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Abstract 

Future high-performance computing systems will be hybrid; they will include 

processors optimized for sequential processing and massively-parallel accelerators. 

Platforms based on Graphics Processing Units (GPUs) are an example of this 

hybrid architecture, they integrate commodity CPUs and GPUs. This architecture 

promises intriguing opportunities: within the same dollar or energy budget, GPUs 

offer a significant increase in peak processing power and memory bandwidth 

compared to traditional CPUs, and are, at the same time, generally-programmable.  

The adoption of GPU-based platforms, however, faces a number of challenges, 

including the characterization of time/space/power tradeoffs, the development of 

new algorithms that efficiently harness the platform and abstracting the accelerators 

in a generic yet efficient way to simplify the task of developing applications on 

such hybrid platforms.  

This dissertation explores solutions to the abovementioned challenges in the 

context of an important class of applications, namely irregular applications. 

Compared to regular applications, irregular applications have unpredictable 

memory access patterns and typically use reference-based data structures, such as 

trees or graphs; moreover, new applications in this class operate on massive 

datasets.  

Using novel workload partitioning techniques and by employing data 

structures that better match the hybrid platform characteristics, this work 

demonstrates that significant performance gains, in terms of both time to solution 

and energy, can be obtained when partitioning the irregular workload to be 

processed concurrently on the CPU and the GPU.  
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Chapter 1 

1. Introduction and Overview 

Irregular applications, such as large-scale graph computations, are on the rise. They 

are characterized by complex memory access patterns, data dependent parallelism, 

and they typically use sparse data structures such as trees or graphs [Pingali et al. 

2009]. Additionally, a challenge for these irregular applications is that they operate 

on massive datasets with heterogeneous structure, which are difficult to partition 

and load balance among processing elements.  

High-impact applications with such characteristics exist in different domains, 

such as computational biology (e.g., genome assembly [Pop 2009; Nagarajan and 

Pop 2013]), social networks (e.g., social network analysis [Brandes 2001; Gupta et 

al. 2013]) and web analytics (e.g., ranking the web [Page et al. 1999]). 

At the same time, current trends suggest that future high-performance 

computing systems (HPC) will be ‘hybrid’ [Hill and Marty 2008; Johnson et al. 

2011; Catanzaro et al. 2010]. These systems include processors optimized for 

sequential processing and accelerators optimized for parallel processing.  

One example of this hybrid architecture is a GPU-accelerated platform that 

integrates commodity processors (CPUs) and Graphics Processing Units (GPUs). 

Hybrid GPU-accelerated platforms promise intriguing opportunities: within the 

same dollar or energy budget these platforms offer a significant increase in peak 

processing power and memory bandwidth compared to traditional platforms. This 

is clearly demonstrated in the Green5001 list, where GPU-accelerated 

supercomputers dominates the top ten spots of the latest list (November, 2014). 

                                                 

1 http://www.green500.org/ 
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In this context, my dissertation focuses on exploring the opportunities, design 

methodologies and middleware to improve the efficiency and, at the same time, 

reduce the complexity of harnessing commodity hybrid GPU-accelerated platforms 

to improve the performance of irregular, data-intensive applications. 

This exploration is driven by two important irregular applications: graph 

processing (Chapter 2) and DNA sequence alignment (Chapter 3). In the context of 

these two applications, this thesis presents efforts along the following two high-

level directions: 

 First, developing performance models based on the characteristics of the 

targeted applications, the workloads and the hybrid system. The goal of these 

models is to assess, at low cost, the feasibility of accelerating large-scale 

irregular applications using hybrid platforms. Moreover, they serve as a tool to 

guide software optimization efforts, system configuration and provisioning.  

 Second, designing and developing methods and platforms to efficiently support 

irregular applications on hybrid platforms. The heterogeneity of the processing 

elements (e.g., GPUs implement a different parallel processing model than 

CPUs and have much less memory) and the inherent irregularity of the targeted 

applications (e.g. scale-free graphs) require careful design and consideration of 

the employed data structures and workload partitioning techniques.   

This work demonstrates that offloading irregular large-scale workloads to be 

processed on hybrid GPU-accelerated platforms offers significant performance and 

energy gains. This result is contrary to the common belief that the GPU’s strict 

parallel model limits its support for such complex workloads. Equally important, 

this work shows that data-intensive applications benefit from GPU offloading 

although current GPU models are provisioned with limited onboard memory space 

and are typically connected to the host processor via high-latency interconnect.  
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The rest of this chapter presents the background of this research, the high-level 

research questions, the methodology and a summary of contributions. First, it 

discusses hybrid platforms in general and elaborates on the characteristics of 

commodity GPU-accelerated systems in specific (Section 1.1). Next, the chapter 

presents background related to the irregular applications targeted by this work 

(Section 1.2). The discussion follows with a high-level description of the research 

questions this thesis aims to address (Section 1.3). The chapter then discusses the 

challenges and opportunities of using hybrid GPU-accelerated platforms to 

improve the performance of irregular applications (Section 1.4), the high-level 

methodology followed by this work (Section 1.5) and a summary of the main 

contributions (Section 1.6). Finally, the chapter concludes with a presentation of 

the dissertation structure (Section 1.7).   

1.1 Hybrid Platforms 

Hybrid platforms combine two types of processing elements with different design 

goals. The first type of processing element is optimized for sequential processing 

and aims to minimize execution latency for individual execution threads. To 

support fast sequential processing, such processors operate at high frequency and 

employ complex optimizations to utilize instruction level parallelism (ILP), such 

as out of order execution, multi-instruction issue and sophisticated branch 

prediction techniques.  

However, increasing the frequency and/or the number of cores of such 

processors has limits. Increasing the operating frequency results in a considerable 

increase in power consumption and heat dissipation to the degree where it becomes 

infeasible. Additionally, the employed optimizations noticeably increase the 

number of transistors used, hence placing limits on the number of processor cores 

that can be put on the die. Traditional multi-processors produced by Intel and AMD 

are examples of processing elements in this category. 
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The second processing element type is optimized for massively-parallel 

processing and aims to maximize throughput. To enable massive-parallelism and 

overcome the power and area limitations, the cores have a simple design (e.g., 

limited support for ILP optimizations). Moreover, to reduce power consumption, 

the cores typically operate at lower frequency compared to traditional 

multiprocessors cores. GPUs and Intel’s Many Integrated Core (MIC) architecture 

are examples of processing elements in this category. 

Combining the two types of processors to form a hybrid platform makes 

intuitive sense. Applications typically have both sequential phases that can be run 

by the fast sequential processor, and parallel phases that can be run by the 

massively-parallel processor. Moreover, as argued by Hill et al. [Hill and Marty 

2008], compared to traditional multiprocessors, hybrid systems offer a better 

balance between performance and used resources (energy and area). Examples of 

such hybrid platforms include IBM’s Cell Broadband Engine [Chen et al. 2007], 

AMD’s Fusion architecture [Branover et al. 2012], Rigel [Johnson et al. 2011] and 

commodity systems that host both CPUs and commodity accelerators such as GPUs 

and MICs. 

In particular, GPU-accelerated platforms gained wide-spread popularity in the 

high-performance and scientific computing community due to their ability to 

deliver high peak compute rate and memory bandwidth. Moreover, the advent of 

new development toolkits, such as Nvidia's Compute Unified Device Architecture 

(CUDA) and OpenCL, offer generic GPU programming models, hence extending 

the use of these powerful resources to diverse domains that require high 

computational performance and exhibit large opportunities for data parallelism. At 

the same time, the GPU’s large and fast growing gaming market keeps GPU prices 

low compared to other accelerators 

Experience to date with hybrid platforms powered by GPUs includes reports 

of significant speedups compared to traditional multicore systems in the same price 
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range [Hwu 2011; Kirk and Hwu 2010]. These reports ignited zealous debate 

[Vuduc et al. 2010; Lee et al. 2010] on CPU vs. GPU performance for various 

classes of applications and on the relative advantages of hybrid architectures.  

The fact that GPUs are becoming mainstream in high-performance computing 

encouraged GPU vendors to evolve the GPU to support features required by the 

HPC community, such as improving the performance of double precision 

calculations, support for atomic operations and increasing the internal memory 

space [NVIDIA 2012]. Also, this motivated building large-scale GPU-accelerated 

systems: as of writing this thesis, a number of the first ten supercomputers in the 

Top500 supercomputer list are GPU-accelerated2. 

However, while pervious works focused on regular applications (such as linear 

algebra), little experience has been accumulated to date related to using hybrid 

GPU-accelerated platforms to improve the performance of irregular applications, 

especially the ones that process massive datasets. Indeed, the GPU’s strict parallel 

model and limited onboard memory, among other challenging characteristics, 

makes it unclear if it is beneficial to offload part of the workload of an irregular 

application to be processed concurrently on the GPU. Section 1.4 discusses in detail 

the challenges and the opportunity.  

1.2 Irregular Applications 

While regular applications, such as dense matrix computations, perform structured 

computations and operate on easy to partition datasets, irregular applications 

perform data-dependent computations and operate on unstructured datasets [Pingali 

et al. 2009]. The fact that current computing systems are optimized for data locality 

(e.g., employing deep caching hierarchies) and regular computation (e.g., 

                                                 

2 www.top500.org 
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employing SIMD parallel models) makes it challenging to efficiently execute 

irregular applications on them.  

This dissertation focuses on two important applications from this class. The 

first is the generic problem of graph processing (1.2.1), the second is DNA 

sequence alignment (1.2.2). The rest of this section discusses the importance and 

the specific characteristics of each of these two applications. 

1.2.1 Graph Processing 

Graphs are the core data structure for problems that span a wide set of domains, 

from social networks [Gupta et al. 2013], to genomics [Pop 2009], to business and 

information analytics [Iori et al. 2008]. In these domains, key to our ability to 

transform raw data into insights and actionable knowledge is the ability to process 

large graphs efficiently and at a reasonable cost.  

Imagine, for example, an advertising system for an online social network with 

hundreds of millions of users. In this example, graph centrality algorithms, such as 

Betweenness Centrality, can be used to identify the influential actors in the 

network, which is of considerable importance in order to attract the attention of the 

largest possible audience to a brand [de Valck et al. 2009; Kiss and Bichler 2008].  

Graph workloads and algorithms exhibit a number of key characteristics 

relevant to the goal of accelerating this application using GPU-accelerated 

platforms. These characteristics are summarized as follows:  

 Modest processing requirements per vertex in each round. A typical graph 

algorithm processes a graph in rounds and, in each round, only a subset of 

vertices may be active and may be processed in parallel. For example, in 

Breadth-first Search (BFS), each vertex iterates over its neighbors attempting 

to set their depth. Similarly in PageRank (a ranking algorithm typically used to 

rank web pages [Page et al. 1999]), each vertex computes, in each iteration, a 

new rank by accumulating the ranks of its neighbors. 
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 Poor locality. The topology of many real-world graphs, such as online social 

networks and web graphs, makes it hard to find a memory layout with good 

locality, and hence the neighbors of a vertex are typically scattered in memory. 

Therefore, iterating over the neighbors of a vertex results in accesses that are 

not spatially local and renders graph computation memory latency bound. 

 Imbalanced workload distribution. Many relevant real graphs have power-law 

degree distribution: a few vertices have many edges and most vertices have only 

one or a few edges. Examples of such graphs include social networks [Ahn et 

al. 2007], the Internet [Faloutsos et al. 1999], the World Wide Web [Barabási 

et al. 2000], financial networks [Iori et al. 2008], protein-protein interaction 

networks [Jeong et al. 2001], semantic networks [Steyvers and Tenenbaum 

2005] and airline networks [Wang and Chen 2003]. The skewed distribution of 

edges in real-world graphs leads to imbalanced workload distribution across 

vertices, where the high-degree vertices imply heavier processing tasks. 

 Large memory footprint. Efficient graph processing requires the whole graph to 

be present in memory, and large real graphs can occupy gigabytes to terabytes 

of space. For example, a snapshot of the current Twitter follower network has 

over 500 million vertices and 100 billion edges, and storing it requires at least 

0.5TB of memory. 

1.2.2 Sequence Alignment 

The second application this thesis focuses on is a key bioinformatics problem called 

sequence alignment (also known as ‘read alignment’) [Trapnell and Salzberg 

2009]: a widely-used step in computational biology pipelines such as comparative 

genomics and genome assembly. Sequence alignment aims to find all occurrences 

of each sequence of a large set (millions to billions) of short sequences in another, 

much longer sequence, called the ‘reference sequence’.  In this context, sequences 
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are strings formed using the alphabet {A,C,G,T}, where those letters refer to what 

is formally called nucleotides. 

The importance of this application comes from the fact that DNA sequencing, 

the biochemical process of determining the order of nucleotides in a DNA 

molecule, have taken major steps towards commoditization [Venter 2010]. 

Moreover, sequencing rates have drastically increased: almost 100 billion 

nucleotides per day per machine, which is 50,000 times faster than ten years ago 

[Venter 2010; Kaiser 2008; Abecasis et al. 2012].  

This dramatic increase in sequencing rates shifted the bottleneck in the ability 

to generate new knowledge from sequencing (i.e., the biochemical process of 

generating raw data) to the sequence analysis pipeline (i.e., the computer analysis 

tools that extract knowledge from the raw data). In fact, there is an increasingly 

growing  gap between sequence generation and analysis [McPherson 2009; Ward 

et al. 2013]. Accordingly, improving the performance of sequence analysis tools, 

such as sequence alignment, is becoming more critical. 

One important sequence analysis tool is sequence alignment. The following 

list summarizes its main characteristics: 

 Memory bound. The core of the sequence alignment problem is a basic substring 

matching operation: find a string of length m in another reference string of 

length n, where n>>m. This problem is memory bound as no significant 

number-crunching or floating point computation is performed.  

 Poor locality. The typical approach to solve the sequence alignment problem is 

to pre-process the long reference string into a data structure that allows for 

efficient search. The queries are then streamed through the in-memory data 

structure (e.g., a “suffix tree” [Kurtz et al. 2004]). Since the different queries 

search different parts of the data structure (e.g., in the case of a suffix tree, 

different queries traverse different branches of the tree), memory access locality 

is hard to achieve. 
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 Large memory footprint. Depending on the species, the length of the genome 

reference sequence ranges from few million nucleotides (e.g., for bacteria), to 

few billion nucleotides (e.g., for Homo sapiens), to hundreds of billions 

nucleotides (e.g., for Amoeba dubia). Hence, the resulting search-efficient in-

memory data structure is large. 

1.3 Research Questions 

This thesis explores opportunities to use commodity hybrid GPU-accelerated 

platforms to accelerate irregular applications. This section presents the high-level 

questions that guide this exploration (Sections 2.2 and 3.2 present more detailed 

research questions specific to the two applications this thesis is focused on): 

 Is it feasible to harness GPUs to accelerate irregular applications? In 

particular, what are the general challenges to support processing data-intensive 

irregular applications on a single-node GPU-accelerated system? 

 How does combining two processing elements, traditional CPUs and GPUs, 

with different performance characteristics affects the design of irregular 

applications?  For example, for a given class of irregular problems, how does 

this combination impact the way the workload is partitioned and/or the choice 

of the core data structures?  

 What is the optimal balance between traditional and massively-parallel 

processing elements? For example, for a fixed power or dollar budget, should 

one assemble a machine with four CPUs or the same performance can be 

obtained with one CPU and one GPU?  

Addressing these questions is important in the context of current hardware 

trends: as the relative cost of energy continues to increase relative to the cost of 

silicon, future systems will host a wealth of different processing units. In this 

context, partitioning the workload and assigning the partitions to the processing 
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element where they can be executed most efficiently in terms of power or time 

becomes a key issue. 

1.4 Opportunities and Challenges 

Hybrid GPU-accelerated platforms bring a number of advantages, however 

utilizing such systems to accelerate irregular applications is challenging. The rest 

of this section discusses the opportunities (1.4.1) and challenges (1.4.2) of this 

platform-application matchup. 

1.4.1 Opportunities 

GPU-accelerated platforms offer a number of properties that one can potentially 

harness to improve the performance of irregular applications. 

First, a hybrid GPU-accelerated platform has the potential to cope with the 

heterogeneous structure of irregular workloads. In particular, a platform that hosts 

both processing units optimized for fast sequential processing and units optimized 

for bulk processing matches well the heterogeneous structure of irregular 

workloads, which have variable levels of parallelism. For example, most graphs 

processed in practice have power-law degree distribution [Ahn et al. 2007; Barabási 

et al. 2000; Faloutsos et al. 1999; Iori et al. 2008; Jeong et al. 2001] where few 

vertices have many edges and many vertices have only one or few edges. 

Second, GPUs offer massive hardware multithreading that is able to hide 

memory access latency, a main bottleneck for irregular applications. Current 

traditional multiprocessors are optimized for data locality and regular 

computations, which often lead to poor performance when processing irregular 

applications. GPUs, however, support orders of magnitude more in-flight memory 

requests while still performing useful work, and thus masking memory access 

latency. This is important to improve the performance of irregular applications, 

which depend heavily on data-dependent memory access patterns. 
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Third, GPUs are commodity accelerators. Therefore, GPU-accelerated 

platforms have the potential to provide cost effective solutions for the performance-

hungry irregular applications. Within the same dollar (and power) budget, GPUs 

offer a significant increase in peak performance, and incorporate capabilities that 

turned them from dedicated graphics engines to a generally-programmable, highly-

parallel processors featuring peak processing and memory bandwidth that exceed 

their CPU counterparts. This increase in GPUs’ performance and programmability 

suggests that they have the potential to be cost-effective solutions for a broad range 

of performance-demanding problems.  

1.4.2 Challenges 

Large-scale irregular applications pose, however, a number of important challenges 

to GPU-accelerated platforms.  

First, the GPU execution model is significantly different, and arguably more 

complex, than that of traditional, multicore CPUs. For example, GPUs offer 

massive parallelism in an execution model known as single-instruction multiple-

thread (SIMT), which offers a tradeoff between performance and programming 

flexibility. In a SIMT model, a group of scalar threads executes the same instruction 

on multiple data items at each point in time; however, to enable programming 

flexibility, the model allows for the threads to diverge at the expense of reduced 

performance. Another example is that GPUs offer software controlled cache which, 

if the application uses to improve performance, requires explicit management of 

data movement between the memory and the cache. 

Second, past experience on performance-efficient data structures and 

workload partitioning techniques need to be reconsidered when porting 

applications to hybrid GPU-accelerated platforms. This is because GPUs and 

CPUs offer different computational tradeoffs. On the one hand, GPUs offer an order 

of magnitude higher peak memory access bandwidth and peak computational 
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power compared to traditional multiprocessors. On the other hand, current GPUs 

have limited, often an order of magnitude lower, internal memory space. This 

challenge is magnified by the fact that the applications this work targets operate on 

massive datasets that significantly exceeds the memory space available in current 

GPU models. Examples of such datasets include social networks (billions of users 

and connections) and bioinformatics data (DNA sequences of billions of 

nucleotides long). 

Third, efficiently scheduling data transfers and finding a low coupling point 

that limits the overhead of CPU-GPU data transfers. General purpose CPUs and 

GPUs are connected to separate memories with different characteristics: the CPUs’ 

memory is designed to minimize latency, while the GPUs’ onboard memory 

focuses on maximizing data throughput [Gelado et al. 2010]. Moreover, the two 

memory modules are typically connected via high latency I/O channels (e.g., PCI 

Express). Therefore, there is a need for explicit management of data transfers and 

consistency between the two memory spaces, which is critical for emerging 

irregular applications as they operate on massive datasets.  

Finally, balancing the system’s hardware configuration (i.e., finding an 

optimal CPUs to GPUs ratio), from a performance or energy optimization 

perspective, is a design space that has been scarcely explored. Today’s hardware 

supports attaching multiple GPUs to existing compute nodes. However, it is not 

clear how systems, both hardware and software, scale with increasing number of 

GPUs. More importantly, dynamically detecting the optimal configuration for 

performance or energy utilization is still an open problem. 

The next section presents the methodology I followed to realize the 

opportunities and overcome the challenges posed by utilizing GPU-based platforms 

to accelerate irregular applications.  
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1.5 Methodology 

This work follows a top-down methodology: it is driven by two high-impact 

irregular applications, each with unique computational characteristics: graph 

processing (Chapter 2) and DNA sequence alignment (Chapter 3). The 

methodology consists of the following high-level steps: 

 Performance modeling. Both projects start by developing performance models 

to preliminary assess the feasibility of accelerating the application by offloading 

part of the computation to the GPU. The models take into account a number of 

key aspects such as the parallel processing model, the characteristics of the 

processing elements and the communication among these elements.  

 Application and middleware design and prototyping. Informed by the 

performance model and the characteristics of the application, I designed and 

developed prototypes optimized for GPU-based platforms. The design 

challenges include maximizing the utilization of the GPU’s limited memory 

space, reducing CPU-GPU communication overhead and matching the 

workload with the processor it is allocated to. Specifically, I designed a generic 

graph processing engine named TOTEM, which supports a wide range of graph 

algorithms. In the second project, I designed and prototyped a new DNA 

sequence alignment tool named MUMMERGPU++.  

 Prototype evaluation and model validation. Using large-scale synthetic and 

real-world workloads, I performed extensive evaluation of the prototypes. The 

evaluation includes detailed analysis of the overheads and observed 

performance (e.g., using performance counters when applicable). It is important 

to stress here that I sought the largest available real-world workloads related to 

the two applications.  

Note that in terms of chronological order I worked first on the sequence 

alignment problem then on graph processing. The sequence alignment project 
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served as an initial exercise to explore the characteristics and capabilities of the 

GPU to accelerate an irregular and data-intensive application. The experience 

obtained from this project was essential to the success of the graph processing 

project, which targeted a more generic, and potentially higher impact problem.  

1.6 Summary of Contributions  

This section summarizes the contributions of this work. While the contributions 

presented here are high-level, Section 2.3 and Section 3.4 discuss in detail the 

contributions in the context of the two applications driving this thesis, graph 

processing and sequence alignment, respectively.  

The contributions of this work are summarized as follows: 

 Demonstrate that hybrid GPU-accelerated platforms can improve the 

performance, in terms of both time to solution and energy, of irregular 

applications (Sections 2.8, 2.9, 2.10, 2.11, 2.12, 3.9 and 3.9.4). While there is 

no shortage of work that shows the ability of GPU-accelerated platforms to 

improve the performance of regular applications, this dissertation provides 

evidence that such hybrid platforms can also accelerate a more challenging class 

of applications, namely irregular applications. In fact, to the best of my 

knowledge, this is the first work to explore and demonstrate the benefits of 

partitioning large-scale graph workloads to be processed concurrently on the 

CPU and the GPU. 

 Performance models that assess the feasibility of accelerating large-scale 

irregular problems on hybrid GPU-accelerated platforms (Section 2.5 and 

Section 3.8). The models take into account only a small number of key aspects 

such as the parallel processing model, the characteristics of the processing 

elements, and the properties of the communication channel among these 

elements. The models support the intuition that keeping the communication 
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overhead low is critical for efficient processing on GPU-based systems and it 

prompted the exploration of compression techniques to reduce these overheads.  

 Novel low-cost workload assignment and design techniques customized for 

processing on hybrid platforms (Section 2.9 and Section 3.7). Since the 

abovementioned optimizations eliminate communication as a major bottleneck, 

this work proposes partitioning and design strategies that aim to improve the 

performance of the computation phase. In the case of graph processing, these 

strategies aim to partition the graph such that the workload assigned to the 

bottleneck processing element utilizes well the element’s strengths. In the same 

spirit, in the sequence alignment case, this work explores employing data 

structures that better matches the hybrid system’s characteristics. 

 Key optimizing techniques to reduce communication overheads (Section 2.6 

and Section 3.7). This work designs and evaluates two main techniques to 

reduce communication overheads. First, in the context of graph processing, this 

work shows that aggregating at the source processor messages targeted to the 

same remote destination vertex significantly reduces communication 

overheads. Moreover, in the context of sequence alignment, this work shows 

that trading-off higher computational complexity for a more compact in-

memory representation increases overall performance by reducing data transfer 

overheads. In both cases, an important consequence is that the computation 

phase becomes the dominating overhead. 

 Comparison with other platforms (Section 2.13 and Section 3.9). TOTEM 

favorably compares with other graph processing platforms, such as Galois 

[Nguyen et al. 2013], Ligra [Shun and Blelloch 2013] and PowerGraph 

[Gonzalez et al. 2012]. For example, the performance of TOTEM on a modest 

one CPU socket and one GPU hybrid setup speeds up the performance by more 

than 2x compared to the best performance achieved by state-of-the-art 

frameworks on a shared-memory machine. Moreover, MUMMERGPU++ 
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achieves, on realistic workloads, significant speedups compared to previous 

highly optimized CPU [Kurtz et al. 2004] and GPU-based [Schatz et al. 2007; 

Trapnell and Schatz 2009] implementations. 

 Open-source software artifacts (Section 2.6 and Section 3.7). This work 

resulted in two main software artifacts that embed the ideas presented in this 

thesis. First, TOTEM: a generic graph processing framework for GPU-

accelerated platforms. TOTEM enables efficiently using all CPU and GPU cores 

on a given node all while limiting the development complexity. In addition to 

the techniques discussed previously, TOTEM applies a number of algorithm-

agnostic optimizations that lead to performance improvements. Second, 

MUMMERGPU++: a fully compatible GPU port of the widely used sequence 

alignment tool MUMMER [Kurtz et al. 2004]. MUMMERGPU++ is part of 

Nvidia’s bioinformatics benchmark and has been used as a benchmark for many 

research projects on GPU hardware design (e.g. [Fung and Aamodt 2011; Rhu 

and Erez 2012]). 

1.7 Dissertation Structure 

The rest of this dissertation presents the two main projects that I conducted to 

explore accelerating irregular applications using GPU-based systems. Chapter 2 

presents the effort to efficiently process large-scale graphs, while Chapter 3 

discusses the effort to efficiently process DNA sequence alignment computation on 

GPU-accelerated systems. Each chapter discusses in detail the performance model, 

the system design and evaluation on synthetic and/or real-world workloads. Finally, 

Chapter 4 presents a summary of the dissertation and highlights its impact. 
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Chapter 2 

2. Efficient Large-Scale Graph 

Processing on Hybrid Platforms 

The increasing scale and wealth of inter-connected data, such as those accrued by 

social network applications, demand the design of new techniques and platforms to 

efficiently derive actionable knowledge from large-scale graphs. However, large 

real-world graphs are famously difficult to process efficiently. Not only they have 

a large memory footprint, but also most graph algorithms entail memory access 

patterns with poor locality, data-dependent parallelism and a low compute-to-

memory access ratio. To complicate matters further, most real-world graphs have a 

highly heterogeneous node degree distribution (i.e., they are scale-free), hence 

partitioning these graphs for parallel processing and simultaneously achieving 

access locality and load-balancing is difficult.  

This work starts from the hypothesis that hybrid platforms (e.g., GPU-

accelerated systems) have both the potential to cope with the heterogeneous 

The research presented in this chapter resulted in the following publications:  

(i) Abdullah Gharaibeh et al., The Energy Case for Graph Processing on Hybrid CPU and GPU 

Systems, IEEE Workshop on Irregular Applications: Architectures & Algorithms (IA3) in 

conjunction with SC13, Denver, Colorado USA, November 2013 (30% acceptance rate). 

(ii) Abdullah Gharaibeh et al., On Graphs, GPUs, and Blind Dating: A Workload to Processor 

Matchmaking Quest, IEEE International Parallel & Distributed Processing Systems (IPDPS), 

Boston, MA, May 2013 (21% acceptance rate). 

(iii) Abdullah Gharaibeh et al.,  A Yoke of Oxen and a Thousand Chickens for Heavy Lifting 

Graph Processing, IEEE/ACM International Conference on Parallel Architectures and 

Compilation Techniques (PACT). Minneapolis, MN September 2012 (19% acceptance rate). 
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structure of scale-free graphs and to offer a cost-effective platform for high-

performance graph processing.  

