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Abstract

In this thesis, we introduce a new class of embarrassingly parallel parameter learning algorithms for Markov

random fields (MRFs) with untied parameters, which are efficient for a large class of practical models.

The algorithms parallelize naturally over cliques and, for graphs of bounded degree, have complexity that

is linear in the number of cliques. We refer to these algorithms with the acronym LAP, which stands for

Linear And Parallel. Unlike their competitors, the marginal versions of the proposed algorithms are fully

parallel and for log-linear models they are also data efficient, requiring only the local sufficient statistics of

the data to estimate parameters. LAP algorithms are ideal for parameter learning in big graphs and big data

applications.

The correctness of the newly proposed algorithms relies heavily on the existence and uniqueness of the

normalized potential representation of an MRF. We capitalize on this theoretical result to develop a new

theory of correctness and consistency of LAP estimators corresponding to different local graph neighbour-

hoods. This theory also establishes a general condition on composite likelihood decompositions of MRFs

that guarantees the global consistency of distributed estimators, provided the local estimators are consistent.

We introduce a conditional variant of LAP that enables us to attack parameter estimation of fully-

observed models of arbitrary connectivity, including fully connected Boltzmann distributions. Once again,

we show consistency for this distributed estimator, and relate it to distributed pseudo-likelihood estimators.

Finally, for linear and non-linear inverse problems with a sparse forward operator, we present a new

algorithm, named iLAP, which decomposes the inverse problem into a set of smaller dimensional inverse

problems that can be solved independently. This parallel estimation strategy is also memory efficient.
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Chapter 1

Introduction

1.1 Motivation
Markov random fields (MRFs), also known as undirected probabilistic graphical models, are ubiquitous

structured statistical models that have impacted a significantly large number of fields, including computer

vision [Li, 2001, Szeliski et al., 2008], computational photography and graphics [Agarwala et al., 2004,

Boykov and Veksler, 2006, Chen et al., 2008], computational neuroscience [Ackley et al., 1985, Hopfield,

1984], bio-informatics [Yanover et al., 2007], natural language processing [Lafferty et al., 2001, Galley,

2006, Sutton and McCallum, 2012] and statistical physics [Marinari et al., 1997, Braunstein et al., 2005].

As pointed out in MacKay [2003] and Wainwright and Jordan [2008] there are also many applications in

classical statistics, constraint satisfaction and combinatorial optimization, error-correcting codes and epi-

demiology. Not surprisingly, many comprehensive treatments of this important topic have appeared in the

last four decades; see for example [Kindermann and Snell, 1980, Lauritzen, 1996, Li, 2001, Bremaud, 2001,

Koller and Friedman, 2009, Murphy, 2012].

Despite the huge success and impact of these models, fitting them to data via maximum likelihood

(ML) is prohibitively expensive in most practical situations. Although the likelihood is typically convex in

the parameters, each optimization step requires solving inference problems that in the worst case are ]P-

hard [Murphy, 2012]. As stated, in bold, in the authoritative book of Koller and Friedman [2009]: “a full

inference step is required at every iteration of the gradient ascent procedure. Because inference is almost

always costly in time and space, the computational cost of parameter estimation in Markov networks is

usually high, sometimes prohibitively so.”

Ideally, we would like to be able to compute the maximum likelihood estimates as these are consistent

and maximally asymptotic efficient [Fisher, 1922]. We remind the reader that an estimator is asymptotically

consistent if it converges to the true parameters as the sample size goes to infinity. An asymptotically

consistent estimator is maximally efficient if the variance in the estimated parameters attains the minimum

possible value among all consistent estimators as the sample size goes to infinity. Of course, in many

applications, we are interested in penalized maximum likelihood estimates. That is, the goal is to find the
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maximum a posteriori (MAP) estimates after the addition of smoothness or sparsity priors. For presentation

simplicity, we will focus the discussion ML estimates, as our results will follow straightforwardly for typical

MAP estimates.

In many cases, maximum likelihood in these models is data efficient in the sense that the data term in the

gradient can be easily precomputed, making its evaluation trivial during optimization. The main difficulty

with maximum likelihood is that it is not model efficient since evaluating the gradient involves computing

expectations over the model distribution. This requires evaluating a sum with exponentially many terms,

which is intractable for even moderately sized models, as pointed out above.

If the MRF under study has low tree-width, then the junction-tree algorithm can be adopted as the

inference engine [Lauritzen, 1996, Murphy, 2012]. However, for many MRFs of interest, such as square

lattices, the complexity of inference with the junction-tree algorithm grows exponentially with the size of

the grid. This is also a severe problem when deploying skip-chain conditional random fields (CRFs) in

natural language processing applications, such as named entity recognition and co-reference resolution, and

computer vision tasks, such as dense stereo reconstruction [Galley, 2006, Sutton and McCallum, 2012,

Murphy, 2012, Bradley, 2013].

The computational difficulties associated with exact inference have motivated researchers to adopt al-

ternative estimators even if these are not as statistically efficient as maximum likelihood. Examples of these

estimators include ratio matching, score matching, stochastic maximum likelihood, contrastive divergence,

composite likelihood and pseudolikelihood [Besag, 1975, Younes, 1989, Hinton, 2000, Hyvärinen, 2005,

2007, Marlin et al., 2010, Varin et al., 2011, Marlin and de Freitas, 2011, Swersky et al., 2011].

An important class of approximate methods for this problem are stochastic approximation techniques,

which approximate the model term by drawing samples from the model distribution, typically via Markov

chain Monte Carlo (MCMC). This simulation is costly and often many samples are required for accurate

estimation. Moreover, in settings where the parameters or data must be distributed across many machines

such simulation poses additional difficulties.

Another approach is to approximate the maximum likelihood objective with a factored alternative. The

leading method in this area is pseudo-likelihood. In this approach the joint distribution over all variables

in the MRF is replaced by a product of conditional distributions for each variable. Applying pseudo likeli-

hood in a distributed setting is may difficult, because the conditional distributions share parameters. Several

researchers have addressed this issue by proposing to approximate pseudo-likelihood by disjointly opti-

mizing each conditional and combining the parameters using some form of averaging [Ravikumar et al.,

2010, Wiesel and Hero III, 2012, Liu and Ihler, 2012]. Yet, as pointed out by its creator, Julian Besag,

“My own view is that the technique is really a creature of the 1970s and 1980s and I am surprised to see it

recommended in the computer age” [Besag, 2001].

In this thesis, we introduce a new approach to parameter estimation in MRFs with untied parameters,

which avoids the model inefficiency of maximum likelihood for an important class of models while preserv-

ing its data efficiency. Moreover, the proposed algorithms are naturally parallel and can be implemented in a

distributed setting without modification. The algorithms replace the joint maximum likelihood problem with
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a collection of much smaller auxiliary maximum likelihood problems which can be solved independently.

We prove that if the auxiliary problems satisfy certain conditions, the relevant parameters in the auxiliary

problems converge to the values of the true parameters in the joint model. The experiments show that good

performance is achieved in this case and that good performance is still achieved when these conditions are

not satisfied. Violating the conditions for convergence sacrifices theoretical guarantees in exchange for even

further computational savings while maintaining good empirical performance.

Under a strong assumption, we prove that a proposed Linear And Parallel (LAP) algorithm is exactly

equal to maximum likelihood on the full joint distribution. While not directly applicable, this result provides

additional insight into why our approach is effective.

A method similar to the naive LAP algorithm was recently, and independently, introduced in the context

of Gaussian graphical models by Meng et al. [2013]. In that paper, the authors consider local neighbour-

hoods of nodes, whereas we consider neighbourhoods of cliques, and they rely on a convex relaxation via

the Schur complement to derive their algorithm for inverse covariance estimation. At the time of writing this

thesis, the same authors have shown that the convergence rate to the true parameters with their method is

comparable to centralized maximum likelihood estimation [Meng et al., 2014].

Although our work and that of Meng et al. arrive at distributed learning via different paths, and while

theirs is restricted to (pair-wise) Gaussian graphical models, both works show that it is possible to capitalize

on graph structures beyond low tree-width to design algorithms that are both data and model efficient and

exhibit good empirical performance.

In this thesis, we also introduce the Strong LAP Condition, which characterises a large class of composite

likelihood factorisations for which it is possible to obtain global consistency, provided the local estimators

are consistent. This much stronger sufficiency condition enables us to construct linear and globally consis-

tent distributed estimators for a much wider class of models than Mizrahi et al., including fully-connected

Boltzmann machines.

Using this framework, we also show how the asymptotic theory of Liu and Ihler [2012] applies more

generally to distributed composite likelihood estimators. In particular, the Strong LAP Condition provides

a sufficient condition to guarantee the validity of a core assumption made in the theory of Liu and Ihler,

namely that each local estimate for the parameter of a clique is a consistent estimator of the corresponding

clique parameter in the joint distribution. By applying the Strong LAP Condition to verify the assumption of

Liu and Ihler, we are able to import their M-estimation results into the LAP framework directly, bridging the

gap between LAP and consensus estimators. In particular we illustrate how LAP can be applied to sparse

Gaussian graphical models and discrete tables.

Finally, this thesis also offer an alternative approach for solving inverse problems by introducing an

efficient parallel algorithm, named iLAP, which appropriately divides the large problem into smaller sub-

problems of much lower dimension. This process of localization offers substantial advantages in terms of

computational efficiency and memory allocation.
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1.2 Contribution list
The main novel result of this thesis is a mathematical observation that leads to a parameter estimation

technique, LAP, which can be used, with linear complexity, for many important graphs and parametric

families. The algorithm uses a set of local, independent, and low-dimensional estimators.

LAP is a naturally parallel algorithm, with significantly reduced complexity, that uses data statistics for

efficient online and distributed memory allocation. We prove the consistency of LAP and prove that (under

some conditions) LAP is identical to ML.

We further develop the algorithm by proving a strong LAP theorem that significantly reduces its com-

plexity. The strong LAP theorem establishes the relationship between the graph topology and the consis-

tency of local estimators.

We introduce the conditional LAP (CLAP), which is applicable to a larger class of parametric distri-

bution families and prove the consistency of CLAP. We link the LAP and CLAP results to the design of

algorithms for distributed parameter estimation in MRFs by showing how the work of Liu and Ihler [2012]

and LAP can both be seen as special cases of distributed composite likelihood. Casting these two works in

a common framework allows us to transfer results between them, strengthening the results of both works.

We study sparse Gaussian graphical models and discrete tables, and demonstrate the proper usage of

LAP for these models. We investigate the complexity versus accuracy trade-off for these models.

We present an efficient algorithm, iLAP, for solving large scale inverse problems with sparse forward

operators. Using iLAP we reduce the large inverse problem into a set of local inverse problems of smaller

dimension. This approach is naturally parallel and significantly reduces the memory requirements of each

solver. We experiment with iLAP by applying it to an image de-blurring problem and compare the results

to baseline estimators.

1.3 Thesis organization
Chapters 1 and 2 provide motivation and background material on the well established theory of MRFs.

Chapter 3 introduces the LAP methodology. We define the first neighbourhood of a clique, introduce the

first LAP algorithms and prove their consistency and relation to ML estimation.

Chapter 4 refines the result of Chapter 3. In particular it includes the strong LAP theorem, which

relates the graph topology to our ability to obtain consistent global estimators from local estimators. In the

same chapter, we introduce a conditional version of LAP (named CLAP) and relate the LAP algorithm to

other estimators. In particular, we develop distributed composite likelihood estimators with emphasis on

obtaining sufficient conditions for their consistency.

In Chapter 5 we explain in detail how to apply LAP to sparse Gaussian graphical models and discrete

tables. We define higher order neighbourhoods as domains and compare the resulting trade-off of complexity

versus accuracy.

