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Abstract

PReach, developed at the University of British Columbia and Intel, is a state
of the art parallel model checker. However, like many model checkers, it faces
reliability problems. A single crash causes the loss of all progress in checking
a model. For computations that can take days, restarting from the beginning
is a problem. To solve this, we have developed PReachDB, a modified
version of PReach. PReachDB maintains the state of the model checking
computation even across program crashes by storing key data structures in
a database. PReachDB uses the Mnesia distributed database management
system for Erlang. PReachDB replicates data to allow the continuation
of the computation after a node failure. This project provides a proof-of-
concept implementation with performance measurements.
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Preface

This thesis is an original, unpublished, independent work by the author,
Valerie Lynn Ishida. Some of the LATEX for the algorithms of this document
is adapted from [5].

PReachDB was written independently by myself. PReachDB was written
starting from the code of the UBC PReach model checker written by Brad
Bingham and Flavio dePaula as a course project for CPSC 538E: Parallel
Computing, Spring 2009.

Brad Bingham, Jesse Bingham, Flavio M. de Paula, John Erickson, Gau-
rav Singh and Mark Reitblatt presented the Intel PReach model checker, a
rewrite of UBC PReach at Intel, in [5].
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Chapter 1

Introduction

1.1 Motivation

Explicit-state model checking is a graph search problem on a finite state
space, checking invariants at each reachable state. An example of when
model checking is used is in the verification of cache coherency protocols,
where an example invariant is that no two processors have the same cache
line in the exclusive state at the same time. The model defines a set of
possible states which correspond to configurations of the cache system at
any point in time. In the example, a state could represent which cache lines
are resident on which processors and in what cache state those lines are in.

Large state spaces can be described succinctly using high level state
transition languages like Murphi [11], but the verification of the state space
still requires visiting each reachable state. This exploration pushes the limits
of both traditional and distributed computation. Distributed model checkers
to date have not focused on handling faults, and thus tend to be problematic
when used at an industrial scale.

PReach, a system for parallel reachability written in Erlang [3], imple-
ments the Stern and Dill distributed model checking algorithm [35] and has
been successfully used for the verification of large models (billions of states),
but it has no features to continue computation in the event of a system fail-
ure. If a failure occurs, the computation is ceased with no way to resume
using previously computed values. Likewise, if a compute node loses con-
nectivity, its workload is not dynamically shifted to an online node, and the
system cannot make progress.

This document presents PReachDB, a new model checker based on PReach
with the key features of computation restart on program crash and data
replication with hot-swappable nodes, to address the reliability problems of
a distributed model checker. The goal of this project is to determine if using
database disk and replication techniques for distributed model checker fault
recovery are feasible.

1



1.2. Model Checking

1.2 Model Checking

Model checking is the automatic verification of concurrent systems. A con-
current system has multiple units working simultaneously. Concurrent sys-
tems tend to have a protocol meant to guide the system towards the goal
or desired functionality. Verifying that a protocol matches the desired func-
tionality can be stated as a computational problem, where a model of the
system is described in a high level language and the desired functionality is
described in a specification language. A verifier takes the model and specifi-
cation files as input, and outputs whether the model meets the specification.
We will shortly discuss what kinds of properties can be specified, but first
an example.

1.2.1 Hardware Designs and Specifications

An example of applied model checking is the verification of hardware de-
signs. Modern digital designs consist of many concurrently working units.
In the creation of hardware designs, modularity is essential; and interface
design between modules is considered very difficult. Different modules may
be connected to different clocks, and thus beat to different drums, or be
connected to no clock at all. Protocol bugs found after fabrication can be
extremely costly. Hardware specifications lay out properties about the item
being checked that, if true, should guarantee that the item performs as de-
sired. Note that it is possible for the specification to incorrectly describe
what “working” means to the designer. For this reason, hardware manufac-
turers use the test-redesign cycle frequently.

1.2.2 Safety Properties, Invariants, Assertions

Specifications describe what the model must do to guarantee correctness.
Correctness includes both safety and liveness properties. A safety property
in a specification states that nothing bad happens, more specifically, that
the system never reaches a failure state, such as computing a wrong answer,
granting two processes simultaneous access to an exclusive resource, etc.
Liveness properties state that something good happens; in other words that
the system eventually reaches a good state. An example of a liveness prop-
erty is responsiveness every request is eventually acknowledged. PReachDB
verifies safety properties.

A safety property is invariant if it holds for all reachable states. When
using a model checker, the user is usually interested in whether safety prop-

2



1.3. Overview

erties are invariant. One way invariant checking is written in model checking
languages is to use assertions, which are program statements that cause an
error if the condition being asserted is false.

1.2.3 Explicit and Symbolic Model Checking

Finite-state systems can be algorithmically checked as a graph search prob-
lem. The set of all states reachable by following any path starting from
the set of initial states is called the reachable state space. In computing
the reachable state space, we build the set of reachable states by iteratively
adding states to the set of states known to be reachable from the initial
states. A state transition is a change in the model state. A state transition
in the model is represented in the graph as a path from one state to another.
A state reachable by a state transition from another state is a successor of
that state. The computation is finished either when a reachable state is
found to violate the specification or if we have examined all reachable states
and found all safety properties invariant.

A different approach uses the implicit graph and symbolic logic to decide
whether states that violate safety properties are reachable. Ordered Binary
Decision Diagrams (OBDDs) [8, 9] are often used to represent the set of
reachable states as a boolean function. For protocol verification, explicit-
state model checking often outperforms symbolic model checking [20]. For
this document, we focus on explicit-state model checking nearly exclusively.

1.3 Overview

Our goal in this project is to implement a distributed, reliable system for
use with model checking with the specific features of disk persisted data and
computation resumption in the event of a system error using a database
management system (DBMS) designed for use with functional languages.
The research goals are to show that the system can recover in the event of
the system going down and to collect measurements on state exploration,
memory usage, message queue sizes, and machine time.

The main contribution of this project is a proof-of-concept implementa-
tion of a distributed, crash-tolerant model checker capable of computation
resumption or continuation on the event of a node failure. Resumption is
possible in the case of system crash when computation state is stored on
disk. Continuation is possible through the swap in of a hot-spare node for a
disconnected node and through the use of data replication among the node

3
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pool. In addition we consider the theoretical likelihood of computation com-
pletion for this system compared with that of a traditional, fault-intolerant
model checker.

This work does not address methods for making this system’s runtime
performance compare well with that of a traditional, fault-intolerant model
checker. This work is also a proof-of-concept, and some features are not
robustly implemented. For example, hot-spare swap-in is implemented for
a single node failure only; the system could easily be engineered further to
allow additional hot-spares, and the free use of hot-spares is assumed for the
theoretical failure handling model.

1.4 Organization

This document is organized as follows. Related work in explicit-state model
checking and in fault tolerance for distributed computing is discussed in
Chapter 2. Chapter 3 contains full details of the PReachDB model checking
system, including fault handling procedures. Chapter 4 shows the results
of the system responding to failures and contains the performance analysis.
Conclusions and future work are discussed in Chapter 5.

4



Chapter 2

Related Work

This chapter will discuss previous work relevant to the understanding of a
distributed explicit-state model checker using disk and aiming to provide
some fault tolerance. It will cover explicit-state model checkers and work
done on the two orthogonal features of using disk and distributing the com-
putation. It will also cover basic fault tolerance measures in distributed
computing.

2.1 Explicit-State Model Checking

For concurrent systems with a finite number of protocol states, one method
of verifying the safety properties is to enumerate all reachable protocol
states. We can do this as a graph search problem, of which Breadth First
Search (BFS) and Depth First Search (DFS) are algorithmic solutions.

Definition 1. A state graph is a triple [21]:

A = (Q,S,∆)

where Q is the set of states.
S is the set of start states, S ⊂ Q.
∆ is the set of transition rules ri : Q→ Q ∪ {Error}.

Reachable states include S and all states reachable from any application
sequence of the transition rules from S.

