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Abstract

We prove a power saving over the local bound for the L∞ norm of uniformly non-

tempered Hecke-Maass forms on arithmetic hyperbolic manifolds of dimension 4

and 5. We use accidental isomorphism and use the Hecke theory of the correspond-

ing groups to show that if the automorphic form is non-tempered at positive density

of finite places then the Hecke eigenvalues are large; amplifying the saving coming

from the non temperedness we get a power saving.
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Chapter 1

Introduction

The eigenfunctions of the Laplace-Beltrami operator on a Riemannian manifold are

very important to study and create links between various fields in mathematics such

as spectral geometry, harmonic analysis, quantum mechanics, thermodynamics, or

global analysis. The limiting behaviour of the eigenfunctions and the distribution

of their mass play an important role in both physics and mathematics.

Let M be a compact Riemannian manifold of dimension n and ψ be a function

on M which satisfies ∆ψ + λψ = 0 and ||ψ||L2(M) = 1, where ∆ is the Laplace-

Beltrami operator on M. By ||ψ|| and ||ψ||p we will denote ||ψ||L∞(M) and ||ψ||Lp(M)

for 1 ≤ p < ∞ unless mentioned otherwise. It is known that (see e.g. [15],[52])

one can have a general bound

||ψ|| � λν(M) with ν(M) =
dim(M) − 1

4
. (1.0.1)

The above bound is sharp for round sphere M = S n or on a surface of revolution

that is diffeomorphic to S 2, but is far from the true bound on flat tori. It is usually

believed that if the geodesic flow on the unit cotangent bundle of M is chaotic then

the bound (1.0.1) can be improved. One result of this kind is due to Bérard [3],

who proves that if M has negative sectional curvature (so geodesic flow is ergodic)

then one has,

||ψ|| �
λν(M)√
log λ

.
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Similar results on the assumption on the geodesic flow of the manifold (ergodicity,

positive entropy etc.) can be found in [56] or [55]. In case of negatively curved

manifold understanding the behaviour of ||ψλ||p as λ→ ∞ is an important question

regarding quantum chaos (see [45]).

The case of bounding sup norm of eigenfunctions on congruence quotients of

manifolds is an interesting problem because due to automorphy and symmetries

arising from underlying Hecke algebra one expects a power saving in (1.1). The

first breakthrough was done by Iwaniec and Sarnak [27] who proved that for com-

pact (see [5] for non-compact) arithmetic hyperbolic surface, such as quotient of

H2 by the group of units in an order in a quaternion division algebra over Q, for a

Hecke-Maass eigenform ψ with Laplace eigenvalue λ the supnorm ||ψ|| �ε λ
5

24 +ε .

They also provided a lower bound of sup-norm, namely ||ψλ|| �
√

log log λ for

infinitely many eigenfunctions. In fact, it has been conjectured by Hejhal-Rackner

[23] (using a random wave model and numerical computation on large deviation

support) that the bound ||ψ|| � λε holds (modified in non-compact case) on com-

pact hyperbolic surface. This is compactible with the results of Iwaniec-Sarnak.

Not only the eigenvalue aspect, but the volume of the underlying manifold (so-

called level aspect) is also an important aspect to bound the eigenforms as the

complexity of the chaotic system formed by the quantum eigenstates does increase

in level direction, for instance, see [25], [26], [5].

There are several generalizations of Iwaniec-Sarnak type result in higher di-

mensional and higher rank arithmetic locally symmetric spaces, i.e. a power sav-

ing in the bound of L∞ norm from the so called ’convexity‘ bound. In a letter to

Morawetz Sarnak [44] proved that if X = G/K is a locally symmetric space of di-

mension n and rank r and Ω ⊆ X compact then an L2 normalized joint eigenfuction

of the ring of invariant differential operators ψ should satisfy

||ψ|Ω|| � λ
n−r

4 .

Note that this is the ’convexity‘ bound and the natural replacement of the bound

in equation (1.0.1). Blomer, Harcos and Milićević [4] recently proved a strong

supnorm bound for cuspidal eigenfunctions on arithmetic hyperbolic 3-manifolds.

There are also results where higher rank eigenfunctions are proved to have saving
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fro the standard bound in their supnorm; for instance SL3(Z)\SL3(R) by Holowin-

sky, Ricotta and Royer [24], Sp4(Z)\Sp4(R) by Blomer and Pohl [11] and SLn(Z)\PGLn(R)

by Blomer and Maga [6] and [7]. Marshall [37] in his wonderful work has proved

the saving in sup norm for eigenfunctions on symmetric spaces arising from a large

class of semisimple Lie groups. Bounds for Lp norm of the eigenfunctions can be

found in [36]. There are also results on bounding eigenfunctions on round spheres

and arithmetic ellipsoids, namely, [8] and [9].

There also have been a lot of works regarding lower bounds of the eigenfunc-

tions. The naive expectation of ||ψ|| � λε which is suggested by the random wave

model, does not hold in higher dimension and higher rank case. It has been shown

in [39] that on any arithmetic hyperbolic 3-manifold of Maclachlan-Reid type there

exists an infinite orthonormal family of cusp forms ψ with lower bound

||ψ|| �ε λ
1/4−ε .

Large values of GLn Maass forms are also established in the recent work of [13].

In this thesis, we focus our attention to a particular class of eigenfunctions

on arithmetic hyperbolic manifolds of dimension 4 and 5, i.e. non-compact con-

gruence quotients of H4 and H5 respectively. In general, one can view the n

dimensional hyperbolic space as a locally symmetric space arising from SOn,1(R),

precisely,Hn = SO+
n,1(R)/SOn(R). But due to sporadic isogenies of special orthog-

onal groups one may view SO5,1(R) as SL2(H) and SO4,1(R) as Sp∗1,1(H) (precise

description in chapter 3), where H is the division algebra Hamilton quaternions

over real. Let D be the unique quaternion algebra over Q ramified at {2,∞} so that

H = D ⊗Q R is the division algebra of Hamilton’s quaternions. Let G be the alge-

braic group defined over Q such that G(Q) � GL2(D) (correspondingly Sp∗1,1(D)).

The real points G(R) is a real Lie group which is isomorphic to GL2(H) (corre-

spondingly Sp∗1,1(H)) and acts on H5 (correspondingly H4) by isometries with

respect to the usual hyperbolic metric. Let O be the Hurwitz maximal order in D.

Let Γ = SL2(O) (correspondingly Sp∗1,1(O)) be the subgroup which acts discretely

on the corresponding hyperbolic space (our results in fact apply with D being any

quaternion algebra ramified at infinity and O any maximal order in D, and Γ any

congruence subgroup in SL2(O), but we make a specific choice for ease of presen-
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tation). We consider the Hecke-Maass forms on M = Γ\Hn. These are the eigen-

functions of the Laplace-Beltrami operator. They are naturally also eigenfunctions

of the Hecke operators arising from Γ which commute among themselves and also

with Laplace operator; so one may choose a basis of the Hilbert space which is the

cuspidal part of L2(Γ\Hn) consisting joint eigenfunctions of Laplace and Hecke

operators and they will be denoted as Hecke-Maass cusp forms. We parametrize

the eigenvalue as follows: let −∆φ = λφ be a Maass form on Hn. As λ ≥ 0 (the

Laplace-Beltrami operator is non-positive in L2(M)),

t =

√
λ −

(n − 1)2

4
∈ R ∪

[
−

n − 1
2

,
n − 1

2

]
i.

Throughout the thesis we denote

T := max(1, |t|) � 1 +
√
λ.

Using the accidental isomorphism of the groups SO4,1(R) and SO5,1(R) with

Sp∗1,1(H) and SL2(H) respectively we can explicitly work out the Hecke algebra for

corresponding cases. The Hecke algebras in respective cases are basically Hecke

algebras of GSp4 and GL4 at odd places. As the Hecke eigenfunctions preserve

further symmetries we expect them not to grow very large. The Hecke-algebra

eigenvalues at a prime p of a Hecke eigenfunction as described by a spectral pa-

rameter, a vector of complex numbers. We say an eigenfunction is η-non-tempered

at p if it has a spectral parameter with real part at least η (for the definition of the

spectral parameters see definition 9). We say that a sequence of eigenfunctions is

uniformly-nontempered if there is a set P of primes of natural density δ > 0 and a

constant η > 0 such that for every eigenfunction in the sequence and for any p ∈ P,

it is η-non-tempered at p. In this setting we will describe our main theorem which

is an improvement of (1.0.1) in the eigenvalue aspect for non-tempered eigenforms.

Theorem 1.

(i) Suppose we have a sequence of uniformly nontempered L2-normalized Hecke-

Maass cuspidal eigenform on Sp∗1,1(O)\H4. Let φ be an element in the se-
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quence with Laplace eigenvalue λ. Then for Ω ∈ Sp∗1,1(O)\H4 compact,

||φ|Ω|| �ε λ
3
4−ε ,

for some ε > 0.

(ii) Suppose we have a sequence of uniformly nontempered L2-normalized Hecke-

Maass cuspidal eigenform on SL2(O)\H5. Let φ be an element in the se-

quence with Laplace eigenvalue λ. Then for Ω ∈ SL2(O)\H5,

||φ|Ω|| �ε λ
1−ε ,

for some ε > 0.

Remark. (i) Note that in the theorem the exponents 3
4 and 1 in the exponents

are from 1.0.1 for respective dimensions.

(ii) While the Generalized Ramanujan Conjecture (GRC) predicts that the generic

cuspidal representations of quasi-split groups (e.g. GLn) should be tempered

at all places [47], there actually exist uniformly non-tempered cusp forms in

case of SO(4, 1) and SO(5, 1). It is also believed that a representation is non-

tempered i.e. does not satisfy the GRC if it comes from a functorial lift from

a smaller group. The most evident counter-exaples are the CAP (Cuspidal

representation Associated to Parabolic) representation defined by Howe and

Piatetski-Shapiro [22] and the Kurokawa lift for Sp4 [32].

(iii) Pitale [41] has constructed an example of CAP representation through a lift

from S̃L2 (metaplectic) to Spin(1, 4) which gives a counter-example to the

GRC for Spin(1, 4). Also recently in [40] an example is constructed of CAP

representation through a lift from SL2 to Spin(1, 5) which gives a counter-

example to the GRC for Spin(1, 5). So our result automatically proves a

power saving in the sup norm of the sequence of Hecke-Maass forms they

have constructed (in their cases η = 1
2 ) in both cases.

