
Numerical Method for Solving the
Boltzmann Equation Using Cubic

B-splines
by

Saheba Khurana

B. Sc., Tougaloo College, Mississippi, United States, 2006

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

The Faculty of Graduate and Postdoctoral Studies

(Chemistry)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

April, 2014

c© Saheba Khurana 2014

Abstract

A numerical method for solving a one-dimensional linear Boltzmann equation is developed

using cubic B-splines. Collision kernels are derived for smooth and rough hard spheres. A

complete velocity kernel for spherical particles is shown that is reduced to the smooth, rigid

sphere case. Similarly, a collision kernel for the rough hard sphere is derived that depends

upon velocity and angular velocity. The exact expression for the rough sphere collision

kernel is reduced to an approximate expression that averages over the rotational degrees

of freedom in the system. The rough sphere collision kernel tends to the smooth sphere

collision kernel in the limit when translational-rotational energy exchange is attenuated.

Comparisons between the smooth sphere and approximate rough sphere kernel are made.

Four different representations for the distribution function are presented. The eigen-

values and eigenfunctions of the collision matrix are obtained for various mass ratios and

compared with known values. The distribution functions, first and second moments are also

evaluated for different mass and temperature ratios. This is done to validate the numerical

method and it is shown that this method is accurate and well-behaved.

In addition to smooth and rough hard spheres, the collision kernels are used to model

the Maxwell molecule. Here, a variety of mass ratios and initial energies are used to test

the capability of the numerical method. Massive tracers are set to high initial energies,

representing kinetic energy loss experiments with biomolecules in experimental mass spec-

trometry. The validity of the Fokker-Planck expression for the Rayleigh gas is also tested.

Drag coefficients are calculated and compared to analytic expressions. It is shown that these

values are well predicted for massive tracers but show a more complex behaviour for small

mass ratios especially at higher energies. The numerical method produced well converged

values, even when the tracers were initialized far from equilibrium.

In general this numerical method produces sparse matrices and can be easily generalized

to higher dimensions that can be cast into efficient parallel algorithms. Future work has

been planned that involves the use of this numerical method for a multi-dimension linear

Boltzmann equation.

ii

Preface

The work presented in this thesis has been published or is in preparation for publishing by

the author of this thesis, Saheba Khurana, under the guidance and in co-authorship with

research supervisor Prof. Mark Thachuk. Saheba Khurana is the first author and the main

writer of the published works and those in the process of publishing.

Chapters 1-3 are introductory chapters. Chapter 1 gives the general background of

the research. Chapter 2 presents in more comprehensive detail the theoretical background

of the numerical method. Details of the computational method are given in Chapter 3.

Chapters 4 and 5 present the results, followed by Chapter 6 with details of future work and

concluding remarks. Details of the code are given in the Appendix.

The analytical details given in Chapter 2 are expanded versions of material presented

in the publications by Saheba Khurana and Mark Thachuk, “A numerical solution of the

linear Boltzmann equation using cubic B-splines”, J. Chem. Phys. 136, 094103 (2012),

“Kernels of the linear Boltzmann equation for spherical particles and rough hard sphere

particles”, J. Chem. Phys. 139, 164122 (2013) and “Drag coefficients from the Boltzmann

equation for hot and massive tracers”, (in preparation).

In Chapter 3, the methodology has been published as part of publications by Saheba

Khurana and Mark Thachuk, “A numerical solution of the linear Boltzmann equation us-

ing cubic B-splines”, J. Chem. Phys. 136, 094103 (2012), and “Drag coefficients from

the Boltzmann equation for hot and massive tracers”, (in preparation) with a few more

modifications presented in the same paper.

Chapters 4 and 5 present the results. Results in Chapter 4 are part of a publication

by Saheba Khurana and Mark Thachuk, “A numerical solution of the linear Boltzmann

equation using cubic B-splines”, J. Chem. Phys. 136, 094103 (2012), and Chapter 5

presents results from “Drag coefficients from the Boltzmann equation for hot and massive

tracers”, (in preparation).

Chapter 6 presents future work that will be completed by Saheba Khurana as a first

author, under the supervision of Prof. Mark Thachuk, followed by concluding remarks.

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Tables . vi

List of Figures . vii

List of Symbols . x

Acknowledgements . xii

Dedication . xiii

1 Introduction and Motivation . 1

1.1 Methods of Solving the Boltzmann Equation 3

1.1.1 Direct Simulation Monte Carlo (DSMC) 3

1.1.2 Quadrature Discretization Method (QDM) 5

1.2 Motivation . 6

2 The Boltzmann Equation and Derivation of Collision Kernels 8

2.1 The Boltzmann Equation . 8

2.2 Smooth Hard Sphere Collision Kernel . 10

2.2.1 Hard Sphere . 18

2.3 Rough Hard Sphere . 18

2.4 Approximate Rough Hard Sphere Kernel 25

2.5 Discussion of Kernels . 30

2.6 Summary of Collision Kernels . 34

2.7 Maxwell Molecule . 37

2.8 Fokker-Planck Expressions . 39

2.9 Drag Coefficients . 41

iv

3 Methodology of Numerical Method and Cubic B-Splines 43

3.1 Varied Collision Kernels . 43

3.2 Analytical Details of the Algorithm . 44

3.2.1 Evaluation of Z . 49

3.3 Initial Functions and Conditions . 50

3.4 Use of Quadratures . 50

3.5 Code Details . 51

4 Validating the Numerical Method using Eigenvalues and Moments . . 53

4.1 Eigenvalues and Eigenfunctions . 53

4.2 Distribution Functions . 55

4.3 Moments . 63

4.4 Discussion . 66

5 Kinetic Energy Relaxation of Heavy Tracers 71

5.1 Eigenvalues of Smooth and Approximate Rough Hard Sphere 72

5.2 Distribution Functions . 73

5.3 Kinetic Energy Derivative . 76

5.4 Drag Coefficients . 77

5.5 Discussion . 80

6 Future Work and Concluding Remarks . 83

6.1 Future Work . 83

6.2 Concluding Remarks . 84

Bibliography . 87

Appendices

A Appendix A: Numerical Code . 92

A.1 Main Program . 92

A.2 Subroutines . 105

A.3 Functions . 120

A.4 Modules . 151

A.5 C Subroutines . 154

A.6 Input File . 155

A.7 Makefile . 155

A.8 Submission Script . 156

v

List of Tables

2.1 Summary of the collision kernel K(x, x′) and collision frequency ν(x), for the

smooth hard sphere, hard sphere and the rough hard sphere models [76]. . 36

2.2 Summary of the limiting cases of the collision kernel K(0, x′) and K(x, 0) for

the smooth hard sphere, hard sphere and rough hard sphere models [76]. . 37

4.1 The first and second non-zero eigenvalues obtained for different mass ratios,

γ = 1/8, 1/2, 1 and 8, by diagonalizing L using the matrix representation of

the Khs,1 kernel of Eq. (3.6). The eigenvalues are normalized by Zhs(0). The

grid used for each diagonalization spans from 0 to S with n intervals. The

accurate values are QDM results from Shizgal et al. [89]. 54

4.2 The magnitudes of the first three non-zero eigenvalues obtained for mass

ratios, γ = 1/8 and 1/2, by diagonalizing L using the matrix representation

of the K̃hs, Khs,1 and Khs,3 kernels. The eigenvalues are normalized by

Zhs(0). The grid used for each diagonalization spans to S = 20 with n

intervals and spacing ∆ between grid points. The accurate values are QDM

results from Shizgal et al. [89]. The blank cells indicate that convergence

was obtained for the particular n and ∆ combination. The cells with a dash

indicate that no eigenvalues under 1.0000 were obtained. 69

4.3 Same as Table 4.2 except for γ = 1 and 8. 70

5.1 Eigenvalues (absolute values) of the smooth and approximate rough hard

sphere kernels for two different mass ratios and a range of µχ values. Eigen-

values are scaled by 2A/
√
γ and only up to six non-zero scaled values less

than unity are tabulated. An entry of “...” indicates that no eigenvalue was

found. The values for µχ = ∞ are for the smooth hard sphere kernel. . . . 72

vi

List of Figures

2.1 The spherical component of the kernel plotted as a function of reduced energy,

x, for the initial reduced energy x′ = 2. The upper panel plots values for the

mass ratio γ = 0.1, and the lower panel for γ = 1. The values for the smooth

hard sphere kernel of Eq. (2.23) are shown by black lines while the coloured

lines plot the values for the rough hard sphere kernel of Eq. (2.85) for values

of µχ varying from 1.5 to 50. 33

2.2 Same as Fig. 2.1 except for an initial reduced energy x′ = 20. 34

2.3 The value of ξ = g̃/2 ·
√

kt/V0 ·1/
√
1 + γσ̃Maxwell from Eq. (2.110) for values

of β = 5, 10, 15, 20. The solid curve for β = ∞ corresponds to Eq. (2.110)

directly. 40

3.1 Cubic B-spline functions, B3
i (x), for i = −4,−3,−2,−1, 0 defined on a grid

of x values. 45

4.1 Plots showing the accuracy of the eigenfunctions associated with the two

lowest, non-zero eigenvalues for different mass ratios. The red squares and

blue circles are values obtained from a highly accurate QDM method. The

dashed red and solid blue curves represent the first and second eigenfunctions

obtained by diagonalizing the matrix representation of the kernel K̃hs, using

a grid spanning from 0 to 20 with 200 points. 56

4.2 Same as Fig. 4.1 except the curves were obtained by diagonalizing the kernel

Khs,1. 57

4.3 Same as Fig. 4.1 except the curves were obtained by diagonalizing the kernel

Khs,3. 58

vii

4.4 Snapshots of the time dependence of distribution functions started with the

initial function of Eq. (3.30) with α = 1/2 and γ = 1 and 8. The progression

of the curves begins from the black solid curves to the final equilibrium

state given by the brown dot-dashed curves. The top, middle and bottom

panels give the distribution functions in the K̃hs, Khs,1, and Khs,2 and Khs,3

representations, respectively. The y-axis of the second panel is logarithmic.

The black curves are given for t = 0 and the brown curves represent the last

time step in the calculations. A greater number of curves are obtained, but

since they overlap each other, only a few are shown to indicate the progression

of the distribution function. The time steps varied from 10− 100 for the the

different formulations shown. 59

4.5 Same as Fig. 4.4, except with α = 2 and γ = 1 and 8. 60

4.6 Distribution functions for α = 1/2 and γ = 1. The left panels are the same

as those in Fig. 4.4, that is, they show the progression of the distribution

function to equilibrium of the different formulations, Khs, Khs,1, Khs,2 and

Khs,3. The right side panels show the complete distribution function as given

by Eqs. (3.2)−(3.4). The red dotted curve is the initial distribution function

that progress to the equilibrium function given by the black solid curve. The

curves shown are plotted at identical relaxation times for all the cases. . . . 61

4.7 Same as Fig. 4.4, except using an initial function given by Eq. (3.31) with

γ = 1. 62

4.8 Plots of T ∗ and ξ for the distribution functions for different mass ratios

using the initial function of Eq. (3.30). In all three panels, the blue and

yellow dashed curves use initial functions with α = 1/2, and red and green

dot-dashed curves are for α = 2. The yellow dashed and green dot-dashed

curves plots values of T ∗. The blue dashed and red dot-dashed curves plot

values of ξ. 64

4.9 Plots of T ∗ and ξ for the distribution functions for different mass ratios using

the initial function of Eq. (3.31). In both panels, the red dashed, black dotted,

and blue dot-dashed curves are for mass ratios γ = 1/8, 1 and 8, respectively. 65

5.1 The time evolution of the distribution function for γ = 0.02 with initial

energies x0 = 5 (left panels) and x0 = 350 (right panels). The top, middle and

bottom panels show the relaxation of the distribution function to equilibrium

for the smooth hard sphere, rough hard sphere and Maxwell molecule cases,

respectively. The evolution starts from the solid black curves and moves

to the dash-dot violet curves (left panels) or dashed maroon curves (right

panels). 74

viii

5.2 Same as Fig. 5.1 but for γ = 0.0025. 75

5.3 Derivatives of the reduced average kinetic energy normalized by 16
√
γ/3 as a

function of t′ for γ = 0.02, 0.01, 0.005 0.0025 and 0.1 and x0 = 5 (top panel)

and x0 = 350 (bottom panel), for the smooth hard sphere case. The square

symbols indicate the points at which the kinetic energies are 50% of their

initial values. 76

5.4 Ratios of calculated drag coefficients to analytical predictions for a variety

of mass ratios and initial reduced energies of x0 = 5. The top, middle and

bottom panels are for the smooth and rough hard spheres and the Maxwell

molecule, respectively. 78

5.5 Same as Fig. 5.4 except for an initial reduced energy x0 = 350. 79

ix

List of Symbols

A collision frequency factor

α reduced moment of inertia

c particle velocity in lab frame

χ scattering angle

χ used in moment of inertia expression in Section 2.3

δ Dirac delta function

∆ variable used in Eq. 2.38

∆ spacing between intervals of points for evaluation in Chapter 3

ǫ azimuthal angle

f distribution function of tracer

F distribution function of bath

F external field

fhs complete distribution function as given in Eq. (3.1)

fhs,1 distribution function expanded about equilibrium function 1 as given in Eq. (3.2)

fhs,2 distribution function expanded in the exponent as given in Eq. (3.3)

fhs,3 distribution function expanded about exponential tail of equilibrium function

as given in Eq. (3.4)

g relative velocity

γ mass ratio

I moment of inertia

I0(z) modified Bessel function of zeroth order

J impulse

k Boltzmann constant

k̂ unit vector

K(x, x′) collision kernel

K̃hs original collision kernel

Khs,1 modified collision kernel using fhs,1

Khs,2 modified collision kernel using fhs,2

Khs,3 modified collision kernel using fhs,3

m mass

x

M(a, b, z) Kummer’s (confluent hypergeometric) function

n1 number density

r distance between particles

σ diameter of particle

σ(g, χ) scattering cross section

ω angular velocity

Pl Legendre polynomials

φ polar angle

Φ(x) error function

Q,R expression used with mass ratio

T temperature of bath

θ polar angle

µ reduced mass

v relative velocity of sphere at points of contact

x scaled energy

Ylm spherical harmonic functions

Z(x) energy dependent collision frequency

xi

Acknowledgements

First and foremost I would like to express my sincere gratitude to my supervisor Dr. Mark

Thachuk for his invaluable guidance, knowledge and support in completing my thesis work.

His expertise has provided me a great deal of knowledge and his advice in editing this thesis

is also greatly appreciated.

Thank you to my parents Pam Khurana and B. M. Singh, for providing a loving, nur-

turing and enriching environment for me to grow up in and being the perfect role models.

Thank you for making my education your priority and always supporting me in my endeav-

ours. I am here today only because of your encouragement, love and support and I hope to

continue making you proud.

Thank you to Dr. Bernard Shizgal and Dr. Donald Douglas for insightful discussions

in regards to the work completed. I also thank my committee members for reading and

giving valuable advice on the work in this thesis. My special thanks to the members of

the Chemistry Department for creating an enjoyable and inspirational environment, from

which I have learnt a tremendous amount.

This thesis work was completed with funding provided by Natural Sciences and Engi-

neering Research Council of Canada (NSERC).

xii

This thesis is dedicated

to

my parents

xiii

Chapter 1

Introduction and Motivation

This chapter includes a brief introduction to the problems that are modelled by the Boltz-

mann equation in kinetic theory. This is followed by an introduction to some of the popular

numerical methods of solving the Boltzmann equation in Section 1.1. The motivation behind

the work presented in this thesis is given in Section 1.2.

Kinetic theory deals with the evolution of the state of a system and provides the laws

of macroscopic phenomena based on the hypothesis of molecular structure of a system

and dynamical laws of discrete molecules. Equilibrium statistical mechanics in comparison

determines the average state of a system that is in thermal equilibrium. The kinetic theory

of gases developed by Maxwell, Boltzmann, Krönig and Clausius is built on some important

assumptions such as the systems consist of many discrete particles, and the dynamics and

interaction of these particles are known. The dynamical laws are classical and can be used

to derive the macroscopic quantities of the system. A gas is described by the distribution

function F (c, r, t) and calculations are made to obtain average physical quantities [1–7].

A number of problems in kinetic theory lead to a hierarchy of equations. Using New-

ton’s equations of motion, the Liouville equation can be derived that governs the time

evolution of the ensemble of particles. Using the Bougoliubov-Born-Green-Kirkwood-Yvon

(BBGKY) theory, the Boltzmann equation is derived from the Liouville equation assum-

ing uncorrelated binary collisions among the particles. Using the Chapman-Enskog theory,

which treats systems close to equilibrium, leads to the Navier-Stokes equation from the

Boltzmann equation. The Boltzmann equation is not applicable when correlated collisions

are important and thus can be used for the rarefied or dilute gas regime.

The Boltzmann equation has been used to describe many problems where the motion of

particles is given by classical mechanics. It can account for external fields, the particles can

be non-interacting or be a chemically reactive mixture of multiple species. Some of these

problems include studies of plasmas, ion mobility, rarefied gases, and micro-scale gas flows

[8] that are significant in engineering. In another example, the motion of gas molecules was

simulated using the Direct Simulation Monte Carlo method and the interaction between

a gas molecule and the wall was studied using Molecular Dynamics [9]. The Galerkin

numerical method of solving the Boltzmann equation is used to monitor the relaxation

phenomena of a binary gas mixture [10]. A model for the Boltzmann equation is proposed

that describes chemical reactions that proceed within a set activation energy [11]. Reactions

1

such as these are significant in combustion phenomena and other fluid dynamic processes

in fields of astrophysics, organic chemistry, biophysics, chemical physics, and enzymology.

These are just a subset of the wide range of problems that are modelled by the Boltzmann

equation.

Experimental studies done by Chen et al. [12] and Covey and Douglas [13] monitor the

kinetic energy decay of biomolecules at high initial energies. Information from this decay

is then used to obtain cross section values for the biomolecules. The cross sections can

further give insight into the structure of the molecule and this information can be used

to understand the role of biomolecules in living cells. The numerical method given in this

thesis models the kinetic energy decay of such experiments where the tracers are initialized

at high energies.

Furthermore, studies can also include the effect of external fields, similar to ion mobility

problems [2, 7]. The tracers can be influenced by electric and magnetic fields with arbitrary

spatial and temporal dependence. To correctly describe this problem, a minimum of two

dimensions is required, those being the tracer velocity parallel and perpendicular to the

field direction. Similarly, problems involving atoms in intense laser fields can be also be

modelled [14]. In such systems the atomic beams can be manipulated to produce ideal laser

beams for chemical kinetics and gas-surface interaction studies. Studies such as these also

require a multi-dimensional numerical scheme to be used to study the deflection of the laser

beam. Therefore there can be a numerical scheme that takes into account field effects, that

would account for the multi-dimensional aspect of the problem.

In most numerical methods, the tracers in the system are only slightly perturbed from

equilibrium. The distribution functions of the tracers considered in this study, to test

this numerical method, are far from equilibrium, and their relaxation to equilibrium is

monitored. These initial distribution functions may not even describe a steady state and

are anisotropic in velocity and spatial variables. This type of problem is not particularly

well suited for the numerical methods that are available currently. In addition to the

requirements for problems involving high energy tracers, the expression of the collision

kernel in the linear Boltzmann equation is known to contain an analytical cusp that also

adds to difficulty in converging results.

With these conditions in mind, a newer method is needed that imposes as few constraints

on the distribution function as possible. This type of method should be able to use different

types of expressions for the collision integral, to effectively deal with the cusp in the collision

kernel and yet is simple and accurate enough to apply to the problems described above. The

method presented in this thesis uses B-splines, and also meets the criteria set earlier. In

this formulation, cubic B-splines are employed in a collocation scheme that approximate the

distribution function as a piece-wise continuous function of cubic polynomials. Therefore,

they do not rely on the behaviour of the underlying function except that it can be well-

2

represented locally by a Taylor series expansion. It will be shown that the B-spline functions

are localized in space, and allow the evaluation of the collision integral to be divided into

smaller localized domains. Due to this construction, the cusp in the collision integral can

also be dealt with.

1.1 Methods of Solving the Boltzmann Equation

Owing to the number of problems described by the Boltzmann equation, there are a number

of numerical methods that have been developed to solve it. The only exact solution of this

equation is the Maxwellian distribution for the equilibrium case. To solve the Boltzmann

equation a number of approximations are made to simplify the expression. These are further

used in the numerical methods to solve the systems. These numerical methods and their

numerous variations have been very successful in accomplishing the task of solving the

Boltzmann equation. At the same time, there is no one method that can be considered

a universal method to solve every problem that involves the Boltzmann equation. The

methods that have been developed work very well primarily because they are specifically

designed for a particular problem with certain limitations and conditions, which in turn

provides accurate results. A comparative study, by Kowalczyk et al. [15] uses the shock

wave problem to compare results obtained using different numerical schemes.

In general, the numerical methods used to solve kinetic equations can be divided into

particle-based methods (section 2.1.1) and methods that solve the Boltzmann equation

directly for the distribution function (section 2.1.2). These methods include the Direct

Simulation Monte Carlo (DSMC) and the Quadrature Discretization Method (QDM). Note,

that these two methods are in no way the only methods available. Variations of these and

other methods are used to solve the Boltzmann equation. A brief description of these

methods provides a general picture of the approach taken by numerical schemes used to

solve the Boltzmann equation.

1.1.1 Direct Simulation Monte Carlo (DSMC)

A very popular particle-based numerical method is the Direct Simulation Monte Carlo

[16–22]. There have been numerous applications of this numerical method in rarefied gas

dynamics and aerospace studies, through its many variations. For example, a hydrogen-

oxygen detonation study used DSMC simulations to study molecular level gas detonation,

important in applications of the propagation of detonation waves [23]. The flow of a granular

gas can be simulated using DSMC [24], which can be used to study more complex problems

in granular flow. The uniform shear flow in a granular gas is stationary along with a constant

temperature and linear flow velocity when compared to a traditional gas. In aerospace

3

science the DSMC method has been used to study multiscale aerothermodynamic flows to

design optimal space capsules for entry into planetary atmospheres [25]. Similarly, during

re-entry a weak plasma is formed in the shock layer and the analysis of this plasma has also

been done using DSMC [26].

In principle, DSMC works by coarse-graining the system into simulated (coarse-grained)

particles that represent groups of real particles. The simulated particles are assigned po-

sitions and velocities and are allowed to move in time. The collision dynamics occurring

amongst the coarse-grained particles can be described by a number of different algorithms.

Average quantities are obtained by averaging over the states of the coarse-grained parti-

cles. The coarseness in this method increases the fluctuations in the obtained quantities.

Systems with large Knudsen numbers, such as rarefied gases are particularly well suited for

the DSMC. The Knudsen number (Kn) is a measure of the degree of rarefaction of a gas.

It is a ratio of the mean free path (average distance travelled by the molecules in between

collisions) to the characteristic dimension. In the case where Kn → 0, the distribution is of

the Maxwellian form and in the opposite limit, where Kn → ∞, the system falls into the

collisionless or free-molecule flow regime.

In rarefied systems, the coarse-graining is physically justified. In principle, the descrip-

tion of ion mobility experiments presents a challenge because the concentration of ions is

trace so that each ion moves as a separate entity, that is uninfluenced by the other ions.

The movement of such an ion is difficult to coarse-grain. With the fluctuations arising in

the DSMC method, ion mobilities would be harder to converge to great accuracy. Also

statistical errors can arise in DSMC owing to the different parameters that are used in the

simulations [27].

The issues arising from the coarse-grained model can be completely avoided by using

fully atomistic classical Molecular Dynamics (MD). Using MD, accurate distribution func-

tions for rotating solid bodies in the presence of constant electric fields, have been obtained

[28–30]. In these models, the system reaches a steady state and quantities are obtained at

this steady state over many time steps until converged average values are obtained. In the

case where time varying fields are used, this approach becomes difficult because in order to

obtain accurate enough averages at each time, large ensembles of trajectories are required.

Calculations such as those that involve time varying fields become a lot more intense than

those where averages have to be obtained for systems with constant fields.

In general, particle-based methods such as those mentioned above are not the best for

determining distribution functions for the ion mobility problem when spatially and tem-

porally varying fields are present. These particle based methods are statistical in nature

which make it challenging to obtain converged and accurate distribution functions, espe-

cially in the tails of the distribution. Due to these limitations, methods that solve for the

distribution function directly are expected to perform better for the ion mobility problem.

4

A number of different methods are available, but one method of particular interest is the

Quadrature Discretization Method.

1.1.2 Quadrature Discretization Method (QDM)

The Quadrature Discretization Method [31–40] is based on the quadrature method for

numerically evaluating integrals. This method uses a weight function to generate a poly-

nomial basis set from which a quadrature scheme is constructed. The QDM solves integro-

differential equations by representing the distribution function at the set of quadrature

points which are the roots of these polynomials. The polynomials are orthogonal with

respect to the weight function. The number of quadratures equals the number of sets of

orthogonal polynomials. Some of the familiar quadratures are based on classical polyno-

mials such as the Legendre, Laguerre, Hermite, Chebyshev, and Jacobi polynomials. Each

of these sets have different intervals and weight functions, and can be used for particular

systems as needed. The set of orthogonal polynomials can be constructed for any interval

and any weight function. A set of expansion coefficients are obtained that are also required

to be evaluated using the polynomials and the distribution function that are evaluated at

the quadrature points.

The collision integral and all other terms in the Boltzmann equation are then evaluated

using this numerical scheme. The convergence of the distribution functions is dependent on

the choice of the basis set used. If the basis matches the problem well, spectral convergence

is obtained which in turn produces highly accurate distribution functions, whereas, if the

basis does not match the problem well, difficulties can arise. As an example, if the basis

set chosen has exponentially decaying tails at large distances but the distribution function

does not, they will not accurately represent the distribution function.

The QDM has also proven its versatility. For example, variations of this method have

been used to solve the Fokker-Planck equation [41]. In this study, eigenvalues and eigen-

functions were obtained for the Fokker-Planck equation which was used to model the time

evolution of the probability density function. In the study of Shizgal and Blackmore [36],

the Boltzmann equation describes the perturbation from equilibrium that occurs due to the

loss of energetic atoms in a planetary atmosphere. Radiative transfer equations obtained

from the Boltzmann equation describing phonon transport have also been solved using a

variation of the QDM [42]. It has been used to solve the Boltzmann equation and also has

been used as a numerical method to solve the Schrödinger equation [32]. In that case, the

basis functions are used to expand the wave function. These are just a few examples of

problems where variations of the QDM have been used to solve the Boltzmann equation or

its approximations.

In ion mobility, it is known that the tails of the distribution function decay algebraically

5

at large velocities [43]. The cusp in the collision kernel can cause difficulties when integrating

basis functions over the entire range of the integral. This cusp can cause inaccuracies and

insufficiently converged values of the distribution function. The boundary conditions used

in the QDM are intrinsic, that is, they are dependent on the choice of quadrature used, and

modifications to these conditions cannot be made. The form of the Boltzmann equation,

such as the linear or linearized Boltzmann equation, or any other forms of the collision

kernel can be used in the QDM, but are dependent on the generation the quadratures.

Therefore, the quadratures are dependent on the form of the expressions used. This ensures

an accurate development of the quadrature, that is specific to the problem.

1.2 Motivation

The numerical method using cubic B-splines is presented here that is based on the motion

of tracer particles in a bath, where the bath considered is at equilibrium, a system that is

described by the Boltzmann equation. The tracer particles are in trace amounts, therefore

collisions between tracers are negligible. For this numerical method it is convenient both

theoretically and computationally to use the linear Boltzmann equation in the form of a

collision kernel. An approach like this has been used in previous studies, such as, describing

the mobility of gas phase ions in low fields, the kinetic energy relaxation of hot particles, the

effect of velocity-changing collisions, or the collisional broadening of spectral lines [44–51]

Spline functions have been used in many fields, but seem to not have been pursued for

the Boltzmann equation. In the literature, the only reference by Siewert [52], uses Hermite

cubic splines to solve the Chapman-Enskog equations for viscosity and heat transfer. In

that study, Burnett functions were computed that were based on rigid sphere collisions

and the linear Boltzmann equation. The work presented in this thesis develops a B-spline

method for a reduced dimensional problem using collision kernels for the smooth and rough

hard sphere.

The distribution function can be expanded in several different ways, of which four dif-

ferent formulations are introduced, and the relative merits of each will be discussed. A

complete Boltzmann equation can involve up to ten dimensions (three each for velocity,

position and angular momenta, and one for time). The method given here can be easily

extended to higher dimensions that allow fine details to be studied, such as spatial fluctu-

ations induced by arbitrary external electric and magnetic fields. As discussed in Chapter

6, the extension of the numerical method to higher dimensions will be the aim of future

studies.

The linear kernels derived in Chapter 2 account to some extent for the internal states.

A classical description is used which allows the resulting formulation to be used at tem-

peratures where quantal rotational effects are negligible. Collision kernels come in different

6

forms and the expressions can be exact or approximate. The smooth hard sphere model

considered in this study uses the well known Wigner-Wilkins kernel [53], which accounts

only for translational velocity energy exchange between the tracer and bath. In the kernels

derived, the tracers are subject to rotations and vibrations whereas in most cases the col-

lision kernels only describe the translational velocity changes that occur due to collisions.

Subsequently, a kernel expression is derived for the rough hard sphere model, where the

rotational-translational energy exchange is taken into consideration. It is shown that within

certain limits, the rough hard sphere kernel expression can be reduced to the smooth hard

sphere expression. The Maxwell molecule model introduces a repulsive potential, namely

1/r4, via which the tracers must interact. This also introduces a more realistic cross section

expression that has to be evaluated as part of the collision kernel.

7

Chapter 2

The Boltzmann Equation and

Derivation of Collision Kernels

This chapter presents the theory behind the formulation of the numerical method. Section

2.1 gives the theory behind the Boltzmann equation and the assumptions that are made to

make it valid for the models considered here. Section 2.2 gives a detailed derivation of the

smooth hard sphere kernel followed by a derivation of the rough hard sphere kernel in Section

2.3. This leads to Section 2.4 where the derivation for the approximate rough hard sphere

kernel is given along with the assumptions that have been used in the derivation. Section

2.5 gives a detailed discussion of the kernels, their form and any numerical difficulties that

may occur. Section 2.6 gives a summary of the kernel expressions and collision frequencies

for all three models discussed.

2.1 The Boltzmann Equation

Consider an ensemble made up of multiple systems, and each system is represented by a

point in phase space. Due to the large number of systems within this ensemble, the number

of points become quite dense in the phase space. The distribution can thus be described by

a density function, that is a continuous function of the position and momenta coordinates.

Normalizing this function density function gives the probability density function, which

can be denoted by FN (x,p, t), where N is the number of systems within the ensemble.

The evolution of FN in time is determined by the motion of each ensemble in the phase

space. The change, dFN , in FN at any given phase point at time t, results from arbitrary,

infinitesimal changes in x and p. This can be written as [3]

dFN =
∂FN

∂t
dt+

N
∑

i=1

∂FN

∂xi
dxi +

N
∑

i=1

∂FN

∂pi
dpi . (2.1)

Equation (2.1) must be valid for all infinitesimal changes, so that this change follows the

trajectory of the system in phase space. Therefore, (dxi/dt) = q̇i and (dpi/dt) = ṗi and

8

then Eq. (2.1) can be re-written as [3]

dFN

dt
=
∂FN

∂t
+

N
∑

i=1

[

∂FN

∂xi
ẋi +

∂FN

∂pi
ṗi

]

. (2.2)

∂FN/∂t is the local change in FN , that is, the change at the point x and dFN/dt is the

total change in FN along the trajectory in the neighbourhood of x. From this, Liouville’s

equation is given as [3]
dFN

dt
= 0 . (2.3)

Equation (2.3) states that along the trajectory of any phase point the probability density

remains constant in the neighbourhood of the point x. Since FN remains constant along the

trajectory, any function of FN also has this property. The Liouville equation contains a large

number of degrees of freedom, causing computational difficulties. The Liouville equation

leads to the BBGKY (Bogoliubov, Born, H. S. Green, Kirkwood and Yvon) equation. The

Boltzmann equation is derived from the BBGKY equation.

Developed by Ludwig Boltzmann (1872) the Boltzmann equation governs the evolution

of the distribution function for sets of particles at low density [1, 2, 2–7, 54, 55]. The

Boltzmann equation is based on the basic assumption that the collision integral is given by

the stosszahlansatz [1, 2, 6], in which the distribution function f evolves from one state to the

other due to collisions between particles. The stosszahlansatz gives rise to the assumption

that only binary collisions occur between particles and that these are uncorrelated. This

is called the molecular chaos assumption. Consider a binary system composed of tracer

and bath particles with distribution functions are f and F , respectively. The Boltzmann

equations describing such a binary system in general are

∂f

∂t
+ c · ∂f

∂r
+

F

m
· ∂f
∂c

= C[f,F] + C[f, f] (2.4)

and
∂F
∂t

+C · ∂F
∂r

+
F

M
· ∂F
∂C

= C[F ,F] + C[F , f] , (2.5)

in which F is an external field acting on the system and

C[fa, fb] =
∫

[fa(c1
′)fb(c2

′)− fa(c1)fb(c2)]gσ12(g, χ) sin χdχdǫdc2 , (2.6)

is the collision integral which incorporates the differential scattering cross section σ12(g, χ)

between two particles. These integrals account for the interactions between the tracer and

bath particles during collisions. The collision integral of Eq. (2.6) can broken down into

“loss” and “gain” terms. The expression
∫

fa(c1)fb(c2)σ(g, χ)g sinχdχdǫdc2 is the “loss”

9

term, describing the number of particles that are lost out of the vicinity of shell c1 due

to collisions. Similarly,
∫

fa(c1
′)fb(c2′)′σ(g, χ)g sinχdχdǫdc2′ is the “gain” term describing

the number of particles gained in the velocity shell c1 due to collisions from particles with

initial velocities c1
′ and c2

′. The evolution of the left hand side of Eq. (2.4) is based on

external, collisionless factors with ∂f/∂t describing the time evolution of the distribution

function. The term c · ∂f/∂r indicates change in the distribution function due to the

movement of particles in and out of the vicinity of the position vector r. The distribution

function is assumed to have uniform density, that is, f does not change with r. Due to

this assumption this term is ignored. Whereas, the term F · ∂f/∂c describes the change in

distribution function due to any external forces F [1–3, 7]. Therefore, the terms on the left

hand side of the Boltzmann equation are not considered in this thesis. This collision kernel

on the right hand side of the Boltzmann equation poses more difficulties when it comes to

calculations. The collision kernel expressions in the following sections are based only on the

terms on the right hand side of the equation.

In Eq. (2.4), the terms C[f,F] and C[f, f] describe the tracer-bath and tracer-tracer

interactions. Similarly, in Eq. (2.5), C[F ,F] and C[F , f] describe bath-bath and bath-tracer

interactions. Because we wish to study tracers in very low concentrations, the C[f, f] term in

Eq. (2.4) and the C[F , f] term in Eq. (2.5) can be ignored. The bath can then be considered

in equilibrium at all times. This results in Eq. (2.4) being reduced to the linear Boltzmann

equation.

2.2 Smooth Hard Sphere Collision Kernel

The derivation of the collision kernel for spherical particles has appeared in many forms in

literature. For example, the kernel for the linear Boltzmann equation has been derived for

a pure gas in Ref. [56]. The first part of the derivation given in the section follows the same

idea except it accounts for the mass ratio between the bath and tracer particles. Waldmann

[57] expressed the collision integral of the Boltzmann equation using a transition operator

formalism which Andersen and Schuler [58] then used to derive the collision kernel for the

linear Boltzmann equation for smooth spheres, that also include the spherical component

of this kernel. In an analogous approach the kernel was derived for a smooth hard sphere

model [59] using a result from Berman [60]. The expression for the general kernel and the

first Legendre component of the kernel for the smooth hard sphere model was reported by

Kapral and Ross [61], which was based on the work by Mason and Monchick [62] for the

linearized Boltzmann equation. The general expansion of the kernel in terms of Legendre

components was given by Shizgal and Blackmore [63].

For spherical tracer particles the internal degrees of freedom are ignored. The density

carries the spatial dependence of the distribution function completely, therefore only the

10

velocity dependencies are considered.

The linear Boltzmann equation derived from Eq. (2.4) in the absence of external fields

is given as

∂

∂t
f(c) =

∫

[

f(c′)F (0)(c′1)− f(c)F (0)(c1)
]

gσ(g, χ) sin χdχdǫdc1 , (2.7)

which is solved for the distribution function. Here, c′ and c′1 are the pre-collision velocities

in an inverse collision where c and c1 are the post-collision velocities and variable with

subscript “1” refer to the bath particles. Particles with velocities c have mass m. The

relative velocity between the tracer and bath particles is g = gΩg = c1 − c, and the

scattering angle χ is defined as g · g′ = gg′ cosχ. In the case of elastic scattering, the

scattering cross section σ(g, χ) depends only on the magnitude of g and the scattering angle

and the azimuthal angle ǫ ranges from 0 to 2π, which represents all possible approaches for

the initial scattering direction.

In elastic scattering the total momentum and energy are conserved, thus, the dynamics

of the elastic collision can be completely expressed in terms of the impulse, J = µ(g − g′),

which is imparted by the collision with the reduced mass µ = mm1/(m+m1) and given as

c′ − c =
J

m
, (2.8)

c′1 − c1 = − J

m1
,

J = 2µ(g · k̂)k̂ ,

where k̂ is the unit vector that lies along the apse line joining the centers of the colliding

particles at the point of closest approach pointing from the bath to the tracer particle. In

the case of spherical particles collisions are elastic, therefore, g = g′. The equations for the

conservation of total momentum and energy are

mc+m1c1 = mc′ +m1c
′
1 , (2.9)

mc2 +m1c
2
1 = mc′2 +m1c

′2
1 ,

respectively.

The equilibrium distribution function for Eq. (2.7) is

F (0)(c1) = n1

(m1

2πkT

)3/2
exp

[

−m1c
2
1

2kT

]

, (2.10)

where n1 and T are the number density and temperature of the bath, respectively, and k is

11

the Boltzmann constant. The goal is to express Eq. (2.7) in the form

∂

∂t
f(c) =

∫

K(c, c′)f(c′)dc′ − Z(c)f(c) , (2.11)

which defines the collision kernel K(c, c′). Comparing the loss term in Eq. (2.7) with the

last term in Eq. (2.11) allows the energy dependent collision frequency Z(c) to be identified

as

Z(c) =

∫

f (0)(c1)gσint(g)dc1 . (2.12)

Since c1 is independent of the scattering angle, the integrals over χ and ǫ can be performed

independently, giving the integral cross section

σint(g) =

∫ 2π

0

∫ π

0
σ(g, χ) sin χdχdǫ . (2.13)

Since c is held constant, therefore dc1 = dg. It is beneficial to convert the integration

over c1 to one over g using c21 = c2 + g2 + 2g · c. In order to convert this, a spherical

polar coordinate system is considered, one where the polar axis is defined by c, so that

g · c = gc cos θ with θ and φ the polar angles specifying the direction of g. Using these

definitions and the expressions from Eq. (2.10) for f (0), the integrations over θ and φ are

performed analytically. By defining the reduced variable s =
√

m1/2kTg gives

Z(c) = Z(c) =
n1
c
√
π

(

2kT

m1

)
∫ ∞

0
s2dsσint

(

√

2kT

m1
s

)

(2.14)

×
{

exp

[

−
(

s−
√

m1

2kT
c

)2
]

− exp

[

−
(

s+

√

m1

2kT
c

)2
]}

,

where, Z(c) depends only upon the magnitude of the tracer velocity.

The collision kernel in Eq. (2.11) should be written in a form where the integration is

done over c′ rather than c1 as shown in Eq. (2.7). For this derivation, it is useful to define

C = c′ − c = CΩC , where ΩC is the angular direction of C and since c is being held

constant, dC = dc′. A relationship between g and C can be found, using the definition of

J. The first and last relations in Eq. (2.8) define C = J/m, and using the definition of the

scattering angle along with g = g′ gives

C =
J

m
=

(

2µ

m

)

|g · k̂| =
(µ

m

)

√

g2 + g′2 − 2g · g′ =

(

2µ

m

)

g sin(χ/2) . (2.15)

12

With a fixed scattering angle χ, this gives

dc1 = dg = g2dgdΩg =

(

m

2µ

)2 1

sin3(χ/2)
C2dCdΩC =

(

m

2µ

)3 dC

sin3(χ/2)
(2.16)

=

(

m

2µ

)3 dc′

sin3(χ/2)
,

where the expression in Eq. (2.15) has been used to express g in terms of C, and it is also

explicitly stated that ΩC and Ωg vary over all space so that the former can be replaced

by the latter. Comparing the gain term of the Boltzmann equation in Eq. (2.7) with the

first term of the right hand side of Eq. (2.11) and using the relation in Eq. (2.16) gives the

kernel as

K(c, c′) =

(

m

2µ

)3 ∫

f (0)(c′1)
gσ(g, χ)

sin3(χ/2)
sinχdχdǫ . (2.17)

Using the expressions in Eq. (2.8), c′21 can be expressed within the equilibrium function in

terms of c and c′. This gives c′1 = c′ + g′ = c′ + g − 2(g · k)k̂ which after squaring and

simplification gives

c′21 = c′2 + g2 − 4(g · k̂)(c′ · k̂) + 2g · c′ . (2.18)

Taking the dot product of first expression in Eq. (2.8) with c′ gives

c′ · (c′ − c) =
2µ

m
(g · k̂)(c′ · k̂) . (2.19)

The expression for g · c′ is derived by defining a spherical polar coordinate system where

k̂ is along the z-axis and g lies in the xz plane, giving g = g[sinψx̂ + cosψẑ] with ψ being

the angle between g and k̂ [56]. From scattering relations, this angle is related to χ by

ψ = (π− χ)/2. Since θ (angle between k̂ and c′) and φ are the polar angles for c′, k̂ and g

define the scattering plane and φ is the azimuthal angle relative to this plane. This angle

has exactly the same definition as ǫ over which the scattering cross section is integrated,

therefore ǫ = φ. Combining these expressions together gives g = g[cos(χ/2)x̂ + sin(χ/2)ẑ]

and c′ = [sin θ cos ǫx̂+ sin θ sin ǫŷ + cos θẑ] giving

g · c′ = gc′ [sin θ cos (χ/2) cos ǫ+ cos θ sin (χ/2)] (2.20)

=

(

m

2µ

)

Cc′

sin(χ/2)
[sin θ cos (χ/2) cos ǫ+ cos θ sin (χ/2)]

=

(

m

2µ

)

[

|c′ ×C| cot (χ/2) cos ǫ+ c′ ·C
]

,

where from Eq. (2.8), C is parallel to k̂ (since g · k̂ ≥ 0 for scattering particles) hence

θ is also the angle between c′ and C, so that c′ · C = c′C cos θ and |c′ × C| = c′C sin θ.

13

Substituting the expressions from Eqs. (2.15), (2.19), and (2.20) into Eqs. (2.17) and (2.18)

gives

K(c, c′) =

(

m

2µ

)4

|c′ − c|n1
(m1

2πkT

)3/2
exp

[

− m1

2kT
c′2
]

∫ 2π

0
dǫ

∫ π

0

sinχdχ

sin4(χ/2)

× σ

[(

m

2µ

) |c′ − c|
sin(χ/2)

, χ

]

exp

[

−(m+m1)

2kT

×
{

|c′ × c| cot(χ/2) cos ǫ− c′ ·
(

c′ − c
)

+

(

m

4µ

) |c′ − c|2
sin2(χ/2)

}]

. (2.21)

The integration over ǫ can be performed analytically using
∫ 2π
0 exp[z cos ǫ]dǫ = 2πI0(z),

where I0(z) is the modified Bessel function of zeroth order. Completing the integration

and making a change of variable using s = (m/2µ)2(m1/2kT)|c′ − c|2 cot2(χ/2) gives the

expression for the kernel as

K(c, c′) =
4n1

|c′ − c|

(

m

2µ

)2 (m1

2πkT

)1/2
exp

[

m

2kT
c′2 − (m+m1)

2kT

{

c′ · c+
(

m

4µ

)

|c′ − c|2
}]

×
∫ ∞

0
dse−sσ

√

2kT

m1

√

(

m

2µ

)2 (m1

2kT

)

|c′ − c|2 + s,

× 2 cot−1

(
√

2kT

m1

(

2µ

m

) √
s

|c′ − c|

)]

I0

[

2

√

m1

2kT

|c′ × c|
|c′ − c|

√
s

]

. (2.22)

These latter two expressions for the kernel agree with those in the literature [58, 62]. In

these references the distribution function is expressed as f(c) = f (0)(c)ψ(c) and the kernels

are expressed for the function ψ(c), therefore the kernels in the references are equal to

f (0)(c′)K(c, c′)/f (0)(c).

