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Abstract 

The BC Hydro and Power Authority is the largest electric utility in the province of British 

Columbia, Canada. With a generating capacity of more than 12,000 MW, it serves almost 2 

million customers in the province. It operates 31 hydroelectric facilities, most of them located in 

multi-reservoir systems. In order to facilitate the operation of these reservoirs, BC Hydro 

developed an in-house application called the Operations Planning Tool (OPT), a deterministic 

Linear Programming (LP) model that provides the optimal operation of the multi-reservoir 

systems considering multiple purposes. The objective of this research was to investigate, 

develop, incorporate and test additional modeling features that would expand the current 

capabilities of the OPT.  This included developing a formulation for the analysis of units’ 

maintenance outages and changing the optimization model to consider inflow uncertainty and 

avoid the use of weight coefficients and penalty functions.   

   The formulation developed for the analysis of units’ maintenance outages is based on a 

two-stage algorithm. In the first stage, a pre-processor defines all the possible outage solutions 

given some initial configurations. In the second stage, a modified OPT model is run to find an 

outage solution that optimizes the objectives using a Mixed-Integer Linear Programming (MILP) 

algorithm. The formulation was tested using the Bridge River system in British Columbia, 

Canada. 

   An alternative OPT model was also developed to consider the uncertainty in the 

reservoir’s inflow and modify the formulation of the objective function. It was desired to avoid 

the use of weight coefficients and penalty functions due to the limitations that they present. The 

proposed alternative was based on the development of a linear decision rule and the use of 

chance constraints. The linear decision rule is an operating rule that defines the spillway releases 
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and forebay elevation as a linear function of the inflow, the turbine releases and a deterministic 

decision variable. The chance constraints were used to consider the probability of the spillway 

releases and forebay elevation not being within a preferred range of values established by the 

user. The developed formulation was tested using the Stave Falls system.  
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Preface 

 The work presented in Chapter 3 is based on the development of new modeling features 

for the Operations Planning Tool (OPT). This is an application originally developed by the BC 

Hydro and Power Authority (BC Hydro) which is currently being expanded by a research team 

of the University of British Columbia. The author worked on the analysis and formulation of the 

two-stage algorithm and carried out the case study described in that chapter. Jiyi Zhou 

collaborated in the early stages of the algorithm formulation and tested it with other case studies. 

Professor Ziad Shawwash was the leader of the research team and was involved throughout the 

project. The author is currently working in the publication of this material in an academic 

journal. 

 The work presented in Chapter 4 is based on an alternative model for the Operations 

Planning Tool proposed and developed independently by the author. A version of this chapter 

was presented at the 11th International Conference on HydroInformatics in New York (August 

2014). This material was reviewed by Prof. Shawwash and by Alaa Abdalla, Paul Vassilev, 

Gillian Kong and  Vladimir Plesa, operation planning engineers from BC Hydro and current 

users of the OPT application.  
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Chapter  1: Introduction 

1.1  Background 

 Hydropower can be defined as the power derived from the energy of falling or running 

water. It was first used to generate electricity at the end of the nineteenth century and since then 

the hydropower generation capacity worldwide has been growing steadily: by the end of 2008 it 

was estimated that hydropower contributed 16% of world’s electricity generation, becoming the 

largest renewable source of electricity (Kumar et al., 2011).  In Canada, the construction of the 

first large hydroelectric projects dates back to the early 1890s but it was during the 1960s and 

1970s when these constructions peaked. Today, Canada is one of the largest producers of 

hydroelectricity of the world, and more than 60% of the electricity produced in the country 

comes from hydropower generation (Helston, 2012).   

 

1.2 Description of the Operations Planning Tool Model 

 For many decades, the single objective of hydropower generation was to satisfy the 

electricity demand in a sustainable manner. Nevertheless, a growing public concern over the 

impacts of hydroelectric projects has motivated electric utilities to incorporate additional 

objectives in its operation, including flood control, recreation, environmental protection, 

conservation of cultural and archaeological sites and the supply of water for human consumption 

and irrigation. The optimal operation of a reservoir serving multiple purposes is complicated 

when some of these objectives are in conflict with each other, especially when the uncertainty 

associated with future hydrologic conditions is considered. In addition, this operation becomes 

more complex in systems with multiple reservoirs located along the same water course (Labadie, 

2004).   
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 Such is the case of British Columbia in Canada, where almost 70 per cent of the installed 

generating capacity in the province comes from multiple reservoirs located in just two river 

basins, The Peace River and the Columbia River, while an additional 16% comes from smaller 

multi-reservoir systems located in other river basins (BCHydro, 2000).  In 1996 the government 

of British Columbia approved the Water Act and it required the BC Hydro and Power Authority, 

the Crown Corporation in charge of generation and distribution of electricity in most of the 

province, to undertake a review process of the operation of all its hydroelectric facilities. In 

agreement with different government agencies, First Nations, local citizens and other 

stakeholders, BC Hydro developed a water use plan for each of the hydroelectric projects, which 

resulted in changes in the operations of their facilities, including new flow regimes for turbine 

and spillway discharges as well as in the forebay and tailwater elevation (BChydro, 2014).  

 In order to fulfill these agreements and the original objective of satisfy the growing 

electricity demand, BC Hydro developed an in-house computer application called the Operations 

Planning Tool (OPT). The purpose of this application is to aid the Operation Planning Engineers 

(OPEs) to make decisions regarding the operation of a multi-reservoir system. It consists of three 

main components: the graphical user interface (GUI), the optimization model and the solver 

software. The GUI allows the user to configure the optimization study, change model 

configurations, run the optimization and retrieve and display the output data.  The optimization 

model is formulated in AMPL, a software package commonly used in mathematical 

programming, while the CPLEX solver is used to solve the optimization problem.  The GUI is 

used to configure the study and prepare input data in the user’s workstation; the problem is sent 

and solved at the server workstation where the AMPL and CPLEX solver resides and then the 

solution is sent back to the client workstation.  
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1.2.1 The OPT Optimization Model 

The OPT optimization model has a deterministic Linear Programming (LP) algorithm. It 

is deterministic because it does not consider any uncertainty in the reservoir inflows and 

electricity prices; both parameters are inputs that must be specified by the user. The LP model 

can be divided into three basic components: (1) the decision variables, (2) the objective function 

and (3) the model constraints. A brief description of each of these components is presented in the 

following sections. 

 

Decision Variables 

The major decision variables of the model are the following: 

Sp,t Storage of reservoir p at the time step t 
spilQp,n,t Spillway release from reservoir p, through the release structure n, at time step t 
turbQp,t Turbine release from reservoir p at time step t 
turbQZonep,t,z Turbine release from reservoir p, at time step t , during sub-time step z 
Gp,t,z Power generation at reservoir p, at time step t , during sub-time step z 

 

It can be observed that there are two variables related to turbine releases. The first variable 

(turbQp,t ) is the average turbine flow during the time step t, while turbQZonep,t,z is the average 

turbine flow during a shorter time step z (sub-time step) defined by the user. These sub-time 

steps depend on the variability of the electricity prices within a time step. For example, a typical 

day the user can define two price zones: Heavy Load Hours (HLH) for the heavy load hours, and 

Light Load Hours (LLH) for the rest of the day.  The electricity prices in these two zones are 

different and therefore it is of interest to know the average turbine release in each of them. 

The Objective Function 
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The OPT multi-objective problem is solved making use of an optimization method known as the 

Weighting Method of Multi Objective Optimization, where a grand objective is established 

adding all the individual objectives, each one multiplied by a weighting coefficient as follows: 

푀푖푛푖푚푖푧푒	{푊 ∗ ∑ 푃퐹푆 푆 , 	, + 	푊 ∗ ∑ 푃퐹푄 푠푝푖푙푄 , ,, ,   

−	푊 	∗ ∑ 퐺 , , ∗ t ∗ 푝푟푖푐푒푍표푛푒퐹푟푎푐푡푖표푛 , ∗ 푝푟푖푐푒 , }, ,      (1.1) 

 The first two terms of the objective function refer to the minimization of the storage and 

spillway deviations from some preferred operating regimes, respectively. The minimization is 

accomplished through the use of “penalty functions” denominated PFS for storage and PFQ for 

spill. These functions, which must be defined by the user, are piece-wise linear curves where a 

penalty number is assigned to all the possible values that the elevation and the spillway releases 

can have. When the values are within the preferred range a penalty value of zero is produced, 

while those outside of the target range must result in a non-zero penalty. The farther a value is 

from the target, the greatest its penalty will be. The preferred ranges are based on the agreements 

of the Water Use Plans for each multi-reservoir system. The determination of the corresponding 

penalties and their unit changes (slopes) may be complicated and it could require a detailed 

analysis (Can and Houck, 1983). 

The third term of the objective function refers to the maximization of the revenue from 

power generation.  Due to the negative sign of this term, the model performs a maximization of 

the revenue even though the objective function as a whole is being minimized. In other words, 

because the model tries to make this term as negative as possible, the absolute value of the 

revenue will also be the highest possible. This revenue is computed for each sub-time step, 

multiplying the power generation, the number of hours in each sub-time step (t* 

priceZoneFraction) and the corresponding price.   
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 The weighting coefficients WS, WQ and WR are input parameters whose values should be 

based in the priorities of the decision makers. Nevertheless, it is a common practice in this 

optimization method to run the model several times varying these coefficients until the set of 

non-inferior solutions is generated (Revelle et al, 2004).    

Model Constraints 

The constraints in the OPT model are used to fulfill the following purposes:  

• Satisfy the continuity equation (reservoir mass balance). 

• Set limits to the optimization variables. 

• Relate the total turbine release per time step (turbQp,t) with the turbine release in the 

sub-time steps (turbQZonep,t,z). 

• Calculation of the power generation. 

 

1.3 Research Goals 

There are two main goals in this research project.  

 Develop and introduce analysis tools in the OPT application in order to assess the impact 

of units’ maintenance outages in multi-reservoir systems.  This includes allowing the user 

to specify fixed outages and letting the model define the optimal reservoir’s operation. It 

is also desired to determine the outage schedule that optimizes the model’s original 

objectives.  

 Investigate, analyze and modify the OPT’s AMPL optimization model in order to achieve 

the following specific goals: (1) consider the uncertainty in the reservoirs’ inflows (2) 

avoid the use of penalty functions for the storage and spillway deviations and (3) avoid 

the use of weight coefficients in the objective function.  
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1.4 Organization of this Thesis 

 This thesis is organized into five chapters and one appendix. This chapter provides a brief 

description of the OPT application, the research goals and the thesis organization. Chapter 2 

presents a summary of the literature review carried out for this research. Chapter 3 addresses the 

first research goal and describes the development of a two-stage algorithm for the analysis of 

maintenance outages in multi-reservoir systems. The algorithm is tested with the Bridge River 

system.  The second research goal is considered in Chapter 4 where chance constraints and 

linear decision rules are introduced in the model. The proposed modification is tested with the 

Stave Falls system. Chapter 5 provides a summary of the results, conclusions and 

recommendations for future research work. Appendix A presents the derivation of the 

generalized linear decision rule for multi-reservoir systems that forms the basis of the model 

developed in Chapter 4. 
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Chapter  2: Literature Review 

This chapter is divided in two parts. The first part provides an overview of formulations 

proposed by different authors for the maintenance scheduling of generating units. The second 

part reviews different optimization techniques that have been used in the operation of single 

reservoirs and multi-reservoir systems where multiple objectives were considered.  

 

2.1 Optimization of Maintenance Scheduling in Generating Units 

 The optimal scheduling of preventive maintenance outages in generating units can 

constitute a complex and time-consuming problem.  Several optimization techniques have been 

proposed for that purpose, including heuristic methods, integer and mixed integer programming, 

dynamic programming, goal programming, decomposition methods, among others. This section 

provides a review of several optimization models proposed by different authors using the 

techniques listed above. 

 Yamayee et al. [1983] addressed the optimal maintenance scheduling problem using a 

dynamic programming (DP) model that minimized operating costs and maintained an acceptable 

level of reliability in the system.  They defined a total cost function that considered in each stage 

of the problem both the production costs and the cost of unreliability. The constraints included in 

the model considered crew and resource limitations, and also made sure that a minimum level of 

reliability for each stage was maintained.  The authors pointed out that the major difficulty of DP 

is the “curse of dimensionality”; in order to overcome this they proposed the use of a DP 

successive approximation (DPSA). In this approach the problem was solved iteratively; in each 

iteration a different subset of variables were optimized while the remaining decision variables 
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and their associated states were kept constant. They tested the proposed formulation in a 

predominantly coal burning utility comprised of 21 units.  

