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Abstract 

The risk posed to a structure from an earthquake may be minimized by changing the design 

characteristics of the structure to determine the optimal design. A risk measure, the mean 

value of the cost functions in this thesis, can be determined using reliability methods to 

construct a loss curve. This formulation includes the effect of uncertainty in all aspects of the 

cost, including construction and repair given an event. This risk model also requires no prior 

information to determine the mean cost and does not define a discrete “failure,” instead using 

a continuum of possible outcomes in determining the mean of the cost functions. The 

optimization model allows for different search directions and step sizes in the search for the 

minimum cost, with steepest descent and BFGS search directions currently implemented. 

These analyses are performed using the Rts software, which has the capability of performing 

the optimization, risk, and reliability analyses on input structural models. 

The functionality of risk minimization is demonstrated with two example structures, with the 

framework provided for a third. The first is an example previously solved in Rt, which 

confirms functionality of the implementations in Rts. The second model uses an analytical 

model of a single-storey timber-steel hybrid frame, which utilizes the novel structural 

“Finding the Forest Through the Trees” (FFTT) design concept that has been proposed in 

Vancouver and studied at UBC. The minimum mean cost of this structure, subject to the cost 

functions and structural simplification, was determined by optimizing two decision variables 

that represent the fundamental geometry of the frame. Optimization of this frame converged 

to one point throughout many analyses, utilizing both the steepest descent and BFGS search 

methods. Finally, the framework for a future 6-storey FFTT example was developed. This 
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example is inspired from modern tall timber design concepts, which are discussed in a 

literature review and demonstrates unique features within Rts, including the deep 

parameterization and nested model structure. 
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Chapter 1 Introduction 

1.1 Objective and Scope 

The performance of structures in earthquakes includes many uncertainties in the engineering 

of the structure. These uncertainties may be included in a risk analysis that implements 

reliability algorithms to determine the probability of exceedance, all in terms of cost of the 

structure. These costs include the construction and material cost, cost of damage, and the 

costs of a structure failing to perform as designed. This is given in terms of a risk measure, 

which then may be optimized with developed optimization techniques to give the 

configuration of a structure to reduce total costs. This analysis combines many models that 

are nested to contribute to the final cost and is novel in the sense that it encapsulates a 

continuum of structural behaviour, unlike past Reliability-Based Design Optimization 

(RBDO) that defined a discrete failure event. The first objective of this thesis is to develop 

software models in Rts that allow this risk minimization to be performed and test these 

models incrementally. 

The optimization analysis will require two models implemented. The first model is a risk 

tool, which determines the mean cost of a load applied to a model with probabilistic inputs. 

This model will take inputs from two reliability models, First-Order Reliability Method 

(FORM) and sampling methods. By implementing a brief sampling analysis, the model will 

determine an approximate mean value of the total cost input without needing prior 

knowledge of the distribution. Once cost thresholds are defined, reliability methods are used 

to determine the probability of exceeding each threshold and used to construct an exceedance 

probability curve, otherwise known as a loss curve. The risk measure is determined from the 

loss curve, which here is the mean value of the cost functions. 
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The second model takes existing optimization techniques and implements them to the risk 

model. This model uses the mean cost that is output from the risk model and then determines 

the gradients with respect to the decision variables, which are the aspects of the design that 

may be changed. The gradient is determined by perturbing these decision variables. Using 

this information, optimization techniques are implemented to get the search direction to 

determine new values for the decision variables – this is iterated until the minimum risk 

measure is reached. The risk model allows the mean cost of the structure under the given 

loading to be minimized, giving the optimal structural design figures. Here, these cost 

functions only represent the cost due to the loading in this document, not the entire life cycle 

of the building. 

Once these models are operational, the second objective is to test them with incrementally 

complex example structural models. The first example is a confirmation of results, using a 

simple algebraic equation with a single decision variable from a conference paper (Haukaas 

et al. 2013). This concept of risk minimization is then applied to the “Finding the Forest 

Through the Trees” (FFTT) tall wood structural concept through a more complex example 

with two decision variables, many nested variables, and an analytical approximation of a 

single-storey frame. Finally the framework for a six-storey FFTT frame with many decision 

variables and an in-house structural model is provided. This structure has deeply embedded 

decision variables, which are used for the basic meshing parameters of the finite element 

structure. When performed, this example will provide insight into the FFTT structural 

concept. 
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1.2 Background 

1.2.1 Reliability-based Design Optimization 

Reliability analysis has been around since the 1970s (Enevoldsen and Sorensen 1994). 

Applications to timber structures have been limited, however, Rosowsky (2013) provides a 

good overview of the literature to date. Much of these analyses have focused on meeting 

target reliability indices, or probabilities of failure, of either single components or small 

assemblies. However, some analyses went beyond, creating loss curves by determining the 

probabilities at many thresholds for light-frame timber buildings (Lee and Rosowsky 2006; 

Yin and Li 2011). To present date, there have not been reliability analyses on modern tall 

timber structures, however tall building analyses have been performed on reinforced concrete 

structures (Koduru and Haukaas 2010; Soares et al. 2002).  

Using reliability methods to optimize structures is also established. RBDO is a method to 

determine the optimum cost of a series of designs by varying the design. This method allows 

an optimal value to be determined using a defined and discrete failure state. Based off of this 

failure state, the probability of failure may be determined. These are combined to determine a 

cost (Enevoldsen and Sorensen 1994). In contrast, a new method of optimizing a risk 

measure, based off of the loss curve of a structure, was performed to encapsulate the effects 

of uncertainty in all aspects of the analysis instead of only a failure state (Haukaas et al. 

2013). 

1.2.2 Tall Wood Building Concepts 

In recent years, there has been resurgence of interest in tall timber. In Vancouver, old timber 

post-and-beam structures are still in use, standing up to 9 storeys (Koo 2013). In Europe and 
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Australia, there have been several modern cross-laminated timber (CLT) buildings up to 10 

stories. Most of these buildings contain apartments and are located in low seismic hazard 

zones. The building designs vary, implementing either concrete or CLT cores, many with 

CLT gravity systems.  

In addition to these realized buildings, many different concepts have been proposed for future 

timber-hybrid structures. These vary, from using primarily timber, to using cantilever 

buildings, concrete cores, and CLT infill panels in steel moment frames (Dickof 2013; Falk 

2005; Van de Kuilen et al. 2011; Skidmore Ownings & Merrill 2013; Timmer 2011). In 

particular, Green and Karsh (2012) proposed a tall timber concept for seismic regions, called 

FFTT. This concept uses CLT panels vertically, linked with steel beams to provide a ductile 

lateral load-resisting mechanism.  

Incremental research has been performed on the inclusion of CLT in seismic regions, many 

focusing on buildings designed with CLT wall components with ductile connections. 

Component level research and testing was performed in several studies (Dujic et al. 2008; 

Hristovski et al. 2012; Popovski et al. 2010; Rinaldin et al. 2013). These studies have been 

expanded to look at the system response of CLT primary structures both experimentally and 

with detailed models, including 3-storey and 7-storey building configuration tested on two 

shake tables in Japan (Ceccotti et al. 2010; Rinaldin et al. 2013).  

In addition to this research, the FFTT building system has also been the subject of studies. 

The connection has been investigated both experimentally and numerically at UBC (Azim 

2014; Bhat 2013; Fairhurst 2014). 



 

 5 

1.3 Overview of Contributions 

1.3.1 Risk and Optimization Model Implementation 

Two models were developed and implemented in Rts in this thesis and tested to ensure that 

they work intended. The first is the full development of the risk model, which received cost 

function and probability input from reliability models and gave the mean cost of a structure 

under a defined loading, requiring no prior knowledge. No prior knowledge is necessary and 

the model will automatically adjust the limit thresholds as appropriate to adequately estimate 

the lost curve and provide the mean cost using quadrature. 

The optimization module takes existing models and implements them into Rts. It is 

formulated in such a manner that it calls the input model to determine the current value and 

gradient, using finite difference methods. Only a fixed step size has been implemented 

currently, but the search direction has two methods implemented in Rts: steepest descent and 

BFGS. Each of these methods is used in conjunction with the risk model to test the 

compatibility with two examples. 

1.3.2 Development of Risk Minimization Examples 

Risk minimization was applied to two examples of increasing complexity, implementing the 

risk and optimization orchestrating models in Rts. The first example, a single beam, is from a 

conference paper by Haukaas et al. (2013). This example provided a confirmation that the 

orchestrating models were functioning properly and confirmed the results. This model was 

simple, with an algebraic objective function containing 5 random variables and one decision 

variable. 
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The second example was designed as a sub-section of the FFTT system. This example 

consisted of an elastic analytical 2-D model of a single-storey FFTT frame, with a lateral 

load applied. This model consisted of many nested algebraic models and two decision 

variables that represented dimensions of the final design, with other parameters implemented 

as random variables. The orchestrating functions implemented were used in this analysis to 

provide the optimal configuration for the lowest cost for the functions included. This was 

performed with both search tools implemented. 

Finally, the framework of a third example was provided for future development in Rts. This 

is currently a six-storey FFTT frame, which is comprised of CLT panels modeled as finite 

element shells for columns and linear steel linking beams. This example demonstrates how 

structural parameters in this model may be deeply embedded, such that the structural points 

are based off of decision variables, which, in turn are the basis of the finite elements. This 

allows for the entire mesh to be varied throughout the optimization process. 
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Chapter 2 Literature Review 

2.1 Timber as an Engineering Material 

For the purpose of this thesis, the definition of mass timber will be as used by Green and 

Karsh (2012); engineered products that include CLT, laminated veneer lumber (LVL), and 

laminated strand lumber (LSL). In addition, glulam beams will be considered within this 

category. These engineered products benefit from the timber defects being distributed 

throughout the section, increasing the uniformity and performance of the product, despite the 

inclusion of lower grade timber (Lam 2001). Only CLT and glulam are discussed 

significantly in this thesis, with the focus on CLT. 

2.1.1 Cross-Laminated Timber 

CLT was first developed in Austria in the 1990s and has become popular in Europe, yet is 

relatively new to North America (FPInnovations 2012). CLT is an engineered wood product 

constructed from several layers of cut timber sections, shown in Figure 2.1. These layers 

alternate board directions typically perpendicularly and are generally composed of an odd 

number of layers such that the exterior layers are oriented parallel to each other. CLT is 

manufactured using glue between the timber layers with a combination of heat and pressure 

applied.  
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Figure 2.1 A CLT specimen with 5 layers (Stürzenbecher et al. 2010) 

The size of CLT panels is limited by transportation requirements and manufacturing facilities 

to approximately 18 m long by 3 m wide. The thickness generally varies between 3 and 7 

layers, which could get upwards of 500 mm. The finished panels provide a very stiff plate, 

both in and out of plane and allow for two-way action similar to a concrete slab 

(FPInnovations 2012). There are two main theories for designing and analyzing CLT: by 

using modified beam theory as in the CLT Handbook (FPInnovations 2012) or by using 

orthotropic plate theories (Guggenberger and Moosbrugger 2006; Stürzenbecher et al. 2010), 

but no method has been universally accepted. 

2.1.2 Glued-Laminated Timber 

Glued-laminated timber (glulam) is another engineered wood product constructed from 

aligning smaller laminates along the same axis to build-up a large member by pressing with 

glue. Examples are shown in Figure 2.2. This product is not proprietary and may be used in 

many applications. One benefit is that the beams may be designed in many shapes and cross-

sections as required, allowing great flexibility in uses (Lam 2001). Typically, glulam is used 

as beams and columns in timber frame structures. Ductility in glulam designs is typically 

ensured by oversizing the beams relative to the connections and by designing a ductile 
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connection. However, by modifying the laminate orientation and grading or by adding 

reinforcement, ductility may be created in the member itself (Tomasi et al. 2010). 

 
Figure 2.2 Glulam specimens (Tri-State Forest Products n.d.) 

2.1.3 Seismic Design Concept of Timber 

In general, the seismic design concept of timber structures concentrates the inelastic action in 

ductile zones that provide a mechanism for dissipating energy within the system. These 

ductile areas are typically steel components in the connections, though configurations may 

vary greatly. How this is implemented is a key point of discussing new tall timber concepts, 

discussed in Section 2.2.1. These are important considerations, particularly areas with risk of 

seismic activity. To protect the brittle components, ductile connections must be designed in 

conjunction with preventing premature brittle failure modes through capacity design 

(Jorissen and Fragiacomo 2011). Other work has been performed on the robustness of 

structures during seismic loading was investigated and good design practices and prescriptive 

rules to increase system robustness in seismic areas were discussed (Branco and Neves 

2011). These studies provide a general overview of the seismic design and a basis of design, 

in addition to design texts. FPInnovations has also released a tall wood technical guide 

(FPInnovations 2014). 
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2.2 State of the Art: Tall Timber Buildings 

Timber structures have been used throughout history for all types of structures, from ancient 

tall Buddhist temples to modern housing and shops (Smith and Snow 2008). Prior to the 

modern building codes of the mid-20th century, tall timber structures were built extensively 

in Canada. These structures were primarily post-and-beam buildings with masonry exteriors. 

Today, many buildings up to 9 storeys are still in use in Vancouver’s Gastown and Yaletown 

neighbourhoods. For a change in use, these structures must meet new fire and structural 

upgrade requirements, which includes masonry strengthening and improvements to 

diaphragm-wall connections (Koo 2013). Despite these tall wood structures, modern timber 

construction in North America has primarily been for low-rise residential and commercial 

use. While traditionally these have been constructed with light timber framing, it has become 

increasingly common to use mass timber products. In recent years, however, the limits of 

timber buildings have been re-evaluated, with many concepts for mid- and high-rise 

structures being presented and many structures realized. While the structural focus of the 

examples is the FFTT concept, these provide a comparison and a background in tall timber, 

both in Canada and worldwide. 

2.2.1 Tall Timber Structural Concepts 

Recently, there has been new interest in new tall timber structures. In British Columbia and 

Quebec, the regulations were changed to allow 6-storey timber construction, up from the 4-

storey maximum that is common throughout the rest of Canada. In addition, studies done in 

the United States and Europe have confirmed the structural and architectural feasibility of tall 

timber structures (Falk 2005; Van de Kuilen et al. 2011; Skidmore Ownings & Merrill 2013; 

Timmer 2011).  
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Falk (2005) explores the architectural aspects as well as different structural systems for 

massive timber structures. The focus is on low- and mid-rise structures primarily in Sweden, 

with several case studies of realized buildings. It does not, however, focus on the structural 

aspects of the buildings, nor include any seismic considerations. 

Van de Kuilen et al. (2011) look at 30-40 storey concrete-timber composite towers 

constructed to resist wind loads in Shanghai, China. The system investigated includes a 

concrete core with outrigger floors, with CLT walls and tension bars that provide stiffness 

and extra load capacity for wind forces. This provides a concept of a hybrid timber system, 

but does not use any innovative new concepts in the primary (reinforced concrete) shear wall. 

Timmer (2011) analyzed the feasibility of tall timber office buildings to 100 m, which 

considers several building configurations. The lateral deflection, fire safety, wind, and 

dynamics of the structure are considered and modeled. This research included the basis of 

design for tall timber structures in wind governing areas, but does not include the effect of 

seismic excitation on structures. 

In 2008, engineers at Techniker did a feasibility analysis of an 8-storey CLT residential 

tower, which included checking robustness, structural movement, fire, and acoustics. This 

report found that the building was feasible and included possible connection details and floor 

layouts (Yates et al. 2008). In 2009, Techniker completed a 9-storey building with a CLT 

lateral load system, Stadhaus. Later in 2010, Techniker (2010) also provided a conceptual 

design for a 30-storey tower. The analysis found that above 25 storeys, the most economical 

configuration would be a hybrid structure that utilized a concrete core.  
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In Chicago, Skidmore Ownings & Merrill (2013) compared a timber-composite building to a 

benchmark 42-storey concrete building, a concrete apartment the company had previously 

built. The concept discussed for the composite structure included a CLT core and floors, but 

included concrete link beams as ballast to reduce uplift due to the governing wind forces. 

These reports are not located in seismic regions and designed primarily for wind loads. Green 

and Karsh (2012) performed a study that also looked into the feasibility of a tall timber 

structure in Vancouver, BC, up to 30 storeys. These conceptual designs consist generally of 

CLT panel walls and glulam columns, with CLT floors and cores consisting of CLT panels 

connected with steel sections for the lateral load system. An example of one configuration, 

implementing a core to reach 12 stories, is shown in Figure 2.3. This report also describes 

feasible sequencing for the construction of such structures. To date, there have been no 

realized FFTT designs. 

 
Figure 2.3 Example concept of FFTT design with a core (Green and Karsh 2012) 
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2.2.2 Realized Tall Timber Structures 

Modern tall timber structures are not simply concepts, however. In the past decade, many tall 

timber structures have been constructed and a selection is summarized in Table 2.1. These 

are primarily residential buildings in Europe.  

Table 2.1 Summary of modern tall timber structures 

Name Year completed Location Total stories 
Holzhausen 2006 Steinhausen, CH 6 

e3 2008 Berlin, DE 7 
Limnologen 2009 Växjö, SE 8 

Stadhaus 2009 London, UK 9 
Bridport House 2011 London, UK 8 

Forté 2012 Melbourne, AU 10 
LifeCycle Tower 1 2012 Dornbirn, AT 8 

Wood Innovation and Design 
Centre 2014 Prince George, BC 6 

 

 
Figure 2.4 Examples of modern timber construction (left to right): e3 (Architecture in Development n.d.), 

Stadthaus (Techniker 2010), Forte (Lend Lease n.d.) 

The first tall timber building in Switzerland was the Holzhausen apartments, finished in 

2006. At 6-storeys total, only the top 4 are constructed of timber, with a concrete podium. 

The building’s core is concrete, but it has CLT walls and beam floors (Lehmann 2012).  
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The e3 building in Berlin, Germany was completed in 2008. While this 7-storey structure 

included two concrete cores, the vertical system was CLT. The flooring consisted of glulam 

beams with a concrete surface. This building also had an external fire escape staircase made 

out of concrete that is separate from the building (Lehmann 2012). 

The Limnologen project consisted of four apartment buildings Växjö, Sweden and was 

completed in 2009 as part of a timber building program in the region. Each of these buildings 

is eight total storeys, with a concrete first-floor and CLT for the remaining seven. This 

concrete base allowed for anchoring of the upper stories, which consisted of CLT load-

bearing walls and floors. In addition, these structures have been instrumented and have been 

used as a test case for many studies that Serrano (2009) summarizes, with additional studies 

by Bard et al. (2010) on the transmission and attenuation of walking vibrations through the 

walls and floors of the structure. 

The nine-storey apartment building Stadthaus was constructed in London, UK in 2009. Then 

the tallest mass timber building in the world, it consisted of CLT instead of a hybrid system 

above the ground floor. Of interest, this building used a CLT lateral load resisting system, in 

addition to timber gravity systems, but had a concrete first floor (Lehmann 2012).  

In the same London borough as Stadhaus, Hackney, is a second tall timber structure. 

Finished in 2011, Bridport is an 8-storey apartment that consists only of CLT, with no 

concrete ground floor (Lehmann 2012). 

In 2012, the newly constructed Forté, designed by Lend Lease, became the tallest CLT 

apartment building at 10-storeys, including a concrete first-storey. Notably, RMIT University 

performed an analysis of the life cycle impact of this building, compared to a reference 
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building, for Forest & Wood Projects Australia and found that it had reduced environmental 

impact in most of the considered categories (Durlinger et al. 2013). This apartment building 

also consists of a CLT lateral load resisting system and has a concrete first storey. 

