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Abstract 
 

 Many of today's power converters use pulse-width-modulation(PWM) techniques to regulate 

the circulating currents and voltages. A significant problem with most dc-dc converters is the 

increased power loss during switching. These devices typically operate in hard-switching mode 

which results in switching losses. Resonant converters have been used to minimize or even eliminate 

this problem. 

 Although LLC resonant converters have shown significant gains in terms of efficiency, their 

modeling is still a challenge.  LLC converters are designed to function in a specific mode and region 

of operation. It has been difficult to design a stable and robust controller with consistent bandwidth 

and disturbance rejection for every application. The complexity of the control design is magnified 

when the LLC converters are controlled using embedded digital control techniques. Recent 

developments in micro-controllers, including processing speed, power, and memory management, 

make possible the use of innovative non-linear or adaptive control algorithms, in order to produce 

high performance LLC circuits. Accurate modeling of the hardware is the key to an effective 

solution. 

 This thesis presents several modeling techniques of the LLC resonant converter. Previous 

research is discussed and relevant techniques are used as reference for deriving the models presented 

here. A new approach will be used to describe the characteristics of the LLC within the operating 

region. This approach is derived using the method of Least Squares of errors. The method estimates 

the coefficients of the plant transfer function, which then help to calculate control coefficients in the 

instantaneous operating condition of the LLC resonant power converter.   
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 The work presented in this thesis is based on the original ideas of Vasil Panov and Dr. Rahul 

Khandekar, an employee at Alpha Technologies. I have derived and shown several models of the 

LLC resonant converter which were evaluated for accuracy by my project supervisor, Dr. Rahul 

Khandekar, and my university supervisor, Dr. William Dunford. Chapters 4,5 and 6 show the original 

contributions to the subject of LLC resonant converter modelling and digitally controlled circuits. 

 

 

 

  



iv 
 

Table of Contents 

 
Abstract .................................................................................................................................................. ii 

Preface...................................................................................................................................................iii 

Table of Contents .................................................................................................................................. iv 

List of Figures ....................................................................................................................................... vi 

List of Symbols ...................................................................................................................................viii 

List of Abbreviations ............................................................................................................................ ix 

List of Units ........................................................................................................................................... x 

Acknowledgements ............................................................................................................................... xi 

Dedication ............................................................................................................................................ xii 

CHAPTER 1   Introduction .................................................................................................................... 1 

1.1 Resonant Converters .................................................................................................................... 1 

1.2 LLC Resonant Converter ............................................................................................................. 3 

1.3 Operation ...................................................................................................................................... 6 

1.4 Objective of the Thesis .............................................................................................................. 10 

1.5 Structure of the Thesis ............................................................................................................... 11 

CHAPTER 2   LLC Simulation & Equivalent Circuit ......................................................................... 13 

2.1 Introduction ................................................................................................................................ 13 

2.2 Bode Magnitude and Phase Plot ................................................................................................ 18 

CHAPTER 3   State Space Modeling .................................................................................................. 26 

3.1 Introduction ................................................................................................................................ 26 

3.2 State Space Evaluation ............................................................................................................... 27 

CHAPTER 4 Frequency Control by Describing Function Method ................................................. 29 

4.1 Introduction ................................................................................................................................ 29 

4.2 Existing Models ......................................................................................................................... 29 

4.3 New Model ................................................................................................................................. 31 

4.4 Harmonic Approximation .......................................................................................................... 32 

4.5 Extended Describing Function ................................................................................................... 33 

4.6 Small Signal Analysis ................................................................................................................ 34 

4.7 Results and Discussion............................................................................................................... 37 



v 
 

CHAPTER 5   Least Squares Parametric Estimation .......................................................................... 42 

5.1 Introduction ................................................................................................................................ 42 

5.2 Second Order Filter .................................................................................................................... 44 

5.3 Simulation Results ..................................................................................................................... 46 

5.3.1 PSIM vs. LSM Modelling of the LLC ................................................................................ 48 

CHAPTER 6   Digitizing Effects of an Analog-to-Digital Converter ................................................. 55 

6.1 Introduction ................................................................................................................................ 55 

6.2 Implementation .......................................................................................................................... 58 

6.3 High Resolution Pulse Width Modulation (HRPWM) .............................................................. 60 

CHAPTER 7   Conclusion and Future Work ....................................................................................... 65 

7.1 Conclusions ................................................................................................................................ 65 

7.2 Future Work ............................................................................................................................... 66 

References ............................................................................................................................................ 68 

APPENDIX .......................................................................................................................................... 71 

A.1 State Space Example ................................................................................................................. 71 

A.2 Duty Cycle Model: MATLAB .................................................................................................. 71 

A.3 Frequency Control Model Based on the Extended Describing Function:MATLAB ................ 72 

A.4 Least Squares Method : MATLAB ........................................................................................... 74 

A.5 Additional PSIM and LSM Results........................................................................................... 77 

A.6 Extended Describing Function : Matrix Equations ................................................................... 80 

A.7 State Space Averaging Model ................................................................................................... 83 

A.8 DLL Block C/C++ Code ........................................................................................................... 89 

A.8.1 ADC ................................................................................................................................... 89 

A.8.2 HRPWM ........................................................................................................................... 102 

 

  



vi 
 

List of Figures 
 

Figure 1- 1a : LCC Resonant Converter ................................................................................................ 1                          

Figure 1- 1b : LLC Resonant Converter ................................................................................................ 1 

Figure 1- 1 c : LLC Resonant Converter................................................................................................ 2 

Figure 1- 2 : ZVS characteristics ........................................................................................................... 3 

Figure 1- 3 : Half Bridge Inverter .......................................................................................................... 4 

Figure 1- 4 : LLC Resonant Tank .......................................................................................................... 5 

Figure 1- 5 : Simplified LLC circuit ...................................................................................................... 5 

Figure 1- 6 : From left to right: At fo, below fo and above fo ............................................................... 7 

Figure 1- 7 : LLC Gain vs. frequency plot, compared at different values of the quality factor, Q ........ 8 

Figure 1- 8 : LLC Gain vs. frequency plot under varying Ln (Q = 0.65) .............................................. 9 

Figure 2- 1 : Open Loop controller ...................................................................................................... 13 

Figure 2- 2 : MOSFET Gate Waveform .............................................................................................. 14 

Figure 2- 3 : PSIM circuit layout ......................................................................................................... 14 

Figure 2- 4 :  LLC's output voltage and output current levels at constant frequency (142kHz) .......... 15 

Figure 2- 5 : LLC's output voltage and output current during frequency change ................................ 16 

Figure 2- 6 : LLC's output voltage and output current during load change ......................................... 17 

Figure 2- 7 : LLC's output voltage and output current during duty cycle change ............................... 18 

Figure 2- 8 : LLC PSIM magnitude and phase plot at several loading conditions .............................. 19 

Figure 2- 9 : LLC Gain vs. frequency plot, compared at different values of the quality factor, Q ...... 20 

Figure 2- 10 : LLC converter equivalent circuit .................................................................................. 21 

Figure 2- 11 : Resonant Current Comparison under frequency variation ............................................ 22 

Figure 2- 12 : Resonant Voltage Comparison under frequency variation ........................................... 22 

Figure 2- 13 : Transformer Voltage Comparison under frequency variation ...................................... 23 

Figure 2- 14 : Resonant Current during duty cycle change ................................................................. 23 

Figure 2- 15 : Resonant Voltage during duty cycle change ................................................................. 24 

Figure 2- 16 : Transformer Voltage during duty cycle change ............................................................ 24 

Figure 3- 1: Block diagram of state space............................................................................................ 26 

Figure 4- 1 : Wang's LLC Equivalent circuit ....................................................................................... 30 

Figure 4- 2 : LLC Equivalent circuit .................................................................................................... 32 

Figure 4- 3 : EDF model currents and voltages during frequency change (142-147KHz) .................. 37 



vii 
 

Figure 4- 4 : PSIM model currents and voltages during frequency change (142-147KHz) ................ 38 

Figure 4- 5 : EDF model during duty cycle change (50%-80%) ......................................................... 39 

Figure 4- 6 : PSIM model during duty cycle change ........................................................................... 39 

Figure 4- 7 : EDF model Bode plot...................................................................................................... 40 

Figure 4- 8 : PSIM Bode plot ............................................................................................................... 40 

Figure 5- 1 : LSM Model diagram ....................................................................................................... 42 

Figure 5- 2 : Butterworth filter frequency response ............................................................................. 45 

Figure 5- 3 : Bode plot comparison between PSIM and LSM models with and without filtered data 46 

Figure 5- 4 : LSM diagram .................................................................................................................. 47 

Figure 5- 5 : Output voltage at frequency change, PSIM vs. LSM approximation ............................. 48 

Figure 5- 6 : PSIM magnitude and phase Bode plot at 142KHz switching frequency ........................ 49 

Figure 5- 7 : LSM magnitude and phase Bode plot at 142KHz switching frequency ......................... 50 

Figure 5- 8 : Output voltage with increased load PSIM vs. LSM approximation ............................... 51 

Figure 5- 9 : LSM model frequency response during load change ...................................................... 52 

Figure 5- 10 : LSM Bode plot comparison: Below fo, above fo, at fo ................................................ 52 

Figure 5- 11 : PSIM Bode plot comparison: Below fo, above fo, at fo ............................................... 53 

Figure 6- 1 : LLC control diagram ....................................................................................................... 55 

Figure 6- 2 : DSP diagram ................................................................................................................... 56 

Figure 6- 3 : Analog-to-Digital Conversion ......................................................................................... 56 

Figure 6- 4 : 8 levels of quantization ................................................................................................... 57 

Figure 6- 5 : PSIM .DLL Blocks.......................................................................................................... 58 

Figure 6- 6 : PSIM simulation setup .................................................................................................... 59 

Figure 6- 7 : PSIM ADC block vs. .DLL block comparison ............................................................... 59 

Figure 6- 8 : ADC sampling frequency comparison ............................................................................ 60 

Figure 6- 9 : Conventional PWM ......................................................................................................... 61 

Figure 6- 10 : HRPWM using MEP ..................................................................................................... 62 

Figure 6- 11 : HRPWM DLL block ..................................................................................................... 63 

A- 1 : PSIM Bode plot - 120kHz - 125kHz ......................................................................................... 77 

A- 2 : PSIM Bode Plot - 195kHz - 200kHz ......................................................................................... 78 

A- 3 : LSM Model - 120kHz-125kHz .................................................................................................. 79 

A- 4 : LSM Model - 195kHz-200kHz .................................................................................................. 80 

 



viii 
 

List of Symbols 
 

퐿  Series Resonant Inductance 
퐿  Magnetizing Inductance 
퐿  Inductance Ratio 
퐶  Resonant Capacitor 
퐶  Output Capacitor 

푛 Transformer turns ratio  

푁  Number of turns on primary side of the transformer 
푁  Number of turns on secondary side of the transformer 
푄 Quality factor 
푅  Equivalent output resistance 
푅  Output Resistance 
푟 Series resistance 
푇  Transistor switch on time 
푇  Transistor switch off time 
푑 Duty cycle 
푉  Equivalent input voltage into the resonant tank 
푉  Voltage across resonating capacitor 
푉  Output Voltage 
퐼  Resonant inductor current 
퐼  Magnetizing Current 
퐼  Peak Current 
푓  Switching frequency 
푓  Resonant frequency 
푓  Pole frequency 
휔  Angular frequency 
푍 ,푍  Circuit impedance 
 

  



ix 
 

List of Abbreviations 
 

AC Alternating Current 
ADC Analog-to-Digital converter 
BLPF Butterworth Low Pass Filter 
DC Direct Current 
DLL Dynamic Link Library 
DSP Digital Signal Processor 
EDF Extended Describing Function 
EMI Electromagnetic Interference 
HRPWM High Resolution Pulse Width Modulation 
LCC Inductor-capacitor-capacitor 
LLC Inductor-inductor-capacitor 
LPF Low Pass Filter 
LTI Linear and time invariant 
LSM Least Squares Method 
MEP Micro-edge positioning 
MOSFET Metal-oxide-semiconductor-field-effect-transistor 
PRC Parallel Resonant Circuit 
PWM Pulse-width-modulation 
SRC Series Resonant Circuit 
ZOH Zero order hold 
ZVS Zero Voltage Switching 
 

  



x 
 

List of Units 
 

A Amperes 
dB Decibels 
Hz Hertz 
S Seconds 
V Volt 
  
P Pico (10-12) 
N Nano (10-9) 
µ Micro (10-6) 
M Mili (10-3) 
K Kilo (103) 
M Mega (106) 
G Giga (109) 
 

  



xi 
 

Acknowledgements 
 

First, I would like to thank my university supervisor, Dr. William Dunford, for his guidance 

throughout my studies at UBC. His support in my two years as a master's student at UBC has been 

essential to the completion of my degree. His advice towards both my academic life and career has 

been greatly appreciated. 

Secondly, I would like to express my gratitude towards my project supervisor at Alpha Technologies, 

Dr. Rahul Khandekar. His help through the course of this project has been invaluable. I would like to 

thank him for his guidance and taking the time to meet with me and discuss the project on a weekly 

basis. Without his support much of the work presented here would not be possible. 

Next, I would like to thank the Natural Sciences and Engineering Research Council of 

Canada(NSERC) and Alpha Technologies Ltd. for their generous financial support. I would 

specifically like to thank Mr. Victor Goncalves for granting me the opportunity to use a research 

project at Alpha Technologies as my graduate work. I would also like to thank everyone else at 

Alpha Technologies that was involved in this process. Through them I have gained valuable and 

indispensable experience. In addition, I would also like to thank Mr. Brian Bella of the Faculty of 

Graduate Studies at UBC for his cooperation and support throughout the NSERC IPS scholarship 

application process. 

Lastly, but most importantly, I would like to thank my family and friends for their support over the 

years. My parents have always believed in my ability to accomplish every task I have pursued, and 

for that I am deeply grateful. 



xii 
 

Dedication 

 

 

 

 

 

 
Dedicated to my parents 



1 

CHAPTER 1   Introduction 
 

 1.1 Resonant Converters 
 

 A power supply with high efficiency , high power density, and low number of components, is 

highly desired in power electronics. This explains the popularity of resonant converters, such as the 

LLC. In addition, these circuits also contain low switching losses at high switching frequencies. 

Switching losses can be minimized by operating these circuits under soft-switching conditions. 

However, high leakage inductance, occurring across the resonating inductor or the transformer, often 

causes electromagnetic interference (EMI). Interferences in the circuit can be minimized by proper 

component selection. Further, controlling resonant type power converters is complicated, since it 

requires frequency modulation, instead of the simpler duty cycle modulation (also known as pulse-

width-modulation, or PWM). The methods of operation are almost identical in many resonant 

converter topologies. 

 Some of the most common converters are the series-resonant converter (SRC) and the 

parallel-resonant converter (PRC). Varying the switching frequency leads to a change in the circuit 

impedance of the inverter, which regulates the output voltage. The SRC circuit usually functions as a 

voltage divider, where the input voltage is divided between the impedance and the load of the circuit. 

Because of this function, high impedance is reached under light load conditions. As a result, 

regulating the output voltage is significantly more difficult[1]. In comparison, the PRC type requires 

a larger circulating current, since the load is in parallel with the resonating tank. This drawback 

makes it harder to apply the topology to high power density designs and large loads[1]. 

                                    

     Figure 1- 1a : LCC Resonant Converter                          Figure 1- 1b : LLC Resonant Converter 
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Figure 1- 1 c : LLC Resonant Converter 

 

  The limitations of both resonant converter types presented above can be eliminated with a 

series-parallel converter (SPRC) topology such as an LCC or an LLC. The LCC converter uses two 

capacitors and one inductor. The equivalent circuit configuration is shown in figure 1-1a. A 

drawback of this topology is the use of two large and expensive capacitors, used to handle large 

circulating currents[1]. 

  An LLC, a type of SPRC, can be designed in order to avoid large components and minimize 

circuit size. This circuit requires two inductors and one capacitor. Although similar in characteristics 

to the LCC, the LLC circuit can be further minimized by combining the two inductors, Lr and Lm, 

into one physical component [1]. Other benefits of the LLC configuration include high efficiency 

during output voltage regulation, over a wide variety of loading conditions, but with little change in 

the switching frequency. During this operation, the circuit can also maintain zero-voltage switching 

(ZVS). This topology can be used with either  half- or full-bridge inverters. 

 Zero-voltage switching is achieved when the MOSFET is turned on, but only after the drain-

source voltage (Vds) reaches zero. This can be achieved by reversing the current through the bode 

diode of the MOSFET, provided the switching wave at the gate of the transistor passes a turn-on 

signal[1].  
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Figure 1- 2 : ZVS characteristics [1] 

 

 As seen in Figure 1- 2, switch Q1 is turned off at time t1, and switch Q2 is turned on at t2, 

but only after its drain-source voltage has reached 0V. This presents a dead time between t1 and t2. 

During this time, the resonating current is transferred from Q1 to Q2, thus discharging Q2's drain-to-

source capacitance and forward biasing the Q2 body diode. At time t2, switch Q2 conducts and 

maintains zero Vds.  

 

 1.2 LLC Resonant Converter 
 

 Figure 1-1c shows a typical setup of a half-bridge LLC resonant converter, using a full-wave 

rectifier and an output capacitor on the secondary side of the transformer. The switches Q1 and Q2 

represent MOSFETs designed to generate a square wave voltage input into the resonating tank.  

 



4 
 

 

Figure 1- 3 : Half Bridge Inverter 

 

 The half bridge inverter is the first stage of the LLC resonant converter. It converts a DC 

input voltage into a square wave, whose frequency matches the switching frequency of the 

MOSFETs. Typically, the MOSFET's switching duty cycle (d) is set to alternate at 50% for a 

symmetric square waveform. In hardware, a small dead time is allowed between switching, in order 

to allow complete switch-off of the MOSFETs. This also achieves a zero-voltage-switching (ZVS) 

condition[1]. The output of the inverter is then fed into the resonant tank of the converter. The 

amplitude value of the square wave voltage, Vsq, is represented by: 

푉 ≈
4
휋 sin 휋

푑
2 푉푔 sin(휔푡) (1.2a) 

 

where Vg has the value of half of the amplitude of the DC voltage source, Vin. 
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Figure 1- 4 : LLC Resonant Tank 

 

 The next component of the circuit is the resonating tank. It consists of a series inductance 

(Lr),  series capacitance (Cr), series resistance (Rr), and the transformer's magnetizing inductance 

(Lm). The transformer turn's ratio (n), shown in Figure 1-1c, sets the amplitude of the voltage and 

electrical current on the secondary side of the transformer. 

