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Abstract 

This thesis addresses the problem of interaction control between robot manipulator 

and the manipulated object in a homecare project. This project aims to use homecare 

robots at the elderly or disabled people’s home to provide necessary aid and assistance. 

The robot manipulator is to be operated in autonomous mode or teleoperation mode. The 

possible first aid or assistance requires direct interaction between the remote side robot 

manipulator and the human body. 

     To guarantee the compliant interaction between the manipulator and the human body, 

impedance control was applied. In impedance control, neither the force nor the actual 

motion of the manipulator is controlled. The dynamic relationship between the 

interaction force and the resulting motion is controlled so that the interaction force will 

be monitored and kept at an acceptable range. 

To shape the mechanical impedance to any desired value as we wish, the remote side 

interaction force sensing is required. The interaction force could be sensed by a force 

sensor. Force sensors have a lot of inherent limitations such as narrow bandwidth, 

sensing noise, and high cost. To avoid a force sensor due to its limitations, sliding mode 

observers will be applied to estimate the interaction force. The estimated interaction 

force will be used in the impedance control algorithms. The observer and controller 

framework will be formulated and the solvability will be discussed thoroughly. In 

addition, the proposed approach will be compared with some available approaches to 

show its advantages over others.  

Bilateral impedance control will be applied in a teleoperation system. The master side 

impedance controller is to ensure the robust stability of the teleoperation system. The 

remote slave side impedance controller is used so that the interaction force will be 

monitored and kept at some acceptable range. Desired impedance parameters selection 

will be discussed considering the compromise between robust stability and performance. 

Also, in order to deal with the uncertainties in operator and environment dynamics, a 

robust performance guaranteed controller synthesis approach will be proposed. Gain-
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scheduling control could guarantee the stability and the robust performance under those 

uncertainties. 
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Chapter 1: Introduction 

 

Robotics research is a highly multidisciplinary area, which benefits from 

developments in computer science, control theory, mechanics, electrical engineering, and 

cognitive science. The increasing computing power of processors and the lower cost have 

made the implementation of advanced control algorithms feasible. The advancement in 

sensing technology makes it possible that the robots perceive their environment more 

comprehensively. Thanks to the rather exhaustive and accurate description of the 

environment through use of different types of sensors, the robots can become more 

intelligent and are able to operate in unknown and unstructured environments. The 

improved performance and reduced cost make it possible to equip robots not just for 

industrial situations, such as automotive production lines, but also for such human-

interactive applications as homecare and rescue applications. Robots are increasingly 

used in service applications due to the high cost and other limitations of labor. These 

robots could provide higher-quality service while reducing the cost to the users. To 

complement the existing research activities in this area, the project of homecare robotics 

was launched at the Industrial Automation Laboratory, University of British Columbia. It 

focuses on home automation and concentrates on the application: robot-automated 

service providers (caregivers) at home for people with physical and cognitive 

impairments.  

As part of this project, this thesis aims to investigate the problem of compliant 

interaction between the robot end-effector and the assisted elder or disabled person, 

leading to the development of a robust, low-cost and compliant approach of interaction 

control. The proposed control algorithms are expected to realize soft interaction between 

the human body and a homecare robot manipulator, which guarantees that no excessive 

force is exerted on the human body, for safety reasons. 

    

1.1 Background and Motivation  

The problem of population ageing is a global one due to the rising life expectancy 

and declining birth rate. Initially, this has been a problem primarily in countries that are 

economically more developed. But recently, developing countries such as China and 

India are also affected by this problem. According to the prediction of Statistics Canada, 
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the percentage of the senior population will reach 25% of the total population by 2050. 

The social and economic effects of population ageing are enormous. The elderly need 

some care and physical assistance when necessary, in their daily life. The total cost of 

providing care to people of this group is tremendous, considering the large size of the 

ageing population.  

Another group of people that will rapidly increase its size are those with physical and 

cognitive impairments. The Canadian government spends about $9 billion on disability 

related matters. The cost of basic care for a disabled person at home is about 

$10,000/month, and this is a huge burden on the Government.  

The problem described above may be resolved by the introduction of a homecare 

robotics system, which consists of groups of robotic devices to work together in a 

coordinated and efficient manner and carry out a common task of providing assistance to 

elderly and/or disabled people in the home setting. The needed technologies of robotics, 

network communication, and control are sufficiently mature and are available at 

reasonable cost. Due to the lack of necessary assistive technologies and specialized end-

effector devices, and also due to insufficient efforts in bringing the pertinent technology 

teams together, the development of affordable and reliable systems has eluded the 

application area in the past. The research in homecare robotics is a new but rapidly 

developing field of service robotics, especially in Japan.  

Through our established laboratory facilities we plan to develop affordable and 

effective service robots for the elderly or the disabled people with physical and cognitive 

impairments in a home setting. The developed system comprises several sets of robot 

manipulators having mobile bases, and can provide assistance in daily activities, medical 

assistance, surveillance, and so on. They can work independently or collaboratively in a 

team, based on the complexity of the task. The designed homecare robotics system 

allows the care-receiver to stay in their familiar home environment where the assistance 

is provided, which is a merit of the technologies.  

 

1.2 Problem Formulation 

The primary objective of the present work is to develop a robust and low cost 

manipulation system which has abilities to safely interact with the elderly and disabled in 

a home environment. Possible application scenarios include first aid and assistance in 
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changing clothes. A schematic representation of the proposed homecare robotic system is 

shown in Figure 1.1. 

TCP/IP

Hospital central control office Homecare robot at home Homecare robot at home 
  

Figure 1.1: Schematic representation of the developed system 

The system consists of two parts, the local homecare system at the care-receiver’s 

home and the hospital control room. Besides the homecare robotic manipulator mounted 

on a mobile base, the system in the home environment includes sensors for monitoring 

and surveillance of the home environment, such as cameras, microphone, gas leakage 

sensor and so on. Sensors for monitoring the health condition of the user, such as the 

heart rate sensor and blood pressure, will be able to provide a complete description of the 

care-receiver’s health status to the medical professionals in the control room. Of course, 

the sensors that are needed by the robot to carry out its activities (encoders, cameras, 

tactile sensors, etc.) are needed as well. 

The robotic subsystem in the hospital control room is made up of a Phantom 

Premium 1.5 6DOF, which is a haptic master device that can operate the homecare robot 

remotely by sending out the hand movement command of the operator while providing 

force feedback. Also, for direct communication with the care-receiver, this subsystem has 

audio devices, including microphones and speakers. The care-receiver at home can 

maintain bidirectional communication with the operator in the hospital control room. The 

communication between the home side and the hospital control room is facilitated 

through the Internet or a dedicated Ethernet. 

As noted before, the homecare robot system is able to operate in two different modes. 

The first is the autonomous mode, which is the research thrust of several members of the 

Industrial Automation Laboratory [1],[2]. In this mode, the care-receiver is assisted by 

the homecare robot system by itself without the involvement of the hospital control 

room. In addition to routine care, it can involve medical care (e.g., dispensing of 

prescription medication) without involving a medical professional. These may include 
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easy tasks that the homecare robots are able to carry out, such as pressing the power 

button of a household appliance. When the task is too complex and critical nature for 

autonomously carrying out by a homecare robot, the second mode of operation of the 

homecare robot is triggered. This second is the teleoperation mode, in which the robot is 

semi-autonomous, and needs the intervention of a professional in the remote control 

room. In this situation, the homecare system with the help of various sensors will notify 

this problem to the remote control room and will seek assistance.  

In this thesis, the research contributions are applicable in both modes. When the robot 

manipulator interacts with human body irrespective of whether it is in the autonomous 

mode or the teleoperation mode, safety of operation should come first. In the 

teleoperation mode, the position command from the operator (master) in the hospital 

control room is transmitted to the homecare robot. The transmitted information from the 

operator is the motion command for the slave homecare robot system to follow. When the 

homecare robot is in contact with the human body, the interaction force and its rate of 

change should be controlled delicately in order not to have excessive force on the human 

body. In the meantime, the contact force should be feedback to the master manipulator in 

the hospital control room. The feedback force will be displayed by the master haptic 

device to the operators so that they are actually “feeling” the contact information of the 

remote side. Accordingly, they can send out a new command through the haptic device 

based on their experience. When the master haptic device and the homecare robot are 

formulated into a close-loop system, we face several challenges. Only four main 

challenges are discussed here and the corresponding solutions are proposed in the 

subsequent chapters of this thesis. They are all key issues in realizing an effective and 

practical homecare robotic system. 

The first challenge is the sensing of the interaction force. In constrained motion 

control of a robot, interaction force is crucial information that describes the state of 

interaction between the robot manipulator and the contact object. The interaction force 

feedback can be included in the control algorithms for regulation or tracking purposes. 

Conventional force sensors are costly and have considerable noise in the sensed force 

data [3]. Furthermore, mounting a force sensor at the manipulator-object is quite 

difficult. Also, a suitable force sensor may not be readily available in the laboratory 

facilities. Sensor failure or inaccurate force sensing can deteriorate the stability and 
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performance of the whole system. Due to such reasons, it may be required to estimate the 

interaction force indirectly.  

The second challenge is the compliant interaction between the homecare robot and 

the human body no matter whether the robot is in autonomous mode or in teleoperation 

mode. Conventional industrial robots are heavy and have large inertia, while in the 

present project, the homecare robots can be designed to be light-weight and compact. 

Even when the inertia is low in this kind of robots, at high accelerations, the resulting 

forces may still be a threat to the safety of the user during interaction. This is more 

serious since the user is a senior or disabled, who is generally more vulnerable [4].   

The impedance of the robot should be actively tuned to accommodate the application. 

Uncertainty in the dynamic models is unavoidable due to the time-varying nature of the 

dynamics and necessary approximation of the robot manipulator. Robust impedance 

shaping should be achieved using nominal robot dynamic models. Conventionally, in 

impedance control the end-effector velocity is required. It is calculated based on the 

differential kinematic relationship between the Cartesian-space velocity and the joint 

space velocity. 

The revolute joints of robot manipulator are equipped with encoders to sense the 

motion of each joint. In the homecare system of the present work, the 4 degree of 

freedom (DOF) the serial-link robot manipulator called WAM (Whole Arm Manipulator) 

manufactured by Barrett Technology [5] is used. The incremental optical encoder in each 

joint can sense the joint position accurately. Joint velocity information is required for the 

impedance control implementation as mentioned in the previous challenge. However, if 

we reconstruct the velocity by directly differentiating the sensed joint position 

information with respect to time, we will get an extremely noisy signal [6]. Filters could 

be applied when we know the bandwidth of the velocity signal, but not in the case of 

white noise. Reconstruction of the joint velocity for impedance control implementation 

purpose is the third challenge in this research.  

In bilateral teleoperation, the master side is usually impedance controlled to reflect 

the contact force to the operator, while the slave side is impedance controlled to 

guarantee the compliant behavior of the robot manipulator. It is commonly assumed that 

the models of the master and slave sides are linear time invariant [7]. Generally, the robot 

manipulator dynamics is coupled, nonlinear and configuration dependent. Under ideal 
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impedance control, in each Cartesian degree of freedom, the manipulator can be 

linearized and decoupled. Thus, robust impedance control is critical for extending the 

available research results on teleoperation.    

In this thesis, algorithms are developed to address these key challenges. The proposed 

approaches for impedance control and bilateral teleoperation can work robustly and 

effectively under uncertainty and in the absence of force sensor.    

 

1.3 Related Work 

1.3.1 Sliding Mode Systems 

It is unavoidable that all practical systems are under some kind of disturbance and 

uncertainty. Controlling plants to have some desired properties in the presence of 

uncertainty remains an active research field. Sliding mode control is an important class of 

such controllers and it originated primarily by scholars in the former Soviet Union in the 

late 1950s. Since its introduction, sliding mode technique has found many applications in 

the design of controllers [8]–[11], observers [12]–[15] and differentiators [16]. 

Sliding mode system is a special case of variable structure system (VSS), where the 

system dynamics switches when crossing a manifold called sliding surface [17]. The 

sliding surface is selected so that the desired system performance is achieved once the 

system state is constrained onto this manifold. Usually, this desired performance could 

not be achieved in either subsystem, which is an important feature of sliding mode 

systems. 

1x

2x

1 2( , ) 0s x x 

( ) ( )x f x b x 

( ) ( )x f x b x 

 

Figure 1.2: Variable structure system 

Figure 1.2 shows a sliding mode system which may be represented by 

                                                                                ( ) ( ) ( )x f x b x sign s                                                                 (1.1) 
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The Lipschitz property of the right hand side (RHS) of the differential equation 

guarantees the existence and uniqueness of the solution. However, when the right hand 

side of the differential equation is discontinuous, the existence and uniqueness of the 

solution cannot be guaranteed. The vector field at 0s  is not determined since the 

function ( )sign s at 0s  is not defined.  

One approach to analyze differential equations with discontinuous right hand side is 

by using the concept of Filippov inclusion [18]. The value of the derivatives on the 

discontinuous sliding surface may be determined by 

                                                0 ( ( ) ( ), ( ) ( ))f conv f x b x f x b x s                                    (1.2) 

An alternative way to find the vector field on the sliding surface is by the use of the 

equivalent control concept. This concept is the basis for state observers. Ideally, once the 

system states are constrained onto the sliding surface, then 0s  should be valid. For a 

conventional sliding mode system, 0s   should also be valid in the ideal sliding mode. 

Based on 0s  , we can calculate the control input u , which is named the equivalent 

control input and denoted by equ . The equivalent control input corresponds to the slow 

dynamics of the system [19],[20]. 

The design of a sliding mode controller consists of two steps. The first step is to 

select the sliding surface, which has the desired system dynamics once the system states 

are constrained onto this surface. The second step is to design the controller to drive the 

system states onto this sliding surface.  

Taking the example in [18], consider a disturbed single-input-single-output (SISO) 

time invariant (TI) system descried by 

                                                                      
1 2

2 1 2( , , )

x x

x f x x t u



 
                                                        (1.3) 

where 1x , 2x are the system states, u is the control input, and 1 2( , , ) 0f x x t L  is the 

bounded disturbance. Select the sliding surface defined by 

                                                              1 2 2 1( , )s s x x x kx     ( 0)k                                            (1.4) 

We can get the first derivative of this sliding surface as 

                                                              2 1 2 1 2( , , )s x kx kx f x x t u                                         (1.5) 

The Lyapunov function is given by 
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21

2
V s                                                                              (1.6) 

Using this, the control input that ensures the finite-time convergence to the sliding 

surface can be designed. 

The derivative of this Lyapunov function (1.6) is calculated as 

                                                2 1 2( , , )V ss s kx f x x t u                                                    (1.7) 

Select the control input as 

                                                         2 ( )u kx sign s                                                               (1.8) 

                                               

1 0

( ) 1, 1 0

1 0

s

sign s s

s




  
  

                                                             (1.9) 

The derivative of the Lyapunov function (1.6) may be represented as 

                                                      

 1 2

1 2

( , , ) ( )

( , , ) ( )

V s f x x t sign s

sf x x t s sign s

s L s







 

 

 

                                            (1.10) 

Select the parameter   as 

                                                              
2

L


                                                                       (1.11) 

Then the derivatives of the Lyapunov function can be further simplified as 

                                                               
1/2V V                                                                      (1.12) 

Based on the comparison lemma, integrating both sides of equation (1.12) over time 

interval  0, t , we have 

                                                     
1/2 1/21

( ) (0)
2

V t t V                                                        (1.13) 

The finite-convergence time of the system trajectory onto the manifold may be 

determined as 

                                                           

1/22 (0)
c

V
T


                                                                     (1.14) 

Note that the parameter  should be tuned properly here. If we want small 

convergence time, we can have large . However, we can see from equation (1.9) that 



 

9 

 

the control input is discontinuous at 0s  . The magnitude of this discontinuous input is 

proportional to . A too big value for  will lead to undesirable chattering. 

Chattering is due to fact that the control input is a discontinuous function. In a robotic 

manipulator, this control input is the torque command to be sent to the joint actuators in 

each joint. In the ideal case, the bandwidth of the actuator is infinite so that the joint 

torque could be switched without time delay. As shown in the Lyapunov-based analysis, 

the convergence onto the sliding surface will happen in finite time. However, in practice 

the bandwidth of the actuator is limited. It cannot complete a discontinuous switch in 

zero time. The intuitive explanation for the cause of chattering may be given using the 

following example. Assume that at time 1t  the actuator is commanded to have a positive 

joint torque, which takes the joint actuator 1t  to respond to this command and deliver 

the joint torque. However, the torque command during this 1t has changed to a negative 

value. After the actuator responds to the positive torque command, it has to deliver a 

negative torque. This process repeats over and over, which makes the torque delivered by 

the actuator to chatter. 

Chattering is very harmful to mechanical systems, which increases the wear and tear, 

vibration, noise. Also, it may induce the neglected high-order dynamics in modeling of 

the system. It has to be eliminated or at least attenuated in practice.  

One approach usually used in the past is to replace the discontinuous control input 

with an approximate high-slope saturation continuous function, as shown in Figure 1.3. 

This type of approach is usually called boundary layer-based sliding mode control 

[21],[22]. 

1

 

1

s

( )sat s

 

Figure 1.3: The saturation function 

However, in some situations the system trajectory will converge to this boundary 

layer instead of the exact 0s  . The desired system dynamics, which is only achievable 

when 0s  , will not be available when the system states converge to this boundary. The 
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accuracy in this case will be deteriorated. As we can see, the boundary layer size  is 

also a tuning parameter here. Too small boundary layer will still lead to chattering. On 

the other side, when we increase the size of this boundary layer, the accuracy will get 

worse. In practice, this parameter should be tuned based on extensive simulations before 

the right value is chosen in experiments. 

An alternative approach to attenuate or eliminate the chattering problem is to use a 

high-order sling mode system [23],[24]. High-order sliding mode (HOSM) system is an 

active research field, which started in the 1990s. In HOSM, the derivatives of the control 

input are discontinuous functions, which make the control input continuous after integral. 

Conventional sliding systems are first-order sliding systems. In this type of sliding 

mode systems, the control input appears in the first-order derivatives of the sliding 

surface. This is observed in equation (1.8), where the control input appears explicitly in 

the first-order derivative of the sliding surface. 

In r
th

 order sliding mode systems, the control input appears first in the r
th

 order 

sliding surface dynamics. A formal definition is given here since some subsequent 

chapters of the current work will be based on HOSM systems. This formal definition is 

from [18], and the details are found there. 

A discontinuous differential equation ( )x f x  with a smooth output function

( )s s x , which is understood in the Filippov sense. If 

(1) time derivatives s , s ( 1)rs 
are continuous functions of x  

(2) the set 
( 1) 0rs s s      is a nonempty integral set 

(3) the Filippov set of admissible velocities at the r -sliding point of 

( 1) 0rs s s      contains more than one vector 

the system is an r
th

-order sliding mode system. 

HOSM tries to not only drive the system state to the sliding surface, but also the 

high-order derivatives of the sliding variable s to zero. This further constraint of the 

high-order derivatives on the sliding surface will attenuate or even eliminate the 

chattering significantly, which is a very desirable feature of HOSM systems.  

For the second-order sliding mode (SOSM) systems, there are various well-

established approaches for sliding mode controller design, such as twisting algorithm 

[25], suboptimal algorithm [26], control algorithm with prescribed convergence law [27], 
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and quasi-continuous control algorithm [28]. The twisting controller is given here as an 

example to show the features of SOSMs [18]. 

The system dynamics may be described by 

                                                               ( , ) ( , )x a x t b x t u                                                     (1.15) 

where nx R is the system state, and u R is the control input. The output of this system 

which is the desired sliding surface is ( , )s s x t . Since it is a second-order sliding 

system, the control input should explicitly appear in the second-order derivative of the 

sliding surface. Suppose that it can be described by the representation 

                                                                   ( , ) ( , ) ( , )s x t h x t g x t u                                               (1.16)   

where ( , )h x t and ( , )g x t are some unknown smooth functions. Suppose that ( , )h x t and 

( , )g x t satisfy the conditions  

                                                                   0 m MK g K   ,    h C                                          (1.17)   

Then the twisting is given as 

                                                     1 2( ) ( )u r sign s r sign s   , 1 2 0r r                                    (1.18) 

The parameters 1r and 2r  are selected to satisfy the inequality   

                                                        
1 2 1 2

1 2

( ) ( )

( )

m M

m

r r K C r r K C

r r K C

    

 
                                          (1.19) 

In this manner, finite time convergence to the manifold 0s s   is proved in[18]. 

Controllers or observers designed in this way can drive the sliding variable as well as 

its first derivative to zero in finite time. The proofs of the convergence of those SOSMs 

are mostly based on the non-smooth Lyapunov functions [29] or the geometrical 

majorant curves [18],[30]. Sliding mode controllers with the sliding order higher than 

two are also proposed, such as nested sliding mode controllers [31]. The convergence of 

those HOSMs are only proved using homogeneity theory [32],[33], and no systematic 

way to obtain a Lyapunov function to show the convergence is available up to now. 

While the first advantage of HOSMs is the attenuation of chattering, the second 

advantage is the accuracy in discrete control system implementations. It has been proved 

that for a sliding mode system with sliding order r and discrete sampling period
sT , the 

precision may be limited to 
r

sT [34],[35]. 
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It is easy to notice that the implementation of the twisting algorithms require the 

information of s , even though only the sign of it is required. In discrete implementations 

this may be achieved by monitoring the change of s in two consecutive time steps [36]. 

An alternative approach is to use the sliding mode-based robust differentiators. The 

introduction of robust differentiators is given in the following subsections. 

A special type of algorithm that has the feature of second sliding mode for relative 

degree one system is called super-twisting algorithm (STA) [37]. In this algorithm, the 

finite-time convergence of the sliding variable and its first derivative to zero are 

guaranteed. The control input will only be a function of the sliding variable itself, and no 

information about the derivative of the sliding variable is required. The STA is given as 

                                                                    
1

0

( )

( )

u s sign s w

w sign s





   


 
                                                (1.20)    

By proper selection of 0 and 1 , 0s  and 0s  will be guaranteed in finite time. This 

special algorithm outperforms the conventional sliding mode controllers with regard to 

the smoothness of the control input.      

 

1.3.2 Sliding Mode Observers 

In state feedback control algorithms, some states are required but might not be 

available. For example, joint velocity may be required in impedance control algorithms. 

However, in the absence of tachometers this information is not available. Observers are 

used to estimate the state of plant and are widely used since it was firstly introduced by 

Luenberger in [38]. If the model of the plant is known, the Luenberger observer is able to 

reconstruct the states. This may be illustrated by the observable SISO system given by 

                                                                     
( )x Ax B u d

y Cx

  


                                                 (1.21) 

where 
nx R is the system state, u R is the control input, d R is the disturbance such 

as noise in the control input channel, and y R is the output. In some cases some 

components of x are not available while they are required by some controllers. 

Luenberger observer may be designed as  

                                                                            ˆ ˆ ˆ( )x Ax Bu K y Cx                                        (1.22) 

Define the state observation error e as  
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                                                                            ˆe x x                                                                    (1.23)  

Then, the estimation error dynamics may be calculated as 

                                                                             ( )e A KC e Bd                                                (1.24) 

In the absence of input channel disturbance ( ) 0d t  , by proper selection of K , the 

poles of  

                                                                             ( )e A KC e                                                         (1.25) 

may be placed to guarantee that the estimation error asymptotically convergences to zero. 

However, if the input channel disturbance ( ) 0d t  , the property that estimation error e    

asymptotically convergences to zero may not be obtained. Robust state observers under 

plant model uncertainty should be designed in this case.  

Sliding mode observers can guarantee the robust state estimation in the presence of 

model uncertainties. They replace the linear output feedback term in equation (1.22) with 

a discontinuous term ˆ( )K sign y y  . It has been proved that by proper choice of K , the 

estimated states will converge to actual ones in the presence of system uncertainty 

[15],[39],[40].  

A class of sliding mode observers that can not only estimate the states of the plants, 

but also the unknown inputs of the plant was proposed in [14], [23], [40]–[42]. It is based 

on the STA. It was applied in mechanical system to identify the unknown dynamic 

parameters or external disturbances [43]–[45]. The limitation of this algorithm is its 

difficulty in selecting the gains to guarantee the convergence. Those gains are based on 

the bound of the uncertainty. An adaptive version of this algorithm may be developed to 

guarantee the convergence with bounded but unknown disturbances [46]. 

 

1.3.3 Robust Differentiators based on Sliding Mode Theory 

( )f t is a bounded real signal contaminated by measurement noise. For example, it is 

the joint position signal of robot manipulators. We are required to calculate the derivative 

of this signal (joint velocity). Conventionally, we can perform spectrum analysis of this 

signal to obtain details of its spectrum. Filters such as low-pass filter and band-pass filter 

may be applied to calculate the derivative of this signal with measurement noise. 

However, this should be done based on the assumption that the bandwidth of the system 

is known. Proper selection of the cut-off frequency of the filters should be done to ensure 

that the derived information is not distorted. Also, important information should not be 
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lost after using a filter. If that is not the case, we call the derivative information not 

“exact”. 

Model-based filters, such as the Kalman filter may be applied to have an optimal 

estimation of signals with noise [47]. However, when the dynamic model of the system is 

inaccurate, the estimation based on Kalman filters could be inaccurate as well. Robust 

differentiator under system model uncertainty may be applied. 

Robust differentiator based on sliding mode theory and independent of the dynamics 

of the original system was proposed in [16]. It is based on HOSM and the finite time 

convergence of the differentiator to original signal’s high-order derivatives is shown in 

terms of homogeneity theory [32],[33]. The general robust differentiator is given in 

Theorem 1 from [18]. 

Theorem 1: Assume that the input signal ( )f t  is a function defined on  0, consisting 

of a bounded Lebesgue-measurable noise without known features and base signal 0( )f t . 

The k -th derivative has a known Lipschitz constant 0L  . The real-time robust 

estimation of 0( )f t , 0( )f t , , 
( )

0 ( )kf t which are exact in the absence of measurement 

noise is given by robust differentiator defined as 

                                    

0 0

/( 1)1/( 1)

0 0 0 1

1 1

/( 1)1/

1 1 1 0 1 0 2

1 1

/( 1)1/2

1 1 1 2 1 2

0 1

( ) ( ( ))

( )

( )

( )

k kk

k

k kk

k

k k

k k

k k k k k k

k k k

z v

v L z f t sign z f t z

z v

v L z v sign z v z

z v

v L z v sign z v z

z Lsign z v















 



    





    



    



    

  

                        (1.26) 

If the parameters 0 , 1 , 0k  are properly chosen, then the derivatives of signal 

0( )f t are given as 

                                   0 0( )z f t , 
( )

1 0 ( )i

i iz v f t  , 1,2,i k                                    (1.27) 

It has been proved that the accuracy of the HOSM differentiators coincides with the 

Kolmogorov estimation. If the magnitude of the measurement noise is bounded by  , the 

accuracy of this robust differentiator reconstructed derivatives of the original signals is 

given by the inequality  
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                                                    ( ) ( 1 )/( 1)

0( ) ( ) ( )i k i k

iz t f t O                                                 (1.28) 

This type of differentiator has been used in many applications, such as imagine edge 

detection [48] and robot dynamic model identification [49]. 

The problem with conventional robust exact differentiators is the proper selection of 

the switching gains i , ( 0,1,2,i k ). The choice of these gains is based on the 

Lipschitz constant of the original noisy signal [32],[50]. However, in practice, the 

characteristic of the measurement noise is not predictable, which makes the selection of 

those gains extremely difficult. Adaptive versions of this robust differentiator have been 

proposed to guarantee the convergence without understanding the measurement noise 

[48],[49].  

 

1.3.4 Robot Dynamics and Identification  

Robot manipulators are usually equipped with encoders to sense the motion in each 

joint. Sometimes the joint motion can be sensed indirectly. For example, the motion of a 

joint actuator, such as electric motor, hydraulic device, or pneumatic device is sensed. In 

a geared system, the joint motion may be obtained by multiplying the actuator motion by 

the transmission ratio.  

The dynamics of a robot manipulator is the mathematical relationship between the 

sensed motion (and/or their corresponding derivatives, i.e., velocity and acceleration) and 

the applied actuation wrench. Accurate dynamic model of a robot manipulator is the 

prerequisite of analysis, validation and control of the robot manipulator. Advanced robot 

controllers are mostly based on robot dynamic model and the performance of the 

controllers depends on the accuracy of the model. 