In the case of smooth hard sphere particles, σ(g, χ) = σ212/4 where σ12 = (σ1 + σ)/2 is

the distance between the centers of the two hard spheres at the point of collision. Using

the relation
∫∞
0 ds exp[−s]I0(α

√
s) = exp[α2/4] reduces Eq. (2.22) to

Khs(c, c
′) =

n1σ
2
12

|c′ − c|

(

m

2µ

)2
(m1

2πkT

)1/2
exp

[

m

2kT
c′2 − (m+m1)

2kT
(2.23)

×
{

c′ · c+
(

m

4µ

)

|c′ − c|2 −
(µ

m

) |c′ × c|2
|c′ − c|2

}]

.

This kernel for the smooth hard sphere can be written in several equivalent forms, with one

14

particularly compact expression given as [59]

Khs(c, c
′) =

n1σ
2
12

|c′ − c|

(

m

2µ

)2 (m1

2πkT

)1/2
exp

[

− m1

2kT

(

m

2µ

)2

(2.24)

×
{

|c′ − c|+
(

2µ

m

)

c′ · (c− c′)
|c′ − c|

}2
]

.

The full translational velocity dependencies are contained in these kernel expressions.

Reduced kernel expressions can be derived from these expressions of the collision kernels,

where the new expressions are averaged over various velocity components. One can see that

in Eq. (2.22) that K(c, c′) depends only upon c′, c, and y = cosΘ = Ωc′ ·Ωc, with Θ being

the angle between c′ and c. As shown by Blackmore and Shizgal [63], the kernel can be

expanded in a series of Legendre polynomials as

K(c, c′) = K(c, c′, y) =
∞
∑

l=0

(

2l + 1

4π

)

Kl(c, c
′)Pl(Ωc′ ·Ωc) (2.25)

with

Kl(c, c
′) = 2π

∫ 1

−1
K(c, c′, y)Pl(y)dy . (2.26)

Expanding the distribution function in a series of spherical harmonic functions,

f(c) =
∑

lm

flm(c)Ylm(Ωc) , (2.27)

with

flsm(c) =

∫

f(c)Y ∗
lm(Ωc)dΩc , (2.28)

substituting into Eq. (2.11), multiplying both sides by Y ∗
lm(Ωc) and then integrating with

respect to Ωc gives

∂

∂t
flm(c) =

∑

lm′

∫

K(c, c′)fl′m′(c′)Yl′m′(Ωc′)Y
∗
lm(Ωc)c

′2dc′dΩc′dΩc − Z(c)flm(c) . (2.29)

Replacing the kernel with the expansion in Eq. (2.25) and using the angular momentum

addition theorem

l′′
∑

m′′=−l′′

Y ∗
l′′m′′(Ωc′)Yl′′m′′(Ωc) =

(

2l′′ + 1

4π

)

Pl′′(Ωc′ ·Ωc) , (2.30)

allows orthogonality relations between the spherical harmonics to be used, simplifying the

15

final expression as

∂

∂t
flm(c) =

∫

Kl(c, c
′)flm(c′)c′2dc′ − Z(c)flm(c) . (2.31)

Therefore, the time dependence of the components in flm(c) are dictated by Kl(c, c
′) and

are also uncoupled. Thus, the higher dimensional integrals of Eq. (2.11) are reduced to

a set of uncoupled integro-differential equations with only one dimensional integrations in

Eq. (2.31).

If the kinetic energy of the tracer is to be studied, then for any function of c, h(c), using

the expansions given above, gives

〈h(c)〉 =
∫

h(c)f(c)dc
∫

f(c)dc
=

∫∞
0 h(c)f00(c)c

2dc
∫∞
0 f(c)c2dc

. (2.32)

So, only the spherical component of f(c) is needed and from Eq. (2.31) only the spher-

ical component of the kernel K0(c, c
′) is required. Scaled energies, x = (m/2kT)c2 and

x′ = (m/2kT)c′2 are used to conveniently express the spherical components of the kernel.

Including the integrating factor with the definition of the distribution function gives

f̃(x) =
√
πx

(

2kT

m

)3/2

f00

(
√

2kTx

m

)

, (2.33)

K̃(x, x′) =

√
x

2

(

2kT

m

)3/2

K0

(
√

2kTx

m
,

√

2kTx′

m

)

. (2.34)

Using these definitions, the equations for the spherical component of the distribution func-

tion and for obtaining averages, become

∂

∂t
f̃(x) =

∫ ∞

0
K̃(x, x′)f̃(x′)dx′ − Z(x)f̃(x) , (2.35)

〈h(x)〉 =

∫∞
0 h(x)f̃(x)dx
∫∞
0 f̃(x)dx

.

Using the same definitions for f (0)(c) = (m/2kT)3/2 exp(−mc2/2kT) gives the equilibrium

16

function as

f̃ (0)(x) =
√
πx

(

2kT

m

)3/2

f
(0)
00

(
√

2kTx

m

)

(2.36)

= 2π
√
x

(

2kT

m

)3/2

f (0)

(
√

2kTx

m

)

=
2√
π

√
xe−x ,

with normalization
∫∞
0 f̃(x)dx = 1. Using Eqs. (2.22), (2.26), and (2.34) gives

K̃(x, x′) = 2π

√
x

2

(

2kT

m

)3/2 ∫ 1

−1
dyK

(
√

2kTx

m
,

√

2kTx′

m
, y

)

(2.37)

= A
(1 + γ)2

4γ3/2
√
xe−γx′

∫ 1

−1
dy

(

1

x′ + x− 2
√
xx′y

)1/2

× exp

[

− (1 + γ)

{

−x′ +
√
xx′y +

(

1 + γ

4γ

)

(

x′ + x− 2
√
xx′y

)

}]

×
∫ ∞

0
dse−sσ̃

[
√

2kT

m

((

(1 + γ)2

4γ

)

(

x′ + x− 2
√
xx′y

)

+ s

)1/2

,

× 2 cot−1

(

1
√
γs

(1 + γ)(x′ + x− 2
√
xx′y

)]

I0

[

2
√
γs

√

xx′(1− y)2

(x′ + x− 2
√
xx′y)1/2

]

,

where the scattering cross section has been scaled relative to the hard sphere value so that

σ̃(g, χ) = 4σ(g, χ)/σ212.

The expression for Z(x) is obtained from Eq. (2.14) as

Z(x) =
A

γ
√
x

∫ ∞

0
s2σ̃int

(

√

2kT

m1
s

)

{[

− (s−√
γx)2

]

− exp
[

− (s+
√
γx)2

]}

ds , (2.38)

with the mass ratio defined as γ = m1/m, the collision frequency factor as A = n1πσ
2
12

√

2kT/(πm)

and where the cross section has been scaled by the hard sphere value so that σ̃int(g) =

σint(g)/(πσ
2
12). In the case of non-hard sphere potentials, σ12 is an arbitrary scaling factor

chosen to best suit the problem at hand. For the hard sphere potential, σ̃int(g) = 1 and

Eq. (2.38) can be integrated analytically giving the known result [64, 65],

Zhs(x) =
A√
γ

[

e−γx +

√
π

2
Φ(

√
γx)

{

1√
γx

+ 2
√
γx

}]

, (2.39)

in which Φ(x) = (2
√
π)
∫ x
0 exp(−w2)dw is the error function. The kernel is obtained from

Eq. (2.37) using the parameters Q = (1/
√
γ +

√
γ)/2 and R = (1/

√
γ −√

γ)/2 and making

17

the change of variable z = (x′ + x− 2
√
xx′y)1/2 to give

K̃(x, x′) =
AQ2

√
γx′

e(Q−R)(Rx′−Qx)

∫

√
x′+

√
x

|
√
x′−√

x|
dze−QRz2F (x, x′, z; γ) , (2.40)

where

F (x, x′, z; γ) =
∫ ∞

0
dse−sσ̃

[

√

2kT

m1

√

s+Q2z2, cot−1

(√
s

qz

)

]

I0

[

(Q−R)]
√
∆s
]

(2.41)

and

∆ = 2
(

x′ + x
)

− z2 −
(

x′ − x

x

)2

. (2.42)

Since ∆ is symmetric with respect to the exchange of x and x′, F (x, x′, z; γ) and the integral

in Eq. (2.40) have the same symmetry. The expression given is optimized numerically for

treating heavy tracers for which γ < 1 and QR > 0. For lighter tracers with γ > 1,

QR < 0 and the value of exp(−QRz2) in the integral may become very large, posing

numerical challenges during convergence. The kernel is generally well-behaved though it

may be helpful to transform to another variable other than z when casting the equations

into a numerical algorithm.

2.2.1 Hard Sphere

For a hard sphere potential, σ̃(g, χ) = 1, and using the relation
∫∞
0 ds exp[−s]I0(α

√
s) =

exp[α2/4], allows the kernel to be evaluated analytically giving the Wigner-Wilkins kernel

[53, 58, 64–66], that is

K̃hs(x, x
′) =

AQ2

2

√

π

x′

[

Φ
(

Q
√
x+R

√
x′
)

+ ex
′−xΦ

(

R
√
x+Q

√
x′
)

(2.43)

±
{

Φ
(

Q
√
x−R

√
x′
)

+ ex
′−xΦ

(

R
√
x−Q

√
x′
)}]

,

in which the “+” and “-” signs are taken when x < x′ and x > x′, respectively.

2.3 Rough Hard Sphere

In the rough sphere model, rotating hard spheres with non-smooth surfaces are considered,

where changes in rotational and translational energies/momenta occur as the particles col-

lide. In this simple model, some internal degrees of freedom are described and inelastic

collisions are introduced. The derivation given here does not account for any effects due

to vibrational motion. In the rough sphere model it is a known fact that the degree of

rotational-translational coupling is greater than in typical molecular systems [2], therefore

18

a qualitative understanding of the effect of rotational-translational coupling upon the evo-

lution of the distribution function is used in this formulation.

The collision kernel for the rough hard sphere model is derived for a tracer particle dilute

in a bath [67, 68] that is assumed to be at equilibrium. This allows the applicability of the

linear Boltzmann equation to this model. The kernel depends upon both velocity and angu-

lar velocity quantities. Further to this derivation, an expression for the approximate rough

hard sphere kernel is derived which assumes that the rotational degrees of freedom of the

tracer remain at equilibrium and thus can be treated analytically. With this approximation,

the kernel is only dependent upon translational velocities.

The tracer and bath particles in this model have velocities, c, angular velocities, ω,

moments of inertia, I, and diameters, σ. The characterization of the rough sphere model

is based on its moment of inertia, α = 4I/(mσ2). The values of alpha depend upon the

distribution of mass in the tracer particles. With the mass concentrated at the center, α = 0,

mass concentrated uniformly at the surface of the particle, α = 2/3 and with uniform mass

density, α = 2/5.

As for the smooth hard sphere case, the equations for the collision dynamics in this

model can be written using J as [2, 69–73],

c′ − c =
J

m
, (2.44)

c′1 − c1 = − J

m1
,

ω′ − ω = − σ

2I1
k̂× J ,

ω′
1 − ω1 = − σ1

2I1
k̂× J ,

J =
2µ

1 + µχ

[

v + µχ
(

v · k̂
)

k̂
]

.

with χ = 1/(mα) + 1/(m1α1) (χ used in these equations should not be confused with the

scattering angle that has been used previously) and

v = g − 1

2
k̂× (σ1ω1 + σω) , (2.45)

where v is the value of the relative velocity of the points of contact of the sphere at the

collision. This includes the effects of the relative translational velocity (through g) and the

relative surface velocities that arise from rotations of the spheres. Upon collision, the sign

of v changes, i.e. v′ = −v. The collision equations for the total translational momentum,

19

total angular momentum, and total energy are written as

mc+m1c1 = mc′ +m1c
′
1 (2.46)

Iω + I1ω1 −
mσ

2
k̂× c+

m1c1

2
k̂× c1 = Iω′ + I1ω

′
1 +

mσ

2
k̂× c′ +

m1σ1
2

k̂× c′1

1

2
mc2 +

1

2
m1c

2
1 +

1

2
Iω2 +

1

2
I1ω

2
1 =

1

2
mc′2 +

1

2
m1c

′2
1 +

1

2
Iω′2 +

1

2
I1ω

′2
1 ,

where the total angular momentum includes contributions from the internal rotations of the

particles, as well as their orbiting contributions (of the form r×p) at the point of collision.

The form of the linear Boltzmann equation for the low density rough hard sphere tracer

particle in an uniform, infinite rough sphere bath with no external fields, is given as

∂f

∂t
=

∫

(

f ′f (0)
′

1 − ff
(0)
1

)

σ212

(

g · k̂
)

dk̂dc1dω1 , (2.47)

where σ12 = (σ + σ1) /2. The integral over k̂ includes all values for which
(

g · k̂
)

≥ 0, and

the equilibrium bath distribution function is a generalization of Eq. (2.10),

f (0)(c1, ω1) = n1
(m1I1)

3/2

(2πkT)3
exp

[

− 1

2kT

(

m1c
2
1 + I1ω

2
1

)

]

. (2.48)

The Boltzmann equation can be written as

∂

∂t
f (c, ω) =

∫

K
(

c, ω, c′, ω′) f
(

c′, ω′) dc′dω′ − Z (c, ω) f (c, ω) , (2.49)

with the collision kernel,K (c, ω, c′, ω′) and the energy dependent collision frequency, Z (c, ω).

Comparing the loss term in Eq. (2.47) with the last term in Eq. (2.49), gives

Z (c, ω) =

∫

f (0) (c1, ω1)σ
2
12

(

g · k̂
)

dk̂dc1dω1 . (2.50)

Substituting Eq. (2.48) the angular velocity dependence can be integrated analytically. Also,

performing the remaining integrals using c21 = c2 + g2 + 2g · c and
∫

(g · k̂)dk̂ = πg yields

the same expression as for the smooth hard sphere, given in Eq. (2.39). This means the

presence of translational-rotational coupling in the rough sphere model does not affect the

frequency term, and this becomes independent of angular velocity. This is consistent since

the smooth and rough sphere fluids have precisely the same structure, resulting from the

hard impact at the particle surface.

The collision kernel is obtained from the gain term in the Boltzmann equation, therefore

20

comparing Eqs. (2.47) and (2.49) gives

∫

f (0)(c′1, ω
′
1)f(c

′, ω′)σ212(g · k̂)dk̂c1dω1 =

∫

K(c, ω, c′, ω′)f(c′, ω′)dc′dω′ . (2.51)

The goal is to rewrite the variable dependency on the left hand side of the equation to

match that on the right hand side. This is done using the variables w = σ1ω1 + σω,

C = c′ − c, and W = ω′ − ω. Since c and ω are kept constant in Eq. (2.49), it follows that

dc1dω1 = 1/σ31dgdw and dc′dω′ = dCdW.

Now, c1 and ω1, and therefore g and w, are independently varying vectors so dgdw

represents six independent differentials. This is different for C and W. The first three

equations in Eq. (2.44) show that

J = mC , (2.52)

W = − σ

2I
k̂× J = −mσ

2I
k̂×C ,

soC·W = 0 regardless of the value of J. Therefore,C andW must always be perpendicular,

that is, dCdW (hence dc′dω′) cannot represent six independent differentials because of this

constraint. There are only five independently varying quantities. If the right hand side

of Eq. (2.51) is to be interpreted as a six-dimensional integral, then it must be the case

that the kernel contains a Dirac delta function which effectively reduces the number of

independently varying quantities to five. Therefore, the collision kernel must be derived

with care and it will be shown how the delta function arises in the derivation.

Different approaches could be taken to derive the collision kernel for the rough hard

sphere model. In one approach, one could transform to the magnitudes C and W , which

are independently varying quantities, and then transform the angular dependencies minding

the orthogonality constraint. In yet another approach, variables other than C and/or W

could be used to bypass the orthogonality constraint. Several variations of these approaches

were tried and given here is the derivation that was the simplest and most straightforward.

In this approach, g is transformed to C, and then the angular frequency part is dealt with.

To begin, a number of relations are derived that are helpful in the derivation. Inverting

the last equation in Eq. (2.44) yields v as a function of J, giving

v =
1 + µχ

2µ

[

J− µχ

1 + µχ

(

J · k̂
)

k̂

]

. (2.53)

Combining this equation with Eq. (2.45) and the first equation in Eq. (2.52)gives

g =

(

g

2µ

)

(1 + µχ)

[

C− µχ

1 + µχ

(

C · k̂
)

k̂

]

+
1

2
k̂×w . (2.54)

21

From Eq. (2.54), a few useful relations can be derived, namely

dg =

(

m

2µ

)3

(1 + µχ)2 dC , (2.55)

g · k̂ =
m

2µ
C · k̂ , (2.56)

g · c =

(

m

2µ

)

(1 + µχ)

[

C · c− µχ

1 + µχ

(

C · k̂
)(

c · k̂
)

]

+
1

2
c · k̂×w , (2.57)

g2 =

(

m (1 + µχ)

2µ

)2 [

C2 − µχ

(1 + µχ)2
(2 + µχ)

(

C · k̂
)2
]

(2.58)

+
1

4

(

k̂×w
)2

+
m (1 + µχ)

2µ
C · k̂×w .

Using the relations gives in Eqs. (2.55)-(2.58) shows that

σ212

(

g · k̂
)

dk̂dc1dω1 =
σ212
σ31

(

m

2µ

)4

(1 + µχ)2
(

C · k̂
)

dk̂dCdw , (2.59)

in which it is understood that the integral over k̂ is performed for values where
(

C · k̂
)

≥ 0.

Using the definition of W from Eq. (2.52) gives in component form

Wx =
mσ

2I
[Cy cos θ − Cz sin θ sinφ] , (2.60)

Wy =
mσ

2I
[Cz sin θ cosφ− Cx cos θ] ,

Wz =
mσ

2I
[Cx sin θ sinφ− Cy sin θ cosφ] ,

in which spherical polar coordinates are used to express the component of the unit vector

k̂ with dk̂ = sin θdθdφ. As discussed earlier, for given C and k̂, the components of W are

not independent but satisfy, as seen in Eqs. (2.60), C · W = 0. There, only two of the

three components are independent. The next transformation maps θ and φ to these two

independent components of W, which without loss of generality shall be chosen as Wx and

Wy. Calculating the appropriate Jacobian for this transformation using Eqs. (2.60) gives

dWxdWy =
(mσ

2I

)2
Cz

(

C · k̂
)

sin θ sinφ =
(mσ

2I

)2
Cz

(

C · k̂
)

dk̂ . (2.61)

At this point the Dirac delta function is introduced to create an additional integration over

22

Wz which maintains the dependencies in Eqs. (2.60) that is,

dWxdWy = δ

[

Wz +

(

CxWx + CyWy

Cz

)]

dWxdWydWz (2.62)

= Czδ (C ·W) dW .

After combining Eqs. (2.59), (2.61), (2.62) allows the left side of Eq. (2.51) to be written

∫

f (0)(c′1, ω
′
1)f(c

′, ω′)σ212
(

g · k̂
)

dk̂dc1dω

=
σ212
σ31

(

m

2µ

)2(I

µσ

)2

(1 + µχ)2
∫

f (0)
(

c′1, ω
′
1

)

, f(c′, ω′)δ(C ·W)dwdCdW , (2.63)

which when compared with the right hand side of Eq. (2.51) and using the definitions for

C and W identifies the kernel as

K(c, ω, c′, ω′) =
σ212
σ31

(

m

2µ

)2(I

µσ

)2

(1 + µχ)2 δ
[(

c′ − c
)

·
(

ω′ − ω
)]

∫

f (0)(c′1, ω
′
1)dw .

(2.64)

To evaluate the integral over w, use the conservation of energy expression in Eq. (2.46) to

rewrite the Maxwellian as

f (0)(c′1, ω
′
1) = n1

(m1I1)
3/2

(2πkT)3
exp

[

− 1

2kT

(

mc2 + Iω2 −mc′2 − Iω′2 +m1c
2
1 + I1ω

2
1

)

]

.

(2.65)

The definition of w yields ω2 = (w2 − 2σw · ω + σ2ω2)/σ21 and that of g yields c21 =

c2 + g2 +2g · c which can be rewritten using Eqs. (2.57) and (2.58) to eliminate the factors

of g. Performing these substitutions and simplifying gives the final expression of the kernel

as

K(c, ω, c′, ω′) = n1
σ212
σ31

(m1

2πkT

)3/2
(

I1
2πkT

)3/2(m

2µ

)2(I

µσ

)2

(2.66)

× (1 + µχ)2 δ
[(

c′ − c
)

·
(

ω′ − ω
)]

× exp

[

− m

2kT

(

c2 − c′2
)

− 1

2kT

(

ω2 − ω′2)− I1σ
2

2σ21kT
ω2

]

× exp

[

− m1

2kT

{

β2 −
(

m

2µ

)2

µχ (2 + µχ)
(

C · k̂
)2

−mχ
(

c · k̂
)

}]

×
∫

exp

[

− I1
2σ21kT

(

w2 − 2σω ·w
)

− m1

2kT

{

1

4

(

k̂×w
)2

+ β · k̂×w

}]

dw ,

in which

β =

(

m

2µ

)

(1 + µχ)C+ c . (2.67)

23

Either before or after performing the integration over w it is necessary to express the k̂

dependence in terms of C = c′ − c and W = ω′ − ω. This dependence can be obtained by

taking the magnitude of the second equation in Eq. (2.52) and rearranging to give

(

C · k̂
)2

= C2 −
(

2I

mσ

)2

W 2 . (2.68)

Note that for the smooth hard sphere from Eq. (2.15) (C·k̂)2 = C2, and comparing with the

relation above, and noting Eq. (2.56), shows that for the rough hard sphere, the rotational

motion decreases the component of g along the apse direction k̂. It also shows that this

component depends only upon the magnitudes of C and W and not upon their directions

in space. Taking the vector cross product of C with the last equation in Eq. (2.52) gives

k̂ =
1

C2

[

(

C · k̂
)

C− 2I

mσ
C×W

]

=
1

C2

√

C2 −
(

2I

mσ

)2

W 2C− 2I

mσ
C×W

 . (2.69)

This last relation allows all the dependence upon k̂ to be expressed in terms of the kernel

variable dependencies thus providing a complete description.

From this, it can be seen that the expression for the kernel contains many terms, in-

cluding those which are functions solely of C or W but also those which mix these variable

dependencies in both magnitude and angle. As expected, the translational and rotational

dependencies are intimately mixed in the kernel preventing any simple factorization. Also,

unlike the corresponding kernel for the smooth sphere case which contains only angular

dependence through c ·C (allowing simplifications to be made by expanding the kernel in

terms of Legendre polynomials in this angle) the angular dependence in the rough sphere

kernel is fully expressed in both the translational and rotational degrees of freedom. This re-

quires expansions in terms of spherical harmonics in both angular degrees of freedom. Such

an expansion would produce a set of integro-differential equations similar to Eq. (2.28) ex-

cept they would couple all components of the kernel. While only the spherical component

of the kernel would be necessary to determine the average kinetic energy, the evolution of

the distribution function would depend upon not only this spherical component but upon

all other components of the kernel as well. While closed form expressions for the kernel,

including the spherical component, can be evaluated for the smooth hard sphere model, it

appears quite difficult to do so for the rough hard sphere model.

24

2.4 Approximate Rough Hard Sphere Kernel

The expression for the exact collision kernel for the rough hard sphere is complex. To

avoid using the expression in this form, several options were explored to simplify it. The

goal of using this collision kernel is to study the kinetic energy loss in large, massive tracer

ions moving at high translational energies through a buffer gas. It is expected that energy

exchange will dominate, and rotational energy exchange should be less important. It is then

reasonable to assume that the rotational degrees of freedom of the tracer as always being

in a state of equilibrium, the same as the surrounding bath gas. The distribution function

then becomes

f(c, ω) ≈ f(c)

(

1

2πkT

)3/2

exp

[

− 1

2kT
ω2

]

, (2.70)

where f(c) is the translational distribution function for the tracer. Substituting Eq. (2.70)

into Eq. (2.49) and integrating both sides with respect to ω gives

∂

∂t
f(c) =

∫

K1(c, c
′)f(c′)dc′ − Z(c)f(c) , (2.71)

where Z(c) is given by Eq. (2.39) and the new kernel is given by

K1(c, c
′) =

(

1

2πkT

)3/2 ∫

K(c, ω, c′, ω′) exp

[

− 1

2πkT
ω′2
]

dω′dω . (2.72)

Using the kernel expression in Eq. (2.66) and using the definitions of C and W for different

quantities, gives

K1(c, c
′) = n1

(m1

2πkT

)3/2
(

m

2µ

)2(I

µσ

)2

(1 + µχ)2 exp
[

− m

2kT

(

c2 − c′2
)

]

×
∫

dWδ(C ·W) exp

[

− 1

2πkT

{

β2 −
(

m

2µ

)2

µχ (2 + µχ)
(

C · k̂
)2

− mχ
(

C · k̂
)(

c · k̂
)

}]
{

(

1

2πkT

)3/2 (I1
2πkT

)3/2

× exp

[

− 1

2kT
ω2 − I1

2σ21kT

(

σ2ω2 − 2σω ·w + w2
)

]}

× exp

[

− m1

2kT

(

1

4

(

k̂×w
)2

+ β · k̂×w

)]

dw . (2.73)

The integral over ω can be done analytically using the relation 4χ = (I1σ
2 + Iσ21)/(II1),

with the result that the quantity within braces becomes σ31/(8πχkT)
3/2 exp[−w2/(8χkT)].

Inserting this result back into the expression for the kernel, and also using Eqs. (2.61) and

25

(2.62) to transform from integration over W to that over k̂ gives

K1(c, c
′) =

n1σ
2
12

(8πkT)3/2

(m1

2πkT

)3/2
(

m

2µ

)4

(1 + µχ)2 exp
[

− m

2kT

(

c2 − c′2
)

]

(2.74)

×
∫

exp

[

− m1

2kT

{

β2 −
(

m

2µ

)2

µχ (2 + µχ)
(

C · k̂
)(

c · k̂
)

}]

×
{
∫

exp

[

− 1

8χkT
w2 − m1

2kT

(

1

4

(

k̂×w
)2

+ β · k̂×w

)]

dw

}

(

C · k̂
)

dk̂ ,

where the integral over k̂ includes all values for which (C · k̂) ≥ 0. The integral over w can

be performed taking k̂ and β as fixed variables. Let k̂ define the polar axis of a spherical

polar coordinate system and let β lie in the xz plane so that β = β(sin θβx̂ + cos θβ ẑ)

with θβ the angle between k̂ and β. If θ and φ are the polar angles associated with

w then k̂ × w = w(− sin θ sinφx̂ + sin θ cosφŷ), (k̂ × w)2 = w2 sin θ2, and β·k̂ × w =

−βw sin θ sinφβ = −|β×k̂|w sin θ sinφ. Using these relations in the integral over w and

integrating over φ using
∫ 2π
0 exp[±z sinφ]dφ = 2πI0(z) with I0(z) a modified Bessel function,

then gives the contents within the braces as

2π

∫ π

0
sin θdθ

∫ ∞

0
w2dw exp

[

− 1

8χkT
w2
(

1 +m1χ sin2 θ
)

]

I0

(m1

2kT
|β × k̂|w sin θ

)

.

(2.75)

The integration over w can be performed by making a change of variable y = w2 and using

the relation [74]

∫ ∞

0
dyyµ−1/2eαyI2ν (2ρ

√
y) =

Γ (µ+ ν + 1/2)

Γ (2ν + 1)

ρν

αµ+ν+1/2
M

(

µ+ ν +
1

2
, 1 + 2ν,

ρ2

α

)

,

(2.76)

in which M(a, b, z) is Kummer’s (confluent hypergeometric) function, so that Eq. (2.75)

becomes

(8χkT)3/2
∫ π/2

0
dθ

sin θ
(

1 +m1χ sin2 θ
)3/2

M

(

3

2
, 1,

m2
1χ

2kT

sin2 θ

1 +m1χ sin2 θ
|β × k̂|2

)

, (2.77)

in which it has been recognized that since the integrand depends only upon sin θ that the

integration over θ is symmetric about θ = π/2. The integral above can be solved [75]

yielding the final expression

(8πχkT)2

1 +m1χ
exp

[

m1χ

(1 +m1χ)

m1

2kT
|β × k̂|2

]

. (2.78)

26

Incorporating these results in the expression for the kernel and using |β×k̂|2 = β2 − (β·k̂)2
then gives

K1(c, c
′) = n1σ

2
12

(m1

2πkT

)3/2
(

m

2µ

)4 (1µχ)2

(1 +m1χ)

× exp

[

− m

2kT

(

c2 − c′2
)

− 1

(1 +m1χ)

m1

2kT
β2
]{∫

exp

[

− m1

2kT

{

m1χ

1 +m1χ

(

β · k̂
)2

−
(

m

2µ

)2

µχ (2 + µχ)
(

C · k̂
)2

−mχ
(

C · k̂
)(

c · k̂
)

}]

(

C · k̂
)

dk̂

}

. (2.79)

To perform the integration over k̂ it is convenient to choose the direction of C as the polar

axis in a spherical polar coordinate system and let c be in the xz plane. Since the integral

over k̂ must be performed for (C · k̂) ≥ 0 the polar angle θ should range from 0 to π/2 while

the angle φ should range from 0 to 2π. With these definitions we get

C · k̂ = C cos θ , (2.80)

c · k̂ = c (sin θ cosφ sin θc + cos θ cos θc) =
|c×C|

C
sin θ cosφ+

(c ·C)

C
cos θ ,

β · k̂ =

(

m

2µ

)

(1 + µχ)
(

C · k̂
)

+
(

c · k̂
)

,

in which θc is the angle between C and c, and the integral over k̂ within the braces of

Eq. (2.79) becomes

C

∫ 2π

0
dφ

∫ π/2

0
sin cos θdθ exp

[

− m1

2kT

{

(

m

2µ

)2
(

1− (1 + µχ)2

1 +m1χ

)

C2 cos2 θ (2.81)

+
m1χ

1 +m1χ

(|c×C|2
C2

sin2 θ cos2 φ+ (c ·C) cos2 θ

[

1 +
(c ·C)

C2

]

+ |c×C| sin θ cos θ cosφ
[

1 + 2
(c ·C)

C2

])}]

.

The only dependence upon φ appears through terms containing cosφ, and
∫ 2π
0 ξ(cosφ)dφ =

2
∫ π
0 ξ(cos φ)dφ for any function ξ. Transform the integral over φ using this relation and

t = φ/π. In addition, insert the result for the integral over k̂ into the expression for the

kernel, rearrange the resulting terms, including writing the expression for β2 using Eq. (2.67)

and substitute C = c′ − c to give

K1(c, c
′) = K1(c, c

′, y) =
n1σ

2
12

|c′ − c|
(m1

2πkT

)1/2
(

m

2µ

)2

F1 (2.82)

× exp

[

m

2kT
c′2 − (m+m1)

2kT

{

c′ · c+
(

m

4µ

)

|c′ − c|2
}]

,

27

in which

F1 = 2|c′ − c|2
(m1

2kT

)

(

2

2µ

)2 (1 + µχ)2

(1 +m1χ)
(2.83)

×
∫ 1

0
dt

∫ π/2

0
sin θ cos θdθ exp

[

− m1

2kT

{

1

4

[(

m

m1

)

mχ− m1χ

1 +m1χ

]

|c′ − c|2 sin2 θ

+
m1χ

1 +m1χ

(|c× c′|2
|c′ − c|2 sin

2 θ cos2(πt)−
(

c′ · c
)

sin2 θ − |c× c′|2
|c′ × c|2 cos

2 θ

+
(

c′2 − c2
) |c× c′|
|c′ − c|2 sin θ cos θ cos(πt)

)}]

.

In obtaining this result, several useful relations were used, such as (m/2µ)2[1−(1+µχ)2/(1+

m1χ)] = [m1χ/(1 +m1χ)− (m/m1)mχ]/4, (c ·C)[1 + (c ·C)/C2] = (c′ · c)− |c× c′|2, and
[1+2(c·C)/C2] = (c′2−c2)/|c′−c|2. This shows a simplified expression for the general kernel

in Eq. (2.66). Looking at the expression in Eq. (2.82), shows that K1(c, c
′) depends only

upon the magnitudes c and c′, and y = cosΘ =Ωc′ ·Ωc with Θ the angle between c and c′.

In other words, the Boltzmann equation reduces to a form with a kernel operator with the

same dependencies found in Eq. (2.22) for the spherical case. The same analysis employed

with that equation can be applied here, that is the kernel can be expanded in a series

of Legendre polynomials, and the Boltzmann equation reduced to a series of uncoupled,

one-dimensional integro-differential equations. Using analogous definitions shown in the

equations for the angular components of the kernel gives the spherical component of the

kernel as

K̃1(x, x
′) = 2π

√
π

2

(

2kT

m

)3/2 ∫ 1

−1
dyK1

(
√

2kTx

m
,

√

2kTx′

m
, y

)

(2.84)

=
AQ2

√
γ

√
x

∫ 1

−1

dy
(

x′ + x− 2
√
xx′y

)1/2
F1

× exp
[

−R2
(

x′ + x− 2
√
xx′y

)

− x+ (1− γ)
√
xx′y

]

.

Making the change of variable z = (x′ + x − 2
√
xx′y)1/2 and simplifying gives the final

expression for the kernel as

K̃1(x, x
′) =

AQ2

√
γx′

e(Q−R)(Rx′−Qx)

∫

√
x′+

√
x

|
√
x′−√

x|
dze−QRz2F1(x, x

′, z; γ, µχ) . (2.85)

The expression for F1(x, x
′, z; γ, µχ) is obtained by rewriting Eq. (2.83) in terms of x =

(m/2kT)c2, x′ = (m/2kT)c′2, and z2 = (m/2kT)|c′ − c|2, and writing the parameter

dependencies in terms of the mass ratio γ = m1/m and µχ. Note that m1χ = (1 + γ)µχ

28

and (m/µ) = (1 + γ)/γ. With these variable substitutions, and transforming the integral

over θ using s = sin2 θ gives the final expression for F1 as

F1(x, x
′, z;µχ) =

(1 + γ)2

4γ

(1 + µχ)2

[1 + (1 + γ)µχ]
z2
∫ 1

0
dt

∫

ds (2.86)

× exp

[

−(1 + γ)µχ

4γ
z2s+

γ (1 + γ)µχ

4 [1 + (1 + γ)µχ]

×
{

∆
[

1− s cos2(πt)
]

− 2

(

x′ − x

z

)

√

∆s(1− s) cos(πt) +

(

x′ − x

z

)2

s

}]

,

with ∆ given by Eq. (2.42). Note that similar to the spherical kernel of Eq. (2.40) the

expression above shows that F1(x, x
′, z; γ, µχ) = F1(x

′, x, z; γ, µχ) so that the integral in

Eq. (2.85) is symmetric with respect to the exchange of x and x′.

Examining the expression for J from the last expression in Eq. (2.44) shows that when

µχ → ∞, J → 2µ(g · k̂)k̂, that is the impulse shown in the last expression of Eq. (2.8)

for the smooth hard sphere system. The inelasticity of the rough hard sphere model is

negligible as µχ becomes very large. Therefore, in this limit the rough hard sphere kernel

should reduce to the smooth hard sphere. This is shown by transforming F1 in Eq. (2.86)

using s = (m/2kT)(mχ/4)|c′ − c|2 sin2 θ to give

F1 =

(

m1

µ

)

(1 + µχ)2

µχ (1 +m1χ)

∫ 1

0
dt

∫ m
2kT

mχ

4
|c′−c|2

0
dse−s (2.87)

× exp

[

m1

2kT

(

m1χ

1 +m1χ

) |c× c′|2
|c− c|2

]

× exp

[

−
(

2m1

m

)2 1

1 +m1χ

{ |c× c′|2
|c′ − c|4 s

[

1 + cos2(πt)
]

−
(

1

4
+

(c′ · c)
|c′ − c|2

)

s

+

√

m

2kT

√
mχ

2

(

c′2 − c2
) |c× c′|
|c′ − c|3

√
s cos(πt)

√

1−
(

2kT

m

)(

4

mχ

)

s

|c′ − c|2

}]

In the limit when µχ is large, m1χ is also large, and the prefactor in front of the integral

in F1 approaches unity, while all the terms is the exponentials, apart from the first two,

approach zero due to the factor of 1/(1 +m1χ) which multiplies them, that is,

lim
µχ→∞

F1 =

∫ 1

0
dt

∫ ∞

0
dse−s exp

[

m1

2kT

|c× c′|2
|c− c|2

]

− exp

[

m1

2kT

|c× c′|2
|c′ − c|2

]

. (2.88)

When this result is incorporated into Eq. (2.82), the smooth hard sphere kernel, Khs(c, c
′)

of Eq. (2.23) is obtained. Thus, the approximate rough hard sphere kernel approaches the

smooth hard sphere one in the correct limit.

29

2.5 Discussion of Kernels

The analytical results are given for a number of different kernels. From these derivations a

number of issues can arise when using these expressions numerically. Care must be taken

when the limits x and x′ approach zero in translating the spherical kernel of Eq. (2.40) into

a numerical algorithm. For this kernel when x→ 0 with any value of fixed x′, transforming

the integral in Eq. (2.40) using p = (z −
√
x′)/

√
x gives

√
x

∫ 1

−1
dp exp

[

−QR
(

p
√
x+

√
x′
)2
]

F
(

x, x′, p
√
x+

√
x′; γ

)

. (2.89)

In determining the limits of the integral over p, the relation x < x′ is used, which is always

satisfied when x is small enough and x′ has a finite value. The values of p are always of order

unity so when x→ 0, the factors of p
√
x become negligible, reducing the above expression

to 2
√
x exp(−QRx′)F (0, x′,

√
x′; γ). When x = 0 and z =

√
x′, Eq. (2.42) shows that ∆ = 0

which when used in the expression of Eq. (2.41) and noting limz→0 I0(z) = 1, gives the limit

of the above expression as

2
√
xe−QRx′

∫ ∞

0
dse−sσ̃

[

√

2kT

m1

√

s+Q2x′, 2 cot−1

(√
s

Q
√
s

)

]

. (2.90)

The leading factor of
√
x causes the kernel to approach zero when x → 0 and since

F (x, x′, z; γ) = F (x′, x, z; γ) the preceding analysis shows when x′ → 0 the same limit

as that given above will be obtained except with x replaced everywhere with x′. In this

case, the leading factor of
√
x′ cancels with the same term in the denominator of the pref-

actor in Eq. (2.40) to give a finite result. In summary, the kernel has the following limiting

values:

K̃(0, x′) = 0 (2.91)

K̃(x, 0) =
2AQ2

√
γ

∫ ∞

0
dse−sσ̃

[

2kT

m1

√

s+Q2x, cot−1

(√
s

Q
√
x

)]

.

For the smooth hard sphere, the last equation gives K̃hs(x, 0) = (2AQ2/
√
γ) exp(−Q2x)

showing an exponential decay as energy increases. More generally, the equations can be

used to examine the value of K̃(0, 0). A limit of the last equation gives

lim
x→0

K̃(x, 0) =
2AQ2

√
γ

∫ ∞

0
dse−sσ̃

[

√

2kTs

m1
, 0

]

. (2.92)

The forward-scattering cross section for most interaction potentials can be quite large there-

fore this limit can be quite significant. Comparing the two expressions in Eq. (2.91) shows

30

that limx′→0 K̃(0, x′) 6= limx→0 K̃(x, 0); the kernel has a point discontinuity at x = x′ = 0.

This point does not affect the values of any integrals because it is of measure zero; however,

care must be taken when casting equations in numerical algorithms since the kernel will not

be a continuous function at zero energy.

In an analogous procedure, the limits of K̃1(x, x
′) when x or x′ is small must be deter-

mined. Consider the limit when x is small (with finite x′) and transform the integral over

z in the kernel of Eq. (2.85) using p = (z −
√
x′)/

√
x) to give

√
x

∫ 1

−1
dp exp

[

−QR
(

p
√
x+

√
x′
)2
]

F1

(

x, x′, p
√
x+

√
x′; γ, µχ

)

. (2.93)

In the limit when x is small, this reduces to 2
√
xe−QRx′

F1(0, x
′,
√
x′; γ, µχ). As in the

spherical case, the factor of
√
x will cause the kernel to approach zero when x → 0. The

value of F1(0, x
′,
√
x′; γ, µχ) can be determined analytically using Eq. (2.86) and noting that

in this limit ∆ → 0. Performing the necessary algebra gives

F1(0, x
′,
√
x′; γ, µχ) =

(1 + µχ)2

µχ (1 + µχ− γ)

[

1− exp

{

−µχ (1 + µχ− γ)

[1 + (1 + γ)µχ]
Q2x′

}]

(2.94)

Again using F1(x, x
′, z; γ, µχ) = F1(x

′, x, z; γ, µχ) gives the limit when x′ is small to be

identical with the above except with x′ replacing x everywhere. The leading factor for
√
x′

then produces a finite limit.

In summary, putting together all this information gives the following limiting values for

the kernel

K̃1(0, x
′) = 0 , (2.95)

K̃1(x, 0) =
2AQ2

√
γ
e−Q2x (1 + µχ)2

µχ (1 + µχ− γ)

[

1− exp

{

−µχ (1 + µχ− γ)

[1 + (1 + γ)µχ]
Q2x

}]

.

A number of features can be seen in these expressions. For any finite value of x, limµχ→∞ K̃1(x, 0) =

(2AQ2/
√
γ) exp(−Q2x) which agrees with the smooth sphere result. This is another confir-

mation that the rough hard sphere results reduce to the smooth hard sphere ones when µχ

tends towards infinity. However, for any finite µχ, the equations show limx′→0 K̃1(0, x
′) =

limx→0 K̃1(x, 0) = 0 so unlike the spherical kernel, K̃(x, x′), the approximate rough sphere

kernel is continuous and zero at x = x′ = 0.

In addition to discontinuities in the limits of zero energy, the kernels may also contain

cusps. This can be seen by examining the derivative of the kernel expressions. For example,

31

the partial derivative of Eq. (2.37) with respect to x gives

∂

∂x
K̃(x, x′) = −Q (Q−R) K̃(x, x′) +

AQ2

√
γx′

e(Q−R)(Rx′−Qx)

∫

√
x′+

√
x

|
√
x′−√

x|
dze−QRz2(2.96)

× ∂

∂x
F (x, x′, z; γ) +

AQ2

2
√
γxx′

[

e−(R
√
x′+Q

√
x)

2

F (x, x′,
√
x′ +

√
x; γ)

× |
√
x′ −√

x|√
x′ −√

x
e−(R

√
x′−Q

√
x)

2

F (x, x′,
√
x′ −

√
x; γ)

]

.

As mentioned above, this integral over the scattering cross section in the forward direction

can take on a large values, implying that the last term in the expression for the derivative of

the kernel will indeed cause a cusp at x = x′ as this value adds or subtracts on either side.

The value of this same integral was also responsible for the discontinuity of the kernel at

zero energy. Thus, both the cusp and the point discontinuity at zero arises from the same

physical contribution, namely, the scattering cross section in the forward direction.

