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Abstract

In this work we study the space of group homomorphisms Hom(π,G) for

special choices of π and G. In the first part of this thesis, we enumerate and

describe the path components for the spaces of ordered commuting k-tuples

of orthogonal and special orthogonal matrices respectively. This corresponds

to choosing π = Zk and G = O(n), SO(n). We also provide a lower bound

on the number of components for the case G = Spin(n) for sufficiently large

n.

In the second part, we describe the space Hom(Γ, SU(2)), where Γ is a

group arising from a central extension of the form

0→ Zr → Γ→ Zk → 0.

The description of this space is good enough that, using some known results,

it allows us to compute its cohomology groups.
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Preface

All of the results in this thesis are my own work under the supervision of

Alejandro Adem. The paper “On the space of commuting orthogonal matri-

ces” is based on the work done in the first chapter and has been published

in [Roj13]. I had a lot of great conversations with Juan Souto and he gave

me great ideas and suggestions on how to attack the problem.

For the second chapter, I mostly worked on my own with guidance of

Alejandro but José Manuel Gómez was of great help when I was trying to

understand the space of homomorphisms from abelian groups into SU(2).
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Introduction

The spaces of group homomorphisms Hom(π,G) between a discrete group π

and a Lie Group G are interesting for their relation with bundle theory and

can be quite complicated. The topology on Hom(π,G) is given by considering

it as a subspace of Gk, where k is the number of elements in a generating set

of π. The group G acts naturally on these spaces by conjugation, the quotient

space Rep(π,G) := Hom(π,G)/G is called the representation space and it

can be identified with the moduli space of flat G−bundles over a manifold

with fundamental group equal to π. These moduli spaces of bundles are

important in physics, they are related with a number of important quantum

field theories, such as Yang-Mills and Chern-Simons theories.

In particular, when π = Zk, the space Hom(Zk, G) can be identified with

the space

Ck(G) := {(g1, . . . , gk) ∈ Gn : gigj = gjgi for all i, j},

of ordered commuting k-tuples in G. The fundamental group of (S1)k is Zk

so the space Rk(G) := Rep(Zk, G) can be identified with the moduli space

of flat G−bundles over the k−torus.

The spaces Ck(G) were studied from the homotopical viewpoint by Adem

and Cohen in [AC07], where they find a stable splitting (after one suspension)

of the space Ck(G) for large class of Lie groups, including all closed subgroups
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of GL(n,C). The splitting has the following form:

Σ(Ck(G)) '
∨

1≤j≤k

Σ

∨
(k
j)

Cj(G)/Sj(G)

 ,

where Sj(G) is the subspace of Cj(G) of tuples with at least one entry equal to

the identity of G. The quotients Cj(G)/Sj(G) are highly singular spaces and

are very complicated in general, so explicit computations using this technique

have been limited. However, based on this splitting, Crabb in [Cra11] and

independently Baird, Jeffrey and Selick in [BJS11] were able to compute the

stable homotopy type of Ck(SU(2)) explicitly.

The spaces Ck(G) are in general not connected, even if G is connected

and simply connected. But note that if G is connected, then Rk(G) and

Ck(G) have the same number of path connected components.

The number of path components of Ck(G) is known for some special cases

of G, for example, in [AC07] it was shown that Ck(G) is connected when G

is one of U(q), SU(q) or Sp(q). In [TGS08] Torres-Giese and Sjerve found

the number of connected components of Ck(SO(3)), and in [ACG13] the

calculations were done for the case when G is a central product of special

unitary groups. In [KS00], it was shown that the space C3(Spin(n)) is dis-

connected for n ≥ 7, previously, a wrong assumption about the connectivity

of these spaces led to a miscalculation of the number of vacuum states in

supersymmetric Yang-Mills theories over spatial (S1)
3

by Witten in [Wit82].

In the first chapter of this dissertation, we will find the number of con-

nected components of Ck(O(n)) and Ck(SO(n)) for all k and n. Here, the

group O(n) is the group of orthogonal n× n real matrices, and SO(n) is the

subgroup of O(n) of matrices with determinant equal to one. It is interesting

to note that O(n) is a disconnected group and that all of the Lie groups in

the examples above are connected. However, even though O(n) is not con-

nected, our analysis will show that conjugating by an element of G preserves
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the connected components of Ck(O(n)), so our results effectively compute

the connected components of Rk(O(n)) and Rk(SO(n)).

The proofs will be based in the approach described in Section 2.4, and

although we use it here mainly to calculate connected components this tech-

nique has been used to obtain a variety of results about the topology of the

spaces of commuting tuples, some examples are [Bai07], [GPS12] and [PS13].

We will also show that the components of Ck(O(n)) and Ck(SO(n)) sta-

bilize for sufficiently large values of n, which allows us to calculate the com-

ponents of Ck(O) and Ck(SO), where O and SO are the direct limits of O(n)

and SO(n) respectively under the inclusion maps. At the end of the chapter,

we use the calculations for SO(n) and Stiefel-Whitney classes to find a lower

bound to the number of components of Ck(Spin(n)) (for a sufficiently large

n), where Spin(n) is the spinor group of dimension n, which is the connected

double cover of SO(n).

Up to this point, we will have only been looking at spaces of homomor-

phisms fixing the source group to be Zk and changing the target group. In

the second chapter, we will explore what happens when we try to take a more

general group as a source group. Namely, we study the spaces of homomor-

phisms Hom(Γ, SU(2)), where Γ is a central extension of the form

0→ Zr → Γ→ Zn → 0.

Notice that we have restricted the target group to be SU(2), this was one of

the first groups to be chosen as a target when the spaces of commuting tuples

began to be studied systematically in [AC07]. Since we are generalizing the

source group, we should look at a target group for which we know enough

about the space of commuting tuples to help us understand the case with

a different source group. As mentioned before, the stable homotopy type

of Ck(SU(2)) was found in [Cra11] and [BJS11] so this makes SU(2) an

ideal candidate for our purposes. This is also what motivates the class of

source groups we are considering, these extensions are close enough to the
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free abelian case so that we can use what we know about Ck(SU(2)) to

give a description of Hom(Γ, SU(2)) good enough to be able to compute its

cohomology.

The way we go about analyzing this space is by splitting it into two

subspaces and then studying each piece separately. We have a decomposition

Hom(Γ, SU(2)) = Hom(Γ/[Γ,Γ], SU(2)) ∪RΓ,

where RΓ is the space of all the homomorphisms that do not factor through

the abelianization of Γ. The first piece of this decomposition is analyzed in

Section 2.1 using results by Adem and Gómez in [AG11]. Section 2.3 deals

with RΓ in the case when r = 1 and finally, the general case for r is done in

Section 2.4.

In [PS13] it was shown that if K is a maximal compact subgroup of

G, then the space Ck(G) deformation retracts to Ck(K), this means that

our results about the number of connected components of Ck(O(n)) and

Ck(SO(n)) can be translated verbatim to Ck(GL(n,R)) and Ck(SL(n,R))

since O(n) and SO(n) are the maximal compact subgroups of GL(n,R) and

SL(n,R) respectively. More generally, in [Ber13], Bergeron proves that, given

any nilpotent group N then Hom(N,G) deformation retracts to Hom(N,K).

Since the groups considered in Chapter 2 are nilpotent, this means that we

can also translate the results in Chapter 2 about Hom(Γ, SU(2)) to their

corresponding counterparts for Hom(Γ, SL(2,C)).

Each chapter begins with a summary of the precise statements of the

main results proved in that chapter, as well as how they are organized within

the chapter. Some of the proofs in Chapter 1 rely heavily on a few well known

facts of linear algebra, and for the sake of completeness and self-containment

of this text I have added their simple proofs as an appendix.

I have also added a small epilogue with the concluding remarks, where we

mention some of the possible directions in which one would want to generalize

the results of this thesis and state some of the complications that may arise.
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Notation: Throughout this dissertation, the symbol Z2 will represent

the multiplicative group with two elements {1,−1} and Z/2Z will be the

additive group of 2 elements {0, 1}. I will use |A| to denote the cardinality

of the set A and the symbol
(
n
k

)
is the number of ways to choose k elements

from a set containing n elements.
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Chapter 1

Spaces of commuting matrices.

In this chapter we we will enumerate the path connected components of the

space of ordered commuting k-tuples of orthogonal and special orthogonal

matrices respectively. We will also provide a lower bound on the number

of connected components of the space of commuting elements in the spinor

groups.

The first section will serve as an introduction to the study of spaces of

homomorphisms in general and will present some known results. The second

section presents one of the current strategies used for the general study of

the space of commuting elements in a Lie Group.

In Section 1.3, we will use the strategy described in Section 1.2 to prove

the main theorem in this chapter, which calculates the number of connected

components of the space Ck(O(n)). The theorem is:

Theorem 1.0.1. For each n, k ∈ N, the space Ck(O(n)) has

bn
2
c∑

j=0

(
2k

n− 2j

)

connected components.

Note that the formula no longer depends on n when n ≥ 2k − 1 since the
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binomial coefficients vanish when n − 2j is large enough. So we get the

following corollary:

Corollary 1.0.2. If n ≥ 2k − 1 then Ck(O(n)) has 22k−1 connected compo-

nents.

In fact, in this range, the inclusion O(n) ↪→ O(n+ 1) will induce an isomor-

phism at the π0 level. So if we let O = colim
−→

O(n) be the infinite orthogonal

group, then Ck(O) has 22k−1 connected components.

Although the group O(n) is not connected, our analysis will show that

conjugating by an element of G acts as the identity on π0. As a result, we

have the following corollary:

Corollary 1.0.3. Rk(O(n)) and Ck(O(n)) have the same number of compo-

nents.

So we effectively calculate the number of connected components of Rk(O(n))

as well.

At the end of the section, we also make some progress in the direction of

computing higher invariants of the spaces Ck(O(n)), in the form of proving

that they have
(

2k

n

)
components homeomorphic to O(n)/Zn2 .

The space Ck(SO(n)) is equal to the intersection of Ck(O(n)) with SO(n)k.

In Section 1.4 we use this fact and Theorem 1.0.1 to calculate the number of

connected components of Ck(SO(n)):

Corollary 1.0.4. If n < 2k, the space Ck(SO(n)) has

1

2k

n−1
2∑
j=0

(
2k

n− 2j

)
components when n is odd, and it has

1

2k

n
2∑

m=0

((
2k

n− 2j

)
+ (−1)

n−2j
2
(
2k − 1

)(2k−1

n−2j
2

))
.
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components when n is even. If n ≥ 2k − 1 it has 22k−k−1 components.

Similar to the case of O(n), if we let SO = colim
−→

SO(n) we obtain that

Ck(SO) has 22k−k−1 components. Since SO(n) is connected, Corollary 1.0.4

also computes the number of connected components of the representation

spaces Rk(SO(n)).

To finish the section we extend the computation of the cohomology of

Ck(SO(3)) done in [TGS08] to Ck(O(3)).

In [AC07] Adem and Cohen found lower bounds for the number of compo-

nents of Hom(π,O(n)) for a general discrete finitely generated group π. Their

approach was to separate components using the Stiefel-Whitney classes. In

the case π = Zk this approach does not give a sharp result, in Section 1.5

we will see that the Stiefel-Whitney classes are not enough to identify the

components of Ck(O(n)). In other words, we prove the following corollary:

Corollary 1.0.5. Suppose k ≥ 3 and n ≥ 2k − 1. There exist homomor-

phisms lying in different components of Ck(O(n)) with the same total Stiefel-

Whitney class, and so the total Stiefel-Whitney class does not distinguish all

the components of Ck(O(n)).

Even though the Stiefel-Whitney classes fail to distinguish the compo-

nents completely, in Section 1.6 we will see how the second Steifel-Whitney

class helps to find a bound for the components of Ck(Spin(n)). We will prove

the following:

Corollary 1.0.6. If n ≥ 2k − 1 then Ck(Spin(n)) has at least 22k−k−1−(k
2)

connected components.

This bound is sharp enough to see that the space of commuting triples in

Spin(n) is disconnected if n ≥ 7. This fact first appeared in [KS00].
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1.1 Background and preliminaries

Let π be a finitely generated group and G any Lie group. Consider the set

Hom(π,G). This set can be given a topology as follows. Let Fk be the free

group on k generators and let f : Fk → π be any surjection. This induces

an inclusion f ∗ : Hom(π,G)→ Hom(Fk, G) = Gk so we can give Hom(π,G)

the subspace topology. It is easy to see that this topology does not depend

on the choice of k or f .

In the next paragraph we explain the relation between these spaces and

bundle theory; in particular, how the connected components of these spaces

could help us understand principal G-bundles over Bπ.

Given f ∈ Hom(π,G) we can apply the classifying space functor to get

a continuous map Bf ∈ Map∗(Bπ,BG). It is known that the classifying

space functor is continuous as long as the compactly generated topology is

used on the source, and so we can pass to connected components and get a

map B0 : π0(Hom(π,G))→ [Bπ,BG]. Now recall that [Bπ,BG] classifies all

principal G-bundles over Bπ, this means that understanding π0(Hom(π,G))

and the map B0 may help us understand principal G-bundles over Bπ. This

is of particular interest for the cases when Bπ is a compact manifold, for

example when π = Zk.
The spaces Hom(π,G) have a G action induced by the conjugation action

on G. Since inner automorphisms induce mappings homotopic to the identity

on BG we have that B0 factors through Rep(π,G) := Hom(π,G)/G. Some

people prefer to study Rep(π,G) instead but note that if G is connected then

Rep(π,G) has the same number of components as Hom(π,G).
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1.1.1 The space of commuting tuples

In the particular case when π = Zk the space Hom(Zk, G) can be identified

with the space Ck(G) of ordered commuting k-tuples in Gk, i.e. the set

Ck(G) = {(g1, . . . , gk) ∈ Gk : gigj = gjgi for all i 6= j}.