Based on the type of motion variables and the actuation wrenches used to describe 

this relationship, robot dynamics may be grouped into joint space dynamics and 

Cartesian space dynamics. Joint space dynamics aims to determine the relationship 

between the joint space rotation angle (for revolute joint) or displacement (for prismatic 

joint) and the joint actuation torque or actuation force. Cartesian space dynamics seeks to 

find a direct relationship between the applied generalized force and the displacement of 

the end effector in the Cartesian space. The joint space dynamics may be obtained in a 

straightforward manner by using the classical energy-based Euler-Lagrange formulation, 

or the computationally more efficient recursive Newton-Euler formulation. The Cartesian 
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space dynamics need some trivial kinematic transformation between the joint space 

coordinate and the Cartesian space coordinate. However, this transformation may 

sometimes lead to representation singularity. This problem can be avoided in the 

trajectory planning phase.  

Accurate modeling of robot manipulator dynamics based on ideal physical 

formulation is a challenging task due to the structural complexity, especially when the 

uncertain joint friction component is taken into consideration. Several endeavors have 

been devoted into this area in the past to identify the dynamics as accurately as possible.  

In [51] , the dynamics of a haptic device was identified by dismantling various 

components of the manipulator. The inertia parameters were measured. The problem with 

this type of problem is that they cannot include a complicated dynamic terms such as 

Coulomb friction into consideration, while such terms are the troublesome ones in the 

dynamics of manipulators. Some robot manufacturers provide approximate dynamic 

parameters based on the Computer Aided Design (CAD) models during the design 

process. The CAD models used to determine the dynamic parameters have the some 

limitations as the one mentioned before. They usually ignore the complex friction 

component in the dynamic model. Furthermore, they usually make assumptions on the 

geometrical dimensions and density of the materials. 

Robot dynamic model identification by experimentation is an effective way to obtain 

accurate dynamic models. The complex friction components can be included into the 

dynamic model to be identified. Most of the dynamic model identification algorithms of 

robot manipulators take advantage of the property of linearity in parameters in the 

dynamic model. After including a carefully selected linear model for the friction 

component, the dynamic model of a manipulator may be described by the equation 

                                                              ( , , )i iY q q q                                                              (1.29) 

where
i is the actuation torque of each joint, ( , , )iY q q q is the regressor matrix of the 

manipulator, which depends on the manipulator configuration (joint position q , joint 

velocity q , joint acceleration q ), and   is the base dynamic parameter of the 

manipulator whose components are functions of the robot inertia tensors and the 

kinematic parameters. Equation (1.29) is also used in adaptive motion control of robot 

manipulators, and this representation may be formulated in a systematic way. 
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Using m  (usually much bigger than the number of DOF of the manipulator) 

experimental tests, we have the set of measurements  1 2 mW     , 

 1 2 mY Y Y Y  . The ordinary least squares estimation (LSE) may be used to 

obtain an estimation of the unknown constant, given as 

                                                1( )T TY Y Y W Y W                                         (1.30) 

where Y   is sometimes called the information matrix and plays an important role in 

tuning the accuracy of the identification result. Several robot dynamic parameter 

identification schemes have followed this routine, which differs from each other in the 

choices of analyzing the experimental data, ways to generate the input excitation torque, 

or how to deal with the measurement noise during experimentation. 

Desired joint space trajectories are selected as the reference trajectories for the 

manipulator to track. These trajectories cannot be selected arbitrarily and should satisfy 

some conditions. First, system bandwidth has to be taken into consideration. The 

reference trajectories should be selected so as to be able to be tracked by the manipulator. 

Second, these reference trajectories should be selected to have a high level of system 

excitation, which is a prerequisite of any system identification algorithms. Usually the 

reference trajectory for each joint is selected as a combination of several sinusoids with 

various frequencies and amplitudes. Before real experimental implementation, these 

trajectories should be simulated based on the manipulator kinematics so that the 

workspace of the manipulator will not be violated. 

In [52], the dynamic parameters of a Phantom
TM

 haptic device was identified based 

on the linear in parameter property and LSE. The classical friction model, which includes 

terms for Coulomb friction and viscous friction for each joint was used in the dynamic 

model. The augmented dynamic model still meets the linear in parameters property. LSE 

was used to identify the dynamic parameters off line after several Position-Derivative 

(PD) based trajectory tracking experiments. Combinations of sinusoids with various 

frequencies and amplitudes were used as the reference trajectory for each joint. The joint 

velocities were estimated from joint angles by using a filter. Joint accelerations were 

reconstructed by using a strictly stable low-pass filter to avoid differentiating the 

velocities which will amplify the noise. The identified parameters were validated through 

experiments. It showed that it is able to predict joint torque at over 95% accuracy and 
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have an inertia matrix confirmed to be positive-definite within the device workspace. A 

limitation in this work is that the noise deteriorated joint encoder readings makes the 

information matrix noisy as well.  

The ordinary LSE is known to be sensitive to noise. The measurement noise in the 

joint position, velocity, and acceleration makes the estimation biased. In [53], Simple 

Refined Instrumental Variable (SRIV) approach is applied to deal with the noisy 

observation matrix problem. In theory, this approach could give rise to statistically 

optimal estimation. The implementation of this approach is simple, and no noise model is 

required. What is more, this method is consistent even if the noise is colored. The 

acceleration calculation is avoided in the SRIV method. In addition, SRIV is less 

sensitive to the choice of the cut-off frequency compared to LS. Simulation and 

experimental results have been given to show the effectiveness of this approach.  

Both LSE- and SRIV-based dynamic parameter identification algorithms require 

measurements of joint torques and joint positions. The joint velocities can be 

reconstructed through band-pass filtering of the joint position at a small sampling period. 

As mentioned above, the reconstruction of the joint velocities and accelerations are the 

main sources of the information matrix noise. This noise will lead to biased dynamic 

parameter identification. A new off-line dynamic parameter identification method named 

Direct and Inverse Dynamic Identification Models (DIDIM) which only requires the joint 

torque measurements is proposed in [54]. DIDIM is a close-loop output error feedback 

algorithm, which does not require joint position measurements. This method uses a 

simulated robot model with some selected initial dynamic parameters. Using the same 

structure for the control law, and the same reference trajectory for both the actual and 

simulated robot, the optimal dynamic parameters that minimize the error between the 

actual and simulated torque can be found after several iterations. The simplicity and 

advantage of this method are indicated by the dynamic parameter identification 

experiment carried out using an industrial robot. 

While the above dynamic identification approaches depend on LSE or SRIV, some 

evolutionary computing algorithms also find their applications in this area. As pointed 

out in [55], LSE can have solutions such as local minima which are not optimal. Particle 

Swam Optimization (PSO) as an optimization method was used in [55] to estimate the 

inertia parameters of an industrial robot. It showed superior performance than the LSE 
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based identification algorithms. Another evolutionary computing algorithms, Genetic 

Algorithm (GA), is applied in [56] to identify the system model of a mechatronic system 

with unknown structure. Modified Genetic Algorithm Identification Method (MGAID) is 

used in [57] to identify the dynamic parameters of a two-link pneumatic artificial muscle 

manipulator. 

All the above dynamic parameters identification algorithms attempt to complete the 

identification process offline. The experimental data is analyzed using the approaches 

mentioned above after several complete trajectory tracking experiments. Online dynamic 

parameter identification can be helpful to make the controller more adaptive to changing 

operating conditions. Changing payload of the robot is a very common situation in 

constraint motion control problem. However, this change requires that the dynamic 

model should be identified again using off-line dynamic identification algorithms. The 

online dynamic parameter identification schemes can be used to make the controller 

more robust and adaptive to these changes, which eventually makes the robots perform 

better.  

In [58], an on-line identification algorithm based on batch adaptive control is 

proposed. The tracking error decreases because of the feedforward compensation from 

the dynamic model identified in the previous step. After several cycles of adaption, the 

real dynamic parameters can be obtained in finite time. Initial guess of the dynamic 

parameters is not critical here. An advantage of this identification algorithm is that it is 

implemented on line, which is quite appealing in practice. 

 

1.3.5 Interaction Control 

In our homecare project as described in the previous sections, the interplay of the 

manipulators and the human body has three phases. The first one is when the manipulator 

is moving in free space when no interaction between them is present. After the 

manipulator is commanded adequately close to the object, there comes the second phase, 

the transition phase. In this process, the interaction force will increase from zero to a 

limited and acceptable value. After steady contact with the object, the motion of the robot 

manipulator is fully constrained and the manipulator is in the third phase, the constrained 

motion.  
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Motion tracking in free space is a classical robot control problem and is dealt with 

from different perspectives. Simple Proportional-Integral-Derivative (PID) control 

algorithms may be applied directly in each joint while the nonlinearities in the dynamic 

model are considered as disturbances. Control algorithms in this category are typically 

decentralized control. The PID controller falls into this category can be applied to 

guarantee satisfactory trajectory tracking performance in the presence of disturbances. 

Due to its simplicity, most of industrial robots use this method for motion control. When 

stringent accuracy is required, model based control algorithms, such as inverse 

dynamics-based control, tries to cancel out the nonlinearities of dynamic models by 

feedback. After linearization, linear system design methodologies may be applied to 

design the controller for the nonlinear system. Model-based control algorithms are 

typically centralized control, while PID controllers ignoring the nonlinearities are called 

independent/decentralized control. Generally, model based control algorithms have better 

performance than the simple decentralized ones, even though they require dynamic 

parameters (at least nominal ones) and have more computing loads. 

Smooth transition between free motion and constrained motion is critical in many 

applications. This is a new but important research area. Several control strategies with 

the aid of proximity sensors are proposed to guarantee the smoothness during this 

transition. The details are found in [59]. 

After the robot manipulator’s interaction with an object, the robot control problem 

reaches the stage of constrained motion control, or interaction control, which is the main 

topic of the present work. The interaction force should be monitored and controlled to be 

within some acceptable range for safety in the homecare system. For this, a proper 

compliant behavior of the robot manipulator is required.  

The task of drilling a hole in a piece of wood is shown in Figure 1.4. This is taken as 

an example here to introduce the concept of impedance control. 

WoodDrill
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Figure 1.4: Task of drilling a hole in the wood piece 
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In this task, the interaction force should be monitored so that it will not damage the 

drilling tool, as well as the work piece. One intuitive way to control the interaction force 

is to depend entirely on the motion control strategy. Then, the magnitude of the 

interaction force is controlled by accurately controlling the movement of the drill without 

a force sensor to measure the interaction force. In order to avoid an excessive interaction 

force, the mechanical property of the wood, such as the stiffness should be known in 

advance. In addition, the motion control system in the drill need to be adequately fast and 

accurate, without jerk or overshoot. However, in practice, these two requirements are 

extremely difficult to meet. While the accuracy of the motion control system could be 

tuned accurately to some level, the precise description of the model of the interacted 

objects is unavailable in most applications. Even in well-planned industrial applications, 

such as a robot system for production line, there will be variations in the mechanical 

properties of the interacted components.  

Interaction force provides a direct and effective description of the state of interaction. 

Due to the limitations of the above-mentioned force control algorithms in practice, new 

interaction control methodologies with the interaction force directly measured and 

included into the control loop have been investigated in the past decades.  

Based on whether the interaction force is directly regulated or not, interaction force 

control schemes may be grouped into two categories, the direct force control and indirect 

force control.  

In direct force control, in order to track the desired force as closely as possible, a 

force feedback loop with integral action on the force error is included in the position 

control loop. Because of the integral action, the interaction force can be tracked or 

regulated with zero steady state error.  The classical hybrid position-force control 

algorithm falls into this category. Consider again the previously mentioned hole-drilling 

problem, but this time we are required to exert a desired normal force in the x direction, 

while moving along the y direction to change the location of the drill as shown in Figure 

1.5. In this application, the robot manipulator task space is decomposed into two 

subspaces, the free space and the constrained space. In the x direction, direct force 

control schemes may be applied to regulate the interaction force, while in the y direction, 

classical motion control schemes may be directly used to change the location of the drill 

tip. However, in practice, this approach generally cannot provide satisfactory 
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performance because of its limitations. The task space cannot be decomposed into these 

two subspaces precisely. In addition, in the y direction, there will be an interaction force 

such as friction force, or elastic force when the drill tool is moving along this direction, 

because of the misalignment of the work piece.  

Parallel force/position control is another direct force control algorithm. In this 

algorithm, a motion controller and a force controller are used simultaneously. However, 

the force controller has higher priority than the motion controller. Whenever there is 

conflict between these two controllers, the motion controller should yield to tolerate the 

position tracking error in order to regulate the force. However, as pointed out in [60], this 

algorithm requires accurate knowledge of the environmental dynamics in order to 

determine the reference velocity and the desired force level.  
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Figure 1.5: Application of hybrid position/force control 

For indirect force control, the closure of a force feedback loop is usually not required. 

Controlling the interaction force by using a dynamic relationship between the interaction 

force and the motion would be adequate. If this dynamic relationship is described by 

stiffness, then this type of indirect force control method is called stiffness control. 

Stiffness control can be implemented either passively or actively. When the robot end 

effector is equipped with a compliant device, such as an elastic spring, then the 

interaction force between the end effector and the objects is determined by the stiffness 

of the spring. Compliant interaction may be achieved by selecting the stiffness properly. 

However, this parameter cannot be changed on line; thus, it is termed passive stiffness 

control. If on line tuning of this parameter is required, actively stiffness control should be 

applied, which could be implemented by static gravity compensation plus PD-based 

position control. 

Another type of indirect force control algorithm is impedance control, which is also a 

subject of the present work. Mechanical impedance is defined as the quotient of the force 

over the resultant velocity in the Laplace domain. In impedance control, not only the 
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static property (stiffness) of the manipulator should be tuned according to the specific 

task, but also the dynamic properties, such as inertia and damping. In this sense, stiffness 

control mentioned above is just one special case of impedance control. The objective of 

impedance control is to use a proper control algorithm to change the mechanical 

impedance of the robot manipulator when viewed from the interacted object. Under 

impedance control, the manipulator dynamics can be described by 

                   ( ) ( ) ( )d d d d d d eM X X B X X K X X F                                       (1.31) 

where X  is the actual position vector of the robot end effector, dX  is the desired 

position vector of the robot end effector,  eF  is the interaction force between the robot 

end-effector and the interacted object, and dM , dB  and dK  are the desired inertia, 

damping, and stiffness respectively.  

In the Cartesian space, the robot manipulator has some inherent impedance if no 

specific feedback is used to shape it arbitrarily. However, this inherent impedance 

depends not only on the dynamic parameters of the manipulator, but also the manipulator 

configuration. Thus, the inherent impedance of the manipulator may be time-varying. If 

the inherent impedance is too big or too small in some configurations, sometimes it may 

be inappropriate for the interaction task. In this case, a feedback control system should be 

applied to actively change the mechanical impedance of the manipulator. 

The interaction force during contact may be controlled indirectly by selecting proper 

desired impedance parameters. By selecting bigger impedance parameters, the rate of 

change of the interaction force can be made bigger. Also, the transition impact force 

between the free space and the constrained motion will be larger. Guidelines for selecting 

desired impedance parameters are application specific. 

Controlling the impedance of robot manipulators is sometimes called impedance 

shaping. In the linear case, the impedance control problem may be solved by feedback 

control in a straightforward way. However, the dynamic models of robot manipulators 

are nonlinear and coupled, which complicate the impedance shaping problem. The 

situation becomes even worse when un-modeled dynamics, inaccurate dynamic 

parameters, and external disturbances are present. Robust and adaptive control 

algorithms may be used to shape the impedance in the presence of these disturbances and 

uncertainties. 
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Based on the ways of implementation, impedance control may be realized in a motion 

control-based approach, or a torque control-based approach. Motion-based approach is 

usually used in industrial robot manipulators where direct torque command to joint 

actuators is not allowed for safety concerns. We define a new position variable rX , called 

reference trajectory, which is calculated based on the desired impedance equation 

                    ( ) ( ) ( )d r d d r d d r d eM X X B X X K X X F                                  (1.32) 

The variable rX  denotes the reference trajectory for the motion control system of the 

manipulator. If the inner loop position system tracks this reference trajectory, then

rX X  and the desired impedance shaping in equation (1.31) will be realized. This is a 

reasonable assumption, since in most robotic systems that only allow the user to 

command position or velocity, the bandwidth of this inner loop is usually much bigger 

than that of the outer force control loop. Because of this bandwidth difference, the 

motion tracking time is much shorter than the outer loop impedance shaping time. A 

survey on robust motion control system under uncertainty is found in [61]. An overview 

of adaptive motion control algorithms under uncertainty is found in [62]. A block 

diagram for this type of impedance control implementation is shown in Figure 1.6. 

Because this type of impedance control is realized by the motion control system, it is 

sometimes called admittance control. 
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Figure 1.6: Motion-based impedance control (admittance control) 

Torque-based impedance control is the algorithm that directly commands the control 

torque to the joint actuators to realize impedance control. A block scheme for this 

impedance control implementation is shown in Figure 1.7. This implementation is proved 

to be less robustness than the directly motion based impedance control implementation. 

However, it is easier to prove the stability and tracking performance of the torque based 

implementation approach. 
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Figure 1.7: Torque-based impedance control 

In the presence of dynamic parameter uncertainty, torque-based impedance control 

should be applied. Robust impedance control algorithms may be used to calculate the 

torque command. In [7],[63],[64] sliding mode control as a robust control algorithm is 

applied to shape the desired impedance in the presence of parameter uncertainty. The 

desired impedance model is defined as the sliding surface of the sliding control system. 

Control laws derived by the Lyapunov direct method are proved to be able to drive the 

system states onto the sliding surface. Due to the finite-time convergence property of 

sliding mode systems, the system state will stay in the sliding surface after it reaches this 

surface, in the ideal case. In this way, the desired impedance shaping is realized.  

 

1.3.6 Force Control without Force Sensors 

It is clear that in order to shape the desired impedance during interaction, the 

interaction force should be sensed. The interaction force sensing could be implemented 

by mounting a force sensor at the end-effector of the manipulator. This method is rather 

challenging and prone to error, and is not usually used in practice. Instead, 

conventionally the wrist force sensor mounted between the end effector and last link of 

the robot manipulator is applied. In this case, the interaction force is sensed indirectly 

since the sensed interaction force is the resultant force of the external interaction force, 

gravity and the dynamic force of the end effector. In order to determine the “real” 

interaction force between the end effector and the object with which it is interacting, the 

static gravity force and dynamic force should be calculated and compensated for. With an 

independent acceleration sensor at the end effector, sensor fusion technology was applied 

to determine this interaction force in [65]. Interaction force measured in this manner can 

be inaccurate even after compensation. 

There are some other problems with the use of a force sensor in robot interaction 

control. It is usually the case that force measurement by a force sensor has significant 

noise [66]. Due to the high frequency nature of the sensor noise, proper filters should be 
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applied, such as a low-pass filter. The cut-off frequency of the filter should be higher than 

the bandwidth of the interaction force. However, there needs to be a compromise 

between the accuracy and robustness when selecting this cut-off frequency.  

Another problem in using a force sensor is the limited bandwidth of the force sensor. 

The force sensors usually use strain gauges to detect the interaction force under loading. 

To sense the interaction force using strain gauges, this structure should have some 

flexibility. However, such a flexible device between the last link and the end-effector 

reduces the overall stiffness of the structure. Hence, the system bandwidth will decrease. 

Because of the reduced bandwidth of force sensing, the force control systems might lose 

stability when using the sensed force. Some strategies may be applied to stabilize the 

force control system. A commonly used method is to add a viscous feedback, which acts 

as damping to stabilize the force control system. However, in this case the system will 

become sluggish. Besides the above mentioned problems with force sensors in practice, 

they also need calibration because of its self-variance property under temperature or 

working condition change. Furthermore, mounting a force sensor at the interface of the 

robot end effector and the manipulated object (human body) is rather challenging. 

In order to avoid problems related to force sensors in force control, much effort has 

been devoted into the development of force control systems without a force sensor, or 

sensorless force control. In sensorless force control, the interaction force is determined 

indirectly by using software or other hardware other than a force sensor [67] –[69]. 

In [70], a model based force estimation scheme is proposed. It uses an equivalent 

motion control system formulated based on the Luenberger observer. The essential idea is 

to consider the observer error dynamics as a damped spring-mass system driven by the 

environmental force. It was proved that the interaction force was proportional to the 

motion tracking error. Using this observer, the constant environmental forces could be 

estimated. Also, the noise-free joint velocity could be obtained by using the observed 

contact force information. However, only up to ramp style force functions could be 

tracked. The limitation of this method is that it cannot be generalized to other types of 

interaction force functions. 

In [71], the interaction force was estimated from the torque measurements and 

accurate robot dynamic model using two different approaches. The equivalence of the 

two approaches was proved. The first approach used the linearity in parameters property 
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of robot dynamics to formulate the robot dynamic equations in a regressor form. It used a 

low-pass filter to obtain a filtered robot dynamic model to eliminate the need to measure 

the acceleration. Also, the inversion of the inertia matrix was avoided. Recursive least 

square estimation (RLSE) with forgetting factors was applied to obtain an online 

estimation of the interaction force. It was shown that a tradeoff between the smoothness 

of the estimated force information and the time lag in the force calculation was needed. 

The second approach was based on generalized momentum disturbance observer. Also, 

the acceleration and inverse of the inertia matrix were not required. However, compared 

to the first approach, the estimated interaction force information was not smooth. This is 

due to the fact that the recursive estimation scheme has the effect of smoothing the 

measurement noise in the joint torque. The joint torque measurement calculated based on 

the motor current is noisy in practice. Satisfactory performance may be achieved using 

both approaches if the dynamic model of the robot manipulator is accurate. This 

assumption serves to be the limitation of the work. In addition, it was assumed that the 

interaction force changed slowly to simplify the calculation, and this might not be 

practical. No physical force sensor is used to verify the accuracy of the estimated force 

information. 

 Disturbance observer (DOB) is an easy to implement robustness enhancement 

approach, which was proposed in the past decades and used in many fields. It is used to 

compensate for modeling uncertainties and external disturbance in robotic dynamic 

control, as shown in Figure 1.8. The disturbance comes from several sources, such as 

robot parameter uncertainty and external disturbances. When the robot comes into 

contact with the environment, the dynamic equation will change due to the external 

wrench. The disturbance observer will detect this and estimate the external disturbance. 

The difference between the output of the disturbance observer in free space and after 

contact will be the wrench resulting from the external contact force. In this way, the 

external force information can be estimated and used in force control algorithms such as 

impedance control. 
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Figure 1.8: Disturbance observer in robot dynamics control 

In [72]–[75], sensorless torque control in multi-degree of freedom robot manipulators 

is proposed based on an disturbance observer. Two disturbance observers are used in 

[72]. The first disturbance observer is used to compensate for un-modeled dynamics and 

external interaction force to achieve robust acceleration control (RAC), which is done by 

estimating the disturbance and compensating for it. The use of this disturbance observer 

will make the inner loop motion control system robust. In view of the disadvantages of 

using a force sensor in a force control system, a second disturbance observer called 

Robust Force/Torque Observer (RFOB/RTOB) is used to estimate the interaction force 

between the end effector and the environment. However, in that work, an accurate 

dynamic model of the robot is assumed. Even though some identification algorithms are 

proposed, dynamic parameters might be time-varying due to wear and tear. 

In order to reduce the force estimation error due to the dynamic parameter mismatch, 

an online identification and compensation of the force estimating error method is 

investigated in [76]. In this work a single-DOF robot manipulator is used for bilateral 

teleoperation control implementations. The interaction force is estimated using similar 

method as in [72]. In addition, to compensate for the dynamic parameter error, online 

identification is proposed. The RLS algorithm with discontinuous projection mapping 

and conditional updating with forgetting factors can guarantee that the identified 

parameters are within some physical meaningful range. What is more, this algorithm can 

stop the online parameter updating when the manipulator contacts the environment to 

avoid parameter burst. Only one-DOF manipulator is considered in that work. Multi-

degree of freedom case was considered in [77],  where bilateral control was needed in 

microsurgery. The RLS algorithm with forgetting factor was used to obtain the dynamic 

parameter in free space. The estimated dynamic parameters were stored for contact force 
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estimation error correction during the contact phase. However, only a simulation result 

was given to show the effectiveness of the proposed method in one-DOF system. 

Time delay estimation is a way to estimate the nonlinear and coupled dynamics of 

robot dynamics [78]–[80]. The advantage of this dynamic estimation algorithm is that it 

does not require the dynamic model of the robot, not even a nominal dynamic model. 

These papers point out that the previous disturbance observer-based estimation method 

suffers from dynamic parameter mismatch and the arduous identification work of the 

dynamic parameters. Time delay estimation (TDE) scheme has been used in [78] in two 

identical trajectory tracking problems. The first trajectory is in free space, while the 

second trajectory is in constrained motion. The output of the TDE is due to the presence 

of the external contact force. The external contact force is determined in this way. The 

limitation of the work is that the identity of the two trajectories is extremely difficult to 

guarantee. In addition, TDE by nature will introduce latency into the system and affect 

the stability of the system.  

No complicated identification of the parameters is required by using DOB to estimate 

the interaction force. However, as pointed out in [81], even though the disturbance 

observer is simple to design and easy to implement, it is not suitable for industrial 

applications due to white Gaussian noise. The main drawback of using DOB to estimate 

the interaction force is its sensitivity to noise during velocity calculation. In order to 

attenuate this sensitivity, the estimated external force information is filtered by a low-

pass filter. The cut-off frequency of this filter should be selected properly. However, as 

pointed out in [81], in the presence of white noise, the simple low-pass filter could not 

work effectively. A Kalman filter was used to complement the state observer and 

disturbance observer. Two observers based on Kalman filter, the Kalman-filter-based 

state observer (KFSO) and Kalman-filter-based DOB (KFDOB) were proposed to 

estimate the equivalent disturbance and external force. Taking the external 

reaction/action force as the state, the position, velocity and external force of a linear 

system could be estimated under noisy measurements. However, in this paper, the 

nominal dynamic model was used for both observers. As pointed out in [76], whenever 

there is dynamic parameter mismatch, there will be significant error in interaction force 

estimation. Also, a force sensor is required to have fast and accurate velocity estimation.  
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Joint velocity estimation under noisy measurement is an important research topic 

since determining the velocity information by differentiating will lead to noisy results 

[82]–[85]. Model-based joint velocity methods have prevailed in the past [86]–[92]. 

Simultaneous joint velocity and external interaction force estimation is important 

considering the limitations of the joint encoder readings and the need of interaction force 

information in an interaction control problem.   

 

1.3.7 Teleoperation 

There are situations where the human operator cannot be present to directly handle 

the task, such as nuclear waste management and deep sea exploration. Teleoperation is a 

technology aiming to help people to operate a manipulator from a remote location.  

A teleoperation system has five key components. The first component is the human 

operator, who is located at the control site. The human operator could be an expert in a 

hospital control room or an engineer of a nuclear electrical power plant. Using the 

available feedback from the remote site, the human operator could make decisions and 

send out commands by manipulating a master device, which is the second component in 

a tele-operation system. The master device, which is also at the local site of the operator, 

is in its basic form somewhat like a joystick. The operator directly interacts with the 

master device to send out their command, while feeling the feedback interaction force 

from the remote task location, if the device is haptic. The third component of a 

teleoperation system is the communication channel, which is typically a TCP/IP or UDP 

transmission interface. It is used for information exchange between the remote site and 

the local site. The next component of a teleoperation system is the remote manipulator, 

also called slave device. It is located at the remote site and directly interacts with the 

manipulated object. It receives commands from the master device and attempts to 

execute them. Once it comes into contact with the last component of a teleoperation 

system, the motion of the manipulator is constrained and the interaction force should be 

monitored. The last component in the system is the teleoperated object, which is also 

called the task environment. The overall teleoperation system is shown in Figure 1.9. 

Human

Operator
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+

Controller
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+

Controller

Telemanipulated 

Object
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Channel

 

Figure 1.9: Schematic representation of a teleoperation system 
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Teleoperation systems have many applications, such as microsurgery, deep sea 

exploration, and space exploration. The primary problem with a teleoperation system is 

the stability under the unavoidable communication latency, which is in the range of 10ms 

to 4s. A number of solutions have been proposed to solve this problem, and they are 

found in the survey [93],[94]. Most of them lie in the framework of passivity concept or 

its variants.  

Besides the stability under time delay of a teleoperation system, the performance of a 

teleoperation system is another concern. Traditionally, the performance of a teleoperation 

system may be measured by the match between the position/force of the master side and 

the position/force of the slave side. However, as pointed out in [95]–[101], in soft 

environments, such as human tissue, the discrimination of the impedance parameter 

change is more critical than just position and force match between the two sides. The 

sensitivity to the environmental impedance change under the stability constraint due to 

time delay has been formulated as an optimal control problem [100]–[102]. A feasible 

solution could be found by using standard linear and nonlinear optimization algorithms. 