As analogous procedure applied to the approximate rough sphere kernel would yield

an expression identical with Eq. (2.96) except with K̃(x, x′) replaced with K̃1(x, x
′) and

F (x, x′, z′γ) with F1(x, x
′, z;µχ). Using the definition of the latter gives

F1(x, x
′,
√
x′ ±

√
x; γ, µχ) =

(1 + γ)2

4γ

(1 + µχ)2

[1 + (1 + γ)µχ]

(√
x′ ±

√
x
)2

(2.97)

×
∫ 1

0
ds exp

[

−(1 + γ)µχ

4γ

(√
x′ ±

√
x
)2
s

+
γ (1 + γ)µχ

4 [1 + (1 + γ)µχ]

(

x′ − x√
x′ ±√

x

)2

s

]

.

A limiting procedure gives limx→x′ F1(x, x
′,
√
x′−√

x; γ, µχ) = 0. Since the factor appearing

in the expression for the derivative of the kernel is zero, and since this term would normally

be responsible for producing a cusp, the approximate rough hard sphere kernel has no

cusp at x = x′. Instead the kernel is a smooth function everywhere, including in the limit

of zero energy. Physically, this results because the rough hard sphere model undergoes

translational-rotational coupling even for glancing collisions, thus affecting scattering in the

forward direction.

A comparison of the energy dependence of the smooth and approximate rough sphere

kernels is made in Figs. 2.1 and 2.2 for two different mass ratios and for a range of µχ values.

Note that the largest values of the reduced moments of inertia occur when α = α1 = 2/3,

corresponding to the maximum amount of translational-rotational energy exchange. For

these values µχ = 1.5, and for any other values µχ > 1.5. Thus, the minimum value

of µχ, corresponding to the maximum amount of translational-rotational energy exchange

32

0

0.5

1

1.5

2

2.5

3

3.5

4

K
(x

,2
)

smooth
µχ = 50
µχ = 25
µχ = 10
µχ = 5
µχ = 1.5

0 2 4 6 8 10
x

0

0.5

1

1.5

2

2.5

K
(x

,2
)

γ = 0.1

γ = 1

Figure 2.1: The spherical component of the kernel plotted as a function of reduced energy,
x, for the initial reduced energy x′ = 2. The upper panel plots values for the mass ratio
γ = 0.1, and the lower panel for γ = 1. The values for the smooth hard sphere kernel of
Eq. (2.23) are shown by black lines while the coloured lines plot the values for the rough
hard sphere kernel of Eq. (2.85) for values of µχ varying from 1.5 to 50.

decreases and the system eventually approaches the smooth sphere results in the infinite

limit.

As seen in Fig. 2.1, when the bath and tracer particles have the same mass (γ = 1) the

kernel for the smooth hard sphere has values which extend to large energies, indicating the

wide range of energy transfer which can occur upon collision. In comparison, the curve for

the approximate rough sphere kernel with µχ = 1.5 is shifted to larger energies and is much

broader. This reflects the additional energy transfer possibilities in the rough case due to

translational-rotational coupling, which is strongest for this value of µχ. As the value of

µχ is increased, the curves for the rough sphere kernel shift to the left, and begin to adopt

the shape of the smooth sphere curve. For µχ = 50, the curves are very close, with the

largest differences appearing near the cusp at x = 2. When the tracer is ten times heavier

than a bath particle (γ = 0.1), the upper panel of Fig. 2.1 shows that the kernel values for

the smooth sphere are strongly peaked near x = 2, therefore, the probability is greatest

for small energy transfers, as expected from the kinematic constraints imposed by the mass

difference. The curve for the approximate rough hard sphere kernel with µχ = 1.5 is shifted

to the right and is broadened. However, this shift and broadening is not as pronounced as

it was for the γ = 1 case. Again, the rough hard sphere values approach the smooth ones

as µχ increases.

33

0

0.25

0.5

0.75

1

1.25

1.5

K
(x

,2
0)

smooth
µχ = 50
µχ = 25
µχ = 10
µχ = 5
µχ = 1.5

10 15 20 25 30 35 40 45 50
x

0

0.1

0.2

0.3

0.4

0.5
K

(x
,2

0)

γ = 0.1

γ = 1

Figure 2.2: Same as Fig. 2.1 except for an initial reduced energy x′ = 20.

A similar comparison is made in Fig. 2.2 except for a higher energy. In this case, one

is examining tracer energies of x = 20 corresponding to values 20 times higher than the

average thermal bath energy. For both γ = 1 and γ = 0.1 the smooth sphere results show a

cusp at x = 20 with values dropping off rapidly for x < 20 and less rapidly for x > 20. As

in Fig. 2.1, the approximate rough sphere kernel values approach the smooth ones as the

value of µχ increases. For µχ = 1.5, the curve for γ = 0.1 is smooth and shifted slightly

to the right, again reflecting the added energy exchange possible between the translational

and rotational degrees of freedom. This curve gradually shifts to the left and becomes more

asymmetric as µχ increases. In contrast, for γ = 1 the curve for µχ = 1.5 is significantly

different from the smooth sphere result, peaking at values far to the right of the plotted axis.

This curve and to a certain extent the corresponding curve at low energy in Fig. 2.1 show

unrealistic behaviour as a result of using the approximate kernel for a mass ratio that is too

small. Recall that the approximate kernel was based upon the physical assumption that

the rotational degrees of freedom of the tracer remained in equilibrium. This assumption

should be poor unless the tracer is heavy, that is, γ ≪ 1. The curves in Figs. 2.1 and 2.2

show this to be true.

2.6 Summary of Collision Kernels

For the linear Boltzmann equation describing the distribution for a spherical tracer particle

of low concentration in a bath gas, an expression for the scattering kernel (Eq. (2.17)) has

been derived in general. The kernel was also expanded in an angular basis, and the explicit

34

expression for the spherically averaged component was given (Eq. (2.37)). Although these

results are well known, the presentation given here collects various bits and pieces from

different sources into a single, complete result. Specific expressions for the smooth hard

sphere model were also given.

As a new result, the general kernel (Eq. (2.66)) for the rough hard sphere model was

derived. This kernel depends upon both translational and angular velocities, and has a

number of constraints which must be imposed. Although more complicated than the smooth

sphere result, it is possible to express the rough sphere kernel in closed form. In this model,

the degree of translational-rotational coupling is controlled by a single parameter µχ, related

to the reduced moments of inertia of the bath and tracer particles.

To simplify the expressions somewhat, an approximation to the exact rough sphere

kernel was introduced by treating the rotational degrees of freedom of the tracer as an

equilibrium bath. In this approximation, the angular velocity dependence in the full kernel

can be treated analytically, resulting in a reduced kernel (Eq. 2.82)) depending only upon

translational degrees of freedom. This kernel was also expanded in an angular basis and

the explicit expression for the spherically-averaged component was given (Eq. (2.85)). This

latter result tends to the smooth sphere result when µχ approaches infinity, which is the

limit where translational-rotational energy exchange tends towards zero. In that limit, the

approximation using in deriving Eq. (2.82) becomes exact. The approximate kernel should

only be used for treating systems with heavy tracers, that is small values of γ, since it

becomes unphysical for large γ.

Due to non-zero scattering in the forward direction, the general spherical kernel contains

a cusp at x = x′ and a point discontinuity at x = x′ = 0. When casting equations

into a numerical algorithm, special care must be used to avoid complications due to these

two features. In particular, the accurate integration of the kernel near x = x′ can be

challenging. Because of the nature of the collision dynamics in the rough hard sphere

model, the approximate kernel has neither a cusp nor the point discontinuity for all finite

µχ.

Although the degree of translational-rotational coupling in the rough hard sphere model

is greater than that in typical molecules, it is a good model for studying the effects of

inelasticity.

35

Table 2.1: Summary of the collision kernel K(x, x′) and collision frequency ν(x), for the smooth hard sphere, hard sphere and the
rough hard sphere models [76].

Collision kernel, K(x, x′)) Collision frequency, Z(x)

Smooth Hard AQ2

√
x′γ
e(Q−R)(Rx′−Qx)

∫

√
x′−√

x

|
√
x′−√

x| dze
QRz2× A

γ
√
x

∫∞
0 s2σ̃int

(√

2kT
m1

s
){

exp
[

−
(

s−√
xγ
)2
]

Sphere, K̃sph(x, x
′)

∫∞
0 dse−sF (x, x′, z; γ) − exp

[

−
(

s+
√
xγ
)2
]}

ds

Hard Sphere (Wigner- AQ2

2

√

π
x′

{

Φ
(

Q
√
x+R

√
x′
)

+ ex
′−xΦ

(

R
√
x+Q

√
x′
)

A√
γ

{[

2
√
xγ + 1√

xγ

] √
π
2 Φ

(√
xγ
)

+ e−xγ
}

Wilkins), K̃hs(x, x
′) ±

[

Φ
(

Q
√
x−R

√
x′
)

+ex
′−xΦ

(

R
√
x−Q

√
x′
)]}

Rough Hard AQ2

√
x′γ
e(Q−R)(Rx′−Qx)

∫

√
x′+

√
x

|
√
x′−√

x| dze
−QRz2× Zrhs(x) = Zhs(x)

Sphere, K̃rhs(x, x
′) F1(x, x

′, z; γ, µχ)

36

Table 2.2: Summary of the limiting cases of the collision kernel K(0, x′) and K(x, 0) for the
smooth hard sphere, hard sphere and rough hard sphere models [76].

K(x, 0) K(0, x′)

Smooth Hard 2AQ2

√
γ

∫∞
0 dse−s× 0

Sphere, Ksph(x, x
′) σ̃

[√

2kT
m1

√

s+Q2x, cot−1
(√

s
Q
√
x

)]

Hard Sphere (Wigner- 2AQ2

√
γ e−R2x 0

Wilkins), Khs(x, x
′)

Rough Hard 2AQ2(1+µχ)2√
γµχ(1+µχ−γ)e

−Q2x× 0

Sphere, Krhs(x, x
′)

[

1− exp
{

−µχ(1+µχ−γ)
[1+(1+γ)µχ]Q

2x
}]

2.7 Maxwell Molecule

The Maxwell model is developed for particles that interact via a 1/r4 potential [2, 77, 78]

and is used widely in kinetic theory. In comparison to other more general models, this

model is special because the eigenvalues are known.

Unlike the spherical and rough hard sphere cases which represent specular and diffuse

scattering [12], the Maxwell molecule represents a more realistic potential for molecules, for

which the cross section was evaluated from [77, 78]

Wrbdb =Wrσ(Wr, χ) sinχdχ = −γ(χ) cos(χ/2)dχ , (2.98)

where

γ(χ) = 4 sin(χ/2)σ(Wr , χ)Wr =

(

A4

kT

)1/2 s0ds0
cos(χ/2)dχ

, (2.99)

and

s0 = s0(Wr) = b

(

kTW 2
r

A4

)1/4

. (2.100)

The value of A4 is given by

A4 =
V (r)

r4
, (2.101)

where the value of the potential energy V (r) = V0 and inverse potential via which the

37

Maxwell molecules interact, r = σ12.

From the expressions [78]

χ(s0) = π − 2

∫ s0

0
ds

[

1− s2 −
(

s

s0

)4
]−1/2

, (2.102)

and

1− s2c −
(

sc
s0

)4

= 0 , (2.103)

where s = b/r with b is the impact parameter. Defining new variables w = s/sc = t and

m = s2c + 1 and substituting into Eq. (2.102) gives

χ(m) = π − 2sc

∫ 1

0

[

1 +mt4 − (m+ 1)t2
]−1/2

dt , (2.104)

where the entire integrand is in the form of an elliptic integral. Re-writing Eq. (2.104) in

terms of sc and using the limits of m gives

χ(sc) = π − 2sc
√

2− s2c
K

(

1− s2c
2− s2c

)

, (2.105)

where K is a first order elliptic integral. Defining

1− s2c
2− s2c

= sin2 θ , (2.106)

gives sc =
√
cos 2θ/ cos θ, s0 =

√
2 cot 2θ and Eq. (2.105) becomes

χ(θ) = π − 2
√
cos 2θK(sin2 θ) . (2.107)

Differentiating Eq. (2.107) gives,

dχ

dθ
=

4
[

cos2 θK(sin2 θ)− cos 2θE(sin2 θ)
]

sin 2θ
√
cos 2θ

, (2.108)

where E is the elliptic integral of the second kind given by

dK(m)

dm
=

[E(m) − (1−m)K(m)]

2m(1−m)
. (2.109)

38

Substituting Eq. (2.108), the cross section σ(Wr, χ) in Eq. (2.98) can be written as

σ̃Maxwell

(

√

2kT

m1
g̃, χ

)

= 2

√

V0
kT

√
1 + γ

g̃

√
cos 2θ

sinχ sin 2θ

1
[

cos2 θK(sin2 θ)− cos 2θE(sin2 θ)
] .

(2.110)

The classical differential cross section above diverges as θ5 or (χ5/2) when θ → 0 (χ → 0),

that is in the forward scattering direction. This is a known problem with all classical

differential cross sections for potentials which extend to infinite distances. Correct quantum

mechanical differential cross sections do not have this singularity. In fact, the quantum and

classical cross sections for the Maxwell molecule agree very well except in the forward

direction [79]. Since the cross section divergence occurs as χ5/2, a function is required

to multiply with this factor. In addition to removing divergence, this factor should also

approach a value of 1 very quickly, in order to keep the values of larger θ unaltered. To

overcome this divergence, the cross section is multiplied by the hyperbolic tangent function

tanh(βχ5/2), where β is a coefficient that determines how quickly the values of the cross

section become finite. A plot of the cross section for different values for β is given in Fig. 2.3.

Note that θ ranges from 0 to π/4 as χ ranges from 0 to π. As the value of β becomes larger,

the cross section values are more accurately calculated. The solid black curve shows the

actual cross section, which diverges as χ→ 0. Introducing the hyperbolic tangent function

forces the cross section values to a finite value at χ = 0. The value of β = 20 was set in

this study because this value removes the singularity at χ = 0 and reproduces the lowest

eigenvalues of the Maxwell molecule kernel (which was determined in a separate calculation)

to within a few percent. It also gives a strong peak in the forward scattering direction that

mimics realistic cross sections and will provide a good test of the numerical method.

For the case of the Maxwell molecule, the scattering angle expression in Eq. (2.107) is

evaluated using pre-calculated values of θ on a grid of χ and interpolated as needed. The

cusp at x = x′ is very prominent for this model, and the integration over this point requires

care.

2.8 Fokker-Planck Expressions

As shown by Andersen and Schuler [58] the Boltzmann equation can be cast into a Fokker-

Planck equation when γ is either very large (Lorentz limit) or very small (Rayleigh limit).

The system used in this study falls under the Rayleigh limit, and therefore from this point

forward, Rayleigh limit expressions and results will be presented. For the Rayleigh gas, the

relaxation of the mean energy is given as [58] (in the present notation),

d〈x〉(t′)
dt′

= −kR[〈x〉(t′)− 〈x〉(∞)] = −kR[〈x〉(t′)− 3/2] , (2.111)

39

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
θ/π

0

2

4

6

8

10

12

14

16

18

20

ξ

 β = ∞
 β = 20
 β = 15
 β = 10
 β = 5

Figure 2.3: The value of ξ = g̃/2 ·
√

kt/V0 · 1/
√
1 + γσ̃Maxwell from Eq. (2.110) for values

of β = 5, 10, 15, 20. The solid curve for β = ∞ corresponds to Eq. (2.110) directly.

40

with kR = 16
√
γ/3 for any initial distribution function. The above results are valid when

γ < 〈x〉0 < γ−1 , (2.112)

and 0 ≤ 〈x〉0 ≤ ∞ with 〈x〉0 the initial energy of the system. Using the B-spline numerical

scheme, we wish to determine the validity of Eq. (2.111), and to identify the range where

this expression breaks down.

2.9 Drag Coefficients

The drag force on a tracer is given by

~F = m
d~v

dt
= −CDAn1m1v

2
~v , (2.113)

in which v is the net speed andA the cross sectional area [12] of the tracer. Drag coefficients,

CD, are obtained by considering the momentum transfer during a collision and integrating

over all scattering angles and a thermal distribution of speeds. Taking the derivative of the

net average kinetic energy for the tracer Ek − (3/2)kT = mv2/2, setting A = πσ212 and

using the definition of the collision frequency factor, A, and Eq. (2.113) gives

dEk

dt
= −ACDγ

√

π

kT

(

Ek −
3

2
kT

)3/2

, (2.114)

which when converted to reduced units gives

d〈x̃〉
dt′

= −CDγ
√
π〈x̃〉3/2 , (2.115)

with 〈x̃〉 = 〈x〉(t′)−3/2. The time t′ is scaled using the collision frequency, given as, t′ = At.

The speed ratio s of the tracer is then s = v
√

m1/2kT =
√

γ〈x̃〉.
For s≪ 1, Epstein [80] has given the drag coefficients for specular and diffuse scattering

as

Csp,ep =
16

3
√
π

1

s
, (2.116)

Cdiff ,ep =
13

9
Csp,ep .

Specular scattering is considered for collisions that occur between smooth hard sphere,

whereas the diffuse scattering occurs for collisions between rough hard spheres. Expressions

41

for general speed ratios are [81]

Csp =
2√
π

e−s2

s

(

1 +
1

2s2

)

+ 2

(

1 +
1

s2
− 1

4s4

)

Φ(s) , (2.117)

Cdiff =
2
√
π

3s
+ Csp ,

in which Φ(s) is the error function. These expressions are within a few percent of the Epstein

ones when s ≤ 0.05. Note that smooth hard spheres undergo specular scattering only and

Csp,ep substituted into Eq. (2.115) gives Eq. (2.111). This is consistent from the derivation

of the Fokker-Planck equation that assumes a heavy tracer moving within a specified range

of energies. From known diffusion coefficients for the rough hard sphere, one can show

that Crough = [(2 + µχ)/(1 + µχ)]Csp. For µχ = 1.5, which corresponds to the maximum

amount of translational-rotational coupling this gives Crough = (7/5)Csp which is within a

few percent of (13/9)Csp. Thus, the rough hard sphere model with µχ = 1.5 can be used

to model diffuse scattering conditions. More precisely, Crough = 7/5 · 9/13 · Cdiff .

42

Chapter 3

Methodology of Numerical Method

and Cubic B-Splines

A detailed description of the numerical method is given in this chapter. Section 3.1 gives

details on four different transformations that were used for the collision kernels to make

numerical convergence easier. Each of these transformations is advantageous in different

scenarios, which are discussed. Section 3.2 gives details on the construction of the numerical

method using B-spline polynomials as a basis set. These polynomials are used to expand

the distribution function. Also given are the conditions and parameters used to validate

the method.

3.1 Varied Collision Kernels

The collision kernel was transformed into four different forms. This was done in Ref. [82] for

the hard sphere collision kernel, but these transformations are general and can be used for

any of the models discussed. This was done to avoid certain terms in the kernel expressions

that could cause difficulties with numerical convergence.

For the general spherical kernel of by Eq. (2.40). The equilibrium distribution function

is

f (0)(x) = 2

√

x

π
e−x . (3.1)

From a numerical point of view the exponential and root terms in Eq. (2.40) can be prob-

lematic, and to bypass these two the following three forms of the distribution function were

considered,

f(x, t) = 2

√

x

π
e−xf1(x, t) , (3.2)

f(x, t) = 2

√

x

π
e−f2(x,t) , (3.3)

f(x, t) = 2

√

x

π
f3(x, t) , (3.4)

where, at equilibrium f
(0)
1 (x, t) = 1, f

(0)
2 (x, t) = x and f

(0)
3 (x, t) = e−x. Substituting

43

Eq. (3.2) or (3.4) into Eq. (2.35) gives

∂

∂t
fα(x, t) =

∫ ∞

0
Kα(x, x

′)fα(x
′, t)dx′ − Z(x)fα(x, t) , (3.5)

in which α = 1, 3 and

K1(x, x
′) =

√

x′

x
ex−x′

K̃(x, x′) , (3.6)

K3(x, x
′) =

√

x′

x
K̃(x, x′) . (3.7)

Similarly substituting Eq. (3.3) into Eq. (2.35) gives

∂

∂t
f2(x, t) = −

∫ ∞

0
K2(x, x

′)ef2(x,t)−f2(x′,t)dx′ + Z(x) , (3.8)

To test these various transformations, the smooth hard sphere kernel K̃hs(x, x
′) of Eq. (2.43)

was employed. Following the same analogies as in Section 2.6 surrounding Eqs. (2.89) and

(2.90) gives

Khs,1(x, 0) = Khs,3(x, 0) = 0 , (3.9)

Khs,1(0, x
′) = 2

AQ2

√
γ
e−R2x′

, (3.10)

Khs,3(0, x
′) = 2

AQ2

√
γ
e−Q2x′

. (3.11)

Similarly, Eq. (2.39) gives Zhs(0) = 2A/
√
γ.

3.2 Analytical Details of the Algorithm

A computer algorithm is developed in Fortran 90 to test the analytical results presented

in Chapter 2. This method is constructed using B-splines and was published in [82] and

[83]. B-splines are basis splines [84–87] that are simple piece-wise, continuous polynomial

functions. In the method developed here, third order polynomial functions have been used,

therefore cubic B-splines. The order of the B-splines can be increased by odd powers and

therefore quintic or septic B-splines can also be used. This would require modification of the

structure of the matrices and boundary conditions, but the general layout of the numerical

method does not change. Using a higher order set of B-splines would improve accuracy,

but the results obtained using third order B-splines have given accuracy sufficient for the

purpose of developing this method. B-spline functions are constructed over a finite domain.

44

-4∆ -3∆ -2∆ -∆ 0 ∆ 2∆ 3∆ 4∆
x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

B
i3 (x

)

Figure 3.1: Cubic B-spline functions, B3
i (x), for i = −4,−3,−2,−1, 0 defined on a grid of

x values.

As an example, the set of B-spline functions used in this study are

B3
i (x) =

1

6

w3
i , 0 ≤ wi < 1

w3
i − 4(wi − 1)3, 1 ≤ wi < 2

(4− wi)
3 − 4(3 − wi)

3, 2 ≤ wi < 3

(4− wi)
3, 3 ≤ wi ≤ 4

0, otherwise

. (3.12)

in which wi = (x/∆)− i. A graphical representation of these functions is given in Fig. 3.1.

In this methodology, the B-spline functions are defined over a grid of equally spaced knots or

intervals, but in general, these functions are flexible enough to be described over arbitrarily

spaced intervals. The space between each interval is ∆ (which should not be confused for

∆ given in Eq. (2.42)). As can be seen in Fig. 3.1, the B-spline functions span over four

units on the grid, and outside the domain of four units, the functions have a value of 0.

The index i labels the left most point of the spline function and matches it to the point on

the grid. Simply put, for i = 0, B3
0(x) begins at x = 0 and extends to x = x4 = 4∆. In the

45

present case, the grid over which the B-spline functions are described starts from x0 = 0

and extends to xn = S, a finite value. From Fig. 3.1, it should be noted that for all i ≥ n

extending past the end of the grid, B3
i (x) will not contribute to f . At the same time, one

should note there will be some contribution to f at grid values beyond x = x0 from B3
−3(x),

B3
−2(x), and B

3
−1(x). Therefore, the index i in Eq. (3.12) ranges from i = −3 to i = n− 1,

to fully include the cubic B-splines contributing to the distribution function values on the

grid. Although there are B-splines off the grid that contribute in the evaluation of the

coefficients, that is, with index i = −3,−2 and −1, the evaluation of the coefficients are

confined to the grid. Calculations that extend to the left of the defined grid give un-physical

values, and therefore do not contribute to the calculations.

The unknown distribution function f(x, t) is expanded in terms of the B-spline functions

of Eq. (3.12) [82],

f(x, t)
.
=

n−1
∑

i=−3

ci(t)B
3
i (x) , (3.13)

where ci(t) are time-dependent coefficients and f can be either f1, f2 or f3. Substituting

Eq. (3.13) into Eq. (3.5) gives

n−1
∑

i=−3

dci(t)

dt
B3

i (x) =

n−1
∑

i=−3

ci(t)

[∫ S

0
K(x, x′)B3

i (x
′)dx′ − Z(x)B3

i (x)

]

, (3.14)

in which K can be any of K̃hs, K1, K2, or K3 or the more general formulations K̃ and K̃1,

given by Eqs. (2.40) and (2.85).

Using a collocation scheme, the equality in Eq. (3.14) is forced to hold at the grid

points x = xj = j∆, where j = 0, . . . , n, giving n + 1 constraints for the time dependent

coefficients, ci(t). Two additional constraints are required in this formulation since there

are n + 3 unknown coefficients. To obtain these two extra constraints, a very general and

flexible process is used.

Constraint 1: One possibility is to enforce the equality in Eq. (3.14) at the midpoint

between the first and the second point, x1/2, on the grid and the midpoint between the last

and second-to-last points, xn−1/2 on the grid. Evaluating Eq. (3.14) at x = x1/2, gives

n−1
∑

i=−3

dci
dt
B3

i (x1/2) =

n−1
∑

i=−3

ci

∫ S

0
K(x1/2, x

′)B3
i (x

′)dx′ −
n−1
∑

i=−3

ciZ(x1/2)B
3
i (x1/2) (3.15)

46

which reduces to

1

6

[

1

8

dc−3

dt
+

23

8

dc−2

dt
+

23

8

dc−1

dt
+

1

8

dc0
dt

]

=

n−1
∑

i=−3

K1/2ici−
Z1/2

6

[

1

8
c−3 +

23

8
c−2 +

23

8
c−1 +

1

8
c0

]

.

(3.16)

Equation (3.16) is obtained by considering values of i where B3
i (x1/2) is non-zero, that

is, i = −3, . . ., 0 and calculating the values of the spline functions using Eq. (3.12). An

expression for xn−1/2 is obtained in a similar fashion.

Constraint 2: Obtaining the constraints is a very flexible method, therefore as a second

choice the spatial and temporal derivatives of f , can also be chosen, that is,

∂2

∂x∂t
f(x, t) =

n−1
∑

i=−3

d

dt
ci(t)

d

dx
B3

i (x) . (3.17)

In this constraint the derivatives are forced to be zero at the grid end points, x = x0, xn.

With these constraints set, the first and last rows of the K and Z matrices have zeroes

as their elements and the corresponding elements of matrix B are derived from the known

values of the spline derivatives at the grid points, again determined from Eq. (3.12). This

constraint is not used in the present work, but given to show the flexibility of the method.

This constraint was tried but does not work well because it does not match the behaviour

of the distribution function well enough. For this reason, this constraint was abandoned.

The eigenvalues obtained using constraint 2 were not accurate when compared to those in

the literature. This occurred because the derivative of the B-splines was forced to be zero

at the given points. The derivatives of the B-splines may not have this value at the points

and this introduces a discrepancy and affects the accurate evaluation of the eigenvalues.

With either of these constraints, Eq. (3.14) can be cast into matrix notation as

dc

dt
= Lc , (3.18)

with

L = B−1(K− ZB) . (3.19)

Since the matrix L is time independent, the formal solution of Eq. (3.18) is

ci(t) = e−Ltc(t = 0) = UeΛtU−1c(t = 0) , (3.20)

with

Λ = U−1LU , (3.21)

in which Λij = λiδij with λi the eigenvalues of the matrix L and U its transformation

47

matrix.

In the f2 case, the formulation given above does not apply because writing f2 as part of

the exponent term destroys the linearity with respect to the spline coefficients. Therefore,

in this particular case the matrix formulation of Eq. (3.8) becomes

dc

dt
= B−1(Z̃− K̃) , (3.22)

where B is a square matrix and K̃ and Z̃ are column vectors. The column matrices Z̃ and

K̃ have elements Z̃ = Zj and

K̃j =

∫ S

0
K3(xj , x

′)e[fhs,2(xj ,t)−fhs,2(x
′,t)]dx′ . (3.23)

For this case a simple finite difference scheme is used to integrate Eq. (3.22), namely

c(t+∆t) = c(t) +
dc

dt
∆t . (3.24)

Equation (3.24) can also be used to integrate Eq. (3.18).

In the evaluation of the time dependent coefficients, the first set of coefficients are

evaluated at t = 0, which are further used in the iterations above. The matrices B, K, and

Z are square matrices with dimensions (n+3)× (n+3), whereas for the f2 formulation, K̃

and Z̃ have dimensions (n+ 3)× 1.

To show a more detailed derivation of the matrix formulation, consider the form of

Eq. (3.14) when x = xj, that is

n−1
∑

i=−3

dci
dt
B3

i (xj) =
n−1
∑

i=−3

ci

∫ S

0
K(xj, x

′)B3
i (x

′)dx′ −
n−1
∑

i=−3

ciZ(xj)B
3
i (xj)

1

6

[

dcj−3

dt
+ 4

dcj−2

dt
+
dcj−1

dt

]

=

n−1
∑

i=−3

Kjici −
Zj

6
[cj−3 + 4cj−2 + cj−1] , (3.25)

in which

Kji =

∫ S

0
K(xj, x

′)B3
i (x

′)dx′ . (3.26)

The second line of Eq. (3.25) is obtained using the values in Eq. (3.12) since B3
i (xj) is non-

zero only for i = j − 3, j − 2 and j − 1. Mapping the above equations to matrix notation is

done as follows. If k and l are taken to be the indices for the rows and columns of an (n+3)

× (n + 3) square matrix, respectively, choose k = 2, . . ., n + 2 to correspond with j = 0,

. . ., n and l = 1, . . . , n+ 3 to correspond with i = −3, −2, . . ., n− 1. Therefore, k = j + 2

and l = i+4. This provides a mapping from (j, i) labels to matrix indices (k, l). The values

48

for k = 1 and k = n + 3 are used to assign the values of the two extra constraints. The

matrices used in Eq. (3.19) with constraint 1, then become

B =
1

6

1
8

23
8

23
8

1
8 . . . 0 0

1 4 1 0 . . . 0 0

0 1 4 1 . . . 0 0
...

...
. . .

. . .
. . .

...
...

0 0 . . . 1 4 1 0

0 0 . . . 0 1 4 1

0 0 . . . 1
8

23
8

23
8

1
8

,

Z =

Z1/2 0 0 . . . 0 0

0 Z0 0 . . . 0 0

0 0 Z1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . Zn 0

0 0 0 . . . 0 Zn−1/2

,

c =

c−3

c−2

c−1

c0
...

cn−1

. (3.27)

To obtain the initial coefficients ci(t = 0), Eq. (3.13) is used,

ci(t = 0) = B−1f , (3.28)

where fk = f(xj, t = 0) with j = k − 2 for k = 2, . . ., n + 2 and j = 1/2 for k = 1 and

j = n− 1/2 for k = n+ 3 which match the boundary conditions using constraint 1.

3.2.1 Evaluation of Z

Ideally, if the grid is infinitely large, that is if S is infinite, then Zj = Z(xj), with Z(x)

given by the definition of A for the collision frequency. This equality between Z(x) and the

integral of the collision kernels in Eqs. (3.5) or (3.8) over x′ must be held in order to maintain

a constant norm for the distribution function. At equilibrium in this limit K = ZB. But,

since S is finite in the numerical method, this equality breaks down at equilibrium and the

norm may not be preserved if Eq. (2.38) is used for evaluating Z(x). To overcome this, the

49

values of Z are calculated using

Zj =

∫ S

0
Ki(xj , x

′)dx′ . (3.29)

This forces the norm to be preserved but does not guarantee K = ZB will also be satisfied at

equilibrium. Only when the representation of the equilibrium function is accurate enough,

will this equality be satisfied.

3.3 Initial Functions and Conditions

Several initial functions were used to test the numerical method, namely a Maxwellian,

Gaussian and bimodal functions. The Maxwellian function was set at different temperatures

as compared to the temperature of the bath. The results obtained with this particular form

of the initial function are presented in Chapter 4. The form of Maxwellian function used is

f(x, t = 0) = 2

√

x

π
α3/2e−αx , (3.30)

where α is the temperature ratio of the tracer to the bath. The form of Eq. (3.30) is

given for the fhs formulation and is appropriately transformed into the fhs,1, fhs,2 and fhs,3

formulations using Eqs. (3.2), (3.3) and (3.4). To validate the flexibility of the numerical

method, a more extreme initial function with a bimodal distribution was used, representing

peaks at two different energies, with the form

f(x, t = 0) = exp[−0.2(x − 2)2] + exp[−0.2(x − 8)2] . (3.31)

The Gaussian distribution function used to obtain the results given in Chapter 5 is

f(x, t = 0) = e−(x−x0)2 , (3.32)

where x0 is the initial energy of the system.

3.4 Use of Quadratures

Any numerical scheme can be used to evaluate the integrals given in the collision kernel

expressions in Eqs. (2.40), (2.85), (3.15), or (3.29). For the results presented in Chapter

4 Gauss-Legendre quadrature schemes were used. For the results presented in Chapter 5

for the integrations over z in the collision kernel expressions, once again Gauss-Legendre

quadratures were used, and those integrals over the variable s were done using Gauss-

50

Laguerre quadrature. Since the domain of B3
i (x) is finite, the integrand is non-zero only

over a very narrow range on the grid. Therefore, the use of the Gauss-Legendre quadrature

scheme is best suited. Because the piecewise continuous nature of the B-splines affects

convergence of the quadrature scheme, the integrals are divided into pieces extending over a

single grid width ∆. This ensures that each integral is considered to be a separate entity that

is independent of all other intervals. Some intervals may require more points than others

to converge, and by separating the integrals into smaller intervals the appropriate number

of points can be used in the evaluation. The number of quadrature points are increased

until the difference in the integrated values is less than a certain tolerance, typically set at

10−13 for results in Chapter 4 and 10−9 for results in Chapter 5. Using B-splines provided

an advantage in dealing with problematic integrands, such as the cusp at x = x′ in the

collision kernel, in a localized manner.

3.5 Code Details

The code was written in Fortran 90 and is about 5500 lines. The code was divided into sub-

routines, functions and modules that evaluate individual parts of the calculation. The code

requires the use of some routines given in Numerical Recipes [88]. These subroutines include

polint for polynomial interpolation, gaulag for the evaluation of the Gauss-Laguerre quadra-

ture abscissae and weights and gauss for the evaluation of the Gauss-Legendre quadrature

abscissae and weights. Using these routines, the points and weights of the quadratures

were evaluated at the very beginning of the program and stored. These quadratures were

used as needed in the evaluation of the individual integrals. A level of tolerance was set

and the evaluated values of the integrals were checked against these tolerances to confirm

their convergence. If convergence was not obtained, the number of points and weights was

increased. For some calculations, the number of points for the quadratures was set at a

particular value. The values obtained with this condition converged well, and thus allowed

the higher level integration to use quadrature points as needed for convergence.

To parallelize certain parts of the code, especially large matrix evaluations, OPENMP

routines were used. This allowed the use of multiple processors for calculations. The

evaluation of the matrices in Chapter 4 took anywhere from a few seconds to about 4

hours. The results for the f1 case completed the fastest and those for the fhs case took

the longest amount of time. The matrices ranged in size from 20× 20 to 1000 × 1000. For

the results in Chapter 5, parallelization was introduced. This paralellization was done for

evaluation of the matrix L in Eq. (3.19). A separate program was written to complete the

evaluation of matrix K in Eq. (3.19). In this the elements of K were evaluated and then the

entire matrix was read into the main program. Using two-dimensional linear interpolation,

the correct value at the points of evaluation was obtained, and then further used in the

51

calculation. The evaluation of matrix K would take upto three days, depending on how

large the matrices were. The largest matrix that was evaluated was 2000 × 2000. This

method of evaluating the matrix L was later abandoned since the tolerance on convergence

was relaxed in the lower level evaluations of the integrals. This allowed only the main

program to be used for all calculations. The smallest matrix evaluated was 100 × 100 and

the largest 2000 × 2000. The calculations run for the smooth hard sphere were completed

between 30 minutes to about 2 hours depending on the initial energy that used. It would

take longer to complete the calculation for the higher energy cases. The rough hard sphere

cases were completed between 2 - 6 hours, and the Maxwell model took the longest to run,

from 4 - 40 hours. In comparison to other numerical methods available, this method worked

quite well in completing the time propagation and giving well converged values. The QDM

method would still be much faster than the B-spline method. The number of processors

were also controlled in the submission script. The maximum number of processors used

were 12, that all ran on the same node.

C subroutines were used for the gamma and error functions. LAPACK subroutines

were called for the matrix operations such as matrix decomposition, matrix diagonalization,

eigenvalue and eigenvector evaluations. Intel and Portland Group compilers were used to

compile and debug the entire code. The code is given in Appendix A.

52

Chapter 4

Validating the Numerical Method

using Eigenvalues and Moments

This chapter gives the results used to test the accuracy of the method given in Chapter

3. A comparison between the eigenvalues and eigenfunctions is shown for the different

formulations of the collision kernels discussed in Section 3.1, and these values are also

compared to previously published results that were obtained using QDM ([89]). Also given

are the distribution functions and moments for the different collision kernel formulations.

Using the results the advantages and disadvantages of each formulation of the collision

kernel is discussed at the end of the chapter.

4.1 Eigenvalues and Eigenfunctions

For the K̃hs, K1 and K3 formulations of the collision kernel, the collision matrix L in

Eq. (3.19) is diagonalized to obtained eigenvalues and corresponding eigenfunctions. The

eigenvalue spectrum for a hard sphere gas has been evaluated [65] and shown in this thesis

are the discrete values that are less than 1. This discrete spectrum gives an eigenvalue of 0

that is indicative of the equilibrium distribution function. The consecutive values calculated

are negative and increase. In order to obtain convergence, the smaller values decrease and

the values closer to 1 tend to pile up around this value.

Table 4.1 contains the eigenvalues obtained using the K̃hs kernel expression in Eq. (2.43).

It shows convergence of the first two non-zero eigenvalues for four different mass ratios of

γ = 1/8, 1/2, 1 and 8. The grid size S and the number of points n vary. The data in Table

4.1 shows the effect of changing the grid size and number of points on the convergence

of the eigenvalues. Different combinations of (S, n) are chosen to monitor convergence in

multiple ways. Keeping the value of S fixed and increasing values of n shows the effects

of decreasing the grid spacing on convergence. In contrast, keeping the ratio S/n constant

shows the effect of increasing the size of the grid while maintaining a fixed grid spacing.

From Table 4.1, it can be deduced that a grid size S of a maximum of 20 units will be

sufficient to obtain convergence for the eigenvalues. By keeping the values of S constant

and increasing the values of n the convergence of the eigenvalues improves. This is further

53

shown in Tables 4.2 and 4.3.

Table 4.1: The first and second non-zero eigenvalues obtained for different mass ratios,

γ = 1/8, 1/2, 1 and 8, by diagonalizing L using the matrix representation of the Khs,1

kernel of Eq. (3.6). The eigenvalues are normalized by Zhs(0). The grid used for each

diagonalization spans from 0 to S with n intervals. The accurate values are QDM results

from Shizgal et al. [89].

S n γ = 1
8 γ = 1

2 γ = 1 γ = 8

λ1/Zhs(0) 10 10 0.2796 0.6895 0.8137 0.5641

10 50 0.2796 0.6896 0.8191 0.6016

20 20 0.2784 0.6891 0.8188 0.5639

20 100 0.2784 0.6891 0.8190 0.6132

30 150 0.2784 0.6889 0.8158 0.5894

Accurate values 0.2784 0.6891 0.8190 0.6139

λ2/Zhs(0) 10 10 0.4978 0.9157 0.9778 0.9572

10 50 0.4984 0.9212 0.9760 0.9385

20 20 0.4882 0.9199 0.9717 0.9561

20 100 0.4882 0.9208 0.9789 0.9382

30 150 0.4882 0.9208 0.9760 0.9382

Accurate values 0.4882 0.9208 0.9797 0.9667

Tables 4.2 and 4.3 show the eigenvalues of the collision kernels in the K̃hs, Khs,1 and

Khs,3 formulations for different mass ratios. In Tables 4.2 and 4.3 the same four mass ratios

are tested by varying the number of points n, ranging from 10 − 600 all with S = 20. It

is shown that convergence is obtainable by keeping the grid size constant and varying the

number of points. The accurate values indicated are obtained using QDM in Ref. [89]. In

all three tables the discrete eigenvalues are reported and are normalized by the frequency

Zhs(0). Keeping in accordance with significant figures these values are rounded up.

Tables 4.2 and 4.3 show a number of trends. The first non-zero eigenvalue λ1 is obtained

accurately for all mass ratios in the Khs,1 and Khs,3 formulations. For the smaller mass

ratios of γ = 1/8 and γ = 1/2, the convergence is obtained very quickly. In the case of the

Khs,1 formulation fairly accurate eigenvalues are obtained for n = 2 even, and the Khs,3

formulation requires a minimum of n = 60. In comparison, the K̃hs formulation goes as high

as n = 600 and is still not converged. As the mass ratios increase, namely γ = 1 and γ = 8,

a greater number of points are required for convergence. In theKhs,3 case the convergence is

rapid since the non-polynomial nature of the
√
x is removed from the distribution function.

54

Therefore, the convergence is almost as good as the Khs,1 case. It should be noted that

convergence is the worst for K̃hs formulation for all mass ratios and for γ = 8 the values

are even less converged at this limit. The trends are similar for the second and third non-

zero eigenvalues, except they are correspondingly more difficult to fully converge. This is

especially noticeable for the largest mass ratio γ = 8 where it becomes more difficult to

obtain eigenvalues with a small number of points. In fact, for this particular mass ratio λ3

was unobtainable until a minimum value of n = 600 was used. Even setting n to a high

number, the eigenvalue was not converged to the exact value, but it is possible to obtain

the exact value by further increasing the number of points.

Overall, the values given in Table 4.1 show similar patterns to those in Table 4.2 and

4.3. Between Tables 4.1 and 4.2 and 4.3, it can be confirmed that the B-spline method is

stable and does converge to the exact eigenvalues, but the rate of convergence is heavily

dependent on the particular formulation used. The Khs,1 and Khs,3 formulations converge

much faster than K̃hs formulation. Comparison between Tables 4.1 and 4.2 and 4.3 shows

that the B-spline method is quite flexible to accommodate different choices of parameters.

However, it is clear that Constraint 1 discussed in Chapter 3 is the better choice to use to

obtain converged eigenvalues and has been used in Tables 4.2 and 4.3.

The first and second eigenfunctions obtained from the K̃hs, Khs,1 and Khs,3 formulations

are compared with the exact ones in Figs. 4.1, 4.2 and 4.3. In the K̃hs andKhs,3 formulations

the eigenfunctions oscillate at small distance and have exponentially decaying tails at large

distances.

As shown by Shizgal et al. [89] there are very steep oscillations that occur close to

x = 0, evident in Figs. 4.1 and 4.3 and are difficult to represent in the K̃hs formulation but

in the Khs,3 formulation they are represented very well. As can be seen in Fig. 4.1, the

eigenfunctions in the K̃hs formulation are good for small values of γ and become increasingly

worse as γ increases, but in the Khs,3 formulation the eigenfunctions are represented well

for the entire grid for all mass ratios. The curves for the eigenfunctions were generated

using S = 20 and n = 200, so with these rather generous parameters, convergence is

poor in K̃hs formulation but not for Khs,3. In comparison, for the eigenfunctions obtained

using the Khs,1 formulation in Fig. 4.2, the exponential decay in the tails evident in the

K̃hs formulation is gradually decreased. All eigenfunctions have tails at large x that are

smooth and slowly varying. In general, the curves are simple in shape and the eigenfunction

obtained using the Khs,1 formulation reproduce the exact values very well.