 Edwin and Curtius [1990] presented an optimization model that minimized the expected 

annual production costs using an integer programming algorithm. They considered a time 

horizon of one year subdivided into 52 increments of one week. The starting dates of the 

maintenance outages were the independent variables in the model. The annual production cost 

was defined as the sum of the weekly production costs, which were calculated by a stochastic 

simulation algorithm for power system operation. The model was first formulated as nonlinear 

integer programming model, but it was transformed into a linear model introducing a new binary 

variable denominated “combination variable”. A constraint was used to link these variables with 

the independent variables. Additional constraints were used to only allow one maintenance 

outage during the scheduling horizon, to restrict the allowed time for the occurrence of the 

outages and to avoid simultaneous outages. The model was tested using a thermal power system 

with 15 units. 

 Yellen et al. [1992] also proposed an optimization model that minimizes the total 

operating cost over the operational planning period, subject to unit maintenance and system 

constraints. The total operating costs consisted of two components, the maintenance costs and 

fuel cost over the planning period. The unit maintenance constraints considered the maintenance 

time interval, crew constraints and resource constraints. The systems constraints required that the 

available units for each week met the load requirements and the reliability of power supply for 

that week. The model was decomposed into a “master problem” and an operating subproblem. 

The master problem, which is modeled as a mixed integer programming problem, was solved to 

generate a trial solution for the decision variables. After these variables were fixed, the set of 
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operating subproblems were solved using the fixed maintenance schedule obtained in the master 

problem. The model was run multiple times, and in each iteration the constraints generated in the 

subproblems were added to the master problem. The process was finalized when a feasible 

solution was found whose cost was sufficiently close to a lower bound previously established. 

The method was tested on a sample system consisting of five units over two different planning 

periods, a three months horizon and a one year horizon.  

 Kothari and Ahmad [1993] pointed out that in order to define an optimal maintenance 

schedule the operators’ experience should be taking into account in the optimization. To achieve 

this, they developed a hybrid method where the scheduling output of a dynamic programming 

model was enhanced with a rule based expert system. The system guided the user adjusting the 

constraints, limiting their number and therefore ensuring a feasible solution within acceptable 

time limits. The rules included in the system were obtained from a survey of the literature and 

therefore are based on heuristics. The proposed method was tested in a thermal system with ten 

generating units of different capacities. 

 Carpentier et al. [1996] developed a stochastic decomposition method considered by the 

authors to be well-suited to deal with large scale unit commitment problems. They modeled 

future random disturbances through scenario trees, defined as scenarios paths organized in trees. 

The optimization consisted in minimizing the average generation cost over this “tree-shaped 

future”.  The authors then used an augmented Lagrangian technique to obtain a spatial 

decomposition algorithm. Therefore, for each generating unit, at each iteration, a stochastic 

dynamic programming problem had to be solved. In order to avoid combinatorial explosion of 

computations, the authors pointed out that the scenarios trees had to be kept simple. The 

proposed method was tested with a simplified model of the thermal generation system Électricité 
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de France. This system consists of 50 generating units: 30 nuclear plants and 20 fossil fuel 

plants. 

 Muñoz and Ramos [1999] proposed a goal programming methodology to find the optimal 

maintenance scheduling of thermal generating units. The method was based on a sequential 

optimization process of economic and reliability objectives. In the first optimization run, the 

objective was the minimization of operating costs, which included fuel costs, startup costs, 

storage costs of fuel stocks and some penalties for non-served power, interruptibility and reserve 

margin defect. The second optimization minimized the sum of the differences between the 

thermal reserve margins of consecutive periods. The reserve margin was calculated dividing the 

available thermal capacity by the period peak load. The constraints considered in the model 

includes constraints to limit the maximum number of units in simultaneous outages, fuel 

scheduling constraints, reserve margin and generation-demand balance constraints. The 

methodology was tested with a simplified model of the Spanish electric power system.  

 Tang [2007] proposed a mixed integer linear programming model to solve the 

maintenance scheduling problem in large scale hydroelectric systems. A set of power and non-

power constraints were introduced into an existing LP model named the Generalized 

Optimization Model (GOM). This model is used by operation engineers at BC Hydro to make 

planning and operational decisions in hydroelectric systems.  The modified model reduced the 

number of binary variables in the model and simplified the computational process transforming 

nonlinear constraints into linear ones.  

 Perez [2007] addressed the maintenance scheduling optimization applying the Benders’ 

decomposition method. The proposed model minimized three types of costs: start-up cost, which 

is the cost to put a generator into operation after being disconnected, production cost and 
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maintenance cost. Four sets of constraints were included in the model: maintenance constraints, 

economic unit commitment constraints, maintenance and connection constraints and generating 

volume constraints. The model was decomposed into a master problem and a subproblem, and 

they were run iteratively until a convergence was reached. A high dimensioned power system 

was used to test the model, considering 75 power plants. The convergence was reached after 41 

iterations. 

  Alhardi [2008] developed an integer linear programming model that optimizes the 

preventive maintenance schedule in a multi co-generation plant, which produced both electric 

power and desalinated water. The objective of the model was to maximize the available number 

of operational units in each plant. The constraints included in the model took into account the 

time that the equipment can be operating without maintenance, the amount of resources available 

and the maximum number of units that can be taken down for maintenance at the same time, due 

to manpower limitations. It was also considered that the outages had to be carried out without 

interruptions. The model was tested with two cogeneration plant from Kuwait, each one 

consisting of seven units, for a time horizon of 52 weeks.   

 

2.2  Review of Optimization Models for Multi-Purpose, Multi-Reservoir Systems 

2.2.1 Introduction  

 The use of mathematical programming in reservoir systems dates back to the early 

developments of the discipline.  Since the early 1960s, many optimization models have been 

proposed for planning purposes and real time operations. The algorithm of each of these models 

depends on the characteristics of the reservoirs being analyzed, on the availability of information 

and on the constraints and the objectives being optimized (Yeh, 1985).  The following sections 
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review several techniques that have been proposed for the optimization of multi-purpose and 

multi-reservoir systems. The purpose of this review is not to conduct a detailed review of multi-

objective optimization methods used in reservoir operations; rather, it aims is to find a 

formulation that could be incorporated into the current OPT model in order to address the inflow 

uncertainty and avoid the use of penalty functions and weight coefficients. 

 

2.2.2  Linear Programming Models 

 Thomas and Revelle [1966] were one of the first to propose a Linear Programming model 

to optimize the operation of a multi-purpose reservoir. Their goal was to find the optimal 

reservoir policy for the Aswan High Dam reservoir in Egypt considering the water demand for 

hydropower generation and irrigation. Water released from the reservoir was used to generate 

electricity and then diverted to the irrigation system; nevertheless, while the demand for 

hydropower generation was relatively constant throughout the year, the amount of water needed 

for irrigation was higher during the warm months of the year. Assuming a mean annual inflow of 

80 billion cubic meters, they developed a LP model where the variables were the monthly 

releases and the total water allocated to both demands per year. The objective function was to 

maximize the benefits from the two yearly allocations multiplying each by a preference 

coefficient value. They used coefficients values proposed by the Aswan Regional Development 

Project to run the model and find the optimal releases and yearly allocations.  

Becker and Yeh [1974] developed an optimization model for the operation of multi-

reservoir systems using a linear programming – dynamic programming (LP-DP) algorithm. The 

LP formulation determined the optimal reservoir releases and storage states for each period 

minimizing the potential energy losses. This was carried out for all the alternative paths from the 
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storage vectors corresponding to the feasible incremental energy level of period i to any of the 

incremental energy levels of periods i+1. The DP algorithm was used to select from among these 

alternatives. The model was tested using the Shasta and Trinity sub-systems of the California 

Central Valley project. 

 Shawwash et al. [2000] developed a LP model called the Short Term Optimization Model 

(STOM) for BC Hydro. The objective function of the model had three terms: maximization of 

revenue from spot energy transactions, maximization of the added storage value in the reservoirs 

and minimization of the cost of thermal generation. The storage value was calculated multiplying 

the difference between the optimized storage and the target storage by the marginal value of 

water. The plant generation was calculated using a family of piecewise linear curves that 

calculate power generation as a function of the forebay level, turbine discharge and unit 

availability.  These curves were defined using a computer application called Static Plant Unit 

Commitment (SPUC), which uses a Dynamic Programming (DP) algorithm to tabulate the 

optimal plant discharges for each increment in plant loading, forebay and unit availability.  

Additional constraints were added to make sure that the hourly domestic load was met, and that 

the total discharge from a reservoir was within the legal non power requirements.  

Kiczko and Ermolieva [2012] proposed a multiple criteria decision support system for the 

Siemianówka reservoir on the Narew River, Poland.   The optimization of this decision support 

system considered different objectives, including wetland demands, flood protection, irrigation, 

demands for fisheries and energy production. The objective function aimed to minimize the 

weighted sum of several cost functions. The stochastic character of the downstream and 

upstream inflows was included in two different ways. In the first alternative the model was run 

for all forecasted sequences and the average weighted sum of the cost functions was minimized; 
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in the second alternative the averaging was directly applied to the forecast sequences. Both 

solutions were compared with the results of a “perfect” forecast (real discharge data) and the first 

alternative yielded better results than the second. 

 

2.2.3 Linear Decision Rules Models 

 Revelle et al. [1969] formulated a Linear Programming model in order to find the optimal 

capacity of a multi-purpose reservoir. These purposes included water supply, recreation, flood 

control and waste dilution. They proposed the use of a “linear decision rule” (LDR), which is a 

linear equation that specifies the reservoir releases as the difference between the storage and a 

decision parameter called “b”. This rule can be interpreted as an aid for the reservoir operators to 

help them to fulfill storage and water release commitments with the different users of the 

reservoir. They combined the LDR with the continuity equation to express both the releases and 

storage in terms of the inflow and the decision parameter “b”. Then, they substituted these 

equations in the release and storage constraints of the model, while the objective was to 

minimize the capacity of the reservoir. The model was solved considering both deterministic and 

stochastic inflows. For the first approach, the inflow was considered to be known in advance. In 

the stochastic approach, the inflows in a particular period were not specified and were considered 

to be known with only some probability. This complication was solved making use of a chance-

constrained formulation. In both solutions, the output of the model was the reservoir capacity and 

the value of the twelve decision parameters (one for each monthly time step).   

Subsequently, many other authors have analyzed the use of LDR and chance constraints 

in reservoir systems optimization, including the operation of existing reservoirs.  Revelle and 

Kirby [1970] applied the LDR to a reservoir with significant evaporation losses. Nayak and 
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Arora [1971] extended the LDR to a multi-reservoir system in the Minnesota River System. 

Similar to the original formulation developed by Revelle et al., their objective was to minimize 

the storage capacity of the reservoirs. They considered different requirements, including 

minimum and maximum water releases, minimum reservoir level and minimum freeboard 

capacity. Loucks and Dorfman [1975] proposed a general LDR formulation by introducing a 

coefficient called λ to indicate the extent to which the current inflow is considered in the water 

release during the same time step. Their objective was to estimate the minimum reservoir storage 

capacity and the summer storage volume required for various monthly release targets. They 

tested the formulation using values of 0 and 1 for λ and found that the model yields more 

conservative results when λ is equal to 1.  Nevertheless, using a simulation program they 

concluded that both rules specified a storage capacity greater than was actually needed to meet 

the reliability levels specified by the chance constraints.  Sreenivasan and Vedula [1995] applied 

a LDR to an existing reservoir in South India, aiming to find the maximum hydropower 

generation while meeting some irrigation demands. They used a linear approximation to 

overcome the nonlinearity in the power production function.  

The LDR and chance constraints are intuitively appealing and simple to apply in practice. 

They consider the uncertainty in the inflow and can be applied to multi-reservoirs systems with 

multiple objectives; therefore this formulation can be a viable alternative for the OPT model.  

Nevertheless, some authors have been critical of the results obtained with LDR models. 

Stedinger et al. [1984] examined several of these models and suggested that the use of LDR 

policies does not result in efficient reservoir system operation. He pointed out that in highly 

constrained complex situations LDR models can indicate that some targets are not achievable 

when they really are.  
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2.2.4 Goal Programming Models 

 Goal Programming (GP) is an extension of Linear Programming that was first introduced 

by Charnes and Cooper [1961]. It aims to overcome the limited ability of LP models to 

effectively address problems involving multiple objectives. Given a target value for each of the 

multiple objectives, this optimization technique minimizes undesirable deviations from the set of 

targets (Ignizio, 1985).  There are three major variants of GP: Lexicographic, Weighted and 

Chebysnev Goal Programming. The main characteristic of the Lexicographic variant, also 

termed preemptive GP, is the existence of a number of priority levels. The minimization of the 

deviational variables placed in a higher priority level is considered infinitely more important than 

that of deviational variables placed in lower priority levels. In the Weighted variant, also termed 

non-preemptive GP, a direct trade-off between all different deviational variables is allowed by 

placing them in a weighted, normalized single objective function. In the Chebysnev variant, the 

maximum deviation from any goal, as opposed to the sum of all deviations, is minimized. (Jones 

and Tamiz, 2010) 

 Several authors have studied the application of GP to reservoir operations. Can and 

Houck [1983] developed a preemptive GP model to optimize the operation of four reservoirs in 

the Green River Basin system in Kentucky, USA.  In the preemptive GP approach, in addition to 

the target values the decision-maker is also required to assign priorities to the goals. They first 

presented an LP formulation where the objective was to minimize storage and flow penalties 

over the operating horizon; these penalties were defined by piecewise linear convex functions. 

