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Abstract

Maintaining a high quality of lumber products is of great social and economic
importance. This thesis develops theories as part of a research program aimed
at developing a long term program for monitoring change in the strength of
lumber. These theories are motivated by two important tasks of the monitor-
ing program, testing for change in strength populations of lumber produced
over the years and making statistical inference on strength populations based
on Type I censored lumber samples. Statistical methods for these inference
tasks should ideally be efficient and nonparametric. These desiderata lead us
to adopt a semiparametric density ratio model to pool the information across
multiple samples and use the nonparametric empirical likelihood as the tool
for statistical inference.

We develop a dual empirical likelihood ratio test for composite hypotheses
about the parameter of the density ratio model based on independent sam-
ples from different populations. This test encompasses testing differences in
population distributions as a special case. We find the proposed test statis-
tic to have a classical chi–square null limiting distribution. We also derive
the power function of the test under a class of local alternatives. It reveals
that the local power is often increased when strength is borrowed from ad-
ditional samples even when their underlying distributions are unrelated to
the hypothesis of interest. Simulation studies show that this test has better
power properties than all potential competitors adopted to the multiple sam-
ple problem under the investigation, and is robust to model misspecification.
The proposed test is then applied to assess strength properties of lumber
with intuitively reasonable implications for the forest industry.
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Abstract

We also establish a powerful inference framework for performing empiri-
cal likelihood inference under the density ratio model when Type I censored
samples are present. This inference framework centers on the maximiza-
tion of a concave dual partial empirical likelihood function, and features an
easy computation. We study the properties of this dual partial empirical
likelihood, and find its corresponding likelihood ratio test to have a sim-
ple chi–square limiting distribution under the null model and a non–central
chi–square limiting distribution under local alternatives.
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Chapter 1

Introduction

1.1 Application background

With nearly half of Canada’s entire land surface covered by trees, lumber
has been a vital natural resource and major construction material for this
country. Maintaining a high quality of lumber products hence is of great
social and economic importance: it is crucial to construction safety as well
as to the Canadian lumber industry. This thesis develops statistical methods
as part of a research project aimed at developing a program for monitoring
change in the strength of lumber. Interest in such a program also has been
sparked by climate change, which will affect the way trees grow, as well by the
changing resource mix, for example due to increasing reliance on plantation
lumber.

The monitoring program includes the following two important tasks.
First, it is crucial to examine whether the overall strength of lumber changes
over time, which translates into a hypothesis testing problem for detecting
differences in the population distributions of the strength of lumber from
different years. Second, it is desirable to make smart strength test plans to
maximize the scientific value of each piece of lumber: collecting and testing
lumber costs time and money; for example lumber must be conditioned in
the lab over a period of months before being destructively tested. To achieve
this goal, one way would be to collect Type I right–censored lumber strength
samples: we stop a destructive strength test, say bending strength test, at a
prespecified level such that not all the lumber is broken; the unbroken lum-
ber then can be used afterwards for other strength tests, say tension strength
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1.2. Density ratio models: concepts and examples

test, etc. The sample collect in the first test, although censored, is a repre-
sentative sample of bending strength, and can be used to infer population
characteristics of that strength. The sample collect in the second test is
useful for studying the relationship between the two different strengths.

Echoing the above tasks, this thesis develops statistical methods aimed
at the following inference goals: (i) testing hypotheses about parameters
of a number of different population distributions, given a random sample
from each; and (ii) establishing an inference framework for estimation and
hypothesis testing problems concerning several different populations based
on Type I censored multiple samples.

1.2 Density ratio models: concepts and

examples

Desiderata for the statistical methods used in the long term monitoring pro-
gram of lumber includes two key goals. First, the methods must be efficient
to reduce the sizes of the required samples. Moreover, the reduced effective
sample size of Type I censored samples demands highly efficient statisti-
cal methods to reach required estimation accuracy and hypothesis testing
power. Toward the goal of efficiency, this thesis proposes methods that bor-
row strength among lumber samples by exploiting an obvious feature of the
resource, that distinct populations of lumber over years, species, regions and
so on will share some latent strength characteristics. Second, the methods
should ideally be nonparametric in accordance with the well–ingrained prac-
tice in setting standards for forest products like those in American Society
for Testing and Materials (ASTM) protocols (ASTM D1990 – 07).

These desiderata, lead to the semiparametric density ratio model (DRM)
adopted in this thesis. In the targeted application, we have multiple lumber
strength samples collected from different years. While the size of the sample
from each population may be small because of the high data collection costs,

2



1.2. Density ratio models: concepts and examples

the total sample size could be large. If we can pool the information from
different samples, efficient inference based on the pooled sample then can be
expected. Since the lumber samples from different years share some common
physical characteristics, it is reasonable to assume that the corresponding
distribution functions have a certain relationship. In particular, we assume
that the lumber quality populations connect with each other through their
density functions. Suppose that we have m+ 1 independent random samples
from populations with cumulative distribution functions (CDFs) Fk(x), k =

0, 1, . . . , m, with the same support. The DRM assumes that

dFk(x) = exp
{
αk + β

ᵀ
kq(x)

}
dF0(x), for k = 1, 2, . . . , m,

where q(x), which we call the basis function of the DRM, is a prespecified
d–dimensional function, and (αk,βk) are model parameters. But the baseline
distribution F0(x) is completely unspecified.

The DRM assumption serves as a device for pooling information across
samples, while the nonparametric baseline distribution keeps the model flex-
ible. In fact, the DRM covers a large range of distribution families, and we
demonstrate this with typical examples in the following subsections.

1.2.1 Exponential families of distributions

Every exponential family of distributions satisfies the assumption of the
DRM. A family of distributions is called an exponential family if it has a
density of the form

f(x; ϑ) = k(x) exp{ηᵀ
(ϑ)t(x)− A(ϑ)}, x ∈ S,

where ϑ is a parameter vector, k(·), η(·), t(·) and A(·) are given functions,
and S, the support of X, does not depend upon ϑ. Densities, {fk(x)}, of the

3



1.2. Density ratio models: concepts and examples

same exponential family with parameter values {ϑk} satisfy

fk(x) = exp
{(
η
ᵀ
(ϑk)− η

ᵀ
(ϑ0)

)
t(x) +

(
A(ϑ0)− A(ϑk)

)}
f0(x).

This relationship shows that distributions from a same exponential family
fulfill the DRM assumption with basis function q(x) = t(x) and parameters

αk = A(ϑ0)− A(ϑk), βk = η
ᵀ
(ϑk)− η

ᵀ
(ϑ0).

In order to define an exponential family, the function k(x) must be com-
pletely specified. In DRM, the baseline density function is the counterpart
of k(x), however, it is a non–parametric component of the model. This is the
fundamental difference between the parametric exponential family and the
semiparametric DRM, and also the reason that the DRM encompasses each
exponential family as a special case.

Example 1.1. The gamma distribution family with shape λ and rate κ,
Γ(λ, κ), is an exponential family with

η(λ, κ) = (−κ, λ− 1)
ᵀ
, t(x) =

(
x, lnx

)ᵀ
, A(λ, κ) = ln Γ(λ)− λ lnκ,

where Γ(·) is the gamma function. Therefore, gamma distributions with pa-
rameter values {(λk, κk)} satisfy the DRM assumption with basis function
q(x) = (x, lnx)ᵀ and parameters

αk = ln
Γ(λ0)

Γ(λk)
+ λk lnκk − λ0 lnκ0, βk = (κ0 − κk, λk − λ0)

ᵀ
.

Example 1.2. The normal distribution family with mean µ and standard
deviation σ, N(µ, σ2), is an exponential family with

η(µ, σ) =

(
µ

σ2
, − 1

2σ2

)ᵀ

, t(x) =
(
x, x2

)ᵀ
, A(µ, σ) =

µ2

2σ2
+ lnσ.
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1.2. Density ratio models: concepts and examples

Hence, normal distributions with parameter values {(µk, σk)} satisfy the DRM
assumption with basis function q(x) = (x, x2)ᵀ and parameters

αk = ln
σ0

σk
+

µ2
0

2σ2
0

− µ2
k

2σ2
k

, βk =

(
µk
σ2
k

− µ0

σ2
0

,
1

2σ2
0

− 1

2σ2
k

)ᵀ

.

Example 1.3. The log–normal distribution family with mean µ and standard
deviation σ on the log–scale, LN(µ, σ2), is an exponential family with

η(µ, σ) =

(
µ

σ2
, − 1

2σ2

)ᵀ

, t(x) =
(

lnx, (lnx)2
)ᵀ
, A(µ, σ) =

µ2

2σ2
+ lnσ.

Hence, log–normal distributions with parameter values {(µk, σk)} saftisfies
the DRM assumption with basis function q(x) =

(
lnx, (lnx)2

)ᵀ
and param-

eters

αk = ln
σ0

σk
+

µ2
0

2σ2
0

− µ2
k

2σ2
k

, βk =

(
µk
σ2
k

− µ0

σ2
0

,
1

2σ2
0

− 1

2σ2
k

)ᵀ

.

Example 1.4. The Weibull distribution family with known shape λ and un-
known scale parameter κ, W (κ), is an exponential family with

η(κ) = − 1

κλ
, t(x) = xλ, A(κ) = λ lnκ− lnλ.

Weibull distributions with known common shape λ and different scales {κk}
then satisfy the DRM assumption with basis function q(x) = xλ and param-
eters

αk = λ ln
κ0

κk
, βk =

1

κλ0
− 1

κλk
.

Example 1.5. The Pareto distribution family with location xmin and shape
λ, P (xmin, λ), has the density of the form

f(x) = exp
{

(lnλ+ λ lnxmin)− (λ+ 1) lnx
}
, for x ≥ xmin > 0 and λ > 0.
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1.2. Density ratio models: concepts and examples

When xmin is fixed, the Pareto family is an exponential family. Pareto dis-
tributions with common location xmin and different shapes {λk} satisfy the
DRM assumption with basis function q(x) = ln x and parameters

αk = ln
λk
λ0

+ (λk − λ0) lnxmin, βk = λ0 − λk.

In addition to the exponential families, the DRM also naturally arises
from many other statistical models, such as logistic regression models and
biased sampling models, as described in the following subsections.

1.2.2 Relationship between logistic regression models

and DRMs

The logistic regression model in case–control studies has a close relationship
with the two–sample DRM (Qin and Zhang, 1997). A case–control study is to
identify factors that may contribute to a medical condition by comparing two
groups of individuals: those with the disease (case group) and those without
the disease (control group). Let Y be the group indicator variable with 0

being control and 1 being case, and X be the random vector representing the
exposures for an individual. A classical model for case–control data is the
logistic regression model, e.g. used by Prentice and Pyke (1979), Farewell
(1979) and Mantel (1973),

Pr(Y = 1|X = x) =
exp(a+ b

ᵀ
x)

1 + exp(a+ b
ᵀ
x)
,

where a and b are unknown parameters. Suppose the exposures X has un-
specified marginal density f(x). Denote the conditional density of exposures

6



1.2. Density ratio models: concepts and examples

X given group Y = i, i = 0, 1, as fi(x). Then by Bayes’ rule, we have,

f0(x) =
Pr(Y = 0|X = x)f(x)

Pr(Y = 0)
=

f(x)

Pr(Y = 0){1 + exp(a+ b
ᵀ
x)}

f1(x) =
Pr(Y = 1|X = x)f(x)

Pr(Y = 1)
=

exp(a+ b
ᵀ
x)f(x)

Pr(Y = 1){1 + exp(a+ b
ᵀ
x)}

.

Hence the conditional densities of exposures X given the group Y = 0, 1 con-
stitute a two–sample DRM with basis function q(x) = x, α = a+log{Pr(Y =

0)/Pr(Y = 1)}, and β = b:

f1(x) = exp({a+ log{Pr(Y = 0)/Pr(Y = 1)}}+ b
ᵀ
x)f0(x).

As in the case of binary case–control data, if categorical data with cate-
gories Y = 0, 1, . . . , m and covariates X satisfy the multinomial logit model
assumption,

Pr(Y = k|X = x)

Pr(Y = 0|X = x)
= exp(ak + b

ᵀ
kx), k = 1, 2, . . . , m,

where ak and bk, k = 1 . . . , m, are unknown parameters, then the conditional
density fk(x) of covariates X given category Y = k, fulfills the DRM assump-
tion with basis function q(x) = x, αk = ak + log{Pr(Y = 0)/Pr(Y = k)},
k = 1, 2, . . . , m, and βk = bk:

fk(x) = exp({ak + log{Pr(Y = 0)/Pr(Y = k)}}+ b
ᵀ
kx)f0(x).

1.2.3 Biased sampling and DRM

Another example of the DRM is the biased sampling model. Selection bias
happens in survey sampling if not every unit in population is given an equal
chance to enter the sample. For example, in a survey of hospital patients,
patients with longer visits may have a greater chance to be sampled than
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1.2. Density ratio models: concepts and examples

those with shorter visits; in a survey of life times of light bulbs, the bulbs
with longer lives may be more likely to be chosen than those with shorter
lives. In such cases, the distribution of the units in a sample differs from
the population distribution. Let F (x) denote the population distribution
function. Let w(x; ϑ) be a weighting function specifying the “chance” of a
unit with value x being chosen, where ϑ is an unknown parameter. The
density, dG(x), of the sampled units is

dG(x) =
w(x; ϑ)dF (x)´
w(x; ϑ)dF (x)

.

This weighted density model can be extended to the multiple sample case.
Suppose we have m+ 1 samples, labeled as 0, 1, . . . , m, from unknown dis-
tributions, and the population distribution function of the kth sample, Fk, is
a weighted version of the population distribution F0 of sample 0, i.e.

Fk(x) =

´ x
−∞wk(t; ϑ)dF0(t)´∞
−∞wk(t; ϑ)dF0(t)

, k = 1, . . . , m, (1.1)

where wk(x; ϑ) is a given weighting function with parameter ϑ. Vardi (1982
and 1985), Gill et al. (1988) studied the estimation of the {Fk} under this
multi–sample biased sampling model with a given parameter in the weight-
ing function, and Gilbert et al. (1999) and Gilbert (2000) studied the same
estimation problem in a more general case where the parameter ϑ in the
weighting function is unknown. It is easily seen that the {Fk} with weight-
ing function wk(x; β) = exp{βᵀ

kq(x)} satisfy the DRM assumption.

1.2.4 Other examples

Density ratio models are also used for life data modeling. For example (Mar-
shall and Olkin, 2007), given a distribution function F (x), the moment pa-
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rameter family of distributions,

Fb(x) =
1

µb

ˆ x

0

tbdF (t), x ≥ 0,

where µb =
´∞

0
tbdF (t) < ∞, and the Laplace transform parameter family

of distributions,

Fs(x) =
1

L(s)

ˆ x

−∞
e−stdF (t),

where L(s) =
´∞
−∞ e

−stdF (t) <∞ is the Laplace transform of F , both satisfy
the DRM assumption.

Moreover, specific forms of DRMs have been used by Anderson (1972) for
logistic discrimination, Anderson (1979) for multivariate logistic compounds
modeling, and Efron and Tibshirani (1996) for density estimation of expo-
nential families.

1.3 Empirical likelihood inference under

DRMs: historical and recent development

Although the use of the density ratio model can be traced back to Anderson
(1972) for logistic discrimination, it is not until 1990’s that the DRM started
to gain popularity after Qin et al. had published a series of papers (Qin 1993,
Qin and Zhang 1997, Qin 1998) on inference problems under two–sample
DRMs using the empirical likelihood (EL). Indeed, on the one hand, the EL,
given its nonparametric characteristic, is a natural inference framework for
the semiparametric DRM; on the other, the theoretical foundation of EL
established by Owen (2001) and Qin’s (1994) extension of EL for estimating
equations makes it a ready–to–use tool for inference under DRMs.

Qin (1998) formally introduced EL to inference problems under the DRM,
and in a two–sample case, established the asymptotic normality of the max-
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1.3. EL inference under DRMs: historical and recent developement

imum EL estimator of DRM parameters. After that, EL became a stan-
dard inference tool under the DRM, and numerous papers about various
aspects of inference under the DRM using EL have been published. For
estimation problems, Cheng and Chu (2004) and Fokianos (2004) studied
density estimation under two–sample and multi–sample DRMs, respectively;
Zhang (2000) and Chen and Liu (2013) studied quantile estimation under
two–sample and multi–sample DRMs, respectively. For hypothesis testing
problems, Qin and Zhang (1997) and Zhang (2002) studied goodness–of–fit
tests for logistic models and generalized logit models based on case–control
data using DRM formulation, respectively; Fokianos et al. (2001) proposed a
simple Wald–type test for linear hypotheses about the parameters of multi–
sample DRMs; Keziou and Leoni-Aubin (2008) studied the EL ratio test for
testing the equality of two distributions that satisfy a two–sample DRM.
The effect of misspecification of the basis function of the DRM was assessed
by Fokianos and Kaimi (2006), and the basis function selection problem is
studied by Fokianos (2007).

The DRM has been adopted for inference based on censored samples.
Ren (2008) proposed a weighted EL approach for inference under a two–
sample DRM based on randomly censored observations. Wang et al. (2011)
studied EL inference under a two–sample DRM for randomly right–censored
data. Shen et al. (2012) studied EL inference under the DRM with randomly
censored biased–sampling data.

The DRM is also used in the context of finite mixture models for its flex-
ibility and robustness against model misspecification. Zou et al. (2002) and
Zou (2002) proposed a finite mixture model whose each mixing component
is a further mixture of two distributions that satisfy a two–sample DRM, for
the modeling of genetic loci influencing quantitative traits. They discovered
that the DRM is not a regular model: when the slope DRM parameter β = 0,
the normalization constant α must also be 0, which declares that when the
true DRM parameter (α∗, β∗) = 0, the EL function is not well–defined in a
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1.3. EL inference under DRMs: historical and recent developement

neighbourhood of the true parameter — the violation of an important regu-
larity condition for likelihood type inference. Zou et al. hence proposed the
so–called partial empirical likelihood (PEL) to get around the non–regularity
of the DRM, and studied the asymptotic properties of the PEL. Zhang’s
(2006) score test for testing homogeneity of population distributions under
the same mixture model is also based on the PEL. A main criticism of the
PEL is that it does not use all the information contained in data, hence
is less efficient than the full EL. For the same mixture model as used by
Zou et al. (2002), Tan (2009) proposed to treat αk as a function of βk and
baseline distribution F0. The resulting EL function then does not contain
the normalization constant α and hence the non–regularity issue is avoided.
However, that EL is a very complicated function of β and the computation
of the maximum EL estimator is cumbersome. The work by Qin and Liang
(2011) on hypothesis testing in a mixture case–control model is also along
the lines of Tan (2009).

Luo and Tsai (2012) considered an extension of DRM where the slope
parameter β is regressed on a set of covariates. On the other hand, the
DRM is also used for generalizing regression models. For example, Rathouz
and Gao (2009), Huang and Rathouz (2012) and Huang (2014) adopted the
DRM for mean regression when data are generated from a generalized linear
model.

There is a lot more work on the topic of DRM, including the applications
to the estimation and comparison of the receiver operating characteristic
(ROC) curve (Wan and Zhang 2008, Guan et al. 2012), to the inference
about measurement of treatment effects (Fokianos and Troendle 2007, Jiang
and Tu 2012), etc.

The above literature review is meant as a general overview of the work
that has been done on EL inference under the DRM. Specific and more
detailed reviews of literature that is closely related to the theory established
in this thesis are given in each subsequent chapter.
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1.4 Highlights of the contributions of this

thesis

As noted in previous sections, this thesis develops a theory of EL inference
for parameter estimation and hypotheses testing concerning a number of
different population distributions under the DRM, with multiple complete
or Type I censored random samples from each. In particular, it presents the
following new results.

(i) A dual EL ratio test for a general composite hypothesis about the DRM
parameter based on multiple samples is developed. It embraces testing
for change in population distributions as a special case. The limiting
distributions of the corresponding test statistic under the null model
and also a local alternative model are derived. The null limiting dis-
tribution is useful for approximating the p–values of the proposed test;
the limiting distribution under the local alternative model is useful for
approximating the power of the proposed test, calculating the sam-
ple size required for achieving a given power, and comparing the local
asymptotic powers of dual EL ratio tests formulated in different ways.

(ii) The effects of information pooling by the DRM on the estimation accu-
racy of the maximum EL estimator of the DRM parameter and on the
local asymptotic power of the dual EL ratio test are assessed in the-
ory. It is shown that when additional samples are incorporated by the
DRM, the estimation accuracy of the maximum EL estimator of the
DRM parameter is usually increased and the local asymptotic power
of the dual EL ratio test is often improved, even if the underlying dis-
tributions of the additional samples are not related to the population
distributions of direct interest.

(iii) A general EL inference framework under the DRM based on multiple
Type I censored samples is established. This inference framework is
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computationally efficient and equipped with rich asymptotic results.
The theory of hypothesis testing for the DRM parameter under this
framework is also developed. Moreover, this inference framework can
potentially be used to extend any EL inference result that is available
for complete samples under the DRM to the case of Type I censored
samples.

In addition to the above contributions in theory, this thesis also presents
an application of the proposed dual EL ratio test to assessing bending and
tension strengths of lumber produced in year 2007, 2010 and 2011 with in-
tuitively reasonable implications for the forest industry.

Moreover, the thesis introduces a user friendly R software package we
developed, which is called “drmdel ”, for the dual EL inference under the
DRM. This software package is fast because its core is written in C. It covers
a broad range of methods including the ones developed in this thesis as well
as those developed by Chen and Liu (2013) for quantile estimation and by
Fokianos (2004) for density estimation.

1.5 Outline of the thesis

The rest of the thesis is organized as follows. Chapter 2 introduces the con-
cept of dual empirical likelihood and presents some preliminary results that
are essential for the development of the theories in the succeeding chapters.
Chapter 3 proposes a dual EL ratio test for a general composite hypothesis
about the DRM parameter, and presents the asymptotic properties of that
test. Chapter 4 studies the effects of information pooling by DRM on the
estimation accuracy of the maximum EL estimator and on the local asymp-
totic power of the dual EL ratio test. Chapter 5 establishes an EL inference
framework under the DRM based on multiple Type I censored samples, and
presents the theory of EL ratio test under that framework. Chapter 6 in-
troduces our software package drmdel for dual EL inference under the DRM
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and demonstrates its use. The last chapter summarizes the results of this
thesis and discusses some future work.

14



Chapter 2

Fundamentals of Dual Empirical
Likelihood Inference under the
DRM

This chapter lays the foundation of the dual empirical likelihood (DEL),
which is the framework this thesis adopts for inferences under the DRM. We
first review some basics about the EL inference for a single sample and for
multiple samples under the DRM, then define the DEL and summarize its
important properties. All the theorems presented in this chapter are stemmed
from the literature, although we present them under more general settings
and conditions. We highlight a previously unnoticed result, Theorem 2.2,
on the relationship between information matrix and asymptotic variance of
the score function evaluated at the so–called true parameter value under the
DRM, which is a key to proving some of our results in succeeding chapters.
The proofs are given in the last section.

We use bold symbols for vectors, normal symbols for scalars or matri-
ces, upper case letters for random variables and lower case letters for the
corresponding realized values.

2.1 EL for a single sample

Let x1, x2, . . . , xn be an independent sample of size n from a population
with cumulative distribution function (CDF) F (x). When F is a discrete
distribution, we have dF (xi) = F (xi) − F (x−i ). The EL of the distribution
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function F is defined as if F is discrete,

Ln(F ) =
n∏
i=1

dF (xi), subject to
n∑
i=1

dF (xi) = 1.

When there are no ties in the observations, Ln(F ) is maximized when dF (xi) =

1/n, for i = 1, 2, . . . , n. This maximum corresponds to the empirical dis-
tribution of {xi}ni=1, Fn = n−1

∑n
i=1 1(xi ≤ x), where 1(·) is the indicator

function.
Many classical nonparametric inferences about F , e.g. quantile estima-

tion, are based on this unconstrained maximum EL estimator of the distribu-
tion function, or equivalently the empirical distribution, Fn. A breakthrough
comes from a result on the so–called profile EL of the population mean. The
profile log EL of the population mean µ, ln(µ), is defined as the supremum
of logLn(F ) over the class of distribution functions with {xi}ni=1 as support,
i.e. the distribution functions of the form

F (x) =
n∑
i=1

pi1(xi ≤ x) with
n∑
i=1

pi = 1,

such that
´
xdF (x) = µ for fixed µ. In other words,

ln(µ) = sup{logLn(F ) : F (x) =
n∑
i=1

pi1(xi ≤ x),
n∑
i=1

pi = 1,
n∑
i=1

xipi = µ}.

The maximum of ln(µ) as a function of µ is easily found to be obtained at
µ = x̄ = n−1

∑n
i=1 xi. Owen (1988) showed that the likelihood ratio statistic

2
{
ln(x̄)− ln(µ∗)

}
where µ∗ is the true population mean, converges in distribution to a chi–
square random variable with one degree of freedom, under mild moment
conditions. This elegant Theorem is the foundation of various EL based
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inferences.
Another remarkable piece of work was done by Qin and Lawless (1994)

which extends the empirical likelihood framework to incorporate a set of
estimating functions. Suppose a parameter vector of interest, ϑ, can be
defined as the solution to

E
{
g(X; ϑ)

}
= 0,

where g is a smooth function of ϑ. The profile log EL, ln(ϑ), of ϑ is defined
to be the supremum of logLn(F ) over the class of distribution functions with
{xi}ni=1 as support, subject to

´
g(x; ϑ)dF (x) = 0 for fixed ϑ, i.e.

ln(ϑ) = sup{logLn(F ) : F (x) =
n∑
i=1

pi1(xi ≤ x),
n∑
i=1

pi = 1,

n∑
i=1

pig(xi; ϑ) = 0}.

This profile log EL ln(ϑ) is again found to be useful for inference on ϑ.
In particular, the maximum profile log EL estimator of ϑ is asymptotically
normal, and the EL ratio statistics still has a chi–square limiting distribution
just as in parametric case.

2.2 EL for multiple samples under the DRM

Suppose we have m+ 1 independent random samples denoted as

{xkj : j = 1, 2, . . . , nk}mk=0

with nk > 0 being the size of the kth sample, which are collected from popula-
tions with distribution functions Fk, k = 0, 1, . . . , m. Denote the total sam-
ple size as n =

∑
k nk. Let dFk(x) = Fk(x)−Fk(x−), and put pkj = dF0(xkj).
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Suppose the {Fk} satisfy the DRM assumption postulated in Section 1.2:

dFk(x) = exp
{
αk + β

ᵀ
kq(x)

}
dF0(x), for k = 1, 2, . . . , m, (2.1)

where the basis function q(x) is a prespecified d–dimensional function, and
θ
ᵀ
k = (αk,β

ᵀ
k) are model parameters. We denote θ0 = 0 for ease of exposition.

This assumption implies that the {Fk} satisfy
ˆ
dFk(x) =

ˆ
exp{αk + β

ᵀ
kq(x)}dF0(x) = 1. (2.2)

Under the DRM assumption, the EL of the {Fk} is given by

Ln(F0, F1, . . . , Fm) =
∏
k, j

dFk(xkj) =
∏
k, j

exp
{
αk + β

ᵀ
kq(xkj)

}
dF0(xkj)

=
{∏

k, j

pkj

}
· exp

{∑
k, j

(
αk + β

ᵀ
kq(xkj)

)}
, (2.3)

where the sum and product are over all possible (k, j) combinations. Let
α = (α1, . . . , αm)ᵀ, βᵀ

= (β
ᵀ
1, . . . , β

ᵀ
m), and θᵀ = (αᵀ, β

ᵀ
). We may also

write the EL as Ln(θ, F0).
The maximum EL estimator (MELE) of θ and F0 is the maximum point

of Ln(θ, F0) over the space of θ and F0 such that (2.2) is satisfied. As in
the case of a single sample, for both theoretical discussion and numerical
computation, the maximization is carried out in two steps. First, we define
the profile log EL:

l̃n(θ) = sup
F0

{
logLn(θ, F0) :

∑
k, j

exp{αr + β
ᵀ
rq(xkj)}pkj = 1, r = 0, . . . ,m.

}
where the supremum is taken over the space of F0 with fixed θ. This supre-
mum can be obtained by the method of Lagrange multipliers. For a fixed θ,
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2.2. EL for multiple samples under the DRM

define the Lagrange function:

Φ({pkj}, {λr}mr=0) = logLn(θ, F0) + n
m∑
r=0

λr
{

1−
∑
k, j

pkj exp{αr + β
ᵀ
rq(xkj)}

}
.

The point {pkj} at which Ln(θ, F0) is maximized must be on a stationary
point of Φ({pkj}, {λr}) satisfying

∂Φ({pkj}, {λr})/∂pkj = 0, (2.4)

∂Φ({pkj}, {λr})/∂λr = 0. (2.5)

Note that, at this stationary point,

0 =
∑
k, j

pkj
{
∂Φ({pkj}, {λr})/∂pkj

}
=
∑
k, j

pkj
{

1/pkj − n
m∑
r=0

λr exp{αr + β
ᵀ
rq(xkj)}

}
= n− n

m∑
r=0

λr
{∑

k, j

exp{αr + β
ᵀ
rq(xkj)}pkj

}
= n− n

m∑
r=0

λr,

where the last equality is obtained by the constraint
∑

k, j exp{αr+β
ᵀ
rq(xkj)}pkj =

1 for all r = 0, 1, . . . , m. Solving equations (2.4) and using the relationship
0 = n−n

∑m
r=0 λr, we find that the supremum of Ln(θ, F0) is attained when

λ0 = 1−
∑m

r=1 λr and

pkj = n−1
{

1 +
m∑
r=1

λr
[

exp{αr + β
ᵀ
rq(xkj)} − 1

]}−1

, (2.6)
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where the Lagrange multipliers {λr}mr=1 solve, for t = 0, 1, . . . ,m,∑
k, j

exp{αt + β
ᵀ
tq(xkj)}pkj = 1. (2.7)

The profile log EL can hence be written as

l̃n(θ) = −
∑
k, j

log
{

1 +
m∑
r=1

λr
[

exp{αr + β
ᵀ
rq(xkj)} − 1

]}
+
∑
k, j

{αk + β
ᵀ
kq(xkj)}. (2.8)

The MELE θ̂ is then the point at which l̃n(θ) is maximized. Given θ̂, we
solve for the Lagrange multipliers λ̂r through (2.7). The MELE must satisfy
∂ln(θ̂)/∂αk = 0 for k = 1, . . . , m. We see that

∂ln(θ̂)

∂αk
= nk −

∑
t, j

λ̂k exp{α̂k + β̂
ᵀ
kq(xtj)}

1 +
∑m

r=1 λ̂r
[

exp{α̂r + β̂
ᵀ
rq(xtj)} − 1

]
= nk − λ̂kn

∑
t, j

exp{α̂k + β̂
ᵀ
kq(xtj)}p̂kj

= nk − λ̂kn,

where the second equality is by (2.6) and the last equality is by (2.7). There-
fore ∂ln(θ̂)/∂αk = nk − λ̂kn = 0, and so, when θ = θ̂, we have

λ̂k = nk/n.

Subsequently, we obtain p̂kj by plugging θ̂ and λ̂k into (2.6):

p̂kj = n−1
{

1 +
m∑
r=1

λ̂r
[

exp{α̂r + β̂
ᵀ
rq(xkj)} − 1

]}−1

. (2.9)
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Finally, the MELE of Fk, k = 0, 1, . . . , m is given by

F̂k(x) = n−1
∑
r, j

exp{α̂k + β̂
ᵀ
kq(xrj)}p̂rj1(xrj ≤ x). (2.10)

2.3 Non–regularity of the DRM and dual

empirical likelihood

In applications such as that described in the Introduction to the forestry
products industry, giving a point estimation is a minor part of the data anal-
ysis. Assessing the uncertainty in the point estimator and testing hypotheses
would be judged of greater practical importance. Asymptotic properties of
the point estimator and the likelihood function enable more such in–depth
data analyses. However, classical asymptotic theories usually rely on dif-
ferential properties of the likelihood function in the neighbourhood of the
true parameter value. Consequently these results are applicable only if this
neighbourhood lies in the parameter space.

According to (2.2), we have

αk = − log

ˆ
exp{βᵀ

kq(x)}dF0(x).

Thus, αk = 0 whenever βk = 0. When the true value θ1 = 0, its neighbor-
hood will not be contained in the parameter space. In statistical terminology,
DRM is not regular at this θ, as noticed by Zou et al. (2002). Clearly, the
regularity is also violated when βk = βj, k 6= j, which implies αk = αj. In
our targeted applications, θk would be the parameter of the lumber popula-
tion, Fk, at year k and we are particularly concerned about the stability of
lumber quality. Note that θk = θj would signify the stability of the wood
quality over these two years, because under the DRM, Fk = F0 is equivalent
to θk = 0 and Fk = Fj, k 6= j, is equivalent to θk = θj. In a statisti-
cal context, we test this stability by detecting the differences among lumber
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2.3. Non–regularity of the DRM and DEL

distributions:

H0 : Fk = Fj for all k, j ∈ {0, . . . , m} against H1 : Fk 6= Fj for some k, j,

or equivalently,

H0 : θk = θj for all k, j ∈ {0, . . . , m} against H1 : θk 6= θj for some k, j.

Non–regularity denies a simplistic application of the straightforward EL ratio
test to this important hypothesis. This creates a need for other effective
inferential methods.

To enable likelihood type inference in the presence of non–regularity of
the DRM, Keziou and Leoni-Aubin (2008) proposed to use a “dual” form
of the EL in the case of two samples. We extend their notion to the case
of multiple samples and refer to it as the dual empirical likelihood function.
Recall that when the profile log EL (2.8) is maximized, i.e. when θ = θ̂, we
have λ̂r = nr/n. We define DEL by replacing the {λr} with {λ̂r} in (2.8),

ln(θ) = −
∑
k, j

log
{ m∑

r=0

λ̂r exp
{
αr + β

ᵀ
rq(xkj)

}}
+
∑
k, j

{
αk + β

ᵀ
kq(xkj)

}
.

(2.11)

Clearly, the MELE is also the point at which the DEL is maximized,

θ̂ = argmax
θ

ln(θ),

and the profile log EL and the DEL have the same maximal values, ln(θ̂) =

l̃n(θ̂).
The DEL has the following appealing features: (i) it is well–defined for all

values of θ in the corresponding Euclidean space, thus can be “safely” used for
likelihood type inference even when θk = θj for some k 6= j, k, j = 0, . . . , m;
(ii) it has a much simpler analytical form than the profile log EL since the
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2.4. Properties of the DEL

{λk} in the profile log EL are now replaced by the data value independent
{λ̂k}; and (iii) as we will prove in the next section, the DEL is a smooth
concave function of the DRM parameter θ (while the log–profile empirical
likelihood is not), which leads to nice theoretical properties of the DEL and
makes numerical computation of the MELE a pleasant task. The inference
methods developed in this thesis are based on the DEL because of these
attractive characteristics.

2.4 Properties of the DEL

This section presents some properties of the DEL that are useful for the
development of the theory in the sequel. Most of these properties have been
given in literature under a two–sample DRM or/and under slightly different
conditions. We highlight an unnoticed result, the relationship between the
information matrix and the asymptotic variance of the score function, which
is a key to our study of the asymptotic properties of the DEL ratio statistic
in subsequent chapters. The well–known asymptotic normality of the MELE
is also included for the self–containedness of the thesis. The proofs of the
results are given in the last section of this chapter.

For a matrix A, we will use A > 0 to denote that A is positive definite, and
A ≥ 0 to denote that A is positive semidefinite. For a differentiable function
g(x) and a particular value x0, we use ∂g(x0)/∂x to denote (∂g(x)/∂x)|x=x0 .

Theorem 2.1 (Properties of the information matrix). Suppose we have m+1

random samples from populations with distributions of the DRM form given
in (2.1) and a true parameter value θ∗ such that

ˆ
exp{βᵀ

kq(x)}dF0(x) <∞

for θ in a neighbourhood of θ∗,
´
Q(x)Q

ᵀ
(x)dF0(x) > 0 with Qᵀ

(x) =

(1, qᵀ(x)), and λ̂k = nk/n = ρk + o(1) for some constant ρk ∈ (0, 1).
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2.4. Properties of the DEL

The empirical information matrix Un = −n−1∂2ln(θ∗)/∂θ∂θ
ᵀ converges

almost surely to a positive definite matrix U = limn→∞ Un.