In Chapter 6 we introduce iLAP, which is a LAP based method for solving inverse problems. Chapter 7

suggests directions for future research.
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Chapter 2

Background

2.1 Definitions and notation

2.1.1 Random fields

A real-valued random field defined on a set S is a collection of random variables indexed by the elements in

S : {xt}t∈S. Since we will only consider finite sets S, a random field is simply a k×1 random vector x, where

k is the number of elements in S. The correlation structure of x will be defined by the relationships among

the elements in S. Thus, from now on we will assume that the random field is defined on S = {1, ...,K}.
If A = {i1, ..., in} ⊂ S, we define xA = (xi1 , ..,xin), but for simplicity we shall write x instead of xS.

The random field is completely defined by the joint distribution function of x. We will assume that this

distribution has the probability density function (PDF) p. The marginal PDF corresponding to xA can be

obtained from p by integration:

p(xA) =
∫

p(x)dxc, c = S\A. (2.1)

2.1.2 Graphs, neighbourhoods and cliques

Let S index a discrete set of K sites, where a site may represent a point location in a Euclidian space, a pixel

location in an image, etc. Assume that for each site index i ∈ S, there exists a corresponding subset of S,

denoted as Ni. We denote the collection of the corresponding subsets {Ni} as N .

Definition 1. N = {Ni} is called a neighbourhood system if and only if

1. i ∈N j ⇐⇒ j ∈Ni ∀i, j ∈ S (mutual relationship)

2. A site is not a neighbour of itself: i /∈Ni
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The finite set S and the neighbourhood system N can be described as an undirected graph, with the

sites as the nodes and the neighbourhood relationships as the edges, G = {S,E}, where S is the discrete set

of K nodes and E is a list of edges satisfying {i, j} ∈ E ⇐⇒ i ∈N j.

Definition 2. A subset c ⊆ S is a clique for neighbourhood system N , if any two different i, j in c are

neighbours. That is:

∀i, j ∈ c, i 6= j, i ∈N j.

Clearly any subset of a clique, cs ⊆ c, is itself a clique, and any singleton {i} is a clique. In the graphical

model representation, any fully connected subset is a clique.

Definition 3. A clique c is called maximal if c∪{i} is not a clique for any i /∈ c.

2.1.3 Markov random fields

The random vector x is said to have the Markov property with respect to a neighbourhood system N if its

marginal and conditional distributions are such that:

p(xi|xS\i) = p(xi|xNi).

Definition 4. A family of random variables x1, ...,xK is called a Markov Random Field on S with respect to

a neighbourhood system N if it satisfies the Markov property.

2.1.4 MRFs and Gibbs distributions

A Gibbs random field (GRF) on S with respect to neighbourhood system N , is a set of random variables

with the joint density function of the form

p(x) =
1
Z

exp(−U(x)). (2.2)

U is called the energy f unction and Z is a constant called the partition function which plays the role of the

normalization factor. The constant Z can be calculated by integration over the high dimensional space:

Z =
∫

...
∫

exp(−U(x))dx. (2.3)

The Hammersley-Clifford theorem [Hammersley and Clifford, 1971] establishes the equivalence be-

tween MRFs and GRFs. The theorem states that a probability distribution that has a positive mass or density

satisfies the Markov property under neighbourhood system N if and only if it is a Gibbs random field,

where the energy function U is a summation of functions called potentials over the set of cliques:

U(x) = ∑
c∈C

Ec(xc ). (2.4)
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Ec(xc ) is the energy or clique potential associated with the variables in clique c, and it depends only on the

values at the site inside the clique c. C is the collection of all cliques.

Combining Equations (2.2) and (2.4) yields

p(x) =
1
Z

exp ∑
c∈C

Ec(xc ). (2.5)

From the above expression it is clear that p is determined by local characteristics. The representation of p

using the potentials in Equation (2.5) is not unique, but there is a way to impose such uniqueness using the

concept of normalized potentials.

Definition 5. An energy function, Ec(xc ) (or potential), is said to be normalized with respect to the zero

vector if Ec(xc ) = 0 whenever there exists t ∈ c such that xt = 0.

Theorem 1. (Uniqueness of normalized potential) There exists one and only one normalized potential rep-

resentation with respect to zero corresponding to a Gibbs distribution.

Proof. See Bremaud [2001], pages 262-265.

The normalized potential is also known as the canonical potential [Griffeath, 1976, Kindermann and

Snell, 1980]. One can choose normalized potentials with respect to reference values other than the zero

vector. However, in order to ease the notation we consider only the normalization with respect to the zero

vector.

The uniqueness of the normalized potential representation enables us to talk about the uniqueness of

cliques. In particular, each clique has one and only one normalized potential. Henceforth, this thesis will

focus on clique potentials in normalized potential representation and, specifically, normalized with respect

to the zero vector.

2.2 Model specification and objectives
We are interested in estimating the parameter vector θ of the positive distribution p(x |θ)> 0 that satisfies

the Markov properties of an undirected graph G. That is, a distribution that can be represented as a Gibbs

distribution:

p(x |θ) = 1
Z(θ)

exp(−∑
c

E(xc |θ c)), (2.6)

where Z(θ) is the partition function:

Z(θ) =
∫

exp(−∑
c

E(xc |θ c))dx. (2.7)
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We will assume that the energy terms E(xc |θ c) ∈ R are chosen so that the parameters are identifiable. That

is,

θ1 6= θ2 ⇐⇒ E(xc |θ 1) 6= E(xc |θ 2). (2.8)

When the energy is a linear function of the parameters,

E(xc |θ c) =−θ
T
c φ c(xc),

where φ c(xc) is a feature vector derived from the values of the variables xc, we will refer to the model as a

maximum entropy representation or log-linear model (Wasserman [2004], Buchman et al. [2012], Murphy

[2012]). The features in these models are also referred to as local sufficient statistics.

At this stage, we will make an additional remark regarding notation. We will use x to refer to the vector

of all variables (nodes). When needed, we increase the precision in our notation by using S to denote the

set of all variables and use xS for the vector of all variables in the MRF. We restrict the symbols n and c so

that xn refers to the n-th observation of all the variables in the MRF, and xc refers to the subset of variables

associated with clique c. Finally xmn refers to the n-th observation of node m.

2.2.1 Maximum Likelihood estimation

Maximum Likelihood (ML) is maybe the most natural principle for estimating θ . Denoted by θ̂ ml , the

maximum likelihood estimator is defined as the θ that maximizes the likelihood function L(·). Specifically,

let x1, ..,xN be independent realizations of p(x|θ), then the likelihood function L is given by

L (θ ;x1, ..,xN) =
N

∏
n=1

p(xn|θ). (2.9)

There is (in general) no closed form solution for the maximum likelihood estimate of the parameters of an

MRF, so gradient-based optimizers are needed.

Consider the fully-observed maximum entropy model

p(x |θ) = 1
Z(θ)

exp(∑
c

θ
T
c φ c(x)). (2.10)

The scaled log-likelihood is given by

`(θ) =
1
N

N

∑
n=1

log p(xn |θ). (2.11)

By substituing Equation 2.10 we get

`(θ) =
1
N

N

∑
n=1

[
∑
c

θ
T
c φ c(xn)− logZ(θ)

]
, (2.12)
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which is a convex function of θ . The derivative with respect to the parameters of a particular clique, q, is

given by

∂`

∂θ q
=

1
N

N

∑
n=1

[
φ q(xn)−

∂ logZ(θ)
∂θ q

]
, (2.13)

where

∂ logZ(θ)
∂θ q

= E
[
φ q(x) |θ

]
=
∫

φ q(x)p(x |θ)dx. (2.14)

Equation (2.14) is the expectation of the feature φ q(x) over the model distribution.

The full derivative of the log-likelihood contrasts the model expectation against the expected value of

the feature over the data,

∂`

∂θ q
=

1
N

N

∑
n=1

φ q(xn)−E
[
φ q(x) |θ

]
. (2.15)

At the optimum these two terms will be equal and the empirical distribution of the features will match the

model predictions. Asymptotically, ML is the optimal estimator since it reaches the Cramer-Rao lower

bound. Specifically, the central limit theorem tell us that the ML estimate θ̂ ML converges to the true param-

eter vector θ true at the following rate (which is the fastest possible asymptotic rate):

lim
N→∞

(θ true− θ̂ ML) = N (0,I−1), (2.16)

where N is the number of samples and I is the Fisher Information matrix defined by

Iql =−E
[
(
∂ 2 log p(x|θ)

∂θq∂θl
)

]
. (2.17)

This statistical optimality is not the only important aspect of learning. For many models of interest θ̂ ML

is intractable. We must therefore also consider the computational costs associated with learning. In this

thesis, we will seek to design classes of algorithms that are both computationally and statistically efficient.

This will not always be possible and in some cases we will have to present trade-offs between efficient

computation and asymptotic statistical efficiency.

2.2.2 Maximum Pseudo-Likelihood estimation

To surmount the intractable problem of computing expectations over the model distribution, the popular

pseudo-likelihood estimator considers a simpler factorized objective function,

`PL(θ) =
1
N

N

∑
n=1

M

∑
m=1

log p(xmn |x−mn,θ) (2.18)
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where x−mn denotes all the components of the n-th data vector, except for component m. (For models with

sparse connectivity, we only need to condition on the neighbours of node m.) In the binary, log-linear case,

the gradient of this objective can be expressed in contrastive form,

∂`PL

∂θ q
=

1
N ∑

n,m
p(x̄m

mn |x−mn,θ)
[
φ q(xn)−φ q(x̄

m
n )
]

,

where x̄m
n is the data vector x̄n with the m-th bit flipped. That is, x̄i

mn = 1− xmn if i = m and xmn otherwise

(Marlin et al. [2010]). Pseudo-likelihood will appear in most chapters of this thesis, first as a baseline and

later as an application of LAP when considering the distributed pseudo-likelihood setting.
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Chapter 3

The Marginal LAP

In this chapter, we describe a parameter estimation algorithm named LAP. We prove that LAP is both model

efficient (i.e., estimating the parameters requires low computational complexity) and data efficient (i.e., it is

sufficient to have data statistics distributed in a network). In other words, LAP avoids the model inefficiency

of maximum likelihood for an important class of models while preserving its data efficiency.

LAP is naturally parallel and can be implemented in a distributed setting without modification. LAP re-

places the joint maximum likelihood problem with a (linear) collection of much smaller auxiliary maximum

likelihood problems that can be solved independently.

We prove that if the auxiliary problems satisfy certain conditions, the relevant parameters in the auxiliary

problems converge to the values of the true parameters in the joint model. Under a strong assumption, we

also prove that LAP is exactly equal to maximum likelihood on the full joint distribution. While hard to

verify in practice, this result provides additional insight into why the LAP approach is effective.

3.1 Model and data efficiency
There are two terms in the gradient of Equation 2.15. The first term is an empirical expectation,

1
N

N

∑
n=1

φ q(xn)

and depends only on the data. The value of this term for each clique can be pre-computed before parameter

optimization begins, making this term of the gradient extremely cheap to evaluate during optimization.

The data term in the ML gradient is contrasted with an expectation over the model distribution,

E
[
φ q(x) |θ

]
,

which is a sum over exponentially many configurations. For large models this term is intractable.

We describe this situation by saying that ML estimation is data efficient, since the terms involving only

the data can be computed efficiently. However, ML is not model efficient, since the model term in the
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Algorithm 1 LAP
Input: MRF with maximal cliques C
for q ∈ C do

Construct auxiliary MRF over the variables in Aq.
Estimate parameters α̂

ML of auxiliary MRF.
Set θ̂ q← α̂

ML
q .

end for

gradient is intractable, and the difficulty in evaluating it is the primary motivation for the development of

alternative objectives like pseudo-likelihood.

Pseudo-likelihood addresses the model inefficiency of ML by eliminating the model term from the gra-

dient, which makes pseudo-likelihood model efficient. However, pseudo-likelihood is not data efficient,

since computing the gradient requires access to the full conditional distributions p(x̄m
mn |x−mn,θ). Because

of this the outer sum over data examples must be computed for each gradient evaluation. (Note that for

binary models the full conditionals correspond to logistic regressions, so any advances in scaling logistic

regression to massive models and datasets would be of use here.)