4.2 Distribution Functions

Figures 4.4 and 4.5 show the time dependence of the distribution functions for all four

formulations (fhs, fhs,1, fhs,2 and fhs,3) starting with initial function given in Eq. (3.30),

55

-0.4

-0.2

0

0.2

0.4

Ψ
1,

2(x
)

-1

-0.5

0

Ψ
1,

2(x
)

0 1 2 3 4 5 6 7 8 9 10
x

-1

-0.5

0

Ψ
1,

2(x
)

γ = 1/8

γ = 1

γ = 8

Figure 4.1: Plots showing the accuracy of the eigenfunctions associated with the two lowest,
non-zero eigenvalues for different mass ratios. The red squares and blue circles are values
obtained from a highly accurate QDM method. The dashed red and solid blue curves repre-
sent the first and second eigenfunctions obtained by diagonalizing the matrix representation
of the kernel K̃hs, using a grid spanning from 0 to 20 with 200 points.

56

0

5

10

15

Ψ
1,

2(x
)

-10

-5

0

Ψ
1,

2(x
)

0 1 2 3 4 5 6 7 8 9 10
x

-5

0

5

10

15

Ψ
1,

2(x
)

γ = 1/8

γ = 1

γ = 8

Figure 4.2: Same as Fig. 4.1 except the curves were obtained by diagonalizing the kernel
Khs,1.

57

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Ψ
1,

2(x
)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Ψ
1,

2(x
)

0 1 2 3 4 5 6 7 8 9 10
x

-1.5

-1

-0.5

0

0.5

Ψ
1,

2(x
)

γ = 1/8

γ = 1

γ = 8

Figure 4.3: Same as Fig. 4.1 except the curves were obtained by diagonalizing the kernel
Khs,3.

58

0

0.5

1

f hs
(x

,t)

0

0.5

1

f hs
(x

,t)

1

10

100

f hs
,1

(x
,t)

1

10

100

f hs
,1

(x
,t)

-4
-2
0
2
4

f hs
,2

(x
,t)

-4
-2
0
2
4

f hs
,2

(x
,t)

0 1 2 3 4 5 6 7 8 9
x

0
0.5

1
1.5

2
2.5

f hs
,3

(x
,t)

0 1 2 3 4 5 6 7 8 9 10
x

0
0.5
1
1.5
2
2.5

f hs
,3

(x
,t)

γ = 1 γ = 8

Figure 4.4: Snapshots of the time dependence of distribution functions started with the
initial function of Eq. (3.30) with α = 1/2 and γ = 1 and 8. The progression of the curves
begins from the black solid curves to the final equilibrium state given by the brown dot-
dashed curves. The top, middle and bottom panels give the distribution functions in the
K̃hs, Khs,1, and Khs,2 and Khs,3 representations, respectively. The y-axis of the second
panel is logarithmic. The black curves are given for t = 0 and the brown curves represent
the last time step in the calculations. A greater number of curves are obtained, but since
they overlap each other, only a few are shown to indicate the progression of the distribution
function. The time steps varied from 10− 100 for the the different formulations shown.

with temperature ratios of 1/2 and 2 and the two mass ratios γ = 1 and 8.

Figure 4.6 shows the same time dependent distribution functions in the left panel as

given in Fig. 4.4 for γ = 1 and α = 1/2. In the right panel, the full distribution function

as given by Eqs. (3.2)−(3.4) are given. The curves in the right panel should all be iden-

tical to each other. This figure shows the difference of expanding the distribution in the

different formulations, does not effect the full distribution function. Therefore, each of the

formulations are numerically different from each other, but analytically identical. Each of

the curves shown in this figure are snapshots taken at identical times in each case.

Figure 4.7 shows the time dependent distribution function initialized using the bimodal

distribution function in Eq. (3.31) for all four formulations and γ = 1. With this initial

distribution the tracer has two regions of energy and must relax to equilibrium. Depending

59

0

0.1

0.2

0.3

f hs
(x

,t)

0

0.1

0.2

0.3

f hs
(x

,t)

0.001

0.01

0.1

f hs
,1

(x
,t)

0.001

0.01

0.1

f hs
,1

(x
,t)

0

5

10

15

f hs
,2

(x
,t)

0

5

10

15

f hs
,2

(x
,t)

0 1 2 3 4 5 6 7 8 9
x

0
0.2
0.4
0.6
0.8

f hs
,3

(x
,t)

0 1 2 3 4 5 6 7 8 9 10
x

0
0.2
0.4
0.6
0.8

f hs
,3

(x
,t)

γ = 1 γ = 8

Figure 4.5: Same as Fig. 4.4, except with α = 2 and γ = 1 and 8.

on the formulation used, there is variation in the general shapes of the distribution functions.

The top panels of all the figures show the K̃hs formulation. In this representation the

distribution functions have exponentially decaying tails and the initial functions decay to a

Maxwellian distribution function. The graphs show the time evolution of the distribution

smoothly moving towards equilibrium. The second panels show the distribution functions

obtained using the Khs,1 formulation, where the initial functions are increasing for a lower

temperature ratio and decreasing for α = 2. In both cases these distributions must relax

to a value of 1 at equilibrium. The third panels show the distribution functions in the

Khs,2 formulations. In this representation, the B-splines expand a function in the exponent

and therefore the initial distribution function starts with a slope different from 1 and as

the distribution approaches equilibrium, the slope becomes exactly 1, the correct limiting

value. The bottom panel in all the figures shows the distribution function in the Khs,3

formulation. In this formulation the initial distribution function are exponential functions

and at equilibrium the distribution is an exponential.

In Fig. 4.7 the top panel very clearly shows the two peaks, where the first peak must

grow and the second peak must shrink to relax to a Maxwellian distribution at equilibrium.

In the second panel for the Khs,1 formulation, the initial distribution starts off with a non-

uniform curve and steadily approaches a value of 1 at equilibrium. Similarly, in the Khs,2

60

0

0.5

1

1.5

f hs
(x

,t)

0

0.5

1

1.5

f hs
(x

,t)

0.1

1

10

100

1000

f hs
,1

(x
,t)

0

0.5

1

f hs
(x

,t)

-6
-4
-2
0
2
4

f hs
,2

(x
,t)

0

0.5

1

f hs
(x

,t)

0 1 2 3 4 5 6 7 8 9
x

0
0.5

1
1.5

2
2.5

f hs
,3

(x
,t)

0 1 2 3 4 5 6 7 8 9 10
x

0

0.5

1

f hs
(x

,t)

Figure 4.6: Distribution functions for α = 1/2 and γ = 1. The left panels are the same
as those in Fig. 4.4, that is, they show the progression of the distribution function to
equilibrium of the different formulations, Khs, Khs,1, Khs,2 and Khs,3. The right side panels
show the complete distribution function as given by Eqs. (3.2)−(3.4). The red dotted curve
is the initial distribution function that progress to the equilibrium function given by the
black solid curve. The curves shown are plotted at identical relaxation times for all the
cases.

61

0

2

4

6

8

f h
s(

x
,t

)

0.01

1

100

f h
s,

1
(x

,t
)

-4

0

4

8

f h
s,

2
(x

,t
)

0 2 4 6 8 10 12 14
x

1

100

10000

f h
s,

3
(x

,t
)

γ = 1

Figure 4.7: Same as Fig. 4.4, except using an initial function given by Eq. (3.31) with γ = 1.

62

formulation shown in the third panel, the curve is non-uniform initially and then approaches

a slope of exactly 1 at equilibrium. In the last panel, the initial function has a similar shape

to the black curve in the top panel. As the distribution approaches equilibrium the curve

has an exponential shape. Overall the time dependence in all formulations is well behaved.

The curves are smooth over the entire grid of spatial values and remain at equilibrium at

long times. The distribution function at equilibrium for Khs,1 and Khs,2 is a linear function

which is represented by the B-splines exactly. In comparison, the other formulations have

more difficult forms, and even in these cases the B-splines are easily able to represent these

functions. Therefore, depending on the case each of the formulation can have its advantages

and disadvantages.

4.3 Moments

For the calculation of the moments a standard calculation was done using Eq. (3.30) with

α = 0.5 and 2, and the bimodal distribution using Eq. (3.31), for γ = 1/8, 1, and 8, where

the parameters for the total time, and grid size S, were determined. Multiple calculations

were done to determine the minimum number of the points, n, required for the moment

values to be varied by more than 0.1% from the standard results. Therefore, the value of n

was reduced until the value of the first moment was within 0.1% of the equilibrium value

of 3/2kT .

The values for the zeroth, first and second moments were calculated for distribution

functions of different mass ratios and initial conditions, but graphical representations of the

first and second moments are shown in Figs. 4.8 and 4.9. T ∗ can be taken to be the ratio

between the tracer and bath temperature, and at equilibrium T ∗ = 1. A normalization

factor of T ∗ = (2/3)〈y〉 is used to normalize the first moment as shown in Figures 4.8 and

4.9, where 〈y〉 is the average value of the moment at a particular time. The second moment

is calculated using ξ = 〈y2〉 − (5/3)〈y〉2. At equilibrium, for a Maxwellian distribution

function, ξ = 0, whereas at other times, ξ can be taken to be the measure of deviation of

the distribution function from equilibrium. It should be noted though, that in general a

value of ξ = 0 does not guarantee a Maxwellian distribution. This relationship between the

values of T and ξ is also shown in Figures 4.8 and 4.9. The moments are shown to converge

quite well as the initial functions approach equilibrium. This is indicated by the curves in

Fig. 4.8 where the deviation of the normalized moment values from Maxwellian decreases

at longer times.

As can be seen in Figure 4.8, the values of T ∗ start either at 2 or 0.5, approach 1

smoothly, and remain at that value for long times. As expected, the decay of the moments

for a higher mass ratio is slower than that for a smaller mass ratio. The values of ξ show

small deviations from Maxwellian at small times, but then quickly approach the equilibrium

63

0

0.5

1

1.5

2

T
* , ξ

0

0.5

1

1.5

T
* , ξ

0 1 2 3 4 5 6 7 8 9 10
t

0

0.5

1

1.5

T
* , ξ

 γ = 1/8

 γ = 1

 γ = 8

Figure 4.8: Plots of T ∗ and ξ for the distribution functions for different mass ratios using
the initial function of Eq. (3.30). In all three panels, the blue and yellow dashed curves use
initial functions with α = 1/2, and red and green dot-dashed curves are for α = 2. The
yellow dashed and green dot-dashed curves plots values of T ∗. The blue dashed and red
dot-dashed curves plot values of ξ.

64

0

1

2

3

4

5

T
*

0 1 2 3 4 5
t

-20

-15

-10

-5

0

 ξ

Figure 4.9: Plots of T ∗ and ξ for the distribution functions for different mass ratios using
the initial function of Eq. (3.31). In both panels, the red dashed, black dotted, and blue
dot-dashed curves are for mass ratios γ = 1/8, 1 and 8, respectively.

65

value of zero. In Figure 4.9, the initial function is far from equilibrium, and therefore a

more pronounced change is visible. The ξ values are significantly less than zero but increase

quickly to zero, with the low mass ratio increasing faster than the higher mass ratio. The

values of T ∗ once again show the decay of an initially hot distribution to the equilibrium

value.

Although not shown here, it was found that moments calculated with the fhs,1, fhs,2

and fhs,3 formulations, all converged using n = 10 − 100. For the fhs formulation, n was

much larger and in fact it was quite challenging to converge the moments to within 0.1%

accuracy. Even though the fhs,1 and fhs,2 formulations converged quite well, the fhs,2

formulation required many time steps to propagate to the equilibrium state along with a

very small time step. The time propagator used for the fhs,2 formulation is quite simple and

better performance can be obtained by using a more efficient time propagator, such as the

Runge-Kutta. Overall, in terms of time steps and convergence, the fhs,1 formulation works

the best. Also, generally for all the formulations the moments were more easily converged

rather than eigenfunctions and eigenvalues.

4.4 Discussion

In this chapter results from solving the linear Boltzmann equation of Eq. (2.7) using B-

splines are shown for four different formulations of the kernel. These were used to test

accuracies in predicting moments, eigenvalues and eigenfunctions. The results indeed vali-

date the use of B-splines as a basis set. Using a variety of forms of the distribution functions

for a number of different combinations of mass and temperature ratios, proves that this nu-

merical method is quite flexible and can represent any form of the distribution function.

The flexibility of this method also allows the size of the grid, the order of the B-splines,

the number of collocation points and boundary conditions, to be changed independently

according to the needs of the problem. The points at which the integrals are evaluated are

equally spaced in the results shown, but the use of B-splines does not require this condition

to be satisfied either. The collision kernel is known to have an analytical cusp at x = x′.

The use of B-splines did not cause any problem in dealing with this cusp or any other

irregularities that may have been present. This is due to the fact that the evaluation of the

integrals is done over very small domains and the kernel can be represented very well at or

near the cusp. Since this irregular behaviour is localized, very few integrations are affected

by it, and special techniques can be used in these cases to deal with any such problems.

The numerical results obtained using the different formulations are nearly identical to each

other, but each formulation has its advantages and disadvantages.

Even though different formulations are used, the convergence obtained from each of

them is not identical. Therefore, depending on the problem at hand, an appropriate kernel

66

formulation can be used that is the most advantageous. In the original expression of the

collision kernel for K̃hs, there are exponential and
√
x terms and these formulations help with

bypassing these terms. Results obtained using the original expression of the collision kernel

required the maximum number of collocation points among all the formulations presented.

The K̃hs formulation does not produce satisfactory results. Eigenvalues and eigenfunctions

show poor convergence and the B-splines do not represent the distribution function well.

Contributions from a majority of grid points is minimal since they lie in the tail of the

distribution function. Therefore, only a small number of points are actually significant in

constructing an accurate representation of the distribution function. Thus, large values of

n are required for the system to relax to equilibrium.

To better balance the contribution of all grid points to the distribution function, the

K1 formulation was constructed, where the exponential term was factored out and thus

at equilibrium the distribution function is precisely 1, which is exactly represented by the

polynomial nature of the B-splines using only two points. With this formulation, the eigen-

values and eigenfunctions produced are very accurate and converge very rapidly to the exact

published values with very few collocation points. Since this formulation removes the de-

caying tails in the equilibrium function, all grid points contribute significantly and evenly

in the construction of the distribution function. The results are more accurate with smaller

n as compared to the K̃hs formulation. The formulation of K1 can work very well, but its

limitations lie in the fact that the system can only be slightly perturbed from equilibrium.

As will be shown in Chapter 5, when tracers are subject to high initial energies, repre-

senting the initial distribution functions with the K1 formulation can be a problem because

as implied by Eq. (3.1) f1(x, t = 0) = 1
2

√

π
xe

xf(x, t = 0). The exponential factor approaches

very large values which can be difficult to store in standard variables if f(x, t = 0) is peaked

at large x. Propagating such large values is also difficult. To counter this problem, the

K3 formulation was designed to remove the
√
x factor in K̃hs that causes poor convergence

but leaves the remaining dependencies in f untouched. As in the fhs case, the distribution

function relaxes to an exponential at equilibrium and the number of points required to at-

tain equilibrium is comparable to the f1 case. The convergence is slightly poorer than the

f1 case, but distribution functions with high initial energies can be represented well with

this formulation. The eigenvalues and eigenfunctions obtained using K3 indicate that this

representation can produce satisfactory results.

In general, the original expression of the collision kernel K̃hs should be avoided. The

K3 formulation should be used and is the most similar to K̃hs and produces fairly accurate

results. In both these cases the contribution from the collocation points is uneven and

lie mostly in the decaying tails as seen in the eigenfunction plots. To ensure an even

contribution from all the collocation points, the K1 formulation works best but fails in the

case where the tracers have high initial energies. In terms of eigenvalues and eigenvectors,

67

K1 is the best formulation, since it produces the most accurate results with the least number

of collocation points.

In yet another formulation, K2, the distribution function as the exponential of a B-

spline expansion is physically correct. In this formulation of K2, the B-splines represent

an argument of an exponential function. This was done because it guarantees a positive

distribution function which is physically correct regardless of the values of f2. In contrast,

all other representations may give physically incorrect negative values for the distribution

functions, if the spline is poorly converged and develops oscillations. Since the B-splines are

in the exponential, the time-dependent coefficients cannot be isolated during the integration,

and therefore no eigenfunctions or eigenvalues can be obtained. Thus, this formulation is

removed from the constraint of having to produce these values. Therefore, one can see that

obtaining eigenvalues and eigenfunctions is a matter of choice rather than a necessity for

this numerical method to work. The moments and distribution functions converge well in

this formulation. Once again the number of grid points required to obtain equilibrium are

minimal. The only problem encountered with this formulation is that a very small time step

is required with the simple propagator given in Eq. (3.24). One can use more sophisticated

time propagators to increase this time step.

The construction of the numerical method does not rely upon the particular forms of the

kernel, therefore any of the kernel formulations, i.e. K̃hs, K1, K2 or K3, can be used. These

formulations were constructed to bypass the numerical difficulties that can affect conver-

gence of the results. The integrations of the collision kernel is divided into smaller intervals

that are independent of other integrals on the grid. To make the numerical method more

efficient, a parallel algorithm can be set up to perform these integral calculations simultane-

ously. The results presented are for a one-dimensional linear Boltzmann equation but this

numerical method can easily be extended to higher dimensions by using B-splines to rep-

resent each dimension. Only a few collocation points are used in the different formulations

to obtain results in one dimension, therefore increasing the number of collocation points

for multiple dimensions should be reasonable. In terms of the computational time, the K1

formulation was the fastest, and K̃hs formulation took the longest to finish. Even for this

formulation, the calculations completed in a few hours, therefore evaluations in multiple

dimensions should only require a reasonable amount of computing time.

68

Table 4.2: The magnitudes of the first three non-zero eigenvalues obtained for mass ratios,

γ = 1/8 and 1/2, by diagonalizing L using the matrix representation of the K̃hs, Khs,1

and Khs,3 kernels. The eigenvalues are normalized by Zhs(0). The grid used for each

diagonalization spans to S = 20 with n intervals and spacing ∆ between grid points. The

accurate values are QDM results from Shizgal et al. [89]. The blank cells indicate that

convergence was obtained for the particular n and ∆ combination. The cells with a dash

indicate that no eigenvalues under 1.0000 were obtained.

n ∆ γ = 1
8 γ = 1

2

Khs,1 K̃hs Khs,3 Khs,1 K̃hs Khs,3

λ1/Zhs(0) 2 10 0.2783 0.6277 – 0.6743 1.0000 0.2025

5 4 0.2784 0.2157 0.2742 0.6813 0.6524 0.7523

20 1 0.2784 0.3097 0.2779 0.6889 0.7283 0.6875

60 0.33 0.2861 0.2785 0.6891 0.6972 0.6892

200 0.10 0.2799 0.2784 0.6891 0.6906 0.6891

600 0.03 0.2787 0.2784 0.6894 0.6891

Accurate values 0.2784 0.6891

λ2/Zhs(0) 2 10 0.4894 0.6277 – – – –

5 4 0.4878 0.6248 – 0.9319 1.0000 0.7523

20 1 0.4882 0.5201 0.4855 0.9119 0.9757 0.9150

60 0.33 0.4882 0.4963 0.4882 0.9203 0.9349 0.9200

200 0.10 0.4898 0.4882 0.9208 0.9234 0.9208

600 0.03 0.4885 0.9208 0.9214 0.9208

Accurate values 0.4882 0.9208

λ3/Zhs(0) 2 10 0.6707 1.0000 0.6291 – – –

5 4 0.6481 0.6248 – – – –

20 1 0.6462 0.6777 0.6415 0.9996 1.0000 0.9802

60 0.33 0.6466 0.6548 0.6465 0.9795 1.0000 0.9798

200 0.10 0.6466 0.6482 0.6466 0.9827 0.9884 0.9827

600 0.03 0.6469 0.6466 0.9832 0.9843 0.9832

Accurate values 0.6465 0.9832

69

Table 4.3: Same as Table 4.2 except for γ = 1 and 8.

n ∆ γ = 1 γ = 8

Khs,1 K̃hs Khs,3 Khs,1 K̃hs Khs,3

λ1/Zhs(0) 2 10 0.8842 1.0000 0.1992 0.5023 1.0000 –

5 4 0.7801 1.0000 – 0.4757 0.4726 0.4474

20 1 0.8136 0.8848 0.8101 0.5639 0.7956 0.5544

60 0.33 0.8190 0.8325 0.8189 0.6097 0.6584 0.6085

200 0.10 0.8190 0.8213 0.8190 0.6139 0.6213 0.6139

600 0.03 0.8195 0.8190 0.6139 0.6153 0.6139

Accurate values 0.8190 0.6139

λ2/Zhs(0) 2 10 – – – – – –

5 4 – 0.8512 0.9298 – 1.0000 –

20 1 0.9777 1.0000 0.9841 0.9561 1.0000 –

60 0.33 0.9727 1.0000 0.9732 0.9292 1.0000 0.9330

200 0.10 0.9789 0.9874 0.9789 0.9526 1.0000 0.9523

600 0.03 0.9797 0.9812 0.9797 0.9650 0.9770 0.9650

Accurate values 0.9797 0.9667

λ3/Zhs(0) 2 10 – – – – – –

5 4 – – – – – –

20 1 – – – – – –

60 0.33 – – – – – –

200 0.10 0.9994 – 0.9996 – – –

600 0.03 0.9977 1.0000 0.9977 1.0046 1.0000 1.0047

Accurate values 0.9984 0.9997

70

Chapter 5

Kinetic Energy Relaxation of

Heavy Tracers

In this chapter the numerical method constructed using B-splines is further scrutinized

by subjecting the heavy tracers to high initial energies and monitoring the relaxation to

equilibrium. The smooth and rough hard sphere and Maxwell molecule models are used to

test the experimental results of Douglas et al. [12, 13] in mass spectrometry, where gas-

phase biomolecular ions, including motilin, ubiquitin, cyctochrome c, myoglobin and bovine

serum albumin, are generated using pneumatically assisted electrospray (ion spray). Trace

amounts of these biomolecules are injected into a neutral bath at a high initial energy of

10i eV, where i is the number of charges on the ion, and this energy when converted to

the units used in our studies is x0 ≃ 386. As they travel the length of the cell, the ions

relax towards equilibrium due to collisions. By measuring the kinetic energy loss of the ions

exiting the cell and modelling the drag coefficient, cross sections of the order 103 − 104Å

can be calculated. One of the goals of this study is to compare their type of analysis with

results obtained by solving the Boltzmann equation directly.

Andersen et al. [58] cast the relaxation of hard sphere Rayleigh and Lorentz gases in the

form of a Fokker-Planck equation. In the Rayleigh gas, a trace number of heavy particles

are dispersed in a bath of lighter particles. They predicted a Rayleigh gas should relax at a

constant rate regardless of the initial energy of the tracer particles, and gave an expression

for the rate. In the present study, the range for the validity for the Fokker-Planck results

is tested with different mass ratios and initial energies.

Drag coefficients are often modelled using specular and diffuse scattering processes,

which in the present case be modelled by smooth and rough hard spheres, respectively.

These particular models represent two scattering limits in kinetic theory. In addition, the

Maxwell model [77, 78] is also used, to represent a more realistic scattering potential allowing

the size of the tracer to vary in the collision. By comparing the results from these three

models the effect of elastic and inelastic collisions can be gauged, as well as effect of soft

walls in the interaction between the tracer and bath.

The initial function used to obtain these results is given by Eq. (3.32). To test the

limits of the numerical method a range of energies were tested, with x0 = 5 and 350. These

71

two initial energies test both lower and upper energy regimes. The mass of the tracers

used in the experimental studies were high, around 16000 Da. To mimic such particles

tracers with masses 50, 100, 200 and 400 times greater than the bath are used, giving mass

ratios γ = 0.02, 0.01, 0.005 and 0.0025, respectively. The K3 collision kernel formulation is

primarily used to obtain these results. Shown in this chapter are the distribution functions

for the three models for the two different energies. Also, the Fokker-Planck expression for

the Rayleigh gas derived by Andersen and Schuler [58] is also tested to determine its limits

of applicability. Further, the drag coefficients for the three different models are calculated

and compared to published theoretical and experimental results.

5.1 Eigenvalues of Smooth and Approximate Rough Hard

Sphere

The eigenvalues of the kernels for the smooth hard sphere and approximate rough hard

sphere in Eqs. (2.40) and (2.85), respectively are given in Table 5.1 for γ = 1 and 0.1.

When scaled by Zhs(0) = 2A/
√
γ, the kernel K̃hs(x, x

′) has a discrete spectrum below

Table 5.1: Eigenvalues (absolute values) of the smooth and approximate rough hard sphere
kernels for two different mass ratios and a range of µχ values. Eigenvalues are scaled by
2A/

√
γ and only up to six non-zero scaled values less than unity are tabulated. An entry

of “...” indicates that no eigenvalue was found. The values for µχ = ∞ are for the smooth
hard sphere kernel.

µχ λ1 λ2 λ3 λ4 λ5 λ6
γ = 1

1.5

5

10 0.9488

25 0.8787

50 0.8503

∞ 0.8190 0.9797 0.9977

γ = 0.1

1.5 0.3287 0.5801 0.7692 0.9081

5 02724 0.4871 0.6566 0.7895 0.8916 0.9651

10 0.2536 0.4548 0.6148 0.7419 0.8417 0.9171

25 0.2404 0.4316 0.5842 0.7060 0.8024 0.8766

50 0.2356 0.4231 0.5729 0.6924 0.7872 0.8604

∞ 0.2307 0.4142 0.5608 0.6779 0.7708 0.8426

unity and a continuous one above [64]. The first few discrete values for the smooth sphere

are listed in Table 5.1 in the rows labelled with µχ = ∞. The spectrum of K̃1(x, x
′) is not

72

known but for the sake of comparison, its eigenvalues are scaled in the same way and only

those values less than unity are tabulated. Examining values in Table 5.1 shows that for

finite µχ the number of eigenvalues less than unity for the approximate rough hard sphere

kernel is less than that for the smooth sphere one, and the corresponding eigenvalues are

larger. This implies relaxation in the rough system should be faster than in the smooth

one; an expected result given the possibility for translational-rotational energy exchange

in the former. The values for the rough case do approach those for the smooth one as µχ

increases, although this convergence is much faster for γ = 0.1 than for γ = 1.

5.2 Distribution Functions

In Figs. 5.1 and 5.2 representative time evolutions of the distribution function are shown

for γ = 0.02 and 0.0025, respectively, with initial energies x0 = 5 and x0 = 350 for the

smooth hard sphere, rough hard sphere and Maxwell models. In the left panels, the solid

black curves show the distribution function after the first few time steps and are close to

Gaussian shapes. In a very short time (dotted red curves) the peaks lower and the widths

expand. As the distributions move to equilibrium the peaks continue to lower and the

widths become greater, until at equilibrium, (violet dot-dashed curves) the functions adopt

an exponential form. This trend is identical for all three models tested, except for the

Maxwell model, the distribution function is slightly broader at the first few time steps.

In the right hand panels, the solid blacks curves represent the distribution function after

a few time steps and show sharp peaks at x0 = 350, with a small bud forming at lower

energy. These peaks quickly shift and broaden (dotted red curves). As time increases the

widths of the distributions remain approximately constant, but the peaks shift to lower

energy until at equilibrium the distributions adopt an exponential decay represented by the

maroon dashed curves. This trend is similar for both the smooth and rough hard sphere

models while the Maxwell molecule shows a greater relaxation at the initial times. This

means an ensemble of the tracers tend to relax as a group with some energy width. This

width defines the resolution possible in a kinetic energy loss experiment.

The nature of the distribution functions is consistent with Monte Carlo calculations of

Douglas et al. [13]. Although the distribution curves shown in this experimental study com-

pares two different masses of the tracer, similar trends can be seen with the representative

distribution functions in Figs. 5.1 and 5.2. From Ref. [13], the more massive the tracer, the

narrower the distribution, and with a lighter tracer the distribution is more spread out. In

both Figures 5.1 and 5.2 we note that with a lower initial energy, the distribution is more

spread out and relaxation to equilibrium is gradual. With the higher initial energy, the

distribution is narrower and relaxes faster to equilibrium. This behaviour is consistent for

a lower mass ratio of γ = 0.0025 as well.

73

0

0.5

1

1.5

2

f 1(x
,t)

0

0.05

0.1

0.15

0.2

f 1(x
,t)

0

0.5

1

1.5

f 1(x
,t)

0

0.05

0.1

0.15

f 1(x
,t)

0 1 2 3 4 5 6
x

0

0.5

1

1.5

f 1(x
,t)

0 50 100 150 200 250 300 350
x

0
0.025
0.05
0.075
0.1
0.125

f 1(x
,t)

smooth smooth

rough

maxwell maxwell

roughrough

x
0
 = 5

x
0
 = 5

x
0
 = 5

x
0
 = 350

x
0
 = 350

x
0
 = 350

Figure 5.1: The time evolution of the distribution function for γ = 0.02 with initial energies
x0 = 5 (left panels) and x0 = 350 (right panels). The top, middle and bottom panels show
the relaxation of the distribution function to equilibrium for the smooth hard sphere, rough
hard sphere and Maxwell molecule cases, respectively. The evolution starts from the solid
black curves and moves to the dash-dot violet curves (left panels) or dashed maroon curves
(right panels).

74

0

0.5

1

1.5

2

f 1(x
,t)

0

0.25

0.5

0.75

f 1(x
,t)

0

0.5

1

1.5

f 1(x
,t)

0

0.25

0.5

f 1(x
,t)

0 1 2 3 4 5 6
x

0

0.5

1

1.5

f 1(x
,t)

0 100 200 300 400
x

0

0.025

0.05

0.075

f 1(x
,t)

smooth
x

0
 = 5

rough

maxwell

x
0
 = 350

x
0
 = 5

x
0
 = 5

x
0
 = 350

x
0
 = 350

smooth

rough

maxwell

Figure 5.2: Same as Fig. 5.1 but for γ = 0.0025.

75

0.85

0.9

0.95

1

1.05

(-
d

ln
<

x>
/d

t’
)/

(1
6γ

1/
2 /3

)

 γ = 0.0025
 γ = 0.005
 γ = 0.01
 γ = 0.02
 γ = 0.1

0 2 4 6 8 10 12 14 16 18 20
t’

1

1.2

1.4

1.6

1.8

(-
d

ln
<

x>
/d

t’
)/

(1
6γ

1/
2 /3

)

x
0

= 5

x
0
 = 350

Figure 5.3: Derivatives of the reduced average kinetic energy normalized by 16
√
γ/3 as a

function of t′ for γ = 0.02, 0.01, 0.005 0.0025 and 0.1 and x0 = 5 (top panel) and x0 = 350
(bottom panel), for the smooth hard sphere case. The square symbols indicate the points
at which the kinetic energies are 50% of their initial values.

5.3 Kinetic Energy Derivative

Figure 5.3 shows the derivatives of the reduced average kinetic energy motivated by Eq. (2.111)

for different mass ratios and energy regimes. The values are normalized by 16
√
γ/3, the

Fokker-Planck results of Eq. (2.111). The results in Fig. 5.3 test the accuracy of Eq. (2.111)

and the bound of Eq. (2.112). In the case where Eq. (2.111) is valid and stands correct

for a particular mass ratio, the values of derivatives of the first moment will equal exactly

16
√
γ/3. If the Fokker-Planck equation is valid for the cases tested, the curves shown in

Fig. 5.3 will have constant values at 1, and all the curves would overlap each other. The

only exception in this case would be the curves in the lower panel, because for γ = 0.02,

0.01 and 0.005, Eq. (2.112) is not valid.

76

In the top panel, the relation in Eq. (2.112) is satisfied for all the values of γ shown

when x0 = 5. Thus, one expects the Fokker-Planck decay constant to be accurate. However,

while the curves are generally constant, they deviate from unity as γ increases, that is, as

the tracer becomes lighter. For the smallest mass ratio γ = 0.0025, shown by the solid back

curve the value is very close to unity while for the brown dot-dashed curve representing

γ = 0.1 it drops to approximately 0.89.

In the bottom panel the relation of Eq. (2.112) is satisfied only for γ = 0.0025 when

x0 = 350. Thus, the curves in this panel show the behaviour when Eq. (2.112) is not

satisfied. Unlike the curves in the top panel, all those in the lower panel decay as time

increases, with a rate which increases as γ increases. In other words, the initial decay of

the kinetic energy is much larger than predicted by Eq. (2.111) and does not evolve with

a constant decay rate. Eventually though, at long enough times, these rates do become

constant and equal to those predicted by Eq. (2.111), as the kinetic energy of the system

decreases to a point where Eq. (2.112) becomes valid.

The square symbols on the curves indicate the times at which the kinetic energy has

dropped to 50% of its initial value. As seen in the upper panel of Fig. 5.3, using Eq. (2.111)

when Eq. (2.112) is satisfied gives a rate which deviates by some percentage from kR de-

pending on γ. However, as seen in the lower panel, Eq. (2.111) is qualitatively incorrect

during most of the relaxation process when Eq. (2.112) is not satisfied. In other words, in

the case Eq. (2.111) becomes accurate only when the system is closer to equilibrium for the

higher mass ratios.

5.4 Drag Coefficients

The normalized drag coefficients for the smooth and hard sphere models and the Maxwell

model given by Eq. (2.117) are shown in Figs. 5.4 and 5.5 for x0 = 5 and 350, respectively.

The curves are normalized by Csp and Crough for the smooth/Maxwell and rough hard

spheres models, respectively. In the top panel of Fig. 5.4, for the smaller mass ratios

(i.e heavier tracer particle), the curves are noticeably closer to unity. The most massive

tracer with γ = 0.0025, represented by the solid black curve is closest to 1, whereas the

lightest tracer with γ = 0.1, represented by the brown dot-dashed curve is furthest away

from 1. The normalized curves in this panel have a constant ratio over the entire time. In

the middle panel of the same figure, all the curves are greater than but within a few percent

of unity. The smallest mass ratio, γ = 0.0025, shown by the solid black curve is the furthest

away from unity, whereas the lightest tracer with the highest mass ratio, γ = 0.02, shown

by the green dashed curve, is the closest to 1. At higher values of s, where the system is in

the initial stages of relaxation, the curves dip lower, and this feature is most prominent for

γ = 0.02. In the approach to equilibrium (i.e. as we move to the left on the curves), the

77

0.85

0.9

0.95

1

C
D

/C
sp

γ = 0.0025

γ = 0.005

γ = 0.01

γ = 0.02

γ = 0.1

1

1.01

1.02

1.03

C
D

/C
ro

ug
h

0.73
0.74
0.75
0.76
0.77

C
D

/C
sp

0 0.05 0.1 0.15 0.2 0.25
s

1.65

1.7

C
D

/C
sp

smooth

rough

maxwell (V
0

/kT = 1)

maxwell (V
0
/kT = 5)

Figure 5.4: Ratios of calculated drag coefficients to analytical predictions for a variety of
mass ratios and initial reduced energies of x0 = 5. The top, middle and bottom panels are
for the smooth and rough hard spheres and the Maxwell molecule, respectively.

78

0.96

0.97

0.98

0.99

1

C
D

/C
sp

γ = 0.0025

γ = 0.005

γ = 0.01

γ = 0.02

1

1.1

C
D

/C
ro

ug
h

0.3
0.4
0.5
0.6
0.7

C
D

/C
sp

0 0.5 1 1.5 2 2.5 3
s

6
8

10
12
14

C
D

/C
sp

smooth

rough

maxwell (V
0
 /kT= 1)

maxwell (V
0
 /kT= 350)

Figure 5.5: Same as Fig. 5.4 except for an initial reduced energy x0 = 350.

79

ratios become constant. Overall, the normalized curves stay constant for the entire time

shown, indicating that the values of the derivative do not change.

In the case of the Maxwell model in the bottom panels of the same figure, the normalized

curves are either significantly less than 1 for V0/kT = 1 at 0.750 − 0.769 and greater than

1 for V0/kT = 5 at 0.65 − 1.72. The values of Ksph(x, x
′) and Zsph(x) scale with

√

V0/kT

for the Maxwell molecules as shown by the dependence of the cross section in Eq. (2.110).

This can be see in Fig. 5.4 since the limiting values for V0/kT = 5 are
√
5 as large as those

for V0/kT = 1. Similarly, in the bottom panels of Fig. 5.5, limiting curves for V0/kT = 350

are
√
350 times those for V0/kT = 1. As defined here, for the Maxwell molecule potential,

V (σ12) = V0. Thus, the curves for V0/kT = 1 imply the scaling factor σ12 is approximately

the distance at which the potential is equal to the thermal energy of the bath. That is, πσ212
is approximately the cross section the tracer would have at equilibrium. In Figs. 5.4 and 5.5,

the curves for V0/kT = 1 are consistently below unity, at approximately 0.75 indicating that

Csp is overestimating the kinetic energy decay rate. This is physically reasonable because

at x0 = 5, the actual tracer size is smaller than the σ12 value at equilibrium, leading to

a reduced drag and hence slower rate of decay. Curves with V0/kT = 5 estimate σ12 at

the initial collision energy x0 = 5 so the conversion in Fig. 5.4 is above unity because the

actual decay rate is greater than that predicted by Csp. The situation is analogous but

accentuated in Fig. 5.5 for V0/kT = 350. Overall, the results for the smooth hard sphere

in the top panels of Figs. 5.4 and 5.5 show that for heavy enough tracers, Csp describes

the relaxation well for all speed ratios. This is also consistent with the agreement seen in

Fig. 5.3 with the Fokker-Planck predictions. The ratios in the middle panels for the rough

hard sphere are consistently too large. This is possibly due to the approximate nature of

the collision kernel. For heavy tracers it was argued there should be a larger change in

translational energy than rotational energy. Therefore, the rotational degrees of freedom

were considered to be at equilibrium. The presence of this cold rotational bath could be

causing slightly greater drag than would be expected for the exact rough sphere kernel.

Equations (2.116) and (2.117) were derived assuming an infinitely heavy tracer. This

assumption can be relaxed by replacing m1 with µ = γ/
√
1 + γ in the definition of s [90].

Making such a change though causes the ratios in Fig. 5.4 to decrease, moving further from

unity. Thus, the deviations seen for example in the upper panel of Fig. 5.3 cannot be

corrected by accounting for this mass effect.

5.5 Discussion

This chapter is a more rigorous test of the numerical method given in Chapter 3. It tests

the collision kernels that were derived in Chapter 2 for the spherical and rough hard spheres

given by Eqs. (2.40) and (2.85), respectively. Overall, the method produced well converged

80

values for a variety of mass ratios and initial energies for the smooth and rough hard sphere

and Maxwell models, which also included conditions that were far from equilibrium.

The expressions given by Andersen and Schuler [58] are derived exactly for the Rayleigh

limit, where the tracers are much more massive than the bath gas. The curves shown in

Fig. 5.3 show where these expressions can be used for mass ratios close to but not exactly in

the Rayleigh limit. The relation given in Eq. (2.112) must be satisfied first before a constant

decay rate occurs. In the case where Eq. (2.112) is not satisfied, the energy decay is a lot

greater than predicted by Eq. (2.111). This is especially the case for larger mass ratios, γ

and this rate of decay tends to decrease over time as the system relaxes. When Eq. (2.112)

is satisfied the mass ratio should be less than about 0.0025 where the tracer is 400 times

more massive than the bath to give a decay that matches kR in Eq. (2.111). In the case,

where the tracer is only 10 times as massive as the bath, kR = 16
√
γ/3 overestimates the

decay rate by about 10− 15%.

The drag coefficients for the three models given in Figs. 5.4 and 5.5 are normalized

by the general expression of Stalder [81]. These expressions are valid for infinitely heavy

tracers with all values of s. The values of the drag coefficients in this study were calculated

using Eq. (2.114) and can be used in energy loss experiments such as those done by Douglas

and co-workers [12, 13]. These values of the drag coefficients can be used to obtain cross

section values although, accurate values of the drag coefficient CD are required. It is seen

that the exact expressions in Eq. (2.117) work well for hard sphere systems, but fail to take

into account the change in effective tracer diameter as the energy changes, and is evident

for the Maxwell molecule case in the two lower panels of Figs. 5.4 and 5.5. In these cases,

V0/kT = 1 results show that using Csp overestimates the energy decay rate by about 30%,

therefore the cross section from the expressions in Eq. (2.117) are underestimated by about

the same amount. This is highlighted by the fact that the effective cross sections decrease

as energy increases. In the experimental studies, Chen et al. [12] found their estimated

cross sections, from high energy relaxation, were 30% smaller than those determined by ion

mobility experiments performed at energies closer to equilibrium.

In principle, with a good intermolecular potential model, the solutions from solving

the Boltzmann equation can be used to correct these differences. One can choose, for

example, the Lennard-Jones intermolecular potential which contains an attractive well.

Using this potential does not alter the numerical method, except the cross section expression

appropriate to the Lennard-Jones potential would have to be substituted in the evaluation

of the collision kernel. For a completely realistic model one should also include the effects of

inelastic collisions. The results obtained from these simulations can be used in experiments,

since the Boltzmann equation is solved exactly. The models are used to define the collision

dynamics between the tracers, and the drag coefficients obtained come directly from solving

the Boltzmann equation and are not based on any assumptions. Therefore, kinetic energy

81

loss experiments modelled by these simulations can be used to obtain exact cross section

values which can further provide insight into the structure of the tracers. If the tracers are

considered to be biomolecules, information about the structure of these biomolecules can

be obtained. In experiments, it is assumed that biomolecules in the gas phase retain similar

properties as they would in a liquid medium, therefore the results obtained from gaseous

studies can be translated to understanding biomolecules in the cells of living organisms.

82

Chapter 6

Future Work and Concluding

Remarks

6.1 Future Work

The theory and numerical method given in Chapters 2 and 3, respectively, are presented

for the one-dimensional linear Boltzmann equation. The B-splines posed no problems with

obtaining convergence for all the results given in Chapters 4 and 5.

In the next project the numerical method will be extended to solve a two-dimensional

linear Boltzmann equation, where two velocity components, for example the parallel and

perpendicular components, are represented. For this case the two-dimensional linear Boltz-

mann equation can be written as

∂

∂t
f(x, y, t) =

∫

K(x, x′, y, y′)f(x′, y′, t)dx′dy′ − Z(x, y)f(x, y, t) , (6.1)

where, as before, the distribution function f(x, y, t) is expanded using B-splines as

f(x, y, t) =

p−1
∑

n=−3

q−1
∑

m=−3

cnm(t)B3
n(x)B

3
m(y) . (6.2)

Substituting Eq. (6.2) into Eq. (6.1) gives

p−1
∑

n=−3

q−1
∑

m=−3

d

dt
cnm(t)B3

n(x)B
3
m(y) =

p−1
∑

n=−3

q−1
∑

m=−3

cnm(t) (6.3)

×
[
∫ S

0
K(x, x′, y, y′)B3

n(x
′)B3

m(y′)dx′dy′

− Z(x, y)B3
n(x)B

3
m(y)

]

.

In Eq. (6.3) the collision kernels can be transformed using formulations similar to those

given in Chapter 3. As shown before, the collocation scheme forces the equality in Eq. (6.3)

to hold at the grid points (xk, yl) where xk = k∆ (k = 0, . . . , p) and yl = l∆ (l = 0, . . . , q),

giving (p + 1)(q + 1) constraints. However, there are (p + 3)(q + 3) unknown coefficients

83

cnm(t), so that an additional 2(p+ q+4) constraints are needed. As before, choosing these

constraints is a general process. In analogy with constraint 1 in Section 3.2, the equality in

Eq. (6.3) can also be forced at values of (x, y) off the grid, such as, (x1/2, yl), (xp−1/2, yl),

(xk, y1/2) and (xk, yq−1/2). This gives an additional 2(q + 1) + 2(p + 1) constraints. The

4 remaining constraints can follow by imposing the equality in Eq. (6.3) at the points

(x1/2, y1/2), (x1/2, yq−1/2), (xp−1/2, y1/2) and (xp−1/2, yq−1/2). This set of additional con-

straints are on the grid completely at the half grid points near the grid edges. With these

constraints imposed, Eq. (6.3) can be cast into matrix notation, as

d

dt
cnm =

∑

Lnkmlckl , (6.4)

where Lnkml is a fourth rank tensor and cnm and ckl are second rank tensors (matrices).