푉푝
푉푠 =

푁푝
푁푠 = 푛 (1.2b) 

퐼푝
퐼푠 =

푁푠
푁푝 =

1
푛 (1.2c) 

  

 In the above formula, 푁 represents the number of winding coil turns on the primary and 

secondary side of the transformer, 푉 is the voltage on the primary and secondary side of the 

transformer, and 퐼 refers to the current on the primary and secondary side of the transformer. The 

current circulates inside the resonating network and is then delivered to the transformer. As stated 

previously, the input voltage (Vsq) is a square wave being transferred to the secondary side of the 

transformer. In this case, the transformer serves as isolator and regulator through the turn's ratio. 

Figure 1- 5 shows a simplified version of the LLC resonant converter. 

 

Figure 1- 5 : Simplified LLC circuit 
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 The value of the load resistor RL' contains the load at the output side of the converter, as well 

as the losses from the transformer and the rectifier diodes. Since the rectifier on the secondary side 

servers as a voltage regulator, the equivalent load at the output does not equal the value of the load 

resistor. The value of the output resistor as seen on the primary side of the transformer, assuming 

transformer and diode losses are small and are neglected, is given by[1]: 

푅퐿 = 	8푛
푅표
휋  (1.2d) 

 

1.3 Operation 
 

 Minimum impedance is achieved when the circuit operates around the resonating frequency 

of the LLC network. The impedance of the circuit becomes higher, as the operating conditions 

deviate away from resonance[2]. The circulating current is greatly affected by a change of the 

impedance. The resonant frequency of the circuit is dependent on the series inductor and series 

capacitor as shown in 1.3a: 

푓 =
1

2휋 퐿 퐶
 (1.3a) 

 

 In most resonating converters, fo is the only frequency affecting the performance of the 

circuit. Due to the magnetizing inductance (Lm), the operation of the LLC is also dependent on the 

output load conditions. The magnetizing inductor introduces a second frequency into the circuit, 

referred to as the pole frequency, given by the following equation:  

푓 =
1

2휋 (퐿 + 퐿 )퐶
 (1.3b) 

 

 The frequency, where the highest gain is achieved, varies between the resonating frequency 

in (1.3a) and the pole frequency shown in (1.3b).  Therefore, the converter's switching frequency (fs) 

must be set in the range fp ≤ fs ≤ fo. At zero load, i.e. an open circuit, fs = fp. At a shorted load fs = fo. 

This behaviour complicates the analysis of the LLC converter, but it also reduces the operating 
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frequency range[1]. Typically, the LLC is designed to operate around fo, making this the dominant 

frequency and a critical factor in the operation and behaviour of the converter. 

 The LLC circuit exhibits a different behaviour when operating below, above, and at the 

resonant frequency. Figure 1- 6 shows the waveforms of voltage and current at these operating 

conditions. 

 

Figure 1- 6 : From left to right: At fo, below fo and above fo [1] 

 

 The plots show the input square wave voltage (Vsq), the magnetizing current (Im), the 

resonating current (Ir), and the secondary side current (Is ). The current on the primary side (Ir) is the 

sum of the magnetizing current and secondary side current, as referred to the primary side. It should 

be noted, that since the magnetizing current is only present on the primary side, it does not contribute 

to the power transfer from the primary to the secondary side of the transformer[1]. When the 

converter's switching frequency operates at the resonant frequency, and the MOSFET (Q1) turns off, 

the resonant current equals the magnetizing current. Therefore, there is no transfer of power to the 

secondary side. At the same time the circuit achieves ZVS and soft commutation. 

 During operation below resonant frequency, the resonant current (Ir) goes below the 

magnetizing current before the end of the switching cycle, therefore stopping power transfer earlier 

than it would at the resonant frequency. In addition, the magnetizing current is still flowing on the 

primary side. Operating in this mode still achieves ZVS and soft switching on the secondary side. 

Because the current through the diodes on the secondary side is in discontinuous mode, more current 
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is required to deliver the same power to the load[1]. In this case, the additional current causes more 

losses in the circuit. ZVS can be lost if the frequency goes below a certain low point. 

 In operation above the resonant frequency the circulating current is usually the smallest. This 

reduces the losses in the circuit and puts the device into continuous-current mode. This mode 

however, can cause drastic frequency increase under light loads. 

 In addition to the resonant frequency, another key characteristic of the LLC circuit is the 

quality factor (Q) given by the following equation, where the quality factor represents the ratio 

between the characteristic impedance and the resistive load:  

푄 =
퐿푟/퐶푟
푛 푅  (1.3c) 

 

 

Figure 1- 7 : LLC Gain vs. frequency plot, compared at different values of the quality factor, Q 

 

 The plot above represents the typical characteristic of an LLC converter with changing 

quality factor. Typically the LLC operates near or along the negative slope region around the peak. 

The slope in this region is not as steep, therefore a variation in the switching frequency will cause a 

smaller, more controllable disturbance in the voltage gain. For example, in the case where the 

Quality factor is 0.78, the optimum normalized frequency (fs/fo) is in the range of 0.7 to 0.8. 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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 The last factor that influences the operation of the LLC resonant converter is the inductance 

ratio Ln, shown below: 

퐿 =
퐿
퐿  (1.3d) 

 

 The following plot shows the gain of the LLC converter with several Ln values:  

  

Figure 1- 8 : LLC Gain vs. frequency plot under varying Ln (Q = 0.65) 

 

 When the Q is fixed, a decrease in the inductance ratio (Ln) reduces the region of the curve 

horizontally, and as a result fs moves closer to fo. This leads to easier frequency control with smaller 

range and higher voltage gain. Furthermore, a decrease in Ln will cause an increase in Lr, which will 

consequently increase the quality factor, Q. The increase in Q also causes the curve to compress, as 

evident in Figure 1- 7. 

 

 A further description of the circuit can be given by its transfer function. The transfer function 

of the LLC circuit can be derived using the setup in Figure 1- 4 with the circuit impedances 

expressed as: 

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

0.3

Normalized Frequency, fn




 

 
Ln = 1
Ln = 2.6
Ln = 5
Ln = 10

푉표푢푡
푉푖푛  
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푍 =
1

푗휔퐶  (1.3e) 

 

푍 = 푗휔퐿 (1.3f) 

 

then the no load transfer function becomes: 

 

퐻(푠) =
푉표푢푡
푉푖푛 =

푠 퐿 퐶
푠 (퐿 + 퐿 ) + 	푠푅 퐶 + 1 (1.3g) 

 

where  

s = jω and 

휔 = 2휋푓  

Rr is a resistor in series with Cr and Lr 

 

With load resistor, RL as show in Figure 1- 5 the transfer function becomes 

 

퐻(푠) =
푠 푅 퐶 퐿

푠 퐶 퐿 퐿 + 	 푠 퐶 (퐿 푅 + 	 퐿 푅 + 	 퐿 푅 ) + 	푠(퐿 + 	퐶 푅 푅 ) + 	푅  (1.3h) 

 

 The equations above show that the impedance of the circuit is dependent on operating 

frequency. Therefore, varying the frequency will change the voltage at the output of the converter. 

 

 1.4 Objective of the Thesis 
 

 The objective of this thesis is to obtain a mathematical model that shows the LLC circuit's 

time and frequency domain response at any operating condition. The circuit's performance is 

evaluated during load and operational frequency changes. To show the time and frequency domain 

behavior of the LLC power converter, the circuit was first simulated in Powersim(PSIM)[35], where 

the voltage and current waveforms were observed. The results were used as a reference to assess the 

accuracy of the proposed LLC models. The proposed models are tested for stability and are proven 

accurate when, and only if, both the model and the reference yield the same time and frequency 
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domain plots. In addition, the successful model shown in this thesis adapts to different operational 

regions, but perhaps most significantly, it generates an approximation of the circuit's transfer 

function. Because of this feature, the results obtained by the new model are superior to those 

generated in PSIM. Further, given that the LLC behaves differently according to operational region, 

the transfer function can be used in the design of an adaptive feedback controller.  

 

 In addition, the thesis evaluates and simulates the effects of a digital controller, used in the 

feedback control loop of the LLC circuit. The thesis shows existing PSIM digital control simulation 

models and discusses some original PSIM modules programmed by the author. 

 

 1.5 Structure of the Thesis 
 

 The thesis includes seven chapters. Chapter 1 is an introduction to several types of resonant 

converters. It specifically explains the operation of the LLC converter circuit. The chapter covers 

different operating regions of the LLC power converter and features of the circuit. In addition, the 

chapter also provides key circuit equations. Chapter 2 shows a simulation of the LLC circuit 

conducted in PSIM. The results are evaluated and used as a reference when qualifying the proposed 

models. The chapter shows the time and frequency response of the circuit under frequency and load 

variation. Further, Chapter 2 also provides an equivalent circuit of the LLC, used to obtain the 

mathematical models in Chapters 4-5. Chapter 3 introduces some of the mathematical techniques 

used in the derivation of the models in Chapters 4-5. It demonstrates important procedures used to 

create the models but also asses their stability and accuracy. The first modelling approach is 

discussed in Chapter 4. It uses the Extended Describing Function to derive the equations of the 

circuit. Existing models are evaluated before a new model is proposed. The chapter covers a step by 

step derivation of each circuit equation and explains important approximations before providing a 

complete model of the LLC circuit. Similar to the PSIM simulation in Chapter 2, the model evaluates 

the circuit's behavior under load and frequency variation. The results are assessed and their quality 

discussed. The results obtained from this model prove unreliable and a new modelling approach is 

discussed in Chapter 5. In Chapter 5,  the circuit is modelled by the Least Squares Approximation 

Method (LSM). This model produced the transfer function of the LLC circuit. The frequency 

response of the circuit was evaluated via bode plot comparisons with the reference data obtained in 

PSIM. Chapter 7 discussed the digitizing effects of the analog-to-digital converter (ADC) and the 
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High Resolution Pulse-Width Modulation (HRPWM) module, used in the control loop of the 

physical LLC converter. Existing PSIM modelling techniques of digital control are evaluated. New 

ADC and HRPWM simulation models are proposed. Their merit and success is discussed. The final 

chapter summarizes the results and contributions of the thesis and gives suggestions to future work 

on the subject. 
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CHAPTER 2   LLC Simulation & Equivalent Circuit 
  

2.1 Introduction  
 

 The first step in mathematical modelling is to observe the circuit's behavior when simulated 

in a circuit simulator such as Powersim(PSIM). The results obtained in PSIM can then be compared 

to those of the proposed mathematical model to ensure the accuracy of the new model. In the 

simulation of the LLC, the circuit is slightly adjusted in comparison to the design in Figure 1-1c. 

Two additional components are includes: LC output filter and an Open Loop Controller. 

 Two LC filters are added on the secondary side of the transformer to filter any high 

frequency components generated by the LLC converter. In addition, the filters prevent 

electromagnetic interference at the output of the circuit. The cut-off frequency of each filter is 

designed to be 58kHz. As will be evident later on, this filter has an effect on the frequency response 

of the circuit. 

 In hardware, the switching of the MOSFETs is controlled by a digital signal processor (DSP). 

To control the switching frequency generated by the DSP the user sets the period of the time-base 

counter (TBPRD) register[7]. The clock frequency of the DSP is divided by this number to set the 

switching frequency. In this case, the DSP sampling frequency was 60MHz (i.e.  120kHz switching 

frequency can be achieved with fDSP = 60MHz and a register value TBPRD = 500). The sampling 

frequency of the DSP also puts a constraint on the range of the available switching frequencies. This 

setup is reproduced in the open loop controller build in PSIM.  

 A copy of the open loop controller is given in the figure below. Once the frequency is set by 

the technique described above, the rest of the computational blocks generate a symmetric square 

wave signal with the specified frequency; the signal is then fed into the gate pin of the MOSFETs. 

 

Figure 2- 1 : Open Loop controller 
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Figure 2- 2 : MOSFET Gate Waveform 

 

 The complete circuit diagram is shown in Figure 2- 3. The circuit includes a DC voltage 

source, half-wave inverter, LLC resonating tank, a transformer, full wave rectifier diodes, an output 

capacitor, additional output filters and a load resistor. 

 

Figure 2- 3 : PSIM circuit layout 
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 Before forming a model of the LLC resonant converter it is necessary to observe the behavior 

and dynamics of the typical circuit. The circuit in Figure 2- 3 resembles the design of a device in the 

line of products at Alpha Technologies Ltd. The typical circuit parameters are given in the table 

below. 

Simulation parameters 

Vin 400 V 
n 3.6 
LR 9.5μH 
CR 132nF 
LM 25μH 
RL 1.04Ω 
fsw 142kHz 

  

The results from the simulation of the LLC circuit in PSIM are shown in the figures to follow. The 

operating frequency is set to 142kHz which is exactly equal to the resonant frequency of the circuit, 

fo. Figure 2-4 shows the output voltage and current behavior under constant switching frequency. 

 

Figure 2- 4 :  LLC's output voltage and output current levels at constant frequency (142kHz) 
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In the next few figures, the frequency in the circuit was increased during the simulation, and the 

response was observed. The initial frequency was 142kHz and at 30ms it was changed to 147kHz. 

 

Figure 2- 5 : LLC's output voltage and output current during frequency change 

 

 To analyze the behavior of the power converter, changes in both frequency variation and load 

variation had to be tested and observed. Hence, the following figures show the circuit response when 

subjected to load variation with the switching frequency kept constant at 142kHz. For this purpose 

the load resistor value was doubled and the performance was observed.  
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Figure 2- 6 : LLC's output voltage and output current during load change 

 

 Even though the typical LLC type resonant converter relies on frequency tuning to adjust the 

output parameters of the circuit, the final test in this section includes a scenario where the duty cycle 

of the inverter was varied. This is shown in Figure 2- 7.  
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Figure 2- 7 : LLC's output voltage and output current during duty cycle change 

 

 Section 2.1 showed the behavior of the LLC circuit in time domain and how variations in 

switching frequency, load and duty cycle affect its performance. The next section will explore the 

frequency response of the circuit at several load conditions. 

 

2.2 Bode Magnitude and Phase Plot 
 

A bode plot of the circuit is an essential part of fully capturing the characteristics of the LLC 

resonant converter. The figures below compare the circuit's response at several loading conditions: 

1.04Ω, 1.25Ω, 1.6Ω which result in power load of 1.6kW, 2kW and 2.4kW respectively. 
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Figure 2- 8 : LLC PSIM magnitude and phase plot at several loading conditions 

As mentioned earlier, the output filter plays a role in the frequency response of the circuit. The poles 

causing a second peak at 58kHz are produced by the filter's frequency. Without the filter, the second 

peak value would disappear from the magnitude and phase plots. 

푓표 =
1
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퐿 = 450푛퐻 

퐶 = 16.5푢퐹 

 

Figure 2- 9 : LLC Gain vs. frequency plot, compared at different values of the quality factor, Q 

 

 The Q-plot in Figure 2- 9 represents the voltage gain, M, of the LLC resonant converter over 

a range of switching frequencies. Three load conditions were included to analyze the behavior of the 

circuit: 1.6Ω, 1.25Ω and 1.04Ω which result in quality factors of 0.52, 0.65 and 0.78 respectively. 

The graph shows the peak gain decreasing and shifting closer to the resonant frequency as the load is 

decreases, which consequently increased Q. In the case where the load is the smallest, i.e. Q is at 

0.78, best performance can achieved at switching frequencies between 70% and 100% of the 

resonating tank frequency, fo. It should be noted that when the circuit is operating along the negative 

slope, past the peak, the performance is not affected as much by variations in the switching frequency 

as it would be when operating along the positive slope, toward the peak. 

 Before creating a mathematical model it is beneficial to simplify the LLC resonant circuit in 

Figure 2- 3. This will greatly reduce the circuit analysis of the mathematical model. This is done by 

constructing an equivalent circuit of the LLC resonant converter, containing fewer components and 

exhibiting similar performance. Such a design is shown in Figure 2- 10. Here, the circuit only 

contains the main parameters, resonating inductor, resonating capacitor, magnetizing inductor, load 
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resistor and series resistance to account for loss in the inductors and capacitor. In this configuration, 

components such as the half bridge inverter and the full wave rectifier can be eliminated. 

 

 
Figure 2- 10 : LLC converter equivalent circuit 

 

 A comparison between the LLC circuit and its equivalent shows high accuracy between the 

two models. The model was tested under switching frequency and duty cycle variation. The circuit 

was initially excited with 142KHz and the frequency was later increased to 180KHz. In duty cycle 

control, the circuit duty cycle was increased from 50% to 80%. The current across the inductors and 

the voltage across the resonating capacitor were chosen as the main variables to be monitored since 

these are responsible for the circuit behavior. It was discovered that the voltage across the equivalent 

load resistor represented the voltage on the primary side of the transformer, hence to find the value of 

the output voltage it had to be divided by the turns ratio and the losses across the full wave rectifier 

had to be subtracted. This gave a satisfactory approximation of LLC output voltage value. The 

current across the resonating inductor and the voltage across the resonating capacitor display similar 

response in both models with small error in amplitude. 
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Figure 2- 11 : Resonant Current Comparison under frequency variation 

 

Figure 2- 12 : Resonant Voltage Comparison under frequency variation 
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Figure 2- 13 : Transformer Voltage Comparison under frequency variation 

 

Figure 2- 14 : Resonant Current during duty cycle change 
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Figure 2- 15 : Resonant Voltage during duty cycle change 

 

Figure 2- 16 : Transformer Voltage during duty cycle change  
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 It is evident from the comparison in each scenario above, both the LLC circuit and its 

equivalent circuit exhibit similar behavior. Thus, a mathematical model using state space 

representation with voltages and currents as state variables can be derived using the equivalent 

circuit. The amplitude and time response of the resonating current, resonating voltage and the voltage 

across the transformer in the equivalent circuit closely match the values of the original LLC circuit. 

The slight difference in amplitude is due to voltage drops across components such as the transformer, 

rectifier diodes and the equivalent series resistance of the output capacitor. The behavior of the two 

circuits is closely matched during both frequency and duty cycle disturbances with the exception of a 

90° phase shift between the two plots as seen in the zoomed-in images of figures 2-11 to 2-16. 
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CHAPTER 3   State Space Modeling 
 

3.1 Introduction 
 

 The modelling techniques used in this thesis utilized the state space representation of the 

LLC's equivalent circuit. This section will explain the basics behind this modeling method. 

 The state space model consists of a series of equations with a set of inputs, outputs and state 

variables related by a first order differential equation. For a linear and time invariant system (LTI) 

the equations can be placed into matrix form and then solved. The state space model is an efficient 

way to demonstrate the behaviour of a system with multiple inputs and outputs and obtain the 

transfer function of the system. Figure 3- 1 shows the typical block diagram representation of a state 

space model. 