We do this by identifying f ∈ Hom(Zk, G) with (f(e1), . . . , f(ek)) ∈ Ck(G),

where {e1, . . . , ek} is the standard basis for Zk. In the sequel, we will identify

these two spaces without explicitly mentioning it. In this case, Bπ = (S1)k

and by studying Ck(G) we will be getting information about principal G-

bundles over the k-torus.

It is worth mentioning that the space Ck(G) may have many components

even when G is connected and simply connected. Such an example was

given by Kac and Smilga in [KS00] where they showed that C3(Spin(7)) is

not connected. Here is a condition which guarantees the connectedness of

Hom(Zk, G):

Proposition 1.1.1. If every abelian subgroup of G is contained in a maximal

torus then Ck(G) is path connected.

This proposition was proved in [AC07]. We will give an alternate proof of

this proposition in the following section as an example of an easy application

of our approach.

As a consequence of this proposition we have the following corollary.

Corollary 1.1.2. For G = SU(n), U(n), Sp(n) the spaces Ck(G) are path

connected.

This follows from the known fact that maximal abelian subgroups in the

given groups are precisely the maximal tori (see for example [BtD95]).

More recently, in [AG12], Adem and Gómez have described all compact

simply connected Lie groups that have connected Ck(G) for all k as the finite

products of Sp(n)’s and SU(m)’s.
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The final goal is to compute π0(Ck(G)) for other kinds of groups G. This

problem was solved forG = SO(3) by Torres-Giese and Sjerve in [TGS08] and

by Adem, Cohen and Gómez for central products of special unitary groups

in [ACG13]. In the following sections we will present a complete solution to

this problem in the case when G = O(n), SO(n) generalizing the result in

[TGS08], we also find a lower bound for the case G = Spin(n).

1.1.2 The case G = O(n)

Before restricting ourselves to studying Ck(O(n)) we state here what is known

about the components of Hom(π,O(n)) for a general finitely generated group

π. These results are due to Adem and Cohen in [AC07] and they are obtained

by separating components of Hom(π,O(n)) using the first and second Stiefel-

Whitney classes.

Theorem 1.1.3. There is a decomposition of Hom(π,O(n)) into closed and

open subspaces

Hom(π,O(n)) =
∐

w∈H1(π,F2)

Hom(π,O(n))w

where Hom(π,O(n))w is the subset of Hom(π,O(n)) of homomorphisms with

first Stiefel-Whitney class equal to w.

Theorem 1.1.4. If π is a finitely generated discrete group and

H2(π/[π, π];F2)→ H2(π;F2)

is surjective, then

|π0(Hom(π,O(n)))| ≥ |H1(π;F2)||H2(π;F2)|.

We will show in Section 1.5 that not even the total Stiefel-Whitney class

is able to identify the components of Ck(O(n)), which means that bounds
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obtained in this fashion cannot be sharp in general.

1.2 A general strategy to study Ck(G)

In this section we will introduce a general strategy to approach the problem

of studying the spaces Ck(G) for general G. This strategy has proven fruitful

and has been used to obtain a variety of results; some examples are [Bai07],

[GPS12] and [PS13].

The idea is to look at the following maps: for every abelian subgroup A

of G we have maps

ΦA : G× Ak → Ck(G)

defined by

(g, a1, . . . , ak) 7→ (ga1g
−1, . . . , gakg

−1).

The space G× Ak has an N(A)-action given by

n · (g, a1, . . . , ak) = (gn−1, na1n
−1, . . . , nakn

−1)

where N(A) is the normalizer of A in G. The map ΦA i s invariant on N(A)

orbits so it induces a map on the quotient:

Φ̃A : G×N(A) A
k → Ck(G).

The space G×N(A)A
k is homeomorphic to G/A×W (A)A

k, where W (A) =

N(A)/A is the Weyl group of A in G.

Let SA = Im(ΦA). Note that this is just the orbit of Ak under the

conjugation action of G on Ck(G). Then we have the following proposition,

which is immediate from the definitions.

Proposition 1.2.1. The following statements hold for all abelian subgroups

A and A′ in G:
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1. If A′ ⊂ A then SA′ ⊂ SA.

2. SgAg−1 = gSAg−1 = SA.

3. If f ∈ Ck(G) and A = Im(f) then f ∈ SA.

From these properties we have the following direct corollary.

Corollary 1.2.2. There is a decomposition

Ck(G) =
⋃
A∈I

SA

where I is a set of representatives of conjugacy classes of maximal abelian

subgroups of G.

This way we have obtained a decomposition of Ck(G) into smaller spaces

and we can use a “Mayer-Vietoris” approach to the problem by analyzing

the smaller pieces and their intersections.

The relevant thing is that in general, even though the map Φ̃A : G/A×W (A)

Ak → SA is not injective, we can use Φ̃A to translate information about

G/A ×W (A) A
k to information about SA, which has the advantage that the

space G/A×W (A) A
k may be much easier to understand than Ck(G).

Another good thing is that in many cases, for example when G is compact,

the set I can be taken finite which significantly simplifies the analysis. For a

detailed description of the “many cases” of the previous sentence, one should

look at [PS13].

This approach however does require some understanding of the abelian

subgroups of G, or at least of the maximal conjugacy classes of abelian sub-

groups. In the next sections we will apply this to compute the connected

components in the cases G = O(n), SO(n), where we have a good under-

standing of conjugacy classes of maximal abelian subgroups, or a so called

“normal form” for abelian subgroups. We should emphasize that even though

this is mainly used here to compute connected components this strategy may

13



be useful to compute higher invariants of these spaces. For example in Propo-

sition 1.3.13 we use this approach to compute the homeomorphism type of

some of the components of Ck(O(n)).

Note that if A is a maximal abelian subgroup then G×Ak is a manifold,

on which path components and connected components agree. It follows that

the path components and connected components of SA agree. If G is compact

this implies that the path components and connected components of Ck(G)

also agree.

As an example of an easy application of this approach we give an alternate

proof of Proposition 1.1.1.

Proof of Proposition 1.1.1. The hypothesis clearly implies that G is con-

nected. Since all maximal tori are conjugate and every abelian subgroup

is contained in a maximal torus by hypothesis, we can take I from Corollary

1.2.2 to be I = {T}, where T is any maximal torus. Then Ck(G) = ST =

ΦT (G× T k) and so it is connected since G× T k is connected.

1.3 The connected components of Ck(O(n))

In this section we will apply the strategy described in the previous section

to enumerate the connected components of the space Ck(O(n)) for all k and

n. Our goal is to prove Theorem 1.0.1, which we restate here:

Theorem 1.0.1. For each n, k ∈ N, the space Ck(O(n)) has

bn
2
c∑

j=0

(
2k

n− 2j

)

connected components.

The strategy to prove Theorem 1.0.1 is to obtain a decomposition of

Ck(O(n)) into closed and open disjoint subspaces, and then count the number
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of components of each of these subspaces. Theorem 1.0.1 follows directly from

the next theorem:

Theorem 1.3.1. There is a decomposition of Ck(O(n)) into closed and open

subspaces:

Ck(O(n)) =

bn
2
c∐

j=0

Uj,

and for each j, the subspace Uj has
(

2k

n−2j

)
connected components.

We will construct the subspaces Uj using the techniques described in the

previous section. The rest of this section is devoted to the proof of Theorem

1.3.1.

Consider the subgroup Aj = (S1)j × (Z2)n−2j ⊂ O(n) where the corre-

spondence is

(θ1, . . . , θj, t1, . . . , tn−2j)↔



Mθ1 0 . . . 0

0 Mθ2

. . .
... Mθj

...

t1

0
. . . 0

. . . 0 tn−2j


,

where

Mθ =

(
cos θ − sin θ

sin θ cos θ

)
is the 2× 2 matrix corresponding to a clock-wise rotation of an angle θ.

For each j = 1, . . . , bn
2
c we have maps

Φj : O(n)× Akj → Ck(O(n))
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given by

Φj(g, a1, . . . , ak) = (ga1g
−1, . . . , gakg

−1).

It is well known that the Aj’s are representatives of conjugacy classes of

maximal abelian subgroups of O(n). Or in other words, we have that if

Sj = Im(Φj) then

Ck(O(n)) =

bn
2
c⋃

j=0

Sj

The sets Sj are certainly not disjoint, but we will produce our sets Uj
using the maps Φj.

Notation: For the remainder of this section we let (e1, . . . , en) be the

standard ordered basis for Rn. We will denote the span of the vectors

v1, . . . , vl by 〈v1, . . . , vl〉.

Definition 1.3.2. Given a = (a1, . . . , ak) ∈ Akj we can write each coordinate

like:

am = (θm,1, . . . , θm,j, tm,1 . . . , tm,n−2j),

and given i ∈ {1, . . . , n− 2j} we let

ri(a) := (t1,i, . . . tk,i) ∈ Zk2.

The vector ri(a) is the vector of eigenvalues of the common eigenvector e2j+i

for the am’s. We also define the following subset of Akj :

Pj := {a ∈ Akj : ri(a) 6= ri′(a) whenever i 6= i′}

and we let

Uj := Φj(O(n)× Pj).

The geometric description of the sets Uj is as follows: recall that every

representation ρ : A → O(n) from a finitely generated abelian group A

splits up as a direct sum of orientable 2-dimensional representations and line

16



bundles. This follows from the fact that commuting complex matrices are

simultaneously diagonalizable. The set Uj consists of the representations that

have a direct sum decompositions in which j summands are 2-dimensional

orientable representations but do not have a direct sum decompositions in

which j + 1 summands are 2-dimensional orientable representations.

These Uj’s are the sets involved in Theorem 1.3.1. We shall prove that

they are closed and disjoint, and that they have the claimed number of

connected components.

Note that for every g ∈ O(n) and every j we have gUjg−1 = Uj so these

sets are invariant under the conjugation action on Ck(O(n)).

We begin the proof of Theorem 1.3.1 with the following proposition.

Proposition 1.3.3. Let a ∈ Pj, b ∈ Pj′ and g ∈ O(n) such that gag−1 = b.

Then j = j′ and {r1(a), . . . , rn−2j(a)} = {r1(b), . . . , rn−2j(b)}.

Since the proof is slightly technical we will first introduce some prelimi-

nary definitions and examples that will clarify the proof.

Definition 1.3.4. Let a = (a1, . . . , ak) ∈ Akj , where each coordinate is

ai = (θi,1, . . . , θi,j, ti,1 . . . , ti,n−2j).

We will say a is m-ordered if m ∈ {0, . . . , j} is such that:

1. For every l ∈ {m+1, . . . , j} and i ∈ {1, . . . , k} it holds that θi,l ∈ {0, π}.

2. For every l ∈ {1, . . . ,m} there exists an i ∈ {1, . . . , k} such that θi,l /∈
{0, π}.

Part (1) of this definition means that the only nonzero entries of each

ai below row 2m are ±1 in the diagonal. Part (2) of this definition means

that the matrices (a1, . . . , ak) have no common eigenvectors in the span of

(e1, . . . , e2m). Note that an element of Ajk is m-ordered for at most one

m ∈ {0, . . . , j}, but it may be that it is not m-ordered for any of them.

Below are some examples to further clarify this definition:
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Example 1.3.5. Let k = 3, n = 5 and j = 2. Let

a = ((π/2, 0, 1), (π/4, π,−1), (π/6, 0, 1)) ∈ A3
2,

which corresponds to the triple of matrices


0 −1
1 0

1 0

0 1

1

 ,


1√
2

−1√
2

1√
2

1√
2

−1 0

0 −1
−1

 ,


√
3
2

−1
2

1
2

√
3
2

1 0

0 1

1


 .

The triple a is 1-ordered. Let

b = ((π, π/2, 1), (0, π/3,−1), (0, 0,−1)) ∈ A3
2,

which corresponds to the triple of matrices

−1 0

0 −1
0 −1
1 0

1

 ,


1 0

0 1
1
2

−
√
3

2√
3
2

1
2

−1

 ,


1 0

0 1

1 0

0 1

−1


 .

The triple b is not m-ordered for any m since e1 and e2 are common eigenvec-

tors of the 3 matrices and there are nonzero entries away from the diagonal

below their corresponding rows. Let

c = ((π/2, π,−1), (π, π/3,−1), (π/6, 0, 1)) ∈ A3
2,

which corresponds to the triples of matrices:


0 −1

1 0

−1 0

0 −1

1

 ,


−1 0

0 −1
1
2

−
√
3

2√
3

2
1
2

−1

 ,


√
3

2
−1
2

1
2

√
3

2

1 0

0 1

1


 .