Then, they proposed the GP alternative formulation using the penalty functions as a basis to rank 

the goals.  Both optimizations were carried out, and the “quality” of the operation was compared 
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using the penalties such that the operation that produced a smaller total penalty over an extended 

period would be considered the best. They concluded that the operations recommended by the 

two models were close to each other, although in some cases the GP model performed better than 

the LP model.  The authors pointed out that the GP model has the advantage that the decision-

makers are not forced to assign numerical weights to the flow and storage zones, although they 

pointed out that it may be necessary to assign weights to the goals with the same priority. 

 Loganathan and Bhattacharya [1990] analyzed several GP variants in the operation of the 

same multi-reservoir system studied by Can and Houck [1983].  In addition to the three main GP 

variants, they considered Fuzzy and Interval Goal Programming. In the Fuzzy GP alternative, 

membership functions were used to model the imprecision in the targets, while in Interval GP the 

model attempted to keep the objective function within some lower and upper bounds. In this 

study, they used a computer program called ADBASE to find the efficient corner points of the 

multi-objective problem. The program found 12 efficient points, and three of these points 

corresponded to the solutions of the Lexicographic, Weighted and Chebysnev formulations. 

 Al Mamun [2012] used a GP formulation to the Columbia River Treaty Model (CRTM) 

developed by BC Hydro, in order to consider fisheries requirements in the operation of the 

Columbia River reservoirs. The original CRTM considered only flood protection and 

hydropower generation as model objectives. The new fisheries requirements included flow 

augmentation to facilitate the migration of the salmon and to protect the spawning and hatching 

of whitefish and trout eggs from January to July. A Lexicographic GP formulation was 

introduced into the model giving a higher priority to the protection of salmon than whitefish, and 

Trout protection and the maximization of BC Hydro revenue. The results showed that it was 
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possible to meet the fisheries requirements with a high level of satisfaction with a very little 

impact on the hydropower generation. 

 

2.2.5 Chance-Constrained Goal Programming Models 

 Changchit and Terrell [1992] developed a model for a three reservoir system in 

Oklahoma using both chance constraints and a GP formulation. The objectives considered in the 

model included hydropower generation, flood control, drought control, recreation, releases for 

municipal and industrial water supply and releases for other uses. They classified these 

objectives in “deterministic goals” and “probabilistic goals”, and after defining deterministic 

equivalents for the probabilistic goals, the deviations from the targets were minimized.  The 

deterministic equivalents used cumulative distribution functions for the inflows. The historical 

records for 36 years were used to define these distributions, and a Kolmogorov-Sminorv 

goodness-of-fit test showed that lognormal distributions were a good fit to the data.    

Abdelaziz and Sameh [2001] also developed a chance constrained GP model for a multi-

reservoir system in the north of Tunisia. The model objective was to determine the appropriate 

reservoirs releases in order to satisfy multiple conflicting objectives, including the minimization 

of the salinity at the Bejeoua reservoir and the minimization of pumping costs between the 

Echkel and Bejeoua reservoirs. In addition to the randomness in the inflow, they considered that 

the drinking water demand was also random. Therefore, they defined cumulative probability 

distributions for both the inflow and the water demand, and they used it in the deterministic 

equivalents of the probabilistic goals. The objective function was a weighted minimization of the 

deviational variables.  
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2.2.6 Implicit Stochastic Optimization 

Some of the models reviewed in this literature survey consider the stochastic nature of 

inflow, while others assume that the inflows are known with certainty. Nevertheless, it is 

possible to incorporate the uncertainty of reservoir inflows in a deterministic model by 

introducing an Implicit Stochastic Optimization (ISO) formulation. The method consists in 

running the deterministic optimization model with a large number of equally likely inflow 

scenarios. A different optimal result is obtained for each inflow realization, and the total set of 

optimal results can be used to develop optimal operation rules by performing a multiple 

regression analysis on the model outputs.  These rules provide the optimal release conditioned on 

observable information such as current storage levels or previous period inflows. Since ISO 

models can be extremely large, its application should be limited to the most efficient 

optimization methods (Celeste et al., 2009).  

Labadie [2004] performed a state-of-the-art review of optimization methods for multi-

reservoir systems, and he found that the ISO formulation has been adapted to many deterministic 

models, including linear programming models (Hiew et al., 1989), flow network algorithms 

(Lund and Ferreira, 1996), successive quadratic programming (Peng and Buras, 2000), dynamic 

programming (Young, 1967), (Karamouz et. al, 1992),  among others. 

 



A version of this chapter will be submitted for publication.  
Archila D. and Shawwash Z., “Optimization of Units Maintenance Scheduling in Multi-purpose, 
Multi-Reservoir Systems” 
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Chapter  3: Optimization of Units Maintenance Scheduling in Multi-Purpose, 

Multi-Reservoir Systems. 

This chapter presents the development of a mixed integer linear program (MILP) model 

formulation for the optimal operation of multi-reservoir systems, considering the preventive 

maintenance scheduling of the generating units. The proposed formulation finds the maintenance 

outage schedule that optimizes the model objectives: the maximization of revenue from power 

generation and the minimization of penalties resulting from deviations of reservoir elevations 

and spill releases from a preferred operating regime. The model is applied to the Bridge River 

system considering three different scenarios with fixed and optimized outages.  

 

3.1 Introduction and Problem Definition 

The optimal scheduling of preventive maintenance outages in generating units can 

constitute a complex and time-consuming problem.  Several optimization techniques have been 

proposed for that purpose, including heuristic methods (Kothari and Ahmad, 1993; Shimomura 

et. al., 2002), integer and mixed integer programming (Edwin and Curtius, 1990; Takriti and 

Birge, 2000; Martin, 2000; Yuehao, 2007; Aghaei et al., 2013), dynamic programming 

(Yamayee et al., 1983; Georgakakos, 1997; Yi et al., 2003), goal programming (Muñoz and 

Ramos, 1999), decomposition Methods (Yellen et al., 1992; Carpentier et al., 1996) among 

others. Although some of these methods have been applied to hydroelectric projects, the 

maintenance scheduling (MS) in multi-reservoir systems has not been thoroughly investigated.  

The MS modeling in multi-reservoir systems is essential in utilities that largely rely on this type 
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of systems. Such is the case of the British Columbia Hydro and Power Authority (BC Hydro), 

the largest electric utility in the province of British Columbia, Canada. More than 65% of BC 

Hydro’s installed generating capacity comes from multiple reservoirs located in just two river 

basins, the Peace River and the Columbia River, while an additional 16% comes from smaller 

multi-reservoir systems located in other river basins (BCHydro, 2000).  These multi-reservoir 

systems serve multiples purposes besides power generation, including flood control, recreation, 

environmental protection, conservation of cultural and archaeological sites and water supply for 

human consumption. The consideration of these multiple purposes makes the MS modeling even 

more complex: where the selected schedule for the maintenance outages might benefit one of the 

reservoir’s objectives, it can also negatively affect others. Therefore, it is important for the 

reservoir’s operators to understand the tradeoffs between the MS and the optimization of the 

different purposes. This paper presents the development of a mixed integer linear programming 

(MILP) model formulation that aims to achieve that. Based on the operator’s modeling priorities, 

the proposed formulation establishes the optimal operation of a multi-reservoir system and the 

optimal MS of the corresponding generating units. 

 

3.2 Proposed Formulation 

The stages of the proposed MILP algorithm are described in Figure 3.1. Given the time 

step, length of the study period and the maintenance outage duration of all the generating units in 

the system, the first stage consists in the definition of all the possible outage alternative 

solutions.  
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Figure 3.1 Stages of the proposed MILP Algorithm 

As an example, Figure 3.2 presents all the possible alternative solutions for a 10-day 

maintenance outage of a single unit in a study period of 20 days and a daily time step. There is a 

total of 11 solutions, starting the earliest (S1) in day 1 and finalizing in day 10, while the latest 

(S11) starts in day 11 and ends in day 20. Similarly, all the possible MS solutions for the rest of 

the generating units in the system must be established. A preprocessor was developed in AMPL 

in order to define these outage alternatives and keep record of the units’ status in each time step 

of every solution. 
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Figure 3.2 Alternative solutions for the MS of a single unit 
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In the second stage, a binary variable is indexed to each of the outage alternatives defined in the 

first stage, and the MILP optimization model assigns a value of one to a single solution for each 

generating unit. The selected solutions, which are those that optimize the model objectives, 

establish the generating units’ availability combination for each time step of the study period. In 

turn, the units’ availability combination determines the computation of the power generation in 

the model.  The relationship between the selected solutions and the power generation calculation 

will be further explained in the formulation of the optimization model. 

 Several authors have pointed out the extensive computational resources that some integer 

and mixed integer programming models require, and they have suggested that this can be 

improved by reducing the number of variables (Guignard and Spielberg, 1981; Crowder et al., 

1983; Savelsbergh, 1993; Babayev and Mardanov, 1994). Therefore, in order to accelerate the 

required solution time, a special emphasis is given to decrease the number of binary variables. 

This can be achieved by limiting the number of alternative solutions for the MS through the 

definition of sequential outages. For example, in a system with 3 generating units, there will be 

33 alternative solutions for a maintenance outage of 10 days per unit in a study period of 20 days 

consisting of 11 alternatives for each generating unit, as it is shown in Figure 3.2. However, if 

sequential outages are specified in such a way that the outage in a unit begins after a fixed period 

of time since the start of another unit’s outage, the number of solutions can be significantly 

decreased. Figure 3.3 presents an example of this assuming a lag of 3 days between the outages. 

It can be observed that the number of alternative solutions goes down from 33 to just 5. More 

significant reduction in alternatives is expected for longer study periods. 
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Figure 3.3 Alternative solutions for the MS of three units, assuming sequential outages. 

In order to provide the user more flexibility during the analysis of the MS, the proposed 

formulation allows different configurations of sequential outages. This includes setting the order 

of the outages, specifying gaps between outages, and scheduling simultaneous (paired) outages. 

Figure 3.4 presents an example that includes such configurations. 
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Figure 3.4 Alternative solutions for the MS of four units, assuming simultaneous sequential outages. 
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3.3 Formulation of the MILP Optimization Model 

The deterministic optimization model used in the second stage of the algorithm was 

developed and solved using AMPL/CPLEX and it was divided into three basic components: (1) 

the decision variables, (2) the objective function and (3) the model constraints.   

 

3.3.1 Decision Variables 

The main decision variables of the model are the following: 

Sp,t Storage of reservoir p at the time step t 
spilQp,n,t Spill release from reservoir p, through the release structure n, during 

time step t 
turbQp,t Turbine release from reservoir p, during time step t 
turbQZonep,t,z Turbine release from reservoir p, during time step t , during sub-time 

step z 
Gp,t,z Power generation at reservoir p, at time step t , during sub-time step z 
푠퐶표푚푏표 , ,  Binary variable indexed over reservoir p, time step t and the units’ 

availability combination k 
푠퐴푙푡푒푟푛푎푡푖푣푒 , ,  Binary variable indexed over reservoir p, unit m, and the maintenance 

scheduling solutions ns 
 

It can be observed that there are two variables related to turbine releases. The first 

variable (turbQp,t ) represent the average turbine flow during the time step t, while turbQZonep,t,z 

is the average turbine flow for sub-time step z defined by the user. These sub-time steps depend 

on the variability of the electricity prices within a time step. 

 

3.3.2 The Objective Function 

The multi-objective problem is solved in the model making use of an optimization 

method known as the Weighting Method of Multi Objective Optimization, where a grand 
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objective is established adding all the individual objectives, each multiplied by a weighting W 

coefficient as follows: 

푀푖푛푖푚푖푧푒	{푊 ∗ ∑ 푃퐹푆 푆 , 	, + 	푊 ∗ ∑ 푃퐹푄 푠푝푖푙푄 , ,, ,   

  −	푊 	∗ ∑ 퐺 , , ∗ t ∗ 푝푟푖푐푒푍표푛푒퐹푟푎푐푡푖표푛 , ∗ 푝푟푖푐푒 , }, ,    (3.1) 

The first two terms of the objective function refer to the minimization of the storage and 

spillway deviations from some preferred operating regimes, respectively. The minimization is 

accomplished through the use of “penalty functions” for storage (PFS) and for spill (PFQ). 