In Dornbirn, Austria, CREE developed LCT ONE, was constructed in 2012 to 8-storeys 

using the LifeCycle Tower (LCT) system of prefabrication. The LCT ONE system consists 

of a prefabricated platform construction using a cast-in-place concrete core, glulam columns, 

and a concrete-wood composite slab system. In this system, the slab rests on the column tops, 

which both separates the storeys for fire protection and prevents loading timber perpendicular 

to the grain. The LCT system developed is projected to be feasible to 30 stories (Zangerl and 

Tahan 2012). 

The Wood Innovation and Design Centre in Prince George, BC is the tallest recent timber 

structure in British Columbia at 6-stories. It consists of a CLT core and floors, with glulam 

columns. It was completed in October 2014 and will be occupied by the University of 

Northern British Columbia, as well as offices (Government of British Columbia n.d.). 

2.2.3 Future Projects 

In the summer of 2014, the University of British Columbia released an Expression of Interest 

for architectural services for a tall wood student residence. It is for a maximum 53 m tall 

building, planned for construction starting in 2015 and occupancy in 2017. This is intended 

as a pilot project, and will influence the NBCC 2020 (UBC Properties Trust 2014).  

Another project in London, Banyan Wharf, is under construction by Regal Homes. This 10-

storey luxury apartment building will be constructed with CLT (York 2014). In Bergen, 

Norway another tall apartment building is underway, called Treet. Treet consists of a glulam 
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truss structure and is planed to reach 14-storeys; construction was started in 2014 (The Local 

2014). 

2.3 Mass Timber Research 

The design and testing of individual components for timber structures has been performed 

worldwide. First, in this section, several components that have been studied will be looked at, 

including the flooring, diaphragms, CLT and steel-timber hybrid testing. While the focus in 

this thesis is upon the seismic aspects of timber systems, relevant tall timber systems are also 

included as part of the work to date. 

2.3.1 Flooring and Diaphragm Systems 

Integral to any lateral load resisting system, the flooring diaphragm provides a load path for 

seismic forces to be transmitted to the walls and foundation. While this is the main point of 

interest, other non-seismic considerations of the flooring systems are included here to 

provide a brief overview of flooring systems. 

A recent literature review on timber-concrete composite flooring design was performed by 

Yeoh et al. (2011), focusing primarily on timber-concrete composite. This system typically 

comprises of a timber base connected to a concrete slab by some sort of shear connection. 

This system provides several benefits over traditional timber floors including: minimizing 

deflections, vibration, acoustic, and fire characteristics. In comparison to a typical concrete 

slab, it also reduces mass (important for both gravity and seismic designs), allows for faster 

erection, and contains lower embodied energy. There are two general methods of design: the 

linear elastic method (governed by timber failure) or elastoplastic design (governed by shear 

connectors yielding). Yeoh et al. also provide a review of various composite connection 
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systems, influence of concrete properties, testing programs that have taken place, finite 

element modeling, prefabrication, and considerations including fire, acoustics, and 

vibrations.   

The use of CLT flooring systems has been studied at the University of New Brunswick. This 

has included the broad study of building systems and the inclusion of hybrid timber slab 

systems that satisfy design requirements (Weckendorf and Smith 2012a). Work was also 

performed to show that screw-type fasteners provide sufficient strength for connecting CLT 

flooring (Asiz and Smith 2011) and the identification of the issues due to the CLT slab local 

dynamics on occupancy serviceability (Weckendorf and Smith 2012b). 

Additional research on diaphragms subjected to seismic loads was performed at the UBC by 

Ashtari (2012). This research included calibrated ANSYS models to determine the relative 

in-plane stiffness of the CLT floor slabs to the longitudinal connections between them. This 

also included a parametric analysis to determine the influence of various factors on the 

diaphragms. This research provided a flowchart to help guide designers of CLT floor slabs.  

2.3.2 CLT Panel Testing 

While all timber seismic construction will are composite structures to some degree, this 

section considers structures made primarily out of CLT panels, with ductile connectors 

between panels. This is in contrast to Section 2.3.3, which considers systems that have a 

significant number of steel components relative to timber. 

At the University of Ljubljana, CLT walls were tested for their shear capacity due to a cyclic 

lateral load. This testing was performed on both panel segments with and without openings. 

These experimental tests were then compared to finite element models. The testing 
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determined the stiffness reduction due to openings in the panel (Dujic et al. 2008). Later, 

CLT panels were tested on a shake table and the results were found to be consistent with the 

quasi-static cyclic testing results (Hristovski et al. 2012). 

FPInnovations performed a series of 32 tests on many configurations of CLT panels. These 

configurations varied the connections, including brackets and hold-downs, including using 

rivets, screws, and nails. In addition, the wall configurations were varied, with some tall 

walls, two storey walls, long walls, and walls with openings. From these monotonic and 

cyclic tests, the hysteric loops and behaviour of the systems could be determined. These 

walls, with the considered base connections, were determined to have satisfactory seismic 

behaviour (Popovski et al. 2010).  

The behaviour of CLT panels and their connections under earthquake excitation was modeled 

by Rinaldin et al. (2013). These models used elastic shells for the timber elements, while 

non-linear spring elements were used for the connections, complete with hysteretic properties 

defined for the shear and axial motion. These models, which were developed for a single 

panel, coupled walls, and a single-storey building, were verified with experimental testing 

give a method to model CLT structures using finite element analysis. 

2.3.3 Steel-Timber Hybrid Testing 

Testing of steel-timber hybrid systems has been an active research area at the University of 

British Columbia (UBC). In particular, two concepts have been actively researched recently 

at UBC: CLT infill in steel moment frames and the FFTT structural system. 

Dickof (2013) investigated a system where a steel moment frame had CLT infill panels. This 

work was performed using OpenSees software for three, six, and nine storey non-linear 
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models. These detailed models combined several different infill panel configurations and 

moment frame ductilities. The results of this investigation found that CLT infill panel 

additions increased strength and stiffness, in addition to reducing the ultimate interstorey 

drift of the structure. From these results, the ductility and behaviour factors of the system 

were determined. This system primarily is a steel moment frame that utilizes timber, 

however, not a timber-primary system.  

The FFTT panel-beam connection was first tested at UBC, after the concept was introduced. 

Bhat (2013) performed material bearing tests on CLT, and also monotonic and cyclic tests of 

cantilevered beams embedded in CLT panels. The embedment depth of these beams was 

varied in addition to using wide flange and HSS sections. These results showed potential in 

the weak-beam, strong-column mechanism desired in the FFTT concept. However, the W-

flange sections were susceptible to uplift from the CLT section and out-of-plane buckling 

and HSS sections tested were small relative to practical load demands. 

Building on the experimental findings of Bhat, Azim (2014) continued the analysis at UBC 

on FFTT connections. This included first creating numerical models, which were then 

compared to the testing. Azim then performed a numerical parametric analysis of these 

connections, determining that CLT crushing at the connection is a significant consideration, 

even for small beams. Finally, some new connection configurations with longer embedment 

length and reduced depth were tested experimentally. These new configurations improved the 

performance, although testing on larger beams is still required for practical applications. 
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2.3.4 System Testing 

In addition to testing of single components, some large-scale tests were performed during the 

Construction System Fiemme (SOFIE) project. The SOFIE project was a large experimental 

project supported by both Trento University and IVALSA-CNR of Italy. This project 

included several stages that extensively explored the building characteristics, fire resistance, 

and the seismic reactions of CLT buildings. This was done in stages, starting from individual 

component testing that culminated with the full scale 3-D shake table testing of 3- and 7-

storey CLT buildings (Ceccotti et al. 2010). 

In the 3-storey building test, three configurations were tested, with differing number of 

openings and sizing of the openings. For the design of the building, the equivalent lateral 

force procedure by Eurocode 8 was followed, with the design location in Italy. When tested, 

the structure showed no residual displacement at the “near collapse” state, defined where 

connections had started failing (Ceccotti et al. 2010).  

The design of the 7-storey structure used the results from the previous 3-storey testing to 

determine the behaviour factor, q (similar to the product RdR0 in NBCC). Only one 

configuration was tested, which also showed no residual displacement of the structure and 

did not require major repair. This testing demonstrated CLT structures were feasible in 

seismic zones (Ceccotti et al. 2010).  

Based on the results from testing at FPInnovations, Pei et al. (2012) constructed a finite 

element model of a 10-storey CLT building. This structure was modeled with CLT panels as 

walls, implementing brackets, designed using Direct Displacement Design. This model was 

then tested using many scaled ground motions. This allowed an approximation of a behaviour 
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factor for the structure and demonstrated that this type of structure is viable in seismic 

regions.  

Much of the research to date of tall CLT structures in the Pacific NW was summarized by Pei 

et al. (2014). This includes a definition of a goal of constructing a 10-storey building and 

showing defined performance targets, in addition to identifying challenges that must be 

overcome and a plan on how to reach these goals.  

At UBC, analytical simulations of tall wooden buildings have been performed. Fairhurst 

(2014) performed a suite of non-linear time history analysis on several building models, 

based on varying seismic hazards and heights. In addition, he has worked on the wind 

loading of the models. This research utilized nonlinear 3-D models in OpenSees to perform 

the analyses and determined that the structures may be designed to meet seismic 

requirements; however, wind loading may govern taller structures. 

2.4 Research Into Reliability Analysis and Design Optimization 

To the present date, there have not been any reliability analyses of tall timber structures. 

However, there are a few reliability studies on either timber structures or on tall buildings.  

2.4.1 Timber Reliability 

Reliability studies have been performed for different timber structures. Some of these 

structures are a single element reliability analysis, while others look at both linear and non-

linear roof truss systems. In addition, the interaction of primary to secondary roof systems on 

robustness has been performed. While many of these analyses have been studied for snow 

and live loads, others have been performed with seismic loading.  
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Rosowsky (2013) performed a review of probabilistic modeling and reliability of timber 

structures. This review discusses the introduction and inclusion of limit state design in codes 

and then discusses the different approaches of coupled and uncoupled load-resistance 

reliability analysis. This study then looks at the future of timber reliability in the context of 

performance-based seismic design and primarily for light frame timber houses.  

Toratti et al. (2007) performed a reliability analysis of a single glulam beam, considering the 

critical section of a simply supported tapered beam in a Finnish supermarket. This analysis 

was not based upon a failed beam. It compares the reliability of the Eurocode 5 and Finnish 

Building Code designs, while also considering the failure probability during a 30- and 60-

minute fire. The probability of exceeding the maximum bending stress was calculated 

throughout the year based on different snow loading. 

Two studies in Sweden investigated the system effect of a light wooden roof truss to gravity 

loads. These analyses considered variation in loading and strength of the timber and found 

the spacing required to reach a target reliability index of 4.3. The first study by Hansson and 

Thelandersson (2002) considered a linear structure, while the second by Hansson and 

Ellegaard (2006) extended the analysis to consider non-linear nail connections. It was 

determined that the additional refinement of the analysis did not change the system effect 

significantly. 

A similar study was performed in France on a wooden truss by Riahi et al. (2011), but 

included the effects of seismic forces on the truss’s reliability. This model was constructed 

with non-linear stamped plate connections and run with the 1997 Kobe ground excitation. 

The First-Order Reliability Method (FORM) limit state was determined by defining a failure 
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displacement. The analysis involved using a finite element model to predict structural 

responses. The failure displacement was varied to show the sensitivity of the failure 

probability at each displacement. 

Due to the failure of several arenas and long-span timber structures in Europe, there was 

work done to understand the failures and the robustness of these systems. A survey of failed 

structures identified the critical issues (Dietsch 2011) and a detailed analysis of the design 

and possible flaws in two collapsed arenas (Munch-Andersen and Dietsch 2011). The 

analyses considered the primary structural elements (typically large glulam beams) with a 

long span and the secondary structures (purlins). The reliability analysis of the roof structure 

was performed and then extended to the robustness of the building. This explored the 

possibility of propagation of structural failure throughout the system and gave the probability 

of failure of the structures given errors in the design. These analyses identified the preferable 

configuration of the structure to consist of an indeterminate and redundant primary structure 

to allow load redistribution prior to component failure, with a statically determinant 

secondary structure that prevent the propagation of failure from one component to the next 

(Dietsch 2011; Miraglia et al. 2011; Sørensen 2011). These studies all consist of system 

analyses of timber buildings and provide a more pragmatic approach when compared to 

many of the pedagogical examples of simple structures. Further detailed analyses on similar 

structures were performed using seismic loading by Branco and Neves (2011), where the 

effects of added redundancy and ductility were noted to improve robustness.  

A non-linear reliability analysis by Li et al. (2011a; b) using experimentally models was 

performed for the seismic evaluation of two and three-storey post-and-beam structures. In 
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this analysis, the damage to the building was quantified by the peak-interstorey drift 

experienced by the structure through a library of ground motions. Using the ground motion 

and design characteristics (peak ground acceleration, structural mass, etc.), response surfaces 

were generated for the structure. These response surfaces were used to perform the FORM 

and importance sampling analyses to give the structural system reliability. These were used 

as indicators of the performance of the structure, in terms of expected drifts and reliability 

indices. 

Multiple studies have been performed on the reliability analysis of low light-frame structures, 

similar to the housing common in North America. Van de Lindt and Walz (2003) developed 

a hysteretic response for wood shear walls based on experimental data for ten single panel 

walls. This response utilized in a reliability analysis by running ten ground motions on each 

wall. This study estimated earthquake return periods and the reliability indices of different 

drifts at several earthquake return periods. Another study by Li and Ellingwood (2007) 

looked at the influence of openings in the walls. The considered residential structures were 

analyzed with three hazard levels and used with twenty ground motions for each hazard level 

and three wall configurations. The probability of failure for different damage states was then 

identified. 

Further research on light-frame buildings combined snow and seismic loading for reliability 

analyses. Lee and Rosowsky (2006) looked at this load combination in three US sites and 

used a convolution integral to combine the multiple hazards. This study developed seismic 

fragility curves after running non-linear time history analyses for different percentages of 

snow loads. A later study looked at this topic as well, but from a different methodology of 
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combing the snow and seismic loads. Yin and Li (2011) considered two separate models for 

the earthquake loading, using the Poisson process for occurrence and Type II distribution for 

intensity, and a filtered Poisson process for snow loads that increased the load in each event. 

These modules were then combined in the structural analysis to predict interstorey drift 

response and create loss curves, in terms of monetary value. 

All of this research on timber reliability to date has consisted of short timber buildings, both 

light frame and heavy construction. There are studies that consider both snow and seismic 

loading for both individual elements and structural assemblies. However, no research was 

found on the few tall timber structures built to date. Additionally, most of these analyses 

focus on achieving a reliability index and only a few use reliability analyses to determine a 

loss curve to determine the risk to the structure. Many of these analyses did, however, 

consider complete structural systems and used several methods to determine the reliability, 

including the union of many limit states, a single indicator limit state, and aggregated 

building states to determine loss curves. 

2.4.2 Tall Building Reliability Analysis 

A reliability analysis performed by Koduru and Haukaas (2010) considered a realized 15-

storey reinforced concrete shear wall building in Vancouver. This probabilistic analysis used 

synthetic ground motions with variable modulating function characteristics for crustal, 

subcrustal, and subduction earthquakes. The analysis was performed in OpenSees using 

Monte Carlo simulations that gave monetary loss curves based on the damage models for the 

structural and non-structural components to demonstrate a unified reliability analysis.  
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Another system reliability analysis was performed by Soares et al. (2002) on reinforced 

concrete frame structures that included non-linearities in the system. These geometric and 

material non-linearities were modeled with a response surface using least squares regression 

to provide an explicit limit state function in terms of the member’s force capacity. This 

reliability analysis also included a comparison of safety factors to reliability indices and a 

parametric analysis that demonstrated the method with a practical example. 

While not aimed at timber reliability and risk analyses, these two studies provide a basis for a 

reliability and risk analysis of tall buildings. In contrast to many of the timber reliability 

analyses, these studies were focused on the global system behaviour of the structure. In 

particular, Koduru and Haukaas (2010) focus on the cost performance of the structure, not on 

component responses. This is in line with the focus of this thesis, which is attempting to 

minimize the global cost of the structure given an event, rather than meeting target reliability 

indices. 

2.5 Software Overview 

In this thesis, three programs are focused on for analyses. OpenSees and Rt are important for 

background information and previous work and discussed briefly here. A third program, Rts, 

is a new program based off of the foundation of Rt, Rts, which is used in the remaining 

chapters for orchestrating models and examples. 

2.5.1 OpenSees  

OpenSees is an object-based program first developed at the Pacific Earthquake Engineering 

Research (PEER) Centre in Berkeley, California. This open source program provides a 

platform for non-linear simulation of structural responses under earthquake excitation. 
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OpenSees may be utilized in both Rt and Rts. Rt and Rts can call an OpenSees analysis, then 

use the response from the structural analysis as an input to other models, as discussed in 

Appendix A. 

2.5.2 Rt 

Rt is a program developed by Mahsuli and Haukaas (2013a; b) at UBC to provide a reliability 

analysis platform. It is an object-oriented application that focuses on performance-based 

earthquake analyses of large systems or regions, using simplified models for damage to 

individual buildings. As mentioned above, it also allows OpenSees to be used as an external 

model, allowing a detailed structural model to be used in a reliability analysis; a guide for 

this is included in in Appendix A. Further information on Rt and its operation may be found 

in the development references. 
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Chapter 3 Orchestrating Models in Rts 

Rts implements a multi-model platform, with many models intended for running simulations. 

Four orchestrating models have been implemented in this new program, which use responses 

from other models, such as algebraic expressions or structural models. These are the 

reliability (FORM and sampling models), risk, and optimization models. The assembled 

structure of these orchestrating models is given in Figure 3.1. An overview of the operation 

of the reliability models is given. The current implementation is consistent with prior models, 

with minor changes. In contrast, the risk model is a novel algorithm and implementation and 

the optimization model is a new implementation in Rts using established techniques.  

 
Figure 3.1 Diagram of model structure and inputs 

Rts is based upon the framework of Rt, but extends the functionality. A key element of this 

program is the parameterization that may be used deeply within the program when defining 

both random and decision variables and the use of these variables in other aspects of the 

program. This includes basing the structural mesh upon parameters, which then change 

during analyses. In addition, a variety of models may be nested, with subsequent models 

running those it is dependent upon when called.  

Rts is still under development, but future plans include a repair manager to categorically 

decide upon repair actions and costs, while also estimating the amount of visible damage. 
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Development will also include ground motion models, as well as non-linear structural 

elements. Additionally, direct differentiation procedures are implemented (with the exception 

of the risk model) that allow for quick gradient calculations. For these reasons, this program 

will provide a good foundation for structural design optimization in a reliability-based 

context. Here, the focus is on the orchestrating models and how they have been implemented 

in Rts. 

3.1 Reliability Analysis 

Reliability analysis is the prediction and study related to the probability of an event occurring 

for a structural system. In the past, a reliability analysis was performed to compare loading 

with resistance to determine the probability failure of a system, when the load exceeds the 

resistance. In the context of this thesis, however, a reliability analysis is used as a model to 

quantify the probability of exceeding a cost threshold. This analysis may then be used for 

other risk or optimization analyses. The goal of reliability analysis is to take the uncertainties 

into account in the model to determine the response of the system through two key 

components: the limit-state function and random variables.  