This research assesses the above hypothesis and presents an extensive 

exploration of the opportunity to harness hybrid GPU-accelerated platforms to 

process large scale-free graphs efficiently. In particular, (i) this work presents a 

performance model that estimates the achievable performance on hybrid platforms; 

(ii) informed by the performance model, I designed and developed TOTEM – a 

processing engine that provides a convenient environment to implement graph 

algorithms on hybrid platforms; (iii) this work shows that further performance gains 

can be extracted using partitioning strategies that aim to produce partitions that 

matches the strengths of the processing element it is allocated to, finally, (iv) it 

demonstrates the performance advantages of the hybrid system through a 

comprehensive evaluation that uses real and synthetic scale-free workloads (as 

large as 16 billion edges), multiple graph algorithms that stress the system in 

various ways, and a variety of hardware configurations. 

2.1 Context 

Processing large-scale graphs efficiently and at a reasonable cost is key to many 

domains. However, a major challenge when processing large graphs is their 

memory footprint: efficient graph processing requires the whole graph to be present 

in memory, and large real graphs can occupy gigabytes to terabytes of space. For 

example, a snapshot of the current Twitter follower network has over 500 million 

vertices and 100 billion edges, and requires at least 0.5TB of memory. As a result, 

the most commonly adopted solution to cost-efficiently process large-scale graphs 

is to partition them and use shared-nothing cluster systems [Malewicz et al. 2010; 

Gonzalez et al. 2012].  
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However, today more efficient solutions are affordable: it is feasible to 

assemble single-node3 platforms that aggregate 100s of GB to TBs of RAM and 

massive computing power [Gupta et al. 2013; Rowstron et al. 2012; Shun and 

Blelloch 2013] all from commodity components and for a relatively low budget. 

Compared to clusters, single-node platforms are easier to program, and promise 

better performance and energy efficiency for a large class of real-world graph 

problems. In fact such single-node graph processing platforms are currently being 

used in production: for example, Twitter’s ‘Who To Follow’ (WTF) service, which 

uses the follower network to recommend connections to users, is deployed on a 

single node [Gupta et al. 2013].  

Despite these recent advances, single-node platforms still face a number of 

performance challenges. First, graph algorithms have low compute-to-memory 

access ratio, which exposes fetching/updating the state of vertices (or edges) as the 

major overhead. Second, graph processing exhibits irregular and data-dependent 

memory access patterns, which lead to poor memory locality and reduce the 

effectiveness of caches and pre-fetching mechanisms. Finally, many real-world 

graphs have a highly heterogeneous vertex degree distribution (i.e., they have 

power-law degree distribution and are commonly named “scale-free”) [Barabási 

2003; Barabási et al. 2000; Jeong et al. 2001; Iori et al. 2008], which makes dividing 

the work among threads for access locality and load-balancing difficult. 

In this context, two reasons (summarized here and detailed in Section 2.4) 

support the intuition that single-node GPU-accelerated platforms may be an 

appealing platform for high-performance, low-cost graph processing: First, GPUs 

bring massive hardware multithreading that is able to mask memory access latency 

                                                 

3 In this dissertation, node is used to refer to processing elements (i.e., machines, 

processors), while vertex is used to refer to the graph element. 
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– the major barrier to performance for this class of problems. Second, a hybrid 

system that hosts processing units optimized for fast sequential processing and units 

optimized for bulk processing matches well the heterogeneous structure of the 

many scale-free graphs that need to be processed in practice.  

2.2 Research Questions 

This work investigates the feasibility and the comparative advantages of supporting 

graph processing of scale-free graphs on hybrid, GPU-accelerated nodes. The 

following research questions guide this investigation: 

Q1. Is it feasible to efficiently combine traditional CPU cores and massively 

parallel processors (e.g., GPUs) for graph processing? In particular, what are 

the general challenges to support graph processing on a single-node GPU-

accelerated system? 

Q2. Assuming that a low-level engine can efficiently process large graphs on 

hybrid nodes, what would an abstraction that aims to simplify the task of 

implementing graph algorithms look like? 

Q3. How should the graph be partitioned to efficiently use both traditional CPU 

cores and GPU(s)? More specifically, are there low-complexity partitioning 

algorithms that generate partitions that match well the individual strengths of 

CPUs and GPUs?  

Q4. Is it energy-efficient to partition the graph to be processed concurrently on a 

GPU and a CPU? While GPUs are known for their energy efficiency when 

processing regular, compute intensive workloads (such as matrix 

computations), it is unclear whether this can be preserved for irregular, 

memory-bound problems like graph processing. 

Addressing these questions is important to inform the design of graph-

workload partitioning solutions that aim to optimally harness hybrid computing 
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platforms. In the context of current hardware trends, as the cost of energy continues 

to increase relative to the cost of silicon, future systems will host a wealth of 

different processing units. In this hardware landscape, the key issue will become 

partitioning the workload and assigning the partitions to (possibly, a subset of) the 

existing processing elements where the workload can be executed most efficiently 

in terms of power, energy, or time. 

2.3 Contributions and Chapter Structure 

This work demonstrates that partitioning large scale-free graphs to be processed 

concurrently on hybrid CPU and GPU platforms offers significant performance and 

energy gains. Moreover, this work defines the class of partitioning algorithms that 

will enable best performance on hybrid platforms: these algorithms should focus 

on shaping the workload to best match the bottleneck processing engine (rather than 

on minimizing communication overheads). Finally, this work experiments with a 

few partitioning solutions from this class, analyze the observed performance, and 

propose guidelines for when they should be used. In more detail, the contributions 

are: 

 A performance model (Section 2.5) to assess the feasibility of accelerating 

large-scale graph processing by offloading a graph partition to the GPU. The 

model is agnostic to the exact graph processing algorithm, and it takes into 

account only a small number of key aspects such as the parallel processing 

model, the characteristics of the processing elements, and the properties of the 

communication channel among these elements. The model supports the 

intuition that keeping the communication overhead low is crucial for efficient 

graph processing on hybrid systems and it prompts exploring the benefits of 

message aggregation to reduce these overheads.  
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 TOTEM
4: an open-source graph processing engine for GPU-accelerated 

platforms (Section 2.6). TOTEM efficiently uses all CPU and GPU cores on a 

given node, while limiting the development complexity. Guided by the 

performance model, TOTEM applies a number of algorithm-agnostic 

optimizations that lead to performance improvements. One key optimization 

this work introduces is reducing communication overhead by over an order of 

magnitude by aggregating messages at the source processor. 

 Insights into key performance overheads (Section 2.8). Using TOTEM’s 

abstractions, a number of graph processing algorithms have been implemented 

that stress the hybrid system in different ways. This work demonstrates that the 

gains predicted by the model are achievable in practice when offloading a 

random partition to the GPUs. Moreover, this work shows that the 

optimizations applied by TOTEM significantly reduce the overheads to 

communicate among the processing elements, and that the computation phase 

becomes the dominating overhead. 

 Low-cost partitioning strategies tailored for processing scale-free graphs on 

hybrid systems (Section 2.9). Since the applied optimizations eliminate 

communication as a major bottleneck, this work focuses on partitioning 

strategies that aim to reduce the computation bottleneck. These strategies aim 

utilize the heterogeneity in scale-free graphs to produce partitions such that the 

workload assigned to the bottleneck processing element exploits well the 

element’s strengths. The proposed partitioning strategies are informed by 

vertex-connectivity, and lead to super-linear performance gains with respect to 

the share of the workload offloaded to the GPU.   

                                                 

4 The code can be found at: http://netsyslab.ece.ubc.ca 
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 Detailed evaluation of the impact of possible partitioning strategies (Section 

2.9.3, Section 2.10 and Section 2.11). The reasons for the observed performance 

impact is explained in detail (e.g., using hardware counters and pseudocode 

analysis) using large-scale, real-world and synthetic graphs of different sizes 

(from 2 to 16 billion edges) and various hardware configurations. The 

experiments include different graph algorithms that stress the platform in 

various ways. To the best of my knowledge, this is the first work to evaluate 

graphs as large as 1 billion vertices and 16 billion edges on a single-node 

commodity machine. 

 Application evaluation (Section 2.10). Using large real-world workloads, this 

work demonstrates that the gains offered by the GPU-accelerated platform hold 

for key applications: ranking web pages using PageRank, finding the main 

actors in a social network using Betweenness Centrality algorithm and 

computing point-to-point shortest paths in a network using Single-Source 

Shortest Path algorithm.  

 Comparison with other frameworks (Section 2.13). TOTEM favorably compares 

with other frameworks including Galois, Ligra and PowerGraph: the 

performance of TOTEM on a modest one CPU socket and one GPU hybrid setup 

speeds up the performance by more than 2x compared to the best performance 

achieved by state-of-the-art frameworks on a shared-memory machine with 

four high-end CPU sockets.   

 Guidelines (Section 2.15). The results presented in this work allow putting 

forward a number of guidelines related to the opportunity and the supporting 

techniques required to harness hybrid systems for large-scale graph processing 

problems. Notably, the guidelines describe which partitioning strategy to use 

given a workload and an algorithm. 
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The importance of this work comes from all these contributions. Firstly, the 

performance model not only encourages the design of GPU-offloading techniques, 

but can guide hardware purchase and software design decisions for various classes 

of graph-related problems. Secondly, this work is the first to demonstrate the 

feasibility of using, in parallel, all CPU and GPU processors of a hybrid platform 

for a key class of irregular problems: graph processing. Finally, the processing 

engine that resulted from this work, TOTEM, offers an efficient and easy to use 

environment to develop graph applications that can benefit from acceleration.  

2.4 Opportunities and Challenges 

Section 2.1 discussed the general challenges of single-node graph processing. This 

section details the opportunities and challenges brought by GPU acceleration in this 

context. 

The opportunities: GPU-acceleration has the potential to offer the key advantage 

of massive, hardware-supported multithreading. In fact, current GPUs not only 

have much higher memory bandwidth than traditional CPU processors, but can 

mask memory access latency as they support orders of magnitude more in-flight 

memory requests through hardware multithreading.  

Additionally, properly mapping the graph-layout and the algorithmic tasks 

between the CPU(s) and the GPU(s) holds the promise to exercise each of these 

computing units where they perform best: CPUs for fast sequential processing (e.g., 

for the few high degree nodes of a power-law graph) and GPUs for the bulk parallel 

processing (e.g., for the many low-degree nodes). 

In particular, this work focuses on harnessing the heterogeneity of vertex 

degree distribution in scale-free graphs. For example, the few high-degree vertices 

can be processed by the CPU, while the many low-degree ones can be processed 

on the GPU. While this limits the scope of this work, it still benefits various high-
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impact applications as many real-world graphs are scale-free. Examples of such 

graphs include social networks [Kwak et al. 2010], the Internet [Faloutsos et al. 

1999], the World Wide Web [Barabási et al. 2000], financial networks [Iori et al. 

2008], protein-protein interaction networks [Jeong et al. 2001], and airline 

networks [Wang and Chen 2003] to mention few.  

The challenges: Large-scale graph processing poses two major challenges to 

hybrid systems. First, the large amount of data to be processed, and the need to 

communicate between processors put pressure on two scarce resources: the GPUs’ 

on-board memory and the host to GPU transfer bandwidth. Intelligent graph 

representation, partitioning and allocation to compute elements are key to reduce 

memory pressure, limit the generated PCI Express bus transfer traffic and 

efficiently harness each processing element in an asymmetrical platform. 

Second, to achieve good performance on GPUs, the application must, as much 

as possible, match the SIMD computing model. As graph problems exhibit data-

dependent parallelism, traditional implementations of graph algorithms lead to low 

memory access locality. Nevertheless, GPUs are able to hide memory access 

latency via massive hardware multithreading that, with careful design of the graph 

data structure and thread assignment, can reduce the impact of these factors.  

Finally, mapping high-level abstractions (e.g., vertex-centric processing) and 

APIs to facilitate application development to the low-level infrastructure while 

limiting the efficiency loss, is an additional challenge. 

2.5 Modeling Hybrid Systems’ Performance 

The model aims to provide insights to answer the following question: Is it beneficial 

to partition the graph and process it on both the host and the GPU (compared to 

processing on the host only)?  
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It is worth stressing that the goal is a simple model that captures the key 

characteristics of a GPU-accelerated platform, highlights its bottlenecks, and helps 

reasoning about the feasibility of offloading. I deliberately steer away from a 

complex (though potentially more accurate) model, the evaluation validates this 

choice. 

 

2.5.1 Notations and Assumptions 

Let G = (V, E) be a directed graph, where V is the set of vertices and E is the set of 

directed edges; |V| and |E| represent their respective cardinality. Also, let P = {CPU, 

GPU} be the set of processing elements of a hybrid node (Figure 1). While the 

model can be easily generalized to a mix of multiple CPUs and GPUs; for the sake 

of simplicity, a setup with only two processing units is used here.  

The model makes the following assumptions: 

(i) Each processing element has its own local memory. The processing elements 

are connected by a bidirectional interconnect with communication rate c 

measured in edges per second (E/s) – this is a reasonable unit as the time 

complexity of a large number of graph algorithms depends on the number of 

 

Figure 1: An illustration of the model, its parameters, and their values for 

today’s state-of-the-art commodity components. 

rcpu rgpu  Processing rates on the CPU and GPU 

c  Communication rate between the host and GPU 

α  Ratio of the graph edges that remain on the host 

β  Ratio of edges that cross the partition 
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edges in the graph. But, the same model can be recast in terms of vertex-centric 

algorithms by normalizing by the number of vertices instead of edges. 

(ii) Once the graph is partitioned, the GPU processes its partition faster. This is 

because: first, GPUs have a higher graph processing rate than CPUs (based on 

published results [Hong et al. 2011a; Hong et al. 2011b], which I validated 

independently); second, GPUs have significantly less memory than the host, 

which limits the size of the offloaded partition. 

(iii) The model assumes the overheads of scheduling the workload (e.g., 

partitioning the graph) and gathering the results produced by each processor 

are negligible compared to the algorithm’s processing time.  

2.5.2 The Model 

Under the assumptions stated in the previous section, the time to process a partition 

of G, Gp = (Vp, Ep)   G on a processing element p is given by:  
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where rp is the processing rate of processor p (in edges/s), and 
p
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p
EE 

represents the subset of boundary edges – edges where either the source or the 

destination vertex is not located in p’s local memory. 

Equation 1 estimates the time required to process a partition as a combination 

of the time it takes to communicate possible updates through boundary edges 

(communication phase) plus the time it takes to process the edges in that given 

partition on processor p (computation phase). Intuitively, the higher the processing 

rate of a processing element, the lower is the processing time. Similarly, the less 

communication a processing element needs to access the edges of the other 

partition, the lower is the processing time. 
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Building on Equation 1, the makespan5 of a graph workload G on a given 

hybrid node with a set of processing elements P can be defined as follows: 

 )(max)(
pp

Pp
P

GtGm
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The intuition behind Equation 2 is that the performance of a parallel system is 

limited by its slowest component. Since, as discussed before, the model assumes 

that the host processes its partition slower than the GPU (assumption ii), resulting 

that the time spent on processing the CPU partition is always higher than that of the 

GPU partition (i.e., tcpu(Gcpu) > tgpu(Ggpu)).  

Hence, the improvement brought by processing a graph on a hybrid platform 

(compared to processing it on the host only) can be calculated by Equation 3, as 

follows: 
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where tcpu(G) is the time it takes to process G, the whole graph, on the CPU, 

while tcpu(Gcpu) is the time it takes to process on the CPU the partition assigned to 

it as a result of partitioning the graph to be processed on both the CPU and the GPU.  

To understand the gains resulted from moving a portion of the graph to the 

GPU, Equation 3 is rewritten by introducing two parameters that characterize the 

‘quality’ of the graph partition. Let α be the share of edges (out of the total number 

of graph edges |E|) assigned to the host, similarly let β be the percentage of 

boundary edges (i.e., the edges that cross the partition). Introducing these 

parameters, the speedup can be expressed as follows: 

                                                 

5 Makespan: the completion time of a graph processing task [Pinedo 2012]. 
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As expected, Equation 4 predicts that a high host-accelerator interconnect 

communication rate, c, improves the speedup. In fact, if c is set to infinity, the 

speedup can be approximated as 1/α. This is intuitive, as in this case the 

communication overhead becomes negligible compared to the time spent on 

processing the CPU’s share of edges, and the speedup becomes proportional with 

the offloaded portion of the graph. 

2.5.3 Setting the Model’s Parameters 

Figure 1 presents an illustration of the model with “reasonable” values for its 

parameters for a state-of-the-art commodity hybrid platform. They are discussed in 

turn below: 

 Communication rate (c) is directly proportional to the interconnect bandwidth 

and inversely proportional to the amount of data transferred per edge. The GPU 

is typically connected to the host via a PCI Express bus. Latest GPU models 

support PCI Express Gen 3.0, which has a measured transfer bandwidth of 

12GB/sec. If the data transferred per edge is assumed to be 4-byte value (e.g., 

the “distance” in Breadth-first Search or the “rank” in PageRank), the transfer 

rate c becomes 3 Billion E/s – or BE/s.  

 CPU’s processing rate (rcpu) depends on the CPU’s characteristics, the graph 

algorithm and implementation, and the graph topology. The assumption is that 

a CPU-only implementation is available and can be run on the machine to obtain 

rcpu. This is a reasonable assumption as one typically starts off by implementing 

a CPU version of the algorithm.  
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 Percentage of boundary edges (β) depends on the way the graph is partitioned 

between the processing elements. In the worst case, all edges cross the partition. 

Random partitioning leads to an average β=50%.  

 The share of the graph that stays on the CPU (α) is configurable, but is 

constrained by the memory space available on the processing elements (for 

example, larger memory on the GPU allows for offloading a larger partition, 

hence smaller α). 

Figure 2 shows the speedup predicted by the model (Equation 4) for different 

values of α, while varying the CPU processing rate (left plot) and the percentage of 

boundary edges (right plot). The values used for the CPU processing rate are 

informed by the best reported graph processing rates in the literature [Nguyen et al. 

2013] for state-of-the-art commodity single-node machines. 

The figure indicates that as the CPU processing rate increases (higher rcpu, left 

plot) or for a graph partition that leads to larger percentage of boundary edges 

(higher β, right plot), the speedup decreases. This is because the communication 

overhead becomes more significant.  

 

Nonetheless, the figure indicates that offloading part of the graph to be 

processed in parallel on the GPU can be beneficial. In particular, if β, is kept low 

 

Figure 2: Predicted speedup (values below one indicate slowdown). Left: 

varying the CPU’s processing rate (β is set to 5%). Right: varying the 

percentage of boundary edges (rcpu is set to 1 BE/s). The communication rate 

is 3 BE/s. 
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(below 40% in Figure 2 (right)) the model predicts speedups. The figure also 

presents a hypothetical worst case where all of the edges are boundary edges (e.g., 

a bipartite graph where the partition cuts each edge). Even in this case, and due to 

the high communication rate c, a slowdown is predicted only for α > 70%.  

 

Finally, Figure 3 demonstrates the effect of the amount of transferred data per 

edge on the predicted speedup. As expected, the speedup drops as the amount of 

transferred data is doubled. However, if β is kept low, the model predicts tangible 

speedups even when tripling the size of data transferred per boundary edge. To this 

end, the next section discusses how to keep β low for scale-free graphs, the focus 

of this work. 

2.5.4 Summary 

With parameters set to values that represent realistic scenarios, the model predicts 

speedups for the hybrid platform, even when using naïve random partitioning. 

Hence, it can be beneficial to explore this opportunity in more depth by prototyping 

an engine to partition graphs and process them on a GPU-accelerated platform.  

The next sections discuss an algorithm-agnostic technique to reduce the impact 

of boundary edges (Section 2.6), and presents the design of a graph processing 

engine for hybrid platforms (Section 2.7). The discussion then proceeds by showing 

 

Figure 3: Predicted speedup while varying the volume of 

transferred data per edge (α is set to 60% and rcpu to 1 BE/s). 
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that the model offers good accuracy (Section 2.8), demonstrates the advantages of 

advanced partitioning techniques for a set of graph processing algorithms, 

workloads, and processing platforms (Sections 2.9-2.11), compares with the 

performance of state-of-the-art graph processing frameworks (Section 2.13), and 

evaluates the energy footprint of the hybrid platform (Section 2.12). 

2.6 Reducing the Impact of Boundary Edges 

This section presents an efficient technique that minimizes β, i.e., the percentage of 

boundary edges for scale-free graphs and a wide range of graph algorithms. 

In particular, the section explores the opportunity to aggregate messages sent 

from multiple vertices residing in one processing element to a single vertex residing 

on the other. The intuition behind this optimization is that the power-law nature of 

scale-free graphs leads to a topology where multiple edges from the same partition 

point to the high-degree vertices on the other partition and thus enable message 

aggregation. 

Note that aggregation is employed in cluster-based graph processing 

frameworks [Malewicz et al. 2010] to reduce the communication overhead between 

partitions residing in different nodes. However, this technique is more effective in 

the single hybrid node platform this work targets because the expected number of 

partitions (e.g., two for a system with one GPU) is significantly lower than in the 

case of a distributed system with hundreds of compute nodes (i.e., hundreds of 

partitions). 

To highlight the benefit of aggregation, this section compares how much 

communication would happen with and without aggregation when using a naïve 

random partitioning algorithm. Figure 4 shows β resulted from two- and three- way 

partitioning, representing setups with one and two GPUs respectively, for real 

(Twitter and UK-WEB) and synthetic graphs (RMAT28 and UNIFORM28). The 

graphs are described in detail in section (Section 2.8); for now, the relevant 
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characteristic that differentiates them is the degree distribution: real-world and 

RMAT28 graphs are scale-free and have skewed degree distribution, while 

UNIFORM28 has a uniform distribution. 

 

The figure shows that aggregation significantly reduces β (to less than 5%) for 

the graphs with skewed distribution. The worst case input is an Erdős-Renyi 

random graph [Erdős and Rényi 1960], where an edge exists with independent 

random probability, and the resultant graph has uniform edge degree distribution.  

However, as discussed before, most graphs processed in practice have power-

law degree distribution, thus this optimization is useful in practice. Figure 5 shows 

the degree distribution of the two real-world graphs used in the experiments, and 

clearly demonstrating the skewed degree distribution among the vertices. 

 

Figure 4: The impact of aggregation. Resulted ratio of edges that cross 

partitions (β) with and without aggregation for two real-world graphs (Twitter 

and UK-WEB), one synthetic scale-free graph (RMAT28), and one synthetic 

graph with uniform node degree distribution (UNIFORM28). 
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Finally, it is important to mention that aggregation works for algorithms where 

it is possible to reduce, at the source partition, into one value the values sent to the 

same remote vertex. Although some graph algorithms cannot benefit from 

aggregation (e.g., triangle counting), a wide range of graph algorithms has this 

characteristic. For example, the “visited” status in BFS, minimum “distance” in 

SSSP, and the “rank” sum in PageRank. 

2.7 Totem: A Graph Processing Engine for Hybrid 

Platforms 

To enable application programmers to leverage hybrid platforms, I designed TOTEM 

– a graph processing engine for hybrid and multi-GPU single-node systems. This 

section presents TOTEM’s programming model (Section 2.7.1 and Section 2.7.2), 

its implementation (Section 2.7.3), and a discussion of its design trade-offs 

(Section 2.7.4). 

2.7.1 Programming Model 

TOTEM adopts the Bulk Synchronous Parallel (BSP) computation model [Valiant 

1990], where processing is divided into rounds – supersteps in BSP terminology. 

 

Figure 5: Degree distribution of two instances of real-world graphs (Twitter 

and UK-Web). Note that the plot is presented in log-log format. 
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Each superstep consists of three phases executed in order: in the computation phase, 

each processing unit executes asynchronously computations based on values stored 

in their local memories; in the communication phase, the processing units exchange 

the messages that are necessary to update their statuses before the next computation 

unit starts; finally, the synchronization phase guarantees the delivery of the 

messages. Specifically, a message sent at superstep i is guaranteed to be available 

in the local memory of the destination processing unit only at superstep i +1.  

Adopting the BSP model allows to circumvent the fact that the GPUs are 

connected via the higher-latency PCI Express bus. In particular, batch 

communication matches well BSP, and enables TOTEM to hide (some of) the bus 

latency. In more detail, TOTEM performs each of these phases as follows: 

 Computation phase. TOTEM initially partitions the graph and assigns each 

partition to a processing unit. In each compute phase, the processing units work 

in parallel, each executing a user-specified kernel on the set of vertices that 

belongs to its assigned partition.  

 Communication phase. TOTEM enables the partitions to communicate via 

boundary edges. The engine stores messages sent to remote vertices in local 

buffers that are transferred in the communication phase to the corresponding 

remote partitions. As the performance model shows, reducing communication 

overhead is paramount to improve performance. The engine achieves such 

reduction by aggregating at the source processor messages targeted to the same 

remote destination vertex (as discussed in Section 2.6). The aggregation is 

performed based on a user-provided callback. Note that the synchronization 

phase is performed implicitly as part of the communication phase. 

 Termination. The engine terminates execution when all partitions vote to finish 

(through a user-defined callback) in the same superstep. At this point, the 

engine invokes another user-specified callback to collect the results from all 

partitions. 
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2.7.2 A Programmer’s View 

A programmer prepares TOTEM to execute a graph algorithm by providing a 

number of callback functions that are executed at different points in the BSP 

execution cycle. 

The TOTEM framework itself is essentially in charge of implementing the 

callback API and orchestrating these calls. This hides some of the inherent 

complexity of developing for a hybrid platform as TOTEM offers a common data 

representation, abstracts the communication through boundary edges, and hides 

various low-level optimizations that target the hybrid platform. For example, 

TOTEM optimizes the data layout to increase access locality, enables transparent 

and efficient communication between the processing elements, and provides 

abstractions to handle transparently boundary edges). 

 

Figure 6 shows a simplified implementation of a graph algorithm using TOTEM 

(Appendix A presents in detail and with extensive comments how each of these 

callbacks looks for implementing BFS). TOTEM loads the graph and creates one 

partition for the host and a partition for each GPU. TOTEM accepts a number of 

 

Figure 6: A simplified TOTEM configuration and how an algorithm callbacks 

map to the BSP phases. 
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attributes, most notably is the graph partitioning strategy (discussed in Section 2.9) 

and the size of each partition. The BSP engine is configured with the algorithm-

specific callbacks provided by the user. The alg_init callback allows allocating 

algorithm-specific state (such as the ‘level’ array in BFS or the ‘rank’ array in 

PageRank), the alg_compute callback performs the core computation of the 

algorithm, while alg_scatter callback defines how a message received from a 

boundary edge updates a vertex’s state (e.g., update the vertex’s state with the sum 

of the two in the case of PageRank, or the minimum in SSSP). The alg_finalize 

callback enables the framework to release state allocated at initialization. All 

callbacks are invoked per partition in each BSP round.  

Note that each callback has access to the entire graph state stored on the 

processing element where it executes: this is a programming paradigm that has 

recently been dubbed “think like a graph” (as opposed to “think like a vertex”) 

[Tian et al. 2013] 

Finally, the current version of Totem requires the programmer to provide CPU 

and GPU versions of these callbacks. While this offers the flexibility to choose the 

parallel implementation that best suits each processing element, it entails an extra 

effort. However, recently, new programming models have been proposed to address 

this problem, most notably is the OpenACC [OpenACC 2012] standard which 

defines directives that can be used to annotate C/C++ or Fortran programs for 

expressing parallelism for both accelerators and traditional multiprocessors. 

Implementations of the OpenACC standard have also become available [Lee and 

Vetter 2014]. This will allow implementing a single callback for both CPU and 

GPU partitions, hence improving programmers’ productivity.  

2.7.3 TOTEM Design and Implementation 

TOTEM is open-source, and is implemented in C and CUDA. While a number of 

aspects related to TOTEM’s design and implementation are worth discussing, for 
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brevity we discuss only two: the data structures used to represent the graph and 

communication via boundary edges. 