Remark 2.1. The condition that
´
Q(x)Q

ᵀ
(x)dF0(x) > 0 is equivalent to say

thatQ(x)Q
ᵀ
(x) > 0 on a set (of x values) of positive probability with respect

to F0. It is a model identifiability condition. If any two components of the
extended basis function Q(x) are linear dependent with probability one, say
one component of q(x) is a constant, or x2 and x2 + 2 are two components
of q(x), then the DRM is clearly not identifiable. This assumption ensures
that we do not use an non–identifiable model.

The limiting matrix U may be regarded as an information matrix. We
partition the entries of U in agreement with α and β and represent them as
Uαα, Uαβ, Uβα and Uββ. Let ϕk(θ, x) = exp{αk + β

ᵀ
kq(x)}, k = 0, . . . ,m,

and

h(θ, x) = (ρ1ϕ1(θ, x), . . . , ρmϕm(θ, x))
ᵀ
,

s(θ, x) = ρ0 +
m∑
k=1

ρkϕk(θ, x),

H(θ, x) = diag{h(θ, x)} − h(θ, x)h
ᵀ
(θ, x)/s(θ, x).

(2.12)

Let Ek(·), k = 0, 1, . . . , m, be the expectation operator with respect to Fk, i.e.
Ek{g(x)} =

´
g(x)dFk(x) for a measurable function g(x). Then, the block-

wise algebraic expressions of the information matrix U in terms of H(θ∗, x)

and q(x) can be written as

Uαα = − lim
n→∞

n−1∂2ln(θ∗)/∂α∂α
ᵀ

= E0

{
H(θ∗, x)

}
,

Uββ = − lim
n→∞

n−1∂2ln(θ∗)/∂β∂β
ᵀ

= E0

{
H(θ∗, x)⊗

(
q(x)q

ᵀ
(x)
)}
,

Uαβ = − lim
n→∞

n−1∂2ln(θ∗)/∂α∂β
ᵀ

= U
ᵀ
βα = E0

{
H(θ∗, x)⊗ qᵀ(x)

}
,

(2.13)

where ⊗ is the Kronecker product operator.
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2.4. Properties of the DEL

Put

v = n−1/2{∂ln(θ∗)/∂θ}.

Let E(·) be the usual expectation operator. Let

T = ρ0
−11m1

ᵀ
m + diag{ρ−1

1 , ρ−1
2 , . . . , ρ−1

m } and W =

(
T 0m×md

0md×m 0md×md

)
,

where 1k, in general, is a vector of 1s with length k.

Theorem 2.2 (Asymptotic properties of the score function). Under the con-
ditions of Theorem 2.1, we have Ev = 0 and v is asymptotically multivariate
normal with mean 0 and covariance matrix

V = U − UWU. (2.14)

Remark 2.2. In the parametric likelihood setting, the information matrix
equals the asymptotic variance of the 1/

√
n–scaled score function evaluated

at the true parameter. In the DEL framework under the DRM, the relation-
ship between the information matrix and the asymptotic variance of the score
function evaluated at the true value, as shown in (2.14), is different. This is a
previously unnoticed result although it has been implicitly used by Chen and
Liu (2013) and Zhang (2002). Due to the complicated algebraic expressions
of U and V , this relationship is not obvious. However, once observed, as
we will see later, we can intentionally “forget” the algebraic expression of U
given by (2.13), and use this relationship solely for deriving the asymptotic
distribution of the DEL ratio statistic.

The following two lemmas are useful for establishing the consistency of
the MELE θ̂.

Lemma 2.3. The DEL function ln(θ) defined in (2.11) is a concave function.
Moreover, when

∑
k,jQ(xkj)Q

ᵀ
(xkj) > 0, ln(θ) is strictly concave.
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2.4. Properties of the DEL

Remark 2.3. The condition that
∑

k,jQ(xkj)Q
ᵀ
(xkj) > 0 is a sample version

of the condition that
´
Q(x)Q

ᵀ
(x)dF0(x) > 0 in Theorem 2.1. This condition

is usually fulfilled if number of distinct data points is larger than d + 1 and
the components of Q(x) are not functionally linearly dependent.

The concavity of the DEL in the case of two samples was pointed out
by Keziou and Leoni-Aubin (2008). Since the DEL is concave, whenever it
has a maximum, the maximum is a global one, and if the DEL is strictly
concave, this maximum is unique. The next lemma states that when the
total sample size n goes to infinity, the DEL ln(θ) has a maximum with
probability tending one, and this maximum is in a n−1/3 neighbourhood of
the true parameter θ∗. Let ‖ · ‖ denote the Euclidean norm of a vector.

Lemma 2.4. Adopt the conditions postulated in Theorem 2.1. As n → ∞,
with probability tending one, the DEL ln(θ) attains its maximum at some
point in the interior of the closed ball, Bθ∗ = {θ : ‖θ − θ∗‖ ≤ n−1/3}, which
is centered on the true parameter value θ∗.

A two–sample version of Lemma 2.4 was given by Keziou and Leoni-Aubin
(2008).

Remark 2.4. Lemma 2.3 and 2.4 together confirm that when sample size is
large, the MELE is well–defined and easy to compute: it is a global maximal
point of a concave function whose maximum exists with probability tending
one. Furthermore, they dictate that the MELE θ̂ is 3

√
n–consistent: by

concavity, all the maximal points of the DEL must be interior points of the
closed ball Bθ∗ ; hence the MELE θ̂, as a maximal point of the DEL, must
also be an interior point of Bθ∗ .

With Theorem 2.1, 2.2, Lemma 2.3 and 2.4, the asymptotic normality of
the MELE θ̂ is an easy consequence.

Theorem 2.5 (Asymptotic normality of the MELE). Under the conditions of
Theorem 2.1,

√
n(θ̂−θ∗) has an asymptotic multivariate normal distribution

26
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with mean 0 and covariance matrix U−1−W , where W is given in Theorem
2.2.

The asymptotic normality of the θ̂ was also established by Chen and Liu
(2013) and by Zhang (2002) under slightly different conditions. Theorem 2.5
reveals that the MELE is root–n consistent, an important fact that we will
use in the subsequent chapters.

2.5 Proofs

This section gives proofs for the theorems and lemmas presented in the last
section. We first introduce more notations applicable to k = 0, . . . ,m. Recall
that ϕk(θ, x) = exp{αk + βkq(x)}. We write

Ln,k(θ, x) = − log
{ m∑

r=0

λ̂rϕr(θ, x)
}

+
{
αk + β

ᵀ
kq(x)

}
with λ̂r = nr/n being the sample proportion. Hence, the DEL ln(θ) =∑

k, j Ln,k(θ, xkj) where the summation is over all possible (k, j). Let Lk(θ, x)

be the “population” version of Ln,k(θ, x) by replacing λ̂r with its limit ρr in
the above definition. Let ek be a vector of length m with the kth entry being
1 and the others being 0s, and let δij = 1 when i = j, and 0 otherwise.
Recall the definitions (2.12) of h(θ, x), s(θ, x) and H(θ, x). The first order
derivatives of Lk(θ, x) can be written as

∂Lk(θ, x)/∂α = (1− δk0)ek − h(θ, x)/s(θ, x),

∂Lk(θ, x)/∂β = {∂Lk(θ, x)/∂α} ⊗ q(x).
(2.15)
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Similarly, we have

∂2Lk(θ, x)/∂α∂α
ᵀ

= −H(θ, x)/s(θ, x),

∂2Lk(θ, x)/∂β∂β
ᵀ

= −
{
H(θ, x)/s(θ, x)

}
⊗
{
q(x)q

ᵀ
(x)
}
,

∂2Lk(θ, x)/∂α∂β
ᵀ

= −
{
H(θ, x)/s(θ, x)

}
⊗ qᵀ(x).

(2.16)

The algebraic expressions of the derivatives of Ln,k(θ, x) are similar to
those of Lk(θ, x), with ρr replaced by the sample proportion λ̂r. Note that
all entries of h(θ, x) are non–negative, and s(θ, x) exceeds the sum of all
entries of h(θ, x). Thus, ‖h(θ, x)/s(θ, x)‖ ≤ 1, and the absolute value of
each entry of H(θ, x)/s(θ, x) is bounded by 1. By examining the algebraic
expressions closely, this result implies∣∣∂2Ln,k(θ, x)/∂θi∂θj

∣∣ ≤ 1 + q
ᵀ
(x)q(x),∣∣∂3Ln,k(θ, x)/∂θi∂θj∂θk

∣∣ ≤ {1 + q
ᵀ
(x)q(x)}3/2,

(2.17)

where θi in general denotes the ith entry of θ.
We also observed the following important relationships between the first

and second order derivatives of Lk(θ, x):

E0

{
∂L0(θ∗, x)

∂α

}
= −ρ−1

0 Uαα1m, E0

{
∂L0(θ∗, x)

∂β

}
= −ρ−1

0 Uβα1m,

(2.18)

and, for k = 1, 2, . . . , m,

Ek

{
∂Lk(θ∗, x)

∂α

}
= ρ−1

k Uααek, Ek

{
∂Lk(θ∗, x)

∂α
q
ᵀ
(x)

}
= ρ−1

k Uαβ(ek ⊗ Id),

Ek

{
∂Lk(θ∗, x)

∂β

}
= ρ−1

k Uβαek, Ek

{
∂Lk(θ∗, x)

∂β
q
ᵀ
(x)

}
= ρ−1

k Uββ(ek ⊗ Id).

(2.19)

As a reminder, Ek(·), k = 0, 1, . . . , m, is the expectation operator with re-
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spect to Fk.
The assumption that

´
exp{βᵀ

kq(x)}dF0(x) <∞ for θ in a neighbourhood
of θ∗ implies that the moment generating function of q(x) with respect to
each Fk, exists in a neighbourhood of 0. Hence, all finite order moments
of q(x) with respect to each Fk are finite. This fact and inequalities (2.17)
reveal that the second and third order derivatives of ln(θ) are bounded by
an integrable function.

With the above preparation, we are ready to prove the theorems given in
the chapter.

2.5.1 Theorem 2.1: Properties of the information

matrix

We now show that the empirical information matrix Un = −n−1∂2ln(θ∗)/∂θ∂θ
ᵀ

converges almost surely to a positive definite information matrix, and give
its algebraic expression.

Recalling that ln(θ) =
∑

k, j Ln,k(θ;xkj) and λ̂ = nk/n, we have

Un = − 1

n

∂2ln(θ∗)

∂θ∂θ
ᵀ = −

m∑
k=0

λ̂k

{
1

nk

nk∑
j=1

∂2Ln,k(θ∗, xkj)
∂θ∂θ

ᵀ

}
.

Each term in the curly brackets is the average of the sum of independent
and identically distributed (iid) random variables. And by bound (2.17) and
the fact that q(x) has finite second moments, these random variables have
finite covariance matrices. Hence, by the strong law of large numbers (Chow
and Teicher, 1997, 5.4, Theorem 1), each term in the curly brackets has an
almost sure limit. Along with limn→∞ nk/n = ρk, we have that {Un} has an
almost sure limit

U = lim
n→∞

Un = −
m∑
k=0

ρkEk{∂2Lk(θ∗, x) ∂θ∂θ
ᵀ}.
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By expressions (2.16) of ∂2Lk(θ∗, x)/∂θ∂θ
ᵀ, we easily get the blockwise al-

gebraic expressions of U as given in (2.13):

Uαα = − lim
n→∞

n−1∂2ln(θ∗)/∂α∂α
ᵀ

= E0

{
H(θ∗, x)

}
,

Uββ = − lim
n→∞

n−1∂2ln(θ∗)/∂β∂β
ᵀ

= E0

{
H(θ∗, x)⊗

(
q(x)q

ᵀ
(x)
)}
,

Uαβ = − lim
n→∞

n−1∂2ln(θ∗)/∂α∂β
ᵀ

= U
ᵀ
βα = E0

{
H(θ∗, x)⊗ qᵀ(x)

}
.

We now show that for any given θ∗, Uαα = E0

{
H(θ∗, x)

}
is positive

definite, which is implied if for any given value of θ and x, H(θ, x) is positive
definite. Let a be a nonzero vector of length m and ai be its ith component.
Recalling the definition (2.12) of H(θ, x), we have

a
ᵀ
H(θ, x)a = s−1(θ, x)

{
m∑
i=1

a2
i ρiϕi(θ, x) (s(θ, x)− ρiϕi(θ, x))

−2
m∑

1≤i<j

aiajρiϕi(θ, x)ρjϕj(θ, x)

}
.

Note that since s(θ, x)−ρiϕi(θ, x) = ρ0+
∑m

j 6=i ρjϕj(θ, x), the above equality
can be further written as

a
ᵀ
H(θ, x)a

=s−1(θ, x)

{
m∑
i=1

a2
i ρ0ρiϕi(θ, x) +

m∑
i 6=j

a2
i ρiϕi(θ, x)ρjϕj(θ, x)

−2
m∑

1≤i<j

aiajρiϕi(θ, x)ρjϕj(θ, x)

}

=s−1(θ, x)

{
m∑
i=1

a2
i ρ0ρiϕi(θ, x) +

m∑
1≤i<j

(ai − aj)2ρiϕi(θ, x)ρjϕj(θ, x)

}

Since s(θ, x) is positive, the first term in the curly brackets on right hand side
(RHS) of the above equality is positive and the second term is nonnegative,
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we have aᵀH(θ, x)a > 0 and so H(θ, x) > 0 for any value of θ and x.
Therefore Uαα = E0

{
H(θ∗, x)

}
> 0.

Finally we show that U > 0. Recall that Q(x) = (1, q(x)ᵀ)
ᵀ
. By expres-

sions (2.16), we see that U can be obtained from the matrix

E0

{
H(θ∗, x)⊗

{
Q(x)Q

ᵀ
(x)
}}

(2.20)

by simply permuting rows and columns respectively. Since H(θ∗, x) > 0 for
any value of x andQ(x)Q

ᵀ
(x) > 0 on a set of positive probability with respect

to F0, by a property of Kronecker product, the matrix (2.20) is positive
definite, and so is U . This completes the proof.

2.5.2 Theorem 2.2: Asymptotic properties of the score

function

We now show the asymptotic normality of v = n−1/2{∂ln(θ∗)/∂θ}, the scaled
score function evaluated at the true parameter value θ∗. Recall that

Ln,k(θ, x) = − log
{ m∑

r=0

λ̂rϕr(θ, x)
}

+
{
αk + β

ᵀ
kq(x)

}
and ln(θ) =

∑
k, j Ln,k(θ, xkj). We have

v = n−1/2{∂ln(θ∗)/∂θ} = n−1/2
∑
k, j

{∂Ln,k(θ, xkj)/∂θ}.

We first show that Ev = 0. Denote µn,k = Ek{∂Ln,k(θ∗, x)/∂θ}. Par-
tition v to subvectors vα and vβ in agreement with parameters α and β.
Let λ̂ = (λ̂1, . . . , λ̂m)ᵀ. Let hn(θ, x), sn(θ, x) and Hn(θ, x) be the sample
versions of h(θ, x), s(θ, x) and H(θ, x) defined in (2.12) with ρk replaced
by λ̂k. By expression (2.15) and noticing that Ek{g(x)} = E0{g(x)ϕk(θ

∗, x)}
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for a measurable function g(x), we have

Evα = n1/2

m∑
k=0

λ̂kEk{∂Ln,k(θ∗, x)/∂α}

= n1/2
{
λ̂− E0

{
hn(θ∗, x)

( m∑
k=0

λ̂kϕk(θ
∗, x)

)
/sn(θ∗, x)

}}
= n1/2

{
λ̂− E0{hn(θ∗, x)}

}
= 0,

where the second last equality holds because sn(θ∗, x) =
∑m

k=0 λ̂kϕm(θ∗, x)

by definition, and the last equality holds because the kth entry of E0{hn(θ∗, x)}
is E0{λ̂kϕk(θ∗, x)} = Ekλ̂k = λ̂k. Similarly,

Evβ = n1/2

m∑
k=0

λ̂kEk

{
{∂Ln,k(θ∗, x)/∂α} ⊗ q(x)

}
= n1/2

{
λ̂⊗ E0{q(x)} − E0{hn(θ∗, x)⊗ q(x)}

}
= 0.

Hence Ev = n1/2
∑m

k=0 λ̂kµn,k = 0.
Given the above result, we have

v = v − Ev =
m∑
k=0

λ̂
1/2
k

{
n
−1/2
k

nk∑
j=1

(
∂Ln,k(θ∗, xkj)/∂θ − µn,k

)}
.

Clearly, each term in curly brackets is a centered sum of iid random vari-
ables with finite covariance matrices. Thus, by a triangular array version of
central limit theorem (Chow and Teicher, 1997, 9.1, Corollary 1), they are
all asymptotically normal with appropriate covariance matrices. In addition,
these terms are independent of each other, λ̂k = nk/n are non–random with
limits ρk. Therefore, the linear combination is also asymptotically normal.

What left is to verify the form of the asymptotic covariance matrix. The
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asymptotic covariance matrix of each term in curly brackets is given by

Vk = Ek

{
(∂Lk(θ∗, x)/∂θ)(∂Lk(θ∗, x)/∂θ

ᵀ
)
}
− µkµ

ᵀ
k, (2.21)

where µk = limn→∞µn,k = Ek{∂Lk(θ∗, x)/∂θ}. Hence the overall asymp-
totic variance matrix is V =

∑m
k=0 ρkVk.

We now show that V = U − UWU . First we show

m∑
k=0

ρkEk

{
(∂Lk(θ∗, x)/∂α)(∂Lk(θ∗, x)/∂α

ᵀ
)
}

= U. (2.22)

By (2.15), we have

m∑
k=0

ρkEk

{
(∂Lk(θ∗, x)/∂α)(∂Lk(θ∗, x)/∂α

ᵀ
)
}

=
m∑
k=1

ρkeke
ᵀ
k +

m∑
k=0

ρkEk{h(θ∗, x)h
ᵀ
(θ∗, x)/s2(θ∗, x)}

−
m∑
k=1

ρkEk{ekh
ᵀ
(θ∗, x)/s(θ∗, x)} −

m∑
k=1

ρkEk{h(θ∗, x)e
ᵀ
k/s(θ

∗, x)}.

Note that
∑m

k=1 ρkeke
ᵀ
k = E0{diag{h(θ∗, x)}},

m∑
k=0

ρkEk{h(θ∗, x)h
ᵀ
(θ∗, x)/s2(θ∗, x)}

=E0

{
h(θ∗, x)h

ᵀ
(θ∗, x){

m∑
k=0

ρkϕ(θ∗, x)}/s2(θ∗, x)
}

=E0

{
h(θ∗, x)h

ᵀ
(θ∗, x)/s(θ∗, x)

}
,

m∑
k=1

ρkEk{ekh
ᵀ
(θ∗, x)/s(θ∗, x)} = E0

{
{
m∑
k=1

ρkϕ(θ∗, x)ek}h
ᵀ
(θ∗, x)/s(θ∗, x)}

}
= E0

{
h(θ∗, x)h

ᵀ
(θ∗, x)/s(θ∗, x)

}
,
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and similarly

m∑
k=1

ρkEk{h(θ∗, x)e
ᵀ
k/s(θ

∗, x)} = E0

{
h(θ∗, x)h

ᵀ
(θ∗, x)/s(θ∗, x)

}
.

By the above expressions and the definition, (2.12), of H(θ∗, x), we have

m∑
k=0

ρkEk

{
(∂Lk(θ∗, x)/∂α)(∂Lk(θ∗, x)/∂α

ᵀ
)
}

= E0{H(θ∗, x)} = Uαα.

Similarly, we get

m∑
k=0

ρkEk

{
(∂Lk(θ∗, x)/∂α)(∂Lk(θ∗, x)/∂β

ᵀ
)
}

= Uαβ

and

m∑
k=0

ρkEk

{
(∂Lk(θ∗, x)/∂β)(∂Lk(θ∗, x)/∂β

ᵀ
)
}

= Uββ.

Therefore, identity (2.22) holds.
Lastly we show that

∑m
k=0 ρkµkµ

ᵀ
k = UWU . By observation (2.18), we

have

µ0µ
ᵀ
0 =

1

ρ2
0

(
Uαα {1m1ᵀ

m}Uαα Uαα {1m1ᵀ
m}Uαβ

Uβα {1m1ᵀ
m}Uαα Uβα {1m1ᵀ

m}Uαβ

)
,

and by observation (2.19), we have, for any k = 1, 2, . . . , m,

µkµ
ᵀ
k =

1

ρ2
k

(
Uαα {diag(ek)}Uαα Uαα {diag(ek)}Uαβ
Uβα {diag(ek)}Uαα Uβα {diag(ek)}Uαβ

)
.
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Hence,

m∑
k=0

ρkµkµ
ᵀ
k =

(
UααTUαα UααTUαβ

UβαTUαα UβαTUαβ

)
= UWU. (2.23)

By (2.21), (2.22) and (2.23), we have

V =
m∑
k=0

ρkEk

{
(∂Lk(θ∗, x)/∂θ)(∂Lk(θ∗, x)/∂θ

ᵀ
)
}
−

m∑
k=0

ρkµkµ
ᵀ
k = U − UWU,

which completes the proof.

2.5.3 Lemma 2.3: Concavity of the DEL

In this subsection, we show that ln(θ) is a concave function. To show the
concavity of ln(θ), it suffices to show that ∂2ln(θ)/∂θ∂θ

ᵀ ≤ 0 for all values
of θ, and since ∂2ln(θ)/∂θ∂θ

ᵀ
=
∑

k, j

{
∂2Ln,k(θ, xkj)/∂θ∂θ

ᵀ}
, it is enough

to show that

∂2Ln,k(θ, x)/∂θ∂θ
ᵀ ≤ 0,

for any given θ, x and k.
Recall that θ is composed ofα and β. We first show that ∂2Ln,k(θ, x)/∂α∂αᵀ <

0. By (2.16),

∂2Ln,k(θ, x)/∂α∂α
ᵀ

= −Hn(θ, x)/sn(θ, x).

Noticing that Hn(θ, x) has a similar expression as H(θ, x), which is positive
definite as we have shown in the proof of Theorem 2.1, only with ρk replace
by λ̂k, we know that Hn(θ, x) is also positive definite. Along with the fact
that sn(θ, x) > 0, we have ∂2Ln,k(θ, x)/∂α∂αᵀ = −Hn(θ, x)/sn(θ, x) < 0.

Secondly, by expression (2.16), we see that ∂2Ln,k(θ, x)/∂θ∂θ
ᵀ is just a
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row and column permuted version of the matrix

{
∂2Ln,k(θ, x)/∂α∂α

ᵀ}⊗ {Q(x)Q
ᵀ
(x)
}
,

which is negative semidefinite for any value of θ and x because ∂2Ln,k(θ, x)/∂α∂αᵀ <

0 and Q(x)Q
ᵀ
(x) ≥ 0. Therefore

∂2ln(θ)/∂θ∂θ
ᵀ

=
∑
k, j

{
∂2Ln,k(θ, xkj)/∂θ∂θ

ᵀ} ≤ 0

for any value of θ, and so ln(θ) is concave.
Lastly, when Q(x)Q

ᵀ
(x) > 0 for a given x, −∂2ln(θ)/∂θ∂θ

ᵀ
> 0. Hence,

when
∑

k,jQ(xkj)Q
ᵀ
(xkj) > 0, −∂2ln(θ)/∂θ∂θ

ᵀ
> 0 and the DEL is strictly

concave. The proof is complete.

2.5.4 Lemma 2.4: 3
√
n–consistency of the MELE

We show in this subsection that the MELE θ̂ is attained in an interior point of
a 3
√
n–neighbourhood of the true parameter value θ∗ with probability tending

one. Note that θ̂ is a maximum point of the DEL ln(θ). The idea is to show
that for any θ on the surface of the closed ball Bθ∗ = {θ : ‖θ−θ∗‖ ≤ n−1/3},
ln(θ) < ln(θ∗) with probability tending one. Then, by concavity of ln(θ),
all the maximum points, including θ̂, must be interior points of Bθ∗ with
probability tending to one.

We first expand ln(θ) around θ∗. Recalling that ∂ln(θ∗)/∂θ =
√
nv and

∂2ln(θ∗)/∂θ∂θ
ᵀ

= −nUn, we get

ln(θ) = ln(θ∗) +
√
nv

ᵀ
(θ − θ∗)− (1/2)n(θ − θ∗)ᵀUn(θ − θ∗) + εn,
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where

εn =
n

6

∑
i, j, k

1

n

∂3ln(θ̃)

∂θi∂θj∂θk
(θ̂i − θ∗i )(θ̂j − θ∗j )(θ̂k − θ∗k),

with θ̃ being some parameter value. Notice that, for any value of θ,

∣∣n−1∂3ln(θ)/∂θi∂θs∂θt
∣∣ =

∣∣n−1

m∑
k=0

nk∑
j=1

∂3Ln,k(θ, xkj)/∂θi∂θs∂θt
∣∣

≤
m∑
k=0

{
n−1
k

nk∑
j=1

|∂3Ln,k(θ, xkj)/∂θi∂θs∂θt|
}

≤
m∑
k=0

{n−1
k

nk∑
j=1

‖Q(xkj)‖3},

where the last inequality is by (2.17). Since ‖Q(x)‖3 is integrable, and xkj
are iid across j for each k, by strong law of large numbers, the last term on
the RHS of the above inequality is of O(1), and so is n−1∂3ln(θ)/∂θi∂θj∂θl.
This implies that for any θ = θ∗ +Op(n

−1/3), we have εn = Op(1).
By the above result, for any θ on the surface of the closed ball Bθ∗ , i.e.

for any θ = θ∗ + an−1/3 with ‖a‖ = 1, we have

ln(θ∗ + an−1/3)− ln(θ∗) = n1/6v
ᵀ
a− (1/2)n1/3a

ᵀ
Una+O(1)

= n1/6v
ᵀ
a− (1/2)n1/3a

ᵀ
Ua+ o(n1/3),

where the last equality is by the fact that Un = U + o(1). Let c be the
smallest eigenvalue of U . By Theorem 2.2, v = Op(1), so we get

ln(θ∗ + an−1/3)− ln(θ∗) = n1/6v
ᵀ
a− (1/2)n1/3a

ᵀ
Ua+ o(n1/3),

≤ Op(n
1/6)− (1/2)cn1/3 + o(n1/3)

= −(1/2)cn1/3 + op(n
1/3),
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uniformly in a that satisfies ‖a‖ = 1. Since U is positive definite, c > 0.
Clearly, with probability tending one, the last term on RHS is strictly smaller
than 0 and hence ln(θ∗ + an−1/3) < ln(θ∗), as n → ∞. By the continuity
of ln(θ), ln(θ) must have a maximum in the interior of the ball Bθ∗ with
probability tending one.

2.5.5 Theorem 2.5: Asymptotic normality of the

MELE

We now show the asymptotic normality of the MELE θ̂. The idea is to show
that

√
n(θ̂ − θ∗) is well approximated by U−1v. As a reminder, U is the

information matrix, and v = n−1/2∂ln(θ∗)/∂θ.
Expanding n−1/2∂ln(θ̂)/∂θ at θ∗, we get

n−1/2∂ln(θ̂)/∂θ = v − Un{
√
n(θ̂ − θ∗)}+ εn,

where Un = n−1∂2ln(θ∗)/∂θ∂θ
ᵀ is the empirical information matrix and εn

is a vector of length m(d+ 1) whose ith entry is

√
n(θ̂ − θ∗)ᵀ

{
1

n

∂3ln(θ̃)

∂θi∂θ∂θ
ᵀ

}
(θ̂ − θ∗),

with θi being the ith component of θ and θ̃ being some parameter value. We
have shown in the proof of Lemma 2.4 that the third order derivatives of ln(θ)

are uniformly bounded by an integrable function, so n−1∂3ln(θ̃)/∂θi∂θj∂θl =

Op(1). This, along with the fact that θ̂ − θ∗ = Op(n
−1/3), implies that

εn = op(1) and the expansion can be written as

n−1/2∂ln(θ̂)/∂θ = v − Un{
√
n(θ̂ − θ∗)}+ op(1).

Note that ∂ln(θ̂)/∂θ = 0 because the MELE θ̂ is the point at which the
smooth function ln(θ) is maximized. By equating the left hand side (LHS)
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of the above expansion to 0 and reorganizing terms, we get

Un
√
n(θ̂ − θ∗) = v + op(1). (2.24)

By Theorem 2.2, v is asymptotically normal, hence of Op(1), so the LHS of
the above equality must be Op(1). Note that, on the LHS, the first factor
Un has a positive definite limit by Theorem 2.1. We then deduce that the
second factor,

√
n(θ̂−θ∗), must also be of Op(1). Furthermore, by Theorem

2.1, Un = U + op(1). Hence,

Un
√
n(θ̂ − θ∗) =

(
U + op(1)

)√
n(θ̂ − θ∗) = U

√
n(θ̂ − θ∗) + op(1).

Substituting the LHS of (2.24) by the RHS of the above equality and reor-
ganizing terms, we get

U
√
n(θ̂ − θ∗) = v + op(1).

Since U is positive definite, we can left multiply U−1 on both sides of the
above equality to get

√
n(θ̂ − θ∗) = U−1v + op(1). (2.25)

Combining the above equality and asymptotic normality of v, we get the
claimed result that

√
n(θ̂−θ∗)→ N(0, U−1−W ) in distribution as n→∞.
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Chapter 3

Dual Empirical Likelihood Ratio
Test for Hypotheses about DRM
Parameters

This chapter develops a DEL ratio test for composite hypotheses about the
parameter of the DRM based on independent samples from different pop-
ulations. The proposed test encompasses testing differences in population
distributions as a special case. The DEL ratio test statistic is found to have
a classical chi–square null limiting distribution and a non–central chi–square
limiting distribution under a class of local alternatives. The null limiting dis-
tribution is useful for approximating the p–values of the proposed test; the
limiting distribution under the local alternative model is useful for approxi-
mating the power of the proposed test, calculating the sample size required
for achieving a given power, and comparing the local asymptotic powers of
DEL ratio tests formulated in different ways. Simulation studies show that
this test has better power properties than all potential competitors adopted
to the multiple sample problem under the investigation, and is robust to
model misspecification. The proposed test is then applied to assess strength
properties of lumber with intuitively reasonable implications for the forest
industry.
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3.1 Introduction

An important task of the long term monitoring project is to monitor change
in population distributions of the strength of lumber produced over the years.
Recall Section 2.3 that, under the DRM (2.1), the equality of two distribu-
tion functions is equivalent to the equality of the corresponding DRM slope
parameters: Fk = F0 is equivalent to βk = 0 and Fk = Fj is equivalent
to βk = βj, k, j = 1, . . . , m. Hence under the DRM, a hypothesis about
the differences in distribution functions ultimately translates to a hypothesis
about the DRM parameter β.

In principle, for a linear hypothesis about the DRM parameter β:

H0 : Aβ = c against H1 : Aβ 6= c

for some given matrix A and vector c, a Wald type test (Fokianos et al.,
2001, (17)) can be easily constructed based on the asymptotic normality of
the MELE θ̂. According to Theorem 2.5,

√
n(β̂ − β∗) −→ N(0, Σβ)

in distribution for some positive definite covariance matrix Σβ. Under the
null of the above linear hypothesis, Aβ∗ = c, so

√
n(Aβ̂ − Aβ∗) =

√
n(Aβ̂ − c) −→ N(0, AΣβA

ᵀ
)

in distribution. Let Σ̂β be a consistent estimator of the asymptotic covariance
matrix of β̂. When A is a full rank q×mdmatrix with q ≤ md, the dimension
of β, the test statistic

Wn = n(Aβ̂ − c)ᵀ(AΣ̂βA
ᵀ
)−1(Aβ̂ − c)

has a chi–square limiting distribution, χ2
q, of q degrees of freedom. Such a
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test, however, suffers from a few drawbacks. First, it is usually not very pow-
erful when the sample size is not very large because the estimation accuracy
of the asymptotic covariance estimator Σ̂β in the denominator could be low
in that case. Second, it is not invariant to transformations: if we transform
the parameter and the hypothesis accordingly, the value of the test statistic
and the corresponding p–value of the test may be different form those based
on the original scale.

In contrast to Wald tests, likelihood ratio tests are usually more powerful
because they do not need an estimation of the asymptotic covariance matrix,
and are invariant to transformation. However, as described in Section 2.3, a
simplistic application of the straightforward EL ratio test to hypotheses that
compare the slope DRM parameter βk of different population distributions
is negated by the non–regularity of the DRM, under which the EL function
is not well–defined in a neighbourhood of the true parameter value β∗ if
β∗k = β∗j for some k, j ∈ {0, 1, . . . , m}. Therefore we look for a likelihood
ratio test based on the DEL because it is well–defined for all values of θ
in the corresponding Euclidean space, has a simple analytical form, and is
concave.

The next section presents a DEL ratio (DELR) test for a general com-
posite hypothesis about the DRM slope parameter β, which encompasses
testing differences in population distributions as a special case, and gives the
limiting distributions of the proposed test statistic under both the null and
a class of local alternatives of that hypothesis testing problem. The proofs
of these properties are given in Section 3.6. Section 3.3 assesses, via simu-
lation, the finite sample distributions of the DELR statistic under the null
and local alternative models, as well as the power of the DELR test. The
robustness of the proposed test against the misspecification of the DRM is
studied via simulation in Section 3.4. In Section 3.5, we apply the DELR
test to lumber bending strength data and find that the outcome leads to
intuitively reasonable implications for the forest industry.

42



3.2. DELR statistic and its limiting distributions

3.2 DELR statistic and its limiting

distributions

Recall Section 2.3 that we defined the DEL as

ln(θ) = −
∑
k,j

log
{ m∑

r=0

λ̂r exp
{
αr + β

ᵀ
rq(xkj)

}}
+
∑
k,j

{
αk + β

ᵀ
kq(xkj)

}
,

where λ̂r = nr/n, nr is the size of the rth sample and n is the total sample size.
The MELE θ is the point at which the DEL is maximized, θ̂ = argmax

θ
ln(θ).

This DEL, unlike the EL, is well–defined for all values of θ, so we expect to
derive the limiting distribution of the corresponding likelihood ratio statistic
using classical techniques. Under a two–sample DRM (m + 1 = 2), Keziou
and Leoni-Aubin (2008) found that for simple hypothesis H0 : β1 = 0, or
equivalently H0 : F1 = F0, the corresponding likelihood ratio test statistic,
2ln(θ̂), has the usual chi–square limiting distribution, χ2

d, with d degrees of
freedom.

The success of Keziou and Leoni-Aubin leads us to wonder if the result is
more generally applicable. In the long term monitoring program for lumber
quality, we may encounter similar situations as follows: we have five (m+1 =

5) lumber samples, with the first two being spruce samples, the third and
fourth being pine samples, and the fifth being a Douglas fir sample; we are
interested in testing if the two spruce populations (F0 & F1) have the same
overall quality, which amounts to the hypothesis testing problem of

H0 : β1 = 0 against H1 : β1 6= 0.

If we also concerned about the stability of the qualities of the two pine
populations (F2 & F3) simultaneously, the hypothesis testing problem would
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be

H0 : β1 = 0 and β2 = β3 against H1 : β1 6= 0 or β2 6= β3.

The first hypothesis testing problem above, despite of its simple appearance,
is a composite hypothesis testing problem that is fundamentally different
from the two–sample problem that Keziou and Leoni-Aubin has studied. It
is clear that three other distributions F2, F3 and F4 are also modeled by the
DRM, but their corresponding slope parameters β2, β3 and β4 are nuisance
parameters that are not specified in the hypothesis. The second hypothesis
testing problem above is more complicated and also has a nuisance parame-
ter β4 for the fifth population which is not specified in the hypothesis. Both
testing problems are not covered by the results of Keziou and Leoni-Aubin.
In addition, their proof of the result does not readily extend to more compli-
cated hypotheses, because it is tailored for true parameter β∗ = 0, in which
case the analytical expression of a key quadratic form that approximates
the corresponding DELR statistic is much simpler than that for a composite
hypothesis.

The above limitation of Keziou and Leoni-Aubin’s result leads us to in-
vestigate the properties of the DEL ratio in a much more general setting.