In comparison the code used for the one-dimensional Boltzmann equation works very

smoothly and the computational time required for the calculations to complete was very

reasonable. The B-spline formulation changes, such that the matrices given in Eq. (3.27)

become fourth rank tensors and the column vector becomes a matrix and will have to

incorporate the two variables that have to be integrated. This will make the computing

ideally squared of the original time that was required. This would still be on the order of

a few hours to a few days. It was the Maxwell model calculations that took the longest

amount of time for the calculations to complete. Additionally, this numerical method can

further expanded to the full three dimensional linear Boltzmann equation.

Extending the numerical method to a multi-dimensional problem can account for move-

ment of tracers under the effects of external electric and magnetic fields. Since only the

kinetic energy decay of tracers was modelled in these studies, a one-dimensional velocity

dependent collision kernel is sufficient to describe the collisions. In the case of ion mobility,

two components of velocity, that is, perpendicular and parallel components of velocity are

required to describe the tracer-bath collisions. Furthermore, the collision induced alignment

of tracers can be modelled with a two-dimensional linear Boltzmann equation.

6.2 Concluding Remarks

This thesis presents a numerical method for solving the Boltzmann equation by expanding

the distribution function in a basis of cubic B-splines. Collision kernels for the spherical

and rough hard spheres have also been derived, and the accuracy of the numerical method

has been validated. The formulation of the distribution function can be done in a number

of different ways, of which four have been shown in Chapter 3. These formulations can

be chosen according to the needs of the problem at hand. Eigenvalues, eigenfunctions and

moment values have been obtained using the formulations, and have been compared to the

84

values that have been published in earlier studies. To test this numerical method the initial

distribution functions chosen were far from equilibrium and the mass ratios of the bath

to the tracer varied. With the values obtained using different combinations of the initial

parameters, it can be concluded that this numerical method is efficient and evaluated well

converged values for distribution functions, eigenvalues and moments.

In the second part of the work presented, the numerical method was further scrutinized

to monitor the kinetic energy relaxation of heavy tracers that were initialized at high ener-

gies. In addition to the smooth and rough hard sphere models, the Maxwell model was also

used, which better represents the dynamics between real molecules. These parameters were

chosen to mimic mass spectrometry experiments that monitor the relaxation of biomolecules

and allow the evaluation of cross sections. The distribution functions and moments were

obtained for a Rayleigh gas, for a variety of mass ratios, where the tracer became increas-

ingly heavier than the bath. The derivative of the moments were used to determine the

limits of validity for the expression for the rate of kinetic energy relaxation given by the

Fokker-Planck equation for a hard sphere gas. The drag coefficients were obtained for all

three models using the calculated moment values. These values were compared against

analytical expression given in the literature.

This method was designed to be used for the ion mobility problem where external fields

have to be accounted for. With the general requirements of the ion mobility problem de-

scribed in Chapter 1, this method has shown to satisfy the criteria. This numerical method

is flexible and can incorporate a variety of initial conditions. There were no issues in terms

of convergence or computational time as the system propagated and relaxed to equilibrium.

Although the effects of external fields were not incorporated, the numerical method is in-

dependent of the formulation of the collision kernel to be used. This allows the inclusion

of external field effects, interactions amongst particles and using a higher dimensional lin-

ear Boltzmann collision integral. The formulation for extending this numerical method to

higher dimensions has been shown in Section 6.1. The general formulation remains the

same, and in general, the structure of the matrices has to change.

The other numerical methods available use approximate expressions of the Boltzmann

equation. The B-splines method only assumes a bath at equilibrium and the concentration

of the tracer is dilute. This makes collisions between two bath particles and two tracer

particles negligible, that is, only collisions between a bath and tracer particle are considered.

This allows the Boltzmann equation to be reduced and becomes the starting equation for

this numerical method. There are no other approximations made, and thus, this method is

exact. The numerical methods discussed, work very well for conditions where the system

is only slightly perturbed from equilibrium. In the case where the initial conditions of the

system are far from equilibrium, these methods do not produce satisfactory results. The

B-spline method produced well-converged values for the cases that were initialized far from

85

equilibrium as well.

Owing to the small domain over which cubic B-splines are defined, the evaluation of

the integrals can be done over narrow domains that allow any anomalies in the analytical

expressions to be integrated and give accurate values. For example, the discontinuity that

occurs at x = x′ in the Boltzmann equation did not cause any difficulties in obtain well

converged values. The formulation of this numerical method is independent of the formula-

tion of the expression of the collision kernel and allows the algorithm to be parallelized to

multi-dimensions. This is an advantage when considering a higher dimensional linear Boltz-

mann equation. In terms of the computational times, this numerical method is efficient,

since all the different cases were run over a range from a few seconds to a few days, with

the Maxwell model taking the maximum amount of time. One of the disadvantages of this

numerical method was found in the evaluation of the integrals. Each integral was evaluated

individually, and was subject to conditions whereby the value of the absolute error between

consecutive integral values had to be within a certain range. This caused the convergence to

slow down and thus this tolerance had to be relaxed. Even with this change, accuracy was

obtained to 4−5 digits. This was more of a numerical difficulty rather than the formulation

of the numerical method.

In comparison to the QDM method, the B-splines do not depend on the form of the

distribution function. It assumes that the distribution is smooth and is well represented

in the small domain of four units, over which the spline is expressed. The QDM method

generates a quadrature that is appropriate for the problem at hand, and thus works very

well for that particular problem. But generating the quadrature can also be tedious and

time consuming, computationally. A large number of quadrature points and weights can be

required to sufficiently describe the distribution function. The QDM also takes into account

the form of the collision kernel used for the problem, which is used in the generation of the

quadrature. This way the quadrature is dependent on the form of the kernel and are

specific only for a particular form. The B-splines are independent of the collision kernel

chose, as shown with the use of the smooth and rough hard sphere kernels. This makes it

quite versatile. The B-splines are also used to describe conditions for extremely hot tracers

far from equilibrium. It has performed quite well and produced satisfactory results. When

comparing results obtained using the QDM and the B-splines, there is no doubt, that values

produced by the QDM are very accurate. Once again, this is due to the specific quadrature

chosen for the problem. This ensures accuracy. In comparison, the B-splines have produced

very good values and are almost as accurate as those produced by the QDM.

86

Bibliography

[1] T. Koga, Introduction to Kinetic Theory Stochastic Processes in Gaseous Systems,

(Pergammon Press, 1970).

[2] S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases,

(Cambridge University Press, 1970).

[3] S. Harris, An Introduction to the Theory of The Boltzmann Equation, (Holt, Rinehart

and Winston, Inc., 1971).

[4] C. Cercignani, The Boltzmann Equation and its Applications, (Springer-Verlag, 1988).

[5] S. Golden, Elements of the Theory of Gases, (Addison-Wesley Publishing Company,

1964).

[6] T. Wu, Kinetic Equations of Gases and Plasmas, (Addison-Wesley Publishing Com-

pany, 1966).

[7] E. A. Mason and E. W. McDaniel, Transport Properties of Ions in Gases, (Wiley,

New York, 1988).

[8] O. I. Rovenskaya, AIP Conference Proceedings, 1333, 772 (2011).

[9] H. Takeuchi, K. Yamamoto and T. Hyakutake, AIP Conference Proceedings, 1333,

486 (2011).

[10] K. Yoshimura and S. Kuwabara, AIP Conference Proceedings, 1333, 87 (2011).

[11] G. M. Alves, G. M. Kremer and A. Soares, AIP Conference Proceedings, 1333, 643

(2011).

[12] Yu-Luan Chen, B. A. Collings and D. J. Douglas, J. Am. Soc. Mass Spectrom. 8,

681-687 (1997).

[13] T. Covey and D. J. Douglas, J. Am. Soc. Mass Spectrom. 4, 616-623 (1993).

[14] T. C. Lilly, A. D. Ketsdever and S. F. Gimelshein, AIP Conference Proceedings, 1333,

825 (2011).

87

[15] P. Kowalczyk, A. Palczewski, G. Russo, and Z. Walenta, Eur. J. of Mech. B/Fluids

27, 62-74 (2008).

[16] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, (Oxford

University Press, 1994).

[17] S. K. Stefanov, J. Sci. Comput. 33, 677-702 (2011).

[18] A. A. Ganjaei, S. S. Nourazar, J. Mech Sci. & Tech. 23, 2861-2870, (2009).

[19] C. D. Landon, N. G. Hadjiconstantinou, AIP Conference Proceedings 1333, 277-282,

(2011).

[20] H. A. Al-Mohssen, N. G. Hadjiconstantinou, AIP Conference Proceedings 1084, 257-

262, (2008).

[21] A. V. Bobylev, S. Rjasanow, Eur. J. of Mech. B/Fluids 18, 869-887 (1999).

[22] J. M. Burt and I. D. Boyd, AIP Conference Proceedings, 1333 230 (2011).

[23] Y. A. Bondar and M. S. Ivanov, AIP Conference Proceedings, 1333 1209 (2011).

[24] F. Vega Reyes, AIP Conference Proceedings, 1333 360 (2011).

[25] E. Jun, J. M. Burt and I. D. Boyd, AIP Conference Proceedings, 557 1333 (2011).

[26] E. D. Farbar and I. D. Boyd, AIP Conference Proceedings, 1333 242 (2011).

[27] M. Yu. Plotnikov and E. V. Shkarupa, AIP Conference Proceedings, 1333 (2011).

[28] R. Baranowski and M. Thachuk, J. Chem. Phys. 111, 10061 (1999).

[29] X. Chen and M. Thachuk, J. Chem. Phys. 124, 174501 (2006).

[30] R. Baranowski, B. Wagner and M. Thachuk, J. Chem. Phys. 114 (2001).

[31] J. Lo, Pseudospectral Methods in Quandtum and Statistical Mechanics (UBC Thesis)

(2002).

[32] B. Shizgal and H. Chen, J. Chem. Phys. 104 4137 (1996).

[33] B. D. Shizgal, J. Mol. Structure (Theochem) 391 131 - 139 (1997).

[34] J. Lo and B. D. Shizgal, J. Chem. Phys. 125 194108 (2006).

[35] K. Leung, B. D. Shizgal and H. Chen, J. Math. Chem. 24, 291-319 (1998).

[36] B. Shizgal and R. Blackmore, Planet. Space Sci. 34 279-291 (1986).

88

[37] B. Shizgal, J. Comp. Phys. 41, 309-328, (1981).

[38] B. Shizgal, R. Blackmore, J. Comp. Phys. 55, 313-327, (1984).

[39] A. Clarke and B. Shizgal, Phys. Rev. E 49, 347-358, (1994).

[40] H. Chen, The Quadrature Discretization Method and its Applications (UBC Thesis)

1998.

[41] R. Blackmore, U. Weinert and B. Shizgal, Trans. Theory and Stat. Phys. 15, 181-120

(1986).

[42] D. Lemonnier, Microscale and Nanoscale Heat Transfer, Topics Appl. Phys. 107,

77-106 (2007).

[43] H. Skullerud, J. Phys. B 6, 728 (1973).

[44] P. R. Berman, J. E. M. Haverkort, and J. P. Woerdman, Phys. Rev. A 34, 4647

(1986).

[45] J. Park, N. Shafer, and R. Bersohn, J. Chem. Phys. 91, 7861 (1989).

[46] C. A. Taatjes, J. I. Cline, and S. R. Leone, ibid. 93, 6554 (1990).

[47] K. E. Gibble and A. Gallagher, Phys. Rev. A 43, 1366 1993.

[48] K. E. Gibble and J. Cooper, ibid. 44, R5335 (1991).

[49] G. Nan and P. L. Houston, J. Chem. Phys. 97, 7865 (1992).

[50] D. A. Shapiro, J. Phys. B 33, L43-L49 (2000).

[51] O. V. Belai, O. Y. Schwartz, and D. A. Shapiro, Phys. Rev. A 76, 012513 (2007).

[52] C. E. Siewert, J. Quant. Spec. & Rad. Trans. 74, 789-796 (2002).

[53] E. P. Wigner and J. E. Wilkins, U.S. Atomic Energy Commission Report AECD 2275,

1944.

[54] C. Cercignani, Mathematical Methods in Kinetic Theory, 2nd Ed., (Plenum Press,

1990).

[55] M. Kac, Foundations of Kinetic Theory, Third Berkeley Symp. on Math. Statist. and

Prob., Vol. 3, 171-197 (Univ. of Calif. Press 1956).

[56] J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases

(North-Holland, Amsterdam, 1972).

89

[57] L. Waldmann in Handbuch der Physik, edited by S. Flügge (Springer-Verlag, Berlin,

1958), Vol. 12, p. 348.

[58] K. Andersen and K. E. Schuler, J. Chem. Phys. 40, 633 (1964).

[59] P. F. Liao, J. E. Bjorkholm, and P. R. Berman, Phys. Rev. A 21, 1927 (1980).

[60] P. R. Berman, Adv. At. Mol. Phys. 13, 57 (1978).

[61] R. Kapral and J. Ross, J. Chem. Phys. 52, 1238 (1970).

[62] L. Monchick and E. A. Mason, Phys. Fluids 10, 1377 (1967).

[63] B. Shizgal and R. Blackmore, Chem. Phys. 77, 417 (1983).

[64] M. R. Hoare and C. H. Kaplinsky, J.Chem. Phys. 52, 3336 (1970).

[65] M. R. Hoare, The Linear Gas, Advances in Chemical Physics 20 John Wiley & Sons,

135-214 (1971).

[66] S. E. Nielsen and T. A. Bak, J. Chem. Phys. 41, 665 (1964).

[67] G. H. Bryan, Rep. Br. Assoc. Advmt. Sci. 64, 64 (1894).

[68] F. B. Pidduck, Proc. R. Soc. London. Ser. A 101, 101 (1922).

[69] J. ODell and B. Berne, J. Chem. Phys. 63, 2376 (1975).

[70] B. Berne, ibid. 66, 2821 (1977).

[71] C. Pangali and B. Berne, ibid. 67, 4590 (1977).

[72] J. Montgomery and B. Berne, ıibid. 67, 4580 (1977).

[73] O. Kravchenko and M. Thachuk, J. Chem. Phys. 134, 114310 (2011). The value of

J used in this reference is the negative of that employed in the current work, with

particles “1” and “2” being the tracer and bath, respectively.

[74] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 5th ed.

(Academic Press, San Diego, 1994), integral (6.643.2).

[75] With a change of variable, s = (1+m1χ) sin
2 θ/(1+m1χ sin2 θ), and using the proper-

ties of Kummer’s function giving M(3/2, 1, z) = exp(z/2)[(1 + z)I0(z/2) + zI1(z/2)],

Eq. (2.77) can be written in simplified notation as (8πχkT)3/2F2(
m1

2kT |β×k̂|2;m1χ)

in which F2(z; a) = 1
1+a

∫ 1
0 ds[e

bs/
√
1− s][(1/2 + bs)I0(bs) + bsI1(bs)] with b =

az/[2(1 + a)]. Using a numerical comparison, and also expanding this function in a

90

Taylor series up to seventh order, it was determined that Fz(z; a) = eaz/(1+a)/(1+a).

Using this relation produced the result of Eq. (2.78).

[76] S. Khurana and M. Thachuk, J. Chem. Phys. 139, 164122 (2013).

[77] J. C. Maxwell, Phil. Trans. R. Soc. Lond. 157, 49-88 (1867).

[78] F. R. W. McCourt, J. J. M. Beenakker, W. E. Kohler, and I. Kuscer, Nonequilibrium

Phenomena in Polyatomic Gases Volume I (Clarendon Press, Oxford 1990).

[79] Y. Chang and B. Shizgal, AIP Cong. Proc. (2009).

[80] P. S. Epstein, Phys. Rev. 23, 710 (1924).

[81] J. R. Stalder and V. J. Zurick National Advisory Committee for Aeronautics TN,

NACA, 2423 (1951).

[82] S. Khurana and M. Thachuk, J. Chem. Phys. 136, 094103 (2012).

[83] S. Khurana and M. Thachuk, in preparation.

[84] M. N. Schultz, Spline Analysis, (Prentice Hall, New Jersey, 1973).

[85] P. M. Prenter, Splines and Variational Methods, (John Wiley, New York, 1975).

[86] B. W. Shore, J. Chem. Phys. 58, 3855-3866, (1973).

[87] L. L. Schumaber, Spline Functions - Basic Theory, (Krieger Publishing Company,

1993).

[88] W. Press, S. A. Teuksolky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes:

The Art of Scientific Computing, 1st Ed. (Cambridge University Press, 1986).

[89] B. Shizgal, M. J. Lindenfeld and R. Reeves, J. Chem. Phys. 56, 249-260 (1981).

[90] Z. Li and H. Wong, Phys. Rev. E. 65 061207 (2003).

91

Appendix A

Appendix A: Numerical Code

Given here is the code used to obtain the results given in this thesis.

A.1 Main Program

PROGRAM ION MOBILITY

USE IONMOBILITY

USE MODULECROSSEC

IMPLICIT NONE

! This program c a l l s on the module i onmob i l i t y , which d e s c r i b e s some o f the

v a r i a b l e s be ing used .

REAL(h ip rec) : : t 0 ,w, y temp , vz n , y temp deriv , y temp 2 der iv , vz , moment int ,

moment1 , moment2 ,moment0 , f n c p l o t , i p l o t , a l im

REAL(h ip rec) : : b l im , z , eva l gauss , moment mod , moment1 mod , moment2 mod ,

moment2a mod , x , moment1 diff , eva l gau lag , numdense , sigma12 , c a l l 1 , x1 , g ,

check c ros s , c h i v a l , beta , alpha

! v z 0 : the s t a r t i n g po in t o f v e l o c i t y g r i d

! vz n : the end po in t o f v e l o c i t y g r i d

! t 0 : i n i t i a l time

!w: argument used in b s p l i n e f unc t i on

! y temp : temporary va lue o f unknown func t i on

! y temp 2 der i v : second d e r i v a t i v e o f unknown func t i on

! y temp der i v : f i r s t d e r i v a t i v e o f unknown func t i on

! d i s t f u n c : d i s t r i b u t i o n func t i on va lue at a p a r t i c u l a r po in t on g r i d

! vz : v e l o c i t y g r i d

INTEGER i , j , nstep , in fo , n , f l ag2 , f l ag3 , mod calc , tmp read , lda , incx , incy

! d e f i n i n g g r i d f o r vz

INTEGER,PARAMETER : : n max gauss = 3

INTEGER,DIMENSION (:) ,ALLOCATABLE: : i p i v

REAL(h ip rec) , DIMENSION (:) ,ALLOCATABLE : : c oe f f p rod , temp , coe f f new , nu h ,

c o e f f o l d , c o e f f h

!An array provided as an output

CHARACTER(40) : : read tmp

LOGICAL done

REAL(h ip rec) ,DIMENSION (: , :) , ALLOCATABLE : : wr new , c o e f f , lmat check ,

b i n i t s a v e d

92

! This i s a matrix used in the e va l ua t i on o f the c o e f f i c i e n t s .

REAL(h ip rec) ,EXTERNAL : : b sp l in e3 , exe func , p lot , d i s t f un c , i n t e g r a t e ,

i n t i n t e r v a l , integra lw , k matrix , F 1 , F 2 , c r o s s e c

! Bsp l i ne i s an ex t e rna l f unc t i on which i n c l ud e the s p l i n e f unc t i on s

! Fo l lowing v a r i a b l e s are en tered in an inpu t f i l e separa ted from t h i s f i l e .

We can change th e s e parameters as d e s i r ed when the code i s g i ven the

command to compi le .

! vz n : end po in t o f v e l o c i t y g r i d and vz num i s t o t a l number o f po i n t s on

v e l o c i t y g r i d

READ(∗ ,∗) vz 0 , vz n , vz num

!m: mass r a t i o o f bath to ion and c o l f r e q i s c o l l i s i o n f requency

READ(∗ ,∗)m, c o l f r e q

! ns tep and h are number o f s t e p s and s i z e o f i n t e r v a l r e s p e c t i v e l y .

! These two va l u e s can be s e t to any de s i r ed va lue , as the program prog r e s s e s .

READ(∗ ,∗) nstep , h

READ(∗ ,∗) spc

! max smth i s the v a r i a b l e t ha t d i s t i n g u i s h e s between the c a l c u l a t i o n f o r

smooth sphere or maxwell molecu le

! max smth = 1 i s smooth sphere

! max smth = 2 i s maxwel l molecu le

! These are the matr ices and array whoses s i z e s are dependent on the inpu t o f

the va l u e s f o r the v a r i a b l e s above .

! Thus t h e s e can be changed according to the problem .

! These matr ices / arrays are used through tou t d i f f e r e n t su b rou t i n e s and

f unc t i on s .

n dim = vz num+2

ALLOCATE(b i n i t (0 : n dim , 0 : n dim))

ALLOCATE(b i n i t s a v e d (0 : n dim , 0 : n dim))

ALLOCATE(l1 mat (0 : n dim , 0 : n dim))

ALLOCATE(l2 mat (0 : n dim , 0 : n dim))

ALLOCATE(v z g r i d (0 : vz num))

ALLOCATE(i p i v (0 : n dim))

ALLOCATE(y (0 : n dim))

ALLOCATE(k1 (0 : n dim))

ALLOCATE(k2 (0 : n dim))

ALLOCATE(k3 (0 : n dim))

ALLOCATE(k4 (0 : n dim))

ALLOCATE(y1 (0 : n dim))

ALLOCATE(temp (0 : n dim))

ALLOCATE(coe f f n ew (0 : n dim))

ALLOCATE(wr new (0 : n dim , 0 : n dim))

ALLOCATE(c o e f f (0 : n dim , 0 : n dim))

ALLOCATE(c o e f f h (0 : n dim))

93

OPEN (10 ,FILE = ”ini func values”)

OPEN (11 ,FILE = ”rk4 values”)

OPEN (12 ,FILE = ”dist func values”)

OPEN (14 ,FILE = ”mat values ww”)

OPEN (15 ,FILE = ”x gauss w gauss”)

OPEN (17 ,FILE = ”x gaulag w gaulag”)

OPEN (18 ,FILE = ”moment values”)

OPEN (19 ,FILE = ”Integrand values”)

OPEN (20 ,FILE = ”moment0”)

OPEN (21 ,FILE = ”moment1”)

OPEN (22 ,FILE = ”moment2”)

OPEN (23 ,FILE = ”hspace coeff”)

OPEN (24 ,FILE = ”moment mod values”)

OPEN (25 ,FILE = ”values integrand”)

OPEN (26 ,FILE = ”initial func values”)

OPEN (27 ,FILE = ”dist values”)

OPEN (30 ,FILE = ”gaulag convergence”)

! Open a l l f i l e s throughout e n t i r e code , t h i s one time , and then data i s s t o r ed

acco rd i n g l y to i t s r e s p e c t i v e f i l e .

q = 0.5 d0 ∗ (1 . 0 d0/ sq r t (m) + sq r t (m))

r = 0 .5 d0 ∗ (1 . 0 d0/ sq r t (m) − s q r t (m))

! q and r f unc t i on s o f the mass r a t i o as de f i ned

ev a l gau s s = i n t i n t e r v a l (−1 ,0 ,0.0 d0 , 1 . 0 d0 , 0 , 0)

! e v a l ua t e s po i n t s and we i gh t s o f gauss−l e gendre quadrature

dvz = (vz n − vz 0) /REAL(vz num)

IF (spc == 6 . or . spc == 7 .OR. spc == 11) THEN

done = .TRUE.

OPEN(38 , FILE = ”KMATVALUESEXTRAP”)

DO WHILE (done)

READ(38 , ∗ ,END=10000) kmat m , kmat vz 0 , kmat vz n , kmat vz num

ALLOCATE(kmat x val (0 : kmat vz num))

ALLOCATE(kmat y val (0 : kmat vz num))

ALLOCATE(k mat val (0 : kmat vz num , 0 : kmat vz num))

READ(38 ,∗ ,END = 10000) kmat x val , kmat y val , k mat val

kmat dvz = (kmat vz n − kmat vz 0) /REAL(kmat vz num)

IF (kmat m == m) THEN

DONE = .FALSE.

ELSE

DEALLOCATE(kmat x val)

DEALLOCATE(kmat y val)

DEALLOCATE(k mat val)

END IF

ENDDO

94

! check mass r a t i o s between inpu t f i l e s to determine which s e t o f data to use

f o r f u r t h e r c a l c u l a t i o n

CLOSE(38)

END IF

IF (spc == 10 . .OR. spc == 11) THEN ! spc = 9 and 10 as w e l l

READ(∗ ,∗) mu chi

END IF

IF (spc == 5 .OR. spc == 6 .OR. spc == 7) THEN

READ(∗ ,∗) numdense , sigma12 , max smth

eva l gau l ag = i n t i n t e r v a l (−2 ,0 ,0 ,0 ,0 ,0)

IF (max smth == 2) THEN

READ(∗ ,∗) a 4 t i l d a

CALL EVAL CHI

!OPEN (44 , FILE = ”max cross ”)

!DO c h i v a l = 0.001 d0 , pi , 0 . 001 d0

! g = 4.0 d0∗ s q r t (a 4 t i l d a ∗m∗ (1 . 0 d0+m))

! ch e c k c ro s s = crossec (2 , 1 . 0 d0 , c h i v a l)

!END DO

!CLOSE(44)

END IF

END IF

!CALL BESSEL

!

˜˜

! sma l l l oop wr i t t en to e va l ua t e the 1/ r ˆ4 p o t e n t i a l f o r maxwel l molecu le

!DO x1 = 0.0 d0 , 1 .0 d0 , 0.001

! c a l l 1 = 1.0 d0/(x1 ∗∗4)

! WRITE(80 , ’ (e15 .10 ,1 x , e35 . 30) ’) x1 , c a l l 1

!END DO

!STOP

! check ing k mat f unc t i on f o r spaces 5 and above (those t ha t r e qu i r e

i n t e r p o l a t i o n / e x t r a p o l a t i o n using e x t e r n a l l y generated matrix)

!DO x1 = 0.0 d0 , 10 . 0 d0 , 0 . 001 d0

! x1 = 275.0 d0

! c a l l 1 = k matr i x (spc , 2 . 0 d0 , x1 , c o e f f)

! c a l l 2 = e v a l c h i

!WRITE(57 , ’E15 .10 ,3X, E20 . 15 ’) x1 , c a l l 1

!WRITE(57 , ’E15 .10 ,1X, E25 . 20 ’) x1 , c a l l 1

! WRITE(57 , ’ (E15 .10 ,1X, E35 .30) ’) x1 , c a l l 1

!END DO

!STOP

!

˜˜

95

! S e t t i n g beg inn ing o f v e l o c i t y g r i d wi th 0 .

! v z 0 = 0

!With t h i s we s e t spac ings between po i n t s on v e l o c i t y g r i d . This i s dependednt

on t o t a l l en g t h o f gr id , goes back to v a r i a b l e s t ha t are inpu t in the

beg inn ing .

! Spacing between po i n t s i s uniform .

! dvz = (vz n − vz 0) /REAL(vz num)

! This loop c r ea t e s array f o r v e l o c i t y g r i d .

DO i = 0 , vz num

vz g r i d (i)= vz 0 + REAL(i) ∗dvz

ENDDO

b i n i t = 0 .0 d0

DO i = 1 , n dim−1

b i n i t (i , i) = 4 .0 d0 /6 .0 d0

b i n i t (i , i −1)= 1 .0 d0 /6 .0 d0

b i n i t (i , i +1)= 1 .0 d0 /6 .0 d0

ENDDO

! Values o f matrix b i n i t , are based on boundary cond i t i on s mentioned above .

These are the f i r s t 4 e l ements in f i r s t row , and l a s t 4 e l ements in l a s t

row in matrix .

b i n i t (0 ,0) = 1 .0 d0 /48.0 d0

b i n i t (0 ,3) = 1 .0 d0 /48.0 d0

b i n i t (0 ,1) = 23 .0 d0 /48.0 d0

b i n i t (0 ,2) = 23 .0 d0 /48.0 d0

b i n i t (n dim , n dim) = 1.0 d0 /48.0 d0

b i n i t (n dim , n dim−3) = 1 .0 d0 /48.0 d0

b i n i t (n dim , n dim−1) = 23 .0 d0 /48.0 d0

b i n i t (n dim , n dim−2) = 23 .0 d0 /48.0 d0

b i n i t s a v e d = b i n i t

ALLOCATE(work (0 : n dim+1))

CALL DGETRF(n dim+1,n dim+1, b in i t , n dim+1, ip iv , i n f o)

IF (i n f o /= 0) STOP ”DGETRF: FAILED”

CALL DGETRI(n dim+1, b in i t , n dim+1, ip iv , work , n dim+1, i n f o)

IF (i n f o /=0) STOP ”DGETRI: FAILED”

IF (spc == 3) THEN

ALLOCATE(nu h (0 : n dim))

nu h = 0.0 d0

DO j = 1 , n dim−1

nu h (j) = i n t e g r a t e (3 , f l ag2 , v z g r i d (0) , v z g r i d (vz num) , v z g r i d (j−1) ,

c o e f f)

96

WRITE(14 ,∗) nu h (j)

ENDDO

nu h (0) = i n t e g r a t e (3 , f l ag2 , v z g r i d (0) , v z g r i d (vz num) , 0 . 5 d0∗dvz , c o e f f)

WRITE(14 ,∗) nu h (0)

nu h (n dim) = i n t e g r a t e (3 , f l ag2 , v z g r i d (0) , v z g r i d (vz num) , v z g r i d (vz num)

−0.5d0∗dvz , c o e f f)

WRITE(14 ,∗) nu h (n dim)

ELSE

CALL WIGNER WILKINS

! wigner w i l k i n s subrou t ine con ta ins con s t ru c t i on o f a l l matr i ces needed f o r

e va l ua t i on o f d i s t r i b u t i o n func t i on . More comments on d e t a i l s in

subrou t ine f i l e i t s e l f . This subrou t ine e va l ua t e s matrix L , which i s the

c o l l i s i o n opera tor t ha t w i l l be used f o r e va l ua t i on o f d i s t r i b u t i o n

func t i on .

END IF

OPEN (29 , FILE = ”plot values”)

DO i p l o t = vz 0 , vz n , 0 . 0 5

f n c p l o t = p lot (i p l o t)

WRITE(29 ,∗) i p l o t , f n c p l o t

ENDDO

CLOSE(29)

! This loop eva l ua t e s va l u e s o f time dependent c o e f f i c i e n t s used in e va l u t i on

o f d i s t r i b u t i o n func t i on .

DO i = 0 , vz num

y(i +1)= exe func (0 , v z g r i d (i))

ENDDO

! These two are f i r s t and l a s t v a l u e s o f c o e f f i c i e n t s in array , based on two

ex t ra boundary cond i t i on s t ha t we have to i n c l ud e .

! These bounday cond i t i on s are va l u e s o f f unc t i on at mid−po i n t s between f i r s t

and second po in t and mid−po in t between l a s t and second−to− l a s t po in t on

g r i d .

y (0)= exe func (0 , v z g r i d (0)+(dvz /2 .0 d0))

y (n dim) = exe func (0 , v z g r i d (vz num)−dvz /2 .0 d0)

WRITE (10 ,∗) y

! y = MATMUL(b i n i t , y)

CALL DGEMV(’N’ , n dim+1,n dim+1 ,1.0 d0 , b i n i t , n dim+1,y , 1 , 0 . 0 d0 , temp , 1)

WRITE (10 ,∗) temp

h2 = h/2 .0 d0

t 0 = 0 .0 d0

! temp = y

97

! This loop eva l ua t e s va l u e s o f v e l o c i t y gr id , t e s t funct ion , f i r s t and second

d e r i v a t i v e s o f both the ac tua l f unc t i on and b s p l i n e funct ion , and va l u e s

o f d i s t r i b u t i o n func t i on .

! This loop a l s o e va l ua t e s e r ro r s ob ta ined between r e s p e c t i v e va l u e s o f t e s t

f unc t i on and b s p l i n e f unc t i on s and t h e i r d e r i v a t i v e s .

DO vz = vz 0 , vz n , 0 . 0 5

!WRITE (10 ,”(F7 .4 , 3X, E10 .4 , 3X, E10 .4 , 3X, E10 .4 , 3X, E10 .4 , 3X, F8 .2 , 3X,F8 .2 , 3X, E10

.4 , 3X, E10 .4 , 3X,F8 . 2) ”) vz , d i s t f u n c (1 ,0 , vz , y) , exe f unc (0 , vz) , d i s t f u n c

(1 ,1 , vz , y) , exe f unc (1 , vz) , ((d i s t f u n c (1 ,0 , vz , y)−exe func (0 , vz)) / exe func

(0 , vz)) ∗100 ,&

! ((d i s t f u n c (1 ,1 , vz , y)−exe func (1 , vz)) / exe func (1 , vz)) ∗100 , exe f unc (2 , vz) ,

d i s t f u n c (1 ,2 , vz , y) , ((d i s t f u n c (1 ,2 , vz , y)− exe func (2 , vz)) / exe func (2 , vz

)) ∗100

WRITE(26 ,”(F11.7 ,3X,E10.4)”) vz , d i s t f u n c (1 ,0 , vz , temp)

ENDDO

! ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜TIME PROPAGATION OF COEFFICIENTS˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜

ALLOCATE(c o e f f o l d (0 : n dim))

a l im = vz g r i d (0)

b l im = vz g r i d (vz num)

c o e f f o l d = temp

moment0 = i n t e g r a t e (1 ,0 , a l im , b l im , 1 , c o e f f o l d)

moment1 = i n t e g r a t e (1 ,1 , a l im , b l im , 1 , c o e f f o l d) /moment0

moment1 mod = log (moment1−1.5d0)

WRITE(21 , ’ (F9.4 ,3(2X,E14.8)) ’) 0 .0 d0 , moment1 , 2 . 0 d0 /3 .0 d0∗moment1 , moment1 mod

DO j = 1 , nstep

t = t 0 + REAL(j) ∗h

IF (spc == 3) THEN

DO n = 0 , n dim

IF (n == 0) THEN

z = 0 .5 d0∗dvz

ELSE IF (n == n dim) THEN

z = vz g r i d (vz num)−0.5d0∗dvz

ELSE

z = vz g r i d (n−1)

! va l ue o f z i s what i s passed in as the va l ue o f y i n t o k matr i x

END IF

c o e f f h (n) = −1.0d0∗ i n t e g r a t e (4 ,0 , v z g r i d (0) , v z g r i d (vz num) , z ,

c o e f f o l d)

ENDDO

temp = co e f f h+nu h

CALL DGEMV(’N’ , n dim+1,n dim+1 ,1.0 , b i n i t , n dim+1,temp , 1 , 0 . 0 d0 , coe f f new

, 1)

! coe f f new = c o e f f o l d + MATMUL(b i n i t , c o e f f h+nu h) ∗h

coe f f n ew = c o e f f o l d + coe f f n ew ∗h

!WRITE(23 ,∗) c o e f f h

98

!WRITE(23 ,∗) nu h

!WRITE(23 ,∗) t , coe f f new

!WRITE(23 ,”A1”) ’& ’

ELSE IF (spc == 1 .OR. spc == 2 .OR. spc == 4 .OR. spc == 5 .OR. spc == 6 .

OR. spc == 7 .OR. spc == 9 .OR. spc == 10 .OR. spc == 11) THEN

! wr new = 0.0 d0

! t h i s loop c r ea t e s the d i a gona l i z e d matrix wi th the e i g enva l u e s

eva l ua ted in the l i n i t f i l e .

! we are using exac t s o l u t i o n to complete time propogat ion o f system .

!We are e va l ua t i n g the matrix , and then we ob ta in time−dependent

c o e f f i c i e n t s at any time , by t a k i n g product o f d i a gona l i z e d matrix

and c o e f f i c i e n t s eva l ua ted at t =0.

! i n d i v i d u a l matr i ces are cons t ruc ted / so l v ed in l i n i t f i l e

! time dependence o f d i s t r i b u t i o n func t i on i s e va l u t ed here using exac t

expres s i on

! t = t 0 + REAL(j−1)∗h

!DO i = 0 , n dim

! wr new (i , i) = exp (wr(i) ∗ t)

!END DO

! c o e f f = MATMUL(vr saved , (MATMUL(wr new , vr)))

! coe f f new = MATMUL(coe f f , y)

CALL DGEMV(’N’ , n dim+1,n dim+1 ,1.0 d0 , l mat sa fe , n dim+1, c o e f f o l d , 1 , 0 . 0

d0 , coe f f new , 1)

! coe f f new = c o e f f o l d + MATMUL(l ma t sa f e , c o e f f o l d) ∗h

coe f f n ew = c o e f f o l d + coe f f n ew ∗h

END IF

! t h i s i n i t i a l i z e s gau l ag subrout ine , in which po i n t s and we i gh t s o f gauss−

l a gu e r r e are c a l c u l a t e d and then s t o r ed in a matrix form .

! an i t e r a t i o n ta k e s p l a c e s and depending on convergence , appropr i a te s e t o f

po i n t s and we i gh t s are used in e va l ua t i on o f moments .

IF (spc == 3 .OR. spc == 1 .OR. spc == 4 .OR. spc == 5 .OR. spc == 7 .OR.

spc == 9 .OR. spc == 10 .OR. spc == 11) THEN

mod calc = mod(j , 1 0)

IF (mod calc == 0) THEN

moment0 = i n t e g r a t e (1 ,0 , v z g r i d (0) , v z g r i d (vz num) , 1 . 0 d0 , coe f f n ew)

! e v a l ua t e s the z eo r t h order moment (norm)

WRITE(20 ,∗) t , moment0

!WRITE(24 ,∗) t , moment0

! take d e r i v a t i v e o f the f i r s t moment

moment1 = i n t e g r a t e (1 ,1 , a l im , b l im , 1 , coe f f n ew) /moment0

moment1 mod = log (moment1−1.5d0)

! e v a l ua t e s the f i r s t moment , and i s normal i zed by the norm

WRITE(21 ,”(F9.4 ,3(2X,E14.8))”) t , moment1 , 2 . 0 d0 /3 .0 d0∗moment1 ,

moment1 mod

!WRITE(24 ,∗) moment1 mod

99

moment2 = i n t e g r a t e (1 ,2 , a l im , b l im , 1 , coe f f n ew) /moment0

moment2 mod = (3 . 0 d0 /5 .0 d0) ∗moment2 /(moment1 ∗∗2)

moment2a mod = moment2 − ((5 . 0 d0 /3 .0 d0) ∗moment1 ∗∗2)

! e v a l ua t e s the second moment , and i s normal i zed by the norm

WRITE(22 ,∗) t , moment2

WRITE(24 ,∗) t , moment2 mod , moment2a mod

!WRITE (22 ,”A1”) ’& ’

!DO i = 0 , n dim

!WRITE(12 ,∗) i , coe f f new (i)

!We ob ta in time−dependent c o e f f i c i e n t s , and p l o t s o f t h e s e va l u e s

!END DO

DO vz = vz 0 , vz n , 0 . 0 5

!WRITE (12 ,”(F10 .6 , 3X, E13 .7 , 3X, E13 .7 , 3X, E13 . 7) ”) vz , d i s t f u n c (1 ,0 ,

vz , coe f f new) ! , d i s t f u n c (3 ,0 , vz , coe f f new) ! ,−1∗ d i s t f u n c (2 ,0 ,

vz , coe f f new)

WRITE (12 ,∗) vz , d i s t f u n c (1 ,0 , vz , coe f f n ew) ! , d i s t f u n c (3 ,0 , vz ,

coe f f new) ! ,−1∗ d i s t f u n c (2 ,0 , vz , coe f f new)

ENDDO

WRITE (12 ,”(A1)”) ’&’

END IF

c o e f f o l d = coe f f n ew

ELSE

moment0 = i n t e g r a t e (1 ,0 , v z g r i d (0) , v z g r i d (vz num) , 1 . 0 d0 , coe f f n ew)

! e v a l ua t e s z eo r t h order moment (norm)

WRITE(20 ,∗) t , moment0

!WRITE(24 ,∗) t , moment0

! take d e r i v a t i v e o f f i r s t moment

moment1 = i n t e g r a t e (1 ,1 , a l im , b l im , 1 , coe f f n ew) /moment0

moment1 mod = log (moment1−1.5 d0)

! moment1 mod = (2 .0 d0 /3.0 d0) ∗moment1

! e va l ua t e s the f i r s t moment , and i s normal i zed by the norm

WRITE(21 ,”(f9 .4 ,3(2x , e14 .8))”) t , moment1 , 2 . 0 d0 /3 .0 d0∗moment1 , moment1 mod

!WRITE(21 ,∗) t , moment1 ,moment1 mod

!WRITE(24 ,∗) moment1 mod

moment2 = i n t e g r a t e (1 ,2 , a l im , b l im , 1 , coe f f n ew) /moment0

moment2 mod = (3 . 0 d0 /5 .0 d0) ∗moment2 /(moment1 ∗∗2)

moment2a mod = moment2 − ((5 . 0 d0 /3 .0 d0) ∗moment1 ∗∗2)

! e v a l ua t e s second moment , and i s normal i zed by norm

WRITE(22 ,∗) t , moment2

WRITE(24 ,∗) t , moment2 mod , moment2a mod

!WRITE (22 ,”A1”) ’& ’

IF (spc == 2) THEN

f l a g 3 = 2

ELSE IF (spc == 4) THEN

f l a g 3 = 4

ELSE IF (spc == 5) THEN

100

f l a g 3 = 5

END IF

DO i = 0 , n dim

!WRITE(12 ,∗) i , coe f f new (i)

!We ob ta in time−dependent c o e f f i c i e n t s , and p l o t s o f t h e s e va l u e s

ENDDO

DO vz = vz 0 , vz n , 0 . 0 5

!WRITE (12 ,”(F10 .6 , 3X, E13 .7 , 3X, E13 .7 , 3X, E13 . 7) ”) vz , d i s t f u n c (1 ,0 , vz ,

coe f f new) , d i s t f u n c (f l a g3 , 0 , vz , coe f f new) ! ,−1∗ d i s t f u n c (2 ,0 , vz ,

coe f f new)

WRITE (12 ,∗) vz , d i s t f u n c (1 ,0 , vz , coe f f n ew) , d i s t f u n c (f l ag3 , 0 , vz ,

coe f f n ew) ! ,−1∗ d i s t f u n c (2 ,0 , vz , coe f f new)

ENDDO

WRITE (12 ,”(A1)”) ’&’

c o e f f o l d = coe f f n ew

END IF

ENDDO

! e v a l ua t e time dependent c o e f f i c i e n t s above wi th exac t mathematical

f o rmu la t i on .

! This loop eva l ua t e s d i s t r i b u t i o n func t i on at po i n t s on g r i d .

! The d i s t r i b u t i o n func t i on i s eva l ua ted f o r o r i g i n a l b s p l i n e , f i r s t d e r i v a t i v e

and second d e r i v a t i v e .

CLOSE (10)

CLOSE (11)

CLOSE (12)

CLOSE (14)

CLOSE (15)

CLOSE (17)

CLOSE (18)

CLOSE (19)

CLOSE (20)

CLOSE (21)

CLOSE (22)

CLOSE (23)

CLOSE (24)

CLOSE (25)

CLOSE (26)

CLOSE (27)

CLOSE (30)

10000 IF (spc == 6 . and . done) WRITE(∗ ,∗) ”MASS RATIO NOTFOUND IN

KMATVALUESEXTRAP”

ENDPROGRAM ION MOBILITY

PROGRAM ANALYZE

101

!

! ana l y ze moment va l u e s

!

