is the set of characters in X(T )

which are trivial on µ. Let Ci = Zni so that X(T ) = C1 × . . .× Cr, and let

γi : Ci → Z be the augmentation map. Take t = (t1, . . . , tr) ∈ µ, so that

ti ∈ Z(Gi) and t1 · . . . · tr = 1. For χ = (c1, . . . , cr) ∈ X(T ) with ci ∈ Ci, we

have:

χ(t) = t
γ1(c1)
1 · . . . · tγr(cr)

r

It is now easy to see (for example, by writing tr = (t1 · . . . · tr−1)−1) that

χ(t) = 1 for all t ∈ µ precisely when

γ1(c1) = γ2(c2) = . . . = γr(cr)

and this is the condition that describes X(T/µ) as a submodule of X(T ).
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We have the induced action of S on X(T ), where each Sni
acts by permu-

tation on Ci. To any S-invariant generating set Λ ⊂ X(T ), [MR09, Section 3]

describes a method to construct a representation VΛ of T/µoS, of dimension

|Λ|. To use this to give an upper bound on essential dimension, we require

this representation VΛ to be generically free, and the following lemma tells

us how to check this.

Lemma 7.5. ([MR09, Lemma 3.3]) Let R be the kernel of the natural map

of Z[S]-modules Z[Λ] → X(T ). Then the representation VΛ is generically

free precisely when the S-action on R is faithful.

We construct an S-invariant generating set Λ of X(T/µ) as follows. Let

cimi
, where 1 ≤ i ≤ r and 1 ≤ mi ≤ ni be the vector in Ci which has a 1 in

the mth
i position and a zero in all other positions. Then define

Λ = {(c1
m1
, . . . , crmr

) | 1 ≤ mi ≤ ni (1 ≤ i ≤ r)}

Then Λ clearly generates X(T/µ) and is S-invariant. It remains to

verify the condition in the lemma that S acts faithfully on R. Suppose

1 6= (σ1, . . . , σr) ∈ S. Without loss of generality, we may assume σ1 6= 1 and

σ1(1) = j 6= 1. Consider the elements r1, r2, r3, r4 ∈ R:

r1 = (c1
1, c

2
1, . . . , c

r
1)

r2 = (c1
1, c

2
2, c

3
1, c

4
1, . . . , c

r
1)

r3 = (c1
1, c

2
1, c

3
2, c

4
1, c

5
1, . . . , c

r
1)

r4 = (c1
1, c

2
2, c

3
2, c

4
1, c

5
1, . . . , c

r
1)

Setting r = r1 − r2 − r3 + r4 ∈ Z[Λ] we see r ∈ R, but each σ1(ri) will

have the form (c1
j , . . . ). Thus σ(r) 6= r, and the result follows.
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Remark 7.6. Note that this argument depended crucially on r ≥ 3, but not

on p or n1, . . . , nr.

Since |Λ| =
r∏
i=1

ni, and dim(T/µ o S) = dim(T/µ) =

(
r∑
i=1

ni

)
− r + 1,

we get the following corollary by Theorem 2.5.

Corollary 7.7. We have ed(T/µ o S) ≤
r∏
i=1

ni −

(
r∑
i=1

ni

)
+ r − 1. In

particular, by Theorem 2.2:

ed(G/µ) ≤
r∏
i=1

ni −

(
r∑
i=1

ni

)
+ r − 1.

Theorem 7.8. 1. p = 2, a > 1:

(a− 1)2a + 1 ≤ edk(F (1,a,a);0) ≤ 22a+1 − 2a+1

2. p = 2: 4 ≤ edk(F (1,1,1,1);0) ≤ 11

3. p = 3: 2 ≤ edk(F (1,1,1);0) ≤ 20

The bounds are also valid for essential p-dimension in all four cases.

Proof. The upper bounds all follow from Corollary 7.7. The lower bounds

in (1) and (3) follow from Remark 7.4 and [R00, Theorem 9.3 & Proposition

9.8a]. For the lower bound in part (2), observe that projection the the first

2 algebras gives a surjective morphism of functors

F (1,1,1,1);0 → H1(−,PGL2)×H1(−,PGL2).

It follows from [RY00, Section 8] that PGL2×PGL2 has a self-centralizing

finite 2-subgroup of rank 4, and hence by [RY00, Theorem 7.8.1] and [RY00,
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Lemma 8.5.7]

edk(PGL2×PGL2; p) = 4.

Thus the lower bound follows from Theorem 2.1.

We could use the methods of the above theorem to prove that for p = 2

we have

2 ≤ edk(F (1,1,1);0) ≤ 4

but in this case we can determine the essential dimension exactly.

Theorem 7.9. For p = 2,

edk(F (1,1,1);0) = edk(F (1,1,1);0; 2) = 3.

Proof. We begin with the upper bound. Recall that F (1,1,1);0(L) classifies

triples of quaternion algebras (Q1, Q2, Q3) (up to isomorphism over L) such

thatQ1⊗Q2⊗Q3 is split. By a theorem of Albert [L05, Theorem III.4.8], since

Q1 ⊗Q2 is not a division algebra, we may write Q1 = (a, b) and Q2 = (a, c).