Our proof starts with a pre-trace formula. We define an automorphic kernel on
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M × M by

K(P,Q) =
∑
γ∈Γ

k(u(γP,Q))

where u is a point pair invariant and and Γ is the corresponding discrete subgroup

and k is a rapid decay smooth function on positive real numbers. Then we choose

an orthonormal basis of cuspidal eigenfunction which contains our favourite φ and

write K in this basis. After we apply suitable Hecke operators on both sides (mak-

ing sure that each term in spectral side is positive) the problem reduces to a dio-

phantine counting problem where we count, at least at identity, how many of γ in

Hecke double coset lie in the maximal compact. Then we show that, if the eigen-

function is nontempered then there exists a Hecke operator whose eigenvalue for

that eigenfunction is big enough than the Hecke operator returns to its maximal

compact and that gives us a power saving.

In the first chapter we describe basic formulation of Clifford algebra and Vahlen

matrices and also describe the Spin(1, n) groups. In the second chapter we describe

notion of automorphic forms. In the third chapter we devote ourselves on describ-

ing Hecke theory for both Spin(1, 4) and Spin(1, 5) cases. In the fourth chapter we

describe pre-trace formula and develop the Archimedean amplification and also

prove the ’trivial bound’. In fifth chapter we give the prove of our main theorem.
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Chapter 2

Basic Notations

2.1 Clifford Algebras, Vahlen Matrices and Real
Hyperbolic Spaces

In this section we will briefly describe a model of k + 1-dimensional real hy-

perbolic space Hk+1 following an approach of Vahlen [57]; for details reader may

look at [18]. For integer k > 0 we construct Ck := Ck(R) to be the Clifford alge-

bra over R associated with the negative definite unit form Ik = (−δi j)1≤i, j≤k. Let

i1, . . . , ik be the standard basis of Rk. We embed canonically Rk ↪→ Ck we note that

the elements in satisfy:

i2n = −1, inim = −imin (m, n = 1, . . . , k,m , n). (2.1.1)

The Clifford algebra is an associative algebra generated by i1, . . . , ik. Hence the 2k

elements in1 . . . inp where 1 ≤ n1 ≤ · · · ≤ np, 0 ≤ p ≤ k form a basis of Ck over the

real. One may note C0 = R,C1 = C and C3 = H =Hamilton’s quaternion. There

are three involutions defined on Ck by means of,

∀a = a0 +

k∑
p=1

∑
1≤n1≤···≤np,0≤p≤k

an1...np in1 . . . inp ∈ Ck

7





a 7→ a′ := a = a0 +

k∑
p=1

(−1)p
∑

1≤n1≤···≤np

an1...np in1 . . . inp ,

a 7→ ā := a = a0 +

k∑
p=1

(−1)
p(p+1)

2

∑
1≤n1≤···≤np

an1...np in1 . . . inp ,

a 7→ a∗ := a0 +

k∑
p=1

(−1)
p(p−1)

2

∑
1≤n1≤···≤np

an1...np in1 . . . inp .

(2.1.2)

These maps satisfy
x̄′ = x∗, ∀x ∈ Ck,

x̄ = −x, x′ = −x, x∗ = x, ∀x ∈ Ri1 ⊕ · · · ⊕ Rik,

¯(xy)ȳx̄, (xy)′ = y′x′, (xy)∗ = y∗x∗, ∀x, y ∈ Ck.

(2.1.3)

Vahlen’s model of k + 1−dimensional hyperbolic space is constructed as follows.

Hk+1 is embedded in the k + 1−dimensional subspace of Ck:

Vk := R.1 ⊕ Ri1 ⊕ · · · ⊕ Rik.

For all v ∈ Vk we denote,

real part of v = <(v0 + v1i1 + . . . vkik) = v0,

trace of v = tr(v) = v + v̄ = 2<(v)

norm of v = ||v||2 = v.v̄.

We equip Vk with the quadratic form

qk(x) := ||x||2 (x ∈ Vk)

and SO(qk,R) be the special orthogonal group associated to qk. The set underlying

8



the model of (k + 1)−dimensional hyperbolic space is the upper half-space

Hk+1 := {x0 + x1i1 + · · · + xkik : x0 . . . , xk ∈ R, xk > 0}.

We define for P := x0 + x1i1 + · · · + xkik ∈ Hk+1


x(P) = x0 + x1i1 + · · · + xk−ik−1

y(P) = xk

r(P) = ||P||2 = ||x(P)||2 + y(P)2.

(2.1.4)

We endowHk+1 with the Riemannian metric whose line element is

ds2 =
dx2

0 + · · · + dx2
k

x2
k

and obtain a model of the (k + 1)−dimensional hyperbolic space.

Definition 1. For P,Q ∈ Hk+1 we define a point pair invariant by

u(P,Q) :=
||z(P) − z(Q)||2 + (y(P) − y(Q))2

2y(P)y(Q)
, (2.1.5)

and note that

cosh(d(P,Q)) = 1 + 2u(P,Q), (2.1.6)

where d(P,Q) is the distance between P and Q coming from Riemannian metric.

Now we will describe the orientation preserving isometry group Iso+(Hk+2) by

means of a group of certain (2 × 2) matrices over Ck. See [57] for details.

Definition 2. An element 0 , v ∈ Ck is called a transformer if there exists a linear

automorphism φv : Vk → Vk such that

vx = φv(x)v′ ∀x ∈ Vk.

Following the language of Maass we denote Tk to be the set of all transformers

of 0 , v ∈ Ck.
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Definition 3. For an integer k ≥ 0 we define Vahlen group S Vk by

S Vk :=


α β

γ δ

 ∈ Mat2(Ck) : α, β, γ, δ ∈ Tk ∪ {0}, αβ∗, δγ∗ ∈ Vk, αδ
∗ − βγ∗ = 1

 .
One may check that S V0 = SL2(R), S V1 = SL2(C) and S V3 = SL2(H).

Proposition 1.

(1) The group S Vk is generated by 1

−1

 , 1 x

1

 x ∈ Vk.

(2) Suppose σ =

α β

γ δ

 ∈ S Vk and P ∈ Hk+2, then γP + δ ∈ Tk and

σP := (αP + β)(γP + δ)−1 ∈ Hk+2.

The above formula defines an action of S Vk on Hk+2 by orientation pre-

serving isomerism. The corresponding group homomorphism of S Vk into

Iso+(Hk+2) induces an isomorphism of groups

SO◦k+2,1(R) � Iso+(Hk+2) � S Vk/{±I}. (2.1.7)

The action of S Vk on Hk+2 is transitive on pairs of points with fixed hyper-

bolic distance.

Proof. See page 381 in [18]. As we can thinkHn as the Minkowski space (Rn+1, q)

where q(x) = x2
0− x2

1− · · · − x2
n is a quadratic form of signature (1, n), it is clear that

Iso+(Hk+2) � SO◦(Rk+1, q) � SO◦n,1.

�

The map P 7→ σP is so-called Möbius transformation, the coordinates of

σP can be recovered from the Iwasawa decomposition of S V2 or equivalently

SO◦n,1(R).

10



For k ≥ 0, let Uk ⊂ S Vk denote the stabilizer of ik+1 ∈ H
k+2. Then we have,

Proposition 2. Uk is a maximal compact subgroup of S Vk and

(1)

Uk =


α −β′

β α′

 ∈ S Vk : ||α||2 + ||β||2 = 1

 , (2.1.8)

(2) SO(K + 2) � Uk/ ± I and

f : S Vk/Uk → H
k+2, f (vUk) = vik+1

is an S Vk-equivariant isometry.

Proof. The description of Uk is clear from the definition of transformers. From

2.1.7 we may think

Uk/ ± I = StabS Vk/±Iik+1 = StabSO◦k+2,1(R)ek+2 = SO(k + 2) × SO(1) � SO(k + 2),

where ek+2 = (0, . . . , 0, 1). The rest follows easily. �

Note that the isomorphism 2.1.7 and above proposition recover the accidental

isomorphisms between

SOn,1(R) � PSL2(F)

where F = R,C and H for n = 2, 3, and 5 respectively. In a similar fashion

U0 = SO(2),U1 = S U(2),U3 = Sp(2).

From the Iwasawa decomposition of SOn,1(R) = NAK where N � Rn, A � R× and

K = SO(n) using above isomorphism one can deduce the Iwasawa decomposition

of

S Vk/ ± I = NkAkUk (2.1.9)

where,

Nk =

n(x) :=

1 x

1

 |x ∈ Vk

 and Ak =

a(y) :=

√y
√

y−1

 |y ∈ R+

 .
11



Thus for any P ∈ Hk+2 � S Vk/ ± IUk we have that P : (x, y) = (x(P), y(P)) 7→

n(x(P))a(y(P)) from 2.1.4. By doing a re-Iwasawa decomposition of σP for σ ∈

S Vk and recalling the definition of point pair invariant from 2.1.7 one can easily

deduce the following.

Proposition 3. For σ =

α β

γ δ

 ∈ S Vk and P = (x, y) ∈ Hk+2 we have,

(1)

x(σP) =
(αx + β)(γx + δ) + αγ̄y2

||γx + δ||2 + ||γ||2

and

y(σP) =
y

||γx + δ||2 + ||γ||2
.

(2)

2u(ik+1, σik+1) + 1 = ||α||2 + ||β||2 + ||γ||2 + ||δ||2. (2.1.10)

2.2 Arithmetic Subgroups

Let Ck(Q) be the Clifford algebra over Q. Then Ck(Q) ⊗Q R = Ck(R) is a

Clifford algebra over R.

Definition 4. A Z-order O ⊂ Ck(Q) is called compatible if it is stable under the

involutions¯and ′ defined in 2.1.2. For a compatible order O let us also define,

Vk+1(O) := O ∩ Vk+1,

S Vk+1(O) := Mat2(O) ∩ S Vk(Ck(Q)).

It is clear that for any compatible Z-order O then Vk+1(O) is a lattice in Vk+1

and as S Vk(O) is the stabilizer of the lattice O2 of S Vk action on Ck(Q)2, S Vk(O)

is a discrete arithmetic subgroup of S Vk. The group S Vk(O) can be thought as a

higher dimensional Fuschian group which acts onHk+2 discontinuously. Let P be

the standard minimal parabolic subgroup of S Vk. Then for any discrete subgroup

Γ < S Vk(Ck(Q)) we define the set Γ\S Vk(Ck(Q))/P ∩ S Vk(Ck(Q)) to be the set of
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Γ cusps. It is well known that set of Γ cusps is finite (see proposition 15.6 in [10]).

In particular, for Γ = S Vk(O) we know that Γ is cofinite i.e.

Vol(S Vk(O)\Hk+2) =

∫
Γ\Hk+2

dµ < ∞,

where dµ is the usual (k + 2)-dimensional hyperbolic volume measure dxdy
yk+2 , for dx

usual (k + 1)-dimensional Lebesgue measure (see corollary 6.4 [17]).