Since the slave manipulator is at the remote site and interacts with environment, the 

interaction between them should be monitored for proper operation. It may be desirable 

to have a compliant manipulator at the slave side so that a harmful force would not be 

exerted on the environment. Time delay in the communication channel further 

complicates this problem. Impedance control is an effective way to avoid excessive force 

in teleoperation applications [7], [103]–[105]. 

Selection of desired impedance parameters is based on two factors. The first one is 

the stability constraint. Bounded Impedance Absolute Stability (BIAS) was introduced to 

study the stability of a teleoperation system in [106]. BIAS is proved to be less 

conservative when compared with the traditional absolute stability criterion. The second 

one is the interaction task at hand. For example, when the manipulator contacts a rigid 

object, the manipulator should be controlled to be compliant. Accordingly, the stiff 

component in the desired impedance model should be selected to be small.  

 

1.4 Contributions and Organizations of the Thesis 

This thesis aims to solve some of the challenges in homecare systems. Specifically, it 

seeks to develop a compliant robotic manipulator interaction system which can perform 
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effectively under uncertainty, and without using a force sensor. The thesis makes several 

key contributions, which are listed below: 

1. The dynamic model of a commercial robot manipulator is identified. The 

dynamic model of a simplified two-DOF system is derived analytically. The 

reference trajectory is selected for the experiments of dynamic model 

identification. The dynamic model identification is implemented off line to 

determine the nominal values of the dynamic parameters. On-line dynamic 

parameters identification is proposed to show the time-varying property of the 

friction coefficients. The accuracy of the dynamic parameters is evaluated by 

comparison between the calculated and measured joint torques. The dynamic 

model identified here is the basis for impedance control and external force 

estimation. 

2. The external interaction force is estimated using sliding mode observers. The 

adaptive high-order sliding mode observers provide satisfactory simultaneous 

estimation of states and the interaction force. 

3. Impedance controllers based on the estimated interaction force and states are 

proposed. In order to enhance the accuracy of impedance control, sliding mode 

based controllers are designed. Experimental results show that the accuracy of 

impedance control is superior to that of other impedance controllers. 

4. The proposed sliding mode-based impedance control algorithms are implemented 

in a bilateral teleoperation system. Two applications are proposed. The first one is 

a bilateral impedance control scheme for teleoperation. Criteria for selecting 

desired impedance parameters are proposed. The second application in 

teleoperation is based on the H-infinity framework to study the robust 

performance under uncertainties in human operator and environmental 

impedances. It is formulated as a Linear Parameter-Varying (LPV) system.  

The organization of the thesis is as follows:  

Chapter 1 gives a brief introduction on the present homecare robotic project and 

points out some of the challenges in this field. The problem is formulated and the 

research objectives are outlined. The related past work is presented as a literature survey.   

Chapter 2 concerns dynamic model identification of the robot manipulator that is 

used in this project. The experimental setup is redesigned in order to verify the 
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algorithms easily in the subsequent chapters. The dynamic model of the simplified two-

DOF system is identified, which is the basis for the subsequent developments.  

Chapter 3 discusses the estimation of the interaction force using observers. Different 

algorithms are proposed for interaction force estimation. Their performance is compared 

with regard to estimation accuracy. 

Chapter 4 proposes the impedance controllers that use sliding mode control. The 

estimated external interaction force and the states of the manipulator are used in the 

impedance control algorithms. A new impedance control algorithm is proposed to 

improve the accuracy of impedance control. 

Chapter 5 uses the sliding mode-based impedance controllers in teleoperation 

systems. Two applications are introduced in this chapter. The first one is the bilateral 

teleoperation under impedance control with task-dependent desired impedance 

parameters. The second one is the robust performance in the framework of gain-

scheduling based control of LPV teleoperation system. 

Chapter 6 summarizes the overall thesis. The possible future work is suggested. 
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Chapter 2: Modeling and Identification of Robot Dynamics 

 

For a robot with revolute and/or prismatic (serial-link) joints, the dynamic model is a 

generalized relationship between the joint positions and the joint actuator torques. A 

mathematical description of this relationship is the basis for simulation, trajectory 

planning, control algorithm development and verification, and design.  

In this chapter, the dynamic model of a commercial four DOF robotic manipulator, 

the Whole Arm Manipulator (WAM
TM

) from Barrett Technology, in the joint space and 

the Cartesian space is derived. As pointed out in the user manual provided by Barrett 

Technology, the dynamic parameters given by them are ideal ones and have unavoidable 

errors. Also, more complicated items, such as the joint friction, are not given in the 

manual. In addition, the reflected inertias of the transmission system which are almost at 

the same level as the link inertias are modelled approximately. They assume as well that 

there is no coupling between the rotor of an actuator and the base which it is mounted on. 

All these assumptions and approximations lead to an inaccurate dynamic model if we 

directly use the dynamic parameters provided by the manufacturer. For this reason, in 

this chapter, the dynamic parameters of our robot manipulator are identified through 

experiments.  

To simplify the identification process, only the second and fourth joints of the 

original four-DOF system are considered. This simplifies the four-DOF model into a 

simple planar two-link manipulator. Also, to improve the accuracy of the identified 

dynamic model, the viscous and Coulomb friction components, as well as the interaction 

between the actuator rotor and the base are considered in the dynamic model. With the 

explicit inclusion of all these dynamic effects, the dynamic model is identified 

experimentally. The identified dynamic parameters are verified by comparing the torque 

outputs calculated using the output from inverse dynamics with the actual actuating 

torque. Also, online dynamic identification is proposed and implemented to show the 

time-varying property of some parameters. To deal with the uncertainties in the friction 

components, a neural-network-based compensator is applied to compensate for it. 
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2.1 Introduction  

The robot manipulator that is used in the present project is a four-DOF serial link 

manipulator, as shown in Figure 2.1. It is a lightweight and back-drivable robotic 

manipulator, which is suitable for human-robot interaction applications. This manipulator 

can be easily integrated with Barrett Hand from the same manufacturer to form a mobile 

manipulation system. 

 

Figure 2.1: Whole Arm Manipulator (WAM) from Barrett Technology 

The DH parameters of this manipulator are given in Table 2.1. The dynamic 

parameters for the manipulator provided by the manufacturer are derived from CAD 

models.  A schematic representation of the arm is given in Figure 2.2. 

 

Figure 2.2: Schematic representation of WAM 
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Table 2.1: DH parameters of WAM 

Joint i  
ia  (m) i (rad) id (m) iq (rad) 

1 0 2  0 
1q  

2 0 2  0 
2q  

3 0.045 2  0.55 
3q  

4 0.045  2  0 
4q  

Tool frame 0 0 0  

 

In each joint, there is an optical encoder with position sensing resolution 2 4096 . 

These encoders are relative (incremental) encoders.  Hence, prior to each task of absolute 

position sensing, the manipulator has to be returned to its home position.  

The joint actuators are DC motors, whose dynamic information is not provided by the 

manufacturer. However, other users of this manipulator have observed that the 

bandwidth of the DC motors of the manipulator is much larger than that of the main 

mechanical arm. Hence, the dynamics of the actuators may be ignored in a manipulator 

model. The joint actuators are assumed to be ideal current-controlled DC motors. WAM 

has an internal PC running a Linux-based real-time operating system with a loop 

sampling frequency of 500Hz. All the hardware, including the joint optical sensors, the 

joint DC motors, the control pendant and the display pendant are all connected to the 

internal PC by the use of the Controller Area Network (CAN) bus, which is a fast and 

reliable filed control bus initially developed by Bosch
TM

, as shown in Figure 2.3. 

The manufacturer provides some ready-to-use source codes, which help users who 

are not particularly concerned about dynamic control accuracy when using the arm. For 

example, the sample code provides an interface to command the robot manipulator to 

some specific location with a trapezoidal trajectory profile. This manipulator can even be 

commanded to exert some desired interaction force/torque in the Cartesian space onto a 

manipulated object. However, the control algorithms in the provided codes are developed 

based on the dynamic model derived from a CAD model of the manipulator. 

Unavoidably, there will be deviations between the actual mechanical parts and the CAD 

model during the manufacturing process. What is more, the friction parameters in each 

joint are ignored in the provided control algorithms. For example, for Cartesian space 
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tracking control, the Cartesian space reference trajectories are converted into the 

corresponding joint space reference trajectories. These joint space reference trajectories 

are tracked by the PID controllers in the joints. The PID controllers do not take the 

dynamic coupling between links into consideration. The coupling is considered as a 

disturbance to the trajectory tracking system in each joint. Even though properly selected 

PID parameters can guarantee the steady state tracking error to be zero, it cannot 

guarantee the intermediate tracking performance, especially when the motion in each 

joint is fast. However, due to its simplicity, this control algorithm is widely used in 

industrial robots. One probable reason is the proprietary issues of the manufacturer. Since 

the main objectives of the present work concern dynamics and control of robot 

manipulators, we need to be able to send torque commands to actuators directly. 

Fortunately, Barrett Technology does allow users to perform this command. 

 

Motor 1 Encoder 

& Controller

Motor 2 Encoder 

& Controller

Motor 3 Encoder 

& Controller

Motor 4 Encoder 

& Controller

Safety Module

Control PC

CAN 

Bus

 

Figure 2.3: Hardware communications in WAM 

Model-based control algorithms have better accuracy during fast motions. However, 

model-based control algorithms require a dynamic model for the robot manipulator. 

While some manufactures provide CAD-based dynamic parameters to the users, most of 

them require the users to identify the dynamic parameters by themselves. The identified 

dynamic parameters are the basis for the design of model-based controllers. This justifies 

the need to identify the dynamic model of a robot manipulator. Before the dynamic 
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identification experiments are carried out, we should develop an experimental setup with 

a proper user interface and sufficiently powerful processing capacity. This aspect is 

presented next. 

 

2.2 Development of the Experimental Setup 

Model-based control of a robot manipulator starts with a model of the manipulator 

and based on that, determining a mathematical relationship between the current state of 

the manipulator and the torque command to be delivered by the joint actuators in the next 

step. Fast prototyping is important in verifying the control algorithms of robot dynamic 

control. 

For some commercial robots, the manufacturers provide their own Integrated 

Development Environments (IDE), such as RobotStudio from ABB. These IDEs provide 

some available libraries to the user, which may be used to verify their own algorithms. 

However, these IDEs are designed specifically for the manufacturers’ products only. The 

users may not have full access to everything they need for the verification of control 

algorithms. For example, most industrial robots do not allow the user to send torque 

commands to their actuators. 

Some generic IDEs, such as Microsoft Robotics Studio, are able to provide a uniform 

platform for different types of robots. Researchers and engineers who use such platforms 

may contribute enhancements and test algorithms to them. Such a platform may be used, 

for example, to compare the performance of different control algorithms. Similarly, the 

Robot Operating System (ROS) provides an open-source system for multi-user 

collaboration. Many software libraries are contributed by researchers and most of them 

are open-source. ROS is based on a Linux system, which also provides an interface to 

some scientific computing software such as Matlab
TM

/Simulink
TM

.  

The disadvantages with these generic IDEs include the difficulty of using them in 

conjunction with other software packages. For the implementation of robot dynamic 

control algorithms, complicated mathematical relationships have to be programmed. 

Considerable symbolic calculations may be needed in robot dynamic control. Software 

packages of scientific computing such as Matlab/Simulink and Maple are suitable for this 

purpose. Even though there is an interface for communication between the generic IDEs 

and Matlab/Simulink, yet the real-time requirement may not be easily satisfied.  
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The real-time operating system in the internal PC of WAM does not have a graphical 

interface. The user should login to the internal PC by using another PC that is connected 

to the same network. Additionally, the internal PC has very limited processing capacity.  

In view of the issues mentioned above, a real-time control system with powerful 

symbolic calculation capacity is desirable for the present project. xPC target technology 

based on Matlab/Simulink from Mathworks may be applied here. Also, an external PC 

with greater processing capacity is integrated to bypass the internal PC of WAM. The 

software system is redesigned as well. The algorithms provided by the manufacturer are 

not useful anymore, and are redesigned. This aspect is discussed in the following 

subsections. 

 

2.2.1 Hardware of xPC Target System  

xPC Target is a fast prototyping technology based on Matlab/Simulink of 

Mathworks. It is widely used in real-time control and hardware-in-the-loop applications. 

The xPC Target setup comprises two PCs communicating with each other through an 

Ethernet, as shown in Figure 2.4. The two PCs, named as host PC and target PC, have 

different functions.  

The host PC is a regular PC running the Windows operating system and has some 

compilers such as Microsoft Visual Studio. Control algorithms may be built in the same 

way as regular numerical simulation models using available or customized blocks of 

Simulink. Once the model is ready, it may be compiled into C/C++ automatically by 

simply clicking the “build” icon. The quality of the compiled C/C++ may be controlled 

in the configuration panel. Once it is compiled, it is downloaded to the target PC through 

the Ethernet. After that, the target PC takes over the task. 
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Figure 2.4: xPC Target-based experimental setup 

The target PC has a real-time kernel generated by Matlab/Simulink. The target PC 

can boot from this real-time kernel. Due to the small size of this kernel and the real-time 

requirement of the control system, it does not have drivers for some hardware. Only 

hardware certified by Matlab/Simulink has the available driver support. However, 

experienced users may perform the necessary coding to create their own drivers. Due to 

the limited hardware support, the Ethernet card used for communication between the host 

PC and target PC has to be selected carefully. The target PC is the hardware which 

actually implements the control algorithms and provides the input and output interface.  

Only some specific CAN cards are supported by the real-time kernel in the target PC. 

A supported CAN card from Softing
TM

 is installed in the target PC for CAN message 

sending and receiving. 
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2.2.2 Software of xPC Target System  

Since the internal PC of the manipulator is disabled, the software system in the 

internal PC cannot be used any more. Thus, a new software system based on xPC target 

platform is designed. The new system includes an input and output interface, timing, and 

CAN bus initialization. Corresponding Simulink
TM

 blocks from the xPC target toolbox 

are used for obtaining the joint positions and sending out the joint torque commands that 

are calculated by the dynamic control algorithms.  

The first step is to initialize the CAN bus by sending some CAN messages using the 

CAN initialization block, as shown in Figure 2.5. These CAN messages include CAN 

bus initialization, torque limits of the joint actuators, and joint velocity limits. For the 

purpose of safety, the CAN messages for setting the actuator torque limits and velocity 

limits are used during the initialization phase.  

 

Figure 2.5: CAN initialization block 

After the CAN bus is initialized, it is ready to transmit CAN messages between each 

node within CAN. The external PC will send out a group message to each joint actuator 

node. This group message is a request to each node to report their current joint position 

to the external PC. The property value from the manufacturer user manual is 48. The 

group ID (including the setting property) is 1024. The corresponding block for this 

process is given in Figure 2.6. 

The joint nodes will response to this request and report their present joint positions in 

the form of CAN messages to the external PC. The corresponding process is given in 
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Figure 2.7. Some constant matrices are used to convert the corresponding motor positions 

into joint positions. In this way, the joint positions will be available to the dynamic 

control algorithms. 

 

Figure 2.6: Joint position report request 

 

Figure 2.7: Reporting joint positions 

Based on the available joint positions, the dynamics control algorithms calculate the 

corresponding joint torque command for the next step. After calculation, it will broadcast 

the torque command in the form of group CAN messages. All joint actuator nodes are in 

this group and will listen to this broadcast. However, there is a safety panel in this WAM. 

For safety purposes, if the “Active” button in the control panel is not activated, a nonzero 

torque command cannot be sent to WAM. Otherwise, the safety module will be triggered 

and put WAM into the “Idle” mode. Thus, the current mode should be checked before 

sending out the torque command. This is shown in Figure 2.8 and Figure 2.9. A 

conditional switch should be done here to avoid the problem mentioned above. This 

process is illustrated in Figure 2.10. If the WAM mode is zero (the “Active” button in the 

control panel is not activated), zero torques will be sent to each joint. Otherwise, the 

actual torque calculated by the dynamics control algorithms will be sent out. After all 

these have been done, the torque command will be sent out in the form of CAN 
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messages, as shown in Figure 2.11. The flowchart indicating the software system is given 

in Figure 2.12. 

 

Figure 2.8: WAM mode check request 

 

 

Figure 2.9: WAM mode report 

 

 

Figure 2.10: WAM torque command sending switch 



 

44 

 

 

Figure 2.11: WAM torque command sending 
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Figure 2.12: Flowchart of the software system 

 

2.2.3 WAM Simplification  

In model-based dynamic control algorithms of robot manipulators, researchers 

typically concentrate on a specific control challenge while ignoring the other issues that 

might complicate the problem. For example, redundancy and singularity are common 

issues that would complicate the dynamic control problem of the present study. In our 

specific application, the WAM system is a four-DOF manipulator. It becomes a 

redundant manipulator if only the translational motions of the end-effector are used. In 

order to avoid redundancy, we can lock one or two joints of the manipulator. Even 

though some commercial packages are available to calculate the symbolic representations 
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of the dynamic model, the system complexity increases with the number of degree of 

freedom of the robot manipulator. 

The four-DOF WAM is simplified into a two-link planar manipulator by locking two 

joints out of four. This may be done by locking joint 1 and joint 3. Subsequently, the 

dynamic model of this simplified planar two-link manipulator is identified. 

The first joint of the manipulator is manually locked at its home position. This makes 

body attached frame of link 1 coincide with the world coordinate frame. Also, joint 3 is 

locked so that the WAM is simplified into a planar two-DOF arm, which greatly 

simplifies the symbolic calculations. The simplified two-DOF manipulator schematic 

representation is given in Figure 2.13. 

 

Figure 2.13: Schematic representation of simplified WAM 

The kinematics of the simplified planar two-link manipulator is shown in Figure 2.14. 

In the simplified two-link manipulator, joint 1 is the second joint in the original WAM 

system, while joint 2 is the fourth joint in the original WAM system. However, for 

simplicity, we use the terms joint 1 and joint 2 to describe the two joints in the simplified 

manipulator. The corresponding coordinate frame attached to each link is shown in 

Figure 2.15. Special attention should be paid to the definition of the world coordinate 

frame. Also, the zero positions of each joint are positions where the two links are fully 

extended in the vertical 
0z direction. We use 

1q and 
2q to describe the motion of joint 2 

and joint 4, respectively, of the actual WAM system.  1 2

T
q q q  is the vector of joint 

motions which are used in the rest of this thesis if not stated otherwise. The rationale for 

this nomenclature is the convenience of description of the following complex dynamic 

equations. 
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Since kinematic uncertainty is not as serious as dynamic uncertainty, we use the DH 

parameters provided by the manufacturer, which is a convention in most dynamics 

control problems. 

Some kinematic definitions are given in equation (2.1) – equation (2.4). 

0.55m

0.35m

0.045m

0.5518m

0.3529m

 

Figure 2.14: Simplified two-link planar manipulator 

 

0x

0z

1q

2q

 

Figure 2.15: Coordinate frames of simplified two-link planar manipulator 

                                            
1 1 2 1 2sin sin( )x l q l q q                                            (2.1) 

                                           
1 1 2 1 2cos cos( )z l q l q q                                            (2.2) 



 

47 

 

                                                                
1

2

qx
J

qy

  
   

   
                                        (2.3)                                      

                                
1 1 2 1 2 2 1 2

1 1 2 1 2 2 1 2

cos cos( ) cos( )

sin sin( ) sin( )

l q l q q l q q
J

l q l q q l q q

      
  

        
                    (2.4) 

There is a rotation limit for each joint, as given by: 

                                   
12.0 rad 2.0 radq   ,

20.9 rad 3.1radq                           (2.5) 

The workspace is defined by 

0.8519 0.5486x   , 0.1325 0.3655y                             (2.6) 

This has to be considered in the position command sent by the haptic device.  

In order to make the simplification valid, a mechanical device and the control 

software are used to keep both joint 1 and joint 3 in their zero positions. However, adding 

mechanical devices will change the dynamic parameters provided by the manufacturer. 

Even though these dynamic parameters will be identified in the following sections, it is 

better to keep the WAM in its original state. Other members of our laboratory perform 

their experiments using the same platform with the algorithms provided by the 

manufacturer. We use strong adhesive tapes to fix the positions of joint 1 and joint 3, as 

shown in Figure 2.16 and Figure 2.17 respectively. These tapes are light-weight and their 

effect on the original dynamic model may be ignored. Besides this, in the software 

system, a proportional controllers plus gravity loading compensation are used to further 

guarantee fixing of joint 1 and joint 3. This is discussed under the symbolic calculation in 

section 2.2.4.  

 

Figure 2.16: Simplified WAM system (joint 1) 
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2.2.4 Fixing Joints 1 and 3 by Software 

As discussed in Section 2.2.3, adhesive tapes are used to fix joint 1 and joint 3 in 

their zero positions so that the simplified system may be modelled as a planar two-link 

manipulator. The validity of this assumption depends on the actual position of joint 1 and 

joint 3 during experiments. Besides the tapes used in joint 1 and joint 3, an additional 

approach implemented in the software may be used to enhance the performance. A 

simple proportional controller with gravity loading compensation is used in joint 1 and 

joint 3, which may be described by                      

                                                   
1 1 1 1( ) pg q K q                                                           (2.7)       

                                                   
3 3 3 3( ) pg q K q                                                         (2.8) 

where 
1 and 

3 are the joint torques sent to joint 1 and joint 3, respectively, q is the joint 

position vector, 
1( )g q and 

3( )g q are the corresponding component of the gravity loading, 

and 
1pK and 

3pK are the corresponding proportional gains of joint 1 and joint 3. The 

values of 
1pK and 

3pK should be selected properly in order to avoid generating excessive 

joint torques. A too large joint torque command will trigger the WAM
TM

 hardware self-

protection system to put WAM
 
into the “Idle” mode. Note that 

1q and 
3q are the joint 

position variables of the original four-DOF WAM, not the simplified two-DOF one. 

 

 

Figure 2.17: Simplified WAM system (joint 3) 
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2.3 Dynamic Model Derivation 

2.3.1 Joint Space Dynamic Model 

There are generally two ways to derive the dynamic model of a robot manipulator 

systematically. The first one is based on the Lagrange formulation. It seeks to determine 

the Lagrangian of the dynamic system, which is the difference between the kinetic 

energy and the potential energy. Using the Lagrange equation, the dynamic model may 

be determined in a straightforward way. The second approach is based on the Newton-

Euler formulation. The dynamic model is derived in a recursive way, which is 

computationally more efficient. Both methods result in identical dynamic models. The 

free body diagram of one individual link i  is given in Figure 2.18.  

i

if

i

i

i

i im g 1

1 1

i i

i iR f 

 

1

i i

i iR 

,

i

i cir 1,

i

i cir

Link i

COG

 

Figure 2.18: Free body diagram of link i 

where each variable has the following physical meaning: 

im - mass of link i   

i

ig - gravity vector, represented in link i  body attached frame  

,

i

i cir - vector pointing from joint i  to center of mass of link i , represented in body  

        frame attached to link i   

 

1,

i

i cir - vector pointing from joint 1i   to center of mass of link i , represented in body  

        frame attached to link i   

i

if - force exerted by link i-1 on link i , represented in body frame attached to link i  

i

i - torque exerted by link i-1 on link i , represented in body frame attached to link i   

1

1

i

if



- force exerted by link 1i  on link i , represented in body frame attached to link 1i   

1

1

i

i


 - torque exerted by link 1i  on link i , represented in link 1i   body attached frame 

1

i

iR 
- transformation matrix from link 1i   body frame to link i  body frame 
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Let the following variables represent the velocity and acceleration of link i  

i

cia - center of mass acceleration of link i , represented in link i  body frame  

i

eia - acceleration of the end of link i , represented in link i  body frame  

i

i - angular velocity of frame i , represented in link i  body frame 

i

i - angular acceleration of frame i , represented in link i  body frame 

Following the standard recursive procedures of the Newton-Euler formulation, there 

are two steps to derive the dynamic model of a robot manipulator.  

(i) Forward Kinematics Recursion 

                             1 1 1

1 1( )i i T i i

i i i i iR z q   

                                                  (2.9) 

                    1 1 1 1 1

1 1 1 1( )i i T i i i i

i i i i i i i iR z q q z      

                                          (2.10) 

                    
1 1

1 1, 1,( ) ( )i i T i i i i i i

i i i i i i i i i ia R a r r   

                                    (2.11) 

                    , ,( )i i i i i i i

ci i i i ci i i i cia a r r                                                  (2.12) 

Starting from the initial conditions 

                                    0

0 0  , 0

0 0  , 0

0 0a  , 0

C0 0a   

Some vectors should be formed before the forward and backward recursion and they are 

as follows: 

1

1

0

0

1

i

iz 



 
 


 
  

, 

1

1

0,1 0

0

l

r

 
 


 
  

,

2

2

1,2 0

0

l

r

 
 


 
  

, 

1

1

1, 1 0

0

c

c

l

r

 
 


 
  

, 

2

2

2, 2 0

0

c

c

l

r

 
 


 
  

 

 Forward Recursion: Link 1 

1

1

1

0

0

q



 
 


 
  

, 1

1

1

0

0

q



 
 


 
  

, 

1

1 1

sin

cos

0

q

g g q

 
 

  
 
  

 

2

1 1

1

1 1 1

0

l q

a l q

  
 

  
 
 

, 

2 2

1 1 1 1

1

1 1 1 1 1

0

c

c c

l q l q

a l q l q

   
 

    
 
 

 

 Forward Recursion: Link 2 

2

2

1 2

0

0

q q



 
 


 
  

, 2

2

1 2

0

0

q q



 
 


 
  

,  

1 2

2 1 2

sin( )

cos( )

0

q q

g g q q

  
 

   
 
  
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2 2

1 2 1 2 1 2 1 2 1

2 2

2 1 2 1 2 1 2 1 2 1

sin ( ) cos

sin ( ) cos

0

l q q l q q l q q

a l q q l q q l q q

        
 

         
 
 

, 

2 2

2 2 1 2 1 2 1 1 2 1

2 2

2 2 2 1 2 1 2 1 1 2 1

( ) ( ) sin cos

( ) ( ) cos sin

0

c

c c

l l q q l q q l q q

a l l q q l q q l q q

         
 

          
 
 

 

(ii) Backward Force Recursion 

                                            1

1 1 0

i i i i i

i i i i i cif R f m g m a

                                                   (2.13) 

              
1 1

1, , 1 1 1 1 ,( ) ( )i i i i i i i i i i i i i i

i i i i i ci i i i i i ci i i i i if r r R R f r I I     

                              (2.14) 

                                   1

V C

0

( ) 0 sgn( )

1

i i T

i i i i i i iR F q F q 

 
 

  
 
  

                                      (2.15) 

 Backward Recursion: Link 2 

                                                   2 2

2 2 2 2 2cf m g m a                                                       (2.16) 

                                     
2 2 2 2 2 2 2 2 2

2 2 1,2 2, 2 2 2 2 2 2( ) ( )cf r r I I                                      (2.17) 

                                          1 2

2 2 2 V2 2 C2 2

0

( ) 0 sgn( )

1

TR F q F q 

 
 

  
 
  

                               (2.18) 

 Backward Recursion: Link 1 

                                    1 1 2 1

1 1 1 2 2 1 1( )T

cf m g R f m a                                                        (2.19) 

In the world inertial coordinate frame, the Euler equation for the rotational motion is  

    1 0,1 1, 1 1 2 1, 1 2 1 1 1 0 2 2( ) ( 18 5.23 )c c m p p

d
f r r f r I I z q I z q

dt
                     (2.20) 

By simplifying it and expressing each item in the body attached frame 1, we have  

                   

1 1 1 1 1 2 1 2 1 1 1 1 1 1

1 1 0,1 1, 1 2 2 2 2 1, 1 1 1 1 1 1

0 0 1 0

1 2 1 2 1 2 1 1

( ) ( ) ( )

0

18 ( ) 0 5.23 ( ) (( ) )

1

c c

T T T

m p p p

f r r R R f r I I

I q R I q R z q R z

    



           

 
        
  

           (2.21)   

                                          0 1

1 1 1 V1 1 C1 1

0

( ) 0 sgn( )

1

TR F q F q 

 
 

  
 
  

                                (2.22)     
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Here, 
1mI  and 

pI are scalar values representing the axial inertia of the rotor of motor 1, 

and the axial inertia of the intermediate stage pulley of the fourth joint, respectively, and 

pz is the unit vector of the pulley rotating axis.   

