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Abstract

The atmospheric convective boundary layer has been studied for over thirty

years in order to understand the dynamics and scaling behaviour of its

growth by entrainment. This enables prediction of its entrainment rate and

entrainment zone depth, and so parameterizations thereof for use in global

circulation models.

Fundamentals, such as the dependence of the entrainment rate and entrain-

ment zone depth on the convective Richardson number, have been estab-

lished but there is still unresolved discussion about the form of these rela-

tionships. Details regarding the structure of the entrainment zone continue

to emerge. The variety of convective boundary layer height and entrainment

zone depth definitions adds further complexity. The study described in this

thesis aims to join this ongoing discussion.

A dry, shear-free, idealized convective boundary layer in the absence of large

scale winds was modeled using a large eddy simulation. The use of ten en-

semble cases enabled calculation of true ensemble averages and potential

temperature fluctuations as well as providing smooth average profiles. A

range of convective Richardson numbers was achieved by varying the two

principle external parameters: surface vertical heat flux and stable upper

lapse rate.

The gradient method for determining local convective boundary layer height

was found to be unreliable so a multi-linear regression method was used in-

stead. Distributions of the local heights thus determined were found to
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narrow with increased upper stability. Height and entrainment zone depth

were then defined based on the ensemble and horizontally averaged poten-

tial temperature profile. The resulting relationships of entrainment rate and

entrainment zone depth to Richardson number showed behaviour in general

agreement with theory and the results of other studies. The potential tem-

perature gradient in the upper convective boundary layer and entrainment

zone was seen to depend on the upper lapse rate, as was the positive down-

ward moving temperature fluctuations at the CBL top. Overall, once the

surface heat flux was accounted for by applying the CBL height as a scale,

the upper lapse rate emerged as the dominant parameter influencing scaled

entrainment zone depth, and potential temperature variance in the entrain-

ment zone and upper convective boundary layer.
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1. Introduction

1.1 Motivation

The daytime convective atmospheric boundary layer (CBL) over land starts

to grow after sunrise when the surface becomes warmer than the air above

it. Coherent turbulent structures (thermals) begin to form and rise, since

their relative warmth causes them to be less dense than their surroundings,

and so buoyant. The temperature profile of the residual boundary layer

is neutral; i.e., potential temperature (θ, see Section A.1) increases with

height. The thermals rise to their neutral buoyancy level, overshoot, and

then overturn or recoil. Concurrently, warm stable air from the free atmo-

sphere (FA) above is trapped or enveloped and subsequently mixed into the

growing turbulent mixed layer (ML) (Stull 1988). This mixing at the top of

the CBL is known as entrainment and the region over which it occurs, the

entrainment zone (EZ, Deardorff et al. 1980). A common, simplified con-

ceptual model of this case is the dry shear free CBL (Sullivan et al. 1998,

Federovich et al. 2004 Brooks and Fowler 2012). This model serves as an

intellectually accessible way to understand the dynamic and complex CBL

and its EZ.

CBL height and the prediction thereof are important for calculating the

concentration of any atmospheric species within the ML as well as the sizes

of the turbulent structures. In combination with the level at which clouds

condense (lifting condensation level) knowledge of EZ depth facilitates pre-

dictions pertaining to the formation of cumulus clouds. For example cloud
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cover increases as more thermals rise above their lifting condensation level

(Wilde et al. 1985). Parameterizations for both CBL growth and EZ depth

are required in mesoscale and general circulation models (GCMs). Further-

more it is an attractive goal to develop a robust set of scales for this region

analogous to Monin-Obvukov Theory (Stull 1988, Traumner et al. 2011,

Steyn et al. 1999, Nelson et al. 1989, Sorbjan 1996).

Atmospheric CBL entrainment has been studied as a separate phenomenon

(Nelson et al. 1989, Sullivan et al. 1998, Federovich et al. 2004, Brooks and

Fowler 2012) as well as within the wider topic of entrainment in geophysical

flows (Turner 1986). There is broad agreement as to the fundamental scaling

parameters and relationships involved. However, the discussion as to how

the parameters are defined and measured (Brooks and Fowler 2012, Traum-

ner et al. 2011) and the exact forms of the resulting relationships continues

(Sullivan et al. 1998, Federovich et al. 2004 Brooks and Fowler 2012). This

prompts me to ask the research questions I build up to in Section 1.2 and

outline in Section 1.3.

1.2 Relevant Background

1.2.1 The Convective Boundary Layer (CBL)

The CBL grows in three stages: (i) slowly after sunrise as the nighttime

boundary layer is burned off, (ii) rapidly in the late morning as the top rises

through the residual layer and (iii) again slowly, when the previous day’s

capping inversion is reached (Nelson et al. 1989). Convective turbulence and

the dominant upward vertical motions then begin to subside as the surface

cools. While the surface is warm, buoyancy driven thermals of somewhat

uniform potential temperature (θ) and tracer concentration at their cores

form and entrain surrounding air laterally as they rise, as well as trapping

and mixing in stable warm from above (Stull 1988, Crum et al. 1987). Un-

der conditions of strong convection and weak winds, buoyantly driven tur-

bulence dominates and shear-driven turbulence is insignificant (Fedorovich
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and Conzemius 2001). Thermal overshoot relative to their neutral buoyancy

level, and subsequent entrainment of the warmer air from aloft augments the

warming caused by the surface vertical heat flux (w′θ′)s (see Section A.1)

and results in a θ jump or inversion at the CBL top (Schmidt and Schumann

1989, Turner 1986). There may also be a residual inversion from the day

before, possibly strengthened by subsidence (Stull 1988, Sullivan et al. 1998).

Lidar images such as Figure 1.1 show the overall structure of the CBL with

rising thermals, impinging on the air above (Crum et al. 1987, Crum and

Stull 1987, Traumner et al. 2011).

Figure 1.1: Lidar backscatter image of the CBL (property of Shane D.
Mayor, Department of Geological and Environmental Sciences,
California State University). Time is on the bottom axis, back-
scatter intensity is represented by the colours red-blue. Red
corresponds to high intensity, and therefore high aerosol con-
centration. Regions with negligibly low concentrations are dark
blue.

This has been effectively modelled using large eddy simulation (LES) by

Schmidt and Schumann (1989) who used horizontal slices of turbulent po-

tential temperature and vertical velocity fluctuations (θ
′
, w
′
) at various ver-

tical levels to show how the thermals form, merge and impinge at the CBL

3



top with concurrent peripheral downward motions. The latter is supported

in the LES visualizations of Sullivan et al. (1998). The vertical cross section

within the EZ in Figure 1.2 shows the relatively cooler thermals and trapped

warmer air as well as the closely associated upward motion of cooler air and

downward motion of warmer air.

Figure 1.2: Flow visualization from Sullivan et al. 1998 showing a
modelled CBL thermal enveloping FA air.

On average these convective turbulent structures create a fully turbulent

mixed layer (ML) with eddy sizes cascading through an inertial subrange

to the molecular scales at which energy is lost via viscous dissipation (Stull

1988). Here, as represented in Figure 1.3, θ is close to uniform and increases

with respect to time due to (w′θ′)s and the downward flux of entrained sta-

ble air at the inversion (w′θ′)h. ML turbulence near the ground is dominated

by warm updraughts and cool downdraughts. With proximity to the ML

top, the updraughts become relatively cool and warmer FA air from above

is drawn downward, so in the ML w′θ′ is positive and decreasing. Directly

above the ML the air is stable with intermittent turbulence and, on average,

transitions from a uniform ML potential temperature (∂θ∂z ≈ 0) to a stable

lapse rate (γ).
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θML

θ
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z

∂θ0

∂z = γ

FA
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ML

∆θ

(a)

θ

θ0

w′θ′s

w′θ′

(b)

Figure 1.3: Idealized vertical average profiles for a dry CBL in the ab-
sence of large scale winds or subsidence. (a) θML is the average
mixed layer potential temperature. h is the height of maximum
gradient in the θ profile. The initial θ profile which has a slope
γ is represented by θ0 (dotted line). The mixed layer, entrain-
ment zone and free atmosphere are denoted ML, EZ and FA
respectively. (b) (w′θ′)s is the surface vertical heat flux. The

EZ boundaries (dashed lines) enclose the region of negative w′θ′ .

Nelson et al. (1989) outline the stages of CBL growth from when the sub-

layers of the nocturnal boundary layer are entrained, until the previous

day’s capping inversion is reached and a quasi-steady growth is attained.

The EZ depth relative to CBL height varies throughout these stages and

its relationship to scaled entrainment exhibits hysteresis. Numerical studies

typically represent this last quasi-steady phase involving a constant (w′θ′)s

working against an inversion and/or a stable γ (Schmidt and Schumann

1989, Sorbjan 1996, Sullivan et al. 1998, Federovich et al. 2004, Brooks and

Fowler 2012, Garcia and Mellado 2014).
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1.2.2 CBL Height

The ML is fully turbulent with a uniform average potential temperature (θ)

which increases sharply over the EZ . Aerosol and water-vapour concen-

trations decrease dramatically with transition to the stable upper FA. So

any of these characteristics can support a definition of CBL height. Nelson

et al. (1989) defined CBL height in terms of the percentage of ML air and

identified it by eye from Lidar back-scatter images. Traumner et al. (2011)

compared four automated methods applied to Lidar images:

• a suitable threshold value above which the air is categorized as ML

air,

• the point of minimum (largest negative) vertical gradient,

• the point of minimum vertical gradient based on a fitted idealized

curve,

• and the maximum wavelet covariance.

CBL height detection is a wide and varied field. Both Brooks and Fowler

(2012) and Traumner et al. 2011 provide more thorough reviews.

Numerical models produce hundreds of local horizontal points from which

smooth averaged vertical profiles are obtained, and statistically robust re-

lationships inferred. Brooks and Fowler (2012) applied a wavelet technique

to identify the height of maximum covariance in local vertical tracer profiles

in their LES study. They compared this method to the gradient method i.e.

locating the height of most negative vertical tracer concentration gradient,

as well as the height of minimum w′θ′ as shown later in Figure 2.1. This

last definition is common among LES and laboratory studies where it has

been referred to as the inversion height (Deardorff et al. 1980, Sorbjan 1996,

Federovich et al. 2004). Sullivan et al. (1998) clarified that the extrema of

the four w′θ′ quadrants (upward warm: w′+θ′+, downward warm: w′−θ′+,

upward cool: w′+θ′−, downward cool: w′−θ′−) in the EZ more or less corre-

spond to the average point of maximum ∂θ
∂z (see h in Figure 1.3), whereas the
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point of minimum w′θ′ was consistently lower. They defined CBL height,

based on local ∂θ
∂z and applied horizontal averaging, as well as in two ways

based on w′θ′ for comparison.

1.2.3 CBL Growth by Entrainment

The CBL grows by trapping pockets of warm stable air between or adjacent

to impinging thermal plumes. Traumner et al. (2011) summarize two cate-

gories of CBL entrainment:

• Non turbulent fluid can be engulfed between or in the overturning of

thermal plumes. This kind of event has been supported by the visual-

izations in Sullivan et al.’s (1998) LES study as well as in Traumner

et al.’s (2011) observations. In both it appeared to occur under a weak

inversion or upper lapse rate (γ)

• Impinging thermal plumes distort the inversion interface dragging wisps

of warm stable air down at their edges or during recoil under a strong

inversion or lapse rate. This type of event is supported by the findings

of both Sullivan et al. (1998) and Traumner et al. (2011).

Shear induced instabilities do occur at the top of the atmospheric bound-

ary layer and in some laboratory studies of turbulent boundary layers, un-

der conditions of very high stability, breaking of internal waves have been

observed. Entrainment via the former is relatively insignificant in strong

convection, and the latter has not been directly observed in real or modeled

atmospheric CBLs over the range of conditions considered here (Traumner

et al. 2011, Sullivan et al. 1998).

1.2.4 The CBL Entrainment Zone (EZ)

The ML is fully turbulent but the top is characterized by stable air with

intermittent turbulence due to the higher reaching thermals. Garcia and

Mellado (2014) demonstrate that the EZ is subdivided in terms of length
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and buoyancy scales. That is, the lower region is comprised of mostly tur-

bulent air with pockets of stable warmer air that are quickly mixed, and

so scales with the convective scales (see section 1.2.6). Whereas the upper

region is mostly stable apart from the impinging thermals so scaling here

is more influenced by the lapse rate (γ). In the EZ the vertical heat flux,

w′θ′ , switches sign relative to that in the ML. The fast updraughts are now

relatively cool w′+θ′−. In their analysis of the four w′θ′ quadrants Sullivan

et al. (1998) concluded that the net dynamic in this region is downward

motion of warm air (w′−θ′+) from the free atmosphere (FA) since the other

three quadrants effectively cancel.