The triple c is 2-ordered.
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Looking at b we see that not all elements x ∈ Akj are m-ordered for some

m. However, we can always conjugate x by a permutation matrix to get

x′ ∈ Akj which is m-ordered for some m. In the case of the example above

we can conjugate b to get the triple

b′ =




0 −1

1 0

−1 0

0 −1

1

 ,


1
2

−
√
3

2√
3

2
1
2

1 0

0 1

−1

 ,


1 0

0 1

1 0

0 1

−1


 ,

which is 1-ordered. Notice that we only have to permute some of the first 2j

vectors of the standard basis and so this process does not alter the value of

any ri, since these only involve the last n− 2j rows of the matrices. This is

summarized in the following lemma:

Lemma 1.3.6. Given a ∈ Akj there exists a permutation matrix g ∈ O(n)

such that a′ = gag−1 ∈ Akj is m-ordered for some m and ri(a) = ri(a
′) for all

i ∈ {1, . . . , n− 2j}.

We need one more definition before going into the proof of Proposition

1.3.3:

Definition 1.3.7. Let a = (a1, . . . , ak) ∈ Akj be m-ordered. Then we define

the eigenmatrix of a to be the (n − 2m) × k matrix X with entries ±1

determined by the equations:

ai(e2m+l) = Xl,ie2m+l.

Example 1.3.8. If a, b′ and c are as in Example 1.3.5 the the eigenmatrix

of a is  1 −1 1

1 −1 1

1 −1 1

 ,
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the eigenmatrix of b′ is  −1 1 1

−1 1 1

1 −1 −1

 ,

and the eigenmatrix of c is (
1 −1 1

)
.

Notice that if a ∈ Akj is m-ordered and X is its eigenmatrix then the

vectors r1(a), . . . , rn−2j(a) are the last n − 2j rows of X. Also notice that

the first 2(j −m) rows of X appear by pairs since they come from rotations

of angles 0 or π. If a ∈ Pj then all of the ri(a) are different, which means

that they are the only rows of X that appear an odd number of times. So

we have the following lemma:

Lemma 1.3.9. Let a ∈ Pj be m-ordered and let X be its eigenmatrix, then

the set {r1(a), . . . , rn−2j(a)} is the set of rows of X that appear an odd number

of times in X.

Now we are ready to prove Proposition 1.3.3.

Proof of Proposition 1.3.3. Let a = (a1, . . . , ak) ∈ Pj and b = (b1, . . . , bk) ∈
Pj′ . By Lemma 1.3.6 we may assume without loss of generality that a is

m-ordered and b is m′-ordered.

Let E±i be the ±1-eigenspace of ai and let F±i be the ±1-eigenspace of

bi. Since gaig
−1 = bi we know that g(E±i ) = F±i for all i. This implies that

g

(
k⋂
i=1

(E+
i ⊕ E−i )

)
=

k⋂
i=1

(F+
i ⊕ F−i ).

Since a is m-ordered we know that

k⋂
i=1

(E+
i ⊕ E−i ) = 〈e2m+1, . . . , en〉
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and since b is m′-ordered we know that

k⋂
i=1

(F+
i ⊕ F−i ) = 〈e2m′+1, . . . , en〉.

This implies that m = m′ and that g preserves 〈e2m+1, . . . , en〉. In other

words, g has the form: (
? 0

0 U

)
where U is a (n− 2m)× (n− 2m) non-degenerate matrix.

Let X be the eigenmatrix of a and Y be the eigenmatrix of b. We claim

that X and Y have the same rows up to permutation. This would finish the

proof since we know by Lemma 1.3.9 that the sets {r1(a), . . . , rn−2j(a)} and

{r1(b), . . . , rn−2j(b)} are the sets of rows that appear an odd number of times

in X and Y respectively.

If (up,l) are the entries of U then for l ∈ {1, . . . , n− 2m} we have

ge2m+l =
n−2m∑
p=1

up,le2m+p.

For i ∈ {1, . . . , k} we can calculate:

bige2m+l = ai

(
n−2m∑
p=1

up,le2m+p

)
=

n−2m∑
p=1

up,lYp,ie2m+p

gaie2m+l = g(Xl,ie2m+l) =
n−2m∑
p=1

up,lXl,ie2m+p.

Since big = gai then up,lYp,i = up,lXl,i for every p,i and l. In particular,

if up,l 6= 0 then the p-th row of Y equals the l-th row of X. Since g is

an isomorphism this implies that for every p ∈ {1, . . . , n − 2m} there is an

l ∈ {1, . . . , n − 2m} such that ul,p 6= 0, so each row on X appears at least
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once in Y .

Now suppose the rows Xl1,•, . . . , Xlq ,• are equal, with li 6= li′ if i 6= i′. We

know that the dimension of g(〈el1 , . . . , elq〉) is q, which means that the space

generated by the columns u•,l1 , . . . , u•,lq has dimension q. This means that

there are at least q values of p for which there is an r such that up,lr 6= 0,

i.e. the row Xl1,• appears at least q times in X. Since X and Y have the

same number of rows this shows that X and Y have the same rows up to

permutation.

As we said before, by Lemma 1.3.9 the rows that appear an odd number

of times in the matrix X are {r1(a), . . . , rn−2j(a)}. Similarly the rows that

appear an odd number of times in Y are {r1(b), . . . , rn−2j′(b)}. We have

proved that X and Y have the same rows so the proposition follows.

Proposition 1.3.10. The spaces Uj are all closed and satisfy

Ck(O(n)) =

bn
2
c∐

j=0

Uj.

Proof. The condition ri(a) 6= ri′(a) is closed in Akj for each pair (i, i′). So

Pj is an intersection of closed subsets of Akj which is compact. This shows

that Pj is compact. Since Uj = Φj(O(n)×Pj) then Uj is compact, and hence

closed as required.

Now we will show that the Uj’s cover Ck(O(n)). Since the Aj’s are repre-

sentatives of maximal conjugacy classes of abelian subgroups of O(n) we can

conjugate any commuting tuple into some Akj . And since the Uj’s are invari-

ant under conjugation it is enough to show that they cover every Akj . Sup-

pose then that a = (a1, . . . , ak) ∈ Akj with ai = (θi,1, . . . , θi,j, ti,1 . . . , ti,n−2j).

If (t1,i, . . . tk,i) 6= (t1,i′ , . . . tk,i′) whenever i 6= i′ then a ∈ Pj. Otherwise, there

exist i 6= i′ such that (t1,i, . . . tk,i) = (t1,i′ , . . . tk,i′), which means that we can

conjugate a into Akj+1 by simply reordering the rows to get θi,j+1 = 0 or π for

all i. We can repeat the process until we find a number j′ and a g ∈ O(n) for
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which gag−1 ∈ Pj′ . We finish this procedure because Pbn
2
c = Akbn

2
c. It follows

that a ∈ Uj′ and shows that

Ck(O(n)) =

bn
2
c⋃

j=0

Uj.

To show that the union is disjoint suppose x ∈ Uj ∩ Uj′ . Then x =

gag−1 = hbh−1 for some g, h ∈ O(n), a ∈ Pj and b ∈ Pj′ . This implies

h−1ga(h−1g)−1 = b and so j = j′ by Proposition 1.3.3.

Since there are finitely many Uj’s it follows from Proposition 1.3.10 that

each Uj is open and closed in Ck(O(n)) and so each Uj is a union of com-

ponents. All that is left to do then is count the components of Uj for each

j.

It is important in what follows to understand the action of the Weyl group

W (Aj) = N(Aj)/Aj on Aj by conjugation, where N(Aj) is the normalizer of

Aj in O(n). We explain this action in the following paragraphs.

Recall that Aj admits a N(Aj) conjugation action. Since Aj acts by the

identity this induces an action of W (Aj) = N(Aj)/Aj on Aj.

If we think about a matrix in O(n) as a linear map on Rn, then con-

jugating corresponds to changing the basis on which we write the map. If

(e1, . . . , en) is the standard basis for Rn and c ∈ N(Aj) then ce2j+1 is a unit

vector on which every element of Aj acts as ±1, but the only unit vectors

with that property are {±e2j+1, . . . ,±en} so ce2j+1 must be one of them. The

same goes for e2j+2, . . . , en and so c permutes the set {±e2j+1, . . . ,±en}. A

similar analysis gives that c maps the plane generated by {e2l−1, e2l} isomet-

rically to some other plane of that form for l = 1, . . . , j
2
. And so the action

by conjugation on Aj is given in coordinates as above by:

c · (θ1, . . . , θj, t1, . . . , tn−2j) = ((−1)s1θσ(1), . . . , (−1)sjθσ(j), tξ(1), . . . , tξ(n−2j))
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where σ ∈ Σj and ξ ∈ Σn−2j are permutations and sl = 0, 1. We now proceed

to count the components of Uj.
The action of N(Aj) on Aj induces an action on O(n)× Akj given by

c · (g, a1, . . . , ak) = (gc−1, ca1c
−1, . . . , ca1c

−1).

Since Aj acts on the coordinate Akj by the identity this induces an action of

W (Aj) = N(Aj)/Aj on O(n)/Aj × Akj .
From the paragraphs above it follows that if c ∈ N(Aj) and a ∈ Akj then

(r1(cac−1), . . . , rn−2j(cac
−1)) = (rξ(1)(a), . . . , rξ(n−2j)(a))

for some ξ ∈ Σn−2j depending only on [c] ∈ W (Aj). This implies that the

W (Aj) action restricts to Pj and to O(n)/Aj×Pj. Recall that Φj is constant

on the orbits of this action, so it induces a surjective map

Φ̃j : O(n)/Aj ×W (Aj) Pj → Uj.

Lets call the projection maps

q : O(n)× Pj → O(n)/Aj × Pj

and

p : O(n)/Aj × Pj → O(n)/Aj ×W (Aj) Pj.

We want to count the components of Uj by counting the components of

O(n)/Aj ×W (Aj) Pj and then showing that Uj has the same number of com-

ponents.

Proposition 1.3.11. The space O(n)/Aj ×W (Aj) Pj has
(

2k

n−2j

)
connected

components, indexed by the subsets {r1, . . . , rn−2j} ⊂ Zk2 of size n − 2j. In

fact, given (g, a) ∈ O(n)× Pj the connected component containing q(p(g, a))

is the one corresponding to the set {r1(a), . . . , rn−2j(a)}.
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Proof. The set Lj := {(r1, . . . , rn−2j) ∈ (Zk2)n−2j : rm 6= rl for all m 6= l}
is a discrete set with 2k!

(2k−n+2j)!
points, and O(n) has 2 components. Since

Pj ∼= (S1)jk × Lj then O(n) × Pj has exactly 2 × 2k!
(2k−n+2j)!

components. It

remains to see how q and p glue these components.

If j = n
2

then Pj = Akj
∼= (S1)jk is connected. If {e1, . . . , en} is the

standard basis of Rn then matrix which sends e1 to −e1 and is the identity

on 〈e1〉⊥ has determinant −1 and is in the normalizer of Aj. Then the set

O(n)/Aj ×W (Aj) Pj is connected and so it has
(

2k

n−2j

)
=
(

2k

0

)
= 1 components

as required.

If j 6= n
2

then Aj contains at least one element of determinant −1 and

so O(n)/Aj is connected. This means that p glues components by pairs

and so O(n)/Aj × Pj has 2k!
(2k−n+2j)!

components. Notice that these com-

ponents are indexed by the set Lj. Recall that for all a ∈ Pj and [c] ∈
W (Aj) we have that (r1(a), . . . , rn−2j(a)) = (rξ(1)(cac

−1), . . . , rξ(n−2j)(cac
−1))

for some ξ ∈ Σn−2j. By definition of Pj this shows that each W (Aj)-orbit in

O(n)/Aj×Pj intersects exactly (n−2j)! connected components. This shows

that O(n)/Aj ×W (Aj) Pj has 2k!
(2k−n+2j)!(n−2j)!

=
(

2k

n−2j

)
connected components

as required, indexed by the subsets {r1, . . . , rn−2j} ⊂ Zk2 of size n− 2j.

To finish the proof of our main theorem it remains to show the following

proposition.

Proposition 1.3.12. The subspace Uj has
(

2k

n−2j

)
connected components, in-

dexed by the subsets {r1, . . . , rn−2j} ⊂ Zk2 of size n− 2j.

Proof. From Proposition 1.3.11 it is enough to show that if

(g, a), (h, b) ∈ O(n)× Pj

are such that Φj(g, a) = Φj(h, b), then

{r1(a), . . . , rn−2j(a)} = {r1(b), . . . , rn−2j(b)}
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(i.e. the map Φ̃j is injective on π0). This is a direct application of Proposition

1.3.3 by recalling that by the definition of Φj the fact that Φj(g, a) = Φj(h, b)

implies that

h−1ga(h−1g)−1 = b.

This completes the proof of Theorem 1.3.1 and in turn proves Theorem

1.0.1.

In conclusion, this analysis shows that the components of Ck(O(n)) are

indexed by the subsets of A ⊂ Zk2 such that |A| ≡ n(mod2) and |A| ≤ n.

The inclusion O(n) ↪→ O(n+ 1) induces a map

π0(Ck(O(n)))→ π0(Ck(O(n+ 1))).

Using our description of the components this map is very easy to describe, it

sends the component corresponding to A ⊂ Zk2 to the component correspond-

ing to the subset A4{(1, . . . , 1)}, where 4 denotes the symmetric difference

of sets.

From this it follows easily that if n ≥ 2k − 1 the inclusion induces a

bijection on π0. This shows that

|π0(Ck(O))| = 22k−1

as stated in Corollary 1.0.2.

