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Abstract

This thesis investigates the merging of horizons which occurs when a black hole crosses a cos-

mological horizon. We study the simplest spacetime which has both a black hole and cosmological

horizon, namely Schwarzschild-deSitter (SdS) spacetime. First we develop a new coordinate system

for SdS spacetime, which allows us to properly illustrate and analyze the merging of horizons. We

then use a combination of numerical and analytical methods to study the structure of the merging

horizons, including the null generators which make up the horizon, as well as the presence of caustic

points on the horizon. We find an analytical formula for the location in spacetime where the black

hole and cosmological horizon first touch. Next we study the area of the horizons. Using numerical

methods, we find several intriguing results regarding the behavior of horizon area on time, and in the

limit of small black hole mass. The first result is that the time at which the black hole first touches

the cosmological horizon is also the time at which the rate of horizon area increase is maximal. The

second and third results concern the horizon area in the limit of small black hole mass. The second

result is that in this limit, all of the increase in horizon area occurs prior to horizon merger. The

third and final result is that in the limit of small black hole mass, the increase in horizon area can be

thought of as being due in equal parts to two effects: to the joining of new generators not previously

on the horizon, and the expansion of generators on the horizon for all times. The first and third

results just mentioned are both corroborated using analytical techniques. Finally, we conclude by

discussing how the study of merging horizons in this thesis is a valuable first step to undertaking a

similar study of the horizons which occur in merging black hole binaries.
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Chapter 1

Introduction

1.1 Overview

This thesis investigates the merger of horizons that occurs when a black hole crosses an observer’s

cosmological horizon. Our main motivation is to use a simple spacetime with merging horizons

as a mathematical laboratory where we can investigate various questions about the mathematics

of the merging horizons. This thesis is broadly organized as follows: in section 1.2 we introduce

the concept of a cosmological horizon, and discuss the motivation for considering the merger of

a black hole with a cosmological horizon. In chapter 2 we review some mathematical properties

of the spacetime (Schwarzschild deSitter spacetime; SdS spacetime from now on) which will be

considered in this thesis and give a more precise fomulation of the problem statement considered

here. In chapter 3 we introduce a new coordinate system for SdS spacetime, developed specifically

for the purposes of this thesis. In chapters 4 and 5, we present the main results of this thesis: an

analysis of the structure and area of the horizons that result from a merger of a black hole with a

cosmological horizon. These results are obtained using both numerical and analytical methods. In

chapter 6, we use the main results from the previous chapters and discuss how they could be related

to the merging of horizons that occurs in binary black holes. As well, we summarize the results and

discuss avenues for future research.
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1.2. Merging black hole and cosmological horizons

1.2 Merging black hole and cosmological horizons

The cosmological horizon The measured acceleration of the universe, as inferred from supernova

data [24, 26], indicates that either our theory of gravity on large scales is in serious need of repair,

or that the universe contains a mysterious fluid, often called dark energy, which is driving this

accelerated expansion. The revision of cosmological models to include dark energy, typically in the

form of vacuum energy or a cosmological constant, has led to striking revisions of our understanding

of the universe. For example, constraints on cosmological parameters strongly suggest continued

expansion of the universe [27], even if the energy density of the universe is greater than the critical

density required to make it flat. Another striking feature of a universe with accelerated expansion

is the presence of a cosmological horizon1, which in a perfectly homogeneous universe is a sphere2

surrounding any observer in spacetime such that beyond this sphere, no information can ever reach

the observer.

The cosmological horizon is not to be confused with the particle horizon. The particle horizon

separates objects that are sufficiently close (as measured using comoving distance) that the light

they emitted in the past has had time to reach us, so that we may currently observe them. The

particle horizon limits what we can currently observe; beyond the current particle horizon, distant

objects have not yet come into view, so to speak. The cosmological horizon, on the other hand, limits

which part of the universe will ever be accessible to a hypothetical eternal observer. Currently there

are distant objects (galaxies and so on) so far that the light they emit will never reach us, no matter

how long we would be willing to wait (see pages 128-129 of [15] for a careful discussion of particle

and cosmological horizons for deSitter spacetime).

This inability to receive light from objects beyond the cosmological horizon is often described in

terms of distant objects travelling faster than light. However, this “faster than light” description is
1For FRW universes accelerated expansion implies a cosmological horizon; for more general cosmological models

one can find exceptions ( See [21].)
2In inhomogeneous cosmological models the cosmological horizon can of course be nonspherical. However the

topology of the cosmological horizon in these cases is nonetheless spherical.
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1.2. Merging black hole and cosmological horizons

incorrect for a number of reasons. First, the proper distance to distant objects is an inherently am-

biguous concept since it depends on the choice of the time coordinate. Second, even in cases where

one can define an unambiguous proper distance, such as in homogeneous FRW cosmological mod-

els, only in pure deSitter spacetime does the faster than light limit coincide with the cosmological

horizon (see [5] for a discussion of this and other misconceptions).

The cosmological horizon is better understood in terms of stretching of space between an observer

and distant objects. In cosmological models where the expansion of the universe is accelerating,

the distance between an observer and a distant object may grow so quickly that even light will not

traverse this great distance, even after an eternity. Another equally valid way of describing the

cosmological horizon is in terms of infinite redshift. Currently there are objects whose light, when

it finally reaches us in the far future, will have been stretched by the expansion of the universe into

light of unfathomably long wavelengths. As one moves further away from these objects, one finds

a point where objects would suffer an infinite redshift, and the light emitted by them would take an

infinite amount of time to reach us. These objects lie at the boundary of our current cosmological

horizon (see page 129 of [15] for a discussion of this infinite redshift in the context of deSitter

spacetime).

Although one can only speak of objects being inside or outside the cosmological horizon at any one

time, it is possible for an object to cross the cosmological horizon. For example, in a universe with

a cosmological constant and a single object of negligible mass, we would essentially have deSitter

spacetime. Thus the cosmological horizon would be at the same proper distance from the observer

at all times, but the proper distance between the object and the observer would be increasing due

to the expansion of the universe. Consequently, there would be a critical time where the object

would cross the observer’s cosmological horizon (page 129, [15]). On can similarly deduce that

in a universe with a cosmological constant, an observer and a small black hole would move away

from each other such that the black hole would effectively cross the cosmological horizon, and its

horizon would merge with the cosmological horizon. The study of this merging of horizons and its

consequences is the subject of this thesis.

3



1.2. Merging black hole and cosmological horizons

The inability to access information beyond the cosmological horizon is reminiscent of the inability

to access information inside a black hole (see page 300 of [32] for the definition of a black hole). In

a universe with a cosmological horizon, the observable universe is separated from a possibly much

larger universe by two types of horizons: the black hole horizons and the cosmological horizon.

An important distinction between these two types of horizons is that the cosmological horizon is

observer dependent, whereas the black hole horizons are thought of as observer independent. All

observers outside a black hole should agree on the location of the black hole horizon, regardless

of their location and trajectory in spacetime. On the other hand, each observer in a universe with

accelerated expansion has a cosmological horizon centered on their location. We will come back to

this distinction in section 2.4, where we will explain how to incorporate both types of horizons into

a single definition of horizon. This will be crucial for exploring the merger of the two horizons.

Motivation Here we seek to address to address a number of questions about the horizon which

results when a black hole crosses and merges with a cosmological horizon. This could be, for

example, a supermassive black hole in the center of a distant galaxy, merging with what is currently

our cosmological horizon. There are several motivations for considering such a merger. Our primary

motivation for considering this merger is the similarity between it and the merger of horizons that

occurs during a head on collision in a binary black hole merger (see [23] for a thorough numerical

exploration of a head on binary black hole merger).

By studying the merger of black hole and cosmological horizons, we create a mathematical labora-

tory where we can investigate the structure and area of the horizons during the merger. The results

obtained in this study then lead to natural questions about the merger of binary black hole horizons.

An alternative approach to studying the structure and area of merging horizons is to use perturbation

theory to construct the spacetime of an extreme mass-ratio binary black hole system (as in [14]), or

to use a Rindler horizon approximation for the larger black hole horizon, as in [13].

The analysis of the structure and the area of the cosmological and black hole horizons are in chapters

4 and 5, respectively. Our analysis of the structure of the horizons will focus on the location and

4



1.2. Merging black hole and cosmological horizons

structure of the caustic, as well as the structure of the horizon at late times. Our analysis of the

horizon area can be seperated into coordinate dependent and independent results. The coordinate

independent results include an analysis of the relative importance of different horizon generators

to the final horizon area, as well as a characterization of the time of maximal area increase. The

coordinate dependent results will include a quantitative analysis of the horizon area in the extreme

mass ratio limit. Although these latter results are coordinate dependent, in the sense that the choice

of time coordinate can affect the area, we will argue that we can make general statements about the

qualitative behavior of the horizon area in the extreme mass ratio limit which should hold regardless

of the coordinate system.

Although our main motivation is the application of our results to the horizons of extreme mass ratio

binary black holes, there are other applications of our results as well. In the context of cosmology,

examining the combined effect of both black hole and cosmological horizons allows us to give a

more precise answer to the question: which part of the universe is in principle observable? Although

both black holes and the cosmological horizon independently shroud parts of the universe from view

and influence, a full understanding requires combining these two types of horizons.

A full understanding of the observable part of the universe is also related to the paradoxes (or

perceived paradoxes) created by the presence of horizons. For example, many of the questions

related to information loss in the context of black hole horizons have recently been extended to

cosmological horizons as well (see for example, [10]). By considering a case where black hole and

cosmological horizons meet, we are examining the horizons for a spacetime where these two sets of

questions overlap.

Still in the context of cosmology, calculations of the total entropy of the observable universe rely on

estimating the area of the cosmological horizon, as well as the area of the black hole horizons inside

the cosmological horizon (see [7] for an example of such a calculation). In addition, calculations of

the rate of change of entropy of the observable universe requires knowledge of the rate of change

of horizon area as black holes merge with the cosmological horizon (see [31] for an example of

calculating the rate of change of entropy for FRW cosmologies). Both of these types of calculations

5



1.2. Merging black hole and cosmological horizons

have so far ignored the corrections due to distortions in the shapes of black hole and cosmologi-

cal horizons as they approach one another. Here we provide the first step towards including such

corrections.

Another motivation for the work in this thesis is the possibility of using a simple analytical spacetime

with merging horizons as a useful analytical testbed for the numerical event horizon solvers used

in binary black hole simulations. To our knowledge, the only other analytically known spacetime

which has been shown to contain event horizon mergers is the exact solution known as the Kastor-

Traschen solution [19]. This solution has been used as a test bed for a numerical event horizon

solver in [4].

Our work is also related to the broader question of the topological transition in event horizons. Ever

since the discovery of black string instability and pinch off in five dimensional spacetime [12], there

has been interest in topological transitions of event horizons in higher dimensional spacetimes. For

example, Emparan and Hassad [9] have studied the self-similar geometry at the intersection of a

black hole and cosmological horizon merger for spacetimes with dimension greater than six. It

should be noted that this merger is fundamentally different from the one studied in this thesis, since

it occurs due to a changing parameter in the spacetime, as opposed to being due to the movement of

an observer.

We address our basic questions regarding the merger of horizons by considering the simplest cosmo-

logical spacetime which has both a black hole and a cosmological horizon: Schwarzschild deSitter

(SdS) spacetime. This choice of spacetime is motivated not only by the fact that the metric is known

analytically, but also by the fact that it is a good approximation to the late time spacetime structure

of our own universe, according to the L-CDM model.

6



Chapter 2

Preliminaries: Schwarzschild deSitter

Spacetime

2.1 Introduction

In 1916, Karl Schwarzschild published the first analytical solution [29] to Einstein’s newly devel-

oped field equations of gravitation [8]. This solution for the spacetime metric is the now famous

Schwarzschild metric, which represents the vacuum spacetime geometry outside any spherically

symmetric body. If the entire spacetime is considered to be devoid of matter, so that the energy-

momentum tensor vanishes, and one uses so-called Schwarzschild coordinates to represent the met-

ric, one obtains the well known line element

ds2 =

✓
1� 2M

r

◆
dt2 �

✓
1� 2M

r

◆�1

dr2 � r2(sin2
qdf

2 +dq

2) , (2.1)

where 0 < r < •. In the above line element, there is a coordinate singularity at r = 2M and a

curvature singularity at r = 0. In the decades that followed, it was gradually understood that there

is an event horizon at r = 2M, and that Schwarzschild spacetime corresponds to the simplest black

hole geometry one can imagine: a static non-rotating black hole in a vacuum spacetime. It was also

understood that the curvature singularity at r = 0 represent a breakdown of the classical description

of spacetime geometry.

7



2.1. Introduction

Another historically important exact solution to Einstein’s equation is the so-called deSitter space-

time, first discovered by Willem deSitter [6]. Mathematically, the deSitter spacetime is the maxi-

mally symmetric vacuum solution of Einstein’s equation with a cosmological constant. One com-

monly used coordinate system is the so-called static coordinates of deSitter spacetime, in which the

line element takes the form

ds2 = (1�Hr)dt2 � (1�Hr)�1 dr2 � r2(sin2
qdf

2 +dq

2) , (2.2)

where H =
p

L/3 is the Hubble constant and 0 < r < •. Provided that one ignores the coordinate

singularity at r = 1/H in the above, the static coordinates can be said to cover the whole of the

deSitter manifold. The physical interpretation of deSitter spacetime is obtained by considering

homogeneous spacelike hypersurface slicings of the deSitter manifold. This results in an FRW

cosmological model for a universe devoid of matter, but with a cosmological constant driving the

expansion of space. One can obtain different cosmologies depending on the choice of spatial slices.

For example, if one uses the so-called “closed” slicing of deSitter spacetime, one can interpret

the full deSitter manifold as a so-called “big bounce” universe. This is an FRW cosmology with

spatially homogeneous constant time slices of spherical geometry, and with a scale factor that first

shrinks to a minimum value and then grows indefinitely. It is from this behavior of the scale factor

that the big bounce universe gets its curious name (the name is in keeping with the names “big bang”

and “big crunch”). Another cosmological model is the so-called deSitter universe or steady-state

universe. This is also an FRW cosmology, where the spatial geometry of the constant time slices

is flat and Euclidean and the scale factor increases exponentially in time. In the so-called planar

coordinates of the deSitter universe, the line element takes the form

ds2 = dt2 � e2Ht �dx2 +dy2 +dz2� , (2.3)

where t is the cosmic time and (x,y,z) are the Euclidean coordinates on the flat slices. It is this latter

cosmological model that will be of interest to us in this thesis. As discussed below, we will consider

a part of Schwarzschild deSitter spacetime which can be interpreted as a black hole embedded in a

deSitter universe.

8



2.1. Introduction

Schwarzschild deSitter (SdS) spacetime is a generalization of both Schwarzschild and deSitter

spacetime, and encompasses both as special cases. It can be thought of as the generalization of

Schwarzschild spacetime obtained when one allows for a positive cosmological constant in Ein-

stein’s equations. Thus it can be interpreted as the spacetime geometry of the simplest black hole in

the presence of the cosmological constant. Like Schwarzschild spacetime, it is a static and spher-

ically symmetric spacetime. A well-known but nevertheless remarkable fact about Schwarzschild

spacetime that it is the unique vacuum spherically symmetric spacetime, as encapsulated by Birkhoff’s

theorem [3]. It is possible to generalize this theorem to SdS spacetime and include the cosmological

constant (see [28] for a proof of the theorem). The static and spherically symmetric nature of SdS

spacetime is captured by its four Killing vectors, one of which is associated with time and three of

which are associated with spherical symmetry. The two parameters characterizing SdS spacetime

are the mass M of the black hole and the value L of the cosmological constant, with SdS space-

time reducing to Schwarzschild spacetime for M = 0 and deSitter spacetime for L = 0. As will be

shown in section 2.7, these two parameters can be combined into a single dimensionless parameter

e = M
p

L/3 in such a way that, up to constant conformal rescaling, the spacetime only depends on

the single parameter e . Thus the essential character of the spacetime geometry only depends on a

single parameter, and without loss of generality we only need to consider the effect of changing the

parameter e on the spacetime structure.

SdS spacetime is rarely used in an astrophysical context due to the fact that the corrections to the

Schwarzschild or Kerr metric due to the cosmological constant are negligible for most observation-

ally relevant astrophysical phenomena (however, see [30] for an example of an application). Here

SdS spacetime is used as the simplest example of a spacetime with both a black hole and cosmo-

logical horizon. Although SdS spacetime is rarely used in an astrophysical context, it is interesting

to point out that according to the L-CDM model of cosmology, SdS spacetime is relevant to the

late time spacetime structure of our universe. The cosmological constant is becoming the dominant

component of energy density in the universe, and localized matter structures are slowly approaching

increasingly isolated supermassive black holes. In the far future, an observer in outer space would

presumably find spacetime structure to be approximately that of a single isolated black hole in a

universe with a cosmological constant; that is, Schwarzschild deSitter spacetime (or more precisely,
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2.1. Introduction

Figure 2.1: Penrose diagram of Scharzschild spacetime. The spacetime can be thought of as con-
sisting of two regions: a black hole region and a white hole region. The line r = 2M with negative
slope separates these two regions.

Kerr deSitter spacetime if one takes into account rotation of the black hole).

The causal structure of the full SdS spacetime manifold has many subtleties, some of which can be

readily understood by considering the Penrose diagram of the spacetime (see [20] for a more de-

tailed discussion of the Penrose diagram of SdS spacetime). In everything that follows, we restrict

ourselves to values of L and M such that 9LM2 < 1. In this case the Penrose diagram is as shown

in figure 2.2. Some of the features of this Penrose diagram can be understood by first recalling the

Penrose diagram of Schwarzschild spacetime, shown in figure 2.1. Like Schwarzschild spacetime,

SdS spacetime has both black hole and white hole regions, which are time reverses of each other.

In contrast to Schwarzschild spacetime, however, SdS spacetime can be viewed as having an infi-

nite series of alternating black hole and white hole regions, as shown in figure 2.2. These can be

thought of as distinct black and white holes, each existing in causally separated parallel universes.

More commonly however, one constructs SdS spacetime using the topological identification process

shown in figure 2.3 (the resulting spacetime is what is normally called SdS spacetime; the case with

an infinite number of black holes is rarely discussed). When the identification process in figure 2.3

is used, the spacelike hypersurfaces of constant time can be taken to have spherical topology, as in

the big bounce universe of deSitter spacetime discussed previously. The topological identification

also means that there is only one black hole and one white hole region. On the other hand, when SdS

10



2.1. Introduction

Figure 2.2: The Penrose diagram of the full spacetime manifold for SdS spacetime. There are an
infinite number of black hole and white hole regions continuing indefinitely in both directions. The
black hole regions can be thought of as black holes embedded in a steady state universe, and the
white hole regions are simply the time reverse of the black hole regions.

spacetime is viewed as having an infinite number of black holes, one usually thinks of the spacelike

slices of constant time as non-compact and with infinite spatial extent. These considerations of the

global topology of SdS will not be important for our purposes since we will be limiting ourselves to

a part of the spacetime containing a single black hole (such as one of the black hole regions shown

in 2.2).

We can further understand the causal structure of SdS spacetime by recalling the Penrose diagram

of deSitter spacetime, shown in figure 2.4. As with SdS spacetime, there is an identification proce-

dure which results in a spacetime where the spacelike hypersurfaces can be chosen to have spherical

topology. Furthermore, with an appropriate choice of slicing the spacelike hypersurfaces are perfect

three spheres, and we obtain the “big bounce” cosmological model discussed previously. Alterna-

tively, one can consider spacelike slices covering only the upper half of deSitter spacetime, also

shown in figure 2.4. In this case, we have an FRW cosmology with flat spacelike hypersurfaces

and a scale factor growing exponentially in time. The resulting cosmological model is sometimes

called the deSitter universe, as discussed above, although it now often also goes under the name

of the steady state universe. The reason for this latter name is that the deSitter universe obeys the

so-called “perfect cosmological principle”, which extends the usual “cosmological principle” by

requiring that not only all vantage points in space be equivalent, but all vantage points in spacetime

be equivalent.

In addition to the use of a Penrose diagram, one can also represent deSitter spacetime as a hy-

perboloid embedded in three dimensional Minkowski spacetime, as shown in figure 2.5. The hy-

11



2.1. Introduction

Figure 2.3: Penrose diagram of SdS spacetime. The identification procedure involves gluing the
two lines of crosses above. The resulting spacetime has spacelike slices of constant time which
have spherical topology.

perboloid results from suppressing two of the spatial dimensions of deSitter spacetime. It nicely

illustrates the slices used in both the big bounce and steady state cosmology of deSitter spacetime

(see [18] for similar diagrams constructed for SdS spacetime).

As with deSitter spacetime, one can consider only half of SdS spacetime (this is the region labelled

“Schwarzschild coordinates region” in figure 2.7). In the limit M = 0 this part of SdS spacetime

reduces to the steady state universe previously discussed, and in the limit L = 0 it reduces to the

black hole half of Schwarzschild spacetime. Putting these two limits together, we interpret the

region of SdS spacetime in figure 2.7 as a black hole embedded in a steady-state universe. It is

well known that in the steady-state universe there is a cosmological horizon surrounding each freely

floating observer, and that the proper distance between such observers increases exponentially with

time. Based on this we expect the black hole embedded in the steady-state universe to eventually

merge with the cosmological horizon of a freely falling observer drifting away from the black hole.

12



2.1. Introduction

Figure 2.4: Penrose diagram for deSitter spacetime. The diagram on the left shows the full deSitter
manifold, where it is understood that the left and right vertical edges are to be glued through an
identification process. The spacelike hypersurfaces of constant time (the horizontal lines) are three
spheres. In the diagram on the right, only the upper half of the deSitter manifold is considered. Here
the spacelike hypersurfaces are three dimensional flat Euclidean space. In terms of the cosmology,
the situtation on the left is the big bounce cosmology and on the right we have the steady state
cosmology. Figure from © [15], page 127, by permission from publisher.

The coordinates used to cover this part of the spacetime will be developed in chapter 3. The space-

like hypersurfaces of these coordinates reduce to the flat spacelike hypersurfaces of deSitter space-

time in the limit that M = 0 (as shown in figures 2.4 and 2.5). In some sense, they can be thought of

as a generalization of what has traditionally been called the planar coordinates of deSitter spacetime.

In the limit M = 0, these coordinates are closely related to the well known Lemaitre coordinates [22]

(this is discussed in section 3.3.2). These coordinates will have several advantages over traditional

coordinate systems such as the Schwarzschild coordinates (section 2.2). For example, they will be

free of coordinate singularities and will have geodesic timelike coordinate curves.

In section 2.2 we review the Schwarzschild coordinates for SdS spacetime and discuss some addi-

tional features of the spacetime which will be relevant in later sections. In section 2.3 we find the

equations for the Schwarzschild coordinates of radial timelike geodesics. These equations will be

important for the coordinate system developed in chapter 3. In section 2.4 we discuss the horizons

of observers stationary next to the black hole. Traditionally, it is these stationary Killing horizons

13



2.1. Introduction

Figure 2.5: The hyperboloid on the left is the full deSitter manifold. The slices of constant time are
circles. These shrink to a minimum size and then grow again, giving rise to the so-called big bounce
cosmology. The diagram on the left shows a set of constant time slices which only cover half of the
hyperboloid. These are the constant time slices of the steady state universe. They are spatially flat
and grow exponentially. Figure from © [15], page 125, by permission from publisher.
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2.2. Schwarzschild coordinates

Figure 2.6: Function f (r) = 1�2M/r�H2r2.

which are called the horizons of SdS spacetime. Understanding these stationary horizons is an im-

portant starting point before undertaking the study of merging horizons in SdS spacetime. In section

2.5 we give a more precise formulation of the problem statement considered in this thesis, although

the full formulation of the problem will not come until chapter 4. In section 2.7 we define a di-

mensionless parameter e which will play an important role in calculations throughout this thesis.

Finally, in section 2.6 we discuss how the r ! • limit of SdS spacetime can be well approximated

by deSitter spacetime (in a sense that we will make more precise). This fact about SdS spacetime

will be important when we set up the equations for the null geodesic generators of the merging

horizons in chapter 4.
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2.2. Schwarzschild coordinates

2.2 Schwarzschild coordinates

SdS spacetime is traditionally presented in Schwarzschild coordinates, where the line element is

ds2 = f (r)dt2 � f (r)�1dr2 � r2(sin2
qdf

2 +dq

2) , (2.4)

f (r) = 1� 2M
r

� L
3

r2 . (2.5)

The Schwarzschild coordinates of SdS spacetime encompass as special cases both the Schwarzschild

coordinates of Schwarzschild spacetime (eq. 2.1) and the static coordinates of deSitter spacetime

(eq. 2.2). Throughout this thesis, we will use units such that G = c = 1 and take the metric sig-

nature to be (+,�,�,�). In the above, the 2-surfaces (t,r) = constant are spheres of area 4pr2,

with q and f the polar and azimuthal angles on these spheres, respectively. The spheres r = rb and

r = rc can be interpreted as the location of black hole and cosmological horizons, respectively, for

a set of static observers. This will be discussed in more detail in section 2.4. The Schwarzschild

coordinates can be used to cover either the black hole or white hole part of SdS spacetime (i.e. any

of the triangular regions in figure 2.2). Figure 2.7b illustrates how the Schwarzschild coordinates

would cover the black hole region of SdS spacetime. This region of spacetime can be thought of as

consisting of three parts: the interior of a black hole for r < rb, an external expanding universe for

r > rc, and an intermediate region rb < r < rc. The regions r < rb, rb < r < rc and r > rc are shown

on the Penrose diagram in figure 2.7a. The coordinate t is timelike in the region rb < r < rc, and

spacelike in the regions r < rb and r > rc. In the intermediate region rb < r < rc observers can in

principle remain stationary with (r(t),f(t),q(t)) = constant, neither caught up in the expansion

of the universe nor irrevocably swallowed by the black hole. Such observers would in general have

a proper acceleration, except at a critical equilibrium radius re 2 (rb,rc), where it is possible to have

a stationary observer outside the black hole whose worldline is a timelike geodesic. This can be

seen by looking at the effective potential for timelike radial geodesics, as shown in figure 2.8 (the

effective potential is found in section 2.3). This unstable equilibrium can be thought of as resulting

from the balance of the expansion pulling the observer to larger r and the gravitational pull of the

black hole pulling the observer to smaller r. The timelike trajectory r(t) = re is shown in figure 2.9.

The equilibrium radius re will play an important role in the coordinate system we will develop in
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2.3. Radial timelike geodesics

chapter 3. Its value can be calculated as

re =
1
H
(MH)

1
3 , (2.6)

where H =
p

L/3. H can be interpreted as the Hubble constant in the case of pure deSitter space-

time. Another value which we be needed in many calculations further on in this thesis is f (re).

From (2.4) and (2.6), we have

f (re) = 1�3(MH)2/3 . (2.7)

2.3 Radial timelike geodesics

Let g(t)= (t(t),r(t),0,p/2) be the Schwarzschild coordinates of an arbitary timelike radial geodesic.

SdS spacetime is static and has the Killing vector

x

(t) = (1,0,0,0) .

This leads to the following conservation law for g(t):

hdg

dt

,x (t)i= E = constant .

That is:
dt
dt

=
E

f (r)
, (2.8)

where (2.4) has been used. Another equation for g(t) comes from the requirement that t be proper

time:

hdg

dt

,
dg

dt

i= 1 .
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2.3. Radial timelike geodesics

(a)

(b)

Figure 2.7: a) Penrose diagram of SdS spacetime with the regions r < ra, ra < r < rb and r > rc

indicated. b) The black hole portion of SdS spacetime covered by Schwarzschild coordinates. This
is the region of the spacetime that will be considered in this thesis.
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2.3. Radial timelike geodesics

Figure 2.8: Effective potential diagram for radial timelike geodesic trajectories in SdS spacetime.
There is an unstable equilibrium at r = re. The black line represent the motion of a geodesic observer
moving away from the equilibrium location.

This gives

f (r)
✓

dt
dt

◆2

� f (r)�1
✓

dr
dt

◆2

= 1 . (2.9)

Substituting (2.8) into the above gives the equation for r(t):

E2 �
✓

dr
dt

◆2

= f (r) .

The above equation can be recast in effective potential form as

✓
dr
dt

◆2

+Veff(r) = E2 ,

where

Veff(r) = f (r) .
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2.4. Horizons of stationary observers

A plot of the effective potential Veff(r) is shown in figure 2.8. We see that there is an unstable

equilibrium point at r = re. If we impose the requirement

r(t =�•) = re (2.10)

on a trajectory, this leads to the following value for E:

E = f (re)
1/2 .

Substituting the above into (2.8) and (2.9) leads to the following equations for t(t) and r(t):

dt
dt

=
f (re)1/2

f (r)
, (2.11)

dr
dt

= ±( f (re)� f (r))1/2 , (2.12)

where the + sign is for trajectories drifting towards larger values of r and the � sign is for tra-

jectories drifting towards r = 0. There is also a trajectory with r(t) = re for all t . The family of

trajectories satisfying the above equations will play an important role in the coordinate system devel-

oped in chapter 3. As well, the horizons considered in this thesis will be those an observer drifting

away from the equilbrium (as shown in figures 2.8 and 2.9), whose coordinates are described by a

solution of the above equation (these horizons will be discussed more in section 2.5).

2.4 Horizons of stationary observers

Consider the Penrose diagram of SdS spacetime, as shown in figure 2.7a. Notice first from this

diagram that unlike Schwarzschild spacetime, there is no clear distinction between future null in-

finity and future timelike infinity, and instead the two combine into what could be called future

null/timelike infinity (see section 5.2 of [15] for a discussion of future null/timelike infinity for

deSitter spacetime). Because of this, it is not possible to use the usual definition of a black hole

event horizon as the boundary of the causal past of future null infinity (see section 12.1 of [32] for
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2.4. Horizons of stationary observers

a detailed definition of a black hole event horizon). Instead, we need an alternative definition of

event horizon. One possibility is to define the black hole horizon as the boundary of the causal past

of future null/timelike infinity. However, since we are ultimately interested in describing the part

of the universe that is accessible to a specific observer, we will use the concept of a causalhorizon,

which is based on the causal past of a timelike trajectory. The causalhorizon of an observer (i.e.

timelike trajectory) is defined as the boundary of the causal past of the observer’s trajectory. For-

mally, if g(t) is the observer’s trajectory, and g(R) is the image of the real line under the mapping

that is g(t), then the causal horizon of g(t) is Bd(J�(g(R))). The terminology “causal horizon”

may not be familiar to some readers, and has not yet gained widespread and popular usage. For

example, some authors prefer to use the words “cosmological horizon” in the cosmological context,

and “Rindler horizon” in the context of accelerated observers, even though these are both observer

dependent horizons which can be subsumed under the broader concept of causal horizons. Here we

follow the terminology in [17] by using the words “causal horizon”.

The causal horizon can naturally incorporate both the black hole and cosmological horizons. For

example, for an observer stationary outside a Schwarzschild black hole, the causal horizon of this

observer would coincide with what we normally think of as the black hole horizon; the spherical

surface at the Schwarzschild radius. More generally, the formal definition of a black hole event

horizon (as in section 12.1 of [32]) coincides with the causal horizon of any observer with a timelike

wordline reaching future timelike infinity. In a cosmological context, it has long been known that

for a geodesic observer in a deSitter universe, the causal horizon is a spherical surface centered on

this observer, and is at a cosmological proper distance equal to the Hubble radius. Historically, this

cosmological horizon of the deSitter universe was one of the first examples where it was necessary

to generalize the concept of the event horizon by considering observer dependent causal horizons.

For example, the concept of the causual horizon is used in a seminal article on the thermodynamics

of cosmological event horizons [11], although it is simply called an “event horizon” in that article.

For simplicity, from now on we will often use the word horizon, where it is implicitly understood

that we are refering to the causal horizon, unless otherwise specified. We will also abuse ter-

minology slightly and use the word horizon to mean either the full horizon, viewed as a 3d null
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2.4. Horizons of stationary observers

hypersurface, or the 2d surface which is formed by taking the intersection of this null hypersurface

with a 3d spacelike hypersurface of constant time. For example, when we use the word horizon

in the context of the deSitter universe, we could be referring to the full horizon, which is a null

hypersurface obtained by taking the boundary of the causal past of a geodesic observer’s trajectory.

However, we could also be referring to the intersection of this null hypersurface with a spacelike

hypersurface t = constant, where t is the time coordinates from the planar coordinates leading to the

line element in (2.3). This intersection results in a spherical surface surrounding the observer, and

is normally what one thinks of when referring to the horizon.

To illustrate the presence of both cosmological and black hole horizons in SdS spacetime, consider

first the trajectory of an observer with r(t) = constant and rb < r(t) < rc, where rb and rc are the

two roots of f (r) = 0 (we assume that 0 < 9LM2 < 1, so that f (r) has precisely two real roots). The

example trajectory of r(t) = re is shown in figure 2.9, and other trajectories with r(t) = constant

would have this same shape. From the Penrose diagram in figure 2.9, we can deduce that the causal

horizon of this observer consists of the spheres r = rb and r = rc (also see figure 2.10a). The outer

sphere r = rc is the cosmological horizon and the inner sphere rb is the black hole horizon. Now

consider any observer satisfying rb < r(t)< rc for all t 2R. From the Penrose diagram, we can once

again conclude that r = rc and r = rb are the cosmological and black hole horizons, respectively.

Thus the concentric spheres r = rb and r = rc are the horizons for a large set of observers who neither

fall into the black hole by crossing r = rb, nor get irrevocably caught up in the accelerated expansion

of the space by crossing r = rc. In addition to being the horizons for a large family of observers,

the horizons r = rb and r = rc are both Killing horizons associated with the Killing vector of the

spacetime. For these reasons, it is natural to call r = rb and r = rc the horizons of SdS spacetime,

and to our knowledge, all previous work on the horizons of SdS spacetime have been dealing with

these horizons exclusively.
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2.5. Problem statement

Figure 2.9: Penrose diagram with two observer trajectories shown. The green trajectory corresponds
to an observer with r(t) = re for all t . The red trajectory corresponds to an observer drifting away
from the unstable equilibrium r = re (see figure 2.8).

2.5 Problem statement

Here we will study the horizons for an observer caught up in the expansion of space and drifting

away from the black hole along a geodesic. This trajectory is shown on the Penrose diagram in figure

2.9. This is a natural trajectory to consider since it resembles what we are currently experiencing in

our universe. According to the L-CDM model of cosmology, we are currently in the L dominated

phase of the universe’s expansion, and black holes are constantly drifting away from us and crossing

our cosmological horizon.

The horizons for such an observer consist of a black hole merging with a cosmological horizon.

Since this merging of horizons is fundamentally 3+1 dimensional, it cannot be deduced from the

1+1 dimensional Penrose diagram alone (see figure 2.10 for an illustration of the past causal horizon

of both stationary and drifting observers on the Penrose diagram). In order to deduce this merging

of horizons and study it, we must calculate the individual trajectories of light rays eminating from

the observer’s trajectory at late times. Schwarzschild coordinates are inadequate for such a calcu-

lation, and so we must develop another coordinate system, as will be discussed in chapter 3. The

calculations of the lights rays which make up the horizon and the analysis of this horizon will be in
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2.5. Problem statement

(a)

(b)

Figure 2.10: a) Penrose diagram with causal horizon (yellow lines) of an observer stationary next to
the black hole. b) Penrose diagram with causal horizon (yellow lines) of an observer drifting away
from the black hole.
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2.5. Problem statement

Figure 2.11: Penrose diagram showing the drifting observer (green curve), the causal horizon of
this observer (yellow lines) and the spacelike hypersurfaces of constant time (red curves). The red
curves are the spacelike hypersurfaces for the coordinate system developed in chapter 3. The upper
and lower red curves correspond to very late times and very early times, respectively. Notice how
the intersection of the lower red curves and the yellow lines is arbitrarily close to r = rb (left side) or
r = rc (right side) at early times. This is what allows us to conclude that at early times, the horizons
of the drifting observer consist of the two concentric spheres r = rb and r = rc.

chapter 4.

Although the merging of horizons discussed in the previous paragraph cannot be deduced explic-

itly by looking at the Penrose diagram, its existence can be inferred by using our knowledge of the

observer’s horizon at both early times and late times. In chapter 3 we will introduce a coordinate

system whose spacelike hypersurfaces are shown in the Penrose diagram in 2.11. From this dia-

gram, we see that at early times, the spacelike hypersurfaces of constant time intersect the horizon

arbitrarily close to the spheres rb and rc. Thus the early time horizons of the drifting observer are the

same as the horizons of the stationary observer; they are concentric spheres, with the inner sphere

being the black hole horizon and the outer sphere being the cosmological horizon.