After some complex symbolic calculations, we arrive at the following equations to 

describe the dynamic model of the simplified planar two-link manipulator: 

               

2 2 2 2

1 1 1 2 1 2 2 1 2 2

2

2 1 2 2 1 2 1 2 2 2 2 2 2

2

2 1 2 2 1 2 2 1 2 2 2 1 1 1 1

1 1 1

[ 798.0625 798.0625

2 cos( )] [ cos( ) 5.23 ]

2 sin( ) sin( ) sgn( )

sin( )

c m m p p p c

c c c p

c c c v

c

m l I I I I m l I m l m l

m l l q q m l l q m l I I q

m l l q q q m l l q q F q F q

m gl q

       

      

        

  1 2 1 1 2 2 1 2 1sin( ) sin( ) sin( )p p cm gl q m gl q m gl q q        

    

(2.23) 

       

2 2

2 1 2 2 2 2 2 1 2 2 2 3 2

2 1 2 2 1 2 2 2 2 2 2 2 1 2 2

[ cos( ) 5.23 ] [ 324 27.3529 ]

sin( ) sgn( ) sin( )

c c p c m p

c c v c

m l l q m l I I q m l I I I q

m l l q q q F q F q m gl q q 

        

          
    (2.24) 

where each variable has the following physical meaning (for 1,2)i  . 

im - mass of link i   

iI - moment of inertia of link i  with respect to the center of gravity 

miI - moment of inertia of the rotor of each joint 

pm - mass of the intermediate transmission pulley for joint 2 mounted in the elbow 

pI - moment of inertia of intermediate transmission pulley for joint 2 mounted in the  

       elbow, which is the one about its rotating axis 

pl - distance between the joint 1 axis and the rotating axis of pulley in the elbow 

cil - distance from the center of gravity of link i  to the initial body frame i   

il - length of link  i  

ciF - Coulomb friction coefficient of joint i  

viF - viscous friction coefficient of joint i  

The linear regressor representation is given in equation (2.25). 
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2

1 2 1 2 2 2 1 2 2 2 2 1 1 1 1 2

1 2 2 1 2 1 1 2 2 2 2

2

1 1 1 2 1

2cos( ) cos( ) 2sin( ) sin( ) sgn( ) sin( ) sin( ) 0 0 0

0 cos( ) sin( ) 0 0 0 sin( ) sgn( )

798.0625 798.0625c m

q q q q q q q q q q q q q q q q

q q q q q q q q q q q

m l I I I I

           
 

      

   



2 2 2

2 2 1 2 2

2 1 2

2

2 2 2

1

11

21 1 2 1

2 2

2

2 2 2 3

2

2

5.23

324 27.3529

m p p p c

c

c p

c

v

c p p

c

c m p

c

v

m l I m l m l

m l l

m l I I

F

F

m gl m gl m gl

m gl

m l I I I

F

F





    
 
 
  
 
 
   
    

    
 
 
   
 
 
  

 

                                                                                                                          …       (2.25) 

 2

1 2 1 2 2 2 1 2 2 2 2 1 1 1 1 2

1 2 2 1 2 1 1 2 2 2 2

2cos( ) cos( ) 2sin( ) sin( ) sgn( ) sin( ) sin( ) 0 0 0
( , , )

0 cos( ) sin( ) 0 0 0 sin( ) sgn( )

q q q q q q q q q q q q q q q q
Y q q q

q q q q q q q q q q q

           
  

      

 (2.26) 

                       

2 2 2 2

1 1 1 2 1 2 2 1 2 2

2 1 2

2

2 2 2

1

1

1 1 2 1

2 2

2

2 2 2 3

2

2

798.0625 798.0625

5.23

324 27.3529

c m m p p p c

c

c p

c

v

c p p

c

c m p

c

v

m l I I I I m l I m l m l

m l l

m l I I

F

F

m gl m gl m gl

m gl

m l I I I

F

F

        
 
 
  
 
 
 
  

  
 
 
   
 
 
  

                (2.27) 

After rearrangement of the elements, the joint space dynamic model can be 

represented in a compact matrix form as 

                  T( ) ( , ) sgn( ) ( ) ( )V C eM q q C q q q F q F q G q J q F                        (2.28) 

where  

        q  - joint position vector, in this project, it is a 2 1 vector 

        q  - joint velocity vector, in this project, it is a 2 1 vector 

        q  - joint acceleration vector, in this project, it is a 2 1 vector 

( )M q   - inertia matrix, in this project, it is a 2 2 square matrix 

( , )C q q - Coriolis and Centrifugal matrix, in this project, it is a 2 2 square matrix 

     
VF   - viscous friction matrix, in this project, it is a 2 2 square matrix 

     
CF   - Coulomb friction matrix, in this project, it is a 2 2 diagonal square matrix 

sgn( )q   - 2 1 vector whose components are given by the sign functions of the single  
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                    joint velocity 

       ( )G q   - gravity vector, in this project, it is a 2 1 vector 

                - joint actuator torque vector, in this project, it is a 2 1 vector 

        ( )J q   - Jacobian of the manipulator, in this project, it is a 2 2 vector 

            
eF   - external force acting in the end-effector, in this project, it is a 2 1 vector 

The joint space dynamic model has the following properties. 

Property 1 ( )M q is positive definite and norm bounded in the whole workspace  

        ( ) ( ) 0TM q M q  , m M( ) ( ) ( )q M q q    

        where 
m( )q and 

M ( )q are scalar functions of the joint position 

Property 2 ( ) 2 ( , ) 0Tq M q C q q q       

Property 3 Linearity in the dynamic parameters 

                  ( ) ( , ) sgn( ) ( ) ( , , )V CM q q C q q q F q F q G q Y q q q                        (2.29)                            

where ( , , )Y q q q  is the linear regressor, which as seen from equation (2.26), is a function 

of the joint states and the geometrical parameters of the manipulator.   as defined in 

equation (2.27) is a function of the unknown dynamic parameters of the manipulator, 

individually or in combination. This property is the basis of adaptive motion control of 

robot manipulators and dynamic parameter identification which are detailed in the 

following sections. 

In fact joint space dynamics is the basis for Cartesian dynamics. Eventually all the 

control algorithms are realized by sending joint torques to actuators. Cartesian space 

dynamics is important for studying the interaction control algorithms. For this reason, the 

Cartesian space dynamics is discussed in section 2.3.2. 

 

2.3.2 Cartesian Space Dynamic Model 

Suppose that the world coordinate frame is defined as in Figure 2.2. The forward 

kinematics may be used to establish the relationship between the Cartesian space position 

of the end-effector and the joint position. The end effector coordinates 2X R may be 

represented in terms of the joint position vector 2q R  as  

                                                               ( )X f q                                                 (2.30) 
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where f  is a function determined by the DH parameters of the manipulator. It is 

reasonable to assume that the joint position vector 2q R does not pass through any 

singularity point when the trajectory of the manipulator is properly planned.  

The differential kinematics, which describes the relationship between the end effector 

velocity and the joint velocity is given by 

                                                            ( )X J q q                                                 (2.31) 

where ( )J q  is the manipulator Jacobian. The relation between the Cartesian space 

acceleration and the joint space acceleration is obtained by differentiating equation 

(2.31): 

                                                     ( ) ( )X J q q J q q                                                  (2.32) 

From equation (2.29), we have 

       1 1 1 T( ) ( , ) sgn( ) ( ) ( ) ( ) ( )V C eq M q C q q q F q F q G q M q M q J q F            (2.33) 

Substituting equation (2.33) into equation (2.32), we get 

                      
 1

1 1 T

( ) ( ) ( , ) sgn( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

V C

e

X J q M q C q q q F q F q G q

J q M q J q M q J q F J q q



 

    

  
                        (2.34)   

From (2.31), we have  

                                                            1( )q J q X                                                     (2.35) 

Substitute equation (2.35) into equation (2.34): 

               

1 1 1

1 1 T 1

( ) ( ) ( , ) ( ) ( ) sgn( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

V C

e

X J q M q C q q J q X F J q X F q G q

J q M q J q M q J q F J q J q X

  

  

      

  
       (2.36) 

Multiple both sides of equation (2.36) by 1( ) ( ) ( )TJ q M q J q   and simplify, to get 

1 1 1 1 1( ) ( ) ( ) ( ) ( , ) ( ) ( ) ( ) ( ) ( ) ( )

( ) sgn( ) ( ) ( ) ( )

T T

V

T T T

C e

J q M q J q X J q C q q J q F J q M q J q J q J q X

J q F q J q G q J q F

      

  

    

   
      

                                                                                                                      …           (2.37) 

Define  

                                                                     1( ) ( ) ( ) ( )T

CJ q M q J q M X                   (2.38) 

                      1 1 1( ) ( , ) ( ) ( ) ( ) ( ) ( ) ( , )T

CJ q C q q J q M q J q J q J q C X X                    (2.39) 

                                                                   
1( ) ( ) ( )T

V VCJ q F J q F X                           (2.40) 

                                                                             ( ) ( )T

C CCJ q F F X                          (2.41) 
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                                                                                ( ) ( ) ( )T

CJ q G q G X                    (2.42) 

                                                                                ( ) ( )TJ q F X                           (2.43) 

Then (2.37) may be rewritten as 

                     ( ) ( , ) ( ) ( ) ( ) ( )C C VC CC C eM X X C X X X F X X F X G X F X F         (2.44) 

Equation (2.44) is called the Cartesian space dynamics of a manipulator. It has the 

following property. 

Property 1 
C( )M X is positive definite and norm bounded in the whole workspace  

( ) ( ) 0T

C CM X M X  , ( ) ( ) ( )mC C MCX M X X                                      (2.45) 

where ( )mC X and ( )MC X are scalar functions of the joint position 

 

2.3.3 Problem with Dynamic Model based on CAD Models  

For comparison, the dynamic model is derived based on the dynamic parameters 

from the CAD models provided by the manufacturer. Since the inertia parameters for 

each link is given, the symbolic representation for each matrix in equation (2.29) may be 

easily derived using the Robotics Toolbox developed by Corke [107] for the original 

four-DOF manipulator. However, since the WAM system is simplified into a two DOFs 

system, the dynamic model for the new two-DOF manipulator instead of the original 

four-DOF one should be obtained. This is done in a straightforward manner by 

substituting 
1 3 0q q  and 

1 3 0q q   in the symbolic representations calculated by the 

Robotics Toolbox. The corresponding Cartesian space dynamic model may be derived in 

the same way as in section 2.3.2. However, the dynamic parameters provided by the 

manufacturer do not include the friction coefficients. This can result in serious dynamic 

modeling errors. Derivations based on CAD models using Robotics Toolbox ignore these 

items. Errors are expected in the inverse dynamics-based output torques and the actual 

joint torques under the same joint trajectories and same control algorithms.  

Inverse dynamics-based trajectory tracking control algorithms using the CAD model-

based dynamic parameters are implemented in the simplified WAM. This is a joint space 

control algorithm; so no singularity handling technique is used.  

WAM does not have absolute joint encoders. Its joint positions are calculated with 

reference to some known fixed position in the world frame. Fortunately, WAM provides 

this position, which is the “home position.” WAM should be brought to its home position 
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before each experiment. However, this home position is the limit position of the two 

joints. A proper trajectory planning technique has to be applied to move WAM to some 

desired point far from these limit positions.  

The initial values of  1 2

T
q q q  when WAM is in the home position are

 2.0051 3.1428
T

q   . Let us move WAM to some desired position  0 2
T

q 

after 4 seconds. At 4st  , both joints will be still (    1 2 0 0
T T

q q q  ). After that, 

both joints are commanded to have some periodic motion such as a sinusoid or a 

combination of sinusoids.  To have a smooth transition between these two phases, it is 

required to have consistent acceleration at 4st  . Thus, for phase one, we have four 

known conditions for each joint:  

                     ( 0) 2.0051 3.1428
T

q t    ,  ( 0) 0 0
T

q t    

                             ( 4) 0 2
T

q t    ( 4) 0 0
T

q t    

Unique third order polynomials may be determined from these four known 

conditions. After that, sinusoidal waves are found for both joints. The amplitudes of both 

waves are selected to be 0.5. The trajectory commands for both joints are given in 

equation (2.46) and (2.47), respectively. The reference position, velocity and acceleration 

trajectories are given in Figure 2.19 – Figure 2.21, respectively. 
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Figure 2.19: Joint space position reference trajectories 
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Figure 2.20: Joint space velocity reference trajectories 

                          
3 2

1

0.0627 0.3760 2.0051 0 4
( )

0.5sin(1.2270 1.5734) 0.5019 4

t t t
q t

t t

     
 

  
                 (2.46) 

                          
3 2

2

0.0491 0.2948 3.1428 0 4
( )

0.5sin(1.0852 1.5678) 2.0684 4

t t t
q t

t t

    
 

   
              (2.47) 
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Figure 2.21: Joint space acceleration reference trajectories 

The inverse dynamics-based control algorithm is used to carry out the reference 

trajectories task, as 

                                         ( ) ( , ) ( )M q y C q q q G q                                           (2.48) 

                                        ( ) ( )d D d P dy q K q q K q q                                       (2.49) 
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where ( )M q , ( )C q  and ( )G q are the corresponding matrices based on the CAD model 

after simplification, 
dq  is the reference trajectory, and 

DK  and 
PK are proper gains to 

guarantee the convergence of the tracking error.  

The corresponding block diagram is designed to implement this algorithm. In the 

WAM system, the starting time of any experiment should be the time when the “Active” 

button on the safety panel is pressed. However, once the control algorithms are 

downloaded into the target PC, the time clock starts to record the time information 

regardless of whether WAM is in the “Active” mode. Only the running time after the 

algorithm is downloaded and executed in the target is available. For the planned 

trajectories described in equation (2.46) and equation (2.47), the starting time should be 

the time point when the “Active” button in the safety panel is pressed. Thus, the time at 

which the “Active” button in the safety panel is pressed is critical here and should be 

snapped by proper algorithms. 

We have developed a method to detect the time point at which the “Active panel” is 

pressed. The value at this time point should be subtracted from the total target PC 

running time. The purpose of this is to let the trajectory generation algorithm start only 

when the “Active” is triggered. Otherwise, the trajectory generation algorithm will start 

from the time the application is downloaded, and will give incorrect reference trajectories 

to WAM. 

The time point at which the “Active” button is pressed may be snapped by the block 

diagram shown in Figure 2.22. The global block representation of the algorithm 

implementation is given in Figure 2.24. The internal block with the details of this 

algorithm is given in Figure 2.23. 

 

 

Figure 2.22: WAM starting time snapping 
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Figure 2.23: Internal block diagram representing the control algorithm 

 

 

Figure 2.24: Global block diagram representing the control algorithm 

The data during an experiment are logged for post-experiment analysis. These data 

are represented in Figure 2.25 – Figure 2.28. From these figures, we can see that, the 

actual trajectories of the joints are not exactly the same as the reference ones. This is not 

surprising since we did not use robust trajectory tracking control algorithms. The 

nominal dynamic model that we used is based on the CAD model provided by the 

manufacturer and it is not accurate. Tracking errors are expected due to this model error. 

Also, it is noted that the motion of joint 2 is irregular and not periodic.  
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Figure 2.25: Actual joint space position trajectories 
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Figure 2.26: Actual joint space velocity trajectories 
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Figure 2.27: Actual joint space acceleration trajectories 
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Figure 2.28: Joint torque trajectories 

It is observed from Figure 2.26 and Figure 2.27 that the velocity and acceleration 

trajectories are very noisy. This is unacceptable in control algorithm implementations if 

the velocity and acceleration information is directly used in the controllers. The possible 

cause for the noisy velocity and acceleration trajectories is the noise in the original actual 

joint position measurements. Direct differentiation of the joint position with respect to 

time will further increase the amplitude of noise in the velocity and acceleration. Hence, 

robust velocity and acceleration reconstruction algorithms should be applied instead of 

direct differentiation. This is detailed in the following subsections. 

From Figure 2.25 and Figure 2.28, we can see that even though the applied torque to 

joint 2 seems to be periodic, the joint 2 motion is not periodic. We speculate that this is 

due to the static friction in this joint. The same phenomenon is observed in joint 1. We 

can conclude that joint friction which is not taken into consideration in the manufacturer 

provided algorithms should be considered in an accurate dynamic model. 

Summarizing, the dynamic model derived based on the manufacturer provided 

dynamic parameters is not accurate. We noticed large trajectory tracking errors when 

using this nominal model in the inverse dynamics-based trajectory tracking control 

algorithms. This justifies the need for dynamic parameter identification of WAM by 

experiments, as detailed next. 
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2.4 Dynamic Model Identification 

Dynamic model identification concerns experimentally determining an accurate 

dynamic model of a dynamic system such as a robot. A model of this type may be used, 

in particular, for model-based control algorithms. How to determine the dynamic 

parameters using experimental measurements is discussed in this section. 

There are two types of approaches of dynamic model identification. The first one is 

done off line, after obtaining the experimental data. Specifically, after the experiments, 

the recorded inputs and outputs of the manipulator are analyzed to determine the model. 

The second type of dynamic identification is done on line. Here, the identification is 

carried out as the data is acquired during the experiment.  

Two challenges exist in dynamic model identification, which have been addressed by 

researchers in the past decades. The first one is the persistent excitation of the reference 

trajectory that is tracked, by using proper controllers. A reference trajectory must excite 

all necessary dynamics of the manipulator. In the design of a reference trajectory, the 

workspace of the manipulator should be considered as well. The most common choice 

for the reference trajectory is a combination of harmonic signals of different magnitudes 

and appropriate frequencies.  

The second challenge in dynamic model identification is the calculation of velocity 

and acceleration using joint position. Velocity and acceleration are required during on-

line or off-line data analysis. As we noticed in section 2.3, there is significant noise in the 

velocity and acceleration information when determined by direct differentiation. This 

problem can be reduced by using a low-pass filter to remove the noise before calculating 

the velocity or acceleration. However, this cannot guarantee the completeness of the 

velocity (or acceleration) information. In this thesis we use robust exact differentiators to 

reconstruct velocity and acceleration. 

 

2.4.1 Reference Trajectory Selection  

In order to improve the convergence rate and the immunity to noise of the identified 

dynamic parameters, reference trajectories have to be selected properly. The reference 

trajectories have to have the persistent excitation property in order to correctly identify 

the dynamic parameters. Also, the reference trajectories have to be selected such that 

they will not pass the joint limits of the manipulator. For the current robot, the maximum 
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allowable joint velocity of each joint is 2rad/s . All these factors have to be taken into 

consideration in the selection of reference trajectories. 

Let Y be the regression matrix of measurements, as described in equation (2.50), 

where n  is the number of measurements: 

                                                 1 2

T

nY Y Y Y                                            (2.50) 

Due to the high sampling frequency during experiments, two adjacent regression 

matrices might become almost identical. This will cause a singularity problem in the 

subsequent data analysis. In order to avoid this problem, in the data analysis process, 

decimation of five will be applied to extract the measurements. This is equivalent to 

having a sampling period of 0.01s (100Hz). The experiment is planned to last for 30 

seconds after the initial transitional phase. Hence, we will have 3000 measurements, 

which are adequate for dynamic parameter identification. 

Even though the dynamic parameter identification is based on the actual joint 

motions during the identification experiments, the actual joint motions will be close to 

the reference ones after the transitional phase, when proper trajectory tracking control 

algorithms are used. The sensitivity of the LSE results with respect to noisy 

measurements may be characterized by the condition number of the observation matrix

Y . This is a nonlinear optimization problem and many software packages are available to 

solve it. 

We use the criterion introduced in [108], which is the condition number of the 

observation matrix, as given in equation (2.51). This criterion seeks to maximize the 

immunity of the identification results to measurement noise. 

                                                      cond( )C Y                                                     (2.51) 

As governed by hardware structural limitations, the ranges of motion of the two joints 

are given by 

                                 
12.0 rad 2.0 radq   ,

20.9 rad 3.1radq                              (2.52) 

In view of the challenges in (2.52), the reference trajectories are selected as 

                                          
3

d

1

( ) sin( )i ij i ij i

j

q t a j t b 


                                           (2.53) 

                                           
3

d

1

( ) cos( )i ij i i ij

j

q t a j j t  


                                      (2.54) 
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3

2 2

d

1

( ) sin( )i ij i i ij

j

q t a j j t  


                                  (2.55) 

with 1,2i  , the biases 
ib  for the reference trajectories of joints 1 and 2 are 0  and 1.1, 

respectively. The choice of these biases is based on the range of motion of each joint. In 

order to obtain an accurate dynamic model, the range of motion of each joint should be 

covered as completely as possible. Then we have 14 parameters at our disposal in order 

to minimize the condition number of the decimated observation matrix. The constraints 

for this nonlinear optimization problem are the velocity limits in each joint, which may 

be described by  

                                            
2 2 2

1 2 34 9 1.95i i i ia a a                                                  (2.56) 

Here, for safety reasons, we limit the maximum velocity of each joint to 1.95, even 

though the allowable value for it is 2 as mentioned before. Commercial software 

packages such as Matlab are used to determine these values. 

The determined reference trajectories are shown in Figure 2.29 and Figure 2.30. It is 

easy to observe that the reference trajectories are within these ranges and will not harm 

the equipment. 
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Figure 2.29: Position reference trajectories for each joint 
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Figure 2.30: Velocity reference trajectories for each joint 

 

2.4.2 Velocity and Acceleration Reconstruction  

As can be observed from equation (2.26), the elements of the observation matrix are 

functions of joint positions, velocities and accelerations. However, there is only one 

encoder in each joint to measure the joint position, while the joint velocity and 

acceleration have be calculated or estimated. Measurement noise is unavoidable in the 

joint position measurements. Obtaining the joint velocity and acceleration by direct 

differentiating the position information will lead to noisy results. In the assumed model 

for friction, this will further result in poor accuracy in dynamic model identification.  

Some researchers have used periodic reference trajectories so that the response is also 

periodic, at steady state. The assumed white noise may be characterized by analyzing the 

discrepancy of the same data point in different sampling periods. The detected noise will 

be removed from the measured joint position information. The calculation of velocity 

and acceleration using noise-free joint position data is straightforward. It can be done in 

the frequency domain just using algebraic operations.  

However, the velocity information calculated in this way is not exact since noise 

cannot be removed completely. Also, filtering is necessary in this conventional 

differentiator which makes the calculated velocity and acceleration not exact even when 

the measurement noise is absent. Model-based filters, such as Kalman filter may be 

applied to have an estimation of the velocity and acceleration under noise. However, an 

accurate dynamic model is required in the implementation of the filtering process.  
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Robust finite time convergence differentiators are applied in the present work to 

estimate the velocity and acceleration. It is based on the sliding mode theory, and can 

reconstruct the velocity and acceleration without needing a filter. The estimation is exact 

in the absence of measurement noise. In the presence of measurement noise, the 

estimation accuracy may be controlled within some acceptable range, making this robust 

differentiator ideal for many applications. 

 The advantage of this type of differentiator is that it is finite-time convergent, and 

robust to external disturbance. Additionally, it does not require a dynamic model of the 

plant, but can still provide accurate estimation results for the higher order derivatives of 

the estimated signal. 

The joint position signal ( )q t is a function defined on  0, consisting of a bounded 

Lebesgue-measurable noise without known features. The joint position signal without 

noise is denoted by 
0 ( )q t , which is unknown. When the Lipschitz constant of the joint 

position signal is known as L , the conventional sliding mode-based robust differentiator 

given by the following equations may be applied to estimate
0 ( )q t and

0 ( )q t : 

                              
2 31 3

0 2 0 0 1( )z L z q sign z q z                                           (2.57) 

                              
1 21 2

1 1 1 0 1 0 2( )z L z v sign z v z                                          (2.58) 

                             
2 0 2 1( )z L sign z v                                                               (2.59) 

where 
0z ,

1z and 
2z are states of the robust estimator; 

0v ,
1v are intermediate variables 

introduced in order to implement this differentiator; and 
0 ,

1 and 
2 are proper positive 

constant observer gains to guarantee the finite-time convergence of the proposed 

observer. The finite time convergence of the proposed differentiator is guaranteed by 

selecting
0 1.1  , 

1 1.5  and 
2 3   . This fact has been proved by using the concept of 

homogeneity. In the absence of measurement noise, after finite-time transient process, we 

have 

                                                      
0 0z q                                                                     (2.60) 

                                                      1 0 0z v q                                                               (2.61) 

                                                      
2 1 0z v q                                                               (2.62) 

Let the measurement noise be a Lebesgue-measurable function with magnitude bounded 

by . The differentiator errors are bounded by 
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2 3

1 0 ( )z q O                                                      (2.63)                                          

                                                      
1 3

2 0 ( )z q O                                                      (2.64) 

However, the robust differentiator given by equation (2.57) – equation (2.59) is based on 

the assumption that the Lipschitz constant of the joint acceleration signal is known. In 

practice, due to uncertainty and measurement noise, this constant is not easy to 

determine. The estimation results become very poor when this parameter is incorrectly 

chosen.  

The adaptive second order robust differentiator is used here to estimate the velocity 

and acceleration signals
0 ( )q t , 

0 ( )q t . It has been applied in [49] for dynamic model 

identification of a two-axis manipulator, and it has been proved to be very effective 

compared to the conventional Euler differentiator and low-pass filter. However, only 

offline dynamic parameter identification was carried out there. Here we have a different 

platform and it is desirable to use this differentiator in the present work to develop an 

online dynamic model identification algorithm. The adaptive robust differentiator is 

given by: 

                                  
2 3

0 0 0 0 1 0 0
ˆ ( ) ( )z z q sign z q z K z q                          (2.65) 

                                   
1 2

1 1 1 0 1 0 2 1 1 0
ˆ ( ) ( )z z v sign z v z K z v                        (2.66) 

                                   2 2 2 1
ˆ ( )z sign z v                                                              (2.67) 

where 
0z ,

1z and 
2z are states of the robust estimator; 

0v ,
1v are intermediate variables 

introduced in order to implement this differentiator; 0̂ , 1̂ and 2̂ are observer gains to 

be adapted in order to deal with the uncertainty of the Lipschitz constant of the joint 

acceleration signal; and 
0K  and 

1K are two matrices used to ensure the convergence of 

the observer gains to the actual ones. They are designed to be diagonal, and each element 

of these two matrices is a positive scalar. The adaption laws for 0̂ , 1̂ and 2̂ are given 

by: 

                                     

1 2

1 0 1 01 1

1 1 0

1 0
2

ˆ ( )
( )

( )ˆ

z v sign z v
z v

sign z v d







     
     
    

   
                      (2.68) 

                                                
2 3

0 0 0
ˆ ( )z q z q                                                      (2.69) 



 

69 

 

This adaptive robust differentiator guarantees the convergence of the velocity and 

acceleration reconstruction errors to zero. Reconstruction of the velocity and acceleration 

information based on this differentiator is used in the subsequent dynamic model 

identification tasks. 

The robot manipulator is commanded to move in free space to track joint space 

trajectories. Any simple reference trajectory tracking algorithm could be used to track the 

joint space trajectory. The widely used inverse dynamics algorithm is given by: 

                             
V C( ) ( , ) sgn( ) ( )M q y C q q q F q F q G q                                  (2.70) 

                                      ( ) ( )d D d P dy q K q q K q q                                               (2.71) 

where 
PK and 

DK are PD gains. Both of them are diagonal matrices, for simplicity.  

Since the actual mass and inertia properties of the simplified two-link manipulator are 

unknown, a very rough estimation of ( )M q , ( , )C q q ,
VF , 

CF  and ( )G q will be used in 

the control algorithm given by (2.70) and (2.71). The values used are from the CAD 

model discussed in section 2.3.3 except for 
VF  and 

CF . In order to improve the tracking 

performance, extensive experiments have been carried out. The trajectory tracking 

accuracies are compared using the control law (2.70) with different 
VF and

CF . The 

values of 
VF  and 

CF  used here are the ones that give the best tracking performance. 

Even though the actual tracking performance in system identification experiments is not 

important, this dedicated choice of 
VF  and 

CF  is used here. The actual joint position and 

actuator output, instead of the reference trajectories, are used for post-experiment 

analysis. The actual velocity information used in the control law may be obtained by the 

robust differentiator developed in this section. 

The actual trajectories are shown in Figure 2.31. The corresponding position values 

and the joint torque are saved into a file in the target PC. After the experiments, these 

files are transmitted back to the host PC for analysis.  

From Figure 2.31, it is observed that by including the friction component in the 

model based controller, the joint responses have become periodic, even though there are 

some “flattened” joint positions, which imply that there is static friction in each joint. 

However, at least the response now is periodic. 
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Figure 2.31: Actual joint position trajectories 
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Figure 2.32: Actual joint velocity trajectories based on conventional differentiator 
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Figure 2.33: Actual joint acceleration trajectories based on conventional differentiator 
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Figure 2.34: Actual joint velocity trajectories based on robust differentiator 
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Figure 2.35: Actual joint acceleration trajectories based on robust differentiator 

What is more, as observed from Figure 2.32, the velocities obtained by the 

conventional Euler differentiator have some noise. This is more obvious in Figure 2.33, 

which are the trajectories of acceleration. On the other hand, Figure 2.34 and Figure 2.35 

show that the velocity and acceleration trajectories obtained by the robust differentiator 

have more desirable features with regard to the noise level. This further justifies the 

selection of the robust differentiator instead of the conventional Euler differentiator. The 

reconstructed velocity and acceleration are used in the offline and online of dynamic 

identification schemes. 
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2.4.3 Offline Identification of Dynamic Model  

  Offline identification of dynamic model is used to identify the model parameters (or 

functions of some of the parameters) after obtaining the necessary data using 

experiments. Specifically, the input joint actuator torques and the output joint positions 

of the experimental system are recorded during trajectory tracking experiments.  