Thus Q3
∼= Q1 ⊗ Q2

∼= (a, bc). Hence the triple (Q1, Q2, Q3) descends to

the field K = k(a, b, c) while still satisfying the splitting property. Thus

edk(F (1,1,1);0) ≤ 3.

To prove the lower bound, consider the map

Γ : F (1,1,1);0 → H1(−, SO4)

(Q1, Q2, Q3) 7→ α

Here α is defined to be the quadratic form such that α ⊕ H⊕H ∼=
N(Q1)⊕−N(Q2) where H = 〈1,−1〉 is the 2-dimensionsal hyperbolic form.

(Equivalently, using the definition of the Albert form given in [L05, p.69], α

is the quadratic form such that α ⊕ H ∼= AQ1.Q2 where AQ1,Q2 is the Albert

form of Q1 and Q2.) By the Witt cancellation theorem, α is unique up to
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isomorphism. We can explicitly compute α as follows, for arbitrary K/k.

Suppose Q1 = (a, b) and Q2 = (a, c) as above. Then

N(Q1) = 〈〈−a,−b〉〉 = 〈1,−a,−b, ab〉

N(Q2) = 〈1,−a,−c, ac〉

and so

N(Q1)⊕−N(Q2) = 〈1,−1,−a, a,−b, c, ab,−ac〉.

This is isomorphic to

〈−b, c, ab,−ac〉 ⊕H⊕H .

Thus α ∼= 〈−b, c, ab,−ac〉. SinceH1(K, SO4) classifies 4-dimensional quadratic

forms over K of discriminant 1, it is clear from specializing the values a, b

and c in our expression for α that Γ is surjective. Since edk(SO4; 2) = 3 (see

[RY00, Theorem 8.1 & Remark 8.2]), by Theorem 2.1 we have

edk(F (1,1,1);0; 2) ≥ 3.
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8 Examples of Linear Error-Correcting Codes

Given a code Cµ, the two questions we must determine are:

1. What does a minimal generator matrix look like?

2. Can a minimal generator matrix be chosen such that all the coefficients

are 0,−1 or 1?

Example 4.8 and Corollary 4.5 provide a partial answer to the first ques-

tion: the greedy algorithm will always result in a minimal generator matrix.

In the case bi = 1 for all i, the code Cµ is a linear error-correcting code over

Fp in the traditional sense. If a1 = a2 = · · · = ar then the weight on Cµ will

just be a1 times the usual Hamming weight. Of note though is that unless

Gi = GLp for all i, our notion of equivalence of codes does not coincide with

the usual notion of linear equivalence of linear error-correcting codes.

Example 8.1. Cµ is a traditional code, and the weight is a scaling of the

Hamming weight, when:

1. p arbitrary: Gi ∈ {GLp, SLp}, for all i.

2. p = 2: Gi ∈ {GL2,GO2,GSP2, SL2 = SP2,O2}, for all i.

3. p = 2: Gi ∈ {GOn,GSPn, SPn,On,GO+
n , SOn} where n = 2a > 2, for

all i.

4. p = 3: Gi = E6 ≤ GL27 for all i.

In this case, if a code can be generated by its minimum (Hamming) weight

vectors then this completely answers the first question above. In this section
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we recall a class of traditional codes (called generalized Reed-Muller codes)

that are generated by their minimum weight vectors, and where the second

question sometimes has an affirmative answer. The primary references are

[DK00] and [AK92, Section 5].

Generalized Reed-Muller codes are a family of codes that is closed under

taking dual codes and contains, for example, all extended Hamming codes.

We recall the definition. Let q be a power of a prime p, m ≥ 1, r ≥ 1

such that r ≤ m(q − 1), and V = Fmq with standard basis e1, . . . , em. The

underlying vector space for the generalized Reed-Muller code RFq(r,m) is the

vector space W of all functions from V to Fq. We have dim(W ) = qm, and

our distinguished basis for W is the set of characteristic functions of vectors

in V .

Any monomial n(x1, . . . , xm) defines an element of W , since we can eval-

uate n(v) by writing v =
∑m

i=1 ziei, with zi ∈ Fq, and defining n(v) =

n(z1, . . . , zm). Of course, xqi = xi as elements of W by Fermat’s little theo-

rem, and it follows that we can identify W with the underlying vector space

of the ring

Fq[x1, . . . , xm]/(xq1 − x1, . . . , x
q
m − xm)

For any monomial n = xi11 · . . . · ximm , we define degxj(n) = ij and deg(n) =

i1 + · · · + im. The reduced monic monomials (that is, monic monomials n

with degxi n < q ∀i) give us a new basis of W . We now define RFq(r,m) to

be the span in W of all reduced monic monomials n with deg(n) ≤ r.

Theorem 8.2. Write r = t(q − 1) + s with 0 ≤ s < q − 1.

1. [AK92, Theorem 5.5.3] The minimum weight codewords of RFq(r,m)

have weight (q − s)qm−t−1.

2. [DK00, Theorem 1] If q = p then RFq(r,m) is generated by its minimum

weight codewords.

3. [DGM70, Theorem 2.6.3] If s = 0 and q = p then RFq(r,m) is generated

by minimum weight codewords whose entries are all 0 or 1.
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Using this theorem and Theorems 1.7 and 1.9, we conclude the following.