3.2.1 DELR statistic and its null limiting distribution

All the above hypothesis testing problems can be abstractly stated as testing

H0 : g(β) = 0 against H1 : g(β) 6= 0 (3.1)

for some smooth function g : Rmd → Rq, with q ≤ md, the length of β. We
will always assume that g, is thrice differentiable with a full rank Jacobian
matrix ∂g/∂β. The parameters {αk} are usually not a part of the hypothesis,
because, by (2.2), their values are fully determined by the {βk} and F0 under
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the DRM assumption:

αk = − log

ˆ
exp{βᵀ

kq(x)}dF0,

although they are regarded as independent parameters in the DEL.
Let θ̃ be the point at which the maximum of the DEL ln(θ) is attained

under the null constraint g(β) = 0. Recall that the MELE θ̂ is the point at
which the ln(θ) is maximized without the null constraint. The DELR test
statistic is defined to be

Rn = 2{ln(θ̂)− ln(θ̃)}.

Does Rn have the properties of a regular likelihood ratio test statistic? The
answer is positive and we state the result as follows, the proof of which is
given in Section 3.6.

Recall the conditions of Theorem 2.1: we have m + 1 random sam-
ples of sizes nk, k = 0, 1, . . . , m, from populations with distributions of
the DRM form given in (2.1) and a true parameter value θ∗ such that´

exp{βᵀ
kq(x)}dF0 <∞ for θ in a neighbourhood of θ∗,

´
Q(x)Q

ᵀ
(x)dF0

is positive definite with Qᵀ
(x) = (1, qᵀ(x)), and λ̂k = nk/n = ρk + o(1),

where n =
∑m

k=0 nk is the total sample size, for some ρk ∈ (0, 1).

Theorem 3.1 (Null limiting distribution of the DELR statistic). Adopt the
conditions posited in Theorem 2.1. Under the null hypothesis g(β) = 0,
Rn → χ2

q in distribution as n → ∞, where q is the dimension of the null
mapping g(·) and χ2

q is a chi–squared random variable with q degrees of free-
dom.

When m = 1, Theorem 3.1 reduces to the result of Keziou and Leoni-
Aubin (2008) for g(β) = β1. This Theorem covers additional ground, for in-
stance, the two composite hypothesis testing examples given at the beginning
of this section and the case when we test the hypothesis g(β) = β1−β2 = 0
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based on all m+ 1 = 5 samples.
The null limiting distribution of Rn is most useful for approximating the

p–value, p, of a DELR test:

p ≈ Pr(χ2
q ≥ Rn).

At the significance level of α, we reject the null hypothesis of g(β) = 0 when
Rn ≥ χ2

q, 1−α, where χ2
q, p in general is the pth quantile of χ2

q distribution.

3.2.2 Limiting distribution of the DELR statistic

under local alternatives

Theorem 3.1 provides an approximation to the p–value of a test but it does
not give the power of the test. As is well known, most sensible tests are
consistent: the asymptotic power at any fixed alternative model goes to 1 as
the sample size n→∞; this is true for DELR test. Hence, instead of looking
at a fixed alternative, we here study the asymptotic power of the DELR test
under a class of local alternatives, under which the limiting distribution of
Rn usually is not a point mass. The finite–sample power properties of the
test are studied by simulation in Section 3.3.2.

Let {β∗k} be a set of parameter values which form a null model satisfying
H0 : g(β) = 0 under the DRM assumption. Let

βk = β∗k + n
−1/2
k ck, (3.2)

for some constants {ck}, be a set of parameter values which form a local
alternative. We denote the distribution functions corresponding to β∗k and
βk as Fk and Gk with G0 = F0, respectively. Note that the {Gk} are placed
at n−1/2 distance from the {Fk}. As n → ∞, the limiting distribution of
Rn under this local alternative is usually non–degenerate and provides useful
information on the power of the test.
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We now express the null hypothesis g(β) = 0 in an equivalent form.
Recall that g : Rmd → Rq is thrice differentiable in a neighbourhood of β∗

with a full rank Jacobian matrix evaluated at β∗. Denote 5 = ∂g(β∗)/∂β

and partition5 into (51, 52), with q andmd−q columns respectively. When
q < md, by the implicit function theorem (Zorich, 2004, 8.5.4, Theorem 1),
there exists a unique function G: Rmd−q → Rmd, such that g(β) = 0 if
and only if β = G(γ) for some β and γ in a corresponding neighbourhoods
of β∗ and γ∗ respectively. In addition, G is also thrice differentiable in a
neighbourhood of γ∗, and its Jacobian matrix evaluated at γ∗,

J = ∂G(γ∗)/∂γ,

has a full rank. Furthermore, if 51 has a full rank, then

J = (−(5−1
1 52)

ᵀ
, Imd−q)

ᵀ
, (3.3)

where Ik is an identity matrix of size k × k.
Let U be the information matrix (2.13) under the null model H0 repre-

sented by the {β∗k} and {Fk}.

Theorem 3.2 (Limiting distribution of the DELR under local alternatives).
Under the conditions of Theorem 2.1 and local alternative defined by (3.2),

Rn → χ2
q(δ

2)

in distribution as n→∞, where χ2
q(δ

2) is a non–central chi–square random
variable with q degrees of freedom and a nonnegative non–central parameter

δ2 =

{
ηᵀ{Λ− ΛJ

(
JᵀΛJ

)−1
JᵀΛ

}
η if q < md

ηᵀΛη if q = md

where ηᵀ = (ρ
−1/2
1 cᵀ1, ρ

−1/2
2 cᵀ2, . . . , ρ

−1/2
m cᵀm) and Λ = Uββ − UβαU−1

ααUαβ.
Moreover, δ2 > 0 unless η is in the column space of J .
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The proof is given in Section 3.6. This result is useful for: (1) computing
local power of the DELR test under specific distributional settings, (2) calcu-
laing required sample size for achieving a certain power at a given alternative,
and (3) comparing the powers of DELR tests formulated in different ways,
which helps us to determine the most efficient use of information contained
in multiple samples. We illustrate the first two points using the examples
below, and discuss the last point in Chapter 4.

Example 3.1 (Computing the local asymptotic power of DELR test for a
composite hypothesis). Consider the situation where m+ 1 = 3, samples are
from a DRM with basis function q(x) = (x, log x)ᵀ, and the sample propor-
tions are (0.4, 0.3, 0.3). Let Fk, k = 1, 2, be the distributions with parameters
β∗1 = (−1, 1)ᵀ and β∗2 = (−2, 2)ᵀ. Let H0 be g(β) = 2β1 − β2 = 0. Consider
the local alternative

βk = β∗k + n
−1/2
k ck, for k = 1, 2, (3.4)

with c1 = (2, 3)ᵀ and c2 = (−1, 0)ᵀ.
We find 5 = (2I2, −I2) so J = ((1/2)I2, I2), and η ≈ (3.65, 5.48, −1.83,

0)ᵀ. The information matrix U is F0 dependent. When F0 is Γ(2, 1), where
in general Γ(λ, κ) denotes the gamma distribution with shape λ and rate κ,
we obtain the information matrix (2.13) and hence Λ, based on numerical
computation. We therefore get δ2 ≈ 10.29 based on formula given in the
above theorem.

The null limiting distribution of Rn is χ2
2. At the 5% level, the null is

rejected when Rn ≥ χ2
2, 0.95 ≈ 5.99. Hence under the local alternative, the

power of the DELR test is approximately Pr(χ2
2(10.29) ≥ 5.99) ≈ 0.83.

Example 3.2 (Sample size calculation for Example 3.1). Adopt the set-
tings of Example 3.1. Suppose we require the power of the DELR test to
be at least 0.8 at the alternative of β1 = β∗1 + (0.5, 1.5)ᵀ and β2 = β∗2 +

(0.5, 0.5)ᵀ at the 5% significance level. Recall that the sample proportions
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3.2. DELR statistic and its limiting distributions

are (0.4, 0.3, 0.3). This alternative corresponds to a local alternative of the
form (3.4) with with c1 = (0.5

√
n1, 1.5

√
n1)

ᵀ
= 0.5(

√
0.3n, 3

√
0.3n)

ᵀ
and

c2 = (0.5
√
n2, 0.5

√
n2)

ᵀ
= 0.5(

√
0.3n,

√
0.3n)

ᵀ
.

Using the above c1 and c2, we obtain η = (0.3−1/2cᵀ1, 0.3−1/2cᵀ2)
ᵀ

=

0.5
√
n(1, 3, 1, 1)

ᵀ as a function of the total sample size n. With the same
J , F0 and U as obtained in Example 3.1, and applying the formula given
in Theorem 3.2, we obtain the non–central parameter δ2 as a function of n,
which we denote as δ2(n). To attain a minimal power of 0.8, we solve

Pr(χ2
2(δ2(n)) ≥ χ2

2, 0.95) ≥ 0.8

for the total sample size n and get n ≥ 50.

3.2.3 On the condition for the positiveness of the

non–central parameter

A meaningful test should be unbiased: at the significance level of α, for any
given alternative, the power of the test should be at least as large as α. Is
the DELR test asymptotically unbiased under the local alternatives of the
form (3.2)? The answer is positive. Recall that at the significance level of
α, we reject the null hypothesis of g(β) = 0 when Rn ≥ χ2

q, 1−α. Hence, by
Theorem 3.2, at any given local alternative of the form (3.2), the asymptotic
power of the test is

lim
n→∞

Pr(Rn ≥ χ2
q,1−α) = Pr(χ2

q(δ
2) ≥ χ2

q,1−α). (3.5)

By a result about non–central chi–square distribution (Johnson et al., 1995,
(29.25a)), if 0 ≤ δ2

1 < δ2
2, then for any x > 0,

Pr(χ2
d(δ

2
1) ≥ x) < Pr(χ2

d(δ
2
2) ≥ x). (3.6)
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3.2. DELR statistic and its limiting distributions

Note that a non–central chi–square distribution with a 0 non–central param-
eter is just a usual chi–square distribution. Therefore, in view of (3.5), the
local asymptotic power of the DELR test satisfy

Pr(χ2
q(δ

2) ≥ χ2
q,1−α) ≥ Pr(χ2

q ≥ χ2
q,1−α) = α

with equality if and only if δ2 = 0. Thus the DELR test is asymptotically
unbiased under the local alternative model (3.2).

In practice, we always hope that the power of a test at an alternative is
strictly larger than the significance level. We now take one step further to
study in what situations the local asymptotic power of DELR test is strictly
larger than the significance level α, or equivalently, δ2 > 0. Roughly, the
answer lies in whether a β defined by the local alternative model (3.2) is
truly a local alternative.

We first look at the case that q, the dimension of the g function in the
hypothesis (3.1), equals md, the dimension of the DRM slope parameter β.
In this case, by the inverse function theorem (Zorich, 2004, 8.6.1, Theorem 1),
g is invertible at β∗, i.e. β∗ = g−1(0). Hence g defines a simple hypothesis
testing problem with β being fully specified to be g−1(0) in the null. Then
any β value defined by the local alternative model (3.2), as long as not all
the {ck} are 0, is a real alternative, i.e. does not satisfy the null constraint
of g(β) = 0 for any given sample size n. In this case, by Theorem 3.2, the
non–central parameter is δ2 = ηᵀΛη. Since Λ is positive definite and η 6= 0,
we have δ2 > 0.

When q < md, for some choices of ck, the β defined by the local alter-
native model may still satisfy the null model of g(β) = 0. For example, let
m+ 1 = 3, the null hypothesis be g(β) = 2β1−β2 = 0, and β∗ be a param-
eter value satisfying this null model. Then, when n1 = n2, the parameter
β satisfying (3.2) with β1 = β∗1 + n

−1/2
1 v and β2 = β∗1 + 2n

−1/2
2 v for some

vector v always satisfies the null model for any given n. In this case, δ2 = 0

as we will see soon.
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3.2. DELR statistic and its limiting distributions

The mathematical condition that δ2 > 0 is given in Theorem 3.2: η is
not in the column space of J , the Jacobian matrix ∂G(γ∗)/∂γ. We now show
that this condition is equivalent to: for the β defined by the local alternative
model (3.2), the speed that g(β) converges to 0 is no faster than the speed
that β converges to β∗, which is on the order of O(n−1/2).

Let β∗ be a parameter value satisfying the null model g(β) = 0, and β
satisfy the local alternative model (3.2). Recall that we have defined 5 =

∂g(β∗)/∂β. Expanding g(β) around β∗ and using the fact that g(β∗) = 0,
we get

g(β) = g(β∗) + {∂g(β∗)/∂β}(β − β∗) +O(‖β − β∗‖2)

= 5(β − β∗) +O(‖β − β∗‖2).

Notice that, when β satisfies the local alternative model (3.2), we have

β − β∗ = n−1/2(λ̂
−1/2
1 c

ᵀ
1, λ̂

−1/2
2 c

ᵀ
2, . . . , λ̂

−1/2
m c

ᵀ
m)

ᵀ
= n−1/2η + o(n−1/2),

Consequently

g(β) = 5(β − β∗) +O(‖β − β∗‖2) = n−1/25 η + o(n−1/2).

Without loss of generality, assume that the submatrix 51 of 5 = (51, 52)

is of full rank. Recall that, in this case, the Jacobian matrix, J , of G(·)
evaluated at γ∗ is given by (3.3): J = (−(5−1

1 52)ᵀ, Imd−q)
ᵀ. We find that

the column space of J is exactly the null space of 5. Hence, η is in the
column space of J if and only if 5η = 0, in which case, by the above
expansion, we have g(β) = o(n−1/2). Now, by Theorem 3.2, δ2 = 0 if and
only if η is in the column space of J , so we conclude that δ2 = 0 if and only
if g(β) = o(n−1/2). On the other hand, if we know g(β) = 0 for all n like
the case in the previous example, then we must have 5η = 0 and so δ2 = 0.

The above analysis shows that δ2 = 0 if and only if g(β) converges to
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3.3. Simulation studies

0 faster than the order of O(n−1/2), which is the speed that β converges to
β∗. In this case, such a β defined by the local alternative model should be
considered to be under the null model of g(β) = 0 in asymptotic sense.

3.3 Simulation studies

In this section, we conducted simulations to study: (1) the approximation
accuracy of the limiting distributions to the finite–sample distributions of
the DELR statistic under both the null and the alternative models, and (2)
the power of the DELR test under correctly specified DRMs. The num-
ber of simulation runs in this and the next section (Section 3.4) is set to
10, 000. Our simulation is more extensive than what are presented in terms
of hypothesis, population distribution, and sample sizes. We selected the
most representative ones and included them here; but the other results are
similar. All computations are carried out by our R package drmdel for EL
inference under DRMs, which is introduced in Chapter 6 and available on
The Comprehensive R Archive Network (CRAN).

3.3.1 Approximation to the distribution of the DELR

Null limiting distribution

We first study how well the chi–square distribution approximates the finite–
sample distribution of the DELR statistic under the null hypothesis of (3.1).
Set m + 1 = 6 and consider the hypothesis (3.1) with g(β) = (β

ᵀ
1, β

ᵀ
3) −

(β
ᵀ
2, β

ᵀ
4). The null hypothesis is equivalent to F1 = F2 and F3 = F4. We

generated six samples of sizes (90, 60, 120, 80, 110, 30) from two distribution
families. The first one is from normal distributions with means (0, 2, 2, 1,

1, 3.2) and standard deviations (1, 1.5, 1.5, 3, 3, 2). The second one is from
gamma distributions with shapes (3, 4, 4, 5, 5, 3.2) and rates (0.5, 0.8, 0.8,

1.1, 1.1, 1.5).
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3.3. Simulation studies

When the basis function q(x) is correctly specified, i.e. q(x) = (x, x2)
ᵀ

for the normal family and q(x) = (log x, x)
ᵀ for gamma family, the DELR

statistic, Rn, has a χ2
4 null limiting distribution in both cases. The quantile–

quantile (Q–Q) plots of the distribution of Rn and χ2
4 are shown in Figure

3.1. In both cases, the approximations are very accurate. The type I error
rates of Rn at 5% level are 0.056 and 0.058 for normal and gamma data
respectively.
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Figure 3.1: Q–Q plots of the simulated and the null limiting distributions of
the DELR statistic.

In general, for data from distributions such as Weibull and log–normal,
the chi–square approximation has satisfactory precision when nk ≥ 70.

Distribution under local alternatives

We next examine the precision of the non–central chi–square distribution
under the local alternative model (3.2). We set m+ 1 = 4 with sample sizes
120, 160, 80 and 60.

In the first scenario, we test the hypothesis (3.1) with g(β) = β
ᵀ
1 − β

ᵀ
2.

The perceived null model is specified by β∗1 = β∗2 = (0.25, 1.875)ᵀ, β∗3 =
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3.3. Simulation studies

(0.125, 1.97)ᵀ with basis function q(x) = (x, x2)ᵀ. The data were generated
from G0 = N(0, 0.52), G1 and G3 with β∗1 and β∗3 respectively, and G2 with
β2 = β∗2 + n

−1/2
2 (1, 0)ᵀ. According to Theorem 3.2, the limiting distribution

of Rn is χ2
2(2.67).

In the second scenario, we test (3.1) with g(β) = (β
ᵀ
1, β

ᵀ
3)−(β

ᵀ
2, (−6, 9)ᵀ).

The perceived null model is specified by β∗1 = β∗2 = (−4, 5)ᵀ, β∗3 = (−6, 9)ᵀ

with basis function q(x) = (log x, x)ᵀ. We generated data from G0 = Γ(3, 2)

and Gk, k = 1, 2, 3, specified by (3.2) with c1 = (0.5, 0.5)ᵀ, c2 = (1, 1)ᵀ and
c3 = (2, 2)ᵀ. According to Theorem 3.2, the limiting distribution of Rn is
χ2

4(1.80).
The Q–Q plots under the two scenarios are shown in Figure 3.2. It is

clear the non–central chi–square limiting distributions approximate these of
of Rn very well. In unreported simulation studies under various settings, we
find the approximate of the non–central chi–square is generally satisfactory
when nk ≈ 100.
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Figure 3.2: Q–Q plots of the distributions of the DELR statistics under
the local alternative model against the corresponding asymptotic theoretical
distributions.
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3.3.2 Power comparison

We now compare the power of the DELR test (DELRT) with a number
of popular methods for detecting differences between distribution functions,
testing H0 : F0 = F1 = . . . = Fm. This is the same as (3.1) with g(β) = β.
We use the nominal level of 5%.

The competitors include the Wald test based on DRM (Wald) (Fokianos
et al., 2001, (17)), analysis of variance (ANOVA), the Kruskal–Wallis rank–
sum test (KW) (Wilcox, 1995), and the k–sample Anderson–Darling test
(AD) (Scholz and Stephens, 1987).

The Wald test, as described in Section 3.1, is based on test statistic
nβ̂

ᵀ
Σ̂−1β̂ with Σ̂ being a consistent estimator of the asymptotic covariance

matrix of β̂. It uses a chi–square reference distribution. KW is a rank–based
nonparametric test for equal population medians. AD is a nonparametric
test based on the quadratic distances of empirical distribution functions for
equal population distributions.

We first compare their powers based on normal data with m+ 1 = 2 and
sample sizes n0 = 30 and n1 = 40. In this case, the two–sample t–test is
the most powerful unbiased test when the two populations have the same
variance.

We consider two different scenarios for alternatives both having F0 =

N(0, 22). In the first scenario, F1 = N(µ, 22) with µ increasing in absolute
value in a sequence of simulation experiments. In the second scenario, we
consider seven parameter settings (settings 0–6) for F1 = N(µ, σ2) with µ

and σ taking values in (0, 0.05, 0.1, 0.15, 0.25, 0.36, 0.55) and (2, 1.9, 1.8,

1.7, 1.62, 1.56, 1.50) respectively.
The power curves are shown in Figure 3.3. In the equal-variance scenario,

DELR test is comparable to the optimal two–sample t–test. In the unequal
variance scenario 2, the DELR test clearly has much higher power than its
competitors, and its type I error is close to the nominal 0.05.

We next compare these tests on non–normal samples with m+ 1 = 5 and
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Figure 3.3: Power curves for normal data. The parameter setting 0 cor-
responds to the null model and the settings 1–6 correspond to alternative
models.

sample sizes to be 30, 40, 25, 45 and 50. We generated data from four families
of distributions: gamma, log–normal, Pareto with common support, and
Weibull distributions with shape parameter equaling 0.8. The log–normal,
Pareto and Weibull distributions satisfy DRMs with basis functions q(x) =

(log x, log2 x)
ᵀ
, q(x) = log x, and q(x) = x0.8, respectively.

We used six DRM parameter settings (settings 0–5; shown in Table 3.10
in 3.7). Setting 0 satisfies the null hypothesis and settings 1–5 do not. The
simulated rejection rates are shown in Figure 3.4. It is clear that the DELR
test has the highest power while its type I error rates are close to the nominal.
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Figure 3.4: Power curves for non–normal data. The parameter setting 0
corresponds to the null model and the settings 1–5 correspond to alternative
models.
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3.4 Robustness of DELR test against model

misspecification

The DRM is very flexible and includes a large number of distribution families
as special cases. The risk of misspecification thus is considered low. Never-
theless, examining the effect of misspecification remains an important topic.
Fokianos and Kaimi (2006) suggested that misspecifying the basis function
q(x) has an adverse effect on estimating β. Chen and Liu (2013) found that
estimation of population quantiles is robust against misspecification. In this
section, we use simulation studies to demonstrate that, even if the DRM
is misspecified, the null distribution of the DELR statistic is still well ap-
proximated by the chi–square distribution for large sample sizes when a high
dimensional basis function q(x) is utilized, and the DELR test remains to
have a high power and reasonable type I error rate for testing the hypothesis
of equal population distributions.

3.4.1 Null limiting distribution of the DELR statistic

We first study the chi–square approximation to the finite–sample distribution
of the DELR statistic based on misspecified DRMs under the null hypothesis
of (3.1). As for the simulation under the correctly specified DRM in Section
3.3.1, we set m + 1 = 6 and consider the hypothesis (3.1) with g(β) =

(β
ᵀ
1, β

ᵀ
3) − (β

ᵀ
2, β

ᵀ
4), which is equivalent to F1 = F2 and F3 = F4. We

generated six samples of the same size under two different distributional
settings respectively. The first setting consists of Weibull distributions with
shapes (2.5, 1, 1, 2, 2, 1.8) and scales (1.2, 2.8, 2.8, 4, 4, .0.9). The second
setting consists of distributions from different families:

X0 ∼ Gamma(3, 0.5), X1 ∼ log–normal(0, 0.6), X2 ∼ log–normal(0, 0.6),

X3 ∼Weibull(2, 4), X4 ∼Weibull(2, 4), X5 ∼ Gamma(2, 0.8).
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3.4. Robustness of DELR test against model misspecification

The distributions under neither of the above settings satisfy a DRM,
however we still fit a DRM to them under each setting. For the first setting,
we fit a DRM with the basis function that is suitable for gamma family,
q(x) = (x, log x)

ᵀ, to the Weibull samples, because the shapes of Weibull
densities are similar to those of gamma densities. For the second setting of
mixed families of distributions, we fit DRMs with the following different basis
functions:

DRM 1: q(x) = log x,

DRM 2: q(x) = (x, x2)
ᵀ
,

DRM 3: q(x) = (x, log x)
ᵀ,

DRM 4: q(x) = (log x,
√
x, x)

ᵀ
,

DRM 5: q(x) = (log x, x, x2)
ᵀ
,

DRM 6: q(x) = (log x,
√
x, x, x2)

ᵀ
.

For each DRM, the theoretical limiting distribution of the DELR test for
the null hypothesis of g(β) = (β

ᵀ
1, β

ᵀ
3)− (β

ᵀ
2, β

ᵀ
4) = 0 is χ2

2d, where d is the
dimension of the basis function.

Under the first setting, we calculate the DELR test statistic for different
sample sizes: nk = 20, 40, 70, 100, 150, 300 respectively for k = 0, . . . , 5.
The Q–Q plots of the DELR statistics against the quantiles of the theoretical
limiting χ2

4 distribution are shown in Figure 3.5 and the corresponding type–I
error rates of the DELR tests at the nominal sizes of 0.10 and 0.05 are shown
in Table 3.1. For small sample sizes, the Q–Q plots are always above the
diagonal line, and the type–I errors are higher than the nominal sizes. As
the sample size increases, the Q–Q plot slowly move towards the diagonal
line. When the size of each sample reaches 150 and higher, the χ2

4 distribution
approximates the distribution of Rn well, and the type–I errors are close to
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the nominal sizes. These tell us, although the DRM is misspecified, the chi–
square approximation of the DERL statistic in this case is still useful for
samples of large sizes.

Table 3.1: The type–I error rates of the DELR tests at nominal sizes of 0.10
and 0.05 for Weibull samples under a misspecified DRM.

Nominal size nk = 20 nk = 40 nk = 70 nk = 100 nk = 150 nk = 300
0.10 0.1483 0.1322 0.128 0.123 0.1178 0.1102
0.05 0.0839 0.0728 0.0664 0.0664 0.0624 0.0543

For the second setting of mixed families of distributions, the Q–Q plots
of the DELR statistics against the theoretical quantiles of the limiting dis-
tribution under DRM 1 – DRM 6 are shown in Figure 3.6 – 3.11. The
corresponding type–I error rates at the nominal sizes of 0.10 and 0.05 are
shown in Table 3.2 – 3.7.

For the DRM with the simplest basis function (DRM 1), the Q–Q line
is always slightly under the diagonal line for all sample sizes, implying con-
servative DELR tests of all nominal sizes. For the two DRMs with two–
dimensional basis functions (DRM 2 and 3), the Q–Q lines are always above
the diagonal line for all sample sizes, which indicate anti–conservative DLR
tests of all nominal sizes. For the two DRMs with three–dimensional basis
functions (DRM 4 and 5), the Q–Q line is above the diagonal line when the
sample size is small (nk = 20, 40). It moves close to the diagonal line when
the sample size becomes moderately large (nk = 70, 100), and below the di-
agonal line when the sample size gets larger (nk = 150, 300). If we increase
the size of each sample to 500 or 1, 000, the Q–Q line stays slightly below and
a little further away from the diagonal line. For all the above cases (DRM
1 – 5), the Q–Q plots show that the DLR test has some bias that does not
diminish as the sample size becomes larger.

The DELR test under DRM 6, which has a four–dimensional basis func-
tion, has a different behaviour with respect to the sample size. The Q–Q line
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Figure 3.5: Q–Q plots of the simulated and the null limiting distribution of
the DELR statistics for Weibull samples under a misspecified DRM.
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is well above the diagonal line when the sample size is small. As the sam-
ple size increases, the Q–Q line moves gradually towards the diagonal line.
When the size of each sample reaches 300, the Q–Q line is very close to the
diagonal line. And if we further increase the size of each sample to 500 and
1, 000, the Q–Q line approaches even closer to the diagonal line from above,
and it never goes below as in the case under DRMs with three–dimensional
basis functions. This behaviour is similar to that of the DELR test under a
correctly specified DRM, only the speed of convergence to the Chi–squared
distribution is slower. It indicates that a DRM with a high dimensional basis
function is more likely to fit the samples better.

Table 3.2: The type–I error rates of the DELR tests at nominal sizes of
0.10 and 0.05 for samples from different families of distributions under the
misspecified DRM 1.

Nominal size nk = 20 nk = 40 nk = 70 nk = 100 nk = 150 nk = 300
0.10 0.0867 0.0749 0.071 0.0739 0.07 0.0704
0.05 0.0419 0.0348 0.0311 0.0358 0.0321 0.0335

Table 3.3: The type–I error rates of the DELR tests at nominal sizes of
0.10 and 0.05 for samples from different families of distributions under the
misspecified DRM 2.

Nominal size nk = 20 nk = 40 nk = 70 nk = 100 nk = 150 nk = 300
0.10 0.143 0.1251 0.1254 0.1282 0.1201 0.1215
0.05 0.0759 0.0683 0.0644 0.0702 0.064 0.0649
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Table 3.4: The type–I error rates of the DELR tests at nominal sizes of
0.10 and 0.05 for samples from different families of distributions under the
misspecified DRM 3.

Nominal size nk = 20 nk = 40 nk = 70 nk = 100 nk = 150 nk = 300
0.10 0.149 0.1419 0.1367 0.1408 0.1325 0.1364
0.05 0.0815 0.0794 0.0738 0.0778 0.0712 0.0742

Table 3.5: The type–I error rates of the DELR tests at nominal sizes of
0.10 and 0.05 for samples from different families of distributions under the
misspecified DRM 4.

Nominal size nk = 20 nk = 40 nk = 70 nk = 100 nk = 150 nk = 300
0.10 0.1554 0.1204 0.0987 0.0981 0.0877 0.0819
0.05 0.0848 0.0616 0.0472 0.0501 0.0391 0.0387

Table 3.6: The type–I error rates of the DELR tests at nominal sizes of
0.10 and 0.05 for samples from different families of distributions under the
misspecified DRM 5.

Nominal size nk = 20 nk = 40 nk = 70 nk = 100 nk = 150 nk = 300
0.10 0.1608 0.1198 0.1019 0.1006 0.0872 0.0817
0.05 0.0871 0.0642 0.0503 0.0517 0.0443 0.0416

Table 3.7: The type–I error rates of the DELR tests at nominal sizes of
0.10 and 0.05 for samples from different families of distributions under the
misspecified DRM 6.

Nominal size nk = 20 nk = 40 nk = 70 nk = 100 nk = 150 nk = 300 nk = 500 nk = 1, 000
0.10 0.2228 0.1602 0.1336 0.1343 0.1201 0.1109 0.1132 0.1038
0.05 0.1343 0.0866 0.0708 0.0716 0.0628 0.0583 0.0578 0.0529
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Figure 3.6: Q–Q plots of the simulated and the null limiting distribution of
the DELR statistics for samples from different families of distributions under
the misspecified DRM 1.
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3.4. Robustness of DELR test against model misspecification
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Figure 3.7: Q–Q plots of the simulated and the null limiting distribution of
the DELR statistics for samples from different families of distributions under
the misspecified DRM 2.
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Figure 3.8: Q–Q plots of the simulated and the null limiting distribution of
the DELR statistics for samples from different families of distributions under
the misspecified DRM 3.
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Figure 3.9: Q–Q plots of the simulated and the null limiting distribution of
the DELR statistics for samples from different families of distributions under
the misspecified DRM 4.
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Figure 3.10: Q–Q plots of the simulated and the null limiting distribution of
the DELR statistics for samples from different families of distributions under
the misspecified DRM 5.
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Figure 3.11: Q–Q plots of the simulated and the null limiting distribution of
the DELR statistics for samples from different families of distributions under
the misspecified DRM 6.
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3.5. Analysis of lumber quality data

3.4.2 Power of the DELR test

We now study the power of the DELR test under misspecification of the
DRM. As in Section 3.3.2, we consider the null hypothesis of H0 : F0 = F1 =

. . . = Fm, which is the same as (3.1) with g(β) = β. We use the nominal
level of 5%.

We put m + 1 = 5 with sample sizes 90, 120, 75, 135 and 150. In the
first simulation experiment, we generated data from Weibull distributions.
We use DELR test and Wald test to test the same distribution hypothesis
based on DRM assumption with q(x) = (x, log x)

ᵀ. We used six parameter
settings with the 0th set satisfying the null hypothesis. Note that the basis
function is misspecified.

We repeated the experiment with data from mixtures of two normals,
non–central t distributions, and and mixtures of a gamma and a Weibull.
We conducted DELR test based on DRM assumption with q(x) = (x, x2)

ᵀ

for non–central t data, for the normal mixture data, and q(x) = (x, log x)
ᵀ

for data from gamma–Weibull mixture. All these DRMs are misspecified.
The detailed parameter settings 0–5 are given in Table 3.11 in 3.7.

We also applied ANOVA, KW and AD tests. The results are summarized
as power curves in Figure 3.12. Although all the DRMs are misspecified, we
notice that, under all these data settings, the DELR test has close to nominal
type I error rates, and superior power in detecting distributional differences.

3.5 Analysis of lumber quality data

We now turn to the primary application of this thesis: analysis of the lum-
ber strength. As members of the Forest Products Stochastic Modeling Group
centered at the University of British Columbia, we are helping develop meth-
ods for assessing the engineering strength properties of lumber. A primary
goal, one noted in Chapter 1, is an effective but relatively inexpensive long
term monitoring program for the strength of lumber. Two strengths of
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Figure 3.12: Power curves of the five tests with DELR and Wald tests based
on misspecified DRMs. The parameter setting 0 corresponds to the null
model and the settings 1–5 correspond to alternative models.
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great importance are the so–called modulus of rupture (MOR) or “bend-
ing strength”, and modulus of tension (MOT) or “tension strength”, both of
which are measured in units of 103 pound–force per square inch (psi). The
Forest Products Stochastic Modeling Group collected three MOR samples
in year 2007, 2010 and 2011 with sample sizes 98, 282 and 445 respectively,
and two MOT samples in year 2007 and 2011 with sample sizes 98 and 425
respectively. Our interest in change of lumber quality over time, leads us to
test the hypothesis that the MOR and MOT samples respectively come from
the populations of the same distributions. We do so using the DELR test,
Wald test, ANOVA and Kruskal–Wallis rank–sum test.

3.5.1 Assessing the DRM fit: an exploratory approach

A good DRM fit to the data is crucial to the effectiveness of the DELR test.
We now assess this by comparing the EL density estimates obtained using
the fitted DRM to the histograms of the observed samples.

The kernel density plots of the MOR and MOT samples are shown in
Figure 3.13. The three densities with modes around 6, 100 psi correspond to
the MOR samples, while the two with modes around 3, 600 psi correspond
to the MOT samples. The MOR samples of the year 2007 (MOR07) and
the year 2010 (MOR10) seem to have similar density plots: both are slightly
right–skewed, although MOR10 has a small lump to the right of its mode.
Both seem well approximated by gamma distributions. The MOR sample
of the year 2011 (MOR11) seems to have a quite different characteristic
from MOR07 and MOR10: it has a clearly larger spread and looks more
symmetric, which mimics the shape of the density of a normal distribution.
The density plots of the MOT samples of the year 2007 (MOT07) and the year
2011 (MOT11) look similar: both are roughly bell shape with a little right–
skewed, looking like something between a normal and a gamma distribution.

Since the above density plots look like either gamma or normal densi-
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Figure 3.13: Kernel density plots of the MOR and MOT samples.

ties, when fitting a DRM to MOR or MOT samples, we use a basis function
q(x) = (log x, x, x2)

ᵀ
which combines the basis function for the gamma

distributions, q(x) = (log x, x)
ᵀ, and that for the normal distributions,

q(x) = (x, x2)
ᵀ
. The corresponding DRM is understood as a generalization

of both gamma and normal distributions. Below we assess how this DRM fits
to the MOR and MOT samples respectively. The DRM fit can be assessed
using goodness–of–fit tests like those developed by Qin and Zhang (1997)
and Zhang (2002). Here we use a less formal but visually straightforward
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exploratory approach: checking whether the EL kernel density estimators of
the different populations based on DRM agree with the histograms of the
observed samples.

Recall that under the DRM the EL estimator p̂kj for dF0(xkj) of the
baseline distribution is given in (2.9). Applying the DRM assumption (2.1),
we obtain the EL estimators for dFl(xkj), l = 1, . . . , m, as

p̂
(l)
kj = exp

{
α̂l + β̂

ᵀ
l q(xkj)

}
p̂kj.

An EL kernel density estimator of the population l is defined to be the kernel
density estimator with the {̂p(l)

kj} as weights and all the {xkj} as observations.
Fokianos (2004) showed that under mild conditions this EL kernel density
estimator is consistent and more efficient than the classical kernel density
estimator with empirical weight 1/nk for every data point within sample k.

The DRM fit to the MOR samples

We fit the DRM with basis function q(x) = (log x, x, x2)
ᵀ
to the three MOR

samples, and compute the EL kernel density estimates of the MOR popula-
tions. We compare the EL kernel density estimates based on the DRM to
the histograms, classical kernel density estimates with empirical weights, and
parametric density estimates based on a three parameter Weibull distribution
with density function

f(x; λ, κ, c) =
{
κ(x− c)κ−1/λκ

}
· exp

{
− {(x− c)/λ}κ−1

}
,

for x > c and λ, κ > 0. Such a Weibull distribution seems to be a flexible
model for distributions with slightly heavy tails on the right. We calculate
the maximum likelihood estimates (MLE) of the Weibull parameters based on
each MOR sample, then estimate the density of the corresponding population
by plugging in the MLEs to the above density function. Note that when the
shape parameter κ < 1 and the location parameter c tends to the smallest
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observation from below, the likelihood tends to infinity. Thus the MLEs of
the parameters for this Weibull distribution are not well–defined. In practice,
when calculating the MLE, we constrained the range of location parameter c
to be smaller than the smallest observation minus a small positive constant,
10−6.