These functions, which must be defined by the user, are piecewise linear curves where a penalty 

number is assigned for all the possible values of reservoir storage and the spill releases. The 

functions return a value of zero when the values are within the preferred range; otherwise it 

returns a penalty value. The farther a value is from the target, the greater the penalty.  Figure 3.5 

presents an example of a penalty function for spill releases. 
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Figure 3.5 Example of a penalty function for spill release. 

The third term of the objective function refers to the maximization of the revenue from 

power generation.  The negative sign of this term results in maximization of the expected 

revenues of power generation. This revenue is computed for each sub-time step by multiplying 

the power generation, the number of hours in each sub-time step (t* priceZoneFraction) and 

the corresponding electricity price.   
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 The weighting coefficients WS, WQ and WR are input parameters whose values should be 

based in the priorities of the decision makers. Nevertheless, it is a common practice in this 

optimization method to run the model several times varying these coefficients until the set of 

non-inferior solutions is generated (Revelle et al, 2004).    

 

3.3.3 Model Constraints 

The following sets of constraints are used in the optimization model: 

 General constraints as described below 

 Constraints for the calculation of the power generation using Generation 

Production Functions. 

 Constraints for the selection of the optimal MS solutions. 

 
General constraints: 

 
 This set of constraints includes: 

 Mass balance equation: 

푆 , = 푆 , + 	 퐼 , − 푠푝푖푙푄 , , − 푡푢푟푏푄 ,  

+ 퐴 , , ∗ 푠푝푖푙푄 , , + 퐵 , ∗ 푡푢푟푏푄 ,  

 

(3.2) 

Where: 

Ip,t = deterministic inflow into reservoir p during time step t. 

NX = total number of spill release structures in reservoir X.  

T = total number of reservoirs in the system. 

Ak,n,p = 1 if the spill from release structure n in reservoir k flows into reservoir 

p; 0 otherwise. 

Bl,p = 1 if the turbine release from reservoir l flows into reservoir p; 0 

otherwise. 



28 

 

 Controlled spillways  

푠푝푖푙푄 , , ≤ 푆푝푖푙푙푓푢푛푐 , 푆 , 	 					{푖푓	푐표푛푡푆푝푖푙푙[푛] = 	1} (3.3) 

Where 푆푝푖푙푙푓푢푛푐 ,  is a piecewise linear function that defines the maximum spill 

flow that can be released from the release structure n in reservoir p, as a function 

of the reservoir volume. This constraint applies if the release structure n has been 

identified as a controlled release structure (i.e. if parameter contSpill[n] is 1). 

 

 Non-controlled spillways  

푠푝푖푙푄 , , = 푆푝푖푙푙푓푢푛푐 , 푆 , 	 					{푖푓	푓푟푒푒푆푝푖푙푙[푛] = 	1} (3.4) 

The only difference between Constraints 3.3 and 3.4 is that the latter is an equality 

constraint.  It applies if the release structure n has been identified as a non-

controlled release structure (i.e. if parameter freeSpill[n] is 1). 

 

 Total turbine release 

푡푢푟푏푄 , = 푝푟푖푐푒푍표푛푒퐹푟푎푐푡푖표푛 , ∗ 푡푢푟푏푄푍표푛푒 , ,  (3.5) 

Where: 

Z = Total number of sub-time steps defined by the user. 

푝푟푖푐푒푍표푛푒퐹푟푎푐푡푖표푛 ,  = fraction of the sub-time step z in time step t. 

 

 Limits on optimization variables 

푆푚푖푛 , ≤ 푆 , ≤ 푆푚푎푥 ,  (3.6) 

푠푝푖푙푄푚푖푛 , ≤ 푠푝푖푙푄 , ≤ 푠푝푖푙푄푚푎푥 ,  (3.7) 

푡푢푟푏푄푚푖푛 , ≤ 푡푢푟푏푄 , ≤ 푡푢푟푏푄푚푎푥 ,  (3.8) 

퐺푚푖푛 , ≤ 퐺 , , ≤ 퐺푚푎푥 ,  (3.9) 
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Constraints for the calculation of the power generation using Generation Production 
Functions: 

 
 The Generation Production Functions (GPFs) are formulated as a family of 

tridimensional surfaces that provides the maximum power generation as a function of forebay 

elevation, turbine discharge and unit availability. Shawwash et al. [2000] developed a procedure 

to build the GPFs for the different hydropower generation plants in the BC Hydro system. This 

procedure uses the output of the Static Plant Unit Commitment (SPUC) (Smith, 1998) which 

uses a dynamic programming algorithm to determine the optimized turbine discharge for each 

increment of plant generation, forebay and tail-water elevation and turbine availability 

combination. Using this output, the procedure develops a set of two dimensional piecewise linear 

curves that accurately approximate the GPFs. The following constraints were included in the 

model in order to use the GPFs and overcome their dependency over the forebay elevation and 

the units’ availability combination: 

퐺 , , ≤ 퐺푃퐹 , , , 푡푢푟푏푄푍표푛푒_퐴푢푥 , , ,  (3.10) 

푠퐶표푚푏표 , , = 1 (3.11) 

푡푢푟푏푄푍표푛푒_퐴푈푋 , , , ≥ 푠퐶표푚푏표 , , ∗ 푡푢푟푏푄푚푖푛 ,    (3.12) 

푡푢푟푏푄푍표푛푒_퐴푈푋 , , , ≤ 푠퐶표푚푏표 , , ∗ 푡푢푟푏푄푚푎푥 , 	  (3.13) 

푡푢푟푏푄푍표푛푒 , , ≤ 푡푢푟푏푄푍표푛푒_퐴푢푥 , , ,  (3.14) 

Constraint 3.10 is used to set an upper limit to the power generation variable, which is being 

maximized. This limit is the summation of the power generation calculated with the GPFs of all 

the different units’ availability combinations in the system (K). Nevertheless, if the turbine 

release is zero for all the units’ availability combinations except the one selected by the model, 

Constraint 3.10 will only consider the corresponding GPF as the limiting function. 

This can be achieved introducing the variables sCombo and turbQZone_Aux in the model. The 

former is a binary variable indexed over reservoir, time step and all the units’ availability 

combination, and Constraint 3.11 selects (assign a value of one) to a single units’ availability 

combination for each reservoir and time step. Additional constraints are used to link this variable 
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with the selection of the MS solution. The variable turbQZone_Aux is similar to turbQZone, but 

it is indexed over the units’ availability combination. Constraints 3.12 and 3.13 forces 

turbQZone_Aux to become zero for all the combinations except the one selected in Constraint 

3.11. Finally, Constraint 3.14 makes sure that the turbQZone_Aux value of the combination 

selected is equal to the original turbQZone variable, which is used in the rest of the model. 

 The GPFs are also indexed over the forebay elevation of the reservoir. In order to prevent 

the model becoming nonlinear, a forebay elevation is assumed for each time step of the study 

period. This elevation is used to calculate the GPFs coefficients that are updated with the actual 

forebay elevation calculated by the optimization algorithm. Therefore, the model is required to 

run iteratively several times until the forebay elevation converges. 

 

Constraints for the selection of the optimal MS solutions. 
 

Although constraint 3.11 is forcing the model to select a single units’ availability combination 

for each time step of the study period, it is necessary to link it with the selection of the optimal 

MS solution. This is achieved through the following constraints: 

 

푠퐴푙푡푒푟푛푎푡푖푣푒 , , = 1 (3.15) 

푠퐶표푚푏표 , , ∗ 	푇푎푔 = 

 

푠퐴푙푡푒푟푛푎푡푖푣푒 , , ∗ 푠푈푛푖푡푆푡푎푡푢푠 , , , ∗ 10 ,  

(3.16) 

  

The binary variable sAlternative is indexed over the reservoir p, the total number of units in the 

reservoir m, and the number of solutions ns defined in the first stage of the algorithm. Constraint 

3.15 is used to assign a value of one to a single MS alternative solution for each unit in the 

system, during the study period. Constraint 3.16 makes use of an identification number 

denominated Tag that is defined for each units’ availability combination using equation 3.17: 
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푇푎푔 	= 	 푢푛푖푡푆푡푎푡푢푠 ∗ 10  (3.17) 

Where unitStatus indicates whether unit m is on (1) or off (0) and unitType is a parameter used to 

describe units with similar characteristics. Table 3.1 provides an example of the Tag number 

used in a system with three units. 

 
Table 3.1 Example of tag numbers for a system with 3 units. 

Units’ availability 
combination 

Unit 1 status 
(type 1) 

Unit 2 status 
(type 1) 

Unit 3 status 
(type 2) Tag  

000 off off off 0 
001 on off off 10 
010 off on off 10 
110 on on off 20 
100 off off on 100 
101 on off on 110 
110 off on on 110 
111 on on on 120 

 

There are seven possible units’ availability combinations in a system with three units. It can be 

observed in the example of Table 3.1 that because both unit 1 and 2 share the same type unit 

(type 1) some combinations have the same tag number. For instance, combinations 001 and 010 

represent the case where one unit type 1 is on and the single unit type 2 is off. 

Constraint 3.16 is used to verify that the units’ availability combination selected by the 

binary variable sCombo is consistent with the MS solution selected by the binary variable 

sAlternative. This is achieved making sure that the corresponding Tag number in both sides of 

the constraint is the same. In the right side of the constraint, the tag number for each time step is 

calculated considering the units status of the MS solution selected by sAlternative. The left side 

forces the model to assigns a value of 1 to the variable sCombos that represents the units’ 

availability combination with the same tag number that is in the right side. 
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If the operator decides to consider sequential outage solutions (Figure 3.3), Constraints 3.15 and 

3.16 must be replaced by the following constraints: 

푠퐴푙푡푒푟푛푎푡푖푣푒푆푒푞 , = 1 (3.18) 

푠퐶표푚푏표 , , ∗ 	푇푎푔 , = 

푠퐴푙푡푒푟푛푎푡푖푣푒푆푒푞 , ∗ 푠푈푛푖푡푆푡푎푡푢푠 , , , ∗ 10 ,  

(3.19) 

These constraints use a different binary variable denominated SAlternativeSeq which is not 

indexed over the reservoir units. Therefore, this variable can be taken out from the summation 

over m in Constraint 3.19. 

 

3.3.4 Additional Modeling Features 

 The MILP optimization model calculates the difference in revenue between the scenario 

specified by the user and a hypothetical scenario without any outages considered. The resulting 

difference is denominated the “outage cost” and it can be used as a reference to compare 

different outage scenarios. 

   Another feature of the proposed formulation is that it allows the user to specify the 

occurrence of fixed outages. In this scenario, the model does not perform any MS optimization 

and it uses the units’ availability combinations specified by the user to construct the GPFs. 

Constraints 3.11, 3.15 and 3.16 are dropped and the following constraint is introduced: 

 푠퐶표푚푏표 , , = 1		{푖푓	푇푎푔[푘] = 	푇푎푔[퐶 ]} (3.20) 

Where the conditional statement {if Tag[k] = Tag[Ct]} forces the model to assign a value of one 

to the binary variable sCombo indexed over Ct, which is the combination selected by the user.  
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 The formulation also let the user combine fixed outages with the MS optimization. After 

the user specifies the dates of the fixed outages and the configuration of the additional outages 

that will be optimized, the alternatives solutions established in the first stage of the algorithm are 

revised and those that overlap with the fixed outage are discarded. In the example presented in 

Figure 3.2, if a fixed outage of 3 days is specified in days 17, 18 and 19, the alternative solutions 

S8 to S11 will be discarded. This is shown in Figure 3.6. This scenario does not require any 

modification in the optimization model. 

1
2

3
4

5
6

7

Maintenance outage in Unit 1 Fixed  maintenance outage in Unit 1

Discarded solutions due
to overlap with fixed
outage.

t5 t10 t15 t20

 

Figure 3.6 Fixed outage and alternative solutions for the MS of a single unit. 

 

3.4 Case Study 

The MS model was tested for a case study using the Bridge River hydropower project 

near Lillooet, British Columbia, Canada. This project consists of three dams and four generation 

stations. Figure 3.7 presents a schematic of the Bridge River project. 
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Figure 3.7 Hydraulic configuration of the Bridge River project. 