In practice, model checkers implement either Breadth First Search or
Depth First Search and keep a table of protocol states visited in random-
access memory. Two well known model checkers are Murphi [11] and SPIN
[26]. This document focuses on Murphi because both PReach and PReachDB
use Murphi description files and both are geared towards the Murphi way
of working.

5
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2.1.1 Murphi

Murphi is both a description language and a verification system. The de-
scription language is a high-level programming language that can describe a
concurrent system with protocol state type and variable declarations, tran-
sition rules and invariant descriptions. The Murphi compiler generates an
executable C++ program from a Murphi description file. The C++ pro-
gram enumerates all reachable states and checks the safety properties at
each reachable state.

PReach uses the Murphi language for describing the model to be checked,
but PReach parallelizes the verification process.

2.1.2 State Explosion

Time and memory usage are two major concerns when verifying a model.
With the basic graph search approach, these both increase linearly with
increasing reachable state space size. However, reachable state space sizes
tend to increase much more rapidly than linearly with the model description
file. This is known as the state explosion problem [21]. As explicit-state
model checkers are used to verify larger and larger models, a point is reached
at which the set of reachable states no longer fits in a table in memory.

Several techniques have been developed to reduce memory usage, which
is doubly beneficial in that it allows us to check larger models that would not
otherwise fit in memory and it decreases the amount of time the machine
spends reading and writing memory. One method is to store in the visited
state table only a hash signature of the state rather than the full state
descriptor. This is known as hash compaction [37]. Improvements such as
using ordered hashing [2] have been examined in [34]. Using the hash instead
of the full descriptor may cause a problem if there is a hash collision. If
a newly generated state hashes to the same signature as a state we have
already visited, the state and all its descendant states may not be visited.
If all protocol error states go undetected, then the verifier is said to produce
false positives. Hash compaction provides bounds on the probability of
missing even one state. In practice, the probability of missing a state can
be made very small, and reduced even further by repeating the verification
with a different random-seed for producing the hash function [37].

Another method is to create a table of bits. The bits are initially zero.
When a state is inserted, two (or more) hash values for the state are gener-
ated and the corresponding bits are set to one. A lookup on the table works
in the same fashion, and the state is considered present if the appropriate
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bits are set to one. This method is called bitstate hashing [18, 19]. Bitstate
hashing provides an average for the percentage of reachable states visited,
but not a bound on omission of an error state.

Another approach exploits the inherent symmetry in typical protocols.
Cache coherence and network protocols tend to be designed so that any
agent may perform actions (such as enter a critical section), where which
agent is acting may not matter. In [21] the authors add a data type called a
scalarset to Murphi that allows for pruning of symmetric state graphs when
the only difference between state descriptors is a permutation of a scalarset.
This requires the users to change their Murphi description files, but if the
user requires verification over a highly symmetric protocol, a great deal of
memory and runtime savings can be achieved.

2.2 Disk-Based Explicit-State Model Checking

In the previous section we discussed memory saving approaches to handling
state explosion. In this and the next section we discuss approaches of aux-
illary storage. This section covers the technique of utilizing hard disks to
store state spaces larger than fit in RAM, and the next section covers dis-
tributed techniques utilizing networks of workstations or other aggregrates
of machines.

2.2.1 Disk-based Murphi

In [33] the authors investigate how to use magnetic disks for storage of the
reachable state hash table while keeping the overhead low. Using magnetic
disk allows the state table to be of greater size than when using RAM
memory alone. The difficult consideration is that the state table is normally
randomly accessed, which if on disk would take orders of magnitudes longer.

The key insight in [33] is that disk accesses do not have to be randomly
accessed, incurring the seek time penalty with each access. Disk accesses
can be grouped and performed using a linear read of the entire disk state
queue. The authors also report that hash compaction performs extremely
well in reducing runtime for algorithms using disks.

The basic disk-based algorithm shown in Figure 1 of [33] is reproduced
in Figure 2.1. For this algorithm, two state tables are used, one contained
in memory and one on disk. The in memory table is accessed as normal,
while disk accesses happen sequentially in CheckTable(). Unlike the usual
breadth first search algorithm, successor states are not checked for presence
in the disk table or added to the FIFO work queue right away. Instead, for

7



2.2. Disk-Based Explicit-State Model Checking

each level of the breadth first seach, successors of all states in the queue are
generated and stored in the memory table. Once the queue becomes empty,
new states (those in the memory table and not in the disk table) are added
to both the disk table and the work queue. Determining which states are
new is done by linearly reading the disk table and removing from the in
memory table any previously stored states. In addition to per breadth first
search level, CheckTable() is also invoked when the memory table fills up.

The authors of [33] estimate the performance overhead for using this
algorithm, and find it to have increasing slowdown as the ratio of states on
disk to states in memory (called memory savings factor in [33]) increases.
They find that, comparatively, for an instance of the SCI protocol their
algorithm performs with 151% runtime overhead over the conventional al-
gorithm using just memory, while the conventional algorithm, if seeking for
every access, would have a 4108% runtime overhead. When combined with
hash compaction, the authors report runtime overhead around 15% for the
disk algorithm.

Although disk-based Murphi allows larger state tables than can fit in
RAM, it cannot process states in parallel and is thus much slower than
PReach.

2.2.2 Transition Locality

A refinement presented in [10] to the disk-based algorithm uses the property
of transition locality within the protocol transition graph to decrease disk
accesses. Transition locality is defined in terms of breadth-first search (BFS)
levels [36], where at level k is defined as L(0) = I, L(k + 1) = {s′ | ∃s s.t.
s ∈ L(k) andR(s, s′) and s′ /∈

⋃i=k
i=0 L(i)}. A graph exhibits 1-local transition

locality if most transitions from a source state lead to a destination state
either on the previous level (L(k − 1)), the same level (L(k)), or the next
level (L(k + 1)) as that of the source state (L(k)). In [36] the authors find
that for a handful of protocols provided with the Murphi distribution, “for
most states more than 75% of the transitions are 1-local.”

The locality-based disk-based BFS algorithm in [10] is similar to the
algorithm in [33] except for the function CheckTable(). Whereas in [33] the
entire disk table is read to remove states from the memory table and the
state queue of unchecked states, in [10] only parts of the disk table are read.
By decreasing the amount of time spent reading from disk, the authors are
able to verify protocols using less runtime. Assuming states are added to the
disk table in BFS level order, the insight of this paper is to look primarily
at the tail of the disk table, which contains the 1-local transition states.

8



2.2. Disk-Based Explicit-State Model Checking

Figure 2.1: Figure 1 from [33].
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2.2. Disk-Based Explicit-State Model Checking

Figure 2.2: Figure 6 from [10].

To probabilistically improve the chance of finding a non-1-local state (a far
back state) in the disk table, the authors propose a scheme for dynamically
choosing which segments of disk states to read. The probability of selection
increases as per Figure 6 of [10], reproduced in Figure 2.2, where variable
values are chosen experimentally. Both axes are relative between values 0
and 1, where the relative disk block index is ρ = block index / number of
blocks.

The authors of [10] tune for how many states to read from disk based
on the disk table size. The disk table is segmented into a fixed number (N)
of variable size blocks (of size dS/Ne where S is the number of state hash
signatures in the disk table). When dS/Ne is less than a minimum value B,
B is used for block size instead to prevent unnecessary seeks when the disk
table is small. Thus while the disk table is small, this algorithm reads the
entire table for each BFS level, as in [33]. The program also dynamically
tunes for block selection effectiveness by periodically running a calibration
CheckTable() that reads the entire disk table while removing old states and
that counts how many states would have been in the disk block selection
and how many would not have been. Based on the counts, the program
decides whether or not the block selection is effective, and either increases
or decreases the number of blocks to read at each CheckTable() accordingly.