Least squares estimation is applied to the measured data, to estimate the unknown 

dynamic parameters, as 

                                                            1( )T TY Y Y                                                (2.72) 

where  1 2

T

nY Y Y Y and  1 2

T

n    are the vectors formed by the 

corresponding data points. The friction component in the dynamic model is also 

identified. Even though this component is small compared to other components, it is 

better to include it for better accuracy. 

The validation process of the identified dynamic parameters is illustrated in Figure 2.36. 
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Figure 2.36: Validation scheme of the offline identified dynamic parameter  

For validation of the identified dynamic parameters, new reference trajectories shown 

in Figure 2.37 are commanded to the trajectory tracking algorithm. The inverse 

dynamics-based trajectory tracking algorithm is used.  

The actual position, velocity and acceleration of the joints are the input to the offline 

identified dynamic model. The output of the inverse dynamics model is the required joint 

torques to induce the actual joint motions. These joint torques are compared with the 

actual joint torques produced by the joint actuator. The smaller the discrepancy between 

them, the more accurate the identified dynamic model is.   

The reference validation trajectory for each joint is given in Figure 2.37. This 

trajectory corresponds to the desired Cartesian space motion for impedance control 

which is detailed in chapters 3 and 4. The trajectory tracking performance is given in 

Figure 2.38. As we can observe, model based controller using the dynamic model 
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obtained by offline identification significantly improves the trajectory tracking 

performance. At least the motion of joint 2, seems more regular. This may be due to the 

inclusion of the friction components in the model based controller. 
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Figure 2.37: Reference trajectories for joint 1 and 2 
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Figure 2.38: Trajectory tracking performance for joints 1 and 2 (offline) 

The comparison between the actual joint torque and the one calculated based on the 

inverse dynamics using offline identified dynamic parameters for each joint are given in 

Figure 2.39 and Figure 2.41 respectively. A satisfactory match between the predicted 

torque based on the identified dynamic model and the actual torque delivered by the joint 

actuators is observed. The difference between the measured and the predicted torques for 
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each joint is given in Figure 2.40 and Figure 2.42, respectively. It is observed that the 

torque error for joint 1 is ignorable, while for joint 2 it is noticeable.  The possible causes 

for this are the time-varying dynamic parameters in WAM or the un-modelled dynamics, 

such as the flexibility of the cable-drive system. The friction coefficient in each joint is a 

time-varying parameter as has been pointed out by many researchers. A complex friction 

model can be used, such as one that could characterize the nonlinear dynamics of 

friction. For simplicity, in the present work, we will use the friction model that we 

proposed. 

Joint 1 Actual Torque vs. Predicted Torque

Actual

Prediction

Jo
in

t 
1
 T

o
rq

u
e 

(N
m

)

2

0

-2

-4

-8

-10

-6

4

-12
0                      5                       10                     15                      20                     25                    30 

                                                               Time (seconds)  

Figure 2.39: Comparison between the predicted torque and the actual torque (offline) 
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 Figure 2.40: Difference between joint 1 predicted torque and actual torque (offline) 
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Figure 2.41: Comparison between joint 2 predicted torque and actual torque (offline) 
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Figure 2.42: Difference between the predicted torque and the actual torque (offline) 

In conclusion, the dynamics identification algorithm that is proposed in the foregoing 

subsections is an offline one. It provides acceptable identified dynamic parameters for 

model-based control algorithms. However, to deal with time-varying parameters, it is 

better to have an online dynamic parameter identification algorithm. This problem is 

discussed in next.   
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2.4.4 Online Dynamic Model Identification  

While offline identification of a dynamic model can provide acceptable results, in 

some delicate manipulations, a more accurate dynamic model may be required. Friction 

coefficient in the dynamic model of a manipulator is usually time-varying. The offline 

dynamic parameter identification algorithm is based on the assumption that the dynamic 

parameters are identical in different working conditions. This assumption is not very 

practical. The online dynamic identification algorithm may be used to improve the 

accuracy of the identified dynamic model. It identifies the dynamic parameters based on 

the most recent information under the same working conditions.  

Since the offline identified parameters are acceptable, the online dynamic parameter 

identification process is based on these results. We assume that only the friction 

component is time-varying. The online parameter identification algorithm is used on the 

friction coefficients. From equation (2.28), after rearrangement, we have  

                                sgn( ) [ ( ) ( , ) ( )]V CF q F q M q q C q q q G q                       (2.73) 

                                       

1

1 1 2 1

2 2 1 2

2

0 0

0 0 sgn( )

sgn( )

v c

v c

q

F F q

F F q

q





 
 

            
 
 

                          (2.74) 

where 
1

2

v

V

v

F
F

F

 
  
 

, 
1

2

c

C

c

F
F

F

 
  
 

, 
1

2

ˆ ˆˆ[ ( ) ( , ) ( )]M q q C q q q G q





 
    

 
, ˆ ( )M q ,  

ˆ( , )C q q and ˆ ( )G q are calculated using the offline identified dynamic parameters.  

The friction parameters to be identified are decoupled, and equation (2.74) may be 

written as  

                                                  
1 1 1 1 1sgn( )v cq F q F                                                 (2.75) 

                                                 
2 2 2 2 2sgn( )v cq F q F                                                (2.76) 

Recursive least squares estimation may be used in online identification of these time-

varying dynamic parameters. The first joint is considered as an example. We have 

                                             1

1 1 1 1 1 1 1

1

sgn( ) sgn( )
v

v c

c

F
q F q F q q

F


 
      

 
                 (2.77) 
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Let  
1

1sgn( )

q
x

q

 
  
 

,  1 1f c vF F  , and 
1y  . Then y x . In the discrete time domain, 

the recursive least squares estimation for joint 1 is given by 

                                          ˆ ˆ ˆ( 1) ( ) ( 1) ( 1) ( ) ( 1)f f fk k K k y k k x k         
 

        (2.78) 
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x k P k x k
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                                   (2.79) 
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P k x k x k P k
P k P k

x k P k x k
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  

  
                     (2.80) 

where k  is the time stamp. 

The initial value for (0)f is taken from the offline identified results. The initial value for 

P  is 
10

(0)
10

P
 

  
 

.  

The online identified dynamic parameters are used in the model based controller to 

calculate the next step actuating torque. This process is shown in Figure 2.43. The 

friction is compensated online.  
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Figure 2.43: Friction compensation based on online parameter estimation 

The same optimized reference trajectory as in the offline identification case has been 

used here for online identification of the time-varying dynamic parameters. An inverse 

dynamics-based controller algorithm is used for trajectory tracking control. The 

trajectory tracking performance is shown in Figure 2.44. 

The algorithm gives the friction coefficient shown in Figure 2.45 and Figure 2.46. 

Due to the noise in the velocity information, the estimated parameters have some 

chattering. However, those friction parameters are within a specific range. The exact 

same procedure may be carried out on joint 2 to obtain the recursive least squares 

estimation of the friction parameters of joint 2. The identified results are given in Figure 

2.47 and Figure 2.48. Similar conclusions may be made on the estimated parameters. 
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Figure 2.44: Trajectory tracking performance for joint 1 and 2 (online) 

The chattering may also be attributed to the noise in the velocity information. This 

problem can be reduced by using an improved model for friction torque modelling. For 

example, for Coulomb friction, a modification to the friction model may be done by 

defining the friction torque when the joint velocity crosses zero. Further complex models 

for friction such as the Stribeck friction model, may also be applied to reduce this 

problem. 
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Figure 2.45: Online estimation of 
1cF  
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Figure 2.46: Online estimation of 
1vF  
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Figure 2.47: Online estimation of 
2cF  

The validation process for the online dynamic parameter identification algorithm is 

shown in Figure 2.49. For validation of the proposed online identification algorithm, the 

same validation trajectory as in the offline validation process is selected. Also, the online 

identified friction parameters of each joint will be used for the next time step control. A 

validation of the trajectory tracking performance is given in Figure 2.50. 
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Figure 2.48: Online estimation of 
2vF  
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Figure 2.49: Scheme of the online dynamic parameter validation process 

A comparison of the actual joint torque and the one calculated based on the inverse 

dynamics using online identified dynamic parameters is given in Figure 2.51 and Figure 

2.53. The torque prediction error in each joint is given by Figure 2.52 and Figure 2.54. 

We can observe from Figure 2.52 and Figure 2.54 that online estimation-based friction 

compensation can slightly improve the performance. This may be attributed to the noisy 

joint velocity measurement. Joint friction modelling in robot dynamics is extremely 

complex. Obtaining an accurate dynamic model seems difficult or even impossible due to 

the inherent nonlinear characteristics or friction torque at low joint velocities. A soft 

computing technique may be applied to model this uncertain part.  
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Figure 2.50: Trajectory tracking with online friction compensation 
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Figure 2.51: Joint 1 actual torque vs. predicted torque with online identification 
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Figure 2.52: Joint 1 torque prediction error with online dynamic parameter identification 
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Figure 2.53: Joint 2 actual torque vs. predicted torque with online identification 
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Figure 2.54: Joint 2 torque prediction error with online dynamic parameter identification 

 

2.4.5 Offline Dynamic Model Identification with Neural Network based 

Compensator  

It is observed from the online identification results that the friction parameters are 

time-varying. In fact, friction is the most complex component in the dynamic model of a 

robot manipulator. It is both uncertain and nonlinear, which are rather difficult to 

describe using explicit mathematical equations. Soft computing techniques, such Fuzzy 

logic and Neural Network may be applied to describe this complicated input-output 

relationship after sufficient training.  

In order to decrease the mismatch between predicted torque and measured torque, the 

offline identified dynamic parameters and a Neural Network based compensator are 
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applied here. This will provide a more accurate description of the manipulator dynamics.  

The input to the neural network is the joint state, which is given by the corresponding 

joint position q , velocity q , and acceleration q . This velocity and acceleration 

information is reconstructed using the sliding mode based robust differentiator. The 

output of the Neural Network will be the torque difference between the actual joint 

torques calculated based on the joint actuator current, and the predicted joint torques. The 

Neural Network is trained using the inputs and the corresponding outputs. After training, 

it will act as a compensator to compensate for the torque difference which will be useful 

in subsequent chapters. 

A Neural Network with one hidden layer and back propagation algorithm is used 

here. Since the joint torque residue calculation is based on the states of two joints, the 

compensation torques for joint 1 and joint 2 are considered simultaneously using one 

Neural Network, which is given in Figure 2.55. Eight hidden layer nodes are used. ijw is 

the connection weight between the input layer and the hidden layer, while jkw is the 

connection weight between the hidden layer and the output layer. 
1 is the torque 

compensation for joint 1, and 
2 is the torque compensation for joint 2. 

The sigmoid function is used here 

                                                        
1

( )
1 x

x
e







                                                       (2.81) 

The same offline identification experiment is done ten times, and the duration of each 

experiment is 100 seconds. With the backward propagation algorithm, after sufficient 

time, this Neural Network may repeat the torque residue accurately to an acceptable level.   

1q

1q

1q

2q

2q

2q

1

2

Input Layer Hidden Layer Output Layer

ijw
jkw

 

Figure 2.55: Neural Network-based torque compensator 
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Cross validation is done using experiment results from different rounds to further 

verify the effectiveness of the Neural Network in describing the unknown input and 

output relationship.  

The validation process for offline identified dynamic parameters with the Neural 

Network based compensator is shown in Figure 2.56. Here,  is the compensation 

torque vector, and ˆ
n is the torque vector after compensation.  

The actual joint torque and the predicted torque for the algorithms proposed in this 

subsection for each joint (offline identified dynamic parameters with Neural Network 

based compensator) are shown in Figure 2.57 and Figure 2.59, respectively. The joint 

torque prediction error for each joint is given in Figure 2.58 and Figure 2.60, 

respectively. It is seen that after compensation, the torque residues in both joints are 

reduced. The residues after compensation are bounded within a very low level. 
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Figure 2.56: Scheme of the validation process of offline dynamic parameters with Neural 

Network-based compensator  
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Figure 2.57: Joint 1 actual torque vs. predicted torque with offline identification (with 

torque compensator) 
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Figure 2.58: Joint 1 torque prediction error (with torque compensator) 
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Figure 2.59: Joint 2 actual torque vs. predicted torque with offline identification (with 

torque compensator) 
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Figure 2.60: Joint 2 torque prediction error (with torque compensator) 
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2.4.6 Comparison with Conventional Differentiator based Identification 

In this subsection, the dynamic parameters of the simplified two-link manipulator are 

identified using a conventional differentiator and a proper filter. This approach is widely 

used in literatures to identify a dynamic model for a robot manipulator.  

Direct differentiation of the position signal is commonly used to calculate the 

velocity information:  

                                                   
( 1) ( )

( )
q k q k

q k
T

 



                                         (2.82) 

where k is the time stamp and T is the sampling period. Velocity information is not 

exact in this case, since ( )q k calculated in this way is a better approximation of 
1

( )
2

q k  . 

What is more, the velocity signal derived in this way is very noisy. 

We have noticed that the direct differentiation of joint velocity gives really noisy 

acceleration results. In order to resolve this problem, a low-pass filter is used to 

reconstruct the acceleration information from the velocity information. From equation 

(2.29), we place a low-pass filter ( ) c

c

F s
s







 at each side to have a filtered dynamic 

representation given by  

                                                       ( , )F F F FY q q                                              (2.83) 

where 
F represents the filtered torque measurements, ( , )F F FY q q is the filtered regressor 

matrix, and 
Fq and 

Fq are the low pass filtered versions of q and q . By selecting the cut-

off frequency of this low-pass filter to be located between the system bandwidth and the 

noise frequency, it is likely to reduce the noise effect on the identification accuracy. Here 

we use 20 /c rad s  . 

We notice that the acceleration information is not required in ( , )L F FY q q  due to the 

fact that it is represented by 

                                                                 ( )F c Fq q q                                              (2.84) 

Using the same identification trajectory as in the offline identification algorithm, the 

filtered acceleration and the torque signal are given in Figure 2.61 and Figure 2.62, 

respectively.  
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Figure 2.61: Joint acceleration trajectories after low-pass filtering 
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Figure 2.62: Joint torque trajectories after low-pass filtering 

The low-pass filter does make the velocity and acceleration signals smoother. 

However, we are not certain yet whether this would give us more accurate identification 

results. This has to be verified using the same validation trajectories tracking problem as 

in the offline identification algorithm given in section 2.4.3. The reference trajectory 

tracking performance with the offline identified dynamic parameters in this subsection is 

given in Figure 2.63. 
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Figure 2.63: Joint space trajectory tracking (with dynamic parameters identified using 

filters) 

We observe from Figure 2.61 that after filtering, the acceleration signal is still rather 

noisy while the torque signal is satisfactory. We can reduce the cut-off frequency of the 

low-pass filter in order manage this problem. In fact, the cut-off frequency used here is 

the one that provides best performance in the validation phase. High-order Butterworth 

filters may also be applied to realize a more comprehensive comparison. 

The validation results are given in Figure 2.64 – Figure 2.67. It is found that for joint 

1, there is no clear disadvantage when compared with robust differentiator based 

identification algorithm. However, the performance for joint 2 is not quite satisfactory. 

There are many more measurements with chattering in the torque prediction error when 

compared with the differentiator-based algorithm. 
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Figure 2.64: Joint 1 actual torque vs. predicted torque (with dynamic parameters 

identified using filters) 
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Figure 2.65: Joint 1 torque prediction error (with dynamic parameters identified using 

filters) 
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Figure 2.66: Joint 2 actual torque vs. predicted torque (with dynamic parameters 

identified using filters) 
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Figure 2.67: Joint 2 torque prediction error (with dynamic parameters identified using 

filters) 
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2.5 Summary 

  In this chapter, the dynamic model of a two-DOF robot manipulator is derived. To 

emphasize the problem under study, the four-DOF robot manipulator is simplified to a 

two-DOF planar manipulator by using mechanical as well as software methods. Due to 

this simplification, the software system is completely redesigned based on the xPC 

Target fast prototyping platform.  

  Because of the absence of an accurate dynamic model, which is required in the 

subsequent chapters, the dynamic model of the simplified manipulator is identified. The 

robust high order differentiator is applied to estimate the velocity and acceleration in 

each joint other than direct differentiation. This robust differentiator shows very good 

results in the presence of measurement noise when compared with a conventional 

differentiator.  

 Offline and online dynamic model identification algorithms are proposed, which use 

the estimated velocity and acceleration. The dynamic parameters obtained through model 

identification show satisfactory accuracy. However, due to the uncertainty in the friction 

component, they are not sufficiently accurate for delicate manipulation tasks.  

A Neural Network-based torque compensator is proposed. After training, it may be 

used to accurately reproduce the torque prediction error. 

This chapter lays the main foundation for subsequent chapters. 
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Chapter 3: Observers-based Estimation of Interaction Force 

 

In constrained motion, the interaction force between the manipulator and the 

environment should be monitored. The interaction force is a straightforward way to 

describe the status of interaction. Interaction force is required in the algorithms of direct 

force control and indirect force control algorithms. Thus, the interaction force between 

the manipulator and the environment should be determined, which can be done by 

hardware or software. 

  The interaction force may be determined by using a force sensor mounted at the tip 

of the end-effector. However, there are some limitations with force sensors, such as the 

sensing noise, the self-variance, difficult mounting, and high cost. In view of these 

limitations, researchers have explored other approaches. For example sensor 

measurements may be passed through a filter to obtain smoother signals. A good 

approach to indirectly determine the interaction force is to reconstruct it by the use of 

observers. The interaction force estimation by observers is presented in this chapter.  

Available algorithms of interaction force estimation are presented in this chapter. The 

actual interaction force during calibration experiments are sensed and compared with the 

reconstructed values based on the observers. The effectiveness of two algorithms is 

demonstrated and limitations of them are pointed out. An adaptive version high-order 

sliding mode-based interaction force observer is proposed. The proposed observer is 

shown to work effectively even when the bandwidth of system input is unknown. This 

new algorithm of interaction force estimation outperforms the two existing methods. 

The estimated interaction force information is used in the impedance control 

algorithms that are proposed in the next chapter to shape the impedance of the 

manipulator during interaction. 

 

3.1 Interaction Force Estimation 

3.1.1 Cartesian Space Reference Trajectory Selection 

In order to verify the effectiveness of the interaction force estimation algorithms, a 

proper trajectory has to be selected. When the trajectory tracking controllers are 

implemented to follow the reference trajectory, the robot end-effector will interact with 

environment. We will place a force sensor at the end-effector to measure the interaction 
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force during contact. This force sensor will only be used for calibration purposes. The 

experimental setup for calibration is shown in Figure 3.1. 

 

Figure 3.1: Interaction force estimation validation experimental setup 

The coordinate system of the force sensor as defined by the manufacturer in software 

is shown in Figure 3.2. Data logging of the force sensor is done using a separate interface 

in the host PC running Microsoft Windows.  

xF

yF

zF

 

Figure 3.2: Coordinate system of the force sensor 
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0x

0z
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2q

0zF

0xF
0y

 

Figure 3.3: Two degree-of-freedom WAM under external force 

Note that, due to the specific shape of the force sensor, precise point contact cannot 

be established with the obstacle. There will be both an interaction force and an 

interaction torque between the force sensor and the obstacle. Hence, there are three 

components in the wrench vector of the end effector. The static relationship between this 

external interaction force and the induced joint torque is given by 

                                              

0

0

0

1

2

x

e T

c z

e

y

F

J F





 
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                                                                   (3.1) 

where 
1 1 2 1 2 1 1 2 1 2

2 1 2 2 1 2

cos cos( ) sin sin( ) 1

cos( ) sin( ) 1

T

c

l q l q q l q l q q
J

l q q l q q

         
  

     
,  1 2

T

e e  is the 

induced joint torque vector due to interaction with obstacle, 
cJ is the Jacobian taking the 

torque component into consideration, and 
0 0 0

T

x z yF F  
  is the external force vector.  

When WAM directly interacts with the obstacle without the force sensor mounted at 

the end-effector, 
0y will be zero because of the smoothness of the end effector. When 

0
0y  , the subsequent analysis is greatly simplified. However, in the calibration phase, 

due to the shape of the force sensor, it is likely that 
0

0y  . Since the Jacobian 
cJ  in this 

case is not square, the vector 
0 0 0

T

x z yF F  
  cannot be determined explicitly from 

equation (3.1). Psuedo-inverse of 
cJ  may be used to obtain a feasible solution for 

0 0 0

T

x z yF F  
  , which is given by 
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                                                      (3.2) 

where cJ 
is the right pseudo-inverse of 

cJ and it is defined as  

                                                             
1( )T

c c c cJ J J J                                                                       (3.3) 

However, the solution in equation (3.2) is not unique. The general solution is given 

by 
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                                                         (3.4) 

where b is a 3 1 vector. It is very easy to verify that the solution given by equation (3.4) 

satisfies equation (3.1). Thus it is impossible to determine the value of 
0 0 0

T

x z yF F  
  .  

One possible solution is to attach a smooth surface to the force sensor or to control 

the motion of the end-effector to be strictly perpendicular to some flat surface so that one 

of three components in vector 
0 0 0

T

x z yF F  
  becomes zero. In this way, the Jacobian 

cJ can be simplified to a square matrix, and the external force can be determined 

explicitly. However, in practice this assumption is not reasonable. The accuracy of the 

force sensor will be degraded if a cover is attached to it. Controlling the motion of the 

end effector to some specific pose is possible in steady state, while it is difficult in the 

transitional phase. 

A compromise is made here, which has been made by others as well [52]. Here we 

use 
0y from the force sensor measurement. Then we have two ways to verify the 

accuracy of the estimation algorithms for external force. The first one is to verify 

whether the force sensor measurements 
0 0 0

T

mx mz myF F  
   satisfy equation (3.5). 

Here 
1

2

e

e





 
 
 

 will be reconstructed from different interaction force observers which are 

detailed in the subsections of this section. The advantage of this choice is its simplicity. 

However, the obvious disadvantage is that we cannot verify the accuracy of 
0xF and 

0zF  
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individually. 
0xF and 

0zF are important in the subsequent sections since they are used in 

impedance control algorithms. It is desirable that we can verify the accuracy of them 

individually. We have 
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           (3.5) 

Thus we will explore the second choice. Here we rewrite equation (3.5) as 
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          (3.6) 

where J is the same square Jacobian matrix as the one defined in Chapter 2. As long as 

the Jacobian matrix is invertible, 
0 0

T

x zF F 
  can be determined as 
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       (3.7) 

The invertiblility of the Jacobian matrix J  can be guaranteed by proper trajectory 

planning to make sure that the second joint of the manipulator does not pass through a 

singularity point. Unfortunately, due to the initial position of joint 2 (“home position” 

specified by the manufacturer) is 3.1428 rad, which is very close to the singularity point 

0 rad (or 2 ). In order to avoid this point, a piece of foam is used to lift link 2 away 

from its original home position, in the initial phase. When WAM is left at the home 

position, the foam is removed so that it will not constraint the motion of the manipulator. 

This is shown in Figure 2.1. With the foam, the new home position of joint 2 will be

2 3 . For joint 1, the same reference trajectory as described by equation (2.45) is used: 

                  
3 2

1

0.0627 0.3760 2.0051 0 4
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0.5sin(1.2270 1.5734) 0.5019 4

t t t
q t

t t
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In order to avoid the singularity point, joint 2 will be commanded to move to 

2 2q  , and then commanded to execute a periodic motion. The joint limit and the 

Cartesian space motion limit as given by equation (2.5) and equation (2.6) have to be 

taken into consideration in the trajectory design. The expression for the new reference 

trajectory of joint 2 is given by  

                 

2

2

30.0164 0.0982 2.094 0 4

( )
sin(0.6124 2.2629) 2.0944 4

6

4 t

q t
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  


 
  

 




                            (3.8) 

The joint space position and velocity reference trajectories are shown in Figure 3.4 and 

Figure 3.5, respectively. 
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Figure 3.4: Reference trajectories of joint 1 and joint 2 (positions) 
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Figure 3.5: Reference trajectories of joint 1 and joint 2 (velocities) 
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The corresponding Cartesian space trajectories of the joint space reference 

trajectories are given in Figure 3.6. In the following validation experiments, joint space 

inverse dynamics-based controllers are used for tracking control, even though such 

algorithms are effective only when the manipulator end-effector is not constrained. Some 

soft cardboard is placed in front of WAM so that the interaction may happen when WAM 

attempts to track the new joint space reference trajectory. The cardboard is put 

perpendicular to the ground and x axis.  
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Figure 3.6: Cartesian space position reference trajectories 

After the initial preparations, various algorithms of interaction force estimation are 

used to estimate the interaction force. The effectiveness of the estimation algorithms are 

discussed and compared and the best algorithm is used in the subsequent sections for 

impedance control. The validation scheme of the interaction force estimation is given in 

Figure 3.7.  
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Figure 3.7: The validation scheme of the interaction force estimation  
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3.1.2 Interaction Force Calculation Using Identified Dynamic Model  

From equation (2.28) of joint space dynamics, we can rewrite the expression for 

external interaction force as  

                    ˆ ˆˆ ˆ ˆ ˆ( ) [ ( ) ( , ) sgn( ) ( )]T

e V CF J q M q q C q q q F q F q G q                       (3.9) 

The external interaction force can be reconstructed using the torques applied to the joint 

actuators and the corresponding joint motion. In order to improve the force estimation 

accuracy, the Neural Network-based dynamic model compensator introduced in section 

2.4.5 is used here.  

Two different approaches for the calculation of q , q , and q  are introduced now. 

The first one is based on direct differentiation of the position measurement with low-pass 

filtering, as discussed in Chapter 2, while the second one is based on the robust sliding 

mode differentiator. 

The trajectories of joint space and Cartesian space are given by Figure 3.8 and Figure 

3.9, respectively. The force estimation results and the corresponding estimation errors 

using velocity and acceleration information obtained by direct differentiation are given in 

Figure 3.10 – Figure 3.13. We observe that the use of the velocity and acceleration 

information obtained by direct differentiation and filtering leads to unsatisfactory results 

for interaction force estimation. The errors in interaction force estimation are varying and 

uncertain with large magnitudes. It may be concluded that the interaction force 

reconstruction in this manner may not be applicable to the impedance control algorithms 

that are developed in the next chapter. 

Jo
in

t 
P

o
si

ti
o
n
 (

ra
d

)

Joint 1

Joint 2

Joint Space Trajectory (Position)
3

2

1

0

-3

-1

-2

0                      5                       10                     15                      20                     25                    30 

                                                               Time (seconds)  

Figure 3.8: Actual joint space position trajectories (with inverse dynamics using 

identified dynamic parameters and direct differentiation) 
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Figure 3.9: Actual Cartesian space trajectories (with inverse dynamics using identified 

dynamic parameters and direct differentiation) 
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Figure 3.10: Estimated force vs. measured force (x direction with inverse dynamics using 

identified dynamic parameters and direct differentiation) 
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Figure 3.11: Force estimation error (x direction with inverse dynamics using identified 

dynamic parameters and direct differentiation) 
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Estimated Interaction Force vs. Measured Interaction Force (z direction)
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Figure 3.12: Estimated force vs. measured force (z direction with inverse dynamics using 

identified dynamic parameters and direct differentiation) 
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Figure 3.13: Force estimation error (z direction with inverse dynamics using identified 

dynamic parameters and direct differentiation) 

The second approach for velocity and acceleration calculation is the robust 

differentiator used in Chapter 2. The reconstructed velocity information is used for the 

inverse dynamics-based trajectory tracking controller. The actual trajectories in joint 

space and Cartesian space are given in Figure 3.14 and Figure 3.15, respectively. The 

results of interaction force estimation and the estimation errors resulting from this robust 

differentiator are given in Figure 3.16 – Figure 3.19. We can observe from these figures 

that the estimation results are much better than the corresponding ones for the first 

approach. The estimation errors have a much smaller range in each direction compared to 

the ones estimated using the first approach. Meanwhile, the estimation error for the x  
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direction is smaller compared with that for the z direction. A possible reason for this is 

that the interaction force for the x  direction is mainly due to the stiffness of the 

environment, and hence the estimation of this interaction force is less sensitive to 

velocity reconstruction noise. The interaction force in the z  direction arises from the 

damping (or friction) when the force sensor touches the cardboard. This z  direction 

estimation is more sensitive to velocity reconstruction noise. In our project, the x  

direction interaction force is critical since when the end-effector touches the human body. 