The La Joie dam impounds the upstream portion of the Bridge River and forms Downton 

Lake reservoir.  The La Joie generating station has a single unit with an operating range between 

3 and 25 MW. Both spill and turbine discharges from La Joie flows into Carpenter Lake, 

impounded by Terzaghi dam. Water from this reservoir can be diverted to two different 

generating stations: Bridge River #1, with four units and operating range between 20 and 52 MW 

each, and Bridge River #2 with another four units capable of operating between 20 and 75 MW 

each. The spillway discharge from this reservoir flows into the Lower Bridge River, while the 

turbine discharges flows directly into Seton Lake. The Seton generating station has a single unit 

with operating range between 5 and 48 MW. The spill and turbine discharges from Seton Lake 

flows into the Seton River, a tributary of the Fraser River. An additional independent power 

producer is also considered in the system: the Walden North project is a reservoir with limited 
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storage whose turbine discharge flows into Seton Lake. The spillway from this project discharges 

directly into Cayoosh Creek.  

The model was run considering the inflow values of the year 1984 for the required outage 

durations presented in Table 3.2. The 4-days outages are required for regular maintenance, while 

longer periods are used for rehabilitation purposes. No outages were considered in the Seton 

generation station. 

Table 3.2 Duration of maintenance outages in La Joie and Bridge River G.S. 
 
 Duration of Maintenance Outage (days) 
Generation station La Joie Bridge River #1 Bridge River #2 

Turbine Unit 1 Unit 
1 

Unit 
2 

Unit 
3 

Unit 
4 

Unit 
5 

Unit 
6 

Unit 
7 

Unit 
8 

First outage - 110 67 67 110 4 4 4 4 
Second outage 25 4 53 53 4 4 4 4 4 

 
The formulation was tested using three different scenarios and considering fixed and 

optimized outages, as listed in Table 3.3. The dates of the fixed outages for Scenarios 1 and 2 are 

presented in Table 3.4. All the scenarios were run considering a study period of 365 days and a 

daily time step.  

Table 3.3 Model configuration for Sequences 1, 2 and 3 

 
 Weight coefficients Outage configuration 

WS WQ WR First outage Second outage 
Scenario 1 0.30 0.30 0.40 fixed fixed 
Scenario 2 0.30 0.30 0.40 fixed optimized 
Scenario 3 0.30 0.30 0.40 optimized fixed 

 
 

Table 3.4 Fixed MS for Scenarios 1 and 2 
 

G.S. La Joie Bridge River #1 Bridge River #2 
Turbine Unit 1 Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Unit 8 

First 
outage -  

Feb 1st   
to  

May 21st   

Feb 1st   
to  

Apr 8th     

Feb 1st   
to  

Apr 8th     

Feb 1st   
to  

May 21st   

Aug 8th  
to  

Aug 11th    

Aug 8th  
to  

Aug 11th    

Aug 
19th  to  

Aug 
22nd     

Aug 
19th  to  

Aug 
22nd     

Second 
outage 

Oct 5th   
to  

Oct 29th  

Sep 9th  
to  

Sep 12th   

Aug 16th 
to  

Oct 7th   

Aug 16th 
to  

Oct 7th   

Sep 9th  
to  

Sep 12th   

Nov 1st  
to  

Nov 4th    

Nov 1st  
to  

Nov 4th    

Nov 
12th to 
Nov 
15th    

Nov 
12th to 
Nov 
15th    
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Figures 3.8 to 3.10 show the resulting MS for each of the scenarios tested with the model.  

 
Figure 3.8 Maintenance Scheduling in Scenario 1 

 

 

 
 

Figure 3.9 Maintenance Scheduling in Scenario 2 
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Figure 3.10 Maintenance Scheduling in Scenario 3 

 

Table 3.5 presents a comparison of the results of the three different scenarios. The MS 

cost of each of the scenarios is shown in the second column. It can be observed that the cost 

decreases progressively from the first scenario, where both outages (per unit) were specified by 

the user, to the third scenario, where the model found the optimal schedule for the first outages. 

The fixed outages in Scenario 1 were schedule during the months of low inflows in order to 

reduce the spilled water during the freshet period. However, the scheduling optimization in 

Scenario 2 was able to reduce the outage cost without increasing the spill and forebay elevation 

penalties. This was achieved even though the first outage for each unit was not rescheduled. The 

optimization of the second outages was performed assuming sequential simultaneous outages 

with a gap of 5 days between outages. In Scenario 3, the optimized second outages from 

Scenario 2 were fixed, and the optimization derived the optimal schedule of the first outages, 

except for the La Joie G.S. which only had one outage specified. Owing to the extended length of 

these outages, they were not required to be sequential. The model was able to find a schedule 
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with lower outage cost and lower spill penalties than that of Scenario 2. The forebay elevation 

penalties were the same in the three scenarios. 

Table 3.5 Model results for Scenarios 1, 2 and 3 

 
 Outage cost  

(Mil. $) 
Total forebay elevation 

penalties (Mil. $) 
Total spillway 

penalties (Mil. $) 
Computing time1 

(min)  
Scenario 1 4.20 0.13 91.40 1 
Scenario 2 3.64 0.13 91.38 10 
Scenario 3 3.56 0.13 91.22 19 

  

3.5 Summary and Conclusions 

This research introduced a two-stage algorithm for the analysis of maintenance 

scheduling in multi-reservoir systems. The first stage of the algorithm consists in establishing all 

the possible MS solutions for a given configuration. In the second stage, a MILP model selects 

the MS solution that optimizes three objectives: maximization of revenue from power generation 

and minimization of penalties resulting from deviations of reservoir elevations and spill releases 

from a preferred operating regime. The model makes use of Generation Production Functions 

which are piecewise linear curves indexed over forebay elevation and the unit’s availability 

combination, and are used to calculate power generation as a function of turbine discharge.  The 

formulation was tested in a case study of the Bridge River System, using inflow sequences 

recorded in 1984. The results demonstrated that the MS selected by the model has a lower cost 

and at the same time presented smaller spillway penalties than the original MS.  

 The proposed formulation provides a new, practical tool for the analysis of MS of 

generating units. The flexibility in the optimization component allows the user to analyze 

different scenarios, including the specification of sequential outages with different 

configurations. Additional work is required to determine how the scheduling optimization is 

                                                
1 The three scenarios were run on an Intel® Core™ I5 2.50 GHz. Processor with 8.00 GB of RAM 
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affected by the weight coefficients and the values of the penalty functions used in the objective 

equation. 
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Chapter  4: A Multi-Objective Optimization Model for Operations Planning 

of Multi-Reservoir Systems 

 This chapter presents the development and evaluation of a multi-objective optimization 

tool for the operations planning platform (OPP) at BC Hydro. The optimization model 

incorporates two main objectives: (1) to maximize revenue from power generation; and (2) to 

minimize penalties resulting from deviations of reservoir elevations and spill releases from a 

preferred operating regime. We analyze the use of penalty functions in the objective function and 

propose an alternative formulation using Chance Constraints and Linear Decision Rules. We 

present results of a case study to illustrate the capabilities of the tool to provide decision makers 

with timely information on trade-off between different objectives and the impacts of using 

chance constraints in lieu of penalty functions. 

 

4.1  General Overview of the Operations Planning Tool (OPT) 

The Operations Planning Tool (OPT) is an in-house application developed by BC Hydro 

to aid the Operation Planning Engineers (OPEs) to make decisions regarding the operation of a 

multi-reservoir system. It consists of three main components: the graphical user interface (GUI), 

the optimization model and the solver software. The GUI allows the user to configure the 

optimization study, change model configurations, run the optimization and retrieve and display 

the output data.  The optimization model is formulated in AMPL, while the CPLEX solver is 

used to solve the optimization problem.  The GUI is used to configure the study and prepare 
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input data in the user’s workstation; the problem is sent and solved at the server workstation 

where the AMPL and CPLEX solver resides and then the solution is sent back to the client 

workstation. This process is illustrated in Figure 4.1. This paper will focus on the optimization 

model formulation. 

 

 

 

 

 

 

 

 

 

Figure 4.1 Process diagram of the Operations Planning Tool 

 

4.1.1  The Optimization Model 

The OPT is a deterministic Linear Programming optimization model and it can be divided 

into three basic components: (1) the decision variables, (2) the objective function and (3) the 

model constraints. A brief description of each of these components is presented in the following 

sections. 
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Decision Variables 

The major decision variables of the model are the following: 

Sp,t Storage of reservoir p at the time step t 
spilQp,n,t Spillway release from reservoir p, through the release 

structure n, at time step t 
turbQp,t Turbine release from reservoir p at time step t 
turbQZonep,t,z Turbine release from reservoir p, at time step t , during sub-

time step z 
Gp,t,z Power generated at reservoir p, at time step t , during sub-

time step z 
 

 It can be observed that there are two variables related to turbine releases. The first 

variable (turbQp,t ) is the average turbine flow during the time step t, while turbQZonep,t,z is the 

average turbine flow during a shorter time step z (sub-time step) defined by the user. These sub-

time steps depend on the variability of the electricity prices within a time step. For example, a 

typical day the user can define two price zones: Heavy Load Hours (hlh) for the heavy load 

hours, and Light Load Hours (llh) for the rest of the day.  The electricity prices in these two 

zones are different and therefore it is of interest to know the average turbine release in each of 

them. 

The Objective Function 

The OPT multi-objective problem is solved making use of an optimization method known as the 

Weighting Method of Multi Objective Optimization, where a grand objective is established 

adding all the individual objectives, each one multiplied by a weighting coefficient as follows: 

 

푀푖푛푖푚푖푧푒	{푊 ∗ ∑ 푃퐹푆 푆 , 	, + 	푊 ∗ ∑ 푃퐹푄 푠푝푖푙푄 , ,, ,   

−	푊 	∗ ∑ 퐺 , , ∗ t ∗ 푝푟푖푐푒푍표푛푒퐹푟푎푐푡푖표푛 , ∗ 푝푟푖푐푒 , }, ,      (4.1) 
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 The first two terms of the objective function refer to the minimization of the storage and 

spillway deviations from some preferred operating regimes, respectively. The minimization is 

accomplished through the use of “penalty functions” denominated PFS for storage and PFQ for 

spill. These functions, which must be defined by the user, are piece-wise linear curves where a 

penalty number is assigned to all the possible values that the elevation and the spillway releases 

can have. When the values are within the preferred range a penalty value of zero is produced, 

while those outside of the target range must result in a non-zero penalty. The farther a value is 

from the target, the greatest its penalty will be.  Figure 4.2 presents an example of a penalty 

function for spillway releases. 

 

 

 

 

   

 

 

 

Figure 4.2 Example of a penalty function for spillway releases 

 

The third term of the objective function refers to the maximization of the revenue from 

power generation.  Due to the negative sign of this term, the model performs a maximization of 

the revenue even though the objective function as a whole is being minimized. In other words, 

because the model tries to make this term as negative as possible, the absolute value of the 

revenue will also be the highest possible. This revenue is computed for each sub-time step, 
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multiplying the power generation, the number of hours in each sub-time step (t* 

priceZoneFraction) and the corresponding price.   

 The weighting coefficients WS, WQ and WR are input parameters whose values should be 

based in the priorities of the decision makers. Nevertheless, it is a common practice in this 

optimization method to run the model several times varying these coefficients until the set of 

non-inferior solutions is generated (Revelle et al, 2004).    

Model Constraints 

The constraints in the OPT model are used to fulfill the following purposes:  

• Satisfy the continuity equation (reservoir mass balance). 

• Set limits to the optimization variables. 

• Relate the total turbine release per time step (turbQp,t) with the turbine release in the 

sub-time steps (turbQZonep,t,z). 

• Calculation of the power generation through Generation Production Functions. 

The Generation Production Functions (GPFs) are a family of tridimensional surfaces that 

provides the maximum power generation as a function of forebay elevation, turbine discharge 

and turbine availability. Shawwash et al. [2000] developed a procedure to build the GPFs for the 

different hydropower generation plants in the BC Hydro system. 

 

4.2  Use of Chance Constraints in the OPT Model 

The penalty functions used in the objective function are piecewise linear functions that 

allow the user to set targets for the forebay elevation and the spillway releases; nevertheless, 

these targets might be violated depending on the trade-off between the different objectives, 

which in turn is conditioned by the inflow scenario, the weight coefficients and the penalty 

values assigned to the targets. Penalty functions and piecewise linear functions have been used 

by different authors in reservoirs operations.  Sigvaldason [1976] developed a flow network 
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model for the Trent River System in Ontario. He used penalty functions in the objective function 

in order to consider the “operation perception of optimal operation”. Can and Houck [1984] 

proposed two optimization models for a multi-reservoir system in the Green River Basin, 

Kentucky. The first model made use of piecewise linear penalty functions, similar to the OPT 

model, while the second model used a preemptive Goal Programming approach. Oliviera and 

Loucks [1997] developed a Genetic algorithm (GA)-based methodology which identifies the 

system release rule and the reservoir balancing functions as piecewise linear functions.  