The authors of [10] report that their algorithm is about 10 times faster
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than the algorithm in [33]. For protocols where a tenth of the model size
(M(p) = the minimum amount of memory needed to complete state space
exploration for protocol p) fits in RAM, the authors find that the verifer
is between 1.4 and 5.3 (3 on average) times slower than a RAM-BFS with
enough RAM to complete the verification task. The overhead is likely larger
than that reported in [33] due to the significantly larger models being verified
in [10]. The models in [33] are of size able to store 250K to just over 1M
reachable states, whereas in [10] they are of size able to store 2M to over
125M reachable states. This suggests that tuning the disk algorithm is
effective at increasing the size of what we can verify with real hardware, but
it cannot overcome the increasing slowdown as the memory savings factor
increases, as noted in [33]. For large models it is still not competitive with
PReach for speed.

2.3 Distributed Explicit-State Model Checking

Distributing state generation and storage over multiple machines has several
advantages over using a single machine. The greater aggregate memory
allows us to check models of greater size than could be held by a single
machine. Additional processors allow us to check properties and generate
successors of multiple protocol states at a time. Given the potential speedup
and scalability advantages of distributing the task, it is not surprising that
much work has been done in this direction.

2.3.1 Parallelizing the Murphi Verifier

The seminal paper on parallelizing an explicit-state model checker is by
Stern and Dill [35]. The authors took the existing Murphi verifier algorithm
and implementation and presented a parallel and distributed version of each.
Unlike previous work, which was aimed at reducing the size of the reachabil-
ity graph or reducing memory footprint, this work aimed to use parallelism
to reduce the runtime. This paper laid the foundation for our and other
model checkers, and much of the terminology and methods originate from
this paper.

Parallel Murphi, the tool presented in [35], utilizes a statically parti-
tioned state table to store reached protocol states. Each instance of Parallel
Murphi, either as a thread or a process on either a separate or the same
machine, is called a node. Each state s has a single node as its owner. The
owner is computed statically using a hash function Owner(s). When a node
generates a new state, it is sent to the state’s owner. At each node, owned
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states are stored in the local partition of the state table. In addition, each
node utilizes a private work queue. When a state is received, if it has not
been entered in the state table then it is added to both the state table and
the work queue. States are removed from the work queue when their suc-
cessor protocol states have been generated and sent to each of their owning
nodes.

A received state may either be

1. in neither the state table nor the work queue, indicating it is a new
state we have not reached before;

2. in the state table and the work queue, indicating it is counted in the
reachability graph, but its successor protocol states have not been
generated for exploration yet; or

3. in the state table and not in the work queue, indicating it is counted
in the reachability graph, and its successors have been generated and
sent to the appropriate nodes.

The basic algorithm presented in Figure 1 of [35] is reproduced in Fig-
ure 2.3. The basic algorithm uses active messages to communicate, where
both the data and procedure address are sent. The authors of [35] chose ac-
tive messages for their efficiency when nodes are executing asynchronously.
Current message passing libraries provide the desired functionality in an
easy-to-use form, and thus our model checker abandons active messages for
library methods.

Parallel Murphi’s termination conditions are that there are no more mes-
sages (containing states) in flight and that there are no more states in the
per-node work queues. Parallel Murphi designates one node as the master
node. The master node sends out the initial set of states at startup and
is responsible for checking for termination conditions. Termination detec-
tion in parallel Murphi and in PReach is determined at the master by the
equation

N−1∑
i=0

Senti −Receivedi + |Qi| = 0 (2.1)

where Senti and Receivedi are counter variables for each of the i = 0, ..., N−
1 nodes, where N is the number of nodes, and where |Qi| is the size of
the work queue at node i. The master node queries each node for these
values when it has been idle longer than a threshold amount of time. Before
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var // global variables, but local to each node

T : hash table; // state table

Q: FIFO queue; // state queue

StopSend : boolean; // for termination detection

Work, Sent, Received : integer;

Search() // main routine

begin

T := ;; Q := ;; // initialization

StopSend := false; Sent := 0; Received := 0;

barrier();

if I am the master then // master generates startstates

for each startstate s

0

do

Send(s

0

);

end

do // search loop

if Q 6= ; then begin

s := top(Q);

for all s

0

2 successors(s) do

Send(s

0

);

end

Q := Q� fsg;

end

poll();

while not Terminated();

end

Send(s: state) // send state s to \random" node h(s)

begin

s

c

:= canonicalize(s); // symmetry reduction

while StopSend do // wait for StopSend = false

poll(); // (for termination detection)

end

Sent++;

send active message Receive(s

c

) to node h(s

c

);

end

Receive(s: state) // receive state (active message handler)

begin

Received++;

if s =2 T then begin

insert s in T ;

insert s in Q;

end

end

Fig. 1. Parallel Explicit State Enumeration

5

Figure 2.3: Figure 1 from [35].
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answering the master node’s query, each node sets StopSend to disallow
sending messages. This allows us a snapshot of the system.1

Parallel Murphi writes out a log file at each node of its local state table
partition. Each record contains a compressed state value and a pointer to
a predecessor in the form of the predecessor’s owning node’s number and
a record position in the predecessor’s owning node’s log file. This allows
error trace generation when a protocol error is found. PReach at Intel [5]
can provide some error trace generation, but PReachDB currently does not
support it.

The authors of Parallel Murphi identified two areas of potential im-
provements for a parallel model checker. They identified load balancing as
a problem when bandwidth is non-uniformly available. Nodes with limited
bandwidth become bottlenecks. In such a case, the randomized load balanc-
ing provided by the static hash function provides poor performance. They
also identified communication overhead as a variable affecting runtime. They
were able to decrease runtime by aggregating messages containing states into
batches of 10 when 20 or more states exist in the work queue. These prob-
lem areas continue to be of great importance to model checker performance
and are further addressed in the literature.

PReach is based off of Parallel Murphi and PReach explores both areas
for improvement identified by the authors of Parallel Murphi.

2.3.2 Eddy

The Eddy project’s [27, 28] main achievement is the specialization of threads
local to a compute node in order to achieve a modular design for a parallel,
distributed model checker. Eddy uses shared memory to commuicate be-
tween two threads on a single node (implemented in POSIX Theads [17]),
and uses message passing (implemented in MPI [15]) to communicate be-
tween nodes. The tasks on a compute node are separated into two cate-
gories: state generation and inter-node communication. One thread takes
on the role of generating successor states and checking safety properties,
and another handles bundling states into packages and sending and receiv-
ing messages containing states.

Eddy’s architecture is structured to take advantage of MPI [15] and
PThreads [17] primitives. For example, in termination detection, a token is
passed along the nodes in a ring accumulating the Senti and Receivedi when
the node is inactive. If the counters are equal when passed back to the root

1PReachDB’s termination detection is simplified by the use of acknowledgment mes-
sages; see Section 3.7.1.
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node, the computation is complete. MPI broadcast is used to terminate all
nodes in the case where a state is found not to satisfy the safety property.
One way in which using the MPI interface with Eddy is slightly unwieldly
is the way Eddy batches states per destination node. Separate buffers,
called lines, per destination node are stored on each node, and complicated
bookkeeping is required to manage which lines are ready to be sent. Lines
which have been sent also must not be overwritten until the send operation
has completed, otherwise the sent data could be corrupted.

The version of Eddy implemented to work with Murphi models is called
Eddy Murphi. The authors present experimental performance results for
Eddy Murphi compared with single machine, standard Murphi on models
with 106 to 108 states. They observe near linear speedup as the number of
nodes increases, with a note that one of their models does not perform well
with their static state partitioning function for certain numbers of nodes.2

The authors report being unable to reproduce the work in [35] due to chang-
ing cluster technology. They report that an MPI port of parallel Murphi
[32], performs worse than standard Murphi. They also report being able to
verify the FLASH protocol [23] for 5 processors and 2 data values as pa-
rameters, a model with more than 3× 109 states, in approximately 9 hours
on Eddy Murphi with 60 nodes. This model would have been expensive to
verify on a single machine at the time, requiring an estimate 15 GB of RAM
memory for the hash table on standard Murphi and requiring an estimated
compute time of 3 weeks on disk Murphi [30].

2.3.3 PReach

PReach [5], short for parallel reachability, is a new implementation of dis-
tributed, parallel Murphi written in Erlang. Erlang is a concurrent, func-
tional language with elegant communication primitives. Implementing PReach
in Erlang allows the authors to easily represent and make adjustments to
the communication aspects of distributed Murphi. The core algorithm is
represented in under 1000 lines of code, and PReach has been used to verify
an industrial cache coherence protocol with approximately 30 billion states.