In the following section we introduce a Linear And Parallel (LAP) algorithm, which uses a particular

decomposition of the graph to avoid the exponential cost in ML, but unlike pseudo-likelihood LAP is fully

parallel and maintains the data efficiency of ML estimation. LAP is therefore both model and data efficient.

3.2 Algorithm description
The LAP algorithm operates by splitting the joint parameter estimation problem into several independent

sub-problems which can be solved in parallel. Once the sub-problems have been solved, it combines the

solutions to each sub-problem together into a solution to the full problem.

Definition 6. For a fixed clique q we define its 1-neighbourhood Aq as the union of all cliques with non

empty intersection with q:

Aq =
⋃

c∩q6= /0

c. (3.1)

Alternatively, we say that Aq contains all of the variables of q itself as well as the variables with at least

one neighbour in q (See proof in Appendix A.1). LAP creates one sub-problem for each maximal clique

in the original problem by defining an auxiliary MRF over the variables in Aq. Details on how to construct

the auxiliary MRF will be discussed later, for now we assume we have an auxiliary MRF on Aq and that it

contains a clique over the variables in q that is parametrized the same way as q in the original problem.

LAP derives the parameter vector θ q for the full problem by estimating parameters in the auxiliary MRF

on Aq using maximum likelihood and reading off the parameters for the clique q directly. The steps of the

algorithm are summarized in Algorithm 1.

In a log-linear model, when estimating the vector of parameters α of the auxiliary MRF by maximum
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(a)

(b)

(c)

Figure 3.1: The left column shows several popular MRFs: (a) a restricted Boltzmann machine (RBM), (b) a
2-D Ising model, and (c) a 3-D Ising model. The right hand side shows the corresponding 1-neighbourhoods.
Models (b) and (c) have small 1-neighbourhoods compared to the full graph.

likelihood, the relevant derivative is

∂`Mq

∂αq
=

1
N

N

∑
n=1

φ q(xAqn)−E
[
φ q(xAq)|α

]
. (3.2)
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This approach is data efficient, since the sufficient statistics 1
N ∑

N
n=1 φ q(xAqn) can be easily pre-computed.

Moreover, the data vector xn can be stored in a distributed fashion, with the node estimating the auxiliary

MRF only needing access to the sub-vector xAqn. In addition, LAP is model efficient since the expectation

E
[
φ q(xAq)|α

]
can be easily computed when the number of variables in Aq is small. To illustrate this point,

consider the models shown in Figure 3.1. For dense graphs, such as the restricted Boltzmann machine,

the exponential cost of enumerating over all the variables in Aq is prohibitive. However, for other practical

MRFs of interest, including lattices and Chimeras [Denil and de Freitas, 2011], this cost is acceptable.

3.2.1 Construction of the auxiliary MRF

The effectiveness of LAP comes from proper construction of the auxiliary MRF. As already mentioned, the

auxiliary MRF must contain the clique q, which must be parametrized in the same way as in the joint model.

This requirement is clear from the previous section, otherwise the final step in Algorithm 1 would be invalid.

We will see in the analysis section that it is desirable for the auxiliary MRF to be as close to the marginal

distribution on xAq as possible. This means we must include all cliques from the original MRF which are

subsets of Aq. Additionally, marginalization may introduce additional cliques not present in the original

joint distribution. It is clear that these cliques can only involve variables in Aq \ q, but determining their

exact structure in general can be difficult.

We consider three strategies for constructing auxiliary MRFs, which are distinguished by how they

induce clique structures on Aq \q. The three strategies are as follows.

Exact: Here we compute the exact structure of the marginal distribution over Aq from the original problem.

We have chosen our test models to be ones where the marginal structure is readily computed.

Dense: For many classes of model the marginal over Aq involves a fully parametrized clique over Aq \q for

nearly every choice of q (for example, this is the case in lattice models). The dense variant assumes

that the marginal always has this structure. Making this choice will sometimes over-parametrize the

marginal, but avoids the requirement of explicitly computing its structure.

Pairwise: Both the exact and dense strategies create high order terms in the auxiliary MRF. While high

order terms do exist in the marginals of discrete MRFs, it is computationally inconvenient to include

them, since the add many parameters to each sub-problem. In the pairwise variant we use the same

graph structure as in dense, but here we introduce only unary and binary potentials over Aq \q. This

results in a significant computational savings for each sub-problem in LAP, but fails to capture the

true marginal distribution in many cases (including all of the example problems we consider).

3.3 Experiments
In this section we describe some experiments designed to show that the LAP estimator has good empirical

performance. We focus on small models where exact maximum likelihood is tractable in order to allow
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Figure 3.2: Left: Relative error of parameter estimates compared to maximum likelihood for LAP and
pseudo-likelihood on a 4× 4 Ising grid. Error bars show the standard deviation over several runs. Right:
Variance of the parameter estimates for each algorithm.

performance to be measured. We chose to focus our experiments on demonstrating accuracy rather than

scalability since the scaling and data efficiency properties of LAP are obvious.

The purpose of the experiments in this section is to show two things:

1. The accuracy of LAP estimates is not worse than its main competitor, pseudo-likelihood; and

2. LAP achieves good performance even when the exact marginal structure is not used.

In all of our experiments we compare pseudo-likelihood estimation against LAP using the three different

strategies for constructing the auxiliary MRF discussed in the previous section. In each plot, lines labeled PL

correspond to pseudo-likelihood and ML corresponds to maximum likelihood. LAP_E, LAP_D and LAP_P

refer respectively to LAP with the exact, dense and pairwise strategies for constructing the auxiliary MRF.

We compare LAP and pseudo-likelihood to maximum likelihood estimation on three different model

classes. The first is a 4×4 Ising grids with 4-neighbourhoods, and the results are shown in Figure 3.2. The

second is a 4× 4× 4 Ising lattice with 6-neighbourhoods, which is shown in Figure 3.3. Finally, we also

consider a Chimera 3×3×3 model, with results shown in Figure 3.4.

The procedure for all models is the same: we choose the generating parameters uniformly at random

from the interval [−1,1] and draw samples approximately from the model. We then fit exact maximum

likelihood parameters based on these samples, and compare the parameters obtained by pseudo-likelihood

and LAP to the maximum likelihood estimates. The left plot in each figure shows the mean relative error of

the parameter estimates using the maximum likelihood estimates as ground truth. Specifically, we measure

err(θ) = ‖θ ML‖−1 · ‖θ −θ
ML‖
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Figure 3.3: Left: Relative error of parameter estimates compared to maximum likelihood for LAP and
pseudo-likelihood on a 4× 4× 4 Ising lattice. Error bars show the standard deviation over several runs.
Right: Variance of the parameter estimates for each algorithm.

for each estimate on each set of samples and average over several runs. We also measure the variance of

the estimates produced by each algorithm over several runs. In this case we measure the variance of the

estimates of each parameter separately and average these variances over all parameters in the model. These

measurements are shown in the right plot in each figure. For reference we also show the variance of the

maximum likelihood estimates in these plots.

In all of the experiments we see that the performance of all of the LAP variants is basically indistinguish-

able from pseudo-likelihood, except for small numbers of samples. Interestingly, LAP_P does not perform

noticeably worse than the other LAP variants on any of the problems we considered here. This is interesting

because LAP_P approximates the marginal with a pairwise MRF, which is not sufficient to capture the true

marginal structure in any of our examples. LAP_P is also the most efficient LAP variant we tested, since

the auxiliary MRFs it uses have the fewest number of parameters.

3.4 Theory
In this section show that matching parameters in the joint and the marginal distributions is valid, provided

the parametrizations are chosen correctly. We then prove consistency of the LAP algorithm and illustrate its

connection to ML.

Undirected probabilistic graphical models can be specified, locally, in terms of Markov properties and

conditional independence and, globally, in terms of an energy function ∑c E(xc|θ c). As shown in Equations

(2.2), (2.3), and (2.4). This is the direct outcome of the Hammersley-Clifford theorem [Hammersley and

Clifford, 1971] which establishes the equivalence of these two representations.

One important fact that is often omitted is that the energy function and the partition function are not
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Figure 3.4: Left: Relative error of parameter estimates compared to ML for LAP and pseudo-likelihood on
a Chimera 3× 3× 3 model. Error bars show the standard deviation over several runs. Right: Variance of
the parameter estimates for each algorithm.

unique. It is however possible to obtain uniqueness, for both of these functions, by imposing normalization

with respect to a setting of the random variables of the potential. This gives rise to the concept of normalized

potential [Bremaud, 2001]:

Definition 7. A Gibbs potential {E(xc|θ c)}c∈C is said to be normalized with respect to zero if E(xc|θ c) = 0

whenever there exists t ∈ c such that xt = 0.

(In this section, we use the term Gibbs potential, or simply potential, to refer to the energy so as to

match the nomenclature of [Bremaud, 2001].) The following theorem plays a central role in understanding

the LAP algorithm. The proof can be found in [Griffeath, 1976, Bremaud, 2001]:

Theorem 8. [Existence and Uniqueness of the normalized potential] There exists one and only one

(Gibbs) potential normalized with respect to zero corresponding to a Gibbs distribution.

3.4.1 The LAP argument

Suppose we have a Gibbs distribution p(xS |θ) that factors according to the clique system C , and let q ∈ C

be a clique of interest. Let the auxiliary MRF

p(xAq |α) =
1

Z(α)
exp(− ∑

c∈Cq

E(xc |αc)) (3.3)

have the same form as the marginal distribution on Aq (with clique system Cq) parametrized so that the

potentials are normalized with respect to zero. We can obtain the marginal from the joint in the following
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way:

p(xAq |θ) =
∫

p(xS |θ)dxS\Aq . (3.4)

Substituting Equation 3.3 into Equation 3.4, yields

p(xAq |θ) =
1

Z(θ)

∫
exp(−∑

c∈C
E(xc |θ c))dxS\Aq (3.5)

Pulling out from the integral all the clique potentials with empty intersection with Aq yields:

p(xAq |θ) =
1

Z(θ)
exp(− ∑

c⊆Aq

E(xc |θ c))
∫

exp(− ∑
c(Aq

E(xc |θ c))dxS\Aq (3.6)

The domain of the function ∫
exp(− ∑

c(Aq

E(xc |θ c))dxS\Aq

has empty intersection with the clique of interest q (since Aq is defined as the union of all the cliques with

non empty intersection).

Let us define

g(xAq\q) = log(
∫

exp(− ∑
c(Aq

E(xc |θ c))dxS\Aq).

With this definition, the marginal distribution over Aq is

p(xAq |θ) =
1

Z(θ)
exp(− ∑

c⊆Aq

E(xc |θ c)+g(xAq\q)). (3.7)

The energy function in the Gibbs distribution of Equation 3.7 satsifies the sufficency condition in the

Hammersley-Clifford theorem, that is p(xAq |θ) is the PDF of a MRF on its own.

Proposition 9. If the parametrisations of p(xS |θ) and p(xAq |α) are chosen to be normalized with respect

to zero, and if the parameters are identifiable with respect to the potentials, then θ q = αq.

Proof. The terms E(xq |θ q) and E(xq |αq) appear as separate factors in p(xAq |θ) in Equation 3.7 and in

p(xAq |α) in Equation 3.3 respectively. By existence and uniqueness of the normalized potentials (Theo-

rem 8), we have

E(xq |αq) = E(xq |θ q) (3.8)

which implies that θ q = αq if the parameters are identifiable.

3.4.2 Consistency of LAP

Let θ
? be the true vector of parameters taken from the unknown generating distribution p(xS |θ ?) parametrized

such that the potentials are normalized with respect to zero. Suppose we have N samples drawn iid from this
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distribution. Let θ̂
ML

be the ML estimate of θ given the data and let α̂
ML the corresponding ML estimate

for the auxiliary MRF with true parameters α?.

Proposition 10. If the true marginal distributions are contained in the class of auxiliary MRFs, we have

α̂
ML→ θ

? as N→ ∞.