2.7.3.1 Graph representation and Additional Data Structures to Support 

Partitioning 

Graph partitions are represented as Compressed Sparse Rows (CSR) in memory 

[Barrett et al. 1994], a space-efficient graph representation that uses O(|V| + |E|) 

space. Figure 7 shows an example of a two-way partitioning setup. The arrays V 

and E represent the CSR data structure. In each partition, the vertex IDs span a linear 

space from zero to |Vp|-1. A vertex ID together with a partition ID represents a global 

ID of a vertex. A vertex accesses its edges by using its ID as an index in V to fetch 

the start index of its neighbors in E.  

 

The array E stores the destination vertex of an edge, which includes the 

partition ID (shown in the figure as subscripts) encoded in the high-order bits. In 

the case of boundary edges, the value stored in E is not the remote neighbor’s ID, 

rather it is an index to its entry in the outbox buffer (discussed later). To simplify 

state management, a vertex in a directed graph has access only to its outgoing edges, 

 

Figure 7: An illustration of the graph data structure and the communication 

infrastructure in a two-way partitioning setup. 
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which is sufficient for most graph algorithms (undirected edges can be represented 

as two directed edges, one in each direction). 

The array S represents the algorithm-specific local state for each vertex, it is 

of length |Vp|, and is indexed using vertex IDs. A similar array of length |Ep| can be 

used if the state is required per-edge rather than per-vertex.  

The processing of a vertex typically consists of iterating over its neighbors. A 

neighbor ID is fetched from E, and is used to access S for local neighbors, or the 

outbox buffer for the remote ones. Typically, accessing the state of a neighbor 

(either in S or in the outbox buffer) is done via atomic operations as multiple 

vertices may simultaneously try to update the state of a common neighbor.  

To improve pre-fetching, the set of neighbors of each vertex in E are ordered 

such that the local edges are processed first (entails accessing S), and then the 

boundary edges (entails accessing the outbox buffers).  

To improve pre-fetching, the set of neighbors of each vertex in E are sorted 

and are placed such that the local edges are processed first (entails accessing S), 

and then the boundary edges (entails accessing the outbox buffers). 

2.7.3.2 Communication via boundary edges 

A challenge for a graph processing engine for hybrid setups is keeping the cost of 

communication low. TOTEM addresses this problem by using local buffers and user-

provided aggregation callbacks. Messages sent via boundary edges in the 

computation phase of a superstep are temporarily buffered and, if possible, 

aggregated in these buffers then transferred in the communication phase.  

TOTEM maintains two sets of buffers for each processing unit (Figure 7). The 

outbox buffers have an entry for each remote neighbor, while the inbox buffers 

have an entry for each local vertex that is remote to another partition. An in/outbox 

buffer is composed of two arrays: one maintains the remote vertex ID and the other 

stores the messages.  
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The outbox buffer in a partition is symmetric to an inbox buffer in another. 

Therefore, in the communication phase, only the message array is transferred. Once 

transferred, TOTEM uses the user-defined aggregation function to update the remote 

neighbors’ state in the S array at the remote partition with the new values. Similar 

to E, the entries in the inbox buffers are sorted by vertex IDs to improve pre-fetching 

and cache efficiency when doing the update. 

Finally, note that TOTEM allows for two way communication via the boundary 

edges: a vertex can either “push” updates to its neighbors, or “pull” (i.e., read) the 

neighbors state to update its own value. This is a necessary feature for some graph 

algorithms (e.g., Betweenneess Centrality) and an optimization for others (e.g., 

PageRank). 

2.7.3.3 Summary of Other Optimizations  

In addition to the two main optimizations discussed previously: using compressed 

graph representation to reduce memory footprint and aggregating messages sent 

over boundary edges, TOTEM employs a number of other optimizations. They have 

been discovered through an iterative exploration process and provide sizeable 

gains. The following list summarizes these optimizations: 

 Improving data access locality. A vertex can have local or remote neighbors. 

While local neighbors’ state can be accessed directly (e.g., via the state array S 

in Figure 7), accessing remote neighbors’ state must be done via the outbox 

buffers. To improve access locality, processing a vertex edges is done by 

processing its local neighbors first (which requires for all of them accessing the 

local state array), and then the remote neighbors (which requires for all of them 

accessing the outbox buffer). 

 Improving load balancing between the CPU and the GPU for large graphs. The 

GPU’s limited memory space constrains the size of the offloaded partition. This 

is a major challenge when targeting multi-billion scale graphs. To enable 
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offloading a larger partition to the GPU, TOTEM allows allocating part of the 

state on host memory and map it into the GPU’s address space. The tradeoff is 

extra communication overhead. TOTEM reduces this overhead restricting the use 

of mapped memory to allocate the part of the state that is (i) read-only, and (ii) 

can be accessed sequentially in batches. Section 2.11 evaluates multi-billion 

scale graphs, and elaborates more on this optimization. 

 Improving load balancing across GPU threads. Early work on graph 

processing on GPUs employed parallelism across vertices [Harish et al. 2007]; 

however, this approach creates load-imbalance among threads and can lead to 

GPU underutilization since some vertices, in particular the high-degree ones, 

require more work than others. To address this problem, Hong et al. [Hong et 

al. 2011a] propose to parallelize processing not only across vertices, but also 

across the edges of a vertex. Hong et al. do this by statically allocating a block 

of threads for each vertex to process its edges in parallel. Although this 

approach improves performance, it does not completely address the problem: 

the fact that threads were being statically allocated results in some vertices 

being assigned more threads than they require (e.g., vertices with a degree less 

than the configured value), while others will be assigned less threads. This is 

especially an issue for scale-free graphs where the degree varies considerably 

across vertices. TOTEM addresses this problem by using a new feature 

introduced recently by CUDA: dynamic parallelism, which allows a GPU 

kernel to create work from within the GPU. TOTEM employs this feature to 

create dynamically launch kernels based on vertex degree for each group of 

vertices with similar degree, and hence improving GPU utilization. 

In most cases, this speedup does not translate to a performance gains for the 

hybrid system because the CPU is usually the bottleneck processor (as it will 

be discussed in Section 2.8.2), however this optimization allows the GPU to run 
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faster to idle, and hence reducing energy consumption (Section 2.12 presents 

an evaluation of energy consumption). 

 Hiding communication overhead by overlapping communication with 

computation. For example, if the GPU finishes processing its partition faster 

than the CPU does, the GPU will start copying its output buffer to the CPU’s 

input buffer while the CPU still processing its partition, and vice versa. Double 

buffering techniques enable such an optimization. 

2.7.4 Design Trade-offs 

There are two main trade-offs in the current TOTEM implementation that are worth 

discussing. First, the graph representation (CSR) used makes it expensive to 

support updates to the graph structure during algorithm execution (e.g., creation of 

new edges or vertices). This is a tradeoff, as CSR enables a lower memory footprint 

and efficient iteration over the graph’s elements (vertices and edges), which are 

essential for performance. Any other graph data structure that enables mutable 

graphs will have to have some form of dynamic memory management (e.g., linked 

lists), which is costly to support, particularly on GPUs.  

Nevertheless, a large and important class of applications is based on static 

graphs. For example, many graph-based applications in social networks [Gupta et 

al. 2013; Wang et al. 2013] and web analytics [Malewicz et al. 2010] are performed 

on periodic snapshots of the system’s state, which is typically maintained in storage 

efficient, sometimes graph-aware, indexing systems [Curtiss et al. 2013; Barroso et 

al. 2003]. 

The second limitation is related to the way communication is performed. 

During the communication phase of each superstep, the current implementation 

copies the whole outbox buffer of a partition to the inbox buffer of a remote 

partition assuming that there is a message to be sent via every edge between the 

two partitions. This is efficient for algorithms that communicate via each edge in 
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every superstep, such as PageRank. However, this is an overhead for algorithms 

that communicate only via a selective set of edges in a superstep (e.g., in the level-

synchronized BFS algorithm, at a given superstep, only the vertices in the frontier 

communicate data via their outgoing edges). Additional compression techniques 

can be employed to lower the communication volume. 

2.8 Evaluating the Model’s Accuracy and Processing 

Overheads 

This section aims to address the following questions: First, how does TOTEM 

performance compare to that predicted by the model? Answering this question 

allows us to validate the model and understand, for each use case, how much room 

is possibly left for optimizations. 

Second, which phase (computation or communication) and processing element 

(CPU or GPU) the bulk of time is spent? Such profiling identifies the bottlenecks 

in the system, and guides the quest for better performance.  

 

Testbed characteristics. The machine used in the experiments is provisioned with 

recent CPU and GPU models as of writing this thesis (Table 1). The two processing 

Table 1: Testbed characteristics: two Xeon 2560 processors and two GeForce 

Kepler Titan GPUs, connected via PCI-E 3.0 bus. 

Characteristic 
Sandy-Bridge 
(Xeon 2650) 

Kepler  
(Geforce Titan) 

Number of Processors 2 2 

Cores / Processor 8 14 

Core frequency (MHz) 2000 800 

Hardware Threads / Core 2 192 

Hardware Threads / Processor 16 2688 

Last Level Cache / Processor (MB) 20 2 

Memory / Processor (GB) 128 6 

Memory Bandwidth / Processor (GB/s) 52 288 

Thermal Design Power / Processor (Watt) 95 250 
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elements are representative for their categories and support different performance 

attributes. On the one hand, GPUs have significantly larger number of hardware 

threads, higher memory access bandwidth, and support a larger number of in-flight 

memory requests. On the other hand, the CPU cores are clocked at over double the 

frequency, and have access to roughly one order of magnitude larger memory and 

cache. 

 

Benchmarks. The evaluation tests five graph algorithms with different 

characteristics: Breadth-first Search (BFS), Betweeness Centrality (BC), 

PageRank, Single-Source Shortest Paths (SSSP) and Connected Components (CC). 

The details of the algorithms and their implementations are discussed in later 

sections. However, one difference between the algorithms is worth mentioning 

here: BFS uses a summary data structure, particularly a bitmap, to increase the 

utilization of the cache, while the other algorithms do not.  

Table 2: Workloads used throughout the chapter. The synthetic RMAT 

graphs were generated using the Recursive MATrix (RMAT) graph 

generation model [Chakrabarti et al. 2004], which generates graphs with 

skewed degree distribution. The following parameters were used to generate 

the RMAT graphs: (A,B,C) = (0.57, 0.19, 0.19) and an average degree of 16. 

The synthetic UNIFORM graphs were generated using Erdős–Rényi graph 

generation model [Erdős and Rényi 1960], which generates graphs with 

uniform degree distribution. A graph is classified as “Small” if it fits the 

memory of a GPU, or as “Large” if it does not. 

Scale Workload |V| |E| Memory (GB) 

Large 

Twitter [Cha et al. 2010] 52M 1.9B 7,689 

UK-Web [Boldi et al. 2008] 105M 3.7B 14,666 

RMAT27 128M 2.0B 8,704 

RMAT28 256M 4.0B 17,048 

RMAT29 512M 8.0B 36,864 

RMAT30 1,024M 16.0B 73,728 

UNIFORM28 256M 4.0B 17,048 

Small 
RMAT25 32M 512M 2,176 

UNIFORM25 32M 512M 2,176 
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Workloads. The evaluation in this section is focused on an instance of Graph500 

workload, RMAT28 graph6 (Table 2). The memory footprint of this workload is 

large compared to the space available on a single GPU (~4 times larger), yet it 

allows us to explore offloading ratios as low as 50% when using a second GPU.  

Time Measurements. For all experiments in this and the following sections, we 

measure the time to execute the algorithm only. The time to load and partition the 

graph is not included when calculating the processing rate of an algorithm. 

Separating the algorithm processing time from the time spent on pre-processing the 

graph is common [Nguyen et al. 2013] as the pre-processing time is considered an 

amortized cost. Note that the Graph500 challenge also adopts this approach, where 

only the algorithm’s processing time is used for ranking. 

Evaluation Metrics. While this section reports speedups when comparing with a 

host-only execution, later sections report TEPS as a performance metric. Similar to 

the Graph500 benchmark, the corresponding TEPS for BFS is calculated by 

dividing the sum of the degrees of the visited vertices by the time. The way TEPS 

is calculated for SSSP and BC is similar. For SSSP, the number of edges traversed 

is calculated by summing the degrees of the vertices that have a non-infinite 

distance; for BC, a non-zero score, with the difference being that for BC the number 

of traversed edges is multiplied by two as the algorithm has backward and forward 

propagation phases (see Section 2.10.2 for details regarding the BC algorithm). For 

connected components, TEPS is calculated by dividing the number of edges in the 

graph by the time. Finally, for PageRank, the corresponding TEPS is computed by 

                                                 

6 The synthetic graphs are described by the log base 2 of the number of vertices 

(e.g., RMAT30 graph has 230 vertices). Unlike in the Graph500 challenge (www. 

graph500.org), our graphs are directed (as generated by the model). 
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dividing the number of edges in the graph by the time per PageRank iteration (in 

each iteration, each vertex accesses the state of all its neighbors). The TEPS metric 

has the advantage that it can allow a (rough) comparison between runs of the same 

algorithm or implementation on different workloads. 

Data collection and notations. For each data point, here and in later evaluation 

sections, the plots show the average over 64 runs. Error bars present the 95% 

confidence interval, in most cases, are too narrow to be visible. 

The different hardware configurations used in the experiments are presented in the 

following notation: xS yG, where x is the number of CPU sockets (processors) used, 

while y represents the number of GPUs. For example, “2S1G” refers to processing 

the graph on two CPU sockets and one GPU. 

 
Figure 8: Predicted (circles) and achieved (triangles) speedup for RMAT28 

graph while varying the percentage of edges assigned to the CPU partition 

(using random partitioning). The plot shows the results while using one (2S1G) 

and two (2S2G) GPUs. Having a second GPU allows offloading more edges. 

Note that the start point on the x-axis represents the minimum percentage of 

edges that needs to be kept on the host due to GPU space constraints. Also, 

note that due to different memory space requirements, the point at which a 

second GPU needs to be used is different for each algorithm. Pearson’s 

correlation coefficient [Lee Rodgers and Nicewander 1988] is reported on each 

plot - this is a value in the range [1,-1] where 1 is total positive correlation and 

0 is no correlation. 
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2.8.1 Totem and the Performance Model 

This section first compares the 

speedup predicted by the model 

and the one achieved by TOTEM. 

Figure 8 shows the speedup while 

varying α, the percentage of edges 

left on the CPU for the different 

graph algorithms. Note that the 

figure shows the speedup while 

using one (2S1G) and two (2S2G) 

GPUs. Table 3 presents a 

summary of the correlation 

coefficients and average errors for 

all other workloads. 

Observe the following: First, 

the achieved speedup has strong 

positive correlation with the one 

predicted by the model for all 

algorithms and with low average 

error. Second, the model under-

predicts BFS performance. This is 

because, for BFS, offloading to 

the GPU not only reduces the 

amount of work that the CPU 

needs to do, but also improves the 

CPU processing rate due to improved cache hit ratio: the bitmap used by BFS 

Table 3: Average error and correlation 

between the predicted speedup by the model 

and the achieved one by Totem for all 

algorithms and large scale-free workloads. 

The results for an RMAT30 graph are 

missing for SSSP and CC because of 

memory space constraints (SSSP requires 

additional memory space to store the edge-

weights while CC doubles the number of 

edges as it operates on undirected graphs). 
Algorithm Workload Correlation Avg. Err. 

BFS RMAT27 0.99 6% 

RMAT28 0.99 16% 

RMAT29 0.99 6% 

RMAT30 0.99 11% 

Twitter 0.99 -1% 

UK-WEB 0.99 -25% 

PageRank RMAT27 0.99 4% 

RMAT28 0.99 -7% 

RMAT29 0.97 4% 

RMAT30 0.99 8% 

Twitter 0.93 10% 

UK-WEB 0.98 -8% 

BC RMAT27 0.99 -13% 

RMAT28 0.99 -15% 

RMAT29 0.99 -10% 

RMAT30 0.99 -3% 

Twitter 0.99 -11% 

UK-WEB 0.99 -5% 

SSSP RMAT27 0.98 -20% 

RMAT28 0.97 -15% 

RMAT29 0.99 -8% 

Twitter 0.88 -22% 

UK-WEB 0.97 -4% 

CC RMAT27 0.98 -25% 

RMAT28 0.97 -10% 

RMAT29 0.99 -1% 

Twitter 0.98 -7% 
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becomes smaller and hence fits better the cache. This effect is not captured by the 

model.  

The latter observation is important as it suggests that carefully choosing the 

part of the graph to be offloaded to the GPU may lead to superlinear speedups due 

to cache effects. This premise is evaluated in more detail in Section 2.9 where 

different partitioning strategies are explored that aim to further increase the chance 

of achieving superlinear speedups. 

Finally, it is worth mentioning that similar accuracy holds for other workloads. 

Moreover, this accuracy also holds for a different, older generation, hardware 

platform. The results are published in [Gharaibeh et al. 2012], and are not presented 

here for brevity. 

2.8.2 Overhead Analysis 

To understand the phase (computation or communication) and processing element 

(CPU or GPU) on which the bulk of time is spent, this section examines the 

breakdown of the total execution time. Figure 9 shows the percentage of time spent 

on each phase for BFS while processing RMAT28 graph.  

Two points are worth discussing. First, the GPU processes its partition at a 

faster rate, and, as a result processing the CPU partition always remains the main 

bottleneck. The GPU is 2 to 20 times faster. This indicates that the assumption that 

the GPU finishes its processing first holds in practice. 

Second, the CPU-GPU communication overhead is significantly lower than the 

computation, even when using two GPUs. This is due to aggregating boundary 

edges and to the high bandwidth of the PCI Express bus. 

Note that the two other algorithms, BC and PageRank, exhibited the exact same 

behavior, moreover these results were observed on all other workloads. 
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The fact that communication is not a bottleneck has important consequences: 

rather than focusing on minimum cuts when partitioning the graph to reduce 

communication (a pre-processing step that, generally, is prohibitively expensive), 

an effective partitioning strategy should focus on reducing computation. 

To this end, the next section explores the impact of various graph partitioning 

strategies and workload allocation schemes on the performance of graph algorithms 

on a hybrid system. Particularly, the focus is on investigating low-cost partitioning 

techniques that generate workload that match well the strength of the processing 

element they are allocated to. 

2.9 Graph Partitioning for Hybrid Systems 

This section presents the set of requirements for effective partitioning strategies for 

hybrid systems (Section 2.9.1), discusses (Section 2.9.2) and evaluates (Section 

2.9.3) the proposed degree-based partitioning strategy.  

 

Figure 9: Breakdown of BFS execution time for the RMAT28 graph (the same 

data points in Figure 8). Left: using two GPUs (2S2G). Right: using one GPU 

(2S1G). The Total bar refers to the total execution time (i.e., the makespan). 

The Computation portion of the Total bar refers to the time of the bottleneck 

processor (the CPU in all cases). The GPU bar refers to the portion of 

Computation time where the GPU was busy. 
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2.9.1 Partitioning Strategy Requirements 

An effective graph partitioning strategy must have the following characteristics:  

 Has a low space and time complexity. Processing large-scale graphs is 

expensive in terms of both space and time; hence partitioning algorithms with 

time complexity higher than linear or quasilinear are impractical.  

 Handles scale-free graphs. Many important graphs in different domains present 

skewed vertex degree distributions. Therefore, the partitioning strategy must be 

able to handle the severe workload imbalance associated with such graphs.  

 Handles large (billion-edge scale and larger) graphs. The amount of memory 

offered by single-node systems is considerably large. For instance, 256GB on 

the evaluation machine used in this study is enough to fit a graph with one 

billion vertices and 16 billion edges (i.e., scale 30 in Graph500 terminology). 

 Minimizes algorithm’s execution time by reducing computation (rather than 

communication). The BSP model divides processing into computation and 

communication phases. The focus is on partitioning strategies that reduce the 

computation time. Note that this approach is in sharp contrast to previous work  

on graph partitioning for distributed graph processing, as they focus on 

minimizing the time spent on communication (e.g., by minimizing the edge-cut 

between partitions) [Chamberlain 1998]. The evaluation in the previous section 

(Section 2.8) provides the intuition that supports this choice: message 

aggregation and batch communication (assisted by the high bandwidth of the 

PCI Express bus that typically connects discrete GPUs) can significantly reduce 

the communication overhead for concurrent graph processing (or similar 

applications, as the optimizations are application agnostic) on hybrid systems, 

which makes computation rather than communication the bottleneck. 



51 

2.9.2 Partitioning by Degree Centrality 

I propose to partition the graph by degree centrality, placing the high-degree 

vertices in one type of processor and the low-degree ones in the other type. Our 

hypothesis is that this simple and low-cost partitioning strategy brings tangible 

performance benefits while meeting the solution requirements.  

The motivation behind this intuition is twofold. First, dividing a scale-free 

graph using the vertex degree as the partition criterion produces partitions with 

significantly different levels of parallelism that match those of the different 

processing elements of the hybrid system. Second, such a partitioning strategy 

produces partitions that are more homogenous in terms of vertex connectivity 

compared to the original graph, resulting in a more balanced workload within a 

partition. This is important to maximize the utilization of a processor’s cores, 

especially for the GPU because of its strict parallel computation model. 

Partitioning the graph based on vertex degree is low cost in terms of 

computational and space complexity. One way to classify the low and high degree 

vertices is by sorting, with time complexity O(|V|log|V|). In practice, one can 

improve the running time even further by using partial sorting (i.e., finding the 

degree values that divide the graph into the desired partitions), which takes linear 

O(|V|) time complexity [Chambers 1971]. Regarding space complexity, these 

manipulations require O(|V|) of additional space, which represent the permuted 

vertex ids after sorting (or partial sorting). Once the vertices are placed in the 

required order, the edges of each vertex can be read from disk according to the new 

order. This is a moderate space cost as the size of scale-free graphs is typically 

dominated by the number of edges. 

2.9.3 Evaluation 

This section builds on the previous evaluation (Section 2.8), which was based on 

random partitioning. In particular using an instance of the Graph500 benchmark, 
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this section presents experiments that highlights the effect of partitioning the graph 

based on vertex connectivity (Section 2.9.3.1), and explains the reasons behind the 

observed performance by each partitioning strategy using performance counter 

statistics and psedu-code analysis (Section 2.9.3.2) 

2.9.3.1 Highlighting the Effect of Partitioning 

BFS is used to evaluate the partitioning strategies. Three partitioning strategies are 

compared: RAND, HIGH, and LOW. RAND divides the graph randomly. The other 

two strategies are based on degree centrality: HIGH divides the graph such that the 

highest degree vertices are assigned to the CPU, and LOW divides the graph such 

that the lowest degree vertices are assigned to the CPU.  

 

Figure 10 shows BFS traversal rate in billions Traversed Edges Per Second 

(TEPS) for the RMAT28 workload (|V|=256M, |E|=4B, see Table 2). Note that the 

   

Figure 10: BFS traversal rate (in billions of traversed edges per second - 

TEPS) for the RMAT28 graph and different partitioning algorithms while 

varying the percentage of edges placed on the CPU. Left: two GPUs (2S2G); 

Right: one GPU (2S1G). The performance of processing the whole graph on 

the host only (2S) is shown as a dashed line. 
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graph is too large to fit entirely on one or two GPUs and, thus, the host must keep 

at least 80% and 50% of the graph’s edges, respectively. 

In this figure, the x-axis represents the share of the edge array assigned to the 

CPU partition (after the vertices in the vertex-array have been ordered by degree). 

For example, consider the 80% data point and HIGH partitioning. The high-degree 

vertices are assigned to the host until 80% of the edges of the graph and their 

corresponding vertices are placed on the host. The remaining vertices and their 

edges are placed on the GPU. Similarly, in the case of LOW partitioning, the low-

degree vertices are assigned to the host until it holds 80% of the graph’s edges. 

The figure reveals a significant performance difference generated by the 

various partitioning schemes. In particular, assigning the high-degree nodes to the 

CPU results in superlinear speedup with respect to the share of the graph offloaded 

for processing on the GPU. For example, offloading 50% of the graph to be 

processed on the GPUs offers 2.8x speedup. A question that arises from this 

analysis is: What are the causes for this observed performance difference? 

 

 

Figure 11: Breakdown of execution time for an RMAT28 graph. Left: using 

two GPUs (2S2G) and 50% of the edges are assigned to the CPU. Right: using 

one GPU (2S1G) and 80% of the edges are assigned to the CPU. The 

“Computation” bar refers to the computation time of the bottleneck processor 

(the CPU in this case). 
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2.9.3.2 Explaining the Performance Difference 

Figure 11 presents the breakdown of execution time for two of the data points 

presented in Figure 10: the 50% and 80% data points, which represent the 

maximum partition size that can be offloaded to two and one GPU(s), respectively. 

The breakdown shows that the hybrid system’s performance is bottlenecked by the 

CPU regardless of the partitioning scheme, even when offloading 50% of the edges 

to be processed on the GPUs. This happens because of two reasons: (i) the GPU 

has a higher processing rate; and (ii) the communication overhead is negligible 

compared to the computation phase. Based on these two observations, the rest of 

this section focuses on the effect of graph partitioning strategies on CPU 

performance. 

 

Figure 12 lists the pseudocode for the BFS kernel. Hong et al. [Hong et al. 

2011b] showed that this implementation has superior performance over typical 

queue-based approaches. In order to reduce main memory traffic, the algorithm 

uses a bit-vector (lines 6 and 7 in Figure 12) to mark the vertices that have already 

been visited, thus avoiding fetching their state from main memory. 

Chhugani et al. [Chhugani et al. 2012] showed that a cache-resident “visited” 

bit-vector is critical for BFS performance on the CPU, and that the performance 

1 BFS(Partition partition, int level){ 

2  bool done = true;   

3  parallel for vertex in partition.vertices{ 

4   if (vertex.level != level) continue; 

5    for (neighbour in vertex.neighbours){ 

6     if (!partition.visited.isSet(n)){  

7      if (partition.visited.atomicSet(n)){ 

8       neighbour.level = level + 1; 

9       done = false; 

10  }}}} 

11  return done; 

12 } 

Figure 12: Pseudocode of the level-synchronous BFS compute kernel. The 

kernel is invoked in each round for each partition. The algorithm terminates 

when all partitions in the same round return true. 
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significantly drops for large graphs as the bit-vector becomes larger. For the 

RMAT28 workload, the size of the “visited” bit-vector is 32MB (i.e., a bit array 

that represents the 256M vertices) and it is only a little smaller than the total amount 

of last level cache (LLC) on the two CPU sockets, which is 40MB. 

To evaluate the cache behavior, Figure 13 shows the LLC cache miss rate (left) 

and the percentage of main memory accesses (right) for the different partitioning 

schemes. Depending on the partitioning strategy, the “visited” vector is differently 

distributed between the host and the accelerator. Thus, to better understand the 

profiling data in Figure 13, Figure 14 shows the percentage of vertices assigned to 

the CPU due to graph partitioning. The two figures highlight the strong correlation 

between |Vcpu| and the cache miss rate. 

 

On the one hand, RAND and LOW partitioning strategies produce a CPU 

partition with a large number of vertices leading to a large “visited” vector 

comparable in size to that of the original graph. Therefore the LLC miss rate 

 

Figure 13: Performance counter statistics gathered when running BFS on an 

RMAT28 graph for a CPU-only configuration (2S), and a hybrid 

configuration using one GPU (2S1G) when 80% of the edges are assigned to 

the CPU. Left: LLC miss rate (the lower the better), computed as 

100×(LLC_MISS /LLC_REFS). Right: the percentage of main memory 

accesses on the host compared to processing the whole graph on the host (the 

lower the better), computed as 100×(LLC_MISS2S1G/ LLC_MISS2S). 
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changes only slightly when compared to processing on the CPU only: improved for 

RAND due to lower |Vcpu|, and worsened for LOW due to the added overhead of 

handling boundary edges (i.e., edges with source and destination vertices reside on 

partitions that are assigned to different processors). However, Figure 13 (right) 

shows that both these strategies still reduce the number of main memory accesses 

– as a consequence of offloading part of the graph to the GPU, resulting in an 

overall performance improvement by the hybrid system. 