In terms of tracer concentration, and for example based on a Lidar backscat-

ter profile, there are two ways to conceptually define the EZ. It can be

thought of as the range in space (or time) over which local CBL height

varies (Crum et al. 1987) or a local region over which the concentration (or

back-scatter intensity) transitions from ML to FA values (Traumner et al.

2011). The latter can be estimated using either curve-fitting or wavelet tech-

niques (Traumner et al. 2011, Steyn et al. 1999, Brooks and Fowler 2012).

Brooks and Fowler apply a wavelet technique to tracer profiles for the de-

termination of EZ boundaries, in their 2012 LES study. However, it is more

common in numerical modelling and laboratory studies for the EZ bound-

aries to be defined based on the average vertical turbulent heat flux (w′θ′)

i.e. the points enclosing the negative region as shown in Figure 1.3 (Dear-

dorff et al. 1980, Federovich et al. 2004, Garcia and Mellado 2014). Bulk

models based on the representation in Figure 1.3 assume the region of neg-

ative w′θ′ coincides with the region where θ transitions from the ML value

to the FA value (Deardorff 1979, Federovich et al. 2004) but no modelling

studies use the vertical θ profile to define the EZ.

Since θ modeled by an LES is not strictly constant with respect to height

in the ML (Federovich et al. 2004), a threshold value for θ or its vertical

gradient must be chosen to identify the lower EZ boundary. In their 2012
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LES study Brooks and Fowler encountered inconsistencies when determin-

ing the EZ boundaries from the average tracer profile. Although their tracer

profile was quite different to a simulated CBL θ profile, this could serve as

cautionary note.

Our understanding of the the characteristics and dynamics of the atmo-

spheric CBL entrainment zone evolves with the increasing body of measure-

ment (Traumner et al. 2011, Nelson et al. 1989), laboratory (Deardorff et al.

1980) and numerical studies (Deardorff 1972, Sorbjan 1996, Sullivan et al.

1998, Ebert et al. 1989, Federovich et al. 2004, Brooks and Fowler 2012, Gar-

cia and Mellado 2014). Parameterizations for CBL growth and EZ depth

are derived based on bulk models and are evaluated using LES output and

measurements (Federovich et al. 2004, Boers 1989). So the relationship be-

tween theory, numerical simulation and measurement is inextricable and any

study based on one must refer to at least one of the others.

1.2.5 Modelling the CBL and EZ

Bulk Models

Bulk models for the Convective Boundary layer (CBL) based on average,

vertical profiles of ML quantities can be subdivided into: (i) zero-order

jump as represented in Figure 1.4 and (ii) first-(and higher) order jump

bulk models as represented in Figure 1.3. Increased order corresponds to

increasing complexity in the shape of the θ and w′θ′ profiles at the top of

the ML.

Zero-order jump bulk models assume an ML of uniform potential temper-

ature (θML) topped by an infinitesimally thin layer across which there is a

temperature jump (δθ) and above which is a constant lapse rate (γ). The

assumed vertical heat flux, w′θ′ , decreases linearly from the surface up,

reaching a maximum negative value (w′θ′)h . This is a constant proportion
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θML

θ

h

z

δθ

∂θ0

∂z = γ

(a)

θ0

θ

−.2(w′θ′)s0 (w′θ′)s

w′θ′

(b)

Figure 1.4: Simplified version of Figure 1.3 such that the EZ is in-
finitesimely thin. (a) h is the height of the inversion and δθ
the corresponding temperature jump, that is, the difference be-
tween θML and θ0(h). This is different, although related, to the

jump across the EZ in Figure 1.3 (∆θ). (b) The w′θ′ profile is
linear and decreasing until it reaches a maximum negative value
at h of −.2(w′θ′)s. Here there is a discontinuity as it jumps to
zero.

of the surface value, usually −0.2(w′θ′)s (see Section 4 in Tennekes 1973 for

a discussion). At the temperature inversion w′θ′ jumps to zero across the

infinitesimally thin layer. Equations for the evolution of CBL height, θML

and δθ are derived on this basis (Tennekes 1973).

If the CBL height (h) is rising, air is being drawn in from the stable free

atmosphere (FA) layer above and mixed with cooler air i.e. there is an overall

decrease in enthalpy at h. The rate of decrease in enthalpy with respect to

time is cpρδθ
dh
dt (see Section A.1) per unit of horizontal area where, in the

absence of subsidence, dh
dt is the entrainment rate (we). Since the lapse rate
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above the inversion is stable, Tennekes (1973) equates this enthalpy loss to

the average vertical turbulent heat flux at the inversion

δθ
dh

dt
= −(w′θ′)h. (1.1)

The ML warming rate is arrived at via the simplified Reynolds averaged

conservation of enthalpy, for which the full derivation is shown in Section

A.3.

∂θML

∂t
= − ∂

∂z
w′θ′ . (1.2)

Assuming w′θ′ has a constant slope this becomes

∂θML

∂t
=

(w′θ′)s − (w′θ′)h
h

(1.3)

and the evolution of the temperature jump (δθ) depends on the rate of CBL

height (h) increase, the upper lapse rate γ and the ML warming rate

dδθ

dt
= γ

dh

dt
− dθML

dt
. (1.4)

An assumption about the vertical heat flux at the inversion (h), such as the

entrainment ratio, closes this set

(w′θ′)h

(w′θ′)s
= −.2 . (1.5)

The relevant quantities in equations 2.2 through 2.5 are idealized, ensemble

averages. There is some variation within this class of model. For example

the rate equation for h (entrainment relation) can alternatively be derived

based on the turbulent kinetic energy budget (Federovich et al. 2004, Stull

1976a, Stull 1976b) but they are all based on the simplified θ and w′θ′ pro-

files outlined above.

First (and higher) order jump models assume an EZ of finite depth at the
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top of the ML, defined by two heights: the top of the ML (h0) and the

point where FA characteristics are resumed (h1). The derivations are more

complex and involve assumptions about the EZ i.e.:

• ∆h = h1 − h0 = Constant (Betts 1974)

• ∆h = h1−h0 is related to the zero-order jump at h by two right angled

triangles with opposite sides of lengths h1−h and h−h0 (Batchvarova

and Gryning 1994)

• ∆h or maximum overshoot distance d ∝ w∗

N where w∗ is the Deardorff

convective vertical velocity scale and N =
√

g

θ
∂θ
∂z is the Brunt-Vaisala

frequency (Stull 1973)

• For h0 < z < h1 θ = θML + f(z, t)∆θ where f(z, t) is a dimensionless

shape factor (Deardorff 1979, Federovich et al. 2004)

Although development of these models is beyond the scope of this thesis,

they are mentioned to give context to the parameterizations considered in

Section 1.2.6.

Numerical Simulations

Numerical simulation of the CBL is carried out by solving the Navier Stokes

equations, simplified according to a suitable approximation, on a discrete

grid. Types of simulations can be grouped according to the scales of motion

they resolve. In direct numerical simulations (DNS) the full range of spatial

and temporal turbulence are resolved from the size of the domain down to

the smallest dissipative scales i.e. the Kolmogorov micro-scales (Kolmogorov

1962). This requires a dense numerical grid and so can be computationally

prohibitive.

In an LES motion on scales smaller than twice or more of the grid spac-

ing are filtered out and parameterized by a sub-grid scale closure model.

General circulation models (GCM) solve the Navier Stokes equations on
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a spherical grid and parameterize smaller-scale processes including convec-

tion and cloud cover. LES has increasingly been used to better understand

the CBL since Deardorff (1972) devised it for this purpose. Sullivan et al.

(1998), Federovich et al. (2004), Ebert et al. (1989) and Brooks and Fowler

in (2012) used it to study the structure and scaling behaviour of the EZ.

1.2.6 Scales and Scaling Relations of the CBL and EZ

Length Scale (h)

Deardorff (1972) demonstrated that dominant turbulent structures in pene-

trative convection scale with CBL height, which he referred to as the inver-

sion height but measured as the height of minimum vertical heat flux: zf

as shown later in Figure 2.1 (Deardorff et al. 1980). Since then, the distinc-

tion between the two has been clarified (see Section 1.2.2) and here h refers

strictly to the height of maximum average potential temperature gradient.

There are alternatives. For example turbulence based definitions, such as

the velocity variance and the distance over which velocity is correlated with

itself, represent the current turbulent dynamics rather than the recent tur-

bulence history as does h (Traumner et al. 2011).

Deardorff (Convective) Velocity Scale (w∗)

Given an average surface vertical heat flux (w′θ′)s a surface buoyancy flux

can be defined as g

θ
(w′θ′)s which gives the convective velocity scale when

multiplied by the appropriate length scale. Since the result has units m3

s3
a

cube root is applied

w∗ =

(
gh

θ
(w′θ′)s

) 1
3

. (1.6)
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Deardorff (1970) confirmed that this effectively scaled the local vertical tur-

bulent velocity fluctuations (w
′
) in the CBL. Sorbjan’s (1996) work supports

this, even at the CBL top. The CBL entrainment rate (we = dh
dt , neglecting

large scale subsidence) depends on the magnitude of w
′

which is driven by

(w′θ′)s. Stability aloft suppresses dh
dt so the influence of γ is indirectly ac-

counted for via h in w∗.

Convective Time Scale (τ)

It follows that the time a thermal, travelling at velocity scaled by w∗, takes

to reach the top of the CBL i.e. travel a distance h is scaled by

τ =
h(

gh

θ
(w′θ′)s

) 1
3

. (1.7)

This is also referred to as the convective overturn time scale. Sullivan et al.

(1998) showed a linear relationship between h and time scaled by τ . An

alternative is the Brunt-Vaisala frequency i.e. the time scale associated with

the buoyant thermals overshooting and sinking (Federovich et al. 2004). The

ratio of these two time-scales forms a parameter which characterizes this

system (see Sorbjan1996 and Deardorff 1979).

Temperature Scales (θ∗ and δhγ)

The CBL temperature fluctuations θ
′

are influenced by w′θ′ from both the

surface and the CBL top. Deardorff (1970) showed that an effective scale

based on the convective velocity scale is

θ∗ =
(w′θ′)s
w∗

. (1.8)

Whereas Sorbjan (1996) showed that with proximity to the CBL top the

effects of FA stability γ become more important. I introduce an alternative
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potential temperature scale for the EZ (δhγ) in Figure 1.5. This is the

difference in the initial or background potential temperature (θ0) across the

upper part of the EZ, i.e. between h and h1.

θ
h0

h

h1

z

δhγ

δhθ

θ0

Figure 1.5: Representation of the θ0 difference across the upper part
of the EZ, δhγ where δh = h1−h. This serves as an alternative
to the convective potential temperature scale θ∗.

Convective Richardson Number (Ri)

The flux Richardson (Rf ) number expresses the balance between mechanical

and buoyant production of turbulent kinetic energy (TKE) and is obtained

from the ratio of these two terms in the TKE budget equation

∂e

∂t
+ U j

∂e

∂xj
= δi3

g

θ

(
u
′
iθ
′
)
− u′iu

′
j

∂U i
∂xj
−
∂
(
u
′
je
′
)

∂xj
− 1

ρ

∂
(
u
′
ip
′
)

∂xi
− ε (1.9)

e is turbulence kinetic energy (TKE). p is pressure. ρ is density. ε is viscous

dissipation.