Proposition 1.3.3 shows that conjugating by an element ofO(n) acts as the

identity on π0(Ck(O(n))). This shows that Rk(O(n)) has the same number of

connected components as Ck(O(n)). This fact was stated in Corollary 1.0.3.

We finish the section by identifying the homeomorphism type of some of

the components of Ck(O(n)).

Proposition 1.3.13. Each component of U0 is homeomorphic to O(n)/Zn2 .
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Proof. The space P0 is discrete, since it is a subspace of (A0)k which is dis-

crete (∼= Znk2 ). Let p ∈ P0. With arguments similar to the ones used in

Proposition 1.3.3, it is easy to see that the stabilizer of p under the conjuga-

tion action of O(n) is exactly A0, the group with ±1 as diagonal entries and

zeros everywhere else. This group is clearly isomorphic to Zn2 .

The set Φ0(O(n)× {p}) is the orbit of p in Ck(O(n)) under the conjuga-

tion action of O(n) and so it is homeomorphic to O(n)/Z(p) = O(n)/Zn2 . All

we have to argue now is that this is the full component of Ck(O(n)) corre-

sponding to {r1(p), . . . , rn(p)}. For this, we look at the following commuting

diagram:

O(n)× P0
Φ0 //

��

U0

O(n)/A0 ×W0 P0

Φ̃0

88pppppppppppp

.

We know that the map Φ̃0 sends components of O(n)/A0 ×W0 P0 onto

components of U0, so it is enough to show that the image of O(n) × {p}
under the quotient map is a component of O(n)/A0 ×W0 P0.

Note that all the elements of Ak0 are 0-ordered by default, and can be

identified with their corresponding eigenmatrix. By definition, P0 is pre-

cisely the subset of Ak0 consisting of elements that have eigenmatrix without

repeating rows. The way in which W (A0) acts on Ak0 is by permuting the

rows of the eigenmatrices, so we see that W (A0) acts freely on P0, which

is discrete. This implies that O(n)/A0 × {p} is homeomorphic to its image

in O(n)/A0 ×W (A0) P0 and that the image of O(n)/A0 × {p} is one of the

components of O(n)/A0 ×W (A0) P0. This finishes the proof.

Proposition 1.3.14. All of the components of U[n
2

] are homeomorphic to

each other. In particular, they are all homeomorphic to the component con-

taining the trivial homomorphism.
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Proof. Note that if n is even U[n
2

] has only one component so there is nothing

to prove. If n is odd U[n
2

] has 2k components indexed by the elements of Zk2.

In this case A[n
2

] = P[n
2

]
∼= (S1)[n

2
] × Z2. Let t = (t1, . . . , tk) ∈ Zk2. The map

Φj restricts to a surjection

Φj : O(n)× (S1)[n
2

]k × {t} → Kt

whereKt is the component of Ck(O(n)) corresponding to t. Let 1 = (1, . . . , 1) ∈
Zk2. We have a homeomorphism

ft : O(n)× (S1)k[n
2

] × {t} → O(n)× (S1)k[n
2

] × {1}.

(g, (θij), t) 7→ (g, (tjθij), 1)

This homeomorphism induces a homeomorphism between Kt and K1.

1.4 The connected components of Ck(SO(n))

In this section we will use what we know so far to count the components of

the space Ck(SO(n)). Given our enumeration of the components of Ck(O(n))

we can reduce the problem to a combinatorial problem regarding matrices

with ±1 entries. We then proceed to solve the combinatorial problem by

showing that the numbers we are looking for satisfy a recurrence relation.

We will also calculate the cohomology ring of Ck(O(3)) with coefficients in

a field with characteristic not equal to 2. This is a simple application of the

results in [Bai07] and [TGS08].

Let’s begin by seeing how to translate our problem to a combinatorial

one. Note that

Ck(SO(n)) = SO(n)k ∩ Ck(O(n))

and since SO(n) is closed and open in O(n) then Ck(SO(n)) is a union of

components of Ck(O(n)).
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Let Bj = Uj ∩ SO(n)k, then it follows from Theorem 1.3.1 that

Ck(SO(n)) =

bn
2
c∐

j=0

Bj,

and that each Bj is a union of components. Like before, it is enough to

calculate the number of components of Bj.
Similar to the case of O(n) we do it by looking at Φ̃−1

j (Bj) which, as we

know, has the same number of components than Bj. Note that

a = (θ1, . . . , θj, t1, . . . , tn−2j) ∈ Aj ∩ SO(n)

if and only if
n−2j∏
i=1

ti = 1.

Recall that Pj ∼= (S1)kj × Lj where

Lj = {(r1, . . . , rn−2j) ∈ (Zk2)n−2j : rm 6= rl for all m 6= l}.

Then we have that Φ−1(Bj) ∼= O(n)× (S1)kj ×Mj, where Mj is the following

set:

Mj := {(r1, . . . , rn−2j) ∈ Lj :

n−2j∏
i=1

tl,i = 1 for all l = 1, . . . , k}.

In the definition above, we must remember that ri = (t1,i, . . . , tk,i) ∈ Zk2.

Also, remember that the components of O(n)/Aj ×W (Aj) Pj are indexed by

the sets {r1, . . . , rn−2j} ⊂ Zk2 of size n − 2j. The component corresponding

to {r1, . . . , rn−2j} is in Φ̃−1
j (Bj) if and only if

n−2j∏
i=1

tl,i = 1
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for all l = 1, . . . , k.

We are interested in the cardinality of Mj so let (r1, . . . , rn−2j) ∈Mj and

consider putting the ri’s as rows in a matrix, this translates the problem

of counting the components of Φ̃−1
j (Bj) to solving the following counting

problem, in which m = n− 2j:

Question 1.4.1. How many matrices of size m× k with entries in Z2 have

all their rows different and the product of all the entries in any column equal

to 1?

Lets call the number of such matrices f(m), recall that k is fixed from

the start. Then the number components of Bj is f(m)
m!

. This is because the

components are indexed by the unordered set of rows not the ordered tuple

of rows. We will now focus on finding f(m) and begin by showing that f is

defined recursively by:

Proposition 1.4.2. The function f satisfies the following recurrence rela-

tion:

f(m) =
2k!

(2k − (m− 1))!
− (m− 1)× (2k − (m− 2))× f(m− 2)

whenever m ≤ 2k. Clearly f(m) = 0 if m > 2k.

Proof. We first choose the first (m − 1) rows of our matrix. We want them

to be different so there are 2k!
(2k−(m−1))!

ways of doing this. The property that

the product of the entries in each column has to be 1 determines the last

row uniquely. However, it may be that the last row turns out to be equal to

some other row, so we must subtract these cases.

Note that if a matrix has exactly two rows equal and the product of all

the entries of each column is 1, then the product of all the entries in each

column of the non-repeating rows is 1 as well. So if we are counting the

matrices which have exactly two rows equal, one of which is the last one, we

have f(m−2) choices for the non-repeated rows, then 2k−(m−2) options for

30



the row we are repeating and (m−1) options for the position of the repeated

row.

It is clear from the definition that f(1) = 1 (vector with all entries 1)

and f(0) = 1 (the empty matrix). Since the recurrence relation is two-step

these values determine f(m) for all m. It is also clear from the definition

(and the inductive formula) that f(2) = 0. Next we give formulas for f(m)

in the even and odd case.

Proposition 1.4.3. If m ≤ 2k is odd then

f(m) =
(2k − 1)!

(2k −m)!

If 0 ≤ m ≤ 2k−1 then

f(2m) =
1

2k

(
2k!

(2k − 2m)!
+

(−1)m
(
2k − 1

)
2k−1!(2m)!

m! (2k−1 −m)!

)

The proof that these formulas satisfy the recurrence relation will be given

at the end of the section in its own subsection. This is because the proof is

long and purely computational, and it would distract us from our final goal

of finding a formula for the components of Bj.
As we said earlier we have the relation

|π0(Bj)| =
f(n− 2j)

(n− 2j)!
.

Using the explicit formula for f given in Proposition 1.4.3 we get an explicit

formula for the number of components of Bj.

Proposition 1.4.4. If n is odd, then

|π0(Bj)| =
1

2k

(
2k

n− 2j

)
,
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and if n is even, then

|π0(Bj)| =
1

2k

((
2k

n− 2j

)
+ (−1)

n−2j
2
(
2k − 1

)(2k−1

n−2j
2

))
.

Also recall that

Ck(SO(n)) =

bn
2
c∐

j=1

Bj.

Summing over j we get the formulas for number of connected components of

Ck(SO(n)) as stated in Corollary 1.0.4, which we will restate here.

Corollary 1.0.4. If n ≤ 2k, the space Ck(SO(n)) has

1

2k

n−1
2∑
j=0

(
2k

n− 2j

)
components when n is odd, and it has

1

2k

n
2∑

m=0

((
2k

n− 2j

)
+ (−1)

n−2j
2
(
2k − 1

)(2k−1

n−2j
2

))
.

components when n is even. If n ≥ 2k − 1 it has 22k−k−1 components.

The fact that the number of components stabilizes after n = 2k−1 follows

both from the fact that the ones for O(n) stabilize at that point, and from the

formulas given above. The value to which they stabilize is easily computed

from either of the formulas.

The components of Ck(SO(3)) had been counted by Torres Giese and

Sjerve in [TGS08] and independently by Adem, Cohen and Gómez in [ACG13]
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using two different approaches. Our formula in the case n = 3 reads:

|π0(Ck(SO(3)))| =
((

2k

3

)
+

(
2k

1

))
1

2k

=

(
2k

3

)
1

2k
+ 1

=
(2k − 1)(2k−1 − 1)

3
+ 1.

Which is precisely the result in both references above. So our approach gives

the known answer in the case n = 3.

Also in [TGS08], Torres-Giese and Sjerve calculated the homeomorphism

type of the components of Ck(SO(3)) which do not contain the identity. In

this case we only have B0 and B1, the latter being the component of the

trivial homomorphism. The space B0 is a union of components of U0 and in

Proposition 1.3.13 we found the homeomorphism type of the components of

U0. It can easily be seen that our result for n = 3 agrees with the result in

[TGS08]. The following example shows that we can now find the cohomology

ring of Ck(O(3)) with coefficients in any field with characteristic 6= 2.

Example 1.4.5. The cohomology ring H∗(Ck(O(3));F ). In this case we only

have U0 and U1 which have
(

2k

3

)
and 2k components respectively. Proposition

1.3.13 tells us that each component of U0 is homeomorphic to O(3)/Z3
2 and

Proposition 1.3.14 tells us that all the components of U1 are homeomorphic

to the component containing the element 1 = (1, . . . , 1) ∈ Ck(O(3)). Lets

call that component Rk,3.

The rational cohomology groups of Rk,3 were computed in [TGS08] as

well as the mod − 2 cohomology ring. The ring structure with coefficients

in a field of characteristic relatively prime to |W | can be computed using

([Bai07], Theorem 4.3):

Theorem 1.4.6. Let G be a connected, compact Lie group, let T be a max-
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imal torus in G and let F be a field with characteristic relatively prime to

|W |, where W is the Weyl Group. Then H∗(Rk,3, F ) ∼= H∗(G/T × T k, F )W .

This theorem applies to connected groups, but note thatRk,3 ⊂ Ck(SO(3))

so we can use G = SO(3) to compute the cohomology. In this case G/T ∼= S2

so

H∗(G/T × T k, F ) ∼= ΛF (y1, . . . , yk)⊗
F [x]

< x2 >
.

Where |x| = 2 and |yi| = 1. The Weyl group is W = Z2 and acts by changing

the sign on each yi and x. So it follows that if F has characteristic 6= 2 we

have

H∗(Rk,3, F ) ∼= (Λeven
F (y1, . . . , yk))⊕

(
Λodd
F (y1, . . . , yk)⊗ x

)
.

So the cohomology ring H∗(Ck(O(3)), F ) is the direct sum of 2k copies of

H∗(Rk,3;F ) and
(

2k

3

)
copies of the cohomology of O(3)/Z3

2
∼= S3/Q8.

1.4.1 The proof of the recursive formula

In this subsection we will prove Proposition 1.4.3, we will show that the

formulas given there satisfy the recurrence relation:

f(m+ 2) =
2k!

(2k − (m+ 1))!
− (m+ 1)× (2k −m)× f(m), (1.1)

described in Proposition 1.4.2 with initial values f(1) = 1 and f(0) = 1.

Since this recurrence relation only depends on the terms two steps before

there is a unique solution given those initial values. We will separate our

analysis into two cases depending on the parity of m. We start with the odd

case.

Proposition 1.4.7. If m ≤ 2k is odd, then

f(m) =
(2k − 1)!

(2k −m)!
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satisfies the recursive equation (1.1) and has initial value f(1) = 1.

Proof. The fact that f(1) = 1 is obvious. Here are the calculations that show

that the recurrence relation is satisfied:

f(m+ 2) =
2k!

(2k − (m+ 1))!
− (m+ 1)× (2k −m)× f(m)

=
2k!

(2k − (m+ 1))!
− (m+ 1)× (2k −m)× (2k − 1)!

(2k −m)!

=
(2k − 1)!

(2k − (m+ 1))!
(2k − (m+ 1))

=
(2k − 1)!

(2k − (m+ 2))!