The major benefit of a reliability analysis is the inclusion of probabilistic information about 

the model, such as load intensity, geometry, or material properties. This makes it a powerful 

tool to determine a probability of an event of a response exceeding a threshold. However, a 

reliability analysis only gives this probability – it is not possible to directly identify a target 

reliability and work backwards to determine a design. In addition, the robustness of the 

algorithms used varies and convergence issues may occur for very rare occurrences, as well 

as with highly non-linear limit state functions. 
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3.1.1 Definition of a Limit State Function  

One of the two basic ingredients of a reliability analysis is the limit state function (LSF), 

which defines the state of the system, while random variables are the second. When the LSF 

is greater than zero, it represents an intact state, while a value less than zero represents a 

failed system. Using a LSF, it is possible to determine the failure probability of the system 

for the limit state criteria chosen using the limit state surface, where the LSF has a value of 

zero. The LSF allows for the failure domain to be defined for the reliability problem (Der 

Kiureghian 2005a). The criteria vary depending on the problem, but examples include load 

demand and resistance, deflection, or cost. The formulation of the LSF depends upon the 

formulation of the reliability analysis performed, discussed below. 

3.1.1.1 Classical Reliability Analysis 

A classical reliability analysis is typical performed with the limit state being identified as an 

engineering parameter. This engineering parameter is generally a physical measurement that 

may be taken to represent the structure. Examples of these representative limit state 

parameters may be interstorey drift of the building, deflection of a component or structure, or 

the stress or strain state of a specific component. These parameters must be chosen with good 

judgment, as with the limit state of these parameters, since the reliability analysis depends 

upon these assumptions. Two example LSF formulations could be: 

 g(x) = δmax −δ(x)  (3.1) 

 g(x) =1−σ (x)
fy

 (3.2) 
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Eq. (3.1) gives an LSF that compares a deflection against a maximum allowable deflection, 

while the LSF in Eq. (3.2) determines the observed stress as a ratio of the yield stress. In 

either case, failure occurs when the LSF is a negative value. 

There are two approaches for the reliability analysis of a system. One utilizes an indicator 

response for the LSF, which allows the response to be summarized in one parameter 

(interstorey drift, for instance). In contrast, a System Reliability model could be used that 

checks many LSFs. The failure state could consist of several limit states of separate 

components occurring in parallel, or occurring singularly in series, or a combination of both 

(Thoft-Christensen 2005). This is not to be confused with the reliability of structural systems, 

as Systems Reliability is another field of study. While research has been done on System 

Reliability methods and is discussed by Thoft-Christensen (2005) for different problems, 

individual component limit states are not discussed in this thesis in favour of using a single 

aggregated cost limit state. 

3.1.1.2 Performance-based Reliability Analysis 

In comparison to “classical reliability analysis,” performance-based analysis goes beyond the 

failure probability. A “classical analysis” may focus on one parameter as an indicator of the 

building state and try to reach a target failure probability. Performance-based reliability 

analyses, in the context of this thesis, aggregate all of the possible costs of the building, 

including construction and repair for all components. There are many benefits with 

approaching the reliability problem with this method. It removes the assumption that one 

engineering response from the structure is representative of the whole structure by taking 

account of all components in the structural model. In addition, it does not define discrete 
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states for individual components. Rather, each component is given a continuous cost of repair 

based on the structural response. This cost of repair is compiled for all components in the 

structure, which is then implemented into a LSF below: 

 g(x) =Cthreshold −Cconstruction (x)−Crepair (x)  (3.3) 

In Eq. (3.3), formulation is includes costs from all aspects of interest in the structure, 

subtracted from a threshold cost of interest. This formulation also allows a reliability analysis 

to easily be extended into the Risk Minimization analyses discussed in this thesis. By 

considering several magnitudes of costs, a probability of exceedance curve may be 

constructed from many analyses and risk measures may be attained from this analysis. 

3.1.2 Definition of Random Variables 

The other key input in a reliability analysis is the random variables. Since the random 

variables are defined with a probabilistic distribution and the requisite information (including 

mean, coefficient of variation (COV), etc.), it is possible to solve for an event’s probability of 

occurance. Random variables may be included in the LSF either explicitly or implicitly. 

Examples of random variables can include geometric and material parameters, load 

intensities, or cost values. These are typically given in a vector format, such as:  
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 (3.4) 

There are several different distributions for characterizing random variables using continuous 

probability density functions. The function distribution used, along with the distribution 
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information (including mean, standard deviation, or other model parameters), may be based 

on experimental results, historical results, or engineering judgment.  

3.1.3 Results from a Reliability Analysis 

A reliability analysis gives estimation of an event occurring, as defined by the LSF. This 

result may then be used as a parameter for further models, such as a risk or optimization 

analysis (discussed further in Sections 3.2 and 3.3). The failure probability may also be given 

interchangeably as the reliability index, β, which is related to the failure probability through 

the relationship with the normal distribution function, Φ, shown here:  

 pf =Φ(−β)  (3.5) 

In addition to the failure probability, the reliability analysis also determines the alpha vector. 

This may be used as an importance measure to rank relative importance of random variables. 

A reliability analysis on its own, as mentioned earlier, cannot be used to directly determine a 

design for a given failure probability criterion. This is due to the use of a design in the 

determination the analysis and the design may not be changed within a single analysis. 

However, with the use of iterative designs and analyses, an appropriate optimal design may 

be determined. 

3.1.4 Reliability Methods  

Once a limit state function has been chosen and the random variables defined, a reliability 

analysis may be performed. There are many methods for performing this analysis, each with 

benefits and shortcomings. Regardless of different techniques, these all provide the operator 

with the failure probability or reliability index. This is a brief summary of several techniques: 
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First-Order Second Moment, First-Order Reliability Method, Second-Order Reliability 

Method, and Sampling. This does not include the full procedures or derivation, which are 

well accepted and found in reliability textbooks.  

3.1.4.1 First-Order Second Moment 

The First-Order Second Moment (FOSM) method allows calculation of the reliability index 

using only the mean and the standard deviation (the second moment) information of the limit 

state function. This reliability analysis, also known as the Mean Value FOSM method does 

not account for any other aspects of the distributions, using only the probability 

transformations to determine the second moment information and using a first-order linear 

approximation of the LSF. Using this information, a reliability index may be calculated with: 

 β =
µg

σ g

 (3.6) 

Eq. (3.6) determines the reliability index from the mean, µg, and standard deviation, σg, of the 

LSF (Haukaas 2014a). This allows the failure probability to be calculated for normally 

distributed problems using Eq. (3.5). 

The approach uses makes a first-order approximation of the LSF, which is exact for linear 

LSFs. However, this approximation results in the “invariance problem” for non-linear LSFs, 

where equivalent LSFs will not give the same result in different algebraic formulations.  

While FOSM is capable of quick calculations due to its simple formulation, it has several 

disadvantages. It is inappropriate for non-linear LSFs, as it does not account for these non-

linearities due to the first-order approximation (Choi et al. 2007). Because of this, it is also 

not a suitable check for other analyses. Additionally, the failure probability is not explicitly 
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calculated and may only be determined from the reliability index. In practice, FOSM is not 

broadly useful, as it cannot be used for non-linear problems. However, for linear problems, 

FORM may be used and will converge in a single step. As a result, it is not implemented in 

Rts. 

3.1.4.2 First-Order Reliability Method 

The First-Order Reliability Method (FORM) determines the reliability index by transforming 

the variables into a standard normal space. This transformation gives the variables a mean of 

zero and a unit standard deviation. In this standard space, the transformed LSF may also be 

plotted, with the reliability index being found as the shortest distance from the origin to the 

limit state surface (Choi et al. 2007). This method solves the invariance problem of FOSM, 

as all equivalent LSF will have the same surface (Haukaas 2014b). 

FORM uses a linearization of the limit state surface and assumes that it extends 

perpendicularly from the chord segment from the origin to the design point. It is beyond this 

linear surface that the failure probability is determined. For non-linear LSF, this may result in 

errors in the failure probability determined in FORM. In addition, analysis of highly non-

linear LSFs may cause issues with convergence. 

A single-constraint optimization algorithm performs the search for the design point, the 

closest point on the limit state surface to the origin in the standard normal space. The 

constraint is that the limit state function is set to zero, while the distance from the origin to 

the design point is minimized (Haukaas 2014b). This results in two convergence criterion: 

one to test that the design point is sufficiently close to the limit state surface, with a second to 

test that the point is the closest to the origin.  
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Algorithm 3.1 FORM Algorithm 

1. Select starting point in SNS (standard normal space) 
2. Transform into original space 
3. Evaluate LSF 
4. Evaluate gradient of LSF 
5. Check convergence criterion 

5.1. If converged, give design point in original space and failure probability 
5.2. If not converged, compute next design point in SNS (step 1) and repeat until 

converged 
 

The FORM algorithm gives the general steps required in the analysis. Typically, for the 

starting point, the origin is used in step 1. Step 2 implements probability transformations to 

convert back to the original random variable space to determine the value of the LSF. The 

gradient of the LSF is more involved and may be performed using the finite difference 

method (FDM) or the direct differentiation method (DDM), if implemented. Step 4 checks 

that the convergence is within a given tolerance threshold defined for the analysis. If the 

problem is converged, the design point is known and the failure probability may be easily 

calculated. Conversely, if the analysis iterates further, the search for the next design point is 

commenced, using Armijo step size and HLRF search direction algorithms. 

A FORM analysis provides a computationally efficient method of determining the failure 

probability accurately, while also providing information about the importance factors for the 

analysis. In addition, it also may use DDM sensitivities in calculation of the gradient, saving 

computational effort. Inclusion of DDM capabilities will also allow it to be used by other 

governing models (such as an in the risk model). The main downside of FORM analyses is 

the algorithm lacks robustness and will not converge quickly for all problems. 
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3.1.4.3 Second-Order Reliability Method 

Second-Order Reliability Method (SORM) is an extension of the FORM analysis, including a 

curvature approximation around the design point. This curvature then corrects the failure 

probability calculated by FORM, which assumes a tangent line at the design point on the 

limit state surface. This curvature may be determined by differentiating the LSF at the design 

point, which is only practical for explicit LSFs or LSFs with high order differentials. 

Alternatively, the curvature may be approximated by using two of the trial design points in 

conjunction with the final design point (Der Kiureghian 2005a). SORM analysis provides a 

more refined version of FORM, with little additional necessary analysis. In practice for 

highly non-linear LSFs, SORM may not provide adequate results despite correcting the 

FORM analysis. In these cases, a sampling method may be preferred. SORM is not currently 

implemented in Rts, but may be added in the future as a modifier for a FORM analysis. 

3.1.4.4 Sampling Methods 

Sampling analyses use many realizations to approximate the failure probability. There are 

several different methods to produce the samples, with two mentioned here. Monte Carlo 

sampling produces samples according to the distribution of the variables and does not require 

any numerical correction. In comparison, Importance Sampling centers the sampling around 

a chosen point and then corrects the failure probability accordingly. Sampling methods are 

theoretically simple and easy to implement. In addition, they are robust and give results for 

non-linear limit states that may not converge with other algorithms. A downside is that DDM 

sensitivities may not be used in sampling analyses. 



 

 38 

3.1.4.4.1 Monte Carlo Sampling 

Monte Carlo Sampling (MCS, or generally referenced as sampling) is a method of generating 

many realizations to determine the probability of occurrence. This is a computationally 

heavy, but theoretically simple, method. It is performed by determining the values of the 

random variables from their probability distributions and then computing the response (Choi 

et al. 2007). The algorithm for sampling used in Rts is below. 

Algorithm 3.2 Sampling Algorithm 

1 Generate random numbers outcomes  
2 Transform realizations to original random variable space 
3 Solve LSF and collect result in an indicator function 
4 Update the failure probability from observed results 
5 Iterate until desired coefficient of variation or iteration count is reached 
 

The key element of a sampling analysis is the probability transformations from the random 

number generator to the random variable distributions. After the LSF is solved, the response 

is then tallied using an indicator function, I(x), which is given a unit value if it is in the 

failure region and is otherwise zero. This gives an estimate of the failure probability after N 

samples using:  

 pf =
1
N

I(xi )i=1

N
∑  (3.7) 

As implemented in Rts, sampling will continue until either the maximum number of 

iterations or until a target COV is reached, with the current COV given by: 

 δ =
1
N

Varsampling
Meansampling

 (3.8) 
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MCS is advantageous as it is a method that can be applied to all problems relatively simply 

and is a good method to check other analyses. This comes at a price, however, and MCS is 

very computationally expensive, particularly to determine results with small target 

coefficients of variation or events with low probability of occurrences (Haukaas 2014c). 

Additionally, MCS of high probability events (almost “sure thing”) requires a low target 

COV. Otherwise, a single failure may result in the achieving the target COV without 

achieving a satisfactory analysis. 

In particular, MCS is useful for highly non-linear LSFs that may not be adequately analyzed 

by FORM or SORM. MCS is also useful in providing robustness to the Rts risk model, as it 

provides a method to analyze cost thresholds that did not converge with FORM. 

3.1.4.4.2 Importance Sampling 

Another sampling method is Importance Sampling (IS), which is a refined method of MCS. 

Unlike MCS, where the sampling is centered around the origin (of the standard normal 

space), the IS samples are centered around another point. This point is typically the design 

point determined from a FORM analysis. If the distribution center is selected appropriately, it 

allows many more of the sampled points to fall into the failure domain. The final failure 

probability may be determined by adjusting the results based on the known sampling center 

(Choi et al. 2007). This method provides better results for fewer sampling iterations 

compared to MCS, and is significantly more efficient for small failure probability events. 

IS follows the Sampling Algorithm in Section 3.1.4.4.1, with some modifications to the 

steps, using the notation from Haukaas (2014c). The random numbers are transformed to a 

modified probability distribution h(x) instead of the random variable distribution φ(x). This 
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gives a modified expression for the indicator function and probability failure, which are now 

formulated as: 

 q(x) = I(x)ϕ(x)
h(x)

 (3.9) 

 pf =
1
N

q(xi )i=1

N
∑  (3.10) 

IS sampling is not currently implemented in Rts, but provides an additional reliability method 

that could be implemented in the future. It could be beneficial in determining low probability 

events in the risk model. 

3.2 Risk Analysis 

A risk analysis provides a method for characterizing the measure of risk for a probabilistic 

model. Rather than just considering one particular threshold or limit state to for a reliability 

analysis, it compiles many analyses and provides an overall risk measure. As currently 

implemented in Rts, only the mean cost is used for a risk measure. 

3.2.1 Introduction to Risk Models 

Risk modeling is a tool for quantifying the cost of a structure, which in this thesis provides an 

objective for an optimization. A risk analysis includes constructing an exceedance probability 

(EP) or loss curve, such as the one in Figure 3.2. The EP curve is constructed by performing 

a reliability analysis at many thresholds. Based on an EP curve, a risk measure may then be 

evaluated. In this case the mean cost is determined using the area under the curve, as derived 

in Section 3.2.2. 
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Figure 3.2 Example exceedance probability curve 

Using risk measures provides the benefits of quantifying the costs of an event occurring, 

instead of using a single criterion as calculated in a reliability analysis. This allows for 

decisions to be made based on various risk measures. These risk measures may be chosen as 

appropriate for the stakeholders, allowing flexibility in quantifying appropriate risk. In 

addition, the different risk measures allow the inclusion of the effects of the rare tail events 

(Haukaas 2008). Most importantly, the use of risk models provides an objective function for 

an optimization analysis. This implementation also requires no prior knowledge of the 

system, as a preliminary sampling analysis occurs when determining the risk measure. 

3.2.2 Determination of the Mean Cost 

There is currently only one risk measure implemented in the risk model, the mean cost. As 

described in the literature, the mean cost my be determined by the area under the EP curve 

(Haukaas 2014d; Haukaas et al. 2013; Der Kiureghian 2005b). Following the notation of 

Haukaas (2014d), the mean cost is determined as the expected cost from the PDF of the cost 

distribution, fC(c), by the following relation: 
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 µC = E[C]= c ⋅ fC (c)dc
−∞

∞

∫  (3.11) 

However, the EP curve determined is the complementary cumulative distribution function 

(CCDF), GC(c), which is related to the cumulative distribution function, FC(c), and PDF, 

fC(c), as shown below: 

 CC (c) =1−FC (c) =1− fC (c)
−∞

c

∫ dc  (3.12) 

Using this relation, the expected cost may be expressed in terms of the CCDF as: 

 E[C]= − c ⋅GC (c)
dc0

∞

∫ dc  (3.13) 

It is possible to integrate this by parts and drop a vanishing boundary term determine: 

 E[C]= −[c ⋅GX (c)]0
∞ + 1⋅GC (c)dc =

0

∞

∫ GC (c)dc
0

∞

∫  (3.14) 

As a result, the mean cost may be determined as the integral of the EP curve. As a result, it is 

possible to give the response of the risk model as the mean by numerically integrating the EP 

curve. 

3.2.3 Risk Analysis Algorithm 

The risk analysis is performed, implementing reliability methods including FORM and 

sampling to develop an EP curve and determine risk measures. This is performed by varying 

the LSF using different cost thresholds to determine the probability of exceeding that cost 

(Haukaas 2008). The algorithm that is currently implemented in Rts is presented here. More 

information on the selection of parameters is given in Section 4.1.4. 
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Algorithm 3.3 Risk Algorithm 

1. Perform initial sampling 
1.1. Save the user-entered sampling information 
1.2. Perform a sampling analysis on input parameter (for 200 samples) 
1.3. Return mean and standard deviation from sampling data 
1.4. Reset the sampling model with the user-entered information 

2. Determine thresholds 
2.1. Attempt 5.0 std. dev. spread from mean 

2.1.1. Check that mean divided by the std. dev. is greater than the spread 
2.1.1.1. If yes, use this number of std. dev. spread from the mean 
2.1.1.2. If not, reduce number of std. dev. spread by 0.25 and check again 

2.2. Determine thresholds, dividing the interval equally among 31 thresholds from 
sampled mean over the std. dev. spread 

3. Determine probabilities 
3.1. While “upper threshold is below max probability requirement” is false loop 

3.1.1. Set threshold (starting from first vector position) 
3.1.2. Run reliability analysis in FORM to determine probability of exceeding this 

cost threshold 
3.1.2.1. If FORM returns an error, run sampling to determine the probability of 

exceeding the cost threshold 
3.1.3. If “lower threshold is above minimum probability requirement” is false 

3.1.3.1. If the probability exceeds probability requirement OR the next 
threshold is below 0 cost 

3.1.3.1.1. “Lower threshold is above minimum probability requirement” 
is set to true 

3.1.3.1.2. Skip to threshold at second place in initial threshold vector 
3.1.3.2. Otherwise add a new threshold 

3.1.3.2.1. Store threshold and probability values in a temporary vector 
3.1.3.2.2. Resize threshold and probability vector for one more threshold, 

a constant interval below initial threshold 
3.1.3.2.3. Move data into the resized vectors 

3.1.4. Check if at final specified threshold AND the probability is below the 
threshold required 

3.1.4.1. If true, set “upper threshold is below max probability requirement” to 
true 

4. Determine risk measure 
4.1. For all thresholds and probabilities, sum area under loss curve using trapezoid rule 
4.2. Return risk measure 

 

Initially, the thresholds for the risk analysis are determined using a sampling analysis, which 

allows the risk analysis to be performed without any prior information on the cost 
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distribution. This provides a mean and standard deviation for the cost parameter used in the 

risk analysis. This analysis uses 200 samples centred about the mean of the random variables, 

then resets the previous sampling settings entered by the user. 

Using this data, Rts will define thresholds at equal spaced intervals (represented by the blue 

circles in Figure 3.3). This is performed at a preset minimum number of points, defined in the 

code, for 5.0 standard deviations from the mean. If necessary, Rts will reduce the distance 

from the mean to the lowest threshold, such that all thresholds are positive. The intention is 

to keep the thresholds around the mean, where the probability rapidly varies, to provide the 

best result from quadrature. The initial spread of 5.0 standard deviations was chosen as it was 

expected to encompass the entire region for most problems. It also may be reduced as 

necessary for different problems. In cases where these intervals are not sufficient, additional 

thresholds will be automatically added to extend the region of interest to adjust to the case at 

hand. This allows robustness to the algorithm and covers situations where a 5.0 deviation 

spread is insufficient. 
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Figure 3.3 Example exceedance probability curve with annotated characteristics 

A FORM analysis is then run at each of these thresholds to determine the probability of 

exceedance. If these FORM analyses do not converge, Rts will attempt a sampling analysis. 