We can also deduce the shape of the horizon for our drifting observer at late time. At late times,

the spacetime in the neighborhood of the drifting observer can be well approximated by the deSitter

universe, and the trajectory of the drifting observer approaches the trajectory of an observer ex-

panding with the Hubble flow in the deSitter universe. Both of these facts will be discussed in more

detail in section 2.6 below. Thus the horizon surrounding the drifting observer will approach that of
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2.6. r ! • limit of SdS spacetime

an observer caught up in the Hubble flow of deSitter spacetime. That is, the horizon will approach

a closed surface surrounding the observer (the surface will be spherical for the appropriate choice

of time slicing).

In conclusion, if at early times the horizons are two concentric spherical surfaces and at late times

the horizon is a single closed surface, then we can deduce that at some point in time there is a

transition between the two, and this transition must necessarily involve the merger of the black hole

and cosmological horizons. It is this transition which we study in this thesis.

2.6 r ! • limit of SdS spacetime

In section 2.5, we claimed that in the limit that r ! •, SdS spacetime in some sense approaches

deSitter spacetime, and that this could be used to conclude that the late time behavior of a drifting

observer’s horizon must be the same as that of an observer caught up in the Hubble flow of the

deSitter universe (also known as the steady state universe). This conclusion about the late time

behavior of the observer’s horizon is not only important for the heuristic arguments used in section

2.5, but also critical for the calculations to be performed in chapter 4, where we will solve the

equations for the null geodesic generators which make up the horizon. These equations will require

initial conditions, or more precisely, final conditions, which will be obtained using knowledge of

the late time behavior of the horizon. We will use the fact that at late times the drifting observer is

in a part of SdS spacetime well approximated by deSitter spacetime, so that the horizon at late times

should resemble the horizon of an observer drifting in the deSitter universe. That is, at late times the

horizon should be a closed surface surrounding the observer. Notice that for r > rc, the coordinate

r in SdS spacetime is timelike, so that the limit r ! • is the late time limit.

The claim that SdS spacetime approaches deSitter spacetime in the limit r ! • is an inherently

ambiguous one, since it requires a way of comparing two spacetimes. The definition we will use

is that SdS spacetime approaches deSitter spacetime as r ! •, if there exists a coordinate system
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of SdS spacetime where the lapse, shift and 3-metric of SdS spacetime all approach the lapse,

shift and 3-metric in a coordinate system of deSitter spacetime. Usually comparing two spacetimes

by comparing their metric components in specific coordinate systems is hopelessly difficult, since

one cannot disentangle the difference in metric components due to coordinate changes from those

due to genuine changes in spacetime geometry. Fortunately, the Schwarzschild coordinates of SdS

spacetime are linked in a simple and natural way to the static coordinates of deSitter spacetime,

so that according to our definition, we can claim that at late times SdS spacetime does indeed

approach deSitter spacetime (see (2.4) and (2.2) for the line elements of SdS and deSitter spacetime

in Schwarzschild and static coordinates, respectively).

Given the late time behavior of SdS spacetime in the sense defined above, it follows that the late time

behavior of the null geodesics and timelike geodesics in SdS spacetime must approach the late time

behavior of null and timelike geodesics in deSitter spacetime. Again, there is an inherent ambiguity

involving the definition of closeness used when comparing null geodesics in one spacetime to null

geodesics in another spacetime. This can be resolved using a specific coordinate system as was

done when comparing spacetimes above.

To summarize, we use the r ! • behavior of SdS spacetime to infer that the late time behavior

of the horizon must be a closed surface surrounding the drifting observer. This knowledge will in

turn be used in chapter 4 to set up the “initial” conditions (when flowing backwards in time) for the

geodesic equations of the null generators which make up the horizon.

2.7 The dimensionless parameter e = HM

Although the metric components of SdS spacetime depend on both the black hole mass M and the

cosmological constant L, the essential geometry of the spacetime can be characterized by a single
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dimensionless parameter e , defined as follows:

e = HM , (2.13)

where H =
p

L/3 is the Hubble constant. Once e is specified, changing M or L simply amounts

to a constant rescaling of the metric. This can be seen by introducing the dimensionless time t̄ and

radial coordinate r̄ as follows:

t̄ = Ht,

r̄ = Hr .

The line element (2.4) now becomes

ds2 =
1

H2

"✓
1� 2e

r̄
� r̄2

◆
dt̄2 �

✓
1� 2e

r̄
� r̄2

◆�1

dr̄2 � r̄2(sin2
qdf

2 +dq

2)

#
(2.14)

and we see that apart from a constant overall rescaling by the Hubble length 1/H, the line element

only depends on the dimensionless parameter e . Thus all values of M and L which yield the same

value for e = HM lead to conformally equivalent spacetimes. Due to the conformal equivalence of

these spacetimes, the essential character of the geometry only depends on the parameter e . For this

reason, throughout this thesis we will often discuss the dependence of the metric on the parameters

M and L by referring to the single parameter e .

The parameter e is related to the relative size of the spherical black hole and cosmological horizons

of stationary observers (as measured using the circumference of a great circle, for example). For

e ⌧ 1 the black hole is much smaller than the cosmological horizon and as e ! e

�
c , where ec =

1/3
p

3, the black hole size approaches that of the cosmological horizon size. For e > ec there is

neither a black hole or cosmological horizon, and instead we have a naked singularity [20]. In this

thesis we will restrict ourselves to values of M and L such that 0< e < ec, in which case the structure

of the spacetime is as shown in the Penrose diagram in figure 2.9, and the function f (r) will have

precisely two positive roots, rb and rc. The spheres r = rb and r = rc are the locations of the black

hole and cosmological horizons for an observer stationary outside the black hole (stationary in the
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sense of the timelike Kiling vector of (2.4)). The roots rb and rc, as well as the ratio rb/rc, can be

computed for e ⌧ 1 by using pertubation methods to find the solution to f (r) = 0. This gives

rb = 2M(1+O(e2)) ,

rc =
1
H

�
1� e +O(e2)

�
, (2.15)

rb

rc
= e +O(e2) .

From the above we see that for e ⌧ 1 the black hole radius approaches the Schwarzschild radius

rb = 2M and the cosmological horizon approaches the Hubble radius rc =
1
H . As well, we see that the

relative size of rb and rc is characterized by the parameter e , as mentioned previously. Throughout

this thesis we will take the point of view that the case where e = 0 corresponds to pure deSitter

spacetime (i.e. M = 0), with the introduction of e ⌧ 1 equivalent to introducing a small black hole

into the spacetime. In this way considering e ⌧ 1 amounts to considering a perturbation of deSitter

spacetime caused by a small black hole. This perturbation of deSitter spacetime can be seen in the

line element (2.14), where e = 0 gives the line element for deSitter spacetime and e ⌧ 1 introduces

a small perturbation to the gt̄t̄ and gr̄r̄ metric components. The limit e ⌧ 1 will be exploited in some

of the analytical calculations in this thesis. For example, it will be used to approximate the caustic

structure of merging horizons in chapter 4 and the horizon area in chapter 5. It is a very natural limit

to consider, given that for a typical supermassive black hole and the currently accepted value of L,

we would have M ⇡ 1012 m and L ⇡ 10�52 m�2, giving e ⇡ 10�14.
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Chapter 3

Lemaitre-Planar Coordinates

We wish to develop a coordinate system that acomplishes several purposes. First, we would like

these new coordinates to cover the same region of spacetime as covered by Schwarzschild coordi-

nates (see figure 2.7b), so that we may interpret the spacetime region under consideration as a black

hole in the L dominated phase of an expanding universe. Second, in contrast to Schwarzschild co-

ordinates, we would like these coordinates to be free of coordinate singularities. Also in contrast

with Schwarzschild coordinates, if (T,R,q ,f) are the new coordinates, we would like the metric

signature to be (+,�,�,�) on the whole region of spacetime covered by the coordinates, so that T

and R can always be interpreted as timelike and spacelike variables, respectively. Lastly, we would

like the T = constant hypersurfaces to be interpreted as the hypersurfaces of constant time of a ho-

mogeneous and isotropic universe containing a black hole. This interpretation will come from the

fact that the coordinate T will be the proper time for a family of geodesic observers, along with the

fact that these hypersurfaces reduce to the usual hypersurfaces of an FRW cosmology in the limit

M ! 0. The requirement that the spacelike hypersurfaces intersect the black hole can be verified

by, for example, comfirming the existence of an apparent horizon on these hypersurfaces.

The coordinates which will achieve all of these purposes will be developed in this chapter, and are

a special case of the general class of coordinate systems known as Gaussian normal (GN) coordi-

nates. These coordinates are built using a family of freely falling observers (i.e. timelike geodesics)

and hypersurfaces orthogonal to these observers. Given an arbitary spacetime, it is not possible in

general to set up global GN coordinates over the whole of that spacetime, and one must content
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Chapter 3. Lemaitre-Planar Coordinates

(a)

(b)

Figure 3.1: a) The timelike coordinate curves of LP coordinates, shown on the Penrose diagram of
SdS spacetime. b) The spacelike coordinate curves of LP coordinates.
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Chapter 3. Lemaitre-Planar Coordinates

one’s self to a local use of GN coordinates. However, according to the Frobenius theorem (see sec-

tion 2.3.3 of [25], or section B.3 of [32]), if we have a family of timelike trajectories (i.e. timelike

congruence) with vanishing vorticity tensor, then there exists a time coordinate such that the hyper-

surfaces t = constant are everywhere orthogonal to this congruence. One set of spacetimes where

we have such a congruence, and it is possible to set up global GN coordinates, are the familiar

spacetimes of FRW cosmology. For example, GN coordinates for the steady state universe lead to

the familiar line element

ds2 = dt

2 � e2Ht

�
dr

2 +r

2(dq

2 + sin2
qdf

2)
�

(3.1)

which has flat hypersurfaces and an exponential scale factor. The (t,r,q ,f) coordinates above are

often called planar coordinates. The GN coordinates which we will develop for SdS spacetime will

reduce to the planar coordinates of the steady state universe in the limit M = 0, and can be thought

of as a generalization of these coordinates to include the case where there is a single Schwarzschild

black hole. They are also closely related to the well known Lemaitre coordinates [22] in the case

where the cosmological constant is zero (this will be discussed in section 3.3.2). For this reason,

we will call them Lemaitre-planar (LP) coordinates. They will be based on a family of timelike

geodesics eminating from the equilibrium point r = re (see figure 3.3a for the effective potential

diagram and figure 2.9 for the timelike trajectory r(t) = re on the Penrose diagram). The family of

such trajectories is shown on the Penrose diagram in figure 3.1a. The spacelike hypersurfaces of LP

coordinates are shown in figure 3.1b.

As an interesting historical note, it would seem that the earliest construction of GN coordinates

for Schwarzschild deSitter spacetime go all the way back to Lemaitre [22]. These coordinates

(let us simply call them Lemaitre coordinates) reduce to the well known Lemailtre coordinates for

Schwarzschild spacetime in the limit that L ! 0. They also have the attractive feature of having

spatially flat hypersurfaces. However, the part of spacetime covered by these coordinates is not the

part of the spacetime we are interested in considering (see figure 3.2), and so these coordinates will

not be useful for our purposes. The difference between Lemaitre coordinates and LP coordinates

can be understood by comparing the family of radial timelike geodesics used as timelike coordinate
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Chapter 3. Lemaitre-Planar Coordinates

Figure 3.2: Penrose diagram showing the region of SdS spacetime covered by Lemaitre coordinates.

(a) (b)

Figure 3.3: Effective potential diagrams for radial timelike geodesic trajectories. a) The black
line and green lines indicate two families of radial timelike geodesics trajectories: those going
towards r = • and those going to r = 0. The “energy at infinity” is chosen so that these trajectories
all eminate from the equilibrium r = re. These two families are the trajectories used as timelike
coordinate curves for the LP coordinate system. b) The black line indicates a family of outgoing
radial timelike geodesics. The “energy at infinity” for these trajectories is E = 1; it turns out this is
the only value which produces flat spacelike hypersurfaces. This family of trajectories are used as
the timelike coordinate curves of Lemaitre’s coordinate system for SdS spacetime [22].
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3.1. Construction of LP coordinates

curves for these two coordinate systems, as shown on the effective potential diagram in figure 3.3.

The geodesics in Lemaitre coordinates are all radially outgoing, whereas the geodesics in LP coor-

dinates either fall into the singularity or drift out to r = •, always starting from r = re. In Lemaitre

coordinates, the family of timelike coordinate curves are all essentially the same: the radial coor-

dinate as a function of proper time, r(t), is the same for all of them, and they only differ in their

relationship between coordinate time and proper time. In LP coordinates, on the other hand, we

have two families of trajectories whose radial coordinate as a function of proper time are all the

same; those moving radially inward and those moving radially outward.

We construct LP coordinates in section 3.1. This is done by starting from Schwarzschild coordinates

and integrating along the coordinate curves of LP coordinates. This allows us to find the explicit

mapping from Schwarzschild to LP coordinates. This mapping is used in section 3.2 to find the

metric components of SdS spacetime in LP coordinates. In section 3.3 we discuss some additional

features of LP coordinates which will be useful in later sections.

3.1 Construction of LP coordinates

In terms of observers, the timelike coordinate curves of LP coordinates can be thought of as a set

of observers drifting radially away from the equilibrium r = re, as shown on the effective potential

diagram in figure 3.3a and on the Penrose diagram in figure 3.1a. One set of observers drift into

the black hole while the other ones drift away from the black hole, caught up in the expansion of

space. The time coordinate is defined as the time measured by clocks carried by each of these

observers. We place a requirement that the clocks of two sufficiently nearby observers should, to

lowest approximation in the distance between them, agree on the time of an event taking place on

the midpoint of a rod connecting them. Mathematically this amounts to the requirement of having

spacelike hypersurfaces T = constant orthogonal to the timelike coordinate curves. The spatial

coordinates consist of the angles (q ,f), which remain constant for any of our observers, and a

radial variable R, which is also constant for any observer, and whose value is the Schwarzschild
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3.1. Construction of LP coordinates

radius of the observer’s position when that observer’s clock value reads some chosen value T = T ⇤.

We now turn to the mathematical formulation of LP coordinates. Our construction of LP coordinates

is based on four requirements. The first two requirements specify the coordinate curves of the coor-

dinate system, and the second two requirements specify the coordinates which are to be used along

these curves. Suppressing the (q ,f) variables for the moment, let (T,R) be the LP coordinates. We

require that:

(i) The timelike coordinate curves R= constant are radial timelike geodesics satisfying r(t =�•)=

re, where r(t) is the Schwarzschild radial coordinate of the trajectory, parametrized by proper time,

and re is the equiibrium radius (see figure 3.3a for the effective potential diagram and figure 3.1a

for a plot of the timelike coordinate curves on the Penrose diagram).

(ii) The spacelike coordinate curves T = constant are orthogonal to the timelike coordinate curves

(see figure 3.1b for a plot of the spacelike coordinate curves on the Penrose diagram).

(iii) The timelike coordinate T is chosen such that any spacelike coordinate curve T = constant

intersects a chosen timelike coordinate curve R = R⇤ > re at a point with coordinates (T,R) =

(t,R⇤), where t is the proper time along the curve R = R⇤. This intersection of curves is shown in

figure 3.4a. As will be shown in section 3.2, R⇤ can be thought of as essentially arbitrary, in the

sense that its value does not affect the metric components in the LP coordinate system.

(iv) The spacelike coordinate R is chosen such that any curve R = constant intersects a chosen

spacelike coordinate curve T = T ⇤ with R = r, where r is the radial Schwarzschild coordinate of the

intersection point. This intersection of curves is shown in figure 3.4b. As will be shown in section

3.2, the effect of changing T ⇤ on the metric components in the LP coordinate system amounts to

simply shifting the time variable T , and thus T ⇤ is essentially arbitrary.

Translated into precise mathematical language, conditions (i) and (ii) specify the directions of the
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3.1. Construction of LP coordinates

(a)

(b)

Figure 3.4: a) The green curve is the arbitrarily chosen timelike coordinate curve R = R⇤ and the
red curves are the spacelike coordinate curves T = constant. The value of the time coordinate T on
any one of these spacelike curves is assigned to be T = t , where t is the value of the proper time
along the curve R = R⇤ at the point of intersection between the two curves. b) A similar procedure
is used to assign a value to R for the timelike coordinate curves R = constant (shown in red). The
coordinate R is defined such that R = r, where r is the value of the Schwarzschild coordinate at the
intersection point of a timelike coordinate curve with the chosen spacelike curve T = T ⇤ (shown in
green).
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3.1. Construction of LP coordinates

timelike and spacelike coordinate tangent vectors ∂

∂T and ∂

∂R , respectively. Expressed in the basis

of coordinate tangent vectors in Schwarzschild coordinates, ∂

∂ t and ∂

∂ r , these directions are

∂

∂T
µ f (re)

1
2

f (r)
∂

∂ t
+ sgn(r� re) [ f (re)� f (r)]1/2 ∂

∂ r
, (3.2)

∂

∂R
µ sgn(r� re) [ f (re)� f (r)]

1
2

∂

∂ t
+ f (re)

1/2 f (r)
∂

∂ r
. (3.3)

The first relation above comes from the geodesic equations for timelike radial geodesics (equations

(2.11)-(2.12)). The second relation is obtained by simply requiring that h ∂

∂T ,
∂

∂Ri = 0. Conditions

(iii) and (iv) can also be translated into precise mathematical language. Letting r(T,R) be the

function mapping (T,R) coordinates to the Schwarzschild coordinate r, we have:

(iii) , r(T,R⇤) = r0(t = T ;R⇤), where r0(t;R⇤) is a timelike geodesic satisfying r0(t =�•) = re

and r0(t = T ⇤) = R⇤,

(iv) , r(T ⇤,R) = R.

Consider any of the timelike coordinate curves R = constant. Suppressing the coordinate R for a

moment since it is held constant, let r(T ) and t(T ) be the Schwarzschild coordinates along this

coordinate curve. From condition (i) above, we have that r(T ) is a monotonic function of T (except

for the one curve where r(T ) = re for all T ). Therefore we can define the inverse T (r) and the

function t(r) = t(T (r)). By dividing the components of the tangent vector in equation (3.2) we

obtain that t(r) satisfies the following:

dt
dr

����
R=constant

=
f (re)1/2

f (r)( f (re)� f (r))1/2 sgn(r� re) . (3.4)

Next we apply the same procedure to a spacelike coordinate curve T = constant. We suppress the T

coordinate and consider the functions r(R) and t(R) along the curve. For T = T ⇤, we have r(R) = R

and the function r(R) is monotonic. It then follows by continuity that for values of T sufficiently

near T ⇤, r(R) is once again monotonic. Therefore, for values of T near T ⇤, we can define the

37



3.1. Construction of LP coordinates

function t(r) = t(R(r)). We divide the components of the tangent vector in equation (3.3) to obtain

dt
dr

����
T=constant

=
( f (re)� f (r))1/2

f (re)1/2 f (r)
sgn(r� re) . (3.5)

We will obtain the explicit mapping from LP coordinates (T,R) to Schwarzschild coordinates (t,r)

by integrating equations (3.4) and (3.5). Note that the right hand side of (3.4) is ill-defined where

f (r) = 0 and where f (r) = f (re) (i.e. at r = rb, r = rc and r = re) and the right hand side of

(3.5) is ill-defined for f (r) = 0. This difficulty can be overcome by temporarily restricting the

coordinate transformation from LP to Schwarzschild coordinates to any region small enough that

it does not intersect r = rb, r = re or r = rc. We have thus placed two temporary restrictions on

the coordinate mapping from LP to Schwarzschild coordinates: the first is that T be sufficiently

near T ⇤ and the other is that the region considered not intersect r = rb, r = re or r = rc. Once

the explicit mapping from LP coordinates to Schwarzschild coordinates in this restricted region is

obtained, these temporary restriction will be lifted and the mapping will be extended to the full

Schwarzschild region (i.e. the region shown in figure 3.1). This will be done by simply defining the

LP coordinates using the formula obtained for the functions t(T,R) and r(T,R). The justification

for this procedure will ultimately come from the fact that the resulting metric components in LP

coordinates will be well defined over the region of spacetime of interest (the metric components

will be derived in section 3.2).

Let us now derive the functions r(T,R) and t(T,R). To do this, consider two paths joining an

arbitrary point (T,R) to the point (T ⇤,R⇤), where it is understood that (T,R) and R⇤ are chosen so

that the restrictions mentioned in the previous paragraph are met. The first path connects the point

(T,R) to (T ⇤,R⇤) by first going along R = constant until the point (T ⇤,R), and then going along

the path T = T ⇤ until the point (T ⇤,R⇤) is reached. The second path connects the point (T,R) to

(T ⇤,R⇤) by first going along T = constant until the point (T,R⇤), and then going along the path

R = R⇤ until the point (T ⇤,R⇤) is reached. Notice that both of these paths consist entirely of LP

coordinate curves.

We now integrate dt/dr along these two paths. Moving along the first path, we integrate (3.4) from

38



3.1. Construction of LP coordinates

(T,R) to (T ⇤,R) along the coordinate curve R = constant, and then integrate (3.5) from (T ⇤,R) to

(T ⇤,R⇤) along the coordinate curve T = T ⇤. This gives the following equation:

r(T ⇤,R)ˆ

r(T,R)

dt
dr

����
R=constant

dr+

r(T ⇤,R⇤)ˆ

r(T ⇤,R)

dt
dr

����
T=constant

dr = t(T ⇤,R⇤)� t(T,R) . (3.6)

Moving along the second path, we integrate (3.5) from (T,R) to (T,R⇤) along the coordinate curve

T = constant, and then integrate (3.4) from (T,R⇤) to (T ⇤,R⇤) along the coordinate curve R =

constant. This gives the following equation:

r(T,R⇤)ˆ

r(T,R)

dt
dr

����
T=constant

dr+

r(T ⇤,R⇤)ˆ

r(T,R⇤)

dt
dr

����
R=constant

dr = t(T ⇤,R⇤)� t(T,R) . (3.7)

We can find the function r(T,R) by first combining (3.6) and (3.7) into the following equation:

r(T ⇤,R)ˆ

r(T,R)

dt
dr

����
R=constant

dr+

r(T ⇤,R⇤)ˆ

r(T ⇤,R)

dt
dr

����
T=constant

dr =

r(T,R⇤)ˆ

r(T,R)

dt
dr

����
T=constant

dr+

r(T ⇤,R⇤)ˆ

r(T,R⇤)

dt
dr

����
R=constant

dr .

Manipulating the limits of integration in the above and rearranging terms, we obtain the following:

r(T,R)ˆ

r(T ⇤,R)

✓
dt
dr

����
R=constant

� dt
dr

����
T=constant

◆
dr =

r(T,R⇤)ˆ

r(T ⇤,R⇤)

✓
dt
dr

����
R=constant

� dt
dr

����
T=constant

◆
dr . (3.8)

Using (3.4) and (3.5), we have

dt
dr

����
R=constant

� dt
dr

����
T=constant

=
1

f (re)1/2
sgn(r� re)

( f (re)� f (r))1/2 .

From condition (iii) above, and the geodesic equation (2.12), we have that r(T,R) satisfies the

following:
∂ r
∂T

= sgn(r� re)( f (re)� f (r))1/2 (3.9)
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Combining the previous two equations, we have

dt
dr

����
R=constant

� dt
dr

����
T=constant

=
1

f (re)1/2

✓
∂ r
∂T

◆�1

. (3.10)

Substituting the above into (3.8), we obtain

r(T,R)ˆ

r(T ⇤,R)

✓
∂ r
∂T

◆�1

dr =

r(T,R⇤)ˆ

r(T ⇤,R⇤)

✓
∂ r
∂T

◆�1

dr . (3.11)

Interpreted physically, the above is the statement that the timelike curves R = constant correspond

to a family of observers whose clocks are synchronized. It is for this reason that Gaussian normal

coordinates are sometimes also called synchronous coordinates. Let us evaluate the integral on the

right hand side above explictly. We do so by making a change of variables. Fixing R = R⇤, define

r(T ) = r(T,R⇤). r(T ) is a monotonic function and can be inverted to give the function T (r). Using

T (r) as the new variable of integration, the integral becomes

r(T,R⇤)ˆ

r(T ⇤,R⇤)

✓
∂ r
∂T

◆�1

dr =

T̂

T ⇤

dt = T �T ⇤ . (3.12)

Using the above and (3.9) in (3.11), we obtain the following implicit equation for the function

r(T,R):
r(T,R)ˆ

R

dr

( f (re)� f (r))1/2 = sgn(R� re)(T �T ⇤) , (3.13)

where we have used r(T ⇤,R) = R (condition (iv) above). We have also removed sgn(r� re) from

the integral and replaced it with sgn(R� re). It is possible to do this because our definition of the

timelike coordinate curves (condition (i) at the beginning of this section) ensures that none of them

cross r = re, and furthermore our definition of the coordinate R (condition (iv) above) ensures that

sgn(r� re) = sgn(R� re). The integral on the left hand side above can be found analytically. Once

this is done it is possible to write an explicit formula for r(T,R) in terms of elementary functions

and their inverses. This will only be useful for the purpose of extending the coordinate mapping to

all values of the Schwarzschild coordinates, and so we relegate it to section 3.3.3.
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To obtain the function t(T,R), we manipulate the limits of integration and rearrange terms in (3.7)

to get

t(T,R) = t(T ⇤,R⇤)+

r(T,R⇤)ˆ

r(T ⇤,R⇤)

✓
dt
dr

����
R=constant

� dt
dr

����
T=constant

◆
dr+

r(T,R)ˆ

r(T ⇤,R⇤)

dt
dr

����
T=constant

dr . (3.14)

The first integral on the right hand side above is the same as the right hand side of (3.8), and has in

fact already been found. Combining (3.10) and (3.12), we have

r(T,R⇤)ˆ

r(T ⇤,R⇤)

✓
dt
dr

����
R=constant

� dt
dr

����
T=constant

◆
dr =

1
f (re)1/2 (T �T ⇤) .

Substituting the above and (3.5) into (3.14), we obtain the following formula for the function t(T,R):

t(T,R) = t(T ⇤,R⇤)+
1

f (re)1/2 (T �T ⇤)+

r(T,R)ˆ

r(T ⇤,R⇤)

( f (re)� f (r))1/2

f (re)1/2 f (r)
sgn(r � re)dr . (3.15)

The integral on the right hand side can be found analytically. Again, this explicit formula is not nec-

essary except for the purpose of extending the mapping, and so we relegate it to section 3.3.3. Note

that the function t(T,R) above is only known once the function r(T,R) has been found from (3.13).

The equations (3.13) and (3.15), taken together, provide a change of coordinates from Schwarzschild

coordinates (t,r) to the LP coordinates (T,R). In so doing they allow us to find the metric compo-

nents of SdS spacetime in LP coordinates, as will be done in the next section. Additional details

regarding LP coordinates will be dealt with in section 3.3. For example, in section 3.3.3, we deal

with the issue of ensuring that (3.13) and (3.15) provide a mapping over the whole region of SdS

spacetime covered by Schwarzschild coordinates. That is, we ensure that the mapping from LP

coordinates to Schwarzschild coordinates can indeed be extended beyond the restricted region for

which it was originally derived.
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3.2. Metric components in LP coordinates

3.2 Metric components in LP coordinates

We are interested in obtaining the metric components of SdS spacetime in LP coordinates, and so we

must first obtain the four components of the Jacobian matrix of partial derivatives associated with

the coordinate transformation from Schwarzschild to LP coordinates. This is achieved by taking

partial derivatives of (3.13) and (3.15). Taking the partial derivative of (3.13) with respect to T or

R, we get the first two Jacobian components:

∂ r
∂T

= sgn(r� re)( f (re)� f (r))
1
2 , (3.16)

∂ r
∂R

=


f (re)� f (r)
f (re)� f (R)

�1/2

. (3.17)

Next, taking the partial derivative of (3.15) and using the above where necessary, we get the other

two components of the Jacobian:

∂ t
∂T

=
f (re)

1
2

f (r)
, (3.18)

∂ t
∂R

=
[ f (re)� f (r)]sgn(R� re)

f (re)1/2 f (r) [ f (re)� f (R)]1/2 . (3.19)

In the above, it is understood that r = r(T,R) is a function of T and R. Using these four Jacobian

components, we can apply the tensor transformation law to the Schwarzschild metric components

(2.4) to obtain the line element in LP coordinates. This yields

ds2 = dT 2 � f (re)� f (r)
f (re) [ f (re)� f (R)]

dR2 � r2(dq

2 + sin2
qdf

2) , (3.20)

where r = r(T,R) is given implicitly by (3.13). The constant R⇤, which was used as part of the

definition of the coordinates (condition (iii) in section 3.1), does not appear explicitly in the above

line element, nor does it appear in the equation (3.13) defining r(T,R). Thus we see that the value

of R⇤ has no impact on the metric and is essentially arbitrary. The constant T ⇤ (defined in condition

(iv) of section 3.1) affects the above line element through its presence in (3.13). However, as will

be discussed in section 3.3.5, there is a freedom in shifting the variable T by a constant amount. For
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this reason, T ⇤ can be thought of as arbitrary and we will take T ⇤ = 0 from now on. Notice that the

metric component gRR above is undefined at R = re. However, we can define gRR at R = re in such

a way that it is continuous, as will be discussed in section 3.3.4.

3.3 Additional features of LP coordinates

In what follows, we describe some additional features of LP coordinates which will be useful in

later sections, or which shed further light on the coordinate system.

3.3.1 The case M = 0: deSitter spacetime in planar coordinates

In the case that M = 0, (3.20) reduces to the deSitter line element in planar coordinates, as in (3.1).

This can be seen by first noting that when M = 0, we have:

f (r) = 1�H2r2,

f (re) = 1 ,

where re is given by (2.6) and f (r) is given by (2.5). Using the above, the equation (3.13) defining

r(T,R) can be readily integrated to give

r(T,R) = ReHT ,

where recall that T ⇤ = 0. Substituting the above into (3.20) and setting M = 0, we get

ds2 = dT 2 � e2HT �dR2 +R2(dq

2 + sin2
qdf

2)
�
, (3.21)

which is precisely the same as (3.1). The above is the line element of an FRW cosmology with

flat spatial hypersurfaces and an exponentially growing scale factor. It has traditionally been asso-

43



3.3. Additional features of LP coordinates

ciated with the cosmology of a “steady state” universe obeying the perfect cosmological principle.

The above line element also approximates the geometry of a universe going through a period of

inflation. The coordinates (T,R,q ,f) are often called planar coordinates, though in the context of

inflation the name inflationary coordinates is used as well. Mathematically, the coordinates cover

the upper half of the hyperboloid corresponding to deSitter spacetime, as illustrated in figure 2.5.

Physically, the coordinate curves R = constant correspond to a family of freely floating observers in

a homogeneous and isotropic universe, and the coordinate T corresponds to proper time measured

by these observers. The coordinate R is sometimes called the comoving distance and the coordinate

T is sometimes called the cosmic time.

3.3.2 The case H = 0: Schwarzschild spacetime in Lemaitre coordinates

In the case that H = 0, we have

f (r) = 1� 2M
r

,

f (re) = 1 ,

where re is given by (2.6) and f (r) is given by (2.5). The line element (3.20) reduces to

ds2 = dT 2 �
✓

R
r

◆
dR2 � r2dW2 . (3.22)

Let us introduce the new variable r as

r =
2
3

R3/2

(2M)1/2 . (3.23)

(3.22) now becomes

ds2 = dT 2 � 2M
r

dr

2 � r2dW2 .

The above is the line element of Schwarzschild spacetime, with (T,r,q ,f) the well known Lemaitre

coordinates [22]. In the case that H = 0, the LP coordinates are therefore closely related to the
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Lemaitre coordinates, the only difference being the redefinition of the radial variable through (3.23).

The function r(T,r) in the line element above can be found by first obtaining r(T,R) from (3.13),

and then replacing R by r using (3.23). This gives

r(T,R) =
✓

3
2

◆2/3

(2M)1/3(r �T )2/3 .

The region of spacetime covered by these coordinates is the black hole half of Schwarzschild space-

time (the upper half in figure 2.1). The spacelike hypersurfaces T = constant in this coordinate

system are intrinscially flat. To see this, first set T = constant in (3.22) to get

ds2 =�
✓

R
r

◆
dR2 � r2dW2 . (3.24)

Now consider the Jacobian component (3.17) with H = 0:

∂ r
∂R

=

✓
R
r

◆1/2

.

Using the above to transform the line element (3.24) to (r,q ,f) coordinates, we obtain the line

element of three dimensional Euclidean space in spherical coordinates. Physically, the coordinate

curves R = constant correspond to a family of observers falling into the black hole from infinity, and

all with the same “energy at infinity”. They only differ in the reading on their clocks when they pass

through some chosen value of the Schwarzschild radius r. For example, an observer with coordinate

R = R0 would reach the singularity r = 0 at time T = 2
3

q
R3

0
2M . The coordinate T measures proper

time as measured by any one of these observers.

3.3.3 Explicit coordinate transformation from Schwarzschild to LP coordinates

In deriving the coordinate transformation from LP to Schwarzschild coordinates, as given by equa-

tions (3.13) and (3.15), we placed certain restrictions on the values of the coordinates (T,R). This

was to avoid certain technical difficulties, such as the presence of a divergent integrand in (3.15).

The easiest way to overcome these restrictions is to perform the integrals in (3.13) and (3.15) ana-
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lytically, and then use the resulting explicit form of the coordinate transformation as the definition

of LP coordinates. Thus the true definition of the LP coordinates is provided in this section, in the

sense that the definition given by equations (3.13) and (3.15) does not apply to the entire spacetime

region of interest. Since the explicit coordinate transformation given in this section is obtained by

finding the antiderivatives of the integrands in (3.13) and (3.15), it will lead to the same Jacobian,

as given by (3.16)-(3.19), and thus to the same line element (3.20).

We start by giving the mapping from LP to Schwarzschild coordinates. By performing the integral

in (3.13), we obtain the following formula for the Schwarzschild coordinate r as a function of the

LP coordinates (T,R):

r(T,R) =

8
><

>:

reF�1
1

⇣
F1

⇣
R
re

⌘
eHT
⌘
, R  re

reF�1
2

⇣
F2

⇣
R
re

⌘
eHT
⌘
, R � re

(3.25)

where

F1(r) =
⇣

r +1+
p

r(r +2)
⌘" 1�rp

3r(r +2)+2r +1

# 1p
3

,

F2(r) =
⇣

r +1+
p

r(r +2)
⌘"

r �1p
3r(r +2)+2r +1

# 1p
3

. (3.26)

Recall that we have taken T ⇤= 0 in the above. The functions F1(r) and F2(r) are strictly monotonic,

and therefore invertible, for r  1 and r � 1, respectively. The ranges of these functions are F1 � 0

and F2 � 0, so that the domains of the inverses F�1
1 (y) and F�1

2 (y) are well defined for all y � 0.

The formula for the Schwarzschild time coordinate t(T,R) is a little more involved. First we rewrite

(3.15) as

t(T,R) = t⇤+
1

f (re)1/2

0

@T +

rˆ
r⇤

sgn(r � re)( f (re)� f (r))1/2

f (r)
dr

1

A , (3.27)

where t⇤ = t(T ⇤,R⇤) and r⇤ = r(T ⇤,R⇤) and we have once again taken T ⇤ = 0. Recall that R⇤ does

not appear anywhere in the line element (3.20), so that its choice is essentially arbitrary. In addition
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to the freedom in choosing R⇤, there is a freedom in shifting the variable T by an arbitrary constant

amount (this is discussed in section 3.3.5 below). Because of these two freedoms, the choice for the

values of t⇤ and r⇤ are arbitrary, and we take t⇤ = 0 and r⇤ = (re + rc)/2 without loss of generality.

By evaluating the integral in the equation above, we obtain the following formula for t(T,R):

t(T,R) =
1

f (re)1/2 (T +A(r(T,R))�A(r⇤)) , (3.28)

where r(T,R) is given above, and A(r) is the antiderivative of the integrand in (3.27):

A(r) =

q
r2

b +2rbre (re � rb)

H (ra � rb)(rb � rc)
arctanh

0

@ rbre + rer + rbrq
r2

b +2rbre
p

r

2 +2rre

1

A

�
p

r2
c +2rcre (re � rc)

H (ra � rc)(rb � rc)
arctanh

 
rcre + rer + rcrp

r2
c +2rcre

p
r

2 +2rre

!

� ln
✓

1+
r

re
+

1
re

p
r

2 +2rer

◆
(3.29)

�
p

r2
a +2rare (re � ra)

H (ra � rb)(ra � rc)
ln

 
2

rare + rer + rar +
p

r2
a +2rare

p
r

2 +2rre

re (r � ra)

!
.