2.3 Automorphic Forms
Now let us fix some notations for this section. Let q0 be the rational quadratic form

defined by q0((x1, x2, . . . , xn+1)) = −x2
0 + x2

1 + · · · + x2
n. For any rational quadratic

form q we have that its isometry groupG = SO(q), which is a connected and almost

simple linear algebraic group over Q. Let A be the ring of adeles of Q. From the

strong approximation theorem of SO(n, 1) (see theorem 104:4 [38]) we get

G(A) � G(Q)G+(R)K f , where K f =
∏
p<∞

G(Zp). (2.3.1)

For q = q0 which is a quadratic form of signature (n, 1), we let G = SO◦n,1(R) =

G+(R) be a non-compact real Lie group with trivial center. K � SO(n) be a maxi-

mal compact subgroup in G. S = G/K � Hn be the n dimensional real hyperbolic

space. G admits an Iwasawa decomposition of

G = NAK

where

N � Rn−1 and A � R+.

Thus any point P ∈ S = G/K � N ×A can be uniquely described as (x(P), y(P)) :=

(x1, . . . xn−1, y) ∈ Rn−1× � R+.

There is a unique G invariant (up to scaling) Riemannian metric onHn whose

line element is

ds2 =
dx2

1 + · · · + dx2
n−1 + dy2

y2

13



and obtain a model of the n-dimensional real hyperbolic space.

Proposition 4. For P,Q ∈ Hn the point pair invariant defined in 2.1.5 gives that

u(P,Q) :=
||z(P) − z(Q)||2 + (y(P) − y(Q))2

2y(P)y(Q)
. (2.3.2)

From the Riemannian metric on S as defined above, in the same coordinates

the Laplace-Beltrami operator on C∞(S ) is given by

∆n = −xn
n

n∑
i=1

∂

∂xi
x2−n

n
∂

∂xi
for (x, y) := (x1, . . . xn),

and this is a positive operator. Γ is a discrete subgroup of G acting on S properly

discontinuously with finite covolume.

Definition 5. A complex-valued fuction φ ∈ C∞(S ) is called automorphic form

with respect to Γ if φ satisfies following conditions:

• ∆nφ = λφ. We define λ =
(n−1)2

4 + t2 for t ∈ R ∪ i
(
−n−1

2 , n−1
2

)
.

• φ(γP) = φ(P) for all P ∈ S and γ ∈ Γ.

• φ is of moderate growth.

In sense of Maass we call the above functions as Maass forms which has a

Fourier expansion (see [35])

φ(P) = u(y) + y
n−1

2

∑
m∈L\{0}

amKit(2π|m|y)e(〈m, x〉), (2.3.3)

where L is the dual lattice of Γ ∩ N � Zn−1 in Rn−1 with respect to standard inner

product of the same and hence, L � Zn−1. Also e(z) = exp(2πiz), u ∈ C∞(R+) and

Kα is the modified Bessel function defined as,

Kα(y) =

∫ ∞

0
exp(−y cosh(u)) cosh(αu)du.

We let u(y) = 0 and therefore φ ∈ L2(Γ\S ) for rapid decay of K-Bessel function;

we normalize ||φ||L2 = 1. We call such function as Maass cusp forms. In fact by a

theorem of Harish-Chandra gives that (see [21] chapter 1 lemma 12),
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Proposition 5. If φ ∈ C∞(Γ\S ) is a cusp form then φ rapidly decays in every Siegel

domain.

The hyperbolic volume element onHn is denoted as

µ(P) =
dx1 . . . dxn−1dy

yn .

Definition 6. On the space of automorphic form we define Petersson inner product

as

〈 f , g〉 =

∫
Γ\Hn

f (P)g(P)dµ(P). (2.3.4)

We would like adelize the automorphic form due to ease of explaining Hecke

action. For a given congruence subgroup Γ there is an algebra of Hecke operators,

which commute with the laplacian, acting on Maass forms. We will assume that

our Maass form is an eigenform of full Hecke algebra (detailed description is in

section 3). Given a Hecke-Maass eigen-cusp form φ, write g = gQg∞k f where g ∈

G(A), gQ ∈ G(Q) and k f ∈ K f and define Φ := Φφ : G(A) → C as Φ(g) = φ(g∞).

Φ satisfies the following:

• Φ(zγgk f k) = Φ(g) for (z, γ, g, k f , k) ∈ A× × G(Q) × G(A) × K f × SO(n),

• Φ has moderate growth.
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Chapter 3

Hecke Theory

In this section we will describe the action of the Hecke algebra on automorphic

forms on the congruence hyperbolic 4 and 5 manifolds only. We confine our dis-

cussion only to dimension 4 and 5 because we want to use the help of accidental

isomorphism in those cases. We will give both classical and adelic viewpoint to-

wards the Hecke theory. For standard details reader may look at Krieg’s work [29]

and [30]. For the purpose of the paper we will only discuss the Hecke theory for

odd primes.

Let D be Hamilton’s quaternions over Q, that is the Q-algebra spanned by

{1, i, j, k} subject to

i2 = j2 = k2 = −1 and i j = −k.

Let O be the Hurwitz order, defined by

O = Zi + Z j + Zk + Z
1 + i + j + k

2
.

For a prime p ≤ ∞ we define Dp = D ⊗Q Qp, i.e. D∞ = D ⊗ R = H the usual

Hamiltom quaternion, and for an odd prime p we have Dp � Mat2(Qp) and Op =

O ⊗Z Zp � Mat2(Zp).
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3.1 SO(4,1) Case
Let G be the Q algebraic group such that G(Q) = Sp∗1,1(D), where

Sp∗1,1(D) =

g ∈ GL2(D) : g∗
 1

1

 g =

 1

1


 .

and g∗ is ḡt entrywise quaternion conjugation. The first part of the following propo-

sition will allow us to realize an automorphic form of SO4,1(R) as an automorphic

form on G(R)

Proposition 6. (1) There is a 2 to 1 homomorphism between G(R) = Sp∗1,1(H)

and SO4,1(R).

(2) For an odd prime p

G(Qp) � GSp4(Qp) and G(Zp) � GSp4(Zp).

Proof.

(1) Let gσ = S g∗S −1, where S =

 1

1

. Then for g ∈ G(R) we have gσg = I2.

Let G(R) acts on Mat2(H) by g.x = gσxg. Let t be the reduced trace on Mat2(H)

defined by

t

a b

c d

 =
1
2

(a + ā + d + d̄).

(x, y) = t(xy) is a bilinear form on Mat2(H) ×Mat2(H). Note that

(g.x, g.y) = t(gσxggσyg) = t(xy) = (x, y)

The 5 dimensional R vector space

V = {x ∈ Mat2(H)|xσ = x and (x, S ) = 0} =


 a b

−b ā



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is stable under this action and has an orthogonal basis1 1

 , i
−i

 ,  j

− j

 , k
−k

 ,  1

−1

 ;

one can check it has the desired signature (4, 1).

(2) Noting that for odd prime the division algebra and the Hurwitz order split over

Qp and Zp respectively i.e.

D ⊗ Qp = Mat2(Qp) and O ⊗ Zp = Mat2(Zp)

the second part is immediate. �

Let us fix Γ = Sp∗1,1(O). For an odd rational prime p let us fix π, a primitive

quaternion integer (i.e. π < nO for any rational intger n) with |π|2 = p. Let us

define

M(n) = {γ ∈ Mat2(O) : γ∗S γ = nS };

so Γ = M(1). Also define

Mp = ∪∞m=0M(pm).

Following Shimura [51] we define the classical p-Hecke algebra Hp over Γ as the

algebra generated by the double cosets

{ΓMΓ : M ∈ Mp}.

From theorem 7 [30] we have the following generating elements ofHp

Proposition 7. Hp is the polynomial ring over Z generated by the elements

T (p) := Γ

1 p

 Γ, S (p) := Γ

π
πp

 Γ, and I(p) := pΓ,

which are algebraically independent.

To know how big the order of support of a Hecke operators is, we need to de-

compose the double cosets into single cosets. Next lemma is describes the single
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coset decomposition. For this purpose we will map the classical p-Hecke algebra

to the canonical convolution p-adic Hecke algebra Hp = H(GSp4(Qp),GSp4(Zp))

which is the convolution algebra of GSp4(Zp)-biinvariant compactly supported

function of GSp4(Qp).

One may note that,

G(Z[p−1]) ∩G(Zp) = G(Z)

and

G(Qp) � G(Q)GSp4(Zp) � G(Z[p−1])G(Qp),

where G(Z) = Γ ∪

1
−1

 Γ. This shows that

Γ\G(Z[p−1])/Γ � G(Z)\G(Z[p−1])/G(Z) � G(Zp)\G(Qp)/G(Zp)

and hence p-adic Hecke algebra is isomorphic to p-part of classical Hecke algebra.

Lemma 1. With the notation above,

Hp � Hp,

where one can map

T (p) 7→ Char(Kp


1

1

p

p

 Kp), S (p)a 7→ Char(Kp


1

p

p

p2

 Kp), and I(p) 7→ Char(pKp).

(3.1.1)

where Kp = G(Zp) = GSp4(Zp) with Vol(Kp) = 1 under the usual Haar measure

of Gp.

Let φ be a Hecke-Maass cuspidal eigenform of Γ\H4. Recall that there is an

automorphic form Φ which we can produce from φ as described in the last para-

graph of section 2. We consider the representation πφ := πΦ of G(A) on right

translation of Φ. Let π be a irreducible component of πΦ which is a cuspidal (as φ
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and hence Φ is cuspidal) automorphic representation of G(A). π has trivial central

character as φ is invariant by the central action. Write π = ⊗′pπp where πp is rep-

resentation of Gp := G(Qp). We note that, for an odd prime p, πp is an irreducible

unramified representation of Gp since Kp is the maximal compact subgroup of Gp.

From [14] we know that there exists an unramified character χ of the Borel sub-

group of Gp, unique up to the Weyl group orbit, such that πp is isomorphic to the

unique spherical constituent πχ of the normalized induced representation IndGp
B (χ).

We will now decompose the double coset into single cosets to find the eigenvalues

as a polynomial in the components of χ (see [53]).

In the following lemma we will describe the single coset decomposition for our

case. Note that a single coset decomposition of a Hecke double coset is computa-

tionally hard problem in general. However for small groups one may try to invert

the Satake map to get such decomposition, for the general inversion of Satake see

[48]. For symplectic and general linear groups Hecke decomposition were done by

several people, e.g. for the following decompositions one may look at [1], [43], or

[49]

Lemma 2.

