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Abstract

We have studied the propagation of 2D unit block of viscoplastic fluid of

Bingham type over a horizontal plane, underneath another Newtonian fluid.

We numerically simulate the dynamics of a two-layer fluid in a rectangle

domain, using the volume-of-fluid method to deal with the evolution of the

interface, and regularization scheme of the constitutive law, which replaces

unyielded plugs with very viscous flow. We explore the final shape of the

flow for varying yield stress, comparing the numerical results with the pre-

dictions of the asymptotic theory, a plasticity model based on slipline theory,

and other past results. Numerical difficulties with the moving contact lines

are encountered during the numerical simulation. A slip boundary condi-

tion is used to address this issue, the validity of which should be further

investigated.

ii



Preface

This thesis is original, unpublished, independent work by the author, Ye

Liu.

iii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Dimensionless form . . . . . . . . . . . . . . . . . . . . . . . 6

3 Asymptotic Results . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 A Newtonian two-layer model . . . . . . . . . . . . . . . . . 7

3.2 A Bingham-Newtonian two-layer model . . . . . . . . . . . . 9

3.3 Final shape from plasticity theory . . . . . . . . . . . . . . . 13

3.4 Relations of slump and aspect ratio . . . . . . . . . . . . . . 13

iv



Table of Contents

4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Numerical scheme . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.1 Regularization method for Navier-Stokes equations . 17

4.1.2 Augmented Lagrangian method for Navier-Stokes e-

quations . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.3 Algorithm for advection-diffusion equation . . . . . . 20

4.2 Parameter settings . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Numerical result for Newtonian fluid problem . . . . . . . . 23

4.4 The no-slip boundary condition . . . . . . . . . . . . . . . . 27

4.5 Discussion about the result . . . . . . . . . . . . . . . . . . . 36

4.6 Numerical result for Bingham fluid problem . . . . . . . . . 37

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Appendices

A Code Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.1 The results are independent of tolerance . . . . . . . . . . . 51

A.2 The results are independent of time step . . . . . . . . . . . 51

A.3 The domain size . . . . . . . . . . . . . . . . . . . . . . . . . 52

A.4 The density and viscosity ratio . . . . . . . . . . . . . . . . . 53

A.5 Reynolds number . . . . . . . . . . . . . . . . . . . . . . . . 53

A.6 Regularization parameter is small enough . . . . . . . . . . . 53

A.7 Problems with the slip boundary condition . . . . . . . . . . 54

v



List of Figures

2.1 problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 final shape for B=0.02 to 0.3 by 1-order shallow layer model . 14

3.2 final shape for B=0.02 to 0.2 by slipline model . . . . . . . . 14

4.1 upwind scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 MUSCL scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 flow profile for T = 10, 40, 90, 160, 250, µ2µ1 = ρ2
ρ1

= 10−3, Re =

9.81× 10−4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 x vs t for different resolution, µ2µ1 = ρ2
ρ1

= 10−3, Re = 9.81×10−4 25

4.5 h vs t for different resolution, µ2µ1 = ρ2
ρ1

= 10−3, Re = 9.81×10−4 25

4.6 concentration profile at T = 250, µ2
µ1

= ρ2
ρ1

= 10−3, Re =

9.81× 10−4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.7 details about the concentration layer on the bottom . . . . . 26

4.8 horizontal velocity at x = 3.5, T = 250, there is evident

discontinuity in velocity field . . . . . . . . . . . . . . . . . . 27

4.9 numerical scheme around the boundary, stress in the grid cell

is interpolated by velocity at the vertex . . . . . . . . . . . . 28

4.10 no-slip condition problem, T = 10, 40, 90, 160, 250, µ2
µ1

= ρ2
ρ1

=

10−1, Re = 9.81× 10−4 . . . . . . . . . . . . . . . . . . . . . 29

4.11 Navier slip boundary condition, T = 10, 40, 90, 160, 250, µ2
µ1

=
ρ2
ρ1

= 10−1, Re = 9.81× 10−4 . . . . . . . . . . . . . . . . . . 30

4.12 horizontal velocity at x=3.5, from Navier slip condition . . . 31

4.13 flow profile comparison of no-slip condition, Navier slip con-

dition, modified slip condition, at the same time step, T =

250, µ2
µ1

= ρ2
ρ1

= 10−1, Re = 9.81× 10−4 . . . . . . . . . . . . 32

vi



List of Figures

4.14 details about the finger, T = 250, µ2
µ1

= ρ2
ρ1

= 10−1, Re =

9.81× 10−4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.15 horizontal velocity at x=3.5, from modified slip condition, the

velocity is continuous and converges well . . . . . . . . . . . . 33

4.16 x vs t for modified slip model, µ2µ1 = ρ2
ρ1

= 10−1, Re = 9.81×10−4 34

4.17 h vs t for modified slip model, µ2µ1 = ρ2
ρ1

= 10−1, Re = 9.81×10−4 34

4.18 flow length vs time for different models, µ2µ1 = ρ2
ρ1

= 10−1, Re =

9.81× 10−4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.19 flow height vs time for different models, µ2µ1 = ρ2
ρ1

= 10−1, Re =

9.81× 10−4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.20 modified slip boundary condition, T = 10, 40, 90, 160, 250, µ2µ1 =
ρ2
ρ1

= 10−1, Re = 9.81× 10−4, white curves are from the two-

layer shallow layer model . . . . . . . . . . . . . . . . . . . . 36

4.21 final shapes for different B . . . . . . . . . . . . . . . . . . . . 39

4.22 equilibrium flow length for B in [0.02 0.1] . . . . . . . . . . . 41

4.23 equilibrium flow height for B in [0.02 0.1] . . . . . . . . . . . 41

4.24 The color contour map is the stress field of the equilibrium

state for B=0.02, the black curve is the 1-order shallow layer

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.25 equilibrium flow length for B in [0.1 0.2] . . . . . . . . . . . . 43

4.26 equilibrium flow height for B in [0.1 0.2] . . . . . . . . . . . . 44

4.27 The color contour map is the stress field of the equilibrium

state for B=0.2, the white curve is the slipline result . . . . . 45

A.1 x vs t for different tolerance . . . . . . . . . . . . . . . . . . . 51

A.2 h vs t for different tolerance . . . . . . . . . . . . . . . . . . . 51

A.3 x vs t for different time step . . . . . . . . . . . . . . . . . . . 52

A.4 h vs t for different time step . . . . . . . . . . . . . . . . . . . 52

A.5 x vs t for different domain size . . . . . . . . . . . . . . . . . 52

A.6 h vs t for different domain size . . . . . . . . . . . . . . . . . 52

A.7 x vs t for different viscosity ratio . . . . . . . . . . . . . . . . 53

A.8 h vs t for different viscosity ratio . . . . . . . . . . . . . . . . 53

A.9 x vs t for different Reynolds number . . . . . . . . . . . . . . 54

vii



List of Figures

A.10 h vs t for different Reynolds number . . . . . . . . . . . . . . 54

A.11 flow length vs time for different BCs . . . . . . . . . . . . . . 55

viii



Acknowledgements

I would like to convey my gratitude to all people who gave me the possi-

bility to complete this thesis. In the first place, I would like to express my

sincere gratitude to my supervisor, Professor Neil Balmforth for the contin-

uous support of my MSc study and research, for his patience, motivation,

enthusiasm, and immense knowledge. His wide knowledge and his logical

way of thinking have been of great value to me. I am deeply grateful to

Professor Sarah Hormozi for her supervision, advice, and guidance from the

early stage of this research. Above all and the most needed, they provided

me support and friendly help in various ways. I would like to thank Mr

Anthony Wachs, for assisting me with the validation of the numerical codes

and Professor James Feng for useful advice. Most importantly, I would like

to thank my entire family. My immediate family to whom this dissertation is

dedicated, has been a constant source of love, concern, support and strength

all these years. I would like to express my heart-felt gratitude to my parents

who have supported and encouraged me throughout this endeavor. Finally,

financial support of the Natural Sciences and Engineering Research Council

of Canada (NSERC) is gratefully acknowledged.