Corollary 8.3. Suppose Cµ = RFp(r,m) (up to equivalence). Write r =

t(p− 1) + s with 0 ≤ s < p− 1. Let D = dimRFp(r,m).

1.

edk(G/µ; p) ≥ Dp(p−s)pm−t−1 − d− dim(G)

edk(G/µ) ≤ Dp(p−s)pm−t−1 − d+ edk(G)

2. Suppose (p− 1) | r.

edk(G/µ; p) = Dp(p−s)pm−t−1 − d− dim(G)

where d =

D, if Z(G) is connected;

0, if Z(G) is finite.

Remark 8.4. [AK92, Theorem 5.4.1] The dimension of RFq(r,m) is given

by:

dimRFq(r,m) =
r∑
i=0

m∑
k=0

(−1)k
(
m

k

)(
i− kq +m− 1

i− kq

)
[DGM70, Theorem 2.6.3] gives us an explicit description of the minimum

weight codewords, which we recall here in the s = 0 case. Let w1, . . . , wt ∈ Fq.
Consider the codeword:

P (x1, . . . , xm) =
t∏
i=1

(1− (xi − wi)q−1)

We see that the degree of P is precisely t(q−1) = r, which is the maximum

allowable degree of a polynomial defining an element of RFq(r,m). It is also

clear the codeword corresponding to P contains entries 0 and 1. The entry

in the codeword associated to the vector v ∈ V is equal to 1 precisely when

xi(v) = wi for 1 ≤ i ≤ t. Recall that a k-flat in V is a subset of V of the
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form v0 + U where vo ∈ V and U is a k-dimensional subspace of V . Then

we have that the codeword corresponding to P is the incidence vector of the

(m − t)-flat given by (w1, . . . , wt, ∗, . . . , ∗). Thus the weight of P is qm−t,

and P corresponds to a minimum weight vector. From [DGM70, Theorem

2.6.3], all minimal weight codewords in W can be obtained from codewords

of the form P , along with scalar multiplication and replacing x1, . . . , xt with

any other set of t linearly independent linear polynomials. In particular,

all minimal weight codewords lie in the subspace generated by the minimal

weight codewords whose entries are all 0 and 1.

Remark 8.5. The question of whether a code has a generator matrix where

each element has minimal weight has been studied for other classes of codes

as well, see [KL06, Section 1] for an overview. In particular, the authors

show that certain extended binary BCH codes are always generated by their

minimum weight vectors.
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9 Conclusion

In this report we have computed bounds on the essential dimension of certain

families of reductive algebraic groups. One of the motivating examples was

the group G/µ, where

G = GLpa1 × · · · ×GLpar ,

p is a prime and µ is a central subgroup of G. This example was particularly

interesting because we interepreted the Galois cohomology of this group as

tuples of central simple algebras satisfying relations in the Brauer group.

Surprisingly, this problem became easier for r ≥ 3, and we were able to

give asymptotically sharp bounds (or even exact values) for many families

of central subgroups. We also looked at one particular family of central

subgroups where ed(G/µ) grew ‘exponentially in r’, or informally:

ed(G/µ) = pa1+···+ar − smaller order terms.

This is in contrast to the group PGLpa1 × · · ·×PGLpar , whose cohomology

classifies tuples of central simple algebras without any additional conditions.

In this case, the essential dimension grows much more slowly in r:

ed(PGLpa1 × · · · × PGLpar ) < p2a1 + · · ·+ p2ar .

Our bounds for the essential dimension of G/µ were given in terms of

a ‘code’ Cµ and a weight function on this code. Specifically, computing

the upper and lower bounds depend on finding a minimal weight generator

matrix for Cµ. For some families of codes (for example, see Sections 7 and

8) we could determine a minimal weight generator matrix. For other, more

complicated codes, it may be more difficult to determine the structure of a

minimal weight generator matrix. This is related to the general notion of

weight distribution in codes.
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In section 7 we studied an interesting family of groups where Cµ was

particularly simple, and the cohomology could be interpreted as tuples of

central simple algebras satisfying certain index conditions. One example of

this was the functor of pairs of central simple algebras (A,B) of degree pa,

where A⊗B is not a division algebra. This functor was of particular interest

both because of its connection to linkages of cyclic algebras (Theorem 7.9),

and because the problem of determining a structural condition for when the

tensor product of two central simple algebras is not a division algebra is an

open problem ([ABGV12, Problem 9.1]). Both of these connections could be

areas for future research.

One of the primary limitations of this research was the requirement that

each ni be a power of the same prime. This requirement was not needed to

conclude that the essential dimension of G/µ depended only on Cµ (Theorem

1.5), and the upper bound (Theorem 6.5) can also be formulated without this

assumption. However, it was needed to deduce the lower bound. Specifically,

we appealed to [KM08] regarding a formula for the canonical dimension of

a finite p-subgroup of the Brauer group. Although one can find a formula

for the canonical p-dimension of a finite subgroup of the Brauer group (see

[KM08, Remark 2.10]), it is unclear what the formula for absolute canonical

dimension might look like when the finite subgroup is not a p-group (see

[M13, Conjecture 4.23] for a related conjecture), and this could also be the

subject of future research.
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János Kollár and Endre Szabó. Canad. J. Math. 52 (2000), no. 5, 1018-

1056.