(1)

Kp


1

1

p

p

 Kp =
⋃


p ∗ ∗

p ∗ ∗

1

1

 Kp

⋃

1

1

p

p

 Kp

⋃
b∈Z/pZ


1 ∗ ∗

−b p ∗ ∗

p b

1

 Kp

⋃

p ∗ ∗

1 ∗ ∗

1

p

 Kp,

where in the first term the upper right corner has p3 choices and third and

fourth term the upper right corner have p choices each.
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(2)

Kp


1

p

p

p2

 Kp =
⋃

b∈Z/pZ


1

−b p

p2 bp

p

 Kp

⋃

p

1

p

p2

 Kp

⋃

p2 ∗ ∗

p ∗ ∗

1

p

 Kp

⋃
b∈Z/pZ


p ∗ ∗

−bp p2 ∗ ∗

p b

1

 Kp

⋃

p ∗ ∗

p ∗ ∗

p

p

 Kp,

where in the third and fourth term the upper right corners have p3 choices

and the fifth term the upper right corner has p2 − 1 choices.

The following explicit Iwasawa decomposition and Satake Isomorphism for Gp

may be found in the paper of Asgari-Schmidt [2]. Gp has an Iwasawa decomposi-

tion of the form Gp = BKp and B = NA where

N =


A X

D

 |A−1 = Dt and Xt − X


is the unipotent radical and

A =


a =


a1

a2

a−1
1 a0

a−1
2 a0

 : ai ∈ Q
×
p


.

Let χ0, χ1, χ2 be unramified characters on Q×p . We define a character on A by

χ(a) = χ0(a0)χ1(a1)χ2(a2). (3.1.2)
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We extend χ from A to B = NA by setting χ to be trivial on N. Now let us define

I(χ) := IndGp
B (χ) = { f ∈ Cc(Gp) : f (nag) = δ1/2(a)χ(a) f (g) for (n, a, g) ∈ N×A×Gp}

where δ, the modular function from the usual Haar measure on Gp defined by

δ(a) = |a−3
0 a2

1a4
2|p. (3.1.3)

We will choose χ in such a way so that πp becomes ismorphic to the unique spher-

ical constituent πχ of I(χ).

Let Fp be the unramified vector in the space πχ with Fp(e) = 1. Then

Fp(nak) = δ1/2(a)χ(a)

for n ∈ N, a ∈ A and k ∈ Kp. Any φ ∈ Hp acts on Fp by convolution as following;

for h ∈ Gp

(φ ∗ Fp)(h) :=
∫

Gp

φ(hg)Fp(g)dg.

Now let φ = Char(KpapKp) ∈ Hp with KpapKp =
∐

i HiKp and also let Hi = niai

where (niai) ∈ N × A. Then

(φ ∗ Fp)(e) =

∫
Gp

φ(g)Fp(g)dg

=

∫
KpapKp

Fp(g)dg

=
∑

i

∫
HiKp

Fp(g)dg

=
∑

i

Fp(niai)

=
∑

i

δ1/2(ai)χ(ai).

(3.1.4)

Along with above and lemma 2. we arrive at he following conclusion.

Proposition 8. Suppose that πχ has trivial central character. Then,
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(1) Char(Kp


1

1

p

p

 Kp)Fp = p3/2χ0(p)[χ1(p)χ2(p)+1+χ1(p)+χ2(p)]Fp,

(2) χ2
0(p)χ1(p)χ2(p) = 1,

(3) Char(Kp


1

p

p

p2

 Kp)Fp = [p2χ2
0(p){χ1(p)+χ2(p)+χ1(p)χ2(p)(χ1(p)+

χ2(p))} + (p2 − 1)]Fp.

Proof. As computed in 3.1.4 combining with first decomposition in lemma 2 we

get that,

Char(Kp


1

1

p

p

 Kp)Fp = p3δ1/2(


p

p

1

1

 χ(


p

p

1

1



+ δ1/2(


1

1

p

p

 χ(


1

1

p

p

) + pδ1/2(


1

p

p

1

)χ(


1

p

p

1

)

+ δ1/2(


p

1

1

p

)χ(


p

1

1

p

)
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From 3.1.2 and 3.1.3 we get that,

Char(Kp


1

1

p

p

 Kp)Fp = [p3 p−3/2χ0(p)χ1(p)χ2(p) + p3/2χ0(p)

+ p2 p−1/2χ0(p)χ2(p) + pp1/2χ0(p)χ1(p)]Fp

= p3/2χ0(p)[χ1(p)χ2(p) + 1 + χ1(p) + χ2(p)]Fp.

This proves (1). Similary the second decomposition in lemma 2 gives

Char(Kp


1

p

p

p2

 Kp)Fp = p2χ2
0(p)[{χ1(p) + χ2(p) + χ1(p)χ2(p)(χ1(p) + χ2(p))}

+ (p2 − 1)χ2
0(p)χ1(p)χ2(p)]Fp

Now using φ = Char(Kp pI4Kp) in 3.1.4 and assuming πχ has trivial central char-

acter one gets

Fp = Char(Kp pI4Kp)Fp = χ2
0(p)χ1(p)χ2(p)Fp,

which gives (2) and (3). �

Now we will be proving our main lemma to get the amplification. On a sep-

arate note the component characters arising from the Borel subgroup are called

the Satake parameters of the corresponding Hecke-Maass form, in particular, the

eigenvalues of the same are polynomials in Satake parameters as shown above. Our

goal is to show that if a representation is non-tempered then there exist at least one

Hecke operator whose eigenvalue is much large than its support. This is usually

called an amplification; the idea of amplication is inspired by [16]. For general

amplification scheme one may look at [54].

Definition 7 (Temperedness). We say a Hecke Maass form is tempered at a place

2 < p < ∞ if all its Satake parameters at p are unitary i.e. |χi(p)| = 1 for all i.
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So in our setting where G(Qp) = GSp4(Qp) temperdness is equivalent to that

fact that χi’s are unitary (see [46]). our definition is equivalent to the usual notion

of temperedness, that if π = ⊗vπv is the global cuspidal representation of a Q group

G then π is tempered at the place p < ∞ if all the matrix coefficients of πp lie in

L2+ε(G(Qp) for all ε > 0.

Definition 8. We say a Hecke-Maass form φ is η non-tempered at p if at least one

corresponding Satake parameter at p has absolute value pη i.e. there is a character

χi such that |χi(p)| ≥ pη.

Now we will be proving our main amplification lemma. Let φ is the Hecke-

Maass form in the question with

T (p)φ = λ(p)φ and S (p)φ = µ(p)φ.

Lemma 3. Let φ be a Hecke-Maass of Γ\H4 form such that φ is η non-tempered

at positive density of odd primes p for some η > 0. Then, either

|λ(p)| � p3/2+η/2 or |µ(p)| � p2+η

as p→ ∞.

Proof. Combining lemma 1 and proposition 8 we get that,

χ0(p)2χ1(p)χ2(p) = 1,

p−3/2λ(p) = χ0(p)[χ1(p)χ2(p) + 1 + χ1(p) + χ2(p)]

= χ0(p) + χ0(p)−1 + χ0(p)χ1(p) + χ0(p)χ2(p)

= χ0(p)2χ1(p)χ2(p)[χ0(p)−1 + χ0(p) + (χ0(p)χ1(p))−1 + (χ0(p)χ2(p))−1]

and

p−2µ(p) + 1 + p−2 = χ2
0(p)[χ1(p) + χ2(p) + χ1(p)χ2(p)(χ1(p) + χ2(p)) + 2]

= χ2
0(p)χ1(p) + χ2

0(p)χ2(p) + χ1(p) + χ2(p) + χ0(p)χ0(p)−1 + χ2
0(p)χ1(p)χ2(p).
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Thus the polynomial equation

x4 − p−3/2λ(p)x3 + (p−2µ(p) + 1 + p−2)x2 − p−3/2λ(p)x + 1 = 0 (3.1.5)

has roots

χ0(p), χ0(p)−1, χ0(p)χ1(p) and χ0(p)χ2(p)

Claim: The equation 3.1.5 has a root ν(p) such that |ν(p)| ≥ pη/2.

Note that if either |χ0(p)| = p±η or |χi(p)| = pη for i = 1, 2 we are done. As

the η non-temperedness forces at least one of the character to have magnitude p±η

, using symmetry of χ1 and χ2 the only remaining possible case is

|χ0(p)| = ps, |χ1(p)| = p−η, |χ2(p)| = pη−2s.

If s <
(
−
η
2 ,

η
2

)
then we have nothing to do, as either |χ0(p)| ≥ pη/2 or |χ0(p)−1| ≥

pη/2. Now let s ∈
(
−
η
2 ,

η
2

)
. Then

|χ0(p)χ2(p)| = pη−a ≥ pη/2.

So the claim is proved.

Now using the root ν(p) in the claim the equation 3.1.5 gives

p−3/2λ(p)(ν(p)3 + ν(p)) = ν(p)4 + (p−2µ(p) + 1 + p−2)ν(p)2 + 1

=⇒ p−3/2|λ(p)|(|ν(p)|3 + |ν(p)|) ≥ |ν(p)|4 − 1 − |p−2µ(p) + 1 + p−2||ν(p)|2

=⇒ p−3/2|λ(p)||ν(p)|3 + |p−2µ(p) + 1 + p−2||ν(p)|2 � |ν(p)|4

so either

p−3/2|λ(p)||ν(p)|3 � |ν(p)|4

=⇒ |λ(p)| � p3/2+η/2

or

|p−2µ(p) + 1 + p−2||ν(p)|2 � |ν(p)|4

=⇒ |p−2µ(p)| � pη

=⇒ |µ(p)| � p2+η.
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This proves the lemma. �

3.2 SO(5,1) Case
Let G be an algebraic group over Q such that G(Q) = GL2(D). The first part of

the following proposition would let us realize a Maass form of hyperbolic 5 space

as a form on GL2(H).

Proposition 9.

(1) There is an isomorphism between G(R)/R = PGL2(H) = PSL2(H) and

SO5,1(R).

(2) For an odd prime p we have

G(Qp) � GL4(Qp) and G(Zp) � GL4(Zp).

Proof. (1) It is enough to prove that SO5,1(R) � SL2(H)/±I. The usual embed-

ding of H to Mat2(C) by

a + bi + c j + dk 7→

 a + bi c + di

−c + di a − bi


can be characterized by as a subset of Mat2(C)

H = {x ∈ Mat2(CC) : x̄ = wxw−1}, where w =

 −1

1

 .
Thus we may identify

SL2(H) = {g ∈ SL4(C) : ḡ = WgW−1}, where W =


−1

1

−1

1

 .
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Let e1, e2, e3, e4 be the standard basis of C4 and we give
∧2 C4 a C-valued

SL4(C) invariant symmetric form

〈x ∧ y, z ∧ w〉.e1 ∧ e2 ∧ e3 ∧ e4 = x ∧ y ∧ z ∧ w.