In the above, ra, rb and rc are the roots of f (r) = 0, with ra < 0 < rb < re < rc. Notice that

the mapping from LP to Schwarzschild coordinates, as given by (3.25)-(3.29), is asymptotically

discontinuous at r = rb and r = rc. That is, as one approaches values of (T,R) such that r(T,R) = rb

or r(T,R) = rc, one finds that t ! • or t ! �•. These discontinuities are a consequence of the

fact that the Schwarzschild coordinates are not defined along r = rb and r = rc. Therefore, strictly

speaking, the equations (3.25)-(3.29) provide three mappings from LP coordinates to Schwarzschild

coordinates: one for 0 < r < rb, one for rb < r < rc, and one for r > rc. For any value of the

Schwarzschild variables (t,r) in any one of these three regions, we can solve (3.25) and (3.28) for

a unique value of the LP coordinates (T,R), with R > 0. This leads to the inverse mapping, which

takes Schwarzschild coordinates into LP coordinates, and is given by

R(t,r) =

8
><

>:

reF�1
1

⇣
F1

⇣
r
re

⌘
e�HT (t,r)

⌘
, r  re

reF�1
2

⇣
F2

⇣
r
re

⌘
e�HT (t,r)

⌘
, r � re

(3.30)
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T (t,r) = f (re)
1/2t +A(r⇤)�A(r) . (3.31)

(3.30)-(3.31) provide the inverse mapping over any one of the three regions previously discussed.

We have thus constructed a coordinate mapping from LP to Schwarzschild coordinates which covers

the region of SdS spacetime of interest, namely the region covered by Schwarzschild coordinates, as

shown in figure 2.7b (where it is understood that points with r = rb and r = rc should not be included

in the region covered by Schwarzschild coordinates). The fact that the coordinate transformation

from LP to Schwarzschild coordinates is not defined for r = rb and r = rc does not present any real

difficulty, since in the end what matters is that the metric components in LP coordinates, as given

by equation (3.20), are well defined for all values of r. The issue of the continuity of the metric

components is dealt with in section 3.3.4.

3.3.4 Continuity of metric components

Consider the gRR component of the line element (3.20):

gRR =� f (re)� f (r)
f (re) [ f (re)� f (R)]

, (3.32)

where r = r(T,R), so that the above is a function of both T and R. Notice that the above is undefined

at R = re. However, by the very definition of our coordinate system (see conditions (i) and (iv) in

section 3.1), we have r(T,Re) = re, so that the numerator vanishes as well as R ! re. We will now

show that the limit of gRR as R ! re is well-defined, so that by defining gRR at R = re as being equal

to this limit, we will have a continuous metric. Using (3.17), we can rewrite the above as

gRR =� 1
f (re)

✓
∂ r
∂R

◆2

. (3.33)

From the above, we see that we can find the limit of gRR as R ! re by calculating ∂ r/∂R at R = re.

To do this, we find the lowest order behavior of r(T,R) near R. First consider F1(r) and F2(r) in
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(3.26). For r near 1, these have the following asymptotic forms:

F1(r) ⇠
⇣

2+
p

3
⌘✓1�r

6

◆ 1p
3
,

F2(r) ⇠
⇣

2+
p

3
⌘✓

r �1
6

◆ 1p
3
.

The inverses F�1
1 (y) and F�1

2 (y) therefore have the following asymptotic forms:

F�1
1 (y) ⇠ �6

✓
y

2+
p

3

◆p
3

+1 ,

F�1
2 (y) ⇠ 6

✓
y

2+
p

3

◆p
3

+1 .

Substituting the two preceeding equations into 3.25, we obtain

r(T,R) = reF�1
i

✓
Fi

✓
R
re

◆
eHT
◆
⇠ re +(R� re)e

p
3HT ,

where i = 1,2. Notice that the asymptotic form of r(T,R) near R = re is the same for both R  re

and R � re. Also, as one would expect, r(T,R) is linear in R near R = re. From the above we can

compute that

lim
R!re

∂ r
∂R

= e
p

3HT .

Substituting the above in (3.33), we get

lim
R!re

gRR =� 1
f (re)

e2
p

3HT ,

so that the limit of gRR as R ! re is well defined. Let us now rewrite the line element for LP

coordinates in (3.20) as

ds2 = dT 2 �gRR dR2 � r2(dq

2 + sin2
qdf

2) ,

with

gRR =

8
><

>:

� f (re)� f (r)
f (re)[ f (re)� f (R)] for R 6= re,

� 1
f (re)

e2
p

3HT for R = re .
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Using the above definition, we have a line element which is defined and continuous for all values

of R > 0 and �• < T < •. As was shown in section 3.3.3, these values of LP coordinates cover

the whole region of SdS spacetime relevant to this thesis (i.e. the region covered by the coordinate

curves shown in figure 3.1). Thus we have a well-defined and continuous line element over the re-

gion of spacetime considered in this thesis. This will be essential when computing the cosmological

and black hole horizons in chapter 4.

3.3.5 Killing symmetries

It was claimed in section 3.3.3 that there is a fundamental ambiguity in the definition of the LP

coordinate T , and that one can add an arbitrary constant to this variable and still obtain essentially

the same coordinate system. In this section, we show how this ambiguity in the definition of T

is related to one of the Killing symmetries of SdS spacetime, and how moving along the flow

associated with this Killing field maps the LP coordinate curves onto themselves, and therefore

does not change the coordinate system in any fundamental way.

The absence of the Schwarzschild coordinate t in the line element (2.4) allows us to deduce the

existence of the Killing vector x

(t) = ∂t for SdS spacetime. The integral curves of this Killing

field are those for which the other three Schwarzschild coordinates (r,q ,f) are held constant. To

understand the role of this Killing symmetry in LP coordinates, we first introduce a new radial

coordinate r as

r(R) =
1
H

ln
✓

F2

✓
R
re

◆◆
, (3.34)

where F2 is defined in (3.26). In the above, and in everything that follows, we are restricting our

attention to R > re. Notice that this corresponds to �• < r < •. The role of the Killing symmetry

in SdS spacetime is the same for both R< re and R> re, so that considering only R> re is sufficient.

Furthermore, the Killing symmetry does not map points with R < re to points with R > re or vice-

versa, so that these two regions can be considered separately without any difficulty. From the above,

50



3.3. Additional features of LP coordinates

we have

dr = ( f (re)� f (R))�1/2 dR .

Using the above, we can transform the line element (3.20) from LP coordinates into (T,r,q ,f)

coordinates to get

ds2 = dT 2 � ( f (re)� f (r)) dr

2 � r2(dq

2 + sin2
qdf

2) , (3.35)

where r = r(T,r). By combining (3.34) with (3.25), we find that r(T,r) is given by

r(T,r) = reF�1
2

⇣
eH(r+T )

⌘
.

Since the line element (3.35) only depends on r and T through r(T,r), it follows that any transfor-

mation of r and T that does not change r will be a symmetry of the spacetime. By examining the

expression for r(T,r) above, we have that for any constant T0, the transformation

T ! T +T0,

r ! r �T0

will leave r unchanged and will be a symmetry of the spacetime. The above symmetry transforma-

tion is precisely the same as the one associated with the Killing field x

(t) in Schwarzschild coordi-

nates, as can be deduced by simply realizing that both have the same integral curves, namely those

obtained by setting (r,q ,f) to constant values. Using (3.34), we can take the above transformation

and find the equivalent transformation in LP coordinates. This gives

T ! T +T0, (3.36)

R ! reF�1
2

✓
F2

✓
R
re

◆
e�HT0

◆
. (3.37)

Since the right hand sides of (3.36) and (3.37) depend only on T and R, respectively, the above

transformation takes the LP coordinate curves T = constant and R = constant and maps them onto

themselves. Thus the LP coordinate system that we have created is in fact a family of coordinate

systems, all of which have the same line element as given by (3.20), and which are all related by the
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transformation given above. Which of these coordinate systems we choose is arbitary. This choice

of coordinates is the freedom in shifting the coordinate T to we alluded to in section 3.3.3. Note

that this freedom is still present even after one has chosen the values for the constants T ⇤ and R⇤

introduced in section 3.1.

3.3.6 Spacelike hypersurfaces: intrisinsic geometry

Let us consider the spacelike hypersurfaces T = constant. The line element on these hypersurfaces

is found by setting dT = 0 in (3.20). This gives

ds2 =� f (re)� f (r)
f (re) [ f (re)� f (R)]

dR2 � r2(dq

2 + sin2
qdf

2) . (3.38)

Now consider using the coordinates (r,q ,f) on the spacelike hypersurface T = constant, where r

is the Schwarzschild radial variable first introduced in (2.4). When used as a coordinate on the

hypersurface T = constant, r is a spacelike variable (this would not be the case if one attempted to

combine the variable r with the time coordinate T from LP coordinates into a “hybrid” coordinate

system (T,r,f ,q); in such a case the variable r would be timelike at some locations in spacetime,

much as it is in Schwarzschild coordinates). From (3.17), we have

dR =


f (re)� f (r)
f (re)� f (R)

��1/2

dr .

Substituting the above into (3.20), we get

ds2 =� 1
f (re)

dr2 � r2(dq

2 + sin2
qdf

2) . (3.39)

We recognize the above as the line element for a three dimensional cone with opening angle of

b = arcsin
�

f (re)1/2�. Unlike the familiar two dimensional cone, this three dimensional cone is not

locally intrinsically flat in the sense of having a vanishing Riemann curvature tensor. In fact the
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Riemann tensor can be calculated to be

R
qfqf

= 3r2(sin2
q)e2/3 ,

where it is understood that there are other non-zero components of the Riemann tensor, related to

the above by an appropriate shuffling of indices. The associated Ricci scalar is

R =� 6
r2 e

2/3 ,

where recall that e = HM. The above reveals a curvature singularity at r = 0. Recognizing that the

spacelike hypersurfaces are not flat will be important in section 4.4.3, where we find that the late

time shape of the horizons is not perfectly spherical, in spite of the fact that the spacetime at late

times is well approximated by deSitter spacetime. This non-sphericity of the horizon is an artifact

of choosing spacelike hypersurfaces which are not intrinsically flat, as will be explained.

3.3.7 Spacelike hypersurfaces: polar coordinates

In this section we describe the coordinates which will be used on the spacelike hypersurfaces T =

constant when analyzing and illustrating the horizon in chapter 4. The horizon we will find can

be thought of as a series of 2-surfaces, each living on one of the hypersurfaces T = constant. We

will use (r,f ,q) as coordinates on these hypersurfaces, leading to the line element (3.39), and

the 2-surfaces will be visualized as living in 3d Euclidean space, with (r,f ,q) playing the role of

spherical coordinates. This way of representing the horizon introduces metrical distortions since

the hypersurfaces T = constant have the geometry of a cone and are not truly Euclidean. However,

visualizing the horizon as a series of 2-surfaces in 3d Euclidean space has the advantage that it easily

allows one to illustrate the basic change in horizon topology that occurs during merger. As well,

it will be useful for identifying and illustrating key features of the horizons, such as the presence

of caustic points. In our graphical representation we will also suppress the q coordinate by setting

q = p/2, so that the horizon will be illustrated as a series of curves in the Euclidean plane, with

53



3.3. Additional features of LP coordinates

(r,f) as polar coordinates. The spherical symmetry of SdS spacetime allows us to recover any

null geodesic from one constrained to q = p/2 by a simple rotation, and the full 2-surface can be

visualized by rotating the curves (such as those in figure 4.4) about the x-axis. Another advantage of

using (r,f ,q) instead of (R,f ,q) coordinates is that the line element (3.39) is considerably simpler

than (3.38), and this will greatly simplify calculations of horizon area in chapter 5.
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Chapter 4

Structure of Merging Black Hole and

Cosmological Horizons

4.1 Introduction

The observer dependent causal horizon we would like to find is defined as the boundary of the causal

past of the trajectory of the observer moving radially away from the black hole. The trajectory of

the observer is shown on the effective potential diagram in figure 3.3a and the causal horizon is

illustrated schematically in figure 2.10b. Our objective is to approximate this causal horizon using a

family of null geodesics called the null generators. Before performing such calculations, we outline

a justification for our procedure, as well as a strategy for computing the null generators.

4.1.1 Null generators of the horizon

We first introduce some notation. Let g(t) be the timelike geodesic trajectory of our observer and let

g(R) be the image of the real line under the mapping g(t). g(R) is the set of spacetime events that

make up the world line of our observer. Let J�(g(R)) and I�(g(R)) be the causal and chronological

pasts of g(R), respectively, and let H be the horizon, so that H ⌘ Bd(J�(g(R))).
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Next we give a definition of the null generators, and justify their use in describing the horizon.

Let us define the null generators of H to be those null geodesics which lie entirely within H .

To understand why null generators give a complete description of the horizon, we invoke theorem

8.1.6 of [32], and apply it to the closed set g(R). Notice that g(R) is a closed set since Bd(g(R)) =

g(R). According to the theorem, every point in S ⌘ Bd(I�(g(R)))� g(R) lies on at least one

null geodesic which is contained entirely in S. Since the set S is precisely the horizon H , this

guarantees that the null generators give a complete description of H . The fact that S = H follows

from Bd(J�(g(R))) = Bd(I�(g(R))) and g(R)\Bd(I�(g(R))) = /0, where the former is discussed

at the bottom of page 191 of [32], and the latter follows from the fact that g(R)⇢ I�(g(R)), along

with the fact that I�(g(R)) is an open set (page 190 of [32]).

The third step is to develop a strategy for computing the null generators. This strategy will depend

crucially on the late time behavior of the generators. The basic idea will be to use knowledge of the

late time behavior of the generators as “initial conditions” for the null geodesic equations.

Before developing our strategy, it is useful to get a better understanding of the future behavior of

the generators. We once again use theorem 8.1.6 of [32], this time using the second part of the

theorem and applying it to the null geodesics associated with the closed set g(R). As discussed in

the previous paragraph, these null geodesics are the null generators of the horizon. The theorem

states that these generators are either future inextendible or have a future endpoint on g(R). Let

us show that none of these generators have a future endpoint on g(R), and so by the theorem just

cited, they are in fact all future inextendible. The proof is by contradiction. Let C (l ) be a generator

of the horizon, and suppose it has a future endpoint p 2 g(R). Since g(R) ⇢ I�(g(R)), we have

p 2 I�(g(R)), and therefore, p 2 Int(J�(g(R))) (where we have used I�(S) = Int(J�(S)); page 191

of [32]). Since Int(J�(g(R))) is an open set (page 190 of [32]) and p 2 Int(J�(g(R))), there is a

neighborhood O of the point p such that O ⇢ Int(J�(g(R))). By the definition of future endpoint

(page 193 of [32]), there must be a value l0 such that C (l ) 2 O for all l > l0. We have thus

shown that C (l ) 2 Int(J�(g(R))) for all l > l0, which contradicts the fact that we must always

have C (l ) 2 H = Bd(J�(g(R))). That is, it contradicts the fact that a generator, by definition, is

contained entirely on the horizon H , as discussed in the paragraph above. We have thus established
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that the generators of the horizon are future inextendible. By definition, this means that they do not

a have a future endpoint (note that this is a stronger statement than claiming that they do not have a

future endpoint in g(R); hence the power of the theorem). Formally, the absence of a future endpoint

for a generator C means that for every point p 2 C , there exists a neighborhood O of p such that

given any l0 2 R, it is the case that g(l ) /2 O for some l > l0. Less formally, the absence of a

future endpoint means that the generators either run into a singularity or continue indefinitely. By

contrast, a future endpoint would mean that a null geodesic was stopped abruptly, and could in some

sense be extended by continuing where it left off (these issues are discussed in detail on page 193

of [32])). The horizon generators which we are interested in here are inextendible due to the fact

that they continue indefinitely towards future timelike/null infinity, as illustrated by the 45 degree

yellow lines in the Penrose diagram (figure 2.10b).

In order to implement our strategy for computing the generators, we need a more precise undertand-

ing of the future behavior of the generators. Having established that the family of null generators

are future inextendible, we can use the Penrose diagram (figure 2.10b) to conclude that they will

satisfy r(l = •) = •, where l is an affine parameter and r(l ) is the Schwarzschild coordinate

of such a curve. If we use the time coordinate T from the LP coordinates developed in chapter 3

as the parameter along the null generators, the condition r(l = •) = • becomes r(T = •) = •

instead (this can be seen by looking at the spacelike coordinate curves of the LP coordinate system,

shown in figure 3.1b). We can gain further insight into the generators which make up the horizon

by using our knowledge of SdS spacetime as r ! •. As discussed in section 2.6, SdS spacetime

approaches deSitter spacetime in the limit that r ! •. We know the shape of the causal horizon

for any geodesic observer in deSitter spacetime consists of a closed surface surrounding that ob-

server. Note that by the shape of the causal horizon, here we mean the intersection of a spacelike

hypersurface with the causal horizon H . Let us denote the spacelike hypersurfaces T = constant

by ST and the intersection with H by ST = ST \H . Based on our knowledge of the shape of the

causal horizon in deSitter spacetime, we expect ST to approach a closed surface surrounding our

observer as T ! •. Such a surface is shown in the last frame of figure 4.4 (it is a curve since one

dimension is suppressed). It is simply the cosmological horizon surrounding the observer once the

black hole and observer have drifted sufficiently far apart. The null generators which make up this
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Figure 4.1: The “trouser” shaped horizon of two merging black holes. The green curves are horizon
generators which enter through caustic points on the “inseam” of the trouser. Notice that these
generators cross at the caustic points.

closed surface will satisfy r(T = •) = • and f(T = •) = 0. Furthermore, since the null generators

which make up the horizon are all future inextendible, they will all reach this final closed surface as

T ! •.

We now have a strategy for finding the null generators which make up the horizon: set up the

null geodesic equations, and look for a family of solutions which form a closed surface as T !

• and satisfy r(T = •) = • and f(T = •) = 0. Since the null geodesic equations cannot be

solved analytically except in certain special circumstances, we use a combination of analytical and

numerical methods. In section 4.4.3, analytical methods are used to find an approximate series

solution for the desired family of geodesics in the limit that T ! •. This approximation is then

used to set initial conditions for the numerical solution of the equations. The numerical method

used is discussed in 4.3.3 and the numerical results are presented in 4.4.1.

Let us conclude this section by making some additional remarks about null generators and the

structure of the causal horizon. As discussed, H is a null hypersurface generated by a family of

future inextendible null geodesics. It thus enjoys the same properties as a traditional black hole
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event horizon. In particular, we have the following (page 203 of [25]): (i) new generators can enter

the horizon through special points on the horizon called caustic points, (ii) once a generator enters

the horizon, it can never leave, and (iii) through each point on H , there is either a unique generator

going through that point, or it is a caustic point where new generators enter. A well known example

of caustics in the context of black holes are those on the “inseam” of the “trouser” shaped horizon

associated with the head-on merger of two non-rotating black holes, as shown in figure 4.1. Notice

how generators cross at the caustic points. In the merger of black hole and cosmological horizons

studied in this thesis, there is also a set of caustic points. These are illustrated in the diagram shown

in figure 4.5. There is some resemblance with figure 4.1, the main difference being that at early

times we have one horizon (the black hole) inside a larger horizon (the comosmological horizon).

One of the focal points of this chapter will be the analysis of the mathematical structure of the

caustic points associated with the merging of the black hole and cosmological horizons. Another

focal point in the analysis of the horizons will be a precise determination of the merger point where

the black hole and cosmological horizon first touch. The analysis of the merger point will be done

in section 4.5.

4.1.2 The family of radial geodesic observers

So far we have been describing the causal horizon H for any observer drifting away from the black

hole along a radial geodesic satisfying r(t = �•) = re and r(t) > re. The observer’s trajectory is

shown on the effective potential diagram in figure 3.3 and on the Penrose diagram in figure 2.10b.

This trajectory is part of a family of observers all drifting away from the black hole along radial

goedesics (this family is plotted on the Penrose diagram in figure 4.2a). Let us prove that the family

of causal horizons associated this family of observers are all equivalent, in the sense that any one

can be obtained from any other by applying a symmetry transformation of the spacetime. Notice

first that this family of geodesics precisely coincides with the timelike coordinate curves in the LP

coordinate system which satisfy r > re (these are the curves to the right of the green curve in figure

3.1a). As was shown in section 3.3.5, the flow associated with the Killing vector field x

(t) maps

this family of curves onto itself. It follows that this family of geodesics, and therefore also their

59



4.1. Introduction

(a)

(b)

Figure 4.2: a) The family of radial geodesic observers drifting away from r = re. Notice that this
set of trajectories was used in the construction of the timelike coordinate curves of the LP coordi-
nate system (figure 3.1a). b) Illustration of the causal horizons (yellow) for three radial geodesic
observers. The observer trajectories, as well as the causal horizons, are related by the symmetry
transformation associated with the Killing vector x

(t).
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causal horizons, are related to each other by the flow associated with x

(t), and thus are related by a

symmetry of the spacetime. This family of horizons is illustrated in figure 4.2b.

4.1.3 Non-radial and non-geodesic observers

More generally, the observers moving along radial geodesic trajectories are part of an even larger

family of observers moving along trajectories which satisfy the following two requirements:

(i) rb < r(t =�•)< rc,

(ii) the trajectory approaches one of the outward radial geodesics as t ! • (as measured using the

proper distance along the hypersurfaces T = constant, for example).

Physically, conditions (i)-(ii) require the observer to start close to the black hole, then move along

a possibly non-radial and/or accelerated trajectory, and finally end up caught up in the Hubble flow

of spacetime. We will now sketch a proof that the causal horizons for the observers in the family of

trajectories satisfying condition (i)-(ii) are all equivalent, in the sense of being related by a Killing

symmetry. As was explained at the beginning of this section, the causal horizon H of any radial

geodesic observer is calculated by propagating null geodesics backwards in time, starting from a set

of light rays forming a closed surface surrounding the observer. Observers statisfying condition (ii)

above have the same late time behavior as radial geodesic observers, and so their causal horizons at

late times are also expected to have the same behavior: a closed surface surrounding the observer,

corresponding to a deSitter horizon for a homogeneous expanding universe. This deSitter horizon

is the cosmological horizon in the steady state universe. Since the late time behavior of these causal

horizons is the same, and this late time behavior uniquely determines the causal horizon for all prior

times, the causal horizon of the observers satisfying (i)-(ii) above are expected to match those of

the radial geodesic observers. In the preceding, we have attempted to motivate the idea that it is

the late time behavior of the observers’ trajectories which determines the causal horizon, so that the
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horizons calculated in this thesis apply to a broader class of observers than simply those which are

moving on radial geodesic trajectories. We have not given a rigourous proof however.

An interesting further generalization of the above considerations would be to ask the following

question: are the casual horizons of all observers reaching r = • the same, in the sense of being

related by a Killing symmetry transformation? This would include trajectories which are non-

geodesic and non-radial for all times. If the casual horizon for such observers are indeed all the

same, one could give a complete categorization of the possible casual horizons of observers in SdS

spacetime (when considering the part of the spacetime covered by LP coordinates; see figure 3.1).

Observers with rb < r(t)< rc for all t would have the familiar spherical Killing horizons r = rb and

r = rc (as discussed in section 2.4), and observers with r(t =•) =• would have the causal horizons

discussed in this thesis. Note that all observers which do not fall into the black hole and reach the

singularity at r = 0 must in fact be in one the two categories just mentioned. This can be deduced

by looking at the Penrose diagram. The question of the causal horizon of observers moving along

non-radial and non-geodesic trajectories for all times will not be explored in this thesis, however.

Instead it will be addressed in a forthcoming publication.

4.1.4 Chapter organization

This chapter is organized as follows. In section 4.2, we set up the null geodesic equations which

will be used to calculate the causal horizon H described above. This is accomplished by first

exploiting the symmetries of SdS spacetime to find the null geodesic equations in Schwarzschild

coordinates (section 4.2.1). These equations contain conserved quantitites which can be used to

naturally incorporate the initial direction of propagation of a backwards light ray. The equations in

Schwarzschild coordinates are then used to find the equations for the functions r(T,a) and f(T,a),

where T is the time variable from LP coordinates, r is the radial Schwarzschild coordinate, f is

the azimuthal angle common to both of these coordinate systems (the angle q will be set to p/2

and thus will be irrelevant), and a is an angle parametrizing the initial direction of propagation of a
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light ray (section 4.2.2). As was discussed in section 3.3.7, when considering a single hypersurface

T = constant, the illustration and analysis of the horizon structure is particularly simple if instead of

using LP coordinates (R,f ,q), one instead uses (r,f ,q) as coordinates on these three dimensional

hypersurfaces.

In section 4.3, we outline the method used for solving the null geodesic equations. First, the equa-

tions for r(T ) and f(T ) are modified by compactifying both T and r (section 4.3.1). This allows

for a more efficient numerical integration of the equations, and gives a method for dealing with the

tricky issue of setting up initial conditions for light rays whose starting point is effectively future

null/timelike infinity. The issue of initial conditions (or more precisely, asymptotic requirements as

T ! •) is dealt with in section 4.3.2. The numerical method used is discussed in section 4.3.3.

In section 4.4, we analyze and illustrate the overall shape of the horizons. First, the results of the

numerical integration are used to display the qualitative structure of the horizons by plotting their

shape for various times (section 4.4.1). Analytical methods are then used to study in detail various

aspects of the global horizon structure. We analyze the motion of lightlike geodesics using effective

potentials, and categorize their possible behavior based on their initial conditions (section 4.4.2).

This analysis corroborates our numerical results, and identifies key quantities whose calculation is

useful for later analytical results. Next we consider the structure of the horizons at late times (section

4.4.3). This allows us to set up an explicit formula which can be used to set the initial conditions

when numerically integrating the null geodesic equations (note that these initial conditions will in

fact already have been used for numerical purposes in section 4.4.1, even though section 4.4.3 comes

after section 4.4.1).

Finally, we focus on the analysis of the location of the merger point when the two horizons first

merge (section 4.5). We give an explicit formula for the location of the merger point, in the limit

that e ! 0 (section 4.5).
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Figure 4.3: The effective potential diagram for null geodesics. The red curve is a plot of V (r) ⌘
Ve f f (r)
sin2

a

= 1
r2

�
1� 2M

r

�
. The green and blue curves are schematic illustrations of trajectories with

and without turning points, respectively. The existence of turning points depends on the “initial
conditions”, as characterized by the value of the parameter a . The precise conditions are sin2

a 
27H2M2 (no turning points) and sin2

a > 27H2M2 (turning point). The parameter values used to
produce the plot are M = 1, 27H2M2 = 1

4 , with sin2
a ⇡ 3/4 and sin2

a ⇡ 2/9 for the green and
blue trajectories, respectively.

4.2 Null geodesic equations

In the following section, we exploit the symmetries of SdS spacetime to find the equations for t(l ),

r(l ) and f(l ), where (t,r,f) are the usual Schwarzschild coordinates and l is an affine parameter

along a backwards null geodesic. In section 4.2.2, we use the equations for r(l ) and t(l ) to find the

equation for T (l ), where T is the time variable in LP coordinates. This equation is then combined

with the equations for r(l ) and f(l ) to yield the equations for r(T ) and f(T ).
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4.2.1 Schwarzschild coordinates

As discussed in section 2.1, SdS spacetime possesses four Killing vectors. The vectors x

(f), x

(1),

x

(2) are associated with spherical symmetry and the vector x

(t) is associated with the stationarity

of the spacetime. The conservation law associated with x

(f) can be used to deduce that there is a

family of geodesics whose trajectories lie entirely on the hypersurface q = p/2. The symmetries

associated with x

(1) and x

(2) are then used to conclude that all other geodesics can be obtained from

this family by applying the transformations associated with the flow corresponding to x

(1) and x

(2).

The upshot of this is that only the geodesics with q = p/2 need to be found, and without loss of

generality we can set q = p/2 immediately in the Schwarzschild line element. Next, we use the

conservation laws associated with the two Killing vectors

x

(t) = (1,0,0,0) =
∂

∂ t
,

x

(f) = (0,0,1,0) =
∂

∂f

.

Letting (t(l ),r(l ),f(l )) be the coordinates of our null geodesic trajectory, the conservation laws

associated with these Killing vectors are

dt
dl

f (r) = e = constant,

df

dl

r2 = l = constant .

The requirement that the trajectory be null leads to

f (r)
✓

dt
dl

◆2

� f (r)�1
✓

dr
dl

◆2

� r2
✓

df

dl

◆2

= 0 .
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Combining the above three equations, we have the equations for the Schwarzschild coordinates of

a null geodesic trajectory:

dt
dl

=
e

f (r)
,

df

dl

=
l
r2 ,

✓
dr
dl

◆2

+

✓
l
r

◆2

f (r) = e2.

It will turn out to be convenient to eliminate the parameters l and e in favor of the single parameter

a 2 [0,2p), defined through the relation

tana = H
✓

l
e

◆
, (4.1)

where H =
q

L
3 as before. The motivation for introducing the parameter a is that in the case M = 0

it can be interpreted as an angle parametrizing the intersection of the horizon with q = p/2 (here

we use the term “horizon” to mean the 2-surface living on a spacelike hypersurface T = constant,

as opposed to the full three dimensional hypersurface). In the case M 6= 0, the interpretation of a is

more subtle, but it nevertheless holds true that the values a 2 [0,2p) parametrize the curve formed

by the horizon’s intersection with q = p/2 (see figure 4.4 for examples of such curves). We will

return to the interpretation of the parameter a in section 4.4.3.

Rescaling the affine parameter l so that l !
⇣

l2 + e2

H2

⌘
l and replacing l and e in favor of a , the

geodesic equations become

dt
dl

=
�H cosa

f (r)
, (4.2)

df

dl

=
�sina

r2 , (4.3)
✓

dr
dl

◆2

+Ve f f (r) = H2, (4.4)

where

Ve f f (r) =
sin2

a

r2

✓
1� 2M

r

◆
. (4.5)
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The equation for r(l ) has been written in effective potential form. From the effective potential

diagram (figure 4.3) we see that for some values of a , light rays reaching r = • will have a turning

point. We have two cases:

(I) If sin2
a  27H2M2, then there are no turning points and dr

dl

> 0 for all l .

(II) If sin2
a > 27H2M2, then there is a turning point at some l = l

⇤ and we have dr
dl

< 0 for l < l

⇤

and dr
dl

> 0 for l > l

⇤ .

We can use knowledge of the two cases above to tranform equation (4.4) into a first order equation,

keeping in the mind the presence of the turning point at l = l

⇤ in the second case. This gives

sin2
a  27H2M2 =) dr

dl

=
q

H2 �Ve f f (r) , (4.6)

sin2
a > 27H2M2 =) dr

dl

=

8
><

>:

�
p

H2 �Ve f f (r) ifl < l

⇤

p
H2 �Ve f f (r) ifl > l

⇤
(4.7)

Alternatively, equation (4.4) can be transformed into a set of coupled first order equations:

dr
dl

= w, (4.8)

dw
dl

= �1
2

V
0
e f f (r) . (4.9)

The equations (4.2)-(4.3), combined with either (4.6)-(4.7) or (4.8)-(4.9) and appropriate initial con-

ditions, form a complete set of equations that can be used to calculate the Schwarzschild coordinates

of a null geodesic in SdS spacetime. In this thesis, we will use either of these sets of equations, de-

pending on the circumstances. First, however, they have to be transformed into equations which

give the Schwarzschild coordinates (r,f) of a null geodesic as a function of LP coordinate time T .

This will be done in the next section.
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4.2.2 LP coordinates and spherical coordinates

We are interested in illustrating and analyzing the structure of the horizons. Although this can

be done in the LP coordinates developed in chapter 3, it will turn out that it is easier to instead

use the following two step process. First, we restrict our attention to a single spacelike hypersur-

face T = constant. Second, on this hypersurface we use the coordinates (r,f ,q), where r is the

radial Schwarzschild coordinate. Notice that when restricting attention to a single hypersurface

T = constant, the coordinate r is always a spacelike coordinate, even though it is a timelike coordi-

nate for r < rb and r > rc when viewed as part of the Schwarzschild coordinates (t,r,f ,q). Using

the coordinates (r,f ,q) on the spacelike hypersurfaces T = constant has two advantages. First, the

line element instrinsic to these hypersurfaces takes the particularly simple form (3.39) in these co-

ordinates. This greatly simplifies the analysis of the horizons. Second, as discussed in section 3.3.7,

we can interpret the coordinates (r,f ,q) as spherical coordinates on the hypersurfaces and use this

interpretation to illustrate the shape of the horizons. Notice that by “horizons” here we mean the

surfaces which are formed by the intersection of a spacelike hypersurface T = constant with the full

null hypersurface which is the boundary of the causal past of the observer. In other words, horizons

are the snapshots in time of the full spacetime horizon.

As explained in section 3.3.7, the horizons can be visualized as being formed by the surface obtained

when rotating the curves such as those in figure 4.4. Therefore it suffices to use (r,f) as polar

coordinates in the Euclidean plane to analyze and illustrate the horizons. Since we will be using

the coordinates (r,f) to analyze and illustrate the horizons on the hypersurfaces T = constant, we

want to find the equations for r(T ) and f(T ). Notice the slight abuse of notation since we have

used notation of the form r(·) for both r(l ) and r(T ), even though these are different functions.

r(T ) and r(l ) give the Schwarzschild coordinates of a null geodesic as a function of LP coordinate

time T or affine parameter l , respectively. If the 1-to-1 function T (l ) for a null geodesic is known,

either one of these functions can be used to find the other (it is shown below that T (l ) is strictly

increasing and therefore 1-to-1). The same abuse of notation applies to f(l ) and f(T ). In cases

where they may be ambiguity as to which of these functions is involved in an equation, it will be
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explicitly mentioned.

The equations for r(T ) and f(T ) are obtained by combining either the first order equations (4.6)-

(4.7), or the coupled first order equations (4.8)-(4.9) for r(l ), and the equation (4.3) for f(l ) with

the equation for T (l ). The procedure is slighly different in the two cases, and so we consider them

separately. In either case, the equation for T (l ) is obtained by using the transformation law

dT
dl

=
∂T
∂ r

dr
dl

+
∂T
∂ t

dt
dl

. (4.10)

First order equations

Substituting (4.2) and (4.6)-(4.7) for dt/dl and dr/dl into (4.10), and using (3.18)-(3.19) to obtain

the Jacobian coefficients ∂T/∂ r and ∂T/∂ t, we get

dT
dl

=
�H f (re)

1
2 cosa � sgn

� dr
dl

�
( f (re)� f (r))1/2 sgn(r� re)

p
H2 �Ve f f (r)

f (r)
. (4.11)

As will be shown in section 4.2.2 below, we always have dT
dl

> 0, so that T (l ) is a strictly increasing

function. Because of this, for every value of T we have a unique value of l , and the first order

equations for r(T ) and f(T ) are obtained by dividing the first order equations for r(l ) and f(l ) in

(4.6)-(4.7) and (4.3) by dT
dl

above. This yields the following equations for r(T ) and f(T ):

dr
dT

=
� f (r)

p
H2 �Ve f f (r)

sgn
� dr

dT

�
H f (re)

1
2 cosa +( f (re)� f (r))

1
2 sgn(r� re)

p
H2 �Ve f f (r)

, (4.12)

df

dT
=

✓
sina

r2

◆
f (r)

H f (re)
1
2 cosa + sgn

� dr
dT

�
( f (re)� f (r))

1
2 sgn(r� re)

p
H2 �Ve f f (r)

. (4.13)

It will be useful to rewrite the above equations more succinctly as

dr
dT

= G±(r), (4.14)

df

dT
= K±(r) . (4.15)
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with the plus and minus signs corresponding to the cases dr
dT > 0 and dr

dT < 0, respectively. The

above equations are most useful when performing analytical computations of the horizons. For

example, they will be used in analyzing the late time behavior of the horizons in section 4.4.3, or

when finding the merger point location in section 4.5. When solving the null geodesic equations

numerically, these equations break down near the turning points, and so instead we will use the

coupled first order equations in (4.8)-(4.9). This system of equations are converted into equations

for r(T ) and f(T ) instead of r(l ) and f(l ) in the next section.

Coupled first order equations

We once again substitute (4.2) for dt/dl and use (3.18)-(3.19) to obtain the Jacobian coefficients

∂T/∂ r and ∂T/∂ t in the equation for dT/dl , given by (4.10) above. The only difference is that

now we use dr/dl = w, as given by the first of the two coupled equations (4.8)-(4.9) for r(l ), and

obtain
dT
dl

=
�H f (re)

1
2 cosa �w( f (re)� f (r))1/2 sgn(r� re)

f (r)
.