[R10] Reichstein, Zinovy. Essential Dimension. Proceedings of the Interna-

tional Congress of Mathematicians, Vol II, 162-188, Hindustan Book

Agency, New Delhi, 2010.

[Ru11] Ruozzi, Anthony. Essential p-dimension of PGLn. J. Algebra 328

(2011), 488-494.

[S97] Serre, Jean-Pierre. Galois cohomology. Translated from the French by

Patrick Ion and revised by the author. Springer-Verlag, Berlin, 1997.

[S98] Saltman, David J. Lectures on division algebras. CBMS Regional Con-

ference Series in Mathematics, 94. Published by American Mathematical

Society, Providence, RI; on behalf of Conference Board of the Mathe-

matical Sciences, Washington, DC, 1999.

[SV92] Schofield, Aidan; Van den Bergh, Michel. The index of a Brauer class

on a Brauer-Severi variety. Trans. Amer. Math. Soc. 333 (1992), no. 2,

729-739.

59



Appendix A Disjoint Central Simple Algebras

Definition A.1. [IK99, Definitsubion 2.5] A collection of central simple alge-

bras {A1, . . . , Ar} over a field K is called disjoint if for all m1, . . . ,mr ∈ Z≥0,

we have

ind(A⊗m1
1 ⊗ . . .⊗ A⊗mr

r ) = ind(A⊗m1
1 ) · . . . · ind(A⊗mr

r )

As a consequence of the latter part of the proof of Theorem 5.1 (in the case

µ = {1}), we have that there exists K/k and Ei ∈ H1(K,Gi), 1 ≤ i ≤ r, such

that the underlying division algebras of the set {δiK(Ei)}i=1,...,r form a disjoint

set of division algebras over K, with ind(δiK(Ei)) = pai and exp(δiK(Ei)) =

pbi . In the case Gi ∈ {PGLni
,PGSp2ai ,PGO2ai ,PGO+

2ai (ai ≥ 2)} we can

prove this directly; see Corollary A.6 below. When combined with Remark

1.4 this provides an alternate proof of Theorem 5.1 in these cases.

Theorem A.2. Let a1, . . . , ar and b1, . . . , br be positive integers with bi ≤
ai. Then there exists a finitely generated field extension K/k and a disjoint

collection {Z1, . . . , Zr} of central division algebras over K with ind(Zi) = pai,

exp(Zi) = pbi, and ind(Z⊗p
d

i ) = pai−d for any 1 ≤ d < bi.

We begin with a weaker existence result.

Lemma A.3. Let a1, . . . , ar be positive integers. Then there exists a finitely

generated field extension K/k and a disjoint collection {A1, . . . , Ar} of central

division algebras over K with ind(Ai) = exp(Ai) = pai.

We require some preliminary results before the proof. We may assume

k contains all primitive pd
th

roots of unity for all d, and choose a sequence

{1 = ζ1, ζp, ζp2 , . . . } ⊂ k such that, for all b ≥ 1, ζpb is a primitive pb
th

root of

unity, and ζp
pb+1 = ζpb . Recall that if u,w ∈ K and a ∈ Z≥0, then the symbol

algebra (u,w)pa is the (central simple) K-algebra generated by x and y such

that xp
a

= u, yp
a

= w and uw = ζpawu.
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Proposition A.4. (see [D83, Chapter 11], or [R88, Proposition 7.1.17]) Let

c, d ∈ K, a ∈ Z≥1

i) (c, d)⊗ppa is Brauer equivalent to (c, d)pa−1 (Here, (c, d)1 = K is split).

ii) (c, d)npa is Brauer equivalent to (c, dn)pa.

Lemma A.5. Let a1, . . . , ar be non-negative integers, u1, . . . , ur, w1, . . . , wr

be commuting indeterminates and K = k(u1, . . . , ur, w1, . . . , wr). Then the

central simple K-algebra

A = (u1, w1)pa1 ⊗ · · · ⊗ (ur, wr)par

is a division algebra.

Proof. Let {x1, . . . , xr, y1, . . . , yr} be the elements in A such that by defi-

nition xp
ai

i = ui and yp
ai

i = wi. Consider the k-algebra R generated by

x1, . . . , xr, y1, . . . , yr. Each element of R has a unique expression as a finite

sum of the form ∑
0≤i1,...,ir,j1,...,jr

λi1,...,jrx
i1
1 . . . x

ir
r y

j1
1 . . . yjrr

with each λi1,...,jr ∈ k.

A standard leading monomial trick shows that R is a domain, and it

is easy to see that Z(R) = k[u1, . . . , ur, w1, . . . , wr]. Thus A is the central

localization of R, and since R is a domain, so is A.