The histograms and density estimates of the MOR samples are shown in
Figure 3.14. For all samples, the EL kernel density estimates agree with the
histograms well. Compared to the classical kernel density estimates with em-
pirical weights, the EL kernel density estimates based on the DRM are more
smooth, especially for MOR10. The mode of the EL kernel density estimate
for MOR07 is slightly to the right of the mode of the corresponding classical
kernel density estimate. Such differences exist because the EL kernel density
estimators are obtained using combined data from all samples while the clas-
sical kernel density estimators are obtained using single samples. Compared
to the Weibull density estimator, the EL kernel density estimator looks more
flexible: it captures the small lumps on the right of the modes of MOR10
and MOR11, while the Weibull estimates do not. Overall, the DRM seems
to fit the three MOR samples well.

The EL kernel density estimates is also found to be quite robust to the
choice of the DRM basis function. We fit DRMs with other basis functions,
including that for the normal family, that for the gamma family, q(x) =

(log x,
√
x, x)

ᵀ
, q(x) = (log x,

√
x, x, x2)

ᵀ
, etc. The corresponding EL kernel

density estimates are very similar to the one we get using the current basis
function q(x) = (log x, x, x2)

ᵀ
.

The DRM fit to the MOT samples

As for the MOR samples, we fit the DRM with basis function q(x) =

(log x, x, x2)
ᵀ
to the two samples of MOT for the year 2007 and 2010, and

calculate the EL kernel density estimates based on the DRM for the cor-
responding populations. Again, we compare these density estimates to the
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Figure 3.14: The histograms, EL kernel density estimates (solid curves), clas-
sical kernel density estimates (dashed curves) and three parameter Weibull
density estimates (dot–dashed curves) for MOR samples.

histograms, the classical kernel density estimates with empirical weights and
the three parameter Weibull density estimates (Figure 3.15). The EL ker-
nel density estimates agree with the histograms well and are quite close to
the classical kernel density estimates. Both the EL and classical kernel den-
sity estimators are more flexible and show more curvature than the Weibull
density estimator.

76



3.5. Analysis of lumber quality data

MOT07

D
en

si
ty

2 4 6 8

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

DRM fit
Empirical fit
Weibull (3 parameter) fit

MOT11

D
en

si
ty

2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

Figure 3.15: The histograms, EL kernel density estimates (solid curves), clas-
sical kernel density estimates (dashed curves) and three parameter Weibull
density estimates (dot–dashed curves) for MOT samples.

3.5.2 Testing for equality of strength populations

Comparing the MOR populations

We now test the hypothesis that all MOR samples are from populations of
the same distributions. As mentioned, we use the DELR test, Wald test,
ANOVA and KW test for this hypothesis. The first two tests were carried
under the DRM assumption with basis function q(x) = (log x, x, x2)

ᵀ
. The

DELR test and Wald test based on other basis functions lead to the same
conclusion below, although the p–values are not identical.

The p–values obtained using the DELR test, Wald test, ANOVA and KW
test are respectively 3.05e-8, 2.04e-6, 0.0029 and 0.00108. All tests strongly
reject the null hypothesis of equal MOR distributions. The DRM–based
tests, especially the DELR test, have much smaller p–values.

Following the rejection of that hypothesis it is natural to look for its
cause through pairwise comparisons. For comparing pairs, we use the two
sample t–test adjusted for unequal variances (also known as Welch’s t–test)
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and the Wilcoxon rank–sum test with continuity correction, instead of the
plain ANOVA and KW test. We note that the plain ANOVA and KW test
give slightly different p–values but same the conclusions. Let FMOR07, FMOR10

and FMOR11 denote the MOR population distributions for years 2007, 2010
and 2011, respectively. The p–values for pairwise comparisons are given in
Table 3.8. Note that the two DRM–based tests strongly suggest FMOR11 is
markedly different from FMOR07 and FMOR10, while FMOR07 and FMOR10 are
not significantly different. The other two tests arrive at the same conclusion,
but without statistical significance at 5% level. We also remark that the
conclusion does not change at the 5% level when a Bonferroni correction is
applied to account for the multiple comparison.

In addition, if the 5% size is strictly observed, t–test and KW test would
imply FMOR07 = FMOR10 and FMOR07 = FMOR11, but FMOR10 6= FMOR11. This
is much harder to interpret in applications.

Table 3.8: The p–values of pairwise comparisons among three MOR popula-
tions.

DELRT Wald t–test Wilcoxon
H0: FMOR07 = FMOR10 0.871 0.875 0.516 0.431
H0: FMOR07 = FMOR11 5.40e-4 7.01e-3 0.0579 0.0604
H0: FMOR10 = FMOR11 4.54e-8 1.82e-6 6.09e-4 3.95e-4

The three–sample DRM fit versus two–sample DRM fit. In the
above pairwise comparisons, the DELR and Wald tests are based on a DRM
fitted to all three MOR samples. We can also fit the DRM to the two sam-
ples in comparison only. How do the tests based on the two–sample DRMs
compared to those based on the three–sample DRM. The p–values of such
two–sample tests for pairwise comparisons are shown in Table 3.9. The p–
values are very close to those based on the DRM for all the three MOR
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populations, and the corresponding conclusions are the same. This observa-
tion agrees with the conclusion of Theorem 4.3 that we will present in the
next chapter: when comparing the equality of a set of distribution functions,
incorporating more samples, whose population distributions are unrelated to
the hypothesis, into the DRM does not change the local asymptotic power
of the DELR test.

Table 3.9: The p–values of the DELR and Wald tests based on two–sample
DRMs for pairwise comparisons among the three MOR populations.

DELRT Wald
H0: FMOR07 = FMOR10 0.856 0.859
H0: FMOR07 = FMOR11 6.51e-04 7.8e-03
H0: FMOR10 = FMOR11 4.75e-08 2.04e-06

Comparing the MOT populations

We now test the hypothesis that the distribution functions of the two MOT
populations are equal. The p–values of the DELR test, Wald test, Welch’s
t–test and Wilcoxon rank–sum test for this hypothesis are 0.0877, 0.228,
0.0749 and 0.295, respectively. No test rejects the null hypothesis at the 5%

significance level. The DELR test and the t–test provide marginal evidence
against the null hypothesis, showing that they are picking up the vague
difference between the two samples. These results agree with our observation
from the kernel density plots of the MOT samples (Figure 3.13).
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3.6 Proofs

3.6.1 Theorem 3.1: Null limiting distribution of the

DELR statistic

In this subsection, we show that the DELR test statistic, Rn, has a simple
chi–square limiting distribution under the null hypothesis of (3.1). The idea
is to show that the Rn is well approximated by a quadratic form that is
asymptotically chi–square. We first give two important lemmas.

Lemma 3.3 (Block matrix inversion formula). Let M be a (s+ t)× (s+ t)

nonsingular matrix with partition

M =

 A
s×s

B
s×t

C
t×s

D
s×t

 .

If A is nonsingular, then so is SA = D − CA−1B and

M−1 =

(
A−1 + A−1BS−1

A CA−1 −A−1BS−1
A

−S−1
A CA−1 S−1

A

)
.

This is the conclusion of Theorem 8.5.11 of Harville (2008). We sketch
the proof here.

Proof of Lemma 3.3. We first show that if A is nonsingular, then SA = D−
CA−1B is also nonsingular. Observe the following equality,(

Is 0

−CA−1 It

)
M =

(
Is 0

−CA−1 It

)(
A B

C D

)
=

(
A B

0 SA

)
.

The first matrix on the LHS is lower block–triangular, square, and has a
full rank, so the rank of the second matrix on the LHS, M , is the same as
the rank of the matrix on the RHS. Note that the matrix on the RHS is an
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upper block–triangular matrix, so its rank equals the sum of the ranks of its
diagonal blocks A and SA. Therefore,

rank(M) = rank

(
A B

0 SA

)
= rank(A) + rank(SA).

Since M and A are both of full rank, SA also has a full rank by the above
equality. Hence SA is nonsingular.

Since the above RHS matrix is nonsingular, we can solve for M−1 as

M−1 =

(
A B

0 SA

)−1(
Im 0

−CA−1 In

)

=

(
A−1 −A−1CS−1

A

0 S−1
A

)(
Im 0

−CS−1
A In

)

=

(
A−1 + A−1BS−1

A CA−1 −A−1BS−1
A

−S−1
A CA−1 S−1

A

)
.

Lemma 3.4 (Quadratic form decomposition formula). Adopt the settings of
Lemma 3.3. Let zᵀ = (zᵀ1, z

ᵀ
2) be a vector of length s + t, partitioned in

agreement with s and t. If A is nonsingular, then

z
ᵀ
M−1z =

(
z2 −B

ᵀ
(A−1)

ᵀ
z1

)ᵀ(
D − CA−1B

)−1(
z2 − CA−1z1

)
+ z

ᵀ
1A
−1z1.

Lemma 3.4 is an easy consequence of Lemma 3.3. Its proof thus is omit-
ted.

Proof of Theorem 3.1. We now prove the asymptotic chi–squareness of the
DELR statistic Rn = 2{ln(θ̂) − ln(θ̃)} under the null model of (3.1). We
first work on quadratic expansions of ln(θ̂) and ln(θ̃) under the null model.
The difference of the two quadratic forms is then shown to have a chi–square
limiting distribution.
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Recall v = n−1/2∂ln(θ∗)/∂θ and θ∗ is the true DRM parameter. By
expanding ln(θ̂) at θ∗, we get

ln(θ̂) = ln(θ∗) +
√
nv

ᵀ
(θ̂ − θ∗)− (1/2)n(θ̂ − θ∗)ᵀUn(θ̂ − θ∗) + εn

where εn = Op(n
−1/2) since θ̂ − θ∗ = Op(n

−1/2) and the third derivative is
bounded by an integrable function shown in (2.17). Also, in the proof of
Theorem 2.5, we have shown in (2.25) that

√
n(θ̂ − θ∗) = U−1v + op(1).

Plugging the above expression of
√
n(θ̂− θ∗) into the expansion of ln(θ̂), we

get

ln(θ̂) = ln(θ∗) + (1/2)v
ᵀ
U−1v + op(1). (3.7)

Next, we work on an expansion for ln(θ̃) under the null model g(β) = 0.
Recall Section 3.2.2 that, when q < md, the null model can be equivalently
represented as β = G(γ) for some function G: Rmd−q → Rmd and parameter
γ of dimension md − q. In addition, G is thrice differentiable in a neigh-
bourhood of γ∗, and its Jacobian matrix J = ∂G(γ∗)/∂γ is of full rank.
With this representation, the DRM parameter under the null hypothesis is
θ = (α, G(γ)). Hence, we may write the likelihood function under null model
as

`n(α, γ) = ln(α, G(γ)).

Let (α̃, γ̃) be the maximal point of `n(α,γ). Note that θ̃ = (α̃, G(γ̃)) and
so ln(θ̃) = `n(α̃, γ̃). Clearly, `n(α, γ) has the same properties as ln(θ) and
`n(α̃, γ̃) has a similar expansion as (3.7):

ln(θ̃) = `n(α̃, γ̃) = `n(α∗, γ∗) + (1/2)ṽ
ᵀ
Ũ−1ṽ + op(1),
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where ṽ = n−1/2∂ln(α∗, γ∗)/∂(α, γ) and Ũ is the corresponding information
matrix. Partition v into v1 = n−1/2∂ln(θ∗)/∂α and v2 = n−1/2∂ln(θ∗)/∂β.
Note that

n−1/2∂`n(α∗,γ∗)/∂α = n−1/2∂ln(θ∗)/∂α = v1.

By the chain rule,

n−1/2∂`n(α∗,γ∗)/∂γ = n−1/2J
ᵀ{∂ln(θ∗)/∂β)} = J

ᵀ
v2. (3.8)

Similarly, the new information matrix is found to be

Ũ =

(
Im 0

0 Jᵀ

)(
Uαα Uαβ

Uβα Uββ

)(
Im 0

0 J

)
=

(
Uαα UαβJ

JᵀUβα JᵀUββJ

)
.

Consequently, we have

ln(θ̃) = `n(α̃, γ̃) = `n(α∗,γ∗) + (1/2)(v
ᵀ
1,v

ᵀ
2J)Ũ−1(v

ᵀ
1,v

ᵀ
2J)

ᵀ
+ op(1).

Combining (3.7) and the above expansion, and noticing that `n(α∗,γ∗) =

ln(θ∗), we have

Rn = 2{ln(θ̂)− ln(θ̃)} = v
ᵀ
U−1v − (v

ᵀ
1,v

ᵀ
2J)Ũ−1(v

ᵀ
1,v

ᵀ
2J)

ᵀ
+ op(1).

Applying the quadratic form decomposition formula given in Lemma 3.4 to
the two quadratic forms on the RHS of the above expansion, we get

v
ᵀ
U−1v = ξ

ᵀ
Λ−1ξ + v

ᵀ
1U
−1
ααv1,

(v
ᵀ
1,v

ᵀ
2J)Ũ−1(v

ᵀ
1,v

ᵀ
2J)

ᵀ
= ξ

ᵀ
J(J

ᵀ
ΛJ)

−1
J
ᵀ
ξ + v

ᵀ
1U
−1
ααv1,

(3.9)

where ξ = (−UβαU−1
αα, Imd)v and Λ = Uββ − UβαU

−1
ααUαβ is defined in
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Theorem 3.2. We then obtain the following expansion

Rn = 2{ln(θ̂)− ln(θ̃)} = ξ
ᵀ{Λ−1 − J(J

ᵀ
ΛJ)

−1
J
ᵀ}ξ + op(1). (3.10)

Recall that, by Theorem 2.2, v is asymptotically N(0, U − UWU), where
W = diag{T, 0md×md} and T = ρ0

−11m1
ᵀ
m + diag{ρ−1

1 , . . . , ρ−1
m } as given in

Theorem 2.2. Thus, ξ is asymptotic normal with mean 0 and covariance
matrix

(−UβαU−1
αα, Imd)(U − UWU)(−UβαU−1

αα, Imd)
ᵀ
.

Noting that

(−UβαU−1
αα, Imd)U(−UβαU−1

αα, Imd)
ᵀ

= Uββ − U
ᵀ
αβUααUαβ = Λ

and

(−UβαU−1
αα, Imd)UW =

(
−UβαU−1

ααUααT + UβαT, 0
)

= 0,

we get that the asymptotic covariance matrix of ξ is Λ.
The last step is to verify the quadratic form in the above expansion of

Rn has the claimed limiting distribution. We can easily check that

Λ1/2{Λ−1 − J(J
ᵀ
ΛJ)

−1
J
ᵀ}Λ1/2 = Imd − Λ1/2J(J

ᵀ
ΛJ)

−1
J
ᵀ
Λ1/2

is idempotent. Moreover, by the additivity and commutativity of the trace
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operation, we find the trace of the above idempotent matrix to be

tr
{
Imd − Λ1/2J(J

ᵀ
ΛJ)

−1
J
ᵀ
Λ1/2

}
=tr(Imd)− tr

{
Λ1/2J(J

ᵀ
ΛJ)

−1
J
ᵀ
Λ1/2

}
=md− tr

{
(J

ᵀ
ΛJ)

−1
(J

ᵀ
ΛJ)

}
=md− tr(Imd−q)

=q.

Therefore, by Theorem 5.1.1 of Mathai (1992), the quadratic form in expan-
sion (3.10), and hence also Rn, has a χ2

q limiting distribution.
The above proof is applicable to q < md. When q = md, the value of β

is fully specified. Hence, the maximization under null is solely with respect
to α and we easily find

ln(θ̃) = ln(θ∗) + (1/2)v
ᵀ
1U
−1
ααv1 + op(1).

This, along with the expansion (3.7) of ln(θ̂) and expression of vᵀU−1v given
in (3.9), implies that Rn = ξ

ᵀ
Λ−1ξ + op(1). Just as the proof for the case of

q < md, the limiting distribution of the above Rn is seen to be χ2
md.

3.6.2 Theorem 3.2: Limiting distribution of the DELR

under local alternatives

In this subsection, we prove that the DELR test statistic, Rn, has a non–
central chi–square limiting distribution under the local alternative model
(3.2). We first sketch out the proof. Let β∗ be a specific parameter value un-
der the null hypothesis and {Fk} be the corresponding distribution functions.
Let {Gk} be the set of distribution functions satisfying the DRM with pa-
rameter given by βk = β∗k +n

−1/2
k ck, k = 1, . . . , m, and G0 = F0. When the

samples are generated from the {Gk}, we still have that the DELR statistic
is approximated by the quadratic form on the RHS of (3.10). The limiting
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distribution of Rn is therefore determined by that of v = n−1/2∂ln(θ∗)/∂θ.
According to Le Cam’s third lemma (van der Vaart 2000, 6.7), v has a specific
limiting distribution under the {Gk} if v and

∑
k,j log{dGk(xkj)/dFk(xkj)},

under the {Fk}, are jointly normal with a particular mean and variance
structure. The core of the proof then is to establish that structure.

For each k = 0, 1, . . . , m, let Vark(·) and Covk(·, ·) be the variance and
covariance operators with respect to Fk, respectively.

Lemma 3.5. Under the conditions of Theorem 3.1 and the distribution func-
tions {Gk}, v is asymptotically normal with mean

τ =
m∑
k=1

√
ρkCovk{∂Lk(θ∗, x)/∂θ, q

ᵀ
(x)}ck

and covariance matrix V = U − UWU as given in Theorem 2.2.

Proof of Lemma 3.5. We first expand wk =
∑nk

j=1 log{dGk(xkj)/dFk(xkj)}.
Notice that

dGk(x)/dFk(x) = exp{αk + βkq(x)}/ exp{α∗k + β∗kq(x)}

= exp{αk − α∗k + n
−1/2
k ckq(x)}.

Because αk is normalization constants that can be expressed as

αk = − log

ˆ
exp{βᵀ

kq(x)}dF0(x) = − log

ˆ
exp{(β∗k

ᵀ
+ n

−1/2
k c

ᵀ
k)q(x)}dF0(x),

we have

exp{α∗k − αk} =

ˆ
exp{α∗k + (β∗k

ᵀ
+ n

−1/2
k c

ᵀ
k)q(x)}dF0(x).

=

ˆ
exp{n−1/2

k c
ᵀ
kq(x)} exp

{
α∗k + β∗k

ᵀ
q(x)

}
dF0(x)

=

ˆ
exp{n−1/2

k c
ᵀ
kq(x)}dFk(x)
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Expanding the exponential term on the RHS, we get

exp{α∗k − αk} =

ˆ {
1 + n

−1/2
k c

ᵀ
kq(x) + (2nk)

−1(c
ᵀ
kq(x))2

}
dFk(x) + εn,

where εn ∝ n
−3/2
k

´
‖q(x)‖3dFk(x) = O(n−3/2) uniformly in x, because the

third order moment of q(x) is finite. Denote νk = Ekq(x). Then, the above
equality is further simplified to

exp{α∗k − αk} = 1 + n
−1/2
k c

ᵀ
kνk + (2nk)

−1c
ᵀ
kEk(q

2(x))ck +O(n−3/2).

Hence, ignoring the O(n−3/2) term, which is uniform in x, we have

log{dGk(x)/dFk(x)} ≈ n
−1/2
k ckq(x)− log{1 + n

−1/2
k c

ᵀ
kνk + (2nk)

−1c
ᵀ
kEk(q

2(x))ck}.

Write σk = Vark(q(x)). Expanding the logarithmic term on the RHS, we
get

log{1 + n
−1/2
k c

ᵀ
kνk + (2nk)

−1c
ᵀ
kEk(q

2(x))ck}

=n
−1/2
k c

ᵀ
kνk + (2nk)

−1c
ᵀ
kEk(q

2(x))ck − nkc
ᵀ
k{νkν

ᵀ
k}ck +O(n−3/2)

=n
−1/2
k c

ᵀ
kνk + (2nk)

−1c
ᵀ
kσkck +O(n−3/2),

where the remainder O(n−3/2) is again uniform in x. Therefore

log{dGk(x)/dFk(x)} = n
−1/2
k c

ᵀ
k{q(x)− νk} − (2nk)

−1c
ᵀ
kσkck +O(n−3/2),

uniformly in x. Summing over j, we get, for each k,

wk =

nk∑
j=1

log{dGk(xkj)/dFk(xkj)}

= n
−1/2
k c

ᵀ
k

nk∑
j=1

{q(xkj)− νk} − (1/2)c
ᵀ
kσkck +O(n−1/2).
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When k = 0, we have c0 = 0.
Recall that v = n−1/2∂ln(θ∗)/∂θ, ln(θ∗) =

∑
k,j Ln,k(θ

∗, xkj) and λ̂k =

nk/n whose limit is ρk, we have(
v∑
kwk

)
≈

m∑
k=0

1
√
nk

nk∑
j=1

(√
ρk {∂Ln,k(θ∗, xkj)/∂θ − µk}

cᵀk{q(xkj)− νk}

)
−

m∑
k=0

(
0

1
2
cᵀkσkck

)
,

which is seen to be jointly asymptotically normal under the null distributions
{Fk}. The corresponding mean vector and variance matrix are given by(

0
ᵀ
, −1

2

∑
k

c
ᵀ
kσkck

)ᵀ

and

(
V τ

τ ᵀ ∑
k c

ᵀ
kσkck

)
,

where τ is the one given in the Lemma, and V = U−UWU is the asymptotic
covariance matrix of v as given in Theorem 2.2. Because the second entry of
the mean vector equals negative half of the lower–right entry of the covariance
matrix, the condition of Le Cam’s third lemma is satisfied. By that lemma,
we conclude that v has a normal limiting distribution with mean τ and
covariance matrix V under the local alternative distributions {Gk}.

Proof of Theorem 3.2. We now show that the DELR statistic Rn has a non–
central chi–square limiting distribution under the distributions {Gk} that
satisfy the local alternative model (3.2). We first show that, under the {Gk},
Rn is still approximated by the quadratic form on the RHS of (3.10).

Under the {Gk}, we still have −n−1∂2ln(θ∗)/∂θ∂θ
ᵀ → U and, by Lemma

3.5, v = Op(1). In addition, θ̂ still admits the expansion

√
n(θ̂ − θ∗) = U−1v + op(1) = Op(1),

and hence it is root–n consistent for θ∗. Similarly, the constrained MELE θ̃
is also root–n consistent for θ∗ under the {Gk}. The root–n consistency of
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θ̂ and θ̃ imply

Rn = ξ
ᵀ{Λ−1 − J(J

ᵀ
ΛJ)

−1
J
ᵀ}ξ + op(1)

when q < md, and Rn = ξ
ᵀ
Λ−1ξ + op(1) when q = md. The matrix in the

quadratic form of the expansion of Rn is the same as that in (3.10). What
has changed is the distribution of ξ = (−UβαU−1

αα, Imd)v.
By Lemma 3.5, under the local alternative {Gk}, v is asymptotically

N(τ , V ). Hence ξ also has a normal limiting distribution. Since the asymp-
totic covariance matrix of v is the same as that under the {Fk}, the asymp-
totic covariance matrix of ξ is still Λ as we have shown in the proof of Theo-
rem 3.1. The mean of the limiting distribution of ξ now is µ = (−UβαU−1

αα, Imd)τ .
Partition τ into (τ ᵀ

α, τ
ᵀ
β)

ᵀ
as

τα =
m∑
k=1

√
ρkCovk{∂Lk(θ∗, x)/∂α, q

ᵀ
(x)}ck,

τβ =
m∑
k=1

√
ρkCovk{∂Lk(θ∗, x)/∂β, q

ᵀ
(x)}ck.

By relationship (2.18) and (2.19), we have

Covk

(
∂Lk(θ∗, x)

∂α
, q

ᵀ
(x)

)
=

1

ρk

{
Uαβ(ek ⊗ Id)− UααekEk

(
q
ᵀ
(x)
)}
,

Covk

({
ek −

h(θ∗, x)

s(θ∗, x)

}
⊗ q(x), q

ᵀ
(x)

)
=

1

ρk

{
Uββ(ek ⊗ Id)− UβαekEk

(
q
ᵀ
(x)
)}
.

Plugging the above expressions into the expressions of τα and τβ, we get

τα =
m∑
k=1

ρk
−1/2

{
Uαβ(ek ⊗ Id)− UααekEk

(
q
ᵀ
(x)
)}
ck,

τβ =
m∑
k=1

ρk
−1/2

{
Uββ(ek ⊗ Id)− UβαekEk

(
q
ᵀ
(x)
)}
ck.

(3.11)
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Consequently,

µ = −UβαU−1
αατα + τβ = Λ

m∑
k=1

ρk
−1/2(ek ⊗ Id)ck = Λη,

where the second last equality is by (3.11) and η is defined in Theorem 3.2.
In the proof of Theorem 3.1, we have verified that the matrix

A = Λ1/2{Λ−1 − J(J
ᵀ
ΛJ)

−1
J
ᵀ}Λ1/2

is idempotent with rank q. Hence, by Corollary 5.1.3a of Mathai (1992), the
quadratic form in the above expansion of Rn, and hence Rn, has a non–central
chi–square limiting distribution with q degrees of freedom and non–central
parameter

δ2 = µ
ᵀ{Λ−1 − J(J

ᵀ
ΛJ)

−1
J
ᵀ}µ = η

ᵀ{Λ− ΛJ(J
ᵀ
ΛJ)

−1
J
ᵀ
Λ}η

in the case of q < md, and

δ2 = µ
ᵀ
Λ−1µ = η

ᵀ
Λµ

in the case of q = md.
In the last step we verify the condition for positiveness of the non–central

parameter δ2. When q = md, δ2 = ηᵀΛη > 0 because Λ is positive definite.
When q < md, δ2 = (ηᵀΛ1/2)A(Λ1/2η). We verified that A is an idempotent
matrix. Hence, A is positive semidefinite and δ2 ≥ 0. Moreover, δ2 = 0 if
and only if Λ1/2η is in the null space of A. The null space of A is the column
space of I − A = Λ1/2J

(
JᵀΛJ

)−1
JᵀΛ1/2, which is just the column space of

Λ1/2J . It is easily verified that Λ1/2η is in the column space of Λ1/2J if and
only if η is in the column space of J . Hence Λ1/2η is in the null space of A
and δ2 = 0 if and only if η is in the column space of J .
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3.7 Appendix: Parameter values in simulation

studies

Table 3.10: Parameter values for power comparison under non–normal dis-
tributions (Section 3.3.2).

Γ(λ, κ): gamma distribution with shape λ and rate κ;
LN(µ, σ): log–normal distribution with mean µ and standard deviation σ on log scale;

Pa(γ): Pareto distribution with shape γ and common support of x > 1;
W (b): Weibull distribution with scale b and common shape of 0.8.

F0 remains unchanged across parameter settings 0–5.

Parameter settings
F0 1 2 3 4 5

λ κ λ κ λ κ λ κ λ κ

Γ(0.2, 0.8)

F1: 0.18 0.7 0.17 0.6 0.16 0.5 0.155 0.45 0.14 0.4
F2: 0.22 0.85 0.24 0.95 0.255 1.05 0.18 0.7 0.17 0.6
F3: 0.23 0.95 0.255 1.2 0.275 1.25 0.29 1.4 0.33 1.6
F4: 0.24 1.05 0.27 1.3 0.29 1.4 0.31 1.55 0.35 1.85

µ σ µ σ µ σ µ σ µ σ

LN(0, 1.5)

F1: 0.44 1.3 0.7 1.2 0.9 1.15 1 1 1.2 0.85
F2: 0.22 1.32 0.57 1.30 0.62 1.25 0.67 1.20 0.87 1
F3: 0.18 1.35 0.63 1.33 0.73 1.30 0.83 1.28 0.85 1.28
F4: 0.37 1.38 0.60 1.35 0.70 1.33 0.75 1.32 0.95 1.30

γ γ γ γ α

Pa(2)

F1: 1.9 1.85 1.8 1.75 1.7
F2: 2.1 2.2 2.3 1.85 1.75
F3: 2.35 2.55 2.70 2.85 3.25
F4: 2.5 2.78 2.98 3.2 3.75

b b b b b

W (1)

F1: 0.76 0.65 0.59 0.53 0.42
F2: 1.2 1.26 1.31 1.35 1.42
F3: 1.08 1.05 1.10 1.12 1.14
F3: 0.90 0.89 0.85 0.82 0.78
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Table 3.11: Parameter values for power comparison under misspecified DRMs
(Section 3.4.2).

W (a, b): Weibull distribution with shape a and scale b;
t(ν, c): non–central t distribution with ν degrees of freedom and non–central parameter c;

F0 remains unchanged across parameter settings 0–5.

Parameter settings
F0 1 2 3 4 5

a b a b a b a b a b

W (1, 1)

F1: 0.9 0.95 0.85 0.94 0.82 0.92 0.79 0.91 0.75 0.88
F2: 0.98 0.98 0.96 0.96 0.95 0.95 0.94 0.94 0.91 0.92
F3: 1.03 1.04 1.05 1.06 1.07 1.07 1.09 1.08 1.12 1.12
F4: 1.01 0.95 1.02 0.92 1.03 0.90 1.05 0.89 1.07 0.85

ν c ν c ν c ν c ν c

t(4, 0)

F1: 3.85 -0.05 3.75 -0.1 3.65 -0.1 3.45 -0.15 3.4 -0.2
F2: 5 0.1 6 0.05 6.5 0.1 3.8 0.1 3.7 0.15
F3: 4.5 0.05 4.8 0.1 5.5 0.15 6 0.15 8 0.2
F4: 6 0.1 6.5 0.15 8.5 0.2 8 0.23 10 0.28

F1:
0.8N(1, 1.3)+ 0.8N(1.05, 1.3)+ 0.8N(1.1, 1.2)+ 0.8N(1.15, 1.18)+ 0.8N(1.2, 1.15)+

0.2N(0.8, 1) 0.2N(0.8, 1) 0.2N(0.8, 0.95) 0.2N(0.85, 0.9) 0.2N(0.9, 0.9)

F2:
0.6N(1, 1.3)+ 0.5N(1, 1.3)+ 0.5N(1, 1.25)+ 0.5N(1.1, 1.25)+ 0.5N(1.1, 1.3)+

0.6N(1, 1.3)+ 0.4N(0.8, 1) 0.5N(0.75, 0.95) 0.5N(0.7, 1) 0.5N(0.7, 0.95) 0.5N(0.65, 0.92)

0.4N(0.8, 1)
F3:

0.3N(1, 1.3)+ 0.3N(1, 1.25)+ 0.3N(0.9, 1.15)+ 0.3N(0, 8, 1.07)+ 0.3N(0.75, 1.02)+

0.7N(0.8, 1) 0.7N(0.8, 0.95) 0.7N(0.8, 87) 0.7N(0.8, 0.83) 0.7N(0.75, 0.78)

F4:
0.6N(1, 1.3)+ 0.2N(1, 1.3)+ 0.1N(1, 1.3)+ 0.1N(0.95, 1.3)+ 0.1N(0.9, 1.25)+

0.4N(0.8, 1) 0.8N(0.8, 1) 0.9N(0.95, 1) 0.9N(1, 1) 0.9N(1.1, 0.95)

F1:
0.45Γ(0.85, 1)+ 0.45Γ(0.85, 1)+ 0.4Γ(0.9, 1)+ 0.4Γ(1, 0.9)+ 0.4Γ(1.4, 0.8)+

0.55W (1.15, 1.22) 0.55W (1.3, 1.15) 0.6W (1.4, 1.15) 0.6W (1.35, 0.9) 0.6W (1.5, 0.8)

F2:
0.3Γ(1.05, 0.9)+ 0.3Γ(1.15, 0.9)+ 0.3Γ(1.25, 0.9)+ 0.3Γ(1.4, 0.8)+ 0.3Γ(2, 0.7)+

0.3Γ(0.8, 1)+ 0.7W (1, 1.25) 0.7W (1, 1.23) 0.7W (1, 1.2) 0.7W (1, 1.2) 0.7W (1, 1)

0.7W (1, 1.3)
F3:

0.25Γ(0.8, 1.4)+ 0.25Γ(0.85, 1.65)+ 0.25Γ(0.85, 1.85)+ 0.25Γ(0.95, 2.05)+ 0.25Γ(1.2, 2.5)+

0.75W (1, 1.3) 0.75W (1.05, 1.28) 0.75W (1.1, 1.25) 0.75W (1.1, 1.25) 0.75W (1.2, 1.2)

F4:
0.3Γ(0.8, 0.93)+ 0.3Γ(0.8, 0.88)+ 0.3Γ(0.8, 0.85)+ 0.3Γ(0.8, 0.7)+ 0.3Γ(1.6, 0.5)+

0.7W (1.05, 1.3) 0.7W (1, 1.3) 0.7W (1, 1.3) 0.7W (1.3, 1) 0.7W (1.4, 0.9)
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Chapter 4

Effects of Information Pooling by
DRM

Our use of DRM is motivated by its ability to pool information across a num-
ber of samples. We believe the resulting inferences are more efficient than
inferences based on individual samples. Moreover, strong evidence about this
improved efficiency already exists: Fokianos (2004) obtained more efficient
density estimators under DRM than the classical kernel density estimators
based on individual samples; Chen and Liu (2013) found DRM–based quan-
tile estimators to be more efficient than the empirical quantile estimators.
We also anticipate that there will be a gain on the estimation accuracy of
the MELE of the DRM parameter θ and on the power the DELR test if
we combine information from additional samples using the DRM — a topic
that is not studied in literature. This chapter provides both theoretical and
simulation supports for this conjecture.

4.1 Effects on the estimation accuracy of the

MELE

Suppose we have m+ 1 independent samples whose distributions satisfy the
DRM (2.1). Yet our interest may well focus on the inference about a subset
of these distributions, without loss of generality, the first r + 1 distributions
F0, F1, . . . , Fr with 1 ≤ r < m. Shall we base the inference on a DRM fitted
to the first r+ 1 samples or on one fitted to all the m+ 1 samples? We here

93



4.1. Effects on the estimation accuracy of the MELE

prove that the latter DRM yields a higher estimation accuracy for the MELE
of the DRM parameter that corresponds to the distributions of interest.

Let ν = (α1, . . . , αr, β
ᵀ
1, . . . ,β

ᵀ
r)

ᵀ
denote the DRM parameter for the

first r non–baseline distributions. Denote the MELEs of ν based on the DRM
for the first r + 1 distributions and that for all distributions as ν̂(1) and ν̂(2)

respectively. Let Σ(1) and Σ(2) be the corresponding asymptotic covariance
matrices. Recall that the size of the kth sample is nk, k = 0, 1, . . . , m. Put
n(1) =

∑r
k=0 nk and ρ = limn→∞ n

(1)/n, where n is the total size of all the
m + 1 samples. By the asymptotic normality of the MELE (Theorem 2.5),
we have

√
n(1)(ν̂(1) − ν∗) (d)→ N(0,Σ(1)),

√
n(ν̂(2) − ν∗) (d)→ N(0,Σ(2)),

where ν∗ is the true parameter value. Hence the asymptotic covariance ma-
trix of ν̂(1) is approximated by Σ(1)/n(1) and that of ν̂(2) is approximated by
Σ(2)/n. The estimation accuracy of an estimator is measured by the inverse
of its covariance matrix. The scaling factors in the above results are different,
so, to ensure fairness, we should compare Σ(1) to limn→∞(n(1)/n)Σ(2) = ρΣ(2).
The following theorem tells us that the estimation accuracy of ν̂(2) is never
lower than that of ν̂(1).

Recall that, for a matrix A, we use A > 0 (A ≥ 0) to denote that A is
positive definite (positive semidefinite). For matrices A and B, we will use
A > B (A ≥ B) to represent A−B > 0 (A−B ≥ 0).

Theorem 4.1. Under the conditions of Theorem 2.1, Σ(1) ≥ ρΣ(2).

Example 4.1. Consider the situation where m + 1 = 4, samples are from
a DRM with basis function q(x) = (x, log x)

ᵀ, and the sample proportions
are (3/11, 3/22, 2/11, 9/22). Let Fk, k = 1, 2, 3, be the distributions with
parameters β∗1 = (−2, 2)ᵀ, β∗2 = (−.25, 0.2)ᵀ and β∗2 = (−0.5, 0.1)ᵀ, respec-
tively.
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Let r + 1 = 2 and ν = (α1, β
ᵀ
1)

ᵀ
, then ρ = 9/22. When F0 is Γ(2, 1),

we numerically compute the information matrices (2.13) for the parameters
of the DRM based on the first r + 1 = 2 samples and that based on all
the m + 1 = 4 samples. Based on the information matrices, we obtain the
asymptotic covariance matrices, Σ(1) and Σ(2), of the MELEs for ν under
these two DRMs by (2.14). The smallest eigenvalue of Σ1 − rΣ2 is then
found to be approximately 0.237, so Σ1 > rΣ2.