Proof. Let q ∈ C be an arbitrary clique of interest. It is sufficient to show that α̂
ML
q → θ

?
q. By marginaliza-

tion, we have

p(xAq |θ ?) = ∑
S\Aq

p(xS |θ ?).

By the lap argument (Proposition 3), we know that α?
q = θ

?
q. Since ML in consistent under smoothness and

identifiability assumptions (for example, see [Fienberg and Rinaldo, 2012]), we also have

α̂
ML→ α

?,

so,

α̂
ML
q → θ

?
q.

Note that in the above proposition, the class of auxiliary MRFs can be more general than the class of

marginal MRFs, but must contain the latter. Asymptotically, superfluous terms in the auxiliary MRF vanish

to zero.

3.4.3 Relationship to ML

Here we prove that, under certain (strong) assumptions in the discrete case, LAP is exactly equal to ML.

The main result here will be that under the required assumptions, estimation by ML and marginalization

commute. Suppose we have a discrete MRF on xS which factorizes according to the cliques C , and let

q ∈ C be a particular clique of interest.

We will make use of the following characterization of ML estimates, which is proved in [Jordan, 2002].

Lemma 11. If a distribution p̂(xS) satisfies that for each c ∈ C

p̂(xc) = p̃(xc)

then p̂(xS) is an ML estimate for the empirical distribution p̃(xS).

This characterization allows us to derive an explicit expression for an ML estimate of p̂(xS).

Proposition 12. The distribution

p̂(xS) =
p̃(xAq)p̃(xS\q)

p̃(xAq\q)
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is an ML estimate for p̃(xS).

Proof. To see this we compute

∑
q

p̂(xS) = ∑
q

p̃(xAq)p̃(xS\q)

p̃(xAq\q)
= p̃(xS\q)

and

∑
S\Aq

p̂(xS) = ∑
S\Aq

p̃(xAq)p̃(xS\q)

p̃(xAq\q)
= p̃(xAq)

For an arbitrary clique c∈C , either c⊂ S\q or c⊂ Aq, and we see that f̂ (xc) = f̃ (xc) by further marginaliz-

ing one of the above expressions. This shows that our expression for p̂(xS) satisfies the criteria of Lemma 11,

and is therefore an ML estimate for p̃(xS).

Suppose we have a family of distributions F on xS which satisfy the Markov properties of the MRF,

and suppose that p̂(xS) ∈F where p̂(xS) is defined as in Proposition 12. Define the auxiliary family Fq

associated with the clique q as follows.

Fq = {∑
S\Aq

p(xS) | p(xS) ∈F}

That is, Fq is the family of distributions obtained by marginalizing the family F over S\Aq.

Proposition 13. The auxiliary family Fq contains the marginal empirical distribution p̃(xAq). Moreover

p̂(xAq) = p̃(xAq) is an ML estimate for p̃(xAq) in Fq.

Proof. Recall that p̂(xS) from Proposition 12 is in F by assumption. Thus,

∑
S\Aq

p̂(xS) = p̃(xAq)

is in Fq by definition. That p̂(xAq) ∈ Fq is an ML estimate follows since the log likelihood gradient in

Equation 2.15 is zero when the model and empirical distributions are equal.

Suppose we can represent the family F as a Gibbs family, i.e.

F = F (Θ) = {p(xS |θ) |θ ∈Θ}

for some domain of parameters Θ, where

p(xS|θ) =
1

Z(θ)
exp(−∑

c∈C
E(xc |θ c)) .
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Moreover, suppose we have chosen this parametrisation so that the potential functions are normalized with

respect to zero.

Since F is representable as a Gibbs family then the auxiliary family Fq is also representable as a Gibbs

family with

Fq = Fq(Ψ) = {p(xAq |α) |α ∈Ψ}

for some domain of parameters Ψ. We will again suppose that this parametrization is chosen so that the

potential functions are normalized with respect to zero.

We have already shown that ML estimates for p̃(xS) and p̃(xAq) exist in the families F and Fq, re-

spectively. Since we have chosen the parametrizations of these families to be normalized we also have

unique ML parameters θ̂ ∈ Θ and α̂ ∈ Ψ such that p(xS | θ̂) ∈ F (Θ) is an ML estimate for p̃(xS) and

p(xAq | α̂) ∈F (Ψ) is an ML estimate for p̃(xAq).

We can now prove the main result of this chapter.

Theorem 14. Under the assumptions used in this section, estimating the joint parameters by ML and in-

tegrating the resulting ML distribution gives the same result as integrating the joint family of distributions

and performing ML estimation in the marginal family. Concisely,

∑
S\Aq

p(xS | θ̂) = p(xAq | α̂)

Proof. We have the following sequence of equalities:

p(xS | θ̂)
(1)
= p̂(xS)

(2)
=

p̃(xAq)p̃(xS\q)

p̃(xAq\q)

(3)
=

p̂(xAq)p̃(xS\q)

p̃(xAq\q)

(4)
=

p(xAq | α̂)p̃(xS\q)

p̃(xAq\q)

The first equality follows from the parametrisation of F , the second follows from Proposition 12, the third

from Proposition 13 and the fourth follows from the parametrisation of Fq. The theorem is proved by

summing both sides of the equality over S\Aq.

Applying the LAP argument to Theorem 14 we see that θ̂ q = α̂q.

Remark 15. The assumption that p̂(xS) ∈ F amounts to assuming that the empirical distribution of the

data factors according to the MRF. This is very unlikely to hold in practice for finite data. However, if the

true model structure is known then this property does hold in the limit of infinite data.
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Chapter 4

Strong LAP theorem, conditional LAP and
distributed parameter estimation

In this chapter, we advanced the theoretical understanding of LAP in two directions and great practical

consequence. First, we proved that it is possible to reduce the size of the clique 1-neighbourhoods used in

the construction of auxiliary marginal MRFs in Chapter 3. Second, we extended the LAP argument to the

conditional case, thereby enabling the methodology to become applicable to densely connected graphs.

Finally, we link it to the design of algorithms for distributed parameter estimation in MRFs by showing

how the work of Liu and Ihler [2012] and Chapter 3 can both be seen as special cases of distributed

composite likelihood. Casting these two works in a common framework allows us transfer results between

them, strengthening the results of both works. It also appears that this thesis is the first work to address

distributed composite likelihood estimators.

In Chapter 3 we introduced a theoretical result to show that it is possible to learn MRFs with untied pa-

rameters in a fully-parallel but globally consistent manner. That result lead to the construction of a globally

consistent estimator, whose cost is linear in the number of cliques as opposed to exponential as in central-

ized maximum likelihood estimators. That result applies only to a specific factorization, with the cost of

learning being exponential in the size of the factors. While these factors are small for lattice-MRFs and other

models of low degree, they can be as large as the original graph for other models, such as fully-observed

Boltzmann machines [Ackley et al., 1985]. In this chapter, we introduce the Strong LAP Condition, which

characterizes a large class of composite likelihood factorizations for which it is possible to obtain global con-

sistency, provided the local estimators are consistent. This much stronger sufficiency condition enables us

to construct linear and globally consistent distributed estimators for a much wider class of models, including

fully-connected Boltzmann machines.

Using this framework we also show how the asymptotic theory of Liu and Ihler applies more generally

to distributed composite likelihood estimators. In particular, the Strong LAP Condition provides a sufficient

condition to guarantee the validity of a core assumption made in the theory of Liu and Ihler, namely that each

local estimate for the parameter of a clique is a consistent estimator of the corresponding clique parameter
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Figure 4.1: Left: A simple 2d-lattice MRF to illustrate our notation. For node j = 7 we have N (x j) =
{x4,x8}. Centre left: The 1-neighbourhood of the clique q = {x7,x8} including additional edges (dashed
lines) present in the marginal over the 1-neighbourhood. Factors of this form are used by the LAP algorithm
of Chapter 3 Centre right: The MRF used by our conditional estimator of Section 4.3 when using the
same domain as Chapter 3 Right: A smaller neighbourhood which we show is also sufficient to estimate
the clique parameter of q.

in the joint distribution. By applying the Strong LAP Condition to verify the assumption of Liu and Ihler,

we are able to import their M-estimation results into the LAP framework directly, bridging the gap between

LAP and consensus estimators.

4.1 Centralised estimation
Recall that our goal is to estimate the D-dimensional parameter vector θ of an MRF with the following

Gibbs density or mass function:

p(x |θ) = 1
Z(θ)

exp(−∑
c

E(xc |θ c)). (4.1)

As in previous chapters, c ∈ C is an index over the cliques of an undirected graph G = (S,E), E(xc |θ c) is

the energy or Gibbs potential, and Z(θ) is a normalizing term known as the partition function.

The standard approach to parameter estimation in statistics is through maximum likelihood, which

chooses parameters θ by maximizing

L ML(θ) =
N

∏
n=1

p(xn |θ). (4.2)

This estimator has played a central role in statistics as it is consistent, asymptotically normal, and efficient,

among other desirable properties. However, applying maximum likelihood estimation to an MRF is gen-

erally intractable since computing the value of logL ML and its derivative require evaluating the partition

function, or an expectation over the model respectively. Both of these values involve a sum over exponen-

tially many terms.

To surmount this difficulty it is common to approximate p(x |θ) as a product over more tractable terms.
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This approach is known as composite likelihood and leads to an objective of the form

L CL(θ) =
N

∏
n=1

I

∏
i=1

f i(xn,θ
i) (4.3)

where θ
i denote the (possibly shared) parameters of each composite likelihood factor f i. Composite like-

lihood estimators are and both well studied and widely applied [Cox, 1988, Mardia et al., 2009, Liang and

Jordan, 2008, Dillon and Lebanon, 2010, Marlin et al., 2010, Asuncion et al., 2010, Okabayashi et al., 2011,

Bradley and Guestrin, 2012, Nowozin, 2013]. In practice the f i terms are chosen to be easy to compute, and

are typically local functions, depending only on some local region of the underlying graph G .

An early and influential variant of composite likelihood is pseudo-likelihood (PL) [Besag, 1974], where

f i(x,θ i) is chosen to be the conditional distribution of xi given its neighbours,

L PL(θ) =
N

∏
n=1

M

∏
m=1

p(xmn |xN (xm)n,θ
m) (4.4)

Since the joint distribution has a Markov structure with respect to the graph G , the conditional distribution

for xm depends only on its neighbours, namely xN (xm). In general more efficient composite likelihood

estimators can be obtained by blocking, i.e. choosing the f i(x,θ i) to be conditional or marginal likelihoods

over blocks of variables, which may be allowed to overlap.

Composite likelihood estimators are often divided into conditional and marginal variants, depending

on whether the f i(x,θ i) are formed from conditional or marginal likelihoods. In machine learning the

conditional variant is quite popular [Liang and Jordan, 2008, Dillon and Lebanon, 2010, Marlin et al.,

2010, Marlin and de Freitas, 2011, Bradley and Guestrin, 2012] while the marginal variant has received less

attention. In statistics, both the marginal and conditional variants of composite likelihood are well studied

(see the comprehensive review of Varin et al. [2011]).

An unfortunate difficulty with composite likelihood is that the estimators cannot be computed in parallel,

since elements of θ are often shared between the different factors. For a fixed value of θ the terms of logL CL

decouple over data and over blocks of the decomposition; however, if θ is not fixed then the terms remain

coupled.

4.1.1 Consensus estimation

Seeking greater parallelism, researchers have investigated methods for decoupling the sub-problems in com-

posite likelihood. This leads to the class of consensus estimators, which perform parameter estimation inde-

pendently in each composite likelihood factor. This approach results in parameters that are shared between

factors being estimated multiple times, and a final consensus step is required to force agreement between

the solutions from separate sub-problems [Wiesel and Hero III, 2012, Liu and Ihler, 2012].

Centralized estimators enforce sub-problem agreement throughout the estimation process, requiring

many rounds of communication in a distributed setting. Consensus estimators allow sub-problems to dis-
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agree during optimization, enforcing agreement as a post-processing step which requires only a single round

of communication.