Proof of Lemma A.3. Take K = k(u1, . . . , ur, w1, . . . , wr) as in the previous

lemma. Let Ai = (ui, wi)pai . Since deg(Ai) = pai , to see that Ai has exponent

(and thus also index) pai it suffices to show that Ap
ai−1

i is not split. Using

Proposition A.4i) repeatedly, it is equivalent to show that (ui, wi)p is not

split, and this follows from Lemma A.5 with ai = 1 and aj = 0 for j 6= i.
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Let m1, . . . ,mr ∈ Z≥0. We wish to show

ind(A⊗m1
1 ⊗ . . .⊗ A⊗mr

r ) = ind(A⊗m1
1 ) · . . . · ind(A⊗mr

r )

Observe that replacing each A⊗mi
i with a Brauer-equivalent element does not

change either side. Thus first, if A⊗mi
i is split for any i, then we remove it

from both sides. Next, we apply Proposition A.4i) repeatedly. Thus we can

remove factors of p from each of the mi (and consequently reduce the ai),

and so we can assume without loss of generality that (mi, p) = 1 for all i.

By Proposition A.4ii), A⊗mi
i

Br∼ (ui, w
mi
i )pai . Let Di = (ui, w

mi
i )pai . Let K ′

be the subfield of K given by k(u1, . . . , ur, w
m1
1 , . . . , wmr

r ). Then each D⊗mi
i

is defined over K ′. By Lemma A.5, D⊗m1
1 ⊗ . . .⊗D⊗mr

r is a division algebra

over K ′, and so in particular

ind(D⊗m1
1 ⊗ . . .⊗D⊗mr

r ) = ind(D⊗m1
1 ) · . . . · ind(D⊗mr

r )

over K ′. Since (mi, p) = 1 we have that K/K ′ is an extension of degree prime

to p. Since each Di has index a power of p, by [GS06, Corollary 4.5.11b] we

have that the equality still holds after scalar extension to K, which was the

desired result.

Proof of Theorem A.2. Using the previous lemma, for some field K/k, there

is a disjoint collection B1, . . . , Br of central division K-algebras such that

ind(Bi) = exp(Bi) = pai . Let t be maximal, with 1 ≤ t ≤ r + 1, such that

there exists a field L/K with the following properties:

1. {Bi ⊗K L}i=1,...,r is a disjoint collection of central division E-algebras.

2. If i < t then exp(Bi ⊗K L) = pbi and ind((Bi ⊗ L)⊗p
d
) = pai−d for any

0 ≤ d < bi.

3. If t ≤ i ≤ r then ind(Bi ⊗K L) = exp(Bi ⊗K L) = pai .
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If t = r+1 then we are done, so towards a contradiction suppose t < r+1.

Let L/K be a field extension satisfying the three properties, and set Ai =

Bi⊗K L for all i. Let Lt be the function field of the Brauer Severi variety of

A⊗p
bt

t . Now consider the r-tuple (A1 ⊗L Lt, . . . , Ar ⊗L Lt) of central simple

algebras over Lt. Using the fact that ind((Aj ⊗L Lt)⊗m) = ind(A⊗mj ⊗L Lt),
the index reduction formula of Schofield and Van Den Bergh [SV92, Theorem

1.3], and the properties above, we get the following formula for any positive

integer d:

ind
(

(Ai ⊗L Lt)⊗p
d
)

= min
z∈Z

(
ind(A⊗p

d

i ⊗L A⊗zp
bt

t )
)

=


ind(A⊗p

d

i ), if t 6= i

ind(A⊗p
d

i ) if t = i, d < bt

1, if t = i, d ≥ bt

In particular, for i 6= t we have that the exponent and index of Ai ⊗L Lt
are the same as the exponent and index respectively of Ai. For i = t, if d < bt

then from ind(At) = exp(At) = pat , we get:

ind
(

(At ⊗L Lt)⊗p
d
)

= ind(A⊗p
d

i ) = pai−d

and we also have exp(Ai ⊗L Lt) = pbt . Thus conditions ii) and iii) above

are satisfied for the algebras {A1 ⊗L Lt, . . . , Ar ⊗L Lt} with t + 1 replacing

t. Since Ai ⊗L Lt = Bi ⊗K Lt for i ≤ i ≤ r, to arrive at a contradiction it

suffices to verify condition i) for the algebras {A1 ⊗L Lt, . . . , Ar ⊗L Lt}.
We will prove this using our inductive hypothesis that A1, . . . , Ar are

disjoint, and the index reduction formula used above. Let m1, . . . ,mr ∈ Z.

Then

63



ind
r⊗
i=1

(Ai ⊗L Lt)⊗mi = ind

((
r⊗
i=1

A⊗mi
i

)
⊗L Lt

)

= min
z∈Z

ind

((
r⊗
i=1

A⊗mi
i

)
⊗L Azp

bt

t

)

=

 ∏
1≤i≤r
i 6=t

ind(A⊗mi
i )

 ·min
z∈Z

ind(A⊗mt
t ⊗L Azp

bt )
t )

=

 ∏
1≤i≤r
i 6=t

ind
(
(Ai ⊗L Lt)⊗mi

) · ind(A⊗mt
t ⊗L Lt)

=
r∏

1=1

ind
(
(Ai ⊗L Lt)⊗mi

)

as required.