Example 4.2. Consider the situation where m+ 1 = 5, samples are from a
DRM with basis function q(x) = x1.5, and the sample proportions are (0.2,

0.1, 0.1, 0.2, 0.2). Let Fk, k = 1, . . . , 4, be the distributions with parameters
β∗1 = −9.78, β∗2 = 0.72, β∗3 = 1.11, and β∗4 = −1.43, respectively.

Let r + 1 = 3 and ν = (α1, α2, β
ᵀ
1, β

ᵀ
2)

ᵀ
, then ρ = 0.4. When F0 is

the Weibull distribution with shape of 1.5 and scale of 0.8, we numerically
compute the information matrices (2.13) for the parameters of the DRM
based on the first r + 1 = 3 samples and that based on all the m + 1 =

5 samples. Based on the information matrices, we obtain the asymptotic
covariance matrices, Σ(1) and Σ(2), of the MELEs for ν under these two
DRMs by (2.14). The smallest eigenvalue of Σ1 − rΣ2 is then found to be
approximately 0.013, so Σ1 > rΣ2.

4.2 Effects on the power of the DELR test

In this section, we show that the local asymptotic power of the DELR test is
often increased when strength is borrowed from additional samples even when
their underlying distributions are unrelated to the hypothesis of interest.

We adopt the setting posited in the last section for multiple samples from
distributions satisfying the DRM assumption. A hypothesis of interest may
also focus on a characteristic of just a subset of these populations. If so, why
should our tests be based on all the samples? One answer is found in their
improved local power as we now demonstrate.
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Without loss of generality, consider a null hypothesis regarding subpopu-
lations F0, F1, . . . , Fr with r < m and let ζᵀ = (β

ᵀ
1, . . . , β

ᵀ
r). The composite

hypotheses are specified as

H0 : g(ζ) = 0 against H1 : g(ζ) 6= 0 (4.1)

for some smooth function g : Rrd → Rq with q ≤ rd. A DELR test can be
based either on samples from just F0, F1, . . . , Fr, or on the samples from all
the populations F0, F1, . . . , Fm. We denote the corresponding test statistics
as R(1)

n and R(2)
n , respectively.

Theorem 3.1 implies that R(1)
n and R(2)

n have the same χ2
q distribution in

the limit under the null model of (4.1). Theorem 3.2, on the other hand,
provides a useful tool for comparing their local asymptotic powers. It im-
plies that R(1)

n and R(2)
n have non–central chi–square limiting distributions of

the same q degrees of freedom, however with possibly different non–central
parameter values at a local alternative. By the result (3.6) in Section 3.2.3, a
power comparison can therefore be made using these non–central parameter
values. The following two theorems, whose proofs are given in Section 4.4,
implement this idea and provide that power comparison both in a general
and a special situation.

Theorem 4.2. Adopt the conditions of Theorem 2.1, the hypotheses (4.1)
and the local alternatives

βk =

{
β∗k + n

−1/2
k ck, if k = 1, . . . , r,

β∗k, otherwise,
(4.2)

for some given set of constants {ck}. Let δ2
1 and δ2

2 be non–central parameter
values of the limiting distribution of R(1)

n and R(2)
n under the local alternative

model. Then δ2
2 ≥ δ2

1.

Example 4.3. Consider the situation where m + 1 = 3, samples are from
a DRM with basis function q(x) = (x, x2)

ᵀ
, and the sample proportions
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are (0.5, 0.25, 0.25). Let Fk, k = 1, 2, be the distributions with parame-
ters β∗1 = (6, −1.5)ᵀ and β∗2 = (−0.25, 0.375)ᵀ. Suppose H0 is given as
g(ζ) = β1 − (6, −1.5)ᵀ = 0, and the local alternative is

β1 = β∗1 + n
−1/2
1 c1; β2 = β∗2

with c1 = (2, 2)ᵀ.
Let R(1)

n and R
(2)
n be the DELR test statistics based on F0, F1, and on

F0, F1, F2, respectively. When F0 is, N(0, 1), the standard normal distribu-
tion, we obtain information matrices (2.13), and hence Λ = Uββ−UβαU−1

ααUαβ,
for R(1)

n and R(2)
n based on numerical computation. For R(1)

n , we have η =

(4, 4)ᵀ and q = d = 2. Then by Theorem 3.2, we find δ2
1 = ηᵀΛη ≈ 5.90.

For R(2)
n , we find η = (4, 4, 0, 0)ᵀ, 5 = (I2, 02×2), and J = (02×2, I2)ᵀ. By

Theorem 3.2, we get δ2
2 ≈ 6.67. Now, since δ2

1 ≈ 5.90 < δ2
2 ≈ 6.67 and the

degrees of freedom of the limiting distributions of both R(1)
n and R(2)

n are 2,
R

(2)
n is more powerful than R(1)

n even though the null hypothesis concerns the
parameter of just population 1.

Note that at the 5% level, the powers of R(1)
n and R(2)

n are approximately
0.577 and 0.633, respectively.

The asymptotic power of R(2)
n (based on all samples) is not always higher

than that of R(1)
n . We demonstrate this fact in the following special case.

Partition {1, . . . , r} into K parts denoted by Sk, k = 1, . . . , K, such that
the size, sk, of Sk satisfies s1 ≥ 0 and sk ≥ 2 for k = 2, . . . , K. Let ζk be
the vector consisting of all the βj with j ∈ Sk. Consider the null hypothesis
H0 composed of

gk(ζ) = Akζk = 0 for k = 1, . . . , K, (4.3)

with A1 = Is1d and Ak = (1(sk−1) ⊗ Id, −I(sk−1)d) for k = 2, . . . , K. In other
words, H0 posits that the distributions within the first group are all identical
to F0 and those within any other given group are identical to each other.
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When s1, the size of S1, is 0, no non–baseline distribution is compared to the
baseline F0.

Theorem 4.3. Adopt the conditions postulated in Theorem 4.2. For testing
the null hypothesis (4.3), the limiting distributions of R(1)

n and R
(2)
n under

local alternative (4.2) have equal non–central parameters: δ2
1 = δ2

2.

Example 4.4. Consider the situation where m + 1 = 6, samples are from
a DRM with basis function q(x) = (log x, x)

ᵀ, and the sample proportions
are (0.25, 0.22, 0.16, 0.10, 0.17, 0.10). Let Fk, k = 1, . . . , 5, to be the dis-
tributions with parameters β∗1 = (0, 0)ᵀ, β∗2 = β∗3 = (−1, −0.5)ᵀ, β∗4 =

(0.3, 1.2)ᵀ, and β∗5 = (−1.2, −0.4)ᵀ. We partition {1, 2, 3} into S1 = {1}
and S2 = {2, 3}. The null hypothesis (4.3) postulates F0 = F1 and F2 = F3.
Let the local alternative be

βk = β∗k + n
−1/2
k ck, for k = 1, 2, 3,

with c1 = c2 = (1, 1)ᵀ and c3 = (−1, 2)ᵀ.
Let R(1)

n and R(2)
n be the DELR test statistics based on F0, . . . , F3, and

on F0, . . . , F5, respectively. When F0 is Γ(2, 1), we obtained information
matrices (2.13), and hence Λ, for R(1)

n and R
(2)
n based on numerical com-

putation. For R(1)
n , we find η ≈ (2.13, 2.13, 2.5, 2.5, −3.16, 6.32)ᵀ, 5 =

diag{I2, (I2,−I2)}, and J = (02×2, I2, I2)ᵀ. For R(2)
n , we get η ≈ (2.13,

2.13, 2.5, 2.5, −3.16, 6.32, 0, 0, 0, 0)ᵀ, 5 = (diag{I2, (I2,−I2)}, 04×4), and
J = (06×2, (I2, 02×4)ᵀ, I6)ᵀ. By Theorem 3.2, we confirm that δ2

1 = δ2
2 ≈ 2.72.

Hence R(1)
n and R(2)

n are asymptotically equally powerful.

The scenario presented in Theorem 4.3 is similar to the one–way ANOVA
used in experimental design (Wu and Hamada, 2009). Suppose there are five
treatments under investigation and we want to test the equal mean hypothesis
of the first two treatments. One may use pooled variance estimator from all
samples to construct the two–sample t–test. This test gains in the degrees

98



4.3. Simulation studies

of freedom comparing to the t–test based on the first two samples alone, but
not in the first order asymptotics.

4.3 Simulation studies

4.3.1 Comparison of estimation accuracy: ν̂(1) versus

ν̂(2)

We now conduct simulation studies to compare the estimation accuracy of the
MELE based on a subset of the samples to that based on all the samples. The
number of repetitions for simulation is set to 100, 000 for a high simulation
accuracy.

Recall that we have used ν to denote the DRM parameter of interest,
and ν̂(1) and ν̂(2) to denote the MELEs of ν based on the samples from the
populations of interest and the samples from all the populations, respectively.
Consider the data settings of Example 4.1 and 4.2. Recall that, for Example
4.1, m + 1 = 4 and ν = (α1, β1)ᵀ, and for Example 4.2, m + 1 = 5 and
ν = (α1, α2, β1, β2)ᵀ. The bias, standard deviation (sd), and root mean
squared error (rmse) of ν̂(1) and ν̂(2) under the two settings are shown in
Tables 4.1 and 4.2, respectively. We see that under both settings, ν̂(2) always
has smaller absolute bias, sd and rmse, thereby a higher estimation accuracy.
This observation agrees with our theoretical conclusion given in Theorem 4.1.

4.3.2 Comparison of testing power: R(1)
n versus R(2)

n

Recall that R(1)
n and R

(2)
n are DELR statistics based on partial data sets

and full data sets, respectively. We now conduct simulations to compare the
power of R(1)

n and R(2)
n . The number of simulation repetitions is set to 10, 000.

We first let m+ 1 = 4 and consider a hypothesis test for β1. The DELR
test can be conducted based on the first two samples (R(1)

n ) or based on all
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Table 4.1: Comparison of the estimation accuracies of ν̂(1) and ν̂(2) under
the setting of Example 4.1. β1[1], β1[2]: the two components of β1.

α̂
(1)
1 α̂

(2)
1 β̂

(1)
1 [1] β̂

(2)
1 [1] β̂

(1)
1 [2] β̂

(2)
1 [2]

bias 0.44 0.392 -0.403 -0.362 0.477 0.422
sd 1.31 1.2 1.15 1.05 1.46 1.34
rmse 1.39 1.26 1.22 1.11 1.54 1.41

Table 4.2: Comparison of the estimation accuracies of ν̂(1) and ν̂(2) under
the setting of Example 4.2.

α̂
(1)
1 α̂

(2)
1 β̂

(1)
1 β̂

(2)
1 α̂

(1)
2 α̂

(2)
2 β̂

(1)
2 β̂

(2)
2

bias 0.071 0.0376 -0.627 -0.424 -0.0339 -0.0121 0.0364 0.0184
sd 0.346 0.254 2.51 2.09 0.246 0.218 0.242 0.218
rmse 0.354 0.257 2.59 2.13 0.248 0.218 0.244 0.219

four samples (R(2)
n ). The Wald test can also be conducted in two different

ways. We denote them as Wald(1) and Wald(2) respectively.
We generated samples with sizes (60, 30, 40, 90), from gamma distribu-

tions under six parameter settings (Table 4.3).

Table 4.3: Gamma parameter values for power comparison of R(1)
n and R(1)

n .

Common parameter settings
F0 : Γ(2, 1), F2 : Γ(2.2, 1.25), F3 : Γ(2.1, 1.5)

Parameter settings for F1

0 1 2 3 4 5
Case 1: Γ(4, 3) Γ(5.3, 4.3) Γ(6.3, 5.3) Γ(7.1, 6.1) Γ(8.3, 7.3) Γ(10, 9)
Case 2: Γ(2, 1) Γ(2.45, 1.45) Γ(2.9, 1.9) Γ(3.3, 2.3) Γ(3.8, 2.8) Γ(5, 4)

We consider two null hypotheses: one is β1 = (−2, 2)ᵀ and the other is
β1 = 0. The first hypothesis asks whether F1 differs from F0 in a specific
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way; while the second one asks whether F0 = F1. By Theorems 4.2 and 4.3,
R

(2)
n is more powerful than R(1)

n for testing the first hypothesis, and two tests
are asymptotically equally powerful for the second.

The simulated power curves are shown in Figure 4.1. It is seen that Wald
tests are generally not as powerful. The results on R(1)

n and R(2)
n closely match

the predictions of Theorems 4.2 and 4.3.
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Figure 4.1: Power curves of R(1)
n , R(2)

n , Wald(1) and Wald(2). The parameter
setting 0 corresponds to the null model and the settings 1–5 correspond to
alternative models.

We conduct a second set of simulations where the data settings are taken
from Example 4.3 and 4.4. For the setting of Example 4.3, we set the total
sample size n to be 240, and for that of Example 4.4, we set n = 600. Under
each data setting, we again calculate the powers of R(1)

n , R(2)
n , Wald(1) and

Wald(2) under six different DRM parameters as shown in Table 4.4 and 4.5.
The corresponding power curves of are shown in Figure 4.2. We see that our
expectation again meets the observation from simulation.
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Table 4.4: Parameter values for power comparison of R(1)
n and R(1)

n under the
setting of Example 4.3.

Common parameter settings
F0 : N(0, 1), F2 : N(−1, 2)

Parameter settings for F1

0 1 2 3 4 5
N(1.5, 0.5) N(1.57, 0.45) N(1.58, 0.41) N(1.6, 0.39) N(1.62, 0.36) N(1.64, 0.31)

Table 4.5: Parameter values for power comparison of R(1)
n and R(1)

n under the
setting of Example 4.4.

Common parameter settings
F0 : Γ(2, 1), F4 : Γ(3.2, 0.7), F5 : Γ(1.6, 2.2)

Parameter settings for F1, F2 and F3

0 1 2 3 4 5
F1: Γ(2, 1) Γ(2.3, 1.1) Γ(2.3, 1) Γ(2.4, 1) Γ(2.4, 1) Γ(2.4, 0.9)
F2: Γ(1.5, 2) Γ(1.6, 2.1) Γ(1.5, 2) Γ(1.5, 2) Γ(1.4, 1.9) Γ(1.4, 1.9)
F3: Γ(1.5, 2) Γ(1.9, 2.2) Γ(1.9, 2.4) Γ(1.9, 2.3) Γ(2, 2.2) Γ(2.1, 2.2)

4.4 proofs

4.4.1 Theorem 4.1: Estimation accuracy comparison

We first introduce a useful notation for Schur complements that will be fre-
quently encountered in the subsequent proofs. Let square matrix

M =

(
A B

C D

)

be nonsingular. We write M/A = D − CA−1B and call it the Schur com-
plement of M with respect to its upper–left block A. Also, we write M/D =

A−BD−1C and call it the Schur complement of M with respect to its lower–
right block D.
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Example 4.5: H0: β1 = (6, − 1.5)T
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Figure 4.2: Power curves of R(1)

n , R(2)
n , Wald(1) and Wald(2) under the data

settings of Example 4.3 and 4.4. The parameter setting 0 corresponds to the
null model and the settings 1–5 correspond to alternative models.

Lemma 4.4. Adopt the above partition for a symmetric matrix M of size
(s+ t)× (s+ t). When A > 0, M ≥ 0 if and only if M/A ≥ 0. When D > 0,
M ≥ 0 if and only if M/D ≥ 0.

This is Theorem 1.4 of Zhan (2002). The outline of the proof is given
below.

Proof. We prove the claimed result for the case that A > 0. The proof for
the case that D > 0 is similar and so omitted.

Note that since matrix

N =

(
Im −A−1B

0 In

)

is of full rank, any non–zero vector u of length s+t can be written as u = Nw
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for some non–zero vector w. Hence, we have

u
ᵀ
Mu = w

ᵀ
NTMNw

= w
ᵀ

(
Im 0

−BᵀA−1 In

)(
A B

Bᵀ D

)(
Im −A−1B

0 In

)
w

= w
ᵀ

(
A 0

0 M/A

)
w.

Therefore, M ≥ 0 if and only(
A 0

0 M/A

)
≥ 0.

Since A > 0, the latter condition is equivalent to M/A ≥ 0.

Recall that we defined θᵀk = (αk, β
ᵀ
k). Denote the information matrix with

respect to (θ
ᵀ
1, . . . ,θ

ᵀ
r)

ᵀ
under the DRM based on the first r + 1 samples as

U1, and that with respect to (θ
ᵀ
1, . . . ,θ

ᵀ
m)

ᵀ
under the DRM based on allm+1

samples as U2. Let U2,c be the lower–right (m − r)(d + 1) × (m − r)(d + 1)

block of U2. Recall that ρ = limn→∞(
∑r

k=0 nk)/n.

Lemma 4.5. Under the conditions of Theorem 2.1, U2/U2,c ≥ ρU1.

Proof of Lemma 4.5. We prove the result for m = r+ 1, namely we compare
the DRM based on the first r + 1 = m samples and that based on all the
m+ 1 samples. The general result is true by mathematical induction.

Let U2,a be the upper–left r(d + 1) × r(d + 1) block, and U2,b be the
upper–right r(d + 1) × (m − r)(d + 1) block, of U2. Note that U2/U2,c =

U2,a−U2,bU
−1
2,cU

ᵀ
2,b, so to show the claimed result of U2/U2,c ≥ ρŨ1, it suffices

to show that

(U2,a − ρU1)− U2,bU
−1
2,cU

ᵀ
2,b
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is positive semidefinite. Notice that the above matrix is the Shur complement
of

D =

(
U2,a − ρU1 U2,b

Uᵀ
2,b U2,c

)
= U2 − diag(ρU1, 0). (4.4)

By Lemma 4.4, the positive semidefiniteness is implied by that of D.
We now show D is positive semidefinite. We first give useful algebraic

expressions for U2 and ρU1. Notice that (θ
ᵀ
1, . . . , θ

ᵀ
m) is just permuted θᵀ =

(αᵀ,β
ᵀ
), the information matrix (2.13) of which helps us to obtain algebraic

expressions for U1 and U2. Recall Qᵀ
(x) = (1, qᵀ(x)). For the DRM based

on all the m+ 1 samples, we get

U2 = E0

{
H(θ∗, x)⊗ {Q(x)Q

ᵀ
(x)}

}
.

For the DRM based on the first r + 1 = m samples, we find

ρU1 = E0

{
Hr(θ

∗, x)⊗ {Q(x)Q
ᵀ
(x)}

}
,

where Hr(θ, x) is the H matrix defined in (2.12) based on the first r + 1

samples:

Hr(θ, x) = diag{hr(θ, x)} − hr(θ, x)h
ᵀ
r(θ, x)/sr(θ, x).

with hr(θ, x) = (ρ1ϕ1(θ, x), . . . , ρrϕr(θ, x)
)ᵀ

and s(θ, x) = ρ0+
∑r

k=1 ρkϕk(θ, x).
As a reminder ϕk(θ, x) = exp{αk + β

ᵀ
kq(x)}, k = 0, 1, . . . , m. Put s∗(x) =

s(θ∗, x) for simplicity and similarly define s∗r(x), h∗r(x) and ϕ∗k(x) for k =

0, 1, . . . , m. Substituting the above expressions of U2 and ρU1 into the ex-
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pression (4.4) of D and noticing s∗ − s∗r = ρmϕ
∗
m by m = r + 1, we get

D = E0

{(
ρmϕ

∗
m(x)h∗r(x)h∗r

ᵀ
(x)/{s∗(x)s∗r(x)} ρmϕ

∗
m(x)h∗r(x)/s∗(x)

ρmϕ
∗
m(x)h∗r

ᵀ
(x)/s∗(x) ρmϕ

∗
m(x)− {ρmϕ∗m(x)}2/s∗(x)

)
⊗

{Q(x)Q
ᵀ
(x)}

}

= ρmE0

{
ϕ∗m(x)

(
h∗r(x)h∗r

ᵀ
(x)/{s∗(x)s∗r(x)} h∗r(x)/s∗(x)

h∗r
ᵀ
(x)/s∗(x) s∗r(x)/s∗(x)

)
⊗ {Q(x)Q

ᵀ
(x)}

}
= ρmE0

{
{w(x)w

ᵀ
(x)} ⊗ {Q(x)Q

ᵀ
(x)}

}
,

with

w(x) =
√
ϕ∗m(x)

(
h∗r

ᵀ
(x), s∗r(x)

)ᵀ
/
√
s∗(x)s∗r(x).

SinceD is the expectation of the Kronecker product of two squares of vectors,
it is positive semidefinite. This completes the proof.

Proof of Theorem 4.1. We now show that the asymptotic covariance matrix
of the MELE based on the samples from the first r + 1 populations is no
smaller than that based on the sample from all the populations. We prove
the result for the estimation of (θ

ᵀ
1, . . . ,θ

ᵀ
r)

ᵀ
. The claimed result for ν =

(α1, . . . , αr, β
ᵀ
1, . . . ,β

ᵀ
r)

ᵀ
is then true because ν is just a permutation of

(θ
ᵀ
1, . . . ,θ

ᵀ
r)

ᵀ
.

The asymptotic covariance matrix, Σ(1), of the MELE for (θ
ᵀ
1, . . . ,θ

ᵀ
r)

ᵀ

under the DRM based on the first r + 1 samples, by Theorem 2.5, is found
to be

Σ(1) = U−1
1 − ρW1
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where U1 is the information matrix under this DRM and

W1 =
{ (
ρ0
−11r1

ᵀ
r + diag

(
ρ1
−1, . . . , ρr

−1
)) }
⊗ diag{ẽ1},

with ẽk, in general, being the vector of length d with the kth entry being 1

and the others being 0s.
Similarly, the asymptotic covariance matrix of the MELE for (θ

ᵀ
1, . . . ,θ

ᵀ
m)

ᵀ

under the DRM based on all the m+ 1 samples is found to be

U−1
2 −W2

where U2 is the information matrix with respect to (θ
ᵀ
1, . . . ,θ

ᵀ
m)

ᵀ
under the

current DRM and

W2 =
{ (
ρ0
−11m1

ᵀ
m + diag

(
ρ1
−1, . . . , ρm

−1
)) }
⊗ diag{ẽ1}.

Therefore, the asymptotic covaraince matrix, Σ(2) of the MELE for the sub-
vector (θ

ᵀ
1, . . . ,θ

ᵀ
r)

ᵀ
under this DRM based on all the m + 1 sampels, is

just the upper–left rd × rd submatrix of U−1
2 − W2. By the block matrix

inversion formula (Lemma 3.3), the upper–left rd × rd submatrix of U−1
2 is

(U2/U2,c)
−1. Also notice that the correspond upper–left submatrix of W2 is

just W1. Hence,

Σ(2) = (U2/U2,c)
−1 −W1.

By the above expressions of Σ(1) and Σ(2), to show the claimed result of
Σ(1) ≥ ρΣ(2), it suffices to show that

U−1
1 ≥ ρ(U2/U2,c)

−1,
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which is equivalent to

ρU1 ≤ (U2/U2,c)

because the matrices on both sides of the inequality are positive definite. The
latter inequality is true by Lemma 4.5, so the claimed result of the theorem
is true.

4.4.2 Theorem 4.2: Local power comparison in general

Lemma 4.6. Let M and N be (s+ t)× (s+ t) positive definite matrices with
partition

M =

Ma
s×s

Mb
s×t

Mc
t×s

Md
t×t

 and N =

Na
s×s

Nb
s×t

Nc
t×s

Nd
t×t

 .

If M ≥ N , then M/Ma ≥ N/Na and M/Md ≥ N/Nd.

Let U be the information matrix with respect to θ based on all m +

1 samples (corresponding to R
(2)
n ), and Ũ be that with respect to ν =

(α1, . . . , αr, β
ᵀ
1, . . . ,β

ᵀ
r)

ᵀ
based on the first r + 1 samples (corresponding

to R(1)
n ). Similar to the partition of U , we partition Ũ to Ũαα, Ũαβ, Ũβα

and Ũββ, and similar to the definition Λ = U/Uαα given in Theorem 3.2, we
define Λ̃ = Ũ/Ũαα. Moreover, we partition Λ into

Λ =

(
Λa Λb

Λᵀ
b Λc

)

with Λa being the upper–left rd× rd block of Λ.

Lemma 4.7. Under the conditions of Theorem 2.1, Λ/Λc ≥ ρΛ̃.
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Lemma 4.8. Let M be a s × s positive definite matrix and N be a s × s

positive semidefinite matrix. Also let X and Y be s× t matrices, and suppose
the column space of Y is contained in that of B. Then

(X + Y )
ᵀ
(M +N)−1(X + Y ) ≤ X

ᵀ
M−1X + Y

ᵀ
N †Y

where N † is the Moore–Penrose pseudoinverse of N .

The proofs of the above lemmas, being lengthy, are given after the proof
of Theorem 4.2.

Proof of Theorem 4.2. We now show that under the local alternative model
(4.2), the non–central parameter of the limiting distribution of the DELR
statistic based on the samples from the first r + 1 populations in general is
not greater than that based on the samples from all the populations.

We have defined two DELR statistics R(1)
n and R(2)

n which are constructed
using the samples from only the first r + 1 populations F0, · · · , Fr, and the
samples from all the populations, respectively. Recall that the null hypothesis
of (4.1) contains a constraint g(ζ) = 0 with ζᵀ = (β

ᵀ
1, . . . , β

ᵀ
r) related only

to populations F0, · · · , Fr. By Theorem 3.2, under the {Gk} defined by the
local alternative model (4.2), R(1)

n and R(2)
n both have non–central chi–square

limiting distributions of q degrees of freedom, but with different non–central
parameters δ2

1 and δ2
2. We also know that

δ2
1 = ρη̃

ᵀ
{

Λ̃− Λ̃J(J
ᵀ
Λ̃J)−1J

ᵀ
Λ̃
}
η̃,

where η̃ = (ρ
−1/2
1 cᵀ1, . . . , ρ

−1/2
r cᵀr) is a subvector of η defined in Theorem 3.2.

Moreover, noticing that for the local alternative (4.2) under investigation,
ηᵀ = (η̃ᵀ, 0ᵀ

m−r), we get

δ2
2 = η̃

ᵀ {
(Λ/Λc)− (Λ/Λc)J(J

ᵀ
(Λ/Λc)J)−1J

ᵀ
(Λ/Λc)

}
η̃.

by applying Theorem 3.2 and the quadratic form decomposition formula
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given in Lemma 3.4. Hence, to show the claimed result δ2
2 ≥ δ2

1, it suffices to
show that

(Λ/Λc)− (Λ/Λc)J(J
ᵀ
(Λ/Λc)J)−1J

ᵀ
(Λ/Λc) ≥ ρ

{
Λ̃− Λ̃J(J

ᵀ
Λ̃J)−1J

ᵀ
Λ̃
}
.

(4.5)

Define M = Λ/Λc − ρΛ̃. In Lemma 4.8, let A = ρJᵀΛ̃J , B = JᵀMJ ,
X = ρJᵀΛ̃, Y = JᵀM . Then A + B = Jᵀ(Λ/Λc)J and X + Y = Jᵀ(Λ/Λc).
Matrix A is positive definite because Λ̃ is positive definite and J is of full
rank. B is positive semidefinite becauseM is positive semidefinite by Lemma
4.7. Moreover, it is easily seen that the column space of Y is the same as
that of B. Hence the conditions of Lemma 4.8 are satisfied, and we have

(Λ/Λc)J(J
ᵀ
(Λ/Λc)J)−1J

ᵀ
(Λ/Λc) ≤ ρΛ̃J(J

ᵀ
Λ̃J)−1J

ᵀ
Λ̃ +MJ(J

ᵀ
MJ)†J

ᵀ
M.

The above inequality and Λ/Λc = ρΛ̃ +M imply that

(Λ/Λc)− (Λ/Λc)J(J
ᵀ
(Λ/Λc)J)−1J

ᵀ
(Λ/Λc)

≥ρ{Λ̃− Λ̃J(J
ᵀ
Λ̃J)−1J

ᵀ
Λ̃}+ {M −MJ(J

ᵀ
MJ)†J

ᵀ
M}.

The term M −MJ(JᵀMJ)†JᵀM is positive semidefinite because

M −MJ(J
ᵀ
MJ)†J

ᵀ
M = M1/2{I −M1/2J(J

ᵀ
MJ)†J

ᵀ
M1/2}M1/2,

and I − M1/2J(JᵀMJ)†JᵀM1/2 is easily verified to be idempotent, hence
positive semidefinite. Therefore inequality (4.5) holds and the claimed result
is true.

Proof of Lemma 4.6. By Lemma 3.3, the upper–left s×s submatrices ofM−1

and N−1 are (M/Md)
−1 and (N/Nd)

−1 respectively, and the lower–right t× t
submatrices of M−1 and N−1 are (M/Ma)

−1 and (N/Na)
−1 respectively.

Since both M and N are positive definite and M ≥ N , we have M−1 ≤
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N−1. The corrsponding submatrices of M−1 and N−1 satisfy the same in-
equality, so we have (M/Md)

−1 ≤ (N/Nd)
−1 and (M/Ma)

−1 ≤ (N/Na)
−1. By

the positive definiteness of these Schur complements, we can take inverses
on both sides and reverse the directions of the above two inequalities, which
gives us the claimed result.

To prove Lemma 4.7, partition Uαα, Uαβ and Uββ as follows:

Uαα =

(
Uαα,a Uαα,b

Uᵀ
αα,b Uαα,c

)
, Uαβ =

(
Uαβ,a Uαβ,b

Uαβ,c Uαβ,d

)
, Uββ =

(
Uββ,a Uββ,b

Uᵀ
ββ,b Uββ,c

)
,

where Uαα,a, Uαβ,a and Uββ,a are the corrsponding upper–left r × r, r × rd
and rd× rd blocks.

We also introduce an important property of the Schur complement. Let

M =

 A
s×s

B
s×t

C
t×s

D
t×t

 and D =

 E
u×u

F
u×v

G
v×u

H
v×v

 ,

where u+ v = t. Suppose M , A and D are nonsingular. By Theorem 1.4 of
Zhang (2005), the lower–right u× u block of M/H is just D/H, and

M/D = (M/H)/(D/H). (4.6)

The above equality is known as the quotient formula. Similar quotient for-
mula holds for M/A.

Proof of Lemma 4.7. We first give an algebraic expression for Λ/Λc. Recall
the definition Λ = Uββ − UβαU−1

ααUαβ, so

Λ = Ψ/Uαα,
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where

Ψ =

(
Uββ Uβα

Uαβ Uαα

)
.

Let Ψ1 be the lower–right {(m − r)d + m} × {(m − r)d + m} block of Ψ.
Then Λc, the lower–right (m− r)d × (m− r)d block of Λ = Ψ/Uαα, satisfies

Λc = Ψ1/Uαα.

Therefore

Λ/Λc = (Ψ/Uαα)/(Ψ1/Uαα) = Ψ/Ψ1,

where the second equality above is by quotient formula (4.6).
It is easily seen that Ψ/Ψ1 = Ω/Ω1, where

Ω =


Uββ,a Uβα,a Uββ,b Uβα,b

Uαβ,a Uαα,a Uαβ,b Uαα,b

Uᵀ
ββ,b Uβα,c Uββ,c Uβα,d

Uαβ,c Uᵀ
αα,b Uαβ,d Uαα,c


and Ω1 is the lower–right block of Ω with the same size as that of Ψ1. Thus
we get

Λ/Λc = Ψ/Ψ1 = Ω/Ω1.

Let Ω2 be the lower–right (m − r)(d + 1) × (m − r)(d + 1) block of Ω1.
Matrix Ω1/Ω2 is just the lower–right r × r block of Ω/Ω2, and Ω/Ω1 =

(Ω/Ω2)/(Ω1/Ω2) by quotient formula (4.6). Hence, we finally get

Λ/Λc = Ω/Ω1 = (Ω/Ω2)/(Ω1/Ω2).
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The above identity implies that our cliam of Λ/Λc ≥ ρΛ̃ is equivalent to

(Ω/Ω2)/(Ω1/Ω2) ≥ ρΛ̃.

Further notice that Λ̃ = Ǔ/Ũαα, where

Ǔ =

(
Ũββ Ũβα

Ũαβ Ũαα

)
,

so, the above inequality is equivalent to

(Ω/Ω2)/(Ω1/Ω2) ≥ ρ(Ǔ/Ũαα). (4.7)

In the last step, we prove the above inequality (4.7). Recall Lemma 4.6
that if matrices M and N are both positive definite and M ≥ N , then the
corresponding Schur complements satisfy the same inequality. Note that
both Ω/Ω2 and Ǔ are positive definite and the terms (Ω/Ω2)/(Ω1/Ω2) and
Ǔ/Ũαα in (4.7) are corresponding Schur complements, so, by Lemma 4.6, to
show (4.7), it is enough to show that

Ω/Ω2 ≥ ρǓ.

Note that parameter φᵀ
= (β

ᵀ
1, . . . , β

ᵀ
r , α1, . . . , αr, β

ᵀ
r+1, . . . , β

ᵀ
m, αr+1, . . . , αm)

is just permuted (θ
ᵀ
1, . . . , θ

ᵀ
m), so the conculsion of Lemma 4.5 also applies to

the information matrix with respect to φ. The information matrix with re-
spect to φ for R(2)

n is just Ω, and its lower–right (m−r)(d+1)×(m−r)(d+1)

block is Ω2. For R
(1)
n , the infromation matrix is just Ǔ . Thus by Lemma 4.5,

we have Ω/Ω2 ≥ ρǓ . The proof is complete.

Proof of Lemma 4.8. Notice that(
M +N X + Y

(X + Y )ᵀ XᵀM−1X + Y ᵀN †Y

)
=

(
M X

Xᵀ XᵀM−1X

)
+

(
N Y

Y ᵀ Y ᵀN †Y

)
.
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The first matrix on the RHS is positive semidefinite by Lemma 4.4 since
M > 0 and the Schur complement of this matrix with respect to M is 0. By
a generalized version of Lemma 4.4 (Zhang (2005)), observing that N ≥ 0,
Y is in the column space of N and the Schur complement of the second
matrix on the RHS with respect to N is 0, we have that the second matrix
on the RHS is also positive semidefinite. Therefore the matrix on the LHS is
positive semidefinite. Also note that M +N > 0. Hence, by Lemma 4.4, the
Schur complement of the LHS with respect to its upper–left block M +N ,

X
ᵀ
M−1X + Y

ᵀ
N †Y − (X + Y )

ᵀ
(M +N)−1(X + Y ),

must also be positive semidefinite. The claimed result then follows.

4.4.3 Theorem 4.3: Local power comparison in a

special case

In this section, we show that for the special hypothesis (4.3), under the local
alternative model (4.2), the non–central parameters of the limiting distribu-
tions of R(1)

n and R(2)
n are equal.

Recall that δ2
1 and δ2

2 are the non–central parameters of the limiting dis-
tributions of R(1)

n and R(2)
n under the local alternative model (4.2). Under the

special hypothesis (4.3) in this theorem, Jacobian J has a special structure.
We use this structure to show the equality of δ2

1 and δ2
2. Without loss of

generality, we assume that the indices in Sk, k = 1, . . . , K, are in natural
order.

By Theorem 3.2, we have

δ2
1 = ρη̃

ᵀ{
Λ̃− Λ̃J1(J

ᵀ
1 Λ̃J1)−1J

ᵀ
1 Λ̃
}
η̃
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where η̃ is defined in the proof of Theorem 4.2 and

J1 =
(
0(K−1)×s1 , diag(1

ᵀ
s2
, . . . , 1

ᵀ
sK

)
)ᵀ
⊗ Id.

As the proof of Theorem 4.2, we find

δ2
2 = η̃

ᵀ
Aη̃,

where A is the upper–left rd × rd block of Λ − ΛJ2(Jᵀ
2 ΛJ2)−1Jᵀ

2 Λ with
J2 = diag(J1, I(m−r)d). Therefore, to show the claimed δ2

1 = δ2
2, it suffices to

show that

ρ
{

Λ̃− Λ̃J1(J
ᵀ
1 Λ̃J1)−1J

ᵀ
1 Λ̃
}

= A (4.8)

We first simplify the LHS of (4.8). Let %k, k = 1, . . . , K, be the vector
consisting of ρi, i ∈ Sk, and ςk =

∑
i∈Sk ρi. We observe that

J
ᵀ
1 Λ̃ = (J

ᵀ
1 Λ̃J1)B

where

B =
(
− (ς1 + ρ0)−11K−1 ⊗ %

ᵀ
1, diag(ς−1

2 %
ᵀ
2, . . . , ς

−1
K %

ᵀ
K)
)
⊗ Id.