Now we move on to deal with the even case, which is a little more com-

plicated.

Proposition 1.4.8. If m ≤ 2k−1, then

f(2m) =
1

2k

(
2k!

(2k − 2m)!
+

(−1)m
(
2k − 1

)
2k−1!(2m)!

m! (2k−1 −m)!

)

satisfies the recurrence relation (1.1) and has initial value f(0) = 1.

Proof. First we check the initial value:

f(0) =
1

2k

(
2k!

2k!
+

(2k − 1)2k−1!

2k−1!

)
=

1

2k
(2k)

= 1

as required.
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We will prove the recurrence relation by parts. Let

g(m) =
(−1)m

(
2k − 1

)
2k−1!(2m)!

m! (2k−1 −m)!

and

h(m) =
2k!

(2k − 2m)!
,

then

f(2m) =
1

2k
(h(m) + g(m))

Claim 1. The function g satisfies the recurrence relation:

g(m+ 1) = −(2m+ 1)(2k − 2m)g(m).

Here is the calculation:

g(m+ 1) =
(−1)m+1

(
2k − 1

)
2k−1!(2m+ 2)!

(m+ 1)! (2k−1 −m− 1)!

= −
(−1)m

(
2k − 1

)
2k−1!(2m)!(2m+ 1)(2m+ 2)(2k−1 −m)

m!(m+ 1) (2k−1 −m− 1)!(2k−1 −m)

= −
(−1)m

(
2k − 1

)
2k−1!(2m)!(2m+ 1)(2)(2k−1 −m)

m! (2k−1 −m)!

= −g(m)(2m+ 1)(2k − 2m).

Claim 2. The function h satisfies the recurrence relation:

h(m+ 1) =
(2k)(2k!)

(2k − 2m− 1)!
− (2m+ 1)(2k − 2m)h(m).
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Here is the calculation:

h(m+ 1) =
2k!

(2k − 2(m+ 1))!

=
2k!(2k − 2m− 1)(2k − 2m)

(2k − 2m)!

=

(
2k!

(2k − 2m)!

)(
2k(2k − 2m)− (2m+ 1)(2k − 2m)

)

=
(2k)(2k!)

(2k − 2m− 1)!
− (2m+ 1)(2k − 2m)

(
2k!

(2k − 2m)!

)

=
(2k)(2k!)

(2k − 2m− 1)!
− (2m+ 1)(2k − 2m)h(m).

And now we can finally prove the recurrence relation for f :

f(2m+ 2) =
1

2k
(h(m+ 1) + g(m+ 1))

=
1

2k

(
(2k)(2k!)

(2k − 2m− 1)!
− (2m+ 1)(2k − 2m) (h(m) + g(m))

)

=
2k!

(2k − 2m− 1)!
− (2m+ 1)(2k − 2m)

(
1

2k
(h(m) + g(m))

)

=
2k!

(2k − (2m+ 1))!
− (2m+ 1)(2k − 2m)f(2m).

This completes the proof of Proposition 1.4.3.

Remark 1.4.9. In the odd case, there is a way to avoid the recurrence relation

and calculate f directly as follows. Let D be the set of m× k matrices with
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entries in Z2 and that have all their rows different. Let ρ : D → Zk2 be

the function that sends a matrix to the vector containing the product of its

columns. Note that f(m) is precisely the cardinality of ρ−1(1, . . . , 1). If m

is odd, then changing the signs of all the entries in a column of a matrix

will change the sign of the product of that column. This implies that the

cardinality of ρ−1(x) does not depend on x ∈ Zk2 and so

f(m) =
|D|
|Zk2|

=
2k!

2k(2k −m)!
,

which is exactly the formula in Proposition 1.4.3. However, this doesn’t work

in the case when m is even since changing the sign of all the entries in one

column does not change the sign of the product of the entries in the column.

Hence, we are forced to solve the problem as we did, by solving the recurrence

relation. The fact that, in this case, the fibres of ρ don’t all have the same

size is captured in the formula by the strange correction term that does not

appear in the odd case, I have yet to find the combinatorial meaning of this

term.

1.5 Bounds using Stiefel-Whitney classes can-

not be sharp

In this section we will prove that the Stiefel-Whitney classes cannot distin-

guish all of the components of Ck(O(n)).

As described in Section 1.1 we have a map

B : Ck(O(n))→Map∗(BZk, BO(n)).

The total Stiefel-Whitney class (SW class for short) is a locally constant
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function

w : Map∗(BZk, BO(n))→ H∗(Zk;Z/2Z),

so we get a function

wB : Ck(O(n))→ H∗(Zk;Z/2Z).

This function is locally constant so it is constant on connected components.

In [AC07] Adem and Cohen obtained the bounds stated in Theorem 1.1.4 for

π0(Ck(O(n))) by analyzing the first and second SW classes of the elements

in Ck(O(n)). A natural question following that is if the total SW class

distinguishes all the components of Ck(O(n)), in other words, is the map

wB0 injective? We will use our calculations and some results from [ACC03]

to explain why the answer of this question is “No”.

Given a representation ρ : Zk → O(n) we will write w(ρ) when we really

mean wB0(ρ), this should not cause any confusion. Recall that the total SW

class has the form

w(ρ) = 1 + w1(ρ) + · · ·+ wn(ρ)

where wi(ρ) ∈ H i(Zk;Z/2Z) is the i-th SW class of ρ. Also recall that

any representation ρ : Zk → O(n) splits as a direct sum of 2-dimensional

orientable representations and line bundles. In Lemma 3.1 of [ACC03] it is

shown that twice any line bundle gives an SO(2) representation and that

SO(2) representations have trivial total SW class.

Let ρ ∈ Ck(O(n)). We can write

ρ = Θ1 ⊕ · · · ⊕Θj ⊕ θ1 ⊕ · · · ⊕ θn−2j

where Θi is an SO(2) representation and the θi’s are non-repeating line bun-

dles. This is the same as saying ρ ∈ Uj. In fact, given the description of

the components of Uj we know that the component in which ρ lies is indexed
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by the set {w1(θ1), . . . , w1(θn−2j)} under the bijection between H1(Zk;Z/2Z)

and Zk2 induced by the standard basis {e1, ..., ek} ⊂ H1(Zk;Z/2Z).

The total SW class splits sums as products, we know w(Θi) = 1 and the

only possible non-zero SW class of a line bundle is the first, so we have

w(ρ) = w(θ1) · · ·w(θn−2j) = (1 + w1(θ1)) · · · (1 + w1(θn−2j)).

The total SW class w(ρ) is of the form 1 +α for α ∈ H>0(Zk;Z/2Z). We

know that H∗(Zk;Z/2Z) ∼= ΛZ/2Z(e1, . . . , ek) so H>0(Zk;Z/2Z) has cardinal-

ity 22k−1. Corollary 1.0.2 tells us that if n is large enough then Ck(O(n)) has

exactly the same number of components. So if we want to show that wB0 is

not injective it is enough to show that there exists an α such that 1+α is not

the SW class of any representation. The following follows from ([ACC03],

Proposition 3.4):

Proposition 1.5.1. Let ρ : Zk → O(n) be a sum of line bundles. If w1(ρ) =

w2(ρ) = 0 then w(ρ) = 1.

This tells us that if k ≥ 3 then there are many α ∈ H>0(Zk;Z/2Z) such

that 1 +α is not the SW class of any representation. Hence we’ve shown the

following:

Corollary 1.5.2. If k ≥ 3 and n ≥ 2k−1 then the map wB0 is not injective,

or in other words, the total Stiefel-Whitney class does not distinguish all the

components of Ck(O(n)).

We can actually find explicit pairs of different components with equal

SW class. By our description of components, this is the same as finding 2

different subsets {x1, . . . , xi} and {y1, . . . , yi′} of H1(Zk;Z/2Z) such that

i∏
j=1

(1 + xj) =
i′∏
j=1

(1 + yj). (1.2)
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This correspondence occurs because we can easily find line bundles which

have as first SW class any specified element in H1(Zk,Z/2Z). So if we let

θ1, . . . , θi be line bundles such that w1(θj) = xj and θ′1, . . . , θ
′
i′ be line bundles

such that w1(θ′j) = yj and construct

ρ = θ1 ⊕ · · · ⊕ θi

and similarly ρ′, then ρ and ρ′ lie in different components of Ck(O(n)) since

the subsets {x1, . . . , xi} and {y1, . . . , yi′} are different, but w(ρ) = w(ρ′) by

equation 1.2.

Note that if x ∈ H1(Zk;Z/2Z) then x2 = 0 and so (1 + x)2 = 1. So it is

actually enough to find a subset A ⊂ H1(Zk;Z/2Z) such that∏
x∈A

(1 + x) = 1.

And then for every B ⊂ A the components corresponding to B and A − B
will have the same SW class. The following proposition shows that A =

H1(Zk;Z/2Z) works.

Proposition 1.5.3. If k ≥ 3 then∏
x∈H1(Zk;Z/2Z)

(1 + x) = 1.

Proof. The proof is by induction on k. Recall that we know thatH1(Zk;Z/2Z) ∼=
ΛZ/2Z(e1, . . . , ek). The case k = 3 is a direct computation, which we will omit.
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Suppose the proposition is true for k and let A = H1(Zk;Z/2Z)∪ {0}, then:∏
x∈H1(Zk+1;Z/2Z)

(1 + x) =
∏
x∈A

(1 + x)
∏
x∈A

(1 + x+ ek+1)

=
∏
x∈A

(1 + x+ ek+1)

=
∏
x∈A

(1 + x) + ek+1

∑
x∈A

 ∏
y∈A−{x}

(1 + y)


= 1 + ek+1

∑
x∈A

(1 + x) = 1.

Where the last sum is equal to zero since each generator appears 2k−1 times

and 1 appears 2k times.

This shows that if k ≥ 3 and n ≥ 2k then for every subsetB ⊂ H1(Zk;Z/2Z)

the components of Ck(O(n)) corresponding to B and to H1(Zk;Z/2Z) − B
have the same SW class.

1.6 A bound for the number of components

of Ck(Spin(n))

In his section we will use the second SW class and our results about the

components of Ck(SO(n)) to find a lower bound for the number of connected

components of Ck(Spin(n)) for sufficiently large values of n. We will prove

Corollary 1.0.6, which we restate here:

Corollary 1.0.6. If n ≥ 2k − 1 then Ck(Spin(n)) has at least 22k−k−1−(k
2)

connected components.

Here the Lie group Spin(n) is the universal cover of SO(n), we will call

that covering map s : Spin(n)→ SO(n).

42



In [KS00], Kac and Smilga showed that the space of commuting triples in

Spin(n) is disconnected if n ≥ 7. Notice that this fact can be deduced from

our bound as well. So this can be consider a generalization of their result.

It is known that a homomorphism ρ : Zk → SO(n) lifts to Spin(n) if and

only if w2(ρ) = 0. In other words, in the following sequence:

Ck(Spin(n))
s∗ // Ck(SO(n))

w2 // H2(Zk;Z/2Z) ,

we have that Im(s∗) = w−1
2 (0). Let K = w−1

2 (0). Since K is the continuous

image of Ck(Spin(n)) it follows that |π0(Ck(Spin(n)))| ≥ |π0(K)|. Corollary

1.0.6 then follows from the next proposition:

Proposition 1.6.1. If n ≥ 2k − 1 then |π0(K)| ≥ 22k−k−(k
2).

Proof. As we said before, w2 is locally constant so it induces a map

w2 : π0(Ck(SO(n)))→ H2(Zk;Z/2Z)

and π0(K) is the inverse image of 0 under this map.

The cohomology group H2(Zk;Z/2Z) is a Z/2Z-vector space. If n is

large enough we can give π0(Ck(SO(n))) a structure of a Z/2Z-vector space

as described in Proposition 1.6.2 in such a way that w2 is linear. Then

|Im(w2)| × |Ker(w2)| = |π0(Ck(SO(n)))|.

The proposition then follows from the inequality:

|Im(w2)| ≤ |H2(Zk;Z/2Z)| = 2(k
2),

and the equalities: |Ker(w2)| = |π0(K)|, |π0(Ck(SO(n)))| = 22k−1−k.

Proposition 1.6.2. If n ≥ 2k− 1 then π0(Ck(SO(n))) admits a structure of

Z/2Z-vector space for which w2 is linear.
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Proof. Recall that for n ≥ 2k−1 the map SO(n) ↪→ SO(n+1) induces an

isomorphism on π0 and so we get an isomorphism between π0(Ck(SO(n))) and

π0(Ck(SO)). We will define the Z/2Z-vector space structure on π0(Ck(SO)).

Given x ∈ Ck(SO) we denote the component containing x by [x]. Let

α, β ∈ Ck(SO). We know that α factors through some SO(n) and β factors

through some SO(m) so we can define α + β to be the composition

Zk α⊕β // SO(n)⊕ SO(m) // SO(n+m) // SO

Given [α], [β] ∈ π0(Ck(SO)) we can define [α] + [β] := [α + β]. Strictly

speaking α+β depends on the choice of m and n but by our description of the

connected components of Hom(Zk, SO) we know that [α + β] only depends

on the non repeating line bundles in the decomposition of α ⊕ β, and that

does not depend on any choices so the operation is well defined.

Another way to think about the same operation is the symmetric differ-

ence of sets. We know that each component of Ck(SO) corresponds uniquely

to some subset of Zk2. Given two such subsets A,B ⊂ Zk2 we can define

A+B := A4B, where 4 represents the symmetric difference.