PReach uses existing Murphi C code for “front end parsing of Murphi
models, state expansion and initial state generation, symmetry reduction,
state hash table look-ups and insertions, invariant and assertion violation
detection, and state pretty printing (for error traces)” [5]. The Erlang code
handles the complex distributed communication code. This architectural

2The authors cite [25], which more directly focuses on load balancing.
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division allows the authors to harness existing proven technology and to
focus on correctly implementing the communication layer.

The basic algorithm is the same as that in [35]. Three features explored
in [5] are batching of states, load balancing, and crediting. I will discuss
them in the following paragraphs.

In the distributed algorithm, when states are generated, they are sent
to their respective owners as messages in a message passing system. As
shown previously in [35] and [27], aggregating messages containing states
into batches improves runtime performance by decreasing the percent of time
spent as overhead processing messages. In the PReach paper [5], the au-
thors observed a throughput benchmark speedup factor of 10 to 20 batching
messages of 100 to 1000 states compared with messages of individual states.
Unlike Eddy Murphi [27], which has a fixed size communication buffer of 8
lines per destination, PReach has a single variable-size queue per destination
of states to be sent. A fixed size buffer may require the exploring thread to
block on insert if the buffer is full, but there is no chance of running out of
memory due to the send queue. With the variable size buffer, exploration
does not have to block, but the send queue may overrun memory. To handle
this, PReach will write the send queue to disk if it is sufficiently large.

The problem of load imbalance in distributed explicit-state model check-
ing has been noted and addressed often in the literature [4, 25, 35]. Load
imbalance occurs when the distribution of work is uneven per unit time. The
main symptom is a disproportionate work queue size distribution over the
set of nodes. Since the runtime of a distributed problem is determined by
the slowest worker, techniques for evening out the size of the work queues
have been successful at decreasing runtime. Load balancing also has the
benefit of decreasing memory usage of the work queue, which is beneficial
because model checkers are inherently memory-bound. In [25] the authors
present an aggressive balancing scheme for achieving nearly perfectly equal
queue lengths. Balancing is done by comparing queue lengths with dimen-
sional neighbors (for [25] nodes are grouped in a hypercube-like structure),
and sending an amount of states equal to half of the difference between
the queue lengths. In [5] a more relaxed load balancing scheme is imple-
mented with the goal of never having an idle node with an empty work
queue. PReach achieves this by including queue size information with mes-
sages containing batched states. When a node receives size information from
a peer and the peer’s queue size is smaller than its own by a factor of 5 (an
empirically found factor), the node sends to its peer some states from its
work queue. This scheme achieves the desired result and achieves runtimes
similar to and sometimes better than that of [25].
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Crediting is a method to protect against overwhelming nodes with exces-
sive messages during the distributed computation. Erlang’s message passing
system guarantees delivery eventually and is implemented with a variable-
size message receive buffer. If a node receives large numbers of messages
continuously faster than it can service the messages, the node will allocate
more memory for the message buffer and eventually start paging. In early
versions of PReach this behavior is observed and often leads to the stand-
still or crash of the node. Crediting is implemented by keeping on each node
credit counters for each peer node. When a message is sent to the peer,
the appropriate counter is decremented. When an acknowledgment message
is received, the appropriate counter in incremented. While the counter is
zero no new messages are sent to that peer. This scheme provides an upper
bound on the size of the inbound message queue of n × C where n is the
number of nodes and C is the per peer initial credit amount.

PReach is useful as a distributed model checker prototyping platform
because it separates the distributed computation and model checking aspects
cleanly. PReachDB builds off of an early version of PReach, and focuses on
handling node crashes.

2.4 Fault Tolerance in Distributed Computing

For a survey of fault tolerance in distributed computing, we direct the reader
to [16].

PReachDB is a distributed system that uses point-to-point message pass-
ing for communication. The main tactics employed in PReachDB to handle
faults are to persist data to disk and to replicate data across multiple nodes.
The Mnesia DBMS is part of the Erlang OTP framework. We use Mnesia
to implement our distributed data storage.

2.4.1 CAP and Mnesia

The CAP Theorem [7] describes a space of tradeoffs in designing a dis-
tributed system. The rule of thumb is: from consistency (C), high availabil-
ity (A), and tolerance to network partitions (P), a distributed system can
have at most two. In [6] the author clarifies that the apparent tradeoff is
less strict if the creators of the system are able to handle operations during
a network partition with some finesse.

Mnesia is a CP system. It guarantees consistency and is tolerant of
network partitions, but it does not guarantee availability. In particular if
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all nodes storing some data are unreachable, then on a read or write of that
data Mnesia will fail with an error.

2.5 Summary

The major difference between PReachDB and previous distributed model
checker is the use of a database backend to provide persistent storage of key
data structures. To the best of our knowledge, there is no previous work of
using persistent, database storage in model checkers.
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Chapter 3

PReachDB

3.1 Overview

The goal of this project is to implement and demonstrate a fault tolerant,
distributed, explicit-state model checker. This chapter describes PReachDB,
our extension to PReach that uses the persistent, transactional storage pro-
vided by a disk-based database system. Here we address issues required
for fault tolerance and correctness. Chapter 4 evaluates the performance of
PReachDB, and Chapter 5 examines the feasibility and practicality of this
approach. Using disk storage with model checkers for increasing the max-
imum model size capable of being checked has been studied [33], but not
with the aim of handling faults of the distributed computation.

Standard distributed explicit-state model checkers (DEMC) assume that
all nodes will remain online and connected to each other and that all mes-
sages that are sent will be received. This guarantees that the entire state
space will be reached, given enough memory.

In this project, we allow node failures and dropped messages to happen.
Our goal is to build a DEMC with tolerance for these kinds of failures.
Messages could be dropped or could be sent to an inactive node, and node-
local state could be lost if a node crashes. PReachDB provides solutions for
these new circumstances, and we explain them in this chapter.

This chapter gives details of the PReachDB tool developed for this
project. For details of PReach, upon which the code was based, see Sec-
tion 2.3.3 and [5]. After Section 3.2, in which we present the PReach
DEMC algorithm, this chapter focuses on the differences between PReach
and PReachDB. The extra data structures required to persist and replicate
data are discussed in depth in 3.3. A sketch of the program is presented
in 3.4. The need for message acknowledgments when nodes can fail is pre-
sented in 3.5. The implementation of the fault tolerance features using
Erlang’s Mnesia database system is presented in 3.6. The modified DEMC
algorithm and new termination detection method are shown in 3.7.
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3.1. Overview

Algorithm 1 Stern-Dill DEMC as presented in [5]

1: T : set of states
2: WQ : list of states
3:

4: procedure Search( )
5: T := ∅
6: WQ := []
7: barrier()
8: if I am the root then
9: for each start state s do

10: Send s to Owner(s)
11: end for
12: end if
13: while ¬Terminated() do
14: GetStates()
15: if WQ 6= [] then
16: s := Pop(WQ)
17: Check(s)
18: for all s′ ∈ Successors(s) do
19: s′c := Canonicalize(s′)
20: Send s′c to Owner(s′c)
21: end for
22: end if
23: end while
24: end procedure
25:

26: procedure GetStates( )
27: while there is an incoming state s do
28: Receive(s)
29: if s 6∈ T then
30: Insert(s, T )
31: Append(s,WQ)
32: end if
33: end while
34: end procedure
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3.2 Distributed Explicit-State Model Checking
Algorithm

The PReach algorithm, shown in Algorithm 1, is based on Stern and Dill’s
distributed, explicit-state model checking (DEMC) algorithm. The Stern
and Dill algorithm is described in [35], and the PReach algorithm in [5].
The basic idea is graph search over an explicit-state space, starting from a
given set of states and exhaustively computing the reachable space. While
visiting each state, properties from the specification are checked against
the state. If a violation of the specification occurs in the set of reachable
states, then the model does not meet the specification and the computation
is terminated. If there are no further reachable states to check, then the
computation is terminated and the model satisfies the specification.