Thus, we have (Jᵀ
1 Λ̃J1)−1Jᵀ

1 Λ̃ = B and

ρ
{

Λ̃− Λ̃J1(J
ᵀ
1 Λ̃J1)−1J

ᵀ
1 Λ̃
}

= ρ
{

Λ̃− Λ̃J1B
}
. (4.9)

We then simplify Λ − ΛJ2(Jᵀ
2 ΛJ2)−1Jᵀ

2 Λ to get another expression of A.
We find that

J
ᵀ
2 Λ = J

ᵀ
2 ΛJ2

(
B 0

C I(m−r)d

)
,
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where C =
(
− {ς1 + ρ0}−1(1m−r%

ᵀ
1 ⊗ Id), 0

)
. Thus,

Λ− ΛJ2(J
ᵀ
2 ΛJ2)−1J

ᵀ
2 Λ = Λ− ΛJ2

(
B 0

C I(m−r)d

)
.

Recall that A is the upper–left rd×rd block of Λ−ΛJ2(Jᵀ
2 ΛJ2)−1Jᵀ

2 Λ. Hence,
the above identity gives another expression of A as

A = Λa − ΛaJ1B − ΛbC, (4.10)

where Λa and Λb are respectively the rd× rd and rd× (m− r)d blocks of Λ.
Finally, the proof is completed by showing the RHS expressions of (4.9)

and (4.10) are equal. This is done by linking Λ–matrices to the information
matrix (2.13), and applying the block matrix inversion formaula given in
Lemma 3.3 and the quadratic form deceomposition formula given in Lemma
3.4.
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Chapter 5

Empirical Likelihood Inference
under the DRM Based on
Multiple Type I Censored
Samples

As noted in Chapter 1, it is desirable to make smart strength test plans to
maximize the scientific value of each piece of lumber, and one such plan is to
collect Type I right–censored strength samples such that some lumber can
be used for multiple strength tests. However, the theory of EL inference
under the DRM for complete samples does not carry automatically to the
case of Type I censored samples due to the substantially more complicated
analytical form of the EL in the latter case. This chapter creates a powerful
EL inference framework for the latter case. In particular, we (1) show that
the maximization of the EL can be reduced to the maximization of a concave
function, which we call the dual partial EL, (2) give the asymptotic properties
of the dual partial EL, and (3) study the properties of the EL ratio test
for hypothesis about the DRM parameter β. We argue that the inference
framework established in the chapter can potentially be used to extend any
EL inference result that is available for multiple complete samples under the
DRM to the case of multiple Type I censored samples.

The chapter is organized as follows. Section 5.1 introduces the concept
of Type I censoring and gives the definition of the corresponding EL for a
single sample. Section 5.2 defines the EL function under the DRM based

117



5.1. Type I censored single random samples and the corresponding EL

on multiple Type I censored samples, and the the associated maximum EL
estimator. Section 5.3 explores the relationship between the EL and the
partial EL and reduces the constrained maximization problem for EL to a
convex maximization problem. Section 5.4 gives an interpretation for the
PEL and Section 5.5 study the asymptotic properties of the MELE for the
DRM parameters. The theory of EL ratio test based on Type I censored
samples is established in Section 5.6, followed by a short discussion in Section
5.7 about other inference tasks under this framework. The proofs are given
in Section 5.8.

5.1 Type I censored single random samples

and the corresponding EL

Let {xi}ni=1 be an independent sample from a population with CDF F (x).
Let {Ci}ni=1 be a set of iid random variables from another population, and
{ci}ni=1 be a set of corresponding realizations. The sample {xi}ni=1 is said to
be right–censored if we only observe value zi = min(xi, ci) and the indicator
1(xi ≤ ci), which shows whether an observation is censored or not. When
1(xi ≤ ci) = 1, the ith observation is said to be uncensored, otherwise,
censored. If the underlying distribution of Ci is a point mass at a given
constant c, that is when zi = min(xi, c), then the sample is said to be Type I
right–censored. Type I right censoring usually arises in reliability engineering
and medical studies when a experiment stops at a prespecified value c and the
values of the sample points that are larger than c are unknown to observers.

Similarly we can define other kinds of Type I censoring, for example,

Type I left–censored sample: we observe zi = max(xi, c) and the censoring
indicator 1(xi ≥ c) for some given constant c;

Type I left and right–censored sample: we observe the censoring indicators
1(xi ∈ [c1, c2]) and 1(xi < c1) for given constants c1 < c2, and zi =
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5.2. EL for multiple Type I censored samples under the DRM

xi1(xi ∈ [c1, c2]) + c11(xi < c1) + c21(xi > c2).

This chapter focuses on the above three kinds of Type I censored samples,
and in the sequel, we simply refer to them as “Type I censored samples”.
Clearly, the Type I right–censored sample and Type I left–censored sample
are both special cases of Type I left and right–censored sample with c1 = −∞
and c2 =∞ respectively. We focus on studying the most general one of the
three: the Type I left and right–censored sample.

Let ñ be the number of uncensored observations, i.e. ñ =
∑n

j=1 1(xi ∈
[c1, c2]), and denote the uncensored observations as x̃i, i = 1, . . . , ñ. Let ň
be the number of left–censored observations, i.e. ň =

∑n
j=1 1(xi < c1). Put

ς = Pr(X ∈ [c1, c2]) = F (c2)− F (c−1 ),

ι = Pr(X < c1) = F (c−1 ).

We have Pr(X > c2) = 1−ι−ς. Recall that we defined dF (x) = F (x)−F (x−)

in Section 2.1. The EL based on a Type I censored sample is given to be

Ln(F ) =
n∏
i=1

ι1(xi<c1){dF (xi)}1(xi∈[c1, c2])(1− ι− ς)1−1(xi<c1)−1(xi∈[c1, c2])

= ιň
{ ñ∏
i=1

dF (x̃i)
}

(1− ι− ς)n−ň−ñ.

5.2 EL for multiple Type I censored samples

under the DRM

Suppose we have m+ 1 independent Type I censored samples

{xkj : j = 1, 2, . . . , nk}mk=0

from populations {Fk(x)} of the same support S, which satisfy the DRM
assumption (2.1). Our question is, based on such censored samples, how
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5.2. EL for multiple Type I censored samples under the DRM

should we estimate the DRM parameter and test hypotheses about it, an
important inference task in our long term monitoring program for lumber
strength as noted in Chapter 1.

As for complete data, we consider EL inference as it seems to be an
effective and most natural inference tool under the semiparametric DRM. Let
ck,1 and ck,2, k = 0, 1, . . . , m, be the left and right censoring cutting points
for the kth Type I censored sample, respectively. Let Sk = [ck,1, ck,2]∩S. The
set Sk is the support of the distribution of the uncensored observations in
the kth sample. Let ñk be the number of the uncensored observations in the
kth sample and denote the uncensored observations as {x̃kj : j = 1, . . . , ñk}.
Let ňk be the number of left–censored observations in the kth sample. Define

ςk = Pr(Xk1 ∈ Sk) = Fk(ck,2)− Fk(c−k,1) and ιk = Fk(c
−
k,1).

We will always assume that, for all k = 0, 1, . . . , m, ςk > 0 and Sk ⊆ S0.
When the samples are not both left and right–censored, we can always choose
a baseline such that this assumption is satisfied. As in the case of a single
sample, the EL of the {Fk} based on these Type I censored samples is defined
to be

Ln(F0, . . . , Fm) =
{ m∏
k=0

ñk∏
j=1

dFk(x̃kj)
}{ m∏

k=0

ιňkk
}{ m∏

k=0

{1− ιk − ςk}nk−ňk−ñk
}
.

The first factor on RHS in the above definition is the contribution of the
uncensored observations to the likelihood; the second factor, the contribution
of the left–censored observations; and the third, the contribution of the right–
censored observations. When the {Fk} satisfy the DRM assumption, the
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5.2. EL for multiple Type I censored samples under the DRM

above likelihood function can be further written as

Ln(F0, . . . , Fm) =
{ m∏
k=0

ñk∏
j=1

dF0(x̃kj)
}{ m∏

k=0

ñk∏
j=1

exp{αk + β
ᵀ
kq(x̃kj)}

}
{ m∏
k=0

ιňkk {1− ιk − ςk}
nk−ňk−ñk

}
, (5.1)

where αk and βk satisfy
ˆ
x∈Sk

exp{αk + β
ᵀ
kq(x)}dF0(x) = ςk.

Put pkj = dF0(x̃kj). Define

p = {pkj : j = 1, . . . , ñk}mk=0, ι = {ιk}mk=0, and ς = {ςk}mk=0.

We see from (5.1) that, under the DRM, the EL is a function of θ, p, ι and
ς. We therefore write the EL as Ln(θ, p, ι, ς). Recall that we have defined
α0 = 0 and β0 = 0. Let

(θ̂, p̂, ι̂, ς̂)

=argmax
θ,p, ι, ς

{
Ln(θ, p, ι, ς) :

m∑
k=0

ñk∑
j=1

exp{αr + β
ᵀ
rq(x̃kj)}pkj1(x̃kj ∈ Sr) = ςr,

pkj ≥ 0, 0 < ςr ≤ 1, 0 ≤ ιr ≤ 1− ςr, r = 0, . . . , m

}
. (5.2)

We call θ̂ the MELE of the DRM parameter θ, and (p̂, ι̂, ς̂) the MELE of
the baseline distribution F0. The next section addresses how to calculate
these MELEs.
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5.3 Calculating the MELE

The constrained maximization (5.2) of the EL appears to be a complicated
problem. We now show it can however be reduced to a simple concave max-
imization problem.

5.3.1 Partial EL and its relation to EL

The EL (5.1) of the multiple Type I censored samples can be factorized as

Ln(θ, p, ς) = PLn(θ, p, ς) · Ln(ι, ς), (5.3)

where

PLn(θ, p, ς) =

{
m∏
k=0

ñk∏
j=1

pkj
ς0

}{
m∏
k=1

ñk∏
j=1

ς0
ςk

exp
{
αk + β

ᵀ
kq(x̃kj)

}}
,

Ln(ι, ς) =
{ m∏
k=0

ιňkk ς
ñk
k {1− ιk − ςk}

nk−ňk−ñk
}
.

We call PLn(θ, p, ς) the partial empirical likelihood (PEL) function. Our
next proposition indicates that the EL attains its maximum under the cor-
responding constraints given in (5.2) when both the PEL under the same
constraints and the Ln(ι, ς) attain their maxima independently.

Proposition 5.1. Under the constraint

m∑
k=0

ñk∑
j=1

exp{αr + β
ᵀ
rq(x̃kj)}pkj1(x̃kj ∈ Sr) = ςr, (5.4)

for r = 0, 1, . . . , m, supθ,p PLn(θ, p, ς) does not depend on ς.

Proof of Proposition 5.1. With reorganizations of terms, the PEL can be
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written as

PLn(θ, p, ς)

=

{
m∏
k=0

ñk∏
j=1

pkj
ς0

}{
m∏
k=1

ñk∏
j=1

exp
{

(αk + log ς0 − log ςk) + β
ᵀ
kq(x̃kj)

}}
,

and the corresponding constraint (5.4) can be written as

m∑
k=0

ñk∑
j=1

exp
{

(αr + log ς0 − log ςr) + β
ᵀ
rq(x̃kj)

}pkj
ς0
1(x̃kj ∈ Sr) = 1, (5.5)

for r = 0, 1, . . . , m. Now suppose (p̂, ς̂, α̂, β̂) is a point at which the PEL
is maximized under the constraint (5.5). Let ς̌ be an arbitrary vector each
component, ς̌k, of which is in the interval (0, 1]. Put, for k = 0, 1, . . . , m

and j = 1, . . . , nk,

p̌kj = p̂kj
ς̌0
ς̂0

and α̌k = α̂k + log
ς̂0
ς̌0
− log

ς̂k
ς̌k
.

It is easily seen that (p̌, ς̌, α̌, β̂) also satisfies the constraint (5.5) and PLn(θ̌,

p̌, ς̌) has the same value as PLn(θ̂, p̂, ς̂). Hence the claimed result holds.

Proposition 5.1 has a few important implications that help us calculating
as well as studying the properties of the MELEs.

(i) The EL Ln(θ, p, ι, ς) attains its maximum when both the PEL PLn(θ,

p, ς) and Ln(ι, ς) attain their maxima, respectively. Hence, the MELE
(ι̂, ς̂) is exactly the point at which the Ln(ι, ς) is maximized given that
0 < ςk ≤ 1 and 0 ≤ ιk ≤ 1− ςk. This point is easily seen to be

ι̂k = ňk/nk and ς̂k = ñk/nk.

(ii) The constrained maximization of PEL PLn(θ, p, ς) is overparameter-

123



5.3. Calculating the MELE

ized: the maximum of PEL is independent of the value of ς. Let
℘kj = ς0

−1pkj, ℘ = {℘kj : j = 1, . . . , ñk}mk=0, κk = αk + log ς0 − log ςk,
and κ = (κ1, . . . , κm)ᵀ. From the proof of Proposition 5.1, we see that
the over–parameterization issue can be removed by re–parameterizing
the PEL to

PLn(κ,β,℘) =

{
m∏
k=0

ñk∏
j=1

℘kj

}{
m∏
k=1

ñk∏
j=1

exp
{
κk + β

ᵀ
kq(x̃kj)

}}
, (5.6)

and the corresponding constraint (5.4) to

m∑
k=0

ñk∑
j=1

exp
{
κr + β

ᵀ
rq(x̃kj)

}
℘kj1(x̃kj ∈ Sr) = 1, (5.7)

for r = 0, 1, . . . , m. Define the maximum PEL estimator (MPELE) of
(κ, β, ℘) as

(κ̂, β̂, ℘̂) = argmax
κ,β,℘

{
PLn(κ, β, ℘) : constraint (5.7)

}
.

Then the MELEs of α, β and p are just α̂k = κ̂k − log ς̂0 + log ς̂k for
k = 1, 2, . . . , m, β̂ and p̂ = ς̂0℘̂, respectively.

(iii) All the information about the slope DRM parameter β is contained in
the PEL, PLn(κ, β, ℘), so basing the inference about β on the PEL
will cause no loss of efficiency for estimation or loss of statistical power
for hypothesis testing.

5.3.2 Maximization of the PEL

We have seen that, to calculate the MELEs, the key is to maximize the
PEL (5.6) under the constraint (5.7). Note that the PEL PLn(κ, β, ℘)

and the corresponding constraint have similar mathematical expressions as
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the EL (2.3) for uncensored data under the DRM and the corresponding
constraint (2.2), except that in the current problem the {nk} are replaced
by the {ñk} and indicator terms are added to represent the supports of the
uncensored observations. The constrained maximization of PEL can then be
solved using a similar approach to that for the constrained maximization of
EL in uncensored case. We first obtain the profile log–PEL

˜̀
n(κ, β) = sup

℘
{logPLn(κ, β, ℘) : constraint (5.7)} . (5.8)

Let ñ =
∑m

k=0 ñk be the total number of uncensored observations. This
constrained maximization problem again can be solved by the method of
Lagrange multipliers, and the supremum is found to be attained at

℘kj = ñ−1
{

1 +
m∑
r=1

λr
[

exp
{
κr + β

ᵀ
rq(xkj)

}
1(x̃kj ∈ Sr)− 1

]}−1

, (5.9)

where the {λr}mr=1 are the solution to

m∑
k=0

ñk∑
j=1

℘kj exp
{
κt + β

ᵀ
tq(x̃kj)

}
1(x̃kj ∈ St) = 1,

for t = 0, 1, . . . , m. The resulting profile log–PEL is

˜̀
n(κ, β) = −

m∑
k=0

ñk∑
j=1

log
{

1 +
m∑
r=1

λr
[

exp
{
κr + β

ᵀ
rq(x̃kj)

}
1(x̃kj ∈ Sr)− 1

]}
+

m∑
k=1

ñk∑
j=1

{
κk + βkq(x̃kj)

}
.

As in the case of the profile log–EL for uncensored data, we found that
the maximum of ˜̀

n(κ, β) is attained when λk = ñk/ñ, for k = 1, . . . , m. We
define the dual PEL (DPEL) of κ and β by replacing the {λk} in ˜̀

n(κ, β)
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with {ñk/ñ} as

`n(κ, β) = −
m∑
k=0

ñk∑
j=1

log

{
m∑
r=0

(ñr/ñ) exp
{
κr + β

ᵀ
rq(x̃kj)

}
1(x̃kj ∈ Sr)

}

+
m∑
k=1

ñk∑
j=1

{
κk + βkq(x̃kj)

}
. (5.10)

Clealy, the DPEL `n(κ, β) shares the same maximal point and value as the
profile log–PEL ˜̀

n(κ, β). Therefore the MPELE (κ̂, β̂) can be calculated as

(κ̂, β̂) = argmax
κ,β

`n(κ, β).

The DPEL, just like the DEL for complete data, has a simple analytical form
and is concave, so the above maximum can be easily computed.

Plugging (κ̂, β̂) into (5.9) and replacing λr with ñr/ñ, we get

℘̂kj =
{ m∑

r=0

ñr exp
{
κ̂r + β̂

ᵀ
rq(xkj)

}
1(x̃kj ∈ Sr)

}−1

. (5.11)

5.4 Interpretation of the PEL

We now give an interpretation for the PEL (5.6): it is exactly the EL
of the underlying distributions of the uncensored observations {x̃kj : j =

1, . . . , ñk}.
For a given k ∈ {0, 1, . . . , m}, denote the CDF of the uncensored obser-

vations as F̃k. Then F̃k is a truncated version of Fk:

dF̃k(x) = ςk
−11(x ∈ Sk)dFk(x). (5.12)

Recall that κk = αk + log ς0 − log ςk. Since the {Fk} satisfy the DRM (2.1)
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and Sk ⊆ S0, we have

dF̃k(x) = ςk
−11(x ∈ Sk) exp{αk + β

ᵀ
kq(x)}dF0(x).

= ς0ςk
−1 exp{αk + β

ᵀ
kq(x)}1(x ∈ Sk){ς0−11(x ∈ S0)dF0(x)}

= exp{κk + β
ᵀ
kq(x)}1(x ∈ Sk)dF̃0(x).

Note that we can add the factor 1(x ∈ S0) in the second equality because
Sk ⊆ S0 implies 1(x ∈ Sk) = 1(x ∈ Sk)1(x ∈ S0).

We now see that the {F̃k} satisfy a DRM of the form

dF̃k(x) = exp{κk + β
ᵀ
kq(x)}1(x ∈ Sk)dF̃0(x), for k = 1, . . . , m. (5.13)

This model differs from the DRM (2.1) in that the supports of the non–
baseline distributions are allowed to be different from each other, although
all have to be contained in the support of the baseline distribution, while
(2.1) requires all the distributions to have the same support. We therefore
call model (5.13) the varying support density ratio model (VSDRM). Since
F̃k’s are distribution functions, (κk, β

ᵀ
k)

ᵀ
must satisfy

ˆ
exp{κk + β

ᵀ
kq(x)}1(x ∈ Sk)dF̃0(x) = 1, for k = 1, . . . , m. (5.14)

Just like the EL (2.3) for uncensored data, the EL of the {F̃k}, is defined to
be

Ln(F̃0, . . . , F̃m) =
m∏
k=0

ñk∏
j=1

dF̃k(x̃kj)

=

{
m∏
k=0

ñk∏
j=1

℘kj

}{
m∏
k=1

ñk∏
j=1

exp
{
κk + β

ᵀ
kq(x̃kj)

}}
,

with ℘kj = dF̃0(x̃kj) = ς−1
0 F0(x̃kj) = ς−1

0 pkj. We see that this is exactly the
PEL (5.6). The constraint (5.14) is exactly the constraint (5.7) corresponding
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to the PEL, when we confine the support of F̃0 on the {x̃kj}. Therefore,
maximizing the PEL (5.6) given constraint (5.7) is equivalent to maximizing
the EL of the distribution functions for uncensored observations given the
corresponding constraint (5.14).

5.5 Properties of the MPELE

Put ϑ = (κ, β). Given that MPELE ϑ̂ = (κ̂, β̂) is the point at which
the concave DPEL `n(κ, β) — a function much like the DEL for complete
data — is maximized, we wonder whether ϑ̂ is asymptotically normal just
as the MELE θ̂ in the case of complete data. Recall that the asymptotic
normality of θ̂ in the case of complete data is determined by two facts: (1)
the negative second–order derivative of DEL, which we call the empirical
information matrix, has a limit; and (2) the score function evaluated at the
true parameter value θ∗ has a normal limiting distribution. If these two
properties also hold by the DPEL in the case of Type I censored data, the
asymptotic normality of ϑ̂ will follow.

The differences between the algebraic expressions of the DPEL (5.10)
and the DEL (2.11) post a challenge for showing these properties when data
are Type I censored. In the case of complete data, both limits are derived
based on the fact that the DEL is a sum of iid random variables. However,
the DPEL is no longer a sum of iid random variables, but rather a sum
of dependent random variables, because of the repeated appearance of the
same random number ñk in each summand. Does the DPEL have the similar
asymptotic properties as the DEL? The answer is positive as we summarize
in the following lemmas. The proofs are given in Section 5.8

Let ϑ∗ denote the true parameter value (κ∗, β∗). Call

Un = −n−1∂2`n(ϑ∗)/∂ϑ∂ϑ
ᵀ

the partial empirical information matrix. Recall that Qᵀ
(x) = (1, qᵀ(x)), nk
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is the size of the kth sample, and n =
∑m

k=0 nk is the total sample size.

Lemma 5.2 (Properties of the partial information matrix). Suppose we have
m+ 1 random samples from populations with distributions of the DRM form
given in (2.1) and a true parameter value θ∗ such that

ˆ
exp{βᵀ

kq(x)}dF0(x) <∞

for θ in a neighbourhood of θ∗. Each sample is Type I censored with uncen-
sored observations fall in the range of Sk = [ck,1, ck,2] for given ck,1 < ck,2, and
Sk ⊆ S0 for all k. Also,

´
Q(x)Q

ᵀ
(x)dF0(x) > 0, and nk/n = ρk + O(n−δ)

for some constants ρk ∈ (0, 1) and δ > 0.
The partial empirical information matrix Un converges almost surely to

a positive definite matrix U.

We call the limiting matrix U the partial information matrix. We par-
tition its entries in agreement with κ and β and represent them as Uκκ,
Uκβ, Uβκ and Uββ. Recall that ςk = Fk(ck,2)− Fk(c−k,1). Define ϕk(ϑ, x) =

exp{κk + β
ᵀ
kq(x)} for k = 0, . . . ,m. Let

h(ϑ, x) = (ρ1ς1ϕ1(ϑ, x)1(x ∈ S1), . . . , ρmςmϕm(ϑ, x)1(x ∈ Sm))
ᵀ
,

s(ϑ, x) =
m∑
k=0

ρkςkϕk(ϑ, x)1(x ∈ Sk),

H (ϑ, x) = diag{h(ϑ, x)} − h(ϑ, x)hᵀ
(ϑ, x)/s(ϑ, x).

(5.15)

Recall that Ek(·), k = 0, 1, . . . , m, be the expectation operator with respect
to Fk. The blockwise algebraic expressions of the partial information matrix
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5.6. EL ratio test for the DRM parameter

U in terms of H (ϑ∗, x) and q(x) can be written as

Uκκ = − lim
n→∞

n−1∂2`n(ϑ∗)/∂κ∂κ
ᵀ

= ς−1
0 E0

{
H (ϑ∗, x)

}
,

Uββ = − lim
n→∞

n−1∂2`n(ϑ∗)/∂β∂β
ᵀ

= ς−1
0 E0

{
H (ϑ∗, x)⊗

(
q(x)q

ᵀ
(x)
)}
,

Uκβ = − lim
n→∞

n−1∂2`n(ϑ∗)/∂κ∂β
ᵀ

= Uᵀ
βκ = ς−1

0 E0

{
H (ϑ∗, x)⊗ qᵀ(x)

}
.

(5.16)

Let v = n−1/2∂`n(ϑ∗)/∂ϑ. Define

T = (ρ0ς0)−11m1
ᵀ
m + diag{(ρ1ς1)−1, (ρ2ς2)−1, . . . , (ρmςm)−1},

W =

(
T 0m×md

0md×m 0md×md

)
.

Lemma 5.3 (Asymptotic properties of the score function). Under the con-
ditions of Theorem 5.2, Ev = 0 and v is asymptotically multivariate normal
with mean 0 and covariance matrix V = U −UWU.

The asymptotic normality of the MPELE, ϑ̂ = (κ̂, β̂), follows from
Lemma 5.2 and 5.3.

Theorem 5.4 (Asymptotic normality of the MPELE). Under the condi-
tions of Theorem 5.2,

√
n(ϑ̂ − ϑ∗) has an asymptotic multivariate normal

distribution with mean 0 and covariance matrix U−1 −W .

5.6 EL ratio test for the DRM parameter

A primary inference problem of our interest, as noted in Chapter 1, is to test
whether the underlying distributions of a few Type I censored lumber samples
are equal. As commented in Chapter 3, such hypotheses can be translated
into testing equalities among the {βk} parameters under the DRM setting,
which are special cases embraced by the general composite hypothesis testing
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5.6. EL ratio test for the DRM parameter

problem (3.1),

H0 : g(β) = 0 against H1 : g(β) 6= 0

for some smooth function g : Rmd → Rq, with q ≤ md, the length of β. The
function g is assumed to be thrice differentiable with a full rank Jacobian
matrix. Does the corresponding EL ratio statistic based on Type I censored
samples have a chi–square limiting distribution just like the case for complete
data? The answer is affirmative as we will seen in this section.

Let (θ̃, p̃, ι̃, ς̃) denote the point at which the maximum of the EL (5.1)
is attained under the null constraint g(β) = 0. Recall that the MELE
(θ̂, p̂, ι̂, ς̂) defined in (5.2) is the point at which the EL is maximized without
the null constraint. The EL ratio (ELR) test statistic is defined to be

Rn = 2{logLn(θ̂, p̂, ι̂, ς̂)− logLn(θ̃, p̃, ι̃, ς̃)}.

Factorizing the Ln(θ, p, ι, ς) in the above definition into the product of PEL
and Ln(ι, ϑ) as in (5.3), we get

Rn = 2
(
{logPLn(θ̂, p̂, ς̂) + logLn(ι̂, ς̂)} − {logPLn(θ̃, p̃, ς̃) + logLn(ι̃, ς̃)}

)
.

By Proposition 5.1, the maximum value of PLn(θ, p, ς) is independent of
the value of ς, so the MELE (ι̂, ϑ̂) is just the point at which Ln(ι, ϑ) is max-
imized. Now, under the null constraint on β, the conclusion of Proposition
5.1 still applies, because the proof of that proposition does not involve any
algebraic operation on β. Hence, (ι̃, ς̃) is also the point at which Ln(ι, ϑ)

is maximized, thereby not influenced by the null constraint. Consequently,
(ι̃, ς̃) = (ι̂, ς̂), Ln(ι̂, ς̂) = Ln(ι̃, ς̃), and Rn becomes

Rn = 2{logPLn(θ̂, p̂, ς̂)− logPLn(θ̃, p̃, ς̃)}.

Recalling that the DPEL `(ϑ) shares the same maximum value with the
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PEL, Rn hence further simplifies to

Rn = 2{`n(ϑ̂)− `n(ϑ̃)}.

In other words, the EL ratio statistic equals the DPEL ratio statistic, which
agrees with the argument (iii) in Section 5.3.1, that basing the inference
about β on the PEL will cause no loss of statistical power for hypothesis
testing. Based on this fact, we find the asymptotic properties the ELR test
as summarized in the theorem below.

Recall that, when q < md, the null hypothesis g(β) = 0 can be equiva-
lently expressed as β = G(γ) for some lower dimensional parameter γ and
a unique function G: Rmd−q → Rmd, which is thrice differentiable with full
rank Jacobian matrix J = ∂G(γ∗)/∂γ. When q = md, g is invertible and
the null hypothesis is fully specified as β = g−1(0).

Theorem 5.5 (Asymptotic properties of the ELR test). Adopt the conditions
postulated in Lemma 5.2.

(i) Under the null hypothesis, g(β) = 0, of (3.1), Rn → χ2
q in distribution

as n→∞.

(ii) Under local alternative (3.2):

βk = β∗k + n
−1/2
k ck,

Rn → χ2
q(δ

2) in distribution as n → ∞, where δ2 is a nonnegative
non–central parameter with expression

δ2 =

{
ηᵀ{Λ̃− Λ̃J

(
JᵀΛ̃J

)−1
JᵀΛ̃

}
η if q < md

ηᵀΛ̃η if q = md

where Λ̃ = Uββ−UβκU−1
κκUκβ. and η =

(
ρ
−1/2
1 cᵀ1, ρ

−1/2
2 cᵀ2, . . . , ς

−1/2
m cᵀm

)ᵀ
is the one given in Theorem 3.2.
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Also, δ2 > 0 unless η is in the column space of J .

There are similar results to Theorem 4.2 and 4.3 that concerns local power
comparison of ELR tests based on Type I censored data, but omitted since
they are just straightforward extensions.

5.7 Other inference tasks

As we have seen, the above inference framework for multiple Type I cen-
sored samples under the DRM centers on the DPEL (5.10), a function looks
remarkably similar to the DEL (2.11) for complete data under the DRM.
In Section 5.5, we showed that the DPEL actually has similar asymptotic
properties to the DEL. Based on these properties, the DEL ratio test that
is available for complete data can be adapted to the case of Type I censored
data. In fact, with the DPEL, we can show that the results on EL quantile
estimation given by Chen and Liu (2013) and on density estimation given
by Fokianos (2004), all of which are derived under the DRM for complete
samples, also extend to the Type I censored case. Similarly, based on the EL
inference framework given in this chapter, any EL inference result that is in
effect for complete samples under the DRM may be extended to the case of
Type I censored samples.

5.8 Proofs

We first introduce a few results and more notations applicable to k = 0, . . . ,m.
A common condition for the theorems of this Chapter is nk/n = ρk +O(n−δ)

for some positive constant δ. Without loss of generality, we assume δ ≤ 1/3:
if a result holds for a larger positive constant δ, it also holds for smaller δ.
Recall that ςk = Pr(Xk1 ∈ Sk), ñk is the number of uncensored observations
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in the kth sample, and ñ =
∑m

k=0 ñk By the law of the iterated logarithm,

ñk/nk = n−1
k

nk∑
i=1

1(xkj ∈ Sk) = ςk +O(n−1/2 log log n).

Therefore,

ñk
n

=
ñk
nk
· nk
n

=
(
ςk +O(n−1/2 log log n)

)(
ρk +O(n−δ)

)
= ρkςk +O(n−δ).

(5.17)

We use symbol
∑

k,j to denote
∑m

k=0

∑ñk
j=1, the sum over all k and j =

1, . . . , ñk for each given k. Recall that ϕk(ϑ, x) = exp{κk + βkq(x)} and
λ̃k = ñk/ñ. Write

Ln,k(ϑ, x) = − log
{ m∑

r=0

(ñr/ñ)ϕr(ϑ, x)1(x ∈ Sr)
}

+ {κk + β
ᵀ
kq(x)}.

The DPEL (5.10) can be written as `n(ϑ) =
∑

k, j Ln,k(ϑ, x̃kj). Let hn(ϑ, x),
sn(ϑ, x) and Hn(ϑ, x) be defined as the h(ϑ, x), s(ϑ, x) and H (ϑ, x) in
(5.15) with ρkςk replaced by ñk/n. Since limn→∞(ñk/n) → ρkςk, h(ϑ, x),
s(ϑ, x) and H (ϑ, x) are the limits of hn(ϑ, x), sn(ϑ, x) and Hn(ϑ, x), re-
spectively, as n tends to infinity. The first order derivatives of Ln,k(ϑ, x) can
be written as

∂Ln,k(ϑ, x)/∂κ = (1− δk0)ek − hn(ϑ, x)/sn(ϑ, x),

∂Ln,k(ϑ, x)/∂β = {∂Ln,k(ϑ, x)/∂κ} ⊗ q(x).
(5.18)

Similarly, we have

∂2Ln,k(ϑ, x)/∂κ∂κ
ᵀ

= −Hn(ϑ, x)/sn(ϑ, x),

∂2Ln,k(ϑ, x)/∂β∂β
ᵀ

= −
{

Hn(ϑ, x)/sn(ϑ, x)
}
⊗
{
q(x)q

ᵀ
(x)
}
,

∂2Ln,k(ϑ, x)/∂κ∂β
ᵀ

= −
{

Hn(ϑ, x)/sn(ϑ, x)
}
⊗ qᵀ(x).

(5.19)
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Note that all entries of Hn(ϑ, x) are non–negative, and sn(ϑ, x) exceeds
the sum of all entries of hn(ϑ, x). Thus, ‖hn(ϑ, x)/sn(ϑ, x)‖ ≤ 1, and
the absolute value of each entry of Hn(ϑ, x)/sn(ϑ, x) is bounded by 1. By
examining the algebraic expressions closely, this result implies∣∣∂2Ln,k(ϑ, x)/∂ϑi∂ϑj

∣∣ ≤ 1 + q
ᵀ
(x)q(x),∣∣∂3Ln,k(ϑ, x)/∂ϑi∂ϑj∂ϑk

∣∣ ≤ {1 + q
ᵀ
(x)q(x)}3/2,

(5.20)

where ϑi denotes the ith entry of ϑ. These inequalities are just a “censored”
version of inequalities (2.17) for complete data.

Let Lk(ϑ, x) be the “population” version of Ln,k(ϑ, x) by replacing ñr/n
with its limit ρrςr in the above definition. The first and second order deriva-
tives of Lk(ϑ, x) are the same as those of Ln,k(ϑ, x) with hn(ϑ, x), sn(ϑ, x)

and Hn(ϑ, x) replaced by h(ϑ, x), s(ϑ, x) and H (ϑ, x). Also, Lk(ϑ, x)

satisfy inequalities (5.20).

5.8.1 Lemma 5.2: Properties of the partial information

matrix

By the fact that `n(ϑ) =
∑

k,j Ln,k(ϑ, x̃kj) and ñk/n = ρkςk + o(1), we have

Un = − 1

n

∂2`n(ϑ∗)

∂ϑ∂ϑ
ᵀ = −

m∑
k=0

(ρkςk + o(1))

{
1

ñk

ñk∑
j=1

∂2Ln,k(ϑ
∗, x̃kj)

∂ϑ∂ϑ
ᵀ

}
.

(5.21)

Note that, for any given k, the sum in the curly brackets is not a sum of
iid random variables because of the presence of the random variable ñk in
the expressions of hn(ϑ, x), sn(ϑ, x) and Hn(ϑ, x), which appear in the
expression (5.19) of Ln,k(ϑ

∗, x̃kj)/∂ϑ∂ϑ
ᵀ. This negates a simple application
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of the law of large numbers. However, as we will show later,

1

ñk

ñk∑
j=1

∂2Ln,k(ϑ
∗, x̃kj)

∂ϑ∂ϑ
ᵀ =

1

ñk

ñk∑
j=1

∂2Lk(ϑ
∗, x̃kj)

∂ϑ∂ϑ
ᵀ + o(1). (5.22)

Now with {ñk/n} replaced by constants {ρkςk} in the expression of the second
order derivatives of Lk(ϑ, x), the sum on the RHS of the above equality is
a sum of an iid random variables. By inequalities (5.20), each summand on
the RHS is dominated by an integrable function. Hence by the strong law of
large numbers, the first term on the RHS satisfies

1

ñk

ñk∑
j=1

∂2Lk(ϑ
∗, x̃kj)

∂ϑ∂ϑ
ᵀ = Ẽk

∂2Lk(ϑ
∗, x)

∂ϑ∂ϑ
ᵀ + o(1),

where Ẽk(·) is the expectation operator with respect to F̃k. Consequently,
(5.21) simplifies to

Un = −
m∑
k=0

(ρkςk + o(1))
{
Ẽk
∂2Lk(ϑ

∗, x)

∂ϑ∂ϑ
ᵀ + o(1)

}
= −

m∑
k=0

ρkςkẼk
∂2Lk(ϑ

∗, x)

∂ϑ∂ϑ
ᵀ + o(1).