This gives Ck(SO) the structure of an abelian group on which every

element is 2 torsion. In other words, this gives Ck(SO) the structure of

a Z/2Z-vector space.

It remains to see that w2 : Ck(SO)→ H2(Zk;Z/2Z) is linear.

Given [α], [β] ∈ π0(Ck(SO)) we know that

w2([α] + [β]) = w2([α + β]) = w2(α⊕ β)

= w1(α)w1(β) + w2(α) + w2(β)

= w2(α) + w2(β) = w2([α]) + w2([β])

Here we remember that w1 is zero for SO representations. This finishes

the proof of Proposition 1.6.2 and completes the proof of Proposition 1.6.1.

44



Chapter 2

Spaces of homomorphisms from

central extensions of free

groups by free groups into

SU(2).

In the previous chapter we talked about spaces of the form Hom(π,G) for

the particular case when π = Zk and then we specialized to the cases G =

O(n), SO(n), Spin(n). In this chapter, we will explore what happens when

we try to take a slightly more general source group π. However, this comes

at the cost of having to specialize G to a simpler group, in this case, SU(2).

We will study the space of group homomorphisms Hom(Γ, SU(2)), where

Γ is a central extension of a free abelian group by a free abelian group. We

provide a detailed analysis of this space capable of computing its cohomol-

ogy and path components in terms of the cohomology class classifying the

extension.

Historically, SU(2) has been the first interesting candidate for explicit cal-

culations when talking about spaces of homomorphisms, so it makes sense to

start there when we are trying to generalize the source group. The cohomol-
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ogy of the space Ck(SU(2)) = Hom(Zk, SU(2)) was first studied in [AC07]

for k = 2, 3 and in [Cra11] and [BJS11] for general k. In [AC07] Adem and

Gómez studied topological invariants of the space Hom(A,G), where A is any

abelian group and G is in a class of compact Lie groups containing SU(2),

in particular they obtain the number of its connected components. We will

use these results to do our analysis.

Throughout this chapter, Γ will be a central extension of the form

0→ Zr → Γ→ Zk → 0.

These extensions are classified by elements of H2(Zk;Zr), so by r-tuples of

the form

ω = (ω1, . . . , ωr) ∈ H2(Zk;Zr) ∼=
(
H2(Zk;Z)

)r
,

where

ωl =
∑

1≤i<j≤k

βli,je
∗
i ∧ e∗j ∈ H2(Zk;Z).

In this description, {ei}ki=1 are the standard generators of Zk, {e∗i }ki=1 are the

dual generators of the cohomology ring H∗(Zk;Z) and βli,j ∈ Z. The group

Γ corresponding to the class ω is given in terms of generators and relations

by

Γ = 〈E1, . . . , Ek, X1, . . . , Xr : [Ei, Ej] =
r∏
l=1

X
βl
i,j

l , Xi is central〉.

We chose this type of groups in an attempt to generalize the source group

from the abelian case in a way where we can still exploit our knowledge of

the spaces Ck(SU(2)). These groups proved to be good candidates as the

next step following the understanding of the spaces of commuting tuples.

One fundamental difference between Hom(Γ, SU(2)) and Ck(SU(2)) is

that the latter is always path connected and the former may not. In fact,

there are two kinds of elements of Hom(Γ, SU(2)): the ones that factor
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though the abelianization of Γ and the ones that do not. This gives a de-

composition into disjoint subspaces

Hom(Γ, SU(2)) = Hom(Γ/[Γ,Γ], SU(2)) ∪RΓ,

where RΓ is the space of all the homomorphisms that do not factor through

the abelianization. The space Hom(Γ/[Γ,Γ], SU(2)) is compact as it is a

closed subspace of SU(2)k+r, and it will be shown that RΓ is also compact,

so this is actually a decomposition as coproduct.

The abelianization of Γ can be obtained from the homology exact se-

quence of the extension

H2(Zk) φ // H1(Zr) // H1(Γ) // H1(Zk) // 0 .

Since the last nonzero map splits we see that

H1(Γ) ∼= Γ/[Γ,Γ] ∼= Zk ⊕ coker(φ),

where

φ : H2(Zk)→ H1(Zr)

is given in matrix notation by:

φ =


β1

1,2 β1
1,3 · · · β1

k−1,k
...

...

βr1,2 βr1,3 · · · βrk−1,k

 .

The cokernel of this matrix can be computed using its Smith normal form to

be

coker(φ) ∼= Z/a1Z⊕ · · · ⊕ Z/at ⊕ Zr−t.

Where

ai =
di(φ)

di−1(φ)
,
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di(φ) is the greatest common divisor of the i× i minors of φ and t is the rank

of φ viewed as a transformation between Q-vector spaces.

In [AG11], Adem and Gómez determine the number of path connected

components of Hom(Zm⊕A,G) in terms of the orbits of the Weyl group action

on Hom(A, T ), where T is a maximal torus of G. In the case G = SU(2)

their techniques can be used to find the homeomorphism type of each of

those components. This will be discussed in Section 2.1, where we prove the

following theorem:

Theorem 2.0.3. Let A = Z/q1Z ⊕ · · · ⊕ Z/qnZ be a finite group, where

q1, . . . , qr are all even and qr+1, . . . , qn are all odd, then the space Hom(Zk ⊕
A, SU(2)) has 2r path connected components homeomorphic to Ck(SU(2))

and q1q2···qn−2r

2
path connected components homeomorphic to S2 × (S1)k.

This theorem completely describes the subspace Hom(Γ/[Γ,Γ], SU(2)).

The rest of the chapter is devoted to the understanding of RΓ. In Section 2.3

we explain that this subspace only depends on the reduction modulo 2 of ω.

Namely, we prove:

Proposition 2.0.4. Let Γ be the quotient of Γ induced by Zr → (Z/2Z)r as

in the diagram

0 // Zr //

��

Γ //

��

Zk //

��

0

0 // (Z/2Z)r // Γ // Zk // 0.

Let RΓ the subspace of Hom(Γ, SU(2)) of homomorphisms that do not factor

though the abelianization of Γ, then

RΓ
∼= RΓ.

In Section 2.3 we cover the case when the kernel of the extension has rank

1 (r = 1) and show that, in this case, RΓ is either empty or 2k−2 copies of
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SO(3) depending on the rank of the reduction of ω modulo 2.

Section 2.4 deals with the case when the kernel has rank greater than

1 (r > 1). We explain how the space RΓ is a disjoint union of subspaces

homeomorphic to RΓ(v) , where v ∈ (Z/2Z)r and Γ(v) is a group like the ones

covered in Section 2.3. This means that RΓ is a disjoint union of copies of

SO(3) in this general case as well. For the final statement we use an auxiliary

function t which is defined in Section 2.4.

Theorem 2.0.5. Let Γ be the central extension corresponding to the class

ω ∈ H2(Zk;Zr), then RΓ is homeomorphic to t(ω)× 2k−2 copies of SO(3).

Since the cohomologies of Ck(SU(2)), S2×(S1)k and SO(3) are all known,

and our description of Hom(Γ, SU(2)) is in terms of these spaces, we can use

these results to calculate the cohomology groups of Hom(Γ, SU(2)) and, in

particular, its connected components.

2.1 The spaces Hom(Zn ⊕ A, SU(2))

In this section, we will use the results from [AG11] and [BJS11] to com-

pute the cohomology of the spaces Hom(Zn ⊕A, SU(2)), where A is a finite

abelian group. When A is empty this is the space of ordered commuting

n−tuples in SU(2). In [AC07] Adem and Cohen found a stable splitting for

the space of commuting tuples, and then Crabb in [Cra11] and Baird, Jeffrey

and Selick in [BJS11] independently found the homotopy type of the direct

summands. This description can be used to explicitly calculate the cohomol-

ogy of the space of commuting elements in SU(2). In [AG11], Adem and

Gómez calculated the number of path-connected components of the space

Hom(Zn⊕A,G) for G in a class of compact lie groups containing SU(2). In

the case of SU(2), we will show how their techniques can be used to calculate

not only the number of path-connected components but also the cohomology

groups of all these components.
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We begin by recalling the known results for the case when A is empty.

The stable splitting of the commuting n−tuples in SU(2) given in [BJS11]

is as follows:

Σ(Cn(SU(2))) ' Σ

(
n∨

m=1

(
n

m

)
ΣS(mL)

)
, (2.1)

where

ΣS(mL) '


S3 if m = 1,

S2 ∨ (RP 4/RP 2) if m = 2,

ΣRP 2 ∨ (RP k+2/RP k−1) if m > 2.

(2.2)

Although an explicit formula for the cohomology groups of Cn(SU(2))

was not given in [BJS11], one can directly get it from (2.1) and (2.2). The

cohomology groups are:

Hk(Cn(SU(2));Z) ∼=



Z if k = 0,

0 if k = 1,

Z(n
2) if k = 2,

Zn ⊕ (Z/2Z)2n−1−n−(n
2) if k = 3,

Z(n
k) ⊕ (Z/2Z)(

n
k−1)+( n

k−2) if k ≥ 4 even,

Z( n
k−2) if k ≥ 5 odd.

(2.3)

Now we move on to the case when A is not empty. For this case, we will

use the approach that Adem and Gómez used in [AG11]. For this section

only, we will use the shorthand notation X := Hom(Zn ⊕ A, SU(2)) and

G := SU(2).

If A has a set of generators of size i then there is an inclusion X ⊂
Hom(Zn+i, G) induced by the surjection Zn+i → Zn ⊕ A. The conjugation

action of G on Hom(Zn+i, G) restricts to a G action on X. It was shown in

[AG11] that the isotropy groups of the G-action on X are connected and of

maximal rank, that is, for every x ∈ X the isotropy group Gx is connected

and we can find a maximal torus Tx in G such that Tx ⊂ Gx.
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Pick a maximal torus T in G, let NG(T ) be its normalizer and W =

NG(T )/T be the Weyl group of G. Consider the map

φ : G×XT → X

(g, x) 7→ gx.

As shown in [AG11], the fact that G acts with maximal rank isotropy implies

that this map is surjective. There is a right NG(T )-action on G×XT given

by (g, x) · n = (gn, n−1x) and φ is invariant under this action, so we get an

induced map on the quotient

ϕ : G×NG(T ) X
T = G/T ×W XT → X

[g, x] 7→ gx.

In this case XT = Hom(Zn ⊕ A, T ) = T n × Hom(A, T ). The following

lemma tells us that the map ϕ is injective in a large subset of its domain.

Lemma 2.1.1. Let f ∈ Hom(Zn⊕A, T ). Assume that there exists x ∈ Zn⊕A
such that f(x) is a regular1 element in G, then ϕ−1(ϕ([g, f ])) = {[g, f ]} for

all g ∈ G.

Proof. Let g ∈ G and assume there exists [g′, f ′] ∈ G/T ×W Hom(Zn⊕A, T )

such that ϕ([g′, f ′]) = ϕ([g, f ]). This implies that gfg−1 = g′f ′g′−1 and, in

particular, that gf(x)g−1 = g′f ′(x)g′−1, so

f(x) = (g−1g′)f ′(x)(g−1g′)−1 ∈ (g−1g′)T (g−1g′)−1.

Since f(x) is regular this implies that T = (g−1g′)T (g−1g′)−1 and hence

g−1g′ ∈ NG(T ), and since (g, f) · (g−1g′) = (g′, f ′) this proves that [g′, f ′] =

[g, f ] as required.

1Recall that an element in a Lie Group is regular if it is in exactly one maximal torus.
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Remark 2.1.2. The Lemma is true for a general compact Lie group G, but

note that in our case, G = SU(2), the hypothesis on f can be stated as “the

image of f is not contained in {±1}” since ±1 are the only 2 elements of

SU(2) that are not regular.

By [AG11, Corollary 3.4] the number of path connected components of X

is equal to the number of different orbits of the action of W on Hom(A, T ).

Notice that Hom(A, T ) is a finite set. If o ⊂ Hom(A, T ) is a W -orbit we

will denote the component corresponding to o as Xo. If 1 is the trivial

homomorphism then X{1} is homeomorphic to Cn(SU(2)).

In our case the W = Z/2Z-action on T = S1 is given by complex conju-

gation. The only fixed points of this action are {±1}. Given f ∈ Hom(A, T )

there are only two possibilities: either W = Z/2Z acts trivially on f or it

acts freely on f . Since the only fixed points of the W -action on T are {±1}
then W will act trivially on f precisely when f(A) ⊂ {±1}. In this case the

W -orbit of f is only {f} and we have the surjection

ϕ : G/T ×W (T n × {f})→ X{f}

which is just a shift by f of

ϕ : G/T ×W (T n × {1})→ X{1}
∼= Cn(SU(2))

and so X{f} is homeomorphic to Cn(SU(2)).