On the other hand, due to the power-law degree distribution of the graph, the 

CPU partition produced by the HIGH strategy has two orders of magnitude fewer 

vertices for the same number of edges. This results in a more cache friendly CPU 

workload, and leads to significant improvement in the CPU processing rate (the 

main bottleneck in the system). 

 

With the HIGH partitioning strategy, offloading as little as 5% of the edges to 

the GPU offers 2x speedup compared to processing the graph on the CPU only, and 

up to 2.5x speedup when offloading 25% of the edges. This demonstrates that 

although GPUs have limited memory, they can significantly improve performance. 

This is because GPUs are able to efficiently handle the sparser part of the graph as 

 

Figure 14: Percentage of vertices placed on the CPU for RMAT28 graph while 

varying the percentage of edges assigned to the partition, and for various 

partitioning strategies. 
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they rely on massive multi-threading rather than caches to hide memory access 

latency. 

2.9.3.3 Same Exploration for a Smaller Graph 

This section discusses the effects of partitioning on a relatively small scale graph. 

Figure 15 shows BFS traversal rate for an RMAT25 graph (|V|=32M, |E|=512M, 

see Table 2), which is almost an order of magnitude smaller than the one used in 

the previous experiments. A smaller graph creates two implications: it enables 

offloading a larger partition to the GPU (in this case, the graph fits entirely in the 

GPU memory); and, for BFS, a graph with a small number of vertices improves the 

cache hit rate of the algorithm (in this case, the bit-vector size is 4MB, and fits the 

LLC cache better than the RMAT28 graph). 

 

In the right end of the figure, where the CPU partition is larger than the GPU 

partition, CPU processing is the bottleneck and the performance of the three 

strategies exhibits behavior similar to the one observed for the larger scale graph 

 
Figure 15: BFS traversal rate for the RMAT25 graph and different 

partitioning algorithms on a 2S1G hybrid configuration. Note that the 

graph is small enough to fit in the memory of a single GPU, hence the 

performance of processing the whole graph on the GPU only is shown as a 

straight line labelled 1G. The performance of processing the whole graph 

on the host only is also shown as a dashed line labelled 2S. 
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where HIGH partitioning offers the best performance. However, the relative 

improvement is not as prominent as on the larger graph because, for this workload, 

the “visited” bit-vector is already small enough to fit the cache compared to the 

larger, RMAT28 graph. 

 

 

To understand the behavior of the hybrid system when most of the graph is 

processed on the GPU (the left end of Figure 15), Figure 16 shows the breakdown 

of execution time for the first five data points. When partitioning the graph using 

RAND and HIGH strategies while keeping only a small percentage of the edges on 

the CPU, the result is a larger GPU partition with similar characteristics to the 

original graph. As Figure 16 shows, GPU processing is the bottleneck for both of 

these strategies and the gain brought by the hybrid system is proportional to the part 

of the graph processed concurrently on the CPU. Note that, for both strategies, the 

 
Figure 16: Breakdown of execution time for an RMAT25 graph on a 2S1G 

hybrid configuration while varying the partitioning strategy and the 

percentage of edges assigned to the CPU.  The “Computation” bar refers to 

the computation time of the bottleneck processor. The “GPU” and “CPU” 

partitions execution times are shown alongside the “Total” execution time. 

This allows demonstrating which processor is the bottleneck for different 

configurations: the bottleneck processor is the one that is closer to the 

computation time in the “Total” bar. 



59 

performance improves up to a point where the load is more balanced between the 

two processing units. After that, it drops as the CPU partition becomes the 

bottleneck as discussed previously. 

In the case of LOW partitioning strategy, the resulting large GPU partition is 

vastly denser than those of the other two strategies. A denser graph leads to better 

locality, which the GPU is able to leverage efficiently because the associated 

“visited” bit-vector is small and fits the limited available cache (this has been 

confirmed by collecting performance counter statistics for the GPU’s L2 cache hit 

rate, which are not shown here for brevity). Hence, the GPU processing rate is much 

faster when using LOW compared to the other two strategies for the same 

percentage of offloaded edges. In fact, the GPU performance is significantly more 

efficient to the degree that the bottleneck shifts to the CPU when increasing the 

CPU’s share of edges to only 25%. 

2.9.3.4 The Effect of Vertex Degree Distribution 

As discussed previously, many real-world graphs are scale-free. The fact that these 

graphs have skewed vertex degree distribution (i) guided the choice of the 

partitioning strategies (Section 2.9.2) in this work, and (ii) facilitated the 

aggregation optimization (Section 2.6), which aims to reduce the communication 

overhead.  

To quantify the effect of vertex degree distribution on the above mentioned 

aspects, the performance of the hybrid system is evaluated using a case that is the 

worst input for TOTEM’s optimizations: random graphs with uniform degree 

distribution. The graphs were generated using the Erdős–Rényi graph generation 

model [Erdős and Rényi 1960]. The model generates edges with equal probability 

of setting an edge between any two vertices, independently of the other edges. 

Figure 17 shows BFS traversal rate for a small scale, UNIFROM25 graph. The 

figure highlights that, when the graph has a uniform degree distribution the hybrid 
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system performs almost the same irrespective of the partitioning strategy as all 

strategies produce partitions with similar characteristics. Compared to processing 

the whole graph on the GPU, the hybrid system performance offers slight 

improvement that is proportional to the size of the partition kept on the CPU (the 

left side of the figure). This improvement diminishes when the CPU partition 

becomes large enough to make the CPU the bottleneck processor (the right side of 

the figure). 

 

Figure 18 (left) shows the system’s performance for the larger UNIFORM28 

graph on a hybrid 2S1G configuration. Unlike the RMAT workload and similar to 

the performance of the smaller graph above, all partitioning strategies perform 

similarly. Moreover, there is marginal gain from processing part of the graph on 

the GPU that is proportional to the offloaded partition.  

Finally, Figure 18 (right) shows the breakdown of execution time for the case 

where the largest partition possible is placed on the GPU (i.e., 80% of the edges 

 

Figure 17: BFS traversal rate for the UNIFORM25 graph and different 

partitioning algorithms on a 2S1G hybrid configuration. Note that the 

graph is small enough to fit in the memory of a single GPU, hence the 

performance of processing the whole graph on the GPU only is shown as a 

straight line labelled 1G. The performance of processing the whole graph 

on the host only is also shown as a dashed line labelled 2S. 
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were kept on the CPU). The figure shows that the CPU is the bottleneck processor, 

and that communication is not a major overhead due to the ability of TOTEM to 

overlap a major part it (the messages sent from the GPU to the larger CPU partition) 

with the computation of the CPU partition. 

 

2.10 Extending the Application Set 

This section focuses on the following two questions: Do the performance gains 

offered by the hybrid system on BFS extend to more complex applications? How do 

the partitioning strategies influence performance in such settings?  

To answer these questions, this section presents two additional applications 

implemented using TOTEM: ranking web pages using PageRank (Section 2.10.1) 

and finding the main actors in a social network using Betwenness Centrality 

(Section 2.10.2). 

2.10.1 Ranking Web Pages 

PageRank [Page et al. 1999] is a fundamental algorithm used by search engines to 

rank web pages. This section presents an evaluation of PageRank on the UK-WEB 

workload [Boldi et al. 2008], a crawl of over 100 million pages from the .uk 

domain, and 3.7 billion directed links among the pages.  

 

Figure 18: BFS performance on a UNIFORM28 graph on a hybrid 2S1G 

configuration. Left: traversal rate. Right: breakdown of execution time for 

the 80% data point. The performance of running the whole graph on the 

CPU (2S) is shown as a dashed line. 
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Figure 19 presents the compute kernel of the PageRank algorithm. Note that 

the kernel is pull-based: each vertex pulls the ranks of its neighbors via the 

incoming edges to compute a new rank. This is faster than a push-based approach, 

where each vertex pushes its rank to its neighbors via the outgoing edges. The latter 

approach requires atomic operations, and hence is less efficient [Nguyen et al. 

2013]. 

Compared to BFS, PageRank has a higher compute-to-memory access ratio, 

and does not employ summary data structures, therefore the cache has a lower effect 

on performance. 

Figure 20 shows PageRank’s processing rate. While a single GPU offers 

narrow improvement due to limitations on the size of the offloaded partition, adding 

a second GPU significantly improves the performance for such a large workload: 

up to 2.3x speedup compared to processing the whole graph on the CPU only.  

Compared to the other two strategies, LOW partitioning allows offloading a 

larger portion of the edges to the GPU. This happens because PageRank requires a 

larger per-vertex state than BFS; hence, the number of vertices assigned to a 

partition has a larger effect on a partition’s memory footprint. Since LOW places 

the high degree vertices on the GPU, the number of vertices assigned to the GPU 

1 PageRank(Partition partition) { 

2  double delta =(1 -  damping_factor) / vertex_count; 

3  parallel for vertex in partition.vertices { 

4    double sum = 0; 

5    for (neighbour in partition.incoming_neighbours) { 

6      sum = sum + neighbour.rank; 

7    } 

8    vertex.rank = delta + damping_factor * sum; 

9  } 

10 }  

Figure 19: Pseudocode of PageRank’s compute kernel. vertex_count is the 

total number of vertices in the graph, while damping_factor is the damping 

factor, a constant defined by the PageRank algorithm. The kernel is invoked 

in each BSP round for each partition. The algorithm terminates after 

executing the kernel a predefined number of times. 

 

 



63 

partition by LOW is significantly lower than that assigned by HIGH and RAND 

strategies for the same number of edges. 

 

 

Note that HIGH performs the best among all partitioning strategies. To explain 

this result, Figure 21 shows the breakdown of execution time. Similar to BFS, the 

 

Figure 20: PageRank traversal rate for the UK-WEB graph. Left: using two 

GPUs. Right: using one GPU. Missing bars represent cases where the GPU 

memory space is not enough to fit the GPU partition. The performance of 

processing the whole graph on two CPU sockets (labelled as 2S) is shown as a 

straight line. 

 

 

Figure 21: Breakdown of PageRank execution time (five iterations) for the 

UK-WEB graph when offloading the maximum size partition to two (left three 

bars) and one GPU (right three bars). The “Computation” bar refers to the 

compute time of the bottleneck processor (the CPU in this case). 
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communication overhead is negligible; the CPU is the bottleneck processor in all 

partitioning strategies; and that HIGH is the most efficient partitioning strategy due 

to faster CPU processing.  

Two interrelated factors lead to this result. First, from the pseudocode in Figure 

19, notice that the number of memory read operations is proportional to the number 

of edges in the graph (line 6), while the number of write operations is proportional 

to the number of vertices (line 8). Second, as discussed in the previous section, for 

the same number of edges, the different partitioning strategies produce partitions 

with drastically different number of vertices (see Figure 14). Particularly, HIGH 

produces a CPU partition with significantly fewer vertices. 

As a result of these observations, HIGH is expected to result in a CPU partition 

that performs significantly fewer write operations compared to the other two 

strategies, while the number of read operations will be similar for all partitioning 

strategies. 

 

Figure 22 confirms this analysis: it shows the percentage of write and read 

memory accesses on the CPU (compared to processing the whole graph on the host) 

 

Figure 22: Host memory accesses statistics gathered when running PageRank 

on UK-WEB graph while when offloading the maximum size partition to two 

GPUs (2S2G). The performance counter used to collect these statistics is 

“mem_uops_retired”. Left: read accesses; right: write accesses compared to 

processing the graph on the host only. 
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when offloading the largest possible partition to two GPUs (i.e., the percentage of 

edges on the CPU is 30%, 35% and 40% for LOW, RAND and HIGH, 

respectively). The figure demonstrates that the percentage of read accesses (Figure 

22 left) is similar for all partitioning strategies, with HIGH performing slightly 

more reads than the other two as it allows offloading fewer edges, while the 

percentage of write accesses (Figure 22 right) significantly differ. 

One may expect that the overhead of reads will be dominant as the number of 

edges is much larger than the number of vertices. However, two reasons lead to the 

visible impact of writes. First, the performance analysis tool LMbench [McVoy and 

Staelin 1996] shows that the host memory write throughput is lower, almost half, 

than its read throughput. Second, the reduction in the number of write accesses is 

significant: HIGH generates two orders of magnitude fewer write operations 

compared to LOW and RAND.  Note that this reduction is compensated by a major 

increase in write memory operations in the GPU partitions, which is reflected in the 

increase of the GPU compute time for HIGH and RAND compared to LOW in 

Figure 21. Still, the GPU’s high memory bandwidth allows processing this part of 

the workload faster than the CPU and, hence, it leads to an overall gain in 

performance. 

Finally, similar behavior is obtained for other graphs. Additionally, one of the 

publications this thesis is based on [Gharaibeh et al. 2013a] shows that the analysis 

in this section also hold on a different, older generation, hardware platform. 

2.10.2 Finding the Main Actors in a Social Network 

A key measure of importance for vertices in social networks is Betweenness 

Centrality (BC). This section presents an evaluation of BC on a snapshot of the 

Twitter follower network [Cha et al. 2010]. The workload includes over 52 million 

users and 1.9 billion directed follower links. 
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This section presents an evaluation of Brande’s BC algorithm [Brandes 2001], 

which is based on forward and backward BFS traversals. Figure 23 lists the 

pseudocode of the forward and backward propagation kernels. Overall, the 

algorithm has different characteristics and is more complex than PageRank and the 

1 forwardPropagation(Partition partition, int level){ 

2  bool finished = true; 

3  parallel for vertex in partition.vertices { 

4   if (partition.distance[vertex] == level){ 

5    int numShortestPaths = partition.numShortestPaths[vertex]; 

6    for (neighbour in vertex.neighbors){  

7     if (partition.distance[neighbour] == INF){ 

8      partition.distance[neighbour] = level + 1; 

9      finished = false; 

10     } // if 
11     if (partition.distance[neighbour] == level + 1){ 
12      atomicAdd(partition.numShortestPaths[neighbour], 

               numShortestPaths); 

13     } // if 
14    } // for 
15   } 
16  } 
17  return finished; 
18 } 

 

19 backwardPropagation(Partition partition, int level){ 
20  parallel for vertex in  partition.vertices { 
21   if (partition.distance[vertex] == level) { 
22    double delta = 0; 
23    int numShortestPaths = partition.numShortestPaths[vertex]; 
24    for (neighbour in vertex.neighbors) { 
25     if (partition.distance[neighbour] == (level + 1)) { 
26      delta +=  

      (numShortestPaths / partition.numShortestPaths [neighbour]) * 

          partition.delta[neighbour]; 

27     } // if 
28    } // for 
29    partition.delta[vertex] = delta; 
30    partition.betweenness[vertex] += delta; 
31   } // if 
32  } // for 
33  return ((level – 1) == 0); 
34 }  

Figure 23: Pseudocode of BC’s compute kernels. The algorithm is executed 

in two BSP cycles. A first BSP cycle is run using the forward propagation 

kernel. Once the first cycle terminates, a second cycle is run using the 

backward propagation kernel. 
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basic BFS algorithm presented previously. Compared to basic BFS, BC traversal 

does not benefit from summary data structures targeted for improving cache 

efficiency. Compared to PageRank, BC is a traversal-based algorithm, where the 

set of “active” vertices changes across iterations, and it uses atomic operations. 

Figure 24 (left) shows BC processing rate while offloading part of the graph to 

be processed on one GPU (i.e., 2S1G configuration). The figure demonstrates that 

for a specific percentage of edges offloaded to the GPU, HIGH offers the best 

performance. Moreover, similar to PageRank, LOW partitioning allows offloading 

a larger percentage of the edges to the GPU than HIGH and RAND. In fact, since 

BC requires relatively large per-vertex state, LOW allows offloading 20% more 

edges to the GPU compared to HIGH. Unlike PageRank, however, offloading more 

edges to the GPU via LOW partitioning has a significant impact on improving the 

overall performance of the hybrid system. 

To understand this behavior, Figure 24 (right) shows the breakdown of 

overheads when offloading the maximum size partition to one GPU (i.e., the 

percentage of edges offloaded is 50%, 30% and 40% for HIGH, LOW and RAND, 

respectively). Notice that communication has minimal impact on performance, and 

that the CPU is again the bottleneck processor. Therefore, in the following, the 

major operations in the compute kernel are quantified by examining the pseudocode 

in Figure 23. 

The major operations in the algorithm are: 5×|E| scattered reads (lines 7, 11, 

12 and 26), 1×|E| atomic additions with scattered writes (line 12), 3×|E| floating 

point operations, 2×|V| writes (lines 29 and 30) and 1×|V| additions (line 30).  

This analysis reveals that, similar to PageRank, BC performs expensive 

operations proportional to both the number of edges and vertices. Therefore, for a 

specific percentage of edges offloaded to the GPU, HIGH performs better than 

LOW and RAND as it results in significantly fewer vertices assigned to the 

bottleneck processor, the CPU. However, unlike PageRank, BC performs larger and 
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more expensive operations per edge than per vertex. Therefore, the ability of LOW 

partitioning scheme to offload more edges to the GPU results in notably better 

performance than HIGH and RAND partitioning schemes. 

 

Next, the performance of the hybrid system is compared with the CPU only 

(2S) performance (the dotted line in Figure 24 (left)). First, note that this work’s 

implementation of BC applies several CPU-specific optimizations, and that its 

performance is proportional to the best reported runtimes. In particular, Nguygen 

et al. [Nguyen et al. 2013] report a runtime of 12 seconds (i.e., 0.32 Billion TEPS) 

when processing the same Twitter workload on a quad socket platform. This is only 

40% faster than the performance reported here on a dual-socket testbed with lower-

end processors (Section 2.13 presents a more detailed comparison).  

Finally, the hybrid system (2S1G) delivers significant improvement compared 

to both symmetric platforms discussed above: adding a GPU boosts the 

performance by 5x compared to the dual socket (2S) configuration. Moreover, the 

 

Figure 24: BC performance on the Twitter network for the 2S1G system. Left: 

traversal rate (in Billion TEPS) using one GPU. The horizontal line indicates 

the performance of a two socket system (2S). Right: Breakdown of execution 

time when offloading the maximum size partition to one GPU (i.e., the 

percentage of edges offloaded is 50%, 30% and 40% for HIGH, LOW and 

RAND, respectively). 
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hybrid 2S1G platform (with lower-end CPU models) offers over 3x speedup 

compared to the quad-socket system, yet at a much lower energy and cost budget. 

2.10.3 Finding Point-to-Point Shortest Paths in a Network 

The Single-Source Shortest Path (SSSP) aims to find the shortest path from a given 

source to all vertices in a network. SSSP algorithms are used in a wide spectrum of 

application domains such as network routing, VLSI design, transportation network 

modeling and social network analysis. In this section, we present an evaluation of 

SSSP on the Twitter workload (Table 2). 

 

Shortest path computation involves weighted graphs, where each edge is 

associated with a weight. For example, in the Twitter follower network, where 

vertices represent users, an edge weight can be a measure of common followers 

between two users or their geographic proximity. Weighted graphs increase 

1 SSSP(Partition partition) { 
2  finished = true; 
3  parallel for v in partition.vertices { 
4   if (partition.active[v] == false) { continue; } 
5   partition.active[v] = false; 
6   for (neighbour in v.neighbours) { 
7    new = partition.distance[v] + v.weights[neighbour]; 
8    old = partition.distance[neighbour]; 
9    if (new < old) { 
10     if (old == atomicMin(partition.distance[neighbour], new)) { 
11      partition.active[neighbour] = true; 
12      finished = false; 
13     } 
14    } 
15   } //for 
16  } //for 
17  return finished; 
18 }  

Figure 25: Pseudocode of SSSP’s compute kernel based on Bellman-Ford 

algorithm. The array distance contains the computed distances of all the 

vertices in the partition. Each entry in the array active indicates the current 

state of a vertex. Every time a vertex’s distance is updated, it becomes 

“active” and it may traverse its edge list in the same or the next BSP round. 

The algorithm terminates when there are no active vertices left. Note that 

atomicMin atomically updates a memory location with the new value if it is 

less than the current one, and returns the value stored in the location before 

the atomic operation gets applied. 
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memory footprint, which poses a challenge with respect to offloading a larger 

fraction of the graph to the GPU. The additional memory required is proportional 

with the number of edges. 

The Bellman-Ford algorithm [Ford 1956; Bellman 1958] is a common parallel 

SSSP algorithm, it is a traversal-based algorithm, but unlike BFS, the set of “active” 

vertices changes during an iteration and it also uses atomic operations for 

consistency. Figure 25 lists the algorithm. One improvement we have made to the 

algorithm is reducing the number of iterations (BSP rounds) by allowing a vertex 

to be set to “active” and perform “relax” operations in the same iteration if it has 

not been processed yet.  

 

Figure 29 (left) shows the performance of the SSSP algorithm. As shown, 

HIGH partitioning offers superior performance compared to the other two 

portioning strategies. Figure 29 (right) shows the breakdown of execution time. 

Similar to BFS, PageRank and BC, communication overhead is negligible 

compared to that of computation. CPU is always the bottleneck processing element 

and the best CPU performance is achieved when HIGH partitioning is used.  

 

Figure 26: SSSP performance on the Twitter network for 2S2G system. Left: 

traversal rate (in Billion TEPS) using two GPUs. The horizontal line indicates 

the performance of a two socket system. Right: breakdown of execution time 

of the 35% data point. 
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The most critical operation in the SSSP algorithm is when a vertex atomically 

updates the distance of a neighbor (lines 10 to 12 in Figure 25). Having a 

significantly lower number of vertices in the CPU partition as a result of using a 

HIGH partitioning strategy contributes to reducing the contention on the atomic 

updates, and hence improving the overall performance of the CPU partition.  

To better illustrate this analysis, Figure 27 shows host memory access statistics 

of the three partitioning strategies. The figure demonstrates that while all strategies 

lead to reduction in read memory accesses, the HIGH partitioning strategy results 

in a significant reduction in the number of write operations (which, as we discussed 

before, more expensive than read operations).  

 

 

Figure 27: Host memory access statistics when running SSSP on the Twitter 

workload (2S2G configuration). The y-axis presents the percentage of host 

memory accesses of the CPU partition in a hybrid configuration compared to 

the number of accesses performed when running the whole graph on CPU only 

(i.e., 100*MEM_READ2S2G/MEM_READ2S for the left figure and 

100*MEM_WRITE2S2G/MEM_WRITE2S for the right figure). The x-axis 

presents the three partitioning algorithms while offloading the maximum size 

partition to two GPUs.  
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2.11 Evaluating Scalability Using Synthetic Graphs 

This section focuses on the following questions: How does the hybrid system scale 

when increasing the graph size and with various hardware configurations? What 

is more beneficial, adding more CPUs or GPUs?  

 

Figure 28 presents traversal rates for the different algorithms, hardware 

configurations (up to two sockets and two GPUs) and graph sizes (1 to 16 billion 

edges).  

First, the discussion focuses on the analysis of configurations with two 

processing units. The figures show that, for all algorithms, the hybrid system 

(1S1G) performs better than the dual-socket system (2S). On the one hand, adding 

 

 

Figure 28: Processing rates for the different algorithms, hardware 

configurations and RMAT graph sizes. When GPUs are used, the graph is 

partitioned to obtain best performance. Experiments on configurations with a 

single socket (i.e., 1S and 1S1G) were performed by binding the CPU threads 

to the cores of a single socket. The results for an RMAT30 graph are missing 

for SSSP and CC because of memory space constraints (SSSP requires 

additional memory space to store the edge-weights while CC doubles the 

number of edges as it operates on undirected graphs). 
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a second socket doubles the amount of last level cache and the number of memory 

channels, which are critical resources for graph processing performance, hence 

leading to close to double the performance compared to 1S configuration. On the 

other hand, the performance gain of 1S1G, brought by matching the heterogeneous 

graph workload with the hybrid system, outperforms that of the dual-socket 

symmetric system: between 30% to 60% improvement compared to the dual socket 

system (2S). 

Second, the figure also demonstrates the ability of the hybrid system to harness 

extra processing elements. For example, in the case of BFS, the system achieves up 

to 3 Billion TEPS for the smallest graph (i.e., |E|= 2B), and, more importantly, it 

achieves as high as 1.68 Billion TEPS for an RMAT30 graph (i.e., |E|= 16B). It is 

worth pointing out that such performance is competitive with the performance 

results of the latest Graph500 competition for graphs of the same size. Also note 

that TOTEM is a generic graph-processing engine, as opposed to the dedicated BFS 

implementations for most submissions in Graph500; moreover the BFS 

implementation evaluated here is the standard top-down algorithm compared with 

the direction-optimized implementations [Beamer et al. 2013] that top the 

Graph500 competition. 

Finally, the figures also demonstrate that the GPU can provide significant 

improvements for the large graphs, RMAT29 and RMAT30. This is made possible 

by employing mapped memory to increase the size of the offloaded partition. 

Particularly, for such large graphs, the GPU’s limited memory space significantly 

constrains the size of the offloaded partition. For example, the GPUs on the testbed 

used in this study support 6GB of memory, and can host at most 0.625 Billion edges 

considering 64-bit edge identifiers (not including the space needed for the vertices’ 

state, hence this limit is even lower especially for PageRank and BC); therefore, the 

GPU’s device memory can store less than 5% of graph’s edges.  To enable 

offloading a larger partition to the GPU, part of the state is allocated on host 
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memory and mapped into the GPU’s address space. The tradeoff is extra 

communication overhead over the high latency PCI Express bus.  

This overhead has been reduced by taking the following measures: First, the 

impact of the high latency of the bus is reduced by restricting the use of mapped 

memory to allocate the part of the state that is (i) read-only, and (ii) can be accessed 

sequentially in batches; particularly, mapped memory is used to allocate the edges 

array since the focus is on static graphs. Second, transfer throughput is maximized 

by ensuring that the edges of a vertex are read in a coalesced manner when the 

vertex iterates over its neighbors. Finally, a side-effect of using mapped memory is 

that it naturally supports overlapped communication of a vertex’s edge list with the 

computation of another vertex. 

In summary, mapped memory affects performance in the following way: for 

small scale graphs (RMAT28 and below), the benefit from offloading a larger 

partition to the GPU via mapped memory is masked by the extra overhead of 

reading the graph data structure via the high latency PCI-E bus (even though 

mapped memory by design overlaps communication and computation). For large-

scale graphs (RMAT29 and above) using mapped memory was beneficial.  These 

points are summarized in a recent poster publication [Sallinen et al. 2014]. 

2.12 Evaluating Energy Consumption 

This section investigates the power and energy characteristics of large-scale graph 

processing on hybrid (i.e., CPU and GPU) single-node systems. Although current 

GPUs have limited memory, previous sections demonstrated that large-scale graphs 

can still benefit from GPU acceleration by partitioning the graph to be processed 

concurrently on the CPU and the GPU.  

On the one hand, GPUs are known to have higher FLOP/watt rate than CPUs 

[Huang et al. 2009], specifically for workloads that fit their computational model. 

Moreover, GPU acceleration allows a faster ‘race-to-idle’, enabling power savings 
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that are sizeable for newer GPU models which are power-efficient in idle state (as 

low as 25W [NVIDIA 2013]). In fact, as of writing this thesis, all top ten 

supercomputers in the Green500 list are GPU-accelerated. The reader is referred to 

Mittal et al. [Mittal and Vetter 2014] for a comprehensive survey on related works 

for analyzing and improving the energy efficiency of GPUs. 

On the other hand, graph processing workloads are memory bound and have 

irregular processing patterns that can lead to underutilizing the computational 

capabilities of the GPU, and hence making the GPU less energy efficient. 

Moreover, GPUs have high thermal design power (TDP), typically double that of 

CPUs which may render an accelerated solution efficient in terms of time-to-

solution but not in terms of energy. Therefore, it is unclear how using GPUs affects 

power consumption in the context of this work.  