 

Figure 3- 1: Block diagram of state space 

 

The continuous time state space model is in the form of 

푑푥
푑푡 = 	퐴푥(푡) + 	퐵푢(푡) (3.1a) 

 

푦(푡) = 	퐶푥(푡) + 	퐷푢(푡) (3.1b) 

 

where the vector x(t) represents the state variables, u(t) contains the inputs to the system and y(t) has 

the output variables. Typically, in an electrical circuit, the number of state variable equals the number 

of energy storage elements such as capacitors and inductors.  
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Also: 

푥(푡) ∈ 	푅  

푦(푡) ∈ 	푅  

푢(푡) ∈ 	푅  

A is the state matrix with dimensions n x n 

B is the input matrix with dimensions n x p 

C is the output matrix with dimensions q x n 

D is the output feed-forward matrix with dimensions q x p 

*An example of a state space model is given in the Appendix section. 

 

3.2 State Space Evaluation 
 

 The A matrix can be used to assess the stability of the system. In the LTI case the 

eigenvalues (λ) of the state matrix, A, correspond to the poles of the system's transfer function. 

퐺(푠) =
푌(푠)
푈(푠) = 	

(푠 − 푧1)(푠 − 푧2)(푠 − 푧3)
(푠 − 푝1)(푠 − 푝2)(푠 − 푝3)(푠 − 푝4) (3.2a) 

 

휆 = 푑푒푡	(푠퐼 − 퐴) (3.2b) 
 

z1,z2,z3 - zeros 

p1,p2,p3,p4 - poles 

The transfer function can be derived using  

퐺(푠) = 퐶(푠퐼 − 퐴) 퐵 + 퐷 (3.2c) 
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퐺(푠) =
푌(푠)
푈(푠) (3.2d) 

 

 The system can also be tested for controllability and observability. 

 Controllability allows the states of the system to be controlled by an external input and move 

the system from its initial conditions to the final value in finite time. For the system to be 

controllable, the rank of the controllability matrix must be equal to	푛, the number of rows in the state 

matrix A. 

퐶 = 푟푎푛푘[퐵	퐴퐵	퐴퐵 … 	퐴 퐵] = 	푛 

Observability allows to determine the current system states at any time, t,  by using its outputs. This 

also allows to determine the behaviour of the system using just the outputs. For a system to be 

observable the rank of the observability matrix must be the same as 푛. 

푂 = 푟푎푛푘[퐶	퐶퐴…퐶퐴 ] = 푛 

The following chapters will derive models of the LLC resonant converters in state space 
representation.   
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CHAPTER 4 Frequency Control by Describing Function Method 
 

4.1 Introduction 
 

 State space averaging is the most popular method of modeling PWM power converters. It 

shows a simple solution with satisfactory accuracy. However, this method cannot be used to fully 

describe the LLC resonant converter due to its natural frequency being close the switching frequency. 

Typically a small-signal method based on the extended describing function (EDF)[3]  has been used 

to model resonant converters. The model shows the circuit behavior under small signal changes of 

the input voltage, switching frequency and duty cycle. 

The model based on the EDF has been simplified by the following assumptions: 

I. The perturbation signal's frequency is much lower than that of the switching frequencies and 

its amplitude is very small compared to the amplitude of the variable being disturbed. 

II. The resonant component of the waveforms is assumed sinusoidal 

III. The switches and components are ideal 

 

 This approach approximates the current and voltage parameters using sine and cosine 

components of the circuit waveforms. Along with Fourier series expansion, this approximation is 

used to turn the non-linear system into linear. The final stage of the process includes small-signal 

analysis. 

 

 4.2 Existing Models 
 

 Few attempts of modelling LLC converters have been performed in the past with little 

success. This section will cover some of the most recent research in the area. Most academic papers 

use the small signal approach based on the extended describing function (EDF) to model the circuit. 

 Chang[4] at I-Shou University in Kaohsiung, Taiwan has used the EDF to model an 

equivalent circuit of the LLC resonant converter. The research follows the EDF method to obtain the 

circuit equations, however, very small portion of the results has been shown in the paper; it only 
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includes a magnitude and phase plots which can be obtained from a simulation of the LLC circuit or 

a simpler mathematical model. None of the results reference any state space modelling results for 

voltage and currents flowing inside the circuit. When this model was duplicated and tested to ensure 

its accuracy, the results were inconclusive, showing very different performance than the one shown 

in the results section of Chang's paper. 

 In addition, when the equivalent circuit proposed by the author was simulated, the values 

shown did not match the results from the detailed LLC circuit. 

 The second paper attempting to produce a model of the LLC converter comes from Tianjin 

University in Tianjin, China. Wang[8] uses the Generalized State Space Averaging method (GSSA) 

to obtain a circuit model with state variables 푥 = 	 푖 	푖 	푉 	푉 	푉 . 

 

Figure 4- 1 : Wang's LLC Equivalent circuit[8] 

 The flaw of this approach is that the author does not account for the effects of the 

magnetizing inductor and the current flowing through it. The circuit current is simply represented by 

just the current through the resonating inductor, Lr, completely ignoring the effects of the 

magnetizing inductance of the transformer. This turns the circuit into an LC type, which makes it 

simpler to analyze but does not provide an accurate solution in time or in frequency domain. The 

current equations given by Wang are as follows: 

푖 (푡) = 	 푖 (푡) sin(휔푡) + 푖 (푡) cos(휔푡) (4.2a) 

푖 = 푖 + 푖  (4.2b) 

 

The more complete representation  that includes the magnetizing current is given by 
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푖 (푡) = 	 푖 (푡) sin(휔푡) + 푖 (푡) cos(휔푡) 

푖 (푡) = 	 푖 (푡) sin(휔푡) + 푖 (푡) cos(휔푡) 

푖 = (푖 − 푖 ) + (푖 − 푖 )  (4.2c) 
 

where 푖  represents the current on the secondary side of the transformer, a combination of the 

resonant and magnetizing currents. The proposed equations by Wang[8] would only be acceptable if 

the value of the magnetizing current was much smaller than that of the resonating current 

if 푖 (푡) ≫ 푖 (푡) ,  

 
푖 = (푖 − 푖 ) + (푖 − 푖 )  → 푖 = 푖 + 푖  

 

 During simulation of the circuit using the method proposed by Wang[8], the value and 

dynamics of the resonant current waveform did not match that of the PSIM simulation results. The 

only similarity between the model proposed by Wang and the PSIM simulation of the LLC circuit 

appeared in the waveform dynamics of the resonating capacitor voltage. However, this is not enough 

to completely describe the model. 

 It might be possible for the EDF model proposed by Wang[8] to present a successful solution 

when dealing with a LCC type resonant tank, since this model will include two voltages and one 

current as state variables[6]; this will simplify the current equation to (4.2b).  

 

 4.3 New Model 
 

 Since the existing models did not provide accurate representation of the LLC converter 

dynamics, there was a need for a different model based on the EDF approach that would yield the 

necessary results. Figure 4- 2 shows the equivalent circuit. 
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Figure 4- 2 : LLC Equivalent circuit 

 The input square wave is assumed to be symmetric with its magnitude depending on half the 

magnitude of the DC input voltage. The halved DC voltage value shall be labelled as Vg. The 

equivalent circuit provides the following nonlinear state space equations: 

푉 = 푖 푟 + 퐿
푑푖
푑푡 + 	퐿

푑푖
푑푡 + 푉 	 (4.3a) 

퐿
푑푖
푑푡 = (푖 − 푖 )푅 = 푠푔푛(푖 − 푖 )푉  (4.3b) 

푑푣
푑푡 =

푖
퐶  (4.3c) 

 

where iLr, iLm and VCr are the state variables and Vo is the output variable. 

 

4.4 Harmonic Approximation 
 

 At steady state the waveforms of the LLC resonant converter are assumed sinusoidal 

therefore the fundamental harmonics of the state variables can be approximated by a combination of 

sine and cosine components as: 

 

푖 = 푖 (푡) sin(휔 푡) + 푖 (푡) cos(휔 푡) (4.4a) 

푖 = 푖 (푡) sin(휔 푡) + 푖 (푡) cos(휔 푡) (4.4b) 

푣 = 푣 (푡) sin(휔 푡) + 푣 (푡) cos(휔 푡) (4.4c) 
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The derivatives of iLr, iLm and VCr are given by: 

푑푖
푑푡 =

푑푖
푑푡 − 휔 푖 푠푖푛(휔 푡) +

푑푖
푑푡 + 휔 푖 cos	(휔 푡) (4.4d) 

푑푖
푑푡 =

푑푖
푑푡 − 휔 푖 푠푖푛(휔 푡) +

푑푖
푑푡 + 휔 푖 푐표푠(휔 푡) (4.4e) 

푑푣
푑푡 =

푑푣
푑푡 − 휔 푣 sin	(휔 푡) +

푑푣
푑푡 + 휔 푣 cos	(휔 푡) (4.4f) 

 4.5 Extended Describing Function 
 

 The extended describing function approximates the behavior of a continuously operating 

power converter by expressing the circuit variables  as a sum of harmonics of the switching 

frequency. Typically the fundamental frequency component is used when modelling resonant type 

converters[3] . The following equations are derived by EDF methods, using the fundamental 

frequency component of the voltage and current waveforms after Fourier expansion: 

푉 ≈
4
휋 sin(휋 ∙ 푑) ∗ 푉 푠푖푛(휔 푡) (4.5a) 

푠푔푛(푖 − 푖 )푉 =
4
휋

(푖 − 푖 )
푖 푉 sin(휔 푡) +

4
휋

(푖 − 푖 )
푖 푉 cos(휔 푡) (4.5b) 

|푖 − 푖 | =
2
휋 푖  (4.5c) 

푖 = 	 (푖 − 푖 ) + 	(푖 − 푖 )  (4.5d) 

 

By substituting (4.4a)-(4.5d) into (4.3a)-(4.3c) and separating the sine and cosine terms, the 

following equations are obtained: 

4
휋 sin(휋 ∙ 푑)푉 = 푖 푟 + 퐿

푑푖
푑푡 −	휔 푖 + 푣 + 	퐿

푑푖
푑푡 − 휔 푖  (4.5e) 

0 = 푖 푟 + 퐿
푑푖
푑푡 + 	휔 푖 + 푣 + 	 퐿

푑푖
푑푡 + 휔 푖  (4.5f) 

퐿
푑푖
푑푡 − 휔 푖 =

4
휋
푖 − 푖

푖 푉  (4.5g) 
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퐿
푑푖
푑푡 + 휔 푖 =

4
휋
푖 − 푖

푖 푉  (4.5h) 

퐶
푑푣
푑푡 − 휔푣 = 	 푖  (4.5i) 

퐶
푑푣
푑푡 + 휔푣 = 	 푖  (4.5j) 

In addition  

푉 =
2
휋 푖 푅  (4.5k) 

푑푉
푑푡 = 	−

푉
퐶 푅 +

2푖
휋퐶  (4.5l) 

 

4.6 Small Signal Analysis 
 

 By substituting (4.5g) into (4.5e), the equation becomes 

푑푖
푑푡 = 	휔푖 −

4
휋
푉 푖
퐿 푖 −

푣
퐿 +

4
휋

sin(휋 ∙ 푑)푉
퐿 	−

푖 푟
퐿  (4.6a) 

 

 For the small signal model to be put into state space form, each state variable needs to be 

isolated in the equation and represented as the sum of the remaining variables.  

Since a ratio between state variables exists in (4.6a) ,   , where 

푖 = 	 (푖 − 푖 ) + 	(푖 − 푖 )  , 

it is clear that this relationship of the state variables cannot be put into the states vector, therefore the 

ratio  is put into small signal form with the use of Taylor Series expansion. Expanding brackets 

gives: 

푖 = 	 푖 + 	 푖 − 	2푖 푖 + 	 푖 + 푖 − 2푖 푖  

After small signal substitution,  푖 = 퐼 + 횤̃  , 푖 = 퐼 + 횤̃  , 푖 = 퐼 + 횤̃  , 푖 =

퐼 + 횤̃  , and eliminating 2nd order small signal terms, 푖  becomes 
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횤̃ = 	 퐼 + 	 퐼 − 	2(횤̃ 퐼 + 횤̃ 퐼 ) + 	 퐼 + 퐼 − 2(횤̃ 퐼 + 횤̃ 퐼 ) 

Knowing that by Taylor Series expansion 

√1 + 푘	 	≈ 1 +
푘
2 

and grouping DC terms 

횤̃ = 	 퐼 +퐼 + 	 퐼 + 퐼 −
횤̃ 퐼 + 	 횤̃ 퐼 + 	 횤̃ 퐼 + 	 횤̃ 퐼

퐼 +퐼 + 	 퐼 + 퐼
 

∴
푖
푖 =

푖 푖 ∗

퐼 = (횤̃ + 	 퐼 )
횤∗̃

푖  

where 횤∗̃  is the conjugate of 횤̃  therefore the denominator 퐼 = 횤̃ ∙ 횤̃∗  becomes a constant term. 

푖
푖 =

횤̃ + 퐼
퐼 ∙ 퐼 +퐼 + 	 퐼 + 퐼 +

횤̃ 퐼 + 	 횤̃ 퐼 + 	 횤̃ 퐼 + 	 횤̃ 퐼
퐼 +퐼 + 	 퐼 + 퐼

 

Note: 퐼 = 	 퐼 +퐼 + 	 퐼 + 퐼  

Second order terms and DC constant terms are eliminated to give 

횤̃
횤̃ =

횤̃
퐼 +

횤̃ 퐼
퐼 +

횤̃ 퐼 퐼
퐼 +

횤̃ 퐼 퐼
퐼 +

횤̃ 퐼 퐼
퐼  

Equations for  
̃
̃

, ̃
̃

 and ̃
̃

 can be derived using the same algorithm. 

By substituting  푖 = 퐼 + 횤̃  , 푖 = 퐼 + 횤̃  , 푖 = 퐼 + 횤̃  , 푖 = 퐼 + 횤̃  , 

푣 = 푉 + 푣  , 푣 = 푉 + 푣  , 푣 = 푉 + 푣 , 푑 = 퐷 + 푑 , 휔 = 푊 + 휔 where I, V, D 

and W represent the steady stage values, the small-signal model becomes: 

푑횤̃
푑푡 = 	휔퐼 + 	푊횤̃ −

4
휋
횤̃ − 횤̃

횤̃ 푉 −
4
휋
퐼 − 퐼

퐼 푣 −
푣
퐿 + 2푑

cos(휋 ∙ 퐷)푉
퐿 	−

횤̃ 푟
퐿  

(4.6b) 

푑횤̃
푑푡 = −휔 퐼 − 횤̃ 푊 − 푣 + 	

4
휋
횤̃ − 횤̃

횤̃ 푉 −	
4
휋
퐼 − 퐼

퐼 푣 −
횤̃ 푟
퐿  

(4.6c) 



36 
 

푑횤̃
푑푡 = 휔 퐼 + 횤̃ 푊 + 	

4
휋
횤̃ − 횤̃
횤̃ 퐿 푉 + 	

4
휋
퐼 − 퐼
퐼 퐿 푣  

(4.6d) 

푑횤̃
푑푡 = −휔 퐼 − 횤̃ 푊 + 	

4
휋
횤̃ − 횤̃
횤̃ 퐿 푉 + 	

4
휋
퐼 − 퐼
퐼 퐿 푣  

(4.6e) 

푑푣
푑푡 =

횤̃
퐶 +

휔푉
퐶 +

푊푣
퐶  

(4.6f) 

푑푣
푑푡 =

횤̃
퐶 −

휔푉
퐶 −

푊푣
퐶  

(4.6g) 

푣 =
2
휋 횤̃ 푅  

(4.6h) 

푑푣 = 	−
푣
퐶 푅 +

2횤̃
휋퐶  

(4.6i) 

 

퐴 = 	

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡퐴 퐴 퐴 퐴 퐴 퐴 퐴
퐴 퐴 퐴 퐴 퐴 퐴 퐴
퐴
퐴
퐴
퐴
퐴

퐴
퐴
퐴
퐴
퐴

퐴 퐴 퐴 퐴 퐴
퐴 퐴 퐴 퐴 퐴
퐴 퐴 퐴 퐴 퐴
퐴 퐴 퐴 퐴 퐴
퐴 퐴 퐴 퐴 퐴 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

A complete representation of the matrix equations is shown in the appendix. 

 

푥 = 	

⎣
⎢
⎢
⎢
⎢
⎢
⎡
횤̃
횤̃
횤̃
횤̃
푣
푣
푣 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 

퐵 = 	

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 2 cos

휋퐷
2 퐼

															0 −퐼
													0 퐼

																0 −퐼
												0 푉

																0 −푉
											0 				0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

푢 = 푑
휔
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퐶 = [	0	0	0	0	0	0	1] 
 

 
 To compute the steady state values of the currents and voltages the derivatives inside circuit 

equations (4.5e) to (4.5l) were set to zero. These produced 7 equations with 7 unknowns with the 

state variables placed inside the x-vector and the constants inside matrix B. Using matrix 

multiplication and inversion the state variables were computed. 

퐴푥 = 퐵 → 푥 = 퐴 퐵 

 4.7 Results and Discussion 
 

 The results of the EDF MATLAB model are shown in figures 4-3 to 4-8. The duty cycle is 

kept constant at 50% and the frequency is varied from 142kHz to 147kHz. Since, the EDF model 

does not account for the filter on the secondary side of the transformer, the circuit in Figure 2- 3 was 

simulated in PSIM without the output filter to ensure proper comparison. 

 

Figure 4- 3 : EDF model currents and voltages during frequency change (142-147KHz) 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10-3

0

0.2

0.4
EDF Model

IL
 (A

)

t (s)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10-3

0

0.5

1

1.5

IL
m

 (A
)

t (s)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10-3

0

50

100

150

V
c 

(V
)

t (s)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10-3

-10

-5

0

5

Vo
 (V

)

t (s)



38 
 

 

Figure 4- 4 : PSIM model currents and voltages during frequency change (142-147KHz) 

 

 As with other EDF models the results from this approach do not match the circuit dynamics 

obtained in PSIM. The behaviour of the output voltage with respect to frequency change is similar in 

PSIM and the MATLAB model but with a different magnitude. When the switching frequency is 

increased by 5kHz, the output voltage drops in both simulations; the rest of the variables however, 

have very different response. Since the EDF model ignores any transients and focuses on the average 

values, the current waveforms are expected to oscillated after a disturbance and then settle around 

zero amperes. As seen in the figures above, it is noticeable that this is not the case in the EDF model.  
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Figure 4- 5 : EDF model during duty cycle change (50%-80%) 

 

Figure 4- 6 : PSIM model during duty cycle change 
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 As in the frequency disturbance case, during duty cycle changes only some of the parameters 

behave correctly. In this case, the amplitude of the resonant capacitor voltage shows the correct 

behavior as a result of a duty cycle disturbance where the rest of the parameters are not exact. 