This utilizes the computational efficiency of FORM, but also keeps the risk model robust by 

implementing sampling whenever necessary, rather than giving an error and failed analysis. 

The reliability analyses are repeated for all of the thresholds. For both the lowest and highest 

threshold, Rts will require that the probability exceed a requirement encoded in Rts. This is 

done at the low threshold by adding additional points at the same interval (represented by the 

red circles in Figure 3.3), until the requirement is met (or the cost becomes zero). The same 

occurs at the upper threshold and once there is a sufficiently low probability of occurrence, 

Rts will determine the risk measure. As a result, the actual number of thresholds depends 

upon the risk probability distribution, and can be often up to and exceeding twice the original 

number of points. Requiring that the probabilities exceed a threshold value is important, as 
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the area determined underneath the graph is sensitive to the end values, particularly when 

approaching 100% probability due to the significant area encompassed under the curve from 

the point to zero cost. 

Currently, the only risk measure implemented in Rts is the mean cost. This is determined 

using the trapezoid numerical integration method below: 

 µc =
1
2

(cn+1 − cn )[p(cn+1)+ p(cn+1)]n=1

N
∑  (3.15) 

The numerical integration in Eq. (3.15) determines the mean cost, µc, using the determined 

the cost thresholds, cn, and their respective probabilities, pn. The mean cost is then given as 

the response of the risk model. It is important that this is the only response and two functions 

with different probability density functions but equal means are equivalent in this analysis. 

Particularly, this means that in the optimization function, it will only reduce the mean, 

irrespective of other characteristics of the PDF. To optimize other aspects of the PDF, other 

risk measures may be added in Rts, which are discussed in Haukaas et al. (2013).  

3.3 Optimization Analysis 

An optimization analysis allows the search for the minimum of any objective in an analysis 

by variation of the decision variables. This allows the determination of the best solution in 

the system. In the analysis considered, this often considers various design parameters as the 

decision variables to determine the optimal solution. The basics of optimization analysis will 

be introduced here. Reliability-Based Design Optimization (RBDO), performed in the past, 

will be contrasted to Risk Minimization (RM), a new method for probabilistic design 

optimization. The algorithm and methods currently implemented in Rts are also discussed. 
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3.3.1 Introduction to Optimization Analysis  

An optimization analysis is the search for minimizing the objective of a system. Decision 

variables are input, which unlike the random variables discussed earlier, are constant 

variables that are varied while searching for the optimum. An objective is defined, in this 

case taken as the mean cost determine from the risk model. Using different methods, a search 

direction and step size are determined and the next step towards the optimum is taken.  

It should be noted that there are several ways of optimizing a probability density function 

(PDF). The decision of what characteristic of PDF is minimized lies in the risk measure. 

Currently, only the mean value risk measure is implemented in Rts. This results in that only 

the expected response is minimized, but other measures of the PDF, such as variance or cost 

at a given percentile, are not considered. For any PDF, if the means are equal, they are 

equivalent in this analysis.  

3.3.2 Reliability-Based Design Optimization 

In the 1990s, an optimization scheme for structural engineering was developed. Enevoldsen 

and Sorensen (1994) have discussed RBDO. RBDO provided a methodology to use 

reliability analysis to approximate the total costs of a system, then to use non-linear 

optimization techniques to minimize the objective function. These reliability techniques are 

as discussed in Section 3.1, where any suitable optimization algorithm may be used. 

This objective function is subject to the bounds, typically specifying a reliability index to 

provide suitable probability of failure of the system to satisfy local codes. It considers the 

minimizing the objective function given by the total cost. This total cost consists of the cost 

of construction and the cost of failure. The probability of failure is determined from the 
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reliability analysis given the decision variables. These components are combined to form the 

objective function, typically of the form: 

 Ctotal =Cconstruction (y)+ pf (x, y)×Cfailure(y)  (3.16) 

This cost formulation uses decision variables y and random variables x. Eq. (3.16) includes a 

non-deterministic probability of failure, but this is the only inclusion of probabilistic data in 

the objective function. The cost of construction and failure for the structure are completely 

deterministic, based on the decision variables and include no uncertainty. In addition, the 

probability is only of a given discrete “failure” event. This results in two binary states: intact 

and failed.  

Enevoldsen and Sorensen discussed the importance of pre-evaluation and post-evaluation of 

the systems in the scope of the design process. The pre-evaluation provides an opportunity to 

find the failure modes, while also determining the important decision variables. After the 

final design, a post-evaluation allows confirmation that the design is still susceptible to the 

failure modes identified in the pre-evaluation. This also allows a sensitivity analysis of the 

optimal design (Enevoldsen and Sorensen 1994). Both of these analyses are important for a 

complete design. 

This RBDO analysis also implements different models for the reliability analysis. These 

include reliability on the element level or system level. In addition, the implementation of a 

finite-element model was included to provide a structural response model (Enevoldsen and 

Sorensen 1994). This module is combined with other aspects of the optimization analysis, in 

a nested approach. This nested approach is similar to what is done in the current analysis.  
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3.3.3 Risk Minimization 

A new method of design optimization that implements reliability analysis is presented here 

and hereby coined Risk Minimization (RM). This analysis is a step forward from past RBDO 

because it includes non-deterministic input in all aspects of the analyses in a nested model 

approach. A possible objective function is: 

 Ctotal =Cconstruction (x, y)+Cdamage(x, y)+… (3.17) 

In this formulation the random variables, x, and decision variables, y, are included in all 

terms. The objective function formulation in Eq. (3.17) includes the effect of uncertainty in 

all aspects of the problem. This is due to the inclusion of random variables in not just the 

reliability analysis (as in classical RBDO), but in all parameters in the cost model. In 

addition, this does not define a particular “failure” point or state, but is rather a continuum of 

building states. This provides a more sophisticated analysis that provides a method to 

encompass uncertainty in all aspects of the analysis for the optimal solution, from the 

construction to repair costs. Further applications could contain other costs, including life-

cycle costs. 

This objective function formulation is also easily adapted to nested models in Rts that call 

upon successive dependent analyses. For example, an optimization model uses a risk model 

as the objective function to determine the mean of the costs. This causes the risk model to 

run, which calls all other models that have variables that feed into it, such as a reliability 

model. In turn, the reliability model calls the cost models, damage models, structural models, 

etc. This allows the mean cost to be determined for a given event. All models that are nested 

within the encompassing optimization model are run when a response is required from them, 
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with the schematic shown earlier in Figure 3.1. It should be noted that this model 

initialization occurs with all models, including reliability and risk models, not only the 

optimization model.  

3.3.4 Optimization Tools 

In Rts, there is one algorithm for an optimization analysis, which may utilize different 

methods for determining the step direction and thus, step size. An ideal optimization method 

balances robustness, efficiency, and accuracy. A robust algorithm works for many problems 

without modification and may self-correct if errors occur, while efficient algorithms are not 

prohibitively computationally expensive. Finally, an accurate algorithm gives the correct 

answer with appropriate precision (Nocedal and Wright 2000). While there are many 

established optimization methods, only the ones implemented in Rts are discussed here. 

3.3.4.1 General Algorithm for Optimization Analysis 

The basic algorithm in Rts does not depend upon the different methods used in the analysis. 

It performs the iterations, but calls upon other methods to determine the step size, step 

direction, and convergence. This algorithm will find the local optimum, but will not ensure 

global optimality. 
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Algorithm 3.4 Optimization Algorithm 

1. Determine objective function value at current decision variables 
2. Determine the gradient of the objective function at the current value 
3. Check convergence 

3.1. If converged, local optimum achieved 
3.2. If not converged, update for next iteration 

3.2.1. Determine step direction 
3.2.2. Determine step size 
3.2.3. Update decision variables 

4. Iterate until converged 
 

While this algorithm does not have many steps, the models that are required for it to run may 

make both determining the value and gradient of the objective function very computationally 

heavy. In particular, direct differentiation methods are not applied in the risk model, since it 

may not be applied to sampling analyses. As a result, finite differentiation methods are used, 

which requires running the analysis once at the current values of the decision variables, then 

perturbing each decision variable individually and running the risk analysis again. 

To check convergence, the gradient is checked to be sufficiently close to zero, which gives a 

local minimum. The method currently employed for this is the gradient norm, calculated as:  
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 (3.18)  

This checks that the gradient of the objective function, f, with respect to each decision 

variable, y, is below the tolerance, e. The tolerance is not required to be as small as other 

search algorithms (such as FORM), as there is often some small variability between steps.  
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The optimization algorithm takes a step using the equation:  

 yn+1 = yn − sn pn  (3.19)  

This equation updates the values of the decision variables using step size, sn, and direction, 

pn. Both the step size and direction calculation depends upon the optimization methods 

chosen. Of note, Eq. (3.19) is formulated for minimization, as the subtraction sign moves this 

away from an increasing direction. The methods described in the next section do not require 

further calculation from the objective function. Rather, they utilize only the first-order 

information already calculated, saving computational resources. A move limit on the change 

to the decision variable is implemented in Rts as well, allowing a maximum change of 20% 

from the current value at each step. This is intended to prevent erroneous large steps that take 

the decision variables out of the region of interest. The move limit is only applied to one 

decision variable and does not scale the step of the other decision variables. 

The optimization model is only capable of using the objective function values given to it. 

Therefore, for best results, the risk model should be as precise as possible. This additional 

computation in the risk model greatly improves the performance of the optimization models. 

In determining the gradient of the objective function, this analysis currently implements 

FDM gradients. This method perturbs each decision variable individually. For each decision 

variable, the objective is then recomputed. The perturbation is constant and has been set as 

10% of the current value. This value of the perturbation factor appears to work well though 

the risk model. Higher perturbations can cause issues with the gradient by skipping over 

minimums. In contrast, lower values tend to get diffused in the risk calculation and don’t 
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give as clear a gradient. In turn, the error in the calculation becomes more prominent, which 

also causes issues with the optimization search. 

3.3.4.2 Steepest Descent Method 

The Steepest Descent Method provides a conceptually simple, but inefficient, optimization 

technique. It utilizes only the gradient to determine the search direction for the next point. 

Haukaas (2014d) updates the step using:  

 yn+1 = yn − sn
∂f
dyn

 (3.20) 

This updates from step n to step n+1 using the step size, sn, for the update and the vector of 

derivatives, with respect to each of the decision variables. 

This method has the benefit of being easily implemented and calculated. However, it is very 

computationally intensive and converges slowly. In particular, as the DV approach the 

optimum, the gradient approaches zero and, for a fixed step size, each iteration moves very 

little. In addition, a small step size is required (in the order of 10-3 or 10-4) to prevent the 

algorithm from taking too large a step and passing over local minima of interest. The step 

sized used is dependent upon the objective function and starting point and will require some 

experimentation. Although this method is computationally intensive, which limits its 

usefulness for large-scale optimization analyses, it is a simple and robust search method. It is 

also not very susceptible to minor errors in calculations and self-corrects readily. 

3.3.4.3 BFGS Method 

The BFGS (an acronym of the developers Broyden, Fletcher, Goldfarb, and Shanno) is a 

common Quasi-Newton optimization method. Unlike the calculating the Hessian matrix in 
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the Newton method, this method uses only the value and gradient of the objective function to 

provide an approximation of the Hessian matrix. The Hessian matrix, or its approximation, 

contains the curvature information of the objective function with respect to the decision 

variables (Nocedal and Wright 2000).  

The BFGS algorithm provides updates to the search direction only, using the first-order 

information of the objective function and updating an approximated Hessian matrix at each 

step. The first iteration is determined using a steepest-descent approach, which also uses a 

significantly smaller step size to prevent an excessive first step, which will cause issues with 

the optimization search and may move the search outside of the area of interest. This also 

defines the Hessian inverse for the initial step as a diagonal matrix, as given below:  

 Hk =
0.001 0 0
0 ! 0
0 0 0.001
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 (3.21)  

For subsequent iterations, k, the BFGS algorithm is applied as described below using the 

notation from Nocedal and Wright (2000). Three auxiliary functions are defined:  

 sk = yk − yk−1  (3.22)  

 gk =∇fk −∇fk−1  (3.23)  

 ρk =
1
gk
Tsk

 (3.24)  

Eq. (3.22) determines sk, the difference of the current and past decision variables. Eq. (3.23) 

defines gk, the change between the current and past values of the function’s gradient. Of note, 
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the index k refers to the values from current step, while k+1 refers to the step in advance and 

that sk in Eq. (3.22) is not the same term as in Eq. (3.20). 

Once these values are determined, the inverse Hessian, Hk+1, is determined by:  

 Hk+1 = (I − ρkgksk
T )Hk (I − ρkskgk

T )+ ρksksk
T  (3.25)  

The result from Eq. (3.25) may be then used to determine the step direction: 

 pk+1 = Hk+1∇fk+1  (3.26)  

While the step size is not determined in the BFGS algorithm, the algorithm is dependent 

upon the size. From experience using the model in Rts, a fixed step size of 0.5 appears to be 

most reliable. Of note, the initial step using the steepest descent method is much smaller, in 

the order of 10-3 or 10-4. This is required, as otherwise the step taken will likely be too large, 

depending upon the gradient. Future work and implementations could include providing a 

variable step size that meets the Wolfe Conditions to aid quick convergence. 

The BFGS algorithm, as with other Quasi-Newton methods, has the benefits of reasonably 

fast convergence while remaining relatively computationally efficient. The convergence rate 

is not as fast as true Newton optimization methods, which require full calculation of the 

Hessian. This small difference in number of iterations is offset largely by the significant 

advantage of significantly less computational effort in comparison to Newton methods. In 

addition, it requires no additional computation compared to Steepest Descent with respect to 

the objective function, but provides convergence in fewer steps. Another benefit of BFGS is 

that a new Hessian approximation is not required for each iteration. Instead, the 

approximation is updated in each step. In addition, the BFGS algorithm has been found 
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through experience to be robust and self-correcting (Nocedal and Wright 2000). For a large-

scale problem with many decision variables, however, maintaining the Hessian matrix may 

be computationally intensive. This is not an anticipated issue in these minimization analyses. 

These characteristics make the BFGS method a powerful optimization tool.  

In the experience from this thesis, BFGS provides generally fast convergence compared to 

steepest descent. In some cases, however, the BFGS algorithm does make an erroneous step. 

This is largely remedied by providing precise risk measurements. In the cases of an 

erroneous step, the algorithm will attempt to self-correct. This works in some occasions, but 

others will cause the decision variables to become unrealistic (such as negative geometry). In 

addition, BFGS will typically approach the optimum quickly, but may not reach convergence 

quickly. This provides a useful tool, but is generally not as robust as steepest descent search 

directions. 
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Chapter 4 Optimization Examples 

The risk-based design optimization techniques described in Chapter 3 will now be applied to 

some simple optimization examples. First, an algebraic objective function that has one 

decision variable that was presented in Haukaas et al. (2013). This provides a simple 

opportunity to confirm the results while also providing a simple example to demonstrate the 

analysis. 

A second, optimization example is then presented. This example is of a one-storey FFTT 

frame, represented by an analytical model with two decision variables. Example 2 consists of 

many nested algebraic models that are aggregated into a final total cost. This example is 

intended as a stepping-stone to the future large-scale, 6-storey FFTT frame structure 

discussed in Chapter 5.   

4.1 Example 1: One-Dimensional, Algebraic Optimization 

A simple example from Haukaas et al. (2013) is used to compare and verify the analysis 

performed in Rts. This analysis uses only one decision variable and an algebraic objective 

function. In the conference proceedings, results are found and compared using sampling, 

Taylor approximation, and quadrature using FORM (Haukaas et al. 2013). The results here 

match what was found in this paper. 

4.1.1 Problem Formulation 

Example 1 is an idealized multi-storey building, idealized as a cantilever beam by Haukaas et 

al. (2013). This gives a simple cost formulation: 

 c = (x1 + x2Ld
2 )+ (x3

PL3

d 4
)  (4.1)  
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The formulation in Eq. (4.1) represents the total cost as a function of the decision variable, d. 

In the equation from Haukaas et al., the first parenthesis represents the “construction cost,” a 

function of d and the building height, L. The second parenthesis represents the “repair cost,” 

which is a function of d, L, and lateral load, P. 

4.1.2 Rts Settings Formulation 

Example 1 contains a single decision variable and five random variables, described in Table 

4.1 and Table 4.2. There are no constants in this example. The decision variable, d, is given 

initial values on either side of the optimum. The random variable, x3, was defined by a value 

of 1.5 in the Rts formulation, as issues with step sizes and probability transformations 

occurred with a very small value. To get the desired value, the exponential was moved into 

Eq. (4.1). 

Table 4.1 Example 1 decision variable 

Parameter Initial Values 
d 0.25, 1.0 

 

Table 4.2 Example 1 random variables 

Parameter Distribution Mean COV 
x1 Lognormal 200 10% 
x2 Lognormal 200 10% 
x3 Lognormal 1.5.10-5 10% 
L Lognormal 3 10% 
P Lognormal 2000 10% 

 

The settings of the orchestrating functions are mostly Rts default settings. Table 4.3 shows 

the particular FORM settings for this example. The sampling settings are in Table 4.4. Of 
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note, sampling around the origin is in the standardized normal space, which represents the 

mean value of the random variables. The risk model settings for the example are shown in 

Table 4.5. These settings are all internally coded into Rts and there is a discussion of how 

these were found in Section 4.1.4. Finally, the optimization settings used are presented in 

Table 4.6 for each different method used. All analyses converged with the gradient norm. Of 

note, this analysis involved no step length limitation in the optimization analysis, unlike 

Example 2, which is limited to a step of 20% of the current decision variable value. 

Table 4.3 Example 1 FORM model settings 

Parameter Value 
Gradient Method Finite Difference 
Maximum Steps 10 
Search Direction HLRF 

Step Size Armijo Step Size 
 

Table 4.4 Example 1 sampling model settings 

Parameter Value 
Maximum Samples 5000 

Target C.O.V. 0.5% 
Sampling Centre Origin 

 

Table 4.5 Example 1 risk model settings 

Parameter Value 
Minimum No. Thresholds 31 
Initial Sampling Iterations 200 
Probability Requirements 0.5%-99.5% 
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Table 4.6 Example 1 optimization model settings 

Method Step Size Gradient Norm Convergence 
Steepest Descent 0.0001 0.9 

BFGS 0.5 0.9 
 

4.1.3 Example 1 Results 

These models were run both for the probabilistic parameters and for a first-order 

approximation using constants with values equal to the mean. The results are shown in Table 

4.7. All of the methods reached very similar results. However, the values determined using 

first-order approximation were slight overestimations. For the purposes of these results, the 

steps taken to optimum cost is the number taken to reach within 1.0% of the final converged 

cost. The number of steps to reach the minimum cost, shown in Table 4.7, is similar for both 

probabilistic and first-order analyses. Computation times, using all methods, were in the 

order of 30 seconds for approximately 15 steps to full reach the convergence criteria in Table 

4.6.  