Concretely, this section focuses on the following high-level research questions: 

 Is it energy-efficient to partition the graph to be processed concurrently on a 

GPU and a CPU? 

 Given a graph/algorithm workload and a fixed-power or energy budget, what 

is the (empirically determined) optimal balance between traditional and 

massively-parallel processors?   

 What is the impact of increasing the graph scale on energy consumption and 

efficiency? 

To answer these questions, the rest of this section describes the experiment 

setup and the testbed’s power characteristics (Section 2.12.1), evaluates the power 

consumption (Section 2.12.2), performance per watt (Section 2.12.3), and the 

energy-delay product (Section 2.12.4) for different hardware configurations, 

algorithms and workloads. 
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2.12.1 Experiment Setup 

Measuring Power. Power is measured at the outlet using a WattsUP7 meter which 

collects samples at one second intervals. Figure 29 (left) demonstrates the 

evaluation setup. To get a representative measurement of the energy consumption, 

each experiment is run for 5 minutes (e.g., repeating BFS searches). For accuracy, 

CPU-only experiments are conducted after removing the GPUs from the machine 

(as the GPU draws power from the PCI Express bus as well). 

 

Testbed Characteristics. Table 1 describes the evaluation platform. Simple 

compute and memory intensive kernels have been used to characterize the power 

consumption of the machine. Figure 29 shows the power consumption at idle, then 

when stressing one and both CPUs (listed as 1S and 2S in the plot), then the 

memory, and then each of the two GPUs. The high idle power consumption, which 

                                                 

7 http://www.wattsupmeters.com 

                  

Figure 29: Testbed setup (left) and power characterization (right). The 

characterization of the evaluation server is obtained by incrementally 

stressing the different components of the system. Note that the GPUs are 

removed from the system when characterizing only the host components. 

Finally, “Idle” measures the idle power of the system without the GPUs. 
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includes idle power of CPUs and RAM only, is mainly caused by the sizeable 

amount of available RAM (256GB). Note that the two CPUs consume less power 

than the DRAM, and less than one GPU. Two points are worth highlighting: (i) at 

peak load a significant share of the power is consumed by DRAM, and (ii) when 

loaded, GPUs consume significant power compared to other system components. 

Metrics. Three energy metrics used are: ii) power consumption in Watts (Section 

2.12.2), iii) power-normalized processing rate in TEPS/Watt (Section 2.12.3), and, 

iv) the energy-delay product, a metric biased for low-time-to-solution while taking 

into account the energy cost (Section 2.12.4). 

2.12.2 Power Consumption 

Power consumption is evaluated in this section with two key goals in mind: firstly, 

to understand the degree to which additional processing elements lead to additional 

power consumption (and how this relates to their TDP rating), and secondly, to 

characterize the variability in power drawn during processing. 

Figure 30 shows the system power consumption under different 

workload/hardware combinations for all algorithms. To better illustrate the 

variation in power consumption during execution, the data is presented as boxplots.  

The main differentiating factor in terms of power consumption is the hardware 

configuration (i.e., the number and type of processing elements used). Note that 

there is no major power difference across algorithms and workloads for the same 

hardware configuration. 

Although the hybrid 1S1G configuration has a 155W higher TDP rating than a 

2S configuration, it draws on average (across all configurations) only 50W more 

power than the symmetric configuration 2S, which has the same number of 

processing elements.  
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Also, while adding GPUs to the 2S configuration increases power drawn, the 

increase is below the TDP of the GPU. Adding a GPU increases power by ~100W, 

which is ~40% of the GPU’s TDP.  The reason is that the GPUs finish processing 

 

 

 

Figure 30: Power consumption (the lower the better). The upper and lower 

"hinges" of the boxplot correspond to the first and third quartiles. The middle 

line corresponds to the median. The whiskers extend from the lowest data point 

within 1.5 IQR of the lower quartile, to the highest data point within 1.5 IQR of 

the upper quartile (IQR is the Interquartile Range, which is the distance 

between the first and third quartiles). The mean is shown as a cross. Note the y-

axis starts at 200W. 
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their partition first and go in an energy-efficient idle state that consumes only a 

fraction of their peak power (25W) (see Figure 31). 

 

The hybrid configurations generate more variation in power consumption than 

processing on the CPU only. This is because, for some workloads, the computation 

is unbalanced between the CPU and the GPU(s). There are two reasons for this 

unbalance: First, GPUs do not have enough memory to hold a large enough 

partition that would balance the work for some workloads. Second, for BFS and 

BC, SSSP and CC the load varies across iterations. The time-series that presents 

the active/idle states for BFS and PageRank shed more light on this effect (Figure 

31). 

2.12.3 Power-normalized Processing Rates  

To estimate the energy efficiency of different configurations, Figure 32 shows the 

power-normalized performance for all benchmarks (i.e., raw performance reported 

in Figure 28 divided by average drawn power). Note that, for each workload, the 

 

 

Figure 31: CPU/GPU active/idle state while processing an RMAT27 graph on 

a 2S1G setup (time is in milliseconds) for BFS (top) and PageRank (bottom). 

For BFS, the ‘frontier’ evolves in unpredictable ways, which results in having 

a processing element active in specific rounds and not in others. This behavior 

applies to Betweenness Centrality as well. For PageRank, the GPU finishes 

execution before the CPU in each execution round. 
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plots can also be viewed as a comparison of raw energy consumed to process the 

graph.  

 

First, compare the power-normalized performance of configurations with two 

processing elements. A hybrid 1S1G system improves both raw performance and 

power-normalized performance compared to the symmetric 2S system. In the best 

 

 

 

Figure 32: BFS, PageRank and BC power-normalized processing rate (the 

higher the better). 
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case, the hybrid system achieves 1.9x higher efficiency for the power-normalized 

performance metric. 

Second, for most cases, adding more GPUs improves power-normalized 

performance as the gain in raw performance is higher than the increase in power 

consumption. 

 

 

 

 

Figure 33: Normalized energy-delay product (the lower the better). The 

baseline is the CPU-only configuration with two processors (2S). 
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2.12.4 Energy-delay Product 

Using a different energy-oriented metric, the energy-delay product (EDP), would 

not only support the same qualitative observations, but the relative advantage of the 

hybrid solution is higher. This is because EDP is biased more towards performance. 

The EDP is calculated as follows: T2 × W, where T is the processing time and W is 

the average power drawn. 

Figure 33 presents the results of this experiment normalized to the 2S 

configuration to make the plot readable. Importantly, these gains are preserved 

when processing larger graphs and for most executions. 

2.13 Comparing TOTEM’s Performance with Other 

Frameworks 

This section focuses on the following questions: How does TOTEM’s performance 

compare with other parallel graph processing frameworks? How does the hybrid 

system compare with a high-end symmetric one?  

These questions are motivated by the fact that new commodity single-node 

machines can be provisioned with as many as four CPU processors, where each 

processor can support more than 20 hardware threads. To make it easy to utilize 

these shared-memory machines for parallel graph processing, a number of 

frameworks have been proposed. The most notable are Ligra [Shun and Blelloch 

2013] and the Galois [Nguyen et al. 2013] projects (these frameworks, and others, 

are discussed in more detail in the related work section in Section 2.14.3).  

In particular, Nguyen et al. [Nguyen et al. 2013] proposed a lightweight graph 

processing framework for single-node shared memory systems named Galois. The 

work compared Galois with a number of other graph processing frameworks 

(including Ligra [Shun and Blelloch 2013] and PowerGraph [Gonzalez et al. 2012]) 

on a quad-socket system, and demonstrated that Galois compares favorably. The 
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largest workload that Nguyen et al. used was the Twitter network described in Table 

2.  

In this section, TOTEM’s performance is compared with that of Galois, Table 4 

shows the performance of Galois when executed on the evaluation machine used in 

this work (labeled 2S-Galois8), and the best performance reported by Nguyen et al. 

in their paper (labeled 4S-Galois in the table to indicate a quad-socket 

configuration). The table compares the four algorithms detailed in this work as well 

as a fifth one, namely connected components, when processing the same Twitter 

graph.  

 

First, the table demonstrates that TOTEM’s performance on a 2S configuration 

is not only better than that of Galois on our evaluation machine, but also 

competitive with the best reported numbers on the 4S one, even surpassing it in the 

                                                 

8 The Galois experiments presented in this section where executed on the by my colleague Tahsin Reza. 

Table 4: Processing times in seconds for different algorithms and hardware 

configurations for the Twitter workload. The 2S-Galois column reports the 

performance of Galois on our evaluation machine. The performance of the 

four socket platform (labeled 4S-Galois) is the best performance reported 

by [Nguyen et al. 2013] when processing the same workload for various 

frameworks that include Galois, Ligra, and PowerGraph. The 

characteristics of the 4S platform are: Four Intel E7-4860 processors, each 

with 10 cores (20 hardware threads) @ 2.27GHz and 24MB of LLC per 

processor, hence a total of 80 hardware threads and 96MB of LLC – 

significantly better than our platform. Note that the processing time for 

PageRank is for a single round, while for BC it is for a single source. 

Algorithm/Configuration 
2S 

Galois 

2S 

TOTEM 

4S 

Galois 

1S1G 

TOTEM 

2S1G 

TOTEM 

2S2G 

TOTEM 

BFS 5.0 4.0 2.3 1.1 0.85 0.4 

PageRank 24.3 8.1 10.7 1.5 1.12 0.5 

BC 29.7 20.8 12.0 4.8 3.7 2.5 

SSSP 13.2 4.6 8.6 3.3 3.1 1.9 

Connected Components 41.1 42.0 31.9 38.7 25.8 13.5 
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cases of PageRank and SSSP. This increases my confidence that the speedup results 

reported throughout this work use a meaningful baseline.  

Second, the hybrid configurations offer significant speedups compared to both 

symmetric systems (2S and 4S). In the case of BFS, while the 4S system delivers 

60% better performance than 2S, a modest 1S1G hybrid configuration speeds up 

the performance by 3.5x compared to 2S, and 2.1x compared to 4S at a much lower 

cost in terms of both acquisition and energy. Moreover, the hybrid configuration 

2S2G offers over 5.5x speedup compared to 4S, the symmetric system with the 

same number of processing elements.  

In the case of PageRank, a 1S1G hybrid configuration offers close to one order 

of magnitude better performance than the 4S system, while a 2S2G hybrid 

configuration delivers an impressive, 20x improvement. Two reasons behind these 

impressive speedups: First, the ability of the hybrid system to reshape the workload 

to run much faster on the CPU; second, a significant portion of the Twitter workload 

fits in the GPUs (up to 70% of the workload), which are able to more efficiently 

process the floating point operations performed by the PageRank algorithm. 

Finally, the table shows similar significant performance improvements for 

Betweenness Centrality, SSSP and Connected Components algorithms. 

In summary, the comparison in this section demonstrates two important points: 

First, the CPU-only implementation used to evaluate the performance of the 

symmetric system throughout this work is comparable to the best reported numbers 

in the literature. Second, this comparison reaffirms the results observed in previous 

sections in that a hybrid GPU-accelerated platform offers tangible speedups 

compared a symmetric one: a modest one CPU processor and one GPU (1S1G) 

hybrid configuration performs significantly faster than a symmetric system with as 

many as four high-end CPU processors. 



85 

2.14 Related Work  

This section discusses related work from several aspects.  First, Section 2.14.1 

reviews efforts on optimizing graph algorithms for multi- and many-core platforms. 

Next, Section 2.14.2 reviews work related to graph partitioning. Finally, Section 

2.14.3 reviews abstractions similar to TOTEM that aim to hide the complexity of 

implementing graph algorithms on parallel platforms. 

2.14.1 Optimizing Graph Algorithms 

While I am unaware of previous works on optimizing graph processing on hybrid 

systems, many efforts exist on optimizing graph algorithms on homogeneous 

systems: either on multicore CPUs or on GPUs alone. For example, several studies 

focus on optimizing BFS on multi-core CPUs [Agarwal et al. 2010; Hong et al. 

2011b; Chhugani et al. 2012]. For example, Chhugani et al. [Chhugani et al. 2012] 

apply a set of sophisticated techniques to improve the cache hit rate of the “visited” 

bit-vector, reduce inter-socket communication, and eliminate the overhead of 

atomic operations by using probabilistic bitmaps. My approach to partition the 

graph goes in the same direction in terms of improving the cache hit rate on the 

CPU using a hybrid system.  

Past projects have also explored GPU-only solutions. These projects either 

assume that the graph fits the memory of one [Hong et al. 2011a; Katz and Kider 

Jr 2008], or multiple GPUs [Merrill et al. 2012]. In both cases, due to the limited 

memory space available, the scale of the graphs that can be processed is 

significantly smaller than the graphs presented in this paper. 

Hong et al. [Hong et al. 2011b] work is, perhaps, the closest in spirit to this 

work as it attempts to harness platform heterogeneity: the authors propose to divide 

BFS processing into a first phase done on the CPU (as, at the beginning, only 

limited parallelism is available), and a second phase on the GPU once enough 

parallelism is exposed, having the whole graph transferred to the GPU to accelerate 
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processing. However, this technique still assumes that the whole graph fits the GPU 

memory; moreover, the work is focused on BFS only. 

In summary, techniques that aim to optimize graph processing for either the 

CPU or the GPU are complementary to the approach proposed in this work in that 

they can be applied to the compute kernels to improve the overall performance of 

the hybrid system. In fact, this work uses some of these techniques in the hybrid 

implementations, such as using pull-based approach in PageRank and optimizing 

thread allocation on the GPU [Li and Becchi 2013; Hong et al. 2011a]. 

2.14.2 Graph Partitioning 

There is no shortage of work on graph partitioning for parallel processing. 

Traditionally, the problem is defined as to partition a graph in a balanced way, while 

minimizing the edge cut. It has been shown that this problem is NP-hard [Garey et 

al. 1974], therefore several heuristics were proposed to provide approximate 

solutions. Some heuristics, such as Kernighan–Lin [Kernighan 1970], have 

quadratic O(n2logn) time complexity, which is prohibitively expensive for the scale 

of the graphs targeted by this work. Multilevel partitioning techniques, such as 

METIS by Karypis et al. [Karypis and Kumar 1998], offer an attractive moderate 

time complexity.  

I believe that classical solutions do not properly address the requirements for 

graph partitioning on hybrid platforms. Such techniques are mainly optimized to 

minimize communication, which is not the bottleneck in the platform this work 

targets. Moreover, such solutions target homogeneous parallel platforms as they 

focus on producing balanced partitions, which is not sufficient for a hybrid system 

that has processing units with largely different characteristics. 

2.14.3 Graph Processing Frameworks 

A number of frameworks have been proposed to simplify the task of implementing 

graph algorithms at scale, which can be divided into two categories depending on 
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the target platform. On the one hand, frameworks for shared-nothing clusters, such 

as Pregel [Malewicz et al. 2010] and PowerGraph [Gonzalez et al. 2012], partition 

the graph across the cluster nodes, and provide abstractions to implement 

algorithms as vertex programs run in parallel. Cluster-based solutions offer the 

flexibility to scale with the size of the workload by adding more nodes. However, 

this flexibility comes at performance and complexity costs. Particularly, 

performance suffers from the high cross-node communication overhead: over one 

order of magnitude slower compared to single-node systems [Nguyen et al. 2013]. 

Moreover, the fact that the system is distributed introduces new problems such as 

network partition, partial failures, high latency and jitter, which must be addressed 

when designing the framework and when implementing algorithms on top of it, 

hence greatly increasing the complexity of the solution.  

On the other hand, single-node platforms are becoming increasingly popular 

for large-scale graph processing. Recent advances in memory technology make it 

feasible to assemble single-node platforms with significant memory space that is 

enough to load and process large-scale graphs for a variety of applications. Such 

platforms are more efficient in terms of both performance and energy, and 

potentially less complex to program compared to shared-nothing clusters. 

Examples of frameworks that capitalize on this opportunity include Ligra [Shun 

and Blelloch 2013], Galois [Nguyen et al. 2013] and STINGER [Ediger et al. 2012].  

However, I am not aware of any frameworks that harness GPUs in a hybrid setup 

for large-scale graph processing. 

2.15 Lessons and Discussion 

The results presented in this work allows putting forward a number of guidelines 

on the opportunity and the supporting techniques required to harness hybrid 

systems for graph processing problems. These guidelines are phrased as answers to 

a number of questions. 
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 Q1: Is it beneficial to use a hybrid system for large-scale graph processing?  

A1: Yes. One concern when considering using a hybrid system is the limited 

GPU memory that may render using a GPU ineffective when processing large 

graphs. This work shows, however, that it is possible to offload a relatively 

small portion of the graph to the GPU and obtain benefits that are higher than 

the proportion of the graph offloaded for GPU processing. This is made possible 

by exploiting the heterogeneity of the graph workload and the characteristics of 

the hybrid system to reshape the workload to execute faster on the bottleneck 

processor.  

 Q2: Is it possible to design a graph processing engine that is both generic and 

efficient?  

A2: Yes. A range of graph algorithms can be implemented on top of TOTEM, 

which exposes similar BSP-based computational model and functionality to 

that offered by a number of other widely accepted generic graph processing 

engines designed for cluster environments (e.g., Pregel). My experiments show 

that being generic – that is, being able to support multiple algorithms and not 

only the popular Graph500 BFS benchmark, did not hinder TOTEM’s ability to 

efficiently harness hybrid systems, and scale when increasing the number of 

processing elements. We have also implemented on top of TOTEM the direction-

optimized BFS algorithm [Beamer et al. 2013]. The results support the main 

takeaways presented here. Based on this implementation, TOTEM’s 

performance on a hybrid system with dual-socket and dual-GPU is capable of 

10.31 Billion breadth-first search traversed undirected edges per second on a 

graph with one Billion vertices and 16 Billion undirected edges. We have 
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submitted this result to the Green Graph5009 competition, and ranked 6th in the 

‘Big Data’ category. 

 Q3: Is the partitioning strategy key for achieving high performance?  

A3: Yes. The low-cost partitioning strategies this work explores – which are 

informed by vertex connectivity – provide in all cases better performance than 

blind, random partitioning.    

 Q4: Which partitioning strategies work best? 

A4: The answer is nuanced and the choice of the best partitioning strategy 

depends on the graph size and on the specific characteristics of the algorithm 

(particularly on how much state is maintained and on the read/write 

characteristics). If the graph is large, then the CPU will likely be the bottleneck 

as it is assigned the larger portion of the graph, while only a small fraction can 

be offloaded to the GPU. Thus, the goal of partitioning is to improve the CPU 

performance by producing and assigning to it the friendliest workload to its 

architecture. The evaluation in this work shows that placing the high degree 

vertices on the CPU offers the best overall performance: it improves the cache 

hit rate for algorithms that use summary data structures, and, for the ones that 

do not use them, it offloads most of the expensive per-vertex work to the 

accelerator. However, for algorithms with large state per vertex, placing the few 

high degree nodes on the GPU allows for offloading significantly more edges 

(20% more in the case of Betweenness Centrality when processing the Twitter 

network), and hence better balances the load between the CPU and the GPU. 

 Q5: Should one search for partitioning strategies that reduce communication 

overheads in order to improve overall performance?  

                                                 

9 green. graph500.org 
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A5: No. This work shows that, in the case of scale-free graphs, the 

communication overhead can be significantly reduced – to the point that it 

becomes negligible relative to the processing time – by simple aggregation 

techniques. Aggregation works well for four reasons. First, many real-world 

graphs have skewed connectivity distribution. Second, the number of partitions 

the graph is split into is relatively low (only two for a hybrid system with one 

GPU). Third, aggregation can be applied to many practical graph algorithms, 

such as BFS, PageRank, Single-source Shortest Path and Betweenness 

Centrality to mention only a few. Fourth, there is practically no visible cost for 

aggregation: conceptually, aggregation moves the computation to where the 

data is, which must happen anyway. In contrast, partitioning algorithms that 

aim to reduce communication have typically high computational or space 

complexity and may be themselves ‘harder’ than the graph processing required 

[Feldmann 2012]. 

 Q6: Is there an energy cost to the time-to-solution gains provided by the hybrid 

platform?  

A6: No. One concern is that the GPU’s high peak power consumption may 

make an accelerated solution inefficient in terms of energy. The experiments in 

Section 2.12 rejects this concern: GPU-acceleration allows a faster ‘race-to-

idle’, enabling energy savings that are sizeable for newer GPU models which 

are power-efficient in idle state (as low as 25W [NVIDIA 2013]). Additionally, 

as demonstrated in the various profiling figures in this paper (Figure 9, Figure 

11, Figure 21, and Figure 24), the GPU finishes much faster than the CPU, and 

that allows it to go to the idle state even sooner. The experiments show that a 

hybrid system is not only efficient in terms of time-to-solution, but also in terms 

of energy and energy-delay product.  

 Q7: Why not use DVFS to lower energy footprint?  
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A7: On the CPU side, a recent analysis [Schöne et al. 2012] shows that, for the 

new Intel processors (e.g., Intel’s Sandy Bridge), both memory latency and 

bandwidth strongly depend on processor frequency (this result is confirmed on 

the platform used in this study). This limits the opportunity to use dynamic 

voltage and frequency scaling (DVFS) to save energy on the CPU side. On the 

GPU side, however, recent GPU models support setting different frequencies 

for the memory and the compute cores. Previous work [Jiao et al. 2010; Abe et 

al. 2012] shows that energy consumption can be reduced by lowering the core 

frequency for memory-intensive kernels, an opportunity that could improve the 

energy efficiency of the hybrid system. 

 Q8: Is it possible that the results presented in this dissertation are dependent 

on the hardware platform used for experimentation?  

A8: The evaluation presented here was performed on a new machine with state-

of-the-art CPU and GPU models as of writing this dissertation. Previous 

publications [Gharaibeh et al. 2012; Gharaibeh et al. 2013a; Gharaibeh et al. 

2013b], which this chapter is based on, each used a different evaluation machine 

(state-of-the-art at that time). More importantly, the results obtained on the 

older hardware generations are consistent with the latest results published here 

on a newer CPU and GPU hardware models. Practically, the ideas presented in 

this dissertation have been evaluated on three hardware generations. 

 Q9: Why not stream the whole graph into the GPU? 

A9: GPUs have limited memory space and hence they cannot host a large scale 

graph. TOTEM addresses this problem by partitioning the graph between the 

CPU and the GPU(s). Another possible approach is to stream the graph into the 

GPU(s). In particular, the graph can be split into smaller subgraphs that can fit 

into the GPU memory and processed one after the other on the GPU. Using 



92 

double buffering, the copying of a subgraph can overlap with the processing of 

another, and hence the communication overhead can be partially hidden. 

 Streaming has two main limitations. First, it will be bottlenecked by the 

communication channel. Specifically, the processing rate of a streaming 

solution can be represented using the following simple model:  

Processing Rate = min{Tr, Gr}, 

where Tr is CPU-to-GPU transfer rate in Edges Per Second (EPS), and Gr is the 

GPU processing rate. If we assume that the GPU processing rate is significantly 

higher than that of the communication channel, the overall processing rate can 

be at most equal to Tr.  

The measured transfer rate of the PCI Express 3.0 bus is 10GB/Sec, 

therefore, in the optimistic case where an edge is represented by 4bytes, Tr can 

be at most 2.5 Billion TEPS. Considering undirected edges, where an edge 

requires at least 8bytes, the transfer rate will be half of that; moreover, if a 

weight is associated with each edge, then Tr will be even lower. As the 

evaluation of TOTEM shows, a CPU-GPU partitioned approach can achieve 

better results (see Figure 20 and Figure 28). For example, as mentioned before, 

TOTEM was able to achieve 10.3Billion TEPS (undirected edges) using two 

GPUs, more than four times better than what a streaming approach can achieve 

in the best case. 

A second limitation that streaming the whole graph approach has is that it 

does not take advantage of the opportunity of specialization offered by the 

hybrid system. Figure 15 demonstrates the traversal rate of an RMAT25 graph, 

which is small enough to fit the GPU memory space. The figure shows that 

partitioning the graph such that keeping on the CPU 25% of the edges of the 

low degree vertices double the performance compared to processing the whole 

graph on the GPU. 
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 Q10: How does this work apply to integrated GPUs? 

A10: Although this work focuses on discrete GPUs, the proposed techniques 

also apply to integrated ones. The goal of integrated GPUs is to remove the PCI 

Express bus by placing the main processor and the accelerator on the same die 

and share the same memory space. AMD’s APU (Accelerated Processing Unit) 

is an example of such a hybrid setup.  

While current APU models do place the main processor and the accelerator 

on the same die, they still employ distinct memory partitions, and hence the 

techniques related to reducing communication overhead still apply for current 

APU generations. More importantly, the techniques related to partitioning the 

graph to achieve specialization apply irrespective whether the GPU is integrated 

or discrete. This is because the partitioning strategies proposed here are geared 

towards the processing characteristics of the CPUs and accelerators rather than 

how they are connected. 

 Q11: What other factors that could improve the performance of single-node 

hybrid platforms?  

A11: I believe that having more memory on the GPU would significantly 

improve performance as a larger partition can be offloaded. Also, using low-

voltage DRAM, could reduce the power drawn by the large memory space. 

Finally, high-bandwidth, low-power SSDs are now available (e.g., Intel’s 900 

family, supports 1GB/s sequential read and draws as little as 25W); such storage 

can be used to offload part of the read-mostly graph state (e.g., the graph data 

structure), and hence reduce power drawn by memory.   

 Q12: What platform offers the best tradeoff between acquisition cost, energy 

and performance?  

A12: The experience collected throughout this work supports recommending 

the following simple decision process: If the graph is small and fits the GPU 
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memory, the recommendation is to process it on GPU only (a single GPU draws 

power comparable to a dual-socket CPU, but it is at least 2x faster). For larger 

graphs, the recommendation is to boost the host’s memory, adding GPUs and 

using TOTEM to implement algorithms on such a hybrid setup. Finally, for 

massive many-billion vertices graphs, if energy is the main concern, I speculate 

that a single-node solution along the lines of GraphChi [Kyrola et al. 2012], 

which processes the graph from SSDs, will be most advantageous. If time-to-

solution is the primary concern then I conjecture that a cluster composed of as 

few fat nodes as possible, where each node is provisioned with as much memory 

and GPUs as possible, will be the most efficient setup (compared to a cluster of 

many low-end commodity nodes as used today).  
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Chapter 3 

3. Efficient Large-Scale Sequence 

Alignment on Hybrid Platforms 

GPUs offer drastically different performance characteristics compared to 

traditional multicore architectures. To explore the tradeoffs exposed by this 

difference, this project refactors MUMMER [Kurtz et al. 2004], a widely-used, 

highly-engineered bioinformatics application which has both CPU- and GPU-based 

implementations. 

The experience from this project is synthesized as three high-level guidelines 

to design efficient applications for hybrid GPU-accelerated platforms. First, 

minimizing the communication overheads is as important as optimizing the 

computation. Second, trading-off higher computational complexity for a more 

compact in-memory representation is a valuable technique to increase overall 

performance (by enabling higher parallelism levels and reducing transfer 

overheads). Finally, ensuring that the chosen solution entails low pre- and post-

processing overheads is essential to maximize the overall performance gains. 

Based on these insights, I designed and developed MUMMERGPU++, a new 

GPU-based design of the MUMMER sequence alignment tool. MUMMERGPU++ 

The research presented in this chapter resulted in the following publications:  

(i) Abdullah Gharaibeh and Matei Ripeanu, Size Matters: Space/Time Tradeoffs to Improve 

GPGPU Applications Performance, IEEE/ACM International Conference for High 

Performance Computing, Networking, Storage, and Analysis (SC), New Orleans, Louisiana, 

November 2010 (20% acceptance rate). 

(ii) Abdullah Gharaibeh and Matei Ripeanu, Accelerating Sequence Alignment on Hybrid 

Architectures, Scientific Computing Magazine, February 2011. 
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achieves, on realistic workloads, significant speedups compared to a previous, 

highly optimized GPU port. 