As before, the equations for r(T ) and f(T ) are obtained by simply dividing the equations for r(l )

and f(l ) by the above expression for dT/dl . This gives

dr
dT

=
�w f (r)

H f (re)
1
2 cosa +w( f (re)� f (r))1/2 sgn(r� re)

, (4.16)

dw
dT

=
1
2V

0
e f f (r) f (r)

H f (re)
1
2 cosa +w( f (re)� f (r))1/2 sgn(r� re)

, (4.17)

df

dT
=

✓
sina

r2

◆
f (r)

H f (re)
1
2 cosa +w( f (re)� f (r))

1
2 sgn(r� re)

. (4.18)

The above set of three coupled equations will be solved numerically to find the coordinates of the

null geodesics, and these coordinates will be used to illustrate the shape of the horizons in section

4.4. The details of the numerical integration process will be discussed in section 4.3.3.
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Proof that dT
dl

> 0

Let N(r) be the numerator of the right hand side of (4.10):

N(r) =�H f (re)
1
2 cosa � sgn

✓
dr
dl

◆
( f (re)� f (r))1/2 sgn(r� re)

q
H2 �Ve f f (r) . (4.19)

We will show that

r > rc ) N(r)< 0 , (4.20)

rb < r < rc ) N(r)> 0 . (4.21)

Combining the above with (see figure 2.6 for a plot of f (r))

r > rc ) f (r)< 0 , (4.22)

rb < r < rc ) f (r)> 0 , (4.23)

in (4.6)-(4.7) and (4.3), it will follow that the right hand side of (4.10) is always positive, provided

that r > rb. As will be discussed in section 4.4.2, the null geodesics we are interested in satisfy

r(T ) > rb for all T . We can thus be assured that the right hand side of (4.10) is always positive,

as claimed, provided that (4.20)-(4.21) hold, and we are restricting attention to the null geodesics

considered in this thesis.

Let us first prove (4.20). Throughout this part of the proof, it is understood that we are taking r > rc.

First note that

sgn
✓

dr
dl

◆
= 1,

sgn(r� re) = 1 .

The first equation follows from the fact that there are no turning points with r > rc, which will be

proven in section 4.4.2 below, while the second of these equations follows from the fact that rc > re,
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which can be seen in figure 2.6. Using the above, (4.19) becomes

N(r) =�H f (re)
1
2 cosa � ( f (re)� f (r))1/2

q
H2 �Ve f f (r) . (4.24)

In addition, (4.22) implies that the following inequalities hold:

( f (re)� f (r))1/2 > f (re)
1
2 , (4.25)

r
H2 cos2

a � 1
r2 f (r)sin2

a > H | cosa | . (4.26)

Now we use the definition of the effective potential in equation (4.5) to convert (4.26) into the

following inequality: q
H2 �Ve f f (r)> H | cosa | . (4.27)

Applying (4.25) and (4.27) to (4.24), we obtain

N(r)<�H f (re)
1
2 (cosa+ | cosa |) .

The right hand side above vanishes if cosa  0 and is negative if cos> 0, so that we have established

that N(r)< 0 if r > rc.

Next we prove (4.21). Throughout the proof, it is understood that we are taking rb < r < rc. As will

be shown in section 4.4.2, only null geodesics with cosa < 0 ever cross r = rc in order to satisfy

rb < r(T )< rc for some value of T . We can therefore assume that cosa < 0.

First, we use (4.23) to obtain the inequalities

r
H2 cos2

a � 1
r2 f (r)sin2

a < H | cosa |,

( f (re)� f (r))1/2 < f (re)
1
2 . (4.28)

Using the definition of the effective potential in equation (4.5) and the fact that cosa < 0, the first
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inequality above becomes q
H2 �Ve f f (r)<�H cosa . (4.29)

Multiplying the inequalities (4.28) and (4.29), we obtain

�H f (re)
1
2 cosa � ( f (re)� f (r))1/2

q
H2 �Ve f f (r)> 0 .

The next step is to consider sgn
� dr

dl

�
sgn(r� re). Suppose sgn

� dr
dl

�
sgn(r� re) = �1. Then since

cosa < 0, both terms in N(r) are positive and N(r) > 0 follows immediately. If sgn
� dr

dl

�
sgn(r�

re) = �1, then N(r) > 0 follows from the above inequality. Thus we have shown that N(r) > 0

when rb < r < rc. Since we have now shown that both (4.20) and (4.21) hold for the null geodesics

in this thesis, this completes the proof that dT/dl > 0.

4.3 Null geodesic calculations

In what follows, we outline the procedure used to solve the null geodesic equations (4.12)-(4.13)

numerically.

4.3.1 Compactification of the time variable

For the purposes of solving the null geodesic equations numerically, it is useful to compactify the

time variable T . We will denote the compactified variable T̂ . Compactification serves two purposes.

First, it is easier to implement the asymptotic requirements as T ! • once the variable T is com-

pactified. Second, a wise choice of compactification of the time variable effectively introduces a

variable step size in time. This is useful since the horizons undergo the largest change in shape and

area in a O( 1
H ) time interval about the merger point, where H =

p
L/3 is the Hubble parameter.
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With this in mind, we introduce the compactified time variable

T̂ = tanh
✓

HT
2

◆
. (4.30)

The infinte interval T 2 (�•,•) has been compactified to the finite interval T̂ 2 (�1,1).

Consider either the equations (4.14)-(4.15) or the coupled equations (4.16)-(4.18) for r(T ) and

f(T ). Let us convert these into equations for r(T̂ ) and f(T̂ ). Transforming (4.14)-(4.15) using the

change of variables (4.30), we get the following equations for r(T̂ ) and f(T̂ ):

dr
dT̂

=
2

H(1� T̂ 2)
G± (r) , (4.31)

df

dT̂
=

2
H(1� T̂ 2)

K± (r) . (4.32)

Similarly, applying the same change of variables to the coupled equations (4.16)-(4.18), we obtain

the following set of coupled equations for r(T̂ ), w(T̂ ) and f(T̂ ):

dr
dT̂

=

✓
2

H(1� T̂ 2)

◆
�w f (r)

H f (re)
1
2 cosa +w( f (re)� f (r))1/2 sgn(r� re)

, (4.33)

dw
dT̂

=

✓
2

H(1� T̂ 2)

◆ 1
2V

0
e f f (r) f (r)

H f (re)
1
2 cosa +w( f (re)� f (r))1/2 sgn(r� re)

, (4.34)

df

dT̂
=

✓
2

H(1� T̂ 2)

◆✓
sina

r2

◆
f (r)

H f (re)
1
2 cosa +w( f (re)� f (r))

1
2 sgn(r� re)

. (4.35)

Next we consider the initial conditions (or more precisely, limiting conditions as T̂ ! 1�) that will

accompany these equations.
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4.3.2 Asymptotic requirements

We impose the following asymptotic requirements on r(T ) and f(T ) as T ! •:

r(T ) ! •, (4.36)

f(T ) ! 0 .

The first requirement is a consequence of the fact that the null rays are the boundary of the causal

past of an observer reaching future null/timelike infinity at r = •, as shown in figure 2.10b. The

second requirement follows from the fact that the light rays remain a finite distance from our ob-

server as T ! •, and the fact that the observer moves along a trajectory satisfying f(t) = 0 for all

t . These requirements were discussed in more detail in section 4.1, where they were shown to result

from the expected late time behavior of the null geodesic generators of the causal horizon.

Expressed in terms of the compactified time variable (4.30), these conditions become

r̂(T̂ = 1�) = •, (4.37)

f(T̂ = 1�) = 0 .

The above can in some sense be thought of as providing initial conditions for the equations (4.31)-

(4.32). The main difference between the above and proper initial conditions is that the above are

actually limiting conditions on r(T̂ ) and f(T̂ ) as T̂ ! 1�.

Although the conditions (4.37) are necessary conditions for any light ray trajectory which is part

of the horizon, they are insufficient for setting up initial conditions when finding the trajectories

numerically, since the right hand side of the equations (4.31)-(4.32) is ill defined at T̂ = 1. Further-

more, neither of these conditions capture the expected behavior of the horizon as T ! •, which

is a simple closed curve parametrized by a 2 [0,2p), as shown in the last frame of figure 4.4, and

discussed in section 4.1. Notice that the horizon in figure 4.4 is a simple closed curve instead of a

closed surface since we have set q = p/2 and supressed one of the spatial dimensions.
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To set up initial conditions for the equations (4.31)-(4.32), and in order to understand the behavior

of the solutions of (4.12)-(4.13) as T ! •, we will use a series expansion to obtain an approximate

solution for T ! •. How this series expansion is used to set initial conditions for numerical pur-

poses is explained in the next section. The derivation of the series solution will be deferred until

section 4.4.3, where we will perform a detailed analysis of the late time shape of the horizons.

4.3.3 Numerical methods

Initial conditions

The initial conditions to (4.31)-(4.32) are set by using approximations to r(T̂ ) and f(T̂ ) near T̂ = 1.

When presenting these approximations, it is useful to first define x > 0 as

x = 1� T̂ .

In section 4.4.3, we will obtain an approximate series expansion for r(x ) and f(x ) in the limit that

x ⌧ 1. These expansions are of the form

r(x ) =
1
x

�
1+ r1x + r2x

2 + r3x

3 + r4x

4 +O
�
x

5�� , (4.38)

f(x ) = f1x +f2x

2 +f3x

3 +f4x

4 +O
�
x

5� . (4.39)

where r0, r1, r2 and r3 are given by (4.76) and f1, f2, f3 and f4 are given by (4.80)-(4.83). The

approximations to r(T̂ ) and f(T̂ ) near T̂ = 1 are then found by making the substitution x = 1� T̂

in the above.

Equations (4.31)-(4.32) are solved by integrating backwards from some initial value T̂0 = 1� x0

for some small but finite value of x0, with the approximations to r(T̂ ) and f(T̂ ) above providing

the initial conditions. The value of x0 should be chosen small enough that the error introduced by
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approximating the initial conditions is negligible, but not so small that numerical round-off errors

due to the finite number of digits cause a loss of significance either in evaluating the right hand

sides of (4.31)-(4.32), or in evaluating the expression for r(T̂ ) and f(T̂ ) that are used to set the

initial conditions.

Let T0 be the value of T corresponding to T̂0, as given by (4.30). A useful benchmark for determining

a minimum size for the value of x0 is that we should have T0�Tmerger � 1
H , where Tmerger is the time

at which horizon merger occurs. This benchmark is based on the expectation that the largest change

in horizon area and shape takes place over an O( 1
H ) time interval about Tmerger, where H =

p
L/3

is Hubble parameter. Inverting (4.30) and using T̂ = 1�x , we have

T =
1
H

ln
✓

1+ T̂
1� T̂

◆

=
1
H

ln
✓

2�x

x

◆

=
1
H

[� lnx + ln2+O(x )]

⇡ 2.3
H

[� log10 x +0.3+O(x )] .

For example, using the value x0 = 10�10 in the above gives T0 ⇡ 23 1
H � 1

H . Throughout this thesis,

we use the value x0 = 10�4, unless otherwise indicated.

Integration method

In order to find the coordinates (r,f) as a function of LP coordinate time T for a null geodesic,

one approach is to numerically integrate the null geodesic equations for r(T̂ ) and f(T̂ ), either

in the uncoupled form (4.31)-(4.32) or the coupled form (4.33)-(4.35). Numerically integrating

the uncoupled equations (4.31)-(4.32) is problematic at the turning points, since it would require

an infinite number of time steps as one gets arbitrarily close to the turning point. To avoid this

difficulty, we will use the the coupled equations (4.33)-(4.35) for trajectories with turning points,

and the uncoupled equations (4.31)-(4.32) for null geodesic trajectories without turning points. The

77



4.3. Null geodesic calculations

advantage of the uncoupled equations is that there are two equations instead of three, allowing for

a more efficient numerical integration. The uncoupled equations, either in the compactified form

(4.31)-(4.32) or the raw form (4.14)-(4.15), will also be used in analytical calculations involving

the null geodesics. For example, in section 4.4.3 they will be used to find the null geodesics at late

times, and in section 4.5 they will be used to find the location of the merger point where the horizons

first touch.

Equations (4.31)-(4.32) or (4.33)-(4.35) are solved subject to the initial conditions described in sec-

tion 4.3.3 using MAPLE 14’s numeric dsolve procedure, with the integration preceding backwards

from the initial time T̂0. The MAPLE environment variable “Digits” is set to 15, instead of using

the default value of 10, so that floating point calculations are done with 15 digits. This is equivalent

to using double precision floating point calculations, and has the advantage of allowing the value of

x0 from section 4.3.3 to be, for example, x0 = 10�10 without creating a loss of significance due to

rounding of floating point numbers. Note that the system of equations (4.31)-(4.32) or (4.33)-(4.35)

are both considered “stiff” systems, in the sense that excessively small integration time steps are

required to deal with the rapid variation in r(T̂ ) near the initial time T̂ = 1. For this reason, we use

the option stiff=’true’ when calling MAPLE’s dsolve procedure.

For null geodesic trajectories with cosa < 0, both the numerator and denominator of the right hand

side of either (4.31) or (4.17) vanish for r = rc, and we encounter a potential difficulty during the

numerical integration. How this potential difficulty is handled is discussed in detail in section 4.3.3

below.

The equations are solved for a set of values for the parameter a appearing in the equations. The

definition of a is given by equation 4.1, and the interpretation of a is that the values a 2 [0,2p)

parametrize the generators which make up the closed curve in the last frame of figure 4.4. This

closed curve is a representation of the late time horizon, where one spatial dimension has been

suppressed so that the horizon is a closed curve instead of a closed surface. If one considered the

full two dimensional closed surface, it would be parametrized by two angles a and b . However, the

rotational symmetry of the spacetime allows us to ignore the angle b . A more detailed interpretation
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of the parameter a can be found in section 4.4.3.

The specific values of a used in a calculation depends on the problem at hand. For example, when

considering the area of the horizon, we will want to use values of a covering the entire interval

[0,2p). Notice that by reflection symmetry, we can always limit ourselves to values a 2 [0,p)

without any loss of generality.

The sphere r = rc

For null geodesic trajectories with cosa  0, the functions G+(r) and K+(r) in (4.31)-(4.32) are

undefined when r = rc, since both numerator and denominator of the right hand side of (4.12)-(4.13)

vanish at this point. The same difficulty occurs in the right hand sides of the coupled equations

(4.33)-(4.35). Fundamentally, this problematic behavior stems from the fact that one of the null

geodesic equations in Schwarzschild coordinates (equation (4.2)) contains a singularity, and that

although changing to LP coordinates eliminates this infamous coordinate singularity, it does so only

by introducing a vanishing numerator to balance the vanishing denominator in the equations.

For trajectories with cosa  0 and which cross r = rc, this creates a problem when integrating the

equations (4.31)-(4.32) or (4.33)-(4.35) numerically. Depending on the numerical algorithm and

initial conditions used, we have found that it is possible in some cases to integrate the equations

(4.31)-(4.32) through r = rc to obtain (by brute force) a numerical solution satisfying r(Tc) = rc,

where Tc is defined by r(Tc)= rc. However, the accuracy of such a solution is questionable, since it is

possible that the numerical algorithm would attempt to compute G+(r) or K+(r) with r sufficiently

close to rc that a loss of significance would occur. This would be the result of attempting to compute

the ratio of two floating point numbers sufficiently close to zero. The same potential loss of accuracy

arises when dealing with the coupled equations (4.33)-(4.35). The strategy for dealing with the two

cases is slightly different, and so we discuss them separately.
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Uncoupled equations In the case of the uncoupled equations (4.31)-(4.32), our strategy for cir-

cumventing this difficulty will be to approximate G+(r) and K+(r) in the vicinity of rc by using the

functions g+(r) and k+(r), defined by

g+(r) =

8
><

>:

limr!rc G+(r) for rc �D < r < rc +D ,

G+(r) for r  rc �D and r � rc +D ,
(4.40)

k+(r) =

8
><

>:

limr!rc K+(r) for rc �D < r < rc +D ,

K+(r) for r  rc �D and rc � r+D .
(4.41)

The basic approximation used is that G+(r) and K+(r) are assumed to be constant for r 2 (rc �

D,rc +D), and equal to their limiting values as r ! rc. Notice that our approximation is equivalent

to using a first order Taylor approximation to r(T ) for r 2 (rc�D,rc+D), with the expansion taking

place about rc and the derivative r0(T ) being approximated by limr!rc G+(r). Equivalently, we are

essentially taking the numerical method across (rc�D,rc+D) to be one time step using the forward

Euler method.

In the above, D is chosen to be small enough to limit the error introduced by this assumption, but not

so small that rounding errors in the numerator and denominator in G+(r) cause a loss of significance

(the very problem we are trying to avoid).

The limit in (4.40) can be found using L’Hopital’s rule. First recall from (4.12) and (4.14) the

definition of G+(r):

G+(r) =
� f (r)

p
H2 �Ve f f (r)

H f (re)
1
2 cosa +( f (re)� f (r))

1
2 sgn(r� re)

p
H2 �Ve f f (r)

.
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Provided that cosa < 0, we have

lim
r!rc

G+(r)

=�
✓

lim
r!rc

q
H2 �Ve f f (r)

◆ 
lim
r!rc

f (r)

H f (re)
1
2 cosa +( f (re)� f (r))

1
2
p

H2 �Ve f f (r)

!
(4.42)

= lim
r!rc

H|cosa| f 0(r)
1
2 ( f (re)� f (r))�

1
2 f 0(r)

p
H2 �Ve f f (r)+( f (re)� f (r))

1
2 1

2 (H
2 �Ve f f (r))

� 1
2 V 0

e f f (r)

(4.43)

= H cosa

f 0(rc)
1
2 f 0(re)�

1
2 f 0(rc)H cosa + f (re)

1
2 1

2
1

H cosa

V 0
e f f (rc)

. (4.44)

In going from (4.42) to (4.43) above, we have used Ve f f (rc) = H sina for the first limit and

L’Hopital’s rule for the second limit. In going from (4.43) to (4.44) we have used cosa < 0 and

f (rc) = 0 as well.

We can simplify (4.44) by noticing that

Ve f f (r) =
sin2

a

r2

�
f (r)+H2r2� , (4.45)

which follows from (4.5) and (2.5). Differentiating the above and using f (rc) = 0, we obtain

V 0
e f f (rc) =

f 0(rc)

r2
c

sin2
a .

Substituting the above in (4.44) and simplifying, we get

lim
r!rc

G+(r) =
2H2r2

c f (re)1/2

H2r2
c + f (re)1/2 tan2

a

. (4.46)

f (re) is given in terms of M and H in (2.7), and rc is the largest positive root of f (r). The above

allows us to calculate limr!rc G+(r) for cosa < 0, given numerical values for M and H. For cosa =

0, we simply have limr!rc G+(r) =G+(rc) = 0. Notice that as cosa ! 0, the above expression goes

to zero, so that limr!rc G+(r) is continous as a function of a .
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Before calculating limr!rc K+(r), recall the definition of K+(r) from (4.13) and (4.15):

K+(r) =
✓

sina

r2

◆
f (r)

H f (re)
1
2 cosa + sgn

� dr
dT

�
( f (re)� f (r))

1
2 sgn(r� re)

p
H2 �Ve f f (r)

. (4.47)

In the case that cosa < 0, limr!rc K+(r) can be calculated by noticing from the above that we have

lim
r!rc

K+(r) =
sina

r2
c
p

H2 �Ve f f (rc)
lim
r!rc

G+(r) .

Using Ve f f (rc) = H sina , cosa < 0 and (4.46), the above simplifies to

lim
r!rc

K+(r) =
�2H2 f (re)1/2 tana

H2r2
c + f (re)1/2 tan2

a

. (4.48)

In the case that cosa = 0, (4.47) simplifies to

K+(r) =
✓

sgn(sina)

r

◆
f (r)

( f (re)� f (r))
1
2 sgn(r� re)

p
f (r)

,

where we have used |sina| = 1 and (4.45). Although the above is undefined at r = rc, a trivial

simplification reveals that

lim
r!rc

K+(r) = 0 .

Let us summarize our strategy for dealing with the possible loss of accuracy when numerically

integrating the uncoupled equations (4.31)-(4.32) across r = rc. For null geodesics with cosa  0

and r0(T ) > 0 at r = rc, the uncoupled equations (4.31)-(4.32) are replaced with the following

equations instead:

dr
dT̂

=
2

H(1� T̂ 2)
g+ (r) , (4.49)

df

dT̂
=

2
H(1� T̂ 2)

k+ (r) , (4.50)

where the functions g+(r) and k+(r) are given by (4.40)-(4.41), and limr!rc G+(r) and limr!rc K+(r)

are given by (4.46) and (4.48) for cosa < 0, and by limr!rc G+(r) = limr!rc K+(r) = 0 for cosa =
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0.

The coupled equations The difficulty that arises when numerically integrating the uncoupled

equations (4.31)-(4.32) also occurs in the coupled equations (4.33)-(4.34). To see why, consider

null geodesics with r0(T ) < 0 when r(T ) = rc. By combining equations (4.6)-(4.7) with (4.8), we

get that, as long as r0(T )> 0, we must have

w =
q

H2 �Ve f f (r) .

Now substituting the above into (4.34)-(4.35), these equations become

dr
dT̂

=

✓
2

H(1� T̂ 2)

◆
G+(r),

dw
dT̂

= �
✓

1
H(1� T̂ 2)

◆ V
0
e f f (r)p

H2 �Ve f f (r)
G+(r),

df

dT̂
= �

✓
2

H(1� T̂ 2)

◆ 
sina

r2
p

H2 �Ve f f (r)

!
G+(r) .

We see that the same difficulty in evaluating G+(r) that arose in the uncoupled equations also arises

in the above. The strategy for dealing with the coupled equations (4.33)-(4.34) is to replace them

with a modified version of the above equation when w < 0 and r 2 (rc � D,rc + D), where the

modification that we make is to replace G+(r) with limr!rc G+(r) and set r = rc in the remaining

terms. This is basically the same strategy that was used in (4.49)-(4.50) above, where we replace

the right hand sides of the equations with a constant for r 2 (rc �D,rc +D). The main differences

in the case of the coupled equations are that we are dealing with three equations, and the right hand

sides of these equations are functions of both r and w.

83



4.4. Horizon shapes

4.4 Horizon shapes

4.4.1 Numerical results

We begin our illustration and analysis of the shape and structure of the horizon by using numerical

results to plot the coordinates (r cosf , r sinf) at several instants of time T , as shown in figure

4.4. The functions r(T ) and f(T ) are found by solving the equations (4.31)-(4.32) or (4.33)-(4.35)

numerically using the procedure outlined in section 4.3. As discussed in sections 3.3.7 and 4.2.2, the

horizon can be thought of as a series of 2-surfaces, each embedded in one of the hypersurfaces T =

constant, where T is the time coordinate from LP coordinates. These 2-surfaces can be visualized

by rotating the curves in 4.4 about the x-axis, where x = r cosf . Representing the horizon as a 2-

surface in Euclidean space, or a curve in the Euclidean plane, has the advantage that it easily allows

us to identify key features of the horizon shape and structure. Some of these key features will be

discussed further in this section and section 4.4.2. The disadvantage of this representation is that

it introduces metrical distortions since the true geometry of the hypersurfaces T = constant is that

of a 3-cone, which is a curved manifold (see section 3.3.6 for a discussion of the geometry of the

spacelike hypersurfaces).

Consider the progression of frames in figure 4.4. Since integration runs backwards in time, consider

first the last frame. In this frame, the horizon differs only slightly from the “final shape”. As was

explained in section 4.1, the horizon (viewed as a 2-surface) is expected to converge to a “final

shape” which is a closed surface surrounding the observer. In section 4.4.3 below, we will derive

an explicit formula for the horizon at late times using a series expansion. This will confirm our

expectation of the existence of such a final shape, and also allow us to precisely characterize the

slight deviations from the final shape that occur at late times before the horizon finally settles down.

Note that this final shape is not a circle (or not a sphere, if one considers the surface formed by

rotating the curve). Instead it is prolate in the vertical direction, as can be deduced by looking at

the discrepancy between the horizontal and vertical range of the figure. We will return to a precise

characterization of this shape in section 4.4.3. The non-sphericity of the late time horizon shape may
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Figure 4.4: Six frames showing the progression from two distinct horizons at early times to a single
cosmological horizon at late times. Parameter values: M = 1 and L = 1/90. Times for the six
frames: T̂ = 0, T̂ ⇡ 0.6, T̂ ⇡ 0.71, T̂ ⇡ 0.74, T̂ ⇡ 0.81, T̂ ⇡ 0.99
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be surprising, given that the spacetime geometry at late times approaches that of deSitter spacetime,

as discussed in section 2.6, and given that the horizon surrounding an observer in deSitter spacetime

is spherical. The reason for the discrepancy is that the spacelike hypersurfaces T = constant of

our LP coordinate system do not coincide precisely with the usual planar constant time surfaces

of the steady-state universe of deSitter spacetime. So although the full three dimensional horizon,

when viewed as a null hypersurface embedded in spacetime, approaches at late times the same

null hypesurface as a horizon in deSitter spacetime, it has been sliced slightly differently in the

LP coordinate system developed in this thesis, as compared to the usual planar deSitter steady-

state universe slicing. In the limit that M = 0, the horizon shape in LP coordinates is spherical, as

expected from the fact that LP coordinates reduce to the planar coordinates of deSitter spacetime in

this limit, as was discussed in section 3.3.1.

In the fifth frame, we begin to see a significant distortion in the horizon shape due to the influence of

the black hole. In order to easily illustrate the change in shape that occurs due to the black hole, we

have used an unrealistically large value for the parameter characterizing the size of the black hole

relative to the cosmological horizon. A realistic value based on the L-CDM model would be on the

order of e = 10�14 (see section 2.7). Also in the fifth frame, we see that the horizons have moved

significantly closer to r = 0. This approach towards r = 0 occurs roughly as r µ eHT for large values

of T (r is decreasing since we are thinking of progressively smaller values of T ). This is related

to the fact that moving forward in time, an observer caught up in the expansion of spacetime drifts

away with approximately r µ eHT at late times, with the cosmological horizon roughly centered on

the observer’s position.

In the fourth frame, we are just before (i.e. at an earlier time) the critical point where the horizons

merge. Here we can see that we are dealing with two closely spaced but nevertheless disconnected

horizons. With a clear separation into two horizons, we can define the black hole horizon as the

inner horizon, and the cosmological horizon as the outer horizon. On the other hand, in the fifth

and sixth frames, the horizon would be considered to be solely a cosmological horizon, although

possibly with significant distortions due to the black hole. At some time between the fourth and

fifth frames, there is a critical moment in time where the horizons first touch. We call this time the
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merger of the horizons, and the precise location of this event in both space and time will be called

the merger point. Determining the coordinates of the merger point will be the focus of section 4.5.

As explained in section 4.1, the merger point is one of several caustic points where new generators

can enter the horizon. The other caustic points are the points on the horizon which intersect the

line f = p (or the line f = p, q = p/2 if one considers the horizons as 2-surfaces and not curves).

Although it is difficult to see in figure 4.4, the horizon in the first four frames is not smooth along

these points. These nonsmooth points on the horizon converge until they finally join together at the

merger point. Prior to their merger, the green points in between the horizons are the locations of

generators which are not yet part of the horizons, but will later enter the caustic points and become

horizon generators. These are similar to the green curves entering the horizon through the caustic

points along the “inseam” of the “trousers” diagram shown in figure 4.1. In all six frames, the red

points are the locations of the horizon generators.

In the third frame, we see that the horizons are further apart, and there are more (green) generators

which have yet to join the horizon. In the second frame, there are even more green generators,

and we see that these are moving towards the line f = 0 (when going backwards in time). Going

backwards in time indefinitely, these green generators will rotate indefinitely, with three possible

behaviors: either spiralling inwards into the black hole at r = rb, spiralling outwards into the cos-

mological horizon r = rc, or spiralling into the light sphere at r = 3M. None of these generators

ever join the horizons, although all except those approaching r = 3M will get arbitrarily close to

the horizons as we go backwards in time. The generator (or family of generators if we consider

the horizon as a 2-surface and not a curve) that approaches r = 3M is the limiting case that sepa-

rates the generators which approach either horizon, and this critical separator only occurs for one

critical value of the parameter a 2 [0,p), or two values of the parameter if a 2 [0,2p) (recall that

a 2 [0,2p) parametrizes the generators of the sixth frame). These different qualitative behaviors

for both the green and red generators will be analyzed in more detail in section 4.4.2, culminating

in a classification of different generators according to different qualitative behavior. For example,

one important distinction is between those generators which at the very earliest times started on the

horizons, and those which at the very earliest times start not on the horizon, only to later join the

horizon. These are similar to the red and green points, respectively, of the first frame, except that
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one must imagine the limit as T ! �•. That is, one must imagine a very early frame. This dis-

tinction between these two types of generators will be especially relevant in section 5.3.2, where we

will calculate the horizon area increase in time due to these two types of generators, and compare

them to the total horizon area increase.

In the first frame, the horizon is very nearly that of a stationary observer: two nested spheres at

r = rb and r = rc. This agrees with our expectations, since the observer drifting away from the black

hole starts at the equilibrium point r = re, and thus is close to the black hole for an arbitarily long

time. During this time the observer can receive signals from anywhere in the region rb < r < rc,

much like an observer with rb < r(t) < rc for all t (see section 2.4 for a further discussion of the

horizons of such observers).

An alternative way of depicting the merging of the black hole and cosmological horizons is to

use a three dimensional plot, as we have done in figure 4.5. The vertical direction is time and the

horizontal directions are spatial, and as with the 2d plots, one spatial dimension has been suppressed.

In this plot we can see the transition from two separate horizons into one horizon at later times, as

well as the non-smoothness of the horizons along the caustic points prior to merger. As with the

“trousers” diagram of binary black hole merger (figure 4.1), these caustic points occur along an

“inseam”, although the diagram does not resemble a pair of pants (if it was a pair of pants, one pant

leg would be inside the other). Note that unlike our 2d plot, on our 3d figure we have only plotted

the horizons, and not plotted the generators which eventually join through the caustic points along

the inseam.

The analysis of the light rays which make up the horizon is carried out in more detail in the next

section. This analysis will serve two purposes. First, we will focus on certain key generators which

are crucial for further analysis that will be performed in the following sections. Second, a qualitative

analysis of the behavior of the generators will allow us to gain further insight into the structure of

the horizon, and confirm some of the numerical results presented above.
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Figure 4.5: 3d plot of the merging of black hole and cosmological horizons. The vertical axis is time
in LP coordinates and the horizontal axes are the coordinates x = r cosf and y = r sinf . The blue
and crimson surfaces represent the black hole and cosmological horizons respectively. We clearly
see that the crimson and blue surfaces are not smooth prior to merger.
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Figure 4.6: Schematic illustration of the possible behaviors for r(T ) as T !�•. The solid black
circles are points where T =�•. The direction of the arrows are thought of as indicating the direc-
tion of decreasing T , or equivalently, of decreasing l . The solid black curve is the effective potential
V (r)
sin2

a

= 1
r2 (1� 2M

r ), and the three coloured curves indicate the different cases for the trajectories,
based on the value of sina . Consider first the case where sina > 27e

2, as shown by the green curve.
If cosa � 0, then we have T = �• at rc, without a turning point in the behavior of r(T ). On the
other hand, if cos(a)< 0, then we have T =�• at rc also, but this time with a turning point in the
behavior of r(T ). For the cases where sin2

a = 27e

2 and sin2
a < 27e

2, if cosa � 0 then T =�•
at rc. If cosa < 0, then we have r(T =�•) = 3M and r(T =�•) = rb for the cases sin2

a = 27e

2

and sin2
a < 27e

2, respectively.

4.4.2 Classification of null generators

As discussed in section 4.1, the horizon can be thought of as a null surface generated by a family

of light rays, known as the null generators. We can gain further insight into the overall structure

of the horizon by classifying these generators into different categories, based on the behavior of

the generators at early times. This classification will be done by using the parameter a , which

parametrizes the generators such that each generator has precisely one value of a . The interpretation

of a was briefly discussed in section 4.2.1, and will be revisited in more detail in section 4.4.3. Even
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though the coordinates of the generators depend on the parameter a as well as the time T , so that

we could write r = r(T,a), we will suppress the dependence on a and simply write r = r(T ).

The first classification of generators is based on the limiting behavior of the radial Schwarzschild

coordinate r(T ) as T !�•. As can be seen in the first frame of figure 4.4, generators appear to start

from either the sphere r = rb or the sphere r = rc. We will confirm this by combining the effective

potential diagram (figure 4.3) with an understanding of the behavior of T (l ), as given by (4.10).

Note that in everything that follows we are considering null geodesics satisfying r(l = •) = •.

These can be visualized as moving to the right with increasing l for large values of r in figure 4.3.

Since we are interested in the behavior of r(T ) as T ! �•, let us start by considering equation

(4.10) and looking for finite values l0 such that T (l+
0 ) =�•. To identify such values, notice that

dT
dl

����
l

+
0

= • () T (l+
0 ) =�• ,

which follows from the fact that T 0(l ) > 0, as was shown in section 4.2.2. Thus it suffices to

find values of l0 where the right hand side of (4.11) diverges. This requires that the numerator is

nonvanishing and the denominator vanishes. The vanishing of the denominator leads to

f (r(l0)) = 0 =) r(l0) = rb or r(l0) = rc , (4.51)

which can be seen from figure 2.6. The condition that the numerator be nonvanishing leads to the

following requirement:

sgn

 
(r� re)

dr
dl

����
l0

cosa

!
� 0 . (4.52)

Putting together the previous two requirements, we conclude that

r(l0) = rb and sgn

 
dr
dl

����
l0

cosa

!
 0

=) T (l+
0 ) =�•

=) r(T =�•) = rb , (4.53)
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and

r(l0) = rc and sgn

 
dr
dl

����
l0

cosa

!
� 0

=) T (l+
0 ) =�•

=) r(T =�•) = rc , (4.54)

where we have used the fact that sgn(rb�re) =�1 and sgn(rc�re) = 1, respectively, as can be seen

from figure 2.6. It will turn out that there are only two generators (i.e. two values of a) that do not

satisfy either of the above conditions, so that r(T =�•) = rb or r(T =�•) = rc for all except two

null generators. To classify the values of a according to either r(T =�•) = rc or r(T =�•) = rb,

let l1 and l2 be defined such that r(l1) 2 {rb,rc} and r(l2) 2 {rb,rc}, with l1 < l2. From the

effective potential diagram 4.3, we see that for any trajectory with r(l = •) = •, there are three

possibilities for r(l1) and r(l2). These are

sin2
a < 27H2M2 =) r(l1) = rb, r(l2) = rc , (4.55)

sin2
a > 27H2M2 =) r(l1) = rc, r(l2) = rc , (4.56)

sin2
a = 27H2M2 =) l1 does not exist, r(l2) = rc . (4.57)

Furthermore, the signs of r0(l1) and r0(l2) are as follows:

sin2
a < 27H2M2 =) r0(l1)> 0 and r0(l2)> 0 , (4.58)

sin2
a > 27H2M2 =) r0(l1)< 0 and r0(l2)> 0 , (4.59)

sin2
a = 27H2M2 =) r0(l2)> 0 . (4.60)

Combining (4.55), (4.58) and (4.53), we conclude that

cosa < 0 and sin2
a < 27H2M2 (4.61)

=) r(l1) = rb and T (l+
1 ) =�•

=) r(T =�•) = rb .
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Similarly, combining (4.56), (4.59) and (4.54), we have

cosa < 0 and sin2
a > 27H2M2 (4.62)

=) r(l1) = rc and T (l+
1 ) =�•

=) r(T =�•) = rc .

Lastly, combining (4.55)-(4.57), (4.58)-(4.58) and (4.54), we get

cosa � 0 =) r(l2) = rc and T (l+
2 ) =�• =) r(T =�•) = rc . (4.63)

The three cases (4.61), (4.62) and (4.63) give the limiting behavior of r(T ) as T ! • for all values

of a except those for which

cosa < 0 and sin2
a = 27H2M2 .

From figure 4.6 we see that the above corresponds to the critical case where the light ray trajectory

approaches the unstable equilibrium at r = 3M and satisfies

r(l =�•) = 3M .

Since T 0(�•) > 0, as shown in section 4.2.2, we have T (l = �•) = �• and the above implies

that

cosa < 0 and sin2
a = 27H2M2

=) r(l =�•) = 3M and T (l =�•) =�• (4.64)

=) r(T =�•) = 3M .

Finally, we can put together (4.61), (4.62), (4.63) and (4.64), so that we have the behavior of r(T )

93



4.4. Horizon shapes

as T !�• for all values of a:

cosa < 0 and sin2
a < 27H2M2 =) r(T =�•) = rb ,

cosa < 0 and sin2
a = 27H2M2 =) r(T =�•) = 3M ,

cosa � 0 or sin2
a > 27H2M2 =) r(T =�•) = rc .