 

Figure 4- 7 : EDF model Bode plot 

 

Figure 4- 8 : PSIM Bode plot 
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 A closer look at the bode plots acquired by PSIM and the model at hand show some 

similarities, especially in the phase comparison. Previous attempts by others and the results in this 

section show that the EDF approach has the potential to succeed at modelling resonant power 

converters; but it does need some additional configuration before it can be used to represent the 

characteristics of the LLC resonant converter discussed in this work. 

 In addition to showing the time domain characteristics of the circuit, it is important to have 

its frequency response. A closed loop controller for the circuit can be easily designed if the transfer 

function of the LLC at varying operating conditions was available. 

 Since it appears that the EDF model with the configuration described in this section cannot 

be used to describe the behavior of the LLC circuit a new approach is needed; possibly a method that 

focuses on the frequency response instead of the behavior of the circuit in time domain.  The 

upcoming chapter describes a technique called the Least Squares Parametric Estimation which can 

provide such a solution. 
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CHAPTER 5   Least Squares Parametric Estimation 
 

5.1 Introduction 
 

 Modeling the LLC converter via methods such as Average-State-Space modeling or an 

approach based on the Extended Describing Function has proven inadequate. Both of the modeling 

techniques used in the previous chapters do not provide adequate representation of the LLC circuit 

response when exposed to disturbances such as load variation, frequency control or duty control. The 

main goal of this research is to obtain the circuit dynamics in time and frequency domain along with 

the transfer function which in turn will help in the design of an adaptive or robust controller for the 

LLC. Hence, due to the lack of information given by the time domain models explored thus far, a 

method based on capturing the transfer function and frequency dynamics was explored. 

 The transfer function of a mathematical model serves as an effective tool for analysis of 

control systems. With the transfer function available, the system can maintain desired operational 

conditions regardless of disturbances. Furthermore, a mathematical model of a system has to be 

updatable in response to a change in the system's variables. The Least Squares Method (LSM) is one 

of several approaches that exhibit this behavior. 

 

Figure 5- 1 : LSM Model diagram 

 The LSM is based on data points captured at the input of the system and data points captured 

at the output of the system. These data are then placed into an array as such 

u = [ x1(t), x2(t), x3(t), … xn(t) ] 
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y = [ y1(t), y2(t), y3(t), … yn(t) ] 

A typical transfer function of a given system can be expressed as 

푌(푧)
푈(푧) =

푏 푧 + 푏 푧 + 푏
푧 + 푎 푧 + 푎 푧 + 푎  (5.1a) 

푌(푘) = 	 푎 푌(푘 − 1) + 푎 푌(푘 − 2) + 푎 푌(푘 − 3) + 푏 푈(푘 − 1) + 푏 푈(푘 − 2) + 	푏 푈(푘 − 3) (5.1b) 

This can be expressed in matrix form as: 

푦 = 퐴푥 (5.1c) 

where x contains the coefficients of the transfer function. 

퐴 푦 = 퐴 퐴푥 

∴ 푥 = 퐴 푦 (5.1d) 

 

In a case with many input and output samples the matrices become: 

푦 = 	
푦(1)
푦(2)

…
푦(푛)

 

퐴 = 	

⎣
⎢
⎢
⎡푥

(1) 푥 (1) … 푥 (1)
푥 (2) 푥 (2) … 푥 (2)

… … …	
푥 (푛) 푥 (푛) … 푥 (푛)⎦

⎥
⎥
⎤
 

푥 =

⎣
⎢
⎢
⎢
⎢
⎡
푏
푏
푏
푎
푎
푎 ⎦
⎥
⎥
⎥
⎥
⎤

 

 

In this case the input vector contains 

x1(k) = U(k-3), x2(k) = U(k-2), x3(k) = U(k-1), x4(k) = Y(k-3), x5(k) = Y(k-2) and x6(k) = Y(k-1) 
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where k is a variable with range 1 to n. 

 Since the inverse of a matrix requires the matrix to be square (nxn), the pseudo-inverse is 

used to convert A into a square matrix. 

퐴 푦 = 퐴 퐴푥 (5.1e) 

 

(퐴 퐴) 퐴 푦 = (퐴 퐴) (퐴 퐴)푥 

 A matrix multiplied by its inverse becomes the identity matrix, therefore the matrix 

containing the transfer function coefficients is given by 

푥 = (퐴 퐴) 퐴 푦 (5.1f) 

 

 To ensure invertability of the matrix the rank of the square matrix (퐴 퐴)  must equal n. The 

rank evaluates the linear independence of the rows, a condition for invertability. Using equation 

(5.1f), the LSM can be used to calculate the values of parameters b0, b1, b2, a0, a1, a2 and produce an 

approximation of the system's open loop transfer function. This transfer function can then be used to 

design a controller for the given circuit. 

 

 5.2 Second Order Filter 
 

 In frequency control mode of the LLC, the change in switching and hence sampling 

frequency poses a big challenge in calculating the model parameters.  Additionally, high frequency 

noise in the signal might produce aliasing effects. This makes the LSM algorithm prone to errors. 

When capturing the data the sampling frequency was kept constant and fixed at 1MHz.  

 For the LSM algorithm to produce a correct solution of the given system the following 

criteria must be satisfied: 

I. Input values must be noise free 

II. The sampling frequency must be fixed 
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  Therefore, in addition to the LSM algorithm, a 2nd order Butterworth low pass filter was 

incorporated into the model to eliminate any high frequency components introduced by the difference 

in sampling. The general form of a Butterworth filter is given by 

퐻(푠) =
퐺

1 +
 (5.2a) 

 

where Go is the DC gain, n is the order of the filter, ωc is the cut-off frequency and ω	=	2πf.  

In MATLAB  

[b, a] = butter(n,Wc) ; 

produces an n order low-pass Butterworth filter with normalized cut-off frequency Wc. The filter 

coefficients are stored in the vectors b and a. Figure 5- 3 shows a comparison between the Bode 

magnitude and phase plot of the PSIM software, LSM model without filtered parameters and the 

LSM model with its values filtered through a 2nd order Butterworth low pass filter (BLPF). 

 

Figure 5- 2 : Butterworth filter frequency response 

 The low pass filter passes frequencies lower than the cut-off and reduces the amplitude of 

signals with frequencies higher than the cut-off frequency. The Butterworth filter was chosen due to 

its flat magnitude response in the pass-band region. 
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Figure 5- 3 : Bode plot comparison between PSIM and LSM models with and without filtered data 

 

 Clearly, with the help of the BLPF the model is able to capture the complex poles, causing a 

maxima value at 5kHz, similar to the PSIM plot, but with a slightly higher magnitude. Improved 

performance can be obtained by matching the sampling frequency between PSIM and the LSM 

model as well as by including more data points (i.e. sampling at a higher frequencies).  A similar 

behavior can be observed in the phase plot. The response of the filtered LSM model is a much closer 

approximation of the response of the PSIM simulation, although the starting point is offset by 180 

degrees. 

 5.3 Simulation Results 
 

 For the LSM model to be valid it has to closely resemble the results obtained by the PSIM 

software. If successful, the LSM model would produces frequency and time domain plots that match 
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those obtained in PSIM. The advantage of the LSM model is that it will also produce the transfer 

function of the circuit, where PSIM only gives the user the frequency and time response plots. Since 

the goal is to obtain the circuit's transfer function which is to be used in the design of a feedback 

controller, the transfer function is essential. 

  The diagrams to follow will show magnitude and phase plots as well as voltage vs. time, 

compiled using PSIM and the LSM model computed in MATLAB. The similarities and differences 

will be explained. 

 Since there are three active components in the circuit, Lr, Lm, Cr, the LSM algorithm was set 

to produce a 3rd order transfer function in the form: 

푌(푧)
푈(푧) =

푏 푧 + 푏 푧 + 푏
푧 + 푎 푧 + 푎 푧 + 푎  (5.3a) 

 

 

Figure 5- 4 : LSM diagram 

 The diagram above shows a simpler representation of the LSM model. In this case, the 

frequency was used as the input, with varying values stored in a vector matrix, and the output voltage 

represented the output values. As previously mentioned, the LSM model is a simple solution to the 

circuit dynamics in frequency domain by only dealing with the interaction between inputs and 

outputs of the circuit and not the individual components. In theory, one can replace the LLC circuit 

with another circuit and obtain a successful frequency domain model of the circuit using the same 

algorithm. 
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5.3.1 PSIM vs. LSM Modelling of the LLC 
 

 To perform LSM on the LLC power converter, the PSIM input and output data were used as 

the input and output vectors. The input values were represented by the switching frequency and  the 

output by the output voltage, Vout. Two tests were done to observe the behavior of the power 

converter. First, the switching frequency was increased in a step fashion by 5 kHz during the 

simulation. This test was performed for switching frequencies of 120 kHz, 142 kHz and 195 kHz. 

Since the resonant frequency of the circuit is at 142 kHz, it is desired to observe circuit behavior at 

resonance, above resonance and below resonance. Second, the output resistance was increased, 

keeping the switching frequency the same throughout the simulation at 120 kHz, 142 kHz and 195 

kHz. A portion of the results are shown in this section, with additional findings in the Appendix 

pages. 

 Figure 5- 5 shows the output voltage response in both the PSIM simulation software and the 

LSM approximation model. The simulation was performed in PSIM, using 142 kHz as the switching 

frequency, which increased by 5 kHz to 147 kHz at time t = 30ms. The disturbance in the frequency 

caused a decrease in the output voltage from 52V to 50V. The data points collected from the 

simulation in PSIM were used to generate the LSM model and the transfer function of the system. 

 

Figure 5- 5 : Output voltage at frequency change, PSIM vs. LSM approximation 
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 The frequency  response of the LLC circuit was compared between PSIM and LSM to 

analyze the accuracy of the proposed model. Figure 5- 6 shows the results of the PSIM simulation. 

Three load conditions were tested: 1.6kW, 2.0kW and 2.4kW.  

 
 

Figure 5- 6 : PSIM magnitude and phase Bode plot at 142KHz switching frequency 

 

The results from PSIM were compared against the LSM approximation model in Figure 5- 7.  
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Figure 5- 7 : LSM magnitude and phase Bode plot at 142KHz switching frequency 

 

Transfer Function of 1.6kW load: 

−
1.2361 ∙ 10 (푧 + 1.394)(푧 − 1.001)
(푧 − 0.9994)(푧 − 	1.689푧+ 0.7799) (6.3b) 

 

a0 0.7794 b0 1.724x10-5 

a1 -2.4578 b1 -4.9643x10-6 

a2 2.6884 b2 -1.2360x10-5 

  

 The general shape of the bode plots in PSIM and those computed by the LSM exhibit similar 

behaviour. Both appear to have complex poles at around the same value of 4-5kHz. The major 

difference is that of a dominant pole at 40-50kHz. This is caused by the LC filter at the secondary 

side of the transformer, prior to the load resistor. The LSM model misses to capture this pole because 
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of a sampling difference between PSIM and the values used in MATLAB. But it is safe to ignore this 

since it plays no role in system stability. The negative gain in the transfer function introduces a phase 

shift of -180°. As already explained, the LSM uses the time domain values of PSIM to perform its 

approximation algorithm. PSIM is forced to capture values at 100KHz by simulating at 1-7s time step 

and capturing every 100th sample. This sampling difference causes not only slightly different 

pole/zero values between PSIM and LSM but also a difference in the magnitude. Yet, sampling at 

higher frequencies might demonstrate better performance. It should be noted that higher sampling 

frequency will also increase the number of samples and simulation time in both PSIM and LSM. 

 Next we observed resistive load change at the output of the LLC. The plot below represents 

the change in output voltage when the output resistance was increased from 1.04Ω to 2.04Ω. It 

appears that load change did not affect the value of the output voltage as much as switching 

frequency disturbance in the previous section. It is possible that the initial value of the load has an 

effect on the voltage variation. If the resistor is given an initial value of 100Ω or 1000Ω, much higher 

than the 1Ω, the circuit's behavior will be affected since the quality factor , Q, will be of a much 

different value. 

 Once again, the LSM model provides a satisfactory approximation of the PSIM plot. In fact, 

the shape of the LSM generated waveform resembles a delayed version of the PSIM results. 

 

Figure 5- 8 : Output voltage with increased load PSIM vs. LSM approximation 
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Figure 5- 9 : LSM model frequency response during load change 

 During load change, once again the high frequency pole was not captured by the LSM model 

and a difference in the magnitude is evident. In addition, results at different switching frequencies 

were compared in both the LSM model and PSIM.  

 

Figure 5- 10 : LSM Bode plot comparison: Below fo, above fo, at fo 
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Figure 5- 11 : PSIM Bode plot comparison: Below fo, above fo, at fo 

  

 A major difference between PSIM and the LSM approximation appears in the 120kHz plot. 

As observed from the figures above, the LSM was unable to capture the complex poles, and represent 

the maxima at 4kHz, the same way it was represented in the 142kHz solution. The main reason 

behind this behavior is the mismatched sampling frequency between PSIM and the LSM. If both 

were sampled at a higher frequency and both used the exact same data points, a closer match is 

possible. Nonetheless, the model provides a satisfactory approximation for the 142kHz and 195kHz 

simulations. The phase plot comparison between PSIM and LSM shows a more accurate 

approximation. The phase plots of both simulations show similar behavior and approximately the 

same pole/zero placements. The only difference appears in the starting point. The PSIM software 

shows a start at 0°, where the LSM model has a 180° start and it goes through a change of 360°, 

compared to 180° in PSIM. This is caused by the -ve sign captured in the LSM model which is not 

present in the PSIM model mainly due to noise injection and measurement location. 

 Additionally, as stated in the earlier sections of the paper, the LSM model fails to capture the 

poles caused by the LC filter on the secondary side of the transformer. The values of the LSM model 
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continue to decrease while the PSIM model shows a rise in magnitude past 40kHz. A higher 

sampling frequency can improve the response of the LSM approximation. 

 The results in this section show that the LSM model provides an accurate approximation of 

the frequency response of the LLC resonant converter. With the exception of some minor 

differences, the model and the approximation of the system's transfer function can be successfully 

used to obtain a closed-loop controller for the LLC circuit. 

 Before designing a control algorithm it is desirable to evaluate the performance of the LLC 

resonant converter when controlled digitally. Digital control via a digital signal processor (DSP) 

introduces delays, quantization errors and other digitizing effects into the system. The next chapter 

will focus on accurately portraying these effects in simulation. The discussion and results in the 

following sections can be used to further improve the control algorithm for digitally controller 

resonant converters such as the LLC. 
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CHAPTER 6   Digitizing Effects of an Analog-to-Digital Converter 
 

6.1 Introduction 
 

 To design a closed loop controller, the output of the system is typically fed back into the 

control box where a control algorithm is executed and the output signal of the control box adjusts the 

circuit's performance accordingly. In the case of power converters, the output voltage or current is 

typically measured to set the behaviour of the controller. If the output voltage or current is to be kept 

at a certain value, if that value changes, the controller is designed to adjust its settings and bring the 

output parameter back to its original position. 

 In the typical LLC converter the controller of the circuit sends a square waveform with 50% 

duty cycle and particular frequency to the gate of the MOSFETs. The output voltage is continuously 

monitored and if for any reason it is not at the desired value the controller uses frequency modulation 

to adjust the voltage amplitude. 

 

Figure 6- 1 : LLC control diagram 

 In digital control, the control box is represented by a digital signal processor (DSP). These 

controllers are implemented using stored computer code rather than analog components, reducing 

circuit size, complexity and cost.  
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Figure 6- 2 : DSP diagram 

 

 Unlike analog controllers where the output of the power converter is fed directly into the 

components and control is established, in digital control the signal fed into the controller needs to be 

modified before it can be used. Since the signal is in analog form it must be converted to digital. This 

is done with the help of an Analog-to-Digital converter (ADC), located inside the DSP. 

 

Figure 6- 3 : Analog-to-Digital Conversion 

 

 To convert the signal from analog to digital, the ADC samples the incoming waveform at 

some sampling frequency, typically in the kHz or MHz range for power converters. The higher the 

frequency the more accurate the sampled waveform. After the sample is captured, the ADC holds its 

value until the next sample. This is called the Sample and Hold technique. Diagrams a), b) and c) in 

Figure 6- 3 represent each stage of the process. The Zero-order-hold (ZOH) is the simplest method in 

A/D conversion[9].  

 In addition, each ADC has a set resolution. These can be 4bit, 8bit, 12bit etc. The resolution 

defines the number of levels to which the ADC can quantize the input signal. In an 8bit ADC this is 
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28 or 256 levels that can be used to map an analog signal to one of a digital nature. The resolution, 푅, 

can be calculated by 

푅 =
푉 − 푉

2 − 1  (7.1b) 

where n represents the ADC's resolution in bits and (Vmax - Vmin) is the analog voltage range. In the 

8bit example with maximum analog voltage of five volts and minimum of zero volts 

푅 =
5

255 = 0.0196 = 19.6푚푉 

 

Figure 6- 4 : 8 levels of quantization 

 

 Figure 6- 4a) shows how the ADC encodes an analog signal. It shows the scheme for 8 levels 

of quantization or 3bits. The horizontal scale represents the normalized voltage and the vertical scale 

is the ADC code in binary digits. The diagram shows another variable, the least significant bit (LSB). 

The LSB represents the voltage value of the resolution 푅. It is also said that the quantization error is 

equal to a value between one and zero LSB. Some improvement is achievable if the "staircase" 

values are shifted by 1/2 LSB, making the error in the range of ±	1/2 LSB. This quantization method 

is shown in Figure 6- 4b). 

 Although digital control provides a more flexible control solution, decreases the number of 

components and in some cases uses less power, during A\D conversion quantization errors are 

introduced into the circuit. Since the incoming analog wave is sampled, it is possible to miss 

important points on the curve. 
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6.2 Implementation 
 

 It is clear that a more accurate representation of the LLC resonant converter would include 

the quantization errors caused by the analog-to-digital converter. This section will focus on 

implementing a programmable block in PSIM to simulate the behavior of an ADC. 

 Although PSIM includes an ADC module, it can only perform at constant sampling 

frequency. In some applications it is desirable to vary the ADC sampling frequency in the hardware 

to save time and improve performance. If the dynamics of the circuit are known, the ADC can be 

programmed to use higher sampling rate around transients and lower sampling rate when the input 

analog waveform is in a plateau region. 