3.3 Data Storage

States in PReach are represented as Erlang tuples. PReachDB uses the
same representation and a similar set of data structures, but the key data
structures are stored in an Mnesia database instead of in memory.

3.3.1 Mnesia

Mnesia [24] is a distributed DBMS for Erlang designed for fault tolerant
telecommunications systems. It provides key/value store and lookup, shard-
ing of a database table over a pool of computing nodes, replication of tables
or shards, and reconfiguration of the system while on-line. Given these
features, it seems an ideal candidate for adding fault tolerance to PReach.

In this section, an Mnesia table refers to a key/value store implemented
in Mnesia. For tables keyed on states, we use type = set to enforce unique
keys. Mnesia tables may be held in memory, on disk, or both.

3.3.2 Data Structures in PReach

In the basic version of PReach, a state is inserted once into a hash table of
all the visited states when a compute node first visits the state. The entry is
never updated, and it is looked up several times by compute nodes deciding
whether this state should be visited or not. In more complicated versions
of PReach, each tuple may be updated several times, such as if in-degree is
being tracked.
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Each compute node has a work queue containing the states whose prede-
cessors have been explored, but who themselves have not yet been explored.
Each queue contains only the states owned by the compute node it is asso-
ciated with. States are added to the queue when they are received over the
Erlang messaging system from other nodes or from the same node. When
the compute node is ready to explore a new state, it will pop a state from
the queue.

3.3.3 Data Structures in PReachDB

There are five data structures used in PReachDB. Two are held in program
memory, one is held on disk, and two are held either in memory or on disk
depending on the user’s preference. The data structures are

1. a per-node, in-memory work queue;

2. a per-node, in-memory table of states waiting for acknowledgments;

3. a per-node, on-disk Mnesia table containing a single entry, the epoch
number of the node;

4. the global work queue, implemented as an Mnesia table; and

5. the global visited state table, implemented as an Mnesia table.

Each of these will be explained in turn.
The major difference between PReachDB’s and previous distributed model

checkers’ data structures is the presence of Mnesia database tables. For the
current version of PReachDB, these tables hold data that is accessible from
any node when accessed through the Mnesia API. In Section 3.7 we show
how these additional structures fit into our fault tolerant DEMC algorithm.

Per-Node Work Queue

The per-node, in-memory work queue in PReachDB is similar to that in
PReach. It is implemented as an Erlang list argument to the tail-recursive
function that performs the main loop in Search(). Within Search(), the
first element of the in-memory queue is removed, verified for satisfying safety
properties, and used to generate successor states. When a state that has
never been seen before is received in a message, the state is added to the
end of the in-memory queue. See Section 3.6.3 for further discussion of the
differences between the Per-Node Work Queue and the Global Work Queue
and of how they are used when work is migrated between nodes.
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Acknowledgment Table

PReach makes the assumption that the nodes will stay connected. As Erlang
guarantees message delivery if possible, this is a reasonable assumption. For
PReachDB we do not make that assumption, as it is possible that a message
will be sent but never received because the receiver crashes. This means that
if a message gets dropped, an entire portion of the search space may not get
explored. To handle this, we wait for acknowledgment messages from the
receivers before removing a state from the global work queue. We keep a
table in memory consisting of a triple of {a state, the number of its succes-
sors for whom we have not received acknowledgments, the sequence number
for this round of acknowledgments}. The counter of unreceived acknowledg-
ments is decremented when acknowledgment messages are received. When
the counter reaches 0, we remove the state from the global work queue. This
process is further explained in Section 3.5. When all of the successors of a
state have been acknowledged and safely stored to the disk work queue, it
is safe to remove the predecessor state from the disk work queue, as we will
not need to regenerate those graph edges again.

Epoch Number Table

When we allow for a node to rejoin the computation after crashing and
restarting, we need to provide the means for a node to detect if the mes-
sages it receives are no longer relevant to the data in memory. To solve
this problem we introduce epoch numbers. Each node has its own epoch
number which tracks how many times that node has started up. These
per-node epoch numbers are stored using persistent storage, and each node
increments its number on start-up. Nodes include their current epoch num-
bers in messages sent to other nodes, and acknowledgment messages note
the epoch of the message that is being acknowledged. In this way, a node
can disregard acknowledgments for messages from earlier epochs. Section
3.5 describes this process in more detail.

Global Work Queue

The states yet to be explored are stored in an Mnesia table, along with states
we may have to re-explore if a crash were to occur. The Mnesia work queue
stored the states but does not maintain order. The states in the Mnesia
work queue are a superset of the states in the in-memory work queues.

If a crash occurs, the in-memory lists are lost, but the Mnesia work
queue is preserved. On a restart, when a node starts up and has an empty
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in memory queue, it will ask Mnesia to read some states from the Mne-
sia work queue. Currently PreachDB uses the mnesia:all keys/1 function,
which returns all of the states, and pseudorandomly choses a sublist of states
to add to the in-memory work queue. Which states are explored by which
node does not matter much, because all states from the Mnesia work queue
will eventually be fetched in this way or otherwise explored from another
predecessor link. States are removed from the Mnesia work queue when the
number of acknowledgments outstanding is zero.

In an earlier iteration of PReachDB, each node maintained its own disk
work queue. This configuration worked under the assumption that all nodes
would eventually come back online, and that swapping out a node would
not be required.

Global Visited State Table

The global visited state table is an Mnesia table fragmented across all of the
compute nodes. The table can be held on disk and/or in memory. Fragment
replication count can also be set between 1 and N, the number of compute
nodes. A disk copy of each fragment of the table must be kept by at least
one node for all the data to persist through a system restart. The replication
count must be at least 2 to handle a single node disk failure.

The key of the hash table is the state itself (an Erlang tuple). This
is possible because Mnesia is an extended relational DBMS, which can use
arbitrary Erlang data structures as keys. A hash of the state could be used
as a key if probabilistic search coverage is desired instead. Using the state as
the key makes the table much larger than it would be with hash compaction
[37]. PReach uses hash compaction.

3.4 Implementation

Like Parallel Murphi [35] and as described in 2.3.1, PReachDB designates
one node as the master node. The master has the same responsibilities as
in Parallel Murphi but must also create the database tables.

The sketch of the program with regards to Mnesia is as follows.

1. Start up each compute node.

2. Each compute node calls mnesia:start().

3. If this is the first run, have the master node create the tables. Each
compute node connects to the Mnesia tables.
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4. Each compute node waits for the tables to load.

5. Each node does its work, accessing the tables.

6. Each compute node calls mnesia:stop().

3.4.1 Launch

Node pool launch was implemented in PReach using the Erlang module
slave. slave is a module to start additional Erlang nodes on local or remote
hosts. An Erlang node is a single thread of execution in the Erlang runtime
environment. When connecting to a remote host through ssh, slave does
not correctly escape (backslash) quotes in command-line arguments. Mnesia
requires as command-line arguments the properly quoted filesystem location
where the schema table and data tables will be stored. It is not possible to
start Mnesia remotely using the slave module. We instead use Perl scripts
to call Erlang directly on each machine.

3.4.2 Table Creation and Management

Setting up the tables is a multi-step process that requires coordination be-
tween the nodes. We use message passing to block a node’s progress until
coordination messages are received. The following describes how we set up
the tables in roughly chronological order.

Mnesia runs in the same address space as the application. Any Erlang
configuration done on a node affects its Mnesia application. Each node
calls mnesia:start(). The non-master nodes invoke a remote procedure on
master to send to itself the list of db nodes registered to Mnesia. The non-
master nodes add the retrieved db nodes to its extra db nodes through the
Mnesia configuration. This sets up the node’s Mnesia application to connect
to the given nodes and share table definitions, including the schema. “The
schema is a special table which contains information such as the table names
and each table’s storage type.” [14] Each node then sets the schema to be
stored both on disk and in RAM (the default is in RAM only). The schema
needs to be set to type disc copies before any disk resident tables are
created.