Table 4.7 Results of Example 1 of steps to optimum 

Analysis Initial d Risk model First-order approximation 
c d Steps c d Steps 

Steepest descent 0.25 324.934 0.3571 3 326.451 0.3561 3 
1.0 324.992 0.3573 8 326.456 0.3561 8 

BFGS 0.25 324.991 0.3572 8 326.474 0.3560 7 
1.0 324.950 0.3567 6 326.454 0.3561 4 

Average 324.997 0.3571 - 326.459 0.3561 - 
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Figure 4.1 Mean cost at each optimization step in Example 1 

 
Figure 4.2 Decision variable at each optimization step in Example 1 

In both BFGS and steepest descent optimization analyses, the optimal value of d was quickly 

determined on either side of the optimum, as shown in Figure 4.1 and Figure 4.2.  

The mean costs for several values of d have been computed using the risk analysis and are 

compared to the first-order (mean value) approximation shown in Figure 4.3. For each of 

these points, a loss curve may be calculated. Three curves of interest are the decision variable 

at the initial values compared to the optimal value in Figure 4.4 the two start points and the 

optimum. It is clear that the mean cost of the system is much lower at the optimum than other 
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points in this plot, which may also be confirmed when compared to Figure 4.3. In this 

example, the first-order approximation is in good agreement with the results from Rts. 

 
Figure 4.3 Risk at different values of the design variable in Example 1 

 
Figure 4.4 Exceedance probability at three decision variable values in Example 1 
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4.1.4 Risk Model Tuning 

The risk algorithm discussed in Section 3.2.3 has several hardcoded parameters that may be 

changed. This includes the selection of basic number of thresholds into which to divide and 

analysis and also the maximum and minimum probabilities (tail probabilities) allowed at the 

end of the thresholds. Finally, the maximum number of samples used in the initial sampling 

analysis was varied for one set of the probability requirements. This provides an optimization 

problem, with goals of improved accuracy and precision, while not unnecessarily increasing 

computation time. 

In this analysis, risk samples were taken at a specific value for the decision variable: d = 0.3. 

This point was chosen since it is near the optimum, but still is significantly far away to have 

a gradient, but is not nearing an asymptote. For each tail probability requirement and 

specified minimum number of thresholds were sampled 100 times. For a increased number of 

thresholds, the spacing between the thresholds throughout the analysis is reduced as given in 

the risk algorithm. This analysis allowed for the accuracy, precision, and approximate 

computation time to be calculated over a large number of samples. 
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Figure 4.5 Risk model accuracy 

 
Figure 4.6 Risk model precision 
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The accuracy, a measure of the approximation to the “true value,” is important here for the 

quadrature approximation to be as close as possible. This “true value” is taken here as the 

mean of 100 risk measures, with 501 specified points and a requirement that probabilities 

exceed 99.9% or 0.01% at the tails. The other accuracies are then compared to it in Figure 

4.5. It is apparent that the tail probability requirements are most influential and much more 

significant than the specified number of thresholds. 

The precision of the risk measure approximation is important to ensure that both the 

approximation of the risk measure is consistent and so the gradient is calculated properly. 

Here the precision is measured as the coefficient of variation of the risk measures for a given 

number of thresholds and tail probability. It is important that this is low to ensure that both 

the approximation of the risk measure is consistent and for proper gradient calculation while 

optimizing the function. As can be seen in Figure 4.6, for all of the tail probability thresholds, 

the COV reduces significantly up to about 31 initial thresholds. After this point, the increase 

in precision diminishes. However, the most significant parameter in increasing precision is 

stricter probability requirements. 
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Figure 4.7 Computational efficiency of risk measures  

 
Figure 4.8 Effect on precision of the initial sampling iterations (probability requirements 0.5-99.5%) 
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Finally, an approximate computation time per risk measure calculation is important for 

computational efficiency. Figure 4.7 shows the relationship of specified thresholds and 

probability requirements to computation time. As expected, higher requirements require more 

computational effort. 

The final parameter entered into the risk analysis is the initial sampling analysis (performed 

in step 1 of the risk model algorithm). This sampling analysis provides the mean and standard 

deviation used in the assignment of risk thresholds. It was found to have little effect on the 

precision of the analyses, as shown in Figure 4.8. This figure was determined only at the 

probability requirement of 0.5 to 99.5%. Interestingly, the results are the same regardless of 

350, 500, or 1000 initial samples. This indicates that either the initial sampling is sufficiently 

optimized already or that the algorithm is provides robustness that allows minor variations in 

the determination of the initial mean to be recovered in the remaining analysis. The 

computational cost of this sampling is minimal, however, as it is only run once and minor 

compared to the remaining steps of the algorithm.  

Based on this analysis, the settings that are encoded in Rts are to use tail probability 

requirements of 99.5% to 0.5% in the risk analysis and starting with an initial 31 thresholds. 

The initial sampling analysis performed uses 200 samples. This provides the most accurate 

and precise calculations, while minimizing additional computational effort. It was also found 

that although computation time in the risk model was increased to improve precision, this 

resulted in improved optimization model performance. These settings are used for all 

examples in this document. 



 

 68 

In selecting a tail probability requirement of 0.5-99.5%, it is important to note that this is also 

a good limit for feasibility of implementation. At high probability events, sampling does not 

perform well at high probabilities, as the target COV may be reached after a single 

failure/success. Having a lower target COV, however, results in more computational effort at 

all other sampling thresholds as well. Both of these offset the additional accuracy and 

precision that would be attained with more exacting probability requirements. It also may 

beneficial to implement Importance Sampling for low-probability sampling.  

4.1.5 Discussion of Results 

This model provides an excellent starting point for risk-based design optimization techniques 

and a platform for debugging and refining techniques. Using a one-dimensional problem 

provides easy visualization. This analysis also allows a comparison to known results. The 

risk model tuning included running a suite of risk measures, with different encoded 

parameters, to determine a balance of precision, accuracy, and efficiency.  

The results of this analysis agreed with those presented in Haukaas et al. (2013), while also 

allowing a comparison of the full probabilistic risk problem to a mean value approximation. 

Both of the analyses presented here provided full agreement. It also became clear that, while 

the steepest descent may converge more slowly upon the optimum, it is the most robust 

method, particularly for smaller step sizes. In contrast, BFGS may step close to the optimum 

quickly, but can be finicky. It will typically self-correct, but may not go to the same local 

minima. 

In particular, in problems with asymptotes, the gradients become very large and can cause 

issues with the search algorithms. In addition, step sizes are difficult to choose and the 
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objective may be very sensitive. For steepest descent minimization methods, a smaller size is 

generally preferable, as it will be more stable. This has a trade-off, as the gradient often 

becomes small near the optimum and convergence requires additional computational effort. 

A step size in the order of 10-4 appears to be reasonable. It could also be feasible to run 

subsequent analyses and increase the step size as the optimum is approached. For BFGS in 

Rts, the first step is determined by steepest descent. Afterwards, a fixed step size of 0.5 

appears reasonable.  

The development of this analysis also provided a platform to tune the risk analysis. During 

the initial analyses, it became apparent that precision was required as well as improvements 

in the algorithm. Without this, the optimization algorithms were not functioning properly and 

although convergence could occur, it would require many steps. With the improvements of 

the risk model, the optimization analyses provide much better and faster convergence. As a 

result, the overall computational demand is reduced with the increased precision of the risk 

analysis. 

4.2 Example 2: Two-Dimensional, Algebraic Optimization  

In the next simple example for risk-based design optimization, an analytical approximation 

of a single-storey FFTT frame is used. While this is still a simple structure, this is a step up in 

complexity from the previous example. In particular, it uses many nested models and two 

decision variables. These models are all algebraic, in particular the structural model, which 

allows for fast computation time. 
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4.2.1 Problem Formulation 

This model is of a simple FFTT frame, as shown in Figure 4.9. It consists of two CLT panels 

and a steel beam connecting them. Each of the CLT panels is a 5-layer laminate with three 

layers running vertically and 34 mm thick laminates. The steel wide flange beam is fully 

fixed to the top of the panel, with a connection bearing plate at fixed ratio of the panel depth 

long. For a lateral load applied at the steel beam, the objective is to minimize the mean cost 

of the structure. This includes material costs, damage and repair due to the load, and penalties 

due to poor design (ensuring capacity design principles and sufficient strength). The two 

decision variables that will be varied are the panel depths, w, and the beam clear span, L.  

 
Figure 4.9 Single-storey FFTT frame 
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Figure 4.10 Example 2 beam panel connection 

This example will also approximate the capacity of the connection using a bearing plate that 

is full CLT panel width and a constant ratio of the depth, w, long as shown in Figure 4.9 and 

Figure 4.10. An assumption made from the bearing plate is that the shear force concentrated 

at the connection is spread evenly along the end of the vertical laminates the bearing plate. 

The remaining details of the connection are not detailed here, but assumed that the beam and 

panel are adequately fixed to remain together in tension.  

4.2.1.1 Structural Model 

The FFTT frame was simplified into a stick model to aid and simplify computation, as shown 

in Figure 4.11. The section of beam embedded in CLT is assumed to act as rigid body, as the 

CLT is very stiff. In addition, this model does not include the shear deformation of the CLT 

panel. Finally, the connection to the ground of this model assumed to act as an ideal pinned 
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connection, with no rocking or rotational stiffness. This also allows easy calculation of the 

bending moment and shear at any location on the structure.  

 
Figure 4.11 Single-storey FFTT frame idealization 

Using virtual work, the lateral displacement of the beam may be determined as: 
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This gives an algebraic expression for the displacement as a function of all of the considered 

parameters. In addition, the bending moments and shear in the steel beam are determined 

using analytical equations, given in Section 4.2.1.2. 

Of interest, this structure is completely determinate and the maximum bending moment 

applied to the CLT panel is completely independent of any decision variables. The maximum 

beam bending moment and shear, however, do vary depending on the panel width due to the 

rigid connection approximation. 
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4.2.1.2 Cost Models 

Unlike the previous example, this model contains more refined cost models and nested 

models. While all algebraic, these models take input from other models to determine the cost. 

This is an example of the multi-model capability of Rts, allowing successive responses as 

inputs. It also allows several considerations to be applied individually as a cost, which is then 

summed to determine the total cost below: 

 Ctotal =CCLT +Csteel +Cdrift +CCLT ,shear +Csteel,shear +Csteel,bending +Ccapacity  (4.3)  

In this example, there are six cost considerations that make up the total cost in Eq. (4.3). The 

first two, CCLT and Csteel, are the cost of the materials and related to the geometry and volume 

of the materials. A cost related to the drift of the model, Cdrift, represents the damage caused 

by excessive deflection of the force, as a function of the interstorey drift. Three models 

penalize poor design of the shear capacity of the CLT connection, CCLT,shear, shear capacity of 

the beam, Csteel,shear, and finally bending capacity of the beam, Csteel,bending. Finally, Ccapacity 

ensures that the CLT panel’s bending capacity is greater than the steel beam, to ensure 

capacity design principles. As well, in this formulation, the uncertainty and error in the costs 

is contained in each individual cost, represented by θ, rather than an additional term in the 

cost summation. No economies of scale are included in this model. 

4.2.1.2.1 Cost of Materials 

These models attempt to relate the geometry and volume of the materials into a cost. 

Broadly, this is a cost of construction, but unlike in traditional reliability-based design 

optimization, this includes probabilistic modeling that helps account for the uncertainty in the 

problem. Generally, these costs increase with additional material in that component (panel 
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width or beam length), but aren’t strictly related to volume, as given for both the CLT panels 

and steel beams below: 

  (4.4)  

 Csteel =θsteel Is (L +w)
2  (4.5)  

4.2.1.2.2 Cost of Drift-related Damage 

This model quantifies the cost to the damage in general. This model assumes that all damage 

is related to the interstorey drift of the structure, as given below: 

 Cdrift =θdrift
Δ
H
"

#
$

%

&
'
2

 (4.6)  

This model gives the cost of the drift such that small displacements do not damage other 

parts of the building significantly, but at larger drifts, the cost of damage becomes 

significant. 

4.2.1.2.3 Cost of Structural Components 

One of the main considerations of a seismic system is to ensure that forces do not exceed the 

capacity and that deformation occurs in a ductile manner. In this cost formulation, the desired 

mechanism is yielding of the beams in flexure. This is attained by the cost functions used 

below, which will result in a high cost unless this mechanism is attained. This is attributed to 

the expense of a brittle failure in the occurrence of this load. There is no formulation of the 

actual capacity of the full CLT panel here; however, this is considered in Section 4.2.1.2.4 to 

ensure capacity design principles are met. 

CCLT = 2θCLTtHw
2
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The first cost function is related to the shear capacity of the beam-panel connection. It is 

undesirable to have a failure in the CLT here, as it will result in a brittle fracture. The 

moment and shear applied to the connection at the panel edge, where it is maximum, is taken 

as:  

 Msteel,applied =
FH
2

L
L +w
!

"
#

$

%
&  (4.7)  

 Vapplied =
2Msteel,applied

L
 (4.8)  

The resistance of the connection is taken as the strength of the bearing area near the end of 

the connection, as shown here:  

 VCLT ,resist = rbearingw( ) 3tlaminate( ) k3 fCLT( )  (4.9)  

This is anticipated to be where the bulk of the shear is taken and may be characterized by a 

steel bearing plate across the full width of the panel that would be included in the design as a 

ratio of the panel depth. This formulation is the yield force of the 3 parallel-to-grain laminate 

layers in the CLT under the bearing plate. Finally, the cost of the connection damage is taken 

as: 

 CCLT ,shear =θCLT ,shear
Vapplied
VCLT ,resist

!

"
##

$

%
&&

4

 (4.10)  

 It should be noted that this cost is an approximation has not been calibrated to testing. 

The steel beam has two limit states of interest, a shear failure and a bending failure. As 

discussed earlier, the desired mechanism of the frame is the yielding of the beam in flexure. 
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While it is possible to yield in shear in a ductile manner, this is not intended in this 

mechanism in this configuration. The maximum bending moment and shear force applied to 

the beam for the structural model discussed in Section 4.2.1.1 and given in Eq. (4.7) and Eq. 

(4.8). These are then entered into the cost models that compare the capacity to resistance of 

the steel, given below: 

 Csteel,shear =θsteel,shear
Vapplied
Vsteel,resist

!

"
##

$

%
&&

4

 (4.11)  

 Csteel,moment =θsteel,shear
Msteel,applied

Msteel,resist

!

"
##

$

%
&&

44

 (4.12)  

In these cost models, the shear resistance, Vsteel,resist, and the plastic bending moment, 

Msteel,resist, are determined by the beam size and taken as random variables. In addition 

coefficient of the flexural cost equation is somewhat smaller for a bending failure. Although 

this is the desired mechanism, the structure must maintain enough capacity as well. This 

formulation would be relevant for an equivalent elastic force procedure for a seismic load. 

4.2.1.2.4 Cost of Capacity Design 

As discussed earlier, this frame has a desired mechanism of the beam yielding in flexure. 

While the cost functions in Section 4.2.1.2.3 provide that the individual components have 

sufficient capacity to resist the forces applied, they do not quantify the high cost of the 

mechanism not being attained. The moment of inertia of the panel is determined as: 

 ICLT =
3tlaminatew

3

12
 (4.13)  

Using this result, the panel resistance to bending, using beam theory, may be determined as: 
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  (4.14)  

These equations are for a 5 layer CLT panel, with three laminates in the vertical direction. 

The cost may then be determined by comparing the expected plastic moment of the beam is 

compared to the bending capacity of the panel, given by: 

 Ccapacity =θcapacity
Msteel,resist

MCLT ,resist

!

"
##

$

%
&&

4

 (4.15)  

This cost model represents the high cost of a structural failure due to the undesired 

mechanism in a seismic event. As a result, it punishes poor designs with increased costs. 

4.2.1.2.5 Total Costs Using First-Order Approximation 

A comparison of the cost functions is shown in Table 4.8, using a first-order approximation 

for all of the random variables. This allows for easy calculation and comparison of the 

functions. These show the cost functions individually with their relation to each decision 

variable. A comparison of this approximation to a region determined in Rts is discussed in 

Section 4.2.3. 

Notably, the asymptotes in CCLT,shear and Ccapacity had great influence over the total cost in the 

region around the optimum. The construction-related costs, CCLT and Csteel, increase with 

more materials, but have generally minor costs. The drift related costs, Cdrift, also are 

increased for long clear spans and low panel widths. This is expected, as these reduce the 

stiffness of the structure. Finally, the limit states for shear and moment in the steel beam are 

most important for small panel widths. A unique characteristic of this problem, however, 

since the beam does not change in the design and the structure is statically determinate. This 

MCLT ,resist =
2k3 fCLT ICLT

w
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means that the moment in the CLT panel does not change due to relative stiffness of the 

frame members. This also means that the moment in the beam ends is only a function of the 

panel width as a result of the rigid connection assumption, as shown in Figure 4.11.  
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Table 4.8 Comparison of cost functions in Example 2 using first-order approximations 
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Cost Plot 
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Cost Plot 
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4.2.2 Rts Settings Formulation 

This model was set up according to the analytical and cost models discussed. The parameters 

and values used are discussed here. Notably, all of the equations must use compatible units. 

Unit conversion equations were included for both convenience and practicality. In some 

analyses, very large or very small numbers appear to cause issues with models in Rts, 

particularly with FORM steps. These maybe avoided by providing a variable in a convenient 

unit and converting later. 

The two decision variables used are given in Table 4.9, the beam clear span, L, and the panel 

width, w. These have each been given 3 initial values, one below, one near, and one above 

the optimum. These were then combined for 9 total analyses, each with a different set of 

initial values. An analysis was run for each set using steepest descent and BFGS search 

directions. 

Table 4.10 describes the continuous random variables in Example 2. These are separated into 

how they are organized in the model. The beam is a W250x33, 350W steel section. All 

random variables are given a nominal COV of 10%, with the exception of the wood strength, 

modulus of elasticity, and the loading applied on the frame. These are expected be more 

uncertain and have COVs of 20%. The distributions are either normal or lognormal. It is 

important to note that some distributions were required to be lognormal to prevent issues 

with the algebraic expressions. This is because the normal distribution has zero as a possible 

outcome, while the lognormal distributions are always positive. Using lognormal 

distributions removes the possibility of dividing by zero.  
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This analysis focused on including most parameters included as random variables to help 

encapsulate the uncertainty. Table 4.11 includes the two parameters that were taken as 

constants. The storey height was taken as a fundamental constant, while k3 is a modification 

factor used in Eq. (4.14) for the wood strength, and is determined from the CLT Handbook 

(FPInnovations 2012). While it is a constant, it is meant to modify the wood strength, a 

random variable itself. The bearing panel ratio is also taken as a constant, as it is a design 

parameter that would be detailed in a final design. 

Table 4.9 Example 2 decision variables 

Parameter Initial Values Unit 
L 1.5, 2.5, 3.5 m 
w 1.5, 2.5, 3.5 m 

 

Table 4.10 Example 2 random variables 

Geometry 
Parameter Distribution Mean COV Units 

tlaminate Lognormal 34 10% mm 
Ibeam Lognormal 48.9.106 10% mm4 

Material 
Ewood Normal 9.5 20% GPa 
fwood Normal 5.5 20% MPa 
Esteel Normal 200 10% GPa 

Mr,beam Lognormal 132 10% kNm 
Vr,beam Lognormal 323 10% kN 

Loads 
F Lognormal 200 20% kN 

Cost 
θCLT Normal 750.103 10% - 
θSteel Normal 200 10% - 
θdrift Normal 1500 10% - 

θCLT,shear Normal 500 10% - 
θsteel,shear Normal 500 10% - 
θsteel,bending Normal 100 10% - 
θcapacity Normal 500 10% - 
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Table 4.11 Example 2 constants 

Parameter Value Unit 
H 3.5 m 

rbearing 15 % 
k3 0.603 - 

 

The orchestrating function settings are generally default settings in Rts. The settings of note, 

however, are included here. The FORM settings are shown in Table 4.12. Table 4.13 shows 

the settings for the sampling model. This was taken as sufficient for the probability 

requirements in the risk model and also uses Rts in-house probability distributions and 

random number generators. The sampling centre is the origin in the standard normal space, or 

the mean of the random variable. The risk model settings are shown in Table 4.14. Table 4.15 

gives the settings used for both methods used in the optimization model. A notable difference 

between this analysis and Example 1 is that the total step in this analysis are limited to 20% 

of the current value of the decision variable to prevent large steps that move the variables out 

of the region of interest. 