ix



Dedication

To my wonderful parents, who stood by me and supported all my ideas and

dreams. I love you dearly. To my best friends in all aspects of my life, who

have been by my side throughout difficult time. Your constant support and

encouragement continue to help me reach my goals. I am forever thankful

to have you in my life.

x



Chapter 1

Introduction

1.1 Motivation

A Bingham plastic is a viscoplastic material that behaves as a rigid body

at low stress but flows as a viscous fluid at high stress. Unlike Newtonian

fluid in which the viscous stress τ is linearly proportional to the strain rate

γ, with a viscosity coefficient µ, the Bingham fluid satisfies the following

constitutive law: 
γ = 0 τ < τy

τ =

(
µ+

τy
γ

)
γ τ > τy

where τy is a scalar called the yield stress, τ =
√

1
2τ : τ is the second

invariant of the stress tensor τ , and γ =
√

1
2γ : γ is the second invariant of

the strain rate tensor γ. When τ < τy, the strain rate is zero, meaning that

there is no local deformation. When τ > τy, there is a linear relationship

that τ − τy = µγ.

Bingham type plasticity is commonly used as a mathematical model for

complex fluid in industry, such as drilling mud, concrete rheology, and food

processing[16]. In those industries, the dynamic of gravity-driven flow plays

an important role in a number of processes, including methods designed to

measure fluid rheology. For example, the slump test is a way of measuring

the consistency of fresh concrete. Furthermore, natural phenomenon like

avalanche and debris flows can be modeled as a gravity flow of Bingham

plastic[5]. A common feature of those phenomenon is that due to the yield

criteria, the fluid will stop spreading as the stress fall below the yield stress,

and form certain steady shape, instead of just continually flattening itself
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1.2. Literature review

like Newtonian fluid on scales long enough that surface tension is negligible.

Therefore it is interesting to know what is the final shape of the fluid, and

its relation with varying yield stress.

1.2 Literature review

For Newtonian fluid, the viscous gravity current of a single fluid has been

well studied by Huppert[7] and others (see Bankoff et al [1]). Numerical

tests for low Reynolds number flow, however, have rarely been implemented

to validate the lubrication theory.

For Non-Newtonian fluid, a thin layer theory for Bingham-type fluid has

been developed by Liu and Mei[12], based on Reynolds’ lubrication theory.

This theory leads to a prediction of the final shape in the shallow limit (see

Balmforth, Craster and Sassi[21]). For non-shallow slumps, slipline theory

from plasticity theory [2] has been applied to predict the final shape, by

Dubash et al[20].

For numerical techniques of computing Bingham type fluid, the main

difficulty is how to deal with the stress below the yield stress τ , as it is

undetermined in the constitutive law. One way of addressing this problem is

by considering the fluid as highly viscous when it is unyielded, thus making

the strain rate close to 0. This is done by doing a regularization to the

constitutive law as below:

τ =

(
µ+

τy
γ + ε

)
γ

where ε is a small parameter. If τ is sufficiently bigger than τy, γ � ε, the

original constitutive equation is recovered. A second way of addressing the

undetermined stress field is by introducing a Lagrangian multiplier tensor

λ, such that {
γ = λ : γ

τ = µγ + τyλ

everywhere in the fluid. Theories prove the existence of such λ, including

the region γ = 0, so that the stress can be recovered everywhere. We

2



1.3. Objectives

refer to Dean[6] for a review of those methods. However, since the original

constitutive law does not give any information for the stress in the unyielded

region, thus recovering of unyielded stress field in the numerical schemes is

artificial.

Numerical simulations of gravity current of Bingham type fluid are rare.

Vola et al[4] developed a numerical scheme of computing gravity currents of

Non-Newtonian fluid, using a Lagrangian technique. Roussel and Coussot[19]

used a software FLOW-3D to simulate the slump of a cylinder of Bingham

fluid. Staron et al[15] did a simulation of columns of Bingham plastics under

gravity, using regularization methods.

For experiments about this problem, there are no experimental results

with the same context as ours now. Published papers with related exper-

iments include Pashias et al[23] (measurement of the yield stress by the

slump test), Cochard and Ancey[24] (experimental results related to the

dam-break problem for viscoplastic fluids which is a 3D case), and Balm-

forth et al[18] (experimental analysis of the dam break of a viscoplastic fluid

in a horizontal channel, with Herschel-Bulkley constitutive law).

1.3 Objectives

Three theoretical models are given from the past literature, predicting the

final shape of the slump of Bingham fluid in terms of the yield stress and

the initial aspect ratio. Currently there are not many experiments to verify

those models. Therefore, my thesis aims to use numerical simulations to

compare with the theoretical models, in order to find the final shapes of

a 2D unit block of Bingham fluid under gravity. I am using a Complex

fluid solver on the platform Pelicans[25], developed by IRSN, to simulate

the evolution.

3



Chapter 2

Problem Description

2.1 Problem setting

We study the slumping of a unit block of Bingham fluid under gravity, in a

2D case. We will consider a two-phase flow in a rectangular domain.

Figure 2.1 illustrates the domain and initial condition. The domain is

set to be Ω = [0, L]× [0, H]. There are two fluids in the domain. Fluid 1 is

what we are interested in, with a higher density ρ1 and viscosity µ1, which

we also refer to as the lower layer. Fluid 2 is an ambient fluid, with much

lower density ρ2 and viscosity µ2. We refer to this fluid as the upper layer.

Since we want the lower layer to be a Bingham fluid, it is necessary to

define the constitutive law, which is
γ = 0 τ1(u) < τy

τ1(u) =

(
µ1 +

τy
γ

)
γ(u) τ1(u) > τy

fluid 1
fluid 2

ρ1, µ1
ρ2, µ2

L

H

R

R

Figure 2.1: problem setting
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2.2. Equations

And the upper layer is Newtonian, so that

τ2(u) = µ2γ(u)

where τ1(u), τ2(u) are the stress tensor, γ(u) = ∇u+(∇u)T is the strain rate

tensor, and τ1(u),γ are the second invariants of τ1(u), γ(u), respectively:

τ1(u) =

√
1

2
τ1(u) : τ1(u), γ(u) =

√
1

2
γ(u) : γ(u)

τy is the yield stress of fluid 1. That is, when the stress invariant exceeds

τy, the flow will behave like fluid, otherwise it is like solid, with no local

deformation.