Liu and Ihler [2012] approach distributed composite likelihood by optimizing each term separately

θ̂
i
βi
= argmaxθ βi

(
N

∏
n=1

f i(xA i,n,θ βi)

)
, (4.5)

where A i denotes the group of variables associated with block i, and θ βi is the corresponding set of parame-

ters. In this setting the sets βi⊆V are allowed to overlap, but the optimisations are carried out independently,

so multiple estimates for overlapping parameters are obtained. Following Liu and Ihler we have used the

notation θ
i = θ βi to make this interdependence between factors explicit.

The analysis of this setting proceeds by embedding each local estimator θ̂
i
βi

into a degenerate estimator

θ̂
i

for the global parameter vector θ by setting θ̂
i
c = 0 for c /∈ βi. The degenerate estimators are combined

into a single non-degenerate global estimate using different consensus operators, e.g. weighted averages of

the θ̂
i
.

The analysis of Liu and Ihler assumes that for each sub-problem i and for each c ∈ βi

(θ̂
i
βi
)c

p→ θ c (4.6)

i.e., that each local estimate for the parameter of clique c is a consistent estimator of the corresponding clique

parameter in the joint distribution. This assumption does not hold in general, and one of the contributions

of this chapter is to give a general condition under which this assumption holds.

The analysis of Liu and Ihler [2012] considers the case where the local estimators in Equation 4.5 are

arbitrary M-estimators [van der Vaart, 1998], however their experiments address only the case of pseudo-

likelihood. In Section 4.3 we prove that the factorization used by pseudo-likelihood satisfies Equation 4.6,

explaining the good results in their experiments.

4.1.2 Distributed estimation

Consensus estimation dramatically increases the parallelism of composite likelihood estimates by relaxing

the requirements on enforcing agreement between coupled sub-problems. In Chapter 3 we have shown that

if the composite likelihood factorization is constructed correctly then consistent parameter estimates can be

obtained without requiring a consensus step.

In the LAP algorithm described in Chapter 3, the domain of each composite likelihood factor (which

is called the auxiliary MRF) is constructed by surrounding each maximal clique q with the variables in its

1-neighbourhood

Aq =
⋃

c∩q6= /0

c
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which contains all of the variables of q itself as well as the variables with at least one neighbour in q; see

Figure 4.1 for an example. For MRFs of low degree the sets Aq are small, and consequently maximum

likelihood estimates for parameters of MRFs over these sets can be obtained efficiently. The parametric

form of each factor in LAP is chosen to coincide with the marginal distribution over Aq. The factorisation

of Chapter 3 is essentially the same as in Equation 4.5, but the domain of each term is carefully selected,

and the LAP theorems are proved only for the case where

f i(xAq ,θ βq) = p(xAq ,θ βq).

As in consensus estimation, parameter estimation in LAP is performed separately and in parallel for each

term; however, agreement between sub-problems is handled differently. Instead of combining parameter

estimates from different sub-problems, LAP designates a specific sub-problem as authoritative for each

parameter (in particular the sub-problem with domain Aq is authoritative for the parameter θ q). The global

solution is constructed by collecting parameters from each sub-problem for which it is authoritative and

discarding the rest.

4.2 Strong LAP argument
In this section we present the Strong LAP Condition, which provides a general condition under which

the convergence of Equation 4.6 holds. This turns out to be intimately connected to the structure of the

underlying graph.

Definition 16 (Relative Path Connectivity). Let G = (S,E) be an undirected graph, and let A be a given

subset of S. We say that two nodes i, j ∈ A are path connected with respect to S \A if there exists a path

P = {i,s1,s2, . . . ,sn, j} 6= {i, j} with none of the sk ∈ A. Otherwise, we say that i, j are path disconnected

with respect to S\A.

i

j
k

1

2

3
4

5

6

Figure 4.2: Illustrating the concept of relative path connectivity. Here, A = {i, j,k}. While (k, j) are path
connected via {3,4} and (k, i) are path connected via {2,1,5}, the pair (i, j) are path disconnected with
respect to S\A.
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Figure 4.3: Figures (a)-(c) Illustrating the difference between LAP and Strong LAP. (a) Shows a star graph
with q highlighted in red. (b) Shows Aq required by LAP. (c) Shows an alternative neighbourhood allowed
by Strong LAP. Thus, if the root node is a response variable and the leafs are covariates, Strong LAP states
we can estimate each parameter separately and consistently.

For a given A⊆V we partition the clique system of G into two parts, C in
A that contains all of the cliques

that are a subset of A, and C out
A = C \C in

A that contains the remaining cliques of G. Using this notation we

can write the marginal distribution over xA as

p(xA |θ) =
1

Z(θ)
exp(− ∑

c∈C in
A

E(xc |θ c))
∫

exp(− ∑
c∈C out

A

E(xc |θ c))dxS\A. (4.7)

Up to a normalization constant,
∫

exp(−∑c∈C out
A

E(xc |θ c))dxS\A induces a Gibbs density (and therefore an

MRF) on A, which we refer to as the induced MRF.

For example, as illustrated in Figure 4.1 centre-left, the induced MRF involves all the cliques over the

nodes 4, 5 and 9. By the Hammersley-Clifford theorem this MRF has a corresponding graph which we refer

to as the induced graph and denote GA. Note that the induced graph does not have the same structure as the

marginal, it contains only edges which are created by summing over xS\A.

Remark 17. To work in the general case, we assume throughout that that if an MRF contains the path

{i, j,k} then integration over j creates the edge (i,k) in the marginal.

In other words, if

g(xi,xk) =
∫

exp(E1(xi,x j))exp(E1(x j,xk))dx j

it can not be factorized into functions of xi and xk

g(xi,xk) 6= f1(xi) f2(xk)

.

Proposition 18. Let A be a subset of S, and let i, j ∈ A. The edge (i, j) exists in the induced graph GA if and

only if i and j are path connected with respect to S\A.

Proof. If i and j are path connected then there is a path P = {i,s1,s2, . . . ,sn, j} 6= {i, j} with none of the

sk ∈ A. Integrating over sk forms an edge (sk−1,sk+1). By induction, integrating over s1, . . . ,sn forms the

edge (i, j).
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If i and j are path disconnected with respect to S \A then integrating over any s ∈ S \A cannot form

the edge (i, j) or i and j would be path connected through the path {i,s, j}. By induction, if the edge

(i, j) is formed by integrating over s1, . . . ,sn this implies that i and j are path connected via {i,s1, . . . ,sn, j},
contradicting the assumption.

Corollary 19. B ⊆ A is a clique in the induced graph GA if and only if all pairs of nodes in B are path

connected with respect to S\A.

Definition 20 (Strong LAP condition). Let G = (S,E) be an undirected graph and let q ∈ C be a clique of

interest. We say that a set A such that q⊆ A⊆ S satisfies the strong LAP condition for q if there exist i, j ∈ q

such that i and j are path-disconnected with respect to S\A.

Proposition 21. Let G = (S,E) be an undirected graph and let q ∈ C be a clique of interest. If Aq satisfies

the strong LAP condition for q then the joint distribution p(xS |θ) and the marginal p(xAq |θ) share the

same normalized potential for q.

Proof. If Aq satisfies the Strong LAP Condition for q then by Corollary 19 the induced MRF contains

no potential for q. Inspection of Equation 4.7 reveals that the same E(xq |θ q) appears as a potential in

both the marginal and the joint distributions. The result follows by uniqueness of the normalized potential

representation.

We now restrict our attention to a set Aq which satisfies the Strong LAP Condition for a clique of interest

q. The marginal over p(xAq |θ) can be written as in Equation 4.7 in terms of θ , or in terms of auxiliary

parameters α

p(xAq |α) =
1

Z(α)
exp(− ∑

c∈Cq

E(xc |αc)) (4.8)

Where Cq is the clique system over the marginal. We will assume both parametrisations are normalised with

respect to zero.

Theorem 22 (Strong LAP Argument). Let q be a clique in G and let q ⊆ Aq ⊆ S. Suppose p(xS|θ) and

p(xAq |θ) are parametrised so that their potentials are normalised with respect to zero and the parameters

are identifiable with respect to the potentials. If Aq satisfies the Strong LAP Condition for q then θ q = αq.

Proof. From Proposition 21 we know that p(xS|θ) and p(xAq |θ) share the same clique potential for q.

Alternatively we can write the marginal distribution as in Equation 4.8 in terms of auxiliary variables α . By

uniqueness, both parametrizations must have the same normalized potentials. Since the potentials are equal,

we can match terms between the two parametrizations. In particular since E(xq |θ q) = E(xq |αq) we see

that θ q = αq by identifiability.

Figure 4.3 shows the significant complexity reduction achived by the Strong LAP theorm. However, we

note that the Strong LAP Condition is sufficient but not necessary. For example see Appendix A.2.
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4.2.1 Efficiency and the choice of decomposition

Theorem 22 implies that distributed composite likelihood is consistent for a wide class of decompositions

of the joint distribution; however it does not address the issue of statistical efficiency.

This question has been studied empirically in the work of Meng et. al. (Meng et al. [2013, 2014]),

who introduce a distributed algorithm for Gaussian random fields and consider neighbourhoods of different

sizes. Meng et. al. find the larger neighbourhoods produce better empirical results and the following theorem

confirms this observation.

Theorem 23. Let A be set of nodes which satisfies the Strong LAP Condition for q. Let θ̂A be the ML

parameter estimate of the marginal over A. If B is a superset of A, and θ̂B is the ML parameter estimate of

the marginal over B. Then (asymptotically):

|θq− (θ̂B)q| ≤ |θq− (θ̂A)q|.

Proof. Suppose that |θq− (θ̂B)q|> |θq− (θ̂A)q|. Then the estimates θ̂A over the various subsets A of B im-

prove upon the ML estimates of the marginal on B. This contradicts the Cramer-Rao lower bound achieved

the by the ML estimate of the marginal on B.

In general the choice of decomposition implies a trade-off in computational and statistical efficiency.

Larger factors are preferable from a statistical efficiency standpoint, but increase computation and decrease

the degree of parallelism.

4.3 Conditional LAP
The Strong LAP Argument tells us that if we construct composite likelihood factors using marginal distri-

butions over domains that satisfy the Strong LAP Condition then the LAP algorithm of Chapter 3 remains

consistent. In this section we show that more can be achieved.

Once we have satisfied the Strong LAP Condition we know it is acceptable to match parameters be-

tween the joint distribution p(xS, |θ) and the auxiliary distribution p(xAq , |α). To obtain a consistent LAP

algorithm from this correspondence all that is required is to have a consistent estimate of αq. In Chapter 3

w.b.ved this by applying maximum likelihood estimation to p(xAq , |α), but any consistent estimator is valid.

We exploit this fact to show how the Strong LAP Argument can be applied to create a consistent con-

ditional LAP algorithm, where conditional estimation is performed in each auxiliary MRF. This allows us

to apply the LAP methodology to a broader class of models. For some models, such as large densely con-

nected graphs, we cannot rely on the marginal LAP algorithm of Chapter 3. For example, for a restricted

Boltzmann machine (RBM) (Smolensky [1986]), the 1-neighbourhood of any pairwise clique includes the

entire graph. Hence, the complexity of LAP is exponential in the number of cliques. However, it is linear

for conditional LAP, without sacrificing consistency.
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Theorem 24. Let q be a clique in G and let x j ∈ q⊆ Aq ⊆ S. If Aq satisfies the Strong LAP Condition for q

then p(xS|θ) and p(x j |xAq\{x j},α) share the same normalised potential for q.

Proof. We can write the conditional distribution of x j given Aq \{x j} as

p(x j |xAq\{x j},θ) =
p(xAq |θ)∫

p(xAq , |θ)dx j
(4.9)

Both the numerator and the denominator of Equation 4.9 are Gibbs distributions, and can therefore be

expressed in terms of potentials over clique systems.

Since Aq satisfies the Strong LAP Condition for q we know that p(xAq |θ) and p(xS|θ) have the same

potential for q. Moreover, the domain of
∫

p(xAq |θ)dx j does not include q, so it cannot contain a potential

for q. We conclude that the potential for q in p(x j|xAq\{x j},θ) must be shared with p(xS|θ).