The above results are summarized in figure 4.6. They confirm the basic separation of generators

into those which start either near r = rb or r = rc, as was discovered numerically and can be seen in

the first frame of figure 4.4. Furthermore, we have given precise values of the parameter a where

this separation occurs. Notice that the above result is not merely stating that the horizon at early

times consists of the spheres r = rb and r = rc, as could easily be deduced from the Penrose diagram

in figure 3.1b. Instead, our result is that all generators except those with sin2
a 6= 27H2M2 and

cosa < 0, including those which do not start on the horizon, approach r = rb or r = rc as T !�•.

A further subdivision separates null generators into the following two categories: those which start

on either the black hole or cosmological horizon, as opposed to those which only join these horizons

later. This distinction is best understood by looking at figure 4.7, where the color of the generator

indicates its origin. Red and blue generators start on the cosmological and black hole horizons,

respectively, whereas green generators do not start on either horizon, but instead join the horizons

by entering through the caustic points along f = p . Based on the last frame in this figure, we see

that we can introduce a1 2 [0,p) and a2 2 [0,p) such that generators satisfying a1  a  a2 or

a1  2p �a  a2 will be those which did not begin on either horizon (i.e. green generators).

Suppose we assume that the horizons have the basic shape as shown in figure 4.4, with caustic

points on the horizon occuring if and only if f = p . This claim can be proven analytically through

a detailed analysis of the properties of the function f(T ;a), but we will not pursue this here. With

this basic assumption it follows from the fact that generators can only enter through caustic points,

as discussed in section 4.1, that we have

a1  a  a2 or a1  2p �a  a2 () |f(T =�•)|� p . (4.65)
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Figure 4.7: Three frames showing the merging of horizons, with a color scheme to indicate the
origin of each null generator. Blue and red are used to indicate null generators which begin on
the black hole and cosmological horizons, respectively. Green is used to indicate generators which
begin on neither horizon. This color scheme is unlike the one in figure 4.4, where we used the colors
to indicate if a null generator was currently part of either the cosmological horizon, the black hole
horizon, or neither.
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This above condition will be important in section 5.3.2, where a calculation of a1 and a2 for e ⌧ 1

will be used to find the relative area increase due to the three types of generators, in the limit that

e ! 0.

4.4.3 Horizon at late times

For sufficiently large values of LP coordinate time T , we can see from the effective potential diagram

(figure 4.6) that dr
dT > 0, so that r(T̂ ) obeys the following equation:

dr
dT̂

=
2
H

1
1� T̂ 2

G+ (r) , (4.66)

where G+(r) is the right hand side of (4.12) for the case dr
dT > 0. Let x = 1� T̂ replace T̂ as the

independent variable. The equation (4.66) above becomes the following equation for r(x ):

dr
dx

=
�1

Hx (1�x/2)
G+ (r) . (4.67)

We will look for an approximate asymptotic solution of the form

r(x ) =
1
x

n

Â
i=0

rix
i +O(x n+1) , (4.68)

where the coefficients ri are allowed to depend on M, H and a . Notice that x ! 0+ corresponds

to T ! •, and that (4.68) automatically incorporates the asymptotic requirement (4.36). In section

4.4.3, we briefly discuss the movitation behind choosing an expansion of the form (4.68). We

then find the expansions for r(x ) and f(x ), which will be (or already have been) used for several

purposes. In section 4.4.1, they were used as initial conditions when solving the null geodesic

equations from section 4.3.1 numerically. In section 4.4.3 below, we will use r(x ) and f(x ) to

describe and analyze the shape of the horizon as T ! •. In section 4.4.3, we discuss the validity of

the above expansion.
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The coefficient r0

Although we have allowed r0 to depend on a for the sake of generality, we can see that if the

shape of the horizon at late times is to be a closed surface at a finite distance from the observer (as

discussed in section 4.1), then r0 must be independent of a . The reasoning is as follows. Suppose

r0(a1) 6= r0(a2), so that r0 does depend on a . Then if r(x ;a) is the solution to equation (4.67),

with the expansion given by (4.68), we have that k(r(x ;a1),f(x ;a1))� (r(x ;a2),f(x ;a2))k! •

as e ! 0, where the norm k · k is, for example, the geodesic distance along the hypersurface T =

constant, with the metric (3.39) providing the measure of distance, and we have set q = p/2 for

simplicity. In other words, if r0 depends on a , the distance between two geodesics with different

values of r0 would become infinite as T ! • (i.e. x ! 0+), and this would clearly contradict our

requirement and expectation that the null geodesics form a closed surface a finite distance from the

observer as T ! •. This expectation was discussed in 4.1, and is motivated by the fact that as

T ! •, the observer is in a region of spacetime well approximated by deSitter spacetime.

As can be deduced from (4.72) below, the coefficient r0 in the expansion (4.68) is essentially arbi-

trary, in the sense that changing the value of r0 simply amounts to a shift in the time variable T . This

is unlike the coefficients r1, r2 and r3 in the expansion, which will be determined by substituting the

expansion (4.68) into the equation (4.67). Since changing the value of r0 corresponds to a simple

shift of the time variable T , we will use the following convenient value:

r0 =
2
H

.

Motivation for the expansion

To understand the expansion (4.68), let us first rewrite it as

r(x ) =
r0

x

+ r1 +
n

Â
k=2

rkx

k +O(x n+1) . (4.69)
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Consider the first term on the right hand side, which characterizes the lowest order asymptotic

behavior of r(x ):

r(x )⇠ r0

x

. (4.70)

To understand this lowest order behavior, we invert the relation (4.30) and use x = 1� T̂ to get

eHT =
2
x

�1 . (4.71)

Using the above in (4.69), this gives

r(T ) =
r0

2
eHT +O(1) . (4.72)

As discussed in section 4.4.3, r0 is independent of a . Provided that we have f ⇠ x , which can be

deduced from (4.77) below, it follows from the above that the family of light rays with a 2 [0,2p)

are all a finite distance away from each other. Here the measurement of distance is made using the

proper length of spacelike geodesics on the hypersurfaces T = constant. Now compare the above

with the r coordinate as a function of proper time for our drifting observer, which can be deduced

from the r ! • limit of equation (2.12):

robs(T ) = AeHT +O(1) . (4.73)

The above has precisely the same form as (4.72), so that the light rays with r(T ) given by (4.72) can

be interpreted as not only a finite distance from one another, but a finite distance from the observer

as well. As with the constant r0, changing the constant A in the above amounts to shifting the time

variable T by a constant amount. Provided that we choose A = r0/2, the observer’s trajectory will

be precisely centered on the family of light rays with coordinates given by (4.72). Changing the

constant r0 amounts to shifting between the different observer trajectory curves in figure 4.2a, and

changing the constant A amounts to shifting between the different light cones shown in figure 4.2b.

By choosing A = r0/2, we are requiring that the observer’s trajectory (one of the curves in figure

4.2a) is correctly matched with one of the light cones from figure 4.2b.

The fact that (4.72) and (4.73) have the same exponential dependence on T can be seen as a conse-
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quence of the way we constructed LP coordinates. By choosing timelike geodesic trajectories as the

timelike coordinate curves, and by constructing spacelike coordinate curves which are orthogonal to

the timelike curves, we have ensured that the coordinates of the null generators at late times follow

the coordinates of the observer. This is similar to the way that the cosmological horizon is a finite

distance from an observer in deSitter spacetime, where the distance is measured along the flat planar

slices of the deSitter universe.

Another way of understanding the asymptotic behavior (4.70) is to consider the equation (4.12) for

large values of r, so that it becomes

dr
dT

= Hr+O(1) .

The above has the approximate asymptotic solution (4.72), which then becomes (4.70) after using

(4.71).

Next consider the second term on the right hand side of (4.69). This term is O(1), and we can write

r(x )� r0

x

⇠ r1 .

Notice that the right hand side above is the lowest order term which depends on a , and therefore

will be the largest term in the series which contributes to the shape of the horizon as T ! •. The

fact that this term is also independent of x suggests that it will play a role in determining a final

shape of the horizon. In section 4.4.3 below, we show that there is indeed a final shape which is

independent of T , and we will use the O(1) and O(x ) terms of r(x ) and f(x ), respectively, to

derive an anlalytical formula for this shape. This final shape can also be seen in the last frame of

figure 4.4.

Finally, consider the terms which are O(x ) and smaller in (4.69). These terms will play a role

in determining the slight deformations that occur in the final shape for large values of T (i.e. for

x ⌧ 1). An example of such a deformation can be seen in the second to last frame of figure 4.4.

99



4.4. Horizon shapes

We have motivated the form of the series (4.69), and we will confirm its accuracy by comparing

it to numerical solutions in section 4.4.3. However, as will be discussed in section 4.4.3, we have

good reason to believe that the series (4.69) is not an exact solution but instead is only an asymptotic

series.

The expansion coefficients r1, r2 and r3

To find the unkown coefficients r1, r2 and r3, we first expand the function G+(r):

G+(r) = Hr� f (re)
1/2 cosa +

✓
f (re)cos2a �1

2H

◆
1
r

(4.74)

+

 �
f (re)� 1

2
�

f (re)1/2 cosa sin2
a +MH

H2

!
1
r2 +O

✓
1
r3

◆
.

From (4.68) we have

1
r

=
1
r0

x � r1

r2
0

x

2 +O(x 3), (4.75)

1
r2 =

x

2

r2
0
+O(x 3) .

Substituting the above and (4.68) into (4.74) and collecting terms of like powers, we obtain

G+(x ) = Hr0
1
x

+Hr1 � f (re)
1/2 cosa +

✓
f (re)cos2a �1

2Hr0
+Hr2

◆
x

+

 
Hr3 �

f (re)cos2a �1
2H

✓
r1

r2
0

◆
+

�
f (re)� 1

2
�

f (re)1/2 cosa sin2
a +MH

H2r2
0

!
x

2 +O(x 3) .

Substituting the above and the expansion

1
1�x/2

= 1+
x

2
+

x

2

4
+

x

3

8
+O(x 4)
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into (4.67) and collecting like powers again, we obtain

dr
dx

=�r0
1

x

2 �
 

r0

2
+ r1 �

f (re)1/2 cosa

H

!
1
x

�
 

r0

4
+

r1

2
� f (re)1/2 cosa

2H
+

f (re)cos2a �1
2H2r0

+ r2

!

�
 

r0

8
+

r1

4
� f (re)1/2 cosa

4H
+

f (re)cos2a �1
4H2r2

0
(r0 �2r1)+

r2

2
+ r3

+

�
f (re)� 1

2
�

f (re)1/2 cosa sin2
a +MH

H3r2
0

!
x +O(x 2) .

From (4.68), we also know that

dr
dx

=� r0

x

2 + r2 +2r3x +O(x 2) .

Equating like powers of x in our previous two expressions, we can systematically solve for r1, r2

and r3 to get

r1 =
f (re)1/2 cosa �1

H
,

r2 =
1� f (re)cos2a

8H
, (4.76)

r3 =
1

24H

✓
f (re)�

1
4

◆
f (re)

1/2 cos3a � 3
2

f (re)cos2a � 3
4

f (re)
1/2 cosa +

3
2

�
� M

12
,

where we have used r0 = 2/H. This process can be continued ad infinitum to obtain all higher

order coefficients in the series. More practically, one can use a computer algebra program such

as MAPLE to find the coefficients. For example, one can apply the “series” method of the dsolve

routine of MAPLE 14 to equation (4.67) to determine the higher order coefficients in the expansion.
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Expansion for f(x )

We can use the expansion for r(x ) to obtain an expansion for f(x ), valid for x ⌧ 1. For this purpose

it is useful to first use r as the independent variable instead of x . It is possible to do this for x ⌧ 1

since r(x ) is a monotonic function. The equation for f(r) can be found by dividing the equation for

f(T ) by the equation for r(T ) in (4.12). This gives

df

dr
=

�sina

r2
1

(H2 �Ve f f (r))
1/2 .

Expanding the right hand side for large r gives

df

dr
=

�sina

H

✓
1
r2 +

sin2
a

2H2
1
r4 �

M sin2
a

H2
1
r5

◆
+O

✓
1
r6

◆
.

Now integrate with respect to r to get

f(r) =
sina

H

✓
1
r
+

1
3

sin2
a

2H2
1
r3 �

M sin2
a

4H2
1
r4

◆
+O

✓
1
r5

◆
. (4.77)

(4.68) implies the following expansions:

1
r

=
x

r0

✓
1� r1

r0
x +

r2
1 � r2r0

r2
0

x

2 +
2r1r2r0 � r3r2

0 � r3
1

r3
0

x

3 +O(x 4)

◆
,

1
r3 =

x

3

r3
0

✓
1� 3r1

r0
x +O(x 2)

◆
,

1
r4 =

x

4

r4
0
+O(x 5) .
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Substituting the above into (4.77) and collecting like powers of x , we obtain the following series

for f(x ):

f(x ) =
sina

H
x

r0


1� r1

r0
x +

1
r2

0

✓
r2

1 � r2r0 +
sin2

a

6H2

◆
x

2 (4.78)

+
1
r3

0

✓
2r1r2r0 � r3r2

0 � r3
1 � r1

sin2
a

2H2 � M sin2
a

4H2

◆
x

3 +O(x 4)

�
,

where r1, r2 and r3 are given by (4.76). Writing the above as

f(x ) = f1x +f2x

2 +f3x

3 +f4x

4 +O
�
x

5� , (4.79)

we find the following explicit formulas for the coefficients of the expansion:

f1 =
sina

2
, (4.80)

f2 = �sina

4

⇣
f (re)

1/2 cosa �1
⌘
, (4.81)

f3 =
sina

24

✓
1
4
(9 f (re)�1)cos2a �6 f (re)

1/2 cosa +
3
2

f (re)+
5
2

◆
, (4.82)

f4 =
sina

16


2
3

✓
1
4
� f (re)

◆
f (re)

1/2 cos3a +
1
4

✓
9 f (re)+

MH
2

�1
◆

cos2a (4.83)

�
✓

f (re)+
5
2

◆
f (re)

1/2 cosa +
3
2

f (re)+
5
24

MH +
1
2

�
.

where we have used r0 = 2/H.

Validity of the expansion

Our choice for the form of the series (4.68) was not motivated by any rigorous mathematical theorem

or technique. However, it is nevertheless accurate, as can be seen in figure 4.8. To understand our

series solution further, it is useful to make a change of variables and define r̄(x ) as

r̄(x ) = x r(x )� r0 . (4.84)
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Figure 4.8: The green curve is the numerical solution to (4.85), and the two red curves are the series
solution to (4.85) at third order and eleventh order. Notice the remarkable accuracy of the eleventh
order series solution, especially for 0 < x < 1. Parameter values used are: M = 1, H = (6

p
3)�1,

a = p/4. The initial condition leading to the numerical solution is set by using r̄(x0) = r̄(2)(x0),
where x0 = 10�10 and r̄(2)(x ) is the second order series solution.
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The equation (4.67) for r(x ) can then be transformed into the following equation for r̄(x ):

dr̄
dx

=
1
x

✓
�2x

H (2�x )
G+

✓
r0 + r̄

x

◆
+ r0 + r̄

◆
. (4.85)

In figure 4.8, we plot the numerical solution to the above equation, which for our purposes can be

considered the exact solution, along with the series solution to the above at two different orders. The

series solution is obtained using MAPLE’s dsolve procedure with the series method, and leads to the

same answer as would be obtained by substituting (4.68)-(4.76) into (4.84). We see the increased

accuracy with higher order, as well as the remarkable accuracy of the higher order solution, espe-

cially for values 0 < x < 1 (notice that x ! 2 corresponds to T !�•). This agreement with the

numerical solution increases our confidence in the series expansion, especially for smaller values of

x .

The difficulty in applying traditional mathematical techniques and theorems to equation (4.85) lies

in the fact that it is ill-defined at x = 0. Although the right hand side of (4.85) is undefined at x = 0,

it approaches a finite limit as x ! 0 provided that

r̄(x )⇠ x .

Based on this we can construct the approximate solution

r̄(x ) = r1x +o(x ) ,

where o(·) is little-o notation, and r1 is given by (4.76). Continuing this process, we can construct

the following series:

r̄(x ) =
n

Â
i=1

rix
i +o(x n) , (4.86)

where the coefficients ri are determined iteratively using the procedure outlined in section (4.4.3).

The above is an approximation to the solution of (4.85) in the sense of being an asymptotic series.

However, we cannot be assured that it approaches an exact solution of (4.85) as n ! •. In fact it

is unlikely to be an exact solution. For example, if it is an exact solution then we ought to be able

to use it to find the asymptotic behavior of the horizon area at late times. With this in mind, let us
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substitute the power series (4.68) into the formula for the area element dA in (5.4), which will be

derived in chapter 5. Doing so, and collecting terms of like powers in x , we find

dAp =
|sina|

H2 +o
�
x

4� , (4.87)

where we have attached the subscript p to dA to remind ourselves that we are calculating dA in the

context of approximating r(x ) by a power series. Integrating the above to obtain the cosmological

horizon area, as in equation (5.7), we get

Ap(x ) = 4p

✓
1
H

◆2

+o
�
x

4� , (4.88)

where the subscript p attached to A(x ) has the same meaning as before. By choosing the specific

values M = 1 and H = (6
p

3)�1 and using MAPLE to find the series for r(x ) and A(x ), we can

extend this result and calculate that the fifth order term vanishes as well. Beyond fifth order the

MAPLE calculations become prohibitively time consuming. If this vanishing of terms extends to

all orders, then using a power series for r(x ) leads to the result that the horizon area is constant in

time, which is clearly false. This provides a hint that the power series (4.68) is not an exact solution,

and that either it must be a divergent series, or there must be additional terms in the solution to

(4.85) which are not positive integer powers of x . The idea that the exact solution to (4.85) cannot

be expressed as a series in positive integer powers of x is actually a natural expectation, given if

there was such an exact solution, then the area at late times would be of the form

A(x ) = 4p

✓
1
H

◆2

�ax

n +o(x n) ,

for some a > 0 and natural number n. Then using (4.71) to return to the original time variable T ,

the above becomes

A(T ) = 4p

✓
1
H

◆2

�a2n e�nHT +o(x n) .

However, there is no reason to think that as T ! • the area A(T ) of horizons should have the

asymptotic behavior

A(T )�A(•)⇠ e�nHT
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for some natural number n, and we once again have a hint that a power series cannot be an exact

solution.

Although the preceding discussion suggests that (4.86) does not converge to the exact solution of

(4.85) as n ! •, we have found that numerical evidence strongly suggests that the series in (4.86)

does converge as n ! •. In figure 4.9, we plot the value of the series solution at two different values

of x , for different values of n in (4.86). Suppose we are correct and the series does converge, but

does not converge to the exact solution. Let r̄e(x ) be the exact solution to (4.85) and r̄p(x ) be the

asymptotic power series solution, and define the difference function d(x ) as

d(x ) = r̄e(x )� r̄p(x ) .

Now suppose we describe the change in shape of the horizon using a transverse deformation tensor

B̃ab and decompose it into a trace part and two trace free parts in the usual manner [25]:

B̃ab = qdab +sab +wab .

Given that the horizon consists of a family of null generators which form a null geodesic congruence

which is hypersurface orthogonal, it follows that the rotation wab for the congruence vanishes [25],

so that we are only left with the expansion term containing q and the shear term sab in the above.

From the result (4.87), it appears that the asymptotic power series solution r̄p(x ) only describes a

change in shape of the horizon, without affecting its area, and thus the difference d(x ) must contain

the dependence on x which probably accounts for the change in area of the horizons, as captured

by the expansion parameter q . On the other hand, the power series r̄p(x ) describes a dependence

on x which decribes a shearing of the horizon. That is, it describes a change in shape which does

not affect the area and which does not cause any rotation.

The final issue which must be addressed is the question of the uniqueness of the solution to (4.85).

Because the right hand side is not defined at x = 0, we are not aware of any theorems that can be

applied to ensure the uniqueness of a solution to the equation (4.85) with the “initial condition”
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Figure 4.9: Plot of the series solution (4.86) (blue points) vs order n for x = 0.5 (left) and x = 1.5
(right). The horizontal red line is the numerically determined solution to (4.85), evaluated at x =
0.5 (left) or x = 1.5 (right). The blues points appear to converge to a limiting value, suggesting
that the series in (4.86) does converge to a final value as n ! •. Although it appears that the
series solution (blue points) converges to the numerical solution (red line), we believe that there
is a residual difference between the two that cannot be eliminated, even in the limit as n ! •.
This difference is too small to be seen on the plots, however. Parameter values used: M = 1,
H = (3

p
6)�1, a = p/4. Initial conditions for the numerical solution as set using the n = 2 series

solution at x = 10�10.

r̄(0) = 0 (more precisely, because it is not possible to define a solution for x = 0, we can only define

a limiting condition on r̄(e), which should be written r̄(0+)= 0). However, one can define the initial

condition r̄(x0) = r̄0 for some x0 > 0. The Picard-Lindelof theorem can then be used to ensure a

unique solution for some interval about x0. To ensure a unique solution satisfying r̄(0+) = 0, on

must show that there is a unique value of r̄0 such that r̄(0+) = 0. Doing this is beyond the scope of

this thesis. However, we have plotted the phase portrait associated with (4.85) and have confirmed

numerically that there is a single trajectory satisfying r̄(0+) = 0.
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The shape of the horizon at late times

As can be seen in figure 4.4, the horizon at late times settles down to a final shape. As discussed in

section 4.4.1, this shape is not spherical (i.e. not circular when one dimension is suppressed). This

may seem suprising, but is simply an artifact of the choice of time slicing. Although the horizon at

late times is in a part of SdS spacetime that is well approximated by deSitter spacetime, the slices

T = constant in this part of the spacetime do not coincide with the usual constant time slices of

deSitter spacetime in the so-called planar coordinates. The unusual choice of time slices obscures

the fact that the horizon, when viewed as a null hypersurface, does indeed approach the horizon of

deSitter spacetime.

In this section, we combine the expansions for r(x ) and f(x ) (equations (4.68) and (4.78)) to

describe this final shape of the horizon at late times analytically.

In order to describe this final shape, it is useful to introduce the variables r and y as follows:

r =
⇣
(r cosf � ravg)

2 +(r sinf)2
⌘1/2

,

y = arctan
✓

r sinf

r cosf � ravg

◆
.

where ravg =(r(x ;a = 0)+r(x ;a = p))/2. r and y can be thought of as polar coordinates centered

at the point with coordinates r = ravg and f = 0, where ravg is the midpoint of the two parts of the

horizon which intersect the line f = 0. Substituting the expansions (4.68) and (4.78) for r(x ) and

f(x ) into the above, we can obtain the expansions for r(x ) and y(x ). Doing so, and keeping only

the lowest order term in each expansion, we obtain

r =
1
H

q
f (re)cos2

a + sin2
a +O(x ),

y = arctan

 
1p
f (re)

tana

!
+O(x ) .
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Truncating at the lowest order and eliminating a , we can obtain r(y) in the limit that x ! 0:

r(y) =
1
H

s

1+
f (re)�1

1+ f (re) tan2
y

. (4.89)

Plotting the above gives the same shape as the last frame in figure 4.4, with r a maximum at

y = ±p/2. Notice that in the limit that the black hole mass vanishes, i.e., for M = 0, we have

f (re) = 1 and therefore r(y) = 1/H, so that the horizon shape is circular (or spherical if the q

variable is restored). This is precisely what we would expect, since the case M = 0 corresponds to

deSitter spacetime, and the cosmological horizon shape in deSitter spacetime is spherical. Notice

also that for M = 0 the spacelike hypersurfaces T = constant of the LP coordinates used in this

thesis are the same as the constant time slices of the conventional planar coordinates of deSitter

spacetime (as was discussed in section 3.3.1).

4.5 Merger point

In this section we find the location in spacetime of the point where the black hole and cosmological

horizons first touch (as in the fourth frame of figure 4.4). More precisely, we find the value of the

Schwarzschild coordinate r for this event in spacetime, in the limit that e ! 0 (i.e. the limit of an

infinitesimally small black hole). Due to the Killing symmetry discussed in section 3.3.5, it is not

possible to assign an unambiguous value for the time coordinate T of this merger point. Although

we introduce the merger time Tp below, only its derivative is meaningful, since it is always possible

to add a constant to Tp.

Although we are finding the value the Schwarzschild coordinate r, and thus dealing with a par-

ticular coordinate system, the result is essentially coordinate independent. This is due to the fact

that the coordinate r has a simple geometric interpretation which can be implemented in any other

coordinate system.
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4.5.1 Defining equations

Let (Tp,rp) be the LP coordinates of the merger point and let ap be the value of the parameter a

for the unique generator that goes through the merger point (we use the subscript p instead of m

to indicate the merger point). Note that this generator is really only unique when suppressing the

q coordinate by setting q = p/2; otherwise it unique up to rotations about the “x-axis” shown in

figure 4.4.

There are three equations relating the three unknowns Tp, rp and ap. These equations are

f(Tp;ap) = p , (4.90)

r(Tp;ap) = rp , (4.91)
∂T
∂a

����
f=p,a=ap

= 0 , (4.92)

where f(T ;a) and r(T ;a) are the solutions (4.13) and (4.12), respectively. The function T (f ;a)

in the third equation above is simply the inverse of f(T ;a), with a as a passive variable not playing

any role in the inversion process. The inverse T (f ;a) is guaranteed to exist by virtue of the fact that

df/dT > 0 for sina 6= 0, which will be the case for values of a in a sufficiently small neighborhood

about ap.

(4.90) comes from the fact that we expect the merger point to be located along the “x-axis” (see

figure 4.4), and so the f coordinate of the merger point is f = p . This expectation is based on the

numerical results presented in section 4.4.1, and is not a logical necessity. (4.91) simply follows

from the definition of Tp, rp and ap. To understand (4.92), consider the function T
p

(a) = T (f =

p;a). The equation T
p

(a) = T0 has no roots for T0 > Tp, two roots for T0 < Tp and precisely one

root for T0 = Tp. Furthermore, by the definitions of ap and Tp, we clearly have T
p

(ap) = Tp. Hence

it follows that T
p

(a) has a local maximum at ap, and we have

dT
p

da

����
a=ap

= 0 .
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The above equation is precisely (4.92), written using the notation T
p

(a) = T (f = p;a).

Below we derive two coupled equations relating rp and ap. The first of these equations combines

(4.90) and (4.91) into one equation by eliminating Tp. The second of these equations will follow

from (4.92).

4.5.2 First equation

In order to derive the equation resulting from (4.90)-(4.91), it will be useful to first consider a family

of spacetime points (T
p

,r
p

) parametrized by a , and defined by

f(T
p

;a) = p , (4.93)

r(T
p

;a) = r
p

. (4.94)

Once the above are coupled to (4.92), then we will set a =ap and the above will become the desired

equations (4.90)-(4.91). The reason for not setting a = ap right away is that it will be necessary to

leave a arbibtrary when computing dT
p

da

in the next section.

For the moment, the only restrictrion we place on the values of a is that they belong to a small

neighborhood about ap. This will ensure that (4.93)-(4.94) has a solution, and that the generators

under consideration have a turning point, in the sense that dr
dT > 0 for T > T ⇤ and dr

dT < 0 for T < T ⇤,

where T ⇤ is the time of the turning point. We only consider generators which have a turning point

since it turns out this is a necessary condition for (4.92) to have a solution.

In order to utilize the condition (4.93), we first define the functions f�(r) and f+(r) as

f±(r)⌘ f(T±(r)) ,

where f(T ) is the solution to (4.13) and T�(r) and T+(r) are the inverses of r(T ) for T < T ⇤ and
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T > T ⇤, respectively. These inverses are guaranteed to exist since dr
dT > 0 for T > T ⇤ and dr

dT < 0

for T < T ⇤.

The equations obeyed by f±(r) are obtained by dividing equation (4.13) by (4.12) and taking dr
dT > 0

or dr
dT < 0 for f+(r) and f�(r), respectively. This gives

df±
dr

=⌥ sina

r2 (H2 �Veff(r))
1/2 . (4.95)

We integrate f�(r) from r
p

to the turning point r⇤ and f+(r) from r⇤ to r = •. This gives the

following equation relating a , r
p

and r⇤:

0ˆ
p

df =

r⇤ˆ
r

p

sina

r2 (H2 �Veff(r))
1/2 dr�

•̂

r⇤

sina

r2 (H2 �Veff(r))
1/2 dr , (4.96)

where the lower and upper limits of integration on the left hand side follow from (4.93)-(4.94) and

f(r = •) = 0, respectively. Manipulating the limits of integration, we can rewrite the above more

succinctly as

p =

0

@2
•̂

r⇤

�
•̂

r
p

1

A sina

r2 (H2 �Veff(r;a))1/2 dr , (4.97)

where we have written Ve f f (r) = Ve f f (r;a) to emphasize the dependence on a . Since r⇤ is the

turning point for the trajectory with parameter a , we have from (4.4) the following equation relating

r⇤ and a:

Ve f f (r⇤;a) = H2 . (4.98)

The above can be used to eliminate a from (4.97), so that it becomes an equation simply relating r
p

and r⇤. In this way r⇤ replaces the role of a in (4.97).

Next, we define u
p

and u⇤ as

u
p

=
M
r

p

, (4.99)

u⇤ =
M
r⇤

. (4.100)

113



4.5. Merger point

Written in terms of u⇤, the turning point condition (4.98) becomes

u2
⇤(1�2u⇤) =

e

2

sin2
a

. (4.101)

The two integrals on the right hand side of (4.97) can be viewed as functions of u
p

and u⇤. These

integrals are best recast using the new variables of integration

v =
r⇤

r
,

u =
M
r

.

Using these new variables of integration, and replacing the dependence on a , r
p

and r⇤ in favor of

a dependence on u⇤ and u
p

instead, (4.97) becomes

2I(u⇤)� I1(u⇤,up

) = p , (4.102)

where

I(u⇤) =

1ˆ

0

dv

(1�2u⇤ � v2(1�2u⇤v))1/2 , (4.103)

I1(u⇤,up

) =

u
pˆ

0

du

(u2
⇤(1�2u⇤)�u2(1�2u))1/2 . (4.104)

The equation (4.102), along with the definition of the integrals defined above, gives us an equation

relating u⇤ and u
p

. Equivalently, this equation can be tought of as an equation relating r
p

and a ,

with these related to u
p

and u⇤ by (4.99) and (4.101), respectively. Similarly, by setting a = ap

and r
p

= rp, we obtain an equation relating ap and rp. In the next section we use (4.92) to derive

another equation relating ap and rp.
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4.5.3 Second equation

The second equation relating rp and ap will be derived using the following steps: First, we find

T 0
p

(a). Second, we simplify T 0
p

(a) by taking the limit Tf ! •, where Tf will be introduced below.

Third, we simplify T 0
p

(a) by taking the limit ū ! u⇤, where ū will also be introduced below. In the

fourth and final step, we find the equation T 0
p

(a) = 0.

First step: Calculation of T 0
p

(a)

The second equation relating rp and ap will be derived from the condition (4.92), and thus requires

us to first find an expression for the function T (f = p;a) ⌘ T
p

(a). We start by integrating the

differential dT from the time T
p

(a) to some arbitrary final time Tf , with the restrictions that Tf > T ⇤

and that Tf is independent of a . This gives

Tfˆ

T
p

dT =

T ⇤ˆ

T
p

dT +

Tfˆ

T ⇤

dT

=) Tf �T
p

(a) =

r⇤ˆ
r

p

dT�
dr

dr+

r fˆ
r⇤

dT+
dr

dr . (4.105)

where r f = r(Tf ;a), and T�(r;a) and T+(r;a) are the inverses of r(T ;a) for T < T ⇤ and T > T ⇤,

respectively, with a held fixed throughout the inversion process. In going from the first to the second

equation above, we have used (4.94) in changing the limit of integration from T
p

to r
p

.

Note that in the above we have assumed that the generator under consideration has a turning point, as

in the previous section. As was mentioned, this assumption is based on the fact that it is a necessary

condition for the equations (4.90)-(4.92) to have a solution.

It should also be noted that since dr
dT !0 as T ! T ⇤, the integrands in the integrals on the right hand
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side above are divergent. However, the integrals are convergent, in keeping with the fact that it takes

a finite time for a generator to reach the turning point.

Since r(T ;a) is given by (4.14), with dr
dT < 0 for T < T ⇤ and dr

dT > 0 for T > T ⇤, dT�
dr and dT+

dr can

be obtained by simply inverting the right hand side of (4.14):

dT�
dr

= (G�(r))
�1 ,

dT+
dr

= (G+(r))
�1 .

(4.105) now becomes

Tf �T
p

(a) =

r fˆ
r⇤

dr
G+(r;a)

�
r

pˆ
r⇤

dr
G�(r;a)

, (4.106)

where we have written G±(r) = G±(r;a) to emphasize the dependence on a , and we have flipped

the limits of integration in one of the integrals. As when deriving the first equation in the previous

section, it is useful to introduce a new variable of integration:

u =
M
r

. (4.107)

(4.106) now reads:

Tf �T
p

(a) = M

0

B@
u⇤ˆ

u f

du
u2G+(

M
u ;a)

�
u⇤ˆ

u
p

du
u2G�(

M
u ;a)

1

CA , (4.108)

where u
p

, u⇤ and u f are given by (4.99), (4.100) and u f = M/r f , respectively. For technical reasons

which will be discussed below, it will be useful to split the two integrals above as follows:

Tf �T
p

(a) = M

0

@�
u fˆ

0

du
u2G+(

M
u ;a)

+

ūˆ

0

du
u2G+(

M
u ;a)

+

u⇤ˆ
ū

du
u2G+(

M
u ;a)

+

u
pˆ

0

du
u2G�(

M
u ;a)

�
ūˆ

0

du
u2G�(

M
u ;a)

�
u⇤ˆ

ū

du
u2G�(

M
u ;a)

1

A , (4.109)
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where ū is a constant independent of a and satifies

u
p

< ū < u⇤ . (4.110)

Such a constant ū is guaranteed to exist, provided one restricts values of a to a sufficiently small

interval about ap.

Grouping the integrals with the same limits of integration in (4.109), we get

Tf �T
p

(a) = M

0

@
u⇤ˆ

ū

1
u2

 
1

G+(
M
u ;a)

� 1
G�(

M
u ;a)

!
du+

ūˆ

0

1
u2

 
1

G+(
M
u ;a)

� 1
G�(

M
u ;a)

!
du

+

u
pˆ

0

du
u2G�(

M
u ;a)

�
u fˆ

0

du
u2G+(

M
u ;a)

1

A . (4.111)

When differentiating the above with respect to a , one encounters potential singularities at the two

problematic points u⇤ and uc, where uc ⌘ rc/M. The first integral contains u⇤ in its domain of

integration and the second and third integrals contain uc in their domains of integration. The fourth

integral contain neither. This follows from the inequalities (4.110) and u f < uc < u
p

. This latter

inequality can be deduced from r
p

< rc < r f , where r f > rc assumes that Tf has been chosen to

be sufficiently large, and where r
p

< rc is most easily deduced by looking at the effective potential

diagram (figure 4.6), while keeping in mind that T
p

< T ⇤ and r(T =�•) = rc.

By splitting the domains of integration as we have done, we can deal with these singularities sepa-

rately. The first singularity occurs since differentiating the first integral in (4.111) with respect to a

forces us to evaluate the integrand at u = u⇤, where it is undefined. We can obviate this difficulty by

making a change of variables to a new integration variable v defined as follows:

v =
u
u⇤

. (4.112)
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Using the change of variables (4.112), (4.111) becomes

Tf �T
p

(a) = M

0

B@
1ˆ

ū/u⇤

1
u⇤v2

 
1

G+(
M

u⇤v ;a)
� 1

G�(
M

u⇤v ;a)

!
dv

+

ūˆ

0

1
u2

 
1

G+(
M
u ;a)

� 1
G�(

M
u ;a)

!
du+

u
pˆ

0

du
u2G�(

M
u ;a)

�
u fˆ

0

du
u2G+(

M
u ;a)

1

A . (4.113)

It turns out that if one makes this same change of variables in the second and third integrals above,

then when differentiating the integrand with respect to a , one obtains an integrand with a (u⇤v�

uc)�1 divergence at v = uc/u⇤. However, if one retains the integration variable u, this difficulty does

not arise. This is the technical reason for splitting the integrals that we alluded to earlier. The fact

that the choice of integration variables can affect the ability to calculate T 0
p

(a) may seem surprising.

It is a consequence of the fact that if one does not choose integration variables carefully, then T 0
p

(a)

is only defined in the sense of having two diverging terms cancelling. This is reminiscent of an

improper integral whose value is only defined when one considers the Cauchy principal value of

this integral.