We must guarantee that no excessive interaction force is present in this direction. Also, 

we use the reconstructed velocity information in the inverse dynamics-based trajectory 

tracking controller. This is an important feature because, as explored in the Chapter 4, 

velocity information may be required in the design of the interaction control. 
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Figure 3.14: Actual joint space position trajectories (with inverse dynamics using 

identified dynamic parameters and robust differentiator) 
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Figure 3.15: Actual Cartesian space position trajectories (with inverse dynamics using 

identified dynamic parameters and robust differentiator) 
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Measured

Estimated

Estimated Interaction Force vs. Measured Interaction Force (x direction)
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Figure 3.16: Estimated force vs. measured force (x direction with inverse dynamics using 

identified dynamic parameters and robust differentiator) 
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Figure 3.17: Force estimation error (x direction with inverse dynamics using identified 

dynamic parameters and robust differentiator) 
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Figure 3.18: Estimated force vs. measured force (z direction with inverse dynamics using 

identified dynamic parameters and robust differentiator) 
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Interaction Force Estimation Error (z direction)
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Figure 3.19: Force estimation error (z direction with inverse dynamics using identified 

dynamic parameters and robust differentiator) 

 

3.1.3 Interaction Force Estimation Using Second-order Sliding Mode Observer 

(SOSMO) 

  The simultaneous reconstruction of the state and unknown inputs using a second-

order sliding mode observers has been used, extended and evaluated by others. The most 

recent work is [109], in which the algorithms for state estimation and unknown input 

reconstruction has been extended to the multi-DOF case. This algorithm is implemented 

in the present thesis to act as a control group for other algorithms developed in the 

subsequent subsections. Further details are found in [109]. The robot dynamic model in 

the joint space, as described by equation (2.28), should be represented in a state-space 

form for the following development. For this purpose, let 
1x q , 

2x q , u  . Then, the 

joint space robot dynamic equation may be represented in state-space form as, 

                                                    
1 2x x                                                                        (3.10) 

                                                    
2 1 2 1 2( , , , ) ( , , , )x f t x x u t x x u                                  (3.11) 

                                                     
1y x                                                                        (3.12) 

               1

1 2 1 1 2 2 2 2 1( , , , ) ( ) ( , ) sgn( ) ( )V Cf t x x u M x C x x x F x F x G x u                 (3.13) 

                   1

1 2 1 1( , , , ) ( ) ( )T

et x x u M x J x F                                                         (3.14) 

where 2

1x R  is the joint position encoder reading; 2

2x R  is the joint velocity vector of 

the manipulator; 2

1 2( , , , )f t x x u R  represents the nominal dynamics of the mechanical 
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system; 
1 2( , , , )t x x u  is the combination of the model inaccuracy induced terms   and 

the external interaction force 
eF . 2

1 2( , , , )f t x x u R  and 
1 2( , , , )t x x u  are given by  
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1 2
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t x x u
t x x u

t x x u


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

 
  
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               (3.15) 

The simultaneous state and unknown input observer for this mechanical system is 

given by 

                                                        1 2 1
ˆ ˆx x z                                                              (3.16) 

                                                        2 1 2 2
ˆ ˆ( , , , )x f t x x u z                                              (3.17) 

with 2

1̂x R , 2

2x̂ R . The i -th components ( 1,2i  ) of 
1z  and 

2z are defined as  

                                                      
1/2

1 1 1 1 1
ˆ ˆ( )i i i i i iz x x sign x x                                 (3.18) 

                                                      
2 1 1̂( )i i i iz sign x x                                                (3.19) 

where 
1 1

ˆ (0) (0)x x , 
2 2

ˆ (0) (0)x x  is a reasonable assumption since the robot initial joint 

positions and velocities are known in practice. The trajectory of the observer is 

understood in the Filippov sense. 
i  is the observer gain, which is to be decided. 

Define the state estimation errors as 
1 1 1̂x x x   , 

2 2 2
ˆx x x  , then the error 

dynamics are described by 

                                                  
1/2

1 2 1 1sign( )x x x x                                               (3.20) 

                                               2 1 2 2 1
ˆ( , , , , ) sign( )x F t x x x u x                                     (3.21) 

2

1 2 2
ˆ( , , , , )F t x x x u R  is defined as 

                      
1 2 2 1 2 1 2 0 2

ˆ ˆ( , , , , ) ( , , , ) ( , , , ) ( , , , )F t x x x u f t x x u f t x x u t x x u                    (3.22) 

This uncertainty item is bounded and describes the size of the uncertainty. It is given as 

                                                      1 2 2
ˆ( , , , , )i iF t x x x u f                                               (3.23) 

It is seen that 1 2 2
ˆ( , , , , )iF t x x x u  is configuration dependent. Proper control algorithms 

should be used to guarantee the validity of this inequality during experiments. After 

experimentation, this inequality should also be verified offline to check whether it is 

violated. We can select larger values for 
if
 . However, a too large 

if
  will result in poor 

performance, since the controllers and observers designed might be too conservative. 
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The observer gains in equation (3.18) and (3.19) should be chosen according to the 

following equations: 

                                                           
i if                                                                 (3.24) 

                                                           
2 ( )(1 )

1

i i i
i

i i i

f p

f p










 
 

 
                        (3.25) 

where (0,1)ip  . This second-order observer based on the super-twisting algorithm will 

drive states estimation error to converge in finite time 
iT . Let max( )iT T . Then after T , 

all the states will converge to the actual ones regardless of external disturbance or 

uncertainty. In this case, equation (3.21) may be rewritten as 

                      2 1 2 2 1

1 2 1 2 0 2 1

ˆ( , , , , ) sign( )

ˆ( , , , ) ( , , , ) ( , , , ) sign( ) 0

x F t x x x u x

f t x x u f t x x u t x x u x



 

 

    
             (3.26) 

When the state estimation errors converge to zero, 
2 2x̂ x , and 

                                            
0 2 1( , , , ) sign( ) 0t x x u x                                                (3.27) 

Due to the limited bandwidth of the plant, the actual control action cannot switch 

infinitely fast. The plant will have some low-pass effect toward this ideally infinitely fast 

switching item. This item is called the equivalent output injection, which contains 

important information about system uncertainty. The unknown input may also be 

reconstructed as  

                                         
1 2 1( , , , ) ( )i i eqt x x u sign x                                                   (3.28) 

which is obtained by passing 
1ix  through a low-pass filter. The filter may be represented 

as 

                                           1 1 1( ) ( ) ( )i i i i i eqT x x sign x                                                 (3.29) 

where 
iT is the filter time constant, a critical parameter that has to be selected wisely. 

There has to be some compromise between the smoothness of the reconstructed 

interaction force signal and the time lag caused by this low-pass filtering process. It has 

been proved that  

                                           1 1
0, / 0
lim ( ) ( )

i s i
i eq i eq

T T T
x x

 
                                                      (3.30) 

where 
sT is the sampling period of the experimental system. In practice, 

iT is selected as 

                                                               1s iT T                                                      (3.31) 
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The interaction force may be reconstructed as  

                             
1

1 1 1( ) ( ) ( )T

e eqF J x M x sign x                                           (3.32) 

Since the sampling time 
sT  of our experimental setup is 0.002 s, we can select 

0.01iT  s. The corresponding results of interaction force estimation are given in Figure 

3.20 – Figure 3.23. It is observed that the reconstructed interaction force is noisy and 

there is some chatter. However, the estimation drift is small, which means that the time 

lag induced by the low-pass filter is small. 

With 0.1iT  s, the corresponding force reconstruction results are given in Figure 

3.24 – Figure 3.27. It is seen that chattering is significantly reduced. However, there is 

clear drift in the force estimation. This is due to the compromise of the smoothness 

between the estimated force and the drift between the actual interaction force and the 

estimated one. It is seen from the Figure 3.25 that due to this drift, the force estimation 

error is not adequately small.  

Based on the above observation, by aiming for a value between 0.01iT  s and 

0.1iT  s, the value 0.05iT  s is selected. The force reconstruction results are given in 

Figure 3.28 – Figure 3.31. The smoothness and drift in the reconstructed force signal is 

between the corresponding ones in 0.01iT  s and 0.1iT  s. Still a worse performance is 

observed in the z direction than in the x direction. We will always observe a worse 

performance of the interaction force observation in the z direction. Another reason for 

this is that the force sensor mounting base is not adequately rigid. During interaction, the 

sliding between the cardboard and the force sensor may change the orientation of the 

force sensor. This may cause error in the interaction force estimation in the z direction. 

0                      5                       10                     15                      20                     25                    30 

                                                               Time (seconds)

Measured

Estimated

Estimated Interaction Force vs. Measured Interaction Force (x direction)

In
te

ra
ct

io
n
 F

o
rc

e 
(N

)

0

-15

-5

-10

-20

-25

5

10

 

Figure 3.20: Estimated force vs. measured force (x direction with SOSMO, Ti=0.01) 
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Figure 3.21: Force estimation error (x direction with SOSMO, Ti=0.01) 
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Figure 3.22: Estimated force vs. measured force (z direction with SOSMO, Ti=0.01) 

Interaction Force Estimation Error (z direction)

F
o
rc

e 
E

st
im

at
io

n
 E

rr
o
r 

(N
)

10

8

0

-2

-10

6

4

2

-4

-6

-8

0                      5                       10                     15                      20                     25                    30 

                                                               Time (seconds)  

Figure 3.23: Force estimation error (z direction with SOSMO, Ti=0.01) 
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Estimated Interaction Force vs. Measured Interaction Force (x direction)
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Figure 3.24: Estimated force vs. measured force (x direction with SOSMO, Ti=0.1) 
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Figure 3.25: Force estimation error (x direction with SOSMO, Ti=0.1) 
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Figure 3.26: Estimated force vs. measured force (z direction with SOSMO, Ti=0.1) 
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Interaction Force Estimation Error (z direction)
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Figure 3.27: Force estimation error (z direction with SOSMO, Ti=0.1) 
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Figure 3.28: Estimated force vs. measured force (x direction with SOSMO, Ti=0.05) 
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Figure 3.29: Force estimation error (x direction with SOSMO, Ti=0.05) 
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Estimated Interaction Force vs. Measured Interaction Force (z direction)
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Figure 3.30: Estimated force vs. measured force (z direction with SOSMO, Ti=0.05) 
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Figure 3.31: Force estimation error (z direction with SOSMO, Ti=0.05) 

 

3.1.4 Adaptive High-order Sliding Mode Observer (AHOSMO) based Interaction 

Force Estimation 

In the last subsection we noticed that there has to be some trade-off between the 

smoothness and the time lag of the reconstructed interaction force signal. This is due to 

the fact that we used a low-pass filter for the interaction force estimation based on the 

equivalent output injection concept. This trade-off may be eliminated if we use a high-

order sliding mode observer:  

2/3

1 2 2 1 1 1 1
ˆ ˆ ˆ ˆ( )i i i i i i ix x x x sign x x                                           (3.33) 
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1/2

2 1 2 1 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , ) ( )i i i i i i i ix f x x u x x sign x x z                     (3.34) 

                                            0 1 2
ˆ ˆˆ ( )i i i iz sign x x                                                                      (3.35) 

where ij are the corresponding sliding mode observer gains, to be selected properly, and 

iz is an auxiliary variable used for the reconstruction of the external interaction force. 

The state estimation error dynamics can be derived based on equation (3.33) – equation 

(3.35) by defining the state estimation error as 
1 1 1̂x x x   , 

2 2 2
ˆx x x  : 

                                                  
2/3

1 2 2 1 1 1 1
ˆ ˆ ˆ( )i i i i i i ix x x x sign x x                                           (3.36) 

                           
1/2

2 1 2 2 1 1 2 1 2
ˆ ˆ ˆ ˆ ˆ ˆ( , , , ) ( )i i i i i i i ix F x x x u x x sign x x z                              (3.37) 

                    1 2 2 1 2 1 2 1 2
ˆ ˆ( , , , ) ( , , , ) ( , , , ) ( , , , )i i

F x x x u f t x x u f t x x u t x x u                      (3.38) 

                                                    0 1 2
ˆ ˆˆ ( )i i i iz sign x x                                                              (3.39) 

When 
2 2

ˆ
i ix x , we have  

                                                                            
1 2

ˆ( , , , )i it x x u z                                                     (3.40) 

The interaction force could be estimated as 

                                                                 
1

1 1
ˆ( ) ( )T

eF J x M x z                                        (3.41) 

Note that the process of interaction force reconstruction does not require the filtering 

of discontinuous equivalent output injection item. This will make this approach more 

desirable than the one discussed in the previous subsection. However, it is difficult to 

determine the observer gains  . Only when the parameters are properly selected, the 

convergence can be guaranteed. Unfortunately, the determination of those parameters 

depends on the bound of uncertainty. When measurement noise if present in the system, 

it will make the determination of the gains even more difficult. Adaptive version of this 

algorithm is proposed below to guarantee the convergence without the knowledge of this 

uncertainty bound. It is given in equation (3.42) – equation (3.44): 

                            
2/3

1 2 2 1 1 1 1 2 1 1
ˆˆ ˆ ˆ ˆ ˆ( ) ( )i i i i i i i i i ix x x x sign x x k x x                                  (3.42) 

                    
1/2

2 1 2 1 1 2 1 2 1 1 2
ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , ) ( ) ( )i i i i i i i i i i ix f x x u x x sign x x k x x z                   (3.43) 

                                     0 1 2
ˆ ˆ ˆˆ ( )i i i iz sign x x                                                                              (3.44) 
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where 2
ˆ

i , 1
ˆ

i and 0
ˆ

i are gains to be determined to guarantee the convergence of the 

estimation error.  

The adaption laws for the gains are developed in this subsection. It is inspired by the 

work of [48] and [49]. However, the adaption laws derived there are for robust 

differentiators. In the present work, new adaption laws are designed for the super-

twisting-based unknown input observers.  

For the derivation simplicity, a matrix representation is used for the observer 

described by the following equations. 

                           
2/3

1 2 2 1 1 1 1 2 1 1
ˆˆ ˆ ˆ ˆ ˆ( ) ( )x x x x sign x x k x x                                             (3.45) 

                           
1/2

2 1 2 1 1 2 1 2 1 1 2
ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , ) ( ) ( )x f x x u x x sign x x k x x z                      (3.46) 

                             0 1 2
ˆ ˆ ˆˆ ( )z sign x x                                                                                        (3.47) 

The correspondence between these two representations is obvious and has been used in 

other work. 

The variables in equations (3.45) – equation (3.47) are the corresponding vectors of 

equation (3.42) – equation (3.44). Before deriving the adaption law, two new variables 

are defined: 

                                                                         
2 1 1̂s x x                                                                    (3.48) 

                                                                          1 1 2
ˆ ˆs x x                                                                   (3.49) 

There should be a parameter 
*

2  such that 

                                               
2/3*

1 2 2 1 1 1 1
ˆ ˆ ˆ( )q x x x x sign x x                                              (3.50) 

Comparing equation (3.45) with equation (3.50), the derivative of 
2s is  

                                        
2/3*

2 1 1 2 2 2 2 2 2
ˆˆ ( ) ( )s x x s sign s k s                                           (3.51) 

Let 
*

2 2 2
ˆ    and define the Lyapunov function 

2V : 

                                                                
2 2

2 2 2

1
( )

2
V s                                                                    (3.52) 

The time derivative of 
2V along the system trajectory is  
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2 2 2 2 2

2/3

2 2 2 2 2 2 2 2

2/32

2 2 2 2 2 2 2

ˆ( )

ˆ ( )

V s s

s s sign s k s

k s s s sign s

 

  

 

 

    
 

    
  

                                (3.53) 

Selecting the adaption law for 2̂  as 

                                                              
2/3

2 2 2 2
ˆ ( )s s sign s                                                           (3.54) 

we have 

                                                                  
2

2 2 2V k s                                                                           (3.55)                                           

In this manner the convergence of 
2s is concluded. Similarly, the derivative of 

1s may be 

represented as 

                                                                   1 1 2
ˆ ˆs x x                                                                          (3.56) 

There should be a parameter 
*

1  such that 

                                        
1/2* *

1 1 2 1 1 1 0 1

0

ˆ ˆ( , , ) ( ) ( )

t

q x f x x u s sign s sign s dt                        (3.57) 

By comparing equation (3.46) with equation (3.57), we have  

                    
1/2* *

1 1 2 1 1 1 1 0 0 1 1 1

0

ˆ ˆˆ ˆ ( ) ( ) ( ) ( )

t

s x x s sign s sign s dt k s                               (3.58) 

Defining 
*

1 1 1
ˆ    and 

*

0 0 0
ˆ    , we have  

                                    
1/2

1 1 1 1 0 1 1 1

0

( ) ( )

t

s s sign s sign s dt k s                                               (3.59) 

A new Lyapunov function 
1V  is chosen as 

                                                     
2 2 2

1 1 1 0

1
( )

2
V s                                                                         (3.60) 

The derivative of 
1V along the system trajectory is given by 

                         

1 1 1 1 1 0 0

1/2

1 1 1 1 0 1 1 1 1 1 0 0

0

1/22

1 1 1 1 1 1 1 0 0 1 1

0

ˆ ˆ

ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

t

t

V s s

s s sign s sign s dt k s

k s s s sign s s sign s dt

   

     

   

  

 
      

 

            





                   (3.61) 
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Selecting the adaption law for 1̂  and 0̂  as  

                                                       
1/2

1 1 1 1
ˆ ( )s s sign s                                                                    (3.62) 

                                                        0 1 1

0

ˆ ( )

t

s sign s dt                                                                        (3.63) 

we have  

                                                   
2

1 1 1V k s                                                                    (3.64) 

Thus the convergence of 
1s is concluded. 

The results of interaction force estimation of this AHOSMO-based algorithm are 

given in Figure 3.32 – Figure 3.35. It is seen that the performance is improved when 

compared with the SOSMO interaction force estimation algorithm. With regard to 

implementation, this approach is more applicable since it is able to reconstruct the 

interaction force without filtering. Also, it does not need the knowledge of the 

uncertainty bound. 
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Figure 3.32: Estimated force vs. measured force (x direction with AHOSMO) 
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Interaction Force Estimation Error (x direction)
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Figure 3.33: Force estimation error (x direction with AHOSMO) 
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Figure 3.34: Estimated force vs. measured force (z direction with AHOSMO) 

Interaction Force Estimation Error (z direction)
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Figure 3.35: Force estimation error (z direction with AHOSMO) 
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3.2 Summary 

In this chapter, the observer based interaction force reconstruction algorithms are 

proposed and compared. Due to the high cost and the unavoidable limitations with force 

sensors, the interaction force which is required in the impedance control algorithms is 

obtained using observers. Sliding mode-based interaction force observers show their 

effectiveness in interaction force reconstruction. The AHOSMO-based interaction force 

observer designed in this chapter is used in the following chapters to form an observer-

controller framework for impedance control. 
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Chapter 4: Impedance Control without Direct Force Sensing 

 

Mechanical impedance is defined as the interaction force over the corresponding 

velocity in a mechanical system. It can arise due to inertia, flexibility (stiffness) and 

damping in a mechanical system, and is analogous to the concept of electrical impedance 

(strictly, its inverse—admittance) resulting from the dynamic effects of resistors, 

inductors, and capacitors. To ensure safe interaction between a human body and a robot 

manipulator, during robot-assistive tasks, impedance control is developed and 

implemented for interaction control in the present project of homecare robotics. 

Impedance control is an indirect force control approach which seeks to control the 

impedance properties instead of the actual position or force in the manipulator-object 

interface during interaction. Since its introduction in the 1980s, it has been promoted for 

applications of dynamic interaction control because of its desirable properties in task 

execution and robustness.  

  To control the mechanical impedance of a task arbitrarily, the interaction force 

between the manipulator and the environment should be determined. The interaction 

force determined through observers (Chapter 3) is used here to form a controller-observer 

scheme to realize impedance control. This kind of impedance control scheme is called 

sensor-less impedance control since it does not need direct sensing of force. In order to 

show the advantage of impedance control over conventional position-based interaction 

control, a comparison between them is carried out as well in this chapter.  

An accuracy measure for impedance control is defined. Different impedance 

controllers are proposed, and the corresponding impedance control algorithms are 

compared with regard to their accuracy of impedance shaping. This chapter serves as the 

basis for the next chapter where linear-time-invariant teleoperation system is studied. The 

impedance control algorithms that are developed in this chapter will be used in the 

teleoperation control algorithms discussed in the next chapter. The finite-time 

convergence properties of the proposed impedance control algorithms will significantly 

simplify the analysis of the teleoperation system. 
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4.1 Introduction  

4.1.1 Impedance Control in Interaction Applications 

Mechanical impedance is defined as the transfer function, exerted force over the 

resulting velocity, as given by                                                                 

                                                           
( )

( )
( )

F s
Z s

V s
                                                          (4.1)  

where F is the applied force and V is the resulting velocity. In the case of a block of 

mass moving against frictional resistance, as shown in Figure 4.1, the mechanical 

impedance is  

                                                         
( )

( )
( )

F s
Z s Ms B

V s
                                               (4.2) 

where M and B are the mass of the mass block and viscous friction coefficient between 

the mass and the ground, respectively. 

M

M x

Bx
F

F

M

 

Figure 4.1: Original mechanical impedance of a mass block 

 

This impedance is called the original impedance of this mechanical system. It depends on 

the natural properties of the mass, and the smoothness of the surface on which it moves. 

The use of the original impedance might be inappropriate in some situations. For 

example, suppose that we use the mass block to interact with some environment, and the 

mass is too large. As a result, an excessive interaction force is expected during 

interaction. This justifies the need to tune the mechanical impedance to meet the task 

requirements. 

Mechanical impedance can be actively tuned by feedback control. The same example 

as before is taken now to show the process of actively tuning the mechanical impedance 

of a block of mass. Now, there is a propeller installed on the original block, as shown in 

Figure 4.2. It is able to exert a desired force to the block. The exerted force by the 

propeller is calculated by the feedback control law given in equation (4.3). It is a function 
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of the current states of the mass block. When the desired impedance characteristics at the 

mass block are known, the feedback control law will calculate the corresponding external 

force. The calculated external force will be delivered by the propeller. In this way, the 

mechanical impedance can be tuned actively to meet the specific requirements of the 

application, as given in equation (4.4).  

M

M x

Bx
F

F

M
PF

x

 

Figure 4.2: Actively controlled mechanical impedance 

                                         ( )PF s M x B x K x                                                     (4.3) 

                              
( )

( ) ( ) ( )
( )

F s K
Z s M M s B B

V s s
                                            (4.4) 

Generally, in robot interaction control, the objective is to control the interaction force 

and resulting motion to satisfy 

                                             
( )

( )

dz
d d

z

KF s
M s B

V s s
                                                        (4.5) 

y

z

zF

z

 

Figure 4.3: Impedance control in robot interaction applications 

The robot dynamics in the Cartesian space is given in equation (2.44), and is repeated 

here.  

          ( ) ( , ) ( ) ( ) ( ) ( )C C VC CC C eM X X C X X X F X X F X G X F X F                     (2.44) 
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When the robot manipulator is commanded to follow a desired Cartesian space trajectory, 

the dynamic equation describing the manipulator under impedance control could be 

described by equation (1.31), as repeated below 

                               ( ) ( ) ( )d d d d d d eM X X B X X K X X F                                   (1.31) 

where dM , dB , and dK are the desired inertia, damping and stiffness matrix, respectively, 

of the impedance model. 

If an accurate dynamic model is available, by the conventional inverse dynamics-

based control formulation, the actuator torque is given by 

       
1 1

( ) ( ) ( ) ( , ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )

T

C d C VC

T T

C d d d C d e

G q J q M X X C X X X F X X

J q M X M X K X D X J q M X M X I F



 

     

     

           (4.6) 

It is clear that, if we want to tune the impedance parameters of the manipulator 

arbitrarily, the interaction force eF  should be available. The intuitive way is to use a 

force sensor to sense the interaction force. However, there are some inherent limitations 

when using a force sensor as discussed in Chapter 3. Observer-based impedance control 

algorithms may be applied to overcome these limitations and achieve impedance control 

in the absence of force sensors.  

 

4.1.2 Incomplete Impedance Control without Force Sensors 

One way to avoid the force sensing requirement in impedance control is to select  

                                                        ( ) ( )d cM x M x                                                       (4.7) 

In this case, the corresponding coefficient relating to interaction force in equation 

(4.6) is zero, which means the interaction force information is not needed. The limitation 

of this approach is that the inertia matrix in the desired impedance model in equation 

(1.31) cannot be selected arbitrarily. This is why it is called incomplete impedance 

control. 

The desired inertia of the manipulator should always be selected to be equal to the 

original impedance of the manipulator. In case that the original impedance of the 

manipulator is not appropriate for the application, this approach cannot be applied.  

The desired impedance matrix is preferred to be diagonal. Another limitation with 

this approach is that the desired inertia component is not a diagonal matrix. The desired 

inertia component in this case is configuration dependent and time varying. Because the 
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matrix is non-diagonal, the impedances between various DOFs are coupled, which 

complicates the controller design and stability analysis.  

Finally, an accurate dynamic model is not available in practice. By selecting

( ) ( )d cM x M x , we actually cannot make the coefficient of interaction force in equation 

(4.6) to be zero. This will further complicate the subsequent controller design and system 

stability analysis. 

  When direct force sensing is unavailable, the resulting limitations of incomplete 

impedance control can be eliminated by using observers to estimate the interaction force. 

In that approach, the interaction force is observed using a dynamic model, the input, and 

the output. Conventional observers are used to reconstruct the system state, or the 

unknown input. Most observers converge to the actual value asymptotically. It is 

desirable if the system states or unknown inputs that are reconstructed by an observer 

will converge in finite time. AHOSMO, which is proposed in chapter 3, converges in 

finite time. It is used in this chapter for impedance control. 

 

4.2 Impedance Control Using AHOSMO-estimated Interaction Force 

4.2.1 Problem Formulation 

  As we can see from equation (3.6), the Cartesian space velocity and interaction 

force are required for impedance control in order to arbitrarily shape the mechanical 

impedance of the manipulator. They should be reconstructed individually or 

simultaneously by observers. Also, it is desirable that the estimated variables converge to 

the actual ones in finite time. Then the separation principle, which is only applicable in 

linear systems, is also valid. 

The Cartesian space velocity can be obtained by the differential kinematics, as a 

product of the Jacobian and the joint velocity. The joint space velocity can be obtained by 

differentiating the joint space position with respect to time directly or by using the robust 

differentiator proposed in Chapter 2. In Chapter 2 we find that robust differentiator-based 

velocity calculation outperforms direct differentiation. The proposed robust differentiator 

can also be applied to a Cartesian space dynamic model. In this way, the Cartesian space 

velocity can be obtained directly. 

In Chapter 3 we proposed different interaction force estimation algorithms. The force 

estimation accuracy of them was compared. AHOSMO showed best interaction force 
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estimation results. Fortunately, AHOSMO proposed in chapter 3 is able to estimate not 

only the interaction force but also the velocity. The velocity information is required in the 

impedance controllers proposed in this chapter. 

Now we have two approaches to estimate the Cartesian space velocity. The first one 

is to use the robust differentiator introduced in Chapter 2. It does not need a dynamic 

model of the manipulator. The second approach is to use AHOSMO. Since AHOSMO is 

able to reconstruct velocity and interaction force simultaneously, it will be used in this 

chapter for impedance control.  

 

4.2.2 Cartesian Space Reference Trajectory Selection 

To show the effectiveness of impedance control as an interaction control algorithm, a 

common Cartesian space trajectory is planned for the end-effector to follow. The end-

effector will interact with the obstacle by following this trajectory. The derivatives of this 

reference trajectory are directly used in the control algorithms. Hence, it is desirable to 

have smooth reference trajectories for both velocity and acceleration.  

In the reference trajectory selection, the specific application should also be 

considered. In our homecare project, the robot end-effector is commanded to follow the 

reference trajectory to come in contact with the human body. In addition, the initial 

Cartesian space position of the robot end-effector is ( 0.4691, 0.1193) . The interacted 

object is located at (0.08, 0.6) in the Cartesian space. After that, the end-effector is made 

to exert some periodic motion on the object. 

Taking all the factors discussed above into consideration, the reference trajectories 

are divided into two phases. The switching between the two phases happens at 2.0sect 

. In the first phase, the end-effector in the Cartesian space is commanded to move to 

some adjacent region of the designated position. When the end-effector is in the 

designated location, it is commanded to execute a desired periodical motion. Since there 

are six known conditions (initial position, initial velocity, initial acceleration, final 

position, final velocity, and final acceleration) in phase 1, a fifth-order polynomial is used 

to describe the trajectory in this phase.  