2.2 Equations

Suppose both fluids are incompressible, the equations are defined as in e-

quation (2.1),

lower layer


ρ1

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+∇ · τ1(u) + ρ1g

∇ · u = 0

upper layer


ρ2

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+∇ · τ2(u) + ρ2g

∇ · u = 0

(2.1)

where u = (v, w) is the velocity vector, p is the pressure, and g is the

gravity. A no-slip boundary condition is applied on the bottom and top,

where u = (0, 0). A symmetry boundary condition is set on the left and

right wall, where v = 0, ∂w∂x = 0. The velocity and stress must also be

continuous at the interface.
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2.3. Dimensionless form

2.3 Dimensionless form

Suppose the characteristic length and velocity are R and U , let x = Rx̂, z =

Rẑ, u = Uû, t = R
U t̂, where U = ρ1gR2

µ1
. Here, û, t̂, p̂, τ̂ all stand for the

dimensionless form. The equations are reduced to

lower layer


Re

[
∂û

∂t̂
+ (û · ∇)û

]
= −∇p̂+∇ · τ̂1(û) + 1̄

∇ · û = 0

upper layer


ρ2

ρ1
Re

[
∂û

∂t̂
+ (û · ∇)û

]
= −∇p̂+

µ2

µ1
∇ · τ̂2(û) +

ρ2

ρ1
1̄

∇ · û = 0

(2.2)

and the constitutive law is reduced to
τ̂1(û) =

(
1 +

B

γ̂

)
γ̂

τ̂2(û) = γ̂

(2.3)

where Re =
ρ21gR

3

µ21
is the Reynolds number, and B =

τy
ρ1gR

is the Bingham

number, which is the dimensionless yield stress. For convenience, in the rest

of this thesis, we just use u, p, τ, γ to represent the dimensionless form.
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Chapter 3

Asymptotic Results

We will start by considering a Newtonian fluid for the lower layer, and then

extend to a Bingham fluid.

3.1 A Newtonian two-layer model

A dimensionless model for the propagation of two-dimensional Newtonian

film under gravity is discussed by Huppert[7].

∂h

∂t
=

1

3

∂

∂x

(
h3∂h

∂x

)
It is based on the assumption that there is only one layer of fluid and the

shear stress on the surface is 0. In our problem, there is an ambient flu-

id above the lower layer. If both are Newtonian fluids, the Navier-Stokes

equation is written as below.

lower layer


ux + wz = 0

ρ1(ut + uux + wuz) = −px + µ1(uxx + uzz)

ρ1(wt + uwx + wwz) = −pz + µ1(wxx + wzz) + ρ1g

upper layer


ux + wz = 0

ρ2(ut + uux + wuz) = −px + µ2(uxx + uzz)

ρ2(wt + uwx + wwz) = −pz + µ2(wxx + wzz) + ρ2g

(3.1)

where (u,w) is the velocity vector. Now suppose the upper layer is not

ignored, and the viscosity ratio and density ratio are S = µ2
µ1
, Q = ρ2

ρ1
. Using

a similar non-dimensionalization methods as in [22], with different length

7



3.1. A Newtonian two-layer model

scale for the horizontal and vertical length, let

x = Lx̂, z = Rẑ, U =
ρ1gR

3

µ1L
, v = (u,w) =

(
Uû,

R

L
Uŵ

)
, t =

L

U
t̂, p = ρgRp̂, Ĥ = H/R

and suppose R
L = ε� 1, Re = ρ1UR2

µ1L
� 1. Equation (3.1) is nondimension-

alized as

lower layer


ux + wz = 0

Re(ut + uux + wuz) = −px + ε2uxx + uzz

Re(wt + uwx + wwz) = − 1
ε2

(pz + 1) + ε2wxx + wzz

upper layer


ux + wz = 0
Q
SRe(ut + uux + wuz) = − 1

Spx + ε2uxx + uzz
Q
SRe(wt + uwx + wwz) = − 1

ε2S
(pz +Q) + ε2wxx + wzz

(3.2)

Getting rid of O(ε) term, we have{
px = uzz, pz = −1 for the lower layer

px = Suzz, pz = −Q for the upper layer
(3.3)

Let h = h(x, t) be the height of the lower layer. In order to solve equation

3.3, we need to include the following conditions.

• no-slip condition on the upper and lower boundary, u = 0 at z = 0, 1.

• u, p, τ continuous at the interface, here τ ≈ µuz.

• zero flux across the domain,
∫ Ĥ

0 udz = 0.

8



3.2. A Bingham-Newtonian two-layer model

Combining all the relations above, we obtain

u = 0 z = 0

uzz = px, pz = −1 0 < z < h

u, p, τ continuous z = h

Suzz = px, pz = −Q h < z < Ĥ

u = 0 z = Ĥ∫ Ĥ

0
udz = 0

ht =
∂

∂x

(∫ h

0
udz

)

(3.4)

Then we derive a two-layer model for a shallow gravity flow.

∂h

∂t
=

1

3
(1−Q)

∂

∂x

(
(k + Sh)

(k2 − Sh2)2 + 4SkhĤ2
h3k3∂h

∂x

)

where k = Ĥ − h. As S → 0 and Q → 0, the equation is reduced to

Huppert’s model. Notice that this model is only valid for large aspect ratio,

where the horizontal length scale is much more than the vertical, so that

τ can be approximated as µuz. Therefore, it may not be valid at the flow

front. This is to be shown in the next chapter, in comparison with numerical

simulations.

3.2 A Bingham-Newtonian two-layer model

For shallow layer model for Bingham fluid, Liu and Mei[12] presented the

lubrication model for two dimensional flow.

∂h

∂t
=

1

6

∂

∂x

(
Y 2(3h− Y )

∂h

∂x

)
(3.5)

9



3.2. A Bingham-Newtonian two-layer model

Y is the height of the yielded region, which satisfies

Y = max

{
h− B

|hx|
, 0

}
This model assumes that there is only one layer of Bingham fluid, and the

shear stress on the surface is 0. Therefore, there is always an unyielded

region on the top of the fluid.

Therefore we consider the problem with a Newtonian fluid above a Bing-

ham fluid, so that the stress on the surface is balanced by the upper fluid,

and give the following analysis. Using a similar nondimensionalization pro-

cedure as for the Newtonian two-layer model, we get the reduced form.{
px = ∂zτ, pz = −1, 0 < z < h

px = Suzz, pz = −Q, h < z < Ĥ
(3.6)

as in equation (3.3), the only difference is that uzz is replaced by ∂zτ . Since

pz is piecewise linear, we can integrate to get{
p = P − (z − h), τ = τ0 + (Px + hx)z 0 < z < h

p = P −Q(z − h), px = Suzz h < z < Ĥ
(3.7)

For the lower layer 0 < z < h, define τ0 = τ(x, 0), τh = τ(x, h), equation

(3.7) gives a relation

τh = τ0 + (Px + hx)h

Let us define uz as a function of τ , uz = Γ(τ), using the constitutive law As

τ is a linear function of z.

z

h
=

τ − τ0

τh − τ0

differentiating the equation above gives

dz =
h

τh − τ0
dτ

10



3.2. A Bingham-Newtonian two-layer model

The velocity at the interface uh is

uh =

∫ h

0
uzdz =

h

τh − τ0

∫ τh

τ0

Γ(τ)dτ

For convenience, define I0 =
∫ τh
τ0

Γ(τ)dτ , so that

uh =
hI0

τh − τ0

And the flux of the lower layer is integrated as∫ h

0
udz = zu|h0 −

∫ h

0
zuzdz

= huh −
∫ τh

τ0

h(τ − τ0)

τh − τ0
Γ(τ)dz

h

τh − τ0

If we define I1 =
∫ τh
τ0
τΓ(τ)dτ , we can rewrite the flux integral so that

∫ h

0
udz =

h2(τhI0 − I1)

(τh − τ0)2

For the upper layer h < z < Ĥ, since Px +Qhx = Suzz at and Suz|h = τh,

we have

uz =
1

S
[(Px +Qhx)(z − h) + τh]