An alternative method to the one outlined in (4.109)-(4.113) would be to replace the upper limits

of integration in the two integrals in (4.108) with a family of functions û(a;d ), such that û(a;0) =

u⇤(a) and û0(a;0) = u0⇤(a), and then take the limit d ! 0 only after the differentiation of the

integrals with respect to a . In general such a method is difficult to implement numerically, since

the “principal value” one obtains when taking d ! 0 depends on the cancellation of two diverging

terms, one of which is an integral that cannot be evaluated analytically. This leads to the subtraction

of two very large numbers and a loss of significance in the numerical calculations. However, by

sheer luck it turns out that one can manipulate the expressions involved and analytically cancel the

two diverging quantities, so that the limit d ! 0 can be implemented numerically.

As an equivalent method to the one described in the previous paragraph, one can take the limit

ū ! u⇤ once the expression for T 0
p

(a) is obtained. This is what will be done below.
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The final steps before differentiating (4.113) is to find an explicit expression for G±(
M
u ,a) in terms

of the integration variable u, and to use (4.101) in order to eliminate the parameter a in favor of the

turning point u⇤, as was done in the previous section. Recall from (4.14) that G±(r;a) is given by

G±(r;a) =
� f (r)

p
H2 �Ve f f (r)

±H f (re)
1
2 cosa +( f (re)� f (r))

1
2 sgn(r� re)

p
H2 �Ve f f (r)

, (4.114)

where Ve f f (r;a) is given by (4.5). Using (4.101) and (4.107), we can replace a and r in Ve f f (r;a)

in favor of u⇤ and u to give

Ve f f

✓
M
u

;a(u⇤)
◆
=

e

2u2

u2
⇤(1�2u⇤)M2 (1�2u) , (4.115)

where we have written a = a(u⇤) to emphasize the dependence on u⇤. Also using (4.107), we have

cosa =�

s

1� e

2

u2
⇤(1�2u⇤)

, (4.116)

where we have used cosa < 0, which is a necessary condition for generators with a turning point

(discussed in more detail in section 4.4.2). Let us define F±(u,u⇤) as follows:

F±(u,u⇤) =
1

G±
�M

u ,a(u⇤)
� . (4.117)

Now we substitute (4.107), (4.115) and (4.116) into (4.114), and substitute the resulting expression

for G±(
M
u ;a(u⇤)) into the above to obtain

F±(u,u⇤) =
1

1�2u� e

2

u2

0

@±
(1�3e

2
3 )

1
2
�
u2
⇤(1�2u⇤)� e

2� 1
2

(u2
⇤(1�2u⇤)�u2(1�2u))

1
2

�
✓

2u+
e

2

u2 �3e

2
3

◆ 1
2

sgn(ue �u)

1

A ,

(4.118)

where we have used the result (2.6) for re, the definitions (2.5) and (2.13) for f (r) and e , respec-

tively, and we have also defined ue = re/M. Written in terms of F±(u,u⇤), (4.113) becomes

Tf �T
p

(a) = M

0

B@
1ˆ

ū/u⇤

H(u⇤v,u⇤)
u⇤v2 dv+

ūˆ

0

H(u,u⇤)
u2 du+

u
pˆ

0

F�(u,u⇤)
u2 du�

u fˆ

0

F+(u,u⇤)
u2 du

1

CA ,

(4.119)
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where it is understood that u⇤ = u⇤(a) and u
p

= u
p

(a), and we have defined H(u,u⇤) as

H(u,u⇤) = F+(u,u⇤)�F�(u,u⇤) . (4.120)

Using (4.118), we have the following explicit formula for H(u,u⇤):

H(u,u⇤) =
2(1�3e

2
3 )

1
2
�
u2
⇤(1�2u⇤)� e

2� 1
2

⇣
1�2u� e

2

u2

⌘
(u2

⇤(1�2u⇤)�u2(1�2u))
1
2
. (4.121)

We are now in a position to differentiate (4.119) and obtain T 0
p

(a). Recalling that Tf and ū have

been chosen to be independent of a , we have

dT
p

da

=�M

0

B@
1ˆ

ū/u⇤

1
v2

d
du⇤

✓
H(u⇤v,u⇤)

u⇤

◆
dv+

H(ū,u⇤)
u⇤ū

+

ūˆ

0

1
u2

∂H
∂u⇤

du

+
F�(up

,u⇤)
u2

p

du
p

du⇤
+

u
pˆ

0

1
u2

∂F�
∂u⇤

du

1

A du⇤
da

�
F+(u f ,u⇤)

u2
f

∂u f

∂a

� du⇤
da

u fˆ

0

1
u2

∂F+
∂u⇤

du , (4.122)

where we have utilized the chain rule in order to differentiate the term in brackets with respect to

u⇤. Let us define the expressions E1, E2 and E3 as follows:

E1(ū) =

1ˆ

ū/u⇤

1
v2

d
du⇤

✓
H(u⇤v,u⇤)

u⇤

◆
dv ,

E2(ū) =
H(ū,u⇤)

u⇤ū
+

ūˆ

0

1
u2

∂H
∂u⇤

du , (4.123)

E3(u f ) =
F+(u f ,u⇤)

u2
f

∂u f

∂a

+
du⇤
da

u fˆ

0

1
u2

∂F+
∂u⇤

du .

In the next step we show that E3 vanishes in the limit Tf ! •. We then consider simplifications of

E1(ū) and E2(ū) as ū ! u�⇤ .
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Second step: Simplification of T 0
p

(a) as Tf ! •

Since the constant Tf was arbitrary, we can take the limit Tf ! •, which leads to u f ! 0. Let us

show that taking this limit eliminates the last two terms in (4.122). Consider the last term first. From

(4.118), we can compute:

∂F±
∂u⇤

=⌥

⇣
1�3e

2
3

⌘ 1
2

u⇤(1�3u⇤)u2

(u2
⇤(1�2u⇤)� e

2)
1
2 (u2

⇤(1�2u⇤)�u2(1�2u))
3
2
. (4.124)

The limiting behavior of the above as u ! 0 is

∂F±
∂u⇤

⇠ u2 .

Hence it follows that

lim
u f !0

u fˆ

0

1
u2

∂F+
∂u⇤

du = 0 , (4.125)

so that the last term in (4.122) vanishes in the limit that Tf ! •. Note that multiplication of the

above by du⇤/da does not affect this conclusion, since differentiating (4.101) and isolating du⇤/da ,

we have
du⇤
da

=
e

2 cosa

u⇤(3u⇤ �1)sin3
a

,

from which it follows that

0 <
du⇤
da

< • (4.126)

since 0 < u⇤ < 1/3 and p/2 < ap < p . Next consider the second last term in (4.122). The behavior

of ∂u f /∂a as Tf !• can be deduced using the approximation to u(T ;a) as T !• that was derived

in section 4.4.3. Using (4.68) and (4.76), in the limit that T ! •, we have

∂ r
∂a

= O(1) .
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Using the above and the definition of u in (4.107), we get

∂u
∂a

⇠ u2 (4.127)

for u ! 0. From (4.118), we have

F(u,u⇤)⇠ u .

Applying the above and (4.127) to u f = u(Tf ;a), we get

F+(u f ,u⇤)
u2

f

∂u f

∂a

⇠ u f ,

so that the second last term in (4.122) vanishes as Tf ! •. That is

lim
u f !0

F+(u f ,u⇤)
u2

f

∂u f

∂a

= 0 . (4.128)

Third step: Simplification of T 0
p

(a) as ū ! u⇤

First we show that the first term in (4.122) vanishes in the limit ū ! u⇤. With some work, one can

compute the integrand to be


1
v2

d
du⇤

✓
H(u⇤v,u⇤)

u⇤

◆�

v=u/u⇤

=
2
⇣

1�3e

2
3

⌘ 1
2

u⇤ (u2
⇤(1�2u⇤)� e

2)
1
2 (u⇤ �u)

1
2

⇥
 

u2
⇤u2 � e

2(u2
⇤+u⇤u+u2)

(u⇤+u�2(u2
⇤+u⇤u+u2))

3
2 (u2 �2u3 � e

2)

+
u2
⇤(1�2u⇤)(4u⇤ �1)u2 � e

2 �u2
⇤(1�2u⇤)+2(3u�1)u2�

(u⇤+u�2(u2
⇤+u⇤u+u2))

1
2 (u2 �2u3 � e

2)2

!
.

As one can verify, both the numerator and denominator of the term in brackets above are nonvan-

ishing as ū ! u⇤, so that


1

u⇤v2
d

du⇤

✓
H(u⇤v,u⇤)

u2
⇤

◆�

v=u/u⇤

⇠ 1
(u⇤ �u)

1
2
.
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Thus we have

lim
ū!u⇤

1
u⇤

1ˆ

ū/u⇤

1
v2

d
du⇤

✓
H(u⇤v,u⇤)

u2
⇤

◆
dv = 0 . (4.129)

Next we show that although the second and third terms in (4.119) both diverge as ū ! u⇤, they can

be combined into a single term such that the limit ū ! u⇤ does not contain any diverging terms. The

expression we are interested was defined as E2 in (4.123). Using (4.120) and (4.124), the explicit

expression for E2(ū) is

E2(ū) = 2
⇣

1�3e

2
3

⌘ 1
2

0

@ ū
�
u2
⇤(1�2u⇤)� e

2� 1
2

u⇤ (ū2(1�2ū)� e

2)(u2
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1
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(u2
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2)
1
2

ūˆ

0

du

(u2
⇤(1�2u⇤)�u2(1�2u))

3
2

1

A . (4.130)

As we can see, both terms above diverge as ū ! u�⇤ . However, it is possible to manipulate the

expressions such that the divergences can be eliminated, even if one cannot evaluate the integral

analytically. This is accomplished by writing the integral above as a sum of a convergent integral

and a diverging integral that can be evaluated analytically. This is done as follows:

ūˆ

0

du

(u2
⇤(1�2u⇤)�u2(1�2u))

3
2
=

ūˆ

0

du

(u⇤+u�2(u2
⇤+u⇤u+u2))

3
2 (u⇤ �u)

3
2

�
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0

du

(2u⇤(1�3u⇤))
3
2 (u⇤ �u)

3
2

+

ūˆ

0

du

(2u⇤(1�3u⇤))
3
2 (u⇤ �u)

3
2

=

ūˆ

0

�
u⇤+u�2(u2

⇤+u⇤u+u2)
�� 3

2 � (2u⇤(1�3u⇤))
� 3
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(u⇤ �u)
3
2

du+

ūˆ

0
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(2u⇤(1�3u⇤))
3
2 (u⇤ �u)

3
2

.

(4.131)

The first term on the right hand side is a convergent integral, and the second integral is diverging

but can be evaluated analytically. Consider the first integral. Define A(u,u⇤) and A⇤ as follows:

A(u) ⌘ u⇤+u�2(u2
⇤+u⇤u+u2), (4.132)

A⇤ ⌘ A(u⇤) = 2u⇤(1�3u⇤) . (4.133)
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We can factor the numerator of the first integral in (4.131):

�
u⇤+u�2(u2

⇤+u⇤u+u2)
�� 3

2 � (2u⇤(1�3u⇤))
� 3

2 = A� 3
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⇤ +A�2
⇤
�

AA⇤

✓
A� 3

2 +A� 3
2⇤

◆ . (4.134)

The term A⇤ �A above is a quadratic in u, and can be also factored:

A⇤ �A = 2u2 +(2u⇤ �1)u+u⇤ �4u2
⇤

= (u�u⇤)(2u�1+4u⇤) .

Using the above in (4.134), the first integral in (4.131) becomes
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du . (4.135)

Since r⇤ > 3M (see figure 4.6), we have 0 < u⇤ < 1/3 and thus A(u) > 0 for 0 < u  u⇤. This

ensures that the integrand above has the following behavior as u ! u�⇤ :

(2u�1+4u⇤)
�
A�2 +A�1A�1

⇤ +A�2
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�
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A� 3
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⇠ 1
(u⇤ �u)

1
2
,

so that (4.135) is a convergent integral as ū ! u�⇤ . The second integral in (4.131) is divergent as

ū ! u�⇤ , but can be evaluated analytically:

ūˆ
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3
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Using the above and (4.135), we can now write (4.131) as the sum of three terms, the first two of

which are convergent as ū ! u⇤:
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Substituting the above into (4.130), we get the following expression:
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CCA . (4.136)

The first term in large brackets is a subtraction of two divergent terms as ū ! u�⇤ . Let us now show

that this term in fact vanishes as ū ! u�⇤ . First we rewrite it as

ū
�
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. (4.137)

We can see we are clearly dealing with a 0/0 limit, and so we apply L’Hopital’s rule:

lim
ū!u�⇤
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2)A(ū)
1
2
� u⇤

(u2
⇤(1�2u⇤)� e

2)A
1
2⇤

!
1

(u⇤ � ū)
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1
2

d
dū
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1
2

!
. (4.138)
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We can compute:

d
dū
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(ū2(1�2ū)� e
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From (4.132)-(4.133), we see that A(ū) and A0(ū) are bounded as ū ! u�⇤ . Furthermore, the de-

nominator is non-vanishing as ū ! u�⇤ since (4.101) implies that u2
⇤(1�2u⇤)> e

2 and A(u)> 0 for

0 < u  u⇤ as discussed previously. Therefore we have
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2)A(ū)
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!
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as expected. Combining the above with (4.138), we have that the expression in (4.137) vanishes as

ū ! u�⇤ , so that (4.136) finally becomes
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Fourth step: The equation T 0(a) = 0

Taking the limits Tf !• (i.e. u f ! 0) and ū! u�⇤ and using (4.125), (4.128) and (4.129) in (4.122),

we get
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where limū!u⇤ E2 is given by (4.139). As shown in the steps leading up to (4.126), we have 0 <

u0⇤(a)< •, so that the equation T 0
p

(a) = 0 implies that the term in brackets above vanishes:
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The only expression that remains to be computed in the above equation is u0
p

(u⇤). It is obtained by

differentiating (4.102) with respect to u⇤. This gives
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From (4.103)-(4.104), we can compute the following:
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0

1� v3

(1�2u⇤ � v2(1�2u⇤v))
3
2

dv ,

∂ I1

∂u⇤
= u⇤(3u⇤ �1)

u
pˆ

0

du

(u2
⇤(1�2u⇤)�u2(1�2u))

3
2
, (4.142)

∂ I1

∂u
p

=
1

(u2
⇤(1�2u⇤)�u2

p

(1�2u
p

))
1
2
. (4.143)

Notice how the integration variable v = u/u⇤ allows us to avoid dealing with the problem of eval-

uating the integrand of I(u⇤) at u = u⇤ when computing I0(u⇤). The first integral above can be

simplified by factoring both numerator and denominator. Doing this and switching back to the

integration variable u = u⇤v, we get

dI
du⇤

=

u⇤ˆ

0

u2
⇤+u⇤u+u2

A(u)
3
2 (u⇤ �u)

1
2

du , (4.144)

where A(u) was defined in (4.133). We can now put everything together into a single equation

relating u
p

and u⇤. Substituting (4.142), (4.143) and (4.144) into (4.141), and then substituting
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4.5. Merger point

(4.141) and (4.139) into (4.140), we arrive at the following equation:

u
pˆ

0

1
u2
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⇥

0
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0

u2
⇤+u⇤u+u2

A(u)
3
2 (u⇤ �u)
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u
pˆ

0

du

(u2
⇤(1�2u⇤)�u2(1�2u))

3
2

1

A= 0 , (4.145)

where A(u), A⇤, F�(u,u⇤;e) and ∂F�/∂u⇤ are given by (4.132), (4.133), (4.118) and (4.124), re-

spectively. The above is the second equation relating u
p

and u⇤. When coupled to (4.102), these

two equations can be solved simultaneously to give numerical values for up and u⇤, provided one

chooses a specific value for the parameter e . Once up is known, the spacetime coordinates (Tp,rp)

of the merger point are given by (4.108) and (4.107) respectively. Due to the Killing symmetry of

the spacetime, the value of Tp is arbitrary since it depends on choosing a reference time (for exam-

ple, one could choose T = 0 to be the time when the area of the horizons is at the midpoint between

the initial and final areas). For this reason, we will only be interested in calculating the value of rp.

In the next section we solve (4.102) and (4.145) for up in the limit that e ! 0. This is the limit in

which the Schwarzschild radius of the black hole is infinitesimally smaller than the Hubble radius

associated with the cosmological constant.

4.5.4 Merger point in the small black hole mass limit

As discussed in section (2.7), for any astrophysically realistic black holes, the value of the parameter

e is exceedingly small. For this reason, taking the limit e ! 0 gives an excellent approximation for

the location and structure of the horizon merger point in an astrophysically realistic situation. Note

that the limit e ! 0 is nontrivial, in the sense that up converges to a finite value in this limit.
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4.5. Merger point

Converting this to a value of rp using rp = upM, we have that in the limit e ! 0, the merger point

is located at a spacetime point with coordinates such that r µ M, where r is the radial coordinate of

Schwarzschild coordinates. We seek to find the numerical value of the proportionality constant in

the relation rp µ M. More precisely, we expect an asymptotic series for up(e) of the form

up(e) = up(0)+O(e) .

The corresponding asymptotic series for rp(e) has the form

rp(e) = M


1
up(0)

+O(e)

�
. (4.146)

Note that since e = HM, the limit e ! 0 can be thought of as either the result of taking M ! 0 or

H ! 0. Here we think of taking H ! 0, so that the Hubble radius becomes infinitely large, while

the black hole mass remain constant. In this way the above expansion yields a nontrivial result for

rp(e).

We solve equations (4.102) and (4.145) numerically for u⇤ and up using MAPLE 14, in the limit

that e ! 0. We employ the following strategy. First we plot the functions u
p

(u⇤) which result

from solving either equation (4.102) or (4.145) independently. The graphs of u
p

(u⇤) for these two

equations are constructed by choosing a set of values for u⇤, and for each such value, solving the

resulting one variable equation for u
p

using MAPLE’s fsolve procedure. Looking for a point where

these curves intersect, we can determine graphically that we must have 0.2165 < u⇤ < 0.2175 and

0.193 < up < 0.195. Using these bounds, we then solve the coupled equations using the fsolve

procedure. Obtaining bounds for u⇤ and up is an essential first step since they are used as optional

inputs to constrain the search for a solution to the coupled equations. We have found that without

them, the fsolve procedure will not find a solution to the coupled equations. The numerical result of

solving the coupled equations is

u⇤ = 0.2171541500..., (4.147)

up = 0.1945829820.... .
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4.5. Merger point

Substituting up above in (4.146) and taking e = 0, we obtain

rp ⇡ 5.25M . (4.148)

The above is the final result culminating from all the steps in this section (i.e. section 4.5). Using

(4.147) for the value of u⇤ in (4.101), we can also obtain a final result for ap, which is the value of the

parameter a for the unique generator that goes through the merger point. Thinking of ap = ap(e),

we expect from (4.101) that we have the following expansion:

ap(e) = e

"
1

u⇤(0)(1�2u⇤(0))
1
2
+O(e)

#
.

Substituting the numerical value of u⇤ from (4.147) into the above, we obtain

ap

e

⇡ 6.12 , (4.149)

where higher order terms in e have been neglected. Note that unlike (4.146), in the limit e ! 0 one

obtains the trivial result ap = 0. However, one can easily define a parameter which does not vanish

in the limit e ! 0. For example, we define the parameter b as

b ⌘ 1
H

sina .

Substituting (4.149) into the above, we obtain

bp ⇡ 6.12M .

This result is similar to (4.148), in that bp does not vanish as e ! 0. The interpretation of the

parameter b is that it is analogous to a kind of impact parameter. It terms of the late time behavior

of the null generators, it is the y-coordinate of such a generator as the horizon settles down to its

final shape (the last frame of figure 4.4).

Although (4.148) specifies the spacetime coordinates of the merger point using Schwarzschild co-

ordinates, it is clear that the result is coordinate independent, in the sense that the location of the
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4.5. Merger point

spacetime event where the horizon merger occurs is independent of choice of coordinates. Fur-

thermore, although we have specified the location of the merger point using a specific coordinate

system, the result can be transformed to another coordinate by utilitzing the geometric interpretation

of the Schwarzschild coordinate r, i.e., by recognizing that the spheres associated with the spherical

symmetry of the spacetime have area 4pr2.
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Chapter 5

Area of Merging Black Hole and

Cosmological Horizons

One of the key quantities that one can calculate regarding a black hole event horizon is the horizon

area. The usefulness of horizon area stems from both astrophysical considerations and more the-

oretical questions. On the astrophysical side, the relationship between horizon area and mass can

prove useful, for example, when calculating the final mass of the resulting black hole in numerical

simulations of black hole mergers [1]. On the theoretical side, the pioneering work of Bekenstein

[2] and Hawking, along with the extensive work that followed, has firmly linked black hole area as a

measure of black hole entropy. This link between horizon area and entropy has also been considered

in the context of cosmological horizons [11].

In this chapter we investigate questions related to the total surface area of the cosmological and

black hole horizons. In section 5.1, we outline the method used to calculate the area of the horizons,

including a description of the numerical methods used. In section 5.2, we use numerical methods

to investigate the dependence of horizon area on time and on the small parameter e = HM. These

numerical calculations lead to three main results. The first concerns the area of the horizons in

the limit of e ! 0. The second result relates the time of maximal area increase to the time of

merger. The third and final numerical result concerns the relative contribution of different horizon

generators towards the overall area increase. Notice that since the area depends on the particular

choice of time slicing, these results depend on the choice of time coordinate, although obviously
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5.1. Horizon area calculations

they are independent of the spacelike coordinates one chooses to use on the constant time slices.

Although our results depend on the choice of time slicing, we will argue that the qualitative aspects

of these results ought to hold in any coordinate system.

In section 5.3, we use analytical methods to further investigate two of the numerical results ob-

tained in section 5.2. The purpose of these analytical results is both to confirm and corroborate the

numerical results, as well as to extend them to beyond a specific choice of time coordinate. The first

analytical result is a partial proof that the time of maximal horizon area increase precisely coincides

with the time of merger where the horizons first touch. This result is coordinate independent in the

sense that it will be shown to hold in a family of coordinate systems. The second analytical result is

a proof that in the limit that e ! 0, the area increase of the cosmological horizon due to the merger

with a black hole can be attributed as being due in equal parts to two causes: the expansion of

generators already on the horizon, and the joining of new generators with the horizon. This result is

coordinate independent in the sense that there is a canonical time slicing that one can use to measure

the area, and it is with this coordinate system that we calculate area.

5.1 Horizon area calculations

5.1.1 Horizon area formula

Recall that in the so-called LP coordinates used in this thesis, the induced metric on a spacelike

hypersurface T = constant is given by the following, (in spherical coordinates; see equation (3.39)):

ds2 =
1

f (re)
dr2 + r2 �dq

2 + sin2
q df

2� , (5.1)
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5.1. Horizon area calculations

where we have eliminated the minus signs so that the metric has signature (+,+,+). The above is

part of a broader class of spacelike metrics:

ds2 = F(r,t)dr2 + r2 �dq

2 + sin2
qdf

2� . (5.2)

Given any coordinate system for SdS spacetime where two of the spacelike variables coincide with

the q and f variables of Schwarzschild coordinates, the line element on a spacelike hypersurface

t = constant can always be written in the above form. Thus the above represents the spacelike

hypersurface geometry for a broad class of coordinate systems for SdS spacetime. The motivation

for considering the above broader class of line elements, as opposed to (5.1), is that our proof in

section 5.3.1 will make use of the area formula for the broad class of line elements in (5.2).

To derive the formula for the area, let S
t

be the 2d surface formed by the intersection of the spacelike

hypersurface t = constant and the horizon (viewed as a null hypersurface in spacetime). Taking the

further intersection of S
t

with the surface q = p/2, we obtain a curve such as the ones shown in

figure 4.4. We can parametrize any one of these curves using an angle a 2 [0,2p), and specify

the spatial coordinates of the curve as (r(a),f(a),p/2). Given any one of these curves, spherical

symmetry allows one to recover S
t

by simply rotating the curve about the axis y = 0, where y =

r sinq . Defining b 2 [0,p) as the angle corresponding to this rotation, we can use a and b as

intrinsic coordinates on S
t

.

To obtain the area element dA on S
t

, we must first find the induced metric on the surface S
t

. It

is clear that owing to the rotational symmetry, this metric will be independent of the coordinate b .

Hence it suffices to find the induced metric along any curve b = constant, since the induced metric

everywhere else will be the same. Let us consider the induced metric on the curve b = 0 (i.e. the

curve in the plane q = p/2). On this curve, the coordinate tangent vectors of the (a,b ) coordinate

system are

∂

∂a

=
dr
da

∂

∂ r
+

df

da

∂

∂f

, (5.3)

∂

∂b

= sinf

∂

∂q

,
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where it is understood that r = r(a) and f = f(a) are functions of a only and describe the curve

formed by the intersection of S
t

and q = p/2, as mentioned previously. Letting s

aa

, s

ab

and s

bb

be the components of the induced metric on ST , we have that

s

aa

= h ∂

∂a

,
∂

∂a

i=
✓

dr
da

◆2

h ∂

∂ r
,

∂

∂ r
i+
✓

df

da

◆2

h ∂

∂f

,
∂

∂f

i=
✓

dr
da

◆2

grr +

✓
df

da

◆2

g
ff

=

✓
dr
da

◆2

F(r,t)+
✓

df

da

◆2

r2 ,

s

ab

= h ∂

∂a

,
∂

∂b

i= 0 ,

s

bb

= h ∂

∂b

,
∂

∂b

i= sin2
fh ∂

∂q

,
∂

∂q

i= r2 sin2
f ,

where we have used the coordinate tangent vectors from (5.3) and the metric components from

(5.1), with q = p/2. The metric determinant associated with the above induced metric is

s = s

aa

s

bb

�s

2
ab

= r2 sin2
f

 ✓
dr
da

◆2

F(r,t)+
✓

df

da

◆2

r2

!
,

and hence the area element dA is

dA =
p

s dadb = r | sinf |
 

F(r,t)
✓

dr
da

◆2

+ r2
✓

df

da

◆2
!1/2

dadb . (5.4)

We must integrate dA over that portion of S
t

which is the horizon, which either has two disconnected

pieces (the black hole and cosmological horizons) or simply one piece (the cosmological horizon).

In the former case we have

Abh and ch = 2p

ˆ
ac

0
r sinf

 
F(r,t)

✓
dr
da

◆2

+ r2
✓

df

da

◆2
!1/2

da (5.5)

+2p

ˆ
p

ab

r sinf

 
F(r,t)

✓
dr
da

◆2

+ r2
✓

df

da

◆2
!1/2

da , (5.6)

where ac and ab are the critical values of a where new null generators can enter the horizon (i.e.

135



5.1. Horizon area calculations

caustic points). When there is only a cosmological horizon, we have

Ach = 2p

ˆ
p

0
r sinf

 
F(r,t)

✓
dr
da

◆2

+ r2
✓

df

da

◆2
!1/2

da . (5.7)

Notice that in the above we have integrated over a 2 [0,2p) and b 2 [0,p). The integral over b

yields p and the integral over a was simplified to an integral over a 2 [0,p) by introducing a factor

of 2. Because we are integrating over a 2 [0,p), we have sinf > 0 and therefore have substituted

|sinf |= sinf in the expression for dA above.

5.1.2 Numerical approximations

For the numerical calculations in section 5.2, it suffices to restrict our attention to the case where

the line element is given by (5.1). The integral (5.7) is then approximated using Simpson’s method.

Let I(a) be the integrand in the above integrals. That is:

I(a) = 2pr | sinf |
 

1
f (re)

✓
dr
da

◆2

+ r2
✓

df

da

◆2
!1/2

. (5.8)

Suppose r(a) and f(a) are known at a sequence of evenly spaced grid points (a0, ... ,an), with

a0 = 0, an = p and n and even number. Then by Simpson’s method we have

Ach =

ˆ
p

0
I(a)da ⇡ Da

3

n
2�1

Â
k=0

(I(a2k)+4 I(a2k+1)+ I(a2k+2)) , (5.9)

where Da is the spacing between neighboring values of ai (i.e. Da = ai+1 �ai). Computing the

above requires knowledge of r0(ai) and f

0(ai), both of which can be approximated using central

differences:

dr
da

����
ai

⇡ r(ai+1)� r(ai�1)

2Da

, (5.10)

df

da

����
ai

⇡ f(ai+1)�f(ai�1)

2Da

.
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The endpoints a0 = 0 and an = p can be dealt with by exploiting r(�a) = r(a) and f(�a) =

�f(a) so that the central differences become

dr
da

����
a0

=
dr
da

����
an

= 0 , (5.11)

df

da

����
a0

⇡ f(a1)

Da

,

df

da

����
an

⇡ p �f(an�1)

Da

.

Using (5.10)-(5.11) in (5.8)-(5.9), we can estimate (5.7) using only knowledge of r(a) and f(a) at

the sequence of points (a0, ... ,an). The method used for computing r(a) and f(a) was described

in section 4.3.

To estimate the integrals in (5.5), let us first define ai1 and ai2 such that

ai1�1 < ac < ai1 < ... < ai2 < ab < ai2+1 .

We then separate each integral into two pieces:

ˆ
ac

0
I(a)da =

ˆ
ai1�p

0
+

ˆ
ac

ai1�p

I(a)da , (5.12)

ˆ
p

ab

I(a)da =

ˆ
ai2+l

ab

+

ˆ
p

ai2+l

I(a)da ,

where p = 1 if i1 is odd and p = 2 if i1 is even. Similarly, l = 1 if i2 is odd and l = 2 if i2 is even.

The reason for separating the above integrals into two pieces is that one of the pieces is most easily

dealt with using Simpson’s method, whereas the other piece can be most easily approximated using

the trapezoid method. Using Simpson’s method, we have

ˆ
ai1�p

0
I(a)da ⇡ Da

3

i1�p
2 �1

Â
k=0

(I(a2k)+4 I(a2k+1)+ I(a2k+2)) , (5.13)

ˆ
p

ai2+l

I(a)da ⇡ Da

3

n
2�1

Â
k= i2+l

2 �1

(I(a2k)+4 I(a2k+1)+ I(a2k+2)) .
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Notice that p 2 {1,2} and l 2 {1,2} are always chosen so that i1 � p and i2 + l are even. We thus

have a sum over an odd number of integers in the above, as required by Simpson’s method. Using

the trapezoid method, we approximate the remaining integrals in (5.12). This gives

ˆ
ac

ai1�p

I(a)da ⇡ (p�1)
I(ai1�2)+ I(ai1�1)

2
Da +

I(ai1�1)+ I(ac)

2
(ac �ai1�1) , (5.14)

ˆ
p

ai2+l

I(a)da ⇡ (l �1)
I(ai2+1)+ I(ai2+2)

2
Da +

I(ab)+ I(ai2+1)

2
(ai2+1 �ab) .

If p = 1 in the above, the first term vanishes and we have are applying the trapezoid method using

the two grid points {ai1�1,ac}. By contrast, if p = 2 then we have two terms in the above and

we are using the three grid points {ai1�2,ai1�1,ac} in the trapezoid method. A similar distinction

applies to the l = 1 and l = 2 cases. The above formulae require knowledge of ab and ac, which are

not known in general. However, using the fact that

f(ab) = f(ac) = p

and knowledge of f(a) at the grid points ai1�1 and ac (or ai2 and ab ), we can use a linear inter-

polant between these grid points and approximate ac and ab as

ac = ai1�1 +
p �f(ai1�1)

f(ai1)�f(ai1�1)
Da , (5.15)

ab = ai2 +
f(ai2)�p

f(ai2)�f(ii2+1)
Da .

Using (5.15) in (5.14) and approximating the integrals in (5.12) using (5.13)-(5.14), we arrive at

an approximation of the integrals in (5.5), which requires only knowledge of r(a) and f(a) at

the uniform grid of point (a0, ... ,an). The method for computing r(a) and f(a) was outlined in

section 4.3.
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Figure 5.1: Total area of the horizons vs LP coordinate time T . The area has been normalized to
the limiting value of the area as T ! •. The horizontal blue line is the limiting value as T !�•.
Parameter values used are: M = 1, L = 1/18, n = 400 and x0 = 10�4.

5.2 Numerical results

We begin by discussing the general features of the area vs time graph in section 5.2.1 below. We

then focus on three aspects of the horizon area, as revealed by numerical computations. In section

5.2.2, we analyze the location of the inflection point in the area vs time graph, and present numerical

evidence that it coincides precisely with the time of merger. In section 5.2.3, we analyze the horizon

area in the limit e ! 0, where recall that e = HM. Specifically, we compute the horizon area at the

time of merger for e ⌧ 1. What we find is that for e ⌧ 1, the area at the time of merger differs

from the final area by an amount which is vanishingly small, with an O(e) dependence on e (this

will be true when the area is measured in dimensionless units). Also, we analyze the influence of

different horizon generators for e ⌧ 1, and find that in this limit, the horizon area increase can be

attributed as being due in equal parts to new generators joining the horizons, and existing generators

expanding on the horizon.
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5.2.1 Horizon area vs time graph: general features

Using the procedure outlined in section 4.3.3, we can compute the coordinates of the null generators

of the horizon. We then use the procedure described in section 5.1.2 to compute the total area of the

horizons numerically. The resulting graph is shown in figure 5.1.

The early time behavior of the area is as expected. That is, as T !�•, the area approches the value

A(�•) = 4p

�
r2

b + r2
c
�

(5.16)

which is simply the sum of the areas of the spheres with radii r = rb and r = rc. This agrees with

the fact that at early times, the horizons are simply the concentric spheres at r = rb and r = rc, as

was discussed in section 2.5, and deduced in section 4.4.2.

As T ! •, the area approaches the value

A(•) = 4p

✓
1
H

◆2

. (5.17)

The above is what one would expect for the area of a spherical cosmological horizon in deSitter

spacetime with a Hubble radius 1/H. This agrees with the fact that in the limit r !•, SdS spacetime

is well approximated by deSitter spacetime, as was discussed in section 2.6. The above value is

obtained numerically when integrating foward in time, after setting the initial conditions at some

late time T0, as described in section 4.3.3. It can also be obtained analytically by calculating the area

of the final horizon shape found in section 4.4.3. As discussed in section 4.4.3, the LP coordinates

used in this thesis lead to a non-spherical shape for the horizon. However, the area is still what

would be obtained if the slicing was chosen such that the horizon is a sphere with radius 1/H. This

is in keeping with the fact that for a stationary horizon, the area of the horizon is independent of the

choice of slicing.

The overall shape of the graph is also as expected: it is monotonically increasing, with an inflection
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point at the moment where the rate of area increase is greatest. The monotonicity of the area graph

is hardly surprising, in light of the famous area theorem of Hawking. However, it should be noted

that the area theorem, as originally proven by Hawking [16], only applies to proper event horizons,

and not the causal horizons like the one considered in this thesis. Nevertheless, it is not difficult to

see how the original proof could be extended to causal horizons, given that the original proof rests

on the focusing theorem, along with the observation that horizon generators cannot leave an event

horizon through a future caustic point. The focusing theorem clearly applies to the congruence of

null geodesics which are the null generators of a causal horizon. Furthermore, the presence of a

future caustic point on a causal horizon would seem irreconcilable with the definition of a causal

horizon as the boundary of the causal past of an observer’s trajectory. Although the generalization

of the area theorem to causal horizons seems straight forward enough, to our knowledge, a proof

has not been published at this time. The existence of an unpublished proof has been alluded to in

[17] however.

5.2.2 Inflection point in the horizon area vs time graph

The location and structure of the inflection point in the graph turn out to be quite intriguing. First,

we have found numerically that the time at which the inflection point occurs coincides with the time

of merger of the horizons. This can be seen in figure 5.2b, where the green vertical line has been

drawn at the time of horizon merger. We see that A00(T ) changes sign precisely at the merger time,

in keeping with the observation that the merger time coincides with the time where the inflection

point occurs. The graphs of A00(T ) also reveals that we do not have A00(T ) = 0 at the inflection point,

unlike what we would expect if A(T ) was a twice differentiable function. Instead A00(T ) diverges at

the inflection point. This immediately suggest a hypothesis regarding the reason for the inflection

and merger times coinciding: perhaps there is something about the merger of the horizons which

causes A00(T ) to diverge as the merger time is approached. For example, we might hypothesize that

the presence of the caustic prior to merger causes A00(T ) to diverge right before merger time.
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(a)

(b)

Figure 5.2: Examples plots of A0(T ) and A00(T ) for merging black hole and cosmological horizons.
Both plots reveal a discontinuity in A00(T ) at the critical merger time Tp. This is most apparent in
the plot of A00(T ), where we see a divergence just prior to the merger time (indicated by a vertical
green line). Furthermore, this plot reveals that A00(T ) goes from positive to negative at the merger
point. Parameter values used: M = 1, L = 1/18, n = 400, x0 = 10�4.
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We thus have two intriguing hypotheses about the horizon area as a function of time. The first result

is that A00(T ) diverges right before the merger point, and the second is that the merger time coincides

precisely with the inflection point in the horizon area vs time graph. The first of these hypotheses

will be shown to hold in a broad class of coordinate systems in section 5.3.1 below.