The use of penalty functions in the OPT model presents some limitations: first, it is not an 

easy task for the user to assign the penalty values for the different targets. The x-axis of the two 

type of penalty functions use different units (e.g., meters for the forebay elevation, cubic meters 

per second for the spillway releases); therefore, in order to have a balanced trade-off in the 

optimization process, it requires a comprehensive analysis to decide which slope should be 

assigned to each segment of the piecewise linear functions. Second, the optimization method that 

is used in the model requires the multiplication of the objective terms by some weight 

coefficients. The selection of these coefficients might also require a detailed analysis. Marler and 

Arora [2004] carried out a survey of different approaches used to determine these weights, but 

they concluded that even varying the weights consistently and continuously may not result in an 

even and complete representation of the Pareto optimal set.  

 Therefore, it is desirable to find an alternative formulation for the OPT model that could 

provide the benefits of the penalty functions and at the same time overcome the limitations 

previously described.  We have investigated the chance constraints method which could be a 

suitable alternative. Chance constraints act is a similar way to the penalty functions and they can 

be used as “soft constraints” allowing the establishment of targets but also considering that under 
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certain conditions these targets may not be satisfied. They present the advantage that it can be 

easier for the user to establish reliability levels for the chance constraints compared to the 

construction of the penalty functions.  An alternate formulation for the OPT model using Chance 

Constraints is proposed in Equations 4.2 to 4.6: 

 Maximize:     ∑ 푃 , , ∗ 24 ∗ 푝푟푖푐푒푍표푛푒퐹푟푎푐푡푖표푛 , ∗ 푝푟푖푐푒 ,, ,    (4.2) 

 Subject to: 

  푃 푆 , ≥	푆푇푎푟푔푒푡_푙표푤 , ≥ 훾 ,           (4.3) 

  푃 푆 , ≤ 푆푇푎푟푔푒푡_푢푝 , ≥ 훿 ,           (4.4) 

  푃 푠푝푖푙푄 , ≥ 푠푝푖푙푄푇푎푟푔푒푡_푙표푤 , ≥ 훼 ,         (4.5) 

  푃 푠푝푖푙푄 , .≤ 푠푝푖푙푄푇푎푟푔푒푡_푢푝 , ≥ 훽 ,         (4.6) 
 

Where STarget_low, STarget_up, spilQTarget_low and spilQTarget_up are the lower and 

upper limits for the preferred storage and spillway release regimes. It can observed that in 

contrast to the objective function of the original model presented in Equation 4.1, the objective 

function using chance constraints consists of a single objective, which is the maximization of 

revenue from power generation. This change converts the OPT model into a single LP problem 

and the use of weight coefficients is no longer required.  Therefore, the second limitation from 

the use of penalty function is also eliminated using chance constraints.   

 However, there are two main challenges that arise when using chance constraints. First, it 

is necessary to find a deterministic equivalent for constraints 4.3 to 4.6 and this requires the 

definition of probability distribution for the random variables used in the chance constraints. 

Since these are dependent on an operation policy, both the probability distributions of S and 

spilQ are unknown and they must be defined in terms of another random variable with a known 

distribution (Loucks and Dorfman, 1975). This can be achieved through the use of linear 

decision rules (LDR) which defines the storage and spill releases in terms of the inflow, another 
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random variable whose probability distribution can be constructed based on historical records. 

Then a deterministic equivalent formulation can be derived and used in the optimization model. 

The second challenge is to determine the highest possible reliability levels of meeting the 

preferred storage and spillway releases regimes. This can be accomplished running the model 

several times for different reliability levels, each time with a higher reliability that in the 

previous run, until an infeasible operation is encountered. The increments in the reliability levels 

must be small enough in order to accurately find the highest possible level. The multiple running 

of the model in order to find these reliability levels is equivalent to the multiple runs required by 

the variation of the weight coefficients in the original OPT formulation. Nevertheless, it is easier 

for the user to increase the reliability levels than to take decisions about the variation of the 

weight coefficients. 

 

4.2.1  The Definition of Linear Decision Rules 

Linear decision rules have been used in reservoir system optimization to determine 

optimal operation policy rules in LP applications. Basically, they define storage and spillway 

releases in terms of the inflow and a deterministic variable.  Loucks and Dorfman [1975] 

proposed the following general syntax for a LDR: 

푠푝푖푙푄 , = (1− 휆) ∗ 퐼푛푓푙표푤 , + 푆 , − 푏          (4.7) 

Where b is an unknown determinist variable defined for each time step of the study 

period and λ is a parameter with values between 0 and 1 that indicates how much of the inflow 

will be considered in the spillway operation rule. In the original linear decision proposed by 

Revelle et al. [1969] the λ parameter was equal to 1, and therefore the spillway releases relied 

only on storage during the previous time step. Loucks [1970] found that this assumption yielded 
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conservative results, and hence he proposed a value of 0 for λ.  Sreenivasan and Vedula [1996] 

also used the general LDR with λ equal to 0, but in addition, they incorporated the turbine 

releases as an additional deterministic variable in the rule. Several other authors have proposed 

different linear decision rules, but in this paper we perform that analysis using the general 

decision rule proposed by Loucks and Dorfman incorporating the turbine releases as suggested 

by Sreenivasan and Vedula as outlined in Equation 4.8: 

푠푝푖푙푄 , = (1− 휆) ∗ 퐼푛푓푙표푤 , + 푆 , − 푡푢푟푏푄 , − 푏        (4.8) 

 
 

4.2.2 Development of Linear Decision Rules for a Multi-Reservoir System 

Before the LDR can be used in the chance constraints, the spillway release must be 

defined in terms of deterministic variables or random variables with known distributions. This 

means that equation 4.8 must be modified in order to eliminate the dependence of spilQp,t over 

Sp,t-1. This can be accomplished replacing the LDR into the equation of storage continuity.  

Equation 4.9 presents the continuity relationship for a single reservoir: 

푆 , = 푆 , + 퐼푛푓푙표푤 , − 푡푢푟푏푄 , − 푠푝푖푙푄 ,          (4.9) 

Using a λ value of 0 and substituting equation 4.8 into the continuity equation yields: 

푆 , = 푏 ,               (4.10) 

 

Therefore, storage is set equal to the deterministic variable b. This applies to all the time steps of 

the study period, thus the spillway releases in the LDR can be expressed in terms of deterministic 

variables and random variables with known distributions: 

푠푝푖푙푄 , = 퐼푛푓푙표푤 , − 푡푢푟푏푄 , + 푏 , − 푏          (4.11) 
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Equations 4.10 and 4.11 can now be substituted into the chance constraints of the model 

presented in equations 4.2 to 4.6. Nevertheless, in a multi-reservoir system, the total inflow that 

enters a reservoir is the sum of the local inflow, the turbine discharge and spillway releases from 

upstream reservoirs. Equation 4.12 presents an extension of the LDR for a multi-reservoir 

system1: 

푠푝푖푙푄 , = 푈푝푠푡푟푒푎푚_퐼푛푓푙표푤푠 , + ∑ 퐿푖푛푘1 , ∗ 푖푛푓푙표푤 , − 푡푢푟푏푄 , + 푏 , − 푏 , +  

	∑ 퐿푖푛푘2 , ∗ 푡푢푟푏푄 , − 푡푢푟푏푄 , + 푏 , − 푏 ,         (4.12) 

Where the parameters Link1 and Link2 are flags that indicate if there are some spillway and 

turbine connections between the reservoirs. These connections will be described with an example 

in the following section. After replacing Equations 4.10 and 4.12 into the original chance 

constraints, the deterministic equivalent constraints can be defined. In Equations 4.3 and 4.4 the 

storage random variable is replaced by the deterministic variable b, therefore the probability can 

be eliminated as it is shown in Equations 4.13 and 4.14. 

푏 , ≥	푆푇푎푟푔푒푡_푙표푤 ,              (4.13) 

푏 , ≤ 푆푇푎푟푔푒푡_푢푝 ,              (4.14) 

In Equations 4.5 and 4.6, after replacing the spill variable with the linear decision rule shown in 

Equation 4.12, the deterministic equivalent can be found moving all the terms inside the 

probability to the right, except the inflow, and applying the inverse cumulative distribution 

function of the inflow to both sides of the external inequality. The resulting constraints are 

shown in Equations 4.15 and 4.16. 

퐹 _ 1 − 훼 , + 	∑ 퐿푖푛푘1 , ∗ 푖푛푓푙표푤 , − 푡푢푟푏푄 , + 푏 , − 푏 , +	  

                                                
1 The deduction of Equation 4.12 is presented in Appendix A 
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 ∑ 퐿푖푛푘2 , ∗ 푡푢푟푏푄 , − 푡푢푟푏푄 , + 푏 , − 푏 , ≥ 푠푝푖푙푄푇푎푟푔푒푡_푙표푤 ,    (4.15) 

퐹 _ 훽 , + 	∑ 퐿푖푛푘1 , ∗ 푖푛푓푙표푤 , − 푡푢푟푏푄 , + 푏 , − 푏 , +  

 ∑ 퐿푖푛푘2 , ∗ 푡푢푟푏푄 , − 푡푢푟푏푄 , + 푏 , − 푏 , ≤ 푠푝푖푙푄푇푎푟푔푒푡_푢푝 ,    (4.16) 

Where 퐹 _ [. ]  is the inverse cumulative distribution function of reservoir p 

upstream inflows. It can be observed that the storage and the spillway releases are no longer 

variables in the new deterministic constraints. Instead, power generation, turbine releases and the 

deterministic parameter b would be the new outputs of the model.    

 

4.3 Application and Results 

The proposed model formulation was tested for a case study using the Stave Falls 

hydropower projects located near Mission, British Columbia. Figure 4.3 presents a simplified 

schematic of the Stave River system. Table 4.1 presents the values for the parameters Link1 and 

Link2 for the Stave Falls project. If the spillway from one reservoir is able to reach another 

reservoir going through the spillways of the intermediate reservoirs, the Link1 flag between them 

is equal to 1. A similar criterion applies for the turbine discharge and Link2. If there are no 

intermediate reservoirs, Link1 and Link2 will be 1 if the spillway and turbine releases can flow 

from one reservoir into the other. The Link1 and Link2 parameters are used to define the 

deterministic equivalents of the chance constraints, using equations 4.13 to 4.162. 

 

 

 

 
                                                
2 Appendix A provides a more detailed explanation of the parameters Link1 and Link2 
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Figure 4.3 Hydraulic configuration of the Stave Falls project. 

 

Table 4.1 Link1 and Link2 values for the Stave Falls project. 

 Link1 flag (spillway discharge) Link2 flag (turbine discharge) 
Alouette L. Stave L. Hayward L. Alouette L. Stave L. Hayward L. 

Alouette L. 0 0 0 0 1 1 
Stave L. 0 0 1 0 0 1 

Hayward L. 0 0 0 0 0 0 
 

Table 4.2 presents the preferred storage and spillway operating regimes for the Stave Falls 

project considering different demands such as flood control, recreation and environmental 

protection. 

 

 

 

Alouette Lake

Alouette River

Turbine discharge

Inflow

Stave Lake

Inflow

Fraser River

Hayward Lake

Spillway Turbine discharge

Spillway Turbine discharge

Spillway
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Table 4.2 Preferred elevation/storage and spillway regimes for the Stave Falls Project. 

 Dates 
Minimum Maximum 

Storage (m3)  
 Spillway release (m3/s) 

Alouette 
Lake 

 
Storage 

 

Jan 1 to Mar 31 697.74 1880.91 
April 1 to April 14  697.74 2274.13 
April 15 to June 14  1742.4  2274.13 
June 15 to July 15 1770.07  2274.13 
July 16  to Sep 5 1862.3  2274.13 
Sep 6 to Sep 15 1632.16  2274.13 

Sep 16  to Sep 30 697.74  2274.13 
Oct 1 to Dec 31 697.74  1880.91 

Spillway 

Jan 1  to April 14 1.52 42.5 
April 15 to June 7 3 42.5 
June 8 to June 14 6 42.5 

June 15  to Dec 31 1.52 42.5 

Stave 
Lake 

Storage 
 

Jan 1 to May 14 1207.5 6697.38 
May 15 to Jul 15 2743.51 6280.08 
Jul 16 to Sep 7 5231.15 6280.08 
Sep 8 to Dec 31 1207.5 6697.38 

Spillway Jan 01 to Dec 31 0 500 

Hayward 
Lake 

Storage 
 

Jan 1 to Feb 14 161.427 169.851 
Feb 15 to May 15 113.211 169.851 
May 16 to Oct 14 161.427 169.851 
Oct 15 to Nov 30 113.211 169.851 
Dec 01 to Dec 31 161.427 169.851 

Spillway Jan 01 to Dec 31 0 340 
 
 The optimization model was run repeatedly by gradually increasing the reliability levels 

for equations 4.15 and 4.16 in each run. The selected LDR conditioned the model to keep the 

elevation within the preferred values throughout the optimization. For the spillway releases, two 

different combinations of reliability levels were tested. In the first alternative the reliability levels 

were increased as much as possible, giving priority to constraint 4.16. In the second alternative 

the reliability level corresponding to the minimum spillway in Alouette Lake was increased, but 

the reliability of spilling less than the maximum preferred value was decreased. Although it is 

possible to specify different reliability levels during the length of the study period, in both 

alternatives they were kept constant. The results are presented in Table 4.3. 
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Table 4.3 Model Results for Alternatives 1 and 2 

 

Alternative no. 1 Alternative no. 2 Average Annual 
Generation 1990-

2010 (MWh) α β 
Annual 

Generation 
(MWh) 

α β 
Annual 

Generation 
(MWh) 

Alouette L. 0.45 0.80 45,000 0.60 0.70 23,500 39,620 
Stave L. 0.60 0.85 193,100 0.60 0.85 181,900 322,790 
Hayward L. 0.60 0.85 239,500 0.60 0.85 225,000 343,160 

 
It can be observed in Table 4.3 that the annual generation in Alouette Lake decreases when the 

reliability level α is increased. Similarly, the generation in the Stave and Hayward Lake is 

affected even though the reliability levels corresponding to these reservoirs were kept constant. 