A 6-dimensional R-subspace of
∧2 C4 stable under S U(4) will be identied as

the xed vectors of an C-conjugate-linear isomorphism C4 → C4 commuting

with SL2(H), on which 〈, 〉 takes real values.

Let’s define a conjugate linear map by

J :
2∧
C4 →

2∧
C4

x ∧ y 7→ Wx̄ ∧Wȳ.

Note that J commutes with the action of SL2(H) as,

g.J(x ∧ y) = gWx̄ ∧ gWȳ

= WW−1ḡWx ∧WW−1ḡWx

= Wgx ∧Wgy

= J(g.x ∧ y).

Since,

We1 = e2,We2 = −e1,We3 = e4,We4 = −e3

we can readily have

J2(ei ∧ e j) = ei ∧ e j for i , j.

Since J is conjugate linear we have that J2 = 1 on
∧2 C4. The +1 eigenspace

has an orthogonal basis consisting

e1 ∧ e2 + e3 ∧ e4, e1 ∧ e2 − e3 ∧ e4, e1 ∧ e3 + e2 ∧ e4,

ie1 ∧ e3 − ie2 ∧ e4, e1 ∧ e4 − e2 ∧ e3, ie1 ∧ e4 + ie2 ∧ e3
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Computing 〈, 〉 one can check that it has desired signature (5, 1).

(2) Noting that for odd prime the divison algebra and the Hurwitz order split

over Qp and Zp respectively i.e.

D ⊗ Qp = Mat2(Qp) and O ⊗ Zp = Mat2(Zp)

the second part is immediate.

�

Let Γ = SL2(O). For an odd rational prime p let us fix π, a primitive quaternion

integer (i.e. π < nO for any rational integer n) with |π|2 = p. As we have previously

discussed that there is a natural embedding of Mat2(H) to Mat4(C) and hence we

define determinant of a matrix in Mat2(H) by determinant of its image in Mat4(C).

Let us define

M(n) = {γ ∈ Mat2(O) : det(γ) = n};

so Γ = M(1). Also define

Mp = ∪∞m=0M(pm).

Following Shimura [51] we define the classical p-Hecke algebra Hp over Γ as the

algebra generated by the double cosets

{ΓMΓ : M ∈ Mp}.

From theorem 3b of [30] we have the following generating elements ofHp

Proposition 10. Hp is the polynomial ring over Z generated by the elements

T (p) := Γ

π 1

 Γ, S (p) := Γ

p

1

 Γ,T ∗(p) = Γ

pπ

π

 Γ and I(p) := pΓ,

which are algebraically independent.

To know how big the order of support of a Hecke operators is, we need to de-

compose the double cosets into single cosets. Next lemma is describes the single
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coset decomposition. For this purpose we will map the classical p-Hecke algebra

to the canonical convolution p-adic Hecke algebra Hp = H(GL4(Qp),GL4(Zp))

which is the convolution algebra of GL4(Zp)-biinvariant compactly supported func-

tion of GL4(Qp).

One may note that,

G(Z[p−1]) ∩G(Zp) = G(Z)

and

G(Qp) � G(Q)GL4(Zp) � G(Z[p−1])G(Qp),

where G(Z) = Γ ∪

1
−1

 Γ. This shows that

Γ\G(Z[p−1])/Γ � G(Z)\G(Z[p−1])/G(Z) � G(Zp)\G(Qp)/G(Zp)

and hence p-adic Hecke algebra is isomorphic to p-part of classical Hecke algebra.

Lemma 4. With the notation above,

Hp � Hp,

where one can map

T (p) 7→ Char(Kp


p

1

1

1

 Kp), S (p)a 7→ Char(Kp


p

p

1

1

 Kp),

T ∗(p) 7→ Char(Kp


p

p

p

1

 Kp), and I(p) 7→ Char(pKp).

(3.2.1)

where Kp = G(Zp) = GL4(Zp) with Vol(Kp) = 1 under the usual Haar measure of

Gp.
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Let φ be a Hecke-Maass cuspidal eigenform of Γ\H5. Recall that there is

an automorphic form Φ which we can produce from φ as described in the last

paragraph of section 2. We consider the representation π := πΦ of G(A) on right

translation of Φ. Note that π would be irreducible due to strong multiplicity one

of G(A) (see [12]) and cuspidal as φ is a cusp form. π has trivial central character

as φ is invariant under central action. Write π = ⊗′pπp where πp is representation

of Gp := G(Qp). We note that, for an odd prime p, πp is an irreducible admissible

representation of Gp since Kp is the maximal compact subgroup of Gp. From

[14] we know that there exists an unramified character χ of the Borel subgroup of

Gp, unique up to the Weyl group orbit, such that πp is isomorphic to the unique

spherical constituent πχ of the normalized induced representation IndGp
B (χ). We

will now decompose the double coset into single cosets to find the eigenvalues as

a polynomial in the components of χ (see [53]).

Lemma 5.

(i)

Kp


p

p

p

1

 Kp =
⊔

x14,x24,x34∈Zp/pZp


p

p

p

1




1 p−1x14

1 p−1x24

1 p−1x34

1

 Kp

t
⊔

x12∈Zp/pZp


p

1

p

p




1 p−1x12

1

1

1

 Kp

t
⊔

x13,x23∈Zp/pZp


p

p

1

p




1 p−1x13

1 p−1x23

1

1

 Kp t


1

p

p

p

 Kp.
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(ii)

Kp


p

1

1

1

 Kp =
⊔

x12,x13,x14∈Zp/pZp


p

1

1

1




1 p−1x12 p−1x13 p−1x14

1

1

1

 Kp

t
⊔

x34∈Zp/pZp


1

1

p

1




1

1

1 p−1x34

1

 Kp

t
⊔

x23,x24∈Zp/pZp


1

p

1

1




1

1 p−1x23 p−1x24

1

1

 Kp

t


1

1

1

p

 Kp.
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(iii)

Kp


p

p

1

1

 Kp =
⊔

x13,x14,x23,x24∈Zp/pZp


p

p

1

1




1 p−1x13 p−1x14

1 p−1x23 p−1x24

1

1

 Kp

t
⊔

x24,x34∈Zp/pZp


1

p

p

1




1

1 p−1x24

1 p−1x34

1

 Kp

t
⊔

x23∈Zp/pZp


1

p

1

p




1

1 p−1x23

1

1

 Kp

t
⊔

x12,x14,x34∈Zp/pZp


p

1

p

1




1 p−1x12 p−1x14

1

1 p−1x34

1

 Kp

t
⊔

x12,x13∈Zp/pZp


p

1

1

p




1 p−1x12 p−1x13

1

1

1

 Kp

t


1

1

p

p

 Kp.

Proof. Fix g =

Ik

pIn−k

, for 0 ≤ k ≤ n. We would like to compute the group
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P = gKpg−1 ∩ Kp. We see that, if p ∈ P is a typical element then,

p =

 Ak×k Bk×n−k

pCn−k×k Dn−k×n−k

 mod p
≡

Āk×k B̄k×n−k

D̄n−k×n−k

 = p̄,

where A, B,C,D are Zp matrices of corresponding dimensions. Consider the Grass-

mannian G(k, n) = Gr(k,Fn
p). Now GLn(Fp) acts on G(k, n) (by left multiplication)

transitively. This action induces an action of GLn(Zp), simply by left multipli-

cation and reducing mod p. We note that, StabGLn(〈e1, e2, . . . , ek〉) = P̄, and so

GLn(Fp)/P̄ � G(k, n). Also we know G(k, n) ↪→ P(∧kFn
p) (Plucker embedding) is

complete, hence P̄ is parabolic.

Now we will try to list out the elements of G(k) by so-called Plucker matrices

through the Plucker embedding. Hence finding a set of representatives for KgK/K

suffices finding set of representatives for K/gKg−1 ∩ K suffices finding ’good set’

of representatives for G(k, n). We are providing proof for n = 4 and k = 2; proof in

general case would follow similarly.

Theory of Plucker matrices tells us that any t ∈ G(2, 4) are 2 × 4 matrices with

rank = 2. We may embed the 2×4 matrices in GL4(Fp) by completing empty rows

in obvious manner. Therefore they would look like (in certain base) as follows:1 0 ∗ ∗

0 1 ∗ ∗

 , 1 ∗ 0 ∗

0 0 1 ∗

 , 1 ∗ ∗ 0

0 0 0 1

0 1 0 ∗

0 0 1 ∗

 , 0 1 ∗ 0

0 0 0 1

 , 0 0 1 0

0 0 0 1


(3.2.2)

We use a known fact as follows:

Let H be a subgroup of G. Let a ∈ G. Suppose that [a−1Ha ∩ H : H] < ∞ a

then,

HaH/H � H/a−1Ha ∩ H.

That is obvious as HaH has a transitive right action of H. The stabilizer of HaH

for this action is H ∩ a−1Ha. In fact the representatives of HaH/H can be ob-

tained from representatives of H/a−1Ha ∩ H. Now suppose that H = Kp and

a = diag(p, p, 1, 1), then using the isomorphism one may deduce the decomposi-
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tion. For example, the first element in (3.2.2) would be mapped to the first coset in

the decomposition (3). �

From now on by Gp and Kp we will mean GL4(Qp) and GL4(Zp) respectively.

There is an Iwasawa decomposition of Gp = BKp where B = NA;

N =




1 ∗ ∗ ∗

1 ∗ ∗

1 ∗

1

 |∗ ∈ Qp


is the unipotent radical and A is the maximal torus i.e.

A =


a =


a1

a2

a3

a4

 |ai ∈ Q
×
p


.

Given four unramified characters χ1, χ2, χ3, χ4 of Q×p we define a character χ of A

by defining

χ(a) = χ1(a1)χ2(a2)χ3(a3)χ4(a4). (3.2.3)

We extend χ from A to B by setting χ to be N invariant. The unramified principal

series representation corresponding to χ is I(χ) which is

I(χ) := IndGp
B (χ) = { f ∈ Cc(Gp) : f (nag) = δ1/2(a)χ(a) f (g) for (n, a, g) ∈ N×A×Gp}

where δ, the modular function from the usual Haar measure on Gp defined by

δ(a) = |a3
1a2a−1

3 a−3
4 |p. (3.2.4)

We will choose χ in such a way so that πp becomes isomorphic to the unique

spherical constituent πχ of I(χ).