Table 4.12 Example 2 FORM settings 

Parameter Value 
Gradient Method Finite Difference 
Maximum Steps 10 
Search Direction HLRF 

Step Size Armijo Step Size 
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Table 4.13 Example 2 sampling settings 

Parameter Value 
Maximum Samples 50 000 

Target C.O.V. 0.5% 
Sampling Centre Origin 

 

Table 4.14 Example 2 risk model settings 

Parameter Value 
Minimum No. Thresholds 31 
Initial Sampling Iterations 200 

Probability Requirements 0.5%-99.5% 
 

Table 4.15 Example 2 optimization model settings 

Method Step Size Gradient Norm Convergence 
Steepest Descent 0.0001 10.0 

BFGS 0.5 30.0 
 

4.2.3 Example 2 Results 

The results of the minimization analyses are given in Table 4.16 and Table 4.17, while figure 

of the optimized frame is given in Figure 4.12. Regardless of the initial values of the decision 

variables, all analyses converged to the same minimum mean cost, beam clear span, and 

panel depth. These are the results to full convergence criteria, as given in the problem 

definition. An exception is noted where the convergence criteria was nearly met, but then an 

erroneous step was taken and the total number of steps doubled to self-correct and converge. 

The average time per step is also given, which is quite variable. This is highly dependent 

upon the success of FORM converging in the risk analysis, which is much faster than the 

sampling analyses.  
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Figure 4.12 Example 2 optimal configuration for minimum mean cost 

The steps in Table 4.16 and Table 4.17 are to reach convergence, as defined in Table 4.15. 

This is not a great comparison metric between analyses, however, since the error in the 

gradient becomes most apparent near optimum. This is when gradients are small and the 

error becomes a more significant proportion. Much of the minimization is performed in the 

early steps, with the final convergence taking time to reach. In particular, BFGS generally 

approaches the optimum quickly, but will have trouble meeting strict convergence criteria. 

Using the average of the minimum costs determined by steepest descent, the steps taken in 

each analysis to reach within 0.5% of this value are given in Table 4.18. In most cases, BFGS 

reached this threshold faster than steepest descent.  
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Table 4.16 Example 2 cost minimization results using steepest descent 

Initial DV Steepest Descent 
L 

(m) 
w 

(m) 
Final cost 

($) 
Final L 

(m) 
Final w 

(m) Steps Average time per step 
(s) 

1.5 1.5 5329.1 2.116 2.701 32 71.7 
1.5 2.5 5315.6 2.042 2.722 25 58.0 
1.5 3.5 5327.2 2.096 2.707 58 52.6 
2.5 1.5 5325.1 2.100 2.707 80 51.8 
2.5 2.5 5336.5 2.141 2.695 24 52.9 
2.5 3.5 5332.4 2.135 2.685 14 79.0 
3.5 1.5 5326.4 2.117 2.698 57 49.4 
3.5 2.5 5322.4 2.099 2.703 63 41.7 
3.5 3.5 5330.8 2.129 2.697 43 51.1 

Average 5327.3 2.108 2.702 44.0 56.5 
 

Table 4.17 Example 2 cost minimization results using BFGS 

Initial DV BFGS 
L 

(m) 
w 

(m) 
Final cost 

($) 
Final L 

(m) 
Final w 

(m) Steps Average time per step 
(s) 

1.5 1.5 5325.8 2.094 2.703 23 127.1 
1.5 2.5 5325.8 2.091 2.708 13 59.8 
1.5 3.5 5326.1 2.108 2.710 26* 60.5 
2.5 1.5 5330.9 2.111 2.699 17 129.5 
2.5 2.5 5327.6 2.106 2.700 6 68.3 
2.5 3.5 5322.0 2.085 2.708 15 60.4 
3.5 1.5 5321.3 2.083 2.710 14 93.0 
3.5 2.5 5326.4 2.086 2.709 14 63.7 
3.5 3.5 5326.3 2.118 2.704 16 37.2 

Average 5325.8 2.098 2.706 16.0 77.7 
Notes: *Used gradient norm < 35.0 for convergence criteria 
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Table 4.18 Example 2 steps taken to 0.5% of minimum cost 

 
Initial w 

1.5 2.5 3.5 
SD BFGS SD BFGS SD BFGS 

In
iti

al
 L

 
1.5 14 12 1 3 2 10 
2.5 25 9 13 4 3 6 
3.5 29 9 21 10 23 12 

 

These analyses minimized the mean cost, the measure of risk determined using the risk 

model. This was performed for 9 different starting coordinates, using both steepest descent 

search methods (Figure 4.13 and Figure 4.14) and BFGS (Figure 4.14 and Figure 4.15). As 

discussed above, both methods were satisfactory in all cases in converging to the same mean 

cost of about $5325.  

 
Figure 4.13 Example 2 mean cost minimization using steepest descent 
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Figure 4.14 Detail of Example 2 mean cost minimization using steepest descent 

 
Figure 4.15 Example 2 mean cost minimization using BFGS 

 
Figure 4.16 Detail of Example 2 cost minimization using BFGS 
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It would be desirable to determine the optimum using a first-order approximation, as it would 

remove the need to do additional analyses with reliability and risk models. The region around 

the optimum determined using the first-order approximation earlier in Section 4.2.1.2.5 is 

shown in Figure 4.17. This approximation was used to estimate the cost functions and 

responses in the final minimization analyses. A surface obtained using values from the Rts 

risk model are shown in Figure 4.18. The percent difference of the approximation to Rts 

values is shown as a surface in Figure 4.19. It is apparent that while the general trend and 

attributes of the first-order approximation are shared with Rts, these values are consistently 

underestimated in this example and the difference is highly variable, from little error to 50%. 

 
Figure 4.17 Mean cost around the optimum determined using a first-order approximation 
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Figure 4.18 Mean cost near the optimum determined from Rts 

 
Figure 4.19 Percent Difference of the First-Order Approximation to Rts Mean Cost Values 
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The trajectories of the BFGS search, however, are much less intuitive and may be seen in 

Figure 4.21. In particular, one analysis (starting at L=1.5 m, w=3.5 m) approaches the 

optimal values, but then steps away, self-correcting later.  

 
Figure 4.20 Decision variables throughout optimization using steepest descent 
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Figure 4.21 Decision variables throughout optimization using BFGS 
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approximately 2.1 m. The search for the optimal panel width of 2.7 m for each method is 

similarly displayed in Figure 4.24 and in Figure 4.25. Again, the steps taken by BFGS are 

much less intuitive than by steepest descent. 

1"

1.5"

2"

2.5"

3"

3.5"

4"

1" 1.5" 2" 2.5" 3" 3.5" 4" 4.5"

w
"(m

)"

L"(m)"

BFGS"Op-miza-on"Trails"

L=1.5,"w=1.5"

L=1.5,"w=2.5"

L=1.5,"w=3.5"

L=2.5,"w=1.5"

L=2.5,"w=2.5"

L=2.5,"w=3.5"

L=3.5,"w=1.5"

L=3.5,"w=2.5"

L=3.5,"w=3.5"

Op.mum"



 

 94 

 
Figure 4.22 Optimization of the beam clear span in Example 2 using steepest descent 

 
Figure 4.23 Optimization of the beam clear span in Example 2 using BFGS 
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Figure 4.24 Optimization of the panel depth in Example 2 using steepest descent 

 
Figure 4.25 Optimization of the panel depth in Example 2 using BFGS 

4.2.4 Discussion of Results 

This analysis was meant as an incremental step to a full 6-storey FFTT structural analysis, 

which is discussed in Chapter 5. As a result, this analysis was performed on a single-storey 

FFTT frame. This analysis did, however, converge from several initial values into a defined 

point for each decision variable at the same minimum cost. While this configuration of frame 

is not the intended FFTT design in the concept, it performed adequately in this analysis and 

had reasonable optimal values. 
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The cost coefficients in Table 4.10 were not calibrated for this analysis to represent a real 

cost. While the cost itself does not have a particular value, these do have some relevant 

conclusions about the static probabilistic design of this frame. The cost bounds for structural 

integrity were asymptotic. As a result, the actual cost coefficients of these are not of utmost 

importance, just the relative values compared to the others. Similarly, the material costs were 

relatively low compared to the structural integrity if insufficient. This result in a model that 

has an optimum result for performance in the loading case and selected design, which 

includes a 5-layer CLT panel and the specified steel beam. The capacity of the CLT panel 

and connection, relative to the steel beam, were critical cost models and the specified steel 

beam was relatively small, represented by a W250x33 section. 

For this single-storey FFTT structure, the structure’s response depended greatly on the base 

support. This is particularly important for the one-storey frame, which would have greatly 

reduced the moment demand on the structure and would have stiffened the frame. The effect 

of the base conditions are expected to diminish as the structure increases in height. In 

addition, the strength of the CLT panel is a limiting factor in this analysis. The cost functions 

associated with failure of the CLT at the beam-panel connection and the ensuring that the 

beam yielding mechanism was obtained were the most governing in this example.  

A broad optimum is ideal for structural engineering, as it allows small design changes to not 

affect the structure as a whole and shows that it is resilient with respect to that design 

variable. For highly sensitive design variables, much more consideration would be necessary 

during design, as they have a profound effect on the response. This may include much more 

specific modeling or changing the concept. In this analysis, it was found that there is a large 
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region of relatively little cost variance, which may be inferred from the first-order 

approximations given in Section 4.2.1.2.5 and Figure 4.18. 

This analysis also allowed risk minimization to be performed on a more complicated model 

that has several layers of nested models, including algebraic expressions. It also demonstrates 

that in each of the analyses with a given optimization method, the decision variables are 

optimized independently. For each initial value of the decision variable, the analyses 

converge nearly the same, with slight differences that are likely from the differing 

calculations in each. While both methods converged, the BFGS method used fewer steps in 

most analyses to get with 0.5% of the optimum. However, while it gets within the optimality 

region efficiently, it does not identify the exact optimum well and is very sensitive to errors 

in the risk model. While requiring more steps to reach the optimum, steepest descent offers a 

robust method that will reach the precise optimum. 

The convergence criteria used is very sensitive to the number of random variables and the 

error in the risk model. These may need to be adjusted to suit the problem to help define 

when the minimum cost is met. This is due to the error in the risk model, which becomes 

more substantial as a part of the gradient when the objective function flattens out and 

gradients become small. While increasing precision could allow for the convergence criteria 

to be reduced, this provides little added value to the analysis.  

The results using cost minimization in Rts were compared to a first-order approximation 

made earlier for this example. These show that although the trends appear to be similar in the 

approximation, the values disagree significantly and inconsistently. As a result, the first-order 

approximation would be inappropriate for a final analysis. 
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A future model is discussed in Chapter 5 and incorporates some of these suggestions for 

improved models. In particular, this model used an approximated structural analysis of the 

frame. This did not include shear deformation, which is important behaviour for the squat 

CLT panels. In addition to including this, a finite element model would also allow for 

inclusion of a more sophisticated model for CLT crushing at the beam-panel connection than 

an assumed bearing area dependent only on shear force. This refinement is important, as the 

CLT strength, both at the beam-panel connection and due to bending were important final 

optimization of the structure. This model also assumed that the base was an ideal pin 

connection. This is a rough approximation made, particularly for a one-storey frame. Future 

analyses could include varied connection stiffness or a full contact model. For a single storey 

frame, however, this connection point significantly affects the frame’s response. Finally, the 

cost model coefficients were taken as rough estimates and must be refined for a future 

analysis.  
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Chapter 5 Future Structural Example 

The two risk minimization examples in Chapter 4 provided a basis for future analyses. 

Chapter 5 describes a proposed model, which includes a full Rts structural analysis, many 

nested models, and a large-scale optimization problem. The structure currently modeled is a 

6-storey FFTT frame, although it could be extended to a 9-storey (or taller) structure. This 

chapter is intended as a guide for reasonable modeling in the future with this framework, 

with possible refinements that may be included. All descriptions included here are as-is for 

the current framework of the example. 

5.1 Model Overview 

This example model is intended to showcase a new method of performance-based earthquake 

structural optimization, in addition to applying a new design concept for tall timber 

structures. It is possible to contain all of this analysis within Rts, using several nested models 

that allow implementation of reliability-based risk analysis. This analysis is would be novel 

by the implementation in the deep parameterization and flexibility that is provided by Rts.  
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Figure 5.1 Schematic of the structural model 

A working structural model has been constructed for this analysis. The structural model itself 

is made to represent an FFTT frame consisting of CLT panels with embedded steel beams, 

which are designed to be the yielding members of the lateral load system. Prospective 

decision variables are the panel depth and beam clear span (as in Example 2), with additional 

decision variables including wide flange beam dimensions. 

5.2 Load Models 

As the currently available option, the structure is loaded laterally for a pushover analysis. The 

load is applied as a point load, on the exterior of the CLT on either side of the CLT panels. 

This spreads the load to both sides of the structure. While currently the load is applied 

instantaneously, it is possible to provide a ramp load if using a non-linear analysis. 
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Further load models employed by Rts are at present under development. In the future, the 

intention is that the program will extended to be able to use earthquake modeling to apply 

recorded and synthetic, random variable-based ground motions to the structures in dynamic 

structural analysis.  

5.3 Component Response Models  

For this example, a component model using Rts was implemented to demonstrate the 

program’s capability of integrating many models. It is also possible to use an OpenSees 

model to obtain structural responses in either Rt or Rts, which has been done in the past by 

Koduru and Haukaas (2010). A guide for implementing an OpenSees model is given in 

Appendix A.  

This implemented model used 3 main components: steel beam elements, CLT panel shells, 

and the connections between. The connection detailing for each component is important and 

also discussed. In particular, the embedment of the steel components into the CLT panels is 

important to prevent high stress concentrations. This model, however, is based upon decision 

variables and random variables, with the geometry constantly changing. 

5.3.1 Mesh Parameterization 

Using the deep parameterization in Rts, it is possible to include the whole geometry of the 

structure as variables. In this example, this is shown as the basic geometry of the frame is 

expressed as a function of the variables for panel depth, beam clear span, and height of the 

structure. The mesh parameterization is performed by inclusion of the formulas the point 

model in Rts, RPoints, while the remaining components are then based off of the RPoint 



 

 102 

locations. It is important that these RPoints are “prerun.” Prerun calculates RPoint values as 

the input file is entered, which ensures that the intended initial values are used.  

5.3.2 Beam Model 

The beams are modeled by RSteelIBeamComponent, a component included in Rts. These 

consist of a linear material, as determined through the Mesh Option in the input file. These 

beams span the clear distance between the panels (a decision variable) and are fully 

embedded for the depth of the CLT panel. While the steel material properties are random 

variables and automatically generated by Rts, the geometric properties of the beams may all 

be decision variables, as identified in Figure 5.2. In this example, the beams at all five levels 

are identical to each other. For the details about the beam-panel connection, refer to Section 

5.3.4. Future implementation could include non-linear fibre modeling of the beams.  

 
Figure 5.2 Cross-section of the steel beam 

5.3.3 Panel Model 

The CLT panels used as columns in this model are modeled by elastic, isotropic Quad4 and 

Mindlin elements, in Rts as RCLTPanelComponent. This model generates the material 

properties as random variables and the node locations as “generic algebraic models.” The 
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thickness of the CLT and the mesh options are user inputs, while the depth of the panel is a 

decision variable. Using these parameters, Rts meshed the elements as a Quad4 and Mindlin 

elements with a user selected number of elements in each direction of the panel. The Quad4 

elements are of importance in this analysis, as they are important for in-plane axial and 

bending response of the structure. The use of these elements also accounts for both bending 

and shear deformation of the loaded CLT panels. 

Mindlin elements are also generated to provide nominal out-of-plane stiffness, which was 

required due to the lateral stiffness in the beams that prevent Rts from locking these degrees 

of freedom (global DOF with no stiffness are automatically locked). Unless the model 

applies out-of-plane loading, it is not necessary to model CLT’s complicated out-of-plane 

response.  

5.3.4 Connection Models 

The beam-panel connection has no additional members within the model and a schematic is 

shown in Figure 5.3. The beams are currently meshed to the CLT panel only at the two 

outside edges of the panel, the embedded portion of these beams could then be discretized to 

have points coincide with the CLT finite element mesh. Rts automatically attaches coincident 

points to ensure a consistent deformation. The coincidence and subsequent meshing of the 

beam and panel throughout the structure is important to prevent stress concentrations in the 

model that do not simulate actual behaviour. Connection bearing plates could be considered 

here. 
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Figure 5.3 Panel-beam connection detail 

To approximate a “pinned” base, the CLT panel bases are offset from the ground plane by a 

distance of 50 mm. This is necessary to allow rotation, as Rts will mesh coincident nodes into 

the fixed ground plane, resulting in a “fixed” base. A RSteelIBeamComponent connects the 

ground to the panel, along the centreline of the panels. This anchor, shown in Figure 5.4, 

represents a relatively flexible connection to the ground, approximating a pinned connection. 

By changing the properties of the anchor component, a stiffer connection may be modeled. In 

addition to this anchor, a baseplate is used at the bottom of the CLT panel. This baseplate 

meshes with both the panel and the anchor, which allows for reduced stress concentrations at 

the anchor-panel connection location. As with the beam-panel connection, the baseplate 

should mesh with the panel throughout the length. 
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Figure 5.4 Detail at panel-ground connection 

Further design considerations could focus on this connection and its influence on the 

structure for mid- and high-rise models. Depending on these results, this may become a 

location to refine or be left as an appropriate simple approximation. In addition, this 

connection could be varied to determine its influence and if significant, made a decision 

variable. 

5.4 Damage and Cost Models 

Using the structural model responses, damage and cost models may be used to quantify the 

responses in terms of money. Rts allows this to be performed using generic algebraic 

formulation currently. The intention is that in the future, a Repair Manager will be 

implemented. This will use enhanced finite elements, which will contain the damage and cost 

information within the components. This would change the method in which the damage is 

aggregated. Instead of adding formulas as a function of the structural responses, this could be 

included as part of the element. In addition, more sophisticated cost models may be 

employed in the future for more advanced modeling of non-linear and dynamically loaded 

structures. 
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In the case of this example, it is assumed that the enhanced finite elements are not fully 

implemented. As a result, the damage and cost models are treated as one, using algebraic 

expressions as a function the structural model’s responses. These are similar to those 

employed in the example discussed in Section 4.2 and will not be repeated here. However, 

some additional refinements are discussed here. In addition, the cost coefficients should be 

calibrated to represent physical realities. 

The cost of construction and materials may be related to the quantities of material used, as 

performed in Example 2. But as a simplification for the model in Chapter 4, no economies of 

scale are considered as additional models. This could be included in a large-scale analysis, 

which would discount large quantities of similar materials. In addition, these models could be 

updated to use specific aspects of the geometry, depending upon the selection of decision 

variables. 

The drift-related damage to the building in Example 2 was a simple polynomial function that 

related the increasing drift to higher cost. For a larger model under a pushover analysis, a 

summation of the different drift-related costs for each floor may be used. If, however, a 

dynamic analysis is possible, the damage and repair cost could also be formulated as a 

function of the acceleration experienced by each floor – something that is not possible in a 

static model. 