Introducing Px = τh−τ0
h − hx furnishes

Suz =
1

S

[(
τh − τ0

h
− hx +Qhx

)
(z − h) + τh

]
We can get the interface velocity uh again by integrating uz in the upper

layer

uh = −
∫ Ĥ

h
uzdz

= − 1

S
(Ĥ − h)

[
τh +

Ĥ − h
2

(
τh − τ0

h
− hx +Qhx

)]

11



3.2. A Bingham-Newtonian two-layer model

And the flux of the upper layer is

∫ Ĥ

h
udz = zu|Ĥh −

∫ Ĥ

h
zuzdz

= −huh −
∫ Ĥ

h

z

S

[
τh +

(
τh − τ0

h
− hx +Qhx

)
(z − h)

]
dz

= − 1

2S
(Ĥ − h)2τh −

1

3S
(Ĥ − h)3

(
τh − τ0

h
− hx +Qhx

) (3.8)

To make the velocity continuous at the interface, and make zero flux across

the region
∫ h

0 udz +
∫ Ĥ
h udz = 0, we have


S

hI0

τh − τ0
= −(Ĥ − h)

[
τh +

Ĥ − h
2

(
τh − τ0

h
− hx +Qhx

)]
h2(τhI0 − I1)

(τh − τ0)2
=

1

2S
(Ĥ − h)2τh +

1

3S
(Ĥ − h)3

(
τh − τ0

h
− hx +Qhx

)
(3.9)

The evolution equation ht + (
∫ h

0 udz)x = 0, becomes

∂h

∂t
+

∂

∂x

[
h2

(τh − τ0)2
(τhI0 − I1)

]
= 0

For Bingham fluid, the relation of uz and τ is

uz = Γ(τ) =

{
τ −B |τ | > B

0 |τ | < B

Using equation (3.9), τh, τ0 can be solved by a Newton iteration method in

each time step, as indicated in [9]. If S → 0, Q→ 0, the equation is reduced

to equation (3.5).

This equation indicates a final state of the flow as

h(x) =
√

2B(X − x)

Where X is the flow length of the final shape. In our case, since the total

volume is 1, we can calculate the value of X by demanding
∫ X

0 h(x)dx = 1

12



3.3. Final shape from plasticity theory

and get the final flow length and height as a function of B:

X =
1

2

(
9

B

)1/3

, H0 = h(0) = (3B)1/3

3.3 Final shape from plasticity theory

Dubash et al [20] provided a higher order solution to the steady state of the

Bingham slump. For B � 1

h =

√(
1 +

π

2
B
)2
(

1

3B
+
π

4

)−2/3

− 2Bx− π

2
B

(
1

3B
+
π

4

)−1/3

+O(B3)

This model assumes the flow height is normalized to be 1. In our settings,

as the total volume is 1, the final height and length are
H0 =

(
1

3B
+
π

4

)−1/3

X =

(
1

2B
+
π

2

)(
1

3B
+
π

4

)−2/3
(3.10)

Figure 3.1 illustrates the final shape of the fluid for varying Bingham num-

ber, predicted by equation 3.10. Dubash [20] also used a slipline method

of plasticity theory to compute the final shape, based on the assumption

that the flow is yielded everywhere before reaching the steady state, so that

stress falls to the yielded stress τy everywhere. There is no explicit form of

the final shape in terms of B, algorithms about construction of the slipline

field can be found in the reference. Figure 3.2 illustrates the final shape of

the fluid for varying Bingham number, predicted by the slipline theory.

3.4 Relations of slump and aspect ratio

Other than shallow-layer analysis, Pashias et al[23] derived a relation of

the slump height h and yield stress B, as well as the initial aspect ratio

13



3.4. Relations of slump and aspect ratio

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

z

final shape for B=0.02 to 0.20, 1-order shallow layer model

increasing B

Figure 3.1: final shape for B=0.02 to 0.3 by 1-order shallow layer model
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Figure 3.2: final shape for B=0.02 to 0.2 by slipline model
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3.4. Relations of slump and aspect ratio

H0/R0 = a.

h = 1− 2B[1− ln(2Ba)]

However this is based on the assumption that the aspect ratio is large and

the stress variations in the horizontal direction are negligible compared to

those in the vertical direction, which is different from our assumption. Nev-

ertheless, it is still worth comparing with their model for relatively greater

aspect ratio.

Staron et al[15] did numerical simulations in the same context as ours,

except that the aspect ratio is varying from 0.2 to 19(in our problem it is

kept unity). They get a relations of the slump height and the yield stress.

h = 3.01B0.66

This relation is based on the observation of a group of numerical tests with

varying B and initial aspect ratio.
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Chapter 4

Numerical Results

4.1 Numerical scheme

We use a Volume-of-Fluid method to simulate the two-phase fluid. We

refer to Hirt and Nichols[8] for a description of this method. In brief, a

concentration field c(x, y, t) is introduced to distinguish the two fluids and

smooth out the interface between them: c = 1 for the lower layer, and

c = 0 for the upper layer. This field is taken to be a material invariant.

The problem therefore boils down to the Navier-Stokes equation and the

advection-diffusion equation:
Re(c)

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+∇ · τ(u) +Ri(c)g

∇ · u = 0

∂c

∂t
+∇ · (uc) = 0

(4.1)

where

Re(c) :=

[
c+ (1− c)ρ2

ρ1

]
ρ1UR

µ1

Ri(c) :=

[
c+ (1− c)ρ2

ρ1

]
ρ1gR

2

µ1U

τ(u) :=

[
c+ (1− c)µ2

µ1

]
γ(u)

In every time step, the Navier-Stokes equation is solved using a Galerkin

finite element method. And then the advection diffusion equation is solved

using a finite volume method, with a MUSCL scheme in the advection term.

We refer to Mikhlin [26] for a description of Galerkin method and Van

16



4.1. Numerical scheme

Leer[14] for a description of MUSCL scheme.

4.1.1 Regularization method for Navier-Stokes equations

For a general Navier-Stokes equation, with no-slip condition in ΓD, no-flux

condition in ΓN , as below

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+∇ · τ(u) + ρg in Ω

∇ · u = 0 in Ω

u = 0 in ΓD

∇u · n = 0 in ΓN

(4.2)

Here τ(u) is given by the regularized constitutive law.

τ(u) =

[
c(1 +

B

γ + ε
) + (1− c)µ2

µ1

]
γ(u)

where ε is the regularization parameter. On a certain time tn, given the

current velocity field un, time step ∆t, the discrete scheme for solving un+1

is

ρ

∆t
un+1 + (ρun · ∇)un+1 −∇ · τ(un+1) +∇pn+1 = ρg +

ρ

∆t
un in Ω

∇ · un+1 = 0 in Ω

un+1 = 0 in ΓD

∇un+1 · n = 0 in ΓN
(4.3)

The variational form is: Find (u, p) ∈ Su×V p so that for ∀(v, q) ∈ V u×V p:

1

∆t

∫
Ω
ρu · v +

∫
Ω

(ρun · ∇)u · v+

∫
Ω
τ(u) : ∇v −

∫
Ω
p∇ · v =∫

Ω
ρg · v +

1

∆t

∫
Ω
ρun · v∫

Ω
q∇ · u = 0

(4.4)
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4.1. Numerical scheme

Here Su, V u, V p is defined as

Su = {v ∈ H1(Ω)|v = 0 in ΓD}
V u = {v ∈ H1(Ω)|v = 0 in ΓD}
V p = L2(Ω)