Each non-master node sends a message to master that it has completed
the step to set schema to disk. When master has received ready messages
from each of the other nodes, it creates the tables.
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The epoch number table is created using mnesia:create table/2.3 This
table is created with the local content option set to true, so each node
stores its own value in this table. This table is always stored to disk.

We use an open source Erlang library called Fragmentron [29] to create
our fragmented tables. Both the Global Work Queue and the Global Visited
State Table are created in this manner. We call fragmentron:create table/2

with the following value for frag properties.

[{n_fragments, length(NodePool)}, % N table fragments

{node_pool, NodePool}, % Use our nodes in node pool

{n_disc_copies, NDiscCopies}] % Disc fragment replication

This command tells Fragmentron to create a table with N fragments, where
N is the number of nodes in our node set. The table’s node pool is set to
our compute nodes. The number of fragment replicas to maintain is set to
NDiscCopies. We make no distinction between the “true” fragment and its
replica in this section. An appropriate value for NDiscCopies is discussed
further in 3.6.1. If RAM only tables are desired, n disc copies should be
replaced with n ram copies.

Fragmentron is a helper library for fragment replica balancing between
the nodes in the node pool. The addition of additional nodes to the node
pool or deletion of an existing node is handled gracefully. Fragment replicas
are spread out evenly among nodes. If a node deletion causes the number
of replicas to drop below n disc copies, a new replica is created on an
existent node in the node pool.

Once the master creates the tables, the master sends a message to the
non-master nodes to proceed. All nodes then call mnesia:wait for tables/2

to wait for the tables to load.

3.4.3 Search()

The core logic of Search() remains largely the same as in the original
PReach. Successor states are generated from the model using the same suc-
cessor function, and each successor is in turn sent to a node to be processed.
However, many of the data structures present in PReach are replaced with
Mnesia tables in PReachDB. These tables are accessed using Mnesia trans-

3 Erlang is untyped, but functions can be overloaded according to the number of
parameters that the function has. Functions in external modules are referenced by
the module name, the function name, and the number of arguments with the syntax
moduleName:functionName/argumentCount.
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actions. In Section 5.3, we discuss why this is bad for performance and
propose possible next steps for improving data access performance.

For this project we focused more on correctness after system faults rather
than on performance. The two most interesting problems we investigated
were what considerations we must make if messages containing states to
be explored are arbitrarily dropped and how to deal with node crashes.
Changes to the implementation of Search() mostly reflect how we dealt
with these.

3.5 Message Acknowledgments

When processing a state, a compute node enumerates the successors of the
state. Each successor state is sent to a compute node, which explores the
new state. In PReach the destination for each state is based on a mapping
from the hash of the state to one of the nodes. A node, in a sense, owns a
set of states; it is responsible for exploring the set of states mapped to it.

  

● When all nodes go down, 
we may lose a message 
in flight
● The message represents a 

state that is not stored 
anywhere

Disk 2

Disk 3

Node 2

Node 3

Message 
with 
state B

Figure 3.1: A message lost in flight.

If we allow for failures, a state could fail to reach its destination due to
the destination node being down or due to a network partitioning. Not ex-
ploring the state means the reachable state space was incompletely explored;
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3.5. Message Acknowledgments

this is a failure in correctness. The solution we use in PReachDB is to have
a node send an acknowledgment (ACK) in response to receiving a state. A
sending node stores the number of successors of the state in the Acknowl-
edgment Table and waits for that many ACK messages in response. When a
receiving node receives a state, it logs the state to disk in the Global Visited
State Table and sends an ACK to the sending node. When the number of
outstanding ACKs for a state is 0, we know that all its successors have been
logged to disk.

New Queued Pending Retired- - -

Figure 3.2: Lifecycle stages of a model state in PReachDB.

The lifecycle of a state throughout the computation is as follows. A state
is first discovered to be part of the reachable set by being enumerated as
a successor of another state in the reachable set. At this point it is “new”
as shown in Figure 3.2; it is not stored to memory or to disk and it is not
ACKed. The state is sent as an Erlang message to its owner node. The
owner stores it in the global work queue and in the visited state table as
unexplored. Once stored, the state is “queued.” An ACK is sent back to
the sending node. After the owner explores the state and sends out the
successors of the state, the state is “pending.” When ACKs for all of the
successors have been received, the node removes the state from the work
queue, and the state becomes “retired.”

Life stage Global State Table Global Queue ACKs outstanding

New Not present Not present Not yet sent

Queued Present Present Not yet sent

Pending Present Present Yes

Retired Present Not present No

Table 3.1: Presence of data for lifecycle stages.

In the case where not all successors of a state are acknowledged after
a certain amount of time, that is the outstanding ACK counter is greater
than 0, the situation can be remedied by resending all of the successors
and resetting the outstanding ACK counter for that predecessor state to its
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● We can regenerate 
that state on restart if 
we know its parent 
state

● Don't remove a state 
from the DWQ until we 
receive 
Acknowledgments for 
all children

Disk 2

Disk 3

Node 2

Node 3

Regenerate 
state B 
from parent 
A

ACK for A
Message 
(state B, 
parent A)

Figure 3.3: Regenerating the lost message.

number of successors. For example, a node receives a state it has already
processed whose outstanding ACK counter is greater than 0. PReachDB
does not keep track of which successors have not been ACKed, and there may
have been messages lost in transit previously. The node resends all successors
states. To avoid double counting acknowledgments, the node resets the
counter to the number of successors. The nodes that receive the successors
send ACKs regardless of whether they have received the states before or not.
Furthermore, the states are sent with sequence and epoch numbers that are
subsequently included in the acknowledgments as described below in Section
3.5.1. When the outstanding ACK count reaches 0 for the predecessor state,
the predecessor state is removed from the Global Work Queue because the
node does not ever have to resend that state’s successors states.

3.5.1 Sequence Numbers

Resending the successors generates a new problem. It is possible for a mes-
sage from the original dispatch to be delayed in the system long enough that
the original ACK is not received until after the successors states have been
resent and the outstanding ACK counter reset. These delayed ACKs could
run down the counter to 0, triggering the removal of the predecessor state
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from the disk work queue, before all successors states have been logged to
disk. Should a successor state, falsely counted off, not be received or logged
to disk, we would not know that we had missed it.

In PReachDB we solve this problem by keeping track of an increasing
sequence number associated with each dispatch. When successors states are
dispatched, they are sent with a sequence number incremented from that
of the previous dispatch and with the epoch number of the sending node.
The current sequence number is stored in the Acknowledgment Table along
with the outstanding ACK count. When an ACK is received, if its sequence
number is less than the current or if the epoch number does not match,
the ACK is ignored; if its numbers match, the outstanding ACK counter is
decremented. On the last decrement, the state is deleted from the Global
Work Queue and from the Acknowledgment Table.

The full message and acknowledgment protocol also includes the epoch
number of the sender. If the epoch number of an ACK does not match the
epoch number the sender is currently on, the ACK is discarded.

Figures 3.4 to 3.9 illustrate the motivation for using sequence numbers
in the acknowledgment protocol. Consider a system with three compute
nodes with point-to-point communication. Node 1 is processing state A,
and generates states B and C from Successors(A). B is sent to Node 2 and
C is sent to Node 3. However the messages are slow, and Node 1 begins
reprocessing A before any ACKs have been received. Node 1 resends B and
C to Nodes 2 and 3 and resets its ACK counter to 2. While the messages are
taking a long time to reach Node 2, Node 3 receives state C twice, sending
an ACK for each. Node 1 received 2 ACKs for A and decrements its counter
twice. Since the counter is 0, A is removed from the Global Work Queue.
Meanwhile, Node 2 has not yet received B and then suddenly fails. B is
never processed and the system misses some of the reachable state space.

3.6 Failure Handling

A node failure may be caused by anything, but the result is that the PReachDB
process running on that node is ended, forcibly or not. In PreachDB we ad-
dress two types of failures on a node, where either the node can recover by
restarting the node and/or the PReachDB process, or where the node is not
recoverable and is essentially dead. We consider two failure scenarios.