Rf =

g

θ
(w′θ′)s

u
′
iu
′
j
∂U i
∂xj

. (1.10)

Assuming horizontal homogeneity and vertically constant subsidence yields

Rf =

g

θ

(
w′θ′

)
u′w′ ∂U∂z + v′w′ ∂V∂z

. (1.11)
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Applying first order closure to the flux terms, i.e. assuming they are pro-

portional to the vertical gradients, gives the gradient Richardson number

(Rg)

Rg =

g

θ
∂θ
∂z(

∂U
∂z

)2
+
(
∂V
∂z

)2 , (1.12)

Applying a bulk approximation to the denominator, and expressing it in

terms of scales yields a squared ratio of two time scales

Rg =

g

θ
∂θ
∂z

V ∗2

L2

= N2 L
2

V ∗2
, (1.13)

where V ∗ and L∗ are appropriate velocity and length scales. In the EZ

buoyancy acts to suppress buoyant production of TKE. Applying the bulk

approximation to both the numerator and denominator yields the bulk

Richardson number:

Rb =

g

θ
∆θL∗

V ∗2
. (1.14)

A natural choice of length and velocity scales for the CBL are h and w∗

giving the convective Richardson number:

Ri =

g

θ
∆θh

w∗2
. (1.15)

Where ∆θ can be replaced by δθ as in Federovich et al. (2004) and Garcia

and Mellado (2014). Ri can also be arrived at by considering the principal

forcings of the system, or from non-dimensionalizing the entrainment rela-

tion derived analytically (Tennekes 1973, Deardorff 1972). It is central to

any study on CBL entrainment (Sullivan et al. 1998, Federovich et al. 2004,

Traumner et al. 2011, Brooks and Fowler 2012).
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Relationship of Entrainment Zone Depth to Richardson Number

A relationship of the scaled entrainment zone EZ depth to Ri

∆h

h
∝ Rib (1.16)

is arrived at by considering the deceleration of a thermal as it overshoots its

neutral buoyancy level (Nelson et al. 1989). If the velocity of the thermal is

assumed to be proportional to w∗ and the decelerating force is due to the

buoyancy difference, or θ jump, then the distance the thermal overshoots

(d) can be approximated by

d ∝ w∗2

g

θML
∆θ

. (1.17)

If the EZ depth is proportional to the overshoot distance (d) then

∆h

h
∝ w∗2

g

θML
∆θh

= Ri−1. (1.18)

Alternatively, Boers 1989 integrated the internal (U), potential (P ) and

kinetic (K) energy over a hydrostatic atmosphere

U =
cv
g

∫ p0

0
Tdp. (1.19)

P =
R

cv
U, (1.20)

and

K =
1

2

∫ p0

0

w2

g
dp. (1.21)

p0 is the surface pressure, R and cv are the gas constant and heat capacity

of dry air at constant volume. T is temperature. Initially there is a flat

infinitesimally thin inversion interface which is distorted by an impinging

thermal. The resulting height difference is assumed sinusoidal and an av-

erage ∆h is obtained by integrating over a wavelength. At this point, no
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entrainment is assumed to have occurred and all of the initial kinetic energy

(Ki) has been transferred to the change in potential energy (∆P ).

Ki = Pf − Pi = ∆P (1.22)

Assuming a dry adiabatic atmosphere and that the vertical velocity in the

layer below the inversion can be approximated by the Deardorff velocity

scale (w∗), the following expression is reached(
∆h

h

)2

∝ T0w
∗2

g∆θh
. (1.23)

The reference temperature, T0, can be replaced by θML to give

∆h

h
∝ Ri− 1

2 (1.24)

Relationship of Entrainment Rate to Richardson Number

The relationship between scaled entrainment rate and the buoyancy Richard-

son number (Ri)

we
w∗
∝ Ria (1.25)

is arrived at according to the zero-order jump bulk model through thermo-

dynamic arguments, or by integration of the conservation of enthalpy or

turbulent kinetic energy equations over the growing CBL (Tennekes 1973,

Deardorff 1979, Federovich et al. 2004). It has been verified in numerous

laboratory and numerical studies (Deardorff et al. 1980, Sullivan et al. 1998,

Federovich et al. 2004, Brooks and Fowler 2012), but there is still some unre-

solved discussion as the the exact value of a. It seems there are two possible

values, −3
2 and −1, the first of which Turner (1986) suggested occurs at high

stability when buoyant recoil of impinging thermals becomes more impor-

tant than their convective overturning. Assume that an impinging thermal

supplies kinetic energy (K) per unit time and per unit area for entrainment,

in terms of appropriate length and time scales L∗ and t∗ as follows
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K ∝ ρL∗3U∗2

L∗2t∗
, (1.26)

and that the corresponding change in potential energy per unit time and

area of the rising CBL is

∆P ∝ g∆ρh
dh

dt
. (1.27)

If L∗ is the penetration depth of the thermals travelling at velocity scaled

by w∗ against a decelerating force g∆ρ
ρ

L∗ =
w∗2ρ

∆ρ
. (1.28)

where ρ
∆ρ can be replaced with θ

∆θ or θ
δθ (see Stull (1988) page 80 and Section

A.1) and t∗ is the response time of the inversion layer to a thermal of length

h

t∗ =

√
h

θ

g∆θ
(1.29)

then assuming all of K is transferred to the change in potential energy (∆P )

and using the Deardorff velocity scaled, yields

dh
dt

w∗
∝ θw∗2

g∆θh

√
θw∗2

g∆θh
, (1.30)

i.e.

we
w∗
∝ Ri− 3

2 . (1.31)

Adding further complexity to this discussion, Federovich et al. (2004) sug-

gest that a similar power law relationship (a = −1.7) can be arrived at

through defining the θ jump across the EZ rather than at h (see Figure 1.3).
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1.3 Research Questions

A simplified conceptual model of the dry, shear-free CBL in the absence of

large scale winds is represented in Figure 1.3. The two principal external

parameters in this case, are the surface vertical heat flux (w′θ′)s and the

upper lapse rate (γ) (Federovich et al. 2004, Sorbjan 1996). They have

opposing effects, that is to say (w′θ′)s drives upward turbulent velocity

(w
′+) and so CBL growth (we) whereas γ suppresses it. Conversely they

both cause positive turbulent potential temperature fluctuations (θ
′+) and

so warming of the CBL. In the EZ the thermals from the surface are now

relatively cool. They turn downwards as they interact with the stable FA

concurrently bringing down warmer air. Sullivan et al. (1998) demonstrated

these dynamics by partitioning w′θ′ into four quadrants. Sorbjan (1996)

asserted and showed that in this region the turbulent potential temperature

fluctuations (θ
′
) are strongly influenced by γ whereas the turbulent vertical

velocity fluctuations (w
′
) are almost independent thereof. Inspired by these

two studies and to gain some insight into the dynamics of idealized CBL

entrainment I ask Q1 (Entrainment Zone Structure): How do the

distributions of local CBL height, and the joint distributions of w
′

and θ
′

within the EZ, vary with (w′θ′)s and γ?

The relationship between scaled EZ depth and Ri

∆h

h
∝ Rib (1.16)

has been explored and justified in field measurement, laboratory and numer-

ical studies. There is disagreement with respect to its exact form, in part

stemming from variation in height and θ jump definitions, but in general

its magnitude relative to h decreases with increasing Ri. Although referred

to in most relevant studies and relied upon in analytical models, the ver-

tical average potential temperature profile has not been used to define the

EZ (Deardorff et al. 1980, Nelson et al. 1989, Federovich et al. 2004, Boers

1989, Brooks and Fowler 2012). This leads me to ask Q2 (Entrainment

Zone Boundaries): Can the EZ boundaries be defined based on
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the θ profile and what is the relationship of the resulting depth

(∆h) to Ri?

A further simplification to the dry, shear-free, CBL model without large scale

velocities, is to regard the EZ depth as infinitesimely small as in Figure 1.4.

The relationship of the scaled, time rate of change of h (entrainment rate:

we) to Ri can be derived based on this model (Tennekes 1973, Deardorff

1979, Federovich et al. 2004)

we
w∗
∝ Ria. (1.25)

This will be referred to as the entrainment relation. Although that there is

such a relationship is well established, discussion as to the power exponent

of Ri is unresolved and results from studies justify values of both −3
2 and

−1. See Traumner et al. (2011) for a summary and review. Turner (1986)

explains this disparity in terms of entrainment mechanism such that the

higher value occurs when thermals recoil rather than overturn in response

to a stronger θ jump (or inversion). Whereas Sullivan et al. (1998) notice

a deviation from the lower power (−1) at lower Ri and attribute it to the

effect of a the shape of θ within a thicker EZ. Both Federovich et al. (2004)

and Garcia and Mellado (2014) show how the definition of the θ jump in-

fluences the time rate of change of Ri and so effects a. Q3 (Entrainment

Rate Parameterization): How does defining the θ jump based on

the vertical θ profile across the EZ as in Figure 1.3 vs at the in-

version (h) as in Figure 1.4, affect the entrainment relation and in

particular a?
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2. Research Approach and Tools

2.1 Approach to Research Questions

General Setup

I modelled the dry shear free CBL and EZ using LES, specifically the cloud

resolving model System for Atmospheric Modelling (SAM) to be outlined

in Section 2.2. An ensemble of 10 cases was run to obtain true ensemble

averages and turbulent potential temperature fluctuations (θ
′
), each case

had a domain of area 3.2 x 4.8 Km2. Grid spacing was influenced by the

resolution study of Sullivan and Patton (2011) and the vertical grid within

the EZ was of higher resolution than that applied in other comparable work.

The runs were initialized with a constant (w′θ′)s acting a against a uniform

γ. So, the θ jump arose from the overshoot of the thermals, rather than

being initially imposed as in Sullivan et al. (1998) and Brooks and Fowler

(2012).

Model (LES) Valuation

Before addressing the questions stated in Section 1.3 I will examine the

modeled output to make sure it represents a realistic turbulent CBL in

Chapter 3. I will verify that the average vertical profiles are as expected

and coherent thermals are being produced. FFT energy density spectra will

show if there is adequate scale separation between the structures of greatest

energy and the grid spacing, and if realistic, isotropic turbulence is being
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modelled.

Entrainment Zone Structure

The EZ can be thought of in terms of the distribution of individual ther-

mal heights, or local heights. Sullivan et al. (1998) measured local height

by locating the vertical point of maximum θ gradient, and observed the ef-

fects of varying Ri on the resulting distributions. However this method is

problematic when gradients in the upper profile exceed that at the inversion

(Brooks and Fowler 2012). Steyn et al. (1999) fitted an idealized curve to a

Lidar backscatter profile. This method produces a smooth curve based on

the full original profile on which a maximum can easily be located. I will

apply a multi-linear regression method outlined in Vieth (2011) to the local

θ profile, representing the ML, EZ and FA each with a separate line segment.

From this fit, I will locate the ML top (hl0). I’ll observe how the resulting

distributions are effected by changes in (w′θ′)s and γ using histograms in

Section 4.1.1

Sullivan et al. (1998) broke w
′
θ
′

into four quadrants and used this combined

with local flow visualizations to show how CBL thermals impinge and draw

down warm air from above. Mahrt and Paumier (1984) used 2 dimensional

contour plots of local w
′

and θ
′

measurements to analyze their joint dis-

tributions. In his 1996 LES study Sorbjan concluded that in the EZ, θ
′

is strongly influenced by γ whereas w
′

is practically independent thereof.

Influenced by these three studies, I will use 2 dimensional histograms at h

and so within the EZ to look at how the distributions of local w
′

and θ
′

are effected by changes in γ and (w′θ′)s . I will magnify the effects of γ,

by applying the convective scales, θ∗ and w∗ and focus specifically on the

entrained air at h in Section 4.1.3.
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Entrainment Zone Boundaries

Here I define the CBL height as the location of maximum vertical θ gradient

as in Figure 2.1. The lower and upper EZ boundaries are then the points

at which ∂θ
∂z significantly exceeds zero and where it resumes γ. The lower

boundary requires a choice of a threshold value which should be small, pos-

itive and less than γ. Since it is somewhat arbitrary I will compare results

based on three different threshold values in Section 4.2. Federovich et al.

(2004) and Brooks and Fowler (2012) defined the EZ in terms of the vertical

w′θ′ profiles as in Figure 2.1 but disagreed on the shape of the relationship

of scaled EZ depth to Ri (equation 2.1). As well as observing this rela-

tionship using the height definitions based on the θ profile, I will apply the

definitions based on the w′θ′ profile for comparison with Brooks and Fowler

(2012) and Federovich et al. (2004) in Section 4.2.3.

Entrainment Rate Parameterization

As discussed in see Section 1.2.6 the form of the entrainment relation is

thought to vary based on the mechanism that initiates entrainment, which

in turn depends on the magnitude of Ri. Furthermore the ways in which

the height and θ jump are defined have an effect. I will vary the definition

of the θ jump as outlined in Table 2.1 in order to discern between how this,

and variation in initial conditions, influence the entrainment relation and in

particular a. I will reproduce this analysis using height definitions based on

w′θ′ for comparison with the results of Federovich et al. (2004).

2.2 Large Eddy Simulation (LES)

System for Atmospheric Modelling (SAM) is a Large Eddy Simulation with

cloud resolving capability (Khairoutdinov and Randall 2003). The dynami-

cal framework uses the anelastic equations of motion, which in tensor nota-

tion are:
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θ

z
θ

θ0

0 γ
∂θ
∂z

h1

h

h0

-0.2 0 1

w′θ′

zf0

zf1

zf

Figure 2.1: Height definitions based on the average vertical profiles.
θ0 is the initial potential temperature.