 Fortunately, PSIM allows the user to generate a programmable block. Inside this module the 

user can insert an algorithm written in C/C++ to perform a given task. In this case the programmable 

block also called .DLL block is used to simulate the performance of an analog-to-digital converter 

with user specified parameters such as resolution bits, sampling frequency and input voltage range. 

 

 
Figure 6- 5 : PSIM .DLL Blocks 

 

 To test the accuracy of the ADC algorithm programmed inside the DLL block, the output 

waveforms of the PSIM ADC block and the .DLL block were compared, given the same analog 

input. As mentioned before, the biggest advantage of the .DLL block is the ability to perform at 

variable sampling frequencies during the simulation. This evaluation however, was done with 

constant sampling frequency to compare the accuracy between the two implementations. 
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Figure 6- 6 : PSIM simulation setup 

 

Figure 6- 7 : PSIM ADC block vs. .DLL block comparison 

 

 The results show an identical performance between the pre-programmed ADC block and the 

.DLL block at constant sampling frequency. Given this accuracy, it can be assumed that the .DLL 

block performs correctly and its performance with variable switching frequency will be acceptable. 

The sampling frequency can be easily adjusted by varying the frequency of the square wave source in  

Figure 6- 6,  connected to the Fs pin of the DLL block. The algorithm performs measurements on the 
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rising edge of the square wave source to compute the frequency of the incoming pulses. In addition, 

the programmed block has the ability to include a one sample delay if specified by the user. 

 Figure 6- 8 shows another comparison between the ADC block designed by PSIM and the 

DLL block produced in this work. At time t=0.5ms the sampling frequency was changed from 

150kHz to 100kHz. The figure below shows the difference in the sampled voltage produced by the 

two blocks.  

 

Figure 6- 8 : ADC sampling frequency comparison 

 

6.3 High Resolution Pulse Width Modulation (HRPWM) 

 

 Once the analog signal is converted to digital, the output is run through an algorithm, 

converting it back to analog square wave signal that feeds into the gate of the MOSFETs thus, 

controlling the behavior of the power converter. Since this is digital control, the precision of the 

generated PWM waveform is limited by the system clock. For a DSP that runs at 60MHz, the duty 

cycle of the PWM waveform is constructed with samples with a period of 16.67ns. This might seem 

as very precise waveform but it some cases might have damaging effects in circuit performance. 
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Figure 6- 9 : Conventional PWM[7] 

For example, given the parameters below  

System Clock 60MHz (16.67ns) 

Duty Cycle 0.405 (40.5%) 

PWM Frequency 1.25MHz (800ns) 

Number of steps 800ns/16.67 = 48 

Number of steps for 40.5% duty 800ns*0.405 = 324ns 

324/16.67 = 19 steps 

19*16.67 = 316.73ns 

Error = 7.27ns (2.24%) 

  

 In the example above PWM alone provides accuracy with error of slightly more than 2%. In 

some applications this might be acceptable but it is desirable to minimize this value and consequently 

improve the performance of the circuit. A method called High-Resolution PWM is used to enhance 

the precision of the generated waveform. The Texas Instruments (TI) TMS320x2000 series Piccolo 

DSP is an example where HRPWM can be generated using micro-edge positioner technology (MEP). 

With MEP the DSP is able to position the edge of the PWM waveform with high accuracy of up to 

150ps [7]. The algorithm performs its usual PWM steps of 16.67ns and when it reaches the falling or 

rising edge it adjusts its step to a magnitude of 150ps. This way, the duty cycle of the PWM 

waveform is much closer to the user specified value. 



62 
 

 

Figure 6- 10 : HRPWM using MEP [7] 

 

For the previous example, if the DSP is equipped with HRPWM: 

System Clock 60MHz (16.67ns) 

Duty Cycle 0.405 (40.5%) 

PWM Frequency 1.25MHz (800ns) 

MEP 180ps 

Number of PWM steps 800ns/16.67ns = 48 steps 

Number of MEP per PWM step 16.67ns/150ps = 111 steps 

Number of steps for 40.5% duty 800ns*0.405 = 324ns 

324/16.67 = 19 steps 

19*16.67 = 316.73ns 

Error = 7.27ns (2.24%) 

Error with MEP 7.27ns/150ps = 48 steps 

316.73ns + 48*150ps = 323.93ns 

Error = 0.07ns (0.02%) 

 

As expected, the MEP technique has a significant effect on the performance, minimizing the error by 

a magnitude of more than 100. 

 As in the ADC simulation, the .DLL programmable block was used to implement HRPWM 

in PSIM. The functionality described above was used to program the block and match the hardware 

performance of HRPWM. First, the waveform was generated using larger steps of 16.67ns, and once 

it reached the next falling or rising edge, smaller steps specified by the user (default at 180ps) were 
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employed to generate the waveform up to the edge. This algorithm continued until the complete 

PWM waveform was generated. 

 

Figure 6- 11 : HRPWM DLL block 

 

Example 

System Clock 60MHz (16.67ns) 

MEP 180ps 

Duty 40.5% 

PWM Frequency 151KHz 

Ton 1/151kHz * 0.405 = 2.682119μs 

Number of PWM steps (Ton) 160 

PWM Ton 160*16.67ns = 2.6667μs 

Number of MEP steps to complete Ton 85 

HRPWM Ton MEP*85 + (1/System Clock)*160 = 2.6820μs 

 

 The example above shows a comparison of the PWM waveform with and without HRPWM. 

If the signal is generated using conventional PWM methods, the period of the positive duty cycle 

(Ton) showed a value of 2.6667μs, where the true value was at 2.682119μs. Calculations show that 

when HRPWM is utilized, the result was a much closer value of 2.6820μs. In PSIM simulation, the 

HRPWM block presented a value of 2.68209μs. It was agreed that the error of 90ps was due to 

rounding errors in both the calculation of the parameters and the simulation execution in PSIM. 

Nonetheless, the DLL block offered an acceptable performance. A copy of the C-code used to 

generate the HRPWM DLL block is given in the Appendix section. 
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 Although accurate, the major drawback of this implementation is the influence of the 

simulation step size. For the MEP algorithm to position the PWM edges precisely it requires the 

simulation time step to be a few magnitudes smaller than the MEP step size. In this case a simulation 

step of 18ps was set to work with a MEP step size of 180ps. Since the PSIM software does not offer 

variable simulation steps the simulation run time is greatly extended. If variable simulation step sizes 

were possible however, the simulation run time can be much improved by running the model at a 

larger step when it is between the rising and falling edges of the PWM signal, and running at a 

smaller step when the simulation reaches the edges. 

 Give proper selection of the simulation step, the ADC and HRPWM modules can be 

successfully used to observe the behavior and effects of quantization and micro-edge positioning in 

the LLC circuit discussed in this work. The behavior of each block can be improved once PSIM 

allows for variable simulation time steps. At this time, the results displayed in this section provide a 

sufficient model of a DSP and its effects when used along with power converters. 

 The information shown here and the results in the previous chapters provide a good starting 

point in the design of digital control of LLC resonant power converters. As evident it is essential to 

accurately model the hardware and observe the disturbances introduces with the addition of DSPs 

when designing a digital control algorithm for resonant converters. The next step is to use the 

contributions in this thesis and attempt to design a superior digital controller that would function over 

a wide range of operational conditions. 
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CHAPTER 7   Conclusion and Future Work 
 

 7.1 Conclusions  
 

 The recent rise in popularity of resonant type converters and the switch from analog to digital 

control methods requires the need for more research in these fields. In the case of the LLC type 

resonant converter a robust adaptive control is required since the dynamics of the circuit change with 

switching frequency, as discussed in the introductory section of this work. To understand the circuit 

dynamics and design a controller a modeling approach is required that would provide the designer 

with information about the circuit's time and frequency response as well as the circuit's transfer 

function(s). 

 Several methods are available for modeling resonant power converters. A technique based on 

the Extended-Describing Function was employed in Chapter 4. The EDF approach appears to 

correctly represent the dynamics of LC and LCC type resonant tanks[6] but it has inconclusive 

results in trials where two or more inductors are present in the circuit, such as is the case of the LLC 

resonant converter. As is shown in chapter 4, the model fails to correctly represent the dynamics of 

the LLC circuit. Using approaches similar to those of Kazimierczuk[6] and Yang[5], the model 

displayed inconclusive results and it was clear that additional adjustment was needed to perfect the 

model. The problem appears to be in the mathematical representation of the circulating currents since 

in the presence of a single inductor current both Kazmierczuk [6] and Wang[8] show successful 

representation of a resonant type converters. Higher order harmonic approximation might lead to 

more accurate results. Due to the inconclusive results of this model a new approach based on the 

Least Squares Approximation method was considered in Chapter 5. 

 The LSM approach is a measurement based modeling capable of describing the model 

dynamics. These dynamics can be tested in both frequency and time domain. Since one of the main 

reasons for this research is to aid in the design of a better closed-loop controller for the LLC, a 

transfer function that closely matches the system is vital. With the transfer function readily available 

one can create a constantly updating adaptive controller that would account for the circuit's dynamics 

over a large range of switching frequencies. 

 The results obtained by the LSM model show that a third order transfer function in the form 

of 
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푌(푧)
푈(푧) =

푏 푧 + 푏 푧 + 푏
푧 + 푎 푧 + 푎 푧 + 푎  

 is successful in approximating the frequency response of the LLC circuit. The transfer function 

obtained from this simple approach, based on the collection of data at the input and output of the 

resonant power converter circuit, is in an acceptable form that can be easily incorporated into the 

design of a digital controller. 

 It is evident from all the modeling attempts in this work that the LSM model provides the 

best and most useful solution to the LLC resonant converter circuit. The model provides an adequate 

representation of the real circuit dynamics in frequency domain, where the other models fail to do so. 

The small-signal model based on the EDF has potential for modelling other types of resonant circuits 

but in the case of the LLC some adjustments to the model are needed before it can compete with the 

accuracy of the LSM. 

 

7.2 Future Work 
 

 In addition to the results shown here, any future continuation of this work should focus on 

perfecting the state space model of the LLC converter based on the EDF. This model shows promise 

if some of the characteristic equations are modified to give a more accurate solution to the circuit's 

circulating currents.  

 A direct continuation of this work can focus on the design of a closed-loop adaptive 

controller using the LSM model. This can be easily implemented in PSIM via the DLL 

programmable block module. If accomplished, the block can provide an adaptive control that can 

continuously evolve with the circuit dynamics. This module combined with the blocks of the ADC 

and HRPWM can give an improved representation of the hardware based LLC resonant converter 

circuit. 

 Furthermore, it is also possible to improve the performance of the HRPWM block. Once the 

PSIM software is equipped with a variable simulation time step feature it will be achievable to 

reprogram the HRPWM to improve its accuracy and speed performance. 
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 Lastly, research and modeling of resonant type power converters has greatly increased with 

the recent popularity of this type of power converter therefore, it is likely that a new modeling 

approach will be discovered soon. Any future work based on the information given here needs to 

explore and review the most updated methods of modeling before any further study is pursued. 
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APPENDIX 
 

A.1 State Space Example 
 

푥 ̇ = 2푥 + 6푥 	+ 	3푢 

푥 ̇ 	= 	3푥 	+ 	 푥  

푥 ̇ 	= 	4푥 	− 	3푥  

푦	 = 	 푥  

푥 ̇
푥 ̇
푥 ̇

=
2 0 6
3 1 0
0 4 −3

푥
푥
푥

+ 	
3
0
0
푢 

푦	 = 	 [1 0 0]
푥
푥
푥

 

  

A.2 Duty Cycle Model: MATLAB 
 

r = 0.1; 
n = 18/5; 
Ro = 50^2/2400; 
RL = 8*(n^2)*Ro/(pi^2); 
Lr = 9.6e-6; 
Cr = 4*33e-9; 
Lm = 25e-6; 
d = 0.001; 
Vin = 400; 
D = 0; %D matrix 
 
%Steady State Values 
  
a = [-(r+RL)/Lr, RL/Lr, -1/Lr; 
    RL/Lm, -RL/Lm, 0; 
    1/Cr, 0, 0]; 
  
b = [-d*Vin/Lr;0;0]; 
  
k = a\b; 
IL=k(1); 
ILm=k(2); 
VC=k(3); 
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% DUTY MODEL 
  
 
A = [-(r+RL)/Lr, RL/Lr, -1/Lr; 
    RL/Lm, -RL/Lm, 0; 
    1/Cr, 0, 0]; 
  
 C = [RL -RL 0]; 
 B = [Vin/Lr;0;0]; 
  
%------------------------------------------------------------------------- 
  
t1= 0:1e-7:0.006; 
  
%change in input voltage, u-vector 
  
s = size(t1); 
s = s(2)/2; 
  
%change in duty cycle, 0.5 for half the simulation, 0.8 for the second half 
ds = [0.5*ones(1,s), 0.8*ones(1,s+1)]; 
[y,t,x] = lsim(sys,ds,t1); 
  
plot(t,x(:,3)); 
ylabel('Vc'); 
xlabel('t'); 
 
h = bodeoptions; 
h.frequnits = 'Hz'; 
h.xlim = [100 1e5]; 
figure 
bode(sys,h) 
 

 A.3 Frequency Control Model Based on the Extended Describing 
Function:MATLAB 
 

r = 0.1; 
Lr = 9.5e-6; 
Cr = 4*33e-9; 
Lm = 25e-6; 
Vg = 200; 
W = 2*pi*0.0001; 
Co = 3e-6; 
RL = 10.92; 
d = 0.001; 
  
ILs = 0.000001; 
ILc = 0; 
ILms = 0; 
ILmc = 0; 
Vcs = 0; 
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Vcc = 0; 
Voc = 0; 
Ip = sqrt((ILs - ILms)^2 + (ILc - ILmc)^2); 
  
  
A = [(-r - 4*Voc/(pi*Ip) + 4*ILs*(ILs-ILms)*Voc/(pi*Ip^3) - 4*ILms*(ILs-
ILms)*Voc/(pi*Ip^3))/Lr, W + 4*ILs*(ILc-ILmc)*Voc/(Lr*pi*Ip^3) - 4*ILms*(ILc-
ILmc)*Voc/(Lr*pi*Ip^3), 4*Voc/(pi*Ip*Lr) + 4*Voc*ILs*(ILms-ILs)/(Lr*pi*Ip^3) 
- 4*Voc*ILms*(ILms-ILs)/(Lr*pi*Ip^3), 4*Voc*ILs*(ILmc-ILc)/(Lr*pi*Ip^3) - 
4*Voc*ILms*(ILmc-ILc)/(Lr*pi*Ip^3), -1/Lr, 0, 4*(ILs-ILms)/(Ip*pi*Lr); 
 -W + 4*ILc*(ILs-ILms)*Voc/(Lr*pi*Ip^3) - 4*ILmc*(ILs-ILms)*Voc/(Lr*pi*Ip^3), 
(-r - 4*Voc/(pi*Ip) + 4*ILc*(ILc-ILmc)*Voc/(pi*Ip^3) - 4*ILmc*(ILc-
ILmc)*Voc/(pi*Ip^3))/Lr, 4*Voc*ILc*(ILms-ILs)/(Lr*pi*Ip^3) - 
4*Voc*ILmc*(ILms-ILs)/(Lr*pi*Ip^3), 4*Voc/(pi*Ip*Lr) + 4*Voc*ILc*(ILmc-
ILc)/(Lr*pi*Ip^3) - 4*Voc*ILmc*(ILmc-ILc)/(Lr*pi*Ip^3), 0, -1/Lr, 4*(ILc-
ILmc)/(Ip*pi*Lr); 
 4*Voc/(Ip*pi*Lm) - 4*ILs*(ILs - ILms)*Voc/(pi*Lm*Ip^3) + 4*ILms*(ILs - 
ILms)*Voc/(pi*Lm*Ip^3), -4*ILs*(ILc - ILmc)*Voc/(pi*Lm*Ip^3) + 4*ILms*(ILc - 
ILmc)*Voc/(pi*Lm*Ip^3), -4*ILs*(ILms - ILs)*Voc/(pi*Lm*Ip^3) + 4*ILms*(ILms - 
ILs)*Voc/(pi*Lm*Ip^3) - 4*Voc/(pi*Ip*Lm), W - 4*ILs*(ILmc - 
ILc)*Voc/(pi*Lm*Ip^3) + 4*ILms*(ILmc - ILc)*Voc/(pi*Lm*Ip^3), 0, 0, 4*(ILs-
ILms)/(pi*Ip); 
 -4*ILc*(ILs - ILms)*Voc/(pi*Lm*Ip^3) + 4*ILmc*(ILs - ILms)*Voc/(pi*Lm*Ip^3), 
4*Voc/(Ip*pi*Lm) - 4*ILc*(ILc - ILmc)*Voc/(pi*Lm*Ip^3) + 4*ILmc*(ILc - 
ILmc)*Voc/(pi*Lm*Ip^3), -W - 4*ILc*(ILms - ILs)*Voc/(pi*Lm*Ip^3) + 
4*ILmc*(ILms - ILs)*Voc/(pi*Lm*Ip^3), -4*ILc*(ILmc - ILc)*Voc/(pi*Lm*Ip^3) + 
4*ILmc*(ILmc - ILc)*Voc/(pi*Lm*Ip^3) - 4*Voc/(pi*Ip*Lm), 0, 0, 4*(ILc-
ILmc)/(pi*Ip); 
 1/Cr, 0, 0, 0, 0, W, 0; 
 0, 1/Cr, 0, 0, -W, 0, 0; 
 2*(ILs-ILms)/(Co*pi*Ip), 2*(ILc-ILmc)/(Co*pi*Ip), 2*(ILms-ILs)/(Co*pi*Ip), 
2*(ILmc-ILc)/(Co*pi*Ip),0,0,-1/(Co*RL)]; 
  
  
 B = [2*cos(pi*d/2)*Vg ILc; 
     0 -ILs; 
     0 ILmc; 
     0 -ILms; 
     0 Vcc; 
     0 -Vcs; 
     0 0]; 
  
 C = [0 0 0 0 0 0 1]; 
  
 D = 0; 
  
sys = ss(A,B,C,D); 
t1= 0:0.0000001:2; 
s = size(t1); 
s = s(2)/2; 
ds = [0.5*ones(1,s),0.8*ones(1,s+1)]; 
z = [2*pi*120e3*ones(1,s),2*pi*120e3*ones(1,s+1)]; 
[y,t,x] = lsim(sys,[ds;z],t1); 
  
subplot(4,1,1) 
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plot(t,sqrt(x(:,1).^2 + x(:,2).^2)); 
title('EDF Model') 
ylabel('IL (A)'); 
xlabel('t (s)'); 
grid on 
subplot(4,1,2) 
plot(t,sqrt(x(:,3).^2 + x(:,4).^2)); 
ylabel('ILm (A)'); 
xlabel('t (s)'); 
grid on 
subplot(4,1,3) 
plot(t,sqrt(x(:,5).^2 + x(:,6).^6)); 
ylabel('Vc (V)'); 
xlabel('t (s)'); 
grid on 
subplot(4,1,4) 
plot(t,y); 
ylabel('Vo (V)'); 
xlabel('t (s)'); 
grid on 
      