One scenario is that all N nodes fail at the same time with their data
intact. This scenario might happen if the user is running on a scheduled
cluster and his reservation has ended. The user must halt computation, but
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Successors(A)

Figure 3.4: Sequence Numbers: Example system configuration.
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Figure 3.5: Sequence Numbers: Slow messages.
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Figure 3.6: Sequence Numbers: Resending the successors.
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Figure 3.7: Sequence Numbers: C arrives at Node 3 twice.
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Figure 3.8: Sequence Numbers: Node 3 acknowledges predecessor A twice.
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Figure 3.9: Sequence Numbers: Node 2 fails and B is missed.
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the progress is not lost.
Another scenario is that a node has a non-recoverable failure. For a non-

recoverable failure we look at two options: either continuing the computation
with one fewer node and making the other nodes pick up the dead node’s
work, or inserting a new node into the node pool to replace the dead node.
Both options require enough redundancy of data for the remaining nodes to
access to the dead node’s work. We discuss the implementation of the data
redundancy and strategies for dealing with node failure in the rest of this
section.

3.6.1 Table Fragmentation and Replication

We use data redundancy across nodes to prevent data loss in the event that a
node is disabled. There are many means of disabling a node, such as network
disconnect, hardware failure, and loss of power. We will not distinguish
between these in the current work, and consider only the case where a single
node or where all nodes become completely unresponsive. Handling more
general failure scenarios such as multiple nodes failing simultaneously or in
sequence is a topic for future work.

One scheme for storing redundant data is create a single master database
node through which all database writes and reads are done. The master
database is passively replicated by slave database nodes. In the event of a
failure of the master, a slave is promoted to master. We did not utilize this
scheme for this project as a matter of choice based on the design of PReach
and the existing standard libraries for Erlang. This master database would
create a bottleneck, as it would have to handle all hash table and work queue
transactions. On standard hardware we would quickly saturate the master
database’s throughput.

Another redundancy scheme is to store all global tables in their entirety
on every node. This is expensive in storage and in effort required to coor-
dinate. Decreasing the number of replicas of the global tables, R, decreases
the storage space required per state during the computation. We would like
this number R to be high enough to provide reasonable reliability without
unnecessarily taking up space. If we ignore the data location for a moment
and consider only how many replicas we need, we set R = 3 [31] for most
cases but allow the user to override. For our experimental setup, we use
R = 2 since we are concerned with only one node failure.

We like keeping the data on the nodes, as was done in PReach. But
rather than storing entire global tables on every node, we can utilize Mne-
sia’s table fragmentation feature to partition the global tables into chunks.
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Mnesia maps each data item in the data table onto a fragment; for example,
the default mapping is based on the hash of the data item. A fragment of
a table can be replicated through Mnesia onto any number of nodes in the
node pool. If we set the number of fragments per table to N , the number of
nodes, then we can have one fragment per node (when there are no replicas)
to evenly distribute the data across the node pool, assuming uniform hash
distribution. Ideally the fragment residing locally to the node stores the
data for the states that are owned by the node; local data accesses improve
read performances especially.

When R = 3 and the number of fragments is set to N , the number of
nodes, a node stores three fragments (per table) locally. Should a node go
down permanently, we lose one replica of each fragment that was stored on
that node, but two other replicas of those fragments exist on other nodes.
We can repair the loss of redundancy by making a copy of each affected
fragment onto a new node from the existent replicas. In the common case
where R < N , the copying of fragments is less work than making a complete
copy of the entire table.

Tables created with fragmentron:create table/2 will automatically
balance the location of table fragments and create new fragment replicas as
nodes join or leave the node pool. In Section 3.4.2, we discussed values for
frag properties. n fragments is set to N and n disc copies is set to R.

3.6.2 Hot Spare and Data Migration

Figures 3.10, 3.11, and 3.12 show how a hot spare node can be introduced
to a system to replace a dead node. In the figures, Nodes 1, 2, and 3 store
a database table. The table has 3 fragments, colored blue, pink, and green,
and each node stores two different fragments. Node 3 has failed and its
replicas of the pink and green table fragments are lost. There are still active
replicas of those fragments on Nodes 1 and 2. We introduce Node 4 to the
system to replace Node 3. The system is paused while Node 4 is added to
the Mnesia node pool and pink and green fragment replicas are created on
Node 4. The system updates its message destinations to include Node 4 and
drops Node 3. The system then resumes computation.

We created messages to pause and resume all nodes in the system. When
a hot spare is started, it sends these message in its startup sequence.

On receiving a resume message, an existing node updates its fragment
owner map. This mapping of fragment to owning node is used for looking
up the destination for every generated successor state. The fragment owner
mapping is a small optimization when choosing for each state which node to
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Node 1

Node 2

Node 3

Figure 3.10: Three node replicating three fragments of a table. Node 3 has
failed.

  

Node 1

Node 2

Node 3Node 4

Figure 3.11: Hot spare Node 4 is introduced to replace Node 3.
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Node 1

Node 2

Node 3Node 4

Figure 3.12: Fragments are copied to Node 4 and Node 4 joins the compu-
tation.

send it to. We could choose randomly each time, and we could ask Mnesia
from which nodes a data item can be written or read and then send it to
one of those. But if we know which fragment a data item would be written
to, we can use the fragment owner map to send the state to a node which
stores that fragment locally. Which node stores which fragment is known
after table creation, and we create the mapping then. After the node pool
changes, the mapping must be updated.

One caveat is that if there are several choices of nodes for location to
read/write, Mnesia will pick a node based on network latency. This means a
node with slightly higher network latency would never normally be chosen,
even if it is starved for work. Adding a work queue aware load balancer to
the system is one direction for future work.

The mapping is created using Algorithm 2.
In selecting an owner, we will choose from among hosts where the frag-

ment is resident and will prefer hosts that have been passed over for selection
previously.

37



3.6. Failure Handling

Algorithm 2 Fragment owner mapping creation

1: m : map of fragment to host
2: seenBefore : map of host to counter
3: hostsf : list of hosts
4:

5: procedure Owners( )
6: m := {}
7: seenBefore := {}
8:

9: for each fragment f do
10: hostsf = mnesia : table info(f, where to write)
11: if hostsf = [] then
12: halt()
13: end if
14: sort hostsf on host h by value of seenBefore[h] descending
15: m[f ] = hd(hostsf )
16: for each host h in tl(hostsf ) do
17: insert seenBefore[h] if needed
18: Increment(seenBefore[h])
19: end for
20: end for
21: return m
22:

23: end procedure
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3.6.3 Work Migration

In PReach, a node’s work queue, represented as an Erlang list, is maintained
in memory as the first argument to the recursive function reach, which
implements the loop body of Search(). PreachDB maintains this same
structure. The states yet to be explored are also stored in the Global Work
Queue, along with states we may have to re-explore if a crash were to occur.
The Global Work Queue stored the states but does not maintain order. The
states in the Global Work Queue are a superset of the states in any node’s
in-memory work queue.

If a crash occurs, the in-memory list is lost, but the Global Work Queue
is preserved. On a restart, when a node starts up and has an empty in-
memory queue, it will ask Mnesia to read a selection of states from the
Global Work Queue. PreachDB grabs a random selection of keys in the
Global Work Queue from the mnesia:all keys() function. Which states
are returned does not matter, because all states from the Global Work Queue
will eventually be fetched or otherwise explored. States are removed from
the Global Work Queue when the number of acknowledgments outstanding
is zero.

In fact, whenever a node reaches an in-memory work queue size of zero,
it will retrieve states from the Global Work Queue in the same fashion. All
states from all nodes are inserted into the Global Work Queue, and any node
could read and process (check invariants on and enumerate the successors
of) any state. When retrieving states that belong to a remote node, there
is an inefficiency in that the node doing the exploring does not read and
write states that are locally resident on the disk. Each Mnesia transaction
will go over the network. However this does allow work stealing, by which
a node that is making progress quickly may run its local work queue to
zero and then retrieve states owned by a slower node. This can help reduce
the bogging down of one particular node. Reading from the Global Work
Queue when the in-memory work queue is empty essentially provides the
load balancing features of PReach through Mnesia without additional code.