(4.5)

We can rewrite this in a simple way

1

∆t
m(u, v) + c(un;u, v) + k(u, v) + b(v, p) = f(v)

b(u, q) = 0
(4.6)

where

m(u, v) =

∫
Ω
ρu · v

c(u; v, w) =

∫
ρ
(u · ∇)v · w

k(u, v) =

∫
Ω
τ(u) : ∇v

b(v, q) = −
∫

Ω
q∇ · v

f(v) =

∫
Ω
ρg · v − 1

∆t
m(un, v)

(4.7)

This variational equation is then solved using a Galerkin method. On a

finite dimensional subspace V u
n ⊂ V u, V p

h ⊂ V p

1

∆t
m(uh, vh) + c(unh;uh, vh) + k(uh, vh) + b(vh, ph) = f(vh)

b(uh, qh) = 0
(4.8)

After a finite element basis is chosen,

Xh = span{ψuk | 0 ≤ k < Nu
dof}

Mh = span{ψpk | 0 ≤ k < Np
dof}
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4.1. Numerical scheme

the variational equation is transformed to the linear system,
1

∆t
MU +MRU +AU +BTP = F

BU = 0
(4.9)

where

MIJ = m(ψuJ , ψ
u
I ) 0 ≤ I, J < Nu

dof

MRIJ = mR(ψuJ , ψ
u
I ) (I, J) ∈ ΓR

AIJ = c(unh;ψuJ , ψ
u
I ) + k(ψuJ , ψ

u
I ) 0 ≤ I, J < Nu

dof

BIJ = b(ψuJ , ψ
p
I ) 0 ≤ I < Np

dof , 0 ≤ J < Nu
dof

FI = f(ψuI ) 0 ≤ I, J < Nu
dof

(4.10)

4.1.2 Augmented Lagrangian method for Navier-Stokes

equations

Unlike the regularization method, the augmented Lagrangian method does

not require the constitutive laws to be regularized, and can produce truly

unyielded regions where γ = 0. Given the Navier-Stokes equation

ρ (∂tu+ (u · ∇)u) = ∇ · τ + f ∈ Ω

∇ · u = 0 ∈ Ω

u = uB(t) on Γ

τ = −pI +
√

2B
D(u)

|D(u)| + 2µD(u)
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4.1. Numerical scheme

where D(u) = 1
2γ = 1

2 [∇u+(∇u)T ], Duvaut and Lions derive the variational

inequality model: Find {u(u), p(t)} ∈ (H1(Ω))d × L2(Ω) such that

ρ

∫
Ω
∂tu(t) · (v − u(t))dx+ ρ

∫
Ω

(u(t) · ∇)u(t) · (v − u(t))dx

+µ

∫
Ω
∇u(t) : ∇(v − u(t))dx+

√
2B(j(v)− j(u(t)))

−
∫

Ω
p(t)∇ · (v − u(t))dx ≥

∫
Ω
f(t) · (v − u(t))dx, ∀v ∈ VB(t)

∇ · u(t) = 0 in Ω

j(v) =

∫
Ω
|D(v)|dx, ∀v ∈ (H1(Ω))d

VB(t) = {v|v ∈ (H1(Ω))d, v = uB(t) on Γ}

We refer to Dean [6] for a review of the algorithm. In our numerical simula-

tion with this method, the convergence rate for the linear system solution is

too slow for an adequate spacial resolution, thus we fail to get the numerical

results with large deformation. Nevertheless, for larger Bingham number

where there is little deformation, numerical results are achieved.

4.1.3 Algorithm for advection-diffusion equation

For any region Ω in the domain

∂C

∂t
+∇ · (uC) = 0

can be integrated as

∂

∂t

∫
Ω
Cdx+

∫
∂Ω
C(u · n)ds = 0

Suppose the region is chosen to be a rectangular mesh cell, with 4 sides.

Then the equation on this cell can be discretized as

A

∆t
Cn+1 +

∑
i∈{n,e,s,w}

Li(ui · ni)Cn+1
i =

A

∆t
Cn
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4.1. Numerical scheme
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Figure 4.1: upwind scheme

where ui is the approximated velocity at the middle point of side i, with

outward normal ni and length Li, and Ci is C if ui · ni > 0, or the adjacent

cell of C with common side i if ui · ni < 0. This is known as the upwind

scheme. A is the cell area. The details are shown in Figure 4.1. This is

the basic first order upwind scheme. The MUSCL scheme includes a second

order correction term on the RHS, using a Van Leer limiter [14]:

φ(r) =
r + |r|
1 + |r|

which achieves more accurate solutions for large gradients in C, as is the

case in our problem. In order to understand the use of the flux limiter, we

refer to Kuzmin[13]. Figure 4.2 illustrates how this correction is computed,

suppose u · n > 0, then the correction term is computed as

correction = −ud · L(u · n)φ

(
crg

lhg

)
lhg
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4.2. Parameter settings

ud dd

CuCuu Cd

uud

lhg = Cu−Cuu

uud
crg = Cd−Cu

ud+dd

nuL

correction = −ud · L(u · n)φ( crglhg )lhg

Figure 4.2: MUSCL scheme

It is added to the RHS of the equation for Cu, and its opposite value is

added to the RHS of the equation for Cd. This scheme is implemented both

on horizontal and vertical sides.

All of the algorithms above are implemented in C++ as an application

of PELICANS, an object oriented platform developed at IRSN, France, to

provide general frameworks and software components for the implementa-

tion of PDE solvers. PELICANS is distributed under the CeCILL license

agreement. We refer to Hormozi[25] and Wielage-Burchard[11] for a detailed

description of this code. 1

4.2 Parameter settings

The domain size is chosen to be [0, L] × [0, H] = [0, 5] × [0, 1.25], and the

lower layer is initialized to be [0, 1]× [0, 1] on the left wall. The viscosity and

density are normalized to be 1 for the lower layer , and 10−3 for the upper

layer, so as to minimize the effect of the upper layer. The Reynolds number

is set to be 9.81 × 10−4, in order to minimize the effect of inertia force.

We choose a uniform mesh on the domain, with ∆x = ∆y varying from

1PELICANS is distributed under the CeCILL license agreement
(http://www.cecill.info/licences/Licence CeCILL V2-en.html ). PELICANS can be
downloaded from https://gforge.irsn.fr/gf/project/pelicans/ .
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4.3. Numerical result for Newtonian fluid problem

0.005 to 0.025. For the computational reason, the maximum number of grid

points we can achieve is 1000× 250 = 250000. The time step for solving the

Navier-Stokes equation is set to be ∆t = 0.5, and the time step for solving

the advection-diffusion equation is restricted by the CFL condition(
u

∆x
+

w

∆y

)
dt <

1

2

where (u,w) is the velocity vector. The choice of all parameters are discussed

in Appendix A.

4.3 Numerical result for Newtonian fluid problem

Before solving the Bingham fluid problem, it is necessary to test for a New-

tonian problem to see if the code works well.

This problem is solved using the shallow layer model, and by numerical

simulation. The results are compared below. Figure 4.3 is the flow profile

at different time steps, the white curve is interface produced by the two-

layer model. Figure 4.4 and 4.5 show the flow length and height as a

function of time for different resolutions and the asymptotic model(Notice

that as viscosity and density ratio are close to 0, the two-layer model is very

close to the Huppert’s model). According to the graph, the flow height is

independent of resolution, while the flow length is converging slowly. Figure

4.6 illustrates a snapshot of the concentration field at time step T = 250.