 

 A.4 Least Squares Method : MATLAB 
 

% clear all 
% close all 
clc 
V = v2; 
f = f2; 
format long 
  
% load('StepChange_120_125kHz.mat'); 
  
%-------------------------------------------------------------------------- 
% LSM without Low Pass Filter 
%-------------------------------------------------------------------------- 
  
N = length(f); 
  
% USING 26 Samples from above vectors u & y 
x1 = f(4:N-1); % u[n-1] 
x2 = f(3:N-2); % u[n-2] 
x3 = f(2:N-3); % u[n-3] 
x4 = V(4:N-1); % y[n-1] 
x5 = V(3:N-2); % y[n-2] 
x6 = V(2:N-3); % y[n-3] 
  
y = V(5:N); 
  
x = [x1 x2 x3 x4 x5 x6]; 
  
A = (inv(x'*x)*(x'*y)); 
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b2 = A(1,1); 
b1 = A(2,1); 
b0 = A(3,1); 
a2 = A(4,1); %a1 
a1 = A(5,1); %a2 
a0 = A(6,1); %a3 
    
Y = b2*x1 + b1*x2 + b0*x3 + a2*x4 + a1*x5 + a0*x6; 
  
Fs = 100e3; 
Ts = 1/Fs; 
t = (Ts*(0:(N-5)))'; 
  
%figure 
%plot(t,V(1:N-4),'b',t,Y,'r') 
  
% Transfer Function 
  
Gpz = tf([b2 b1 b0],[1 -a2 -a1 -a0],Ts); 
zpk(Gpz) 
  
h = bodeoptions; 
h.frequnits = 'Hz'; 
h.xlim = [100 1e5]; 
  
figure 
[m,p,w1] = bode(Gpz,h); 
grid on 
% hold on 
  
  
%-------------------------------------------------------------------------- 
%       Low Pass Filter and LSM 
%-------------------------------------------------------------------------- 
  
%% Low Pass Filter data 
[b,a] = butter(2,0.2,'low'); 
%  
v = filter(b,a,V); 
  
% v = v(2000:length(v)); 
% fr = f(2000:length(f)); 
  
fr = f; 
L = length(fr); 
  
% USING 26 Samples from above vectors u & y 
x1 = fr(4:L-1); % u[n-1] 
x2 = fr(3:L-2); % u[n-2] 
x3 = fr(2:L-3); % u[n-3] 
x4 = v(4:L-1); % y[n-1] 
x5 = v(3:L-2); % y[n-2] 
x6 = v(2:L-3); % y[n-3] 
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y = v(5:L); 
  
x = [x1 x2 x3 x4 x5 x6]; 
  
A = (inv(x'*x)*(x'*y)); 
  
b2 = A(1,1); 
b1 = A(2,1); 
b0 = A(3,1); 
a2 = A(4,1);  
a1 = A(5,1);  
a0 = A(6,1);  
    
Y1 = b2*x1 + b1*x2 + b0*x3 + a2*x4 + a1*x5 + a0*x6; 
  
Fs = 100e3; 
Ts = 1/Fs; 
t1 = (Ts*(0:(L-5)))'; 
  
% figure 
% plot(t1,v(1:L-4),'b',t1,Y1,'r') 
% grid on 
  
%% Transfer Function 
  
Gpz1 = tf([b2 b1 b0],[1 -a2 -a1 -a0],Ts); 
zpk(Gpz1) 
  
h = bodeoptions; 
h.frequnits = 'Hz'; 
h.xlim = [100 1e5]; 
  
figure 
[m2,p2,w2] = bode(Gpz1,h); 
grid on 
% hold on 
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A.5 Additional PSIM and LSM Results 
 

     

   

A- 1 : PSIM Bode plot - 120kHz - 125kHz 
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A- 2 : PSIM Bode Plot - 195kHz - 200kHz 
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A- 3 : LSM Model - 120kHz-125kHz 
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A- 4 : LSM Model - 195kHz-200kHz 
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 A.7 State Space Averaging Model 
 

  Average Model 

 

 The first modeling approach to be evaluated was based on the State-Space Averaging 

technique. This method provides accurate results when dealing with DC-DC power converters with 

constant switching frequency. Typically it is applied to duty cycle controlled converters such as 

boost, buck or buck-boost. In this case duty cycle control refers to varying the ON and OFF time of a 

transistor switch embedded in the circuit. The performance of these circuits is evaluated by 

separating the circuit into two or more equivalent circuits, based on the characteristics of the duty 

cycle, and then producing an average equation. 

 Unfortunately, the average model can be used to partially evaluate the LLC power converter 

since the performance of this type of converter is dependent on both duty cycle and frequency of the 

switched waveform but this approach is only applicable to duty cycle variation. 

 The objective of the model was to correctly represent the circuit dynamics during duty cycle 

change and provide a transfer function that approximates the frequency response of the system. 

 A variation or disturbance in a parameter can be included into the state space model using the 

small signal modeling. This method alters the model by representing the state variables stored in the 

x vector matrix as well as the input variables stored in the u vector matrix as a sum of the steady state 

value of the variable and its disturbance parameter. The representation is as such: 

푥 = 푋 + 	 푥 

Where 푋 is the steady state value and 푥 represents the disturbance. Using this approach, the duty 

cycle was set as the input to the circuit.  

 Average modeling requires two or sometimes three (if the circuit operates in discontinuous 

current mode) equivalent circuits of the power converter. One circuit presents the design when the 

switch is in an ON state and the second shows the switch OFF configuration. The two equivalent 

circuits of the LLC are shown in Figure A7- 1. 

 



84 
 

 

Figure A7- 1 : LLC Equivalent Circuits (a) ON and (b) OFF 

 

 Each configuration above is described by its unique set of equations using mesh analysis. The 

two configurations can be combined into one using the linear weighted averaging technique, 

producing one equation for the complete switching cycle of the converter. The state variables of the 

circuit in this case are based on the three active components, Lr, Cr and Lm. Hence the variables are 

labelled as ir, the current through the resonating inductor, im, the current through the magnetizing 

inductor and VCr, the voltage of the resonating capacitor. 

Configuration:  a) 

푉 = 푖 푟 + 퐿
푑푖
푑푡 + 퐿

푑푖
푑푡 	+ 	푉  (4.1a) 

퐿푚
푑푖
푑푡 = (푖 − 푖 )푅  (4.1b) 

퐶
푑푉
푑푡 = 푖  (4.1c) 

푉 = (푖 −	 푖 ) (4.1d) 

 

Hence, into state space configuration the model becomes 

a. Switch ON 

The state variables are selected as: 푥 = 	
푖
푖
푉
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b. Switch OFF 

⎣
⎢
⎢
⎢
⎢
⎡
푑푖
푑푡
푑푖
푑푡
푑푉
푑푡 ⎦

⎥
⎥
⎥
⎥
⎤

= 	

⎣
⎢
⎢
⎢
⎢
⎢
⎡−

(푟 + 푅 )
퐿

푅
퐿 −

1
퐿

푅
퐿 −

푅
퐿 0

1
퐶푟 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤
푖
푖
푉

+ 	
0
0
0
푉  

푦 = 	 [푅 −푅 0]
푖
푖
푉

 

The new matrices of the Average model are expressed as  

퐴 = 푑퐴 + 	(1 − 푑)퐴  (4.1e) 

퐵 = 푑퐵 + 	(1 − 푑)퐵  (4.1f) 

퐶 = 푑퐶 + (1 − 푑)퐶  (4.1g) 

 

where d  represents the duty cycle of the half bridge inverter. 

Next, small signal approximation is applied 

푥 = 푥 + 	 푥 ,  푢 = 푢 + 	푢 ,  푑 = 푑 + 	푑 where 푥 denotes a small signal perturbation of the variable. 

By substituting these variable into the circuit equations the small signal matrices become 



86 
 

⎣
⎢
⎢
⎢
⎢
⎡
푑횤̂
푑푡
푑횤̂
푑푡
푑푉
푑푡 ⎦

⎥
⎥
⎥
⎥
⎤

= 	

⎣
⎢
⎢
⎢
⎢
⎢
⎡−

(푟 + 푅 )
퐿

푅
퐿 −

1
퐿

푅
퐿 −

푅
퐿 0

1
퐶푟 0 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤
횤̂
횤̂
푉

+ 	

푑
퐿
0
0

		

푉
퐿
0
0

푉
푑

 

푦 = 	 [푅 −푅 0]
횤̂
횤̂
푉

 

Next, by substituting circuit parameters into the small signal matrices, giving appropriate initial 

conditions and varying the input parameters the model was able to display behavior similar to that of 

the LLC circuit simulated in PSIM. 

 

 Simulation Results 

 

 To evaluate the performance of the LLC model in PSIM and the Average model in 

MATLAB, the duty cycle of the circuit was varied from 50% to 80% with constant switching 

frequency. For the purpose of comparison, the model used the same circuit parameters as section 2.1 

Introduction. 

 

Figure A7- 2 : LLC Equivalent Circuit 

 

 



87 
 

 

Simulation parameters 

Vin 400 V 

n 3.6 

LR 9.6μH 

CR 132nF 

LM 25μH 

RL 1.04Ω 

fsw 142kHz 

d (duty) 50-80% 

 

 

Figure A7- 3 : PSIM vs. Average Model: capacitor voltage comparison 

 

 Figure A7- 3 shows the waveform of the voltage across the resonating capacitor obtained by 

simulating the equivalent circuit in PSIM and by Average modeling. As can be seen, the downfall of 

the average model is that it does not include the transient data points. This is due to the evaluation by 

small signal analysis where higher frequencies are eliminated from the model. Nonetheless, the 
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average model presents an accurate mean value of the resonating capacitor voltage during duty cycle 

change. Several duty cycle disturbances were tested with a similar outcome. In both cases, the mean 

voltage value starts at 200V and is elevated to 320V as a result of duty cycle increase to 80%. 

The relationship between the input and output voltage with respect to the duty cycle of the switched 

waveform appears to be similar to that of a buck converter's 

푑 =
푉
푉  (4.2a) 

 

 

Figure A7- 4 : PSIM vs. Average Model: resonant inductor current comparison 

 

 It is hard to evaluate the inductor current in the model since its value fluctuates around zero 

amps. The average model shows the mean value and this value does not shift with duty cycle the 

same way capacitor voltage does, therefore the results are inconclusive. A duty cycle controlled 

model of the LLC converter must include the time response of the resonating current and resonating 

voltage. In some cases the value of the transients of the current computed by the average model 

appeared to show peak amperage equal to the peak value of the current in PSIM, but not in all cases. 
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Still, the current decreased with rising duty cycle, and the average model shows a decreased in the 

transient peak, even though it is of different amplitude than in PSIM. 

 The average model appears to be a good approximation of the behaviour of the capacitor 

voltage but not of the currents circulating in the LLC converter. Since the primary objective is to 

obtain a model that includes both duty cycle and frequency control the average model did not provide 

an adequate analysis of the circuit. Other methods were investigated for a more accurate 

representation of the LLC converter operation. One such method is based on the extended describing 

function (EDF)[3][4][5]. This method considers the sinusoidal components present in the state 

variables. Typically, the EDF approach is used to approximate the behavior of non-linear systems 

and convert them to linear and time invariant (LTI). 

  

 A.8 DLL Block C/C++ Code 
 

A.8.1 ADC 
 
#include "stdafx.h" 
#include <math.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <assert.h> 
 
#include "psimblock.h" 
#include "psimutil.h" 
#include "blockdata.h" 
 
#define TYPE_PORT_INPUT   0 
#define TYPE_PORT_OUTPUT  1 
double d = 0; 
int temp_1 = 0; 
double vsamp=0; 
double jj=0; 
double jjj = 0; 
double tmp = 0; 
BOOL APIENTRY DllMain( HANDLE hModule, 
DWORD  ul_reason_for_call, 
LPVOID lpReserved 
) 
{ 
switch (ul_reason_for_call) 
{ 
case DLL_PROCESS_ATTACH: 
case DLL_THREAD_ATTACH: 
case DLL_THREAD_DETACH: 
case DLL_PROCESS_DETACH: 
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break; 
} 
return TRUE; 
} 
 
/////////////////////////////////////////////////////////////////////// 
/////////////////////////////////////////////////////////////////////// 
/////////////////////////////////////////////////////////////////////// 
#define MyApp_VERSION  "1.2" 
 
 
class Internal_DLL_Block_RuntimeData 
{ 
public: 
Internal_DLL_Block_RuntimeData() 
{ 
memset(m_szInputFile, 0, 260); 
m_nInputNodes = 0; 
m_nOutputNodes = 0; 
 
m_arrayInputNodes = NULL; 
m_arrayOutputNodes = NULL; 
} 
 
virtual ~Internal_DLL_Block_RuntimeData() 
{ 
Clear(); 
} 
 
void Clear() 
{ 
if( m_arrayInputNodes != NULL ) 
{ 
for(int nCtr=0; nCtr<m_nInputNodes; nCtr++) 
{ 
if( m_arrayInputNodes[nCtr] != NULL ) 
{ 
delete [] m_arrayInputNodes[nCtr]; 
} 
} 
delete [] m_arrayInputNodes; 
} 
if( m_arrayOutputNodes != NULL ) 
{ 
for(int nCtr=0; nCtr<m_nOutputNodes; nCtr++) 
{ 
if( m_arrayOutputNodes[nCtr] != NULL ) 
{ 
delete [] m_arrayOutputNodes[nCtr]; 
} 
} 
delete [] m_arrayOutputNodes; 
} 
} 
 
 
BOOL LoadFile(char * szFilePath) 
{ 
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char szTemp[300]; 
 
if( GetFileAttributes(szFilePath) == 0XFFFFFFFF ) 
{ //File does not exist 
sprintf(szTemp, "File does not Exist.\r\nFilename: %s", szFilePath); 
::MessageBox(NULL, szTemp, "My Program", MB_OK); 
return FALSE; 
} 
 
 
//Open selected file. 
FILE * inputStream = fopen( szFilePath, "r" ); 
if( inputStream == NULL ) 
{ //Reject file if can not open 
sprintf(szTemp, "Failed to open file.\r\nFilename: %s", szFilePath); 
::MessageBox(NULL, szTemp, "My Program", MB_OK); 
return FALSE; 
} 
 
 
//Delete previously allocated memory for m_arrayInputNodes and m_arrayOutputNodes 
Clear(); 
 
//Read input and output nodes from file. 
int nCtr = 0; 
int i = 0; 
while( fgets( szTemp, 100, inputStream ) != NULL ) 
{ 
i = 0; 
// Trim input and use  ;   for comment 
while( (szTemp[i] != '\0') && (szTemp[i] != ';') ) 
{ 
i++; 
} 
i--; 
while( (i >= 0) && 
((szTemp[i] == ' ') || (szTemp[i] == '\t') || (szTemp[i] == '\r') || (szTemp[i] == '\n') 
) 
) 
{ 
i--; 
} 
szTemp[i+1] = '\0'; 
 
 
 
nCtr++; 
if( nCtr == 1 ) 
{ //Get number of input nodes from file 
m_nInputNodes = atoi(szTemp); 
if(m_nInputNodes > 0) 
{ 
m_arrayInputNodes = new LPSTR[m_nInputNodes]; 
memset(m_arrayInputNodes, 0, sizeof(LPSTR) * m_nInputNodes); 
} 
} 
else if( nCtr == 2 ) 
{ 
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//Get number of output nodes from file 
m_nOutputNodes = atoi(szTemp); 
if(m_nOutputNodes > 0) 
{ 
m_arrayOutputNodes = new LPSTR[m_nOutputNodes]; 
memset(m_arrayOutputNodes, 0, sizeof(LPSTR) * m_nOutputNodes); 
} 
} 
else if( (nCtr >= 3) && (nCtr < (3 + m_nInputNodes) ) ) 
{ 
//Get input node labels from file 
m_arrayInputNodes[nCtr-3] = new char[strlen(szTemp)+2]; 
strcpy(m_arrayInputNodes[nCtr-3], szTemp); 
} 
else if( (nCtr >= (3 + m_nInputNodes)) && (nCtr < (3 + m_nInputNodes + m_nOutputNodes) ) 
) 
{ 
//Get output node labels from file 
m_arrayOutputNodes[nCtr-(3+m_nInputNodes)] = new char[strlen(szTemp)+2]; 
strcpy(m_arrayOutputNodes[nCtr-(3+m_nInputNodes)], szTemp); 
} 
else 
{ 
//... 
} 
} 
//end-of-file 
fclose(inputStream); 
inputStream = NULL; 
 
if( ( (m_nInputNodes == 0) && (m_nInputNodes == 0) )  || 
(nCtr < (2 + m_nInputNodes + m_nOutputNodes) ) 
) 
{ 
// file was not good 
return FALSE; 
} 
 
//keep a copy of input file path 
strcpy(m_szInputFile, szFilePath); 
 
return TRUE; 
} 
 
char * GetInputNodeLabel(int nIndex) // nIndex: Zero based index 
{ 
if( (m_arrayInputNodes != NULL) && 
( (nIndex >= 0) && (nIndex < m_nInputNodes) ) && 
(m_arrayInputNodes[nIndex] != NULL) 
) 
{ 
return m_arrayInputNodes[nIndex]; 
} 
else 
{ 
return m_emptyNode; 
} 
} 



93 
 

 
char * GetOutputNodeLabel(int nIndex) // nIndex: Zero based index 
{ 
if( (m_arrayOutputNodes != NULL) && 
( (nIndex >= 0) && (nIndex < m_nOutputNodes) ) && 
(m_arrayOutputNodes[nIndex] != NULL) 
) 
{ 
return m_arrayOutputNodes[nIndex]; 
} 
else 
{ 
return m_emptyNode; 
} 
} 
 
 
 
 
public: 
char m_szInputFile[260]; 
int m_nInputNodes; 
int m_nOutputNodes; 
 