5.2.3 Horizon area in the limit e ! 0

Area increase prior to merger

The parameter e = MH characterizes the size of the black hole relative to the size of the cosmolog-

ical horizon. As discussed briefly at the end of section 2.7, for a typical supermasive black hole in

a universe with a cosmological constant given by the current value according to the L-CDM model,

we have e ⇡ 10�14, which is an exceedingly small number. For this reason, it is interesting and

relevant to consider questions regarding the horizon area for small values of e . When considering

questions related to the total area increase, it is useful to introduce the dimensionless area Â(T ) as

Â(T ) =
A(T )�A(�•)

A(•)�A(�•)
, (5.18)

where A(T ) is the area at LP coordinate time T , and A(±•) are given by (5.16) and (5.17). Notice

that Â(�•) = 0 and Â(•) = 1. The above can also be written as

Â(T ) =
DA(T )

DA
, (5.19)

where DA(T ) = A(T )�A(�•) is the area increase after time T , and DA = A(•)�A(�•) is the

total area increase. Another useful quantity to introduce is a normalized value of e . Recall from

section 2.7 that SdS spacetime only has a black hole and cosmological horizon provided that e <

ec = (3
p

3)�1 . With this in mind, we define

ê =
e

ec
= 3

p
3e .
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Therefore, the condition e < ec becomes simply ê < êc = 1. The advantage of this rescaling of the

parameter e is that it is easy to gauge the “smallness” of ê , since it can be easily compared to the

critical value êc = 1.

Consider first the plot of area vs time for ê ⇡ 0.1, as shown in figure 5.3a. One of the remarkable

features of this graph is that the inflection point in the graph occurs at a time where the area is very

nearly equal to its final value. This leads us to hypothesize that Â(Tc)! 1 in the limit that ê ! 0,

where Tc is the time where the inflection point occurs. In figure 5.3, we plot Â(Tc) vs ê , and can

clearly see strong numerical evidence supporting this hypothesis. We have created the same graph

using the merger time instead of the inflection time Tc, and have found that the graph is identical.

This is in keeping with the result from section 5.2.2, where we found numerically that the merger

time and inflection point time coincided. The implication of the result in figure 5.3 is that in the

limit that ê ! 0, all of the area increase occurs prior to merger. That is, when an infinitesimally

small black hole merges with the cosmological horizon, all of the area increase takes place before

the black hole and cosmological horizon first touch. Quantitatively, the graph suggests that we have

Â(Tc) = 1+O(ê) . (5.20)

More precisely, by fitting a straight line to the graph in figure 5.3, we have the approximate formula

Â(Tc)⇡ 1�1.8ê . (5.21)

Obviously the coefficient of ê in the above formula depends on how the horizon area was calculated,

which ultimately depends on our choice of time coordinate. However, the fact that Â(Tc) ! 1 as

ê ! 0, as well as the linear dependence on ê of Â(Tc) for ê ⌧ 1, both ought to be results that hold for

any choice of time coordinate. For any given choice of time coordinate, one can find a formula akin

to the one above. The resulting formula then provides a very good approximation to the area at the

time of merger for small values of ê . Notice that based on figure 5.3, we see that the above formula

should provide a reasonable approximation of Â(Tc) for values of ê as large as ê ⇡ 0.1. Also notice

that the above formula gives the area for any values of the parameters M and H such that HM ⌧ 1,

since given values for the parameters M and H, one can compute a value for ê = 3
p

3HM and then
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combine the above with (5.18), (5.16) and (5.17) to find the change in area.

Rate of area increase at the time of merger

Another natural question to ask regarding the limit ê ! 0 is whether or not A0(Tc)! 0 in this limit.

That is, whether or not the maximum rate of change of the area with respect to time vanishes in

the limit ê ! 0. To properly answer this question, it is useful to first nondimensionalize A0(T ).

To do so, we nondimensionlize the numerator of dA/dT by diving it by DA = A(•)�A(�•), and

nondimensionalize the denominator of dA/dT by dividing it by 1/H. The motivation for these

rescalings is that the numerator of dA/dT should be divided by the total change in area DA, and the

denominator of dA/dT should be divided by the approximate time scale associated with the area

increase, which is 1/H. Letting Ā0 be this nondimensional rate of change of area, we have

Ā0(T ) =
A0(T )
HDA

. (5.22)

A plot of Ā0(Tc) vs ê is shown in figure 5.4. Despite the considerable scatter of the points due to

numerical error, there is a general trend showing that we have

Ā0(Tc)! constant as ê ! 0 . (5.23)

If correct, the above suggests that as ê ! 0, the Ā0(T ) vs T graph (which would have the same basic

shape as the A0(T ) graph in figure 5.2a) has a peak value at Tc which is roughly independent of ê

for ê ⌧ 1. Alternatively, we can recognize that

DA = 4p

✓
1

H2 � r2
c � r2

b

◆

= 4p

1
H2

�
1� (Hrc)

2 � (Hrb)
2�

= 4p

1
H2

�
2e +O(e2)

�
, (5.24)

145



5.2. Numerical results

(a)

(b)

Figure 5.3: a) Example of horizon area vs time for a small value of e . Notice that the time of
maximum area increase, which is also the merger time, occurs at a time when the area has nearly
reached its final value. b) A plot of the nondimensional area Â, as given by equation (5.18), at the
merger time, for small values of the parameter ê . Notice that Â approaches 1 as ê ! 0. This means
that in the limit of small black hole mass, all of the area increase occurs before merger.
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where we have used (2.15) in the last step. Using the above and the definition (5.22), the result

(5.23) becomes:

A0(Tc)⇠
1
H

ê as ê ! 0 .

If we imagine taking the limit ê ! 0 by setting H = constant and taking M ! 0, then the above

becomes:

A0(Tc)⇠ M as M ! 0 . (5.25)

In other words, if an infinitesimally small black hole merges with a cosmological horizon, the rate

of change of area increase at the merger point will scale like the mass M of the black hole. By fitting

a straight line to the points in figure 5.4, we can find the approximation

Ā0(Tc)⇡ 2.4 for ê ⌧ 1 . (5.26)

Using (5.22) and (5.24), viewing the above as a result for M ⌧ 1/H, we have

A0(Tc)⇡ 60M for M ⌧ 1
H

. (5.27)

The above result gives an approximate formula for the rate of change of area at the time of merger

for small black hole masses. As in the approximate formula (5.21), the particular coefficient above

depends on the choice of time coordinate, which in this case is the time T associated with the LP

coordinates developed for this thesis. However, for any other coordinate system one can find the

appropriate coefficient in a formula similar to the above. Furthermore, the linear dependence on M

obtained in the above formula is a result which we would expect to hold in any coordinate system.

Average rate of area increase

A third related question that one can ask regarding the area vs time graph in the limit that ê ! 0

is how the average of A0(T ) behaves in this limit, where the average is to be computed over some

predetermined time interval. As before, it is useful to use the normalized area from (5.19) and the
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Figure 5.4: Plot of the maximum nondimensionalized rate of area increase, as given by equation
(5.22), for several small values of the parameter ê . We can see that this approaches a constant as
ê ! 0. The upshot of this is that the maximum rate of area increase A0(Tc) scales like the mass of
the black hole for M ⌧ 1/H, as encapsulated by equation (5.25).
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nondimensional derivative introduced in (5.22). Let us define the time Thal f as

Â(Thal f ) =
1
2
. (5.28)

That is, Thal f is the time at which half of the total change in area has taken place. Now we consider

the average of Ā0(T ) over the time interval from Thal f to Tc. Letting this average be Ā0
avg, we have

Ā0
avg =

A(Tc)�A(Thal f )

HDA
�
Tc �Thal f

�

=
Â(Tc)� Â(Thal f )

H
�
Tc �Thal f

�

=
1

H
�
Tc �Thal f

�
✓

1
2
+O(e)

◆
, (5.29)

where we have used (5.19) in the first step, (5.22) in the second step, and (5.20) and (5.28) in the last

step. In figure 5.5, we plot H(Tc �Thal f ) vs ê for several small values of ê . There is considerable

scatter in the points due to numerical error, but we can nevertheless conclude that

H(Tc �Thal f )! constant as ê ! 0 .

The same way that (5.26) lead to (5.27), the above and (5.29) allow us to conclude that

A0
avg ⇠ M for M ⌧ 1

H
.

That is, the derivative A0(T ), averaged over the time from Thal f to Tc scales like the mass of the black

hole, in the limit of small black hole mass. Thus the same scaling which applied to the maximum

derivative, as in (5.25), applies to the average derivative as well.

In summary, we have looked at three aspects of the horizon area vs time graph for ê ⌧ 1. The first is

the fraction of area increase which occurs before merger, which we found to be unity in the limit that

ê ! 0. That is, in the limit of small black hole mass (or equivalently, small cosmological constant),

all of the area increase occurs prior to merger. The second question we considered was the rate of
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Figure 5.5: Plot of the nondimensional time interval HDT = H(Tmerger � Thal f ) for several small
values of the paramter ê , where Tmerger is the merger time and Thal f is the time where half of the
area increase has occured. As we can see, HDT appears to approach a constant as ê ! 0. This
implies that for small black hole masses, the average rate of change of area over the time interval
from Thal f to Tmerger goes like the mass of the black hole. This scaling is the same as was obtained
for the maximum rate of area increase, as shown in figure 5.4.

change with resepct to time of horizon area, as calculated at the time of merger (as hypothesized in

section 5.2.2, and assumed throughout this section, this is also the time at which the rate of change is

maximal). This maximum rate of change was found to scale like the mass of the black hole for small

e . Finally, we considered the average rate of change of the area vs time, over a suitable interval of

time, and found that it also followed the same scaling, being proportional to mass for ê ⌧ 1.

Horizon area and null generators

The final question we investigate regarding the horizon area for ê ⌧ 1 relates not to the dependence

of area on time, but rather to the contribution of different null generators to the horizon area increase.

As was discussed briefly at the end of section 4.4.2, null generators can be separated into two basic

categories: those which are part of the horizon for all times, and those which only join the horizon

at some time by entering through the caustic points. Let us call these the existing generators and
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the new generators, respectively. This distinction between two types of generators is most easily

seen in figure 4.7, where the ew generators are drawn in green. Using this distinction between these

two types of generators, we can think of the horizon area as being due to two effects: the joining

of new generators previously not on the horizon, and the expansion of generators which are on the

horizon for all times (notice that those generators which join the horizon can also expand once on

the horizon; this type of area increase still falls under the category of being due to “joining of new

generators”).

Recall that different horizon generators are parametrized using the parameter a 2 [0,2p). At the end

of section 4.4.2 we defined a1 and a2 such that generators with a1  a  a2 or a1  2p �a  a2

are the new generators. The meaning of these angles is most easily understood by looking at the

green part of the last frame of figure 4.7. In section 4.4.2, we also explained that the value of

f(T =�•) can be used to calculate the values of a1 and a2. Specifically, we have

a1  a  a2 or a1  2p �a  a2 () |f(T =�•)|� p .

Based on the above, we can approximate a1 and a2 numerically using the value of f(Ti), where Ti

is a very early time, as compared with Tmerger (more precisely, we have Ti �Tmerger ⌧ 1/H). Let

us define Ang(T ) and Aeg(T ) to be the contribution to the horizon area from the new generators and

existing generators, respectively, at some time T . That is, Ang(T ) is the contribution to the area from

generators satisfying a1  a  a2 or a1  2p �a  a2, and Aeg(T ) is the contribution to the area

from the remaining generators. By definition, we have

Ang(�•) = 0 ,

Aeg(�•) = 4p

�
r2

b + r2
c
�
.

The area of Aeg(�•) is of course simply the area of the spherical black hole and cosmological

horizons, with Schwarzschild radii rb and rc, respectively. Let us also define DAng(T ) and DAeg(T )

to be the area increase due to new generators and existing generators, respectively, after time T .
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That is, we have

DAng(T ) = Ang(T )�Ang(�•) ,

DAeg(T ) = Aeg(T )�Aeg(�•) .

As previously discussed, we can approximate a1 and a2 by using the condition |f(Ti)| � p . This

is done by integrating the null geodesic equations backwards until time Ti, using the procedure

described in section 4.3. Once we have approximate values of a1 and a2, we can use these to find

approximate values for Ang(T ) and Aeg(T ), where the horizon area is calculated using the procedure

described in section 5.1, and the horizon generators are calculated from the null geodesic equations

as described in section 4.3. Letting Tf be the final time of integration (actually, the “initial time”

if we think of integration as proceeding backwards), we can compute DAng(Tf ) and DAeg(Tf ). For

Tf �Tmerger � 1/H, DAng(Tf ) and DAeg(Tf ) are then thought of as approximations to DAng(•) and

DAeg(•). Computing the ratio of DAeg(Tf ) to DAng(Tf ) for Tf sufficiently large and for different

values of ê , we obtain the plot shown in figure 5.6. According to this plot, it appears that the ratio

plotted approaches a constant as ê ! 0. As we will show analytically in section 5.3.2, the ratio

of DAeg(•) to DAng(•) approaches unity as ê ! 0. This means that in the limit of infinitesimally

small black hole mass, new generators and existing generators contribute an equal amount to the

horizon area increase. This is a surprising mathematical coincidence. Questions about generalizing

this result, or the reason for its origin, will be discussed further in section 6.2. Notice that in figure

5.6, we see in the limit e ! 0, the ratio of DAeg(Tf ) to DAng(Tf ) appears to approach a constant

with value approximately equal to 0.8, and not unity. This is due to numerical errors in the way

that DAeg(Tf ) and DAng(Tf ) are calculated, and is an issue we are currently addressing. Analytical

methods in section 5.3.2 will confirm that this ratio is indeed unity.
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Figure 5.6: Ratio of two types of area increase: that due to the expansion of existing generators, and
that due to the joining of new generators not previously on the horizon. This ratio was calculated
numerically for several small values of ê . As will be shown analytically in section 5.3.2, this ratio
is equal to unity. In the plot above, the ratio appears to approach a value close to 0.8 instead of 1.
This is due to numerical errors.

5.3 Analytical results

5.3.1 Time of maximum area increase

In section 5.2.2, we presented numerical evidence showing that the time of maximal area increase

(i.e. the inflection point in figure 5.1) coincides with the time at which the merger of horizons occurs.

In this section we extend this result using analytical methods. The plots in figure 5.2 provide a hint

as to how to proceed. As we can see in 5.2b, the second derivative of A(T ) diverges prior to the

inflection point. This suggests that there may be something about the merger time which causes

a divergence in A00(T ). In this section, we show that A00(t�
p ) = • for a broad class of coordinate

systems, where A(t) is the total horizon area at coordinate time t and tp is the time of merger. This

establishes that

lim
t!t

�
p

d2A
dt

2 > 0 .

The second result which would be needed to complete the proof is A00(t+
p ) < 0. However, it is

not possible to show that A00(t+
p ) < 0 for an arbitrary coordinate system since the sign of A00(t)

after merger ultimately depends on the choice of time coordinate. Since showing that A0(t) has a
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maximum at the time of merger requires us to show that both A00(t�
p )> 0 and A00(t+

p )< 0 for a given

choice choice of time coordinate, our proof is somewhat incomplete. Despite the incompleteness of

our proof, we can motivate that A00(t�
p )> 0 and A00(t+

p )< 0 should occur for a family of coordinate

systems. The reasoning is as follows. If we think of taking a coordinate system which is in some

sense close to LP coordinates, then by continuity the fact that A00(t+
p ) < 0 for LP coordinates (as

can be seen from figure 5.2b) implies that A00(t+
p ) < 0 must hold for any other sufficiently “near”

coordinate system. Since LP coordinates belong to the class of coordinate systems considered

below, this other nearby coordinate system can be constrained be within this class, from which it

follows that A00(t�
p ) > 0 for this other coordinate system as well. This establishes that A00(t�

p ) > 0

and A00(t+
p ) < 0 hold for coordinate systems which are sufficiently “near” to LP coordinates, and

which satisfy the constraints of the coordinate systems considered below.

Second derivative prior to merger

Consider a family of coordinate systems such that the line element on the constant time hypersur-

faces is given by (5.2). From (5.5), we know that the area before merger is given by the following

expression:

A(t) = 2p

ˆ
ac

0
r | sinf |

 
F(r,t)

✓
dr
da

◆2

+ r2
✓

df

da

◆2
!1/2

da

+2p

ˆ
p

ab

r | sinf |
 

F(r,t)
✓

dr
da

◆2

+ r2
✓

df

da

◆2
!1/2

da , (5.30)

where a 2 [0,2p) parametrizes the curve which is the intersection of the surface S
t

and q = p/2

(see section). In other words, a parametrizes the curves such as those shown in figure 4.4. Instead

of using a to parametrize these curves, it is useful instead to use the arclength along the curve as a

parameter. The relationship between arclength l and a is

dl2 =

 
F(r,t)

✓
dr
da

◆2

+ r2
✓

df

da

◆2
!

da

2 .
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Since arclength is a strictly increasing function of a we can use it as an integration variable, so that

the integrals in (5.30) become

A(t) = 2p

ˆ lc

0
r sinf dl + 2p

ˆ L

lb
r sinf dl ,

where lc and lb are the arc length values corresponding to ac and ab, respectively, and L is the total

arc length of the curve. Note that lc = lc(t), lb = lb(t) and L = L(t) are all functions of t , and that

there is also a dependence on t through r = r(t, l) and f = f(t, l). Differentiating the area formula

above with respect to t , we get

1
2p

A0(t) = r (t, lc(t))sin(f (t, lc(t))) l0c(t)+
ˆ lc

0

∂

∂t

(r sinf) dl

+ r (t,L(t))sin(f (t,L(t)))L0(t)� r (t, lb(t))sin(f (t, lb(t))) l0b(t)+
ˆ L

lb

∂

∂t

(r sinf) dl .

Differentiating with respect to t again and simplifying slightly, we obtain the following expression

for A00(t):

1
2p

A00(t) =

"
∂ r
∂ l

����
l=lc

l0c(t)+2
∂ r
∂t

����
l=lc

#
sin(f (t, lc(t))) l0c(t)

+

"
∂f

∂ l

����
l=lc

l0c(t)+2
∂f

∂t

����
l=lc

#
r (t, lc(t))cos(f (t, lc(t))) l0c(t)+ r (t, lc(t))sin(f (t, lc(t))) l00c (t)

+

ˆ lc

0

∂

2

∂t

2 (r sinf) dl +


∂ r
∂ l

����
l=L

L0(t)+2
∂ r
∂t

����

�
sin(f (t,L(t)))L0(t)

+


∂f

∂ l
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l=L

L0(t)+2
∂f

∂t

����
l=L

�
r (t,L(t))cos(f (t,L(t)))L0(t)+ r (t,L(t))sin(f (t,L(t)))L00(t)

�
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∂ l

����
l=lb

l0b(t)+2
∂ r
∂t

����
l=lb

#
sin(f (t, lb(t))) l0b(t)

�
"

∂f

∂ l

����
l=lb

l0b(t)+2
∂f

∂t

����
l=lb

#
r (t, lb(t))cos(f (t, lb(t))) l0b(t)

� r (t, lb(t))sin(f (t, lb(t))) l00b (t)+
ˆ L

lb

∂

2

∂t

2 (r sinf) dl . (5.31)

We want to find A00(t) in the limit t ! t

�
p . To do so, first consider the functions lc(t) and lb(t).

Recall that at any time t < tp prior to merger, lc(t) and lb(t) are the values of the parameter l
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for which (r(t, lc),f(t, lc)) and (r(t, lb),f(t, lb)) are the locations of the caustic points where new

generators enter the horizon (these are the nonsmooth points on the horizon in figure 4.4). By

spherical symmetry, we can assume without loss of generality that these caustic points occur along

f = p , so that lc(t) and lb(t) are given implicitly by the following equation:

f(t, l) = p . (5.32)

That is, we have

f(t, lc(t)) = p ,

f(t, lb(t)) = p ,

for all values t < tp. Similarly, L(t) is defined as the value of l > 0 for which f(t, l) = 0. This

is half of the total arc length of any of the curves shown in figure 4.4, since the top half of these

curves starts at f = 0 for l = 0 and ends at f = 0 for l = L. Using f(t,L) = 0 and the above, we can

immediately conclude that the terms involving sin(f(t, lc(t))), sin(f(t, lb(t))) or sin(f(t,L(t)))

in (5.31) vanish for all values t < tp, and we are left with

1
2p

A00(t) =

"
∂f

∂ l

����
l=lc
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∂t
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#
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∂

2
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2 (r sinf) dl +
ˆ L
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∂

2

∂t

2 (r sinf) dl . (5.33)

Next we consider the asymptotic behavior of lc(t) and lb(t) for t < tp and t near tp. For any

value of t < tp, (5.32) yields two solutions for l, which are lc(t) and lb(t). For t > tp, horizon

merger has occured and (5.32) no longer has any roots (as in the fifth frame in figure 4.4). Letting

lp = lc(tp) = lb(tp), this implies that f(t, l) has the following Taylor expansion about (tp, lp):

f(t, l) = p +
∂f

∂t

����
tp,lp

(t � tp)+
∂

2
f

∂ l2

����
tp,lp

(l � lp)
2 +O

�
(t � tp)

2 +(l � lp)
3� , (5.34)
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where ∂f

∂t

���
tp,lp

< 0 and ∂

2
f

∂ l2

���
tp,lp

< 0. From the above and (5.32) we can deduce that lc(t) and lb(t)

have the following asymptotic behavior:

lc(t) = lp �

2

4
 

∂f

∂t

����
tp,lp

! 
∂

2
f

∂ l2

����
tp,lp

!�1
3

5

1
2

(tp � t)
1
2 +O

⇣
(t � tp)

3
2

⌘
, (5.35)

lb(t) = lp +

2

4
 

∂f

∂t

����
tp,lp

! 
∂

2
f

∂ l2

����
tp,lp

!�1
3

5

1
2

(tp � t)
1
2 +O

⇣
(t � tp)

3
2

⌘
. (5.36)

Differentiating the above, we get the asymptotic behavior of the first derivatives of lc(t) and lb(t):

l0c(t) =
1
2

2

4
 

∂f

∂t

����
tp,lp

! 
∂

2
f

∂ l2

����
tp,lp

!�1
3

5

1
2

(tp � t)�
1
2 +O

⇣
(t � tp)

1
2

⌘
,

l0b(t) = �1
2

2

4
 

∂f

∂t

����
tp,lp

! 
∂

2
f

∂ l2

����
tp,lp

!�1
3

5

1
2

(tp � t)�
1
2 +O

⇣
(t � tp)

1
2

⌘
.

From (5.34) and (5.35)-(5.36), we can also deduce the following:

∂f

∂ l

����
l=lc

= �2

 
∂f

∂t

����
tp,lp

∂

2
f

∂ l2

����
tp,lp

! 1
2

(tp � t)
1
2 +O (t � tp) ,

∂f

∂ l

����
l=lb

= 2

 
∂f

∂t

����
tp,lp

∂

2
f

∂ l2

����
tp,lp

! 1
2

(tp � t)
1
2 +O (t � tp) ,

∂f

∂t

����
l=lc

=
∂f

∂t

����
tp,lp

+O (t � tp) ,

∂f

∂t

����
l=lb

=
∂f

∂t

����
tp,lp

+O (t � tp) .
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Using the results above, we can now find the asymptotic behavior of the first two terms in (5.33):

"
∂f

∂ l

����
l=lc

l0c(t)+2
∂f

∂t

����
l=lc

#
r (t, lc(t))cos(f (t, lc(t))) l0c(t) = (5.37)

2

43
2

 
∂f

∂t

����
tp,lp

!2 
� ∂

2
f

∂ l2

����
tp,lp

!� 1
2

r(tp, lp)

3

5(tp � t)�
1
2 +O(1) (5.38)

"
∂f

∂ l

����
l=lb

l0b(t)+2
∂f

∂t

����
l=lb

#
r (t, lb(t))cos(f (t, lb(t))) l0b(t) = (5.39)

�

2

43
2

 
∂f

∂t

����
tp,lp

!2 
� ∂

2
f

∂ l2

����
tp,lp

!� 1
2

r(tp, lp)

3

5(tp � t)�
1
2 +O(1) (5.40)

Now consider the third term in (5.33). Since L(t) is defined by f(t,L(t)), the implicit function

theorem implies that we have:

L(t) = Lp +
∂f

∂t

����
tp,Lp

 
∂f

∂ l

����
tp,Lp

!�1

(t � tp)+O
�
(t � tp)

2�

where Lp = L(tp). Using the above, we find that the third term in (5.33) has the following asymp-

totic behavior:


∂f

∂ l

����
l=L

L0(t)+2
∂f

∂t

����
l=L

�
r (t,L(t))cos(f (t,L(t)))L0(t)

= 3

 
∂f

∂t

����
tp,Lp

!2 
∂f

∂ l

����
tp,Lp

!�1

+O(t � tp) = O(1) (5.41)

Lastly, consider the two integrals in (5.33). Since the first and second partial derivatives of r(t, l)

and f(t, l) with respect to t are O(1), we have:

ˆ lc

0

∂

2

∂t

2 (r sinf) dl +
ˆ L

lb

∂

2

∂t

2 (r sinf) dl = O(1) (5.42)
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Using (5.37)-(5.39), (5.41) and (5.42), we can deduce that our expression for A00(t) in (5.33) has

the following asymptotic behavior:

1
2p

A00(t) =

2

43

 
∂f

∂t

����
tp,lp

!2 
� ∂

2
f

∂ l2

����
tp,lp

!� 1
2

r(tp, lp)

3

5(tp � t)�
1
2 +O(1)

From the above it follows that:

lim
t!t

�
p

1
2p

A00(t) = •

5.3.2 Horizon area increase and horizon generators

In this section we derive approximate formulas for DAng(•) and DAeg(•), valid for e ⌧ 1, where

DAng(T ) and DAeg(T ) were defined in section 5.2.3. We then use these formulas to prove the main

result of this section, which is that:

DAng(•)

DAeg(•)
! 1 as e ! 0 (5.43)

That is, we prove that in the limit e ! 0, the total area increase due to the joining of new generators

is equal to the total area increase due to the expansion of generators. This result was discussed in

section 5.2.3, where we provided numerical evidence hinting at its validity.

We prove (5.43) in three steps. In section (5.3.2), we find approximate formulas for a1 and a2, valid

for e ⌧ 1, where a1 and a2 were defined in section 5.2.3. In sections 5.3.2 and 5.3.2, we find the

area increase due to new generators and expanding generators, respectively, for e ⌧ 1. That is, we

find approximate formulas for DAng(•) and DAeg(•) , valid for e ⌧ 1. Finally, we combine the

results from sections 5.3.2 and 5.3.2 to find the ratio of DAng(•) to DAeg(•), in the limit that e ! 0.
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Calculation of a1 and a2 for e ⌧ 1

Recall from section 5.2.3 that we defined a! and a2 such that generators with a1  a  a2 or

a1  2p �a  a2 are the new generators which join the horizon at some time. We wish to find

formulas for a1(e) and a2(e), viewed as functions of e , in the limit that e ⌧ 1. This is the limit in

which the Schwarzschild radius of the black hole is much smaller than the Hubble radius associated

with the cosmological constant. We will do this in three steps. First we find the defining equations

for a1(e) and a2(e), then we find the formula for a1(e), and finally we find the formula for a2(e).

The formula for a1(e) and a2(e) will be used in sections 5.3.2 and 5.3.2 to find the area increase

due to expanding generators and new generators.

Defining equations We start by defining f0(a;e) as:

f0(a;e) = lim
T!�•

f(T,a;e)

provided such a limit exists. Next notice that

f0(a1;e) = p, (5.44)

f0(a2;e) = p (5.45)

which follows from the fact that null generators must enter the horizon through the caustic point,

together with the fact that the caustic is located at f = p . Also note that f(a1;e) and f(a2;e) are

guaranteed to exist since as T !�•, the null generators with a1 and a2 asymptotically approach

the null generators of the horizon for a stationary observer, which are know to have f = constant.

(5.44)-(5.45) implicitly define the functions a1(e) and a2(e). To make further progress, we must

integrate the null geodesics equations (4.3) and (4.6)-(4.7) in order to find integral expressions for

f0(a1;e) and f0(a2;e). From (4.3) and (4.6)-(4.7), we have that null geodesics, when thought of as
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described by functions f(r), must satisfy one of the two equations:

Ifa 2 [0,a⇤) :
df

dr
=

8
>><

>>:

�sina

r2
p

H2�Ve f f (r)
forr > r⇤

sina

r2
p

H2�Ve f f (r)
forr < r⇤

(5.46)

Ifa 2 [a⇤,p) :
df

dr
=

�sina

r2
p

H2 �Ve f f (r)
(5.47)

In the first case above, there is a turning point of the motion, with r⇤ the Schwarzschild coordinate

of the turning point. a

⇤ and r⇤ are given by (as discussed in section 4.4.2):

sin2
a

⇤ = 27M2H2, a

⇤ 2
⇣

p

2
,p
⌘

Ve f f (r⇤) = H2, r⇤ > 3M (5.48)

We hypothesize that the null generator with a = a1 has a turning point of the motion, whereas the

null generator with a = a2 does not have a turning point. This hypothesis will then be vindicated by

our calculations of a1 and a2 under this assumption. Using our hypothesis, we have that f0(a1;e)

and f0(a2;e) will be found by integrating (5.46) and (5.47), respectively. Before integrating (5.46)-

(5.47), we need appropriate limits of integration. These can be obtained by considering r(T ) and

f(T ) as T ! ±•. Based on our results from section 4.4.2, the null generator with a = a1 has the

following limiting behavior:

r(T =�•) = rc (5.49)

r(T = •) = •

f(T =�•) = f0(a1;e)

f(T = •) = 0
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Similarly, the null generator with a = a2 obeys:

r(T =�•) = rb (5.50)

r(T = •) = •

f(T =�•) = f0(a2;e)

f(T = •) = 0

Using (5.49)-(5.50) as the limits of integration, we can integrate (5.46)-(5.47) to obtain integral

expressions for f0(a1;e) and f(a2;e). These are:

f0(a1;e) =

•̂

r⇤

sina1

r2
p

H2 �Ve f f (r)
dr+

rcˆ
r⇤

sina1

r2
p

H2 �Ve f f (r)
dr

f0(a2;e) =

•̂

rb

sina2

r2
p

H2 �Ve f f (r)
dr

Combining the above with (5.44)-(5.45), we obtain:

p =

•̂

r⇤

sina1

r2
p

H2 �Ve f f (r)
dr+

rcˆ
r⇤

sina1

r2
p

H2 �Ve f f (r)
dr

p =

•̂

rb

sina2

r2
p

H2 �Ve f f (r)
dr

The above implicitly define the functions a1(e) and a2(e). The depedence of a1 and a2 on e can

be more easily seen by first making the following change of variables in the above integrals:

u =
M
r
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The integrals become:

p =
1
M

u⇤ˆ

0

sina1q
H2 �Ve f f

�M
u

�du+
1
M

u⇤ˆ
uc

sina1q
H2 �Ve f f

�M
u

�du (5.51)

p =
1
M

ubˆ

0

sina2q
H2 �Ve f f

�M
u

�du (5.52)

where u⇤ = M/r⇤, uc = M/rc and ub = M/rb. Substituting the explicit expression for Ve f f (r):

Ve f f (r) =Ve f f

✓
M
u

◆
=

sina

M2 u2 (1�2u) (5.53)

into (5.51)-(5.52), and manipulating the limits of integration in (5.51), we obtain

p = 2

u⇤(a1,e)ˆ

0

1r⇣
e

sina1

⌘2
�u2(1�2u)

du�
uc(e)ˆ

0

1r⇣
e

sina1

⌘2
�u2(1�2u)

du (5.54)

p =

ub(e)ˆ

0

1r⇣
e

sina2

⌘2
�u2(1�2u)

du (5.55)

where we have written u⇤ = u⇤(a1,e), uc = uc(e) and ub = ub(e) to emphasize the depedendence

on a1 or e . In the above we clearly see that we are dealing with implicit relations for a1(e) and

a2(e). Our task is now to extract the limiting behavior of a1(e) and a2(e) for e ⌧ 1. This will be

done by expanding the above integrals for e ⌧ 1. First define:

I(a1,e) =

u⇤(a1,e)ˆ

0

1r⇣
e

sina1

⌘2
�u2(1�2u)

du, (5.56)

I1(a1,e) =

uc(e)ˆ

0

1r⇣
e

sina1

⌘2
�u2(1�2u)

du,

I2(a2,e) =

ub(e)ˆ

0

1r⇣
e

sina2

⌘2
�u2(1�2u)

du
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so that (5.54)-(5.55) become:

2I � I1 = p, (5.57)

I2 = p (5.58)

Calculation of a1 Consider (5.57) first. For the integrals I and I1, it will be useful to make the

substitutions v = u/u⇤ and w = u/uc, respectively, so that the integrals become:

I(a1,e) =

1ˆ

0

u⇤r⇣
e

sina1

⌘2
� (u⇤v)2(1�2u⇤v)

dv (5.59)

I1(a1,e) =

1ˆ

0

ucr⇣
e

sina1

⌘2
� (ucw)2(1�2ucw)

dw (5.60)

Recall that by definition, r⇤ and rc satisfy:

Ve f f (r⇤) = H2,

f (rc) = 0

so that u⇤ and uc satisfy

Ve f f

✓
M
u⇤

◆
= H2,

f
✓

M
uc

◆
= 0

Using Ve f f (r) = sin2
a

r2 (1� 2M
r ) and f (r)�1� 2M

r �H2r2 , the above two equations become

(u⇤)2(1�2u⇤) =

✓
e

sina1

◆2

, (5.61)

u2
c(1�2uc) = e

2 ) uc = e +O(e2) (5.62)
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Using (5.61) in (5.59)-(5.60) to eliminate a1 and e in favor of u⇤, the integrals become:

I(u⇤) =

1ˆ

0

1p
1�2u⇤ � v2(1�2u⇤v)

dv (5.63)

I1(u⇤,uc) =
uc

u⇤

1ˆ

0

1q
1�2u⇤ �

� uc
u⇤
�2 w2(1�2ucw)

dw (5.64)

where we have written I = I(u⇤) and I1 = I1(u⇤,uc) to emphasize that these can be viewed as func-

tions of u⇤ and uc instead of a1 and e . For the purpose of expanding the above integrals for e ⌧ 1,

it is easier to treat u⇤ ⌧ 1 as the small parameter, and furthermore view uc = uc(u⇤) as a function of

u⇤, whose behavior is defined implicitly by (5.57). That is:

2I(u⇤)� I1(u⇤,uc) = p (5.65)

Once uc(u⇤) for u⇤ ⌧ 1 is determined using the above, the behavior of a1(e) for e ⌧ 1 can then in

turn be obtained from (5.61)-(5.62). We start by expanding uc(u⇤) in a Taylor series:

uc(u⇤) = uc(0)+u0c(0)u
⇤+

1
2

u00c (0)(u
⇤)2 +O

⇣
(u⇤)3

⌘

From (5.61)-(5.62), we see that uc(0) = 0, so that the above simplifies to

uc(u⇤) = u0c(0)u
⇤+

1
2

u00c (0)(u
⇤)2 +O

⇣
(u⇤)3

⌘

Let us expand the integral in (5.64) to lowest order in u⇤. We have:

1�2u⇤ �
⇣uc

u⇤

⌘2
w2(1�2ucw) = 1�u0c(0)

2w2 +O(u⇤)

)
r

1�2u⇤ �
⇣uc

u⇤

⌘2
w2(1�2ucw) = 1� 1

2
u0c(0)

2w2 +O(u⇤)

)
✓

1�2u⇤ �
⇣uc

u⇤

⌘2
w2(1�2ucw)

◆� 1
2

= 1+
1
2

u0c(0)
2w2 +O(u⇤)

)
1ˆ

0

1q
1�2u⇤ �

� uc
u⇤
�2 w2(1�2ucw)

dw = 1+
1
6

u0c(0)+O(u⇤)
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Therefore, to lowest order in u⇤, (5.64) is

I1(u⇤,uc) =

0

@
u0c(0)u⇤+O

⇣
(u⇤)2

⌘

u⇤

1

A
✓

1+
1
6

u0c(0)+O(u⇤)
◆

= u0c(0)
✓

1+
1
6

u0c(0)
◆
+O(u⇤)

To lowest order in u⇤, (5.63) is

I(u⇤) = I(0)+O (u⇤)

Using the above expansions for I and I1 in (5.65), this equation becomes, to lowest order

2I(0)+u0c(0)
✓

1+
1
6

u0c(0)
◆
+O(u⇤) = p (5.66)

Computing

I(0) =
1ˆ

0

1p
1� v2

dv =
p

2

and substituting into (5.66), we find that equating lowest order terms gives u0c(0) = 0. Our Taylor

expansion for uc(u⇤) now reads:

uc(u⇤) =
1
2

u00c (0)(u
⇤)2 +O

⇣
(u⇤)3

⌘

We now consider (5.66) at first order in u⇤. To first order in u⇤, (5.64) is

I1(u⇤,uc) =

✓
u0c(0)+

1
2

u00c (0)u
⇤+O

⇣
(u⇤)2

⌘◆✓
1+

1
6

u0c(0)+O(u⇤)
◆

=

✓
1
2

u00c (0)u
⇤+O

⇣
(u⇤)2

⌘◆
(1+O(u⇤))

=
1
2

u00c (0)u
⇤+O

⇣
(u⇤)2

⌘

and to first order in u⇤, (5.63) is

I(u⇤) = I(0)+ I0(0)u⇤+O
⇣
(u⇤)2

⌘
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Using the above expansions for I and I1 in (5.57), we get:

2I(0)+2I0(0)u⇤ � 1
2

u00c (0)u
⇤+O

⇣
(u⇤)2

⌘
= p

Equating terms that are first order in u⇤, we get:

u00c (0) = 4I0(0)

I0(0) can be computed to be:

I0(0) =
1ˆ

0

1� v3

(1� v2)
3
2

dv = 2

so that we finally arrive at our Taylor expansion for uc(u⇤):

uc(u⇤) = 2I0(0)(u⇤)2 +O
⇣
(u⇤)3

⌘

= 4(u⇤)2 +O
⇣
(u⇤)3

⌘

We now have the lowest order behavior of uc(u⇤). From it we will obtain the lowest order behavior

of a1(e). First we substitute the above in (5.62) to get:

16(u⇤)4 +O
⇣
(u⇤)6

⌘
= e

2

Let

ū = (u⇤)2 (5.67)

so that the above becomes:

16ū2 +O
�
ū3�= e

2 (5.68)

Substituting a Taylor expansion for ū(e):

ū(e) = ū0(0)e +O(e2) (5.69)

into (5.68), we get, to leading order:

16ū0(0)2 = 1
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So that (5.69) becomes:

ū(e) =
1
4

e +O(e2)

Going to back to (5.67) and solving for u⇤ gives the lowest order behavior of u⇤(e):

u⇤(e) =
1
2

e

1
2 +O

⇣
e

3
2

⌘

Substituting the above in (5.61) and solving for sina1, we get, to leading order:

sina1 = 2e

1
2 +O (e)

Solving for a1(e) in the above and retaining only leading order terms, we finally get:

a1(e) = p �2e

1
2 +O (e) (5.70)

Calculation of a2 Next we turn to finding a2(e) for e ⌧ 1. It will be useful to introduce the

function s2(e), defined as:

s2(e) =

✓
e

sina2

◆2

(5.71)

The integral (5.56) can now be viewed as a function of s2 and e instead of a2 and e . That is:

I2(s2,e) =

ub(e)ˆ

0

1p
s2 �u2(1�2u)

du

Equation (5.58) now reads:

I2(s2,e) = p (5.72)

The above implicitly defines the function s2(e). Substituting a Taylor expansion for s2(e):

s2(e) = s2(0)+O(e) (5.73)
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into (5.72) and using ub(e) =
1
2 +O(e), we find, to leading order:

1
2ˆ

0

1p
s2(0)�u2(1�2u)

du = p

The above can be solved numerically to give:

s2(0) = 0.05033384242... (5.74)

Substituting (5.73) into (5.71) and solving for sina2, we get, to leading order:

sina2 =

✓
1

s2(0)1/2

◆
e +O(e2)

so that to lowest order, a2(e) is given by:

a2(e) = p �a

0
2(0)e +O(e2) (5.75)

where a

0
2(0) is given by

a

0
2(0) =

1
s2(0)1/2 = 4.457280417...