If f(A) 6⊂ {±1} then W acts freely on f and its orbit is {f, f̄}. In this

case, W acts freely on G/T ×T n×{f, f̄} interchainging the two components,

hence G/T ×W (T n × {f, f̄}) ∼= G/T × T n. Furthermore, since the image of

f contains regular elements of G the map

ϕ : G/T ×W (T n × {f, f̄})→ X{f,f̄}

is a homeomorphism by Lemma 2.1.1 together with the fact that ϕ is sur-
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jective. This shows that X{f,f̄} is homeomorphic to G/T × T n. We can now

substitute G = SU(2) and T = S1 to get that X{f,f̄} is homeomorphic to

S2 × (S1)n. We have proved then the following lemma:

Lemma 2.1.3. Let T ⊂ SU(2) be a maximal torus, W = Z/2Z the Weyl

group of SU(2) and o ⊂ Hom(A, T ) a W -orbit, then the component of

Hom(Zn⊕A, SU(2)) corresponding to o is is homeomorphic to Cn(SU(2)) if

o is a point and it is homeomorphic to S2 × (S1)n if o is not a point.

The only thing left to determine is how many W -orbits there are of each

type. We do this in the next Lemma.

Lemma 2.1.4. Let A = Z/q1Z⊕ · · · ⊕ Z/qkZ, where q1, . . . , qr are all even

and qr+1, . . . , qk are all odd, then Hom(A, T ) has 2r trivial W -orbits and
q1q2···qk−2r

2
nontrivial W -orbits.

Proof. Since every orbit has either one or two points it is enough to find the

fixed points of the W -action. Notice Hom(A, T ) = Z/q1Z⊕· · ·⊕Z/qkZ where

we identify Z/qZ ⊂ S1 = T as the q-th roots of the unity. The W -action is

complex conjugation and the only fixed points of this action are the ones on

which every entry is either 1 or −1. The only entries that could have a value

of −1 are the first r. This proves that there are exactly 2r trivial orbits.

The remaining q1q2 · · · qk− 2r points are paired up in nontrivial orbits of size

2.

Putting together Lemmas 2.1.3 and 2.1.4 we get the main theorem of this

section.

Theorem 2.1.5. Let A = Z/q1Z ⊕ · · · ⊕ Z/qkZ be a finite group, where

q1, . . . , qr are all even and qr+1, . . . , qk are all odd, then the space Hom(Zn ⊕
A, SU(2)) has 2r path connected components homeomorphic to Cn(SU(2))

and q1q2···qk−2r

2
path connected components homeomorphic to S2 × (S1)n.
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This theorem, together with the formulas (2.3), can calculate the co-

homology groups of Hom(Zn ⊕ A, SU(2)) explicitly for all n and A. As a

corollary, we know exactly how many connected components these spaces

have.

Corollary 2.1.6. Let A = Z/q1Z ⊕ · · · ⊕ Z/qkZ, where q1, . . . , qr are all

even and qr+1, . . . , qk are all odd, then the space Hom(Zn ⊕ A, SU(2)) has
q1q2···qk+2r

2
path connected components.

This corollary could have been deduced from [AG11, Corollary 3.4] and a

simple calculation like the one in Lemma 2.1.4, but Theorem 2.1.5 gives an

explicit description of the homeomorphism type of every component.

2.2 The reduction modulo 2

In the last section we completely described the subspace of Hom(Γ, SU(2))

of homomorphisms that factor through the abelianization of Γ, from now

on we will be focused on describing RΓ, the space of homomorphisms with

non-abelian image.

In this section, we will show that if ω is the classifying class of the ex-

tension, then RΓ only depends on the reduction of ω modulo 2. This follows

from the easy but crucial fact about SU(2), as we will explain.

Proposition 2.2.1. The center of any non-abelian subgroup of SU(2) is

{±1}.

Recall that Γ is given in terms of generators and relations by:

Γ = 〈E1, . . . , Ek, X1, . . . , Xr : [Ei, Ej] =
r∏
l=1

X
βl
i,j

l , Xi is central〉.

Given a homomorphism f : Γ → SU(2) we let Ai = f(Ei) and Bi = f(Xi).

From the relations in Γ we know that the matrices Bi are in the center of
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f(Γ). In the particular case when f ∈ RΓ, we know that f(Γ) is a non-abelian

subgroup of SU(2) and hence its center is {±1} by Proposition 2.2.1. This

implies that if f ∈ RΓ, then f factors through the quotient Γ induced by

Zr → (Z/2Z)r:

0 // Zr //

��

Γ //

��

Zk //

��

0

0 // (Z/2Z)r // Γ // Zk // 0.

The cohomology class in H2(Zk; (Z/2Z)r) classifying Γ is simply the reduc-

tion of ω modulo 2. We summarize this in the following proposition:

Proposition 2.2.2. Let Γ be the quotient of Γ induced by Zr → (Z/2Z)r and

let RΓ the subspace of Hom(Γ, SU(2)) of homomorphisms that do not factor

though the abelianization of Γ, then

RΓ
∼= RΓ.

Note that this proposition is not saying that Hom(Γ, SU(2)) is homeo-

morphic to Hom(Γ, SU(2)), since Γ and Γ may have different abelianizations.

We will use ω to denote the reduction of ω modulo 2. Proposition 2.2.2 has

the two following direct corollaries.

Corollary 2.2.3. If Γ′ is the central extension corresponding to the class

ω′ ∈ H2(Zk;Zr), and ω′ = ω, then RΓ′ is homeomorphic to RΓ.

Proof. This follows from the fact that Γ ∼= Γ′ whenever ω = ω′.

Corollary 2.2.4. If ω = 0, then RΓ is empty.

Proof. In this case, Γ is the trivial extension and hence abelian. This implies

RΓ = ∅.
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This means that for the purposes of studying RΓ we can restrict ourselves

to the simpler case of extensions of the form

0→ (Z/2Z)r → Γ→ Zk → 0.

2.3 Extensions with center of rank 1.

In this section we will finish the description of Hom(Γ, SU(2)) for the special

case when Γ is a central extension of the form

0→ Z→ Γ→ Zk → 0.

The cohomology class of this extension has the form

ω =
∑

1≤i<j≤k

βi,je
∗
i ∧ e∗j ∈ H2(Zk;Z).

Recall that we have the decomposition

Hom(Γ, SU(2)) = Hom(Γ/[Γ,Γ], SU(2)) ∪RΓ,

and that by the previous section RΓ
∼= RΓ. We will begin by describing

Hom(Γ/[Γ,Γ], SU(2)) more explicitly.

The abelianization of Γ in this case is

Γ/[Γ,Γ] ∼= Zk ⊕ Z/mZ,

where m is the maximum common divisor of the βi,j’s. We can use Theorem

2.1.5 to give an explicit description of the space Hom(Γ/[Γ,Γ], SU(2)). There

are 3 cases that depend on the value of m:
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Corollary 2.3.1. If m = 0, then

Hom(Γ/[Γ,Γ], SU(2)) ∼= Ck+1(SU(2))

if m 6= 0 and m is even, then

Hom(Γ/[Γ,Γ], SU(2)) ∼= Ck(SU(2))
⊔

Ck(SU(2))
⊔m−2

2⊔
i=1

S2 × (S1)k


if m is odd, then

Hom(Γ/[Γ,Γ], SU(2)) ∼= Ck(SU(2))
⊔m−1

2⊔
i=1

S2 × (S1)k

 .

All that is left then is to describe RΓ. We have seen in Proposition

2.2.2 that RΓ is determined by reduction of ω modulo 2. So, by the the

skew-symmetric bilinear form ω ∈ H2(Zk;Z/2Z), and such bilinear forms

are determined by their rank. Furthermore, the following proposition follows

directly from [RV96, Proposition 4.1]:

Proposition 2.3.2. There exists a Z-module basis g1, . . . , gk of Zk such that

ω = g∗1 ∧ g∗2 + · · ·+ g∗2m−1 ∧ g∗2m

where 2m ≤ n.

This means that by changing basis on Zk we may assume that

ω = e∗1 ∧ e∗2 + · · ·+ e∗2m−1 ∧ e∗2m. (2.4)

The number 2m is called the rank of ω.

We are now ready for the main theorem of this section.
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Theorem 2.3.3. Let ω be the reduction of ω modulo 2 and let 2m be the

rank of ω, then the space RΓ is homeomorphic to the disjoint union of 2k−2

copies of SO(3) if m = 1, and it is empty otherwise.

Before proving Theorem 2.3.3 we must prove a preliminary result about

the space of anti-commuting pairs in SU(2).

Proposition 2.3.4. The space

Y := {(A1, A2) ∈ SU(2)× SU(2) : [A1, A2] = −Id}

of anti-commuting pairs in SU(2) is homeomorphic to SO(3).

Proof. The pairs of anti-commuting elements in SU(2) are actually unique

up to conjugation, this can be seen using [BFM02, Proposition 4.1.1] or by

an easy direct calculation. In other words, the (diagonal) conjugation action

of SU(2) on Y is transitive, which implies that

Y ∼= SU(2)/Z

where Z is the stabilizer of any element (A1, A2) ∈ Y . This stabilizer must be

{±Id} by Proposition 2.2.1 since A1 and A2 do not commute, and therefore

Y ∼= SU(2)/{±1} ∼= SO(3)

as claimed.

Now we are ready to prove Theorem 2.3.3.

Proof of Theorem 2.3.3. We first prove that if m ≥ 2 then RΓ is empty.

We may assume ω is as in (2.4) and m > 1 (in particular this implies that

k ≥ 4). Assume for a contradiction that f ∈ RΓ. Let Ai = f(Ei), since we

are assuming (2.4) we know that A1 commutes with A3 and A4, and that

these two do not commute with each other. By Proposition 2.2.1 this implies
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that A1 is equal to ±Id, however, [A1, A2] = −Id which is a contradiction.

This proves that if m > 1, then RΓ is empty.

Now we assume that m = 1 and that ω = e∗1 ∧ e∗2. Given f ∈ RΓ we let

Ai = f(Ei) ∈ SU(2), for each i > 2 we have that Ai commutes with A1 and

A2, and these two do not commute, which means that Ai = ±Id. In other

words we have that:

RΓ
∼= {(A1, A2,±Id, . . . ,±Id) ∈ SU(2)k : [A1, A2] = −Id}

∼= {(A1, A2) ∈ SU(2)2 : [A1, A2] = −Id} × {±Id}k−2

∼=
2k−2⊔
i=1

SO(3).

The last homeomorphism follows from Proposition 2.3.4.

Notice that this in particular shows that RΓ is compact, so we have that

the decomposition

Hom(Γ, SU(2)) ∼= Hom(Γ/[Γ,Γ], SU(2)) tRΓ

is in fact a decomposition as a coproduct. This decomposition, Theorem

2.3.3, Corollary 2.3.1 and equation (2.3) are all the pieces we need to find the

cohomology groups of the space Hom(Γ, SU(2)) in the case we are considering

now. For the easy particular case when k = 2 we can use all this to get a

neat description of the space Hom(Γ, SU(2)):

Corollary 2.3.5. Let Γ be the extension corresponding to the cohomology

class βe∗1 ∧ e∗2 ∈ H2(Z2;Z), then

Hom(Γ, SU(2)) ∼=

{
Hom(Γ/[Γ,Γ], SU(2)) if β is even,

Hom(Γ/[Γ,Γ], SU(2))
⊔
SO(3) if β is odd.
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Note that, in this case, the abelianization of Γ is simply Z2 ⊕ Z/βZ, so

we can use Corollary 2.3.1 and (2.3) to easily find the cohomology groups of

Hom(Γ, SU(2)) in this case. In particular, we can calculate the number of

path connected components.

Corollary 2.3.6. Let Γ be the extension corresponding to the cohomology

class βe∗1 ∧ e∗2 ∈ H2(Z2;Z), then

|π0(Hom(Γ, SU(2)))| =


1 if β = 0,
β+2

2
if β 6= 0 is even,

β−1
2

+ 2 if β is odd.

As an example, we calculate the cohomology groups of the space of ho-

momorphisms from the Heisenberg group to SU(2):

Example 2.3.7. The Heisenberg group H fits in the extension

0→ Z→ H → Z2 → 0

which corresponds to the class e∗1 ∧ e∗2 ∈ H2(Z2,Z). In terms of generators

and relations it is given by:

H = 〈E1, E2, X : [E1, E2] = X,X is central〉.

The abelianization of H is Z2 and so we have a decomposition

Hom(H,SU(2)) ∼= C2(SU(2))
⊔

SO(3).
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The cohomology groups in this case are given by:

H i(Hom(H,SU(2));Z) ∼=



Z⊕ Z if i = 0,

0 if i = 1,

Z⊕ Z/2Z if i = 2,

Z⊕ Z⊕ Z if i = 3,

Z/2Z if i = 4,

0 if i ≥ 5.

The quotient SU(2)/{±Id} is homeomorphic to SO(3), and the quotient

map SU(2)→ SO(3) induces a map ρ : Hom(H,SU(2))→ Hom(Z2, SO(3)).

The reason ρ lands on Hom(Z2, SO(3)) is because if f ∈ RH then f(X) =

±Id, which implies (ρf)(X) = Id so ρf factors through the abelianiza-

tion of H. It was independently shown in [ACG13], [Roj13] and [TGS08]

that the space Hom(Z2, SO(3)) has exactly two components, the component

containing the trivial homomorphism and one component homeomoprhic to

SO(3)/(Z/2Z)2. We know that C2(SU(2)) is connected so ρ(C2(SU(2))) is

contained in the component of Hom(Z2, SO(3)) which contains the trivial

homomorphism. The component of Hom(H,SU(2)) that is homeomorphic

to SO(3) gets mapped under ρ to the component of Hom(Z2, SO(3)) that is

homeomorphic to SO(3)/(Z/2Z)2, ρ is simply the quotient map.