USE IONMOBILITY

IMPLICIT NONE

REAL(h ip rec) : : e r ro r , vz , tmp1 , tmp2 , tmp3 , tmp4 , j , enrgy , s , eq rgh1 , eq rgh2 ,

eq smth1 , eq smth2 , eq rgh1a , eq rgh2a , red mass , s red mass , eq rgh1 rm ,

eq rgh2 rm , eq smth1 rm , eq smth2 rm , eq rgh1a rm , eq rgh2a rm

INTEGER i , i n f o

INTEGER,DIMENSION (:) ,ALLOCATABLE: : i p iv ,md

REAL(h ip rec) ,EXTERNAL : : b sp l in e3 , d i s t f u n c

DOUBLE PRECISION,EXTERNAL: : e r f

INTERFACE

SUBROUTINE POLINT(xa , ya , x , y , dy)

INTEGER,PARAMETER: : I4B = SELECTED INT KIND(9) , h ip rec=KIND(0 . 0D0)

REAL(h ip rec) ,DIMENSION(:) : : xa , ya

REAL(h ip rec) : : x

REAL(h ip rec) : : y , dy

END SUBROUTINE

END INTERFACE

! vz num i s the number o f moment va l u e s to process

READ(5 ,∗) vz num ,m, enrgy

n dim = vz num+2

ALLOCATE(b i n i t (0 : n dim , 0 : n dim))

ALLOCATE(v z g r i d (0 : vz num))

ALLOCATE(i p i v (0 : n dim))

ALLOCATE(y (0 : n dim))

ALLOCATE(md(0 : 2∗ vz num))

OPEN (10 ,FILE = ’ coe f f i c i ents ’)

OPEN (25 ,FILE = ’moment derivative ’)

! read in moment va l u e s from standard inpu t

DO i = 0 , vz num

READ(5 ,∗) tmp1 , tmp2 , tmp3 , tmp4

v z g r i d (i)= tmp1

y(i +1)= tmp4

ENDDO

dvz = vz g r i d (1) − v z g r i d (0)

102

b i n i t = 0 .0 d0

DO i = 1 , n dim−1

b i n i t (i , i) = 4 .0 d0 /6 .0 d0

b i n i t (i , i −1)= 1 .0 d0 /6 .0 d0

b i n i t (i , i +1)= 1 .0 d0 /6 .0 d0

ENDDO

b i n i t (0 ,0) = 1 .0 d0 /48.0 d0

b i n i t (0 ,3) = 1 .0 d0 /48.0 d0

b i n i t (0 ,1) = 23 .0 d0 /48.0 d0

b i n i t (0 ,2) = 23 .0 d0 /48.0 d0

b i n i t (n dim , n dim) = 1.0 d0 /48.0 d0

b i n i t (n dim , n dim−3) = 1 .0 d0 /48.0 d0

b i n i t (n dim , n dim−1) = 23 .0 d0 /48.0 d0

b i n i t (n dim , n dim−2) = 23 .0 d0 /48.0 d0

ALLOCATE(work (0 : n dim+1))

CALL DGETRF(n dim+1,n dim+1, b in i t , n dim+1, ip iv , i n f o)

IF (i n f o /= 0) STOP ”DGETRF: FAILED”

CALL DGETRI(n dim+1, b in i t , n dim+1, ip iv , work , n dim+1, i n f o)

IF (i n f o /=0) STOP ”DGETRI: FAILED”

! use p o l i n t to g e t va l u e s at midpoints f o r boundary cond i t i on s

CALL POLINT(v z g r i d (0 : 5) , y (1 : 6) , (v z g r i d (0)+vz g r i d (1)) ∗0 .5 d0 , y (0) , e r r o r)

! wr i t e (∗ ,∗) y (0) , e r ror

CALL POLINT(v z g r i d (vz num−6:vz num) , y (n dim−7:n dim−1) , (v z g r i d (vz num)+

vz g r i d (vz num−1)) ∗0 .5 d0 , y (n dim) , e r r o r)

!WRITE(∗ ,∗) y (n dim) , error

WRITE (10 ,∗) y

y = MATMUL(b in i t , y)

WRITE (10 ,∗) y

OPEN (40 ,FILE = ’moment derivative a ’)

DO i = 0 , 2∗vz num

vz = REAL(i) ∗0 .5 d0∗dvz

tmp1 = d i s t f u n c (1 ,0 , vz , y)

tmp2 = d i s t f u n c (1 ,1 , vz , y)

red mass = m/(1 . 0 d0+m)

s = sq r t (m∗(exp (tmp1)))

s r ed mass = sq r t (red mass ∗(exp (tmp1)))

! speed

eq smth1 = 16 .0 d0 / (3 . 0 d0∗ s q r t (p i) ∗ s)

eq smth1 rm = 16 .0 d0 / (3 . 0 d0∗ s q r t (p i) ∗ s r ed mass)

! e p s t e i n r e s u l t f o r smooth sphere

103

eq smth2 = ((2 . 0 d0∗exp(−(s ∗ s))) /(sq r t (p i) ∗ s)) ∗ (1 . 0 d0+(0.5 d0/(s ∗ s))) +2.0d0

∗ (1 . 0 d0+(1.0 d0/(s ∗ s)) −(1.0d0 / (4 . 0 d0∗ s ∗∗4)))∗ e r f (s)

eq smth2 rm = (2 . 0 d0∗exp(− s r ed mass ∗ s r ed mass) /(sq r t (p i) ∗ s r ed mass))

∗ (1 . 0 d0+0.5d0/(s r ed mass ∗ s r ed mass)) +2.0d0 ∗ (1 . 0 d0+1.0d0/(s r ed mass ∗

s r ed mass)−1.0d0 / (4 . 0 d0∗ s r ed mass ∗∗4)) ∗ e r f (s r ed mass)

! s t a l d e r r e s u l t f o r smooth sphere

eq rgh1 = eq smth1 ∗13.0 d0 /9 .0 d0

eq rgh1 rm = eq smth1 ∗13.0 d0 /9 .0 d0

eq rgh1a = eq smth1 ∗7 .0 d0 /5 .0 d0

eq rgh1a rm = eq smth1 ∗7 .0 d0 /5 .0 d0

! e p s t e i n r e s u l t f o r rough sphere

eq rgh2 = eq smth2 + (2 . 0 d0∗ s q r t (p i)) / (3 . 0 d0∗ s)

eq rgh2 rm = eq smth2 + (2 . 0 d0∗ s q r t (p i)) / (3 . 0 d0∗ s r ed mass)

eq rgh2a = eq rgh2 ∗ (7 . 0 d0 /5 .0 d0) ∗ (9 . 0 d0 /13.0 d0)

eq rgh2a rm = eq rgh2 rm ∗7 .0 d0 /5 .0 d0

! s t a l d e r r e s u l t f o r rough sphere

WRITE(25 , ’ (F11.5 ,3X,E22.15 ,3X,E22.15 ,3X,E22.15) ’) vz , tmp1 , tmp2 , tmp2

/(−16.0 d0 / (3 . 0 d0∗ s q r t (1/m)))

! p r i n t s out the f o k k e r p lanck r e s u l t s : time , va l ue o f moment , d e r i v a t i v e o f

moment , r a t i o o f d e r i v a t i v e wi th a c tua l f o k k e r p lanck r e s u l t

WRITE(26 , ’ (F11.5 ,3X,E15.10 ,3X,E15.10 ,3X,E13.7 ,3X,E13.7 ,3X,E13.7 ,3X,E13.7) ’)

vz , s q r t (m∗(exp (tmp1))) , 1/(−m∗ s q r t (p i)) / sq r t (exp (tmp1)) ∗tmp2 , eq smth1

, eq smth2 ,(1/(−m∗ s q r t (p i)) / sq r t (exp (tmp1))∗tmp2) /eq smth1 ,(1/(−m∗ s q r t (

p i)) / sq r t (exp (tmp1)) ∗tmp2) /eq smth2

! f o r t .26 i s f o r the smooth sphere r e s u l t s

! p r i n t s va l u e s f o r vz , speed , drag c o e f f i c i e n t s , e p s t e i n r e s u l t f o r drag

c o e f f i c i e n t s , s t a l d e r r e s u l t f o r drag c o e f f i c i e n t , r a t i o o f drag

c o e f f i c i e n t to the ep s t e i n r e s u l t

WRITE(27 , ’ (F11.5 ,3X,E15.10 ,3X,E15.10 ,3X,E13.7 ,3X,E13.7 ,3X,E13.7 ,3X,E13.7 ,3X

,E13.7 ,3X,E13.7) ’) vz , s q r t (m∗(exp (tmp1))) , 1/(−m∗ s q r t (p i)) / sq r t (exp (

tmp1)) ∗tmp2 , eq rgh1 , eq rgh2 ,(1/(−m∗ s q r t (p i)) / sq r t (exp (tmp1)) ∗tmp2) /

eq rgh1 ,(1/(−m∗ s q r t (p i)) / sq r t (exp (tmp1)) ∗tmp2) / eq rgh1a ,(1/(−m∗ s q r t (p i)

) / sq r t (exp (tmp1))∗tmp2) / eq rgh2 ,(1/(−m∗ s q r t (p i)) / sq r t (exp (tmp1)) ∗tmp2) /

eq rgh2a

! f o r t .27 p r i n t s the same r e s u l t s as above f o r f o r t .26 excep t f o r the rough

sphere , the l a s t column mu l t i p l i e s the rough c o e f f i c i e n t wi th 7/5 from

theory .

!WRITE(25 , ’ (F11 .5 , 3X, E13 .7 , 3X, E13 .7 , 3X, E13 . 7) ’) vz , d i s t f u n c (1 ,0 , vz , y) ,

d i s t f u n c (1 ,1 , vz , y) , d i s t f u n c (1 ,1 , vz , y) /(−16.0d0 /(3 . 0 d0∗ s q r t (1/m)))

!WRITE(40 , ’ (F11 .5 , 3X, E13 . 7) ’) vz , d i s t f u n c (1 ,1 , vz , y) ∗(16.0 d0∗ s q r t (m) /3.0 d0)

WRITE(28 , ’ (F11.5 ,3X,E15.10 ,3X,E15.10 ,3X,E13.7 ,3X,E13.7 ,3X,E13.7 ,3X,E13.7) ’)

vz , s red mass , 1/(−m∗ s q r t (p i)) / sq r t (exp (tmp1)) ∗tmp2 , eq smth1 rm ,

eq smth2 rm ,(1/(−m∗ s q r t (p i)) / sq r t (exp (tmp1)) ∗tmp2) /eq smth1 rm ,(1/(−m∗

s q r t (p i)) / sq r t (exp (tmp1)) ∗tmp2) /eq smth2 rm

WRITE(29 , ’ (F11.5 ,3X,E15.10 ,3X,E15.10 ,3X,E13.7 ,3X,E13.7 ,3X,E13.7 ,3X,E13.7 ,3X

,E13.7 ,3X,E13.7) ’) vz , s red mass , 1/(−m∗ s q r t (p i)) / sq r t (exp (tmp1)) ∗tmp2

104

, eq rgh1 rm , eq rgh2 rm ,(1/(−m∗ s q r t (p i)) / sq r t (exp (tmp1))∗tmp2) /

eq rgh1 rm ,(1/(−m∗ s q r t (p i)) / sq r t (exp (tmp1))∗tmp2) /eq rgh1a rm ,(1/(−m∗

s q r t (p i)) / sq r t (exp (tmp1)) ∗tmp2) /eq rgh2 rm ,(1/(−m∗ s q r t (p i)) / sq r t (exp (

tmp1)) ∗tmp2) / eq rgh2a rm

WRITE(30 , ’ (F11.5 ,3X,E15.10 ,3X,E15.10 ,3X,E15.10) ’) vz , s q r t (m∗(exp (tmp1))) ,

eq rgh1 / eq rgh2 , eq rgh1a / eq rgh2a

ENDDO

CLOSE (10)

CLOSE (25)

CLOSE (40)

ENDPROGRAM ANALYZE

A.2 Subroutines

SUBROUTINE WIGNER WILKINS

USE IONMOBILITY

USE MODULE INTEGRATE

USE MODULECROSSEC

IMPLICIT NONE

! The subrou t ine c a l l s on the i onmob i l i t y module , which d e s c r i b e s some o f the

v a r i a b l e s used . This subrou t ine i s des i gned to be gener i c

CHARACTER: : jobv l , jobvr

LOGICAL,EXTERNAL: : se lect

REAL(h ip rec) : : a l im , b l im , v , vz , temp , eva l gauss , z , temp1

! a l im : lower l im i t o f i n t e g r a t i o n found using maximum va l u e s o f i n t e r v a l

g i ven

! b l im : h i gher l im i t o f i n t e g r a t i o n found using the minimum of va l u e s o f

i n t e r v a l g i ven

! v : v e l o c i t y

REAL(h ip rec) ,DIMENSION (:) , ALLOCATABLE : : y de r iv , ip iv , wl , wi

! y d e r i v : array con ta in ing c o e f f i c i e n t s f o r b s p l i n e f unc t i on

! i p i v : an array d e l i v e r e d upon output

REAL(h ip rec) ,DIMENSION (: , :) , ALLOCATABLE: : k mat , b t i l , b t i l v a l u e s , nu , b p , b ,

l mat , v l , wr new , v r t ran spose , nu1 , d i f f , l mat1 , l mat1 sa fe , c

! k mat : e va l ua t e s matrix K in eva l ua t i on o f L matrix ; t h i s con ta ins e va l ua t i on

o f wigner−w i l k i n s k e rne l

! b t i l : matrix used in the e va l ua t i on o f the L matrix

! b t i l v a l u e s : t h i s matrix saves o r i g i n a l b t i l matrix , s i nce i n v e r s e

subrou t ine de s t r o y s o r i g i n a l matrix , and we need the b t i l matrix in i t s

o r i g i n a l form as w e l l f o r e va l ua t i on o f L matrix

! nu : one o f the matr ices used in e va l ua t i on o f L matrix

! b : matrix used in e va l ua t i on o f L matrix

! b p : matrix used in e va l ua t i on o f L matrix

INTEGER i , j , k , in fo , lwork , a , f l ag1 , f l ag2 , ldc , n

105

! i , j , k : i n t e g e r s used in the l oops o f the code ,

! lwork i s a parameter in the LAPACK rout ines , to s e t the s i z e o f the matr ices

be ing eva lua ted .

REAL(h ip rec) ,DIMENSION(0 : n dim) : : c o e f f

REAL(h ip rec) ,EXTERNAL : : exe func , i n t i n t e r v a l , i n t e g r a t e , moments , d i s t f u n c

! e xe f unc : e x t e rna l f unc t i on tha t has i n i t i a l f unc t i on s be ing used f o r the

code

! i n t e g r a t e : e x t e rna l f unc t i on tha t checks i n t e r v a l s f o r e va l ua t i on o f

in tegrands

! moments : e x t e rna l f unc t i on tha t e va l ua t e s r e s p e c t i v e moments

! d s i t f u n c : e x t e rna l f unc t i on tha t e va l ua t e s the d i s t r i b u t i o n func t i on

LOGICAL : : done

DOUBLE PRECISION, EXTERNAL: : e r f

!READ(67)

!RETURN

ALLOCATE(i p i v (0 : n dim))

ALLOCATE(y d e r i v (0 : n dim))

ALLOCATE(k mat (0 : n dim , 0 : n dim))

!ALLOCATE(b t i l (0 : n dim , 0 : n dim))

!ALLOCATE(b t i l v a l u e s (0 : n dim , 0 : n dim))

ALLOCATE(nu (0 : n dim , 0 : n dim))

ALLOCATE(b p (0 : n dim , 0 : n dim))

ALLOCATE(b (0 : n dim , 0 : n dim))

ALLOCATE(l mat (0 : n dim , 0 : n dim))

ALLOCATE(l mat s a f e (0 : n dim , 0 : n dim))

! above e l ements are due the mid−po i n t s used as two ex t ra cond i t i on s needed f o r

e va l ua t i on o f c o e f f i c i e n t s

! b t i l v a l u e s = b t i l

! This forms b t i l d a matrix used in e va l ua t i on o f L matrix

! The va l u e s o f e l ements are s e t to zero i n i t i a l l y

! This i s a band matrix . Diagonal e l ements in matrix have va l u e s 1 ,4 ,1

! The f i r s t and l a s t rows o f above matrix has 1 ,4 ,1 as f i r s t th ree and l a s t

th ree e l ements r e s p e c t i v e l y

b p = 0.0 d0

b = 0.0 d0

! $omp p a r a l l e l shared (n dim , dvz , b , b p) p r i v a t e (i)

! $omp do schedu l e (auto)

DO i = 1 , n dim−1

b p (i , i −1) = −0.5d0/dvz

b p (i , i +1) = 0 .5 d0/dvz

b(i , i −1) = 1 .0 d0 /6 .0 d0

106

b(i , i) = 4 .0 d0 /6 .0 d0

b(i , i +1) = 1 .0 d0 /6 .0 d0

ENDDO

! $omp end do

! $omp end p a r a l l e l

!WRITE(14 ,∗) ’B P ’

!CALL L INIT VALUES(b p)

! This i s b prime matrix used in e va l ua t i on o f L matrix

! The va l u e s o f the e l ements o f t h i s matrix are i n i t i a l l y s e t to zero

! This i s a band matrix , in which f i r s t and t h i r d element o f band i s −1.0 and

1.0 r e s p e c t i v e l y

! b = 0.0 d0

!DO i = 1 , n dim−1

! b (i , i−1) = 1.0 d0 /6.0 d0

! b (i , i) = 4.0 d0 /6.0 d0

! b (i , i +1) = 1.0 d0 /6.0 d0

!END DO

b (0 ,0) = 1 .0 d0 /48.0 d0

b (0 ,3) = 1 .0 d0 /48.0 d0

b (0 ,1) = 23 .0 d0 /48.0 d0

b (0 ,2) = 23 .0 d0 /48.0 d0

b(n dim , n dim) = 1.0 d0 /48.0 d0

b(n dim , n dim−3) = 1 .0 d0 /48.0 d0

b(n dim , n dim−1) = 23 .0 d0 /48.0 d0

b(n dim , n dim−2) = 23 .0 d0 /48.0 d0

!WRITE(14 ,∗) ’B’

!CALL L INIT VALUES(b)

! This i s a band matrix

! The e lements in band are 1/6 ,4/6 ,1/6 r e s p e c t i v e l y

!We decided to use mid−po i n t s between f i r s t two and l a s t two po i n t s on

v e l o c i t y g r i d as two ex t ra cond i t i on s needed f o r e va l ua t i on o f time−

dependent c o e f f i c i e n t s .

! This caused a need to modify b matrix , wi th above g i ven e lements .

! F i r s t f our e l ements o f f i r s t row and l a s t f our e l ements o f l a s t row are

de f i ned ou t s i d e the loop as a s p e c i a l case .

! Unless s p e c i f i c a l l y def ined , the matr ices above have zeroes everywhere

! This loop forms the K−matrix

! Elements in t h i s matrix are zero everywhere excep t f o r element in cen tre o f

matrix

107

! This p a r t i c u l a r element i s e va l u t ed by the f o l l ow i n g loop , which a l s o

i n co rpo ra t e s an ex t e rna l subrou t ine

! This e x t e rna l subrou t ine e va l ua t e s we i gh t s and po i n t s (w and x r e s p e c t i v e l y)

f o r e va l ua t i on o f i n t e g r a l

! I n t e g r a l i s approximated by summation over product o f we i gh t s and va l u e s o f

f unc t i on at the provided po i n t s

! In K−matrix , the i nd i c e s o f the element in the cen tre are sw i tched around as

p r e v i o u s l y d e s c r i b ed

! The i (column) element i s d e s c r i b ed as i = j−3 and the j (row) element i s

d e s c r i b ed as j = i−1

! This matrix a l s o uses maximum and minimum va l u e s in the e va l u t i on o f the

b s p l i n e f unc t i on

! l matr i x ww : f i n a l matrix needed to cont inue r e s t o f program eva l ua t i on s

! l ma t r i x i s a product o f var i ous matr ices computed in t h i s subrou t ine

k mat = 0.0 d0

! the k mat matrix i s zero everywhere , excep t f o r the e l ements chosen in the

f o l l ow i n g loop

! n gauss i s number o f po i n t s and we i gh t s used in e va l ua t i on o f i n t e g r a l

! e va l g au s s = i n t i n t e r v a l (−1 ,0 ,0 ,1.0d0 , 0 , 0)

! I have chosen to e va l ua t e po in t and we i gh t on ly once in every loop and then

used the ass i gned va lue in the k e rne l expres s i on

!With above c a l l , we e va l ua t e gauss ian po i n t s and we i gh t s f o r a l l v a l u e s o f

n gauss upto n gauss max , which we e x p l i c i t l y s e t . .

! With above c a l l , p o i n t s and we i gh t s are s t o r ed in an array− l i k e fashion , and

depending on the va lue o f n gauss , the appropr i a te s e t i s c a l l e d f o r

e va l ua t i on o f in tegrands .

! The en t i r e i n t e g r a l i s mu l t i p l i e d by a 1/(s q r t (x)) term . So when x=0, t h i s

term would cause en t i r e i n t e g r a l to blow up , something we do not want .

! Thus we eva lua ted the i n t e g r a l j u s t f o r x , us ing a Taylor Se r i e s expansion

and der i ved above expres s i on .

! $omp p a r a l l e l shared (n dim , v z g r i d , dvz , vz num , k mat) p r i v a t e (i , j , z , a l im ,

b l im)

! $omp do schedu l e (auto)

DO j = 0 , n dim

!DO j = 100 ,100

! be c a r e f u l to t r e a t the mid−po in t va l u e s c a r e f u l l y . . .

! we don ’ t want to i n t e g r a t e over the cusp at x=x ’

IF (j == 0) THEN

z = 0 .5 d0∗dvz

108

k mat (0 ,0) = i n t e g r a t e (2 ,−3 , v z g r i d (0) , z , z , 0 . 0 d0) + i n t e g r a t e (2 ,−3 , z ,

v z g r i d (1) , z , 0 . 0 d0)

k mat (0 ,1) = i n t e g r a t e (2 ,−2 , v z g r i d (0) , z , z , 0 . 0 d0) + i n t e g r a t e (2 ,−2 , z ,

v z g r i d (2) , z , 0 . 0 d0)

k mat (0 ,2) = i n t e g r a t e (2 ,−1 , v z g r i d (0) , z , z , 0 . 0 d0) + i n t e g r a t e (2 ,−1 , z ,

v z g r i d (3) , z , 0 . 0 d0)

k mat (0 ,3) = i n t e g r a t e (2 ,0 , v z g r i d (0) , z , z , 0 . 0 d0) + i n t e g r a t e (2 ,0 , z ,

v z g r i d (4) , z , 0 . 0 d0)

DO i = 1 , n dim−3

! DO i = 1 ,100

a l im = vz g r i d (max(0 , i))

b l im = vz g r i d (min(vz num , i +4))

k mat (0 , i +3) = i n t e g r a t e (2 , i , a l im , b l im , z , 0 . 0 d0)

!WRITE(46 ,∗) j , i , k mat (0 , i +3)

ENDDO

ELSE IF (j == n dim)THEN

z = vz g r i d (vz num)−0.5d0∗dvz

k mat (n dim , n dim) = i n t e g r a t e (2 , n dim−3, v z g r i d (n dim−3) , z , z , 0 . 0 d0) +

i n t e g r a t e (2 , n dim−3,z , v z g r i d (vz num) , z , 0 . 0 d0)

k mat (n dim , n dim−1) = i n t e g r a t e (2 , n dim−4, v z g r i d (n dim−4) , z , z , 0 . 0 d0) +

i n t e g r a t e (2 , n dim−4,z , v z g r i d (vz num) , z , 0 . 0 d0)

k mat (n dim , n dim−2) = i n t e g r a t e (2 , n dim−5, v z g r i d (n dim−5) , z , z , 0 . 0 d0) +

i n t e g r a t e (2 , n dim−5,z , v z g r i d (vz num) , z , 0 . 0 d0)

k mat (n dim , n dim−3) = i n t e g r a t e (2 , n dim−6, v z g r i d (n dim−6) , z , z , 0 . 0 d0) +

i n t e g r a t e (2 , n dim−6,z , v z g r i d (vz num) , z , 0 . 0 d0)

DO i = −3,n dim−7

a l im = vz g r i d (max(0 , i))

b l im = vz g r i d (min(vz num , i +4))

k mat (n dim , i +3) = i n t e g r a t e (2 , i , a l im , b l im , z , 0 . 0 d0)

!WRITE(46 ,∗) j , i , k mat (n dim , i +3)

ENDDO

ELSE

z = vz g r i d (j−1)

! the va l ue o f z i s what i s what i s passed in as the va l ue o f y i n t o

k matr i x

DO i = −3,n dim−3

a l im = vz g r i d (max(0 , i))

b l im = vz g r i d (min(vz num , i +4))

k mat (j , i +3) = i n t e g r a t e (2 , i , a l im , b l im , z , 0 . 0 d0)

!WRITE(46 ,∗) j , i , k mat (j , i +3)

ENDDO

END IF

ENDDO

! $omp end do

! $omp end p a r a l l e l

109

WRITE(14 ,∗) ’KMATRIX’

CALL L INIT VALUES(k mat)

! The i nd i c e s used in the code (i , j) to con s t ru c t our matrix loops , are

d i f f e r e n t than the i nd i c e s we have used in the notes

WRITE(14 ,∗) ’NU’

nu = 0.0 d0

! $omp p a r a l l e l shared (n dim , v z g r i d , vz num , nu , dvz) p r i v a t e (j , a l im , b l im , z ,

temp , temp1 , done)

! $omp do schedu l e (auto)

DO j = 0 , n dim

IF (j == 0) THEN

Z = 0.5D0∗dvz

ELSE IF (j == n dim) THEN

z = vz g r i d (vz num)−0.5d0∗dvz

ELSE

z = vz g r i d (j−1)

END IF

! i n t e g r a t e over whole g r i d s t a r t i n g at d i agona l and working towards p o s i t i v e

and nega t i v e d i recr i ons , s topp ing when va l u e s are converged to a to l e r ance

.

! s t e p by 2 dvz to speed th i n g s up

temp = 0.0 d0

IF (j == 1) THEN

done = .TRUE.

ELSE

done = .FALSE.

END IF

b l im = z

DO WHILE(not (done))

a l im = MAX(v z g r i d (0) , b l im −2.0d0∗dvz)

temp1 = i n t i n t e r v a l (3 ,0 , a l im , b l im , z , 0 . 0 d0)

temp = temp + temp1

b l im = a l im

IF ((abs (temp1/temp) < 1 .0 d−13) .OR. (b l im .LE. v z g r i d (0))) done = .

TRUE.

ENDDO

nu(j , j) = temp

temp = 0.0 d0

IF (j == (n dim−1)) THEN

done = .TRUE.

ELSE

done = .FALSE.

END IF

a l im = z

110

DO WHILE(not (DONE))

b l im = MIN(v z g r i d (vz num) , a l im+2.0d0∗dvz)

temp1 = i n t i n t e r v a l (3 ,0 , a l im , b l im , z , 0 . 0 d0)

temp = temp + temp1

a l im = b l im

IF ((abs (temp1/temp) < 1 .0 d−13) .OR. (a l im .GE. v z g r i d (vz num))) done =

.TRUE.

ENDDO

nu(j , j) = nu(j , j) + temp

ENDDO

! nu(j , j) = i n t e g r a t e (3 ,0 , v z g r i d (0) , v z g r i d (vz num) , v z g r i d (j−1) , 0 . 0 d0)

!WRITE(14 ,∗) nu(j , j)

!END DO

! $omp end do

! $omp end p a r a l l e l

! nu (0 ,0) = i n t e g r a t e (3 ,0 , v z g r i d (0) , v z g r i d (vz num) ,0 . 5 d0∗dvz , 0 . 0 d0)

! nu(n dim , n dim) = i n t e g r a t e (3 ,0 , v z g r i d (0) , v z g r i d (vz num) , v z g r i d (vz num)

−0.5d0∗dvz , 0 . 0 d0)

DO j = 0 , n dim

WRITE(14 ,∗) nu (j , j)

ENDDO

!WRITE(14 ,∗) nu (0 ,0)

!WRITE(14 ,∗) nu(n dim , n dim)

! nu (f requency) matrix i s eva l ua ted using e l ements from k matr i x above .

! i n t e r v a l o f i n t e g r a t i o n i s from 0 to S (f i n i t e i n t e r v a l) , as opposed to 0 to

i n f i n i t y as in theory

! f i r s t and l a s t v a l u e s o f f r equency matrix are eva l ua ted s epa ra t e l y , and those

va l u e s corresponding to midpoints on g r i d

! nu matrix i s a d i agona l matrix , wi th f requency va l u e s on diagonal , and th e s e

va l u e s are dependent on v e l o c i t y gr id , and zeroes everywhere e l s e

! l1 mat = MATMUL(nu , b)

CALL DGEMM(’N’ , ’N’ , n dim+1,n dim+1,n dim+1 ,1.0 d0 , nu , n dim+1,b , n dim+1 ,0.0 d0 ,

l1 mat , n dim+1)

WRITE(14 ,∗) ’L1MAT’

CALL L INIT VALUES(l1 mat)

l2 mat = k mat−l1 mat

WRITE(14 ,∗) ’L2MAT’

CALL L INIT VALUES(l2 mat)

! l 1 mat and l2 mat j u s t s epa ra t e s components o f d e f i n t i o n o f c o l l i s i o n

opera tor (see comment below)

111

! the b p matrix t ha t r e qu i r e s ex t ra mu l t i p l i c a t i o n wi th time−dependent

e x t e rna l f i e l d . So f a r we have not inc l uded any e f f e c t s o f f i e l d on the

system

! l mat = MATMUL(b i n i t , l 2 mat)

CALL DGEMM(’N’ , ’N’ , n dim+1,n dim+1,n dim+1 ,1.0 d0 , b i n i t , n dim+1, l2 mat , n dim

+1 ,0.0 d0 , l mat , n dim+1)

l mat s a f e = l mat

OPEN(67 ,FORM = ’UNFORMATTED’ ,FILE=’LMATSAFE’)

WRITE(67) l mat

CLOSE(67)

WRITE(14 ,∗) ’LMAT’

CALL L INIT VALUES(l mat)

! l mat matrix i s c o l l i s i o n opera tor f o r which were are e va l ua t i n g e i g enva l u e s

! This i s the f i n a l matrix t ha t we need f o r c a l c u l a t i o n o f d i s t r i b u t i o n

func t i on

! In our notes c o l l i s i o n matrix i s de f i ned (us ing the no ta t i ons o f the code) as

L = inve r s e (b t i l) ∗(k mat−b p−nu∗b) .

! A l l matr i ces are eva l ua ted in t h i s su b rou t i n e s i t s e l f .

! ˜˜˜

! !DIAGONALIZATION

!ALLOCATE(vr (0 : n dim , 0 : n dim))

!ALLOCATE(v l (0 : n dim , 0 : n dim))

!ALLOCATE(vr saved (0 : n dim , 0 : n dim))

!ALLOCATE(wl (0 : n dim))

!ALLOCATE(wr (0 : n dim))

!ALLOCATE(wi (0 : n dim))

!LAPACK subrout ine , e va l ua t e s r i g h t and l e f t e i g enva l u e s o f g i ven matrix .

! Eva lua t ing e i g enva l u e s o f c o l l i s i o n opera tor l mat .

! For our p a r t i c u l a r matrix , we shou l d ob ta in only r i g h t e i genva lues , and l e f t

e i g enva l u e s shou l d have a va lue o f zero .

!CALL DGEEV(’N’ , ’V’ , n dim+1, l mat , n dim+1,wr , wi , v l , n dim+1, vr , n dim+1,work ,−1 ,

i n f o)

! lwork = work (0)

!DEALLOCATE(work)

!ALLOCATE(work (1 : lwork))

!CALL DGEEV(’N’ , ’V’ , n dim+1, l mat , n dim+1,wr , wi , v l , n dim+1, vr , n dim+1,work ,

lwork , i n f o)

! E i genva lues are s ca l e d using f o l l ow i n g e va l ua t i on

!WRITE(∗ ,∗) ’REAL EIGENVALUES (NU) : SCALED’

!WRITE(∗ ,∗) wr /(2 . 0 d0∗ c o l f r e q / s q r t (m))

112

!WRITE(∗ ,∗) ’REAL EIGENVALUES OF MAXWELL (NU) : SCALED’

!WRITE(∗ ,∗) wr/(c o l f r e q ∗ s q r t (1 . 0 d0+m) ∗ s q r t (a 4 t i l d a)/ s q r t (m∗ p i)) ! maxwel l

s c a l e d e i g enva l u e s

!STOP

!WRITE(∗ ,∗) ’REAL EIGENVALUES (NU) : NOT SCALED’

!WRITE(∗ ,∗) wr

!WRITE(∗ ,∗) ’IMAGINARY EIGENVALUES (NU1) : SCALED’

!WRITE(∗ ,∗) ’IMAGINARY EIGENVALUES OF MAXWELL (NU1) : SCALED’

!WRITE(∗ ,∗) wi /(c o l f r e q ∗ s q r t (1 . 0 d0+m) ∗ s q r t (a 4 t i l d a)/ s q r t (m∗ p i)) ! maxwel l

imaginary s ca l e d e i g enva l u e s

!WRITE(∗ ,∗) wi /(2 . 0 d0∗ c o l f r e q / s q r t (m))

!WRITE(∗ ,∗) ’IMAGINARY EIGENVALUES (NU1) : NOT SCALED’

!WRITE(∗ ,∗) wi

! vr are e i g enve c t o r s t ha t are eva l ua ted by subrou t ine DGEEV, f o r l mat matrix .

!WRITE(14 ,∗) ’ vr ’

!CALL L INIT VALUES(vr)

! v r saved = vr

!CALL DGETRF(n dim+1,n dim+1,vr , n dim+1, i p i v , i n f o)

! IF (i n f o /= 0) STOP ”DGETRF: FAILED”

!CALL DGETRI(n dim+1, vr , n dim+1, i p i v , work , n dim+1, i n f o)

! IF (i n f o /=0) STOP ”DGETRI: FAILED”

! e va l ua t e s i n v e r s e o f above tranformation matrix

! a l im = v z g r i d (0)

! b l im = v z g r i d (vz num)

! DO i = 0 , n dim

! WRITE (33 ,”(A1 , x , I3) ”) ’& ’ , i

! DO vz = vz 0 , v z g r i d (vz num) ,0.05

! WRITE(33 ,”(F7 .4 , 3X, E10 .4 , 3X, E10 .4 , 3X, E10 .4 , 3X, E10 .4 , 3X,F8 .2 , 3X,F8

.2 , 3X, E10 .4 , 3X, E10 .4 , 3X,F8 . 2) ”) vz , d i s t f u n c (1 ,0 , vz , v r saved (: , 1)) ,

d i s t f u n c (1 ,0 , vz , v r saved (: , 2)) ! d i s t f u n c (2 ,1 , vz , v r saved (: , i))

! END DO

! a = 0

! temp = i n t e g r a t e (1 ,0 , a l im , b l im , 1 . 0 d0 , vr saved (: , i))

! WRITE(34 ,∗) i , temp

! END DO

!WRITE(14 ,∗) ’CHECK INVERSE OF VR’

!CALL L INIT VALUES(MATMUL(vr saved , vr))

!CALL DGEMM(’N’ , ’N’ , n dim+1,n dim+1,n dim+1 ,1.0d0 , vr saved , n dim+1,vr , n dim

+1 ,0.0d0 , c , n dim+1)

!END DIAGONALIZATION ROUTINE

113

!

˜˜˜

! y1 = MATMUL(l ma t sa f e , y)

! f o r runge−ku t t a

!WRITE(14 ,∗) ’L MAT & Y’

!WRITE(14 , ’ (13(1pE9 .2 ,X)) ’) (y1 (i) / s q r t (a l im) , i =0,n dim)

! y d e r i v = MATMUL(k mat , y)

! f o r runge−ku t t a

!WRITE(14 ,∗) ’KMAT & Y’

!WRITE (14 , ’ (13(1pE9 .2 ,X)) ’) (y d e r i v (i) , i =0,n dim)

! l1 mat= MATMUL(nu , b)

! y1 = MATMUL(l1 mat , y)

! f o r runge−ku t t a

!WRITE(14 ,∗) ’Y, B, NU’

!WRITE(14 , ’ (13(1pE9 .2 ,X)) ’) (y1 (i) , i =0,n dim)

!WRITE(14 ,∗) ’nu ’

!DO i = 0 ,100

!WRITE(14 ,∗) nu(i , i)

!END DO

END SUBROUTINE WIGNER WILKINS

SUBROUTINE L INIT VALUES(x)

USE IONMOBILITY

IMPLICIT NONE

! t h i s subrou t ine he l p s in p r i n t i n g out the va l u e s o f the matr ices t ha t are

be ing eva lua ted e l sewhere .

! the format i s s e t up to the proper matrix form , to make i t e a s i e r to read

the matr ices

CHARACTER (len=10) f

REAL(h ip rec) , DIMENSION (0 : n dim , 0 : n dim) : : x

INTEGER : : i , j

DO i = 0 , n dim

WRITE(14 , ’ (13(E12.6 ,X)) ’) (x (i , j) , j =0,n dim)

ENDDO

END SUBROUTINE

114

SUBROUTINE GAUSSWW (n gauss , w gauss , x gauss , x1 , x2)

!USE MODULE INTEGRATE

IMPLICIT NONE

! This subrou t ine c a l l s on the i onmob i l i t y module which

! d e s c r i b e s some o f the v a r i a b l e s used

! This subrou t ine w i l l e v a l ua t e the po i n t s x gauss and

! the we i gh t s w gauss

! These we i gh t s and po i n t s w i l l be used the the

! subrou t ine l i n i t , to approximate an i n t e g r a l used in

! the e va l ua t i on o f the element in the K matrix .

INTEGER,PARAMETER: : h ip rec = KIND(0 . 0D0)

REAL(h ip rec) ,DIMENSION (1 : n gauss) : : w gauss , x gauss

! w gauss : the we i gh t s c a l c u l a t e d in t h i s subrou t ine

! x gauss : the po i n t s c a l c u l a t e d in t h i s subrou t ine

REAL(h ip rec) : : x1 , x2 , z1 , p1 , p2 , pp , z , p3 , max val , min val

! z1 :

! p1 : the d e s i r ed Legendre po lynomia l

! p2 : Legendre po lynomia l o f one lower order

! pp : d e r i v a t i v e o f p1 : Legendre po lynomia l

! z : c a l c u l a t i o n o f the l egendre po lynomia l at t h i s p a r t i c u l a r va l ue

! p3 : po lynomia l t h a t i s two orders lower

! max val : maximum va lue o f i n t e g r a t i o n

! min va l : minimum va lue o f i n e g ra t i on

INTEGER i , j , n gauss , mod calc ,m1

! n gauss : the t o t a l number o f po i n t s used in the summation o f the in tegrand

! mod calc : c a l c u l a t e s the mod o f n gauss

! m1: s e t s a cond i t i on f o r the va l u e s o f n gauss to be used

REAL(h ip rec) , PARAMETER: : eps = 1 .0D−15, p i = 3.1459265359 d0

WRITE(15 ,∗)”x1 = ” , x1 , ”x2 = ” , x2 , ”n gauss = ” , n gauss

mod calc = mod (n gauss , 2)

IF (mod calc == 0)THEN

m1 = n gauss /2

ELSE

m1 = (n gauss+1)/2

END IF

115

max val = 0 .5 d0∗(x2+x1)

min val = 0 .5 d0∗(x2−x1)

DO i = 1 ,m1

z = cos (p i ∗(REAL(i)−0.25d0) /(REAL(n gauss) +0.5d0))

z1 = 2 .0 d0

DO WHILE (ABS(z−z1)>eps)

p1 = 1.0 d0

p2 = 0.0 d0

DO j = 1 , n gauss

p3=p2

p2=p1

p1 =((2.0 d0∗REAL(j)−1.0d0) ∗z∗p2−(REAL(j)−1.0d0) ∗p3) /REAL(j)

ENDDO

pp = REAL(n gauss) ∗(z∗p1−p2) /(z∗z−1.0d0)

z1 = z

z = z1−p1/pp

ENDDO

x gauss (i) = max val−min val ∗z

x gauss (n gauss+1−(i)) = max val+min val ∗z

w gauss (i)= 2 .0 d0∗min val / ((1 . 0 d0−z∗z) ∗pp∗pp)

w gauss (n gauss+1− i)= w gauss (i)

ENDDO

WRITE(15 ,∗)”points”

WRITE(15 ,∗) (x gauss (j) , j =1, n gauss)

WRITE(15 ,∗)”weights”

WRITE(15 ,∗) (w gauss (j) , j =1, n gauss)

END SUBROUTINE

SUBROUTINE POLINT(xa , ya , x , y , dy)

!USE nru t i l , ONLY: a s s e r t e q , iminloc , nerror

IMPLICIT NONE

! This subrou t ine e va l ua t e s the d e r i v a t i v e s o f the moments at the mid−po in t

between the f i r s t two po i n t s on the g r i d and the mid po in t between the two

l a s t po i n t s on the g r i d .

! t h i s i s an i n t e r p o l a t i o n to e va l ua t e t h e s e two po i n t s .

! t h i s subrou t ine i s be ing used as a check to see i f the r e s u l t s ob ta ined are

s im i l a r to those in the Andersen−Schu l e r (1964) paper .

INTEGER,PARAMETER: : I4B = SELECTED INT KIND(9) , h ip rec= KIND(0 . 0D0)

REAL(h ip rec) ,DIMENSION(:) ,INTENT(in) : : xa , ya

REAL(h ip rec) ,INTENT(in) : : x

REAL(h ip rec) ,INTENT(out) : : y , dy

116

!INTEGER(I4B) ,EXTERNAL: : a s s e r t e q , imin loc

INTEGER(I4B) : : m, n , ns , nstep

REAL(h ip rec) ,DIMENSION(s ize (xa)) : : c , d , den , ho

INTERFACE

FUNCTION IMINLOC(ar r)

INTEGER,PARAMETER: : h ip rec = KIND(0 . 0D0) , I4B = SELECTED INT KIND(9)

REAL(h ip rec) ,DIMENSION(:) ,INTENT(in) : : a r r

END FUNCTION

END INTERFACE

n = s ize (xa)

! n = a s s e r t e q (s i z e (xa) , s i z e (ya) , ’ point ’)

c = ya

d = ya

ho = xa−x

ns = imin loc (ABS(x−xa))

y = ya (ns)

ns = ns−1

DO m = 1 ,n−1

den (1 : n−m) = ho (1 : n−m)−ho(1+m: n)

IF (ANY(den (1 : n−m) == 0.0 d0)) THEN

CALL NERROR(’ point : calculation fa i lure ’)

END IF

den (1 : n−m) = (c (2 : n−m+1)−d (1 : n−m))/den (1 : n−m)

d (1 : n−m) = ho(1+m: n) ∗den (1 : n−m)

c (1 : n−m) = ho (1 : n−m) ∗den (1 : n−m)

IF (2∗ ns < n−m) THEN

dy = c (ns+1)

ELSE

dy = d(ns)

ns = ns−1

END IF

y = y+dy

ENDDO

END SUBROUTINE POLINT

FUNCTION IMINLOC(ar r)

INTEGER,PARAMETER: : h ip rec = KIND(0 . 0D0) , I4B = SELECTED INT KIND(9)

REAL(h ip rec) ,DIMENSION(:) ,INTENT(in) : : a r r

INTEGER(I4B) ,DIMENSION(1) : : imin

INTEGER(I4B) : : im in loc

imin=minloc (ar r (:))

im in loc=imin (1)

END FUNCTION IMINLOC

117

FUNCTION ASSERT EQ(nn , s t r i n g)

CHARACTER(len=∗) ,INTENT(in) : : s t r i n g

INTEGER,DIMENSION(:) ,INTENT(in) : : nn

INTEGER : : a s s e r t e q

IF (a l l (nn (2 :) == nn (1))) THEN

a s s e r t eqn = nn (1)

ELSE

WRITE(∗ ,∗) ’NERROR: an assert eq fa i l ed with this tag : ’ , s t r i n g

STOP ’program terminated by assert eqn ’

END IF

END FUNCTION ASSERT EQ

SUBROUTINE NERROR(s t r i n g)

CHARACTER(len=∗) ,INTENT(in) : : s t r i n g

WRITE (∗ ,∗) ’ nerror : ’ , s t r i n g

STOP ’program terminated by nerror ’

END SUBROUTINE NERROR

SUBROUTINE EVAL CHI

USE MODULECROSSEC

IMPLICIT NONE

REAL(h ip rec) : : e r ro r , alpha , ch i v a l , t h e t a v a l

REAL(h ip rec) ,EXTERNAL: : e l l i p t i c

INTEGER i , j , j l , j u

INTERFACE

SUBROUTINE POLINT(xa , ya , x , y , dy)

INTEGER, PARAMETER: : h ip rec = KIND(0 . 0D0)

REAL(h ip rec) ,DIMENSION(:) : : xa , ya

REAL(h ip rec) : : x , y , dy

END SUBROUTINE

END INTERFACE

ALLOCATE(theta (0 : 1000))

ALLOCATE(ch i (0 : 1000))

ALLOCATE(c r o s s f u n c (0 : 1000))

! f i r s t determine the mapping between ch i and th e t a

OPEN (42 , FILE = ”chi values”)

ch i = 0 .0 d0

theta = 0 .0 d0

i = 0

write (42 ,∗) theta (0) , ch i (0)

DO t h e t a v a l = 0.001 d0 , p i /4 .0 d0 , 0 . 001 d0

118

i = i+1

theta (i) = th e t a v a l

ch i (i) = pi − 2 .0 d0∗ s q r t (cos (2 . 0 d0∗ theta (i))) ∗ e l l i p t i c (cos (theta (i)) , 1 . 0 d0)

write (42 ,∗) theta (i) , ch i (i)

ENDDO

n va l = i+1

theta (n va l) = pi /4 .0 d0

ch i (n va l) = pi

write (42 ,∗) theta (n va l) , ch i (n va l)

CLOSE(42)

! now f i l l c r o s s f unc wi th va l u e s needed f o r the cross s e c t i on c a l c u l a t i o n

! use a uni formly spaced ch i g r i d f o r t h i s

alpha = 20.00 d0

n ch i = 100

dch i = pi / f l o a t (n ch i)

do i = 1 , n ch i−1

c h i v a l = f l o a t (i)∗ dch i

!