Table 2.1: Definitions based on the vertical θ profile in Figure 2.1. To
obtain those based on the w′θ′ profile, replace h0, h and h0 with
zf0, zf and zf1

CBL
Height

ML θ θ Jump Ri

h θML = 1
h

∫ h
0 θ(z)dz ∆θ = θ(h1)− θ(h0) Ri∆ =

g

θML
∆θh

w∗2

δθ = θ0(h)− θML Riδ =
g

θML
δθh

w∗2
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∂ui
∂t

= −1

ρ

∂

∂xi
(ρuiuj+τij)−

∂

∂xi

p
′

ρ
+δi3B+εij3f(uj−Ugj)+

(
∂ui
∂t

)
l.s.

(2.1)

and

∂

∂xi
ρui = 0 (2.2)

The over-bar denotes the horizontal average and prime denotes fluctuations

from the average. B is buoyancy = −g ρ
′

ρ , Ug is the prescribed geostrophic

wind and f is the Coriolis parameter. τij is the sub-grid scale stress tensor

and the subscript l.s. denotes the prescribed large scale tendency.

The prognostic thermodynamical variable is the liquid water/ice moist static

energy (hL).

∂hL
∂t

= −1

ρ

∂

∂xi
(ρuihL+FhLi)−

1

ρ

∂

∂z
(LcPr+LsPs+LsPg)+

(
∂hL
∂t

)
rad

+

(
∂hL
∂t

)
mic

(2.3)

Lc and Ls are the latent heats of condensation and sublimation. Pr, Ps and

Pg are precipitation fluxes of rain, snow and graupel. These terms reduce

to zero in the absence of condensed water and precipitation. The subscripts

rad and mic denote tendencies due to radiation and microphysics. The

liquid/ice water static energy is

hL = cpT + gz − Lc(qc + qr)− Ls(qi + qs + qg) (2.4)

where qc, qr, qi, qs and qg are the mixing ratios for cloud water, rain, ice,

snow and graupel. Again, these reduce to zero in the absence of condensed

water. Temperature and potential temperature are diagnosed based on this

variable, at each time-step. A simple first-order Smagorinski closure scheme

is used to parameterize the sub-grid stresses and scalar fluxes. The eddy

diffusivity coefficient is based on the grid scale.
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The model equations are represented discretely on a fully staggered Arakawa

C-type grid which is uniform in the horizontal and stretched in the verti-

cal. Integration is performed using a third-order Adams-Bashforth scheme

with variable time step. Momentum is advected in flux form with second

order differencing and conservation of kinetic energy. Prognosed scalars

are advected using a three dimensional positive definite, monotonic scheme.

Lateral boundaries are periodic. The top is bounded by a rigid lid, and

Newtonian damping is applied in the top third of the domain to reduce the

effects of gravity waves. Surface fluxes are computed using Monin-Obvukhov

similarity.

2.3 Handling of Output

The model was run on parallel computers in a Linux environment using

Message Passing Interface (MPI). 3d variable fields were output every 10 -

15 minutes in binary form and converted to Network Common Data Form

(NetCDF). The use of Python was enabled using the netcdf4 interface. Plot-

ting was done using matplotlib (Hunter 2007). Most analyses were per-

formed using NumPy and SciPy (Jones et al. 2001–). The tri-linear regres-

sion method, described in Appendix A.4, for determining local ML height

was implemented using Cython.
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3. Model (LES) Evaluation

In Section 3.2 vertical profiles of the ensemble and horizontally averaged

potential temperature and heat flux (θ and w′θ′) will be examined for the

development of the expected three layer structure (ML, EZ and FA). In

order to verify that there is sufficient scale separation between the energy

containing turbulent structures and the grid size and so an adequate inertial

subrange, FFT energy spectra of the turbulent velocity fluctuations will be

plotted in Section 3.3. To convince the reader (and myself) that multiple

coherent thermals are being produced, 2 dimensional visualizations will be

shown at the three heights: h0, h and h1 in Figure 2.1.

3.1 Initialization and Spin-Up Time

All 10 member cases of the ensemble were run on a 3.2 x 4.8 km horizon-

tal domain (∆x = ∆y = 25m, nx = 128, ny = 192). Grid numbers nx,

ny were chosen based on the optimal distribution across processor nodes.

The vertical grid (nz = 312) was of higher resolution around the entrain-

ment layer (∆z = 5m), lower below (∆z = 25m) and stretched above it

(∆z = 10 to 100m). This was guided by Sullivan and Patton’s 2011 LES

resolution study of the CBL that showed how grid size affects, the shapes

of the average profiles in particular around the EZ, as well as the extent of

the inertial turbulence scale sub-range. The 7 runs, summarized in Table

3.1 , are all initialized with a constant surface heat flux ( (w′θ′)s ) acting

against a uniform initial lapse rate (γ) and differ from each other based on

these two external parameters.

28



Table 3.1: Runs in terms of w′θ′s and initial Lapse Rate γ

w′θ′s / γ 10 (K/km) 5 (K/km) 2.5 (K/km)

150 (W/m2) t 150/10 l 150/51

100 (W/m2) t 100/10 l 100/5

60 (W/m2) t 60/10 l 60/5 H 60/2.5

Time must be allowed for statistically steady turbulent flow to be estab-

lished. Sullivan et al. (1998) recommended 10 eddy turnover times based on

the convective time scale τ = h
w∗ = h(

gh

θML
(w′θ′s)

) 1
3

, and Brooks and Fowler

(2012) chose a simulated time of 2 hours. Figure 3.1 shows that for all of

the runs, at least 10 eddy turnover times were completed by 2 simulated

hours. Each run has a distinct convective velocity scale w∗, that increases

with time. However, dividing boundary layer height (h) by w∗ to obtain τ

results in a collapse from 7 to 3 curves; one for each γ.

Figure 3.2 shows that at two hours there is a measurable well mixed layer

(ML) where: (i) the horizontally and ensemble averaged potential tempera-

ture (θ) is constant with height, (ii) its vertical gradient ∂θ
∂z is close to zero

and (iii) the vertical heat flux w′θ′ is positive and linearly decreasing with

height. Above it is an EZ where the θ profile transitions through a maxi-

mum to the upper lapse rate γ and w′θ′ is negative. At three hours the EZ

is fully contained within the vertical region of high resolution in all runs.

Figure 3.3 shows that the w′θ′ profiles are similar and are scaled well by the

surface heat flux ( (w′θ′)s ) from two hours on.

1Incomplete run: EZ exceeded high resolution vertical grid after 7 hours
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Figure 3.1: Plots of scaled time vs time for all runs. Scaled time is
based on the convective time scale τ and can be thought of as
the number of times an eddy has reached the top of the CBL.
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Figure 3.2: Vertical profiles of the horizontally and ensemble averaged

potential temperature (θ), its vertical gradient (∂θ∂z ) and vertical

heat flux (w′θ′) for the 100/5 run

Figure 3.3: w′θ′ and scaled w′θ′ vs scaled height for the 100/5 run
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3.2 Horizontally- and Ensemble-Averaged
Profiles

In Figures 3.2 and 3.4 the θ profiles exhibit an ML above which ∂θ
∂z > 0 and

reaches a maximum value at h before resuming γ at h1. Convective bound-

ary layer CBL growth is stimulated by (w′θ′)s and inhibited by γ. In Figures

3.2 and 3.5 the w′θ′ profiles decrease from the surface value, (w′θ′)s, pass-

ing through zero to a minimum before increasing to zero. They are similar

across runs when scaled by (w′θ′)s. All minima are less in magnitude than

the zero order approximation, −0.2× (w′θ′)s (Tennekes 1973), but increase

with increased γ.

Figure 3.4: θ Profiles at 2 Hours for all Runs
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Figure 3.5: Scaled (w′θ′)s Profiles at 3 Hours for all Runs
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3.3 FFT Energy Spectra

In Figure 3.6, two dimensional FFT power spectra of horizontal w′ slices

taken at three different levels (h0, h and h1 as shown in Figure 2.1) are

collapsed to one dimension by integrating around a circle of wave-numbers.

Isotropy in all radial directions is assumed and k =
√
k2
x + k2

y. The resulting

scalar density spectra show peaks in energy at the larger scales, cascading

through a substantial inertial subrange to the lower scales roughly according

to a −5
3 slope, lower in the EZ. At the top of the EZ where turbulence is

suppressed by stability, the slope is steeper. The peak in energy occurs at

smaller scales at h as compared to at h0, indicating a change in the size of

the dominant turbulent structures. The spectra for the horizontal turbulent

velocity fluctuations were analogous but show lower energy as expected. All

runs produced spectra with these characteristics.

Figure 3.6: Scalar FFT energy vs wavenumber (k =
√
k2
x + k2

y) for

the 60/2.5 run at 2 hours, taken at three heights (h1, h and
h0). E(k) is E(kx, ky) integrated around a circle of radius k.
E(kx, ky) is the total integrated energy over the 2D domain. kx
and ky are number of waves per domain length.
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3.4 Visualization of Structures within the
Entrainment Zone

Horizontal slices, at h0, h and h1 of the potential temperature and vertical

velocity fluctuations (θ
′

and w
′
) are plotted to see the turbulent structures.

Figure 3.7 shows the bottom of the EZ (h0) for the 150/10 run where co-

herent areas of positive and negative temperature fluctuations correspond

to areas of upward and downward moving air. In (b) and (e) the individual

thermals of relatively cool air are more evident at the inversion (h) and their

locations correspond to areas of upward motion. Most of the upward moving

cool areas are adjacent to and even encircled by smaller areas of downward

moving warm air. At h1 ((c) and (f)) peaks of cool air are associated with

both up and down-welling.

3.5 Summary of Findings

Each 10 member ensemble run was allowed a period of time to develop the

three layer structure (ML, EZ and FA) as seen from the average potential

temperature (θ) and vertical heat flux (w′θ′) profiles. The convective time

scale (τ) for a thermal to reach the CBL top (h) was seen to depend on γ,

signalling the importance of this external parameter. FFT spectra of turbu-

lent velocity fluctuations the ML showed a satisfactory inertial subrange and

several coherent impinging thermals were observed in the EZ at any given

time after 2 hours, indicating that realistic turbulence was being simulated.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.7: θ
′

(left) and w
′

(right) at 2 hours at h0 (a,d), h (b,e) and
h1 (d,f) for the 150/10 run. The locations of two impinging
thermals are circled.



4. Research Answers

Section 4.1 will focus on answering Q1 (Entrainment Zone Structure):

How do the distributions of local CBL height, and the joint dis-

tributions of w
′

and θ
′

within the EZ, vary with (w′θ′)s and γ?

The distributions of local ML heights at each horizontal point, in each en-

semble member, will be plotted as histograms to visualize the effects of

(w′θ′)s and γ. For the same reason the joint distributions of local potential

temperature and velocity fluctuations (θ
′
and w

′
) at h will be plotted. Focus

will then be narrowed to the average downward moving warm quadrant at h

(w′−θ′+h, w′−h where θ
′
> 0 and θ′+h where w

′
< 0) to examine the direct

influence of γ on entrainment.

To answer Q2 (Entrainment Zone Boundaries):

Can the EZ boundaries be defined based on the θ profile and what

is the relationship

∆h

h
∝ Rib (1.16)

of the resulting scaled depth (∆h
h ) to Ri?

in Section 4.2, Equation 1.16 will be plotted using height definitions based

on the ∂θ
∂z profile as in Figure 2.1 and Table 2.1. Since the choice of a thresh-

old to determine the lower EZ boundary is somewhat arbitrary, plots will be
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reproduced using two additional values. For comparison with the results of

Federovich et al. (2004) and Brooks and Fowler (2012), Equation 1.16 will

be plotted using heights based on the average heat flux (w′θ′) profile.

In Section 4.3 the temperature jump will be defined in four ways to answer

Q3 (Entrainment Rate Parameterization):

How does defining the θ jump based on the vertical θ profile across

the EZ as in Figure 1.3 vs at the inversion (h) as in Figure 1.4,

affect the entrainment relation

we
w∗
∝ Ria (1.25)

and in particular a?

This analysis will involve observing how CBL height evolves in time and cul-

minate in four plots representing Equation 1.25 in log-log coordinates such

that the most suitable values of the exponent a can be identified.
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4.1 Entrainment Zone Structure

4.1.1 Local Mixed Layer Heights (hl0)

In Figures 4.1 and 4.2 the local vertical θ profiles, each at a single horizontal

point in an individual case, exhibit a distinct ML. Above, there are sharp

changes in the profile well into the free atmosphere, due possibly to waves.