In Example 2, there were three cost equations that were used to push the optimal structure 

into having sufficient capacity by penalizing poor designs with high costs. This was a result 

of an elastic static analysis and analytical model, which does not have any behaviour change 
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when structural capacities are exceeded. These three costs were formulated for the CLT shear 

capacity at the panel-beam connection, the beam shear, and beam moment capacity.  

The panel-beam connection, in the analytical model, was formulated as a function of the 

beam’s shear on a bearing area of the CLT panel. This is an idealization of the concentrated 

stress at this area. The use of a finite element model will allow these stresses to be computed 

for each element. This may require additional discretization of the CLT at these concentrated 

locations. In addition, a stress response may need to be added to the RCLTPanelComponent 

model. 

The cost formulations of the steel beams may also be changed, depending on the structural 

implementation. The shear capacity of the beam is important for small clear spans, but does 

not have too much influence at longer spans. The moment capacity is important for a linear 

elastic beam component to prevent the capacity from being exceeded. With a non-linear 

model, however, moment capacity may not be necessary as the additional deflection from 

plastic deformation would be captured in the interstorey-drift related costs. 

The capacity design of the structure was important in Example 2, as it ensured that the CLT 

panel had greater capacity than the steel beam in the optimal model (or penalized with a 

prohibitive cost). This is important for an elastic model, as they do not indicate structurally 

when the member’s capacity is exceeded. Depending on the final configuration of the model, 

there are several ways this cost function could be formulated. 

There are other costs that may be considered in a structural model. These could include costs 

that represent the utility of the structure, such as architectural considerations such as beam 
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clear span. Other possible costs could include the life cycle costs, which are not included to 

date, as Example 2 considered the structure under an earthquake load. 

5.5 Orchestrating Models 

The orchestrating models may require some adjustment for this model. Possible 

considerations for each are discussed below. 

5.5.1 Reliability Models 

Both FORM and sampling may need some initial testing for suitability to these problems. 

FORM generally works without much additional tweaking, but does not always converge. As 

a result, sampling may be called from the Risk Model. 

The sampling model requires more attention than the FORM model. This is due to the 

maximum number of iterations it requires, in addition to the target COV. As discussed in 

Section 4.1.4, it is important to keep the target COV low, particularly at high probabilities, to 

prevent too few samples from being taken. The maximum number of samples can be 

estimated using through preliminary testing. 

The random variable distributions may also be an important part for the analyses. In 

particular, it is key to remember that zero is a possible realization of any normally distributed 

random variable. This can cause problems with the cost functions if divided by this random 

variable. This may be avoided by defining lognormal random variables as necessary. 

5.5.2 Risk Models 

The risk model used in this analysis may need some additional tuning as appropriate for the 

example. In particular if computation time is prohibitive, using probability thresholds of 1-
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99% may provide a precise enough results for the optimization models. It is imperative that 

the risk model provides precise calculations for the optimization model to function properly. 

Additional risk measures may also be desired to change the method of optimization. It would 

also be of great benefit if DDM sensitivities were implemented, as this would reduce the 

computational demands and allow DDM gradients to be determined through all models.  

5.5.3 Optimization Models 

The optimization model in this analysis may require some extra consideration, particularly 

with the step size determination. This depends upon the search method used, but could 

include a line search to help determine a variable step size. Another consideration is the 

gradient norm convergence criteria, which will require an appropriate number that is 

dependent upon the final number of decision variables. 

During the course of the analyses, some of the decision variables may be found to have little 

influence in the final cost of the structure. These decision variables may be removed to 

improve computational efficiency, but it should be considered that they may have significant 

impact at a different region of the problem space. In addition, other decision variables could 

be added if they have a significant effect. If a decision variable does not have significant 

gradient in the optimization model, the perturbation factor may be increased if FDM 

gradients are used. 

5.6 Other Considerations 

In the analysis of the one-storey FFTT frame in Section 4.2, the base of the walls were 

assumed to be pin-ended. This was a simple assumption for a significant aspect in the model. 

While the panel base connection is expected to be less important as the frame becomes taller, 
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the modeling of this connection may be an aspect that could warrant more consideration and 

analysis. 

In this example’s current formulation, there are no defined constraints on any of the decision 

variables. Instead, everything is an attempt to quantify the decision in terms of costs. One 

reason is to prevent unnecessary complexity in the optimization algorithm, while also this 

could prevent issues with convergence due to highly non-linear functions. Finally, this is an 

attempt to find the best response of a system and not a design directly. A good design will 

ideally have a plateau around the optimum, which means that it is not highly susceptible to 

minor tweaks in the design. For these reasons, there are no specific bounds in the 

optimization problems. 

These models are currently formulated for a “once off” analysis – meaning, in any analysis, 

all models are run. But for structures that are analyzed frequently with slightly differing 

geometries, construction of a response surface model may be beneficial. This shifts the 

computational expense from having to analyze every model to the initial construction of the 

response surface. In addition, it is useful for determining the sensitivity of the response to a 

variable in highly implicit problems. 
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Chapter 6 Conclusion 

6.1 Summary of Research 

By implementing a risk and optimization model in Rts, it is now possible to perform risk 

minimization to a structure by varying deeply embedded parameters. This minimization 

reduces aggregated cost functions, which implement nested models, to optimize the mean 

cost of an event on a structure. The use of a risk measure allows the uncertainty of random 

variables to be included in all aspects of the cost functions, including construction and 

damage. In addition, the formulation of the cost function in this risk minimization does not 

specify discrete events or have a failure probability. The risk measure determines the mean 

cost using a continuum of possible cost events, determined using reliability methods.  

The risk model is new within Rts and determines the mean value of a cost function. It 

accomplishes this by determining the loss curve with reliability techniques and requires no 

prior information. The mean cost is then determined using quadrature to determine the area 

under the cost function. This value is used as the objective function of the optimization 

model, a new implementation in Rts using existing techniques. By varying the decision 

variables, the optimal design configuration for minimum mean cost may be determined. 

This new formulation of risk minimization was tested using two examples. The first example 

was a single polynomial function with one decision variable. This function was optimized 

using two search methods which both converged upon the minimum cost and optimal 

decision variable. This also could be compared to a first-order analysis and a previously 

published optimization. Finally, this example was used to fine-tune the risk model parameters 

to most efficiently determine the risk measure to adequate precision. 
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A second example included an analytical formulation of single-storey FFTT frame. This 

analysis considered material costs, cost of damage, and limit state requirements of the design. 

It implemented many nested functions, which were all optimized using two optimization 

search methods implemented in Rts to determine the optimal value of the two decision 

variables. These results were then compared to those using a first-order approximation, 

which was significantly and inconsistently different than the Rts risk formulation. In addition, 

this analysis helped show the behaviour of the frame with varied parameters. Notably, the 

connection strength of the CLT and enforcing the weak-beam, strong-column mechanism 

largely governed this analysis. 

This analysis provided a stepping-stone to a future and larger FFTT frame example. This 

example has the framework implemented and the geometry is provided as a framework for 

future work. This model implements the basic geometry of the structure as function of 

decision variables. In addition, this model also implements an Rts in-house structural analysis 

that gives responses for the cost functions. 

6.2 Future Work 

While the risk and optimization models are implemented fully in Rts, future work could be 

performed on these models. Some particular directions of work are discussed below. 

The risk model in Rts currently only calculates the mean value of the cost of a design and 

event, which also limits the optimization to only reduce this characteristic of the cost. Adding 

further risk models could change the metric calculated and thus what is minimized. In 

addition, improving the precision of the model is essential for proper functioning of the 

optimization model. This is particularly important with BFGS search directions, which are 
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sensitive to error. In order to reduce computation times, implementation of DDM sensitivities 

in the risk model will allow for easy and computationally efficient gradient calculations in 

the optimization algorithm. This may also include ensuring that the FORM model’s 

robustness to determine the probabilities at many locations.  

The optimization model is formatted to be modular and take input methods for the search 

direction, step size, and convergence criteria. This allows for easy addition of future models. 

In particular, a new variable step size model could be beneficial for optimization using the 

BFGS algorithm. The optimization model will be significantly benefit by the inclusion of 

DDM sensitivities in all other models, as this will reduce the need for perturbing each 

decision variable individually. 

As discussed in Chapter 5, a future model is included with framework for a 6-storey FFTT 

frame. While the basics of the model are discussed, suggestions and goals for future study are 

included. This includes enabling an Rts in-house structural analysis in the example for the 

frame response. Some elements of the frame may require more detailed modeling, in 

particular the beam-panel connections and the base connections. In addition, the 

implementation of dynamic analyses and non-linear finite element members will expand the 

depth of analysis. Finally, implementing more elaborate cost functions will allow for 

improved values and understanding of the structure’s optimized design. Ideally, these will 

allow for specific design recommendations to be made for the FFTT concept. 



 

 114 

References 

Architecture in Development. (n.d.). “e3, Berlin.” 
<http://architectureindevelopment.org/project.php?id=318> (Dec. 2, 2014). 

Ashtari, S. (2012). “In-Plane Stiffness of Cross-Laminated Timber Floors.” University of 
British Columbia. 

Asiz, A., and Smith, I. (2011). “Connection System of Massive Timber Elements Used in 
Horizontal Slabs of Hybrid Tall Buildings.” Journal of Structural Engineering, 137, 
1390–1393. 

Azim, M. R. (2014). “Numerical and Experimental Investigations of Connection for Timber-
Steel Hybrid System.” University of British Columbia. 

Bard, D., Davidsson, P., and Wernberg, P. (2010). “Sound and Vibration Investigations in a 
Multi-family Wooden Frame Building.” Proceedings of the International Congress on 
Acoustics, ICA 2010, Sydney, AU, 1–6. 

Bhat, P. (2013). “Experimental Investigation of Connection for the FFTT, a Timber-steel 
Hybrid System.” University of British Columbia. 

Branco, J. M., and Neves, L. a. C. (2011). “Robustness of Timber Structures in Seismic 
Areas.” Engineering Structures, Elsevier Ltd, 33(11), 3099–3105. 

Ceccotti, A., Sandhaas, C., and Yasumura, M. (2010). “Seismic Behaviour of Multistory 
Cross-Laminated Timber Buildings.” Proceedings of the International Convention of 
Society of Wood Science and Technology and United Nations Economic Commision for 
Europe - Timber Committee, Geneva, Switzerland. 

Choi, S.-K., Grandhi, R., and Canfield, R. (2007). Reliability-Based Structural Design. 
Springer-Verlag London Limited, London, UK. 

Dickof, C. (2013). “CLT Infill Panels in Steel Moment Resisting Frames as a Hybrid Seismic 
Force Resisting System.” University of British Columbia. 

Dietsch, P. (2011). “Robustness of Large-span Timber Roof Structures — Structural 
aspects.” Engineering Structures, Elsevier Ltd, 33(11), 3106–3112. 

Dujic, B., Klobcar, S., and Zarnic, R. (2008). “Shear Capacity of Cross-Laminated Wooden 
Walls.” 10th World Conference on Timber Engineering 2008, Miyazaki, Japan, 1641–
1648. 

Durlinger, B., Crossin, E., and Wong, J. (2013). Life Cycle Assessment of a Cross Laminated 
Timber Building. Melbourne, Aus. 



 

 115 

Enevoldsen, I., and Sorensen, J. (1994). “Reliability-Based Optimization in Structural 
Engineering.” Structural Safety, 15, 169–196. 

Fairhurst, M. (2014). “Dynamic Analysis of the FFTT System.” University of British 
Columbia. 

Falk, A. (2005). “Architectural Aspects of Massive Timber.” Luleå University of 
Technology. 

FPInnovations. (2012). CLT Handbook. Quebec, QC. 

FPInnovations. (2014). Technical Guide for the Design and Construction of Tall Wood 
Buildings in Canada. Pointe-Claire, QC. 

Government of British Columbia. (n.d.). “Wood Innovation and Design Centre.” 
<www.jtst.gov.bc.ca/woodinnovation/about.htm> (Nov. 30, 2014). 

Green, M., and Karsh, E. (2012). Tall Wood: The Case for Tall Wood Buildings. Vancouver, 
BC, 240. 

Guggenberger, W., and Moosbrugger, T. (2006). “Mechanics of Cross-Laminated Timber 
Plates Under Uniaxial Bending.” 9th World Conference of Timber Engineering, 
Portland, OR. 

Hansson, M., and Ellegaard, P. (2006). “System Reliability of Timber Trusses Based on 
Non-linear Structural Modelling.” Materials and Structures, 39(6), 593–600. 

Hansson, M., and Thelandersson, S. (2002). “Assessment of Probabilistic System Effects on 
the Reliability of Timber Trusses.” Materials and Structures, 35, 573–578. 

Haukaas, T. (2008). “Unified Reliability and Design Optimization for Earthquake 
Engineering.” 23, 471–481. 

Haukaas, T. (2014a). “Mean-value First-order Second Moment Method (MVFOSM).” 
<www.inrisk.ubc.ca> (Oct. 20, 2014). 

Haukaas, T. (2014b). “The First-order Reliability Method (FORM).” <www.inrisk.ubc.ca> 
(Oct. 30, 2014). 

Haukaas, T. (2014c). “Sampling.” <www.inrisk.ubc.ca> (Oct. 30, 2014). 

Haukaas, T. (2014d). “Continuous Random Variables.” <www.inrisk.ubc.ca> (Jan. 7, 2015). 

Haukaas, T. (2014e). “Gradient-Based Algorithms.” <www.inrisk.ubc.ca> (Nov. 28, 2014). 



 

 116 

Haukaas, T., Allahdadian, S., and Mahsuli, M. (2013). “Risk Measures for Minimization of 
Earthquake Costs.” Proceedings of the 11th International Conference on Structural 
Safety & Reliability, New York, NY. 

Hristovski, V., Stojmanovska, M., and Dujic, B. (2012). “Full-Scale Shaking Table Tests of 
XLam Panel Systems - Correlation with Cyclic Quasi-Static Tests.” 15th World 
Conference of Earthquake Engineering, Lisbon, Portugal. 

Jorissen, A., and Fragiacomo, M. (2011). “General Notes on Ductility in Timber Structures.” 
Engineering Structures, Elsevier Ltd, 33(11), 2987–2997. 

Der Kiureghian, A. (2005a). “First- and Second-Order Reliability Methods.” Engineering 
Design Reliability Handbook, E. Nikolaidis, ed., C R C Press LLC. 

Der Kiureghian, A. (2005b). “Non-ergodicity and PEER’s Framework Formula.” Earthquake 
Engineering & Structural Dynamics, 34(13), 1643–1652. 

Koduru, S. D., and Haukaas, T. (2010). “Probabilistic Seismic Loss Assessment of a 
Vancouver High-rise Building.” 136(March), 235–245. 

Koo, K. (2013). A Study on Historical Tall-wood Buildings in Toronto and Vancouver. 

Van de Kuilen, J. W. G., Ceccotti, A., Xia, Z., and He, M. (2011). “Very Tall Wooden 
Buidings with Cross Laminated Timber.” The 12th East Asia-Pacific Conference on 
Structural Engineering and Constrution, Elsevier Ltd., 1621–1628. 

Lam, F. (2001). “Modern Structural Wood Products.” Progress in Structural Engineering 
and Materials, 3(3), 238–245. 

Lee, K. H., and Rosowsky, D. V. (2006). “Fragility Analysis of Woodframe Buildings 
Considering Combined Snow and Earthquake Loading.” Structural Safety, 28(3), 289–
303. 

Lehmann, S. (2012). “Sustainable Construction for Urban Infill Development Using 
Engineered Massive Wood Panel Systems.” Sustainability, 4(12), 2707–2742. 

Lend Lease. (n.d.). Forté. Melbourne, Aus. 

Li, M., Lam, F., Foschi, R. O., Nakajima, S., and Nakagawa, T. (2011a). “Seismic 
Performance of Post and Beam Timber Buildings I: Model Development and 
Verification.” Journal of Wood Science, 58(1), 20–30. 

Li, M., Lam, F., Foschi, R. O., Nakajima, S., and Nakagawa, T. (2011b). “Seismic 
Performance of Post-and-Beam Timber Buildings II: Reliability Evaluations.” Journal 
of Wood Science, 58(2), 135–143. 



 

 117 

Li, Y., and Ellingwood, B. (2007). “Reliability of Woodframe Residential Construction 
Subjected to Earthquakes.” Structural Safety, 29(4), 294–307. 

Van de Lindt, J., and Walz, M. A. (2003). “Development and Application of Wood Shear 
Wall Reliability Model.” Journal of Structural Engineering, 129(March), 405–413. 

Mahsuli, M., and Haukaas, T. (2013a). “Seismic Risk Analysis with Reliability Methods, 
Part I  : Models.” Structural Safety, Elsevier Ltd, 42, 54–62. 

Mahsuli, M., and Haukaas, T. (2013b). “Computer Program for Multimodel Reliability and 
Optimization Analysis.” Journal of Computing in Civil Engineering, 27(1), 87–98. 

Miraglia, S., Dietsch, P., and Straub, D. (2011). “Comparative Risk Assessment of 
Secondary Structures in Wide-span Timber Structures.” Applications of Statistics and 
Probability in Civil Engineering, Faber, Koehler, and Nishijima, eds., Taylor & Francis 
Group, London, UK, 1301–1309. 

Munch-Andersen, J., and Dietsch, P. (2011). “Robustness of Large-span Timber Roof 
Structures — Two Examples.” Engineering Structures, Elsevier Ltd, 33(11), 3113–
3117. 

Nocedal, J., and Wright, S. (2000). Numerical Optimization. Springer, New York, NY. 

Pei, S., Berman, J., Dolan, D., Lindt, J. Van De, Ricles, J., Sause, R., Blomgren, H., 
Popovski, M., and Rammer, D. (2014). “Progress on the Development of Seismic 
Resilient Tall CLT Buildings in the Pacific Northwest.” World Conference on Timber 
Engineering 2014, Quebec City, QC. 

Pei, S., Popovski, M., and Lindt, J. W. Van De. (2012). “Seismic Design of a Multi-Story 
Cross Laminated Timber Building Based on Component Level Testing.” Wold 
Conference on Timber Engineering, Auckland, New Zealand, 244–252. 

Popovski, M., Schneider, J., and Schweinsteiger, M. (2010). “Lateral Load Resistance of 
Cross-Laminated Wood Panels.” Wold Conference on Timber Engineering, Trentino, 
Italy. 

Riahi, H., Moutou Pitti, R., Bressolette, P., Chateauneuf, A., and Fournrly, E. (2011). 
“Reliability-based Design of Structures Under Seismic Loading: Application to Timber 
Structures.” Experimental and Applied Mechanics, Volume 6, Conference Proceedings 
of the Society for Experimental Mechanics Series, T. Proulx, ed., The Society for 
Experimental Mechanics, New York, NY, 417–423. 

Rinaldin, G., Amadio, C., and Fragiacomo, M. (2013). “A Component Approach for the 
Hysteretic Behaviour of Connections in Cross-Laminated Wooden Structures.” 
Earthquake Engineering & Structural Dynamics, 42, 2023–2042. 



 

 118 

Rosowsky, D. V. (2013). “Evolution of Probabilistic Analysis of Timber Structures from 
Second-Moment Reliability methods to Fragility Analysis.” Structural Safety, 41, 57–
63. 

Serrano, E. (2009). Documentation of the Limnologen Project: Overview and Summaries of 
Sub Projects Results. Växjö, Sweden. 

Skidmore Ownings & Merrill. (2013). Timber Tower Research Project. Chicago, IL, 72. 

Smith, I., and Snow, M. A. (2008). “Timber: An Ancient Construction Material with a Bright 
Future.” The Forestry Chronical, 84(4), 504–510. 