Corollary A.6. Let p be prime, with integers a1, . . . , ar and groups G1, . . . , Gr

as in the Introduction. Suppose Gi ∈ {PGLni
, PGSp2ai , PGO2ai , PGO+

2ai

(ai ≥ 2)}. Then there exists K/k and Ei ∈ H1(K,Gi) such that the underly-

ing division algebras of the set {δiK(Ei)}i=1,...,r form a disjoint set of division

algebras over K, with ind(δiK(Ei)) = pai and exp(δiK(Ei)) = pbi.

Proof. From [KMRT98, Section 29], the image of H1(K,Gi) in Br(K) under

the boundary map is given by the following (modulo Brauer equivalence):

δiK(H1(K,PGLni
)) =

{
divisional algebras over K of index dividing ni

}
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δiK(H1(K,PGSp2ai )) =

{
divisional algebras over K of index dividing

2ai and exponent dividing 2

}

δiK(H1(K,PGO2ai )) =

{
divisional algebras over K of index dividing

2ai and exponent dividing 2

}

δiK(H1(K,PGO+
2ai )) =


divisional algebras A over K of index dividing

2ai , exponent dividing 2, and for which there

exists an involution σ on A with trivial

discriminant


Note that δiK(H1(K,PGO+

2ai )) contains the class of any division algebra

over K of index dividing 2ai and exponent dividing 2 which can be properly

decomposed as the product of division algebras of exponent dividing 2. The

result is now an easy application of Theorem A.2.
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Appendix B Quotient Stacks

In this section we will further discuss the proof of Theorem 2.7, beginning

with the lower bound. Recall that we have an exact sequence 1 → D →
H → H/D → 1 with D central and diagonalizable, and such that the image

of the coboundary map dK : H1(K,H/D) → H2(K,D) consists of only p-

primary elements for any K/k. We need to show that there exists K/k and

E ∈ H1(K,H/D) with cdimK([E/H]; p) = max
A,L

(cdimL([A/H]; p)) (over all

L/k and A ∈ H1(K,H/D)) such that

edk(H; p) ≥ cdimK([E/H]; p) + edk(D; p)− dim(H).

This result follows from [M13, Theorem 5.11], but the result was only stated

in the case D = µtp for some t. We will prove the result instead (Corollary

B.4) using [M13, Theorem 5.11] and [KM08, Theorem 4.4 & Remark 4.5].

Remark B.1. For any K/k and E ∈ H1(K,H/D), by [KM08, Theorem 2.1

& Remark 2.9] we can write

cdim([E/H]; p) = min
χ1,...,χt

t∑
i=1

ind(χi∗ ◦ dK(E))

where the minimum is taken over all generating sets of X(D). By Theorem

5.2, cdimK([E/H]; p) can be maximized by choosing K and E such that for

any χ ∈ X(D) we have

ind(χ∗ ◦ dL(A)) = gcd
{

dim(V ) | V ∈ Rep(χ)(H)
}
.

Let Dp be the p-torsion subgroup of D, so that we have an exact sequence

1 → Dp → H → H/Dp, and let d′L : H1(L,H/Dp) → H2(L,Dp) be the

coboundary map for any L/k.

For χ ∈ X(D) and χ′ ∈ X(Dp), let Rep
(χ)
D (H) denote the category of

all finite dimensional representations ρ of H such that ρ(z) is multiplication
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by χ(z) for all z ∈ D, and let Rep
(χ′)
Dp

(H) denote the category of all finite

dimensional representations ρ′ of H such that ρ′(z) is multiplication by χ′(z)

for all z ∈ Dp.

Choose K/k, K ′/k, E ∈ H1(K,H/D) and E ′ ∈ H1(K,H/Dp) so that for

all χ ∈ X(D), χ′ ∈ X(Dp):

ind(χ∗ ◦ dK(E)) = gcd
{

dim(V ) | V ∈ Rep
(χ)
D (H)

}
ind(χ′∗ ◦ d′K′(E ′)) = gcd

{
dim(V ) | V ∈ Rep

(χ′)
Dp

(H)
}

Lemma B.2. Let χ′ ∈ X(Dp) and let χi (i ∈ I) be the preimages of χ′ under

the natural map X(D)→ X(Dp). In other words, (χi)|Dp = χ′ ∀i. Then

ind(χ′∗ ◦ d′K′(E)) = min
i∈I

(ind(χi∗ ◦ dK(E)))

Proof. By our choice of E and E ′, it is equivalent to show

gcd
{

dim(V ) | V ∈ Rep
(χ′)
Dp

(H)
}

= min
i∈I

(
gcd

{
dim(V ) | V ∈ Rep

(χi)
D (H)

})
Since Rep

(χ′)
Dp

(H) =
⋃
i∈I

Rep
(χi)
D (H), using general properties of gcd we have

gcd
{

dim(V ) | V ∈ Rep
(χ′)
Dp

(H)
}

= gcd
i∈I

(
gcd

{
dim(V ) | V ∈ Rep

(χi)
D (H)

})
Since gcd

{
dim(V ) | V ∈ Rep

(χi)
D (H)

}
is a power of p for all i by assump-

tion, we can replace gcd
i∈I

by min
i∈I

and the result follows.