In both alternatives the annual generation is below the average generation during the 1990-2010 

period. 

 

4.3.1 Use of the Linear Decision Rules in a Simulation Model 

Using the results of Alternative no. 2, a simulation spreadsheet was developed for the 

testing of the LDR. Table 4.4 presents an example of this spreadsheet for Alouette Lake 

reservoir. Similar spreadsheets were prepared for the Stave and Hayward Lake reservoirs. The 

input of the simulation model is the inflow (column A). The turbine release and the parameter b 

are the outputs of the optimization model (columns B and C respectively).  The spillway release 

(column D) is computed using the linear decision rule presented in Equation 5.14, while the 

storage (column E) is calculated using the continuity equation. 
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Table 4.4 Simulation spreadsheet for Alouette Lake reservoir 

ALOUETTE LAKE RESERVOIR 

  

A  B C D E 

Inflow Turbine release 
(m3/s) Parameter "b" Spillway release 

(m3/s) Storage (m3) 

1 19.51 10.71 1,822.22 10.98 1,822.22 
2 24.35 10.71 1,822.08 13.78 1,822.08 
3 21.24 10.71 1,821.40 11.22 1,821.40 
4 23.19 10.71 1,820.10 13.78 1,820.10 
5 19.86 10.71 1,819.06 10.19 1,819.06 
6 19.73 10.71 1,817.97 10.11 1,817.97 
7 24.95 10.71 1,817.94 14.27 1,817.94 
8 23.31 10.71 1,819.14 11.40 1,819.14 
9 23.50 10.71 1,820.68 11.25 1,820.68 

10 26.43 10.71 1,822.05 14.35 1,822.05 
11 25.52 10.71 1,823.73 13.13 1,823.73 
12 29.06 10.70 1,827.52 14.57 1,827.52 
13 29.21 10.70 1,831.53 14.50 1,831.53 
14 44.67 10.69 1,843.12 22.39 1,843.12 
15 40.57 10.68 1,853.23 19.78 1,853.23 
16 30.48 10.68 1,858.41 14.62 1,858.41 
17 29.15 10.68 1,862.16 14.72 1,862.16 
18 31.62 10.67 1,865.87 17.23 1,865.87 
19 30.70 10.67 1,868.98 16.91 1,868.98 
20 24.49 10.67 1,869.04 13.76 1,869.04 
21 19.14 10.67 1,868.63 8.87 1,868.63 
22 17.21 10.67 1,866.48 8.68 1,866.48 
23 23.69 10.67 1,866.93 12.56 1,866.93 
24 23.79 10.67 1,868.16 11.88 1,868.16 
25 18.18 10.67 1,866.50 9.17 1,866.50 
26 20.80 10.68 1,865.17 11.45 1,865.17 
27 23.88 10.67 1,866.47 11.90 1,866.47 
28 22.86 10.67 1,867.32 11.34 1,867.32 
29 28.60 10.67 1,870.78 14.47 1,870.78 
30 32.16 10.67 1,876.37 15.90 1,876.37 
31 22.43 10.67 1,876.98 11.15 1,876.98 

 

The simulation spreadsheets were tested using two synthetic inflow sequences for the 

Alouette and Stave Lakes (The local inflows in Hayward Lake are considered negligible). One of 

the sequences had low inflow values, and the other one had high inflow values. These sequences 
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were forced to be within the extreme high inflows and extreme low inflows sequences defined 

with the reliability levels α and β during the optimization model. These sequences are shown in 

Figure 4.4. 

 

Figure 4.4 Synthetic inflow sequences for Alouette and Stave Lakes, used in the simulation spreadsheet 

 The data presented in Table 4.4 corresponds to the simulation results for January using 

the inflows of sequence no. 1. It can be observed that the computed storage values are equal to 
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the corresponding decision parameter b; this is consistent with the relationship established in 

Equation 4.10.  For the rest of the year and the other two reservoirs, the data is presented 

graphically in Figures 4.5 and 4.6. The spillway results for sequence no. 2 are presented in 

Figure 4.7. (The storage values for this sequence are also equal to the decision parameter b). 

 

Figure 4.5 Storage results from simulation spreadsheet for inflow sequence no. 1 
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Figure 4.6 Spillway results from simulation spreadsheet for inflow sequence no. 1 
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Figure 4.7 Spillway results from simulation spreadsheet for inflow sequence no. 2 
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Figures 4.5, 4.6 and 4.7 show that in the three reservoirs and for both inflow sequences, the 

spillway and storage values stay within the minimum and maximum targets. This is valid 

because the inflow sequences were forced to be within the extreme high and low inflow 

sequences used in the optimization model. Nevertheless, this will not always occur and in many 

occasions the inflows will be higher or lower than these extreme sequences. This is demonstrated 

in Figures 4.8 and 4.9 where the Alternative 2’s extreme inflow sequences for Alouette and 

Stave Lakes are compared with the corresponding historical inflows from 1960 to 2010.        

 

Figure 4.8 Comparison of Alternative 2’s extreme inflow sequences and historical inflows in Alouette Lake 
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Figure 4.9 Comparison of Alternative 2’s extreme inflow sequences and historical inflows in Stave Lake 

Therefore, in order to successfully use the linear decision rules in a simulation spreadsheet it is 

necessary to establish additional “correcting rules” to deal with inflows that are unexpectedly 

high or low. These rules should be based on the experience and preferences of operators and 

decision-makers. Alternatively, the model can be run again aiming to increase the reliability 

levels (and hence pushing up and down the extreme inflow sequences); however, this requires 

revising and changing the target levels. It will be necessary to find a balance between desired 

minimum and maximum targets and reliability levels that are considered acceptable.  
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Chapter  5: Summary, Conclusions and Future Work 

5.1 Summary 

 This thesis provided an overview of the main characteristics of the Operations Planning 

Tool (OPT), an optimization model used by planning engineers at BC Hydro for the operation of 

multi-reservoir systems. The model has a deterministic linear programming formulation: it 

assumes that the inflow is known with certainty before the optimization is performed. The 

review examined how the model considers multiple objectives in the optimization through the 

use of user-defined penalty functions. Two different formulations were incorporated into the 

OPT model in order to achieve the following goals: analyze and optimize the units’ maintenance 

scheduling in multi-reservoir systems and modify the current OPT model to assess the inflow 

uncertainty and avoid the use of penalty functions and weighting factors. The first formulation 

was tested with the Bridge River multi-reservoir system while the second one was tested with the 

Stave Falls multi-reservoir system, both located in British Columbia, Canada. 

 The development of the formulation for the study of maintenance scheduling was based 

on the introduction of a two-stage Mixed-Integer Linear Programming algorithm in the OPT 

model. This formulation makes use of a binary variable that selects a Generation Production 

Function (GPF) for each time step of the study period.  The GPFs, which are indexed over 

forebay elevation and the units’ availability combination, calculates the power generation as a 

function of turbine discharge. Some constraints were introduced in the model in order to 

determine the schedule in which the maintenance outages specified by the user optimized the 

model’s individual objectives. The optimization model selects the GPFs that correspond to the 

optimal outage schedule.  
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 In the second formulation, the inflow uncertainty was considered in the optimization 

model through the use of linear decision rules (LDR) and chance constraints. The LDRs are 

operating rules that define the spillway releases and reservoir storage as a linear function of the 

inflow, the turbine releases and a deterministic decision parameter. The chance constraints are 

similar to traditional constraints, but they consider that certain percentage of the time they will 

not be satisfied. In this formulation, the chance constraints were used to consider the probability 

of the spillway releases and forebay elevation not being within a preferred range of values 

established by the user.  This uncertainty was transmitted to the inflow through the LDRs. 

Therefore, the outputs of the model were the daily turbine releases and decision parameters that 

ensure that if the LDRs are used, the spillway releases and forebay elevation targets are met with 

the reliability level specified by the user. A simulation spreadsheet was developed to test the 

LDR with two synthetic inflow sequences.  

 

5.2 Conclusions 

 The formulation developed for the analysis of maintenance scheduling in multi-reservoir 

systems aims to establish the outages’ timing that optimizes the OPT’s multiple objectives. This 

formulation is based in a two-stage process: in the first stage all the possible maintenance 

scheduling solutions are established given the duration of the outages, the time step and the 

length of the study period. These solutions are an input of the modified OPT-MILP model, which 

in the second stage of the formulation is run in order to find the optimal solution. The 

formulation provides the user with several configuration alternatives including the specification 

of sequential and simultaneous unit outages.  This feature can be used to reduce the total number 

of solutions and therefore accelerate the solution time of the optimization model.  
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In the second stage the model computes the “outage cost” which is the difference in revenue 

between a scenario with outage scheduling and a hypothetical scenario without any outages; this 

cost can be used to compare the cost of different outage scenarios. In the case study using the 

Bridge River system the outage schedule optimized by the model presented a lower cost than 

other scenarios with fixed outages.  

 The second formulation introduced in the OPT aimed to modify the model in order to 

consider the inflow uncertainty and avoid the use of penalty functions and weight coefficients 

and  proposed the use of Linear Decision Rules, which provides the optimal spillway releases as 

a function of inflow, a deterministic decision parameter and the turbines release, which is 

assumed to be deterministic (i.e. is not conditioned by the inflow conditions).  The spillway 

releases and forebay elevation terms of the original OPT objective function were converted into 

chance constraints. The user was required to specify the minimum probability of these 

constraints being satisfied. The model was run and if a feasible operation was found, the user 

was required to increase the reliability levels and run the model again. This process was repeated 

until an infeasible operation was encountered. Similarly, if the model was not able to find a 

feasible operation in the first run, the user had to either decrease the reliability levels or modify 

the target levels. This formulation offers the advantage that the weight coefficients and the 

penalty functions are no longer used in the objective function. This was one of the research goals 

established in Chapter 1, but instead the new formulation requires running the model several 

times. Although every optimization is usually completed in just a few minutes, the process of 

changing the reliability levels and running the model again can become a tedious task. The user 

has no way to know which reliability level or target must be modified when an infeasible 

operation is encountered; hence this must be figured out on a trial-and-error basis.  Some authors 
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have reported that the use of LDRs and chance constraints in reservoirs operation yields 

conservative results. In the test with the Stave Falls project, two different combinations of 

reliability levels were analyzed (see Table 4.3) and in most of them the annual power generation 

was below the average generation in the 1990 to 2010 period. This might confirm the 

conservative nature of the LDRs. Finally, it is important to point out that this formulation took 

out some of the original OPT modeling features, including the definition of multiple release 

structures for one reservoir and the use of rating curves to relate the storage and the spillway 

releases. Therefore, the operator would be required to decide how to release the spill flow 

recommended by the model.     

 

5.3 Future Work 

The maintenance outages formulation introduced in the OPT in Chapter 3 can be used to perform 

different type of studies, including:  

 Assess the impact of maintenance outages in the spillway releases and forebay elevation 

regulations established in the hydroelectric project’s Water Use Plans. The developed 

formulation can also help the user to understand how the outages in one generation 

station affect the operations in upstream and downstream reservoirs. 

 Analyze the advantages and disadvantages of having sequential or simultaneous (paired) 

maintenance outages. 

 Using the fixed-outages feature of the formulation the user can analyze the impact of 

forced outages during high inflow events. 

 Assess how the weight coefficients and the penalty values used in the objective function 

affect the maintenance scheduling optimization. 
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The MIP model of the maintenance outages algorithm can be improved in the following ways: 

 One of the main challenges in the proposed model is the long running time that some 

optimizations take. Although using fixed outages or specifying sequential outages 

significantly decrease the running time, the current formulation can be revised in order to 

further reduce the number of binary variables used in the model and therefore accelerate 

the optimization process.  