These render the gradient method for determining a local CBL height, hl,

unreliable. Instead a linear regression method is used, whereby three lines

representing: the ML, the EZ and the upper lapse rate (γ), are fit to the

profile according to the minimum residual sum of squares. Determining

local ML height (hl0) in this way was more straight forward than the lo-

cal height of maximum potential temperature gradient (hl) for the reasons

stated above.

Figure 4.1 shows two local θ profiles where hl0 is relatively high. A sharp in-

terface is evident indicating that this is within an active thermal impinging

on the stable layer. In Figure 4.2, where hl0 is relatively low, a less defined

interface indicates a point now outside a rising thermal. Under weaker sta-

bility (γ), as in Figure 4.2 (a), these inactive locations show a larger vertical

region that could be called a local EZ. In two-dimensional horizontal plots,

not shown here, regions of high hl0 corresponded to regions of upward mov-

ing relatively cool air at h.

The distribution of hl0 represents the range over which CBL height varies in

space, so as discussed in Section 1.2.4, relates to the depth of the entrain-

ment zone (EZ). Figure 4.3 (a), (b) and (c) illustrate that the distribution

widens with increasing (w′θ′)s and narrows with increasing γ. When scaled

by h, the local ML height distribution narrows with increased γ, in Figure

4.3 (d), (e) and (f). The upper boundary seems to be constant at about

1.1(×h) , whereas the lower boundary clearly increases. When hl0s are lower

and their distribution is narrower, the scaled versions have relatively larger

spacing between bins and so higher numbers in each bin. In Figure 4.3 (d),
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at higher (w
′
θ
′
)s there are fewer

hl0
h values with higher probabilities, but the

width of the distributions is more or less constant regardless of (w
′
θ
′
)s.

(a) (b)

Figure 4.1: Local vertical θ profiles with 3-line fit for the 60/2.5 (a)
and 150/10 (b) runs at points where hl0 is high.

(a) (b)

Figure 4.2: Local vertical θ profiles with 3-line fit for the 60/2.5 (a)
and 150/10 (b) runs at points where hl0 is low. The red line
represents the ML, the blue represents the EZ and the green
represents the FA.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.3: Histograms of local ML heights (hl0) are shown in (a), (b)

and (c). Probability distributions of scaled local ML height (
hl0
h )

are shown in (d), (e) and (f). Both sets of plots are taken at

5 hours and darker shading represents higher w′θ′s. Stability
decreases from top to bottom i.e (a) and (d) represents runs
with the highest stability (γ = 10Kkm−1).



4.1.2 Local Turbulent Velocity and Potential Temperature
Fluctuations

The two-dimensional histograms of θ
′

and w
′
, at each horizontal point in

each ensemble case, for all runs at h are plotted in Figure 4.4 to visualize

how the distributions are influenced by changes in (w′θ′)s and γ. In order

to isolate the effects of γ, w
′

and θ
′

are scaled by the convective velocity

and temperature scales (w∗ and θ∗) respectively and plotted in Figure 4.5.

Distributions of both w
′

and θ
′

widen with increasing (w′θ′)s. Whereas that

of θ
′

increases only slightly with increasing stability (γ) in Figure 4.4. As

expected, γ inhibits both upward and downward w
′
. The scaled version in

Figure 4.5 shows damping of w
′

where potential temperature fluctuations

are positive. This can be seen as the horizontal tick marks bounding the w
′

w∗

distribution become less obscured as γ increases. Concurrently, the coolest

negative θ
′

θ∗ become less cool, and the warmest become warmer. So the θ
′

θ∗

distribution shifts positively with increasing γ.

Although the quadrant of overall largest magnitude is that of upward mov-

ing cool air (w
′+θ

′−), in the EZ the net heat flux is downward moving warm

(w
′−θ

′+) air as the other three quadrants approximately cancel. This is in

line with the findings of Sullivan et al. (1998).
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Figure 4.4: Two-dimensional histograms of w
′

and θ
′

at h for w
′
θ
′

=
150 − 60 (Wm−2) (top - bottom) and γ = 10 − 2.5(Kkm−1)
(left - right) at five hours
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Figure 4.5: Two-dimensional distributions of w
′

w∗ and θ
′

θ∗ at h for

(w′θ′)s = 150 − 60(Wm−2) (top - bottom) and γ = 10 −
2.5(Kkm−1) (left - right) at 5 hours. Tick-marks are thickened

to show the narrowing of the w
′

w∗ distribution where θ
′

θ∗ is posi-

tive, as well as the positive shift in θ
′

θ∗ , as γ increases.
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4.1.3 Downward-Moving Warm Air at h

The average downward moving warm quadrant (w′−θ′+) at h represents

the pockets of trapped or engulfed warm air that become mixed into the

growing CBL. So its magnitude can be taken as a measure of entrainment.

Figure 4.6 shows that this increases, in magnitude, in time, as well as with

increasing (w′θ′)s. Grouping according to (w′θ′)s is evident yet there is not

significant collapse when this is applied as scale in Figure 4.6 (b). Further

partitioning (w′−θ′+)h into its velocity and temperature components reveals

additional complexity.
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Figure 4.6: Plots of (a) the average downward moving warm air at
h (w′−θ′+)h and (b) (w′−θ′+)h scaled by the average vertical

turbulent heat flux (w′θ′)s vs time

Figure 4.7 shows that the velocity component w′−h where θ′h > 0, is effec-

tively scaled by w∗. The curves representing θ′+h where w′h > 0 vs time

do not seem to collapse when scaled by θ∗ in Figure 4.8. Figure 4.9 shows

this component is scaled more effectively by the potential temperature scale

introduced in Section 1.2.6, δhγ, thus indicating that the effects of γ on the

positive potential temperature fluctuations at h are more important than

(w′θ′)s.
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Figure 4.7: (a) Average negative vertical turbulent velocity fluctua-
tion at h (w′−h) at points where θ′ > 0 and (b) w′−h where
θ′ > 0 scaled by w∗.
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Figure 4.8: (a) Average positive potential temperature fluctuation at
h (θ′+h) at points where w′ < 0 and (b) θ′+h where w′ < 0
scaled by θ∗.

46



2 3 4 5 6 7 8

Time (h)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

θ′
+

(w
h
er
e
w
′
<

0)
 (

K
) 

100/10

100/5

60/5

60/2.5

150/5

60/10

150/10

(a)

2 3 4 5 6 7 8

Time (h)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

θ′
+
h

γ
(h

1−
h
)
(w
h
er
e
w
′
<

0)

100/10

100/5

60/5

60/2.5

150/5

60/10

150/10

(b)

Figure 4.9: (a) θ′+h at points where w′ < 0 and (b) θ′+h where w′ < 0
scaled by δhγ.
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4.1.4 Answer to Q1

Using a multi-linear regression method, the local ML heights (hl0) were de-

termined. Although at each horizontal point an ML of almost uniform θ

based on the local profiles is evident, the region directly above it differs

depending on location as well as from the average profile. Since there is no

reliable, local definition of h, I take the distributions of local ML height (hl0)

to be a measure of CBL height variance in space and so the EZ. Overall ML

height and it’s variance increase with increasing (w′θ′)s and decrease with

increasing γ. These distributions approached similarity when scaled by h,

showing an increase in the lower boundary (or percentile) with increased γ.

I interpret this result as an indication that increased γ results in a narrower

scaled EZ depth.

Two dimensional distributions of the local turbulent fluctuations, w
′

and θ
′

at h, widen with increasing (w′θ′)s and narrow with increased γ. Both w
′

and θ
′

at h show some variation with γ when scaled by the convective scales

w∗ and θ∗. The distribution of w
′

w∗ where θ
′

θ∗ is positive narrows, while θ
′

θ∗

shifts positively.

Plots of the average downward moving warm quadrant at h ( (w′−θ′+)h ) in-

dicate dependence on (w′θ′)s. Breaking (w′−θ′+)h into its two components

reveals dependence on both (w′θ′)s and γ. The average downward moving

velocity at h ( (w′−)h ), at points where there is a positive potential temper-

ature fluctuation (θ
′+), show clear dependence on w∗. Whereas the average

positive potential temperature fluctuation θ′+h where w
′

is scaled by, are

scaled quite well by δhγ. So as one would expect, the potential temperature

of the entrained warm air depends on γ.
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4.2 Entrainment Zone Boundaries

4.2.1 EZ Boundaries based on the average vertical
Potential Temperature Gradient Profiles

In Figure 4.10 (a) the scaled upper EZ boundaries collapse to an initial

value of approximately 1.15, decreasing to about 1.10. The scaled lower

EZ boundaries appear grouped according to γ and increase with respect to

time. So overall the scaled EZ depth (∆h
h = h1

h - h0
h ) narrows with time.

Figure 4.10: Plot of scaled EZ upper (h1h ) and lower (h0h ) boundaries
based on the average vertical potential temperature gradient
profile.

The lower entrainment zone boundary h0, as illustrated in Figure 4.11 is the

point at which the vertical ∂θ
∂z profile exceeds a threshold (.0002Kkm−1),

chosen such that it is positive and at least an order of magnitude smaller

than γ. As suggested by the results of Section 4.1.1, the scaled EZ depth

decreases with increasing Richardson number (Ri =
g

θML
∆θh

w∗2 as in Table

2.1). However, grouping of the curves representing the relationship of scaled
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EZ depth to Richardson number

∆h

h
∝ Rib (1.16)

according to γ is evident in Figure 4.12.

Figure 4.11: ∂θ
∂z profiles with threshold at .0002Kkm−1. Black lines

represent the threshold at ∂θ
∂z = 0.0002 for the lower EZ

boundary, as well as the three lapse rates (0.0025, 0.005 and
.01 Km−1 ).
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Figure 4.12: Scaled EZ Depth (h1−h0h ) vs inverse Richardson Number
(Ri−1

Delta) with threshold at .0002Kkm−1
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Threshold Test for Lower EZ Boundary, h0

To explore how varying the threshold value effects Equation 1.16, plots anal-

ogous to Figure 4.12 were produced at two additional thresholds. In Figure

4.13, a higher value (.0004Kkm−1) results in a higher h0 and so a narrower

EZ. In Figure 4.14, a lower threshold value (.0001Kkm−1) results in a lower

h0. Both of these threshold values result in grouping according to γ.

Figure 4.13: Scaled EZ depth vs inverse Richardson Number with
Threshold at .0004Kkm−1
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Figure 4.14: Scaled EZ Depth vs inverse Richardson Number (Ri−1)
with threshold at .0001Kkm−1
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4.2.2 EZ Boundaries Based on Scaled Vertical Potential
Temperature Gradient Profiles

The curves representing Equation 1.16

∆h

h
∝ Rib (1.16)

collapse when the heights are defined based on the scaled vertical potential

temperature gradient (
∂θ
∂z
γ ) profile in Figure 4.19. Here Ri = Riδ =

g

θML
∆θh

w∗2

and ∆θ = θ(h1)−θ(h0). This stems from a switch in the relative magnitudes

of the vertical potential temperature gradient in the upper ML which can

be seen when Figure 4.15 is compared to Figure 4.11. So from here on all

heights will be defined based on the scaled average profiles.

Figure 4.15: Scaled ∂θ
∂z Profiles with Threshold at .03

Figure 4.17 supports an exponent b = −1
2 at lower values of Ri, increasing

to b = −1 at higher Ri.
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Figure 4.16: Plot of scaled EZ depth vs Ri−1. EZ boundaries and so

∆θ = θ(h1)− θ(h0) are based on the
∂θ
∂z
γ profile.

Figure 4.17: Scaled EZ depth vs Ri−1 based on the
∂θ
∂z
γ profile in log-

log coordinates to identify likely values of the exponent b.
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4.2.3 EZ Boundaries Based on Scaled Heat Flux Profiles

When based on the vertical heat flux profile, the scaled EZ depth (
zf0−zf1

zf
)

remains more less constant with respect to time in Figure 4.18. Figure 4.19

shows little or no Ri dependence.

Figure 4.18: Plot of scaled upper (
zf1
zf

) and lower (
zf0
zf

) EZ boundaries

based on vertical heat flux profile
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Figure 4.19: Plots of scaled EZ depth vs Ri−1
∆ . EZ boundaries and so

∆θ are based on the w′θ′

(w′θ′ )s
profile.
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4.2.4 Answer to Q2

Initially, I define CBL height and EZ boundaries based on the ∂θ
∂z profile. As

Brooks and Fowler (2012) point out, when using an average vertical tracer

profile there is no universal criterion for a significant gradient. So a threshold

value for the lower EZ boundary (h0) was chosen such that it was positive,

small (i.e. an order of magnitude less than γ) and the same for all runs. For

the sake of rigor, plots of the relationship

∆h

h
∝ Rib (1.16)

were produced based on two additional threshold values yielding analogous

results. In all three cases curves representing Equation 1.16 grouped accord-

ing to γ

The importance of γ is revealed again as the curves representing equation

1.16 become similar when heights are based on the scaled ∂θ
∂z profile,

∂θ
∂z
γ .