Let Fp be the unramified vector in the space πχ with Fp(e) = 1. Then

Fp(nak) = δ1/2(a)χ(a)
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for n ∈ N, a ∈ A and k ∈ Kp. Any φ ∈ Hp acts on Fp by convolution as following;

for h ∈ Gp

(φ ∗ Fp)(h) :=
∫

Gp

φ(hg)Fp(g)dg.

Now let φ = Char(KpapKp) ∈ Hp with KpapKp =
∐

i HiKp and also let Hi = niai

where (niai) ∈ N × A. Then

(φ ∗ Fp)(e) =

∫
Gp

φ(g)Fp(g)dg

=

∫
KpapKp

Fp(g)dg

=
∑

i

∫
HiKp

Fp(g)dg

=
∑

i

Fp(niai)

=
∑

i

δ1/2(ai)χ(ai).

(3.2.5)

Along with above and lemma 5 we arrive at he following conclusion.

Proposition 11. Suppose that πχ has trivial central character. Then,

(i) χ1(p)χ2(p)χ3(p)χ4(p) = 1

(ii) Char(Kp


p

1

1

1

 Kp)Fp = p3/2(χ1(p) + χ2(p) + χ3(p) + χ4(p))Fp

(iii) Char(Kp


p

p

p

1

 Kp)Fp = p3/2(χ1(p)−1+χ2(p)−1+χ3(p)−1+χ4(p)−1)Fp
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(iv)

(Kp


p

p

1

1

 Kp)Fp = p2(χ1(p)χ2(p) + χ2(p)χ3(p) + χ3(p)χ4(p) + χ4(p)χ1(p)

+ χ1(p)χ3(p) + χ2(p)χ4(p))Fp

.

Proof. As πχ has trivial central character (1) is immediate from 3.2.5. We are

giving a proof of (3); (2) and (4) would be similar.

Note that the first decomposition in lemma 5 can also be wriiten as

⊔
x14,x24,x34∈Zp/pZp


1 x14

1 x24

1 x34

1




p

p

p

1

 Kpt
⊔

x12∈Zp/pZp


1 x12

1

1

1




p

1

p

p

 Kp

t
⊔

x13,x23∈Zp/pZp


1 x13

1 x23

1

1




p

p

1

p

 Kp t


1

p

p

p

 Kp.

From 3.2.5 we get that

Char(Kp


p

p

p

1

 Kp)Fp = [p3 p−3/2χ1(p)χ2(p)χ3(p) + pp1/2χ1(p)χ3(p)χ4(p)

p2 p−1/2χ1(p)χ2(p)χ4(p) + p3/2χ2(p)χ3(p)χ4(p)]Fp

= p3/2χ1(p)χ2(p)χ3(p)χ4(p)(χ1(p)−1 + χ2(p)−1 + χ3(p)−1 + χ4(p)−1)Fp

= (χ1(p)−1 + χ2(p)−1 + χ3(p)−1 + χ4(p)−1)Fp.

�
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As in the previous section here also we will use non-temperedness to have an

amplification. We will show that if a representation is non-tempered then there

exist at least one Hecke operator whose eigenvalue is much large than its support.

We have similar definition of nontemperedness here as well.

Definition 9. We say a Hecke-Maass form φ is η non-tempered at p if at least one

corresponding Satake parameter at p has absolute value pη i.e. there is a character

χi such that |χi(p)| ≥ pη.

Now we will be proving our main amplification lemma. Let φ is the Hecke-

Maass form in the question with

T (p)φ = λ(p)φ, and S (p)φ = µ(p)φ.

Note that T ∗(p) is the adjoint Hecke operator of T (p) with respect to the Petersson

inner product defined in 2.3.4. So that gives us T ∗(p)φ = λ(p)φ.

Lemma 6. Let φ be a Hecke-Maass of Γ\H5 form such that φ is η non-tempered

at positive density of odd primes p for some η > 0. Then, either

|λ(p)| � p3/2+η/2 or |µ(p)| � p2+η

as p→ ∞.

Proof. Note that from lemma 4 and proposition 11 the polynomial equation

x4 − p−3/2λ(p)x3 + p−2µ(p) − p−3/2λ(p)x + 1 = 0 (3.2.6)

has roots χi(p) for i = 1, 2, 3, 4. As at least one of χi is η away from unitary axis

and
∏

i χi(p) = 1, there is an i, say i = 1, such that |χ1(p)| = pη. Now letting
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x = χ1(p) in equation (3.2.6) we get that,

|p−3/2λ(p)x3 + p−3/2λ(p)x| = |x4 + p−2µ(p)x2 + 1|

=⇒ p−3/2|λ(p)(|x|3 + |x|) ≥ |x|4 − p−2|µ(p)||x|2 − 1

=⇒ |p−3/2λ(p)|p3η + p2η|p−2µ(p) � p4η

either

=⇒ |λ(p)| � p3/2+η

or

=⇒ |µ(p)| � p2+2η.

This proves the lemma. �
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Chapter 4

Amplified Pre-trace Formula

In this chapter we will construct an identity which will allow us to reduce our

problem of estimating a Maass form inHn to a diophantine analysis problem. The

pre-trace formula is the beginning of general Arthur-Selberg’s Trace formula, see

[50]. For that, first we need an explicit Selberg/Harish-Chandra spherical transform

pair (h, k). For dimension 2 i.e. on upper half the following proposition can be

found in [20]. where as the idea of amplification is inspired by [16]. For general

amplification scheme one may look at [54].

4.1 Spherical Transform and Automorphic Kernel
Proposition 12. Let (h, k) be the Selberg/Harish-Chandra spherical transform pair

inHn and u is the point pair invariant defined in 2.3.2. Then

h(t) =
(n − 2)(2π)

n−1
2

2Γ
(

n+1
2

) ∫ +∞

−∞

eiαt
∫

v
(u − v)(

n−3
2 )k(u)dudα, (4.1.1)

where v =
(eα−1)2

2eα .

Proof. Let ĥ be the spherical transform of h inHn. Recall from 2.1.6 that the point-

pair invariant u and distance d(P) := d(P, e) of P = (x, y) from origin e = (0, 1) is

related by,

u =
||x||2 + (y − 1)2

2y
= sinh2

(
d
2

)
.
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Then by definition of spherical transform and letting ĥ(d) = k(u) we have,

h(t) =

∫
Hn

ĥ(d(P))y(P)
n−1

2 +itdµ(P)

=

∫ ∞

0
y

n−1
2 +it

∫
Rn−1

ĥ(d)
dn−1xdy

yn

=

∫ ∞

0
y−

n+1
2 +it

∫ ∞

0
k
(
r2 + (y − 1)2

2y

)
drdy

∫
||x||=r

dn−1x

= Vol(S n−2)
∫ ∞

0
y−

n+1
2 +it

∫ ∞

0
rn−2k

(
r2 + (y − 1)2

2y

)
drdy.

Now letting v =
(y−1)2

2y and y 7→ eα, as u = v + r2

2y we get,

h(t) = Vol(S n−2)
∫ ∞

0
y−

n+1
2 +it

∫ ∞

v
(2y(u − v))

n−3
2 k(u)ydudy

= 2
n−3

2 Vol(S n−2)yit
∫ ∞

v
(u − v)

n−3
2 k(u)du

dy
y

=
(n − 2)(2π)

n−1
2

2Γ
(

n+1
2

) ∫ +∞

−∞

eiαt
∫ ∞

v
(u − v)

n−3
2 k(u)dudα.

�

Note that we can describe 4.1.1 in a three step relation as following,

h(t) =

∫ +∞

−∞

g(α)eiαtdα

v =
1
2

sinh2
(
α

2

)
⇔ α = log(1 + v +

√
v2 + 2v)

g(α) =
(n − 2)(2π)

n−1
2

2Γ
(

n+1
2

) ∫ ∞

v
(u − v)(

n−3
2 )k(u)du.

(4.1.2)

For the pre trace formula we need a basis of the Hilbert space L2(Γ\S ) which with

Petersson inner product defined in 2.3.4 decomposes into (see [34], [33]),

L2(Γ\S ) = L2
res(Γ\S ) ⊕ L2

cusp(Γ\S ) ⊕ L2
cont(Γ\S ),

where L2
cusp is the closure of the space generated by the cusp forms, L2

res is the
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residual Eisenstein series; those two spaces combine to L2
disc correspond to discrete

spectrum, L2
cont is the continuous spectrum.

Let there be m cusps in Γ\S . The Eisenstein series Ek(P, s) corresponding

to k′th cusp is holomorphic at <(s) = 1/2. Let {φ}∞i=0 be an orthonormal basis

(containing φ the mass form we want to estimate) consisting of joint eigenfunction

of Laplacian and full Hecke algebra. Then from the spectral theorem we can say

the following (see [34]).

Proposition 13. Let f ∈ C∞(Γ\S ).Then f has the following spectral expansion

f (P) =

∞∑
i=0

〈 f , φi〉φi(P) +

m∑
k=1

1
4π

∫ +∞

−∞

〈 f , Ek(·, 1/2 + it)〉Ek(P, 1/2 + it)dt, (4.1.3)

which converges in C∞-topology.

Let us choose f to be our automorphic kernel in P variable, namely for some

smooth k ∈ S(R≥0),

K(P,Q) =
∑
γ∈Γ

k(u(γP,Q)).

After doing a similar computation of respective inner products as in 7.4 [28] we

get

K(P,Q) =

∞∑
i=0

φi(P)φi(Q)h(t j)++

m∑
k=1

1
4π

∫ +∞

−∞

Ek(P, 1/2+ it)Ek(Q, 1/2 + it)h(t)dt,

(4.1.4)

where h is the Selberg/Harish-Chandra tranform of k as in 4.1.2. The above equa-

tion is called pre-trace formula.
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4.2 Archimedean Amplification and Bounding k
We will use a specific choice for the spherical transform pair (h, k) which will be

constructed so as to emphasize the contribution of the term φ in the basis. So

that the function h(t) becomes concentrated on the the spectral parameter T of φ.

Inspired by [27], we consider

g(x) =
A cos(T x)
cosh(Ax)

, (4.2.1)

For some A > 2 large constant, h and k will be constructed as in 4.1.2.