3.1 Context 

This work advocates the need for a careful space/time tradeoff analysis when 

designing applications for (or porting applications to) hybrid GPU-accelerated 

platforms. In particular, this project analyzes and evaluates these tradeoffs in the 

context of a well-engineered, widely-used bioinformatics application [Delcher et 

al. 1999; Delcher 2002; Kurtz et al. 2004] which performs exact sequence 

alignment: a memory-intensive operation involving exact string matching for a 

large number of strings. The tool has both CPU- and GPU-based implementations 

named MUMMER [Delcher et al. 1999; Delcher 2002; Kurtz et al. 2004] and, 

MUMMERGPU [Schatz et al. 2007; Trapnell and Schatz 2009], respectively. 

Using a GPU to accelerate sequence alignment is appealing for two reasons. 

First, GPUs support massive hardware multithreading that is able to hide memory 

access latency, a main bottleneck for this application. Second, parallelizing this 

operation is straightforward since queries can be processed independently and the 

problem space can be easily partitioned.  

Profiling the latest version of MUMMERGPU, however, reveals that only a 

relatively low share of the total application runtime is spent on computing. Figure 

34 shows that more than 50% of the time is spent on data transfers and post-

processing results produced by the GPU kernels. 

My hypothesis is that the culprit for this arguably low use of the GPU is the 

core data structure (namely the suffix tree) that is used for performance-efficient 

string matching by both the original CPU-based tool, MUMMER, and its GPU port, 

MUMMERGPU. I contend that this data structure is not a good match for GPU 

implementations: it offers fast matching at the cost of large memory footprint 
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(which translates to large data transfers and limited parallelism) and relatively 

complex post-processing. 

Thus, the goal of this study is to: (i) explore the feasibility of using a different 

data structure that offers different space/time tradeoffs, (ii) evaluate the effect of 

this choice on the overall application performance, and, (iii) to build a solution that 

makes best use of both types of processing units of the hybrid system. 

 

Note that, to highlight the effect of the choice of the data structure, the study 

focuses on the high-level application design, and, throughout the design and 

implementation effort, little attention was paid to low-level performance 

optimizations. 

 
Figure 34: Percentage of time spent in each processing stage using 

MUMMERGPU for the workloads presented in Table 1, for config2 (discussed 

in Section 3.5.1). 
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3.2 Research Questions 

This work investigates techniques to improve the performance of sequence 

alignment on hybrid GPU-accelerated platforms. The following research questions 

guide this investigation: 

Q1. Is it feasible to efficiently process large-scale sequence alignment workloads 

on GPUs? While previous works [Trapnell and Schatz 2009; Schatz et al. 

2007] demonstrated that exact sequence alignment can be accelerated using 

GPUs, it is not clear whether the proposed solution scale to large workloads 

(such as the human genome). 

Q2. Given the difference in performance characteristics between GPUs and CPUs, 

how does the choice of data structures, which offer different space/time 

tradeoffs, affect the overall performance? While GPUs offer an order of 

magnitude higher peak memory access bandwidth and peak computational 

power, current GPUs have limited, often an order of magnitude lower, internal 

memory space, hence it is not clear if the data structure that offers the lowest 

time complexity is the best solution. 

Q3. Consider a system with one CPU processor, what is more performance 

advantageous, in terms of both time to solution and energy, adding a GPU or 

a second CPU processor to the system? The question is motivated by the 

requirement of current GPU models to operate within a host machine, therefore 

a fair CPU vs GPU comparison should take this requirement into account. 

Making progress on answering these questions is important in the context of 

current hardware trends: future computing systems will host processing elements 

with different performance characteristics. These differences make reconsidering 

the choice of the data structures used a necessary step (for efficient time or energy 

execution) when porting applications from one processing element to another. 
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At the same time, answering these questions in the context of natural sciences 

is equally important: commoditized DNA sequencing technologies have unleashed 

immense data volumes, and hence extracting the best possible performance from 

the different processing elements is essential to efficiently transform this data into 

new knowledge. 

3.3 Chapter Structure 

A fair amount of background material is presented in this chapter to make it self-

contained. If the reader is familiar with the sequence alignment problem and the 

data structures to accelerate string matching and their space/time tradeoffs (Section 

3.5), then (s)he can skip directly to Section 3.6, which discusses in detail the effect 

of space/time tradeoffs. Section 3.7 discusses the effort to offload sequence 

alignment computation to the GPU using a different data structure. Section 3.8 

presents a performance analysis of the proposed solution to assess its value. Section 

3.9 presents a detailed evaluation over multiple directions: a comparison with the 

past approach, ability to harness high-end GPUs and energy efficiency. Finally, 

Section 3.10 summarizes the lessons learned from this work and discusses a number 

of interrelated questions. 

3.4 Contributions 

The processing elements in a hybrid GPU-accelerated system have drastically 

different performance characteristics. The GPU has up to two orders of magnitude 

higher peak memory access bandwidth, one order of magnitude higher peak 

computational power per Byte of memory, yet one order of magnitude lower 

internal memory space.  

This work argues that these differences make reconsidering the choice of the data 

structures used a necessary step when porting applications to hybrid, GPU-

supported platforms. In more detail, the contributions are: 
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First, the study confirms the feasibility of harnessing GPUs to accelerate an 

important irregular application, sequence alignment. This result is contrary to the 

common believe that GPUs can only accelerate applications that expose regular 

computations and have predictable memory access patterns. For example, for the 

experimental setup used in this study, a hybrid one CPU and one GPU configuration 

offers over 2x speedup compared to the performance achieved by two CPU 

processors. 

Second, the study demonstrates the importance of a careful choice of the data 

structure used to support GPU applications. A data structure that matches well the 

space/time tradeoffs specific to the GPU can unlock dramatic performance gains. 

The direct implication of this observation is that, when porting applications to a 

GPU-supported platform, designers should not only focus on extracting the 

application parallelism usable in a SIMT model; but, in order to maximize the 

performance gains, they may need to reconsider the choice of the data structures 

used. 

Third, the study contrasts, in the context of the sequence alignment application, 

the energy consumption of traditional and hybrid systems. The study shows that, 

although the energy consumption rate (i.e. power) of a hybrid system is higher, the 

total energy consumed to complete a full sequence alignment workload is lower 

due to its higher performance. For the experimental setup in this work, which 

compares a hybrid platform (one GPU and one CPU processor) with a symmetric 

traditional one (two CPU processors), the hybrid platform requires a performance 

gain of at least 65% to become more energy efficient than the traditional one. The 

hybrid GPU-accelerated platform achieves significantly higher performance, which 

enables it to consume 40% less energy (i.e., 40% less Joules consumed to process 

a workload), and up to 2.8x more energy efficient when considering an energy 

metric that is biased for time-to-solution (i.e., energy-delay product (EDP)). 
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3.5 Background 

Genome sequencing is the biochemical process of determining the order of 

nucleotides in a DNA molecule. This is an essential process to gain important 

information needed for biological and medical studies. New high-throughput 

sequencing technologies, such as 454 life sciences10 and Illumina11, enabled 

dramatic increase in sequencing rates, while significantly reducing the overall 

sequencing costs. This advancement enables producing an enormous volume of 

data (generated at the rate of terabytes per day) which needs to be processed and 

analyzed, leading, as a result, to increased demand for high-performance sequence 

analysis tools. 

 
This project focuses on sequence alignment: the operation on genomic data 

which aims to find all occurrences of a sequence in another longer one, where a 

sequence is a string composed of some alphabet Σ (e.g., the alphabet set {A,C,G,T} 

                                                 

10 http://454.com 
11 http://www.illumina.com 

Table 5: Sample sequence alignment workloads. For experimental purposes, 

three different minimum-match length values are used. 

Workload / 

Species  

Reference 

Length 

Number of 

Queries 

Sequencing Technology  

(Read Length) 

Minimum-

match Length 

HS1 / Homo 

sapiens 

chromosome 2 

238,202,930 78,310,972 454 (~200) 

Config1: 25,  

Config2: 50,  

Config3: 100 

HS2 / Homo 

sapiens 

chromosome 3 

100,537,107   2,622,728 Sanger (~700) 

Config1: 50,  

Config2: 100,  

Config3: 200 

MONO / L. 

monocytogenes  
2,944,528   6,620,471 454 (~120) 

Config1: 20,  

Config2: 40,  

Config3: 80 

SUIS / S. suis  2,007,491 26,592,500 Illumina (~36) 

Config1: 15,  

Config2: 20,  

Config3: 30 
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in case of genome sequences). Sequence alignment is widely used in computational 

biology studies such as gene finding, comparative genomics and genome assembly 

[Li and Homer 2010]. In particular, this project focuses on a specific, yet important, 

use case in sequence alignment, called genome sequence alignment. 

3.5.1 The Sequence Alignment Problem 

In sequence alignment, a large number of short sequences, (called ‘reads’) and 

referred hereafter as the query set, are aligned to a longer genome reference 

sequence. This process is an essential time-intensive operation in comparative 

genome assembly [Pop 2004; Trapnell and Salzberg 2009; Nagarajan and Pop 

2013]. 

Formal Problem Definition  

The exact sequence alignment problem can be formally defined as follows: For 

each query q in the query set Q, find all maximal matches of minimum length l in 

the reference string S. A maximal match is defined as a match of a suffix qi of query 

q starting at position i (and referred hereafter as a subquery) to a suffix Sj of the 

reference string S that is at position j. The match is assumed to be as long as 

possible, and not contained in any suffix qk, with k < i. 

For example, for a query string “ACACT” and a match length of at least three, 

the following three subqueries must be searched in the reference string: ACACT, 

CACT, and ACT. For each subquery, all match occurrences that are at least three 

characters long must be reported. Figure 35 shows a snapshot of a reference 

sequence, query set and alignment result. 

Workload Characteristics 

Depending on the species, the length of the genome reference sequence ranges from 

a few million nucleotides (e.g., for Streptococcus Suis), to a few billion nucleotides 
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(e.g., for Homo Sapiens), to hundreds of billions nucleotides (e.g., for Amoeba 

Dubia). A nucleotide is represented as a character from the alphabet set {A,C,G,T}. 

 

The number of queries ranges from few thousand to hundreds of millions, and 

the query length ranges from tens to several hundred nucleotides depending on the 

sequencing technology used. In particular, current high-throughput sequencing 

technologies, such as Illumina and 454, produce significantly shorter queries (30–

200 nucleotides) compared to previous sequencing generations such as sanger 

(~700 nucleotides). 

Table 5 presents a sample of sequence alignment workloads fetched from the 

National Center for Biotechnology Information (NCBI) archive [NCBI 2014], and 

 

Figure 35: Genome sequence alignment example. 

 
M a tc h  

L e n g th

In d e x  w ith in  

Q u e ry  

( S u b Q u e ry  ID )In d e x  w ith in  

R e fe re n c e

Q u e ry  ID

Q u e ry  

S e q u e n c e

A lig n m e n tR e f e r e n c e  S e q u e n c e

Q u e r y  S e t

R e s u l t

>  S tre p to c o c c u s  s u is

A T G A A C C A A G A A C A A C T T T T T

C C A T C T A T T T A T G A T T T T T A T G

G C C A A T A T T T T C T T A A A T C G T

T T A A T G A T T G C C G C T A G T T T T

A C A G A G G A T G A A C A G             

… …

                     T G G G C A A A G G C T

G C A G C T T T A G C T G T A T C T G A T

G G T C C T G G T C T T G G A A A A A C

A A T C C C C A G G C A A G G A T A A A

C A C C T C C G T C T C A A T G A T A T G

>  r id 0

A A C A T C A A A G G T A C C T T G G G C A T T A  …

 . ..

>  r id 8 7 8 3

A A A A T T G C A T A A A A T A G G T A G C T A G C  …

>  r id 8 7 8 4

G G C T T G A T A T A C T C T C C A C C G A T A C C  …

>  r id 8 7 8 5

 …

G G A A G A A G A A G G A A A T C A A G A A G G G  …

>  r id 8 7 8 9

A G C T A G T C C C G A A G A A A A T C T A G G T  …

 …

>  r id 0

7 6 6 1 3 4 1 3 1

 …

>  r id 8 7 8 3

>  r id 8 7 8 4

6 2 8 3 4 3 1 3 6

>  r id 8 7 8 5

1 8 2 0 6 9 9 1 3 2

 …

>  r id 8 7 8 9

5 3 2 6 0 1 1 1 2 6

5 3 2 4 3 0 1 1 2 6

5 3 2 7 7 2 1 1 2 6

 …

>  r id 8 7 9 4

5 6 2 8 8 8 7 3 0

 .. .
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used to drive the experiments in this project. The workloads include sequencing 

data that cover a range of usage scenarios. For example, HS1 is a relatively large 

scale workload for a Homo Sapiens that aligns about 78M queries of average length 

200 to the genome sequence of the human chromosome #2 which is about 238M 

nucleotides long. MONO is a smaller scale workload for a Listeria Monocytogenes 

species which aligns ~6M queries to a reference genome sequence of ~2M 

nucleotides long. 

Finally, the minimum match length is a user-specified parameter. A short 

minimum-match length implies a relaxed assumption on what is considered a 

match, and vice versa. On the one hand, since all the suffixes of each query need to 

be aligned, a short minimum-match length increases the number of subqueries to 

be aligned per query, and, at the same time, increases the chance to find matches; 

therefore the workload becomes larger, and requires more processing time. On the 

other hand, a longer minimum-match results in reducing the workload demands.  

For each workload, three minimum-match length values were chosen that 

represent relaxed (config1), moderate (config2) and conservative (config3) 

configurations with respect to typical values used in practice [Schatz et al. 2007; 

Trapnell and Schatz 2009] (see Table 5). 

3.5.2 Substring Matching 

The core of the sequence alignment problem is a basic substring matching 

operation: find a string of length m in another reference string of length n, where n 

>> m. A naïve approach to this problem is to exhaustively search the reference 

string. This approach has linear space complexity, O(n); in fact, if a nucleotide is 

represented using one Byte, the space requirement of this approach is exactly n 

Bytes. However, the time complexity is daunting: O(mn), especially when 

considering that matching needs to be done on a large number of queries. 
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A more time-efficient approach to solve this problem is to pre-process the long 

reference string into a data structure that allows for efficient search. The rest of this 

section discusses the two main data structures that have been proposed in the 

literature: suffix trees [Weiner 1973] and suffix arrays [Manber and Myers 1993]. 

3.5.2.1 Suffix Tree 

A suffix tree (Figure 36) is a trie-like data structure that stores all the suffixes of a 

given string S (the reference string in the case of sequence alignment). Each suffix 

has exactly one path from the root of the tree to a leaf. The tree has n leaf nodes, 

corresponding to the n suffixes in S. Moreover, each edge in the tree is labeled with 

a substring of S such that the concatenation of the edge-labels from the root to a 

leaf represents a suffix Sj of S. 

Search procedure and its complexity. Searching the suffix tree is done by 

navigating the tree starting from the root node, matching the characters of the query 

string with the edge-labels. The search complexity is O(m), where m is the length 

of the query string. This is an attractive linear-time search solution which does not 

depend on n, the length of the reference. Also, suffix trees can be augmented with 

additional pointers, called suffix links (shown as dashed arrows between internal 

nodes in Figure 36), which enable time-efficient maximal-matching (discussed 

below). Conceptually, a suffix link is an internal pointer from a node with path αw 

(i.e., the concatenation of edge-labels from the root to the node) to another node 

with path w, where α is a single character and w is a substring. 

Processing the maximal-matches of a query q of length m requires searching 

the suffix tree for all subqueries q0 to qm-l (where l is the minimum-match length). 

This can be done by treating each subquery as a separate query, and performing a 

separate search operation for each one. However, this approach fails to take 

advantage of the fact that the problem searches for a group of related suffixes. To 

this end, suffix links allow for exploiting this opportunity: instead of traversing the 
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suffix tree from the root node for each subquery, the matching can be resumed for 

subquery qi by following the suffix link of the last matching node of the previous 

subquery qi-1, hence saving i-1 comparisons for each suffix, and rendering the 

complexity of matching all the subqueries of a query to be O(m). 

 

Space complexity. The time efficiency of the suffix tree comes at the cost of 

additional computational and space overheads to build and store the suffix tree. 

Although the space complexity grows linearly with the reference sequence length 

as the tree requires only O(n) nodes, in practice the constant factors are high and 

suffix trees occupy a significant amount of space: between 22.4n and 32.7n Bytes 

for DNA sequences [Manber and Myers 1993; Abouelhoda et al. 2004; Kurtz 

1999], where n is the sequence length. Storing the suffix links will require 4i 

additional Bytes, where i is the number of internal nodes. As a result, efforts have 

been made to reduce the space requirements of the tree, which resulted in reducing 

 

Figure 36: The suffix tree for the string TACACA. Dashed arrows 

represent suffix links. 
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the space requirement to 20n Bytes in the worst case [Kurtz 1999], without 

considering the suffix links.  

Construction. The tree can be constructed in O(n) time [Weiner 1973], which 

in practice becomes negligible when matching a large number of queries. Further, 

suffix links are a by-product of suffix tree construction, hence no extra 

pre-processing time is required to produce them, yet they still consume additional 

space to store. 

3.5.2.2 Suffix Array 

To address the large space requirements of suffix trees Manber et al. [Manber and 

Myers 1993] proposed the suffix array, a data structure that enables similar string 

matching operations yet consuming less space in practice. A suffix array is a sorted 

array of all the suffixes of S in lexicographical order (presented in Table 6 for the 

same reference string as in Figure 36). The data structure is represented as an array 

of integers which correspond to the indices of the suffixes in order (column labeled 

‘suffix array’ in Table 6). 

Search procedure and its complexity. A naïve search in the suffix array takes 

O(mlog n) time when supported by a classic binary search: O(log n) string 

comparisons demanded by the binary search, and each string-comparison requires 

O(m) character comparisons. In practice, however, a smart binary search 

implementation that takes advantage of the fact that the problem searches for 

related suffixes significantly improves the search time. Manber et al. [Manber and 

Myers 1993] proved that the worst case time complexity can be improved to O(m 

+ log n) at the expense of increased space usage by associating the suffix array with 

an extra array of information, namely the longest common prefix (LCP) array: an 

array that stores the length of the longest common prefix between the suffix stored 

in the current entry and that stored in the previous array entry. Using the LCP array 

allows ‘priming’ the binary search: that is, the search does not start from scratch 
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for each string-comparison. In a nutshell, the results of earlier string-comparison 

iterations along with the LCP information are used to skip unnecessary comparisons 

in subsequent iterations.   

 

Space complexity. The suffix array has O(n) entries, the same asymptotic space 

complexity as the suffix tree; in practice, however, it consumes three to five times 

less space than suffix trees [Manber and Myers 1993; Abouelhoda et al. 2004]. In 

particular, if an integer is represented by four Bytes, the array requires exactly 

4n Bytes. The LCP and the rank array (discussed in Section 3.7) add another 8n 

Bytes. 

Construction. The suffix array can be constructed in linear time [Kärkkäinen 

et al. 2006; KIM et al. 2003; KO and ALURU 2003]. As with the suffix tree, 

construction overheads are amortized even for a relatively small number of queries. 

3.6 Offloading Sequence Alignment 

This section discusses the challenges to offload sequence alignment to the GPU 

(Section 3.6.1) and presents MUMMERGPU’s approach to the problem based on 

suffix trees (Section 3.6.2).  

Table 6: Suffix array for the string TACACA. The suffix and index columns 

are shown for illustration only (i.e., they do not present in the actual data 

structure). The LCP array represents the longest common prefix between 

the suffixes in the current and the previous array entry. The rank array 

represents the reverse index of the suffix array and has the same role as the 

suffix links in suffix trees: it is used to efficiently calculate maximal matches 

as discussed in Section 3.7. 

Index Suffix Suffix Array LCP Array 
Rank Array  

(Suffix Array -1) 

0 (smallest) A 5 0 5 

1 ACA 3 1 2 

2 ACACA 1 3 4 

3 CA 4 0 1 

4 CACA 2 2 3 

5 (largest) TACACA 0 0 0 
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3.6.1 Challenges 

The efficient use of GPUs to speedup sequence alignment faces two main 

challenges: 

 Limited onboard GPU memory. Current GPU models have one order of 

magnitude less memory compared to the host’s main memory. This limitation 

may constrain applications to partition the problem space and perform 

computations in several rounds, hence adding significant data transfer 

overheads especially for data-intensive applications. 

The space requirement of the sequence alignment problem is fairly large, 

especially when considering long sequences such as those of mammalian 

genomes [Trapnell and Salzberg 2009]. For example, the human reference 

genome spans more than 3 billion DNA nucleotides (i.e., more than 3GB string) 

which, when processed into a suffix tree or suffix array, would require 

significantly more space (20x more, i.e., 60GB when using a suffix tree). 

Moreover, current sequencing projects typically produce more than 10x 

oversampling of the genome (i.e., the total length of all queries is 10x the length 

of the reference sequence) which needs to be aligned against the entire reference 

genome [Pop 2009]. As a result, the space requirements of the problem are at 

least one order of magnitude larger than the size of the onboard memory in 

current and near-future GPU models (for example, current high-end GPU 

models have up to 12GB of onboard memory). 

 Limited access to other I/O devices (e.g., disk). As mentioned before, the GPU 

has access only to its onboard memory; hence results have to be stored 

internally then transferred to the host’s main memory. As a result, GPU 

applications with a large output size must divide the limited onboard memory 

efficiently between the input and output buffers. This becomes a challenge 

when the result size cannot be determined in advance for a specific input size, 
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or the maximum result size is too large to be allocated. Addressing this 

limitation requires a compressed, deterministic representation of the results, 

which needs to be decompressed on the CPU (or possibly by another round on 

the GPU), consequently introducing extra overheads. 

In the case of sequence alignment problem, the output size cannot be 

determined in advance as the number of alignments for each subquery is not 

known beforehand. Moreover, the maximum result size is O(mn|Q|), which is 

infeasible to allocate. 

3.6.2 A Previous Effort: MUMMERGPU 

Delcher et al. [Delcher et al. 1999; Delcher 2002] implemented MUMMER, a widely 

used tool that performs sequence alignments on the CPU using suffix trees. The 

tool has also been significantly improved in terms of performance and space 

efficiency by Kurtz et al. [Kurtz et al. 2004]. Schatz et al. developed [Schatz et al. 

2007] then optimized [Trapnell and Schatz 2009] a GPU version of the program, 

called MUMMERGPU, which also uses suffix trees. To address the space challenges 

of the problem (i.e., the long reference sequence, the large number of queries, the 

unpredictable result size, and the limited GPU memory), MUMMERGPU divides 

the computation into smaller-sized sub-computations that fit the GPU’s memory. 

This is done by (i) dividing the long reference string into shorter overlapping 

segments, (ii) dividing the query set into smaller sized subsets, and (iii) reporting a 

“compressed” representation of the results to the host’s memory. Figure 37 presents 

the high-level GPU offloading algorithm employed by MUMMERGPU.  
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MUMMERGPU constructs a suffix tree for each segment (a partition of the 

reference string), and aligns each query subset to all trees in rounds. Conceptually, 

a “round” is a four-stage process: 

 Copy in. The query subset and the suffix tree of the segment are transferred to 

the GPU.  

 Matching. The queries of a query subset are aligned to the tree in parallel on the 

GPU. All subqueries of a query are processed by a single GPU thread in order 

to take advantage of suffix links. To make the result size predictable, the match 

kernel does not report all the matches of each subquery (as discussed 

previously, a subquery could have one or more matches; however, the number 

of matches is not known in advance). Instead, the match kernel reports only the 

longest match of each subquery (node Q in Figure 38). This is done by matching 

the characters of the subquery string with the edge-labels until a mismatch or 

the end of the subquery is reached. 

 Copy out. The results are transferred back to main memory. 

 Post-processing. The results of the match kernel are “decompressed” to find the 

other matches of each subquery. This is done as follows (Figure 38 presents an 

example). First, starting from node Q that corresponds to the longest match for 

refIndex = PreprocessReference(reference)  

subsets = DivideQuerys(queries) 

foreach subset in subsets do { 

   results = NULL 

   CopyIn(subset) 

   foreach index in refIndex do { 

      CopyIn(index) 

      LaunchMatchKernel(subset, index) 

      CopyOut(results) /* append result */ 

   } 

   Postprocess(results) 

} 

Figure 37: High-level GPU offloading algorithm 



112 

a subquey, the algorithm traverses back to the node at which the match length 

equals the minimum-match length l (labeled P in Figure 38). Intuitively, P is 

the lowest common ancestor of the leaves that represent all subquery matches. 

Second, the algorithm performs a depth-first traversal to report all the leaves of 

the subtree rooted at P as the final result (i.e., the indices in the reference string 

where the subquery occurs). 

 

 

Figure 38: Alignment of query ACACT to reference TACACA for a 

minimum-match length of one. The figure demonstrates the alignment for 

only the first subquery (i.e., the string ACACT, itself). The dotted path is 

traversed in the matching stage. Node Q, and the corresponding maximum 

match length of 4, are reported as the result of the traversal in the matching 

stage. The post-processing stage produces the final output through a depth-

first traversal starting from node P. The output includes three alignments: 

at position 5 with length 1, at position 3 with length 3 and at position 1 with 

length 4. 

$

C A

A

P

T A C A C A $

0

5

C A $

2 4

C A $ $

Q

3 1

$ C A $
M a tc h in g  s ta g e  

t ra v e rs a l

P o s t-p ro c e s s in g  

s ta g e  t ra v e rs a l



113 

3.7 MUMMERGPU++ 

Schatz et al. report that MUMMERGPU achieves significant speedups compared to 

the original CPU-based MUMMER program [Schatz et al. 2007]. A closer look at 

the match between suffix tree-based search and the GPU characteristics prompted 

me to investigate whether a suffix array implementation can enable better 

utilization of the GPU. This section presents the suffix array-based algorithms used 

by MUMMERGPU++ while the following section estimates analytically the 

potential performance gains brought by this data structure.  

At the high level, MUMMERGPU++ follows the same structure as 

MUMMERGPU (described in Figure 37). However, the core of MUMMERGPU++ 

is significantly different as it replaces the core data structure, the suffix tree, with a 

suffix array. This change entails completely different matching and post-processing 

algorithms, which the rest of this section describes. 

Matching. Similar to MUMMERGPU, queries are searched in the suffix array 

in parallel, and all subqueries of a query are processed sequentially by a single GPU 

thread. For each subquery, the match kernel reports the index in the suffix array 

corresponding to the longest match in the reference. The matching algorithm 

processes a query q as follows: the first subquery q0 is matched via a binary search 

on the suffix array, which, as discussed in Section 3.5.2.2, has O(m + log n) worst 

case complexity, where m is the query length and n is the reference string length. 

To process the next subquery and avoid processing the characters already processed 

by the previous subquery, a two-phase procedure is used (pseudocode presented in 

Figure 39):  
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 The first phase uses the result of the previous subquery to reduce the search 

space in the suffix array. This is done by combining the suffix array with 

/* Assumes SA, LCP and l global variables */ 

procedure Match(q, qlen) { 

   i = 0 

   while i ≤ qlen – l do { 

      (si, ml) = BinarySearch(qi) 

      RecordResult(qi, si, ml) 

      i = i + 1 

      while si != NULL and i ≤ qlen – l do { 

  /* phase 1: cut the search space */  

         i = i + 1 

         s = ml – 1 

         si = Rank[SA[si] + 1] 

         j = SA[si] + s 

         (r, ml) = Comp(Sj, qi+s) 

  /* phase 2: find the longest */ 

         if r > 0 then { 

            (si, ml) = ScanUp(s+ml, qi) 

         } else { 

            (si, ml) = ScanDown(s+ml, si, qi) 

         } 

         RecordResult(qi, si, ml) 

         i = i + 1 

      } 

   } 

} 

procedure ScanUp(s, si, qi) { 

   r = 1 

   while LCP[si] > s and r > 0 do { 

      si = si – 1 

      j = SA[si] + s 

      (r, ml) = Comp(Sj, qi+s) 

      s = s + ml  

   } 

   return (si, s) 

} 

Figure 39: Pseudo-code of the core matching algorithm of MUMmerGPU++. 