LPSTR * m_arrayInputNodes; 
LPSTR * m_arrayOutputNodes; 
 
static char m_emptyNode[2]; 
}; 
 
char Internal_DLL_Block_RuntimeData::m_emptyNode[2] = {'\0','\0'}; 
 
 
void REQUESTUSERDATA(int nRequestReason, 
int nRequestCode, 
int nRequestParam, 
void ** ptrUserData, 
int * pnParam1, 
int * pnParam2, 
char * szParam1, 
char * szParam2 
) 
{ 
 
char szTemp[100]; 
int nNode; 
 
Internal_DLL_Block_RuntimeData * pData = (Internal_DLL_Block_RuntimeData 
*)(*ptrUserData); 
Internal_DLL_Block_RuntimeData * pData2 = NULL; 
 
switch( nRequestReason ) 
{ 
case ACTION_DLL_SELECTED: //New Element was placed on the schematic window and this DLL 
was selected. 
{ 
switch(nRequestCode) 
{ 
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case REQUEST_BEGIN: 
//Allocate User data 
assert(*ptrUserData == NULL); 
*ptrUserData = new Internal_DLL_Block_RuntimeData(); 
pData = (Internal_DLL_Block_RuntimeData *)(*ptrUserData); 
return; 
 
case REQUEST_IN_OUT_NODES: //Define the number of nodes 
// int * pnParam1(Read, Write):  returns the number of nodes. 
// int * pnParam2(Read, Write):  set to 0. not used for Embedded Software Block. 
*pnParam1 = 3; 
*pnParam2 = 0; 
return; 
 
 
case REQUEST_INPUT_NODE_INFO: //Define node names 
//  this is called several times with  "nRequestParam" set to  0 to 'number of input 
nodes - 1 (set in REQUEST_IN_OUT_NODES)' 
//   Get node information 
//   char * szParam1(Read, Write): Node Label  20 characters maximum. 
nNode = nRequestParam; 
switch(nNode) 
{ 
case 0: 
strcpy(szParam1, "Vin"); 
break; 
 
case 1: 
strcpy(szParam1, "Vout"); 
break; 
 
case 2: 
strcpy(szParam1, "Fs"); 
break; 
default: 
//assert(0); 
break; 
 
} 
return; 
 
case REQUEST_PARAM_COUNT: //Define number of input parameters 
*pnParam1 = 4; // 5 parameters 
*pnParam2 = 0; // Input Data File not required 
strcpy(szParam1, "All Files|*.*||"); //File Open Dialog Filter for InputFile. 
return; 
 
case REQUEST_DATAFILE_INFO: 
// Get Data File parameter information 
// char * szParam1: Label  20 characters maximum. 
// char * szParam2: Full file path   260 characters maximum. 
// int * pnParam1:  1: Show Display check box in property Dialog box    0: Do not show 
Display check box 
strcpy(szParam1, "Input Data File"); 
*pnParam1 = 1; // Show Display check box 
return; 
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case REQUEST_PARAM_INFO: //Define input parameter names 
{ 
// char * szParam1: parameter Label  20 characters maximum. 
// char * szParam2: parameter default value  50 characters maximum. 
// int * pnParam1:  1: Show Display check box     0: Do not show Display check box 
switch(nRequestParam) 
{ 
//One Parameter 
 
case 0: 
strcpy(szParam1, "Bits"); 
strcpy(szParam2, "8");//Default Value 
*pnParam1 = 0; // Do not Show Display check box 
break; 
 
case 1: 
strcpy(szParam1, "Vmin"); 
strcpy(szParam2, "0");//Default Value 
*pnParam1 = 0; // Do not Show Display check box 
break; 
 
case 2: 
strcpy(szParam1, "Vmax"); 
strcpy(szParam2, "3.3");//Default Value 
*pnParam1 = 0; // Do not Show Display check box 
break; 
 
case 3: 
strcpy(szParam1, "Sample Delay"); 
strcpy(szParam2, "0");//Default Value 
*pnParam1 = 0; //Do not Show Display check box 
break; 
 
} 
} 
return; 
 
 
default: 
return; 
} 
} 
return; 
 
case ACTION_ELEMENT_LOAD: 
{ 
switch(nRequestCode) 
{ 
case REQUEST_BEGIN: 
//Allocate User data 
assert(*ptrUserData == NULL); 
*ptrUserData = new Internal_DLL_Block_RuntimeData(); 
pData = (Internal_DLL_Block_RuntimeData *)(*ptrUserData); 
 
// Copy saved data in schematic file to szTemp. in this case only the DLL version was 
saved 
if( *pnParam1 == 0 ) 
{ 
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szTemp[0] = '\0'; 
} 
else 
{ 
memcpy(szTemp, szParam1, *pnParam1); 
} 
 
//Compare versions 
if( atof(MyApp_VERSION) < atof(szTemp) ) 
{ 
::MessageBox(NULL, "Data was saved by Newer version of \"My Program\". Please upgrade.", 
"My Program", MB_OK); 
//Continue loading anyway 
} 
 
if( strlen(szParam2) > 0 ) 
{ //Reload input file. 
pData->LoadFile(szParam2); 
} 
return; 
 
 
case REQUEST_IN_OUT_NODES: 
return; 
 
 
case REQUEST_INPUT_NODE_INFO: 
//  this is called several times with  "nRequestParam" set to  0 to 'number of input 
nodes - 1 (set in REQUEST_IN_OUT_NODES)' 
//   Get Input node information 
//   char * szParam1(Read, Write): Node Label  20 characters maximum. 
nNode = nRequestParam; 
switch(nNode) 
{ 
case 0: 
// strcpy(szParam1, "Vm"); 
break; 
 
case 1: 
// strcpy(szParam1, "Vcarr"); 
break; 
 
case 2: 
// strcpy(szParam1, "Vgat"); 
break; 
 
default: 
//assert(0); 
break; 
 
} 
return; 
 
case REQUEST_OUTPUT_NODE_INFO: 
//  this is called several times with  "nRequestParam" set to  0 to 'number of output 
nodes - 1 (set in REQUEST_IN_OUT_NODES)' 
//   Get Output node information 
//   char * szParam1(Read, Write): Node Label  20 characters maximum. 
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//strcpy(szParam1, pData->GetOutputNodeLabel(nRequestParam)); 
return; 
 
 
//  Schematic file saves and restores parameter information from last session. unless DLL 
version was changed 
//     and parameter number or labels are different, there is no need to modify parameter 
information 
case REQUEST_PARAM_COUNT: 
return; 
 
case REQUEST_PARAM_INFO: 
return; 
 
 
default: 
return; 
} 
} 
return; 
 
 
case ACTION_ELEMENT_SAVE:  //Saving element to schematic file 
//  char * szParam1(Write only):  copy binary data to be saved in .SCH file(DLL 
version, File Version, ...) (maximum 100 bytes) 
//  int * pnParam1(Write only):   number of valid bytes in szParam1 
//  char * szParam2(Read only): Selected Input file path 
memcpy(szParam1, MyApp_VERSION, strlen(MyApp_VERSION)+1); 
*pnParam1 = strlen(MyApp_VERSION)+1; //size of data 
return; 
 
 
 
case ACTION_INPUTFILE_CHANGED: 
{ 
switch(nRequestCode) 
{ 
case REQUEST_BEGIN: 
//   char * szParam1(Read, Write): Selected Input file path 
//   int * pnParam1(Write only):  0: Reject the file    1: set to 1 or Leave 
unchanged to accept the file 
pData2 = new Internal_DLL_Block_RuntimeData(); 
if( !(pData2->LoadFile(szParam1)) ) 
{ 
//Reject File. 
*pnParam1 = 0; 
delete pData2; 
} 
 
// file was good 
if( pData != NULL ) 
{ 
//Delete old User data and assign new one 
delete pData; 
*ptrUserData = pData = pData2; 
} 
return; 
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case REQUEST_IN_OUT_NODES: 
// Get the number of Input and Output nodes 
// int * pnParam1(Read, Write):  returns the number of input nodes. 
// int * pnParam2(Read, Write):  returns the number of output nodes. 
*pnParam1 = pData->m_nInputNodes; 
*pnParam2 = pData->m_nOutputNodes; 
return; 
 
 
case REQUEST_INPUT_NODE_INFO: 
//  this is called several times with  "nRequestParam" set to  0 to 'number of input 
nodes - 1 (set in REQUEST_IN_OUT_NODES)' 
//   Get Input node information 
//   char * szParam1(Read, Write): Node Label  20 characters maximum. 
strcpy(szParam1, pData->GetInputNodeLabel(nRequestParam)); 
return; 
 
case REQUEST_OUTPUT_NODE_INFO: 
//  this is called several times with  "nRequestParam" set to  0 to 'number of output 
nodes - 1 (set in REQUEST_IN_OUT_NODES)' 
//   Get Output node information 
//   char * szParam1(Read, Write): Node Label  20 characters maximum. 
strcpy(szParam1, pData->GetOutputNodeLabel(nRequestParam)); 
return; 
 
default: 
return; 
} 
} 
return; 
 
 
 
case ACTION_ELEMENT_DELETE: 
{ 
//Delete User data 
pData = (Internal_DLL_Block_RuntimeData *)(*ptrUserData); 
 
if( pData == NULL ) 
{ 
return; 
} 
 
delete pData; 
*ptrUserData = NULL; 
} 
return; 
 
 
case ACTION_PARAMETERS_CHANGED:  //parameters were changed in the property dialog box. 
{ 
if( nRequestCode == REQUEST_PARAM_INFO ) 
{ 
//  this is called several times with  "nRequestParam" set to  0 to 'number of 
parameters - 1 (set in REQUEST_PARAM_COUNT)' 
// Get parameter information 
// char * szParam1: parameter Label  20 characters maximum. 
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// char * szParam2: parameter default value  50 characters maximum. 
// int * pnParam1:  1: Show Display check box     0: Do not show Display check box 
switch(nRequestParam) 
{ 
//Ten Parameters 
case 0: 
//Verify Parameter value 
itoa(atoi(szParam2), szParam2, 10);//must be an integer 
break; 
 
case 1: 
//itoa(atoi(szParam2), szParam2, 10);//must be an integer 
break; 
 
case 2: 
break; 
 
case 3: 
break; 
 
} 
} 
} 
return; 
} 
} 
 
// Simulation Functions 
 
typedef struct Coeff2P2Z 
{ 
double Bits; 
double Vmin; 
double Vmax; 
double Fs; 
double sampd; 
} Coeff2P2Z; 
/* 
typedef struct Values2P2Z 
{ 
double x0; 
double x1; 
double x2; 
double y0; 
double y1; 
double y2; 
} Values2P2Z; 
*/ 
struct Internal_DLL_Block_SimulationData 
{ 
int m_nNodes, m_nTmp; 
 
char m_szInputFile[260]; 
 
// Add DLL Specific variables 
int flag_exact_switching; 
int previousSampleInput; 
struct Coeff2P2Z loopCoeff2P2Z; 



100 
 

// struct Values2P2Z loopValues2P2Z; 
 
}; 
 
 
void OPENSIMUSER(const char *szId, const char * szNetlist, void ** ptrUserData, int 
*pnError, LPSTR szErrorMsg, void * pPsimParams) 
{ 
 
EXT_FUNC_PSIM_INFO * pPsimInfo = (EXT_FUNC_PSIM_INFO *)pPsimParams; 
 
 
assert(*ptrUserData == NULL); 
*ptrUserData = new Internal_DLL_Block_SimulationData; 
 
Internal_DLL_Block_SimulationData * pData = (Internal_DLL_Block_SimulationData 
*)(*ptrUserData); 
memset(pData, 0, sizeof(Internal_DLL_Block_SimulationData) ); 
 
 
CNetListParams netlist; 
 
netlist.parse_netlist(szNetlist); 
 
 
//assert( strcmp(netlist[0],"DLL_EXT") == 0 ); 
assert( strcmp(netlist[1], szId) == 0 ); 
 
 
pData->m_nNodes  = atoi(netlist[2]); //number of nodes 
 
pData->m_nTmp = atoi(netlist[3]); // netlist[3] should be 0 for Embedded Software Block 
// netlist[4] : DLL FilePath 
 
 
int nParamStartIndex = 5 + pData->m_nNodes + pData->m_nTmp; 
 
// value of parameter 0 
pData->loopCoeff2P2Z.Bits = atof( netlist[nParamStartIndex] ); 
 
// value of parameter 1 
pData->loopCoeff2P2Z.Vmin = atof( netlist[nParamStartIndex+1] ); 
 
// value of parameter 2 
pData->loopCoeff2P2Z.Vmax = atof( netlist[nParamStartIndex+2] ); 
 
// value of parameter 3 
pData->loopCoeff2P2Z.sampd = atof( netlist[nParamStartIndex+3] ); 
 
//Initialization 
pData->previousSampleInput = 0; 
*pnError = 0; //Success 
} 
 
 
void STARTSIMUSER(int *portTypes, void ** ptrUserData, int *pnError, LPSTR szErrorMsg) 
{ 
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Internal_DLL_Block_SimulationData * pData = (Internal_DLL_Block_SimulationData 
*)(*ptrUserData); 
if( pData == NULL) { return; } 
 
 
//=========================================================== 
// Place your code here............begin 
portTypes[0] = TYPE_PORT_INPUT; 
portTypes[1] = TYPE_PORT_OUTPUT; 
portTypes[2] = TYPE_PORT_INPUT; 
 
// Place your code here............end 
//============================================================= 
 
 
*pnError = 0; //Success 
} 
 
void RUNSIMUSER2(double t, double delt, double *ports, double *ports2, int *portTypes, 
void ** ptrUserData, int *pnError, LPSTR szErrorMsg) 
{ 
Internal_DLL_Block_SimulationData * pData = (Internal_DLL_Block_SimulationData 
*)(*ptrUserData); 
if( pData == NULL) { return; } 
 
//=========================================================== 
// Place your code here............begin 
int iflag; 
double sample_delay = pData->loopCoeff2P2Z.sampd; 
double bits = pData->loopCoeff2P2Z.Bits;  //Store the #Bits set by the user 
double tsample = ports[2]; //Store clock wave 
bits = pow(2,bits);      //2^bits 
double LSB = (pData->loopCoeff2P2Z.Vmax - pData->loopCoeff2P2Z.Vmin)/bits; //Calculates 
LSB, (Vmax - Vmin)/(2^bits) 
if(tsample == 1 && jj == 0) //Sample on Rising Edge of clock 
{ 
vsamp = ports[0] + 0.5*LSB; //Sample the input value (port 0), + offset by 1/2LSB 
jj = 1;      //dummy variable to prevent sampling 
until next rising edge 
jjj = 1; 
} 
if(tsample == 0) 
{ 
jj = 0;     //when clock transistions from 1 to 0, reset 
dummy variable and wait for next rising edge to sample 
} 
temp_1 = int(vsamp/LSB); //compute the # of LSB's & convert to int -> ex. Sample Vin = 
2.012V, LSB = 0.1, therefore it takes 2.012/0.1 = 20.12 -> int -> 20 LSB steps 
d = temp_1*LSB;    //multiply the # of LSB "steps" by the LSB to 
get the ACTUAL number set by the ADC resolution 
if(sample_delay == 0) 
{ 
ports[1] = d;   //Output the value to port 1 
} 
if(sample_delay != 0 && jjj == 1) 
{ 
ports[1] = tmp;   //Output the delayed value to port 1 
} 
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if(jj == 1 && jjj == 1) 
{ 
tmp = d; 
jjj = 0; 
} 
*pnError = 0;    // Success 
} 
 
void CLOSESIMUSER(const char *szId, void ** ptrUserData) 
{ 
Internal_DLL_Block_SimulationData * pData = (Internal_DLL_Block_SimulationData 
*)(*ptrUserData); 
assert(*ptrUserData != NULL); 
 
if( pData == NULL ) 
{ 
return; 
} 
 
delete pData; 
*ptrUserData = NULL; 
} 
 

A.8.2 HRPWM 
 

#include "stdafx.h" 
#include <math.h> 
#include <stdlib.h> 
#include <stdio.h> 
#include <assert.h> 
 
#include "psimblock.h" 
#include "psimutil.h" 
#include "blockdata.h" 
 
#define TYPE_PORT_INPUT   0 
#define TYPE_PORT_OUTPUT  1 
double step = 0; 
double time_on = 0; 
double i = 0; 
double k = 0; 
BOOL APIENTRY DllMain( HANDLE hModule, 
DWORD  ul_reason_for_call, 
LPVOID lpReserved 
) 
{ 
switch (ul_reason_for_call) 
{ 
case DLL_PROCESS_ATTACH: 
case DLL_THREAD_ATTACH: 
case DLL_THREAD_DETACH: 
case DLL_PROCESS_DETACH: 
break; 
} 
return TRUE; 
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} 
 
#define MyApp_VERSION  "1.2" 
 
 
class Internal_DLL_Block_RuntimeData 
{ 
public: 
Internal_DLL_Block_RuntimeData() 
{ 
memset(m_szInputFile, 0, 260); 
m_nInputNodes = 0; 
m_nOutputNodes = 0; 
 
m_arrayInputNodes = NULL; 
m_arrayOutputNodes = NULL; 
} 
 
virtual ~Internal_DLL_Block_RuntimeData() 
{ 
Clear(); 
} 
 
void Clear() 
{ 
if( m_arrayInputNodes != NULL ) 
{ 
for(int nCtr=0; nCtr<m_nInputNodes; nCtr++) 
{ 
if( m_arrayInputNodes[nCtr] != NULL ) 
{ 
delete [] m_arrayInputNodes[nCtr]; 
} 
} 
delete [] m_arrayInputNodes; 
} 
if( m_arrayOutputNodes != NULL ) 
{ 
for(int nCtr=0; nCtr<m_nOutputNodes; nCtr++) 
{ 
if( m_arrayOutputNodes[nCtr] != NULL ) 
{ 
delete [] m_arrayOutputNodes[nCtr]; 
} 
} 
delete [] m_arrayOutputNodes; 
} 
} 
 
 
BOOL LoadFile(char * szFilePath) 
{ 
char szTemp[300]; 
 
if( GetFileAttributes(szFilePath) == 0XFFFFFFFF ) 
{ //File does not exist 
sprintf(szTemp, "File does not Exist.\r\nFilename: %s", szFilePath); 
::MessageBox(NULL, szTemp, "My Program", MB_OK); 
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return FALSE; 
} 
 
 
//Open selected file. 
FILE * inputStream = fopen( szFilePath, "r" ); 
if( inputStream == NULL ) 
{ //Reject file if can not open 
sprintf(szTemp, "Failed to open file.\r\nFilename: %s", szFilePath); 
::MessageBox(NULL, szTemp, "My Program", MB_OK); 
return FALSE; 
} 
 
 
//Delete previously allocated memory for m_arrayInputNodes and m_arrayOutputNodes 
Clear(); 
 