Lemma 7. For above choice of g,

(1) the function h(t) is even, holomorphic, and rapidly decaying in the strip

|=(t)| < A. It satisfies the bound

h(t) >

0, t ∈ R ∪ (−A, A)i

1/8, t ∈ R ∪ (−A/2, A/2)i and ||t| − T | < A/2.
. (4.2.2)

(2) The Selberg/Harish-Chandra transform k(u) of h(t), as in 4.1.2, satisfies the

bound

k(u) �A min
(

T [ n
2 ]

(1 + u)Au[ n
2 ]
,T n−1

)
(4.2.3)

Proof. The function g(x) defined in 4.2.1 is even and satisfies the bound

g(x) �A eA|x|,

hence it Fourier transformation h(t) in 4.1.2 is even and holomorphic in the strip
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|=(t)| < A by Morera’s theorem. We first calculate the Fourier transform of sechx∫ ∞

−∞

dx sech(πx) eikx = 2
∫ ∞

−∞

dx
eikx

eπx + e−πx

= 2
∫ 0

−∞

dx
eikx

eπx + e−πx + 2
∫ ∞

0
dx

eikx

eπx + e−πx

= 2
∞∑

m=0

(−1)m
[∫ ∞

0
dx e−[(2m+1)π+ik]x +

∫ ∞

0
dx e−[(2m+1)π−ik]x

]

= 2
∞∑

m=0

(−1)m
[

1
(2m + 1)π − ik

+
1

(2m + 1)π + ik

]

= 4π
∞∑

m=0

(−1)m(2m + 1)
(2m + 1)2π2 + k2

=
1

2π

∞∑
m=−∞

(−1)m(2m + 1)(
m + 1

2

)2
+

(
k

2π

)2

By the residue theorem, the sum is equal to the negative sum of the residues at

the non-integer poles of

π csc (πz)
1

2π
2z + 1(

z + 1
2

)2
+

(
k

2π

)2

which are at z± = −1
2 ± i k

2π . The sum is therefore

−
1
2

csc (πz+) −
1
2

csc (πz−) = −<

 1

sin π
(
− 1

2 + i k
2π

)  = sech
(

k
2

)

By this reasoning, the Fourier transform of sechx is π sech
(
πk
2

)
. Thus we calculate

h(t) =
1
4

sech
(
π(t + T )

2A

)
+

1
4

sech
(
π(t − T )

2A

)
=

cosh
(
πt
2A

)
cosh

(
πT
2A

)
cosh

(
πt
A

)
+ cosh

(
πT
A

) , (4.2.4)

which shows that h(t) is rapidly decaying in the strip |=(t)| < A.
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Using this we will prove 4.2.2. Assume first that t ∈ R. From (4.8) it is clear

that h(t) > 0, because both terms are positive. Moreover, if |t| ∈ (T − A
2 ,T + A

2 )

then one of these terms exceeds 1
4 sech

(
π
4

)
> 1

8 , so that h(t) > 1
8 . Assume now

that t ∈ (−A, A)i. From (4.8) it is clear that h(t) > 0, because cosh
(
πt
2A

)
> 0 and

cosh
(
πt
A

)
> −1. Moreover, if t ∈ (−A

2 ,
A
2 )i then cosh

(
πt
2A

)
> cos

(
π
4

)
and cosh

(
πt
A

)
≤

1, so that

h(t) >
cos

(
π
4

)
cosh

(
πT
2A

)
1 + cosh

(
πT
A

) =
cos

(
π
4

)
2 cosh

(
πT
2A

) .
If, in addition, |t| ∈ (T − A

2 ,T + A
2 ), then T = T − |t| + |t| < A/2 + A/2 = A, whence

h(t) >
cos

(
π
4

)
2 cosh

(
π
2

) > 1
8
.

We will now prove 4.2.3. Recalling 4.1.2 et us define

(n − 2)(2π)
n−1

2

2Γ
(

n+1
2

) q(v) = g(α).

Hence we get,

q(v) =

∫ ∞

0
x

n−3
2 k(v + x)dx.

For ν = 0, 1 according to n ≡ 1, 0 (mod 2),

∫ ∞

u

q( n+1−ν
2 )(v)

√
(v − u)ν

dv =

∫ ∞

u

1
√

(v − u)ν

∫ ∞

0
x

n−3
2 k( n+1−ν

2 )(x + v)dxdv

by integration by parts and using rapid decay of k,

=
(−1)

n+1−ν
2

2ν
Γ

(
n − 1

2

) ∫ ∞

0

∫ ∞

0

k′(u + x + v)
√

(vx)ν
dxdv.

Thus integrating left side using polar cordinate we get,

k(u) =
(−1)

n+1−ν
2

2νπΓ
(

n−1
2

) ∫ ∞

u

q( n+1−ν
2 )(v)

√
(v − u)ν

dv. (4.2.5)
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Now note that from 4.1.2 and 4.2.1 we have precise bounds of following,

α = log(1 + u +
√

u2 + 2u) ≤
√

u2 + 2u,

cosh(Bx) � (1 + u)B,

g(m)(α) �
T m

(1 + u)C1
for some constant C1 > 0,

dmα

dum �
(1 + u)m−1

(
√

u2 + 2u)2m−1
.

Thus we get the derivative bound,

|q(m)(u)| � |g(m)(α)
(
dα
du

)m

| + |g′(α)
dmα

dum |

�
1

(1 + u)C2

 T m

(
√

u2 + 2u)m
+

T | sin(Tα)|

(
√

u2 + 2u)2m−1


�

1
(1 + u)C2

 T m

(
√

u2 + 2u)m
+ T

min((Tα)m−1, (Tα)2m−1)

(
√

u2 + 2u)2m−1


�

1
(1 + u)A min

(
T m

um ,T
2m

)
,

For some large enough A.

Now for odd n from 4.2.5 we get that,

k(u) � |q( n−1
2 )(u)| � min

 T
n−1

2

(1 + u)Au
n−1

2

,T n−1

 .
And for even n we divide the integral in 4.2.5 in two parts and estimate as follow-

ing,

k(u) �
∫ η

0

|q( n
2 )(u + v)|
√

v
dv +

|q( n
2−1)(u + η)|
√
η

+

∫ ∞

η

|q( n
2−1)(u + v)|
√

v3
dv

� min
(

T n/2

(1 + u)Aun/2 ,
T n

1 + u

)
√
η +

T (n−2)/2

(1 + u + v)A(u + v)n/2 √η

� min
(

T n/2

(1 + u)Aun/2 ,
T n

1 + u

)
√
η +

T (n−2)/2

(1 + u)Au(n−2)/2 √η
.
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Now choosing
√
η = T−1 √u we get that,

k(u) � min
(

T
n
2

(1 + u)Au
n
2
,T n−1

)
,

which proves our claim. �
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Chapter 5

Diophantine Analysis and Bounds

In this chapter we fix the dimension n of the arithmetic hyperbolic space to be 4

and 5. By Γ we would mean Sp∗1,1(O) or SL2(O) in case ofH4 andH5 respectively,

where O is Hurwitz integer quaternions. Recall the equation 4.1.4 of pre-trace for-

mula. Let {φ j} with Laplace eigenvalue λ j be orthonormal basis of L2
disc(Γ\Hn)

which contains φ the Maass cusp form we want to bound and Ek be the Eisenstein

series in the continuous spectrum, and K(P,Q) =
∑
γ∈Γ k(u(γP,Q)) be the automor-

phic kernel. Then,

∞∑
i=0

φi(P)φi(Q)h(t j)+
m∑

k=1

1
4π

∫ +∞

−∞

Ek(P, 1/2+it)Ek(Q, 1/2 + it)h(t)dt =
∑
γ∈Γ

k(u(γP,Q)).

Let T be a Hecke operator on Γ\Hn which can be thought as a Γ double coset ΓaΓ,

such that φ j’s and Ek’s are Hecke eigenfunction with

Tφ j(P) =
∑

γ∈Γ\ΓaΓ

φ(γP) = λ jφ j(P) and T Ek(P, ·) =
∑

γ∈Γ\ΓaΓ

Ek(γP, ·) = Λ jEk(P, ·).

Let T ∗ be the adjoint Hecke operator of T with respect to the Petersson inner prod-

uct. We now shall apply T ◦ T ∗ on the P variable of the pre-trace formula. And
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then letting P = Q we get.

∞∑
i=0

h(t j)|λ j|
2|φi(P)|2 +

m∑
k=1

1
4π

∫ +∞

−∞

h(t)|Λk|
2|Ek(P, 1/2 + it)|2 =

∑
γ∈ΓaΓ

k(u(γP, P)).

(5.0.1)

Recalling lower bound of h(t) from 4.2.2 and noting the positivity of each term in

LHS of (5.1) we conclude that,

|λ|2|φ(P)|2 �
∑
γ∈ΓaΓ

k(u(γP, P))

=
∑
γ∈ΓaΓ

u(γP,P)<δ

k(u(γP, P)) +
∑
γ∈ΓaΓ

u(γP,P)≥δ

k(u(γP, P)) (5.0.2)

for some δ > 0 to be fixed latter. We fix a compact Ω where we bound the L∞

norm, in the fundamental domain and let P ∈ Ω. Let us call e = (0, 1) ∈ Γ\Hn

and as the ambient group acts isometrically on this space there exist a g such that

g.e = P. Hence,

δ > u(γP, P) = u(g−1γg.e, e)

which implies g−1γg ∈ Bδ(K) where K is the maximal compact in respective cases.

Note that saying P ∈ Ω compact in fundamental domain is equivalent to saying

g ∈ Ω′ for some compact Ω′ ⊂ G.

Lemma 8. For e = (0, 1)

u(ge, e) =
1
2
||g||2HS −

√
det(g), (5.0.3)

where for a matrix A ∈ Matn(H) Hilbert-Schmidt norm of A is defined by

||A||2HS =
∑
i, j

|Ai j|
2.

Proof. We give a proof in SL2(H) case; Sp∗1,1(H) case would be similar. Let g =a b

c d

 be in SL2(H). From Iwasawa decomposition of the corresponding group it
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can be seen that,

g(0, 1) =

 bd̄ + ac̄
|c|2 + |d|2

,

√
det(g)

|c|2 + |d|2

 .
Therefore from 2.3.2 we calculate,

u(ge, e) =
|bd̄ + ac̄|2 + (|c|2 + |d|2 − det(g))2

2(|c|2 + |d|2)

=
|b|2|d|2 + |a|2|c|2 + 2<(ac̄db̄ + (|c|2 + |d|2)2 − 2(|c|2 + |d|2)

√
det(g) + det(g)

2(|c|2 + |d|2)

=
|b|2|d|2 + |a|2|c|2 + |c|2|d|2 + |a|2|b|2 + (|c|2 + |d|2)2

2(|c|2 + |d|2)
−

√
det(g)

=
(|a|2 + |b|2 + |c|2 + |d|2)(|c|2 + |d|2)

2(|c|2 + |d|2)
−

√
det(g)

=
1
2
||g||2HS −

√
det(g)

�

Definition 10. Let T be a Hecke operator defined by the double coset ΓaΓ. we

define support of T by

Supp(T ) = {γ ∈ Γ\ΓaΓ}.