The white curve shows the interface, which is defined to be the level curve

of c = 0.5. According to the graph, there is a ‘finger’ of upper fluid along

the bottom underneath the lower fluid. Figure 4.7 shows the details of the

finger, which is evidently poorly resolved. As a consequence of this resolution

problem, the horizontal velocity from the bottom to the first layer of grid

shows clear discontinuity, see Figure 4.8 for an example. In this graph, x-

axis is the vertical position of the domain, and the y-axis is the horizontal

velocity, plotted at x = 3.5, T = 250.

We attempted to resolve the finger by refining the resolution. However,

even in our most refined resolution where the grid size is ∆y = 0.001, the
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Figure 4.3: flow profile for T = 10, 40, 90, 160, 250, µ2
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= ρ2
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= 10−3, Re =

9.81× 10−4
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Figure 4.4: x vs t for different resolution, µ2µ1 = ρ2
ρ1

= 10−3, Re = 9.81×10−4
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Figure 4.5: h vs t for different resolution, µ2µ1 = ρ2
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= 10−3, Re = 9.81×10−4
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Figure 4.6: concentration profile at T = 250, µ2
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= 10−3, Re =
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26



4.4. The no-slip boundary condition
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Figure 4.8: horizontal velocity at x = 3.5, T = 250, there is evident discon-
tinuity in velocity field

‘finger’ is still there and velocity is still effectively discontinuous. Figure

4.9 shows a plot of the numerical scheme. To make the shear stress µ∂u∂z
continuous around the boundary, we have

[
c1 + (1− c1)10−3

] u2 − u1

∆y
≈
[
c0 + (1− c0)10−3

] u1 − u0

∆y

Getting rid of all small terms, and notice that the finger on the bottom

implies c0 ≈ 0.1, c1 ≈ 1, we will have

u2 − u1

u1 − u0
=
u2 − u1

∆y
×
(
u1 − u0

∆y

)−1

≈ c0

c1
≈ 0.1

This difference in velocity gradient explains why velocity field is not resolved.

4.4 The no-slip boundary condition

The finger is believed to be a direct result of imposing a no-slip boundary

condition. Since the boundary velocity is 0, the fluid near the bottom sticks
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4.4. The no-slip boundary condition
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u0 = 0
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u2

∆y
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Figure 4.9: numerical scheme around the boundary, stress in the grid cell is
interpolated by velocity at the vertex

to it. This is a common problem in dealing with the moving contact line.

The same finger problem can be found in Hartel et al[2]. We may have a

look at another case about the finger, which leads to more severe problem.

Suppose the viscosity ratio µ2
µ1

and density ratio ρ2
ρ1

are all reset to be 0.1,

which means the upper layer is heavier and more viscous than before, then

there is an obvious finger on the bottom. See Figure 4.10, the flow profile

for different time steps for this case.

In this case, a layer of the lighter fluid is underneath the heavier one.

We do not know if this makes sense physically, as there are no related exper-

iments. According to our analysis, if the finger is physically true, then the

only way to resolve it is to refine the resolution along the bottom. However,

due to our computation ability, we are not able to resolve the finger. If the

finger is a numerical artefact, then we should think of ways to remove it,

so that there is no resolution issue caused by the finger. In this situation,

we can only deal with the case that the finger is not physically true, and

we choose to remove the finger by introducing a slip condition on the bot-

tom. From a physical viewpoint, there are several studies showing that there

exists slip at some micro-scale surface, see Chang-Hwan Choi et al[3] for ex-

ample. The slip length is of a µm scale, which is far from the macroscopic

description of our problem. The slip condition we are trying to implement
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4.4. The no-slip boundary condition
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Figure 4.10: no-slip condition problem, T = 10, 40, 90, 160, 250, µ2
µ1

= ρ2
ρ1

=

10−1, Re = 9.81× 10−4

is based on a numerical artefact, not physical reason. This is commonly

used in removing the singularity in force. Liu et al[10], for example, solves

for the spreading of droplet with a slip boundary condition. We also refer

to Renardy et al[17] for a discussion about the slip boundary condition in

VOF methods. As there is slip velocity along the bottom, the finger can be

removed as the flux at the boundary is evidently increased. We first apply

u = λ
∂u

∂y

which is known as the Navier slip condition. λ is usually chosen to be on the

order of the mesh size ∆y. So we choose λ = ∆y, and solve for the problem

with µ2
µ1

= ρ2
ρ1

= 0.1. Figure 4.11 is the flow profile at T = 10, 40, 90, 160, 250.

Compared with the no-slip condition result 4.10, the finger is partly removed

and the flow profile totally changes, which we think is reasonable, based on

the assumption that the finger is numerical artefact. We also modified the
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4.4. The no-slip boundary condition
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Figure 4.11: Navier slip boundary condition, T = 10, 40, 90, 160, 250, µ2
µ1

=
ρ2
ρ1

= 10−1, Re = 9.81× 10−4

Navier slip condition to provide another model:

u =
1− c
c

∆y
∂u

∂y

where c = c(x, y) is the volume fraction, this is because the Navier slip

condition does not fully remove the finger and there is still discontinuity

in velocity field, see Figure 4.12, for example. And we add a term 1−c
c ,

considering that, for c = 1 we have u = 0, meaning that the lower layer

satisfies the no-slip condition, and for c = 0 we have ∂u
∂y = 0, meaning that

the upper layer satisfies the free slip condition, while for 0 < c < 1 the

two conditions are mixed. In this way, the finger is effectively removed,

see Figure 4.13 and 4.14 for example, in those graphs the flow profile at

the same time step for three different boundary conditions are compared,

among which the finger is removed mostly by the modified slip model.

Furthermore, the velocity field is continuous for the slip model, see Figure

4.15 as an example. Therefore, we choose the modified slip model
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4.4. The no-slip boundary condition

Figure 4.12: horizontal velocity at x=3.5, from Navier slip condition
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Figure 4.15: horizontal velocity at x=3.5, from modified slip condition, the
velocity is continuous and converges well

u =
1− c
c

∆y
∂u

∂y

as an alternate for the no-slip condition, in order to remove the finger and

avoid the resolution issue. Figure 4.17 and 4.16 show better convergence

of flow height and length versus time, than the no-slip condition. Thus we

can assume that this model is independent of resolution, even though the

boundary condition depends on the mesh size and the boundary volume

fraction. Then we compare the numerical results with the asymptotic

models, Figure 4.18 and 4.19 give the flow length and height vs time in

the case µ2
µ1

= ρ2
ρ1

= 0.1. In principle, it is not reasonable to compare a

numerical simulation with slip condition, with an asymptotic model, with

no-slip condition. However, as the slip model depends on the mesh size,

we cannot impose it into asymptotic analysis which does nothing about

mesh. However, we want to argue that the slip model effectively reduces the

propagation speed from the no-slip condition. That is, with a slip condition,

the flow is expected to spread faster than no-slip condition, however, it is the
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4.4. The no-slip boundary condition
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Figure 4.16: x vs t for modified slip model, µ2µ1 = ρ2
ρ1

= 10−1, Re = 9.81×10−4
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4.4. The no-slip boundary condition
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Figure 4.18: flow length vs time for different models, µ2µ1 = ρ2
ρ1

= 10−1, Re =

9.81× 10−4
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Figure 4.19: flow height vs time for different models, µ2µ1 = ρ2
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Figure 4.20: modified slip boundary condition, T = 10, 40, 90, 160, 250, µ2µ1 =
ρ2
ρ1

= 10−1, Re = 9.81 × 10−4, white curves are from the two-layer shallow
layer model

opposite. This might indicate that: in numerical simulation, imposing a slip

condition might be more effective than a no-slip condition, in solving for a

moving contact line problem. Figure 4.20 is the flow profile for different time

steps, from the modified slip model, compared with the two-layer shallow

layer theory. If the shallow layer theory is correct, that implies that the

numerical results with a slip condition is similar to the asymptotic model

with no-slip condition. In this case, we can think of the slip condition as a

numerical artefact, aimed at recovering the resolution issue caused by the

no-slip condition.