Therefore Un converges almost surely to

U = −
m∑
k=0

ρkςkẼk
∂2Lk(ϑ

∗, x)

∂ϑ∂ϑ
ᵀ .

Recall that when Sk ⊆ S0, the {F̃k} satisfy, (5.13), the VSDRM, so the above
expression of U can be further written as

U = −
m∑
k=0

ρkςkẼ0

{
∂2Lk(ϑ

∗, x)

∂ϑ∂ϑ
ᵀ ϕk(ϑ

∗, x)1(x ∈ Sk)
}
.

136



5.8. Proofs

By expressions (5.19) of ∂2Lk(ϑ
∗, x)/∂ϑ∂ϑ

ᵀ, we have

Uκκ =
m∑
k=0

ρkςkẼ0

{
{H (ϑ∗, x)/s(ϑ∗, x)}ϕk(ϑ∗, x)1(x ∈ Sk)

}
= Ẽ0

{
{H (ϑ∗, x)/s(ϑ∗, x)}

{ m∑
k=0

ρkςkϕk(ϑ
∗, x)1(x ∈ Sk)

}}
= Ẽ0{H (ϑ∗, x)},

where the last equality is by s(ϑ∗, x) =
∑m

k=0 ρkςkϕk(ϑ
∗, x)1(x ∈ Sk). Recall

that dF̃0(x) = ς−1
0 1(x ∈ S0)dF0(x) by (5.12), and Sk ∈ S0 for all k. The

above expression of Uκκ therefore simplies to

Uκκ = Ẽ0{H (ϑ∗, x)} = ς−1
0 E0{H (ϑ∗, x)}.

As a reminder, Ek(·) in general is the expectation operator with respect to
Fk. Similarly, we found the expressions for Uββ and Uκβ as given in (5.16).

That U and Uκκ are positive definite, can be shown using a similar
argument to that for showing the positive definiteness of U and Uαα in the
proof of Lemma 2.1 (Section 2.5.1).

To complete the proof, we show the matrix equality (5.22) block by block.
First we show that

1

ñk

ñk∑
j=1

∂2Ln,k(ϑ
∗, x̃kj)

∂κ∂κᵀ =
1

ñk

ñk∑
j=1

∂2Lk(ϑ
∗, x̃kj)

∂κ∂κᵀ + op(1). (5.23)

Define, for k = 0, 1, . . . , m,

φk(x) = ϕk(ϑ
∗, x)1(x ∈ Sk)

∆k = ñk/n− ρkςk,

∆ = max
0≤k≤m

|∆k|.
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By (5.17), ∆k = O(n−δ) for each k and ∆ = O(n−δ). By expressions (5.19),
the element on the ith row and tth column, i, t ∈ {1, . . . , m} and i 6= t, of
the LHS matrix of the equality (5.23) can be written as

1

ñk

ñk∑
j=1

∂2Ln,k(ϑ
∗, x̃kj)

∂κi∂κt
=

1

ñk

ñk∑
j=1

(ρiςi + ∆i)φi(x̃kj)(ρtςt + ∆t)φt(x̃kj)

s2
n(ϑ∗, x̃kj)

.

(5.24)

Note that

1

s2
n(ϑ∗, x)

=
1

s2(ϑ∗, x)

1{
1 + (

∑m
r=0 ∆rφr(x)/s(ϑ∗, x)

}2 .

Now the key step is to perform a Taylor expansion for the second factor on
the RHS of the above equality,

1{
1 + (

∑m
r=0 ∆rφr(x))/s(ϑ∗, x)

}2 = 1−
2∆
{∑m

r=0(∆r/∆)φr(x)
}
/s(ϑ∗, x)

{1 + an(
∑m

r=0 ∆rφr(x))/s(ϑ∗, x)}3
,

where an is a non–random number in the interval [0, 1] that may change with
the total sample size n. With this expansion and (5.24), we get

1

ñk

ñk∑
j=1

∂2Ln,k(ϑ
∗, x̃kj)

∂κi∂κt
= (ρiςi + ∆i)(ρtςt + ∆t)

{
1

ñk

ñk∑
j=1

φi(x̃kj)φt(x̃kj)

s2(ϑ∗, x̃kj)
−Rn

}
,

(5.25)

where

Rn =
2∆

ñk

ñk∑
j=1

{
φi(x̃kj)φt(x̃kj)

s2(ϑ∗, x̃kj)

(
∑m

r=0(∆r/∆)φr(x̃kj))/s(ϑ∗, x̃kj)

{1 + an(
∑m

r=0 ∆rφr(x̃kj))/s(ϑ∗, x̃kj)}3

}
.

(5.26)

The first term in the curly brackets on the RHS of (5.25) is the average of a
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sum of iid random variables. Moreover, by the definition of s(ϑ, x), (5.15),
and recalling φk(x) = ϕk(ϑ

∗, x)1(x ∈ Sk), we have that, for all x and every
k ∈ {0, 1, . . . , m},

0 < φk(x)/s(ϑ∗, x) < 1/(ρkςk) ≤ 1/(min0≤i≤m ρiςi). (5.27)

Thus for all x and any i, t ∈ {0, 1, . . . , m},

0 < φi(x)φt(x)/s2(ϑ∗, x) < 1/(min0≤i≤m ρiςi)
2.

We can therefore invoke the strong law of large numbers to conclude that
the first term in the curly brackets on the RHS of (5.25) is of O(1). The
second term Rn, as we will show soon, is of o(1). Hence, with the fact that
∆k = O(n−δ) = o(1), we have

1

ñk

ñk∑
j=1

∂2Ln,k(ϑ
∗, x̃kj)

∂κi∂κt
=

1

ñk

ñk∑
j=1

ρiςiφi(x̃kj)ρtςtφt(x̃kj)

s2(ϑ∗, x̃kj)
+ o(1)

=
1

ñk

ñk∑
j=1

∂2Lk(ϑ
∗, x̃kj)

∂κi∂κt
+ o(1).

Similarly, for i = 1, . . . , m, we can show

1

ñk

ñk∑
j=1

∂2Ln,k(ϑ
∗, x̃kj)

∂κ2
i

=
1

ñk

ñk∑
j=1

∂2Lk(ϑ
∗, x̃kj)

∂κ2
i

+ o(1).

Therefore (5.23) holds.
By expressions (5.19) and the fact that q(x)qᵀ(x) is an integrable func-

tion, we can show that similar equalities to (5.23) hold for ∂2Ln,k(ϑ
∗, x̃kj)/∂β∂β

ᵀ

and ∂2Ln,k(ϑ
∗, x̃kj)/∂κ∂β

ᵀ. Hence (5.22) is true and the lemma is proved.
To finish up, we show Rn is of o(1). Recalling (5.15) that s(ϑ∗, x) is the

sum of the positive terms ρkςkφr(x) over k = 0, 1, . . . , m, we thus have, for
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all x,∣∣∣∣∑m
r=0(∆r/∆)φr(x)

s(ϑ∗, x)

∣∣∣∣ ≤ ∑m
r=0 |∆r/∆|φr(x)

s(ϑ∗, x)
≤
∑m

r=0 φr(x)

s(ϑ∗, x)
≤ 1

min0≤i≤m ρiςi
.

(5.28)

Consequently, for all x,∣∣∣∣∑m
r=0 ∆rφr(x)

s(ϑ∗, x)

∣∣∣∣ = |∆|
∣∣∣∣∑m

r=0 ∆r/∆rφr(x)

s(ϑ∗, x)

∣∣∣∣ ≤ ∆

min0≤i≤m ρiςi
.

Since ∆ = o(1) and 0 ≤ an ≤ 1 for all n, we can find a N , such that whenever
n > N and uniformly in x,

|an(
m∑
r=0

∆rφr(x))/s(ϑ∗, x)| < 1/2,

and so

2

3
<

1

1 + an(
∑m

r=0 ∆rφr(x))/s(ϑ∗, x)
< 2. (5.29)

Therefore, by bounds (5.27), (5.28), (5.29) and the expression (5.26) of Rn,
we have, for all n large enough,

|Rn| <
16∆

(min0≤i≤m ρiςi)3
.

Since ∆ = o(1), we have Rn = o(1). The proof now is complete.

5.8.2 Lemma 5.3: Asymptotic properties of the score

function

For ease of presentation, we first proof the lemma for δ = 1/3, i.e. when
nk/n = O(n−1/3). Then we show that the lemma also holds for arbitrary
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0 < δ < 1/3.
Recall that v = n−1/2∂`n(ϑ∗)/∂ϑ = n−1/2

∑
k,j{∂Ln,k(ϑ

∗, x̃kj)/∂ϑ}. We
first show v can be centered in a particular sense. For a function g(x)

that functionally involves the random variables {ñk}, we use ˜∫ g(x)dF̃r(x),
r = 0, . . . , m, to denote an integral that pretends ñr to be a non–random con-
stant. For example, for the previously defined sn(ϑ∗, x) =

∑m
k=0(ñk/n)φk(x),

˜∫

sn(x)dF̃r(x) =
m∑
k=0

(ñk/n)

ˆ
φk(x)dF̃r(x).

By the VSDRM assumption (5.13) and expression (5.18), we find

m∑
k=0

(ñk/n)
˜∫

{∂Ln,k(ϑ
∗, x)/∂ϑ}dF̃k = 0.

Hence, v can be “centered” as

v = n−1/2
∑
k,j

∂Ln,k(ϑ
∗, x̃kj)/∂ϑ

=
m∑
k=0

√
ñk√
n

{
1√
ñk

ñk∑
j=1

(∂Ln,k(ϑ
∗, x̃kj)

∂ϑ
−

˜∫ ∂Ln,k(ϑ
∗, x)

∂ϑ
dF̃k

)}
. (5.30)

In the second step, we show that for each given k, k = 0, . . . , m, the term
in the curly brackets of (5.30) satisfies

1√
ñk

ñk∑
j=1

(∂Ln,k(ϑ
∗, x̃kj)

∂ϑ
−

˜∫ ∂Ln,k(ϑ
∗, x)

∂ϑ
dF̃k

)
=

1√
ñk

ñk∑
j=1

(∂Lk(ϑ
∗, x̃kj)

∂ϑ
− Ẽk

∂Lk(ϑ
∗, x)

∂ϑ

)
+ op(1). (5.31)

By (5.18) and ∆k = ñk/n− ρkςk, to show the above equality, it is enough to
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show that for any given i ∈ {1, 2, . . . , m},

1√
ñk

ñk∑
j=1

{
(ρiςi + ∆i)φi(x̃kj)

sn(ϑ∗, x̃kj)
−

˜∫ (ρiςi + ∆i)φi(x)

sn(ϑ∗, x)
dF̃k

}

=
1√
ñk

ñk∑
j=1

{
ρiςiφi(x̃kj)

s(ϑ∗, x̃kj)
− Ẽk

ρiςiφi(x)

s(ϑ∗, x)

}
+ op(1). (5.32)

Note that

1

sn(ϑ∗, x)
=

1

s(ϑ∗, x)

1{
1 + (

∑m
r=0 ∆rφr(x))/s(ϑ∗, x)

} .
Recall that ∆ = max0≤k≤m |∆k|. The second factor on the RHS of the above
equality admits the following expansion

1

1 + (
∑m

r=0 ∆rφr(x))/s(ϑ∗, x)
= 1−

∑m
r=0 ∆rφr(x)

s(ϑ∗, x)
+ ∆2Qn(x), (5.33)

where

Qn(x) =

(∑m
r=0(∆r/∆)φr(x)

)2

s2(ϑ∗, x)
· 1{

1 + an(
∑m

r=0 ∆rφr(x))/s(ϑ∗, x)
}3 ,

with an being a non–random number in the interval [0, 1]. With the above
expansion, we then have

1√
ñk

ñk∑
j=1

{
(ρiςi + ∆i)φi(x̃kj)

sn(ϑ∗, x̃kj)
−

˜∫ (ρiςi + ∆i)φi(x)

sn(ϑ∗, x)
dF̃k

}

=(ρiςi + ∆i)(a+
m∑
r=0

∆rbr + ∆2c), (5.34)
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where

a =
1√
ñk

ñk∑
j=1

{
φi(x̃kj)

s(ϑ∗, x̃kj)
− Ẽk

φi(x)

s(ϑ∗, x)

}
,

br =
1√
ñk

ñk∑
j=1

{
φi(x̃kj)φr(x̃kj)

s2(ϑ∗, x̃kj)
− Ẽk

φi(x)φr(ϑ
∗, x)

s(ϑ∗, x)

}
,

c =
1√
ñk

ñk∑
j=1

{
φi(x̃kj)

s(ϑ∗, x̃kj)
Qn(x̃kj)−

˜∫ ( φi(x)

s(ϑ∗, x)
Qn(x)

)
dF̃k

}
.

Now, for any given i and k, {φi(xkj)}∞j=1 is an iid sequence and, by (5.27),

φ2
i (x)/s2(ϑ∗, x) < 1/(min0≤r≤m ρrςr)

2,

so by the central limit theorem, term a is of Op(1). Similarly, br is of Op(1)

for each r. Recalling that ∆r = o(1), we have

m∑
r=0

∆rbr = op(1).

We then look at term the c. By bound (5.27), (5.28) and (5.29), we have, for
all large enough n and all x,

|{φi(x)/s(ϑ∗, x)}Qn(x)| < 8/(min0≤r≤m ρrςr)
3.
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Consequently,

|c| = 1√
ñk

ñk∑
j=1

∣∣∣∣∣ φi(x̃kj)

s(ϑ∗, x̃kj)
Qn(x̃kj)−

˜∫ ( φi(x)

s(ϑ∗, x)
Qn(x)

)
dF̃k

∣∣∣∣∣
≤ 1√

ñk

ñk∑
j=1

{∣∣∣∣ φi(x̃kj)

s(ϑ∗, x̃kj)
Qn(x̃kj)

∣∣∣∣+
˜∫ ∣∣∣∣ φi(x)

s(ϑ∗, x)
Qn(x)

∣∣∣∣ dF̃k
}

<
16
√
nk

(min0≤l≤mρl)3
.

Recall that ∆ = O(n−δ). When δ = 1/3, we have

∆2c = O(n−2/3) ·O(n
1/2
k ) = o(1).

With the above orders of a, br and c, and the expression (5.34), we know
that equality (5.32) holds. The terms in the curly brackets on the RHS of
(5.32) are iid across j, so the LHS of that equality has a normal limiting
distribution. It follows that the item in the curly brackets of (5.30) has a
normal limiting distribution:

1√
ñk

ñk∑
j=1

{∂Ln,k(ϑ
∗, x̃kj)

∂ϑ
−

˜∫ ∂Ln,k(ϑ
∗, x)

∂ϑ
dF̃k

}
−→ N(0,Vk)

in distribution, where

Vk = Ẽk

{
∂Lk(ϑ

∗, x)

∂ϑ

∂Lk(ϑ
∗, x)

∂ϑ
ᵀ

}
+ Ẽk

{
∂Lk(ϑ

∗, x)

∂ϑ

}
Ẽk

{
∂Lk(ϑ

∗, x)

∂ϑ
ᵀ

}
.

By the above asymptotic nomality, (5.30) and
√
ñk/n =

√
ρkςk + o(1),

we have

v −→ N(0, V )

with V =
∑m

k=0 ρkςkVk. As the proof of Theorem 2.2 for complete data, we
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find V = U −UWU. The proof is complete.

Remark 5.1. In the above proof, we assumed nk/n = ρk + O(n−δ) with
δ = 1/3. We now show the general case of 0 < δ < 1/3.

Recall that we have shown ñk/n = ρk +O(n−δ). Note that the only place
we used the order of O(n−1/3) for ∆k = ñk/n− ρk is in the proof of equality
(5.32). The key to showing (5.32) lies in the expansion (5.33). Now, suppose
∆k = O(n−δ) for some 1/4 > δ > 0. Let T = d1/(2δ)e + 1, where d·e is the
ceiling function. We expand 1/{1 + (

∑m
r=0 ∆rφr(x))/s(ϑ∗, x)} to the Tth

order instead of the 2nd order as in (5.33). Then similar to expansion (5.34),

1√
ñk

ñk∑
j=1

{
(ρiςi + ∆i)φi(x̃kj)

sn(ϑ∗, x̃kj)
−

˜∫ (ρiςi + ∆i)φi(x)

sn(ϑ∗, x)
dF̃k

}

correspondingly has a Tth order expansion of the form

(ρiςi + ∆i)(a1 + a2 + . . .+ aT + rTaT+1). (5.35)

The leading term a1 is exactly the same as the leading term a in (5.34).
Each at, t = 2, 3, . . . , T, just like term

∑m
r=0 ∆rbr in (5.34), by multinomial

theorem, is a finite sum of op(1) terms, so is also op(1). Lastly, the residual
term aT+1, similar to the c in (5.34), can be shown to be bounded by

2T+2√nk
(min0≤r≤mρrςr)T+1

.

This bound, along with ∆ = max0≤r≤m |∆i| = O(n−δ) and T = d1/(2δ)e+ 1,
gives us

∆TaT+1 = o(1).

Then, in view of (5.35), we conclude that, even when nk/n = ρk +O(n−δ) for
an arbitary δ > 0, equality (5.32) is still true and so Theorem 2.2 still holds.
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5.8.3 Theorem 5.4: Asymptotic normality of the

MPELE

Based on properties of the partial information matrix (Lemma 5.2) and the
score function (Lemma 5.3), as the proof of Lemma 2.4 for complete data
(Section 2.5.2), we can show that the DPEL `n(ϑ) attains a maximum in
the interior of a 3

√
n–neighbourhood of the true parameter value ϑ∗. Along

with the fact that the DPEL is concave, we conclude that all the maxima
of DPEL must be in the interior of that neighbourhood. Consequently, the
MPELE, which is a maximum of the DPEL, must be 3

√
n–consistent.

Recall that the partial empirical information matrix is defined as

Un = −n−1∂2`n(ϑ∗)/∂ϑ∂ϑ
ᵀ
.

Expanding n−1/2∂`n(ϑ̂)/∂ϑ around ϑ∗, we get

n−1/2∂`n(ϑ̂)/∂ϑ = v −Un{
√
n(ϑ̂− ϑ∗)}+ op(1),

where the third–order residue term is of op(1) because ϑ̂ is 3
√
n–consistent

and the third–order derivatives of the DPEL `n(ϑ) are bounded by an inte-
grable function as implied by (5.20). Since ϑ̂ is the point at which `n(ϑ) is
maximized, the LHS of the above expansion is 0. Reorganizing terms and
recalling that Un converges to U almost surely by Lemma 5.2, we easily get

√
n(ϑ̂− ϑ∗) = U−1v + op(1). (5.36)

The claimed asymptotic normality of
√
n(ϑ̂ − ϑ∗) then follows from the

asymptotic normality of v , which is given by Lemma 5.3.
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5.8.4 Theorem 5.5: Asymptotic properties of the ELR

test

Proof of Theorem 5.5 (i). Recall that the ELR statistic Rn equals the DPEL
ratio statistic given by Rn = 2{`n(ϑ̂)− `n(ϑ̃)}. As the proof of Theorem 3.1
for complete data, the idea is to find suitable quadratic expansions for `n(ϑ̂)

and `n(ϑ̃) under the null model, and show that the difference of the two,
which equals the ELR statistic Rn, has a chi–square limiting distribution.

Expanding `n(ϑ̂) around ϑ∗, we get

`n(ϑ̂) = `n(ϑ∗) +
√
nvᵀ

(ϑ̂− ϑ∗)− (1/2)n(ϑ̂− ϑ∗)ᵀUn(ϑ̂− ϑ∗) + op(1),

where the last term is of op(1) since ϑ̂ − ϑ∗ = Op(n
−1/2) and the third

derivatives of `n(ϑ̂) are bounded by an integrable function. Combining the
above expansion with (5.36) and using the fact that Un = U + op(1), we
obtain

`n(ϑ̂) = `n(ϑ∗) + (1/2)vᵀU−1v + op(1).

We then give an expansion of `n(ϑ̃) under the null model g(β) = 0.
As noted in Section 3.2.2, when q < md, the null model is equivalently to
β = G(γ) for some function G: Rmd−q → Rmd and parameter γ of dimension
md − q. In addition, G is thrice differentiable, and its Jacobian matrix J =

∂G(γ∗)/∂γ is of full rank. Using exactly the same technique for the proof
of Theorem 3.1, we find the follow expansion for the DPEL under the null
model

`n(ϑ̃) = `n(ϑ∗) + (1/2)ṽᵀŨ−1ṽ + op(1),

where ṽ = {diag(Im, J)}ᵀv and Ũ = {diag(Im, J)}ᵀU{diag(Im, J)}.
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With the above expansions of `n(ϑ̂) and `n(ϑ̃), we then get

Rn = 2{`n(ϑ̂)− `n(ϑ̃)} = vᵀU−1v − ṽᵀŨ−1ṽ + op(1).

Applying the quadratic form decomposition formula given in Lemma 3.4 to
the above two quadratic forms and after cancelling terms, Rn finally simplifies
to

Rn = ξ̃
ᵀ{Λ̃−1 − J(J

ᵀ
Λ̃J)

−1
J
ᵀ}ξ̃ + op(1), (5.37)

where ξ̃ = (−UβκU−1
κκ, Imd)v and Λ̃ = Uββ − UβκU−1

κκUκβ is defined in
Theorem 5.5 (ii). The above expression of Rn is the same as that of DEL ratio
statistic based on complete samples given in (3.10), so using the same proving
technique, we find that Rn has the claimed chi–square limiting distribution.

Proof of Theorem 5.5 (ii). Let β∗ be a specific parameter value under the
null hypothesis and {Fk} be the corresponding distribution functions. Let
{Gk} be the set of distribution functions satisfying the DRM with parameter
given by the alternative model βk = β∗k + n

−1/2
k ck, k = 1, . . . , m, and G0 =

F0. Denote the distributions of the uncensored observations under the null
model and the local alternative model as {F̃k} and {G̃k}, respectively. When
the samples are generated from the {Gk}, ELR statistic still follows the
expansion (5.37), just like what we have shown in the proof of Theorem
3.2 for complete samples. The limiting distribution of Rn is therefore again
determined by that of v = n−1/2∂`n(ϑ∗)/∂ϑ, which can be found by using
Le Cam’s third lemma.

We now derive the limiting distribution of v under the local alternative
distributions {Gk}. Let w̃k =

∑ñk
j=1 log{dG̃k(x̃kj)/dF̃k(x̃kj)}. Note that v in-

volves only uncensored observations {x̃kj}, so by Le Cam’s third lemma, the
key to find this limiting distribution lies in finding the joint limiting distribu-
tion of v and

∑m
k=0 w̃k under the null limiting distributions for uncensored

148



5.8. Proofs

observations {F̃k}.
We first work on an expansion for

∑m
k=0 w̃k. For each k = 0, 1, . . . , m, let

˜Vark(·) and ˜Covk(·) be the variance and covariance operators with respect
to F̃k, respectively. Just as the proof of Lemma 3.5 for complete data, we
find that

log{dG̃k(x)/dF̃k(x)} = n
−1/2
k c

ᵀ
k{q(x)− ν̃k} − (2nk)

−1c
ᵀ
kσ̃kck +O(n−3/2)

uniformly in x, where ν̃k = Ẽkq(x) and σ̃k = ˜Vark(q(x)). Therefore we
have

w̃k =

ñk∑
j=1

log{dG̃k(x̃kj)/dF̃k(x̃kj)}

= (ñk/nk)
1/2c

ᵀ
k

{
ñ
−1/2
k

ñk∑
j=1

{q(x̃kj)− ν̃k}
}
− (1/2)(ñk/nk)c

ᵀ
kσ̃kck +O(n−1/2)

= ς
1/2
k c

ᵀ
k

{
ñ
−1/2
k

ñk∑
j=1

{q(x̃kj)− ν̃k}
}
− (1/2)ςkc

ᵀ
kσ̃kck + op(1).

where the last equality is by ñk/nk = ςk+o(1) and ñ−1/2
k

∑ñk
j=1{q(x̃kj)−ν̃k} =

Op(1).
With the above expansion of w̃k, the expression (5.30) of v , the expan-

sion (5.31) and the fact that ñk/n = ρkςk + o(1), we get the following joint
expansion for v and

∑m
k=0 w̃k,(

v∑
k w̃k

)
=

m∑
k=0

1√
ñk

ñk∑
j=1

(
(ρkςk)

1/2
{
∂Ln,k(ϑ

∗, x̃kj)/∂ϑ− Ẽk{∂Ln,k(ϑ
∗, x)/∂ϑ}

}
ς

1/2
k cᵀk{q(xkj)− νk}

)

−
m∑
k=0

(
0

(1/2)ςkc
ᵀ
kσ̃kck

)
+ op(1).

Hence v and
∑m

k=0 w̃k have a joint normal limiting distribution with mean
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vector and covariance matrix given by(
0
ᵀ
, −1

2

∑
k

ςkc
ᵀ
kσ̃kck

)ᵀ

and

(
V τ̃

τ̃ ᵀ ∑
k ςkc

ᵀ
kσ̃kck

)
,

with

τ̃ =
m∑
k=1

ρk
1/2ςkCovk{∂Lk(ϑ

∗, x)/∂ϑ, q
ᵀ
(x)}ck

Because the second entry of the mean vector equals negative half of the
lower–right entry of the covariance matrix, the condition of Le Cam’s third
lemma is satisfied. By that lemma, we conclude that

v −→ N(τ̃ , V )

in distribution, under the local alternative distributions {Gk}.
We have argued at the beginning of the proof that, under the {Gk}, the

ELR statistics Rn is still approximated by ξ̃ᵀ{Λ̃−1 − J(JᵀΛ̃J)
−1
Jᵀ}ξ̃ with

ξ̃ = (−UβκU−1
κκ, Imd)v . The vector ξ̃ has a normal limiting distribution

because v has one as we have just shown. Based on this result, just like
the proof of Theorem 3.2 for complete samples, the above quadratic form
is found to have the claimed non–central chis–square limiting distribution.
This completes the proof.

5.9 Appendix: Some thoughts on the weighted

EL inference for Type I censored samples

For inference under the DRM for two samples with randomly censored ob-
servations, Ren (2008) proposed to use the so–called weighted empirical like-
lihood (WEL) function. This leads us to wonder whether this WEL is also
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a useful tool for inference based on Type I censored samples. We find that
in fact it results in an inconsistent estimator for the DRM scaling parameter
α, as demonstrated in this section.

Suppose the observations are randomly right–censored. The idea of the
WEL is to construct a likelihood type function based on the Kaplan–Meier
estimator (Kaplan and Meier, 1958) of the {Fk}, which is defined as

F̌k(t) =

sk∑
j=1

wkj1{ykj ≤ t},

where sk is the total number of distinct uncensored observations in the kth

sample and yk1 < yk2 < · · · < yksk are the ordered values of those distinct
uncensored observations. The {wkj}skj=1 are a set of positive weights. Let dkj,
j = 1, · · · , sk, be the number of failures at ykj in the kth sample, and rkj be
the number at risk just prior to ykj in that sample. The weights {wkj} are
given by

wk1 =
dk1

rk1

and wkj =
dkj
rkj

j−1∏
l=1

rkl − dkl
rkl

, j = 2, . . . , sk.

and for a positive integer t ≤ sk, we have

t∑
j=1

wkj = 1−
t∏

j=1

rkj − dkj
rkj

. (5.38)

When the largest censored observation is larger than the largest uncensored
observation,

∑sk
j=1wkj < 1 and F̌k is a not proper CDF.

For the {Fk} that satisfy the DRM assumption, Ren (2008) defined the
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WEL to be

L(w)
n (F0, α, β)

=
m∏
k=0

sk∏
j=1

{dFk(ykj)}nkwkj

=

{
m∏
k=0

sk∏
j=1

{
dF0(ykj)

}nkwkj} · exp

{
m∑
k=1

sk∑
j=1

nkwkj
{
αk + βkq(ykj)

}}
.

(5.39)

The corresponding profile log–WEL is defined as

l(w)
n (α, β) = sup

F0

{logL(w)
n (F0, α, β) :

m∑
k=1

sk∑
j=1

exp
{
αl + βlq(ykj)

}
dF0(ykj) = 1,

l = 0, 1, · · · , m}.

In the case of two samples with randomly right–censored observations, Ren
showed that, under suitable conditions, the maximumWEL estimator (MWELE)
of (α, β) is consistent and asymptotically normal, and for a special form of
the density ratio, the corresponding likelihood ratio statistic has a scaled
chi–square limiting distribution.

We now look at a direct adaptation of the WEL to the case of Type I
right–censored samples. For Type I right–censored samples, rkj−dkj = rk(j+1)

for j = 1, . . . , sk − 1, and rksk − dksk = nk − ñk. Hence, by (5.38), we get

sk∑
j=1

wkj =
ñk
nk
.

Note that ñk/nk → ςk almost surely as n→∞, so when ςk < 1,
∑sk

j=1wkj < 1

almost surely for all large n, and consequently F̌k is not a proper CDF. In
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this case, the constraint in the profile log–WEL should be changed to

m∑
k=1

sk∑
j=1

exp
{
αl + βlq(ykj)

}
1(ykj ∈ Sl)dF0(ykj) = ςl, (5.40)

because the WEL is essentially constructed using the uncensored observations
only. Assuming no ties in the uncensored observations, then sk = ñk and
wkj = 1/nk for all j = 1, . . . , ñk. Now, the WEL (5.39) can be written as

L(w)
n (F0, α, β)

=

{
m∏
k=0

sk∏
j=1

{
dF0(ykj)

}nkwkj} · exp

{
m∑
k=1

sk∑
j=1

nkwkj
{
αk + βkq(ykj)

}}

=

{
m∏
k=0

ñk∏
j=1

dF0(x̃kj)

}
exp

{
m∑
k=1

ñk∑
j=1

{
αk + βkq(x̃kj)

}
1(x̃kj ∈ Sk)

}
,

and the corresponding constraint (5.40) can alternatively be written as

m∑
k=0

ñk∑
j=1

exp{αl + β
ᵀ
l q(x̃kj)}1(x̃kj ∈ Sl)dF0(x̃kj) = ςl.

Strikingly, this WEL has the same expression as the PEL (5.6) except that
the ℘kj, which is dF̃0(x̃kj), and κk in (5.6) are replaced by dF0(x̃kj) and αk
here. The profile log–WEL of α and β is then defined to be

l(w)
n (α, β) = sup

F0, {ςk}

{
logL(w)

n (F0, α, β) :

m∑
k=0

ñk∑
j=1

exp{αl + β
ᵀ
l q(x̃kj)}1(x̃kj ∈ Sl)dF0(x̃kj) = ςl,

dF0(x̃kj) ≥ 0, 0 < ςl ≤ 1, l = 0, . . . , m
}
.

Clearly, the L(w)
n (F0, α, β) is functionally independent of the {ςl}, so the
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above supremum is attained on the boundary of space of ςl’s when ςl = 1 for
all l = 0, 1, . . . , m. Hence,

l(w)
n (α, β) = sup

F0

{
l(w)
n (F0, α, β) :

m∑
k=0

ñk∑
j=1

exp{αl + β
ᵀ
l q(x̃kj)}1(x̃kj ∈ Sl)dF0(x̃kj) = 1,

dF0(x̃kj) ≥ 0, l = 0, . . . , m
}
.

Again, l(w)
n (α, β) has the same mathematical expression as that for the profile

log–PEL (5.8), except that the ℘kj and κk in (5.8) are now replaced by
dF0(x̃kj) and αk. Hence the MWELE of (α, β) has exactly the same value
as the MPELE of (κ, β). Based on this result and the fact that the MPELE
of (κ, β) is a consistent estimator, we conclude that the MWELE of (α, β)

converges to (κ∗, β∗) as the total sample size n goes to infinity. Since in
general κ∗k = α∗k + log ς∗0 − log ς∗k 6= α∗k, where ς∗k is the true value of ςk, the
MWELE of (α, β) is not a consistent estimator.
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Chapter 6

R software package “drmdel” for
DEL inference under the DRM

This chapter introduces and illustrates the use of an R software package,
drmdel , that we wrote for the DEL inference under the DRM based on mul-
tiple complete samples. This package can be used to calculate the MELE
of the DRM parameter, perform the DELR test, estimate population distri-
bution functions, estimate quantiles of the population distributions as found
in Chen and Liu (2013), compare quantiles from different distributions us-
ing a Wald test, and estimate densities of different populations as found in
Fokianos (2004). The package and its manual can be download from The
Comprehensive R Archive Network (CRAN) at http://cran.r-project.

org/web/packages/drmdel/index.html; alternatively, it can be installed
within R using command install.packages("drmdel").

An extension of this package to the case of Type I censored samples
is under development by the time this thesis is written and will soon be
available.

6.1 Under the hood: consideration and

implementation

As we have seen in earlier chapters, the first and a key step of EL inference
under the DRM is to compute the MELEs of the DRM parameter θ and
the baseline distribution F0. For multiple complete samples, the MELE θ̂
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6.1. Under the hood: consideration and implementation

can be computed as the point at which the concave function DEL (2.11) is
maximized. After obtaining θ̂, the MELE {p̂kj} of the baseline distribution
can then be computed through (2.9).

The core of the above computational procedure is a smooth concave max-
imization problem, and for such a problem, the quasi–Newton methods (No-
cedal and Wright, 2006) are probably the most popular methods because they
are fast, reliable, and implemented in most computational software packages.
A quasi–Newton method has a super–linear convergence rate, i.e. faster than
linear rate but slower than quadratic rate, and for each iteration, its compu-
tational complexity is O(p2 +pCf ), where p is the dimension of the parameter
of the function to be optimized and Cf is the number of operations needed
for one function evaluation. Our particular choice is the famous Broyden–
Fletcher–Goldfarb–Shanno (BFGS) algorithm, a quasi–Newton method si-
multaneously discovered by Broyden (1970), Fletcher (1970), Goldfarb (1970)
and Shanno (1970), because it is well ingrained in the R optim function.

As noted above, the speed of the maximization procedure is influenced
by the speed of function evaluation. And function evaluation becomes the
main factor when the dimension p of the parameter is not very high. The
evaluation of the object function DEL (2.11) is straightforward but involves
a multiple summation. With such a structure, an R implementation of func-
tion evaluation will be either cumbersome without loops or very slow with
loops. We hence implement the function and its Jacobian evaluation in C
for both speed and convenience. The evaluated function and its Jacobian
then are passed to the R optim function for maximization. In principle, the
speed of the optimization can be increased even more if we use a “BFGS”
procedure implemented in C to save the communication time between R and
C. In practice, we found such an approach does not provides a noticeable
speed gain. Moreover, since our intention is to write an R package, an R
implementation of the algorithm is supposed to provide extra reliability, and
R users who are familiar with optim function will find it more convenient.
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6.2. DRM fitting

These considerations lead to our final implementation of function and its
Jacobian evaluation in C, and optimization in R.

The computation of p̂kj (2.9) is also implemented in C for maximal com-
putational efficiency. With this estimator of dF0(xkj), by applying the DRM
assumption (2.1), we estimate dFr(xkj), r = 1, . . . , , m, by

p̂
(r)
kj = dF̂r(xkj) = exp{α̂r + β̂

ᵀ
rq(xkj)}p̂kj.

The other inferences tasks described in the sequel are all based on the
values θ̂ and {p̂(r)

kj }, so mostly implemented in R unless otherwise noted.

6.2 DRM fitting

The primary function of the package is drmdel, which fits a DRM to data,
calculates the MELEs θ̂ and {p̂kj}, and performs the DELR test of Chapter
3 for hypotheses about the DRM parameter β. This function should be used
prior to any other function in the package for performing EL inference, since
all others depend on the output of this one.

The function has the following generic form:

drmdel(x, n_samples, basis_func, g_null=NULL,

g_null_jac=NULL, par_dim_null=NULL, ...).

The arguments are:

x: a long vector containing all m+ 1 multiple samples in the order of x0,

x1, . . . , xm, where x0 is the sample from the baseline distribution and
xk, k = 1, . . . , m, is the kth non–baseline sample.

n_samples: a vector indicating the size of each sample, i.e. (n0, n1, . . . ,

nm).
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6.2. DRM fitting

basis_func: the basis function q(x) of the DRM to be used. It could
be either an integer between 1 and 11 or an R function. The integers
represent 11 different built–in basis functions as follows:

1: q(x) = x.

2: q(x) = log |x|.

3: q(x) =
√
|x|.

4: q(x) = x2.

5: q(x) = (x, x2)ᵀ.