! f i n d ch i va l ue in ch i array

!

j = n va l

DO WHILE (ch i (j) > c h i v a l)

j = j − 1

ENDDO

j l = max(0 , j−4)

j u = min(n val , j +4)

!

! i n t e r p o l a t e va l ue o f t h e t a from the ch i and th e t a arrays

!

CALL POLINT(ch i (j l : j u) , theta (j l : j u) , c h i v a l , th e ta va l , e r r o r)

!

! use t h e t a and ch i va l u e s to c a l c u l a t e c r o s s s e c t i o n func t i on va l u e s

!

c r o s s f u n c (i) = sq r t (cos (2 . 0 d0∗ t h e t a v a l)) / s i n (c h i v a l) / s i n (2 . 0 d0∗ t h e t a v a l

) /((cos (t h e t a v a l)) ∗∗2∗ e l l i p t i c (cos (t h e t a v a l) , 1 . 0 d0)−cos (2 . 0 d0∗

t h e t a v a l) ∗ e l l i p t i c (cos (t h e t a v a l) , (cos (t h e t a v a l)) ∗∗2))

!

! now add damping f a c t o r to make forward s c a t t e r i n g cross s e c t i on f i n i t e

!

! wr i t e (58 ,∗) c h i v a l /pi , c r o s s f unc (i) , tanh (a lpha ∗ c h i v a l ∗∗2.5 d0) ∗

c ro s s f unc (i)

write (58 ,∗) ch i v a l , c r o s s f u n c (i) , tanh (alpha ∗ c h i v a l ∗∗2.5 d0) ∗ c r o s s f u n c (i

)

119

c r o s s f u n c (i) = tanh (alpha∗ c h i v a l ∗∗2.5 d0) ∗ c r o s s f u n c (i)

end do

! add ana l y t i c va l u e s at endpo in t s

c r o s s f u n c (0) = sq r t (3 . 0 d0∗pi) /4 .0 d0∗ alpha

c r o s s f u n c (n ch i) = (1 . 0 d0/ e l l i p t i c (1/ sq r t (2 . 0 d0) , 1 . 0 d0)) ∗∗2

! wr i t e (58 ,∗) p i /pi , c r o s s f unc (n ch i)

write (58 ,∗) pi , c r o s s f u n c (n ch i)

! wr i t e (58 ,∗) 0 .0 d0/pi , c r o s s f unc (0)

write (58 ,∗) 0 .0 d0 , c r o s s f u n c (0)

! now f i l l ch i array wi th va l u e s matching those o f c ro s s f unc

ch i = 0 .0 d0

do i = 0 , n ch i

ch i (i) = f l o a t (i) ∗ dch i

end do

END SUBROUTINE EVAL CHI

A.3 Functions

FUNCTION INTEGRATE(f lag1 , f l ag2 , a , b , z , c o e f f)

USE IONMOBILITY

IMPLICIT NONE

! This f unc t i on t e s t s whether i n t e r v a l f o r i n t e g r a t i o n i s g r ea t e r than one un i t

on the v e l o c i t y g r i d .

! I f so , loop breaks down i n t e r va l , so t ha t i n t e g r a t i o n i s done over 1 un i t at

a time .

! I t then adds va l u e s o f integrand , to g i v e a f i n a l va l ue f o r g i ven l im i t s o f

i n t e g r a t i o n .

!We a l s o have 0.5 i n t e r v a l s because o f the s p e c i a l c ond i t i on s we have added

tha t i n vo l v e the mid−po i n t s between 0 and 1 and n dim−1 and n dim .

! For t h i s case i n t e g r a t i o n i s ca r r i e d out over h a l f an i n t e r v a l w i th in g i ven

l im i t s , and then va l u e s are added to g i v e a number f o r g i ven l i m i t s o f

i n t e g r a t i o n .

REAL(h ip rec) : : a , b , i n t e g r a t e , z , a1 , b1

! a/b : lower /upper l im i t s o f i n t e g r a t i o n i n t e r v a l t h a t are passed from prev i ous

subrou t ine

! a1/b1 : newer lower/ upper l i m i t s o f i n t e g r a t i o n tha t are passed on to next

f unc t i on

LOGICAL done

120

INTEGER f l ag1 , f l ag2 , index

! index : c a l c u l a t e s index o f the po in t on l e f t o f the a on v e l o c i t y g r i d

REAL(h ip rec) ,DIMENSION(0 : n dim) ,INTENT(OUT) : : c o e f f

REAL(h ip rec) , EXTERNAL: : i n t i n t e r v a l

IF (a < v z g r i d (0)) THEN

! checks to make sure t ha t beg inn ing on the i n t e r v a l f o r i n t e g r a t i o n i s not

l e s s than beg inn ing o f g r i d .

WRITE(∗ ,∗) ”ERROR: CHECK INTERVALS FOR INTEGRATION”

STOP

END IF

! r e turns error i f above ana l y s i s f a i l s

! i f a l l i s w e l l wi th an a l y s i s done above , f unc t i on cont inues in check ing

i n t e r v a l f o r i n t e g r a t i o n

index = INT((a−v z g r i d (0)) /dvz) + 1

a1 = a

b1 = vz g r i d (index)

IF (b1 > b) THEN

b1 = b

done = .TRUE.

ELSE

done = .FALSE.

END IF

i n t e g r a t e = i n t i n t e r v a l (f l ag1 , f l ag2 , a1 , b1 , z , c o e f f)

! wr i t e (32 ,∗) ’ saheba1 ’ , a1 , b1 , i n t e g r a t e

a1 = b1

DO WHILE(NOT(done))

IF (b−a1 > dvz) THEN

index = index+1

b1 = vz g r i d (index)

! wi th f o l l ow i n g c a l l to f unc t i on i n t e g ra t e2 , we are e va l ua t i n g gauss ian po i n t s

and we i gh t s f i r s t f o r the s e t i n t e r v a l us ing va l u e s o f a and b .

! t h i s preven ts gauss ian po i n t s and we i gh t s to be re−eva lua ted r ep ea t ed l y and

can be use f o r e n t i r e loop as long as a and b do not change .

i n t e g r a t e = i n t e g r a t e + i n t i n t e r v a l (f l ag1 , f l ag2 , a1 , b1 , z , c o e f f)

!WRITE(32 ,∗) a1 , b1 , i n t e g r a t e

a1 = b1

ELSE

b1 = b

i n t e g r a t e = i n t e g r a t e + i n t i n t e r v a l (f l ag1 , f l ag2 , a1 , b1 , z , c o e f f)

!WRITE(32 ,∗) ’ saheba ’ , a1 , b1 , i n t e g r a t e

done = .TRUE.

END IF

ENDDO

121

END FUNCTION INTEGRATE

FUNCTION INT INTERVAL(f lag1 , f l ag2 , a , b , z , c o e f f)

USE IONMOBILITY

USE INTEGRATEGAULAG

USE MODULE INTEGRATE

IMPLICIT NONE

! t h i s subrou t ine has d i f f e r e n t scenar i os where k e rne l i s eva l ua ted in

! f space : f (x) = 1

! gspace : f (x) = 2∗ s q r t (p i /x) ∗ exp(−x) ∗g (x) ; where g (x) = 1

! hspace : f (x) = 2∗ s q r t (p i /x) ∗ exp(−h (x)) ; where h (x) = x

REAL(h ip rec) : : a , b , wgt , pt , j , i n t i n t e r v a l , integrand , i n t e g r and l a s t , z , moment val

, moment val last , x , k mat y

! a : upper l im i t o f i n t e g r a t i o n

! b : lower l im i t o f i n t e g r a t i o n

REAL(h ip rec) , EXTERNAL: : k matrix , d i s t f un c , b sp l i n e3

! b s p l i n e3 : e x t e rna l f unc t i on tha t con ta ins the e xp r e s s i on s f o r the b s p l i n e

f unc t i ons , t h e i r f i r s t and second d e r i v a t i v e s

REAL(h ip rec) ,DIMENSION(0 : n dim) ,INTENT(OUT) : : c o e f f

INTEGER f l ag1 , f l ag2 , k , i , f l ag3 , n , n max gauss check

LOGICAL done

SELECT CASE(f l a g 1)

CASE (−1)

! e v a l ua t e s gauss ian po i n t s and we i gh t s f o r g i ven l i m i t s o f i n t e g r a l .

! we avoid re−e va l ua t i on o f po i n t s and we i gh t f o r same i n t e r v a l .

! a = 0.0 d0

! b = 1.0 d0

! above va l u e s f o r a and b are e x p l i c i t l y def ined , to ensure t ha t po i n t s and

we i gh t s are eva l ua ted f o r a gener i c i n t e r v a l o f 0 to 1

! t h e s e are then s ca l e d l a t e r on depending on i n t e r v a l we want to e va l ua t e the

in tegrands over

DO n = 1 , n max gauss

npt s gauss (n) = 2∗∗(n+2)

CALL GAUSSWW(npt s gauss (n) , w gauss (n , :) , x gauss (n , :) , a , b)

ENDDO

CASE(−2)

DO n = 1 , n max gaulag

npt s gau lag (n) = 2∗∗(n+2)

CALL GAULAG(x gau lag (n , :) , w gaulag (n , :) , 0 . 0 d0 , np t s gau lag (n))

ENDDO

CASE(1)

!MOMENT CALCULATION

122

! f l a g 2 = order o f moment

!moment c a l c u l a t i o n in f space

IF (spc == 1) THEN

f l a g 3 = 1

ELSE IF (spc == 2)THEN

f l a g 3 = 2

IF (z < 0 .0 d0) THEN

f l a g 3 = 1

! n e ga t i v e z means c a l c u l a t e moment in na t i v e space

END IF

ELSE IF (spc == 3) THEN

f l a g 3 = 3

IF (z < 0 .0 d0) THEN

f l a g 3 = 1

END IF

ELSE IF (spc == 4) THEN

f l a g 3 = 4

IF (z < 0 .0 d0) THEN

f l a g 3 = 1

END IF

ELSE IF (spc == 5 .OR. spc == 6 .OR. spc == 7 .OR. spc == 10 .OR. spc == 11)

THEN

f l a g 3 = 5

IF (z < 0 .0 d0) THEN

f l a g 3 = 1

END IF

END IF

moment val last = 0 .0 d0

DO n = 1 , n max gauss

moment val = 0 .0 d0

DO k = 1 , npt s gauss (n)

pt = x gauss (n , k) ∗(b−a)+a

wgt = w gauss (n , k) ∗(b−a)

! p o i n t s and we i gh t s are s ca l e d depending on i n t e r v a l o f i n t e g r a l e va l ua t i on

moment val = moment val + wgt∗(pt∗∗ f l a g 2) ∗ d i s t f u n c (f l ag3 , 0 , pt , c o e f f)

! e v a l ua t e moments at d i f f e r e n t po i n t s as eva l ua ted by gauss−l e gendre

subrou t ine

ENDDO

!WRITE(18 ,∗) a , b , np t s gauss (n) ,moment val

i f ((abs ((moment val − moment val last) /moment val) < 1 .0 d−13) . or .

(abs (moment val − moment val last) < 1 .0 d−14)) exit

! t h i s t e s t checks the convergence o f the in tegrands .

! we can s e t t o l e r ance to any de s i r ed va lue . So f a r t o l e r ance i s s u f f i c i e n t

f o r doub l e p r e c i s i on va l u e s .

moment val last = moment val

123

!WRITE(18 ,∗) n , moment val

ENDDO

i n t i n t e r v a l = moment val

IF (n == n max gauss+1) THEN

!WRITE(19 ,∗) ”Value not converged ” , ” f l a g 1 = ” , f l a g1 , ” i = ” , i , ” a = ” ,a , ”

b = ” , b , ” j = ” , j

! a l i t t l e t e s t does show tha t once the loop i s complete , we would have

n max gauss+1 as the l a s t va lue , hence we can use the above t e s t to check

whether converged va lue i s appropr i a te

END IF

!WRITE (18 ,”(A1) ”) ’& ’

CASE(2)

! e v a l ua t i on o f i n t e g r a l s in f−space , when spc (de f i ned in the inpu t) e qua l s 1

! g−space i n t e g r a t i o n o f k e rne l when spc = 2

! i n t e g r a t i o n in both cases i s done wi th r e sp e c t to v a r i a b l e x

IF (spc == 3) THEN

WRITE(∗ ,∗) ”ERROR: WEARE IN CASE 2 IN INT INTERVAL!”

STOP

END IF

! IF (spc == 1)THEN

! f l a g 3 = 1

!ELSE IF (spc == 2) THEN

! f l a g 3 = 2

!ELSE IF (spc == 4) THEN

! f l a g 3 = 4

!ELSE IF (spc == 5) THEN

! f l a g 3 = 5

!ELSE IF (spc == 6) THEN

! f l a g 3 = 6

!ELSE IF (spc == 7) THEN

! f l a g 3 = 7

!ELSE IF (spc == 9) THEN

! f l a g 3 = 9

!ELSE IF (spc == 10) THEN

! f l a g 3 = 10

!END IF

i n t e g r an d l a s t = 0 .0 d0

! IF (z < 1.0d−14) THEN

! n max gauss check = n max gauss

!ELSE

! n max gauss check = 4

!END IF

DO n = 1 , n max gauss

124

!DO n = 1 , n max gauss check

in tegrand = 0.0 d0

DO k = 1 , npt s gauss (n)

wgt = w gauss (n , k) ∗(b−a)

pt = x gauss (n , k) ∗(b−a)+a

x = (pt − v z g r i d (0)) /dvz − REAL(f l a g 2)

! f l a g 2 c a r r i e s the index o f the s p l i n e

in tegrand = integrand + wgt∗k matrix (spc , pt , z , c o e f f) ∗ b sp l i n e3 (0 , x)

!WRITE(38 ,∗) pt , wgt , z , i n tegrand

ENDDO

! WRITE(19 ,∗) np t s gauss (n) , i n tegrand ! , ” gauss”

!WRITE(19 , ’ (f 8 . 3 , 3X,F8 .3 , 3X, I3 , 3X, E15 . 9) ’) a , b , n , i n tegrand

IF ((abs ((integrand − i n t e g r an d l a s t) / integrand) < 1 .0 d−9) .OR.

(abs (integrand − i n t e g r an d l a s t) < 1 .0 d−14)) EXIT

i n t e g r an d l a s t = integrand

ENDDO

i n t i n t e r v a l = integrand

IF (n == n max gauss+1) THEN

!WRITE(19 ,∗) ”Value not converged ” , ” s p l i n e index = ” , f l a g2 , ”a = ” ,a , ” b

= ” , b , ”y = ” , z

END IF

CASE (3)

! t h i s case i s f o r i n t e g r a t i o n o f j u s t the k e rne l by i t s e l f , wi th r e sp e c t to y

! no b s p l i n e f unc t i on s are used in i n t e g ra t i on , and po i n t s and we i gh t s o f gauss

−l e gendre quadrature are used .

! IF (spc == 1) THEN

IF (spc == 1 .OR. spc ==2 .OR. spc == 3 .OR. spc ==4) THEN

f l a g 3 = 1

ELSE IF (spc == 5 .OR. spc == 6 .OR. spc == 7) THEN

f l a g 3 = 8

ELSE IF (spc == 9 .OR. spc == 10 .OR. spc == 11) THEN

f l a g 3 = 9

END IF

i n t e g r an d l a s t = 0 .0 d0

! IF (z < 1.0d−14) THEN

! n max gauss check = n max gauss

!ELSE

! n max gauss check = 4

!END IF

DO n = 1 , n max gauss ! uses the f u l l 512 po i n t s in the i n t e g r a t i o n . . s e t in

modu l e in tegra te

!DO n = 1 , n max gauss check

in tegrand = 0.0 d0

DO k = 1 , npt s gauss (n)

wgt = w gauss (n , k) ∗(b−a)

125

pt = x gauss (n , k) ∗(b−a)+a

integrand = integrand + wgt∗k matrix (f l ag3 , z , pt , c o e f f)

! t h i s i n t e g r a t i o n f o r nu matrix i s done using f i r s t case in k matr i x

!make the change f o r the in tegrand c a l l us ing the spc == 5 and s e t the f l a g to

a v a r i a b l e .

ENDDO

!WRITE(19 ,”(i5 , 1 x , 1 pd20 .12 ,1 x , f10 . 4 , 1 x , f10 . 4) ”) np t s gauss (n) , integrand ,

a , b

IF ((abs ((integrand − i n t e g r an d l a s t) / integrand) < 1 .0 d−9) .OR. (

abs (integrand − i n t e g r an d l a s t) < 1 .0 d−14)) EXIT

i n t e g r an d l a s t = integrand

ENDDO

i n t i n t e r v a l = integrand

IF (n == n max gauss+1) THEN

!WRITE(19 ,∗) ”Value not converged ” , ” f l a g 1 = ” , f l a g1 , ” i = ” , i , ” a = ” ,a , ”

b = ” , b , ” j = ” , j

END IF

CASE(4)

! t h i s i s the e va l ua t i on o f i n t e g r a l s in the h−space

i n t e g r an d l a s t = 0 .0 d0

DO n = 1 , n max gauss

integrand = 0.0 d0

DO k = 1 , npt s gauss (n)

wgt = w gauss (n , k) ∗(b−a)

pt = x gauss (n , k) ∗(b−a)+a

integrand = integrand + wgt∗k matrix (3 , pt , z , c o e f f)

ENDDO

!WRITE(19 ,∗) np t s gauss (n) , i n tegrand

IF ((abs ((integrand − i n t e g r an d l a s t) / integrand) < 1 .0 d−13) .OR. (abs (

integrand − i n t e g r an d l a s t) < 1 .0 d−14)) EXIT

i n t e g r an d l a s t = integrand

ENDDO

i n t i n t e r v a l = integrand

IF (n == n max gauss+1) THEN

!WRITE(19 ,∗) ”Value not converged ” , ” f l a g 1 = ” , f l a g1 , ” i = ” , i , ” a = ” ,a , ” b

= ” , b , ” j = ” , j

END IF

END SELECT

END FUNCTION INT INTERVAL

RECURSIVE FUNCTION KMATRIX(a , x , x1 , c o e f f) RESULT(k mat r i x c a l c)

!FUNCTION K MATRIX(a , x , y , c o e f f)

USE IONMOBILITY

USE MODULE INTEGRATE

IMPLICIT NONE

126

! This i s a funct ion , t ha t has the d i f f e r e n t e xp r e s s i on s f o r the 4 d i f f e r e n t

i n t e g r a l s we are using , t ha t make up the Wigner Wi lk ins k e rne l .

! Case 1 i s the form of the expres s i on f o r the i n i t i a l funct ion , g (x)=1

! Case 2 i s the form of the expres s i on f o r the i n i t i a l funct ion , g (x)=exp(−x)

! A l l v a l e s are in doub l e p r e c i s i on

REAL(h ip rec) : : pt , wgt , j , k matrix1 , k matrix2 , x , a l im , b l im , add , d i f f , constant , b ,

integrand , i n t e g r and l a s t , vz n , yval , xval , f11 , f22 , f12 , f21 , constant1 ,

constant2 , de l tax , k mat r ix ca l c , x1

!REAL(h iprec) : : k matr ix7

REAL(h ip rec) ,DIMENSION(0 : n dim) : : c o e f f

INTEGER i , a , k , n

! i n t e g e r a s e l e c t s the case according to the i n i t i a l f unc t i on

! i n t e g e r n s e l e c t s the in tegrand expres s i on tha t needs to eva l ua ted

REAL(h ip rec) , EXTERNAL: : b sp l i n e 3

! This i s an ex t e rna l f unc t i on tha t the d i f f e r e n t e xp r e s s i on s f o r the t h i r d

order b s p l i n e funcyion .

DOUBLE PRECISION, EXTERNAL: : e r f , d i s t f un c , integra lw , b i l i n e a r , F 2

SELECT CASE (a)

CASE(1)

! f−space k e rne l

IF (ABS(x) < 1 .0 d−12) THEN

k mat r i x c a l c = 2 .0 d0∗ c o l f r e q ∗q∗q/ sq r t (m)∗exp (−q∗q∗x1)

! l im i t o f x going to zero

ELSE

k matrix1 = e r f (q∗ s q r t (x1) + r ∗ s q r t (x)) + exp (x−x1) ∗ e r f (r ∗ s q r t (x1) +

q∗ s q r t (x))

k matrix2 = e r f (q∗ s q r t (x1) − r ∗ s q r t (x)) + exp (x−x1) ∗ e r f (r ∗ s q r t (x1) −

q∗ s q r t (x))

IF (x > x1) THEN

k mat r i x c a l c = c o l f r e q ∗q∗q /2 .0 d0∗ s q r t (p i /x)∗&

(k matrix1 + k matrix2)

ELSE

k mat r i x c a l c = c o l f r e q ∗q∗q /2 .0 d0∗ s q r t (p i /x)∗&

(k matrix1 − k matrix2)

END IF

END IF

127

CASE(2)

! g−space k e rne l

IF (ABS(x1) < 1 .0 d−12) THEN

k mat r i x c a l c = 2 .0 d0∗ c o l f r e q ∗q∗q/ sq r t (m)∗exp (−q∗q∗x)

ELSE

k matrix1 = exp (x1−x) ∗(e r f (q∗ s q r t (x1) + r ∗ s q r t (x))) + e r f (r ∗ s q r t (x1

) + q∗ s q r t (x))

k matrix2 = exp (x1−x) ∗(e r f (q∗ s q r t (x1) − r ∗ s q r t (x))) + e r f (r ∗ s q r t (x1

) − q∗ s q r t (x))

IF (x > x1) THEN

k mat r i x c a l c = c o l f r e q ∗q∗q /2 .0 d0∗ s q r t (p i /x1)∗&

(k matrix1 + k matrix2)

ELSE

k mat r i x c a l c = c o l f r e q ∗q∗q /2 .0 d0∗ s q r t (p i /x1)∗&

(k matrix1 − k matrix2)

END IF

END IF

CASE(3)

! h−space k e rne l

IF (ABS(x1) < 1 .0 d−12) THEN

k mat r i x c a l c = 2 .0 d0∗ c o l f r e q ∗q∗q/ sq r t (m) ∗(exp (d i s t f u n c (1 , 0 , 0 . 0 d0 ,

c o e f f)−d i s t f u n c (1 ,0 , x , c o e f f) − r ∗ r ∗x))

ELSE

k matrix1 = exp (d i s t f u n c (1 ,0 , x1 , c o e f f)−d i s t f u n c (1 ,0 , x , c o e f f))∗&

(&

e r f (q∗ s q r t (x1) + r ∗ s q r t (x)) + exp (x−x1) ∗ e r f (r ∗ s q r t (

x1) + q∗ s q r t (x))&

)

k matrix2 = exp (d i s t f u n c (1 ,0 , x1 , c o e f f)−d i s t f u n c (1 ,0 , x , c o e f f))∗&

(&

e r f (q∗ s q r t (x1) − r ∗ s q r t (x)) + exp (x−x1) ∗ e r f (r ∗ s q r t (x1)

− q∗ s q r t (x))&

)

IF (x > x1) THEN

k mat r i x c a l c = c o l f r e q ∗q∗q ∗0 .5 d0∗ s q r t (p i /x1)∗&

(k matrix1 + k matrix2)

ELSE

k mat r i x c a l c = c o l f r e q ∗q∗q ∗0 .5 d0∗ s q r t (p i /x1)∗&

(k matrix1 − k matrix2)

END IF

END IF

128

CASE(4)

IF (ABS(x1) < 1 .0 d−12) THEN

k mat r i x c a l c = 2 .0 d0∗ c o l f r e q ∗q∗q/ sq r t (m) ∗exp(−r ∗ r ∗x)

ELSE

k matrix1 = e r f (q∗ s q r t (x1) + r ∗ s q r t (x)) + exp (x−x1) ∗ e r f (r ∗ s q r t (x1

) + q∗ s q r t (x))

k matrix2 = e r f (q∗ s q r t (x1) − r ∗ s q r t (x)) + exp (x−x1) ∗ e r f (r ∗ s q r t (x1

) − q∗ s q r t (x))

IF (x > x1) THEN

k mat r i x c a l c = c o l f r e q ∗q∗q ∗0 .5 d0∗ s q r t (p i /x1)∗&

(k matrix1 + k matrix2)

ELSE

k mat r i x c a l c = c o l f r e q ∗q∗q ∗0 .5 d0∗ s q r t (p i /x1)∗&

(k matrix1 − k matrix2)

END IF

END IF

CASE(5)

! the genera l case k e rne l

IF (ABS(x) < 1 .0 d−12) THEN

k mat r i x c a l c = 0 .0 d0

ELSE IF (ABS(x1) < 1 .0 d−12) THEN

k mat r i x c a l c = (2 . 0 d0∗ c o l f r e q ∗q∗q/ sq r t (m)) ∗exp(−r ∗ r ∗x) ∗ i n t egra lw (0 . 0 d0 ,

x , 0 . 0 d0)

ELSE

i n t e g r an d l a s t = 0 .0 d0

constant = (c o l f r e q ∗q∗q/ sq r t (m∗x1)) ∗exp ((q−r) ∗(r ∗x−q∗x1))

a l im = ABS(sq r t (x)−s q r t (x1))

b l im = sq r t (x)+sq r t (x1)

!DO n = 4 ,4

DO n = 1 , n max gauss

integrand = 0.0 d0

DO k = 1 , npt s gauss (n)

wgt = w gauss (n , k) ∗(b l im−a l im)

pt = x gauss (n , k) ∗(b l im−a l im)+a l im

integrand = integrand + wgt∗ constant ∗exp(−q∗ r ∗pt∗pt) ∗ i n t egra lw (pt ,

x , x1)

ENDDO

i f ((n > 1) .AND. ((abs ((integrand − i n t e g r an d l a s t) / integrand) <

1 .0 d−10) . or . (abs (integrand − i n t e g r an d l a s t) < 1 .0 d−14)))

exit

i n t e g r an d l a s t = integrand

!WRITE(57 , ’ (E15 .9 , 3X, E15 .9 , 3X, I3 , 3X, E15 . 9) ’) x , x1 , n , i n tegrand

ENDDO

k mat r i x c a l c = integrand

129

! s top

IF (n == n max gauss + 1) THEN

! WRITE(19 ,∗) ”KMAT CASE: 5 VALUE NOT CONVERGED”

END IF

END IF

CASE(6)

! e v a l ua t i on o f the kmatr ix f o r the Maxwell molecu le and the genera l case

smooth sphere

! can a l s o be eva l ua ted using case 5 above , but i t would take a l o t l onger to

run the c a l c u l a t i o n s

! spc = 6

! t h e s e arrays are the ones eva l ua ted by the k mat ca l c program , and c r ea t e s

the arrays o f a r b i t r a r y va l u e s

! t h e s e arrays are used to i n t e r p o l a t e the va l ue to be used in the c a l c u l a t i o n

o f the in tegrands

i = INT((x−kmat vz 0) /kmat dvz)

k = INT((x1−kmat vz 0) /kmat dvz)

xval = x − kmat x val (i)

yval = x1 − kmat y val (k)

IF (i < 0) THEN

i = 0

END IF

IF (i >= kmat vz num) THEN

i = kmat vz num − 1

END IF

IF (k < 0) THEN

k = 0

END IF

IF (k >= kmat vz num) THEN

k = kmat vz num−1

END IF

! the above i nd i c e s are eva l ua ted based on the va l u e s o f x and y tha t are

passed in , to i d e n t i f y which e lements in the arrays shou l d be used f o r

i n t e r p o l a t i o n

constant = (c o l f r e q ∗q∗q/ sq r t (m∗x1)) ∗exp ((q−r) ∗(r ∗x−q∗x1))

constant1 = log (constant)

IF (i == k) THEN

! i n t e r p o l a t i o n above or below the d i agona l but not c ro s s i n g the d i agona l due

the presence o f the cusp

! uses 3 po i n t s in 2D f o r i n t e r p o l a t i o n

130

IF (i == 0 .AND. yval > xval) THEN

constant = (c o l f r e q ∗q∗q/ sq r t (m∗kmat y val (1))) ∗exp ((q−r) ∗(r ∗x−q∗

kmat y val (1)))

constant1 = log (constant)

! t r i a n g l e below the d i agona l

f11 = 0 .0 d0

f12 = k mat val (i , k+1)

f21 = 0 .0 d0

f22 = constant ∗ k mat val (i +1,k+1)

k mat r i x c a l c = exp (b i l i n e a r (1 , xval , yval , f11 , f12 , f21 , f22))

ELSE IF (i == 0 .AND. xval >= yval) THEN

constant = (c o l f r e q ∗q∗q/ sq r t (m∗kmat y val (1))) ∗exp ((q−r) ∗(r ∗x−q∗

kmat y val (1)))

constant1 = log (constant)

f11 = k mat val (i , k)

f12 = k mat val (i +1,k)

f21 = 0 .0 d0

f22 = constant ∗exp (k mat val (i +1,k+1))

k mat r i x c a l c = b i l i n e a r (1 , xval , yval , f11 , f12 , f21 , f22)

ELSE

! case f o r a l l o ther po i n t s a long the d i agona l

IF (xval >= yval) THEN

f11 = k mat val (i , k)

f12 = k mat val (i +1,k)

f21 = 0 .0 d0

f22 = k mat val (i +1,k+1)

ELSE

f11 = k mat val (i +1,k+1)

f12 = k mat val (i , k)

f21 = 0 .0 d0

f22 = k mat val (i , k+1)

! t h i s i s an excep t i on f o r the no ta t i on beacuse o f the v a r i a b l e s used in the

formula in b i l i n e a r . f90

! the va l ue o f f21 i s what i s used in the i n t e r p o l a t i o n

END IF

k mat r i x c a l c = constant1+b i l i n e a r (1 , xval , yval , f11 , f12 , f21 , f22)

k mat r i x c a l c = exp (k mat r i x c a l c)

131

END IF

! normal b i l i n e a r i n t e r p o l a t i o n in 2D using 4 po i n t s

ELSE

IF (k == 0) THEN

! s p e c i a l case f o r the f i r s t row o f the matrix t ha t i s eva l ua ted when the

va lue o f y i s 0

! t h e r e f o r e the f i r s t row in the matrix i s eva l ua ted wi th a l im i t i n g case and

t h e r e f o r e needs to be d e a l t wi th a s p e c i a l case f o r i n t e r p o l a t i o n

constant = (c o l f r e q ∗q∗q/ sq r t (m∗kmat y val (1))) ∗exp ((q−r) ∗(r ∗x−q∗

kmat y val (1)))

constant1 = log (constant)

f11 = k mat val (i , 0)

f12 = constant ∗(exp (k mat val (i , 1)))

f21 = k mat val (i +1 ,0)

f22 = constant ∗(exp (k mat val (i +1 ,1)))

k mat r i x c a l c = b i l i n e a r (2 , xval , yval , f11 , f12 , f21 , f22)

ELSE IF (i == 0) THEN

! s p e c i a l case f o r the l im i t o f x approaching 0 , t h e r e f o r e in the k mat va l

matrix t h i s corresponds to the f i r s t column tha t i s eva l ua ted to be a l l

z e roes

constant = (c o l f r e q ∗q∗q/ sq r t (m∗x1)) ∗exp ((q−r) ∗(r ∗kmat x val (1)−q∗x1))

f11 = k mat val (i , k)

f12 = k mat val (i , k+1)

f21 = exp (k mat val (i +1,k))

f22 = exp (k mat val (i +1,k+1))

k mat r i x c a l c = constant ∗ b i l i n e a r (2 , xval , yval , f11 , f12 , f21 , f22)

ELSE

! f o r a l l o ther po i n t s and e lements in the k mat va l matrix

f11 = k mat val (i , k)

f12 = k mat val (i , k+1)

f21 = k mat val (i +1,k)

f22 = k mat val (i +1,k+1)

k mat r i x c a l c = constant1+b i l i n e a r (2 , xval , yval , f11 , f12 , f21 , f22)

! k matr i x = cons tan t ∗ b i l i n e a r (2 , xva l , yva l , f11 , f12 , f21 , f22)

k mat r i x c a l c = exp (k mat r i x c a l c)

END IF

END IF

! WRITE(56 ,∗) x , x1 , f11 , f12 , f21 , f22 , k ma t r i x ca l c

132

!WRITE(56 ,∗) cons tan t ∗ exp (f11) , cons tan t ∗ exp (f12) , cons tan t ∗ exp (f21) ,

cons tan t ∗ exp (f22)

!WRITE(56 ,∗) xva l , yva l , k matr i x

! s top

CASE(7)

! t h i s i s a hybr i d case f o r e va l ua t i n g the k matr i x

! t h i s w i l l c a l l case 5 or case 6 depending on the va l u e s o f x and y

! i t w i l l e v a l ua t e va l u e s around the d i agona l o f the matrix us ing case 5 and

the r e s t us ing case 6

i = INT((x−kmat vz 0) /kmat dvz)

k = INT((x1−kmat vz 0) /kmat dvz)

IF (i < 0) THEN

i = 0

END IF

IF (i >= kmat vz num) THEN

i = kmat vz num−1

END IF

IF (k < 0) THEN

k = 0

END IF

IF (k >= kmat vz num) THEN

k = kmat vz num−1

END IF

IF (abs (k−i) < 10) THEN

! e v a l ua t i on o f the k matr i x w i th in the band around the d i agona l

! o f course once again only

k mat r i x c a l c = k matrix (5 , x , x1 , c o e f f)

ELSE

! e v a l ua t i on o f the k matr i x everywhere e l s e in the matrix

k mat r i x c a l c = k matrix (6 , x , x1 , c o e f f)

END IF

! k matr ix1 = k matr i x

CASE(8)

! f−space f ormu la t i on f o r the genera l k e rne l

! c a l c u l a t i o n o f the nu matrix f o r spaces 5 ,6 ,7

! uses the genera l k e rne l wi th the s q r t (x) f a c t o r inc l uded in i t

! i n t e g r a t i o n i s done over the v a r i a b l e y

! x and y v a r i a b l e are sw i tched around

! t h i s w i l l use case 2 in i n t e g ra lw f o r the f requency c a l c u l a t i o n

IF (ABS(x) < 1 .0 d−12) THEN

133

k mat r i x c a l c = (2 . 0 d0∗ c o l f r e q ∗q∗q/ sq r t (m)) ∗exp(−q∗q∗x1) ∗ i n t egra lw (0 . 0

d0 , x1 , 0 . 0 d0)

ELSE IF (ABS(x1) < 1 .0 d−12) THEN

k mat r i x c a l c = 0 .0 d0

ELSE

i n t e g r an d l a s t = 0 .0 d0

constant = (c o l f r e q ∗q∗q/ sq r t (x∗m)) ∗exp ((q−r) ∗(r ∗x−q∗x1))

a l im = ABS(sq r t (x)−s q r t (x1))

b l im = sq r t (x)+sq r t (x1)

!DO n = 4 ,4

DO n = 1 , n max gauss

integrand = 0.0 d0

DO k = 1 , npt s gauss (n)

wgt = w gauss (n , k) ∗(b l im−a l im)

pt = x gauss (n , k) ∗(b l im−a l im)+a l im

integrand = integrand + wgt∗ constant ∗exp(−q∗ r ∗pt∗pt) ∗ i n t egra lw (pt ,

x , x1)

ENDDO

i f ((n > 1) . and . ((abs ((integrand − i n t e g r an d l a s t) / integrand) <

1 .0 d−13) . or . (abs (integrand − i n t e g r an d l a s t) < 1 .0 d−14)))

exit

i n t e g r an d l a s t = integrand

ENDDO

k mat r i x c a l c = integrand

! WRITE(57 ,∗) x , x1 , k matr i x

! s top

IF (n == n max gauss + 1) THEN

! WRITE(19 ,∗) ”KMAT CASE: 5 VALUE NOT CONVERGED”

END IF

END IF

CASE(9)

! rough hard sphere approximate k e rne l − f−space r ep r e s en ta t i on

! constant1 = 1.5 !\mu\ ch i va l ue

IF (ABS(x1) < 1 .0 d−12) THEN

k mat r i x c a l c = 0 .0 d0

ELSE IF (ABS(x) < 1 .0 d−12) THEN

! k matr i x = (2 . 0 d0∗ c o l f r e q ∗q∗q/ s q r t (m)) ∗ exp(−q∗q∗x1) ∗F 2 (0 . 0 d0 , y , s q r t (x1

) ,m, mu chi)

k mat r i x c a l c = (2 . 0 d0∗ c o l f r e q ∗q∗q/ sq r t (m)) ∗exp(−q∗q∗x1) ∗ ((1 . 0 d0+mu chi)

∗∗2) /mu chi / (1 . 0 d0+mu chi−m) ∗ (1 . 0 d0 − exp(−mu chi∗q∗q ∗ (1 . 0 d0+mu chi−

m) ∗x1 / (1 . 0 d0+(1.0 d0+m) ∗mu chi)))

ELSE

i n t e g r an d l a s t = 0 .0 d0

constant= c o l f r e q ∗q∗q/ sq r t (m∗x) ∗exp ((q−r) ∗(r ∗x−q∗x1))

a l im = ABS(sq r t (x)−s q r t (x1))

134

b l im = sq r t (x)+sq r t (x1)

DO n = 4 ,4

!DO n = 1 , n max gauss

in tegrand = 0.0 d0

DO k = 1 , npt s gauss (n)

wgt = w gauss (n , k) ∗(b l im−a l im)

pt = x gauss (n , k) ∗(b l im−a l im)+a l im

integrand = integrand +wgt∗exp(−q∗ r ∗pt∗pt) ∗F 2 (x , x1 , pt ,m, mu chi)

ENDDO

i f ((abs ((integrand − i n t e g r an d l a s t) / integrand) < 1 .0 d−13) . or .

(abs (integrand − i n t e g r an d l a s t) < 1 .0 d−14)) exit

i n t e g r an d l a s t = integrand

ENDDO

k mat r i x c a l c = constant ∗ in tegrand

!WRITE(57 ,∗) x , y , k matr i x

IF (n == n max gauss + 1) THEN

! WRITE(19 ,∗) ”KMAT CASE: 9 VALUE NOT CONVERGED”

END IF

END IF

CASE (10)

! rough hard sphere approximate k e rne l − g−space r ep r e s en ta t i on

! constant1 = 1.5 !\mu\ ch i va l ue

IF (ABS(x) < 1 .0 d−12) THEN

k mat r i x c a l c = 0 .0 d0

ELSE IF (ABS(x1) < 1 .0 d−12) THEN

!

! c a r e f u l here wi th t h i s one

!