The procedure “Match” is executed for each query by a dedicated GPU 

thread. The following is a summary of the variables names used: i=subquery 

index, l=minimum match length, ml=match length, s=skip (processed 

characters), si=suffix index. The procedure “Comp” evaluates which string 

is greater lexicographically and returns the maximum match length. Finally, 

the procedure “ScanDown” is similar to “ScanUP” but examines the entries 

in the other direction by incrementing the suffix index si. 
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another one called the rank array: the reverse index of the suffix array (see 

Table 6).  

For example, let Sj be the reference suffix that matched x characters of subquery 

qi, where x >= l, also let k be the rank of Sj in the suffix array (i.e., 

SuffixArray[k] = j and Rank[j] = k); then the subquery qi+1 matches x - 1 

characters of the reference suffix Sj+1, and Rank[j+1] is the corresponding 

suffix array index. Conceptually, the Rank array has the same role as the suffix 

links in suffix trees.  

 The second phase searches for the longest match by sequentially comparing the 

subquery with the suffixes adjacent to the one produced by the first phase. The 

LCP array is used to avoid comparing a character more than once. 

Note that if a subquery does not have a match in the reference string, the search 

for the next subquery falls back to the binary search procedure. Hence, the 

efficiency of this approach is related to the characteristics of the workload: the 

larger the number of matching subqueries, the lower the number of times the 

algorithm searches the whole array. 

I anticipate that this approach is efficient for the sequence alignment problem 

since generally the queries are aligned to a reference genome of the same species; 

hence the percentage of positive matches is relatively high. 

Post-processing. The result reported by the match stage represents the longest 

match occurrence for each subquery. Since the suffix array is ordered 

lexicographically, the other occurrences are adjacent: above and under the result 

reported by the match phase. Getting the other occurrences, and their maximum 

match length, is done via a simple sequential scan on the LCP array. The algorithm 

is presented in Figure 40. 
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3.8 A Detailed Analysis of Space/Time Tradeoffs 

This section uses simple complexity analysis to shed light on the effect of using 

suffix arrays instead of suffix trees on the running time of each of the matching, 

data transfer, and post-processing stages. In brief this section argues that even 

though suffix arrays may not enable a faster matching stage, they will enable 

significantly lower data transfer volumes and faster post-processing. These gains 

can be significant as these two stages consume a large share of the processing time 

(between 50% and 93% depending on the workload as seen in Figure 34). The 

evaluation using real workloads presented in Section 3.9 supports these 

conclusions. 

/* Assumes SA, LCP and l global variables */ 

procedure PrintSubQueryAlignments(i, si, ml){ 

   /* print the longest one */ 

   PRINT(SA[si], i, ml) 

   /* Scan up */ 

   v = si 

   m = ml 

   while v > 0 and m ≥ l do { 

   /* the lcp could be longer than the  

      match length, hence the minimum */ 

      m = MIN(m, LCP[v]) 

      v = v - 1 

      PRINT(SA[v], i, m) 

   } 

   /* Scan down */ 

   v = si + 1 

   m = MIN(ml, LCP[v]) 

   while v < reflen and m ≥ l do { 

      PRINT(SA[si], i, ml) 

      v = v + 1 

      m = MIN(m, LCP[si]) 

   } 

} 

Figure 40: Pseudo-code of the core post-processing procedure. This 

procedure is invoked for each subquery in each query to decompress the 

result of the matching stage. 
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3.8.1 The Matching Stage 

Suffix trees and suffix arrays provide different trade-offs in search and space 

complexity which can be summarized as follows: on the one hand, suffix trees 

support O(m) search complexity, while suffix arrays support O(m + log n) to align 

a string of length m to a reference string of length n; on the other hand, although 

their asymptotic space complexity is similar, in practice suffix arrays are 3-5x more 

space efficient than suffix trees. 

As mentioned before, tackling the constraints imposed by limited memory 

requires dividing the large query set into smaller subsets, and the long reference 

sequence into shorter segments.  

The following notations are used to compare the time complexity of the 

matching stage for suffix trees and suffix arrays: let k be the number of query 

subsets and cd be the number of segments the reference is divided into when using 

data structure d. Also, let td be the time complexity of matching a single query on 

the GPU. Finally, let α be the ratio between the number of queries in a query subset 

and the number of SIMD processors in the GPU.  

Assuming that α does not depend on the data structure used leads to the implicit 

assumption that the size of a query subset is the same for both the array- and tree- 

based solutions, and that the space savings achieved in the suffix array-based 

solution will be used to increase the segment size (i.e., reduce the number of 

segments cd). 

Since processing all queries requires matching all query subsets to all reference 

segments, the time complexity of matching all queries using data structure d can be 

expressed as:  


ddd

tkcT   

Suffix tree-based tool. As discussed in Section 3.5.2.1, suffix links enable 

O(m) search time for all subqueries (suffixes) of a single query. As a result, the time 
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complexity to search a query on the GPU using suffix trees can be expressed as: 

)( mOt
tree

 . Thus, the time to process the query on all segments using suffix 

trees can be expressed as: 

)( mOkcT
treetree

  

Suffix array-based tool. In the case of suffix arrays, 

)/))/log(((
arrayarrayarray

rcnmOt  , where rarray is the efficiency of calculating 

the subqueries of a query. Note that rarray is less than or equal to one: the value is 

close to one for workloads with high similarity with the reference, and lower values 

for workloads with lower similarity. Therefore, the overall time complexity when 

using suffix arrays:  

)/))/log(((
arrayarrayarrayarray
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Speedup. Based on the previous two equations, the speedup for the matching 

stage can be calculated as: 
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Since the search procedures for both suffix array and suffix tree exhibit similar 

behavior: excessive memory accesses and byte-to-byte comparisons, the constants 

in the asymptotic bound of the search complexity for the suffix array and the suffix 

tree can be assumed to be close, hence the speedup ratio becomes:  

)/log(
array

array

array

tree

cnm

m
r

c
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Next, the three terms that influence the speedup in the formula above are 

analyzed. First, from a practical view point, the query length m ranges from 35 to 

700 depending on the sequencing technology used; while a reference segment 

length is up to hundreds of millions of nucleotides (leading to sizes in the order of 
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gigabytes limited by the available memory on the GPU), hence the term 

)/log(
array

cn  ranges from 20 to up to 30. As a result, the ratio 
)/log(

array
cnm

m


 

is practically between 0.5, for short queries (small values of m), and 1.0 for long 

queries. Second, suffix arrays are more space efficient than suffix trees, with a 

space ratio ctree/carray greater than one, typically three. Finally, as mentioned before, 

the value rarray is less than one, and depends on the workload characteristics. 

Summary. The main factors that affect the speedup ratio are: (i) the space ratio, 

which is typically three (ii) the query to segment length ratio, which is typically 

between 0.5 and 1.0, and (iii) the efficiency of calculating maximal matches in 

suffix arrays, which depends on the workload. In conclusion, a value of rarray larger 

than 50% makes the running time of the matching phase of a suffix array-based tool 

comparable with that of a suffix tree-based one, which I anticipate to be the case in 

realistic workloads as the query-set is aligned to a related reference sequence. 

3.8.2 The Post Processing Stage 

The post-processing stage decompresses the result of the matching stage, and writes 

the final results to the output file.  

Suffix tree-based tool. In the MUMMERGPU case, the matching stage 

produces a single match for each subquery. Decompressing this into the final result 

is done via a depth-first traversal for each subquery as discussed in Section 3.6.2. 

This is an expensive pointer chasing procedure, especially when considering typical 

workloads with millions of queries. 

To accelerate this stage, MUMMERGPU performs the decompression on the 

GPU using a second kernel. Therefore, the post-processing stage is executed as a 

three-stage GPU offloading process itself: (i) copy-in the information required to 

facilitate post-processing, (ii) launch the post-processing kernel which determines 

the matches for each subquery in parallel and (iii) copy-out the final results from 
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the GPU. Note that, due to the same reasons related to GPU memory limitations 

and the massive output size, offloading the post-processing stage is also done in 

rounds on the GPU. Finally, once transferred to main memory from the GPU, the 

results are written to the output file. 

Two issues related to the above described GPU offloading process are worth 

mentioning. First, as mentioned before, it is essential to know the result size of a 

GPU kernel launch. Hence, in this case, the algorithm needs to know the number 

of matches for each subquery. MUMMERGPU addresses this is by storing 

additional information in the suffix tree: each node in the tree stores the number of 

leaves of the subtree rooted at that node. The post-processing stage is then 

performed in two phases: the first phase is processed on the CPU wherein, for each 

subquery, the algorithm traverses back to the node at which the match length equals 

the minimum-match length (labeled node P in Figure 38). The number of leaves 

stored in node P is in fact the number of matches for that subquery, and is used to 

allocate the required result space on the GPU. The second phase is performed on 

the GPU where the algorithm determines the matches through a depth-first traversal 

for each subqeury. 

Second, MUMMERGPU designers adopted a stackless depth-first traversal 

algorithm as, on the GPU, a stackless tree traversal has been shown to be 

significantly more efficient than an approach that maintains a stack [Popov et al. 

2007]. However, this improvement comes at the cost of, again, storing additional 

information in the tree: each node in the tree has to store a pointer to its parent node 

to facilitate this approach. 

MUMMERGPU implementers report that offloading the post-processing stage 

to the GPU enabled a 4x speedup of this stage compared to performing it on the 

CPU [Trapnell and Schatz 2009]. However, as demonstrated in Figure 34, this stage 

is still time consuming: it occupies more than 20% of the total processing time. 

Note that this percentage represents only the post-processing GPU kernel time (i.e., 
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copy-in and copy-out are considered as part of the data transfer overhead discussed 

in the next section) and writing the final result to the output file. 

Suffix array-based tool. MUMMERGPU++ design places the entire post-

processing stage on the CPU. As described in Section 3.7, the matching stage 

produces a suffix array entry index for each matching subquery. The LCP array is 

then used to determine all other alignments by directly scanning (practically just 

writing the results to the output file) the entries above and below the reported index 

with a minimum longest common prefix of l. 

Summary. On the one hand, a suffix tree-based alignment tool requires costly 

additional traversal steps in the post-processing stage. MUMMERGPU offloads this 

stage to the GPU as a second processing round which, by itself, requires a post-

processing phase that writes the final results to the output file. On the other hand, a 

suffix array based tool requires only a simple sequential scan to post-process the 

results. Hence, I expect the later approach to enable significant time savings for the 

post-processing stage. 

3.8.3 The Data Transfer Stage 

The GPU is connected to the host via an I/O bus. For a data-intensive application, 

data transfers represent a significant overhead. As Figure 34 shows, in the case of 

MUMMERGPU, this stage can take more than 20% of the total execution time.  

The main advantage of suffix arrays over suffix trees is space efficiency. A 

suffix array typically enables three times better space efficiency compared to its 

suffix tree counterpart. As discussed previously, this space saving enables a suffix 

array-based alignment tool to divide the long reference sequence into a smaller 

number of segments, thus reducing the number of GPU execution rounds and the 

data transfer overhead associated with moving the query set to the GPU. 
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Additionally, note that offloading the post-processing stage to the GPU in the 

suffix tree-based approach entails extra data transfers, which I anticipate to be 

relatively significant especially when the number of positive matches is large. 

3.9 Evaluation  

This section presents an evaluation on two different hardware generations and 

workload sets. Section 3.9.1 details the experimental setup.  

The initial evaluation was performed at the beginning of the project back in 

2010: it was conducted on workloads and state-of-the-art hardware at that time. In 

particular, Section 3.9.2 presents an evaluation of the speedup delivered by 

MUMMERGPU++ compared to the most recent version of MUMMERGPU, while 

Section 3.9.3 investigates the factors that influence the observed performance and 

the effect of each processing stage on the total execution time. 

Since significant changes happened in hardware and workloads since the initial 

evaluation, Section 3.9.4 revaluates the performance of MUMMERGPU++ 

compared MUMMERGPU on recent and larger workloads, and state-of-the-art 

hardware. The goal is to verify that the performance observed initially is maintained 

as workloads and hardware evolved. 

Section 3.9.5 extends the evaluation to compare the performance of a hybrid 

system with a symmetric, CPU-only one. In particular, the section presents an 

evaluation of the idea of dividing the workload to be processed concurrently on 

both the GPU and the CPU while using on each processor the data structure that 

matches best its characteristics. Finally, Section 3.9.6 evaluates the energy footprint 

of processing sequence alignment on hybrid GPU-accelerated platforms. 

3.9.1 Experimental Setup 

The machine used to conduct the initial evaluation (Sections 3.9.2 and 3.9.3) has 

the following characteristics: Intel Core 2 Quad CPU (Q6700) clocked at 2.66 GHz 
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per core, 8GB of host memory, an NVIDIA GeForce 9800GX2 GPU: a dual-GPU 

card with 128 hardware threads clocked at 1.5 GHz and 1GB of memory. The GPU 

is connected to the host via a PCI Express 2.0 bus.  

The evaluation was done under the real sequencing workloads introduced in 

Table 5. Unless otherwise mentioned, config2 (see Table 5) is used as the default 

configuration for the minimum-match length in the experiments. 

The extended evaluation (Sections 3.9.4, 3.9.5 and 3.9.6) was conducted on the 

machine described in Table 1. The new machine offers significant improvements 

in all aspects compared to the one used in the initial evaluation and described above: 

it includes dual socket Intel Sandy Bridge (Xeon 2650) with 16 hardware threads 

per socket clocked at 2.00 GHz, 256GB of host memory, and two NVIDIA GeForce 

GTX Titan GPUs each has 2688 hardware threads clocked at 800MHz and 6GB of 

memory. The GPUs are connected to the host via a PCI Express 3.0 bus.  

It is important to note that MUMMERGPU++ implementation focuses on 

achieving a good match between the core data structure used and the GPU 

characteristics. To this end, the implementation is a ‘common sense’ one that does 

not aggressively optimize for caching, optimal use of shared memories, or 

coalesced data access – to enumerate only a few of the optimizations often used. 

As a baseline for comparison the latest optimized version (v2.0) of the suffix 

tree-based MUMMERGPU is used. This version allows for seven data layout 

alternatives which determine: first, on which GPU memory type (i.e., global, 

texture, and constant memory) different parts of the input data (i.e., the reference 

string, suffix tree, and queries) are placed; and, second, how the suffix tree is stored 

in memory to enable maximum data access locality to improve cache hit rate when 

placed in texture memory. For MUMMERGPU, these choices resulted in a total of 

128 different configuration combinations which impact the performance of the 

matching and post-processing stages. In their extensive analysis, Trapnell et al. 

[Trapnell and Schatz 2009] illustrated that the performance of different 
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configuration combinations is sensitive to the workload. However, they concluded 

that a single configuration provides reasonably good performance across all 

workloads. This configuration uses “a reordered one-dimensional texture for the 

suffix tree, global linear memory for the queries and reference”, and it is used to 

configure MUMMERGPU in all the experiments presented here. For a detailed 

discussion on these configurations, the reader is referred to [Trapnell and Schatz 

2009]. 

As discussed before, due to the limited GPU onboard memory space, the 

workload is divided into smaller chunks by dividing the reference string into 

segments, and the query set into subsets processed in rounds. This raises the 

question on how to divide the onboard memory space between the queries and the 

reference in each round. Both MUMMERGPU and MUMMERGPU++ follow the 

same policy: maximize the segment size, while leaving space to accommodate 

enough queries to feed all cores on the device and extract maximum parallelism. 

Maximizing the segment size results in reducing the number of segments; this 

proportionally reduces the matching time as each query is processed fewer times.  

For all experiments the time spent reading queries from the disk is excluded as 

this overhead is the same regardless of the used data structure and lies outside the 

optimization space of this work. Note that the disk I/O overhead represents 10% to 

15% of the total MUMMERGPU execution time for the workloads used in the 

experiments. 

Each experiment was run several times, and the execution time was stable in 

all experiments; hence, the plots show only averages (the variations in performance 

were too small to be visible on the graphs as 95% confidence intervals). Finally, 

the correctness of MUMMERGPU++ implementation was validated by comparing 

its output with the one produced by MUMMERGPU. 
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3.9.2 Overall Speedup 

Figure 41 presents the speedup achieved by MUMMERGPU++ compared to 

MUMMERGPU for all configurations and workloads presented in Table 5.  

While the speedup varies with the workload, MUMMERGPU++ performs 

better for all workloads: it delivers between 1.25x and 3.83x speedup compared to 

MUMMERGPU. This significant performance gain is achieved by a better match 

between the data structure used and the GPU’s characteristics. MUMMERGPU++ 

achieves between 1.52x to 3.43x speedup for what is estimated to be the most 

frequently used configuration (config2). The speedup is lower (between 1.25x and 

2.21x) for configurations with a longer minimum-match length (config3). This is 

because increasing the minimum-match length decreases the probability of finding 

matches, hence, as discussed previously, decreases the efficiency of subquery 

processing when using suffix arrays (represented by rarray in Section 3.8.1), and 

hurts the performance of the matching stage in MUMMERGPU++. Finally, as 

 
Figure 41: MUMMERGPU++ speedup compared to MUMMERGPU. 
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expected for a short minimum-match length (config1), MUMMERGPU++ offers the 

best speedup: from 1.7x up to 3.83x. 

3.9.3 Dissecting the Overheads 

To validate our analysis in Section 3.7, better understand the source of the 

performance gains observed, and explore the opportunity for further performance 

tuning, this section explores the absolute and relative time spent in each processing 

stage.  

Figure 42 compares the absolute time spent in each of the processing stages by 

both MUMMERGPU++ and MUMMERGPU for the largest workload: HS1. Note 

the following: 

First, as discussed in Section 3.8.1, although the suffix tree-based tool, 

MUMMERGPU, has better asymptotic time complexity per query; 

MUMMERGPU++, the suffix array-based tool, achieves almost equal overall 

performance because it is more memory efficient and, as a result, requires a fewer 

matching rounds on the GPU when all queries are considered. 

Second, although the post-processing stage in MUMMERGPU is performed on 

the GPU, the time spent in this stage is reduced by more than a factor of three by 

MUMMERGPU++, where it is performed on a single CPU core. This translates to 

17% overall speedup improvement, hence supporting our argument in Section 

3.8.2. 

Third, the experiment validates our insight in Section 3.8.3 that a suffix array-

based tool, like MUMMERGPU++, significantly reduces the data transfer overhead 

from/to the GPU: the total time spent transferring data is reduced by a factor of 

seven or more, which translates to more than 31% overall speedup improvement.  

Finally, for both tools, the time spent in the construction stage is almost 

negligible compared to other stages. 
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 Figure 43 demonstrates the proportion of total processing time that 

corresponds to each processing stage for MUMMERGPU++ for all workloads. 

Compared to Figure 34, which presents similar data for MUMMERGPU, 

MUMMERGPU++ significantly changes the distribution of processing effort across 

stages. It significantly reduces the share of post-processing and data-transfer stages, 

and increases the share of the matching stage. 

This is important from two perspectives. First, these tools are expected to run 

on multi-GPU systems. From this perspective, the intense data-transfers employed 

by MUMMERGPU make the PCI Express bus a bottleneck and limit the feasibility 

of using multiple GPUs on the same host. MUMMERGPU++ reduces the I/O 

overhead (by a factor of 6x-12x in our experiments) and thus eliminates the shared 

communication (PCI Express bus) as a potential scalability bottleneck.  Second, 

from a performance optimization perspective, the fact that the compute (matching) 

 
Figure 42: Absolute time spent in each processing stage for workload HS1 

for both MUMMERGPU++ and MUMMERGPU (for the default 

configuration config2). 
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stage now takes 75%-80% of the time for the large workloads, including the human 

genome, allow focusing the performance optimizations on this stage only. 

 

3.9.4 Evaluation on Newer Hardware Platform and Workloads 

This section aims to answer the following question: Is the performance observed 

initially preserved as workloads and hardware evolve? To answer this question, 

this section presents a comparison of MUMMERGPU++ (the suffix array-based 

tool) and MUMMERGPU (the suffix tree-based tool) on a newer hardware platform 

(Table 1 lists its characteristics).  

Particularly, compared to the platform used in the initial experiments, the 

GPUs in the new platform has six times more onboard memory space, four times 

more memory bandwidth and the GPUs are connected via a PCI Express 3.0 bus, 

which offers double the CPU-GPU transfer bandwidth. Note that the new GPUs 

bring important improvements to the core bottlenecks of the suffix tree-based tool. 

 
Figure 43: Percentage of total execution time spent in each processing stage 

for MUMMERGPU++. The numbers on the bars show the absolute time 

spent in each stage. 
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Moreover, the updated evaluation presented in this section (and the following 

sections) uses more recent workloads (Table 7). Compared to the first set of 

workloads, the new set is focused on larger workloads: longer reference sequences 

and larger number of queries. 

Figure 44 (left) compares the performance of the two tools on the newer 

hardware platform and the updated workloads. The figure confirms the ability of 

the suffix array-based tool (MUMMERGPU++) to deliver better performance than 

the suffix tree-based one (MUMMERGPU) when run on the GPU. Even though the 

new hardware offers more memory space on the GPU and higher data transfer 

bandwidth, the suffix tree based tool still suffers from high communication 

overhead, especially as the reference sequence becomes longer: when run on the 

GPU, the suffix array delivers 1.33x speedup on the shortest sequence (DMEL), 

1.79x on the medium sequence (HS), and 2.15x on the longest one (ORYZA). 

Figure 44 (right) also compares the processing rate of two CPU-only solutions: 

a suffix tree and a suffix array-based ones. The suffix tree implementation is the 

original MUMMER tool [Kurtz et al. 2004] (modified to process queries in parallel 

using OpenMP), while the CPU-based suffix array tool is a modified version of 

MUMMERGPU++ that runs on the CPU in parallel using OpenMP. 

Table 7: A newer set of sequence alignment workloads used in the extended 

evaluation study. Compared to the previous set of workloads, the focus here is 

on longer reference sequences. The workloads were obtained from the NCBI  

archive [NCBI 2014]. 

Workload / Species  
Reference 

Sequence Length 

Number of 

Queries 

Sequencing Technology  

(Read Length) 

DMEL / Drosophila 

Melanogaster (Fruit Fly)  
122,696,361 69,580,156 Illumina (151) 

HS - Homo Sapiens 

chromosome 2 (Human) 
238,202,930 205,904,051 Illumina (74) 

ORYZA - Oryza Sativa 

(Rice)  
361,636,301 27,280,835 Illumina (76) 
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Unlike when offloading to the GPU, the suffix tree offers better performance 

than the suffix array. This is because, when processing on the CPU, there are no 

communication overheads, and the processing time is exclusively spent on the 

matching phase. Since the suffix tree has better time complexity in the matching 

phase than its suffix array counterpart, the former solution outperforms the latter. 

 

Figure 44: Comparison of the processing rates of the two data structures. Left: 

when processing is offloaded to a single GPU. Right: when processing is not 

offloaded to the GPU and is performed entirely on a single CPU socket. The 

processing rate is calculated as the number of queries divided by the 

processing time. The minimum match length is fixed at 40 for all experiments. 

The CPU and the GPU versions of the suffix tree tools are the original 

MUMMER (which I modified to process queries in parallel using OpenMP) and 

its GPU port, MUMMERGPU, respectively. The GPU version of the suffix 

array tool is the MUMMERGPU++ presented in Section 3.7, while the parallel 

CPU-based one is a modified version of MUMMERGPU++ that runs on the 

CPU and parallelized using OpenMP. The notation 1G refers to processing the 

workload on a single GPU, while 1S refers to processing the workload only on 

the CPU, and on one of the two CPU sockets (i.e., using the 16 hardware 

threads of one of the two CPU processors available on the machine). 
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3.9.5 Hybrid Processing of Sequence Alignment  

One way to maximize the utilization of a hybrid platform’s processors for sequence 

alignment is to partition the workload to be processed concurrently on both the CPU 

and the GPU. This section presents the performance of such a solution: dividing the 

queries between the CPU and the GPU while using for each processor a data 

structure that matches best its characteristics: a suffix array for the GPU partition 

and a suffix tree for the CPU one.  

 

Figure 45 shows the performance of different hybrid configurations. First, the 

discussion focuses on the analysis of configurations with two processing units. The 

figures show that, for all algorithms, the hybrid system (1S1G) performs better than 

the dual-socket system (2S). On the one hand, adding a second socket doubles the 

the number of memory channels, which are critical resources for sequence 

alignment performance, hence leading to close to double the performance compared 

to 1S configuration. On the other hand, the performance gain of 1S1G, brought by 

matching the core data structure with the hybrid system, outperforms that of the 

 

Figure 45: Performance of different hybrid configurations and workloads. 
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dual-socket symmetric system: between 1.40x to 2x speedup compared to the dual 

socket system (2S). 

Second, the figure also demonstrates the ability of the hybrid system to harness 

extra processing elements. The sequence alignment workload is easy to partition, 

by dividing the queries among the processing elements, and hence the performance 

scales seamlessly as more processors are added. 

3.9.6 Power and Energy Evaluation 

This section evaluates the power and energy characteristics of sequence alignment 

on hybrid (i.e., CPU and GPU) single-node systems. Section 2.12.1 presents the 

evaluation setup and the power characteristics of the machine.  

While section 2.12.1 discusses in more detail the evaluation setup, two main 

points are worth stressing: (i) a significant share of the power is consumed by 

DRAM, and (ii) when loaded, GPUs consume significant power compared to other 

system components. 

The rest of this section evaluates energy efficiency via three metrics: power 

consumption in Watts, power-normalized processing rate and the energy-delay 

product. 

Power Consumption 

Figure 46 shows the system power consumption under different workload and 

hardware combinations. To better illustrate the variation in power consumption 

during execution, the data is presented as boxplots. The main differentiating factor 

in terms of power consumption is the hardware configuration (i.e., the number and 

type of processing elements used). Note that there is no major power difference 

across workloads for the same hardware configuration. 
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Note that the increase in power consumption when processing on two CPU 

processors (2S) compared to one (1S) is about 75W, which is 78% of the CPU’s 

TDP. Similarly, the increase in power drawn when adding GPUs is close to the 

TDP of the GPU: adding a GPU increases power consumption by about 200W, 

which is 80% of the GPU’s TDP (see Table 1).  

Since the workload is balanced between the processing elements, adding a 

processing element (a CPU or a GPU) entails an increase in power consumption 

that is close to the processor’s TDP. 

 

Figure 46: Power consumption (the lower the better) for different hardware 

configurations and workloads. The upper and lower "hinges" of the 

boxplot correspond to the first and third quartiles. The middle line 

corresponds to the median. The whiskers extend from the lowest data point 

within 1.5 IQR of the lower quartile, to the highest data point within 1.5 

IQR of the upper quartile (IQR is the Interquartile Range, which is the 

distance between the first and third quartiles). The mean is shown as a 

cross. Note the y-axis starts at 200W. 
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Power-normalized Processing Rate 

To estimate the energy efficiency of different configurations, Figure 47 shows the 

power-normalized performance for all benchmarks (i.e., raw performance reported 

in Figure 45 divided by average drawn power). Note that, for each workload, the 

plot can also be viewed as a comparison of raw energy consumed to process the 

graph.  

 

 

First, compare the configurations with two processing elements. The 

performance gains that the hybrid 1S1G system achieves compared to a 2S system 

do not come at the expense of energy inefficiency, in fact the hybrid system is more 

energy efficient than its symmetric counterpart. In the best case, the hybrid system 

achieves 40% higher efficiency for the power-normalized performance metric. 

Second, in all cases, adding more GPUs improves power-normalized performance 

as the gain in raw performance is higher than the increase in power consumption. 

 

Figure 47: Power-normalized processing rate (the higher the better). QPS 

refers to queries per second. 
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Energy-delay Product 

Since the energy-delay product (EDP) is an energy metric that is biased for low-

time-to-solution, the relative advantage of the hybrid solution is higher. Figure 48 

presents the results of this experiment normalized to the 1S configuration to make 

the plot readable.  