For the x direction, assume that  

                              5 4 3 2

5 4 3 2 1 4( ) x x x x x xx t a t a t a t a t a t a                                     (4.8) 
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with (0) 0.4691x   , (0) 0x  , (0) 0x  , (2) 0.1x  , (2) 0x  , (2) 0x  , which may be 

used to determine the polynomial coefficients. Then,  

                        
5 4 3( ) 0.1067 0.5335 0.7114 0.4691,x t t t t             0,2t              (4.9) 

Similarly, the reference trajectory for the z direction is determined as 

                        
5 4 3( ) 0.0651 0.3381 0.4759 0.1193,z t t t t           0,2t              (4.10) 

After determining the phase 1 polynomial, the velocity and acceleration at 2sect 

are known. There will be three known conditions for phase 2. A sinusoidal waveform is 

used to describe the periodic motion in both directions. However, there should be four 

known conditions in order to completely describe a sinusoidal signal. We can assign any 

of these four to a specified value in order to have a closed form solution. In the z 

direction, it is reasonable to set the amplitude of the sinusoidal wave to be 0.1. For the x 

direction, it is assumed to be the constant location 0.1.  

Then the sinusoidal waveforms for x and z directions, when  2.0,10t , may be 

determined as  

                                           ( ) 0.1x t                                                                              (4.11)         

                                           ( ) 0.1sin(1.272 1.8780) 0.5382z t t                                 (4.12) 

The designed Cartesian space trajectories are shown in Figure 4.4. The corresponding 

joint space position trajectories are shown in Figure 4.5. We can see from the joint space 

reference trajectories that the position of joint 2 will never be 0 or  , which means the 

manipulator will not be in the singularity configurations if the trajectory tracking 

performance is good. 
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Figure 4.4: Cartesian space reference trajectories (for interaction control) 
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Figure 4.5: Joint space reference trajectories (for interaction control) 

 

4.2.3 Interaction Control through Position Control  

Interaction force can be controlled through exclusive position control approaches. 

Then, interaction force is taken as disturbances. The positon control system will calculate 

the desired actuator torque so that the reference trajectory will be tracked. It may 

generate an excessive interaction force during interaction, which has to be avoided.  

If the interaction force has to be modulated, the mechanical properties of the 

environment have to be accurately known. However, the mechanical properties of the 
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environment are difficult to obtain. It is shown that an excessive interaction force may be 

present when pure position control strategies are used in interaction control. This will act 

as the control group for the following subsections, to show the advantage of impedance 

control when it is used as the interaction control strategy in the present project. 

The Cartesian space inverse dynamics-based trajectory tracking controller is used 

here. This control algorithm is given in equation (4.13). After simplification, the 

trajectory tracking problem can be described by equation (4.14). 

                      

1 ˆ( ) ( ) ( ) ( ) ( )

ˆ( , ) ( ) ( ) ( )

d D d P d

T

c v e

M q J q J q q X K X X K X X

C q q q F sign q F q G q J q F

         
 

      

                   (4.13)   

                                         ( ) ( ) 0d D d P dX X K X X K X X                                       (4.14)  

Here PK  and DK are the corresponding proportional and derivative gains.   

Note that in this case, the interaction control problem is transformed into a pure 

trajectory tracking scheme, which means the controller renders the manipulator infinitely 

stiff. In this case, the external interaction force is considered as the external disturbance 

to be rejected by the Cartesian space trajectory tracking algorithm.  

The selected values of PK  and DK  are given in equation (4.15). The choice of these 

two parameters is based on the selection of the desired impedance parameters in the 

following subsection. This will lay the foundation for performance comparison between 

pure position-based interaction control and explicit impedance control. 

                                    
0.2

0.4
DK

 
  
 

,  
25

50
PK

 
  
 

                                                   (4.15) 

The interaction forces in the two directions are shown in Figure 4.6 and Figure 4.7. 

We can see that this control scheme can lead to a large interaction force which is 

unacceptable in the present application. This is due to the large stiffness of this control 

scheme. Then, a small position tracking error will make the manipulator to command an 

extra control torque to drive the end-effector to the desired position regardless of the 

stiffness of the objects that the manipulator is interacting with.  
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Figure 4.6: Interaction force under pure position control (x direction) 
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Figure 4.7: Interaction force under pure position control (z direction) 

 

We can reduce this problem by using the control law given in equation (4.16).  Here, 

the interaction force is not included in the control law, which will make the manipulator 

have some compliance toward the interaction force. 

                      

1 ˆ( ) ( ) ( ) ( ) ( )

( , ) ( ) ( )

d D d P d

c v

M q J q J q q X K X X K X X

C q q q F sign q F q G q

         
 

     
                   (4.16) 

This controller will lead to the position tracking error given by 

                   
1( ) ( ) ( ) ( ) ( )T

d D d P d eX X K X X K X X J q M q J q F                              (4.17) 
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It is seen that unless the right-hand side of equation (4.17) is zero, the trajectory 

tracking error will not go to zero even though positive definite matrices PK and DK are 

selected. 

Strictly, this is a type of impedance control. We can rewrite equation (4.17) as 

equation (4.18). The inertia component, damping component, and the stiffness 

component corresponding to this type of impedance controllers are given by  

      

1 1

1

( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T

d D d

T

P d e

J q M q J q X X J q M q J q K X X

J q M q J q K X X F

   

 

  

   
                (4.18) 

                                               
1( ) ( ) ( ) ( )T

dM q J q M q J q                                                            (4.19) 

                                               
1( ) ( ) ( ) ( )T

d DB q J q M q J q K                                                        (4.20) 

                                              
1( ) ( ) ( ) ( )T

d PK q J q M q J q K                                                        (4.21) 

Here ( )dM q , ( )dB q , and ( )dK q are configuration-dependent since they are functions of 

the manipulator’s present position. These matrices are not always diagonal. Impedance 

parameters in each DOF cannot be assigned independently. This is not desirable since 

each DOF has a different requirement regarding the impedance parameters to be 

assigned. This justifies the need for explicit impedance control schemes. 

 

4.2.4 Accuracy of Impedance Control  

The accuracy of impedance control corresponds to the extent to which the ideal 

impedance model is realized. This is discussed here particularly to compare the 

performance of different impedance control algorithms that are proposed in the following 

subsections. The desired impedance model is described by  

                          ( ) ( ) ( )d d d d d d eM X X B X X K X X F                                      (1.31) 

Let dX X X  . Then equation (1.31) can be rewritten as 

                                                   0d d d eM X B X K X F                                         (4.22) 

Define the following matrix variable 

                                                   
e d d d eI M X B X K X F                                        (4.23) 

If (0,0)eI diag , then the desired impedance is realized. 
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However, since a force sensor is not used in the present project, eF  in the right-hand 

side of equation (4.23) will be replaced with the estimated interaction force ˆ
eF . Thus, a 

modified version of equation (4.23) may be given by 

                                                            ˆ ˆ
e d d d eI M X B X K X F                                                (4.24) 

We have noticed that the estimated interaction forces have some residue with respect 

to the measured ones. This is unavoidable no matter what type of system identification 

algorithm is used to identify the dynamic model of the manipulator. Hence, the estimated 

interaction force may be represented as 

                                                 ˆ
e e FF F                                                                       (4.25) 

where F  is the estimation error in the interaction force. Then equation (1.31) may be 

rewritten as 

                                ˆ( ) ( ) ( )d d d d d d e FM X X B X X K X X F                                   (4.26) 

F may be represented as a function of the manipulator’s current Cartesian space 

configuration, as   

                                     ( ) ( ) ( )C CF M X X F X X G X                                           (4.27) 

Substituting equation (4.27) into equation (4.26), we notice that the desired 

impedance model will not be realized, but the uncertain items are bounded.  

As we have noticed in Chapter 3, the interaction force estimation with AHOSMO can 

make the estimation error very small. We may treat the estimation error as the sensor 

noise since they are in the same level. Hence, we will ignore the estimation error in the 

analysis of impedance control accuracy. This assumption is made in all the algorithms in 

this chapter, and it makes the comparison of the proposed impedance control algorithms 

more meaningful. In fact, because neither a sensor nor necessary filtering of force 

sensing is required, the assumption made here is reasonable.  

The past work, such as [109], did not consider the force estimation error. Also, the 

force estimation results were not verified with real measurements using force sensors. 

The estimated interaction force was taken as accurate and directly used in the impedance 

controller. 

In the following subsections, different impedance control algorithms are proposed, 

and the accuracy of those impedance algorithms is compared.  
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The state-space representation of the Cartesian space dynamics of a robot 

manipulator is given here as it will be used in the impedance control algorithms. From 

equation (2.44), we have 

                         
C( , ) ( , ) ( ) ( ) ( )VC CC CH X X C X X X F X X F X G X                          (4.28) 

Then equation (2.44) may be rewritten as 

                                                        ( ) ( , ) ( )C eM X X H X X F X F                                        (4.29) 

Let 2

1X X R  . The state-space representation is given as 

                                   

1 2

1 1 1

2 1 1 2 1 1

1

( ) ( , ) ( ) ( )C C C e

X X

X M X H X X M X F M X F

Y X



  



   



                      (4.30) 

As discussed previously, only the position information is available to us, and the 

velocity information should be observed. Even though the controller is derived in the 

Cartesian space, it is eventually transformed to determine the joint torque command to be 

sent to the actuator in each joint. 

 

4.2.5 Inverse Dynamics-based Impedance Controller 

According to the Cartesian space dynamic model and the desired impedance model, 

the torque command to be sent to the joint actuator is described by  

1 1

1 1 1 1

1 1

ˆ( ) ( ) ( ) ( , ) ( ) ( )

( ) ( ) ( ) ( ) ( ( ) ) ( ( ) )

( ) ( ) ( ) ( ) ( )

T

d e c v

d d d d d d d

J q M q J q M F C q q q F sign q F q G q

M q J q X M q J q M B J q q X M K X q X

M q J q M q J q J q q

  

   

 

         

      

 

       (4.31) 

where ( )X q is the Cartesian space position of the manipulator end-effector, calculated by 

the forward kinematics equation. Joint space AHOSMO is used here to estimate the joint 

velocity and interaction force simultaneously.  

The desired impedance parameters are selected as  

                               
1

0.5
dM

 
  
 

, 
0.2

0.2
dB

 
  
 

, 
2.5

2.5
dK

 
  
 

                               (4.32) 

The actual Cartesian and joint space trajectories are given in Figure 4.8 and Figure 

4.9, respectively. We can see that joint 2 did not pass through the singularity points. Thus, 

the controller is implemented properly, without needing a robust singularity handling 

technique.  



 

130 

 

Cartesian Space Trajectory (Position)

P
o

si
ti

o
n

 (
m

)

0.8

-0.2

0.6

0.4

0.2

0

-0.4

-0.6 0                      5                       10                     15                      20                     25                    30 

                                                               Time (seconds)

x

z

 

Figure 4.8: Cartesian space trajectories (with inverse dynamics-based impedance control 

algorithms) 
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Figure 4.9: Joint space trajectories (with inverse dynamics-based impedance control 

algorithms) 

 

The estimated interaction forces in the x and z directions are given in Figure 4.10 

and Figure 4.11, respectively. The x  direction interaction force estimated by AHOSMO 

appears to be noisy. Even a positive interaction force was present which is not possible. 

The reason may be that the controller used here directly uses the nominal dynamic 

parameters.  

Compared with the pure position control-based interaction control, impedance control 

can guarantee compliance during interaction so that no excessive interaction force will be 
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present between the end-effector and the environment. This is an advantage of the 

impedance controller applied in the present project. The joint actuator torque is given in 

Figure 4.12. 
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Figure 4.10: Interaction force (x direction with inverse dynamics-based impedance 

control algorithms) 

Interaction Force under Impedance Control (z direction)

In
te

ra
ct

io
n
 F

o
rc

e 
(N

)

0.3

0.25

0.2

0.15

0.1

0.05

0

-0.05

-0.1

-0.15

-0.2
0                      5                       10                     15                      20                     25                    30 

                                                               Time (seconds)
 

Figure 4.11: Interaction force (z direction with inverse dynamics-based impedance 

control algorithms) 
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Figure 4.12: Joint torque trajectories (with inverse dynamics-based impedance control 

algorithms) 

The impedance control accuracy of this algorithm is analyzed now. The Cartesian 

space acceleration that is required in the accuracy validation process is reconstructed by 

using 

                                                              ( ) ( )X J q q J q q                                                              (2.32) 

The joint acceleration may be calculated by using the robust differentiator introduced 

in Section 2.5.2. Also, the Cartesian space results may be calculated by directly applying 

the HOSMO in Section 2.5.2 to the manipulator Cartesian space dynamic model.  

The impedance control accuracy is given in Figure 4.13. It is seen that the impedance 

control accuracy is not satisfactory due to the unavoidable uncertainty in the dynamic 

model. 
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Figure 4.13: Impedance control accuracy (with inverse dynamics-based impedance 

control algorithms) 
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4.2.6 First-order Sliding Mode Controller-based Impedance Control  

In the previous section, we have noticed that impedance control accuracy is not 

satisfactory. The robustness of the impedance controller could not be guaranteed due to 

measurement noise or disturbance in the plant. Sliding mode control is good at dealing 

with those uncertainties, to enhance the performance.   

A sliding surface is defined as 

                                                    
1

0

ˆ( )

t

ds M I d                                                        (4.33) 

The finite-time convergent AHOSMO proposed in Chapter 3 is used here for the 

estimation of the external interaction force and velocity. For representation simplicity, 

AHOSMO about the Cartesian space model is given in equation (4.34), even though the 

joint-space representation is adequate for experimental implementation. 

                     

2/3

1 2 2 1 1 1 1 2 1 1

1 1

2 1 1 1 2

1/2

1 1 2 1 2 1 1 1

0 1 2

ˆˆ ˆ ˆ ˆ ˆ( ) ( )

ˆ ˆ( ) ( ) ( , )

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )

ˆˆ ˆ ˆ( )

C C

X X X X sign X X K X X

X M X F M X H X X

X X sign X X K X X Z

Z sign X X









 

      

 

      

 

                           (4.34) 

Comparing this with the original system dynamics described in equation (4.30), the state 

estimation error dynamics can be described by 

                      

2/3

1 2 2 1 1 1 1 2 1 1

1 1 1

2 1 1 2 1 1 2 1

1/2

1 1 2 1 2 1 1 1

ˆ ˆ ˆ( ) ( )

ˆ( ) ( , ) ( ) ( , ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )

C C C e

X X X X sign X X K X X

X M X H X X M X H X X M X F

X X sign X X K X X Z





  

      

   

      

                    (4.35) 

When the state estimation errors converge to zero, we have 

                                                                     1
ˆ ˆ( )e CF M X Z                                                             (4.36) 

Since the observed states are used, the sliding surface in equation (4.24) is redefined 

as 

                         d 2 d 2 d 1
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )e d d d eI M X X B X X K X X F                                  (4.37) 

where 2X̂ , 1X̂ and 2X̂  are obtained from the AHOSMO proposed in Chapter 3. 
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The sliding surface should be a function of the system states. In the state-space 

representation of the robot manipulator, the state variables should be position and 

velocity. Thus acceleration is not a state in the state-space representation. The sliding 

variable is represented in the integral form given by  

                                                    
1 1

2 0

ˆ( ) 0

t

d

s
s M I d

s
  

    
 

                                               (4.38)                                                        

The derivative of this sliding surface is given as 

             
1 1 1 1

2 2 1
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )d d d d d d d d d es M I X X M B X X M K X X M F                       (4.39)      

Substituting the equation for the external interaction force observer into equation (4.39), 

we have 

         

1/2
1 1

1 1 1 2 1 1 2 1 2

1 1 1

1 1 1 2 1

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( , ) ( )

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )

C C

d d d d d d d d e

s M X F M X H X X X X sign X X

K X X Z X M B X X M K X X M F

  

  

     

        

        (4.40) 

The control law, which drives the system state onto this manifold, is given by 

   

1/2

1 2 1 1 1 2 1 2 1 1 1 1
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1 1 1 2

1 1

1 1 1 1
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 

      

   

     

          (4.41) 

                                                  
1

2

g

g

g

k
K

k

 
  
 

                                                                       (4.42) 

where 
1 0gk  , 

2 0gk   are parameters to be tuned to guarantee the stabilizing feature of 

this controller. 

This control law will lead to the representation of s as 

                                                              ( )gs K sign s                                                                     (4.43) 

Define 

                                                             
min 1 2min( , )g gk k k                                                     (4.44) 

The finite time convergence of this controller may be proved by using the Lyapunov 

function given by 

                                                                  
2

2

1 1

2 2

TV s s s                                                              (4.45) 

Taking the time derivative of V along the trajectories of the system, we have 
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                                                                ( )T T

gV s s s K sign s      

                                                                    
1 1 1 2 2 2

1 1 2 2

( ) ( )g g

g g

k s sign s k s sign s

k s k s

    

  
 

                                                                   min 1 2 min 1
( )k s s k s      

In view of real vector norms given in equation (4.46), and using it in the derivatives of 

the Lyapunov function, we have equation (4.47) for the derivative of the Lyapunov 

function. 

                                                            
2 1

s s                                                                      (4.46) 

                                                               min min1 2
V k s k s                                                     (4.47) 

Equation (4.47) can be further simplified into 

                                                                   
1/2

min2V k V                                                                (4.48)      

Stability of the plant under the proposed impedance controller is easy to verify. The 

finite-time convergence is further proved here, which is an important feature of the 

proposed controller.    

Integrating both sides of equation (4.48) over time interval 0, t , we get 

                                                             
1/2 1/2

min( ) 2 (0)V t k t V                                                 (4.49) 

Thus, ( )V t reaches zero in finite time rT  bounded by 

                                                                     

1/2

min

2 (0)
r

V
T

k
                                                               (4.50) 

Note that if we want faster convergence, we should increase the value of mink . 

However, the side-effect with this increase is the increased magnitude of the 

discontinuous term in the control input described by equation (4.41). Chattering in this 

case will be more problematic. This is the tradeoff between the convergence rate and the 

side-effect of chattering. The impedance control results are shown in Figure 4.14 – 

Figure 4.16.  
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In
te

ra
ct

io
n
 F

o
rc

e 
(N

)

0.5

0

-0.5

-1

-1.5

-2

-2.5

-3

-3.5

-4
0                      5                       10                     15                      20                     25                    30 

                                                               Time (seconds)  

Figure 4.14: Interaction Force (x direction with SMC-based impedance control 

algorithms) 

Joint Torque under Impedance Control

Joint 1

Joint 2

Jo
in

t 
T

o
rq

u
e 

(N
m

)

4

2

0

-2

-14

-6

-8

-10

-4

-12

0                      5                       10                     15                      20                     25                    30 

                                                               Time (seconds)  

Figure 4.15: Joint torque trajectories (with SMC-based impedance control algorithms) 
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Figure 4.16: Impedance control accuracy (with SMC-based impedance control 

algorithms) 
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From these figures we can conclude that the sliding mode controller-based 

impedance control algorithm can slightly improve the impedance control accuracy. The 

application of AHOSMO given here results in a low-cost impedance control setup. High 

order sliding mode controllers may be used in order to further enhance the accuracy of 

impedance control.  

 

4.3 Summary 

In this chapter, impedance control algorithms using the observer-reconstructed 

interaction force are presented. In interaction control, impedance control as an indirect 

interaction control approach has shown advantages over pure motion control. Two 

impedance control algorithms are discussed and compared in terms of the accuracy of 

impedance control. The sliding mode control-based impedance control algorithm 

outperforms the inverse dynamics-based impedance controller. 
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Chapter 5: Applications in Bilateral Teleoperation 

 

  The present homecare robotics project is devoted to the development of a homecare 

system that can provide service and assistance to the elderly and the disabled people in a 

home environment. The homecare robots can operate in the autonomous mode when the 

task is routine and not highly professional. When the task is critical that needs 

professional assistance, then the intervention of a human operator with the necessary 

expertise is required. In such a situation, the homecare robots will operate in the 

teleoperation mode.  

The impedance control algorithm that does not use force sensor, as proposed in the 

previous chapter is used when the robots operate in the autonomous mode. An available 

sensor network is used to command the robot manipulator to go to a desired Cartesian 

space position. Impedance control is used to ensure safe interaction between the 

manipulator and the human body.  

In the present chapter the second mode, the teleoperation mode is briefly discussed. 

When the manipulator is operated in the teleoperation mode, the master side and the 

slave side both are impedance controlled for different purposes. The slave side 

impedance control will be used to ensure compliant interaction between the robot 

manipulator and the objects. Transparency of a teleoperation system is defined as the 

matching of the operator sensed impedance at the master side and the actual impedance 

of the environment. Mater side impedance control will be used to enhance the 

transparency of the teleoperation system. When both sides are under impedance control, 

each of them may be described as a linear decoupled system, which significantly 

simplifies the analysis of the teleoperation system.  

This chapter considers two applications of sensorless impedance control algorithms 

in teleoperation. The first application in section 5.1 concerns bilateral impedance control 

with task-dependent impedance parameters. The desired impedance parameters are 

selected based on the environmental properties. Stability should be a requirement in 

selecting these impedance parameters. This application is an improvement over [7]. In 

the present thesis the desired impedance parameters are selected based on a less 

conservative criterion as introduced in [106].  
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In section 5.2, the second application is presented. It formulates the impedance 

controlled teleoperation system in a LPV framework. Robust controllers are designed to 

guarantee robust performance under uncertainties of human operator and environment. 

The second application is an extension to the work proposed in [110]–[112] to include 

impedance parameter uncertainties of human operator into the LPV framework. 

 

5.1 Bilateral Impedance Control with Task-dependent Impedance Parameters 

Both master side and slave side are impedance controlled. The desired impedance 

parameters for the two sides are selected according to the task at hand. 

The desired impedance parameters selection for the slave side is task-dependent. If 

the interacted object is stiff, the desired stiffness of the robot manipulator should be more 

compliant to avoid large interaction forces. This justifies the need to estimate the 

impedance parameters of the environment. An online algorithm is used to estimate the 

environmental impedance parameters.  

Selection of the desired impedance parameters is done under the stability constraint 

described by the Bounded Impedance Absolute Stability (BIAS) criterion. A data base is 

built off-line for the selection of the desired impedance parameters under the stability 

constraint. 

The teleoperation system in this subsection has two channels. It is usually called the 

position-force architecture. In the operation of the teleoperation system, the master side 

trajectory is sent to the slave side, while the slave side interaction force is sent back to the 

master side. When sensorless impedance control algorithms are used here, the estimated 

master side trajectory is sent to the slave side, while the AHOSMO estimated interaction 

force in the slave side is sent back to the master side. 

 The overall system architecture of this task-dependent bilateral impedance control 

scheme is given in Figure 5.1. Each component of the teleoperation system will be 

modeled. Finally, numerical simulation results will be given to show the effectiveness of 

the algorithm proposed in this subsection. 
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Figure 5.1: Task-dependent bilateral impedance control scheme 

 

5.1.1 System Modeling 

As indicated in Figure 1.9, the teleoperation system has five parts. The model for 

each part is presented in this subsection.  
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Figure 1.9: A teleoperation system 

 

5.1.1.1 Human Operator Modeling 

The dynamics of a human operator is described by the second-order linear-time-

varying (LTI) equation 

                                                              *

h h h hF F Z V                                                     (5.1) 

where *

hF is the force generated by the human muscle after it has received the command 

from the operator’s central nervous system. This force cannot be determined explicitly. 

However, research has been done to indicate that the EMG signals of different locations 

of the human operator’s arm could be used to estimate *

hF . Here h
h h h

K
Z M s B

s
   is the 

human operator impedance in the Laplace form, with hM , hB , hK denoting the inertia, 

damping and stiffness components, respectively; hV is the velocity of human operator arm; 

and hF  is the interaction force between the human operator and the master system. Since 

only a numerical simulation is performed, we assume that all these parameters are known. 
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5.1.1.2 Master Side Impedance Control 

Conventionally, the master side has a haptic device which is able to provide force 

feedback to the human operator. Haptic devices are delicately designed light-weight 

robot manipulators. In the present project, the Phantom
TM

 Premium haptic device is used, 

which allows the user to directly command the interaction force, which would be felt by 

the human operator.  

Unfortunately, the dynamic model of haptic device was embedded in the device 

driver and the calibration information was hidden from users. One way is to identify the 

dynamic model of the haptic device through experimentation. Instead, we will use the 

same slave side manipulator dynamic model, in simulation, to represent the master side 

dynamics in order to verify our algorithm. In the Cartesian space, the dynamic model of 

the master device may be described by 

           ( ) ( , ) ( , ) ( )m m m m m m m m m m m m h mM X X C X X X F X X G X F F                           (5.2) 

where mX is the position of the master device in the Cartesian space; ( )m mM X is the 

inertia matrix, which is positive definite; ( , )m m mC X X  is the Cartesian space 

Centrifugal/Coriolis matrix; ( , )m m mF X X  is the Cartesian space matrix related to friction; 

( )m mG X  is the Cartesian space matrix related to gravity; and mF  is the control input. 

Inverse dynamics-based controller given in Section 4.2.5 is used to shape the desired 

impedance in the master side. After using the impedance controller, the dynamics of the 

master side can be described by the desired impedance model  

                     2( ) ( ) ( ) ( ) ( )dm m dm m dm m h eM X t B X t K X t F t F t T                                    (5.3) 

where dmM , dmB and dmK are the master side desired inertia matrix, damping matrix and 

stiffness matrix, respectively; and 2T is the latency when the interaction force is fed back 

to the master side from slave side. In the frequency domain, equation (5.3) may be 

rewritten using the Laplace transformation, as 

                                    2( ) T sdm
dm dm m h e

K
M s B V F F e

s

                                               (5.4) 

5.1.1.3 Slave Side Impedance Control 

Sliding mode-based impedance controller proposed in Section 4.2.6 is applied in the 

slave side. Under ideal impedance control, the slave side dynamic model can be 

described by its impedance model given below.                                                    
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 

1 1

1

( ) ( ) ( ) ( )

( ) ( )

ds s m ds s m

dm s m e

M X t X t T B X t X t T

K X t X t T F

          

   
                            (5.5) 

where dsM , dsB and dsK are the slave side desired inertia matrix, damping matrix and 

stiffness matrix, respectively; and 1T is the latency when the master side position 

information is sent to the slave side. In the s-domain, equation (5.5) may be rewritten as 

                                          1( )( )T sds
ds ds s m e

K
M s B V V e F

s

                                         (5.6) 

 

5.1.1.4 Environmental Impedance Estimation 

The desired impedance model of the master system and the slave system can be 

achieved in finite time. The desired impedance parameters are selected based on two 

aspects. The first one is the environmental impedance, which is estimated by the 

algorithm proposed in this subsection.  

The environmental impedance is important for tuning of the desired impedance 

parameters on both sides. An online estimation algorithm should be applied to have real-

time updating of the identified environmental impedance parameters.  

Since the teleoperated object is a human body, the inertia parameter is not as 

important as the stiffness and damping properties in the environmental impedance. This 

may be the reason why most teleoperation schemes with environmental impedance 

estimation only consider the stiffness component while ignoring the other two. We will 

consider the damping and stiffness properties here. Then the interaction force can be 

described by  

                                   ˆ e T

e e s e s s s

e

B
F B X K X X X

K
 

 
      

 
                                (5.7) 

where ˆ
eF is the measured interaction force between the slave manipulator and the 

environment, and eB and eK are the estimated damping and stiffness components, 

respectively, of the environmental impedance. It is reformulated into the linear regression 

form. Recursive least squares estimation is applied to obtain the online estimation of 

these two parameters. The RLS algorithm is given by: 

                                                  1 1
ˆ ˆ ˆˆ T

n n n e n nL F    
   
 

                                            (5.8) 
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                                                  1

1 1(1 )T

n n n n n nL P P   

                                                (5.9) 

                                                    
1[ ]T

n n n nP I L P                                                        (5.10) 

where n is the time stamp, nL is the update gain, and nP is the covariance matrix. 

The initial values of the estimated parameters are set to be some reasonable ones 

within the range of typical human body impedance. Online estimation of the environment 

impedance is used in the tuning of the desired impedance parameters, as discussed in the 

subsequent subsections.  

 

5.1.2 Selection of Desired Impedance Parameters  

The desired impedance parameters of the master and slave sides should be tuned by 

taking stability and performance into consideration. With regard to performance, to have 

compliant interaction with the teleoperated object, the desired stiffness of the slave side, 

should be inversely proportional to the estimated environmental stiffness. For the master 

side, to enhance the transparency of the teleoperation system, the desired stiffness of the 

master system should be proportional to the estimated environmental stiffness.  