! k matr i x = (2 . 0 d0∗ c o l f r e q ∗q∗q/ s q r t (m)) ∗ exp(−r∗ r∗x) ∗F 2 (x , 0 . 0 d0 , s q r t (x) ,m

, mu chi)

k mat r i x c a l c = (2 . 0 d0∗ c o l f r e q ∗q∗q/ sq r t (m)) ∗exp(−r ∗ r ∗x) ∗ (1 . 0 d0+mu chi)

∗∗2/mu chi / (1 . 0 d0+mu chi−m) ∗ (1 . 0 d0 − exp(−mu chi ∗ (1 . 0 d0+mu chi−m) ∗q∗

q∗x / (1 . 0 d0+(1.0 d0+m) ∗mu chi)))

ELSE

i n t e g r an d l a s t = 0 .0 d0

constant = c o l f r e q ∗q∗q/ sq r t (m∗x1) ∗exp ((q−r) ∗(r ∗x−q∗x1))

a l im = ABS(sq r t (x)−s q r t (x1))

b l im = sq r t (x)+sq r t (x1)

DO n = 4 ,4

!DO n = 1 , n max gauss

in tegrand = 0.0 d0

DO k = 1 , npt s gauss (n)

wgt = w gauss (n , k) ∗(b l im−a l im)

pt = x gauss (n , k) ∗(b l im−a l im)+a l im

135

in tegrand = integrand + wgt∗exp(−q∗ r ∗pt∗pt) ∗F 2 (x , x1 , pt ,m, mu chi)

ENDDO

i f ((abs ((integrand − i n t e g r an d l a s t) / integrand) < 1 .0 d−10) . or . (

abs (integrand − i n t e g r an d l a s t) < 1 .0 d−14)) exit

i n t e g r an d l a s t = integrand

ENDDO

k mat r i x c a l c = constant ∗ in tegrand

!WRITE(57 ,∗) x , x1 , k matr i x

IF (n == n max gauss + 1) THEN

! WRITE(19 ,∗) ”KMAT CASE: 10 VALUE NOT CONVERGED”

END IF

END IF

CASE(11)

! t h i s i s a hybr i d case f o r e va l ua t i n g the k matr i x

! t h i s w i l l c a l l case 10 or case 6 depending on the va l u e s o f x and x1

! i t w i l l e v a l ua t e va l u e s around the d i agona l o f the matrix us ing case 10 and

the r e s t us ing case 6

i = INT((x−kmat vz 0) /kmat dvz)

k = INT((x1−kmat vz 0) /kmat dvz)

IF (i < 0) THEN

i = 0

END IF

IF (i >= kmat vz num) THEN

i = kmat vz num−1

END IF

IF (k < 0) THEN

k = 0

END IF

IF (k >= kmat vz num) THEN

k = kmat vz num−1

END IF

IF (abs (k−i) < 10) THEN

! e v a l ua t i on o f the k matr i x w i th in the band around the d i agona l

! o f course once again only

k mat r i x c a l c = k matrix (10 , x , x1 , c o e f f)

ELSE

! e v a l ua t i on o f the k matr i x everywhere e l s e in the matrix

k mat r i x c a l c = k matrix (6 , x , x1 , c o e f f)

END IF

! k matr ix1 = k matr i x

END SELECT

END FUNCTION KMATRIX

FUNCTION CROSSEC(n , g , c h i v a l)

136

USE IONMOBILITY

USE MODULECROSSEC

IMPLICIT NONE

REAL(h ip rec) : : g , c ros sec , constant , e r ro r , c h i v a l

INTEGER i , n , i u , i l

REAL(h ip rec) ,EXTERNAL: : e l l i p t i c

INTERFACE

SUBROUTINE POLINT(xa , ya , x , y , dy)

INTEGER, PARAMETER: : h ip rec = KIND(0 . 0D0)

REAL(h ip rec) ,DIMENSION(:) : : xa , ya

REAL(h ip rec) : : x , y , dy

END SUBROUTINE

END INTERFACE

SELECT CASE(n)

CASE(1)

! c ros s s e c t i on f o r the smooth sphere case

c r o s s e c = 1 .0 d0

CASE(2)

! cons tan t i n c l ud e s the f a c t o r o f s q r t (2kT/m 1) from the genera l c a l l

constant = 2 .0 d0∗ s q r t (a 4 t i l d a ∗ (1 . 0 d0+m)) /g

! cons tan t = 1.0 d0

! l o c a t e g r i d po i n t s around ch i va l ue o f i n t e r e s t and use p o l i n t to

! i n t e r p o l a t e c ro s s f unc va lue to g e t f i n a l c ross s e c t i on

i = in t (c h i v a l / dch i)

i l = max(0 , i −4)

i u = min(n ch i , i +4)

CALL POLINT(ch i (i l : i u) , c r o s s f u n c (i l : i u) , c h i v a l , c ro s sec , e r r o r)

c r o s s e c = constant ∗ c r o s s e c

END SELECT

END FUNCTION

137

FUNCTION INTEGRALW(a , x , x1)

USE IONMOBILITY

USE MODULE INTEGRATE

USE INTEGRATEGAULAG

IMPLICIT NONE

! f o l l ow i n g loop i n i t i a l i z e s gauss l a gue r r e subrou t ine t ha t would c a l c u l a t e the

po i n t s and we i gh t s f o r the quadrature

! t h e s e are eva luaed and s t o r ed in a matrix

REAL(h ip rec) : : a , x , integrandw , in t egrandw las t , integra lw , pt , wgt , constant ,

sigma12 , numdense , a l im , b l im , x1 , vz n , constant1

REAL(h ip rec) , EXTERNAL: : c r o s s e c

DOUBLE PRECISION,EXTERNAL : : b e s s i 0 ! b e s s e l f unc t i on

INTEGER i , k , n

! t h i s case i s used f o r i n t e g r a t i o n o f spc 5 ,6 ,7 but in f 4 f ormu la t i on o f

genera l k e rne l

i n t egrandw las t = 0 .0 d0

constant1 = (q−r) ∗(s q r t (2 . 0 d0∗(x+x1)−a∗a−((x−x1) /a) ∗∗2))

DO i = 5 ,5

!DO i = 1 , n max gaulag

integrandw = 0.0 d0

DO k = 1 , npt s gau lag (i)

wgt = w gaulag (i , k)

pt = x gau lag (i , k)

IF (abs (x1) < 1 .0 d−12) THEN

integrandw =integrandw + wgt∗ c r o s s e c (max smth , s q r t (q∗q∗x+pt) , 2 . 0 d0∗atan (

q∗ s q r t (x/pt)))

ELSE

integrandw = integrandw + wgt∗ be s s i 0 (constant1 ∗ s q r t (pt)) ∗ c r o s s e c (

max smth , s q r t (q∗q∗a∗a+pt) , 2 . 0 d0∗atan (q∗a/ sq r t (pt)))

END IF

ENDDO

IF ((abs ((integrandw − i n t egrandw las t) / integrandw) < 1 .0 d−13) .OR. (

abs (integrandw − i n t egrandw las t) < 1 .0 d−14)) EXIT

i n t egrandw las t = integrandw

ENDDO

i n t egra lw = integrandw

IF (n == n max gaulag + 1) THEN

WRITE(30 ,∗) ”VALUE NOTCONVERGED”

END IF

!CLOSE (30)

138

END FUNCTION INTEGRALW

!FUNCTION ELLIPTIC(qqc , pp , aa , bb)

FUNCTION ELLIPTIC(qqc , bb)

IMPLICIT NONE

INTEGER, PARAMETER: : h ip rec = KIND(0 . 0D0)

REAL(h ip rec) : : e l l i p t i c , qqc , a , b , f , g , em, p , qc , bb , aa , pp , q , e

REAL(h ip rec) ,PARAMETER: : ca = 0.000000003 d0 , p i02 = 1.5707963268 d0

IF (qqc == 0) PAUSE ’ fa i lure in e l l i p t i c ’

qc = ABS(qqc)

b = bb

p = 1.0 d0

e = qc

em = 1.0 d0

f = 1 .0 d0

a = 1.0 d0 + b

g = e

b = b + g

b = b + b

p = g + 1.0 d0

g = em

em = qc+em

DO WHILE (ABS(g−qc) > g∗ ca)

qc = sq r t (e)

qc = qc+qc

e = qc∗em

f = a

a = a+b/p

g = e/p

b = b+f ∗g

b = b+b

p = g+p

g = em

em = qc+em

END do

e l l i p t i c = pi02 ∗(b+a∗em) /(em∗(em+p))

END FUNCTION

FUNCTION BILINEAR(a , x , x1 , f11 , f12 , f21 , f22)

USE IONMOBILITY

IMPLICIT NONE

139

REAL(h ip rec) : : f11 , f12 , f21 , f22 , x , x1 , b i l i n e a r

INTEGER a

SELECT CASE(a)

CASE(1)

! t r i a n g l e i n t e r p o l a t i o n

b i l i n e a r = f11 + (1 . 0 d0/kmat dvz) ∗(x∗(f12−f22) − x1 ∗(f12−f22))

! b i l i n e a r = f11 −(1.0 d0/ kmat dvz) ∗((x ∗(f11−f 21))−(y ∗(f21−f 22)))

! check the formula

CASE(2)

! t h i s i s the 2D b i l i e a r i n t e r p o l a t i o n using 4 poin/ t s around the va l u e s o f x

and y

! b i l i n e a r = f11 + &

! (1 . 0 d0/ kmat dvz) ∗(f12 ∗(x + y)) + f21 ∗x +f12 ∗y + &

! (1 . 0 d0/(kmat dvz ∗ kmat dvz)) ∗(x∗y) ∗(f11−f21−f 12+f22)

b i l i n e a r = f11 + &

(1 . 0 d0/kmat dvz) ∗ ((f11−f21)∗(−x) + (f11−f12)∗(−x1)) + &

(1 . 0 d0/(kmat dvz∗kmat dvz)) ∗(x∗x1) ∗(f11−f21−f12+f22)

END SELECT

END FUNCTION

FUNCTION F 1 (z , a)

USE IONMOBILITY

USE MODULE INTEGRATE

IMPLICIT NONE

REAL(h ip rec) : : a , z , integrand , i n t e g r and l a s t , F 1 , pt , wgt , constant , constant1

REAL(h ip rec) , EXTERNAL: : b e s s i 0 , b e s s i 1

INTEGER n , i

constant = a∗z / (1 . 0 d0+a)

F 1 = exp (constant) / (1 . 0 d0+a)

return

!

! I d i scovered numer i ca l l y t ha t the r e s u l t o f the i n t e g r a t i o n below i s the

! very s imple f unc t i on g i ven above Lucky ! ! ! !

140

!

! I ’ ve l e f t the code below in case one wants to go back to the i n t e g r a t i o n

! and check t h i n g s numer i ca l l y

!

constant = a∗z /2 .0 d0 / (1 . 0 d0+a)

i n t e g r an d l a s t = 0 .0 d0

!DO n = 3 ,3

DO n = 1 , n max gauss

integrand = 0.0 d0

DO i = 1 , np t s gauss (n)

wgt = w gauss (n , i)

pt = x gauss (n , i)

constant1 = constant ∗ (1 . 0 d0−pt∗pt)

integrand = integrand + wgt∗exp (constant1) ∗((1 . 0 d0+2.0d0∗ constant1) ∗

be s s i 0 (constant1) + 2 .0 d0∗ constant1 ∗ be s s i 1 (constant1))

ENDDO

write (30 ,∗) np t s gauss (n) , integrand

IF (abs ((integrand − i n t e g r an d l a s t) / integrand) < 1 .0 d−13) THEN

EXIT

END IF

i n t e g r an d l a s t = integrand

ENDDO

F 1 = integrand / (1 . 0 d0+a)

IF (n == n max gauss + 1) THEN

WRITE(30 ,∗) ”VALUE NOTCONVERGED”

END IF

write (53 ,∗) constant , integrand , l og (integrand)

!CLOSE (30)

END FUNCTION F 1

FUNCTION F 2 (x , x1 , z , a1 , a2)

USE IONMOBILITY

USE MODULE INTEGRATE

IMPLICIT NONE

REAL(h ip rec) : : a1 , a2 , x , x1 , z , integrand , i n t e g r and l a s t , F 2 , pt1 , pt2 , wgt1 , wgt2 ,

alpha , de lta , constant , constant1 , constant2 , cost , cos t1

INTEGER n1 , n2 , i1 , i 2

alpha = (1 . 0 d0+a1) ∗a2

constant = (x−x1) /z

d e l t a = 2 .0 d0∗(x+x1)−z∗z−constant ∗ constant

constant1 = alpha / (1 . 0 d0+alpha) ∗a1 /4 .0 d0

constant2 = alpha∗z∗ z /4 .0 d0/a1

141

i n t e g r an d l a s t = 0 .0 d0

DO n1 = 3 ,3

!DO n1 = 1 , n max gauss

DO n2 = 3 ,3

!DO n2 = 1 , n max gauss

in tegrand = 0.0 d0

DO i 1 = 1 , npt s gauss (n1)

DO i 2 = 1 , npt s gauss (n2)

wgt1 = w gauss (n1 , i 1)

pt1 = x gauss (n1 , i 1)

wgt2 = w gauss (n2 , i 2)

pt2 = x gauss (n2 , i 2)

cos t1 = pi ∗pt2

cos t = cos (cos t1)

integrand = integrand + wgt1∗wgt2∗exp (constant1 ∗(d e l t a ∗ (1 . 0 d0−cos t ∗

cos t ∗pt1)−2.0d0∗ constant ∗ s q r t (d e l t a) ∗ cos t ∗ s q r t (pt1 ∗ (1 . 0 d0−pt1))+

constant ∗ constant ∗pt1)−constant2 ∗pt1)

ENDDO

ENDDO

i f ((abs ((integrand − i n t e g r an d l a s t) / integrand) < 1 .0 d−13) . or . (

abs (integrand − i n t e g r an d l a s t) < 1 .0 d−14)) exit

i n t e g r an d l a s t = integrand

ENDDO

ENDDO

F 2 = integrand ∗ (1 . 0 d0+a1) ∗ (1 . 0 d0+a1) ∗ (1 . 0 d0+a2) ∗ (1 . 0 d0+a2) ∗ z∗z /4 .0 d0/a1 / (1 . 0

d0+alpha)

IF ((n1 == n max gauss + 1) . or . (n2 == n max gauss + 1)) THEN

WRITE(30 ,∗) ”VALUE NOTCONVERGED”

END IF

!CLOSE (30)

END FUNCTION F 2

FUNCTION be s s i 0 (x)

IMPLICIT NONE

INTEGER, PARAMETER: : h ip rec = KIND(0 . 0D0)

REAL(h ip rec) bes s i0 , x , ax , y

REAL(h ip rec) ,PARAMETER: : p1 = 1 .0 d0 , p2 = 3.5156229d0 , p3 = 3.0899424d0 ,

p4 = 1.2067492d0 , p5 = 0.2659732d0 , p6 =

0.360768d−1, p7 = 0.45813d−2

REAL(h ip rec) ,PARAMETER: : q1 = 0.39894228d0 , q2 = 0.1328592d−1, q3 = 0.225319d

−2, q4 = −0.157565d−2, q5 = 0.916281d−2, q6

=−0.2057706d−1, q7 = 0.2635537d−1, q8 = −0.1647633

d−1, q9 = 0.392377d−2

ax = abs (x)

142

i f (ax . l t . 3 . 7 5 d0) then

y = (x/3.75 d0) ∗∗2

b e s s i 0 = p1+y∗(p2+y∗(p3+y∗(p4+y∗(p5+y∗(p6+y∗p7)))))

else

y = 3.75 d0/ax

b e s s i 0 = (exp (ax) / sq r t (ax)) ∗(q1+y∗(q2+y∗(q3+y∗(q4+y∗(q5+y∗(q6+y∗(q7+y ∗(q8+y

∗q9))))))))

endif

END FUNCTION be s s i 0

! (C) Copr . 1986−92 Numerical Recipes Sof tware !”#D& ’.

FUNCTION BESSI0 S (x)

IMPLICIT NONE

INTEGER, PARAMETER: : h ip rec = KIND(0 . 0D0)

REAL(h ip rec) : : b e s s i 0 s , ax

REAL(h ip rec) , INTENT(IN) : : x

REAL(h ip rec) ,DIMENSION(7) : : P = (/1 . 0D0,3 .5156229D0,3 .0899424D0,1 .2067492D0,

0 .2659732D0,0 .0360768D0,0 .0045813D0/)

REAL(h ip rec) ,DIMENSION(9) : : Q = (/0.39894228D0,0 .01328592D0,0 .00225319D0

,−0.00157565D0, 0 .00916281D0, −0.02057706D0, 0 .02635537D0, −0.01647633D0,

0 .00392377D0/)

!REAL(h iprec) , EXTERNAL: : po l y

INTERFACE

FUNCTION POLY(x , c o e f f s)

INTEGER, PARAMETER: : h ip rec = KIND(0 . 0D0)

REAL(h ip rec) ,DIMENSION(:) : : c o e f f s

REAL(h ip rec) : : x

END FUNCTION

END INTERFACE

ax = abs (x)

IF (ax < 3 .75 d0) THEN

b e s s i 0 s = poly ((x /3.75 d0) ∗∗2 ,p)

ELSE

b e s s i 0 s = (exp (ax) / sq r t (ax))∗poly ((3 . 75 d0/ax) , q)

END IF

END FUNCTION

FUNCTION POLY(x , c o e f f s)

143

IMPLICIT NONE

INTEGER, PARAMETER: : h ip rec = KIND(0 . 0D0)

INTEGER, PARAMETER : : npar poly = 8

REAL(h ip rec) , INTENT(IN) : : x

REAL(h ip rec) , DIMENSION(:) , INTENT(IN) : : c o e f f s

REAL(h ip rec) : : poly , pow

REAL(h ip rec) , DIMENSION(:) , ALLOCATABLE: : vec

INTEGER i , n , nn

!DO x = 0.0 d0 , 10 . 0 d0 , 0 . 00001d0

n = s ize (c o e f f s)

IF (n <= 0) THEN

poly = 0 .0 d0

ELSE IF (n < npar poly) THEN

poly = c o e f f s (n)

DO i = n−1,1,−1

poly = x∗poly+c o e f f s (i)

ENDDO

ELSE

ALLOCATE(vec (n+1))

pow = x

vec (1 : n) = c o e f f s

DO

vec (n+1) = 0.0 d0

nn = i s h f t (n+1,−1)

vec (1 : nn) = vec (1 : n : 2)+pow∗vec (2 : n+1:2)

IF (nn == 1) EXIT

pow = pow∗pow

n = nn

ENDDO

poly = vec (1)

DEALLOCATE(vec)

END IF

! wr i t e (53 ,∗) x , po l y

! end do

! s top

END FUNCTION

FUNCTION EXE FUNC(n , x)

144

USE IONMOBILITY

IMPLICIT NONE

REAL(h ip rec) ,PARAMETER: : a lpha = 1.0 d0 ! , p i = 3.14159265359

! A l l v a l u e s in t h i s subrou t ine are s e t to doub l e p r e c i s i on

! This e x t e rna l f unc t i on subrou t ine de f i n e s the i n i t i a l f unc t i on to be used in

the ion mob i l i t y problem .

! This i s the s t a r t i n g po in t in the Runge−Kutta method o f numerical a n a l y s i s .

! The f i r s t d e r i v a t i v e o f t h i s f unc t i on s t a r t s the i t e r a t i o n process .

REAL(h ip rec) : : exe func , x

INTEGER n

! t h i s i s the f unc t i on we choose

IF (spc == 2) THEN

IF (n == 0) THEN

exe func = 1.0 d0

! e xe f unc = exp(−x) ! a lpha = 2

! exe func = exp (0 . 5 d0∗x) ! a lpha = 0.5

! exe f unc = exp (0 . 98 d0∗x) ! a lpha = 50

! exe func = exp (x) ∗(exp (−0.2 d0∗(x−2.0d0) ∗∗2)+exp (−0.2 d0∗(x−8.0d0) ∗∗2)) !

a lpha = odd func t i on

ELSE

exe func = 0.0 d0

! e xe f unc = −exp(−x)

! exe f unc = 0.5 d0∗ exp (0 . 5 d0∗x)

! exe f unc = 0.98 d0∗ exp (0 . 98 d0∗x)

! exe f unc = exp (x−0.2d0∗(x−2.0d0) ∗∗2) ∗ (1 . 0 d0−0.4d0∗(x−2.0d0)) + exp (x

−0.2d0∗(x−8.0d0) ∗∗2) ∗ (1 . 0 d0−0.4d0∗(x−8.0d0))

END IF

ELSE IF (spc == 1 .OR. spc == 8 .OR. spc == 9) THEN

IF (n == 0) THEN

exe func = exp(−x) ∗ s q r t (x) ! a lpha = 1

! exe func = s q r t (x) ∗ exp (−0.5 d0∗x) ! a lpha = 0.5

! exe f unc = s q r t (x) ∗ exp (−2.0 d0∗x) ! a lpha = 2

! exe func = s q r t (x) ∗ exp (−0.02d0∗x) ! a lpha = 50

! exe func = exp (−0.1d0∗(x−2.0d0) ∗∗2) + 1.5 d0∗ exp (−0.1 d0∗(x−8.0d0) ∗∗2) !

a lpha = odd func t i on

ELSE

exe func = −exp (0 . 5 d0∗x) ∗ (0 . 5 d0∗ s q r t (0 . 5 d0∗x)−1/(sq r t (0 . 5 d0∗x)))

! e xe f unc = −0.5d0∗ exp (−0.5 d0∗x) ∗(1/ s q r t (x) − s q r t (x))

! exe f unc = −2.0d0∗ exp (−2.0 d0∗x) ∗(1/ s q r t (x) − s q r t (x))

! exe f unc = −0.020d0∗ exp (−0.02d0∗x) ∗(1/ s q r t (x) − s q r t (x))

145

! e xe f unc = −0.2d0∗(x−2.0d0) ∗ exp (−0.1d0∗(x−2.0d0) ∗∗2) − 0.3 d0∗(x−8.0d0) ∗

exp (−0.1d0 ∗(x−8.0d0) ∗∗2)

END IF

ELSE IF (spc == 3) THEN

IF (n == 0) THEN

exe func = x

! e xe f unc = 2.0 d0∗x ! a lpha = 2

! exe func = exp (−0.5d0∗x) ! a lpha = 0.5

! exe f unc = exp (−0.02d0∗x) ! a lpha = 50

! exe func = − l o g (exp (−0.2d0 ∗(x−2.0d0) ∗∗2) + exp (−0.2d0 ∗(x−8.0d0) ∗∗2)) !

a lpha = odd func t i on

ELSE

exe func = 1.0 d0

! e xe f unc = 2.0 d0

! exe f unc = −0.5d0∗ exp (−0.5 d0∗x)

! exe f unc = −0.02d0∗ exp (−0.02d0∗x)

! exe f unc = 2.4 d0/(exp (−0.2 d0∗(x−2.0d0) ∗∗2) + exp (−0.2 d0∗(x−8.0d0) ∗∗2))

END IF

ELSE IF (spc == 4 .OR. spc == 5 .OR. spc == 6 .OR. spc == 7 .OR. spc == 10 .OR

. spc ==11) THEN

IF (n == 0) THEN

! e xe f unc = exp(−x)

! exe f unc = exp (−0.5d0∗x) ! a lpha = 2

! exe func = exp (−0.98d0∗x) ! a lpha = 50

! exe func = exp (−2.0d0∗x) ! a lpha = 0.5

! exe f unc = exp (x) ∗(exp (−0.2 d0∗(x−2.0d0) ∗∗2)+exp (−0.2 d0∗(x−8.0d0) ∗∗2)) !

a lpha = odd func t i on

exe func = exp (−5.0d0∗(x−350.0 d0) ∗∗2) ! newf4 ! gauss ian func t i on used f o r

spaces 5 ,6 ,7

! exe f unc = s q r t (x) ∗ exp (−0.5 d0∗(x−5.0d0) ∗∗2) ! gauss ian ∗ s q r t

ELSE

! e xe f unc = −exp(−x)

! exe f unc = −0.5d0∗ exp (−0.5 d0∗x)

! exe f unc = −0.98d0∗ exp (−98.0d0∗x)

! exe f unc = −2.0d0∗ exp (−2.0 d0∗x)

! exe f unc = exp (x−0.2d0∗(x−2.0d0) ∗∗2) ∗ (1 . 0 d0−0.4d0∗(x−2.0d0)) + exp (x

−0.2d0∗(x−8.0d0) ∗∗2) ∗ (1 . 0 d0−0.4d0∗(x−8.0d0))

exe func = (x−350.0 d0) ∗exp (−5.0 d0∗(x−350.0 d0) ∗∗2) ! d e r i v a t i v e o f newf4

! exe f unc = (0 .5 d0/ s q r t (x)) ∗ exp (−0.5d0∗(x−5.0d0) ∗∗2) + s q r t (x) ∗(x−5.0d0)

∗ exp (−0.5d0∗(x−5.0d0) ∗∗2) ! d e r i v a t i v e o f gauss ian ∗ s q r t

END IF

!ELSE IF (spc == 5 .OR. spc == 6 .OR. spc == 7) THEN

! IF (n == 0) THEN

! ! exe f unc = exp(−x∗x) ! e qu i l i b r i um func t i on

! ! exe f unc = exp (−0.5d0∗(x) ∗∗2) ! gauss ian func t i on

146

! e xe f unc = exp (−5.0d0∗(x−350.0d0) ∗∗2) ! gauss ian func t i on high energy

! exe f unc = exp (−0.5d0∗(x−5.0d0) ∗∗2) ! gauss ian func t i on low energy

! ELSE

! exe func = −2.0d0∗x∗ exp (x∗x)

! exe f unc = −x∗ exp (−0.5d0 ∗(x) ∗∗2)

! exe f unc = −(x−350.0d0) ∗(exp (−0.5d0∗(x−350.0d0) ∗∗2))

! exe f unc = −(x−5.0d0) ∗(exp (−0.5d0∗(x−5.0d0) ∗∗2))

! END IF

END IF

END FUNCTION

RECURSIVE FUNCTION DIST FUNC(a , n , vz , c o e f f) RESULT(d i s t f u n c 1)

USE IONMOBILITY

IMPLICIT NONE

! This e x t e rna l f unc t i on i s used in the main program i on mob i l i t y .

! This f unc t i on eva l ua t e s d i s t r i b u t i o n func t i on at po i n t s on v e l o c i t y g r i d .

!w: the argument used to e va l ua t e the b s p l i n e f unc t i on .

! n determines whether the o r i g i n a l funct ion , the f i r s t d e r i v a t i v e , or the

second d e r i v a t i v e o f the t h i r d order b s p l i n e i s used in the e va l ua t i on .

! D i s t r i b u t i o n func t i on i s d i v i d ed by cons tan t dvz ra i s ed to the power o f n .

! This f unc t i on c a l l s on ex t e rna l f unc t i on BSPLINE3 which con ta ins t h i r d order

s p l i n e e xp r e s s i on s .

REAL(h ip rec) : : w, vz , index , d i s t f un c2 , d i s t f u n c 1

REAL(h ip rec) ,EXTERNAL: : b sp l i n e 3

REAL(h ip rec) ,DIMENSION(0 : n dim) : : c o e f f

INTEGER i , n , a , j

d i s t f u n c 1 = 0.0 d0

IF ((v z g r i d (0) > vz) .OR. (vz > v z g r i d (vz num)))RETURN

index = (vz−v z g r i d (0)) /dvz

SELECT CASE(a)

CASE(1)

! e v a l ua t e s d i s t r i b u t i o n func t i on at g i ven g r i d po in t in na t i v e space

DO i = INT(index)−3, INT(index)

w = index − REAL(i)

d i s t f u n c 1 = d i s t f u n c 1 + c o e f f (i +3)∗BSPLINE3 (n ,w)

ENDDO

d i s t f u n c 1 = d i s t f u n c 1 /dvz∗∗n

CASE (2)

! t h i s case e va l ua t e s the moments as d e s i r ed .

147

! moments are eva l ua ted in terms o f f

! we check s i z e o f gr id , s i nce some o f the moments can f a l l o f the end o f g r i d .

! on ly moments t ha t a c t u a l l y l i e on the g r i d are needed

! f o l l ow i n g check ensures t ha t on ly the r e l e van t po i n t s are eva l ua ted

! gspace undone to f space

IF (n == 0) THEN

d i s t f u n c 1 = 2.0 d0∗ s q r t (vz/ p i) ∗exp(−vz)∗ d i s t f u n c (1 ,0 , vz , c o e f f)

ELSE

d i s t f u n c 1 = 2.0 d0/ sq r t (p i) ∗exp(−vz) ∗(s q r t (vz) ∗ d i s t f u n c (1 ,1 , vz , c o e f f

) + (0 . 5 d0∗ s q r t (1/ vz) − s q r t (vz)) ∗ d i s t f u n c (1 ,0 , vz , c o e f f))

END IF

CASE(3)

! conver t s the c a l c u l a t i o n o f d i s t r i b u t i o n func t i on from h−space to f−space

IF (n == 0) THEN

d i s t f u n c 1 = 2.0 d0∗ s q r t (vz/ p i) ∗exp (−1.0 d0∗ d i s t f u n c (1 ,0 , vz , c o e f f))

ELSE

d i s t f u n c 1 = 2.0 d0∗exp (−1.0 d0∗ d i s t f u n c (1 ,0 , vz , c o e f f)) / sq r t (p i) ∗ (0 . 5

d0/ sq r t (vz) − s q r t (vz) ∗ d i s t f u n c (1 ,1 , vz , c o e f f))

END IF

CASE(4)

! f pr ime space comments

! t h i s case e va l ua t e s the moments as d e s i r ed .

! the moments are eva l ua ted in terms o f f

! check s i z e o f gr id , s i nce some o f the moments can f a l l o f the end o f the g r i d

.

! on ly moments t ha t a c t u a l l y l i e on the g r i d are needed

! f o l l ow i n g check ensures t ha t on ly the r e l e van t po i n t s are eva l ua ted

! gspace undone to f space

IF (n == 0) THEN

d i s t f u n c 1 = 2.0 d0∗ s q r t (vz/ p i) ∗ d i s t f u n c (1 ,0 , vz , c o e f f)

ELSE

d i s t f u n c 1 = 2.0 d0/ sq r t (p i) ∗ (0 . 5 d0/ sq r t (vz) ∗ d i s t f u n c (1 ,0 , vz , c o e f f) +

sq r t (vz) ∗ d i s t f u n c (1 ,1 , vz , c o e f f))

END IF

CASE(5)

! g enera l case o f the k e rne l

IF (n == 0) THEN

d i s t f u n c 1 = 2.0 d0∗ s q r t (vz/ p i) ∗ d i s t f u n c (1 ,0 , vz , c o e f f)

ELSE

d i s t f u n c 1 = 2.0 d0/ sq r t (p i) ∗ (0 . 5 d0/ sq r t (vz) ∗ d i s t f u n c (1 ,0 , vz , c o e f f) +

sq r t (vz) ∗ d i s t f u n c (1 ,1 , vz , c o e f f))

END IF

END SELECT

! d i s t f u n c 1 = d i s t f u n c

148

END FUNCTION

FUNCTION BSPLINE3(n ,w)

USE IONMOBILITY

IMPLICIT NONE

! This i s an ex t e rna l f unc t i on d e s c r i b i n g the p i ecew i se b s p l i n e f unc t i on .

! The func t i on i s d e s c r i b ed over f our i n t e r v a l s , where i t has a d i f f e r e n t form

.

! Depending on the va lue o f w, the argument , the appropr i a te case o f the

b s p l i n e ! i s c a l l e d .

! The b s p l i n e f unc t i on has va l u e s over only f our points , and zero everywhere

! e l s e .

! w: argument used to e va l ua t e the b s p l i n e expres s i on

! n determines which case i s to be c a l l e d upon during the e va l ua t i on .

REAL(KIND = hiprec) : : b sp l in e3 ,w

INTEGER n

IF (w < 0)THEN

BSPLINE3 = 0.0 d0

RETURN

END IF

SELECT CASE (n)

! This case has the e xp r e s s i on s f o r the o r i g i n a l cub i c s p l i n e f unc t i on .

CASE (0)

SELECT CASE (i n t (w))

CASE (0)

b sp l i n e3 = 1 .0 d0 /6 .0 d0∗(w∗∗3)

CASE (1)

b sp l i n e3 = 1 .0 d0 /6 .0 d0 ∗ ((w∗∗3)−4.0d0∗(w−1.0d0) ∗∗3)

CASE (2)

b sp l i n e3 = 1 .0 d0 /6 .0 d0 ∗ ((4 . 0 d0−w) ∗∗3−4.0 d0 ∗ (3 . 0 d0−w) ∗∗3)

CASE (3)

b sp l i n e3 = 1 .0 d0 /6 .0 d0 ∗ (4 . 0 d0−w) ∗∗3

CASE DEFAULT

b sp l i n e3 = 0 .0 d0

END SELECT

! This case has the e xp r e s s i on s f o r the f i r s t d e r i v a t i v e o f the cub i c s p l i n e s .

CASE (1)

SELECT CASE (i n t (w))

CASE (0)

b sp l i n e3 = 0 .5 d0∗(w∗w)

149

CASE (1)

b sp l i n e3 = 0 .5 d0 ∗ ((w∗w)−4.0d0∗(w−1.0 d0) ∗∗2)

CASE (2)

b sp l i n e3 = −0.5d0 ∗ ((4 . 0 d0−w) ∗∗2−4.0 d0 ∗ (3 . 0 d0−w) ∗∗2)

CASE (3)

b sp l i n e3 = −0.5d0 ∗ (4 . 0 d0−w) ∗∗2

CASE DEFAULT

b sp l i n e3 = 0 .0 d0

END SELECT

! This case c on s i s t s o f the second d e r i v a t i v e e xp r e s s i on s o f the cub i c s p l i n e s

.

CASE (2)

SELECT CASE (i n t (w))

CASE (0)

b sp l i n e3 = w

CASE (1)

b sp l i n e3 = (4 . 0 d0−3.0d0∗w)

CASE (2)

b sp l i n e3 = (3 . 0 d0∗w−8.0 d0)

CASE (3)

b sp l i n e3 = (4 . 0 d0−w)

CASE DEFAULT

b sp l i n e3 = 0 .0 d0

END SELECT

END SELECT

END FUNCTION

FUNCTION be s s i 1 (x)

IMPLICIT NONE

INTEGER, PARAMETER: : h ip rec = KIND(0 . 0D0)

REAL(h ip rec) bes s i1 , x , ax , y

REAL(h ip rec) ,PARAMETER: : p1 = 0 .5 d0 , p2 = 0.87890594d0 , p3 = 0.51498869

d0 , p4 = 0.15084934d0 , p5 = 0.2658733d−1, p6 =

0.301532d−2, p7 = 0.32411d−3

REAL(h ip rec) ,PARAMETER: : q1 = 0.39894228d0 , q2 =−0.3988024d−1, q3 =−0.362018d

−2, q4 = 0.163801d−2, q5 =−0.1031555d−1, q6 =

0.2282967d−1, q7 =−0.2895312d−1, q8 = 0.1787654d

−1, q9 = −0.420059d−2

ax = abs (x)

i f (ax . l t . 3 . 7 5 d0) then

y = (x/3.75 d0) ∗∗2

b e s s i 1 = x∗(p1+y∗(p2+y∗(p3+y∗(p4+y∗(p5+y∗(p6+y∗p7))))))

else

y = 3.75 d0/ax

150

be s s i 1 = (exp (ax) / sq r t (ax)) ∗(q1+y∗(q2+y∗(q3+y∗(q4+y∗(q5+y∗(q6+y∗(q7+y ∗(q8+y

∗q9))))))))

i f (x . l t . 0 . 0 d0) b e s s i 1 = −be s s i 1

endif

END FUNCTION be s s i 1

! (C) Copr . 1986−92 Numerical Recipes Sof tware !”#D& ’.

A.4 Modules

MODULE IONMOBILITY

IMPLICIT NONE

INTEGER, PARAMETER: : h ip rec = KIND(0 . 0D0)

REAL(h ip rec) : : t , h , h2 , dvz , vz 0 ,m, c o l f r e q , q , r , kmat vz 0 , kmat vz n , kmat dvz ,

kmat m , mu chi

! t : time

! h : time s t ep

! dvz : s i z e o f the i n t e r v a l in the v e l o c i t y g r i d

! m: mass r a t i o o f the bath gas to the ion

! c o l f r e q : the c o l l i s i o n f requency

INTEGER : : n dim , vz num , spc , max smth , kmat vz num

! vz num : the t o t a l number o f po i n t s on the v e l o c i t y g r i d

! n dim : s i z e o f the arrays . We ge t ex t ra two va l u e s due to the cond i t i on s on

the d e r i v a t i v e s . These ex t ra va l u e s are needed f o r the cub i c s p l i n e s .

REAL(h ip rec) ,PARAMETER: : p i = 3.14159265359

!REAL(KIND = hiprec) , DIMENSION(1 :1100) : : x gauss , w gauss

! x gauss : the po i n t s eva l ua ted by the gauss ian quadrature used in the

e va l ua t i on o f the in tegrands

! w gauss : the we i gh t s eva l ua ted by the gauss ian quadrature used in the

e va l ua t i on o f the in tegrands

REAL(h ip rec) ,DIMENSION (:) ,ALLOCATABLE: : y , k1 , k2 , k3 , k4 , y1 , v z gr id , work , wr ,

work1 , wr1 , kmat x val , kmat y val

! y : va l ue o f the d e r i v a t i v e at the i n t e r v a l

! k1 : the f i r s t e va l ua t i on o f the d e r i v a t i v e

! k2 : the second eva l ua t i n o f the d e r i v a t i v e

! k3 : the t h i r d e va l ua t i on o f the d e r i v a t i v e

! k4 : the f ou r t h e va l ua t i on o f the d e r i v a t i v e

! y1 : va l ue o f the d e r i v a t i v e a f t e r the e va l ua t i on at the f our po i n t s w i th in

the ! i n t e r v a l . This a l s o becomes the next po in t o f e va l ua t i on in the

Runge−Kutta

REAL(h ip rec) ,DIMENSION (: , :) ,ALLOCATABLE: : l1 mat , l2 mat , vr , vr saved , vr saved1 ,

vr1 , l11 mat , l21 mat , b i n i t , l mat sa fe , k mat val

! l 1 mat : the f i e l d−dependent matrix product o f two matrices , i n v e r s e o f b t i l

and b p

! l2 mat : the product o f matrices , i n v e r s e o f b t i l , k mat , and nu and b

! vr saved : the array con ta in ing the e i g en f unc t i on s o f the e i g enva l u e s o f L

151

! vr : the array con ta in ing the i n v e r s e o f vr saved

ENDMODULE IONMOBILITY

MODULE MODULE INTEGRATE

USE IONMOBILITY

IMPLICIT NONE

INTEGER,PARAMETER: : n max gauss = 7 , n max trap = 25

INTEGER,DIMENSION(1 : n max gauss) : : np t s gauss

INTEGER npt s t rap

REAL(h ip rec) , DIMENSION(1 : n max gauss , 1 : 2 ∗ ∗ (n max gauss+2)) : : x gauss , w gauss

! x gauss : the po i n t s eva l ua ted by the gauss ian quadrature used in the

e va l ua t i on o f the in tegrands

! w gauss : the we i gh t s eva l ua ted by the gauss ian quadrature used in the

e va l ua t i on o f the in tegrands

ENDMODULE

MODULE MODULECROSSEC

USE IONMOBILITY

IMPLICIT NONE

REAL(h ip rec) ,DIMENSION(:) ,ALLOCATABLE: : theta , chi , c r o s s f u n c

INTEGER n val , n ch i

REAL(h ip rec) : : dchi , a 4 t i l d a

ENDMODULE MODULECROSSEC

MODULE INTERFACES

USE IONMOBILITY

IMPLICIT NONE

!INTERFACE i n t d i s t f u n c

! REAL(h iprec)

!INTERFACE moments1

! REAL(h iprec) FUNCTION MOMENTS(a , coe f f 1 , a max , b min)

! INTEGER, PARAMETER: : h i prec = KIND(0 .0D0)

! REAL(h iprec) : : a max , b min

! INTEGER a

! REAL(h iprec) co e f f 1 (:)

! END FUNCTION MOMENTS

152

!END INTERFACE

INTERFACE moments chk1

REAL(h ip rec) FUNCTION MOMENTSCHK(a , c o e f f 1 , a max , b min)

use i onmob i l i t y

! INTEGER, PARAMETER: : h i prec = KIND(0 .0D0)

REAL(h ip rec) : : a max , b min

INTEGER a

REAL(h ip rec) c o e f f 1 (:)

END FUNCTION MOMENTSCHK

END INTERFACE

INTERFACE d i s t f u n c 1

REAL(h ip rec) FUNCTION DIST FUNC(a , n , vz , c o e f f 1)

use i onmob i l i t y

! INTEGER, PARAMETER: : h i prec = KIND(0 .0D0)

INTEGER a , n

REAL(h ip rec) c o e f f 1 (:)

REAL(h ip rec) : : vz

END FUNCTION DIST FUNC

END INTERFACE

INTERFACE

SUBROUTINE GAULAG(x ,w, a l f , n)

use i onmob i l i t y

! INTEGER, PARAMETER: : h i prec = KIND(0 .0D0)

INTEGER n

REAL(h ip rec) : : a l f

REAL(h ip rec) x (:) ,w(:)

END SUBROUTINE GAULAG

END INTERFACE

ENDMODULE INTERFACES

MODULE INTEGRATEGAULAG

USE IONMOBILITY

IMPLICIT NONE

INTEGER,PARAMETER: : n max gaulag= 5

REAL(h ip rec) : : a l f

! the parameter used by the gau l ag subrou t ine in the e va l ua t i on o f the po i n t s

and we i gh t s

! f o r the purpose o f t h i s code , a l f = 0

INTEGER,DIMENSION(1 : n max gaulag) : : np t s gau lag

153

REAL(h ip rec) , DIMENSION(1 : n max gaulag , 1 : 2 ∗ ∗ (n max gaulag+2)) : : x gaulag ,

w gaulag

! the arrays t ha t w i l l s t o r e the po i n t s (x gau l a g) and we i gh t s (w gaulag)

! a l l t he po i n t s and we i gh t s f o r the d i f f e r e n t va l u e s o f n are cons t ruc ted in

the i n i t a l i z a t i o n

! the soubrou t ine moments c a l l s the d i f f e r e n t va l u e s o f n , and depending on

convergence , the appropr i a te s e t o f po i n t s and we i gh t s are used in the

e va l ua t i on o f the moments

ENDMODULE INTEGRATEGAULAG

A.5 C Subroutines

/∗

C program to c a l l the error f unc t i on s in the C math l i b r a r y

∗/

#include <math . h>

double e r f (double ∗ arg)

{

return (e r f (∗ arg)) ;

}

double e r f c (double ∗ arg)

{

return (e r f c (∗ arg)) ;

}

/∗

C program to c a l l the gamma func t i on in the C math l i b r a r y

∗/

#include <math . h>

double lgamma (double ∗ arg)

{

return (lgamma(∗ arg)) ;

}

/∗

doub l e gammln s (doub l e ∗arg)

{

re turn (gammln s (∗ arg)) ;

}

∗/

154

A.6 Input File

0 10 100 vz n vz num

0.02 1 .0 mass r a t i o c o l f r e q

40 0.005 nstep h

1 spc

1 .5 mu chi (rough)

1 .0 1 .0 1 numdense sigma12 max smth (s p h e r i c a l)

1 a 4 t i l d a (maxwell)

A.7 Makefile

F90 = i f o r t

#

In t e l f l a g s

#

#LIBS = −L/ g l oba l / so f tware / i n t e l /mkl72/ l i b /32 −lmk l lapack

#LIBS = −L/ g l oba l / so f tware / i n t e l /mkl/ l i b / i n t e l 6 4 −lmk l lapack

#pgf90 f l a g s

#LIBS = −l l ap ack − l b l a s − l p g f t n r t l − l r t −l p th read −lm

OFLAGS = −mkl − f a s t −Bst a t i c −openmp

#opt imizat ion

#OFLAGS = −openmp −mkl −Bst a t i c

#(debugger)

F90FLAGS = −c ${OFLAGS}

#

Source and ob j e c t f i l e s f o r mob i l i t y code

#

OBJECTS2 = module . o modu le in t egrat e . o modu le c ros sec . o i n t e r f a c e s . o b e s s i 1 . o\

l i n i t p r i n t . o module gaulag . o i on mob i l i t y . o gauss . o b sp l i n e3 . o \

rk4 . o der iv . o f i e l d . o exe func . o d i s t f u n c . o e r f . o l i n i t . o \

k mat . o i n t e g r a t e . o cnvrg chk . o i n t i n t e r v a l . o gammaln . o \

mat chk . o gaulag . o p l o t f u n c t i o n . o po l i n t . o ch i . o e l l i p t i c . o\

i n t egra lw . o b e s s e l . o c r o s s e c . o b i l i n e a r . o F 1 . o F 2 . o b e s s i 0 . o \

ch i . o

#ion mob i l i t y 1 . o k mat ca l c . o k mat ca l c func . o\

OBJECTS3 = module . o analyze . o b sp l i n e3 . o po l i n t . o d i s t f u n c . o d r g c o e f f . o \

e r f . o

OBJECTS4 = module . o module gaulag . o modu le in t egrat e . o modu le c ros sec . o ch i . o\

k mat ca l c . o c r o s s e c . o gammaln . o gauss . o d i s t f u n c . o b sp l i n e3 . o\

be s s i 0 . o in t egra lw . o e l l i p t i c . o k mat ca l c func . o po l i n t . o F 2 . o\

gaulag . o

155

OBJECTS5 = modu le c ros sec . o ch i . o e l l i p t i c . o

#OBJECTS6 = kmat check . o module . o modu le in t egrat e . o in t egra lw . o c r o s s e c . o

b e s s e l . o module gaulag . o gammaln . o e l l i p t i c . o

%.o : %. f90

$ (F90) $ (F90FLAGS) −o $@ $<

#−−−−−−−−−−−−−−−−−−−−−−−−−DESCRIPTION PART −−−−−−−−−−−−−−−−−−−−

ion mobi l i ty ww : $ (OBJECTS2)

${F90} ${OFLAGS} −o ion mobi l i ty ww ${OBJECTS2} ${LIBS}

analyze : $ (OBJECTS3)

${F90} ${OFLAGS} −o analyze ${OBJECTS3} ${LIBS}

k mat ca l c : $ (OBJECTS4)

${F90} ${OFLAGS} −o k mat ca l c ${OBJECTS4} ${LIBS}

e l l i p t i c : $ (OBJECTS5)

${F90} ${OFLAGS} −o e l l i p t i c ${OBJECTS5} ${LIBS}

#kmat chk : $ (OBJECTS6)

${F90} ${OFLAGS} −o kmat chk ${OBJECTS6} ${LIBS}

c l ean :

rm ∗ . o ion mobi l i ty ww

A.8 Submission Script

#! / b in / csh

#

#PBS − l nodes=1: f a s t : ppn=6

#PBS −N maxwe l l ex t e rna l

#PBS −o output

#PBS −e e r r o r

cd $PBS O WORKDIR

setenv OMPNUMTHREADS 6

#/tmp/K MAT VALUES EXTRAP

#./ ion mobi l i ty ww < input > In t egrand va lue s

. / k mat ca l c < i n pu t c a l c

156