Soares, R., Mohamed, A., Venturini, W., and Lemaire, M. (2002). “Reliability Analysis of 
Non-linear Reinforced Concrete Frames Using the Response Surface Method.” 
Reliability Engineering & System Safety, 75(1), 1–16. 

Sørensen, J. D. (2011). “Framework for Robustness Assessment of Timber Structures.” 
Engineering Structures, Elsevier Ltd, 33(11), 3087–3092. 

Stürzenbecher, R., Hofstetter, K., and Eberhardsteiner, J. (2010). “Structural Design of Cross 
Laminated Timber (CLT) by Advanced Plate Theories.” Composites Science and 
Technology, Elsevier Ltd, 70(9), 1368–1379. 

Techniker. (2010). Tall Timber Buildings - the Stadthaus, Hoxton, London. London, UK. 

The Local. (2014). “Work to Start on World’s Tallest Wooden House.” The Local, 
(20140402). 

Thoft-Christensen, P. (2005). “System Reliability.” Engineering Design Reliability 
Handbook, E. Nikolaidis, ed., C R C Press LLC. 

Timmer, S. (2011). “Feasibility of Tall Timber Buildings.” Delft University of Technology. 

Tomasi, R., Parisi, M. A., and Piazza, M. (2010). “Ductile Design of Glued-laminated 
Timber Beams.” Practice Periodical on Structural Design and Construction, 14, 113–
122. 

Toratti, T., Schnabl, S., and Turk, G. (2007). “Reliability Analysis of a Glulam Beam.” 
Structural Safety, 29(4), 279–293. 

Tri-State Forest Products. (n.d.). “Glulam.” <www.tsfpi.com/glulam.html> (Dec. 3, 2014). 

UBC Properties Trust. (2014). “New Tall Wood Student Residence at Brock Commons: 
Architectural Services Expression of Interest.” Vancouver, BC. 



 

 119 

Weckendorf, J., and Smith, I. (2012a). “Multi-functional Interface Concept for Highrise 
Hybrid Building Systems with Structural Timber.” World Conference on Timber 
Engineering, Auckland, NZ. 

Weckendorf, J., and Smith, I. (2012b). “Dynamic Characteristics of Shallow Floors with 
Cross-Laminated-Timber Spines.” World Conference on Timber Engineering, 
Auckland, NZ. 

Yates, M., Linegar, M., and Dujic, B. (2008). “Design of an 8 Storey Residential Tower from 
KLH Cross Laminated Solid Timber Panels.” 10th World Conference on Timber 
Engineering 2008, 4, 2189 – 2196. 

Yeoh, D., Fragiacomo, M., De Franceschi, M., and Boon, K. H. (2011). “State of the Art on 
Timber-Concrete Composite Structures: Literature Review.” Journal of Structural 
Engineering, 137, 1085–1095. 

Yin, Y.-J., and Li, Y. (2011). “Probabilistic Loss Assessment of Light-frame Wood 
Construction Subjected to Combined Seismic and Snow Loads.” Engineering 
Structures, Elsevier Ltd, 33(2), 380–390. 

York, M. (2014). “Wood You Buy a Home Like This? Meet London’s New Timber Homes.” 
City AM, London, UK, (December). 

Zangerl, M., and Tahan, N. (2012). “LCT ONE.” Wood Design & Building, 25–28. 

  

 

 

 



 

 120 

Appendices 

Appendix A: Reliability Analysis in Rt Implementing an Opensees Structural Model 

This Appendix is included as an operator’s guide for implementing an OpenSees analysis in 

Rt. This functionality is included in Rt and allows for the reliability analyses to provide 

probabilistic inputs into the OpenSees structural model and receive responses. The use of an 

external model in Rt for structural responses, as OpenSees provides an advanced analysis 

program used in other analyses. A simple structural example is included to illustrate this use 

of both programs, with the code included for the input files in Section A.4. 

 
Figure A.1 Interaction between Rt and OpenSees 

The procedure of the information transfer between the two programs is displayed in Figure 

A.1. Rt is used to define the random variables and limit state function and performs the 

reliability analysis. This reliability analysis algorithm utilizes the random variables, and 

based on the design point search algorithm, determines realizations of the random variables. 

These realizations are then sent as input parameters into the OpenSees structural model, 

Rt# OpenSees#

RV#Realiza/ons#

Structural#
Analysis#
Model#

#

Random#Variables#

Reliability#Algorithm#

Limit#State#Func/on#
Structural#Response#
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which performs a deterministic analysis based upon this structural realization. The desired 

responses from this model’s analysis are then sent to Rt and the limit state function is 

evaluated. Based upon this result, the reliability analysis continues to iterate as necessary. 

The transfer of responses from OpenSees to Rt may be performed using two methods: by 

creating response data files or by sending Rt single response commands. The method chosen 

depends upon the use of the responses in the analysis. Developing a database of responses 

would favour creating and saving the files in OpenSees elsewhere, which then can be opened 

using Rt in addition to any other text or data program. In comparison, if only a single 

response is desired for the sake of the reliability analysis, sending this to Rt as a command 

could be more efficient. Both methods are described below and sample code is included, 

intended to aid future implementation by an unfamiliar operator. While text input files may 

be used to develop analyses in Rt, this will focus on using the program’s user interface. For 

simplicity with directories, the Rt input file, OpenSees input file, and the OpenSees 

executable should all be within the same folder. 

A.1 Probabilistic Input Parameters 

Rt allows the user to define probabilistic distributions for random variables. This is done by 

creating new RVs under Models>Parameter>Random Variable>Continuous and then 

adjusting the properties of that RV.  

These RVs need to be shared with OpenSees. To perform this, the external OpenSees model 

needs to be defined in Rt. This is done under Models>Model>External Software>OpenSees. 

A new model may be defined and includes “Parameter List” under the Properties menu. This 

defines the parameters in Rt that will be sent to OpenSees when the model is called. It is also 
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in this menu that the OpenSees input file is defined. This is shown in the example code on 

lines #9-30. 

In OpenSees, no additional parameter definition is required. To use these values, they need 

simply to be called by the placeholder “$randomvariable”. An example of this use is on 

code line #171. It is important not to define these values, as it will overwrite the reliability 

analysis values and give erroneous results.  

A.2 File Response 

One method of obtaining results from OpenSees in Rt is by creating data files with the 

desired responses. This is performed by creating an output file in OpenSees. For example, 

this may be done by defining a “recorder” for node displacement. From this recorder, a data 

file may be created in the desired directory. This provides a record of the response separately, 

but will be overwritten by default in all subsequent iterations by the Rt analysis. This is done 

in the OpenSees example code lines #190-200. 

To read these files in Rt, the response may be defined in Models>Parameter>Response>File. 

The output file location is specified in the Properties menu, which allows a specific row and 

column of the file also to be specified. This allows Rt to read the response from the output 

file, which then may be used for a reliability analysis. The Rt example code illustrates this on 

lines #40-45. 

A.3 Command Response 

The other option for inputting responses from OpenSees to Rt is by the command response. 

Unlike the file response, this takes a command directly from OpenSees without the additional 

creation of a file.  
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To perform this, define a command response in Rt under 

Models>Parameters>Response>Command. In the properties of this response, the OpenSees 

model may be defined, as well as the command used in the model. This command is then run 

in OpenSees during the analysis to get the response. An example of this is shown in the Rt 

example code lines #48-51. No command is required in OpenSees, but an example of 

displaying the value in the command pane is show in in the example code on line #225. 

A.4 Example Code 

To illustrate the use of OpenSees as a structural response model used by Rt, an example is 

given. This example is a simple structure consisting of a cantilever beam, as shown in Figure 

A.2. This cantilever structure has length, L, moment of inertia, Iz, modulus of elasticity, Es, 

and lateral load applied at the beam end, Wx. The measured response is the flexural deflection 

D, of the beam at the location of the load. This structure is modeled in OpenSees using an 

elasticBeamColumn, with node 1 at the fixed end and node 2 at the free end. This example 

file was modified from the “Time History Analysis of a 2D Elastic Cantilever Column” 

example, available freely online (opensees.berkeley.edu/wiki). 
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Figure A.2 Schematic of the example structure 

A reliability analysis implementing FORM is performed in Rt. The purpose of this analysis is 

to predict the probability that the deflection of the beam, disp (the notation in Rt, given as D 

in OpenSees), exceeds 6 mm (line 56). All of the beam parameters have been given nominal 

values for the mean and coefficient of variation and an assumed distribution, as shown in 

Table A.1. These random variables must all be defined in consistent units (here kN and mm). 

The COV of the parameters are arbitrary, based roughly upon the variability expected. 

Table A.1 Example parameters 

Variable Distribution Mean COV Units 
L Normal 3000 0.05 mm 
Es Normal 200 0.01 GPa 
Iz Normal 40.106 0.05 mm4 

Wx Normal 5 0.2 kN 
 

 

Wx,	  D 

Es,	  Iz L 
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A.5 Rt Code 

The code below is to be copied to a .txt file to be used as an input file in Rt. 
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// EXAMPLE BEAM RELIABILITY ANALYSIS IN RT 1 
// BY ALFRED LARSEN, JANUARY 2014 2 
// An example to test Rt and OpenSees functionality by testing 3 

a cantilever beam with random variables for load, length, 4 
and stiffness (modulus of elasticity and moment of 5 
inertia) 6 

 7 
 8 
// RANDOM VARIABLES 9 
RContinuousRandomVariable |ObjectName: L |CurrentValue: 3000 10 

|DistributionType: Normal (mean, stdv) |Mean: 3000 11 
|StandardDeviation: 150 |CoefficientOfVariation: 0.05 12 
|Parameter1: 3000 |Parameter2: 150 |Parameter3: 0 13 
|Parameter4: 0 |UncertaintyType: Aleatory 14 

RContinuousRandomVariable |ObjectName: Wx |CurrentValue: 5 15 
|DistributionType: Normal (mean, stdv) |Mean: 5 16 
|StandardDeviation: 1 |CoefficientOfVariation: 0.2 17 
|Parameter1: 5 |Parameter2: 1 |Parameter3: 0 |Parameter4: 18 
0 |UncertaintyType: Aleatory 19 

RContinuousRandomVariable |ObjectName: Es |CurrentValue: 200 20 
|DistributionType: Normal (mean, stdv) |Mean: 200 21 
|StandardDeviation: 2 |CoefficientOfVariation: 0.01 22 
|Parameter1: 200 |Parameter2: 2 |Parameter3: 0 23 
|Parameter4: 0 |UncertaintyType: Aleatory 24 

RContinuousRandomVariable |ObjectName: Iz |CurrentValue: 25 
40000000 |DistributionType: Normal (mean, stdv) |Mean: 26 
40000000 |StandardDeviation: 2000000 27 
|CoefficientOfVariation: 0.05 |Parameter1: 40000000 28 
|Parameter2: 2000000 |Parameter3: 0 |Parameter4: 0 29 
|UncertaintyType: Aleatory 30 

 31 
 32 
// DEFINE OPENSEES MODEL (PARAMETERS USED IN OPENSEES ARE 33 

DEFINED HERE USING THE RANDOM VARIABLES FROM ABOVE) 34 
ROpenSeesModel |ObjectName: BeamModel |DisplayOutput: true 35 

|ParameterList: L; Wx; Iz; Es;  |ExecutableFile: OpenSees 36 
|InputFile: ExampleBeamReliabilityOpenSees.txt 37 

 38 
 39 
// DEFINE LOCATION OF OPENSEES RESPONSE 40 
// THIS USES A “FILE RESPONSE,” WHERE THE RESPONSE VALUE IS 41 

TAKEN FROM AN OUTPUT FILE GENERATED IN OPENSEES 42 
RFileResponse |ObjectName: Disp |CurrentValue: 5.625 |Model: 43 

BeamModel |ResponseFile: NodeDisplacement.out |Maximum: 44 
true |Absolute: true |Row: 10 |Column: 2 45 

 46 
 47 
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// ANOTHER OPTION IS “COMMAND RESPONSE,” WHERE OPENSEES GIVES 48 
A RESPONSE TO RT DIRECTLY VIA THE OUTPUT SCREEN 49 

// RCommandResponse |ObjectName: Disp |CurrentValue: 0 |Model: 50 
BeamModel |Command: puts NodeDisp |Absolute: true 51 

 52 
 53 
// LIMIT STATE FUNCTION 54 
RFunction |ObjectName: DispLSF |Expression: 6 - Disp 55 

|GradientAnalysisType: FiniteDifference 56 
|PerturbationFactor: 1000 |EfficientPerturbation: true 57 

 58 
 59 
 60 
// RT ANALYZERS 61 
RStepperNonlinSingleConstrSolver |ObjectName: mySolver 62 

|OutputDisplayLevel: Minimum |StartPoint: Mean 63 
|StepSizeSearcher: myStepSizeSearcher 64 
|StepDirectionSearcher: myStepDirectionSearcher 65 
|Transformer: myTransformer |ConvergenceChecker: 66 
myConvergenceChecker |MaximumIterations: 100 67 

 68 
RArmijoStepSizeSearcher |ObjectName: myStepSizeSearcher 69 

|OutputDisplayLevel: Minimum |Transformer: myTransformer 70 
|MeritChecker: myMeritChecker |MaximumReductions: 10 71 
|Base: 0.5 |InitialStepSize: 1 |InitialStepsCount: 2 72 
|SphereRadius: 50 |SphereDistance: 0.1 |SphereEvolution: 73 
0.5 74 

 75 
RAdkZhangMeritChecker |ObjectName: myMeritChecker 76 

|OutputDisplayLevel: None |Multiplier: 2 |Adder: 10 77 
|Factor: 0.5 78 

 79 
RHLRFStepDirectionSearcher |ObjectName: 80 

myStepDirectionSearcher 81 
 82 
RNatafTransformer |ObjectName: myTransformer 83 

|OutputDisplayLevel: None 84 
 85 
RStandardConvergenceChecker |ObjectName: myConvergenceChecker 86 

|OutputDisplayLevel: Minimum |E1: 0.001 |E2: 0.001 87 
 88 
RIndependentNormalRandomNumberGenerator |ObjectName: 89 

myRandomNumberGenerator |StartPoint: CurrentValue 90 
|StandardDeviation: 1 |Seed: 0 |Transformer: 91 
myTransformer 92 

 93 
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RHistogramAccumulator |ObjectName: myHistogramAccumulator 94 
|OutputDisplayLevel: None |MaximumIterations: 100000 95 
|PlottingInterval: 100 |NumberOfBins: 100 96 

 97 
RFailureProbabilityAccumulator |ObjectName: 98 

myFailureAccumulator |OutputDisplayLevel: None 99 
|MaximumIterations: 1000000 |PlottingInterval: 100 100 
|TargetCoefficientOfVariation: 0.05 101 
|RandomNumberGenerator: myRandomNumberGenerator 102 

 103 
RFORMAnalyzer |ObjectName: myFORMAnalysis |LimitStateFunction: 104 

DispLSF |NonlinearSingleConstraintSolver: mySolver 105 
|ComputeRandomVariableSensitivities: true 106 
|ComputeDecisionVariableSensitivities: true 107 
|ComputeModelResponseStandardDeviationSensitivities: true 108 
|PrintSensitivities: true 109 
|CorrectProbabilityWithFirstPrincipalCurvature: false 110 

 111 
RSamplingAnalyzer |ObjectName: mySamplingAnalysis 112 

|RandomNumberGenerator: myRandomNumberGenerator 113 
|Transformer: myTransformer |Accumulator: 114 
myFailureAccumulator 115 

 116 
RFunctionEvaluationAnalyzer |ObjectName: 117 

myFunctionEvaluationAnalysis |Function: DispLSF 118 
|EvaluateGradient: false |SetRandomVariablesToMean: false 119 
|PrintRandomVariableList: false |PlotModelFlowchart: true 120 

 121 
RFOSMAnalyzer |ObjectName: myFOSMAnalysis |Function: DispLSF 122 

|PrintCorrelationMatrix: true |PrintCovarianceMatrix: 123 
false124 
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A.6 OpenSees Code 

The example code that follows is for use in OpenSees for the example program. This is to be 

pasted in a text input file. It is not necessary for the user to run OpenSees, as it is called 

through the execution of the Rt analysis. Of note, this may be run independently as a 

deterministic structural analysis if lines #160-166 have the comments removed. 
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########### 125 
# Beam reliability example 126 
# By Alfred Larsen, Jan 2014  127 
# Modified model of OpenSees Example Manual “Time History 128 

Analysis of 2D Elastic Cantilever Column” 129 
# Modified to create a cantilever beam with a lateral load 130 

applied at top to measure displacement that may be used 131 
for reliability analysis in Rt 132 

########### 133 
# 134 
#          <--D--> 135 
#  Wx----->2 136 
#   | 137 
#   | 138 
#   | Nodes as indicated 139 
#   | Length L = 3000mm 140 
#   | Modulus of elasticity E = 200 GPa 141 
#   | Moment of inertia I = 40e6 142 
#   | 143 
#   | 144 
#  ________1________ 145 
# 146 
# 147 
########## 148 
# All units in kN, mm 149 
 150 
 151 
# Remove existing model 152 
#wipe 153 
 154 
 155 
# Create the model builders 156 
model BasicBuilder -ndm 2 -ndf 3 157 
 158 
 159 
# Set parameters (commented out for reliability analysis) 160 
# Parameters varied for reliability analysis are Es, L, Ex, Iz 161 

as seen above 162 
#set Es 200 163 
#set L 3000 164 
#set Wx 5 165 
#set Iz 40e6 166 
 167 
 168 
# Define nodes 169 
node 1 0 0 170 
node 2 0 $L 171 
 172 



 

 131 

 173 
# Fix nodes/define boundary conditions 174 
# fix $nodeTag (ndf $constrValues) 175 
fix 1 1 1 1  176 
 177 
 178 
# Define transformation 179 
geomTransf Linear 1  180 
 181 
 182 
# Define beam 183 
# element elasticBeamColumn $eleTag $iNode $jNode $A $E $Iz 184 

$transfTag <-mass $massDens> 185 
element elasticBeamColumn 1 1 2 3630 $Es $Iz 1  186 
#no mass of beam is considered 187 
 188 
 189 
# Define recorder 190 
# Currently the Rt analysis is set to use a “file response” 191 

that references this file 192 
# recorder Node <-file $fileName> <-xml $fileName> <-binary 193 

$fileName> <-tcp $inetAddress $port> <-precision $nSD> <-194 
timeSeries $tsTag> <-time> <-dT $deltaT> <-closeOnWrite> 195 
<-node $node1 $node2 ...> <-nodeRange $startNode 196 
$endNode> <-region $regionTag> -dof ($dof1 $dof2 ...) 197 
$respType' 198 

recorder Node -file NodeDisplacement.out -time -node 2 -dof 1 199 
2 3 disp 200 

 201 
 202 
# Apply load 203 
timeSeries Linear 1 204 
 205 
 206 
# Load pattern 1 is force in kN on node 2 in +x direction 207 
pattern Plain 1 1 { 208 
 load 2 $Wx 0. 0. 209 
} 210 
 211 
 212 
constraints Plain 213 
numberer Plain 214 
system BandGeneral 215 
algorithm Linear 216 
integrator LoadControl 0.1 217 
analysis Static 218 
analyze 10 219 
 220 
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 221 
# Print to screen 222 
# This can be used for “command response” of the file in 223 

OpenSees, not used in the Rt file here 224 
puts "Node 2 displacement: [nodeDisp 2]" 225 
puts "Force: $Wx kN" 226 
puts "Length: $L mm" 227 
puts "Moment of inertia: $Iz mm^4" 228 
puts "Modulus of elasticity: $Es GPa" 229 
print node 2 230 
print element 231 