4.5 Discussion about the result

In our numerical simulation, we first impose a no-slip boundary condition on

the bottom of the domain. However, the computation is not resolved, due to

the existence of a finger of the upper fluid along the bottom. It is possible
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4.6. Numerical result for Bingham fluid problem

that a highly refined resolution may help resolve the finger, however, our

most refined resolution does not give a well-resolved result. Therefore, we

change the boundary condition to be slip, in order to remove the finger. In

our modified slip model u = 1−c
c ∆y ∂u∂y , it is still a no-slip condition as c = 1,

but a free-slip condition as c = 0. This implies that for the lower layer, the

boundary condition is still no-slip, but for the upper layer, the boundary

condition is free-slip. Since we are not interested in the dynamics of the

upper layer, imposing a free-slip condition will not cause severe problem.

Then we make a resolution study of the modified slip model, the result is

encouraging, because the finger is removed, and the velocity field near the

boundary is resolved. Moreover, for the same problem considered, the slip

model spreads more slowly than the no-slip model, meaning that numerical-

ly, the slip model is better to simulate the problem than the no-slip model.

All these results are based on the assumption that the finger is a numerical

effect. However, if the finger exists in reality, we have to have much refined

resolution to resolve it. Also it is possible that the thickness of the finger is

so small that its nature is beyond the reach of macro-scale fluid dynamics.

Anyway, as the modified slip model is the best one so far in simulating our

problem, we will impose it in the problem for Bingham fluid case.

4.6 Numerical result for Bingham fluid problem

Unlike Newtonian fluid, Bingham fluid will stop at a final state. In the

previous chapter, we gave several theoretical models predicting the length

and height of the final state, as well as the equilibrium flow profile. Now we

will use numerical simulation to get the final shape, for varying yield stress.

The numerical settings for the standard problem are

ρ2

ρ1
= 10−3,

µ2

µ1
= 10−3, Re = 9.81× 10−4

for varying Bingham number B from 0.02 to 0.6. The resolution is set to

∆x = ∆y = 0.005. Numerically, the regularized model τ = (1 + B
γ+ε)γ

assumes that the viscosity is O(Bε ) for small value of γ, thus the fluid will
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4.6. Numerical result for Bingham fluid problem

never stop spreading. Therefore, it is necessary to define a stopping criteria.

Remember in the numerical scheme, the constitutive law is

τ(u) =

[
c

(
1 +

B

γ + ε

)
+ (1− c)µ2

µ1

]
γ(u)

Getting rid of small terms when ε� γ � 1, and take the second invariant,

the fluid reaches the equilibrium as τ ≈ Bc. Therefore in our problem the

computation is considered as stopped when τ < 1.01Bc everywhere in the

fluid.

Figure 4.21 is the numerical final shape for B varying from 0.02 to 0.3,

with slip and no-slip condition. For larger B, the fluid is unyielded from

the very beginning, as the stress everywhere is below the yield stress. As

B < 0.28, the fluid starts to spread, with a horn-like unyielded region on the

upper right corner, which is not predicted by any asymptotic theories. And

as B goes even lower, the unyielded region is less evident and flattened, and

the flow is yielded everywhere, and it approaches certain final shape. The

results of the no-slip condition has a finger on the bottom, the fluid spreads

farther than the slip condition.

We will compare the numerical results with the following models from

past literature:

• The 0-order shallow layer model

X =
1

2

(
9

B

)1/3

, H = (3B)1/3

This assumes that B � 1 so that the aspect ratio of the fluid is small.

• The 1-order shallow layer model

X =

(
1

2B
+
π

2

)(
1

3B
+
π

4

)−2/3

, H =

(
1

3B
+
π

4

)−1/3

from Dubash et al[20]. This again assumes B � 1.

• slipline theory model from Dubash et al[20], there is no explicit form of
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Figure 4.21: final shapes for different B
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4.6. Numerical result for Bingham fluid problem

the equation for the interface, the algorithm of recovering the interface

is in this paper. It does not require B to be small, but assume the

fluid yields everywhere at the beginning.

• Pashias et al[23] gives a relation of the equilibrium flow height and

Bingham number

H = 1− 2B[(1− ln(2B)]

It is based on the assumption of a much larger aspect ratio, while in

our problem it is normalized to be 1. We include their result just to

see how different the results are under different assumptions.

• Staron et al[15] gives a relation of the equilibrium flow height and

Bingham number

H = 3.01B0.66

They have generalized the relations of the equilibrium length and the

Bingham number, but it is also dependent on viscosity in that model.

As our methods of nondimensionalization are different, we do not have

the viscosity available to compare, thus we only use the equilibrium

height model.

For B in [0.02 0.1], the equilibrium spreading length and height are

shown in Figure 4.22 and 4.23. Here we also include the numerical result-

s with the no-slip condition to see the problem caused by the finger. In

4.22, the numerical no-slip results are still not resolved, leading to a further

propagation than the numerical slip results and other theoretical models,

for B < 0.05. Thus the numerical no-slip results are not believable, and

the slip model makes the computation resolved, and it fits better with the

asymptotic models than the no-slip results. As is said before, the modified

slip model is the best one so far in simulating our problem, this comparison

further confirms our expectation about the application of the slip model.

We can also see from the graphs that the numerical results agree well with

1-order shallow layer theory and the slipline theory for smaller B, this indi-

cates that the shallow layer model and the slipline model from Dubash [20]
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Figure 4.22: equilibrium flow length for B in [0.02 0.1]

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

0.1

0.2

0.3

0.4

0.5

0.6

B

H

equilibrium flow height for different B

 

 

numerical no-slip
numerical slip
slipline
0-order shallow layer
1-order shallow layer
Staron et al
Pashias et al

Figure 4.23: equilibrium flow height for B in [0.02 0.1]
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Figure 4.24: The color contour map is the stress field of the equilibrium
state for B=0.02, the black curve is the 1-order shallow layer model

are valid for B � 1. Figure 4.24 is the equilibrium state for B = 0.02, the

black curve is the 1-order shallow layer model. They correspond well with

each other. We can also see from the stress field that the fluid yields every-

where and the stress falls to the dimensionless yield stress B as it reaches

the equilibrium. From Figure 4.23, both Staron and Pashias’ models are not

in a good comparison with the numerical results or the lubrication theory.