Once the stiffness components in the desired impedance of the master and slave sides 

have been selected, the other two components are selected in the following manner. For 

the master side, the desired damping component is selected as the estimated 

environmental damping to enhance the transparency. In the slave side, to avoid the 

setting phase of an underdamped second-order system, the desired damping and mass 

component are selected to satisfy 

                                                           2ds ds dsB K M                                                 (5.11) 

This provides a critically damped system. Based on this relationship, we have two free 

variables to select, namely dmM  and dsB , which can be adjusted. They are constrained by 

the robust stability of the teleoperation system under time delay. Bounded Impedance 

Absolute Stability (BIAS) criterion can be used to tune these two free parameters to 

guarantee robust stability of the system under time delay.  

The concept of BIAS is briefly reviewed here. Details are found in [106]. The 

network representation of the teleoperation system is shown in Figure 5.2. 
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Figure 5.2: Network representation of a teleoperation system 

The lumped master-communication block-slave system can be described by the 

hybrid representation: 

                                                  
11 12

21 22

h m

s e

F h h X

X h h F

    
     

     
                                            (5.12) 

In BIAS, the power variables are transformed into wave variables as follows:  

                                              
11 12

21 22

h m h m

e s e s

F V F Vs s

F V F Vs s

     
    

     
                                     (5.13) 

                 
11 12 11 12 11 12 1

21 22 21 22 21 22

1 0 1 0 1 0
( )( )

0 1 0 1 0 1

s s h h h h

s s h h h h

          
            

          
              (5.14) 

It is known that the passivity of a two-port network is determined by the maximum 

singular value of the scattering matrix; thus, 

                                                      ( ( ) ( )) 1TS S j S j  

                                      (5.15) 

where S is the scattering matrix with its elements defined in equation (5.15). 

In the scattering domain, the positive realness property is  transformed into a unit 

disk, as shown below in Figure 5.3 [106]. 

j

( )G j

j

( )S j

 

Figure 5.3: Transformation between power variables and scattering variables 
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Following the same procedure, the human operator and the environmental dynamics 

can be represented in the scattering domain. We need to determine the values of dmM  and

dsB  so that the termination of the one-port network with the two-port network will result 

in a one-port network with scattering coefficient located within a unit circle.  

The location of the impedance circles of human operator in the scattering domain are 

determined by the parameters of the two-port network. Some parameters will result in a 

passive one-port network when observed from the environment side. Since the 

parameters of the two-port network are functions of the desired free impedance 

parameters dmM  and dsB . Finally, it turns out that the desired impedance parameters 

should be tuned under robust stability constraints.  

 

Figure 5.4: Network representation of a teleoperation system in scattering domain 

Wave variables are defined as 

                                   1
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h mF bV
a

b


 , 2

2

e sF bV
a

b


                                                     (5.16)  
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e sF bV
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
                                                     (5.17)  

where 1a and 2a are input wave variables from the master side and slave side, 

respectively; and 1b  and 2b are output wave variables from the master side and slave side, 

respectively.  

Three possible cases are shown in Figure 5.5 – Figure 5.7. 
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Figure 5.5: Potentially unstable in scattering domain 
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Figure 5.6: Potentially unstable in scattering domain (overlap) 

 

Figure 5.7: Absolutely stable in scattering domain 

The desired impedance parameters should be selected so that the input passive 

impedance circles are located as shown in Figure 5.7 or in the shaded area of Figure 5.6 

so that robust stability can be guaranteed. A database of the desired impedance 

parameters can be formed offline. Desired impedance parameters can be retrieved from 

the database so that robust stability is guaranteed and the teleoperation system 

transparency is optimized.  

 

5.1.3 Transparency Analysis of the Teleoperation System 

The hybrid matrix in this teleoperation scheme is given as 

                                                     ( )
h m

s e

F V
H s

V F

   
   

   
                                                               (5.18) 
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      
             

  
 

                    (5.19) 

With reference to the ideal hybrid matrix under time delay, we notice that the ideal 

transparency is not achieved. However, ideal force tracking is achieved. As discussed in 

[113], imperfect transparency leads to robust stability. This is a tradeoff between robust 

stability and performance (transparency). 
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5.1.4 Numerical Simulation Results 

Numerical simulation results are given in Figure 5.8 – Figure 5.11. We observe that 

both the position tracking and force tracking of the proposed algorithm are satisfactory. 
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Figure 5.8: Force tracking performance 
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Figure 5.9: Force tracking performance (local zoomed view) 
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Figure 5.10: Position tracking performance 
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Figure 5.11: Position tracking performance (local zoomed view) 

 

5.1.5 Conclusion & Discussion 

In this subsection, a bilateral impedance controller with varying desired impedance 

parameters is proposed. In order to enhance the performance, the desired impedance 

parameters for the master side and the slave side are selected based on different 

principles.  Also, the selected desired impedance parameters should satisfy the stability 

constraint. A less conservative approach to determine the robust stability of the 

teleoperation system—BIAS was used to form the constraint in the selection of the 

desired impedance parameters. Numerical results show the effectiveness of the proposed 

teleoperation algorithms. 

 

5.2 Robust Performance by Gain-scheduling Control 

In a teleoperation system, the operator and environment are commonly assumed to be 

linear time invariant (LTI), which is not entirely practical. The dynamic model of a 

human operator and environment are nonlinear in general. Linearization about an 

operating point of a nonlinear system is a common strategy in the design and analysis of 

a nonlinear system.  

The impedance parameters of the operator and environment are time-varying. 

Adaptive control algorithms have been proposed to remove this limitation by estimating 

the impedance of the human operator and environment as it varies. After linearizing the 

nonlinear dynamic model, and the time-varying impedance parameters estimated, a group 

of controllers may be used for the estimated impedance parameters. If an impedance 
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parameter changes, the corresponding controller is adapted accordingly. However, 

stability cannot be guaranteed in general during the adaptation of a controller. The 

situation will become more serious when there is time delay in the communication 

channel.  

Gain-scheduling control for linear time-varying system has found its application in 

this situation. A gain-scheduling controller has been used in [111] in a teleoperation 

system. The time-varying parameters in the linear teleoperation system are the force and 

position scale between the master and slave sides.  The work in [112] discusses the gain-

scheduling controller design about the time-varying parameters in the environmental 

impedance. However, in [112], the impedance of the human operator is assumed to be 

linear and time invariant. This is a limitation of the approach. Also, the impedance 

identification approach proposed there had a slow convergence rate. The present section 

of this thesis seeks to remove the limitations of [112]. Time-varying properties of the 

human operator impedance parameters are considered in the design of the gain-

scheduling controller.  

 

5.2.1 Preliminaries for Gain-scheduling Control of LPV Systems 

Gain-scheduling control is widely used in the control of time-varying systems. Also, 

it is used in the control of a linearized nonlinear system around a time-varying operating 

point as the operating conditions change. If the operating points are known in advance, 

controllers can be designed separately for each point. When the operating point changes, 

then the applied controller has to be switched. Stability during the phase of controller 

switching cannot be guaranteed in general. This problem was solved in [114][115] by a 

LMI based approach where robust stability during operating point switch is guaranteed. 

A special case of linear time-varying system is reviewed here. The detailed proof is 

found in [114] and [115]. 

  A Linear Parameter-Varying (LPV) system can be described by the following state 

space representation: 

                                              ( ) ( ( )) ( ) ( ( )) ( )x t A t x t B t w t                                        (5.20) 

                                              ( ) ( ( )) ( ) ( ( )) ( )z t C t x t D t w t                                        (5.21) 

where x is the state variable vector, z is the output vector, and w is the input vector. 

State-space matrices are dependent on a time-varying vector ( )t in an affine manner.  It 
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can represent a linear time-varying system with varying parameters. An LPV system is 

called polytopic if its state-space matrices ( ( ))A t , ( ( ))B t , ( ( ))C t , and ( ( ))D t  satisfy: 

(i) The parameters range over a fixed polytope; 

                                                 1 2( ) rt Co w w w                                    (5.22) 

where  is the convex hull spanned by the extreme values of the time varying 

parameters. 

(ii)  ( ( ))A t , ( ( ))B t , ( ( ))C t , ( ( ))D t depend on ( )t in an affine manner. 

An LPV system having quadratic performance means that the systems is 

asymptotically stable, and the 2L norm of the system satisfies 

                                                              2

2

sup
z






                                                     (5.23) 

The linear fractional transformation representation of an LPV system is given in 

Figure 5.12.  
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Figure 5.12: Linear fractional transformation representation of a general system 

Here ( ( ))P t is the generalized plant including the weighting functions and ( ( ))K t is the 

controller. The state-space representation of the LPV generalized plant is given by 

                                       

1 2

1 11 12

2 21

( ) ( ( )) ( ( )) ( )

( ) ( ( )) ( ( )) ( )

( ) 0 ( )

x t A t B t B x t

z t C t D t D t

y t C D u t

 

  

     
     


     
          

                          (5.24) 

We wish to find a time varying controller that guarantees quadratic H performance 

from w  to z . It has the state-space representation: 

                                        
( ( )) ( ( ))( ) ( )

( ( )) ( ( ))( ) ( )

k kk k

k k

A t B tx t x t

C t D tu t y t

 

 

    
     

    
                                 (5.25) 
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An LPV system has quadratic H performance if there exists a single matrix 0X  such 

that  

                                            0

T T

T T

A X XA XB C

B X I D

C D I





 
 

  
  

                                            (5.26) 

This transfers the robust performance problem into a feasibility problem of an LMI.  

A polytopic LPV system having quadratic H performance is equivalent to the 

existence of a single matrix 0X  such that equation (5.26) is satisfied for each vertex 

formed by the time varying parameter vector. This gives a sufficient condition for the 

existence of the controller (5.25). Theorem 2 given here is frequently used for the 

controller reconstruction and provides a sufficient and necessary condition [114][115]. 

 

Theorem 2: For a polytopic LPV system with r vertices, the sufficient and necessary 

condition for the existence of gain scheduling controllers boils down to the existence of 

two n n matrix R and S which satisfy the following 2 1r  LMIs: 

                                 

1 1

1 11

1 11

0 0
0

0 0

T T
T i i i i

R R

i i

T T

i i

A R RA RC B
N N

C R I D
I I

B D I





 
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     
     

                      (5.27) 

                                  

1 1

1 11

1 11

0 0
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T T
T i i i i

S ST T

i i

i i

A S SA SB C
N N

B S I D
I I

C D I
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

 
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     
     

                       (5.28)      

                                                                0
R I

I S

 
 

 
                                                   (5.29) 

RN and SN are the null spaces of 
2 12

T TB D   and  2 21C D , respectively. ( 1,2,3,i r ) 

The controller can be obtained by the following reconstruction steps: 

(i) Singular value decomposition (SVD) 

                                                       TMN I RS                                                          (5.30)     

(ii) Solve a linear equation with variable clX  
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                                                     2 1clX                                                                 (5.31) 

   with 1
0T

S I

N

 
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 
, 2

0 T

I R

M

 
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 
 

(iii) Find the controller for each corresponding vertex which is indicated as  

                                                      
ki ki

ki ki

A B

C D

 
 
 

 satisfying  

                                      0

T T

ki cl cl ki cl ki ki

T T

ki cl ki

ki ki

A X X A X B C

B X I D

C D I




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 

  
  

                                        (5.32) 

Once the controller for each operating point is found, when the operating point 

changes, the corresponding gain-scheduling controller is applied for the new operating 

point within the convex hull. This can be done by simple interpolation, and the 

coefficient of interpolation for the operating point with respect to the convex hull can be 

directly transformed into the controller state-space matrix. Stability during switching 

between different controllers is guaranteed since the controller for each vertex is 

designed under the same set of LMI variables. The reconstruction process of the gain-

scheduling controller is done in Matlab, and the derived controllers are then implemented 

in Simulink.  

In related literature considering time varying parameters, the variation of the 

parameters is assumed to be infinitely fast. This is not practical and the designed 

controller is conservative. To obtain less conservative controllers and better performance, 

the rates of variation of the parameters should be considered in the controller design 

using the corresponding Matlab command. 

 

5.2.2 Human Operator Modelling 

As discussed in [116], the human operator model can be obtained practically through 

experimentation. The mathematical model is just an approximation of the experimental 

results. The human operator arm is modeled as a second-order mass-spring-damper 

system. In [117], it is pointed out that if the human operator muscle contraction level is 

low, and the teleoperation system is operating in a low-frequency range, the mass 
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component can be ignored. Only the stiffness and damping components are used to 

describing the dynamic model of human operator as given by 

                                                     
op m op m op mf f b x k x                                               (5.33) 

where 
opf is the intended force generated by the human central nervous system; 

opb and 

opk are damping and stiffness parameters, respectively, of the operator. These two 

parameters are assumed to be time varying, and are considered in the robust gain-

scheduling controller design, which is given next. Also, mf is the interaction force 

between the master side manipulator and the human operator. 

 

5.2.3 Environment Modeling 

The environment can be modeled by 

                                                   dist s env s env sf f b x k x                                               (5.34) 

Here sf is the interaction force between the slave side manipulator and the environment; 

and envb and envk are damping and stiffness, respectively, of the environment. They are 

time-varying and should be considered in the gain scheduling controller design. Also, 

distf is the disturbance force due to the estimation error in the environmental impedance 

parameter. 

 

5.2.4 Modeling of Master Slave System  

For the master side, we assume that ideal impedance control is applied. The desired 

impedance equation is used to describe the dynamics of the master side as  

                                                m m m m m m m mf u M x B x K x                                        (5.35) 

Similarly, for the slave side under ideal impedance control, the dynamics may be 

described by  

                                                 s s s s s s s su f M x B x K x                                            (5.36) 

Here, mM , mB  , and mK  are the desired impedance parameters of the master side; sM , 

sB  , and sK  are the desired impedance parameters of the slave side; and mu and su are 
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the control efforts of the master side and slave side actuators, respectively. They are 

determined by the controller proposed here. In this subsection we use constant desired 

impedance parameters. 

The performance of a teleoperation system can be evaluated by the tracking error of 

the position and force in the two sides. In the present application, the control effort 

generated by the actuators in the master and slave sides is also monitored in order not to 

trigger the actuators saturation. The weighing functions are applied at the performance 

regulation channels. 

The overall system is represented in Figure 5.13 following the conventional 

formulation of robust control. 
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Figure 5.13: Linear fractional transformation representation of a teleoperation system 
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  The state-space representation is as follows: 

                                               

1 2

1 11 12

2 21 22

X A B B X

z C D D w

y C D D u

     
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     
         

                                          (5.37)  

                                                   
k k kk

k k

A B XX

C D yu

     
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   
                                             (5.38) 
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  Considering the bandwidth of the human operator during teleoperation, the 

weighting functions for position tracking and force tracking are selected as low-pass 

filters, while the weighting functions for the master and slave side actuators are selected 

to be inversely propositional to the reciprocal of actuator saturation value. The values 

selected here are the same as those in [111]. They are given below. 

                                          
20

0.1
pW

s



, 

0.04

0.1
fW

s



, 

1

50
m sW W                           (5.39)

 

Define ( )p p m se W x x   and ( )f f m se W f f  , then we have 

                                          0.1 20( )p p m se e x x                                                          (5.40) 

                                         0.1 0.04( )f f m se e f f                                                       (5.41) 

The state of the generalized plant is 

                                              
T

m m s s p fX x x x x e e                                      (5.42) 

The time varying parameters form the vector 

                                            ( )
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op op env envt b k b k                                                (5.43) 
 

            

0 0 0 0

1 0 0 0 0 0

0 0 0 0( )

0 0 1 0 0 0

0 20 0 20 0.1 0

0.04 0.04 0.04 0.04 0 0.1

m op m op

m m

s env s env

s s

op op env env

B b K k

M M

B b K k
A

M M

b k b k



  
  
 
 
 

   
 
 
 
  
 
      

        (5.44)
 

 

                             1

1
0

0 0

1
0( )

0 0

0 0

0.04 0.04

m

s

M

B
M



 
 
 
 
 
 
 
 
 
 
 
 

, 2

1
0

0 0

1
0( )

0 0

0 0

0 0

m

s

M

B
M



 
 
 
 
 
 
 
 
 
 
 
 

                                   (5.45) 
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, 22( ) 0D        (5.47) 

  We can find that each matrix given above is affine in ( )t , and the system is 

formulated as an LPV one with time-varying parameters ( )t . However, as discussed 

previously, in order to control an LPV plant by a gain-scheduling controller, the 

following three conditions should be satisfied: 

(1) 22( ) 0D    (Satisfied in this formulation) 

(2) 2( )B  , 2( )C  , 12( )D  , 21( )D  are independent of ( )t  (Not satisfied in this 

formulation) 

(3) 2( ( ), ( ))A B  are quadratically stabilizable over 2( )B  and 2( ( ), ( ))A C  are 

quadratically detectable over 2( )C  (To be determined by checking the LMI 

feasibility). 

  We see that condition (2) is not satisfied. To resolve this problem, filters are applied 

about the control signal u and the measured signal y [111]. This is shown in Figure 5.14. 
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Figure 5.14: Linear fractional transformation representation of a teleoperation system 

with filters 

  Suppose that the state-space representations of the filters are: 

Filter for u : 
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                                                        u u u u

u u

X A X B u

u C X

 


                                                   (5.48) 

Filter for y : 

                                                       
y y y y

y y

X A X B y

y C X
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
                                                   (5.49) 

Absorbing the filter state-space realizations into the original system, we have  
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By checking each component, we notice that the system with filters satisfies the 

requirement for a gain-scheduling controller. The filter designed here should take the 

signal bandwidth into consideration. We use first order low-pass filters here, with cut-off 

frequency 20 rad/s . 

In application of a gain-scheduling controller to the LPV teleoperation system, each 

component in the time varying vector has two bounds (the lower bound and the upper 

bound of human operator and environment impedance parameters). Therefore, there are 

up to 2
4
=16 combinations. The teleoperation system is expressed as a convex 

combination of polytopes since the parameter dependence of the teleoperation system is 

affine. 

 

5.2.5 Numerical Simulation Results 

The parameters given in equation (5.53) are used in the following numerical 

simulation. 

                                               ( ) 0.6cos( ) 0.15sin( )
2
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t
f t t


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                                                  3, 8opb  ,  500, 550opk                                          (5.54) 

                                                20, 25envb  ,  100, 150envk                                       (5.55) 

                                                 
20.072 0.5 5m sZ Z s s                                            (5.56) 

  The disturbance signal distf is assumed to be Gaussian white noise as shown in 

Figure 5.15. During simulation, the impedance parameters of the operator and the 

environment are selected as time-varying with the impedance range given in equation 

(5.54) and equation (5.55). The force tracking error and position tracking error are shown 

in Figure 5.16 and Figure 5.17, respectively. 

From these results we observe that the position tracking performance and the force 

tracking performance are satisfactory when the operator and environment impedances are 

varying within the convex hull. Also, we see that the system is stable during the 

switching between the gain scheduling controllers.   
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Figure 5.15: Signal for environment disturbance with identification error 

 

 

Figure 5.16: Position tracking error 
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Figure 5.17: Force tracking error 

 

5.2.6 Summary 

  A teleoperation system with both time-varying operator impedance and 

environmental impedance is analyzed in this subsection. The transparency of the 

teleoperation system is optimized. The control efforts by the manipulator actuators are 

also considered as the parameters to be monitored.  

The teleoperation system is formulated as an LPV system with time-varying 

parameters, which are the impedances of human operator and environment. To design a 

gain-scheduling controller, filters are applied to the control signal and to the measured 

output of the generalized plant. The teleoperation system with filters is shown to satisfy 

the solvability condition and a controller is designed based on gain scheduling.  

The gain-scheduling controller designed here is conservative since it assumes the 

variation of the time-varying parameters to be infinitely fast. A less conservative 

controller that takes the rate of change of the parameters into consideration is preferred. 

Also, time delay should be considered in the controller design. 
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Chapter 6: Conclusions and Future Work 

 

This thesis analyzed the challenges in the design of a homecare robotic system. The 

work focused on the development of effective strategies for the control of robot 

interaction when a homecare robot manipulator assists a care-receiver. Two modes of 

operation of a homecare robot were studied—autonomous operation and haptic 

teleoperation. Modeling and model identification (experimental modeling) were 

investigated because a robot model was needed in the developed control schemes. In 

particular, interaction control with the estimation of the interaction force in the absence 

of direct force sensing was studied and associated methodologies were developed. 

Impedance control in the teleoperation mode was investigated and methodologies were 

developed. The developed techniques were implemented in a homecare system and 

evaluated using both simulation and experimentation.  

In the present chapter, a summary of the research activities of the present thesis is 

given and conclusions are made on the overall investigation. The key research 

contributions and the importance of them are summarized. Finally, the limitations of the 

present research are pointed out. Possible future work that may make further 

contributions in the present area and may improve the performance of a homecare robotic 

system are suggested. 

 

6.1 Conclusions 

In this thesis dynamic control algorithms that would ensure the safe interaction 

between a robot manipulator and a care-receiver in a homecare robotic system were 

investigated, designed, analyzed, and evaluated in a systematic manner. Impedance 

control as a strategy of indirect force control was used for interaction control. It could 

avoid exertion of excessive interaction force on human body during a care-giving task. 

The developed impedance control algorithm showed important advantages when 

compared with a position-based interaction control algorithm. 

As a prerequisite for the subsequent development, the manipulator used in the present 

homecare project was described. In order to conveniently verify the developed 

methodologies, the hardware system and software system of the laboratory robot were 

redesigned based on Matlab xPc Target technology. Two out of the four joints of the 
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manipulator were locked to convert it into a two-DOF system for convenience of the 

experimental studies. Specifically, the resulting planar two-DOF manipulator 

significantly simplified the dynamic control problem.  

The manufacturer of the robotic system provided dynamic parameters of the robot, 

which were tested using inverse dynamics-based joint space trajectory tracking 

experiments, and were found to be inaccurate. The dynamic parameters from the 

manufacturer were derived from CAD models before fabrication, and errors are 

unavoidable during the manufacturing process. Since an accurate dynamic model was 

required for the subsequent investigation, dynamic model identification using 

experiments was carried out. 

Interaction force was found to be a key parameter in representing the state of 

interaction between a robot manipulator and a manipulated object (care-receiving 

human). Many limitations and drawbacks were observed in using a force sensor for direct 

measurement of the interaction force. These included high cost, difficulty of mounting 

the sensor a the interface of the end-effector and manipulated object, variance of working 

conditions, and reduction of the mechanical bandwidth of the original system due to the 

compliant structure of the force sensor. Consequently, the interaction force was estimated 

using an adaptive third-order sliding mode observer. The estimated interaction force was 

compared with the measurements from a force sensor. The effectiveness of the adaptive 

third-order sliding mode observer in interaction force estimation was verified in this 

manner.  

The interaction force estimated by using the observers was applied in the impedance 

control algorithm to form an observer-controller framework. It was found that the sliding 

mode-based impedance control algorithm outperformed the inverse dynamics-based 

impedance control algorithm. In particular, the accuracy of impedance control was 

improved when compared with the inverse dynamics based impedance control algorithm. 

The proposed impedance control algorithm was used in two teleoperation 

applications. The first one was teleoperation through bilateral impedance control with 

task-dependent desired impedance parameters. The master side impedance control was 

needed for transparency enhancement. The slave side impedance control was important 

for safe interaction between the robot manipulator and the work environment (care-

receiver).  



 

162 

 

The second application of the sliding mode-based impedance control algorithms was 

in the controller synthesis with robust performance under uncertainties in the human 

operator and the environment. To include these uncertainties, the overall teleoperation 

system was formulated into an LPV system. Transparency was optimized by finding a 

feasible controller for the LPV system. The effectiveness of impedance control 

algorithms in teleoperation tasks was verified by numerical simulation.  

 

6.2 Contributions 

The primary contribution of the present investigation was the development and 

evaluation of a robust impedance control algorithm based on identification (AHOSMO). 

The developed algorithm could ensure finite-time realization of the desired impedance 

behavior. This greatly simplified the analysis of the teleoperation system with bilateral 

impedance control, since the separation principle in a linear system played a role here. In 

summary, the following contributions were made in this thesis 

(i) The dynamic model of a reconfigured robot manipulator was identified using 

different dynamic model identification algorithms. In order to obtain accurate 

estimation of velocity and acceleration, adaptive sliding mode based 

differentiators were used. Off-line dynamic parameter identification was 

proposed. However, in the validation process, the accuracy was found to be 

unsatisfactory. On-line experimental identification of dynamic parameters 

indicated some uncertainty in the friction parameters. A Neural Network-based 

torque compensator was proposed to resolve this problem. In the validation 

phase, the Neural Network-based compensator together with the off-line 

identified dynamic parameters showed better performance in terms of accuracy. 

(ii) An adaptive high-order sliding mode observer (AHOSMO) was developed to 

simultaneously estimate the interaction force and the states of the robot. This was 

shown to eliminate the unavoidable drawbacks and limitations of using a force 

sensor. The observed interaction force results were compared with the force 

sensor measurements and the validity was illustrated. The estimated states would 

be useful in the controller design. 

(iii) A sliding mode-based impedance control algorithm was proposed and developed. 

It showed better impedance control accuracy when compared with an inverse 
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dynamics-based impedance control algorithm. The observed interaction force was 

used in the impedance control algorithm.  

(iv) The proposed impedance controllers were implemented in a teleoperation system. 

Improvements were made to two teleoperation applications that had been 

proposed. Numerical simulations were given to show the improvements in the 

teleoperation systems. 

(v) A new setup for dynamic control of a robot manipulator was developed. It was 

based on Matlab/Simulink xPC Target platform. This platform takes advantage of 

the numerous functions and interfaces of Matlab/Simulink. It will facilitate the 

development and validation of different control algorithms. 

 

6.3 Significance of the Work 

The algorithms proposed in the current work may be directly used in a robotic 

homecare system. It will ensure safe interaction between the manipulator and the care-

receiver. What is more, the developed impedance control strategy, which does not use 

direct force sensing, would find applications in other fields as well.  

There are applications where mounting a force sensor in the end-effector is 

impossible. For example, in tele-surgery the surgical robot interacts with the organs of 

the patient, and the interaction force should be carefully monitored. However, due to 

sanitary, mechanical, and other issues, mounting a force sensor at the surgical interface 

would not be feasible. Currently in this field, ultrasound and medical imaging 

technologies are applied to monitor the tissue deformation which will eventually lead to 

estimation of the interaction force. The research presented in this thesis may be used to 

estimate the interaction force without needing expensive medical imaging equipment.  

In conclusion, this thesis proposed a low-cost impedance control strategy which 

could be used by other interaction control tasks of robot manipulators. 

 

6.4 Limitations and Suggested Future Work  

Several assumptions were made in this thesis, which in fact correspond to the 

limitations of the work. Some further work should be done to release some of the 

assumptions and to make it more broadly acceptable. Some of these are listed below. 
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(i) A more complex and realistic friction model may be applied instead of the 

Coulomb and viscous friction models. Identification of and compensation for 

robot friction is a complex problem. An improved friction model would provide a 

more accurate description and quantification of the frictional torque and force in a 

robot. 

(ii) More advanced learning algorithms other than a simple Neural Network may be 

applied to compensate for uncertainty in the dynamic model of the manipulator.  

(iii) Once the dynamic model of a manipulator is identified, extended Kalman filter 

(EKF) may be applied to reconstruct the joint velocity and acceleration. The 

velocity and acceleration based on EKF could be compared with the results 

obtained from sliding mode-based observer/differentiators to determine which 

approach is more effective.  

(iv) The HOSMO used for simultaneous estimation of system states and interaction 

force is based on the homogeneity theory of differential equations. The proof of 

its adaptive version is based on the assumption that the gains are available, even 

though they are unknown. A uniform framework to design the HOSMO will make 

the proof of convergence more concise and elegant. It is likely this can be done in 

a framework of homogeneity theory of differential equations. A systematic way 

to propose a Lyapunov function for a high-order sliding mode system is still a 

difficult problem. 

(v) The sliding mode controller that was used in Chapter 4 for impedance control is a 

first-order one. Chattering is unavoidable in the system. High-order sliding mode 

controller for impedance control would improve the performance. However, the 

proof of convergence of system dynamics to the sliding surface will be more 

complex. This may be investigated in a framework of homogeneity theory. This 

will unify the problems of controller and observer design.  

(vi) In the present work, the application of the impedance control algorithms in 

teleoperation were only verified in numerical simulation, due to the absence of an 

accurate dynamic model for the haptic device. Also, the assumptions made about 

human operators and the environments are not quite practical, and accurate 

dynamic models of them can be very complex. More general methodologies of 
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stability analysis and controller synthesis may be investigated to extend the 

applicability of the developed algorithms. 
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