The figure shows that, in the best case, a hybrid 1S1G can be 2.8x better than 

a symmetric configuration with the same number of processors (2S). Equally 

important, EDP continues to improve as more are added, especially when a second 

GPU is added.  

 

In summary, compared to a symmetric configuration, a hybrid GPU-accelerated 

platform offers not only better time-to-solution, but also saves in the amount of 

energy consumed. Although a GPU draws almost double the power of a CPU, 

energy savings were possible because of the significant performance improvement 

brought by the hybrid system through better data structure-processor matching.  

 

Figure 48: Normalized energy-delay product (the lower the better). Note 

that the y-axis is log-scale. The baseline is the CPU-only configuration with 

one processor (1S). 
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3.10 Lessons and Discussion 

The results presented in this chapter allow putting forward a number of guidelines 

on the opportunity and the supporting techniques required to efficiently harness 

hybrid systems for sequence alignment. These guidelines are phrased as answers to 

a number of questions. 

 Q1: Is it beneficial to use a hybrid system to accelerate sequence alignment?  

A1: Yes. One concern when considering using a hybrid system is the limited 

GPU memory that may render using a GPU ineffective when processing large 

sequence alignment workloads. This work shows, however, that trading-off 

higher computational complexity for a more compact in-memory representation 

significantly improves the accelerator’s performance (by enabling higher 

parallelism levels and reducing transfer overheads).  

 Q2: Can the data transfer overheads be hidden by overlapping the transfers 

with the GPU kernel execution? 

A2: No, especially for large-scale workloads. The reason is that the computation 

on the GPU requires a set of input/output buffers. Facilitating communication-

computation overlap requires double buffering for the input and output (such 

that the GPU computes on one set of buffers while the transfers are concurrently 

performed to/from the others). This entails allocating two sets of input/output 

buffers on a scarce resource: GPU’s onboard memory.  

To further investigate this opportunity, I ran an experiment (for both 

MUMMERGPU and MUMMERGPU++) in which the tool assumed half of the 

memory available on the device to simulate a double buffering condition. The 

results demonstrated that the increase in the time spent in the matching stage 

was larger than the total time spent transferring data from/to the GPU (and could 

potentially be hidden by the overlapping technique mentioned). Hence, for this 

application, overlapping would actually hurt performance.  
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 Q3: Is it fair to use MUMMERGPU as a baseline to evaluate the advantages of 

the suffix array-based approach? Otherwise said, is it possible that the speedup 

offered by MUMMERGPU++ is simply due to a better optimized GPU 

implementation and not to the choice of a data-structure that inherently offers 

a better fit to for the computing platform at hand? 

A3: I have three arguments to support the choice of MUMMERGPU as the 

reference for a suffix tree-based tool. First, the analysis of the opportunities a 

suffix array-based implementation offers (Section 3.8.1) is solely based on the 

characteristics of the core data structure, and is agnostic to the detailed GPU 

implementation of the tool. Second, MUMMERGPU is a well optimized GPU-

based tool. The tool’s authors exhaustively examined 128 data layout 

configurations to select the configuration which delivers the best overall 

performance. The results were presented in two previous publications [Schatz 

et al. 2007; Trapnell and Schatz 2009]. Finally, as mentioned in (Section 3.9.1) 

I have not specifically optimized MUMMERGPU++: apart from placing the 

reference string in texture memory, the kernel places all input and output data 

in global memory, it does not employ the shared memory available on each 

multiprocessor and does not try to improve memory throughput by coalescing 

memory accesses.  

 Q4: Is there an energy cost to the time-to-solution gains provided by the hybrid 

platform?  

A4: No. One concern is that the GPU’s high peak power consumption may 

render an accelerated solution inefficient in terms of energy. The experiments 

in section  3.9.6 reject this concern: GPU-acceleration allows a faster ‘race-to-

idle’, enabling energy savings that are sizeable for newer GPU models which 

are power-efficient in idle state (as low as 25W [NVIDIA 2013]). The 
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experiments show that a hybrid system is not only efficient in terms of time-to-

solution, but also in terms of energy and energy-delay product.  

 Q5: Since sequence-alignment is a memory-bound operation, why not lower the 

processor’s frequency to lower the energy footprint?  

A5: On the CPU side, a recent analysis [Schöne et al. 2012] shows that, for 

recent Intel processors (e.g., Intel’s Sandy Bridge), both memory latency and 

bandwidth strongly depend on the processor’s frequency (this result is 

confirmed on the platform used in this study). This limits the opportunity to use 

dynamic voltage and frequency scaling (DVFS) to save energy on the CPU side. 

On the GPU side, however, recent GPU models support setting different 

frequencies for the memory and the compute cores. Previous work [Jiao et al. 

2010; Abe et al. 2012] shows that energy consumption can be reduced by 

lowering the core frequency for memory-intensive kernels, an opportunity that 

will further improve the energy efficiency of the hybrid system. 

 Q6: Is it possible that the results presented in this dissertation are dependent 

on the hardware platform and workloads used for experimentation?  

A6: Unlikely. The evaluation presented here was performed on two generations 

of hardware and workloads. The older machine dates back to 2010 when this 

work was first conducted. The new machine includes state-of-the-art CPU and 

GPU models as of writing this dissertation. Interestingly, the assumptions 

regarding the differences in characteristics between the two types of processing 

elements of the hybrid system stayed the same: GPUs still have significantly 

higher peak memory access bandwidth and higher peak computational power 

per Byte of memory compared to CPUs, yet one order of magnitude lower 

internal memory space. More importantly, the results obtained on the older 

generation of hardware and workloads (sections 3.9.2 and 3.9.3) are consistent 
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with the latest results obtained on the newer set of workloads and hardware 

generation (section 3.9.4 and 3.9.5). 
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Chapter 4 

4. Summary and Impact 

Current computing platforms for processing large-scale irregular datasets (such as 

processing graphs with billions of edges), have in common that they store and 

process data in their aggregate memory. These platforms, however, differ over a 

number of key choices and can succinctly be characterized by describing the 

extremes of a price/time-to-solution spectrum. At the one end of this spectrum stand 

platforms that emphasize a low time-to-solution, e.g., supercomputers such as Cray 

XMT. Hardware-supported shared memory and fast interconnects offer low latency 

for non-local memory accesses, while the massive parallelism provided by such 

platforms helps further hide memory access latency. These platforms, however, are 

costly to build and operate as they use non-commodity components.  

At the other end of the spectrum, shared-nothing architectures (e.g., 

commodity clusters) are commonly used as low-cost alternatives to support large 

data-intensive processing. Compared to supercomputers, clusters are cheaper and 

arguably easier to extend incrementally. However, due to higher interconnect 

latency, lack of hardware support for shared memory, and inability to mask memory 

access latency (e.g., by using a massive number of threads), these platforms are 

typically less efficient than their supercomputer counterparts.  

This dissertation starts from the observation that today more efficient solutions 

are affordable: it is feasible to assemble single-node platforms that aggregate 100s 

of gigabytes to terabytes of memory and immense processing power (using 

massively-parallel accelerators such as GPUs) [Gupta et al. 2013; Rowstron et al. 

2012; Shun and Blelloch 2013] all from commodity components. Compared to the 

two extreme platforms discussed above (i.e., supercomputers and clusters), a hybrid 
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GPU-accelerated platform with significant amount of host memory can be obtained 

for a relatively low budget, and has the potential to offer significant performance 

and energy efficiency for a large class of applications.  

However, realizing these opportunities in the context of irregular applications 

is not a trivial task. While pervious works demonstrated that significant gains can 

be obtained for regular applications (such as linear algebra), little experience has 

been accumulated to date related to using hybrid GPU-accelerated platforms to 

improve the performance of irregular applications, particularly the ones that 

process massive datasets. Indeed, the GPU’s strict parallel model and limited 

onboard memory, among other challenging characteristics, makes it unclear if it is 

beneficial to offload part of the massive workload of an irregular application to be 

processed concurrently on the GPU.  

This dissertation attempts to bridge this gap by exploring the opportunities, design 

methodologies and middleware to improve the efficiency and, at the same time, 

reduce the complexity of harnessing hybrid GPU-accelerated platforms to improve 

the performance of large-scale irregular applications. 

Using two high-impact applications, this work provides evidence that hybrid 

GPU-accelerated platforms improve the performance, in terms of both time-to-

solution and energy, of large-scale irregular applications. To reach this point, this 

work offers performance models, low-cost workload assignment strategies, design 

techniques and optimizations customized for processing on hybrid platforms. 

Equally important, the ideas presented in this work have been extensively evaluated 

on large-scale synthetic and real-world workloads. The evaluation examines two 

important metrics, time-to-solution and energy, and carefully explains the reasons 

for obtained performance. 

The rest of this section summarizes the impact and possible extensions of the 

two main lines of research large-scale graph processing (Section 4.1) and large-

scale sequence alignment (Section 4.2). 
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4.1 Large-Scale Graph Processing on Hybrid Platforms 

This work demonstrates the ability to harness hybrid platforms for graph processing 

and proposes techniques that allows it to perform efficiently. Specifically, this work 

shows that GPU-acceleration improves both time-to-solution as well as energy 

efficiency, and that this improvement scales when increasing the graph size and 

adding more GPUs. Further, although current GPU models have one order of 

magnitude less memory, and are connected to high-latency communication bus, this 

work shows that a hybrid, one CPU and one GPU, system can be more efficient in 

terms of time-of-solution and energy efficiency than a dual-CPU symmetric one. 

4.1.1 Impact 

In addition to the research contributions detailed in Section 2.2, this project had the 

following impact: 

 First, this project highlights the significant change in computing systems design, 

which enables building commodity single-node machines with significant 

amounts of memory and computer power, and allows for processing large-scale 

workloads that until recently were only processed on clusters or supercomputers. 

To the best of my knowledge, this is the first work to process graphs as large as 

one billion vertices and 16 billion edges on a single node machine. Based on 

this, system designers have a wider design spectrum to consider when designing 

infrastructure for large-scale graph processing. 

 Second, contrary to the belief that GPU acceleration is only viable for regular 

computations, this project confirms the viability of using GPUs to accelerate a 

challenging irregular problem: graph processing.  

 Third, to the best of my knowledge, this is the first work to explore the idea of 

using both CPUs and GPUs to concurrently process large-scale graphs: graphs 

that are an order of magnitude larger than what a GPU memory can host. A 

number of techniques made this possible. Some of these techniques were 
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proposed by this work, such as partitioning strategies that aim to reshape the 

workload to run faster on the bottleneck processor. Other techniques were 

imported from works on distributed systems design, and this work showed their 

applicability in the context of single-node hybrid platforms, such as the bulk 

synchronous parallel (BSP) computation model and message aggregation 

[Malewicz et al. 2010]. 

 Finally, this work resulted in an open source software artifact, TOTEM: a 

programming framework that makes it easier to implement graph algorithms for 

hybrid GPU-accelerated platforms.  

4.1.2 Possible Extensions 

In the following, I summarize two possible directions to extend this work. 

A more detailed performance model 

This work presented a simple, yet effective performance model that helps 

estimating the benefits of offloading part of the graph workload. Given the current 

characteristics of hybrid platforms, the model shows that it is beneficial to partition 

the graph workload and process it on a hybrid platform, and highlights the 

importance of minimizing the communication overhead to improve the overall 

performance. 

Notwithstanding the model’s simplicity and its demonstrated usefulness, it can 

be improved (at the cost of making it more complex). For example, the model 

assumes that the CPU’s processing rate is constant, determined by a benchmark 

independent of the graph characteristics of the actual workload. A more accurate 

modeling would take into account the characteristics of the partition. To address 

this issue, one could analyze the effect of workload characteristics (e.g., degree 

distribution and graph structure) on obtained performance. For example, one could 

perform controlled experiments on diverse hardware while varying graph 
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characteristics, and feed the results to a machine learning approach to better predict 

the processing rate for partitions with specific characteristics. 

Most importantly, considering the hardware characteristics as parameters in 

this machine learning methodology has the potential to predict what is more 

beneficial, adding more CPU sockets or accelerators, given a workload pattern and 

energy or dollar budget; hence providing valuable information needed for efficient 

system provisioning. 

Another possible extension to the model is to take into consideration that part 

of the graph may reside on non-volatile memory such as SSDs, which have higher 

access latency than DRAM, but higher storage capacity and are more energy 

efficient. 

A graph processing engine for distributed hybrid platforms  

This work presented the design and implementation of TOTEM, a graph processing 

engine for hybrid single-node platforms. TOTEM’s importance, however, comes not 

only from enabling harnessing single-nodes, but also as a building block to harness 

GPU-accelerated clusters which have become common in the HPC space. For 

instance, four of the first five supercomputers in the latest (June, 2014) Top50012 

supercomputer list host accelerators and heterogeneous architectures are 

increasingly popular [TITAN 2013].  

In this context, one possible extension to TOTEM is to harness GPU-accelerated 

clusters. Shared-nothing architectures that aggregate heterogeneous nodes, that is, 

clusters of GPU-accelerated nodes, can offer a cost-efficient, yet high performance 

graph processing platform. The fact that new commodity nodes can support multi-

hundred gigabytes of memory space, offers the opportunity to aggregate large 

memory space using smaller number of components; therefore, reducing inter-node 

                                                 

12 www.top500.org 
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communication cost. At the same time, adding GPUs to each node offsets the loss 

in parallelism resulted from reducing the number of nodes. 

Furthermore, TOTEM can be used as a back-end module of a domain specific 

language (DSL) for graph processing. For example, it can be used to extend the 

DSL developed by Hong et al. for graph analysis which currently targets only 

symmetric shared-memory platforms [Hong et al. 2012]. 

4.2 Large-Scale Sequence Alignment on Hybrid Platforms 

GPUs have drastically different performance characteristics compared to traditional 

multicore architectures: up to one order of magnitude higher peak memory access 

bandwidth, one order of magnitude higher peak computational power per Byte of 

memory, yet one order of magnitude lower internal memory space.  

This work argues that these differences make reconsidering the choice of the 

data structures used a necessary step when porting applications to hybrid, GPU-

accelerated platforms. In particular, the experience from this project is synthesized 

as three guidelines. First, a solution that supports minimum computational overhead 

does not necessarily enable maximum overall performance: a better optimization 

point is one that maintains a balance between communication and computation 

overheads. Second, GPUs’ high computational power per Byte of memory 

compared to traditional multiprocessor architectures, makes trading-off additional 

per thread processing time for a more compact in-memory data representation an 

attractive technique to increase overall performance (by enabling higher parallelism 

levels and reducing data transfer overheads). Finally, ensuring that the chosen 

GPU-offloaded part of the application entails low pre- and post-processing 

overheads is essential to maximize the overall performance gains. 
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4.2.1 Impact 

In addition to the research contributions detailed in section 3.4, this project had the 

following impact: 

 First, this project highlights the significant difference in the characteristics of 

two commodity processors: GPUs and traditional CPUs. More importantly, it 

stresses the value of space-time tradeoffs to improve the performance of GPGPU 

applications. These ideas inspired and used by other related works, such as 

[Drozd et al. 2012] which proposes to build a GPU-accelerated sequence 

alignment solution that is based on pre-processing the reference string into an 

index based on Burrows-Wheeler transform, which has even lower memory 

footprint than the suffix array, but higher computational complexity. 

 Second, similar to the impact that the TOTEM project had (section 4.1.1), this 

project confirms the viability of using GPUs to accelerate a challenging irregular 

problem, sequence alignment. This is contrary to the belief that GPU 

acceleration is only viable for regular computations. 

 Third, this work resulted in an open-source software artifact, MUMMERGPU++, 

which has been used as a benchmark by several studies related to improving 

GPU architecture and design [Fung and Aamodt 2011; Rhu and Erez 2012; 

Lashgar et al. 2012; Blem et al. 2011; ElTantawy et al. 2014]; moreover, as of 

writing this thesis, MuMmerGPU++ is part of the NVIDIA bioinformatics 

benchmark.  

4.2.2 Possible Extensions 

While this work is focused on discrete GPUs, an interesting extension is to explore 

the effect of the techniques proposed here on performance when using integrated 

GPUs.  

The goal of integrated GPUs is to remove the PCI Express bus by placing the 

main processor and the accelerator on the same die and share the same memory 
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space. AMD’s APU (Accelerated Processing Unit) with its Fusion architecture 

[Branover et al. 2012] is an example of such hybrid setup.  

While current APU models do place the main processor and the accelerator on 

the same die, they still employ distinct memory partitions, and hence the techniques 

proposed in this work still apply for the current APU generations.  

Moreover, even though current APU models are almost an order of magnitude 

less compute powerful and have a lower memory bandwidth than discrete GPUs, 

recent works show that for communication-intensive applications, APUs can be 

competitive with their discrete counterparts [Hetherington et al. 2012; Calandra et 

al. 2013]. 

4.3 Limitations 

The limitations of this work can be summarized as follows.  

First, this work focuses on irregular workloads. For example, in the graph 

processing project, the work targets graphs with power-law degree distribution. 

This is because efficiently utilizing hybrid platforms requires heterogeneity in the 

workload that allows for using the different types of processing elements for 

different parts of the workload. Therefore, regular workloads, such as grid grids, 

may not benefit from the ideas proposed in this work that are related to hardware 

specialization. However, such workloads may still obtain improvement that is 

linear with the size of workload offloaded to the GPU (i.e., similar to random 

partitioning for irregular workloads). 

Second, this work focuses on single-node platforms. While this is clearly an 

advantage for a wide range of workloads, massive-scale workloads (e.g., Google-

scale web crawling workload), do not benefit. A multi-node setup has different 

overheads compared to single-node one. For example, inter-node communication 

can be a major overhead that may influence the way the graph is partitioned 
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between nodes, and it is not clear how that affects partitioning between the CPU 

and the GPU within the node. 

Third, hybrid platforms increase the complexity of software development. 

While this work offers frameworks to maximize the utilization of hybrid platforms 

while hiding some of the development complexity, it is still more complex to 

develop for such platforms compared to shared memory ones. For example, using 

TOTEM, the developer still needs to implement two kernels, one for the CPU and 

one for the GPU; while this can be viewed as an opportunity to optimize them 

differently based on the characteristics of each processor, it is an extra effort that 

the developer needs to put. Emerging technologies, such as OpenACC which 

enables having a single kernel implementation and integrated GPUs which makes 

it easier to manage CPU-GPU communication, may help reduce development 

complexity; however, a software system that manages data placement (i.e., define 

and assign partitions to different processing elements) will still be needed, and 

hence it will always be more complex to develop for a hybrid platform compared 

to a symmetric one. 
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Appendices 

Appendix A: A BFS Implementation on Top of TOTEM 

This appendix details a simplified implementation of the BFS algorithm using 

TOTEM. The code is thoroughly commented, and hence relatively long. The best 

way to read the code is to start from the main function, which can be found at the 

end of the appendix. 

 

// A structure that encapsulates per-partition  

// algorithm-specific state. 

typedef struct { 

  level_t*   levels;     // One slot per vertex in the partition. 

  bool*      finished;   // Refers to Totem's finish flag. 

  level_t    cur_level;  // The current level being processed by  

                         // the partition. 

} bfs_local_state_t; 

 

// A structure that encapsulates algorithm-specific global state,  

// which is shared between all partitions. 

typedef struct { 

  level_t* levels;  // The final output buffer. 

  vid_t    source;  // The source vertex id. 

} bfs_global_state_t; 

static bfs_global_state_t state_g = {0}; 

 

// A helper function that is used by the CPU and GPU compute  

// functions to process a vertex. The function iterates over the  

// vertex’s neighbors, and sets their level if it has not been set  

// before. The function returns false when at least one neighbor  

// has been updated indicating that processing has not finished  

// yet, which is eventually translated to an additional BSP round.  

// The function returns true when no neighbors have been updated,  

// which translates to termination in case the function returns  

// true for all processed vertices. 

static __device__ __host__ 

bool bfs_process_vertex(partition_t* par, bfs_state_t* state,  

                        vid_t v) { 

  bool finished = true; 

  if (v >= par->subgraph.vertex_count || 

      state->levels[v] != state->cur_level) { return finished; } 

  for (eid_t i = par->subgraph.vertices[v]; 

       i < par->subgraph.vertices[v + 1]; i++) { 

    const vid_t nbr = par->subgraph.edges[i]; 
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    // The following Totem function returns a reference to the state  

    // of the neighbor. If the neighbor is in the same partition,  

    // the function returns a reference to the neighbor’s state in  

    // the local “state->levels” array. If the neighbor is remote,  

    // the function returns a reference to its state in the outbox  

    // buffer.  

    level_t* nbr_level = totem_engine_get_dst_ptr(par, nbr,  

                                                  state->levels); 

 

    // Update the neighbor’s level if it has not been set before.  

    // Note that reduction for remote neighbors happens implicitly  

    // here: all vertices in this partition that has an edge to  

    // this remote neighbor would test and update the same state  

    // which exist as part of the outbox buffer. During the  

    // communication phase, a single value will be communicated to  

    // the partition that owns the neighbor. 

    if (*nbr_level == INF_LEVEL) { 

      finished = false; 

      *nbr_level = state->cur_level + 1; 

    } 

  } 

  return finished; 

} 

 

// The CPU compute kernel which is called by the compute callback  

// if the partition is CPU resident. 

static void bfs_compute_cpu(partition_t* par,  

                            bfs_state_t* state) { 

  const graph_t* subgraph = &par->subgraph; 

  bool finished = true; 

  #pragma omp parallel for schedule(runtime) reduction(&: finished) 

  for (vid_t v = 0; v < subgraph->vertex_count; v++) { 

    finished &= process_vertex(par, state, v); 

  } 

  if (!finished) { *(state->finished) = false; } 

} 

 

// The GPU compute kernel, which is called by the compute callback  

// if the partition is CPU resident. 

static __global__  

void bfs_gpu_kernel(partition_t par, bfs_state_t state) { 

  const vid_t v = THREAD_GLOBAL_INDEX; 

  if (!process_vertex(&par, &state, v)) { 

    // state.finished is a reference to a flag that is shared  

    // between all partitions. Totem sets this flag to true at the  

    // beginning of each superstep. A partition sets this flag to  

    // false if there are active vertices that needs to be processed 

    // in the next round. Totem will launch another BSP round if  

    // any partition sets this flag to false. 

    *(state.finished) = false; 



158 

  } 

} 

 

// A wrapper for the GPU compute kernel, it configures and launches  

// the CUDA kernel. 

static void bfs_compute_gpu(partition_t* par,  

                            bfs_local_state_t* state) { 

  dim3 blocks, threads; 

  totem_kernel_configure(par->subgraph.vertex_count, &blocks,  

                         &threads); 

  bfs_gpu_kernel<<<blocks, threads, 0, par->stream>>>(*par, 

                                                      *state); 

} 

 

// The compute callback function. Totem calls this function for  

// each partition as part of the BSP compute phase. Depending on  

// the partition’s processor, this function calls either the CPU or  

// the GPU kernel. 

static void bfs_compute(partition_t* par) { 

  bfs_local_state_t* state = (bfs_local_state_t*)par->algo_state; 

  if (par->processor.type == PROCESSOR_CPU) { 

    compute_cpu(par, state); 

  } else if (par->processor.type == PROCESSOR_GPU) { 

    compute_gpu(par, state); 

  } 

  state->cur_level++; 

} 

 

// The callback to "scatter" the messages received from remote  

// partitions to the partition's local state. Totem invokes this  

// callback at the end of the communication phase after the data  

// has been copied from the outbox buffers of the remote partitions  

// to the inbox buffers of this partition. 

static void bfs_scatter(partition_t* par) { 

  bfs_local_state_t* state = (bfs_local_state_t*)par->algo_state; 

  // For each message in the inbox buffer, the following template  

  // function computes the minimum of the value in the message and  

  // the one the vertex currently have in the local state (i.e.,  

  // state->levels). The minimum is then stored in the local state  

  // as the vertex’s new level. 

  totem_engine_scatter_inbox_min(par->id, state->levels); 

} 

 

// Callback to collect the final result from the partitions' local  

// "levels" array to the final output array that will be returned  

// to the user. 

static void bfs_collect(partition_t* par) { 

  bfs_local_state_t* state    =  

     (bfs_local_state_t*)par->algo_state; 

  // The following Totem function copies each value in the local  



159 

  // state->levels array to its corresponding entry in the final  

  // state_g.levels array. To do this, the function uses a “map”  

  // that maps each vertex in the partition from its local id space  

  // (the vertex id within the partition which is used to index the  

  // local “state->levels” array) to its global id space (the vertex  

  // id in the original graph which is used to index the final  

  // output array “state_g.levels”). 

  totem_engine_collect(par->id, state->levels, state_g->levels); 

} 

 

// Callback to allocate and initialize a “bfs_local_state_t”  

// structure, a per-partition and algorithm-specific state. This is  

// called for each partition by Totem at the beginning before the  

// first BSP superstep. 

static void bfs_init(partition_t* par) { 

  // Removed for brevity. In summary, the function allocates a  

  // bfs_local_state_t structure for this partition.  

  // “par->alg_state” is the reference to the allocated structure.  

  // It also initializes the allocated local state, such as setting  

  // the level of the source vertex to 0 (if it belongs to this  

  // partition). 

} 

 

// Callback to free the buffers allocated in initialize. This is  

// called by Totem at the end (i.e., after all partitions vote for  

// termination). 

static void bfs_finalize(partition_t* par) {  

  // Removed for brevity.  

} 

 

// The hybrid BFS algorithm entry function. Given a graph and a  

// source vertex, the algorithm computes the distance (named level)  

// of every vertex from the source. 

void bfs_simplified_hybrid(graph_t* graph, vid_t source,  

                           level_t* levels) { 

  // Initialize the global state. 

  totem_memset(levels, INF_LEVEL, totem_engine_vertex_count(),  

               TOTEM_MEM_HOST); 

  state_g.levels = levels; 

  state_g.source  = source; 

 

  // Configure and trigger Totem’s BSP engine. TOTEM_COMM_PUSH  

  // indicates that the communication direction is from the source  

  // to the destination vertex of a remote edge, this is in contrast  

  // to TOTEM_COMM_PULL which indicates the opposite. The former is  

  // used by algorithms in which a vertex pushes a value to update  

  // its neighbors (such as BFS), while the latter is used in  

  // algorithms where a vertex pulls the state of its neighbors to  

  // update its own state (such as PageRank). 

  totem_bsp_config_t config = {  
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    bfs_compute, bfs_scatter, bfs_init, bfs_finalize, bfs_collect,  

    TOTEM_COMM_PUSH 

  }; 

  totem_bsp_config(&config); 

  totem_bsp_execute(); 

} 

 

// The program’s main function. 

void main() { 

  // Load the graph. 

  graph_t* graph; 

  graph_initialize(“/path/to/graph/file”, &graph); 

 

  // Initialize Totem. “attr” includes a number of parameters that  

  // can be set, the most important of which is the partitioning  

  // strategy, which is set to random in TOTEM_DEFAULT_ATTR. 

  totem_attr_t attr = TOTEM_DEFAULT_ATTR; 

  totem_init(graph, &attr); 

 

  // Allocate the output array and invoke BFS on a random seed. 

  level_t* levels =  

    (level_t*)malloc(graph->vertex_count * sizeof(level_t)); 

  vid_t source = rand() % graph->vertex_count; 

  bfs_simplified_hybrid(graph, source, levels); 

  graph_finalize(graph); 

} 
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Besides the work presented in this dissertation, I collaborated and provided key 
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using GPUs to accelerate distributed storage systems (collaboration with colleagues 

from UBC, NetSysLab) [iii, vii, viii, ix], work on enabling data deduplication for 

tape-based systems (collaboration with IBM, Almaden) [i, iv, v, vi] and designing 

energy-price aware scheduling algorithms for cloud workloads (collaboration with 

IBM, Almaden) [ii]. 
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