Pashias’ model is different mainly because they assume the equilibrium state

has a larger aspect ratio, while in our problem it is small. Staron’s model is

different because they assume that the slump height is linearly dependent

on the initial aspect ratio, for a constant B, and derive that the equilibrium

flow height is on the order of O(B2/3), while this is not true in the shallow

layer model(O(B1/3)), which is more close to the numerical results. For B

in [0.1 0.2], the equilibrium spreading length and height are shown in Figure

4.25 and 4.26. There is no big difference between the no-slip model and the

slip model. And also the numerical results deviate from both the shallow

layer model and other models. This is because B is not small enough, and
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Figure 4.25: equilibrium flow length for B in [0.1 0.2]

some region is not yielded. For example, Figure 4.27 is the stress field of

B = 0.2 at equilibrium state, the white curve is the final shape predicted by

the slipline model, we can see clearly that, at the right-upper corner, there

is an unyielded region, which makes the flow spread less than expected.
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Figure 4.26: equilibrium flow height for B in [0.1 0.2]

44



4.6. Numerical result for Bingham fluid problem
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Figure 4.27: The color contour map is the stress field of the equilibrium
state for B=0.2, the white curve is the slipline result
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Chapter 5

Conclusion

We have performed numerical simulations for a two-layer fluid problem,

using a VOF method for the evolution of the fluid and a regularization

method for the constitutive law of Bingham fluid, in order to simulate the

propagation of the Bingham fluid gravity current.

A Newtonian fluid problem is solved first to validate the code. A res-

olution problem caused by the no-slip boundary condition is found, due to

the appearance of a thin finger of upper layer fluid that is over-ridden by

the lower fluid. We are not sure if the finger is physically reasonable or

not. If it really exists, it probably requires much higher resolution to be

recovered, or demands more than macro-scale fluid dynamics to be under-

stood. Therefore, we consider the possibility that the finger is a numerical

effect from the no-slip condition and needs to be removed. A slip boundary

condition is shown to remove the finger formed by the upper fluid, thereby

avoiding numerical resolution issues. However, we are not convinced that

the numerical simulation with a slip boundary condition, is still our original

problem(with no-slip condition). So far as we achieved, the slip model is

proved to make the result independent of resolution, and it performs better

than the no-slip condition results, in comparison with the asymptotic mod-

els. Those observations, may imply that the slip condition is an alternative

of no-slip condition in numerical simulation of two-layer fluid moving on the

wall. Further investigation is still needed.

The slip boundary condition is then used for the Bingham fluid prob-

lem. The numerical results for the Bingham fluid problem agree with the

asymptotic models for B < 0.05, for B > 0.1, they become different, as

there is genuine unyielded region on the upper-right corner of the fluid. and

the final shapes are totally different. As B > 0.28, the fluid is always static.
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Chapter 5. Conclusion

Therefore, we numerically confirm the validity of the shallow layer theory

in certain parameter regimes.

Although the numerical simulations agree with the asymptotic results,

we are not very confident with the numerical result because the mechanism

behind imposing a slip condition is not yet understood, and we are not

sure if the modified slip condition u = 1−c
c ∆y ∂u∂y is a proper choice(There

is a problem caused by imposing the slip-condition in the Bingham fluid

problem. Details can be found in Appendix.A.). In fact, it is a common

problem that no-slip condition poses a problem in viscous flow theory at

contact lines: places where an interface between two fluids meets a solid

boundary. Here, the no-slip boundary condition implies that the position of

the contact line does not move, which is not observed in reality. Analysis of

a moving contact line with the no slip condition demands infinite stresses.

Our next step includes: extending our simulation to an axisymmetric

context, and varying the initial shape and aspect ratio and application of the

augmented Lagrangian method. We hope to make use of both experiments

and large number of numerical simulations to address the finger problem. If

the finger is not observed in experiments, that means it is simply a numerical

artefact, then the slip model can be validated by comparison with no-slip

asymptotic model and experiments, in different contexts.
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Appendix A

Code Validation

A.1 The results are independent of tolerance

The convergence criteria for solving the Navier-Stokes equations is when

tolerance tol > max(||∇ · u||, ||un+1 − un||). We test the tol = 10−6, 10−8

to see if the results are different, Figure A.1 and A.2 are the plots for the

evolution of flow height and length, for the two tolerance(with all other

settings the same). It shows that tol = 10−6 is enough for convergence.

A.2 The results are independent of time step

It is necessary to show that the time step ∆T for each iterations of Navier-

Stokes solver is small enough so that the velocity during any time is well

captured. The time step here is set to be 0.5, 0.25, 0.125, with all other

settings the same. Figure A.3 and A.4 are the results. It shows that ∆T =

0.5 is small enough.
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Figure A.1: x vs t for different toler-
ance
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A.3. The domain size
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Figure A.3: x vs t for different time
step
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Figure A.4: h vs t for different time
step

0 50 100 150 200 250
1

1.5

2

2.5

3

3.5

4
flow length vs time

t

x

 

 

LxH=5x1.25
LxH=6x1.5

Figure A.5: x vs t for different domain
size
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Figure A.6: h vs t for different domain
size

A.3 The domain size

Since we want to make the effect of the upper layer as small as possible, it

is necessary to make sure that the change in domain size will not lead to

a big difference in the result. We choose L ×H = 5 × 1.25, 6 × 1.5, while

the initial size of the lower layer is still 1 × 1. Figure A.5 and A.6 are the

results. It shows that the effect of the domain size is small enough, thus we

choose L×H = 5× 1.25 as the standard setting in our problem.
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A.4. The density and viscosity ratio
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Figure A.7: x vs t for different viscos-
ity ratio
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Figure A.8: h vs t for different viscos-
ity ratio

A.4 The density and viscosity ratio

For the same reason as the domain size test, it is necessary to show that

the change in density and viscosity ratio will not leading to big difference in

the results. We make the viscosity ratio µ2
µ1

= 10−3, 5× 10−4, with all other

settings the same. Figure A.7 and A.8 show the results. It implies that
µ2
µ1

= 10−3 is small enough to make the results independent of the upper

layer.

A.5 Reynolds number

For Bingham fluid, the inertial force sometimes can change the equilibrium

shape. To avoid the effect of inertia, it is necessary to make sure that the

Reynolds number is small enough, so that the Bingham fluid propagation is

not affected by inertia. We do computations for Re = 9.81 × 10−4, 7.85 ×
10−3, Figure A.9 and A.10 are the results. It shows that the inertia can be

neglected.

A.6 Regularization parameter is small enough

The regularization parameter ε of the model τ = (1 + B
γ+ε)γ needs to be

small enough so that it has no effect on the propagation of Bingham fluid
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A.7. Problems with the slip boundary condition
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Figure A.9: x vs t for different
Reynolds number

0 50 100 150 200 250

0.4

0.5

0.6

0.7

0.8

0.9

1

t

H

flow length vs time for different Reynolds number

 

 
Re=9.81e-4
Re=7.85e-3

Figure A.10: h vs t for different
Reynolds number

before stopping. We did a test by setting B = 0.04, and ε = 10−4 to 10−8,

with all other settings the same. It indicates that as ε ≤ 10−6, there is no

difference in the results. To make the effect small enough, ε is always chosen

to be 10−8 in our tests.

A.7 Problems with the slip boundary condition

Figure A.11 compares the flow evolution of the two types of boundary con-

ditions for B = 0.1. We can see that, before reaching the equilibrium, the

slip model spreads more slowly than the no-slip one. However, around the

equilibrium, the no-slip model stops right away, while the slip model contin-

ues to spread. The observation above implies that the modified slip model

is invalid around the equilibrium. It needs to be corrected to address this

issue. Therefore, the no-slip model is a relatively more valid model for B

in [0.1 0.2], as there is not much of a finger. This observation reflects the

deficiency of slip condition in Bingham fluid problem, as we cannot tell if

the flow really stops at the equilibrium, which implies that the slip model

is not a proper choice in this Bingham fluid problem. One way of resolving

this is to use the stopping time from the no-slip results.
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A.7. Problems with the slip boundary condition
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Figure A.11: flow length vs time for different BCs
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