//Read input and output nodes from file. 
int nCtr = 0; 
int i = 0; 
while( fgets( szTemp, 100, inputStream ) != NULL ) 
{ 
i = 0; 
// Trim input and use  ;   for comment 
while( (szTemp[i] != '\0') && (szTemp[i] != ';') ) 
{ 
i++; 
} 
i--; 
while( (i >= 0) && 
((szTemp[i] == ' ') || (szTemp[i] == '\t') || (szTemp[i] == '\r') || (szTemp[i] == '\n') 
) 
) 
{ 
i--; 
} 
szTemp[i+1] = '\0'; 
 
 
nCtr++; 
if( nCtr == 1 ) 
{ //Get number of input nodes from file 
m_nInputNodes = atoi(szTemp); 
if(m_nInputNodes > 0) 
{ 
m_arrayInputNodes = new LPSTR[m_nInputNodes]; 
memset(m_arrayInputNodes, 0, sizeof(LPSTR) * m_nInputNodes); 
} 
} 
else if( nCtr == 2 ) 
{ 
//Get number of output nodes from file 
m_nOutputNodes = atoi(szTemp); 
if(m_nOutputNodes > 0) 
{ 
m_arrayOutputNodes = new LPSTR[m_nOutputNodes]; 
memset(m_arrayOutputNodes, 0, sizeof(LPSTR) * m_nOutputNodes); 
} 
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} 
else if( (nCtr >= 3) && (nCtr < (3 + m_nInputNodes) ) ) 
{ 
//Get input node labels from file 
m_arrayInputNodes[nCtr-3] = new char[strlen(szTemp)+2]; 
strcpy(m_arrayInputNodes[nCtr-3], szTemp); 
} 
else if( (nCtr >= (3 + m_nInputNodes)) && (nCtr < (3 + m_nInputNodes + m_nOutputNodes) ) 
) 
{ 
//Get output node labels from file 
m_arrayOutputNodes[nCtr-(3+m_nInputNodes)] = new char[strlen(szTemp)+2]; 
strcpy(m_arrayOutputNodes[nCtr-(3+m_nInputNodes)], szTemp); 
} 
else 
{ 
//... 
} 
} 
//end-of-file 
fclose(inputStream); 
inputStream = NULL; 
 
if( ( (m_nInputNodes == 0) && (m_nInputNodes == 0) )  || 
(nCtr < (2 + m_nInputNodes + m_nOutputNodes) ) 
) 
{ 
// file was not good 
return FALSE; 
} 
 
//keep a copy of input file path 
strcpy(m_szInputFile, szFilePath); 
 
return TRUE; 
} 
 
char * GetInputNodeLabel(int nIndex) // nIndex: Zero based index 
{ 
if( (m_arrayInputNodes != NULL) && 
( (nIndex >= 0) && (nIndex < m_nInputNodes) ) && 
(m_arrayInputNodes[nIndex] != NULL) 
) 
{ 
return m_arrayInputNodes[nIndex]; 
} 
else 
{ 
return m_emptyNode; 
} 
} 
 
char * GetOutputNodeLabel(int nIndex) // nIndex: Zero based index 
{ 
if( (m_arrayOutputNodes != NULL) && 
( (nIndex >= 0) && (nIndex < m_nOutputNodes) ) && 
(m_arrayOutputNodes[nIndex] != NULL) 
) 
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{ 
return m_arrayOutputNodes[nIndex]; 
} 
else 
{ 
return m_emptyNode; 
} 
} 
 
 
public: 
char m_szInputFile[260]; 
int m_nInputNodes; 
int m_nOutputNodes; 
 
LPSTR * m_arrayInputNodes; 
LPSTR * m_arrayOutputNodes; 
 
static char m_emptyNode[2]; 
}; 
 
char Internal_DLL_Block_RuntimeData::m_emptyNode[2] = {'\0','\0'}; 
 
 
void REQUESTUSERDATA(int nRequestReason, 
int nRequestCode, 
int nRequestParam, 
void ** ptrUserData, 
int * pnParam1, 
int * pnParam2, 
char * szParam1, 
char * szParam2 
) 
{ 
 
char szTemp[100]; 
int nNode; 
 
Internal_DLL_Block_RuntimeData * pData = (Internal_DLL_Block_RuntimeData 
*)(*ptrUserData); 
Internal_DLL_Block_RuntimeData * pData2 = NULL; 
 
switch( nRequestReason ) 
{ 
case ACTION_DLL_SELECTED: //New Element was placed on the schematic window and this DLL 
was selected. 
{ 
switch(nRequestCode) 
{ 
case REQUEST_BEGIN: 
//Allocate User data 
assert(*ptrUserData == NULL); 
*ptrUserData = new Internal_DLL_Block_RuntimeData(); 
pData = (Internal_DLL_Block_RuntimeData *)(*ptrUserData); 
return; 
 
case REQUEST_IN_OUT_NODES: //Define the number of nodes 
// int * pnParam1(Read, Write):  returns the number of nodes. 
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// int * pnParam2(Read, Write):  set to 0. not used for Embedded Software Block. 
*pnParam1 = 2; 
*pnParam2 = 0; 
return; 
 
 
case REQUEST_INPUT_NODE_INFO: //Define node names 
//  this is called several times with  "nRequestParam" set to  0 to 'number of input 
nodes - 1 (set in REQUEST_IN_OUT_NODES)' 
//   Get node information 
//   char * szParam1(Read, Write): Node Label  20 characters maximum. 
nNode = nRequestParam; 
switch(nNode) 
{ 
case 0: 
strcpy(szParam1, "Fs"); 
break; 
 
case 1: 
strcpy(szParam1, "PWM"); 
break; 
 
default: 
//assert(0); 
break; 
 
} 
return; 
 
case REQUEST_PARAM_COUNT: //Define number of input parameters 
*pnParam1 = 3; // 3 parameters 
*pnParam2 = 0; // Input Data File not required 
strcpy(szParam1, "All Files|*.*||"); //File Open Dialog Filter for InputFile. 
return; 
 
case REQUEST_DATAFILE_INFO: 
// Get Data File parameter information 
// char * szParam1: Label  20 characters maximum. 
// char * szParam2: Full file path   260 characters maximum. 
// int * pnParam1:  1: Show Display check box in property Dialog box    0: Do not show 
Display check box 
strcpy(szParam1, "Input Data File"); 
*pnParam1 = 1; // Show Display check box 
return; 
 
 
case REQUEST_PARAM_INFO: //Define input parameter names 
{ 
// char * szParam1: parameter Label  20 characters maximum. 
// char * szParam2: parameter default value  50 characters maximum. 
// int * pnParam1:  1: Show Display check box     0: Do not show Display check box 
switch(nRequestParam) 
{ 
//One Parameter 
 
case 0: 
strcpy(szParam1, "System Frequency (MHz)"); 
strcpy(szParam2, "60");//Default Value 
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*pnParam1 = 0; // Do not Show Display check box 
break; 
 
case 1: 
strcpy(szParam1, "Duty Cycle (%)"); 
strcpy(szParam2, "40.5");//Default Value 
*pnParam1 = 0; // Do not Show Display check box 
break; 
 
case 2: 
strcpy(szParam1, "MEP Step (ps)"); 
strcpy(szParam2, "180");//Default Value 
*pnParam1 = 0; // Do not Show Display check box 
break; 
 
/* 
case 5: 
strcpy(szParam1, "Sampling Frequency (Hz)"); 
strcpy(szParam2, "150000");//Default Value 
*pnParam1 = 0; // Do not Show Display check box 
break; 
*/ 
} 
} 
return; 
 
default: 
return; 
} 
} 
return; 
 
 
 
case ACTION_ELEMENT_LOAD: 
{ 
switch(nRequestCode) 
{ 
case REQUEST_BEGIN: 
//Allocate User data 
assert(*ptrUserData == NULL); 
*ptrUserData = new Internal_DLL_Block_RuntimeData(); 
pData = (Internal_DLL_Block_RuntimeData *)(*ptrUserData); 
 
// Copy saved data in schematic file to szTemp. in this case only the DLL version was 
saved 
if( *pnParam1 == 0 ) 
{ 
szTemp[0] = '\0'; 
} 
else 
{ 
memcpy(szTemp, szParam1, *pnParam1); 
} 
 
//Compare versions 
if( atof(MyApp_VERSION) < atof(szTemp) ) 
{ 
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::MessageBox(NULL, "Data was saved by Newer version of \"My Program\". Please upgrade.", 
"My Program", MB_OK); 
//Continue loading anyway 
} 
 
if( strlen(szParam2) > 0 ) 
{ //Reload input file. 
pData->LoadFile(szParam2); 
} 
return; 
 
 
case REQUEST_IN_OUT_NODES: 
// Get the number of nodes 
// int * pnParam1(Read, Write):  returns the number of nodes. 
// int * pnParam2(Read, Write):  not used for Embedded Software Block 
// *pnParam1 = 0; 
// *pnParam2 = 0; 
return; 
 
 
case REQUEST_INPUT_NODE_INFO: 
//  this is called several times with  "nRequestParam" set to  0 to 'number of input 
nodes - 1 (set in REQUEST_IN_OUT_NODES)' 
//   Get Input node information 
//   char * szParam1(Read, Write): Node Label  20 characters maximum. 
nNode = nRequestParam; 
switch(nNode) 
{ 
case 0: 
// strcpy(szParam1, "Vm"); 
break; 
 
case 1: 
// strcpy(szParam1, "Vcarr"); 
break; 
 
case 2: 
// strcpy(szParam1, "Vgat"); 
break; 
 
default: 
//assert(0); 
break; 
 
} 
return; 
 
case REQUEST_OUTPUT_NODE_INFO: 
//  this is called several times with  "nRequestParam" set to  0 to 'number of output 
nodes - 1 (set in REQUEST_IN_OUT_NODES)' 
//   Get Output node information 
//   char * szParam1(Read, Write): Node Label  20 characters maximum. 
//strcpy(szParam1, pData->GetOutputNodeLabel(nRequestParam)); 
return; 
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//  Schematic file saves and restores parameter information from last session. unless DLL 
version was changed 
//     and parameter number or labels are different, there is no need to modify parameter 
information 
case REQUEST_PARAM_COUNT: 
return; 
 
case REQUEST_PARAM_INFO: 
return; 
 
 
default: 
return; 
} 
} 
return; 
 
 
case ACTION_ELEMENT_SAVE:  //Saving element to schematic file 
//  char * szParam1(Write only):  copy binary data to be saved in .SCH file(DLL 
version, File Version, ...) (maximum 100 bytes) 
//  int * pnParam1(Write only):   number of valid bytes in szParam1 
//  char * szParam2(Read only): Selected Input file path 
memcpy(szParam1, MyApp_VERSION, strlen(MyApp_VERSION)+1); 
*pnParam1 = strlen(MyApp_VERSION)+1; //size of data 
return; 
 
 
 
case ACTION_INPUTFILE_CHANGED: 
{ 
switch(nRequestCode) 
{ 
case REQUEST_BEGIN: 
//   char * szParam1(Read, Write): Selected Input file path 
//   int * pnParam1(Write only):  0: Reject the file    1: set to 1 or Leave 
unchanged to accept the file 
pData2 = new Internal_DLL_Block_RuntimeData(); 
if( !(pData2->LoadFile(szParam1)) ) 
{ 
//Reject File. 
*pnParam1 = 0; 
delete pData2; 
} 
 
// file was good 
if( pData != NULL ) 
{ 
//Delete old User data and assign new one 
delete pData; 
*ptrUserData = pData = pData2; 
} 
return; 
 
 
case REQUEST_IN_OUT_NODES: 
// Get the number of Input and Output nodes 
// int * pnParam1(Read, Write):  returns the number of input nodes. 
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// int * pnParam2(Read, Write):  returns the number of output nodes. 
*pnParam1 = pData->m_nInputNodes; 
*pnParam2 = pData->m_nOutputNodes; 
return; 
 
 
case REQUEST_INPUT_NODE_INFO: 
//  this is called several times with  "nRequestParam" set to  0 to 'number of input 
nodes - 1 (set in REQUEST_IN_OUT_NODES)' 
//   Get Input node information 
//   char * szParam1(Read, Write): Node Label  20 characters maximum. 
strcpy(szParam1, pData->GetInputNodeLabel(nRequestParam)); 
return; 
 
case REQUEST_OUTPUT_NODE_INFO: 
//  this is called several times with  "nRequestParam" set to  0 to 'number of output 
nodes - 1 (set in REQUEST_IN_OUT_NODES)' 
//   Get Output node information 
//   char * szParam1(Read, Write): Node Label  20 characters maximum. 
strcpy(szParam1, pData->GetOutputNodeLabel(nRequestParam)); 
return; 
 
default: 
return; 
} 
} 
return; 
 
 
 
case ACTION_ELEMENT_DELETE: 
{ 
//Delete User data 
pData = (Internal_DLL_Block_RuntimeData *)(*ptrUserData); 
 
if( pData == NULL ) 
{ 
return; 
} 
 
delete pData; 
*ptrUserData = NULL; 
} 
return; 
 
 
case ACTION_PARAMETERS_CHANGED:  //parameters were changed in the property dialog box. 
{ 
if( nRequestCode == REQUEST_PARAM_INFO ) 
{ 
//  this is called several times with  "nRequestParam" set to  0 to 'number of 
parameters - 1 (set in REQUEST_PARAM_COUNT)' 
// Get parameter information 
// char * szParam1: parameter Label  20 characters maximum. 
// char * szParam2: parameter default value  50 characters maximum. 
// int * pnParam1:  1: Show Display check box     0: Do not show Display check box 
switch(nRequestParam) 
{ 
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//Ten Parameters 
case 0: 
//Verify Parameter value 
itoa(atoi(szParam2), szParam2, 10);//must be an integer 
break; 
 
case 1: 
//itoa(atoi(szParam2), szParam2, 10);//must be an integer 
break; 
 
case 2: 
break; 
 
case 3: 
break; 
 
} 
} 
} 
return; 
} 
} 
 
 
//////////////////////////////////////////////////////////////////////////////////////// 
// Simulation Functions 
 
typedef struct Coeff2P2Z 
{ 
double sysfreq; 
double duty; 
double MEP; 
} Coeff2P2Z; 
 
struct Internal_DLL_Block_SimulationData 
{ 
int m_nNodes, m_nTmp; 
 
char m_szInputFile[260]; 
 
// Add DLL Specific variables 
int flag_exact_switching; 
int previousSampleInput; 
struct Coeff2P2Z loopCoeff2P2Z; 
// struct Values2P2Z loopValues2P2Z; 
 
}; 
 
 
void OPENSIMUSER(const char *szId, const char * szNetlist, void ** ptrUserData, int 
*pnError, LPSTR szErrorMsg, void * pPsimParams) 
{ 
 
EXT_FUNC_PSIM_INFO * pPsimInfo = (EXT_FUNC_PSIM_INFO *)pPsimParams; 
 
 
assert(*ptrUserData == NULL); 
*ptrUserData = new Internal_DLL_Block_SimulationData; 
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Internal_DLL_Block_SimulationData * pData = (Internal_DLL_Block_SimulationData 
*)(*ptrUserData); 
memset(pData, 0, sizeof(Internal_DLL_Block_SimulationData) ); 
 
 
CNetListParams netlist; 
 
netlist.parse_netlist(szNetlist); 
 
 
//assert( strcmp(netlist[0],"DLL_EXT") == 0 ); 
assert( strcmp(netlist[1], szId) == 0 ); 
 
 
pData->m_nNodes  = atoi(netlist[2]); //number of nodes 
 
pData->m_nTmp = atoi(netlist[3]); // netlist[3] should be 0 for Embedded Software Block 
// netlist[4] : DLL FilePath 
 
 
int nParamStartIndex = 5 + pData->m_nNodes + pData->m_nTmp; 
 
// value of parameter 0 
pData->loopCoeff2P2Z.sysfreq = atof( netlist[nParamStartIndex] ); 
 
// value of parameter 1 
pData->loopCoeff2P2Z.duty = atof( netlist[nParamStartIndex+1] ); 
 
// value of parameter 2 
pData->loopCoeff2P2Z.MEP = atof( netlist[nParamStartIndex+2] ); 
 
//Initialization 
pData->previousSampleInput = 0; 
*pnError = 0; //Success 
} 
 
 
void STARTSIMUSER(int *portTypes, void ** ptrUserData, int *pnError, LPSTR szErrorMsg) 
{ 
Internal_DLL_Block_SimulationData * pData = (Internal_DLL_Block_SimulationData 
*)(*ptrUserData); 
if( pData == NULL) { return; } 
 
 
//=========================================================== 
// Place your code here............begin 
portTypes[0] = TYPE_PORT_INPUT; 
portTypes[1] = TYPE_PORT_OUTPUT; 
 
// Place your code here............end 
 
 
*pnError = 0; //Success 
} 
 
void RUNSIMUSER2(double t, double delt, double *ports, double *ports2, int *portTypes, 
void ** ptrUserData, int *pnError, LPSTR szErrorMsg) 



114 
 

{ 
Internal_DLL_Block_SimulationData * pData = (Internal_DLL_Block_SimulationData 
*)(*ptrUserData); 
if( pData == NULL) { return; } 
 
//=========================================================== 
// Place your code here............begin 
int iflag; 
double sysfreq = (pData->loopCoeff2P2Z.sysfreq); // 
sysfreq = sysfreq*pow(10.0,6);     // Convert to MHz 
double duty = pData->loopCoeff2P2Z.duty/100; // 
int MEP = pData->loopCoeff2P2Z.MEP * pow(10.0,-12); 
double pwmf = ports[0];       //Store pwm 
frequency 
time_on = (1/pwmf)*duty; 
double ti = (1/pwmf); 
if(i <= (time_on - (1/sysfreq))) 
{ 
i+= 1/sysfreq; 
ports[1] = 1; 
} 
if(i > (time_on-(1/sysfreq)) && i < time_on) 
{ 
i += MEP; 
ports[1] = 1; 
} 
if(i > time_on && i < (ti-(1/sysfreq))) 
{ 
ports[1] = 0; 
i+=1/sysfreq; 
} 
if(i > (ti-(1/sysfreq)) && i < ti) 
{ 
ports[1] = 0; 
i += MEP; 
} 
if(i >= ti) 
{ 
i = 0; 
} 
 
*pnError = 0;    //Success 
} 
 
void CLOSESIMUSER(const char *szId, void ** ptrUserData) 
{ 
Internal_DLL_Block_SimulationData * pData = (Internal_DLL_Block_SimulationData 
*)(*ptrUserData); 
assert(*ptrUserData != NULL); 
 
if( pData == NULL ) 
{ 
return; 
} 
 
delete pData; 
*ptrUserData = NULL; 
} 