6: q(x) = (x, log |x|)ᵀ.

7: q(x) = (log |x|,
√
|x|, x)ᵀ.

8: q(x) = (log |x|,
√
|x|, x2)ᵀ.

9: q(x) = (log |x|, x, x2)ᵀ.

10: q(x) = (
√
|x|, x, x2)ᵀ.

11: q(x) = (log |x|,
√
|x|, x, x2)ᵀ.

g_null: the function G specifying the null hypothesis of (6.1), if there is
one. The default value of NULL represents that there is no hypothesis
specified.

g_null_jac: the Jacobian matrix (first–order derivatives) of G, if avail-
able.

par_dim_null: dimension of the null parameter γ in the hypothesis test-
ing problem (6.1), if there is one.

...: further arguments to be passed to the R function optim for max-
imizing the DEL. See help(optim) for details. The current default
values for “control$method” and “control$maxit” are set to "BFGS"
and 10000, respectively.
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6.2. DRM fitting

The output of the function is an R list object containing lots of elements. A
complete list of these output elements can be found by using R command
help(drmdel). We here only describe the most important ones as follows:

mele: the MELE of the DRM parameter in the form of (θ̂T1 , . . . , θ̂
T
m),

where θk = (αk, β
ᵀ
k)

ᵀ
.

p_est: the MELE {p̂(r)
kj } of {dFr(xkj)}, r = 0, 1, . . . , m. This is a data

frame with the following three columns:

k: label of the populations, k = 0, 1, . . . , m.

x: data points. It specifies the value of xkj at which dFk(x) is
estimated.

p_est: values of {p̂(r)
kj } for r = 0, 1, . . . , m.

info_mat: the estimated information matrix, Û .

mele_null: the MELE of the DRM parameters γ under the null model
of (6.1), if available. This is a list object with two elements:

alpha: the MELE of the DRM parameter α under the null model.

gamma: the MELE of the null parameter γ.

delr: the value of the DELR statistic for the hypothesis testing prob-
lem (6.1). When no hypothesis (g_null) is given, this is the value of
the DELR statistic for testing the hypothesis that all the distribution
functions are equal.

df: degrees of freedom of the chi–square limiting distribution of the
DELR statistic under the null model.

p_val: p–value of the DELR test.

We now give an example to illustrate the use of the drmdel function for
DRM fitting.
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6.2. DRM fitting

Example 6.1 (Fitting a DRM and calculating the MELE). Suppose we have
m+ 1 = 5 samples generated from gamma distributions as follow.

set.seed(25)

# sample sizes

n_samples <- c(100, 200, 180, 150, 175) # sample sizes

# data generation

x0 <- rgamma(n_samples[1], shape=5, rate=1.8)

x1 <- rgamma(n_samples[2], shape=12, rate=1.2)

x2 <- rgamma(n_samples[3], shape=12, rate=1.2)

x3 <- rgamma(n_samples[4], shape=18, rate=5)

x4 <- rgamma(n_samples[5], shape=25, rate=2.6)

# concatenating the samples to a long data vector

x <- c(x0, x1, x2, x3, x4)

We now fit a DRM to these samples. Recall that the appropriate DRM
basis function for gamma distributions is q(x) = (x, log x)ᵀ, which is the
built–in basis function 6 of the drmdel function. We hence fit a DRM with
such a basis function to the data as follows.

# load the drmdel package into R

library(drmdel)

# fit the DRM to data

drmfit_ex1 <- drmdel(x=x, n_samples=n_samples, basis_func=6)

# checking the names of the outputs

names(drmfit_ex1)
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6.2. DRM fitting

As we have noted, the output of a fitted DRM object has lots of compo-
nents, therefore hard to read. We hence provide a function, summaryDRM,
to accompany drmdel, which reads a fitted DRM object and gives a nicely
formatted summary of its output.

# checking the summary of the fitted DRM object

summaryDRM(drmfit_ex1)

The returned summary is:

Basic information about the DRM:

Number of samples (m+1): 5

Basis function: 6

Dimension of the basis function (d): 2

Sample sizes: 100 200 180 150 175

Sample proportions (rho): 0.124 0.248 0.224 0.186 0.217

Maximum empirical likelihood estimator (MELE) of the DRM

parameter:

alpha[] beta[,1] beta[,2]

F1 -22.14 -0.1935 13.5

F2 -19.49 0.0243 11.4

F3 -4.95 -4.6389 17.8

F4 -32.88 -1.2457 22.8

Default hypothesis testing problem:

H_0: All distribution functions, F_k’s, are equal.

H_1: One of the distribution functions is different from

the others.

Dual empirical likelihood ratio (DELR) statistc: 1035.261

Degree of freedom: 8

p-value: 0

161



6.2. DRM fitting

Summary statistics of the estimated F_k’s (mean, var --

variance, sd -- standard deviation, Q1 -- first quartile, Q3

-- third quartile, IQR -- inter-quartile range):

mean var sd Q1 Q3 IQR

F0 2.64 1.59 1.262 1.75 3.25 1.51

F1 10.20 7.70 2.776 8.11 11.82 3.71

F2 10.29 9.31 3.051 7.99 11.96 3.98

F3 3.61 0.71 0.843 3.06 4.20 1.14

F4 9.61 4.10 2.024 8.07 10.96 2.89

In the above DRM fitting, we have used the built–in basis function 6.
An alternative way to specify the basis function of the DRM is to directly
pass an R function to the drmdel function. This way, we can use any basis
function we want, but not limited to the built–in basis functions. However,
if the basis function of our choice is one of the build–ins, we should always
use the built–in for a higher computational efficiency. The following code
illustrates the use of an outer basis function.

# specify a basis function

basis_gamma <- function(x) return(c(x, log(abs(x))))

# fit the DRM with this specified basis function

drmfit_ex1a <- drmdel(x=x, n_samples=n_samples,

basis_func=basis_gamma)

# One can see the summary of this DRM fit is exactly the

# same as that of the previous fit with basis_func=6

summaryDRM(drmfit_ex1a)

In addition to summaryDRM, we give another function, meleCov, to comple-
ment the drmdel function. The meleCov function estimates the asymptotic
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covariance matrix of the centered and scaled MELE θ̂,
√
n(θ̂ − θ∗). Recall

that the asymptotic covariance matrix of
√
n(θ̂ − θ∗) is given by Theorem

2.5 as U−1−W , where U is the information matrix and W , which is defined
in Theorem 2.2, is a matrix determined by sample proportions. Thus, to
estimate the asymptotic covariance matrix of

√
n(θ̂− θ∗), the key is to esti-

mate U−1. A consistent estimator of U is given by Û = −n−1∂ln(θ̂)/∂θ∂θ
ᵀ.

Although U is invertible, Û is not garanteed to be invertible; and in such a
case, R will return an error and stop the program. Hence we implement this
in a separate function meleCov to increase the stability of the drmdel func-
tion. This function should be used in the form of meleCov(drmfit), where
drmfit is a fitted DRM object, i.e. an output from the drmdel function. For
example, the asymptotic covariance matrix of

√
n(θ̂ − θ∗) in Example 6.1

can be estimated with the command meleCov(drmfit_ex1).

6.3 The DELR test

From the output of the DRM fit of Example 6.1, we see that the drmdel

function by default tests the hypothesis

H0 : F0 = F1 = . . . = Fm against H1 : Fi 6= Fj, for some i and j,

which is equivalent to

H0 : β = 0 against H1 : β 6= 0,

under the DRM. We now illustrate how to perform DELR tests for more
complicated hypotheses.

In our package, a DELR test for a general composite hypothesis of the
form (3.1) is also carried out by the drmdel function. Recall that an equiv-
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alent form of that hypothesis is given by

H0 : β = G(γ) against H1 : β 6= G(γ), (6.1)

where G: Rmd−q → Rmd is a smooth function and γ is a lower dimensional
parameter. With this equivalent representation of the hypothesis (3.1), the
maximization of the DEL under the new null model is with respect to γ
and therefore does not involve any constraint. This allows a more efficient
implementation of the DELR test and hence we adopt this representation in
our software.

Example 6.2 (The DELR test for composite hypothesis). Adopt the data
setting of Example 6.1. Consider the hypothesis testing problem

H0 : β1 = β2 and β3 = (−3.2, 13)
ᵀ

against (6.2)

H1 : β1 6= β2 or β3 6= (−3.2, 13)
ᵀ
.

Under the null model, the free DRM slope parameter becomes γ = (βT1 , β
ᵀ
4).

And the hypothesis testing problem can be equivalently represented using the
form (6.1) with

G = Aγ + b,

where

A =

(
I2 I2 02×2 02×2

02×2 02×2 02×2 I2

)ᵀ

and b = (0
ᵀ
4, −3.2, 13, 0

ᵀ
2)

ᵀ

To test such a hypothesis, we need to pass the function G to the argument
g_null of the drmdel function.

m <- 4 # number of non--baseline distributions
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d <- 2 # dimension of the basis function

# dimension of the DRM parameter beta

dim_beta <- m*d

# dimension of the null parameter gamma

dim_gamma <- dim_beta - 2*d

# A matrix

A <- matrix(rep(0, dim_beta*dim_gamma), dim_beta, dim_gamma)

A[1:d, 1:d] <- diag(2)

A[(d+1):(2*d), 1:d] <- diag(2)

A[(3*d+1):(4*d), (d+1):(2*d)] <- diag(2)

# b vector

b <- numeric(dim_beta)

b[(2*d+1):(3*d)] <- c(-2.3, 13)

# null mapping

g_null <- function(par_gamma) {

par_beta <- as.vector(A %*% par_gamma) + b

return(par_beta)

}

Optionally, we can also pass the Jacobian matrix of G to the drmdel

function through g_null_jac argument to accelerate the maximization of the
DEL under the null model. In general, this Jacobian matrix is a function of
γ, so has to be passed to drmdel as a function. In this particular example,
the Jacobian matrirx of G is just a constant matrix, A.

# Jacobian matrix of the null mapping

g_null_jac <- function(par_gamma) return(A)

With the above preparation, we are ready to perform a DELR test for the
hypothesis testing problem (6.2).
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drmfit_ex2 <- drmdel(x=x, n_samples=n_samples, basis_func=6,

g_null=g_null, g_null_jac=g_null_jac,

par_dim_null=dim_gamma)

summaryDRM(drmfit_ex2)

The part of the output from summaryDRM(drmfit_ex2) for the DELR test is

Dual empirical likelihood ratio (DELR) statistc: 4.067291

Degree of freedom: 4

p-value: 0.397

showing that we find no strong evidence to reject the null hypothesis. The
other part of the output is the same as the one given in Example 6.1 because
we used the same data and basis function to fit the DRM.

6.4 EL population CDF estimation

As noted in Section 6.1, dFr(xkj), r = 1, . . . , , m, is estimated by p̂(r)
kj . The

corresponding estimator of Fr(x) is then given by

F̂r(x) = n−1
∑
k, j

p̂
(r)
kj 1(xkj ≤ x).

This is exactly the MELE of Fr(x) defined in (2.10). This CDF estimator is
a step function which jumps at each distinct point of the data values. One
may linearly interpolate between every two adjacent distinct data values to
get a continuous version of this CDF estimator.

The drmdel package implements the above population CDF estimator
through the cdfDRM function:

cdfDRM(k, x=NULL, drmfit, interpolation=TRUE).

The arguments are:

166

http://cran.r-project.org/web/packages/drmdel/index.html


6.4. EL population CDF estimation

k: a vector of labels of populations whose CDFs are to be estimated,
with k[i] = 0, 1, . . . , ,m.

x: can be:

(1) a list whose length is the same as the argument “k”. The ith

component of this list must be a vector of values at which the
CDF of population k[i] is estimated.

(2) a single vector of values, in which case, each CDF is estimated at
the same values given by this vector.

(3) NULL (default), in which case, each CDF is estimated at the
values of all the observed data points.

drmfit: a fitted DRM object, i.e. an output from the drmdel function.

interpolation: a logical variable specifying whether to linearly inter-
polate the EL CDF estimator to make it continuous. The default value
is TRUE.

The output of the function is an R list object whose length is the same as
its argument “k”. The ith component of this list is a data frame with the
following two columns:

x: values at which the CDF of population k[i] is estimated.

cdf_est: the corresponding estimated CDF values of population k[i].

Example 6.3 (EL CDF estimation under the DRM). Adopt the data and
DRM setting of Example 6.1.

To estimate the F1(x) evaluated at (3, 7.5, 11) and the F3(x) evaluated at
(2, 6), we use:

cdf_est <- cdfDRM(k=c(1, 3), x=list(c(3, 7.5, 11), c(2, 6)),

drmfit=drmfit_ex1)
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# show the output

names(cdf_est)

cdf_est$F1

cdf_est$F3

To estimate the F2(x) and F4(x) at the values of all the observed data
points, we use:

cdf_est1 <- cdfDRM(k=c(2, 4), drmfit=drmfit_exp1)

# show the output

names(cdf_est1)

cdf_est1$F2

cdf_est1$F4

6.5 EL quantile estimation

Based on the EL CDF estimator F̂r(x), Chen and Liu (2013) proposed to
estimate the αth, α ∈ (0, 1), quantile ξr of Fr(x) as

ξ̂r = inf{x : F̂r(x) ≥ α}.

They showed that the EL quantile estimator of a vector of quantiles from
possibly different distributions is jointly asymptotically normal and is more
efficient than the sample quantile based on the rth sample alone.

As noted by Chen and Liu (2013), a quantile estimator based on a discrete
distribution function has some disadvantage on estimating lower (or higher)
quantiles of a continuous distribution: it tends to over (under) estimate
a lower (higher) quantile. To adjust for this effect, they modified the ξ̂r
to ξ̂r − (2nr)

−1 for lower quantile estimation, and commented that such a
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modification does not change the first–order asymptotics of the EL quantile
estimator. One can similarly modify ξ̂r for higher quantile estimation.

Function quantileDRM calculates the above quantile estimator ξ̂ for a
vector of quantiles of possibly different populations, and provides an estimate
of the asymptotic covariance matrix of

√
n(ξ̂−ξ∗), where ξ∗ is the true value

of ξ. The form of quantileDRM is:

quantileDRM(k, p, drmfit, cov=TRUE, interpolation=TRUE,

adj=FALSE, adj_val=NULL, bw=NULL,

show_bw=FALSE).

Its arguments are:

k: a vector of labels of populations whose quantiles are to be estimated,
with k[i] = 0, 1, . . . , ,m.

p: a vector of probabilities at which the quantiles are to be estimated.
Three combinations of k and p are allowed:

(1) k and p have the same length: the p[i]th quantile of population
k[i] will be estimated for each i.

(2) k is a single integer but p is a vector: the p[i]th quantile of the
same population k will be estimated for each i.

(3) k is a vector but p is single integer: the pth quantile of population
k[i] will be estimated for each i.

drmfit: a fitted DRM object.

cov: a logical variable specifying whether to estimate the asymptotic
covariance matrix of the quantile estimator. With a TURE value, the
speed of the quantile estimation will be slower. The default is TRUE.

interpolation: The EL quantile estimator is based on the EL CDF
estimator. Hence the way the EL CDF estimate is calculated affects
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the result of the quantile estimation. This argument is to be passed to
the cdfDRM function for tweaking the EL CDF estimator. Its meaning
and usage are explained when we introduce the cdfDRM function in
Section 6.4.

adj: a logical variable specifying whether to adjust the EL quantile es-
timator by adding a term for lower or higher quantile estimation. The
default value is FALSE.

adj_val: a vector of the same length as k (or as p if the length of k is 1)
containing the values of adjustment terms for lower or higher quantile
estimation, if adj=TRUE. The default value, NULL, uses −(2nk[i])

−1,
where nk[i] is the size of the k[i]th sample, for each i, to adjust the EL
quantile estimator for lower quantile estimation.

bw: to estimate the asymptotic covariance matrix of the EL quantile
estimator, the densities of the population distributions have to be es-
timated. An EL kernel density estimator (described in Section 6.7) is
used for this purpose. The argument bw is a vector of the same length
as k containing the bandwidths needed by that kernel density estima-
tor. If bw is a single value, the same bandwidth will be used for each
population k[i]. The default bw value, NULL, uses that given by (6.4)
for each different k[i]. Note that bw is only needed for estimating the
asymptotic covariance matrix of the EL quantile estimator, but not the
population quantiles themselves.

show_bw: a logical variable specifying whether to output bandwidths
when cov=TRUE. The default value is FALSE.

The output of the function is a list object containing the following compo-
nents:

est: estimated quantiles.
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cov: estimated asymptotic covariance matrix of the quantile estimator,
available only if cov=TRUE at input.

bw: bandwidths used for EL kernel density estimation required for esti-
mating the asymptotic covariance matrix of the EL quantile estimator,
available only if cov=TRUE and show_bw=TRUE at input.

Example 6.4 (EL quantile estimation under the DRM). Adopt the data and
DRM setting of Example 6.1. Denote the αth, α ∈ (0, 1), quantile of the kth,
k = 0, 1, . . . , m, population as ξk, α.

To estimate ξ0, 0.25, ξ0, 0.6, ξ1, 0.1 and ξ2, 0.1, we do:

# estimate quantiles and show the output

(qe <- quantileDRM(k=c(0, 0, 1, 2), p=c(0.25, 0.6, 0.1, 0.1),

drmfit=drmfit_ex1))

To estimate the 0.05th, 0.2th and 0.8th quantiles of F3(x), we do:

(qe1 <- quantileDRM(k=3, p=c(0.05, 0.2, 0.8),

drmfit=drmfit_ex1))

To estimate the 0.05th quantiles of F1(x), F3(x) and F4(x), we do:

(qe2 <- quantileDRM(k=c(1 , 3, 4), p=0.05,

drmfit=drmfit_ex1))

6.6 Quantile comparison

A bonus provided by the asymptotic theory of the EL quantile estimator is
that it enables a Wald test for comparing the quantiles of different popula-
tions, an important task of our long term monitoring program for lumber
quality as noted in Chapter 1.
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Let ξ be a K–vector of quantiles of possibly different populations. Let A
be a given M ×K matrix with M ≤ K, and b be a given vector of length K.
For the following linear hypothesis about ξ,

H0 : Aξ = b against H1 : Aξ 6= b,

a Wald test statistic is defined to be

Wn = n(Aξ̂ − c)ᵀ(AΣ̂ξA
ᵀ
)−1(Aξ̂ − c),

where Σ̂ξ is a consistent estimator of the asymptotic covariance matrix of
√
n(ξ̂− ξ∗). By the asymptotic normality of ξ̂, Wn has a χ2

M limiting distri-
bution.

The above Wald test for a linear hypothesis about population quantiles
can be carried out by the quantileCompWald function:

quantileCompWald(quantileDRMObject, n_total, pairwise=TRUE,

p_adj_method="none", A=NULL, b=NULL).

The arguments are:

quantileDRMObject: an output from the quantileDRM function. It must
contain an estimate of the asymptotic covariance matrix of the EL
quantile estimator, quantileDRMobject$cov; that is, the argument
cov at the input of the quantileDRM function must be set to TRUE

when running quantileDRM.

n_total: the total sample size.

pairwise: a logical variable specifying whether to perform pairwise com-
parisons of the quantiles. The default is TRUE.

p_adj_method: the method for adjusting p–values for multiple compar-
isons, provided pairwise=TRUE. This is implemented through the R
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function p.adjust, and the available methods are: holm, hochberg,
hommel, bonferroni, BH, BY, fdr and none. See help(p.adjust) for
details. The default value is none, i.e. no adjustment.

A: matrix A in the linear hypothesis. The default is NULL, i.e. no linear
hypothesis to test.

b: vector b in the linear hypothesis. This must be given if the argument
A is not NULL.

The output is a list object containing the following components:

p_val_pair: p–values of pairwise comparisons, in the format of a lower
triangular matrix, available only if pairwise=TRUE at input.

p_val: p–value of the linear hypothesis test, available only if the argu-
ments A and b are not NULL at input.

Example 6.5 (Comparison of popuation quantiles under the DRM). Adopt
the data and DRM setting of Example 6.1 and the notation of Example 6.4.

We compare the 5th percentiles of population 0, 1, 2 and 3, i.e.

H0 : ξ0, 0.05 = ξ1, 0.05 = ξ2, 0.05 = ξ3, 0.05

against (6.3)

H1 : ξi, 0.05 6= ξj, 0.05 for some i and j.

We first estimate these quantiles and the asymptotic covariance matrix of the
EL quantile estimator using

qe <- quantileDRM(k=c(0, 1, 2, 3), p=0.05,

drmfit=drmfit_ex1)

To compare the quantiles using a Wald test, we need to specify the contrast
matrix A and the vector b; and for the hypothesis testing problem (6.3), one
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way of doing this would be to set

A =

1 −1 0 0

1 0 −1 0

1 0 0 −1


and correspondingly b = 0.

# specify the matrix A

A <- matrix(rep(0, 12), 3, 4)

A[1,] <- c(1, -1, 0, 0)

A[2,] <- c(1, 0, -1, 0)

A[3,] <- c(1, 0, 0, -1)

# specify the vector b

b <- rep(0, 3)

With the above preparation, we now can compare the quantiles as follows:

# Adjust the p-values for pairwise comparisons using the

# "holm" method.

(quantComp <- quantileCompWald(qe, n_total=sum(n_samples),

p_adj_method="holm", A=A,

b=b))

The output is

$p_val_pair

q1 q2 q3 q4

q1 NA NA NA NA

q2 0.000000e+00 NA NA NA

q3 0.000000e+00 0.537371 NA NA

q4 1.159073e-13 0.000000 0 NA

174



6.7. EL kernel density estimation

$p_val

[1] 0

indicating that overall the quantiles are different, but not enough evidence
(p–value = 0.537371) is found to reject the hypothesis that ξ1, 0.05 = ξ2, 0.05,
which, in truth, are equal.

6.7 EL kernel density estimation

With the EL CDF estimator F̂r(x), it is easy to construct an EL kernel
density estimator for Fr(x). LetK(·) ≥ 0 be a commonly used kernel function
such that

´
K(x)dx = 1,

´
xK(x)dx = 0 and

´
x2K(x)dx < ∞. For a

given bandwidth b > 0, put Kb(x) = (1/b)K(x/b). The EL Kernel density
estimator of Fr(x) is defined as

f̂r(x) =

ˆ
Kb(x− y)dF̂r(x) =

∑
k,j

Kb(x− xkj)p̂(r)
kj .

This estimator is originally proposed by Fokianos (2004). He showed that
the asymptotic mean integrated square error of this estimator is smaller than
that of the classical kernel density estimator with empirical weight of 1/nr

based on the rth sample alone.
Kernel density estimation requires a bandwidth b to be specified in ad-

vance. For the classical density estimation based on n iid observations, De-
heuvels (1977) and Silverman (1986) suggested to use b = 1.06n−1/5 min{σ̂,
R̂/1.34}, where σ̂ and R̂ are the estimated standard deviation and interquar-
tile range (IQR) of the population, respectively. We adopt this formula in
EL kernel density estimation and in our software uses the default bandwidth
of

br = 1.06n−1/5 min{σ̂r, R̂r/1.34} (6.4)
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for the density estimation of the rth population, where n is the total sample
size, and σ̂r and R̂r are the standard deviation and IQR of the estimated
CDF F̂r(x) (2.10), respectively.

The above f̂r(x) conforms with the general definition of a kernel density
estimator with weights given by {p̂(r)

kj }, so can be easily implemented using
the R function density. The densityDRM function of our package provides
an easy interface for automatically passing the data, {xkj}, and the weights,
{p̂(r)

kj }, to the R density function. The densityDRM function has a generic
form of

densityDRM(k, drmfit, interpolation=TRUE, ...).

The arguments are:

k: a single label of the population whose density is to be estimated,
k ∈ {0, 1, . . . , m}.

drmfit: a fitted DRM object.

interpolation: a logical variable to be passed to quantileDRM and then
ultimately to cdfDRM, for estimating the population standard deviations
and IQRs required for calculating the default bandwidth (6.4). The
default value is TRUE.

...: further arguments to be passed to the R density function for kernel
density estimation. See help(density) for details. One can customize
bandwidth using the bw argument of the density function. The argu-
ments x and weights should not be specified because they are supposed
to be extracted automatically from the fitted DRM object drmfit. If
specified, they will be automatically replaced by those extracted from
drmfit and a warning message is returned.

The output is an object of class “density”, which comes from the R density

function.
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Example 6.6 (EL kernel density estimation). Adopt the data and DRM
setting of Example 6.1.

We can estimate the density of F3 using command

dens_pop3 <- densityDRM(k=3, drmfit=drmfit).

We compare the EL kernel density estimator, the classical kenel density esti-
mator based on the third sample alone, and the true density curve by plotting
them.

# Plotting the EL kernel density estimates

plot(dens_pop3, xlim=range(c(0, 10)), ylim=range(c(0, 0.5)),

main=expression(

paste("Kernel density estimators (KDE) of ", F[3],

sep="")),

xlab="x")

# Adding the classical kernel density curve of F_3 based

# on the third sample alone

lines(density(x3), col="blue", lty="28F8")

# Add the true density curve of F_3

lines(seq(0, 10, 0.01), dgamma(seq(0, 10, 0.01), 18, 5),

type="l", col="red", lty="dotted")

legend(6.5, 0.48,

legend=c("EL KDE", "Classical KDE", "True density"),

col=c("black", "blue", "red"),

lty=c("solid", "28F8", "dotted"))

The comparative plot is shown in Figure 6.1.
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Figure 6.1: Comparative plot of the EL kernel density estimator, classical
kernel density estimator and true density of F3 in Example 6.6.
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Chapter 7

Summary and Future Work

7.1 Summary of the present work

This thesis has presented new theories for inference, especially for hypothesis
testing, concerning a number of populations from which multiple complete or
Type I censored independent samples are observed. The work was motivated
by an important application, the development of a new long term monitoring
program for the North American lumber industry. Traditional reliance in
that industry on standards based on nonparametric statistical procedures led
to our adoption of a semiparametric approach, with a large nonparametric
component. The need for efficiency and hence small sample sizes led to
our density ratio model approach where common information across samples
could be borrowed to gain strength.

7.1.1 Contribution I: DELR test for hypothesis about

the DRM parameter

The first contribution of the thesis is a theory of dual EL ratio test for a
general class of composite hypotheses about the DRM slope parameter β,
which encompasses testing differences among population distributions as a
special case. The new theory is assessed, both through theoretical analysis for
large samples and by simulation studies for small ones. The theoretical results
are illustrated by examples and the use of the proposed test is demonstrated
on a dataset collected by our group over five years.

Our overall conclusion is that the new theory works well and achieves its
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intended objectives. We recommend its use in applications for comparing
population parameters when independent samples from each are available.

More specifically the new theory is very general and flexible in that it
embraces in the DRM a large family of familiar distributions such as the
normal and gamma, making it quite robust against misspecification of pop-
ulation distributions. It comes equipped with an asymptotic theory that
enables its properties to be assessed. In particular, easy to apply asymp-
totic approximations are available for the distributions of the test statistics
involved. The asymptotic distribution of the proposed DELR test statistic is
derived under the null model and also under a local alternative model. The
null limiting distribution allows us to approximate the p–values of the DELR
tests; the limiting distribution under the local alternative model enables us to
approximate the power of a DELR test, to calculate the sample size required
for attaining a given power, and to compare the local asymptotic powers of
DELR tests constructed in different ways.

Simulation studies show that when the basis function q(x) is correctly
specified, the distribution of the DELR test statistic, Rn, is well–approximated
by chi–square distribution under the null model and by non–central chi–
square distribution under the local alternative model; that for normal data
with equal variances, the power of the DELR test is comparable to that of
the optimal two–sample t–test; that for normal data with unequal variance
and non–normal data, the DELR test has a much higher power than all its
competitors and its type I error rate is close to the nominal size of 0.05.
When the DRM is misspecified, we observe the similar results on power com-
parison and type I error rate. Also, Wald tests are generally not as powerful
as the DELR tests.

The demonstration of the use of the method on three lumber samples,
shows our method to give a more incisive assessment than competitors through
paired comparisons of the populations.
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7.1.2 Contribution II: Effects of information pooling

by the DRM

The second contribution of the thesis is a theoretical assessment of the ef-
fects of information pooling by the DRM on the estimation accuracy of the
MELE of the DRM parameter and on the local asymptotic power of the
DELR test. We show that when additional samples are incorporated by the
DRM, the estimation accuracy of the MELE θ̂ is usually increased and the
local asymptotic power of the DELR test is often improved, even if the under-
lying distributions of the additional samples are not related to the population
distributions of direct interest. In the special case of testing equality among
distribution functions within subgroups of populations, including extra sam-
ples does not change the local asymptotic power of the DELR test. This is
similar to the classical t–test: if we construct a t–test using a pooled sample
variance by including additional samples, the gain is only on the degree of
freedom, but not in asymptotic sense.

Our simulations support these theoretical results, that the DRM does
borrow strength as intended, to reduce the sample size needed to achieve
required power even against local alternatives.

7.1.3 Contribution III: EL inference under the DRM

based on Type I censored samples

The third contribution is an EL inference framework for population distri-
butions under the DRM from which multiple Type I censored samples are
observed. In particular, we solve the maximization problem of the EL based
on Type I censored samples by reducing it to the maximization of a concave
DPEL, study the asymptotic properties of the DPEL, and establish the the-
ory of EL ratio test for hypotheses about the DRM parameter under this
DPEL inference framework.

The proposed EL inference framework features a fast computation be-
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cause of the concavity of the DPEL, and is very general in the sense that (1)
it may be used to extend any EL inference result that is derived for complete
samples under the DRM to the case of Type I censored samples, (2) it applies
to the general Type I left and right–censored samples, and (3) it does not
require the censoring cutting points for each sample to be the same.

7.1.4 Contribution IV: Software package “drmdel” for

DEL inference under the DRM

The last but not least contribution of this thesis is a user friendly R software
package drmdel for DEL inference under the DRM for multiple complete
samples, which is available on CRAN at http://cran.r-project.org/web/

packages/drmdel/index.html. The package is written in C from the core,
so is fast. It can calculate the MELE of the DRM parameter, perform the
DELR test as found in Chapter 3, estimate population distribution functions,
estimate quantiles of the population distributions as found in Chen and Liu
(2013), compare quantiles from different distributions using a Wald test, and
estimate densities of different populations as found in Fokianos (2004). The
use of the package is fully illustrated by examples in Chapter 6.

An implementation of this package for EL inference under the DRM based
on Type I censored samples is currently under way and will soon be available.

7.2 Outlook on future work

7.2.1 EL ratio test for comparing quantiles under the

DRM

Quantile estimation under the DRM based on complete samples has been
studied by Chen and Liu (2013). A Wald test for comparing quantiles of
different populations can be constructed based on the asymptotic normality
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of that quantile estimator. However, there is no existing result on EL ratio
test for comparing quantiles. A population quantile can be defined as the
solution of a non–smooth estimation equation. My proposal is to construct
an EL ratio test by incorporating this estimation equation as a constraint
when profiling the EL function. The resulting profile EL then is a function of
the quantiles to be compared, and so is the corresponding EL ratio statistic.
The limiting distribution of this EL ratio statistic is hard to derive because
the estimating equation defining a quantile is not smooth. However, when
the population distribution functions are smooth, this estimating equation is
asymptotically smooth. I have proved that, for parameters defined by smooth
estimation equations, the EL ratio statistic under the DRM has a chi–square
limiting distribution. Therefore, based on the “asymptotic smoothness” ar-
gument, I conjecture that, for quantile comparisons, the corresponding EL
ratio statistic also has a chi–square limiting distribution. I aim to prove this
conjecture.

Another way to construct an EL ratio test for quantile comparisons is
to incorporate quantiles in EL using a kernel–smoothed estimating equation.
In the one–sample case (not under the DRM), this approach is proposed by
Chen and Hall (1993). One issue with this approach is that one has to choose
a tuning constant “bandwidth” that affects the asymptotic properties of the
EL ratio statistic. I plan to study this approach under the DRM for multiple
samples, and study the optimal choice of the associated bandwidth.

7.2.2 Effects of information pooling on quantile

estimation under the DRM

As we have shown in Chapter 4, incorporating extra samples using DRM
in general increases the estimation accuracy of the MELE and improves the
local asymptotic power of the DELR test. But dose it also improve the
estimation accuracy of the Chen–Liu (2013) EL quantile estimator? This is
a hard question due to the complicated algebraic expression of the asymptotic
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covariance matrix of that estimator. I seek for an answer.

7.2.3 Inference under the DRM based on randomly

censored samples

Chapter 5 establishes the theory of EL inference under the DRM based on
type–I censored samples. What if the samples are randomly censored? In
that case, the EL function under the DRM is very complicated, and the
study of the properties of the EL is found hard. As outlined in the Appendix
5.9 of Chapter 5, Ren (2008) proposed to base the inference about randomly
right–censored samples under the DRM on the WEL, an EL like function
constructed upon the Kaplan–Meier estimators of the population distribution
functions instead of the population distributions themselves. An advantage of
the WEL over the EL is that it has a simple analytic form. Ren showed that
under a two–sample DRM, the WEL ratio statistic has a scaled chi–square
limiting distribution. The scaling factor depends on the distributions of the
populations as well as those of the censoring variables, which are generally
unknown. I found that, under a DRM of more than two samples, the limiting
distribution of the WEL ratio statistic is a mixture of chi–squares. The
mixing coefficients, which also depend on the distributions of the populations
and those of the censoring variables, are unknown. Hence the WEL ratio
is not useful for constructing confidence intervals or for testing hypotheses
about the DRM parameters.

I aim to construct a usable WEL ratio statistic for randomly right–
censored samples under the DRM. The reason the limiting distribution of
the WEL is a mixture of chi–squares instead of a simple chi–square is that,
under the WEL, the information matrix and the asymptotic covariance ma-
trix of the score function do not have a neat relationship like that found
for the DEL based on complete samples. My idea is to add weights to the
Kaplan–Meier estimators of the distribution functions and to construct a
WEL based on the tweaked Kaplan–Meier estimators such that, under the
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new WEL, the information matrix and the asymptotic covariance matrix of
the score function have a “nice” relationship. The corresponding WEL ratio
may then have a simple chi–square limiting distribution.

7.2.4 Basis function selection in the DRM

Whether an EL inference under the DRM is effective relies heavily on whether
the model fits data well, which in turn depends on the selection of the basis
function q(x). Simulations show that when there is vague information about
the functional form of q(x), using a long vector containing many linearly
independent components as the basis function usually gives a good model fit.
However, some components might be superfluous. Ideally, we want to choose
a subset of this long vector as the final basis function such that it yields both a
good model fit to the data and a high estimation accuracy. I plan to study the
following two approaches for the selection of the basis function: (1) derive
an information criterion similar to the Akaike’s information criterion that
estimates the Kullback–Leibler divergence between the assumed DRM and
the true distributions; and (2) study the maximum penalized EL approach
with an L1 or nonconcave penalty function.

7.2.5 Random–effect DRMs

The lumber quality samples are collect from different mills across Canada
each year. Although our purpose is to assess change in lumber strength over
time, which does not involve the difference on the mill level, the mill–to–mill
variability should be considered for a more realistic model. My rough idea
is to add random effects to the DRM slope parameters, {βk}, to represent
this mill–level variability. The model constructed this way is flexible, however
my initial investigation showed that the resulting EL function is very compli-
cated and the study of the properties and computation of the corresponding
maximum EL estimator are hard. Given the above difficulties, I plan to start
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from a simpler model, where the mill–level variability is assumed to be fully
represented by a random effect on the population means only. Hopefully, this
investigation can help me to ultimate overcome the difficulties in the former
more sophisticated random–effect DRM.

7.2.6 Other projects: high dimensional DRM and

finite sample corrections for the DELR test

The current theory of EL inference under the DRM assumes that the number
of samples is a constant that does not change with the total sample size n.
However, in our targeted applications, new lumber samples are added year
by year. Hence, in reality, the number of DRM parameters increases as the
sample size n increases, thereby nullifying the existing asymptotic results
on the DELR test and the EL quantile estimation under the DRM. I plan
to study the conditions under which these asymptotic results are still valid
when the number of samples increases with n.

Another practical issue is that the DELR test for the DRM parameter is
found to be anti–conservative when the total sample size is small. A finite
sample correction may be useful for adjusting for this effect. I intend to
study whether the DELR test is Bartlett correctable; if it is, I hope the
corresponding Bartlett correction will have a second–order accuracy and can
make the DELR test less anti–conservative.
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