If T ′ is another Hecke operator then clearly

Supp(TT ′) ⊆ {tt′|t ∈ Supp(T ), t′ ∈ Supp(T ′)}

and hence |Supp(TT ′)| ≤ |Supp(T )||Supp(T ′)|. In particular we have the following

lemma.

Lemma 9.
|Supp(T ◦ T ∗)| ≤ |Supp(T )|2. (5.0.4)

Combining lemma 1 and lemma 2 one can compute the size of the support of

the chosen generators in proposition 6 of the corresponding Hecke algebra; namely

for odd prime p,

Supp(T (p)) � p3 and Supp(S (p)) � p4. (5.0.5)
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Also Combining lemma 4 and lemma 5 one can compute the size of the support

of the chosen generators in proposition 10 of the corresponding Hecke algebra;

namely for odd prime p,; namely for odd prime p,

Supp(T (p)) = Supp(T ∗(p)) � p3 = and Supp(S (p)) � p4. (5.0.6)

Proof of theorem 1: As the argument for the saving in the both dimensions are

same we will give the proof in dimension 5 only.

Let the Hecke Maass form φ is η non-tempered at ν > 0 density of primes. So

for L sufficiently large in the interval [L, 2L] there will be � νL
log L primes p where

φ is non-tempered by the prime number theorem. We assume L to be sufficiently

large so that νL
log L > 1. Recalling lemma lemma 6 it is clear that at each place there

is a Hecke operator H = Hp with Hφ = λφ such that

|λ|2 � Supp(H)pη.

In (5.0.1) we use T = H ◦ H∗ and so λ = |ν|2. Let us assume H = T (p) defined in

proposition 10, if T (p) does not have required property we will choose

Γ

π2

1

 Γ = pT 2(p) + S (p)

which has the required property. As proof in both cases are same we will prove for

T (p) only.

First we will bound the second summand in (5.2). Let us define

M(t) = M(P, t) := #{γ ∈ Supp(T ) : u(γP, P) < t}.
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and for g ∈ Ω′ we get from lemma 8 that,

||g−1γg||2HS − det(γ)1/2 < t

=⇒ ||γ||2HS �Ω′ pk + t

=⇒ |γi j| �Ω

√
pk + t

=⇒ #γ ∈ M(t) �Ω L8k + L8

for some absolute positive integer k. Now from 4.2.3 integrating by parts we get

that,

∑
γ∈Supp(T )
u(γP,P)≥δ

k(u(γP, P)) �
∫ ∞

δ

T [ n
2 ]

(1 + u)Au[ n
2 ]

dM(u)

� T [ n
2 ]

(
L8kδ−[ n

2 ]+1 + δ−[ n
2 ]+9

)
.

(5.0.7)

Now we will bound the first summand.

Lemma 10. Let T be a p-Hecke operator on Γ\H5 defined by Γ

π 1

 Γ for some

primitive quaternion π with norm p for an odd prime p. Then for g ∈ G and K

maximal compact

|{γ ∈ Γ

π 1

 Γ : g−1γg ∈ Bδ(K)}| �Ω′ L3/2+ε , (5.0.8)

for sufficiently small δ.

Proof. Now if Q = (gg∗)−1, then

g−1γg ∈ Bδ(K)↔ γ∗Qγ = det(γ)1/2Q + O(det(γ)1/2δ).

So the first column of Γ satisfies a quadratic form of 8 variables with O(1) coef-

ficients, therefore number of solutions will be � L3/2+ε (see e.g. [6] Lemma 8a).

Fixing the first column the other column can be obtained in� Lε ways. �
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Again by 4.2.3, (5.4) and (5.7) we get,∑
γ∈Supp(T )
u(γP,P)<δ

k(u(γP, P)) � T n−1|{γ ∈ ΓaΓ : g−1γg ∈ Bδ(K)}|

�Ω T n−1Supp(T )

� T n−1|λ|2L−η.

Choosing δ = min
(
T−1/20, 1

2

)
and L = T 1/20k and from (5.2) we get

|φ(P)|2 �Ω T n−1−ε .

�
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Chapter 6

Concluding Remarks

(i) It seems natural to expect the techniques of this thesis would generalize to

other groups, and in particular to other hyperbolic space. To do this would

require developing an explicit Hecke theory, perhaps generalizing Krieg’s

work by starting from a Z-order in the Clifford algebra over Q. The diophan-

tine analysis would also be more difficult as the maximal compact subgroup

SO(n) would be larger.

(ii) The main Theorem is stated for the supremum of the eigenfunctions on a

fixed compact set Ω. A similar bound probably does not hold in the cusp due

to the behaviour of the K-Bessel function in its transition region (see [5]). In

the case of GL3 this is discussed in [13]. However, a typical no Siegel zero

result of the Rankin-Selberg L-function should give supnorm bound near

cusps.

(iii) We have already discussed the examples of CAP representaiton in H4 and

H5 such that they are tempered in infinite place and nontempered in every

finite place. In the similar fashion one may ask for example of CAP represen-

tation for Spin(n, 1) groups so that they will be nontempered Hecke-Maass

form whose power saving in the L∞ norms can be proved in similar manner.

(iv) As similar in [45], one may use the sup norm bounds of the Maass form to

bound the corresponding L-function which is expected to have an integral

54



representation with respect to the Maass form, at the critical line. Eventu-

ally the result obtained in theorem 1 gives a subconvexity bound towards the

Generlized Lindelöf Hypothesis of the corresponding L-function, i.e. beats

the convexity bound which is the estimate derived from the functional equa-

tion by the Lindelöf-Phragmen principle.

55



Bibliography

[1] A. N. Andrianov: Quadratic Forms and Hecke Operators, Grundlehren der

Mathematischen Wissenschaften [Fundamental Principles of Mathematical

Sciences], 286. Springer-Verlag, Berlin, 1987. xii+374 pp. ISBN: 3-540-

15294-6 → pages 20

[2] M. Asgari and R. Schmidt, Siegel modular forms and representations,

Manuscripta Math. 104 (2001), no. 2, 173200. → pages 21

[3] P. H. Bérard: On the wave equation on a compact manifold without conjugate

points, Math. Z. 155 (1977), 249-276. → pages 1
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[39] D. Milićević, Large values of eigenfunctions on arithmetic hyperbolic 3-

manifolds, Geom. Funct. Anal. 21 (2011), 1375–1418. → pages 3

[40] M. Muto, H. Narita, A. Pitale, Lifting to GL(2) over a quaternion division al-

gebra and an explicit construction of CAP representations, preprint available

at http://arxiv.org/abs/1405.4770, (dated April 3, 2015). → pages 5

[41] A. Pitale, Lifting from S̃L(2) to GSpin(1, 4), Int. Math. Res. Not. 2005, no.

63, 39193966. → pages 5

[42] Z. Rudnick, P. Sarnak: The behaviour of eigenstates of arithmetic hyperbolic

manifolds, Comm. Math. Phys. 161 (1994), no. 1, 195213. MR 95m:11052

→ pages

59



[43] N. Ryan, T. Shemanske: Inverting the Satake map for Spn and applications

to Hecke operators, Ramanujan J. 17 (2008), no. 2, 219244. → pages 20

[44] P. Sarnak: Letter to Morawetz, available at

http://www.math.princeton.edu/sarnak/, (dated April 3, 2015). → pages 2

[45] P. Sarnak: Arithmetic Quantum Chaos, available at

http://www.math.princeton.edu/sarnak/, (dated April 3, 2015). → pages 2,

54

[46] P. Sarnak: Notes on the Generalized Ramanujan Conjectures. Harmonic anal-

ysis, the trace formula, and Shimura varieties, 659–685, Clay Math. Proc., 4,

Amer. Math. Soc., Providence, RI, (2005). → pages 25

[47] F. Shahidi: On the Ramanujan conjecture for quasisplit groups, Asian J.

Math. 8 (2004), no. 4, 813835. → pages 5

[48] Y. Sakellaridis: Inverse Satake transforms, preprint,

http://arxiv.org/abs/1410.2312, (dated April 3, 2015). → pages 20

[49] R. Schimdt: A decomposition of the spaces S k(Γ0(N)) in degree 2 and the

construction of hypercuspidal modular forms, Proceedings of the 9th Autumn

Workshop on Number Theory, Hakuba, Japan, 2006 → pages 20

[50] A. Selberg: Harmonic analysis and discontinuous groups in weakly symmet-

ric Riemannian spaces with applications to Dirichlet series, J. Indian Math.

Soc. (N.S.) 20 (1956), 47–87. → pages 40

[51] G. Shimura: Introduction to the arithmetic theory of automorphic functions,

Kan Memorial Lectures, No. 1. Publications of the Mathematical Society

of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo; Princeton University

Press, Princeton, N.J., 1971. xiv+267 pp. → pages 18, 29

[52] C. Sogge, Concerning the Lp norm of spectral clusters for second-order el-

liptic operators on compact manifolds, J. Funct. Anal. 77 (1988), 123–138.

→ pages 1

60



[53] I. Satake: Theory of spherical functions on reductive groups over p-adic

field. Inst. Hautes Etudes Sci. Publ. Math., 18 (1963) 5–69. → pages 20, 31

[54] L. Silberman, A. Venkatesh: Entropy bounds for Hecke eigenfunctions on

division algebras, preprint, http://www.math.ubc.ca/ lior/work/, (dated April

3, 2015). → pages 24, 40

[55] C. Sogge, S. Zelditch: Riemannian manifolds with maximal eigenfunction

growth, Duke Math. J. 114 (2002), no. 3, 387437. → pages 2

[56] J. Toth, S. Zelditch: Riemannian manifolds with uniformly bounded eigen-

functions, Duke Math. J. 111 (2002), 97-132. → pages 2

[57] R. Vahlen: Uber Bewegungen und complexe Zahlen, Math. Ann. 55 (1902)

585-593.

→ pages 7, 9

61


	Abstract
	Preface
	Table of Contents
	Acknowledgements
	Dedication
	1 Introduction
	2 Basic Notations
	2.1 Clifford Algebras, Vahlen Matrices and Real Hyperbolic Spaces
	2.2 Arithmetic Subgroups
	2.3 Automorphic Forms

	3 Hecke Theory
	3.1 SO(4,1) Case
	3.2 SO(5,1) Case

	4 Amplified Pre-trace Formula
	4.1 Spherical Transform and Automorphic Kernel
	4.2 Archimedean Amplification and Bounding k

	5 Diophantine Analysis and Bounds
	6 Concluding Remarks
	Bibliography