Further inspection shows that this change primarily occurs at the lower EZ

boundary (h0) when ∂θ
∂z is measured as proportion of γ. The influence of γ

on ∂θ
∂z at h0 ties in with the influence of γ on downward moving θ

′+ at h

shown in Section 4.1.3. This prompts the use of the scaled profiles for the

heights (h0, h, h1 and zf0, zf , zf1) in the subsequent section.

These results support a varying exponent b in Equation 1.16 which is lower

in magnitude (−1
2) at lower Ri and approaches −1 at higher Ri. This is in

line with theory and the results of comparable studies so the EZ boundary

definitions based on the
∂θ
∂z
γ profile are valid. For comparison with results

from other studies these heights are also based on the vertical w′θ′ profiles

as shown in Figure 2.1. I find no clear dependence of the scaled EZ depth

on Ri within this framework.
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4.3 Entrainment Rate Parameterization

4.3.1 Reminder of Definitions

A key finding of Section 4.2.2 was that curves representing Equation 1.16

group according to γ when heights are based on the unscaled ∂θ
∂z profile and

then become similar when heights are based on
∂θ
∂z
γ . So from here on all

heights will be as in Figure 4.20 and the corresponding Richardson numbers

(Ri) will be as in Table 2.1.

θ

z

θ

θ0

0 1
∂θ
∂z/γ

h1

h

h0

-0.2 0 1

w′θ′

w′θ′s

zf0

zf1

zf

Figure 4.20: Height definitions based on the scaled average vertical
profiles. θ0 is the initial potential temperature.

4.3.2 CBL Growth

Convective boundary layer height (h) in Figure 4.21 increases, rapidly at

first, with a steadily decreasing rate and relates to the square-root of time

in Figure 4.22. Federovich et al. (2004) focus on the attainment of a quasi-

steady state regime in which their zero-order model applies. Within this
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regime scaled CBL height , hB
− 1

2
s N

3
2 where Bs is the surface buoyancy flux,

relates to the square-root of their scaled time, tN . Over the time of the

runs Bs is constant and N varies much more slowly than h. So based on

Figure 4.22 I conclude that over the period during which I obtain output,

all runs are in this quasi-steady state. The height of minimum vertical heat

flux zf is a constant proportion of h in Figure 4.23 indicating that this point

advances more slowly than h.

Figure 4.21: h vs Time for all Runs
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Figure 4.22: h vs Time for all Runs on log-log Coordinates

Figure 4.23:
zf
h vs Time
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4.3.3 Heights Based on the Scaled Vertical Average
Potential Temperature Profile

The inverse Richardson numbers (Ri−1
∆ and Ri−1

δ ) in Figure 4.24 decrease in

time and group according to γ. There is an overall difference in magnitude

since ∆θ > δθ.

(a) (b)

Figure 4.24: Inverse Richardson number vs time based on the
∂θ
∂z
γ pro-

file using ∆θ across the EZ in (a) and δθ at h in (b). See Table
2.1.

The entrainment rate (we = dh
dt ) is determined from the slope of a second

order polynomial fit to h(time) in Figure 4.21. When we is scaled by w∗ the

resulting relationship to Ri∆

we
w∗
∝ Ria∆, (4.1)

plotted in log-log coordinates in Figure 4.25 (a), has an exponent a = −1 at

lower Ri∆ and a = −3
2 at higher Ri∆.

In Figure 4.25 (b) the relationship

we
w∗
∝ Riaδ (4.2)
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possibly approaches a value of a = −1 at higher Riδ but a value of lower

magnitude would fit better overall.

(a) (b)

Figure 4.25: Scaled entrainment rate vs inverse Richardson number

(Ri−1), in log-log coordinates, where Ri is based on the
∂θ
∂z
γ

profile using ∆θ across the EZ in (a) and δθ at h in (b). See
Figure 4.20.
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4.3.4 Heights Based on the Scaled Vertical Average Heat
Flux Profile

Richardson numbers with ∆θ and δθ based on the w′θ′ profile are compara-

ble with those in Section 4.3.3 although Ri∆ shows considerable scatter in

Figure 4.26 (a) than that in Figure 4.24 (a).

(a) (b)

Figure 4.26: Inverse Richardson number vs time based on the w′θ′

w′θ′s
profile using ∆θ across the EZ in (a) and δθ at zf in (b). See
Figure 2.1 and Table 2.1.

In Figure 4.27 the axes are in log-log coordinates and all heights are based

on the scaled w′θ′ profile. The relationship of scaled entrainment rate to

Ri∆ in (a) shows scatter and either value of a or a value in between could

fit. Whereas the exponent in the relationship to Riδ in (b) seems to change

throughout the run(s) and a value less (in magnitude) than −1 might fit

better.

4.3.5 Answer to Q3

In conclusion the relationship of scaled entrainment rate to Ri∆ based on

the
∂θ
∂z
γ profile shows the least scatter over time and between runs in Figure

4.25. Here the exponent seems to start at a value close to −1 increasing

in magnitude, with higher Ri, to close to −3
2 . This apparent change with
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(a) (b)

Figure 4.27: Scaled entrainment rate vs inverse Richardson number

(Ri−1), in log-log coordinates, where Ri is based on the w
′
θ
′

(w′θ′ )s
profile using ∆h across the EZ in (a) and δθ at zf in (b). See
Figure 2.1 and Table 2.1.

increased Ri mirrors that seen with Equation 1.16 in Figure 4.17. It’s pos-

sible that it represents a change in entrainment mechanism as discussed in

Section 1.2.6. Overall the definition of the temperature jump certainly has

an effect, ∆θ yielding a value of a higher in magnitude than δθ.
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5. Results in Context

Much work has been done to develop our understanding of CBL entrain-

ment, so this chapter will focus on how my results fit into the discussion

established in the literature. I focus on six closely related publications for

comparison. Sullivan et al.’s 1998 LES study was seminal in shedding light

on CBL entrainment zone structure. Whereas Brooks and Fowler’s (2012)

work contains the most recent LES results on the topic framed within an up

to date review of CBL height and EZ definitions. Federovich et al. (2004)

bridges LES and bulk models, while the closely related DNS study of Garcia

and Mellado (2014) introduces the two-layer EZ concept and answers ques-

tions regarding the scale resolution required to realistically capture CBL

growth and EZ structure. Sullivan and Patton (2011) addressed this last

point using an LES, and guided the choice of grid-size in the study de-

scribed in this thesis. Finally Sorbjan (1996) focused on the effects of upper

lapse rate on the turbulence in the upper CBL and provided ideas upon

which I based Section 4.1.

Section 5.1 draws upon the results of Sullivan and Patton (2011) to address

the need for high resolution in the entrainment zone (EZ) such that the

steep gradients are sufficiently represented. I present and compare those of

my results that are pertinent and refer to how Garcia and Mellado (2014)

speaks to this point. Finally, I touch upon how my domain size and initial

conditions compare with those of the related LES studies and consider pos-

sible implications of the similarities and differences.

In Section 5.2 I describe problems encountered when using the gradient
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method, as well as discuss the results obtained using my chosen method of

determining local ML height. All of this is set in context with the results

of Sullivan et al. (1998) and Brooks and Fowler (2012). The influence of γ

on the turbulent fluctuations of vertical velocity and potential temperature

(w
′

and θ
′
) is discussed and compared with the results of Sorbjan (1996) be-

fore addressing the dependence of the downward moving positive potential

temperature fluctuations at h (θ
′+ where w

′
< 0) on this parameter. An

explanation of the potential temperature fluctuation scale δhγ follows.

A primary goal of this thesis was to test the average potential temperature

θ profile as a basis for defining the EZ boundaries. Before comparing the

results using heights thus defined in Section 5.3, I base all heights on the

vertical heat flux (w′θ′) profile to enable direct comparison with the results

of Brooks and Fowler (2012) and Federovich et al. (2004). I discuss similar-

ities, differences and possible reasons for the latter. I then compare results

based on the θ profile focusing on the exponent b in Equation 1.16 and how

it varies depending on Ri.

Section 5.4 contains an analogous comparison to that described above. Heights

are defined, first based on the w′θ′ profile for direct comparison with the

results of Federovich et al. (2004) and Garcia and Mellado (2014) and then

based on the θ profile. Each of these two comparisons is subdivided in order

to address the effect of, defining the θ jump across the EZ as in Figure 1.3,

vs at h as in Figure 1.4. In all there are four plots of Equation 1.25 to

show how the exponent a varies depending, on θ jump definition, as well

as Ri. This variation is discussed in the context of the results of the other

comparable studies.
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5.1 Comparison of General Set-up

5.1.1 Significance of Grid-size

Sullivan and Patton (2011) found that the shapes of the average potential

temperature (θ) and heat flux (w′θ′) profiles, as well as the measured CBL

height vary depending on grid size. The resolution at which convergence

begins is listed in Table 5.1. At lower resolution the θ and w′θ′ profiles are

such that the entrainment zone (EZ) is a larger portion of the CBL and

measured CBL height is higher. Overall they concluded that vertical res-

olution was critical. This compliments the conclusion Brooks and Fowler

(2012) reached when discussing their resolution test. That is, to capture the

steep vertical gradients in the EZ requires high vertical resolution.

Table 5.1: Grid spacing around the EL used in comparable LES stud-
ies. Those used for resolution tests are not listed here. For Sul-
livan and Patton’s 2011 resolution study I list the grid sizes at
which profiles within the EL and CBL height evolution began to
converge.

Publication ∆x, ∆y, ∆z Horizontal
in the EZ (m) Domain (km2)

Sullivan et al. (1998) 33, 33, 10 5 x 5
Federovich et al. (2004) 100, 100, 20 5 x 5

Brooks and Fowler (2012) 50, 50, 12 5 x 5
Sullivan and Patton (2011) 20, 20, 8 5 x 5
This study 25, 25, 5 3.4 x 4.8

As Turner discusses in his 1986 review of turbulent entrainment, smaller

scale processes such as those at the molecular level are relatively unimpor-

tant. Large scale engulfment and trapping between thermals dominates. If

the ergodic assumption holds and potential temperature variance (θ′2) is

calculated based on the difference at a point from the horizontal average,
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it is a measure of horizontal variance. Sullivan and Patton (2011) found

that the vertical distance over which θ′2 varied significantly, more or less

converged at the resolution shown in Table 5.1. However, the maximum

θ′2 continued to increase up to their finest grid spacing (∆x = 5, ∆y = 5,

∆z = 2).

The question as to whether mixing and gradients within the EZ are ade-

quately resolved motivates DNS studies such as that of Garcia and Mellado

(2014). These authors found the entrainment ratio (
w′θ′zf

w′θ′s
) to be about 0.1

which is lower than that observed by Federovich et al. (2004), but close to

what was seen here in Figures 3.5 and 3.2. Based on their w′θ′ profiles

the depth of the region of negative flux is comparable to what is shown

in Figure 4.18. Furthermore, these authors concluded that the production

and destruction rates of turbulence kinetic energy (TKE), as well as the

entrainment ratio used to calculate the entrainment rate, were effectively

independent of molecular scale processes.

The FFT energy spectra (Figure 3.6) of the turbulent velocities at the top

of the ML show a substantial resolved inertial subrange giving confidence in

the choice of horizontal grid size used. In the EZ where turbulence is inter-

mittent, the dominant energy containing structures are smaller, and decay

to the smallest resolved turbulent structures is steeper. This is consistent

with the assertion of Garcia and Mellado (2014) that the EZ is separated

into two sub-layers in terms of turbulence scales.

5.1.2 Horizontal Domain

The horizontal domain in this study is relatively small (see Table 5.1). How-

ever, visualizations of horizontal and vertical slices clearly showed multi-

ple resolved thermals. Their diameters increased with CBL height, but

remained less than or on the order of the height of the CBL. Sullivan et al.

(1998) carried out one run on a smaller domain with higher resolution, no-
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ticed it resulted in lower CBL height and concluded this was due to restricted

horizontal thermal size. However, given the results of Sullivan and Patton

(2011) discussed in Section 5.1.1 it could have been an effect of grid-size.