Remark 25. There exists a Gibbs representation normalized with respect to zero for p(x j |xAq\{x j},θ).

Moreover, the clique potential for q is unique in that representation.

The existence in the above remark is an immediate result of the the existence of normalized representa-

tion both for the numerator and denominator of Equation 4.9, and the fact that difference of normalized po-

tentials is a normalized potential. For uniqueness, first note that p(xAq |θ) = p(x j |xAq\{x j},θ)p(xAq\{x j},θ)

The variable x j is not part of p(xAq\{x j},θ) and hence this distribution does not contain the clique q. Suppose

there were two different normalized representations with respect to zero for the conditional p(x j |xAq\{x j},θ).

This would then imply two normalised representations with respect to zero for the joint, which contradicts

the fact that the joint has a unique normalized representation.

We can now proceed as in the original LAP construction from Chapter 3. For a clique of interest q

we find a set Aq which satisfies the Strong LAP Condition for q. However, instead of creating an auxiliary

parametrization of the marginal we create an auxiliary parametrization of the conditional in Equation 4.9.

p(x j |xAq\{x j},α) =
1

Z j(α)
exp(− ∑

c∈CAq

E(xc |αc)) (4.10)

From Theorem 24 we know that E(xq |αq) = E(xq |θ q). Equality of the parameters is also obtained, pro-

vided they are identifiable.

Corollary 26. If Aq satisfies the Strong LAP Condition for q then any consistent estimator of αq in p(x j |xAq\{x j},α)

is also a consistent estimator of θ q in p(xS |θ).

The Conditional LAP enables the user to estimate the parameters when the parametric family of the

marginal is unknown. However, if the parametric family is known, or even if an extended parametric family

is known, the asymptotical estimation of CLAP will not be better then the asymptotical estimation of the

marginal (for proof see Appendix A.3).
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4.3.1 Connection to distributed Pseudo-Likelihood and composite likelihood

Theorem 24 tells us that if Aq satisfies the Strong LAP Condition for q then to estimate θ q in p(xS |θ) it is

sufficient to have an estimate of αq in p(x j |xAq\{x j},α) for any x j ∈ q. This tells us that it is sufficient to use

pseudo-likelihood-like conditional factors, provided that their domains satisfy the Strong LAP Condition.

The following remark completes the connection by telling us that the Strong LAP Condition is satisfied by

the specific domains used in the pseudo-likelihood factorisation.

Remark 27. Let q = {x1,x2, ..,xm} be a clique of interest, with 1-neighbourhood Fq = q∪{N (xi)}xi∈q.

Then for any x j ∈ q, the set q∪N (x j) satisfies the Strong LAP Condition for q. Moreover, q∪N (x j)

satisfies the Strong LAP Condition for all cliques in the graph that contain x j.

Importantly, to estimate every unary clique potential, we need to visit each node in the graph. However,

to estimate pairwise clique potentials, visiting all nodes is redundant because the parameters of each pair-

wise clique are estimated twice. This observation is important because it takes us back to the work of Liu

and Ihler (Liu and Ihler [2012]). If a parameter is estimated more than once, it is reasonable from a statistical

standpoint to apply the consensus operators of Liu and Ihler to obtain a single consensus estimate. The the-

ory of Liu and Ihler tells us that the consensus estimates are consistent and asymptotically normal, provided

Equation 4.6 is satisfied. In turn, the Strong LAP Condition guarantees the convergence of Equation 4.6.

The above remark tell us that the convergence in Equation 4.6 is satisfied for the distributed pseudo-

likelihood setting of Liu and Ihler. We can go beyond this and consider either marginal or conditional

factorisations over larger groups of variables. Since the asymptotic results of Liu and Ihler (Liu and Ih-

ler [2012]) apply to any distributed composite likelihood estimator where the convergence of Equation 4.6

holds, it follows that any distributed composite likelihood estimator where each factor satisfies the Strong

LAP Condition (including LAP and the conditional composite likelihood estimator from Section 4.3) im-

mediately gains asymptotic normality and variance guarantees as a result of their work and ours.
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Chapter 5

Applying LAP to Gaussian graphical
models and discrete tables

In this chapter, we describe the application of LAP to sparse Gaussian graphical models. In particular, we

apply the LAP algorithm to the problem of estimating the inverse covariance of a Gaussian distribution sub-

ject to conditional independence constraints, encoded as zeros in the inverse covariance. This is a problem

that has attracted a great deal of attention in optimization, machine learning and statistics [Dempster, 1972,

Songsiri et al., 2009, Ravikumar et al., 2010].

Subsequently, we discuss how to parametrize discrete probability functions which are given in table

form, in order to apply LAP to these models.

While addressing these two popular models, we investigate the issue of trading-off complexity in favour

of accuracy, by generalizing the first neighbourhood concept into higher orders. In addition, we discuss the

memory allocation attributes of LAP.

5.1 Simple example: The Gaussian distribution
Let p(x) be the density of a zero mean Gaussian distribution. In the Gaussian distribution, the non-zero

clique functions are pairwise and unary, and Equations (2.2) and (2.4) take the form

p(x;θ) =
1
Z ∑

i
∑

j
θi jxix j, (5.1)

where θi j 6= 0 if (i, j) is an edge. It is common to represent the PDF of Equation (5.1) using the matrix form

p(x) =
det(Σ)−

1
2

(2π)
d
2

exp(−1
2

xT
Σ
−1x). (5.2)

Where det(Σ)−
1
2

(2π)
d
2

is the analytically known partition function (which may not be easy to calculate in practice).
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The graph pattern is equivalent to the sparsity pattern of the SPD matrix Σ
−1. Σ

−1 is known as the

precision matrix or inverse covariance since it can be shown that the precision matrix is the inverse of

the covariance matrix Σ. It is important to mention that every marginal PDF of a multivariate Gaussian is

multivariate Gaussian on its own, with a smaller dimension.

Given a set of realizations x1,x2, ...,xN we denote by D the sample covariance matrix,

D =
1
N

N

∑
i=1

xixi
T .

Our goal is to estimate the Σ
−1 using D.

To this end, we first show that p(x) is natively specified in the normalized potentials form. In particular,

Equation (5.2) can be written as

p(x) =
1
Z

exp

(
∑
i, j
−

Σ
−1
i j xix j

2

)
. (5.3)

The non-zero clique potentials have either one or two variables. That is, the neighbourhood structure satisfies

Ni = { j : Σ
−1
i j 6= 0}. (5.4)

The energy function in Equation (5.3) can be re-written as

E(xi,i |θ i,i) = Σ
−1
ii

x2
i

2

and

E(xi, j |θ i, j) = Σ
−1
i j xix j.

Both satisfy the normalized potential definition since

{xi = 0 or x j = 0}=⇒ Σ
−1
i j

xix j

2
= 0.

5.1.1 Gaussian example: Using the first neighbourhood

We demonstrate the computation of the parameters of a specific clique for the zero-mean Gaussian graphical

model depicted in Figure 5.1. In this detailed example, we follow the estimation of Σ
−1
9,10, which is the

parameter associated with the clique potential Σ
−1
9,10x9x10. The first neighbourhood of the clique {9,10} is

{7,8,9,10}. {Aq \q} is {7,8} and a new edge connecting {8,7} was added to the auxiliary graph, as shown

in Figure 5.4. Following the second step of the LAP algorithm we have to estimate the marginal PDF which
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Figure 5.1: A simple sparsity pattern for a Gaussian graphical model. The neighbourhood system described
in the graph is compatible with the precision matrix for the multivariate Gaussian precision matrix in Figure
5.2.
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Figure 5.2: The precision matrix associated with the graph of Figure 5.1. The symbol× stands for non-zero
entries in the precision matrix, and Σ−1(i, j) 6= 0 ⇐⇒ (i, j) ∈ E.
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Figure 5.3: The first neighbourhood of the clique {9,10} and the auxiliary graph.
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is a Gaussian restricted to x7,x8,x9,x10 and given by:

fAcq
(x7,x8,x9,x10) =

|Σmarginal
− 1

2 |
(2π)

4
2

exp(−1
2

xcq
T

Σ
−1
marginalxcq). (5.5)

That is, we have to estimate the much smaller Σ
−1
marginal with respect to graph in Figure 5.4 and the sample

covariance matrix 
D7,7 D7,8 D7,9 D7,10

D8,7 D8,8 D8,9 D8,10

D9,7 D9,8 D9,9 D9,10

D10,7 D10,8 D10,9 D10,10

 , (5.6)

which is a 4×4 projection matrix from the full covariance matrix. (Here, is use the term projection to refer

to the process of extracting the relevant columns and rows from the original matrix.) We accomplish the

procedure by substituting the value calculated in Σ
−1
marginal(3,4) into Σ−1(9,10).

5.1.2 Gaussian example: Using sub-neighbourhood

In this section, we follow the estimation of the same parameter Σ
−1
9,10, associated with the energy function

Σ
−1
9,10x9x10. However this time we use a domain smaller than the first neighbourhood.

There two valid alternatives for the choice of sub-neighbourhood for the clique {9,10}: either {8,9,10}
or {7,9,10}. Both are shown in Figure 5.1.2, with dashed lines representing the new edges added to the

auxiliary graphs because of marginalization.

Here, {Aq \q} corresponds to {7,8} and a new edge connecting {8,7} was added to the auxiliary graph,

as shown in Figure 5.4. The second step of the LAP algorithm is similar to the one presented in Sec-

tion 5.1.1.

Let us, first, restrict our attention to the domain of x8,x9,x10, with marginal:

fAcq
(x8,x9,x10) =

|Σmarginal
− 1

2 |
(2π)

4
2

exp(−1
2

xcq
T

Σ
−1
marginal10

xcq). (5.7)

The notation marginal10 stands for the sub neighbourhood which includes

{9,10}∪N10.

Note the domain is formed simply by the non-zero terms in the 10th row or column. Our goal is to estimate
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Figure 5.4: Two different alternative sub neighbourhoods for the clique {9,10}. On the left, we use the
union of the neighbours of node 10 and on the right the neighbours of node 9.

Σ
−1
marginal10

with respect to the graph in Figure 5.4 and the sample covariance matrix

D8,8 D8,9 D8,10

D9,8 D9,9 D9,10

D10,8 D10,9 D10,10

 , (5.8)

which is a 3×3 projection matrix from the full covariance matrix. We accomplish the procedure by substi-

tuting the value calculated in Σ
−1
marginal(2,3) into Σ−1(9,10).

Alternatively, we can chose the domain of x7,x9,x10, with marginal:

fAcq
(x7,x9,x10) =

|Σmarginal
− 1

2 |
(2π)

4
2

exp(−1
2

xcq
T

Σ
−1
marginal9xcq). (5.9)

That is, our goal is now to estimate the much smaller Σ
−1
marginal with respect to graph in Figure 5.4 and the

sample covariance matrix D7,7 D7,9 D7,10

D9,7 D9,9 D9,10

D10,7 D10,9 D10,10

 , (5.10)

which is a different 3× 3 projection matrix from the full covariance matrix. This time we accomplish our

goal by substituting the value calculated in Σ
−1
marginal(2,3) into Σ−1(9,10).

The two alternative estimators explain the need for averaging in distributed estimators. For big data

applications, the sub neighbourhoods are preferable. If one is looking to invert an SPD matrix, where the

desired inverse matrix has a known sparse pattern, it is sufficient to use LAP with sub neighbourhoods. The

benefit not only stems from inverting a 3×3 matrix instead of a 4×4 matrix, but also from the fact that the

same sub neighbourhoods hold for several different parameters. Hence, averaging the estimates of the same

parameter for different sub neighbourhoods improves statistical efficiency.
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Figure 5.5: A non trivial Gaussian graphical model (left) and the relative estimation error for LAP and MLE
as a function of the number of data (right).