The value of s2(0) in the above was obtained from (5.74).

Horizon area increase from new generators

Using the formulae for a1(e) and a2(e) in (5.70) and (5.75), we can find an approximate formula

for Ang(•), where Ang(T ) is the area at time T due to the joining of new horizon generators (this

was defined in section 5.2.3). That is, according to our definitions of a1 and a2 from section 5.2.3,

Ang(T ) is the area of the portion of the horizon made up of generators with parameter a satisfying

a1  a  a2 or a1  2p �a  a2.

We want to find the Ang(T ) in the limit that T ! •, and thus will first need the coordinates r(T ;a)
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and f(T ;a) of the generators in this limit. The formula (5.4) can then be used to find the area

element, and the area element can be integrated from a1 to a2 to find Ang(T ) in the limit that

T ! •. Recall from (4.69) and (4.79) that we have:

r(e) =
2
H

1
e

+O(1)

f(e) =
sina

2
e +O(e2)

where the limit e ! 0 corresponds to T ! •. Substituting the above into (5.4), we obtain the

following lowest order behavior of the area element, in the limit T ! •:

dA ⇠ sina

H2 dadb (5.76)

Integrating the above over the intervals a1  a  a2 and a1  2p �a  a2, as well as 0  b < p ,

we obtain Ang(•):

Ang(•) =
2p

H2 (�cosa2 + cosa1)

Now we substitute the formulas for a1(e) and a2(e) in (5.70) and (5.75) into the above to get:

Ang(•) =
2p

H2

h
cos
�
a

0
2(0)e +O(e2)

�
� cos

⇣
2e

1
2 +O(e)

⌘i

Expanding the above and keeping only the lowest order terms, we get:

Ang(•) =
4p

H2

⇣
e +O(e3/2)

⌘
(5.77)

It follows from the definition of new generators that Ang(�•) = 0, so that the above is also the total

area increase due to the new generators. That is:

DAng(•) = Ang(•)�Ang(�•)

=
4p

H2

⇣
e +O(e3/2)

⌘
(5.78)
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Horizon area increase from expansion of existing generators

Recall from section 5.2.3 that Aeg(T ) was defined to be the area of the horizon due to generators

existing on the horizon for all times. That is, Aeg(T ) is the area of the portion of the horizon

made up of generators which are not new generators, and therefore with parameter a not satisfying

a1  a  a2 or a1  2p �a  a2. The two contributions Ang(•) and Aeg(•) must add up to the

total area at late times A(•). That is, we must have:

A(•) = Ang(•)+Aeg(•) (5.79)

A(•) can be found be integrating (5.76) over 0  a < 2p and 0  b < p . This gives:

A(•) =
4p

H2

This is precisely what one would expect, since it is the area of a sphere with radius 1/H, which

is the expected horizon shape at late times. Using the above and (5.77) in (5.79), we can obtain

Aeg(•):

Aeg(•) =
4p

H2

⇣
1� e +O(e3/2)

⌘
(5.80)

At early times, we can also separate the area into two contributions and write:

A(�•) = Ang(�•)+Aeg(�•) (5.81)

From section 4.4.2 we know that all generators which make up the horizon start at either r = rb or

r = rc, so that the horizon at early times consists of the spheres r = rb and r = rc. Therefore we

have:

A(�•) = 4p

�
r2

b + r2
c
�

Furthermore, it follows from the definition of new generators that Ang(�•) = 0. Using this and the

above in (5.79), we get:

Aeg(�•) = 4p

�
r2

b + r2
c
�
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Using the above and (5.80), we can calculate the total area increase due to the expansion of existing

generators:

DAeg(•) = Aeg(•)�Aeg(�•)

=
4p

H2

⇣
1� (Hrb)

2 � (Hrc)
2 � e +O(e3/2)

⌘

=
4p

H2

⇣
e +O(e3/2)

⌘

where we have used used (2.15) in the last step. Combining the above with (5.78), we see that we

have:

lim
T!•

DAeg(•)

DAng(•)
= 1

The above is the main result of this section.
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Chapter 6

Concluding Remarks

6.1 Summary and discussion of results

By constructing a new coordinate system for SdS spacetime, and then solving the equations for

the null generators of the horizon, we have been able to reveal that the spacetime can provide a

rare example of an analytically known spacetime which has merging horizons. Such an example

can then be used as a mathematical laboratory to investigate various questions about the structure

and area merging horizons. Here we have focused on three mathematical aspects of the merging of

horizons: the location and structure of the merger point, the shape of the horizon at late times, and

the horizon area.

Our motivation for studying the location and structure of the merger point stems from the fact that

by using an analytical metric, we have a unique opportunity to make analytical claims about the

location and structure of the merger point. Furthermore, many of these claims can be formulated

in a coordinate independent manner. We were able to find an analytical formula for the location of

the caustic in the limit of infinitesimally small black hole mass (i.e. the limit e ! 0). Although it

has long been known from numerical simulations [23] that such a caustic point exists (for example,

in binary black hole mergers) our study is only the second one which is analytical (the first being

[14]), and the first one where the spacetime is known exactly. Furthermore, by focusing on the

limit e ! 0 and by using coordinate systems which have a simple geometric interpretation, we were
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able to formulate results in a coordinate independent manner. This is something that would not be

possible without the luxury of having analytical knowledge of the spacetime, as was the case in this

thesis.

Our initial motivation for studying the late time behavior of the horizons was that it provided the

initial conditions for the equations describing the coordinates of the null geodesic generators that

make up the horizon. We were able to develop an asymptotic series for the late time behavior

of the generators. Although this series is very accurate, it is unlikely that it is an exact solution,

as was discussed in section 4.4.3. We hypothesized that the discrepancy between our asymptotic

solution and the exact solution is a correction that is vanishingly small at all orders, and whose

main importance is in determining the behavior at late times of the horizon area. If this hypothesis

is true, it raises the natural question of whether it could be extended to other spacetimes where a

horizon setttles down to a final shape, or whether it is specific to SdS spacetime. Therefore, although

we initially analyzed the behavior of null generators at late times in order to accurately calculate

the coordinates of these generators, we may have accidently stumbled upon a hidden mathematical

richness in the behavior of these generators.

The third aspect of the mathematics of horizons that we considered was the horizon area. This

is the most physically motivated category of mathematical questions, given that horizon area is

directly proportional to horizon entropy, as well as being proportional to mass squared in the case

of a Schwarzschild black hole. Our first main result involves an intriguing connection between the

merger time and the time at which the rate of change of area is maximal. We provided compelling

evidence that these times coincide, and that this coincidence is not merely numerical, nor an artifact

of our choice of coordinates. Instead it stems from the fact that the caustic structure before merger

results in a diverging positive second derivative of area with respect to time. When this is combined

with a negative second derivative after merger, then it necessarily implies that the rate of change

of area with respect to time must be maximal at merger. It seems to be the case that this second

derivative is negative for a broad class of coordinate systems, so that the result is quite general. Our

result reveals a deep connection between the rate of change of horizon area and the presence of a

horizon caustic during the merger process. Notice that this connection is not immediately obvious,
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since the area increase during the merging process occurs everywhere along the horizon (i.e. all

the generators already on the horizon are expanding). Furthermore, the location of local maximal

area increase does not occur along the caustic, so that this connection cannot be reduced to simply

analyzing the area increase in the vicinity of the caustic. Nevertheless, the diverging discontinuity

in the second derivative of A(T ) ensures that we can firmly link the time of maximal area increase

with the merger time.

The second main result regarding the horizon area states that in the limit e ! 0, the contribution

to the area increase from expanding generators is precisely equal to the contribution to the area

increase from the joining of new generators not previously on the horizon. This result is coordinate

independent in the sense that there are canonical constant time slicings that one can use to measure

area at early and late times. That is, the result holds in the broad class of coordinate systems which

use these canonical slicings at early and late times. This canonical slicing at late times is the one

which approximates the slicing of deSitter spacetime (recall from the discussion in section 2.6 that

SdS spacetime reduces to deSitter spacetime in the r ! • limit). As was discussed in section 4.4.3,

in general our slicing does not approach this deSitter slicing at late times. However, in the limit

that e ! 0, our slicing does reduce to the deSitter slicing. This can be seen as a consequence of

the 3-cone geometry reducing to an essentially flat geometry in the limit that e ! 0 (see section

3.3.6 for a discussion of the 3-cone geometry). Whether our result regarding the equal contributions

of generators to the area is a mathematical coincidence or is connected to a deeper principle is still

unclear. One way to begin to answer this question would be to investigate this same question in other

spacetimes with merging horizons, such as extreme-mass ratio binary black holes. This possibly is

discussed below.

The third and final set of results regarding the area of horizons are those regarding the behavior of

the A(T ) graph in the limit e ! 0. More specifically, we investigated three questions in this limit: (i)

What is the fractional area increase before merger? (ii) What is the maximal rate of area increase?

(iii) What is the average rate of area increase over some suitable time interval?

Regarding (i), we were able to present numerical evidence that in the limit e ! 0, all of the area
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increase occurs before merger. Roughly speaking, this result is essentially stating that at merger

time, the area of the two horizons is nearly equal to the area of a spherical cosmological horizon

in the absence of a black hole. This suggests that in the limit e ! 0, at the time of merger the

small distortions that occur near the black hole are of negligible importance relative to the area

contribution from the rest of the horizon. In light of this interpretation of the result, it is natural

to expect that it would hold in other coordinate systems as well. That is, any coordinate system in

which the slightly distorted cosmological horizon has area close to 4pH�2 would yield the same

result. In this sense we expect our result to be quite general and not restricted to the LP time

slicing chosen in this thesis. In terms of applications, our result could be useful when calculating

cosmological horizon entropy.

Questions (ii) and (iii) yield the same qualitative answer: the maximum rate of change of area and

the average rate of change of area both scale as the black hole mass. The constant of proportionality

in the two cases is different of course, but the scaling is the same. Whether this scaling result holds

in other coordinates is unclear. Suppose that it can be shown that in the limit e ! 0, the area increase

is concentrated along a specific part of the horizon. In this case it is conceivable that any coordinate

system with constant time slices that cross this part of the horizon in a non-pathological manner

would yield the same scaling relation. The specific details of the choice of time slices would only

affect the proportionality constant in the scaling. We suspect that our result is generic in this sense,

but the only way to definitively answer the question would be to find an analytical description of

the horizon area in the limit e ! 0. Such a study is a question we are currently investigating. As

with question (i) above, questions (ii) and (iii) could have applications in calculating cosmological

horizon entropy, or more specifically, the rate of change of cosmological horizon entropy.

6.2 Applications and future directions

In this section we discuss possible applications of the results in this thesis, as well as directions for

future research.
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6.2.1 Mathematical questions

One of the main themes of this thesis has been to use SdS spacetime as a mathematical laboratory

for exploring questions related to the merging of horizons. By working with a spacetime where the

geometry is known analytically, we have the opportunity to approach many of these questions using

analytical methods instead of resorting to numerical methods. Furthermore, when using numerical

methods we are solving a family of ordinary differential equations, and are able to confidently

control the errors involved. Despite these advantages, we resorted to numerical methods instead

of analytical methods on several occasions. In addition, these numerical results often had residual

computational errors which will require further work to eliminate.

Numerical issues

The first issue one could address would be to reduce the magnitude of these computational errors.

This could be done in one of three ways: either by improving the numerical accuracy of the solutions

to the differential equations used in this thesis, or by using more null generators to approximate the

horizon, or by improving the algorithm used to compute the area of the horizons. In order control

the accuracy of the solution to the differential equations in this thesis, the key ingredient is to use

an algorithm that can deal with the behavior of the generators near the “initial” time T = • (or

T̂ = 1� in compactified coordinates). We chose to solve for the function r(T̂ ), and use the built-in

algorithm of the MAPLE 14 software, with the option “stiff=true” to indicate that we are dealing

with a stiff system near T̂ = 1�. We found that this provided a more accurate solution than solving

for r̂(T̂ ), where r̂ is a compactification of the Schwarzschild radius r. It also provided a more

efficient means of computing than solving for r(T ), since compactification of the time variable

is essential to reducing the runtime of the integration. However, there may be better choices of

variables and/or algorithms, in the sense that they would provide more efficient and/or accurate

solutions. This is a possibility which we are currently exploring.
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In addition to the choices made for both the algorithm and variables, there are two additional pos-

sible soures of error in computing the solution r(T ). The first is due to the fact that the differential

equations are singular at T̂ = 1, so that we are forced to set initial conditions at T̂0 = 1�e0 for some

e ⌧ 1. Such initial conditions must be set using an analytical approximation to the solution, and

here we have used an asymptotic series truncated after a finite number of terms. There is obviously

a choice that must be made regarding the number of terms in the series and the value of the constant

e0. Here we have chosen to keep eleven terms in the series and use the value e0 = 10�10. However,

it may be possible to use a smaller value of e0 and keep more terms in the series. The number of

terms in the series is limited only by the computation time involved in calculating the series using

a symbolic manipulation software such as MAPLE. On the other hand, the value of e0 is limited

to sufficiently large values for more fundamental reasons. Using a value of e0 which is too small

would result in a loss of significance due to rounding errors. A careful choice of variables can help

partly eliminate this problem. For example, compactifying the Schwarzschild radius r such that

r 2 (0,•) becomes r̂ 2 (0,1) would result in a loss of significance when rounding errors cause r̂ ⇡ 1

to become r̂ = 1. On the other hand, compactifying variables such that r = • gets mapped to d = 0

would not have such a problem. In this thesis, we have chosen not to compactify the Schwarzschild

radius r, for reasons which are discussed in the next paragraph. For such an uncompactified choice

of variables, the initial condition for r(T̂ ) is:

r(T̂0) =
r0

e0
+ r1 + r2e0 + ...

As we can see, the difficulty with the above is that for sufficiently small values of e0, rounding due

to finite digits will cause the second and third term in the series to be ignored. Again, compactifying

variables such that r = • gets mapped to d = 0 would not have such a problem. Determining the

ideal choice of variables in order to minimize these types of rounding errors is an issue we are

currently working on.

The second additional source of error in computing the solution r(T ) comes from the compactifi-

cation of the time variable T . It is necessary to compactify the time variable in order to reduce the

runtime of the computation. The disadvantage of the compactification comes when attempting to
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return to the original time variable T by applying the inverse of the mapping used to compactify

the time variable. Such a mapping takes small differences in the compactified time variable T̂ and

magnifies them greatly. Similarly, small rounding errors in the variable T̂ get magnified to large

errors in the original variable T . This poses a problem when calculating derivatives with respect to

T , since the error in a small interval of time DT̂ becomes a large error in the interval DT , which can

affect the accuracy of the denominator in a discretized formula for the derivative (e.g. the derivative

of area with respect to T ). The same problem arises when compactifying the variable r and for this

reason, we chose to only compactify the time variable. One possible solution to these difficulties is

to always work with the compactified variables, and never return to the original variables. This is a

possibility which we are currently exploring.

As mentioned above, a simpler way of achieving more accuracy in our approximation of the hori-

zons would be to simply use more horizon generators. Apart from the issues discussed above in

choosing an algorithm used to calculate the horizon generators, this comes down to our choice of

programming language, as well as sheer computational power. Here we have used the MAPLE

software, but there are clearly more efficient programming languages or software, such as Matlab.

As well, we typically chose to compute four hundred or so horizon generators, but could compute

many more by using a computer cluster instead of a personal computer.

The last improvement which could be made to our numerical computations would be a more ac-

curate calculation of the horizon area. The horizon area formula can be well approximated and

computed using Simpson’s rule for integration, provided one has enough mesh points for integra-

tion (i.e. enough horizon generators). Thus the main source of error in the area computation is

related to the number of generators used, as well as the error in the calculation of the horizon gener-

ators. By choosing more horizon generators, we would improve the area calculations. Furthermore,

by choosing to compute more horizon generators at points on the horizon where the area is chang-

ing rapidly we would also achieve more accuracy. In this thesis we have used a uniform mesh of

horizon generators, where the uniformity is over the parameter a 2 [0,2p). However, ideally we

would use a non-uniform mesh with more generators near important points on the horizon, such as

near the black hole event horizon or near the merger and caustic points. This possibility of using a
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non-uniform mesh is an issue we are currently exploring.

Caustic structure

One of the avenues that was not fully explored analytically in this thesis is the caustic structure near

the merger point of the horizons. Although we were able to illustrate this caustic structure using

figure 4.5 and confirm its basic shape, we have not determined the quantitative properties of the

merger point geometry, nor have we analytically proven that is has the shape shown in figure 4.5.

Ideally one would want the description of the caustic structure to have as little dependence on the

choice of coordinates as possible. One coordinate independent quantity that one can calculate is

the curvature of the spacelike curve of caustic points (the “inner seam” of the surface in figure 4.5).

To have a full description of the horizon structure near the merger point, one would ideally want to

describe the surface in the neighborhood of the singular point in terms of a canonical normal form

representation, as commonly used in the singularity theory of surfaces. Although such a normal

form representation would inevitably have coordinate dependent aspects, the ambiguity associated

with the choice of coordinates could be partly eliminated by using a canonical coordinate system,

such as Riemann normal coordinates.

Horizon area

In terms of horizon area, the main direction for future work would be to confirm many of the

numerical results in this thesis using analytical methods. Two results which may be amenable to

analytical methods are the late time behavior of the horizon area and the horizon area in the limit

e ! 0. As was discussed in section 4.4.3, finding an analytical description of the horizon area at

late times most likely involves uncovering vanishingly small terms in the series approximation for

the late time behavior of the horizon generators.
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In order to support our numerical results regarding the horizon area in the limit e ! 0 presented in

section 5.2.3, we would need an approximate analytical solution to the equations for the null gen-

erators in the limit e ! 0. It is possible that such a solution could be obtained using a perturbation

series. Such a perturbation series would most likely be a singular asymptotic series, since the case

of e = 0 (i.e. no black hole) the behavior of some of the generators is qualitatively different than

in the case where e 6= 0. Regardless of how small the black hole is, provided that e 6= 0, there

will always be generators that are strongly lensed by the black hole. Whether it is necessary to

find an asymptotic expansion for the behavior of these strongly lensed generators depends partly

on whether or not they make a significant contribution to the horizon area. With such an analytical

formula, we could confirm many of the results from section 5.2.3, such as the idea that in the limit

e ! 0, all of the area increase occurs prior to merger. Furthermore, such results could potentially

be generalized to other coordinate systems, provided one knows the explicit mapping between these

other coordinates and the coordinates used in this thesis. Lastly, if the area increase occurs at a

specific location on the horizon (ex. near the caustic points), then it may be possible to state the

qualitative aspects of the results in a coordinate independent manner.

6.2.2 Binary black hole mergers

One of the primary motivations for the study of merging horizons undertaken in this thesis is its po-

tential for stimulating questions about the merging horizons that occur in binary black hole mergers.

It has long been known that the horizons in binary black hole mergers have the familiar “trousers”

shape (see figure 4.1). In this thesis, we have created a similar picture (see figure 4.5). There are

two important differences between our picture and the one for binary black holes. The first is that

in the case of the cosmological horizon merging with a black hole, one horizon is contained within

the other. Despite this difference, the two cases are similar topologically, in the sense that in both

cases we have two disconnected surfaces of spherical topology joining to later form a single surface

of spherical topology. The second main difference is that in the merging horizons considered in

this thesis, the spacetime is known analytically. This is the crucial difference for the purpose of this

thesis. Since the spacetime is known analytically, the only source of error comes directly from the
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calculation of the horizon, and not from the knowledge of the spacetime. This error is only limited

by the accuracy with which one can solve the ordinary differential equations for null generators, as

well as the accuracy with which one can calculate quantities based on these coordinates, such as the

area of the horizons. For both of these types of computations, the errors are well understood and

easily controlled. This is in contrast to a case where one does not know the spacetime analytically,

such as in the case of binary black holes. In these cases there are two methods for approximating the

spacetime. One can use the initial value formulation of Einstein’s equation, where one numerically

solves a set of nonlinear coupled partial differential equations for the spacetime metric components.

Alternatively, one can approximate the spacetime of an extreme mass ratio binary black hole by us-

ing a perturbation method. In both such computations one faces the difficulty of having to choose an

appropriate gauge (i.e. coordinate system), and of controlling the sources of error in the spacetime

metric.

Caustic location

All of the results about the caustic obtained in this thesis lead naturally to similar questions in binary

black hole mergers. For example, we obtained the formula

r ⇡ 5.25M (6.1)

for the Schwarzschild radius of the merger point in the limit e ! 0. The same method that was

used to find this formula could also be used to find a similar formula in the case of an extreme

mass ratio binary black hole merger. The key to performing such a calculation is to realize that

by the equivalence principle, the event horizon of the larger black hole can be approximated as

a Rindler horizon. Thus, if we focus attention on the merger point, the merging of a black hole

with the Rindler horizon of an accelerated observer has the same local caustic structure as for a

binary black hole merger in the extreme-mass ratio limit. Furthermore, to lowest order we can

ignore the tidal effects of the larger black hole and treat the spacetime as being only curved due

to the smaller black hole. For the head-on of collision of non-rotating black holes, this leads to
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considering the Rindler horizon of an accelerated observer in Schwarzchild spacetime. Using this

Rindler approximation, we have performed the calculation leading to the location of the merger

point and found the Schwarzschild radius to be:

r ⇡ 3.52M (6.2)

One might have expected this value for the Schwarzshild radius to be the same as (6.1). This

expectation would be based on the fact that one can use the equivalence principle to argue that the

cosmological horizon is locally a Rindler horizon, much like in the case of extreme mass ratio binary

black holes. Despite this similarity, we have the quantititavely different results (6.1) and (6.2).

Caustic structure

As discussed in section 6.2.1, one of the key quantities that one can calculate is the curvatuve of

the spacelike curve of caustic points on the “inseam” of figure 4.5. Similarly, in the case of a head-

on collision of black holes in the extreme mass ratio limit, one can use the Rindler approximation

described in the previous paragraph to find the curvature of this “inseam” curve . We have performed

such a calculation and found the value for the curvature to be:

k ⇡ 118
M

(6.3)

Notice that the curvature has dimensions of inverse length, as one would expect. Another way of

describing the curvature of the inseam is by using a length scale, which would be given by the

inverse of the above curvature. One can also calculate the total proper length of the inseam. Given

that the inseam extends all the way to t = �•, it is perhaps surprising that this proper length turns

out to be a finite quantity. This can be understood as arising from the fact that although the inseam

is a spacelike curve, it approaches a lightlike curve as one moves away from the merger point. In

[14], the authors use a perturbation method to approximate the spacetime of an extreme mass ratio

binary black hole system, and then use this approximate spacetime to analyze the caustic structure
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and area of the horizons. One of the quantities they calculate is the total proper length of the inseam

curve.

The results (6.2) and (6.3) are part of a publication we are currently preparing. This publication will

focus on using the Rindler approximation to analyze the caustic structure near the merger point in

a head on binary black hole merger. This Rindler approximation will compliment the work of [14],

and will arrive at some of the same results using a different method. It should be mentioned that the

idea of using a Rindler approximation to approximate the horizons of an extreme mass ratio binary

black hole system has already been partly developed in the thesis [13]. However, our results (6.2)

and (6.3) and the work that will follow will go beyond the analysis in that thesis.

The Rindler approximation is appealing for at least two reasons. First, the calculations which lead

to an understanding of the caustic structure are simpler. This is because the spacetime in the Rindler

approximation is simply Schwarzschild spacetime, which is known analytically, so that the only

mathematical challenge is the integration of the equations for the null generators. Secondly, when

using the Rindler approximation we have the possibility of easily generalizing the result to a rotating

black hole. This is done by considering a Rindler horizon merging with a Kerr black hole. On the

other hand, when using perturbation methods, there is no clearly established method for perturbing

a large non-rotating black hole by a small rotating black hole, or perturbing a large rotating black

hole by a small non-rotating black hole. In the Rindler approximation, it is easy to incorporate the

spin of the smaller black hole. Incorporating the spin of the larger black hole is more difficult, but

perhaps possible.

On the other hand, there are some advantages to using a perturbation method, as was done in [14].

The first is that one can naturally deal with non-radially plunging orbits. By contrast, when using

the Rindler approximation, it is not as obvious how to deal with such orbits. The second advantage

is that one can deal with finite but small ratios of black hole masses, whereas in the Rindler approx-

imation one is essentially taking the mass of the larger black hole to be infinite. However, as will

be explained below, it may be possible to introduce small corrections to the Rindler approximation

to take into account a large but finite mass for the larger black hole. Lastly, it is easier to answer
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questions about the area of the horizons when using a perturbation method. When using the Rindler

approximation, the area is infinite at all times, so that without some additional assumptions about

the horizons, questions about area increase are ill-posed.

We have stated that it is not immediately clear how the Rindler approximation can accomodate either

the spin of the larger black hole, or the possibility that the smaller black hole moves on a non-radial

trajectory. However, it should be mentioned that the challenge is technical and not conceptual. It

is clear that the Rindler approximation is exploiting the equivalence principle, which will be valid

regardless of the spin of the larger black hole, or the type of geodesic trajectory followed by the

smaller black hole. Provided that we ignore the self-force of the smaller black hole, as well as any

possible non-gravitational forces, the smaller black hole is in free fall. We can construct a local

inertial frame in the vicinity of this freely falling black hole. In the limit that the mass of the larger

black hole is infinite, tidal distortions of the spacetime curvature due to this larger black hole can be

ignored. We are then left with Schwarzschild spacetime in the vicinity of the smaller black hole, or

Kerr spacetime if the smaller black hole is spinning. By focusing on a neighborhood of the smaller

black hole, the spacetime geometry is entirely understood and described analytically, at least to

lowest order in the mass ratio of the black holes. Understanding how the event horizon of the larger

black hole merges with the event horizon of the smaller black hole then reduces to understanding

the null generators of the larger black hole, and how these are lensed by the presence of the smaller

black hole. The spin of the larger black hole, or the effect of a non-radial trajectory for the smaller

black hole, can both be taken into account by adjusting the “initial conditions” of the null generators

which make up the large black hole horizon. That is, they are taken into account by adjusting how

this family of generators behaves far away from the smaller black hole. For a head-on collision in

the case of non-spinning larger black hole, the null generators are a plane of light rays when far

from the smaller black hole, as one would normally expect for a Rindler horizon. This plane of

light rays is modified when the spin of the larger black hole or the non-radial trajectory of the small

black hole is taken into account. By using this Rindler approximation in the case where the spins of

the smaller and larger black holes are taken into account, we could potentially reveal a rich caustic

structure near the merger point of the horizons. It would be interesting to investigate the topology

of this structure, as well as its dependence on the mass of the smaller black hole and spins of the

185



6.2. Applications and future directions

two black holes.

In addition to generalizing the Rindler approximation to deal with spin and non-radial trajectories,

it would also be interesting to generalize it to finite mass ratios. One can imagine approximating the

spacetime surrounding the small black hole using a series expansion, with the small parameter being

the ratio of the small black hole mass to the large black hole mass. The Rindler approximation is

then the lowest order approximation, where the mass ratio of the black holes is zero. At this level of

approximation the spacetime surrounding the small black hole is given by the Schwarzschild or Kerr

metric, and the horizon of the large black hole is the Rindler horizon of an observer accelerating

uniformly away from the black hole. At the next order of approximation, there would be a lowest

order correction to the Schwarzschild or Kerr metric which would incorporate the tidal distortions

to the spacetime surrounding the small black hole, as caused by the larger black hole. There would

also be a lowest order correction to the shape of the Rindler horizon due to the large but finite mass

of the larger black hole. These small corrections to both the spacetime surrounding the small black

hole and the shape of the larger horizon would result in small corrections to the shape of the caustic

structure, and to small corrections with associated quantities such as the curvature of the inseam.

Unlike the effect of taking into account spin or non-radial trajectories, these small lowest order

corrections would be unlikely to affect the topology of the structure of the caustic near the merger

point, and so would be of interest for their quantitative rather than qualitative effects. Understanding

these quantitative corrections to the caustic structure is a question we are currently working on.

Notice that creating a perturbation series starting from the Rindler approximation, as was described

in the previous paragraph, is quite different from the perturbation series that was created in [14].

There the authors use the Regge-Wheeler formalism for perturbing Schwarzschild spacetime and

approximate the small black hole as a point mass. The resulting approximate spacetime is not valid

near the small point mass. This can be understood as a consequence of the fact that the curvature of

the spacetime near the small mass diverges as one gets closer to it. This is in contrast to the Rindler

perturbation series discussed in the previous paragraph, which would in fact only be valid near

the small black hole. At distance scales comparable to the Schwarzschild radius of the larger black

hole, the tidal effects due to the large black hole would no longer be small corrections, and the series

186



6.2. Applications and future directions

would no longer be valid. These two perturbation approaches, with one valid near the small black

hole and one valid far away, could be joined together into a matched asymptotic approximation,

with a transition region between the two and a set of matching conditions in the transition region.

Such approximations are well known in the context of black hole perturbation theory, but so far

have not been used to study the event horizons of the black holes (to our knowledge).

Area of horizons

Recall the three main results from the chapter on the area of merging cosmological and black hole

horizons (chapter 5): (i) The time at which the rate of change of horizon area is at its largest value

is also the merger time of the horizons. (ii) In the limit e ! 0, all the horizon area increase takes

place before merger. (iii) In the limit e ! 0, the area increase has equal contributions from the

expansion of generators always on the horizon, and the joining of generators not previously on the

horizon. These three results regarding horizon area naturally lead to three corresponding hypotheses

in the context of binary black holes. The statement of these hypotheses in this new context are nearly

identical to (i)-(iii) above, with the only difference being that for results (ii) and (iii), the limit e ! 0

is replaced with the extreme mass ratio limit of binary black holes.

To our knowledge, only hypothesis (iii) has been shown to be true in the context of binary black

holes. In [14], the authors use perturbation theory to approximate the spacetime of an extreme mass

ratio binary black hole system. This approximate spacetime is then used to show that in the limit of

infinitesimally small black hole mass, the total horizon area increase has equal contributions from

both existing and new generators, as in (iii) above. The result in this thesis extends this result of

[14] to the context of cosmological horizons. It is intriguing that although the spacetime considered

in this thesis and the spacetime of an extreme mass ratio binary black hole are quite different, the

horizons in these spacetimes both satisfy (iii). One might attribute this as being due to a similarity

in the horizons near the caustic points, since both the cosmological horizon and the large black hole

horizon can be locally approximated as a Rindler horizon in the limit of small black hole mass.
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However, the increase in horizon area occurs not only near the caustics where new generators enter

the horizon, but also far from the caustic points due to the expansion of existing generators. The

fact that result (iii) is valid for the merging horizons considered in this thesis and for the horizons

in binary black holes is even more surprising when we consider the fact that the horizons in binary

black holes are observer independent event horizons, whereas the horizons in this thesis are observer

dependent causal horizon. Despite this and other differences between the spacetimes, result (iii)

holds for both spacetimes. This points to perhaps a deeper principle at work which may be valid

more generally. It could be that whenever a small black hole mergers with a much larger horizon, the

area increase can be split into equal contributions from two types of generators, as in (iii). However,

we do not at the moment have any reason to believe that this is indeed the case.

It would be interesting to investigate the case of a charged and/or rotating black hole merging with

a cosmological horizon, and see whether or not (iii) holds in those cases. The analysis would

be similar to that performed in this thesis, but with Kerr-Newman-deSitter spacetime replacing

Schwarzschild-deSitter spacetime. To investigate statement (iii) for rotating binary black holes

would be more difficult, since there is no established perturbation technique that can be used to ap-

proximate the spacetime in those cases. Although the Rindler approximation can deal with rotating

black holes, it is not well suited to answering questions about area, since the area of a Rindler hori-

zon is effectively infinite. One can imagine getting around this difficulty of having an infinite area

by first taking a finite Rindler horizon (for example, by ignoring the generators with large impact

parameter), and then taking the limit as the Rindler horizon area goes to infinity. If one is answering

questions about the rate of change of area, as in (i) above, or the relative area increase, as in (ii),

then taking this limit could yield sensible answers. This is a direction that we are currently inves-

tigating. We are also currently investigating the possibility of extending the techniques in [14] to

prove (i) and (ii) for binary black holes. Proving (i) may require the use of a matched asymptotic

approximation, where an approximate spacetime near the small black hole is joined to an approx-

imate spacetime valid far from the small black hole. This may be necessary because proving (i)

requires taking into account the horizon area both in vicinity of the merger point and far away from

the small black hole, so that we are required to have knowledge of the spacetime both close to and

far from the small black hole.
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