When defining heights based on average profiles Sullivan et al. (1998) pro-

duced jagged, oscillating time-series and Brooks and Fowler (2012) encoun-

tered significant scatter in plots of Equation 1.25. But the heights based on

average profiles here, using an ensemble of cases, varied smoothly in time

in Figure 4.21. This could be attributed to a smoother profile based on a

greater number horizontal points (10*128*192).

5.1.3 Initial Conditions

The principle parameter describing the balance of forces in dry, idealized

CBL entrainment is the Richardson number (Ri) and its magnitude de-

pends on the way in which the θ jump is defined. Varying the θ jump

definition causes identical conditions to be described by different Ri values.

The Ri range in this study was dependent on variation in γ (see Figure 4.24).

Brooks and Fowler (2012) and Sullivan et al. (1998) imposed a θ jump of

varying strength topped by a constant γ. Whereas Federovich et al. (2004)

initialized with a layer of uniform θ. They varied γ and kept w′θ′s constant

for each run. Their initial conditions, definitions of the θ jump and Ri range

are directly comparable to those of this study, whereas those of Brooks and

Fowler (2012) and Sullivan et al. (1998) are quite different.

5.2 Entrainment Zone Structure

5.2.1 Local ML Heights

Sullivan et al. (1998) determined local CBL height by locating the point of

maximum ∂θ
∂z . Analysis of the resulting distributions showed dependence of

standard deviation and skewness on Richardson number (Ri). The normal-
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Table 5.2: Initial Conditions used in comparable LES Studies

Publication w′θ′s γ Initial θ Ri
Wm−2 Kkm−1 Jump K range

Sullivan et al. (1998) 20 - 450 3 .436 - 5.17 1 - 100
Federovich et al. (2004) 300 1 - 10 NA 10 - 40
Brooks and Fowler
(2012)

10 -100 3 1 - 10 10 - 100

This study 60 - 150 2.5 - 10 NA 10 - 30

ized standard deviation decreased with increased Ri whereas skewness was

almost bimodal; being negative at high Ri and positive and low Ri. Initially

in this study, I applied a similar method and found local CBL height distri-

butions with lower Ri to have positive skew. Upon exhaustive inspection of

local vertical θ profiles such as those in Figure 4.2, it became evident that

at certain horizontal points high gradients well into the free atmosphere ex-

ceeded those closer to the location of the CBL height reasonably identified

by eye.

5.2.2 Local ML Height Distributions

Locating the local ML height (hl0) using the multi-linear regression method

described in Chapter 2 proved more reliable than the gradient method dis-

cussed above. The resulting distributions, normalized by CBL height, h,

(see Figure 2.1) in Figure 4.3, showed a decrease in the lowest
hl0
h resulting

in an apparent increased negative skew with decreasing stability (decreas-

ing Ri). This, combined with a widening of the distribution agrees, with

the findings of Sullivan et al. (1998) and supports the results based on the

average profiles in Section 4.2. The approximate scaled EZ based on the
hl0
h

distributions is about 0.2 - 0.4 whereas that based on distributions of local

maximum tracer gradients by Brooks and Fowler (2012) was smaller (0.05

- 0.2). However, the local maximum gradient of the tracer profile would
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likely be within the EZ at points outside an actively impinging plume and

so higher than hl0 defined here.

5.2.3 Local Vertical Velocity and Potential Temperature
Fluctuations

As expected, with increased w′θ′s the variance and magnitude of the vertical

velocity fluctuations within and at the limits of the EZ increase. Greater

turbulent velocity causes a higher CBL and a deeper EZ over which, rela-

tively warmer air from higher up is brought down, and relatively cooler air

from below is brought up. So the magnitude of the potential temperature

fluctuations (θ
′
) and the width of their distribution increases. All of this

agrees with the findings of Sorbjan (1996), but the portion of the scaled w
′

(w
′

w∗ ) distribution where scaled θ
′

( θ
′

θ∗ ) is positive, in Figure 4.5, appears to

narrow as γ increases. This is somewhat at odds with his assertion that w
′

is independent of this parameter while the effectiveness of w∗ as a scale for

w
′− where θ

′
> 0 in Figure 4.6 supports it.

5.2.4 Downward Moving Warm Air at h

Although the motion of the thermals dominates within the EZ, the w′−θ′−,

w′+θ′− and w′−θ′− quadrants do approximately cancel leaving w′−θ′+ as

the net dynamic, as Sullivan et al. (1998) concluded. The downward mov-

ing warm quadrant at h ( (w′−θ′+)h ) represents warmer free atmosphere

(FA) air that is being entrained. So its magnitude, at a certain point in

time, is an indication of how much the region below will be warmed due

to entrainment at a successive time. The increase of (w′−θ′+)h in time is

primarily due to the increased average positive potential temperature fluc-

tuation at h ( (θ′+)h ) which is effectively scaled by the temperature scale

(h1 − h)γ = δhγ (see the Figures of Section 4.1.3). A similar scale was

introduced by Garcia and Mellado (2014) to further their line of reasoning

that the buoyancy in the upper EZ is determined by γ. Figure 5.1 illustrates
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a broad qualitative explanation. At h much of the air is at the background

(or initial) potential temperature θ0(h). Some air at potential temperature

θ = θ0(h1) is brought down from the upper EZ limit (h1) resulting in posi-

tive potential temperature fluctuations (θ
′+) at h.

Figure 5.1: Illustration of the potential temperature scale (h1−h)γ =
δhγ: The curves represent a vertical cross-section of thermal
tops. Between them is stable air at the initial lapse rate γ.
h1 and h correspond approximately to the highest and aver-
age thermal height respectively and h0 is the top of the well
mixed region (ML). The horizontally uniform, initial potential
temperature is θ0 = θ0. A thermal will initiate the downward
movement of air from h1 to h, and the difference between its
potential temperature and that of the background stable air at
h is (h1 − h)γ = δhγ.

Garcia and Mellado (2014) suggest that the buoyancy in the lower portion

of the EZ, i.e. from a point just below h down, is more strongly influenced

by the vigorous turbulence of the ML than by γ. So mixing reduces the

difference between, the potential temperature at the top of the ML, and

that at or just below h. However the observation in Section 4.2.2, that the

magnitude of the average vertical potential temperature gradient (∂θ∂z ) in the

upper ML increases with increasing γ, indicates that the influence of this

parameter extends further down. On a related note, the magnitude of the

minimum heat flux ( (w′θ′)zf ) is seen to increase with increasing γ, here
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and in both Sorbjan (1996) and Federovich et al. (2004). It is reasonable

to suggest this leads to an increased negative vertical heat flux gradient

(−∂w′θ′

∂z ) in the lower EZ and so increased warming per Equation A.21.

∂θ

∂t
= − ∂

∂z
w′θ′ (A.21)

5.3 Entrainment Zone Boundaries

The EZ is inhomogeneous, but on average is a region of transition as clearly

represented by the θ profile. It’s where relatively cooler thermals overturn or

recoil initiating entrainment as represented by the vertical heat flux (w′θ′)

profile. The θ profile partially characterizes the thermodynamic state of the

CBL as well defining its three layer structure. It is directly comparable to

both bulk models and local θ profiles which in turn are comparable to a

sounding, unlike a w′θ′ profile which is an inherently average quantity.

5.3.1 Direct Comparison Based on the Vertical Heat Flux
Profile

Neither of the two comparable LES studies in Table 3.3 define the EL based

on the ∂θ
∂z profile. So to enable direct comparison, heights were based on

the heat flux (w′θ′) profile as in Figure 4.20. In this framework Federovich

et al. (2004) show decreasing scaled EZ with increasing Ri and conclude an

exponent b = −1
2 . They attribute the decrease in the overall scaled depth to

a slight decrease in the scaled upper boundary over time. However based on

their plot in Figure 5.2 the decrease seems more than slight, varying from

about 0.5 to 0.2.

Brooks and Fowler (2012) found no clear Ri dependence of the scaled EZ

depth defined based on the w′θ′ profile. But their definition hinged solely

upon the lower part (zf1 − zf ) which according to Federovich et al. (2004)

does not vary in time. Figure 4.19 of this thesis shows that when I defined

the EZ based on the w′θ′ profile as Federovich et al. (2004) did, the scaled
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Figure 5.2: Figure 9 from Federovich et al. (2004) representing Equa-
tion 1.16 using three different Richardson numbers, in log-log
coordinates. Heights are based on the w′θ′ profile as in Figure
4.20 and their zi is my zf . δzi

zi
is then the scaled EZ depth.

Ri∆b (circles) and Riδb (crosses) correspond directly to those
determined here using δθ and ∆θ. Note that their ∆ refers to
the smaller jump measured at zf , whereas I use it for the larger.
RiN (triangles) is the Richardson number defined in Equation
1.13, with w∗ and zf as the velocity and length scale.

EZ depth had no clear dependence on Ri. This is supported by the similar-

ity in time and across runs of the vertical heat flux profiles when scaled by

(w′θ′)s in Figures 3.3 and 3.5.

The most obvious possible cause for disagreement with the results of Federovich

et al. (2004) is the difference in grid size shown in Table 5.1. Inspection of

their w′θ′ profiles confirms a relatively deeper scaled region of negative flux

as compared with those seen here ( .4 vs .25). Their surface heat flux w′θ′s

was twice the highest used here, but their range of Ri is comparable to that

of this study. The latter point although not directly relevant here, serves as

confirmation that γ is the more influential parameter.
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Table 5.3: EZ Definitions used in comparable Studies. See Figure 4.20

Publication EZ Depth CBL
height

θ Jump

Federovich et al. (2004) zf1 − zf0 zf θ(zf1)− θ(zf0)

Brooks and Fowler
(2012)

2×(zf−zf0) zf average of local
values

5.3.2 General Comparison Based on the Potential
Temperature Profile

Here, when heights are defined based on the scaled vertical potential tem-

perature gradient profile
∂θ
∂z
γ the curve representing Equation 1.16

∆h

h
∝ Rib (1.16)

shows an exponent b which increases in magnitude, from about −1
2 as pre-

dicted and seen by Boers (1989), to about −1 as justified in Nelson et al.

(1989), with increasing Ri (decreasing Ri−1). Overall there is a clear nar-

rowing of the scaled EZ depth with increasing Ri (decreasing Ri−1) as sup-

ported by the local height distributions in Section 4.1.1. Although based on

different height definitions, Federovich et al. (2004) concluded an exponent

b = −1
2 and Brooks and Fowler’s (2012) plots show curves with an apparent

exponent less in magnitude than −1, in Figure 5.3.

The curves representing each run in Figure 5.3 fan out. In Figure 4.12 of this

thesis, before scaling, the ∂θ
∂z profile curves separate out, but in the reverse

order. CBLs under higher stability, and so higher Ri, have larger scaled EZ

depths. Whereas Brooks and Fowler’s (2012) runs with initially lower Ri

have larger scaled EZ depths than those with higher, even where Ri values

overlap. Nonetheless, that there appears a family of separate but similar
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Figure 5.3: Panel (a) from Figure 5 in Brooks and Fowler (2012) rep-
resenting Equation 1.16:The normalized EZ depth is determined
in three ways (i) the upper and lower percentiles from the dis-
tribution of local CBL height (maximum tracer gradient), nor-
malized by the average of the local heights (pale grey) (ii) the
average of local scaled EZ depths based on wavelet covariance
(dark grey) and (iii) the average of the locally determined EZ
depths scaled by the average of the locally determined heights
(black), based on wavelet covariance. Their θ jump is an aver-
age of the potential temperature differences across the local EZ
depths.

curves rather than a single curve hints at an underlying scaling parameter.

Neither study referenced in Table 3.3 addresses the change in exponent with

increased Ri that I observe in Figure 4.17. It is reasonable to suggest that

this represents a change in entrainment mechanism. Sullivan et al. (1998)

observed enfolding and engulfment at lower Ri. Whereas at higher Ri when

motion is more restricted, entrainment seemed to occur via trapping of thin-

ner wisps at the edge of an upward moving thermal. Turner (1986) also dis-

tinguishes between entrainment by convective overturning and recoil. Garcia

and Mellado (2014) refer to a change in entrainment rate due to the effects
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of increased stability on the upper EZ sub-layer. In this study, the nar-

rowing of the EZ depends predominantly on the magnitude of the average

vertical potential temperature gradient ∂θ
∂z in the lower EZ and upper ML.

However, the scaled magnitude of upper limit in Figure 4.10 does appear

to decrease slightly in time. This could correspond to the slowly decreasing

upper sub layer of the EZ mentioned in both Garcia and Mellado (2014)

and Federovich et al. (2004).