5.2 LAP for tables
Section 5.1 may be thought of as “ideal” from some perspectives. The PDF is taken from a well known

parametric family, where every marginal distribution is a multivariate Gaussian. In this section, we assume

the PDF is a discrete distribution with no known parametric family. The graph structure G(S,E) and data

are the only sources of information. However, we also know that the PDF is described as a probability table.

Any general discrete distribution may be expressed table form. We will show (by construction) that

if the table contains only positive probabilities (∀x p(x) > 0) then it can be expressed as an exponential

distribution, in which the energy function consists of polynomials. Since xi ∈ {0,1} then for any k, xk
i = xi.

Hence, the energy function consists multiplicative terms of xi of degree 1, such as αx1x4x5. The terms in

the energy function are linear combinations of the subsets of {x1, ...,xk}. This is reasonable since for every

k, the number of vectors in the discrete distribution

f (x); x ∈ {0,1}k

is 2k and the number of subsets of {x1, ...,xk} is also 2k. Hence, f (x) is spanned by a Gibbs distribution with

a polynomial energy function, made of the subsets of {x1, ...,xk}, with density:

f (x) =
1
Z

exp( ∑
s⊂{1..k}

θsxi1 ..xis). (5.11)

For a given positive table p(x), it is clear that the partition function Z is equal to p(0) (see Figure 5.2),

Z =
1

p(0)
.
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x1 x2 x3 p(x)
0 0 0 1

Z
0 0 1 1

Z exp(c)
0 1 0 1

Z exp(b)
0 1 1 1

Z exp(c+b+ e) ⇐⇒ f (x) = 1
Z exp(ax1 +bx2 + cx3 +dx1x2 + ex2x3 + f x1x3 +gx1x2x3)

1 0 0 1
Z exp(a)

1 0 1 1
Z exp(a+ c+ f )

1 1 0 1
Z exp(a+b+d)

1 1 1 1
Z exp(a+b+ c+d + e+ f +g)

Figure 5.6: A discrete probability distribution in table form and in full exponential form for x ∈ {0,1}3.

Next we search for vectors x with sum of entries equal to 1, ∑(xi) = 1:

θ(1,0,0,..0) = log(p(1,0,0, ...0)− log(Z))

θ(0,1,0,..0) = log(p(0,1,0, ...0)− log(Z))

.

.

θ(0,0,..0,1) = log(p(0,0, ...0,1)− log(Z)).

Then we search for vectors with sum of entries equal to 2, ∑(xi) = 2,

θ(1,1,0,..0) = log(p(1,1,0, ...0)− log(p(1,0, ..0))− log(p(0,1,0..0))− log(Z))

and so on.

Next, we ask "how can we learn the table of probabilities?". The trivial way is to do it by counting over

the realizations:

p(xk = b) =
1
N

N

∑
n=1

δ (xn,k = b). (5.12)

However, this may yield zero probabilities, which cannot be represented by exponential distributions. Hence,

we form the table in a slightly different way.

Choose ε > 0 and

p(xk = b) =
1

N + ε
(ε +

N

∑
n=1

δ (xn,k = b)). (5.13)

Note that the estimator is consistent, since the full PDF p(x) is non zero for any x and the weight of any ε

goes to zero as N→ ∞.
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In summary, for each clique potential, the algorithm for tables proceeds as follows:

• Find the first neighbourhood (or any domain that satisfies the Strong LAP condition).

• Use the realizations to form the table of probabilities for the marginal neighbourhood.

• convert the table into full exponential form, and pull out the terms related to the clique of interest.

5.3 Improving the accuracy of LAP
LAP is a cost effective alternative to ML estimation, but not identical to ML for finite sample sizes. However,

one can increase the computational cost of LAP in order to improve its estimation accuracy.

Recall that theorem 22 holds not only for domains that satisfy the Strong LAP condition. Clearly, if Aq

satisfies the condition, then for any larger subset B that contains Aq the condition holds. We saw the that

first neighbourhood is not the minimal sub-graph for which the marginal PDF shares the same normalized

potential with the full PDF, and there is computational benefit for choosing smaller domains.

On the other hand, one may take bigger domains than the first neighbourhood. This lead us to the idea

of the second neighbourhood, and, recursively, to higher order neighbourhoods.

Let us first generalize the definition of the first neighbourhood, as given in (3.1),

Definition 28. The k-neighbourhood of a subset q, denoted Ak
q, is the first neighbourhood of the subset Ak−1

q .

Alternatively,

Definition 29. The k-neighbourhood of a subset q, denoted Ak
q, is the collection of nodes with distance of k

or less edges from q.

As proven in Theorem 23 Estimating the marginal over higher neighbourhoods will yield results closer

to ML. Enlarging the marginal domain to the maximal set (i.e., to the entire graph) will simply coincide

with the ML itself. In other words, LAP can be understood as a series of nested estimators of increasing

statistical efficiency and decreasing computational efficiency.

To illustrate the effect of neighbourhood size, we consider the Gaussian graphical model of Figure 5.7

and two clique neighbourhoods as illustrated in the same figure. Figure 5.8 shows the relative errors obtained

using these neighbourhoods. Clearly higher order neighbourhoods perform better, but it is not clear how

important they are as both LAP estimators are very close to ML.

5.4 Memory allocation for LAP
LAP has low memory requirements. If each node has a bounded number of p neighbours, then the first

neighbourhood involves no more than p2 nodes and if working with the minimal sub neighbourhoods, only

p nodes are needed in each local estimator.
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Figure 5.7: On the left, a 5×5 lattice MRF with vertical and horizontal neighbours. The middle graph is the
first neighbourhood for the unary clique {13}. The figure on the right shows the second neighbourhood for
the unary clique {13}. New edges introduced by marginalization are depicted with dashed green lines.

Figure 5.8: Relative error of parameter estimates compared to maximum likelihood for 1-neighbourhood
LAP and 2-neighbourhood LAP. The full graph contained 300 nodes and the PDF is a multivariable Gaus-
sian.
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Consider the sparse inverse covariance estimation problem. If there are n nodes, working with the full

PDF requires allocating memory for n2 cells. The complexity of inverting the covariance matrix is n3. One

can apply LAP to each row, with each local estimator using the nodes with the non-zero values in the row.

Thus the maximal memory allocation needed is of the order p2. This may play a significant role in large

systems where n >> p.
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Chapter 6

i LAP: applying LAP to inverse problems

Large-scale inverse problems arise in a multitude of applications, including weather forecasting, medical

imaging, and oil exploration. In these big data domains, the high-dimensionality of the models that must be

recovered from data creates substantial computational challenges, see for example [Roosta-Khorasani et al.,

2014, Herrmann et al., 2012, Ascher and Haber, 2004, Haber and Ascher, 2001, Scheichl et al., 2013] and

the references therein.

The unknown model often represents some physical property of the system under investigation. The

relationship between the model and the data is often assumed known and encoded in the form of a forward

operator, which predicts data for a given model.

The model is typically obtained by computing the Maximum a Posteriori (MAP) estimate. If the model

is high-dimensional, computing this estimate is computationally expensive and demands large amounts of

memory.

In the present chapter, drawing upon the strong LAP argument, we offer an alternative approach for

solving inverse problems. In particular, we introduce an efficient parallel algorithm, named iLAP, which

appropriately divides the large problem into smaller sub-problems of much lower dimension. This process

of localization offers substantial advantages in terms of computational efficiency and memory allocation.

6.1 Inverse problems
In inverse problems, the physical system under investigation is modelled as follows:

A(m)+ ε = d. (6.1)

Here, m ∈ Rn is the unknown model, A : Rn→ Rk is the known (linear or non-linear) forward operator that

is assumed to be sparse in our setting, d ∈ Rk is the data and ε ∈ Rk is the noise, which is assumed to be

zero mean Gaussian with known diagonal covariance matrix Σd ,

ε ∼ N(0,Σd). (6.2)
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Figure 6.1: The graphical representation of the MRF in which both m and b are variables

The inverse problem of recovering m given the data d and the known parameters θ = (A,Σ−1
d ) is ill-

posed in most applications of interest [Vogel, 2002, Kaipio and Somersalo, 2005]. This forces us to introduce

a regularizer or prior π(m), which by Bayes rule yields the following posterior distribution:

p(m|d) ∝ p(d|m)π(m). (6.3)

We refer to p(d|m) as the conditional distribution. Its form follows from the model specification:

p(d|m;θ) =
1
Z

exp
(
−1

2
(Am−d)>Σ

−1
d (Am−d)

)
(6.4)

Our goal is to compute the MAP estimate of the model:

m̂MAP = argmax
m

(
exp
(
−1

2
(Am−d)>Σ

−1
d (Am−d)

)
π(m)

)
. (6.5)

6.2 Localizing inverse problems
Suppose the forward operator is sparse. For example, consider the model illustrated in Figure 6.1. For each

component of the data di, let {m}i denote the group of elements of the model that influence di directly. In

our example, to generate d8, we only need to know the components {m}8 = {m7,m8,m9} of the model.

Since we are assuming that A is sparse, we have that |{m}i| << |m|. Moreover since the observation

noise is such that the entries of d are conditionally independent, we can express the joint model as an MRF:

p(m,d) = π(m)p(d1|{m}1)p(d2|{m}2)...p(dk|{m}k). (6.6)

Our goal is to replace the global objective

p(m,d;θ) = π(m)p(d|m;θ)
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with a set of local low-dimensional objectives,

p(m̃, d̃; θ̃) = π(m̃)p(d̃|m̃; θ̃)

that can be solved easily and independently.

The problem with this strategy is that we do not know the values of the local parameters θ̃ or the

expression for the local prior π(m̃) in general.

However, using the Strong LAP results (Theorems 22 and 24), we will be able to construct local ob-

jectives for which θ̃i = θi for i associated with mi. Once the local parameters are known, this divide-and-

conquer strategy will enable us to compute each of the model components in a fully parallel manner. Using

this distributed estimation approach, we will be able to recover the global MAP estimates provided the prior

also decomposes.

6.2.1 Localizing the conditional distribution

Let mi ∈ m be the entry of interest. To appeal to the Strong LAP Condition, we need to construct an

appropriate neighbourhood for the local model involving mi. This construction is illustrated in Figure 6.2.

Definition 30. The 1-hop data of mi is the set of all entries in d at distance 1 from mi in the graphical model

representation.

Definition 31. The 1-blanket of mi is the set of all nodes in the graphical model at distance 1 or less from

the 1-hop data of mi.

Proposition 32. Let {d̃,m̃} be the 1-blanket of mi. Then, p(d̃|m̃; θ̃) inherits θ̃ from θ .

Proof. By construction, d̃ is the 1-hop data of mi. By conditional independence, there are no edges

in the joint graphical representation connecting two data nodes. By definition, the 1-blanket is the 1-

neighbourhood of the parameters associated with the edges connecting mi and d̃. Hence, the Strong LAP

Condition is satisfied for the parameters connecting mi and the 1-hop data. The result follows by the Strong

LAP Theorem (Theorem 22).

6.2.2 Localizing the prior

The previous subsection provided us with conditions under which the parameters of the local conditionals

are the same as the parameters of the global conditional distribution. In this subsection, we focus on the

prior distribution. Let π(m̃) be the marginal of the global prior π(m).

In some tractable cases, it is feasible to obtain an analytical expression for the local prior π(m̃) by

marginalization. For example, this is true if the prior is Gaussian.

In some applications, the prior is not expressed in terms of a function, but rather in terms of a set of

N samples {m}N
i=1. Here the local prior is straightforwardly obtained by discarding the samples of model

components not associated with the marginal.
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Figure 6.2: Construction of the local models. Suppose we are interested in estimating m6. Then, d̃ =
{d5,d6,d7} are the 1-hop data of m6. m̃ = {m4,m5,m6,m7,m8} are the components of the model that affect
d̃ directly. The 1-blanket consisting of d̃ and m̃ constitutes the 1-neighbourhood of the parameters θ65, θ66
and θ67.

In the above two cases, if the conditional distributions factorises, the posterior also factorises and we are

able to recover the global MAP estimates by computing local MAP estimates.