2.4 The general case.

We will now go back to the general case and investigate Hom(Γ, SU(2)) when

Γ is a central extension of the form

0→ Zr → Γ→ Zk → 0
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with classifying cohomology class

ω = (ω1, . . . , ωr) ∈ H2(Zk;Zr) ∼=
(
H2(Zk;Z)

)r
,

where

ωl =
∑

1≤i<j≤k

βli,je
∗
i ∧ e∗j ∈ H2(Zk;Z).

Here, {ei}ki=1 are the standard generators of Zk, {e∗i }ki=1 are the generators of

the cohomology ring H∗(Zk;Z) and βli,j ∈ Z. Such group Γ is given in terms

of generators and relations by

Γ = 〈E1, . . . , Ek, X1, . . . , Xr : [Ei, Ej] =
r∏
l=1

X
βl
i,j

l , Xi is central〉.

As before, we have a decomposition into subspaces

Hom(Γ, SU(2)) = Hom(Γ/[Γ,Γ], SU(2)) ∪RΓ,

and it is enough to understand each of those subspaces. As mentioned in the

beginning of this chapter, the abelianization of Γ can be obtained via the

exact sequence

H2(Zk) φ // H1(Zr) // H1(Γ) // H1(Zk) // 0 ,

we obtain that H1(Γ) ∼= Γ/[Γ,Γ] ∼= Zk ⊕ coker(φ), where

φ : H2(Zk)→ H1(Zr)
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is given in matrix notation by:

φ =


β1

1,2 β1
1,3 · · · β1

k−1,k
...

...

βr1,2 βr1,3 · · · βrk−1,k

 .

The cokernel of this matrix can be computed using its Smith normal form to

be

coker(φ) ∼= Z/a1Z⊕ · · · ⊕ Z/at ⊕ Zr−t.

Where

ai =
di(φ)

di−1(φ)
,

di(φ) is the greatest common divisor of the i × i minors of φ and t is the

rank of φ viewed as a transformation between Q-vector spaces. After calcu-

lating the abelianization, we can use the results of Section 2.1 to describe

Hom(Γ/[Γ,Γ], SU(2)). All that is left to do is to describe RΓ.

We have seen in Section 2.2 that RΓ is homeomorphic to RΓ, where Γ is

the reduction of Γ induced by Zr → (Z/2Z)r. We can break down RΓ into

pieces by considering the restriction map

res : Hom(Γ, SU(2))→ Hom((Z/2Z)r, SU(2))

induced by the inclusion (Z/2Z)r ⊂ Γ. Since the only elements of order 2

in SU(2) are ±Id the space Hom((Z/2Z)r, SU(2)) can be identified with

Hom((Z/2Z)r,Z/2Z) ∼= (Z/2Z)r. Since this is a discrete set, the inverse

images under res of the elements in (Z/2Z)r induce a decomposition of the

space Hom(Γ, SU(2)) into closed and open subspaces. This decomposition

induces a decomposition of RΓ into closed and open subspaces by defining,

for each v ∈ (Z/2Z)r, the subsets

R
(v)

Γ
:= RΓ ∩ res−1(v).
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We have argued then the following Proposition:

Proposition 2.4.1. There is a disjoint union decomposition

RΓ =
⊔

v∈(Z/2Z)r

R
(v)

Γ
.

The description of these subsets can be made explicit as follows: a homo-

morphism f ∈ Hom(Γ, SU(2)) is a choice of matrices Ai for i ∈ {1, . . . , k}
and Bi = ±Id for i ∈ {1, . . . , r} such that for all i, j:

[Ai, Aj] =
r∏
l=1

B
βl
i,j

l (2.5)

For every v = (v1, . . . , vr) ∈ (Z/2Z)r we can describe R
(v)

Γ
by

R
(v)

Γ
= {f ∈ RΓ : Bi = (−1)viId}.

Given Proposition 2.4.1, to understand RΓ, we only need to understand

R
(v)

Γ
for each v ∈ (Z/2Z)r. Recall that we can view v as a homomorphism

v : (Z/2Z)r → Z/2Z

so v induces a map

v∗ : H2(Zk; (Z/2Z)r)→ H2(Zk;Z/2Z).

Definition 2.4.2. Given v ∈ (Z/2Z)r we define Γ(v) to be the extension

corresponding to the cohomology class

ω(v) := v∗(ω) ∈ H2(Zk;Z/2Z).
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Explicitly, the cohomology class ω(v) is given by

ω(v) =
∑

1≤i<j≤n

β
(v)
i,j e

∗
i ∧ e∗j ∈ H2(Zn;Z/2Z),

where the coefficients β
(v)
i,j are given in terms of the coefficients of ω, and v

as

β
(v)
i,j =

r∑
l=1

vlβli,j ∈ Z/2Z.

Note that if f ∈ R(v)

Γ
, then the relations (2.5) simplify to:

[Ai, Ai] =
r∏
l=1

(−1)vlβ
l
i,jId

= (−1)
∑r

l=1 vlβ
l
i,jId

= (−1)β
(v)
i,j Id,

which are precisely the relations required for a homomorphism in RΓ(v) . This

proves:

Theorem 2.4.3. If Γ(v) is as in Definition 2.4.2 then R
(v)
Γ is homeomorphic

to RΓ(v).

Also, note that RΓ(v) can be calculated using Theorem 2.3.3 since Γ(v) is a

central extension with kernel of rank 1. The spaceRΓ(v) will be homeomorphic

to 2k−2 copies of SO(3) if the rank of ω(v) is 2 and it will be empty otherwise.

Let T (ω) : (Z/2Z)r → 2N be the function defined as:

T (ω)(v) := rank(v∗(ω)) = rank(ω(v)).

And let t : H2(Zk;Zr)→ N be the function defined as:

t(ω) = |T (ω)−1(2)|.
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By putting together Theorems 2.3.3, 2.4.3, and Proposition 2.4.1 we finally

obtain:

Theorem 2.4.4. The space RΓ is homeomorphic to t(ω) × 2k−2 copies of

SO(3).

Note that in particular this means that RΓ is compact, so the decompo-

sition

Hom(Γ, SU(2)) = Hom(Γ/[Γ,Γ], SU(2)) tRΓ

is a coproduct. Our description of the cofactors is all in terms of Ck(SU(2)),

SO(3), and S2×(S1)k, and the cohomology groups of all of these is known, so

we are able to compute the cohomology groups of the space Hom(Γ, SU(2)).
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Concluding remarks.

In this short epilogue I will mention some of the possible directions in which

one might try to extend this work, and I will explain some of the complica-

tions that arise.

The first thing one might try to do is get more information about the

higher invariants for Ck(O(n)). One can try to do something similar to what

we did to find the connected components, since we have a decomposition of

Ck(O(n)) as a disjoint union of the Uj’s, we can concentrate on understanding

each Uj independently. We can then look at the surjective maps

Φ̃j : O(n)/Aj ×W (Aj) Pj → Uj

to try to get information about Uj. The first step would be to understand the

value of the invariant we are looking for on O(n)/Aj ×W (Aj) Pj. I anticipate

this can potentially be done, since the space O(n) × Pj is understood and

we understand the W (Aj) action on it. What I think will be the harder

problem is to know what Φ̃j does to the invariant. This was the hard part

in the case of the connected components as well. However, I do think this

approach can work since one can get a good idea of the subspace where

Φ̃j is not injective and maybe, with a careful analysis of this subspace and

depending on the invariant we are looking for, that could be enough. Notice

that since Ck(SO(n)) is just a union of components of Ck(O(n)), and we

have determined exactly which ones, so anything we can get for O(n) we will

have for SO(n) as well.
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Another thing one might try to do is get the exact number of components

of Ck(Spin(n)). For this one could try first to describe the components of

Ck(SO(n)) which have second Stiefel-Whitney class equal to zero. I think

this is a problem that is combinatorial in nature. And secondly, one would

need to understand how many components of Ck(Spin(n)) are mapped to

each of those components under the mapped induced by the covering map.

There are two directions one could try to go when trying to extend the

results in Chapter 2. The first one is to try to extend the target group. Good

candidates for this might be SU(p) for some prime p. The big difference here

is that Proposition 2.2.1 is not true anymore for p > 2, and that simple fact

was used all over the chapter to analyze RΓ. One possibility to compensate

this could be to stratify the space RΓ by the rank of the centralizer of the

image of the homomorphisms and analyze the strata one by one. I must

admit I do not know how hard this could get.

The second direction is to try to generalize the source group. Good

candidates for this are groups that are obtained by a sequence of extensions

by free abelian groups. For example, one first step could be to look at the

space Hom(Γ′, SU(2)) where Γ′ fits in an extension of the form

0→ Zn → Γ′ → Γ→ 0

where Γ is a group like the ones considered in Chapter 2. An even less

restrictive option would be to try to study Hom(N,SU(2)) for a nilpotent

group N , and someone more ambitious might want to try to directly look at

Hom(N,SU(p)). The idea here would be to somehow induct on the degree

of nilpotency of the group, but I don’t have a concrete idea of how this might

work.
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Appendix A

Maximal abelian subgroups of

O(n).

In this short appendix we explain how every abelian subgroup A ⊂ O(n) can

be conjugated inside one of the form Aj = (S1)j × (Z2)n−2j ⊂ O(n). This

proves that the subgroups Aj are representatives of the conjugacy classes of

maximal abelian subgroups of O(n) as required for the work in Chapter 1.

This is purely a fact of linear algebra and it follows from the so called “normal

form” for orthogonal matrices. I provide these proofs for completeness and

state the results in ways that are useful for the applications in Chapter 1,

but none of this is new in any way. Similar results can be found in various

books in linear algebra such as [Gan77] or [Gal00].

We will use the following well known fact about abelian subgroups of

U(n)

Proposition A.0.5. If A ⊂ U(n) is an abelian subgroup then all the elements

of A can be simultaneously diagonalized by an orthonormal basis.

Given a ∈ O(n) we know we can diagonalize a over the complex numbers.

Given an eigenvalue λ of a let aλ be the eigenspace of a corresponding to

λ. If λ is a non-real eigenvalue of a, then λ is also an eigenvalue of a and
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has the same multiplicity as λ. If v ∈ aλ, then v ∈ aλ. This means we can

chose an orthonormal basis of {v1, v1, . . . , vj, x1, . . . , xn−2j} where the pairs

vl, vl correspond to pairs of non-real eigenvalues λl, λl and the xl’s are real

eigenvectors for the real eigenvalues. From this basis we can construct a new

real orthonormal basis by letting yl = vl−vl√
2i

and y′l = vl+vl√
2

for l = 1, . . . , j.

This gives a new set of real vectors {y1, y
′
1 . . . , y

′
j, x1, . . . , xn−2j} and it is

routine to check they are orthonormal and so they form an orthonormal

basis for Rn.

If λl = cos θl + i sin θl we have the following

ayl =
avl − avl√

2i

=
(cos θl + i sin θi)vl − (cos θl − i sin θi)vl√

2i

= cos θl(
vl − vl√

2i
) + sin θl(

vl + vl√
2

)

= cos θlyl + sin θly
′
l

Similarly we can show ay′l = − sin θlyl + cos θly
′
l. Which shows that if we

let p ∈ O(n) be the matrix which has as columns (y1, y
′
1 . . . , y

′
j, x1, . . . , xn−2j)

then

p−1ap =



cos θ1 − sin θ1 . . .

sin θ1 cos θ1 0
. . .

... cos θj − sin θj

sin θj cos θj

0 ±1
. . .

. . . ±1


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This is known as the canonical form of an orthogonal matrix. Notice that

we got p out of the diagonalization of a over C. We have then the following

fact.

Proposition A.0.6. If A ⊂ O(n) is an abelian subgroup then there is an

orthogonal decomposition W1 ⊕ · · · ⊕Wj ⊕ V1 ⊕ · · · ⊕ Vn−2j
∼= Rn such that

every Wl has dimension 2, every Vl has dimension one, every element of A

acts on each Wl by a rotation (possibly trivial) and every element of A acts

by ±1 on each Vl.

Proof. By Corollary A.0.5 we can find an orthonormal basis {v1, . . . , vn} of

Cn which diagonalizes all the elements in A. In other words each vi is an

eigenvector for each a ∈ A. Since A ⊂ O(n) we can further assume that the

basis has the form {v1, v1, . . . , vj, vj, x1, . . . , xn−2j} where x1, . . . , xn−2j are all

real vectors. We constuct the basis {y1, y
′
1, . . . , yj, y

′
j, x1, . . . , xn−2j} as avobe

and let Wl = 〈yl, y′l〉 and Vl = 〈xl〉.

Consider the subroup Aj = (S1)j × (Z2)n−2j ⊂ O(n), where the inclusion

is given as in Section 1.3. From Proposition A.0.6 we get the following two

Corollaries.

Corollary A.0.7. For every abelian subgroup A ⊂ O(n) there exists p ∈
O(n) and j ∈ N such that p−1Ap ⊂ Aj.

Corollary A.0.8. If (a1, ..., ak) ∈ Ck(O(n)), then there exists p ∈ O(n) and

j ∈ N such that p−1alp ∈ Aj for all l = 1, . . . , k.

Proof. Let A = 〈a1, ..., ak〉 and apply Corollary A.0.7.
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