 The optimization component of the model determines the optimal schedule of a single 

maintenance outage per unit. If the user wants to analyze more than one outage, the 

model needs to be with the first outage, specify the optimal schedule of this first run as a 

fixed outage and run the model again with the second outage duration. The model 

formulation can be modified to perform this process automatically and hence allow the 

user to specify more than one outage per unit. 

 It might occur that the optimal schedule defined by the model is in conflict with the 

interests of the user; for these situations the model should allow the establishment of 

periods when the outages cannot take place and the model should find the optimal timing 

out of these dates. 

 The inflow and price energy uncertainty should be considered in the model formulation.  

The inflow uncertainty can be addressed using the chance-constraints formulation 

proposed in the second formulation. Another alternative is to use an Implicit Stochastic 

Optimization approach, which relies on running a deterministic model several times for 

multiple inflow scenarios. 
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The chance-constraints formulation presented in Chapter 4 could be further extended in the 

following ways. 

 Several authors have proposed different Linear Decision Rules. The proposed model 

could be modified in order to test alternative rules and analyze its effects on the results. 

Different values for the parameter ߣ used in the general rule proposed by Loucks and 

Dorfman [1975] can be tested. 

 The model can be modified in order to automatically look for the highest reliability level 

that provides a feasible operation. In the current formulation, this process has to be 

carried out manually by the user. 

 The proposed formulation calculates a total spillway release per reservoir, nevertheless in 

the original OPT the model provided the release for each spillway structure. It can be 

analyzed which modifications can be performed in order to include the same feature in 

the new model. 
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Appendix A: Derivation of a General Linear Decision Rule for a Multi-

Reservoir System 

This appendix describes the derivation of a generalized decision rule for a multi-reservoir system 

from Equation 4.11. This expression is presented again in Equation A.1 as a reference. 

   푠푝푖푙푄 , = 퐼푛푓푙표푤 , − 푡푢푟푏푄 , + 푏 , − 푏         (A.1)  

This linear decision rule (LDR) for a single reservoir system defines the spillway release as a 

function of the reservoir inflow, the turbine releases and the deterministic variable b in the 

present and previous time step. In order to extend this LDR to a multi-reservoir system, the 

inflow that enters a single reservoir must consider the release and turbine discharges from 

upstream reservoirs as it is shown in Equation A.2: 

   푇표푡푎푙_퐼푛푓푙표푤 , = 퐼푛푓푙표푤 , + ∑ 퐴 , ∗ 푠푝푖푙푄 , + ∑ 퐵 , ∗ 푡푢푟푏푄 ,     (A.2)  

Where Aj,p is equal to 1 if the spillway releases from reservoir j flows into reservoir p, otherwise 

is 0, and m is the total number of reservoirs in the system. Similarly, Bj,p is used to indicate 

whether the turbine releases from reservoir j are flowing into reservoir p. Equation A.3 results 

from substituting Total_Inflow from Equation A.2 into the inflow of Equation A.1:   

   푠푝푖푙푄 , = 퐼푛푓푙표푤 , + ∑ 퐴 , ∗ 푠푝푖푙푄 , + ∑ 퐵 , ∗ 푡푢푟푏푄 , − turbQ , + 

b , − b            (A.3)  

Nevertheless, now the spillway release from reservoir p is dependent on the spillway releases 

from upstream reservoirs and they must be replaced by the same LDR defined in Equation A.3. 

This process requires the multiple substitution of the LDR and it will be finalized when the 

equation is no longer a function of upstream spillway releases. An example of this is provided in 

the following section. 
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A.1  Example of the LDR Extension into a Multi-Reservoir System 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1 Example of a multi-reservoir system configuration. 

The configuration of a simple four reservoir system is presented in Figure A.1. It can be 

observed that the four reservoirs, denominated R1, R2, R3 and R4, receive natural inflow. Both 

the spillway and turbine releases from R1, R2 and R3 flow into R2, R3 and R4 respectively, 

while the releases from R4 discharge into a watercourse. The spillway release from reservoir R1 

can be defined using the original LDR shown in Equation A.1: 

   푠푝푖푙푄 , = 퐼푛푓푙표푤 , − 푡푢푟푏푄 , + 푏 , − 푏 ,         (A.4)  
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For reservoir R2, the spillway can be defined from the extended LDR defined in Equation A.3: 

    푠푝푖푙푄 , = 퐼푛푓푙표푤 , + 퐴 , ∗ 푠푝푖푙푄 , + 	퐵 , ∗ 푡푢푟푏푄 , −	푡푢푟푏푄 , 		 + 

b , − b ,         (A.5)  

The spillway and turbine release summations included in Equation A.3 were expanded in 

Equation A.5, but those expressions with parameters A and B equal to 0 were excluded from the 

equation (e.g. A2,2, A3,2).  If the spillway release from R1 (Equations A.4) is substituted in A.5, 

the spillway from R2 becomes: 

    푠푝푖푙푄 , = 퐼푛푓푙표푤 , + 퐴 , ∗ 퐼푛푓푙표푤 , − 푡푢푟푏푄 , + 푏 , − 푏 ,  

+	퐵 , ∗ 푡푢푟푏푄 , −	푡푢푟푏푄 , 			 + 	b , − b ,     (A.5)  

Similarly, Equation A.3 is used to define spillway from reservoir R3: 

   푠푝푖푙푄 , = 퐼푛푓푙표푤 , + 	퐴 , ∗ 푠푝푖푙푄 , 	 + 	퐵 , ∗ 푡푢푟푏푄 , 	 −		 푡푢푟푏푄 , 			 +		 

b , − b ,         (A.6)  

After replacing the spillway release from R2, Equation A.6 becomes: 

spilQ , = Inflow , + A , ∗ Inflow , + A , ∗ Inflow , − turbQ , + b , − b , +

	B , ∗ turbQ , −	turbQ , 			 + 	b , − b , + 	B , ∗ turbQ , 	 −	 turbQ , 			 +

	b , − b , 	           (A.7)  

In Equation A.8 the multiplications of Equations A.7 are expanded: 

spilQ , = Inflow , + A , ∗ Inflow , + A , ∗ A , ∗ Inflow , − A , ∗ A , ∗

turbQ , + A , ∗ A , ∗ b , − A , ∗ A , ∗ b , + 	A , ∗ B , ∗ turbQ , −

	A , ∗ turbQ , 			 + 	A , ∗ b , − A , ∗ b , + 	B , ∗ turbQ , 	 −	 turbQ , 			 +

	b , − b , 	           (A.8)  

 



77 
 

The same process is repeated for the spillway releases from reservoir R4. The resulting 

expression is presented in equation A.9. 

spilQ , = 퐼푛푓푙표푤 , + 퐴 , ∗ Inflow , + 퐴 , ∗ A , ∗ Inflow , + 퐴 , ∗ A , ∗ A , ∗

Inflow , − 퐴 , ∗ A , ∗ A , ∗ turbQ , + 퐴 , ∗ A , ∗ A , ∗ b , −

퐴 , ∗ A , ∗ A , ∗ b + 	퐴 , ∗ A , ∗ B , ∗ turbQ , −	퐴 , ∗ A , ∗ turbQ , 			 +

	퐴 , ∗ A , ∗ b , − 퐴 , ∗ A , ∗ b , + 	퐴 , ∗ B , ∗ turbQ , 	 −	퐴 , ∗

turbQ , 			 + 	퐴 , ∗ b , − 퐴 , ∗ b , −	퐵 , ∗ 푡푢푟푏푄 , 	 −	푡푢푟푏푄 , 			 +

	b , − b , 	           (A.9)  

It can be observed that the different inflow, turbQ and b terms are multiplied by two different 

configurations of the flag parameters A and B. The first configuration is simply the multiplication 

of the parameters A that “connects” reservoir R4 with the upstream reservoirs. For example the 

third term of Equation A.8 is the multiplication of the inflow that enters R2 and the A parameters 

between R2 and R4, e.g. A3,4*A2,3. The second configuration is similar, but the “connection” 

between the first reservoir and the following downstream reservoir is specified by the parameter 

B instead of A (e.g. A3,4*B2,3*turbQ2,t).  These configurations will be denominated Link1 and 

Link2, and they will be defined as follows: 

 If the spillway releases from reservoir j can reach reservoir p going through the spillway 

releases of the reservoirs between them, Link1 will be 1. Otherwise, it will be 0.  

Link1j,p = Aj,j+1 * A*j+1,j+2*…*Ap-1,p 

 If the turbine releases from reservoir j can reach reservoir p going through the spillway 

releases of the reservoirs between them, Link2 will be 1. Otherwise, it will be 0.  

Link2j,p = Bj,j+1 * A*j+1,j+2*…*Ap-1,p 

After replacing these new parameters in Equation A.9, it becomes: 
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spilQ , = 퐼푛푓푙표푤 , + 퐿푖푛푘1 , ∗ Inflow , + 퐿푖푛푘1 , ∗ Inflow , + 퐿푖푛푘1 , ∗

Inflow , − 퐿푖푛푘1 , ∗ turbQ , + 퐿푖푛푘1 , ∗ b , − 퐿푖푛푘 , ∗ b + 	 퐿푖푛푘2 , ∗

turbQ , −	퐿푖푛푘1 , ∗ turbQ , 			 + 	 퐿푖푛푘1 , ∗ b , − 퐿푖푛푘1 , ∗ b , +

	Link2 , ∗ turbQ , 	 −	퐿푖푛푘1 , ∗ turbQ , 			 + 	 퐿푖푛푘1 , ∗ b , − 퐿푖푛푘1 , ∗

b , −	퐿푖푛푘2 , ∗ 푡푢푟푏푄 , 	 −	푡푢푟푏푄 , 			 + 	b , − b , 	     (A.10)  

In Equation A.11 the terms with similar Link parameters are associated:  

spilQ , = 퐼푛푓푙표푤 , + 퐿푖푛푘1 , ∗ Inflow , + 퐿푖푛푘1 , ∗ Inflow , + 퐿푖푛푘1 , ∗

Inflow , − 퐿푖푛푘1 , ∗ turbQ , + b , − b + 	퐿푖푛푘2 , ∗ turbQ , −

	퐿푖푛푘1 , ∗ turbQ , 		 + b , − b , + 	Link2 , ∗ turbQ , 	 −	퐿푖푛푘1 , ∗

turbQ , 		 + 	b , − b , 				 −	퐿푖푛푘2 , ∗ 푡푢푟푏푄 , 	 −	푡푢푟푏푄 , 			 + 	b , −

b , 	            (A.11)  

This equation can be simplified defining a new parameter called Upstream_Inflows, which will 

be equal to: 

푈푝푠푡푟푒푎푚_퐼푛푓푙표푤푠 , = 퐼푛푓푙표푤 , + 퐿푖푛푘1 , ∗ Inflow , + 

퐿푖푛푘1 , ∗ Inflow , + 퐿푖푛푘1 , ∗ Inflow ,    (A.12)  

If this new parameter is used in Equation A.11 and a summation over the different Link 

parameters is performed, the following equation can be obtained: 

푠푝푖푙푄 , = 푈푝푠푡푟푒푎푚_퐼푛푓푙표푤푠 , + 퐿푖푛푘1 , ∗ 푖푛푓푙표푤 , − 푡푢푟푏푄 , + 푏 , − 푏 ,  

+∑ 퐿푖푛푘2 , ∗ 푡푢푟푏푄 , − 푡푢푟푏푄 , + 푏 , − 푏 ,        (A.13)  

The equation between brackets is the original LDR presented in Equation A.1. The cumulative 

inflows Upstream_Inflows and the value of the parameters Link1 and Link2 can be easily defined 
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in any multi-reservoir system; therefore this new equation can be used as a general multi-

reservoir LDR. 

 

A.2 Additional Examples of Parameters Link1 and Link2 

Figure A.2 and Tables A.1 and A.2 are included in order to provide additional examples of the 

definition of the Link parameter values.  

 

 

  

 

 

 

 

 

 

 

 

 

 

Figure A.2 Additional examples of multi-reservoir system configurations. 
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Table A.1 Link1 and Link2 values for multi-reservoir configuration 2 in Figure A.2 

 Link1 Link2 
R1 R2 R3 R1 R2 R3 

R1 0 0 0 0 1 1 
R2 0 0 1 0 0 1 
R3 0 0 0 0 0 0 

 
Table A.2 Link1 and Link2 values for multi-reservoir configuration 3 in Figure A.2 

 Link1 Link2 
R1 R2 R3 R1 R2 R3 

R1 0 0 0 0 1 0 
R2 0 0 0 0 0 1 
R3 0 0 0 0 0 0 

 
 

 