In general, the prior simply encodes sparseness and smoothness assumptions. For example, one may

use the `1 norm to construct the prior when the model is assumed to be sparse. In this situation, we can

no longer localize the prior and hence we cannot guarantee that the local estimates coincide with the global

MAP estimates. However, denoising and deblurring experiments, using the `1 norm on the local model, will

show that the iLAP approach cab be effective even in these situations.
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Figure 6.3: The 1-blanket (left) and 2-blanket (right) of m10.

6.3 The iLAP algorithm
Following the construction of the 1-neighbourhood of the parameters of the conditional distribution, the

iLAP algorithm is as follows:

Algorithm 2 iLAP (1-blanket)
Input: Forward operator A and observation d
for mi ∈m do

Find d̃⊆ d; the 1-hop data of mi.
Find {m̃, d̃}; the 1-blanket of mi.
Find the local prior as described in Section 6.2.2.
Construct the local objective function: π(m̃)p(d̃|m̃).
Compute the local MAP estimate of mi by maximizing the local objective.

end for

Remark 33. For any m̆, s.t.

m̃⊂ m̆

one can define the augmented local inverse problem by π(m̆)p(d̃|m̃) because

p(d̃|m̃) = p(d̃|m̆).

The choice of a correct local objective is not unique and one can consider larger neighbourhoods. In

particular, we can define a 2-blanket as follows.

Definition 34. The 2-hop data of mi is the set of all entries in d with distance 1 from the 1-blanket mi in the

graphical model.

Definition 35. The 2-blanket of mi is the set of all nodes in the graphical model at distance 1 or less from

the 2-hop data of mi.

Proceeding in a similar fashion, we can generalize to the k-blanket of mi. Figure 6.3 depicts the 1-blanket

and the 2-blanket of m10 for the model shown in Figure 6.1.
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As a result of the previous observation, we can select larger subsets of m, as opposed to a single entry,

and perform local MAP estimation in blocks. We follow this strategy in the experiments presented in the

following section.

6.4 Image deblurring example using the DCT and wavelet transforms

Figure 6.4: MAP estimation using iLAP (1-blanket) and 4× 4 blocks. Top left: true model, top right:
data, middle left: full inverse reconstruction with DCT transform, middle right: iLAP with DCT transform,
bottom left: full inverse reconstruction with wavelet transform, bottom right: iLAP with wavelet transform.

We consider the problem of recovering a 128×128 image m that has been corrupted by a global blurring
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operator and noise.

Specifically, we generate the corrupted image by convolving it with a Gaussian blurring kernel with

standard deviation 1.2 in the spatial domain. Subsequently, 2% white Gaussian noise is added to the blurred

image.

In order to recover the image, the dense blurring operator is made sparse by by setting to zero all entries

of A that fall below 10−4. The recovery is done by basis pursuit denoising with an `1 regularizer:

min‖f‖1 subject to ‖AH−1f−d‖2
2 ≤ α, (6.7)

where f = Hm is the transformed model and H is the transformation (DCT or wavelet bases). Both A and

H are of size 16,384×16,384. We refer the reader to Mallat [2009] or Chan and Shen [2005] for a detailed

discussion regarding DCT and wavelet transforms.

The above denoising objective for a single image states that the model is sparse in the transformed

domain (frequency or wavelet domain). This is a reasonable assumption in many applications. We solve the

optimization problem using the spgl1 package [van den Berg and Friedlander, 2009, 2011].

For the DCT, we considered 4× 4 blocks of pixels. For this size of local estimates and the truncated

Gaussian kernel of radius 5, the 1-blankets and 2-blankets were augment to square patches of size 24×24

and 44×44 respectively. They could be made smaller since the kernel is circular, but by making the square

they become considerably easier to code. For the wavelet transform, we had to consider blocks of size 8×8

with 1-blankets of radius 32.

The recovery results are shown in Figure 6.4. In this particular example, the local approach appears to

do better than the global approach. This however may not necessarily generalize to other images.

In Figure 6.5 we show the relative error for the global and iLAP algorithms using the Wavelet transform

as a function of the regularization coefficient α . The relative error is calculated as follows:

Error =
||m∗−m||
||m∗||

,

where m∗ is the true image and m is the deblurred image. While the optimal range of the coefficient varies,

the relative error of iLAP is similar to the one of the global MAP estimator.

Finally, Figure 6.5 compares the results for the 1-blanket and 2-blanket estimators using the DCT. There

appears to be no gain for using larger neighbourhoods in this case. This may be attributed to the sparsity

prior.

It is both interesting and reassuring that similar ideas, but solely in the context of image deblurring,

have been studied since the seminal work in Trussell and Hunt [1978]. Our iLAP approach provides a more

general framework for understanding these approximations and for developing more powerful algorithms.

If, for example, m contain 106 entries (in the case of 1000×1000 pixels), solving each entry at a time

requires 106 local solvers, while solving in 10×10 blocks requires only 104 solvers.

In Figure 6.6 we present the comparison of a 4×4 blocks 1-blanket reconstruction and a 4×4 blocks
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Figure 6.5: Relative error of global MAP estimate (left) and iLAP distributed estimates (right) using the
wavelet transform. While the values of the regularization coefficient are different, the relative errors at the
optimum values are very close.

Figure 6.6: Recovery using iLAP with the first-blanket (left) and the second-blanket (right) with blocks of
size 4×4 and the DCT.

2-blanket reconstruction, for the same problem presented in Section 6.4.
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Chapter 7

Concluding remarks and future work

The key to this work was the somehow under-appreciated theorem on the existence and uniqueness of the

normalized Gibbs representation of an MRF.

We attacked an important question: Under what conditions do marginal MRFs have the same potentials

as the full MRF? The answer to this question is the Strong LAP Theorem.

The LAP algorithm for distributed learning in MRFs, both in its marginal and conditional forms, is just

a way to exploit this theoretical result. iLAP for inverse problems is another example of the utility of the

theory advanced in this thesis. We believe many more applications abound.

However, there remain several open questions, mainly regarding iLAP. For example, should a bigger

blanket improve the estimation accuracy? How can we generalize iLAP to the non-independent noise or

dense operator scenarios?

The following subsections discuss a few additional areas that merit further research.

7.1 Corrupted data
We discussed parameter estimation using data that was sampled from the true PDF. An exciting generaliza-

tion for LAP will be to consider cases in which the data is corrupted. Naturally we would like to consider

first the case where the data is locally corrupted. That is, in each sample noise is added to a small number

of unknown entries. Filtering the noise (that is, for each sample learning for which entries the noise was

added, and ignoring these) may be a complicated task when handling the entire sample, and one can benefit

from reducing the dimension.

Let x1..xq be q locally corrupted samples taken from the PDF p(x|θ). Using LAP, for each parameter

we find a local domain, project the samples x1..xq on that domain, then estimate the marginal PDF. Filtering

the sample projections may be a more reasonable task, since we can consider each projection as "corrupted"

or "not corrupted".
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7.2 Structure learning
Assume the set of samples is taken from the true PDF, but that the graph structure is not known. We wish

to estimate the graph structure using the sparsity assumption. In other words, each node has only few

neighbours but these neighbours are not known.

The main difficulty lays in the fact that even if the number of direct neighbours for each node is limited,

the total number of combinations is intractable. Using LAP, we would like to explore new local approaches,

which may simplify the problem. The Basis for such approach have to be a local structure learning. That

is, for each node we estimate the potentials locally, rating different local structures independently, and then

combine these local structures into a global one.

7.3 Tied parameters
We ignored the possibility that the entries of the parameters vector θ may dependent on each other. If, for

example, the same parameter appears in several different clique potentials. In such case, one may naively

take the following two steps:

• Ignore the relation between the entries, by assuming that the PDF is given by

f (x;θ) =
1

Z(θ)
exp(∑

c∈C
VC(xc;θc)). (7.1)

where each entry is independent from the other. Use LAP to find the estimate θ̂ .

• Estimate each entry θi by averaging the relevant estimates in θ̂ .

Clearly, this leads to a consistent estimator since it is known that

θ̂ n→ ∞−−−→ θtrue (7.2)

for each of the local estimators.

However, equally simple averaging is not an optimal method. An open question is: What is the best

way to choose averaging weights? Regardless, it is clear that LAP should be applied to domains with tied

parameters, including conditional random fields, to assess its merits. The one thing that LAP has going for

itself is that it is data efficient, model efficient, and consistent. Therefore, in the age of big data, it should

become an important player in the field of parameter learning.
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Appendix A

A.1 Equivalent definitions of the 1-neighbourhood
For a given clique, q, define its 1- neighborhood Aq by :

Âq = ∪c, ∀c ∈ C s.t. c∩q 6= /0 (A.1)

as the union of all cliques with non empty intersection. Or, alternatively, as the union of all nodes with

distance one or less from q

Ãq = q∪Ni, ∀i ∈ q. (A.2)

We show here the Equivalence of these two definitions.

Proof. Clearly q⊆ Âq and q⊆ Ãq.

⇒ Let i ∈ Ãq, and i /∈ q. Then, i ∈N j for j ∈ q and the subset {i, j} is a clique with non empty intersection

with q. Therefore i ∈ Âq.

⇐ Let i ∈ Âq. Then i ∈ ci, where ci is a clique with non empty intersection with q,

∃ j ∈ q∩ ci,

ci is a clique, then i ∈N j and i ∈ Ãq.

A.2 Strong LAP condition is sufficient but not necessary
In this subsection we prove by example that the strong LAP condition is not a necessary condition. Let the

graph be as in Figure A.1. Our interest lays in the parametric estimation for the clique {1,2,3}.
The marginal PDF over the domain {1,2,3} is achieved by integrating over the nodes i, j and k and

will not satisfies the Strong lap condition with respect to the clique {1,2,3}, as all the possible edges in the

clique are formed in the induced MRF. The edge {1,2} by integration over i, the edge {2,3} by integration

over j and the edge {1,3} by integration over k. However, the induced MRF consist only pairwise cliques,

56



1

2

3

i j

k

Figure A.1: A simple graph. Our interest is in the clique {1,2,3}

and tough the clique {1,2,3} is formed in the graph, the clique potential will not be formed. Hence, the

marginal over {1,2,3} and the full PDF shares the same potential over the clique of interest.

A.3 Conditional estimator can not be better than marginal estimator
Let p(x;θ) be the full MRF, let q be the clique of interest and Aq be the marginal domain. We assume one

can not find the exact marginal parametric family, i.e., the exact solution of

pAq(xAq) =
∫

p(x);θ)dxS\Aq

is not known. In such cases we say that the parametric family is not integrable. In particular we note that the

marginal is combined from Energy potentials which appeared originally in the full PDF and are all known,

and the induced Energy potentials which are not known.

On the other hand, the conditional p(xq|xAq\q) is known and can be directly derived from the full PDF.

Moreover, we have shown that the full PDF and the conditional shares the same Energy potential over the

clique of interest, by that observation we derived the CLAP algorithm.

The marginal PDF can be written as

pAq(xAq) = p(xAq\q;α)p(xq|xAq\q).

Again, we assume the exact parametric form of p(xAq\q;α) cannot be derived directly from p(x;θ).

However, by expanding the parametric family and introducing more parameters one may find larger

family, p(xAq\q;β ) that will contain p(xAq\q;α).

In such a case, the marginal model is taken from the larger family:

pAq(xAq) = p(xAq\q;β )p(xq|xAq\q).

57



Now, there may be two different approaches. One may either use CLAP (which is not data efficient) or

estimate the marginal (for which the model is not optimal).

Proposition 36. Asymptotically, the estimation of Eq(xq;θq) derived from the conditional estimation can

not be better then the the estimation of Eq(xq;θq) derived from the marginal estimation.

Proof. If the estimation of θq will be better the estimation of the marginal, one would be able to improve

the ML estimator for pAq(xAq) = p(xAq\q;β )p(xq|xAq\q). This is in contradiction to the Cramer-rao bound

achieved by the MLE.
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