5.4 Entrainment Rate Parameterization

Ri magnitude determined in this and the comparable studies is primarily

influenced by the magnitude of the θ jump. Here, I define it in two ways as

Federovich et al. (2004) did. I do this based on the w′θ′ profile, as in Figure

4.20 and Table 2.1 for the purpose of direct comparison and to observe how

the change in definition effects Equation 1.25.

we
w∗
∝ Ria (1.25)

5.4.1 Direct Comparison Based on the Vertical Heat Flux
Profile

The larger jump, i.e. that taken across the EZ (∆θ) as in Figure 1.3, yields

a larger value of a as Federovich et al. (2004) conclude. Garcia and Mel-

lado (2014) interpret both curves as asymptotic to straight lines (a = −1)

as the upper EZ sub-layer narrows. Based on their plots in Figure 5.4, in

the absence of their justification based on the derivation of the entrainment

relation, for ∆θ I see a curve (grey and blue) with increasing exponent ex-

ceeding magnitude −1 at higher Ri. For their version of δθ I see a curve

(grey and red) with exponent less in magnitude than −1.
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Figure 5.4: Figure 11 from Garcia and Mellado (2014) and represent-
ing equation 1.25 based on the two θ jumps. The grey and blue
curve is based on ∆θ and the (grey and) red curve is based on
θ(h)−θ0(h) which is slightly different to the δθ defined here and
in Federovich et al. (2004). The dashed and continuous black
lines represent the straight lines to which the curves asymptote
according to their analysis. Their heights are comparable to
those based on the heat flux (w′θ′) profile in Figure 4.20.

5.4.2 Extending Comparison to the Average Potential
Temperature Profile

There is an analogous distinction between curves representing Equation 1.25

using ∆θ and those using δθ, when all heights are based on the
∂θ
∂z
γ profile.

Scatter is least when the θ jump is defined across the EZ. In Figure 4.25

a = −3
2 fits at higher Ri (lower Ri−1) and a = −1 seems to fit at lower Ri.

Combined with the apparent change in b for Equation 1.16 I interpret this

as an indication of a change in entrainment regime at increasing Ri.
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6. Conclusion

6.1 Major Findings

The dry idealized convective atmospheric boundary layer (CBL) was mod-

eled using large eddy simulation (LES). Although this has been done before

and a broad understanding of the dynamics and scaling behaviour has been

established, discussion of details continues. This study was intended to con-

tribute to this discussion and shed light on some of these details. It was

guided by the questions outlined in Section 1.3 and answered in Chapter 4

and concludes with the following four points:

6.1.1 The Gradient Method for Determining Local Heights
Based on the θ Profile is Problematic.

Local θ profiles vary depending on location. The top of an active thermal

impinging on the free atmosphere (FA) as in Figure 4.1 is characterized

by a steep gradient comparable to the zero-order model representation in

Figure 1.4. At other locations, for example where a thermal has overturned

or recoiled and some entrainment has been initiated as in Figure 4.2, there

is a region over which the θ profile transitions to the upper lapse rate (γ).

That is, there is a local entrainment zone (EZ). At such locations, there

are gradients well into the FA that exceed any within the EZ, as well as an

absence of a well-defined local CBL height. This presents both a practical

and conceptual challenge to the gradient method, while determination of

the ML using piecewise linear regression is more reliable.
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6.1.2 CBL Height and EZ Boundaries can be Defined
Based on the Average Potential Temperature Profile

The θ profile characterizes the dry, idealized CBL and links bulk models to

soundings via an LES. Both the EZ depth and CBL height based on the

average
∂θ
∂z
γ profile showed dependence on Ri (Sections 4.2 and 4.3) as seen

in other studies and justified theoretically. So this is a valid way of defining

the CBL and its EZ.

6.1.3 Upper Lapse-Rate is a Critical Parameter in
Idealized CBL Entrainment

The magnitude and variance of local ML height, increase with increasing

w′θ′s, and decrease with increasing γ. The same can be said for the ver-

tical velocity fluctuations (w
′
) in the EZ. However, increased γ results in

an increase in the positive potential temperature fluctuations (θ
′+) at h.

The magnitude of (θ
′+) at points where w

′
is negative represents downward

moving entrained air and depends on γ (Section 4.1). Below h, in the lower

EZ, the average vertical potential temperature gradient (∂θ∂z ) also depends

on γ (Section 4.2.2). So, the growth of the idealized dry CBL is driven by

(w′θ′)s and suppressed by stability (γ). But CBL warming is due, in part,

to the entrainment of air from aloft the potential temperature of which in

turn depends on γ.

Evidence for the influence of γ is seen throughout this study. Distribu-

tions of scaled local ML heights approach similarity, when γ is constant but

(w′θ′)s is varied (Figure 4.3). Curves representing Equation 1.16 group ac-

cording to γ when based on the ∂θ
∂z profile, but collapse once based on

∂θ
∂z
γ

(Section 4.2.2). The convective time scale τ = w∗

h and Ri group according

to γ (Figure 3.1) lending support to Federovich et al.’s (2004) use of the

Brunt-Vaisala time scale. It seems that once the effect of the surface heat

flux (w′θ′s) is accounted for through h, γ emerges as the dominant param-

eter in dry, idealized CBL entrainment.
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6.1.4 There are Two CBL Entrainment Regimes

Turner (1986) outlined and theoretically justified two distinct convective

boundary layer entrainment regimes wherein the scaled entrainment rates

have different Ri dependence. The LES flow visualizations of Sullivan et al.

(1998) showed large scale engulfment at lower Ri. At higher Ri, trapping of

smaller volumes of stable air between and at the edges of impinging thermals

appeared to be the dominant mechanism. The CBL entrainment zone mea-

surements analyzed in Traumner et al. (2011) further support the concept

of varying entrainment mechanism depending on the strength of the upper

lapse rate γ. Finally, both Federovich et al. (2004) and Garcia and Mellado

(2014) discuss the varying dependence of the scaled entrainment rate on Ri

as the effects of upper stability become more important. On these grounds

I attribute the change in exponent in the plots of equations 1.16 and 1.25 in

Figures 4.17 and 4.25 to a change in entrainment regime as Ri increases.

6.2 Future Work

Some ideas as to how the work in this thesis could be completed or extended

are as follows:

6.2.1 Expand Local CBL Height Determination Method

To further the tri-linear regression method described in Section A.4, the EZ

could be approximated by a suitable polynomial, fit using an appropriate re-

gression method. It then could be possible to determine a local CBL height

at the point of maximum gradient on this fitted curve.

6.2.2 Examine Resolution Effects

Runs could be carried out at lower resolution, to examine the effects on the

curves in Figure 4.19 and eliminate or confirm this as a cause for disagree-

ment with the results of Federovich et al. (2004) discussed in Section 5.3.1.

The height and θ jump definitions of Garcia and Mellado (2014) could be
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matched to facilitate direct comparison with their results and speak more

to the need for increased resolution.

6.2.3 Further Explore Entrainment Regimes

As discussed already in this Section, there is sufficient cause to assume

there is a change in entrainment mechanism as Ri increases. Animated vi-

sualizations of two-dimensional horizontal slices showed thermals regularly

impinging on the FA with associated, intermittent periods of vigorous ac-

tivity. A possible way to observe these mixing events and how they change

with respect to Ri and time, is to measure turbulent velocity and vorticity

at local points, or sub-domain regions. The connection between increased

horizontal and downward motions in the EZ, and CBL growth can, easily be

tested by concurrently measuring the local height. Furthermore, turbulent

activity measured at different levels within the EZ could shed further light

on the turbulence characteristics of Garcia and Mellado’s (2014) suggested

two layer structure.

6.2.4 Apply a Mass Flux Scheme

The robustness of equations 1.16 and 1.25 could be tested by first estab-

lishing criteria for identifying CBL air and then calculating the entrainment

rate based on the increase in its volume using the method described in Dawe

and Austin (2010). CBL air could be identified using a passive tracer, and

or potential temperature. The EZ could, for example, be defined based on

statistics of local CBL heights.
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A. Appendices

A.1 Potential Temperature: θ

θ = T

(
p0

p

)Rd
cp

(A.1)

p0 and p are a reference pressure and pressure respectively.

cp
θ

dθ

dt
=
cp
T

dT

dt
− Rd

p

dp

dt
(A.2)

If changes in pressure are negligible compared to overall pressure, as in the

case of that part atmosphere that extends from the surface to 2 km above

it.

cp
dθ

θ
= cp

dT

T
− Rd

p

dp

p
(A.3)

dθ

θ
=
dT

T
(A.4)

and if

θ

T
≈ 1 (A.5)

then small changes in temperature are approximated by small changes in

potential temperature

dθ ≈ dT or θ
′ ≈ T ′ (A.6)

and at constant pressure change in enthalpy (H) is

88



dH = cpdT. (A.7)

This serves as justification for defining w′θ′ as the vertical heat flux.

A.2 Second Law of Thermodynamics

ds

dt
≥ q

T
(A.8)

For a reversible process

ds

dt
=
q

T
(A.9)

Using the first law and the equation of state for an ideal gas

q

T
=

1

T

(
dh

dt
− αdp

dt

)
=
cp
T

dT

dt
− Rd

p

dp

dt
(A.10)

so

ds

dt
=
q

T
=
cp
θ

dθ

dt
(A.11)

For a dry adiabatic atmosphere

ds

dt
=
cp
θ

dθ

dt
= 0 (A.12)

A.3 Reynolds Decomposition and Simplification
of Conservation of Enthalpy (or Entropy) for
a Dry Atmosphere

∂θ

∂t
+ ui

∂θ

∂xi
= νθ

∂2θ

∂x2
i

− 1

cp

∂Q∗

∂xi
(A.13)

ν and Q∗ are the thermal diffusivity and net radiation respectively. If we

ignore these two effects then

∂θ

∂t
+ ui

∂θ

∂xi
= 0 (A.14)
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θ = θ + θ
′
, θ = ui + u

′
i (A.15)

∂θ

∂t
+
∂θ
′

∂t
+ ui

∂θ

∂xi
+ u

′
i

∂θ

∂xi
+ ui

∂θ
′

∂xi
+ u

′
i

∂θ
′

∂xi
= 0 (A.16)

Applying Reynolds averaging gives

∂θ

∂t
+ ui

∂θ

∂xi
+ u

′
i

∂θ′

∂xi
= 0 (A.17)

Ignoring mean winds

∂θ

∂t
+ u

′
i

∂θ′

∂xi
= 0 (A.18)

using flux form

∂θ

∂t
+
∂(u

′
iθ
′)

∂xi
− θ′ ∂u

′
i

∂xi
= 0 (A.19)

under the bousinesq assumption ∆ · ui = 0

∂θ

∂t
= −∂(u

′
iθ
′)

∂z
(A.20)

ignoring horizontal fluxes

∂θ

∂t
= −∂(w′θ′)

∂z
(A.21)

A.4 Tri-Linear Fit for Determining Local ML
Height hl0

The following is a modified version of the piecewise linear regression method

used in Vieth (2011) and was implemented using Cython (Behnel et al.

2011). Potential temperature is assumed to be linear function of height

θ = bz + a (A.22)
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.

Each local θ profile was assumed to have three linear portions, with slopes

(b1, b2, b3) and intercepts (a1, a2, a3) as follows:

b1 =

∑j
0 z(i)θ(i)− 1

j

∑j
0 z(i)

∑j
0 θ∑j

0 z(i)
2 − 1

j (
∑j

0 z(i))
2

(A.23)

a1 =

∑j
0 z(i)θ(i)∑j

0 z(i)
− b1

∑j
0 z(i)

2∑j
0 z(i)

(A.24)

b2 =

∑k
j z(i)θ(i)− (k − j)a1 + b1z(j)∑k

j z(i)− (k − j)z(j)
(A.25)

a2 =

∑k
j z(i)θ(i)∑k
j z(i)

− b2
∑k

j z(i)
2∑k

j z(i)
(A.26)

b3 =

∑n
k z(i)θ(i)− (k − j)a1 + b1z(j)∑k

j z(i)− (k − j)z(j)
(A.27)

a3 =

∑n
k z(i)θ(i)∑n
k z(i)

− b3
∑n

k z(i)
2∑n

j z(i)
(A.28)

where z(i) and θ(i) are a local height and potential temperature value at

a particular height index i. j is the height index of the ML top, h0. k is

the height index for the top of the EZ, h1. n is the total number of height

levels. The best fit is that with the smallest residual sum of squares

RSS(j, k) =

j∑
0

(θ(i)−(a1+b1z(i)))
2+

k∑
j

(θ(i)−(a2+b2z(i)))
2+

n∑
k

(θ(i)−(a3+b3z(i)))
2

(A.29)

.
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