Theorem B.3. Let K/k, K ′/k, E ∈ H1(K,H/D) and E ′ ∈ H1(K ′, H/Dp)

be as chosen above. Then cdimK(E/H) = cdimK′(E
′/H) = cdimK(E/H; p) =

cdimK′(E
′/H; p).
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Proof. Define

TE,K = 〈χ∗ ◦ dK(E))〉χ∈X(D)

and

TE′,K′ = 〈χ′∗ ◦ d′K(E ′)〉χ′∈X(Dp).

Then, by assumption, both TE,K and TE′,K′ are (finite) p-groups. As in

Section 5, let b1, . . . , bl be a generating set of TE,K with
l∑

i=1

ind(bi) minimal,

and define

ind(E,K) =
l∑

i=1

(ind(bi)− 1)

Similarly, let b′1, . . . , b
′
t be a generating set of TE′,K′ with

t∑
i=1

ind(bi) minimal,

and define

ind(E ′, K ′) =
l∑

i=1

(ind(b′i)− 1)

By applying [KM08, Theorem 2.1 & Remark 2.9] it is equivalent to show

ind(E,K) = ind(E ′, K ′).

We will first show ind(E,K) ≤ ind(E ′, K ′). Choose a generating set

χ′1, . . . , χ
′
m ∈ X(Dp) such that χ′i∗ ◦ d′K′(E ′) = b′i for i ≤ t and χ′i∗ ◦

d′K′(E
′) = 0 for i > t. Using Lemma B.2, choose χ1, . . . , χm ∈ X(D)

such that χi|Dp = χ′i and ind(χ′i∗ ◦ d′K′(E ′)) = ind(χi∗ ◦ dK(E)). Then

χ1, . . . , χm generate X(D)/pX(D), since pX(D) = ker(X(D) → X(Dp)).

Thus χ1∗ ◦ dK(E), . . . , χm∗ ◦ dK(E) generate TE,K/pTE,K which by Lemma

4.1 means they generate TE,K . Hence ind(E,K) ≤ ind(E ′, K ′).

To see the reverse direction, choose a generating set (not necessarily of

minimal size) χ1, . . . , χn ∈ X(D) such that χi∗ ◦ dk(E) = bi for i ≤ l and

χi∗ ◦ dk(E) = 0 for i > l. Let χ′i = χi|Dp . Observe that if we replace χi by τ

for any τ ∈ X(D) with τ |Dp = χi|Dp then the resulting set {χ1, . . . , χn} will

still generate X(D)/pX(D) and hence {χ1∗ ◦ dK(E), . . . , χn∗ ◦ dK(E)} will
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still generate TE,K . Thus by Lemma B.2 and the minimality of
∑
bi, we have

ind(χi∗ ◦dK(E)) = ind(χ′i∗ ◦d′K′(E ′)) for all i. Since the restriction map from

X(D) to X(Dp) is surjective, we have that {χ′1∗ ◦ d′K′(E ′), . . . , χ′n∗ ◦ d′K′(E ′)}
generates TE′,K′ , and the result follows.

Let K/k and E ∈ H1(K,H/D) be as chosen above. In particular,

cdimK([E/H]; p) = max
A,L

(cdimL([A/H]; p)) over all L/k, A ∈ H1(L,H).

Corollary B.4. We have

edk(H; p) ≥ cdimK([E/H]; p) + edk(D; p)− dim(H/D).

Proof. Let K ′/k and E ′ ∈ H1(K ′, H/Dp) also be as chosen above. From

[BRV11, Corollary 3.3] (see also [M13, Corollary 5.7]) and [M13, Theorem

5.11], we have:

edK(H; p) ≥ edK′([E
′/H]; p)− dim(H/Dp)

= cdimK′([E
′/H]; p) + edk(Dp; p)− dim(H)

Since edk(Dp; p) = edk(D; p) + dim(D) (D is diagonalizable), the result fol-

lows from the previous theorem.

We finish this section with a proof of the upper bound from Theorem 2.7.

Proof of Theorem 2.7.2. Suppose we are given a finitely generated field ex-

tension K of k, and E ∈ H1(K,H). It suffices to show that

edk(E) ≤ edk(H) + max
A,L

(cdimL([A/H])) + edk(D)

Ket E be the image of E under the map H1(K,H) → H1(K,H). By

definition of essential dimension, we can find a k-subfield K0 of K and E0 ∈
H1(K0, H), with trdegk(K0) ≤ edk(H), such that (E0)K = E. Further, if we
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view E as an H-scheme over K then by Remark 2.6 we have [E/H](K) 6= ∅
since E is in the image of H1(K,H) → H1(K,H). Thus we can find an

intermediate field K1 with K0 ⊂ K1 ⊂ K such that [E0/H](K1) 6= ∅ and

trdegK0
K1 ≤ cdimK0 [E0/H]. Setting E1 = (E0)K1 ∈ H1(K1, H), then again

by Remark 2.6 this means that there exists a preimage E1 of E1 under the

map H1(K1, H)→ H1(K1, H).

We would like to conclude (E1)K = E, however what we know is:

H1(K,H) → H1(K,H)

E 7→ E

(E1)K 7→ E

From [S97, I.5.7, Proposition 42], it follows that there exists a ∈ H1(K,D)

such that, via the action of H1(K,D) on H1(K,H), we have a · (E1)K =

E. Again by definition of essential dimension, there exists a field extension

K2/K1 of transcendence degree at most edK1(D), and b ∈ H1(K2, D) such

that bK = a. If we define E2 = b · (E1)K2 ∈ H1(K2, H), then we have

(E2)K = E.

Hence,

ed(E) ≤ trdegk(K2) = trdegk(K0) + trdegK0
(K1) + trdegK1

(K2)

≤ edk(H) + cdimK0 [E0/H] + edK1(D)

≤ edk(H) + max
A,L

(cdimL([A/H])) + edk(D)

as required.
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Appendix C Products of Groups with p 6= 2

In this section we will consider the case when p 6= 2 and

Gi ∈ {GOni
,Oni

, SOni
}.

The key ingredient in these cases is that, since 2 - ni, the boundary map

H1(K,Gi)→ H2(K,Z(Gi)) is trivial. The results in this section hold under

the assumption that each ni is odd and at least 3 (but not necessarily a prime

power). We first study the case where Z(G) is finite.

Theorem C.1. Let Gi ∈ {Oni
, SOni

} for 1 ≤ i ≤ r. Let µ be a central

subgroup of G. Then

ed(G/µ) = ed(G/µ; 2) =

(
r∑
i=1

si

)
− rank(µ)

where si =

ni if Gi = Oni

ni − 1 if Gi = SOni

Proof. Since ni is odd, we have Oni
∼= SOni

×µ2, and Z(SOni
) is trivial. Thus

if m = |{i | Gi = Oni
}|, we may write G ∼= SOn1 × · · · × SOnr × ((µ2)m/µ).

Recall that for any algebraic groups H1 and H2 we have edk(H1 × H2) ≤
edkH1 + edkH2, and that edk(SOn) = n − 1 for n ≥ 3. Since edk(µ

m
2 /µ) =

rank(µm2 /µ) = m− rank(µ), the upper bound follows.

For the lower bound we proceed as in [RY00, Theorem 7.8 & Theorem 8.1]

(see also [GR09, Theorem 1.2 & Example 9.1]). The subgroup (A1, . . . , Ar, λ)

of G, where each Ai a diagonal matrix in SOni
with entries±1, and λ ∈ µm2 /µ,

is a finite 2-subgroup of G of rank(
r∑
i=1

(ni − 1)

)
+m− rank(µ)
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and this subgroup has a finite centralizer. Thus by [RY00, Theorem 7.8],

edK(G; 2) ≥

(
r∑
i=1

(ni − 1)

)
+m− rank(µ) =

(
r∑
i=1

si

)
− rank(µ)

as required.

We now study the case where Z(G) is connected.

Lemma C.2. Let K/k and Gi = GOni
for 1 ≤ i ≤ r. Let µ be a central

subgroup of G. Then

H1(K,G) ∼= H1(K,G/µ)

Proof. In this case, Z(G) is a torus. Thus we have an exact sequence

1→ Z(G)/µ→ G/µ→ G→ 1

which yields the following in cohomology:

0→ H1(K,G/µ)
γ→ H1(K,G)

Since the boundary map is zero, γ is surjective. By [S97, I.5, Proposition

42], γ is injective. Thus H1(K,G/µ) = H1(K,G) for any µ ≤ Z(G). In

particular, H1(K,G) ∼= H1(K,G/µ).

Lemma C.3. We have edk(GOn) ≤ n− 1.

Proof. H1(K,GOn) classifies orthogonal involutions on Mn(K) (see [KMRT98,

Section 29]). An orthogonal involution is determined by a non-degenerate

symmetric bilinear form on Kn up to scalar multiples, and we can diagonal-

ize the form and multiply by scalars so that it is represented by the diagonal

Gram matrix:
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a1

a2

. . .

an−1

1


Thus we conclude edk(GOn) ≤ n− 1.

Theorem C.4. Let Gi = GOni
for 1 ≤ i ≤ r. Let µ be a central subgroup

of G. Then

ed(G/µ) = ed(G/µ; 2) =
r∑
i=1

(ni − 1).

Proof. By Lemma C.2, we may assume µ is the trivial subgroup. The upper

bound is now obvious using edk(H1 ×H2) ≤ edk(H1) + edk(H2) and Lemma

C.3. Recall also that for any algebraic group H1 with subgroup H2 we have

edk(H1; 2) ≥ edk(H2; 2) − dim(H1) + dim(H2). Now, consider the subgroup

H = On1 × · · · ×Onr . Then we have

edk(G; 2) ≥ edk(H; 2)− r

By Theorem C.1, edk(H; 2) =
r∑
i=1

ni, and the result follows.

Remark C.5. For all groups G/µ studied in this section, edk(G/µ; q) = 0

for primes q 6= 2. This is because we have the exact sequence

H1(K,Z(G)/µ)→ H1(K,G/µ)→ H1(K,G)

and any elements a ∈ H1(K,Z(G)/µ) and b ∈ H1(K,G) can be split by

adjoining sufficiently many square roots to K. It follows that any element of

H1(K,G/µ) can also be split by an extension whose degree is a power of 2.
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