Another tactic implemented in PReachDB to try to alleviate bogging
down is a limit on the in-memory queue size. PReachDB nodes will store up
to 5,000 states in their work queues before spilling them off. When a state
is to be added to a work queue that is full, it is written to the Global Work
Queue as normal, but it is not written to the in-memory queue of the node.
This data is not lost because it remains in the Global Work Queue. Since
the computation does not end until the Global Work Queue is empty, and
since a node with an empty in-memory work queue will fetch states from
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the Global Work Queue, that spilled off state will eventually be processed.

3.7 Modified Algorithm

We present in Algorithms 3 and 4 the modified DEMC algorithm including
the additional message passing used in PReachDB.

The definition of Owner(s) differs from that described in 2.3.1. In
PReachDB, the owning node for a state can change over the course of the
computation due to a node failing and its states being adopted by other
nodes. Thus, we cannot use PReach’s static mapping from states to nodes
that was described in Section 2.3.1. Instead, states are dynamically mapped
to nodes based on the fragment number for the state. See Algorithm 2.

3.7.1 Termination Detection

The termination detection algorithm for PReachDB differs from PReach’s
in that it uses just the global work queue size to determine if there is work
outstanding rather than the message counters and queue size of each node.

Adding a node to the queue increases the queue size. A state is not
removed from the global work queue unless each of its successors has either
been added to the global work queue or been processed already. A queue
size of zero means all start states and all states reachable from the start
states have been processed.

|Q| = 0 (3.1)

where Q is the global work queue.

3.8 Summary

PReachDB builds on PReach to add fault tolerance for node failures. It
maintains the same general structure of PReach while changing the data
structure accesses to be mostly database accesses. Saving data to disk and
replicating the data on multiple nodes allows us to recover the system while
it stays online. In addition to database accesses, the main changes are
the addition of message acknowledgments, the addition of sequence and
epoch numbers to messages, the modification of the termination detection
algorithm, and the addition of the procedure to add a new node to the node
pool.
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Algorithm 3 PReachDB modified DEMC algorithm: per-node process

1: pGT : persistent globally accessible set of states seen so far
2: pGWQ : persistent globally accessible set of states yet to process
3: pEpoch : persistent per-node epoch counter
4: WQ : queue of states to process locally
5: ACK : map of states to (seq, acknowledgments outstanding) tuples
6:

7: procedure Search( )
8: ACK := {}
9: WQ := []

10: initialize pEpoch if needed
11: Increment(pEpoch)
12: if I am the root then
13: initialize pGT and pGWQ if needed
14: end if
15: wait for Mnesia ready
16: barrier()
17: if I am the root then
18: for each s ∈ initialStates do
19: Send s to Owner(s)
20: end for
21: end if
22: while ¬Terminated() do
23: GetStates()
24: if WQ 6= [] then
25: s := Pop(WQ)
26: if s 6∈ pGWQ then
27: seq := 1 + (hd(ACK [s]) or 0)
28: ACK [s] := (seq , |Successors(s)|)
29: Check(s) . verify s satisfies specified safety properties
30: for all s′ ∈ Successors(s) do
31: s′c := Canonicalize(s′)
32: Send state (s′c, s, seq , pEpoch,Self ()) to Owner(s′c)
33: end for
34: end if
35: end if
36: end while
37: end procedure
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Algorithm 4 PReachDB modified DEMC algorithm, continued

1: procedure GetStates( )
2: while there is an incoming message do
3: if Receive ack (predecessor , seq , epoch) then
4: if epoch = pEpoch and hd(ACK [predecessor ]) = seq then
5: acks := Decrement(tl(ACK [predecessor ]))
6: if acks <= 0 then
7: Remove(predecessor , pGWQ)
8: Remove(predecessor ,ACK )
9: end if

10: end if
11: end if
12: if Receive state (s, predecessor , seq , epoch, sender) then
13: if s 6∈ pT then
14: Insert(s, pT )
15: Insert(s, pGWQ)
16: if |WQ | < spill threshold then
17: Append(s,WQ)
18: end if
19: end if
20: Send ack (predecessor , seq , epoch) to sender
21: end if
22: if Timeout and pGWQ 6= [] then
23: Append(RandomSubset(pGWQ),WQ)
24: end if
25: end while
26: end procedure
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The main benefit of PReachDB is that by using the Mnesia DBMS we
get fault recovery with almost no additional code. We merely need to check
if the database already exists on system start. Another nice side effect of
using a database is that the termination detection algorithm is now even
simpler than in PReach.
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Chapter 4

Results and Performance

The results of this project are the proof-of-concept demostrations of the
following scenarios.

1. Terminate all nodes and restart without significant loss of progress.

2. Terminate one node and have the rest of the nodes run to completion
utilizing data replication.

3. Terminate one node, replace it with a hot spare, and have the hot
spare and the rest of the nodes run to completion.

We also present a performance comparison between PReachDB and
PReach.

4.1 Results

We present here the experimental setup and the results from four test runs
demonstrating different features added in PReachDB.

4.1.1 Setup

The machines used for testing were of these two configurations running
Linux.

Processor Memory

Intel R© CoreTM2 Duo CPU E6550 @ 2.33GHz 4GB

Intel R© Xeon R© CPU 5160 @ 3.00GHz 6GB

The machines were connected over the UBC Computer Science department
internal network, and average ping time was less than 0.1 ms. The Mnesia
database files were stored locally per machine. The code path was to a
shared server filesystem.

Each of the following tests was performed on the model file
n5 peterson modified.erl. Fragment replication, where applicable, was
R = 2.
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4.1.2 System-Wide Restart

The purpose of this test was to demonstrate that the Mnesia disk tables
retain the data over a PReachDB restart. When all nodes are forced to
exit, we can restart the entire system with all progress retained that was
committed prior to the crash.

For this test we ran PReachDB with N = 3 nodes and with table frag-
ment replication enabled. We let PReachDB run through the initialization
sequence and begin processing states from the model. We then ran a shell
script similar to the ptest start up script. The script connected to each
machine via ssh and ran kill -9 on all Erlang processes running under our
account. We then ran ptest to restart all of the nodes.

We verified that the total number of states in the Mnesia visited state
table on completion of the of the program (visited in aggregate over all
processing sessions) matched that of our control run using PReach. The
program output the number of states visited in the most recent session,
and it was less than the number of states contained in the Mnesia visited
states table. This shows that PReachDB did not visit all states in the
model during the last session. PReachDB retained the progress made in the
previous session.

4.1.3 Sequence Number on Acknowledgments

The purpose of this test was to demostrate the ACK counter decrement
issue described in Section 3.5.1.

We ran PReachDB (with N = 3 nodes and with table fragmentation)
uninterrupted with and without the logic for sequence numbers on acknowl-
edgments. We included a debug conditional to print a debug statement if
an ACK counter in the ACK table is decremented below 0. Without the
sequence number implemented, we observed the debug print, and with the
sequence number implemented, we did not.

4.1.4 Single Node Termination

The purpose of this test was to demonstrate that with distributed replica-
tion enabled we could complete the model exploration with a single node
completely removed from the node pool part way through. With N = 3
nodes and R = 2 fragment replication, the data on the node that is removed
is still held on the other two nodes. The remaining two nodes should pro-
vide the necessary data to complete the computation without pausing or
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restarting the system, as the remaining nodes combine have the same data
as the removed node.

We ran PReachDB on three nodes, letting the initialization complete,
and then ran kill -9 on all Erlang processes on a single machine. We
observed the remaining two nodes continue to output debug messages during
exploration. The remaining two nodes processed the entire reachable state
space and output the same number of unique explored states as the control
run without terminating a node.

4.1.5 Hot Spare

The purpose of this test was to demonstrate that when one node dies, com-
putation can continue after a hot spare replaces the dead node. After the
hot spare adds itself to the node pool with fragmentron, Mnesia copies
over the fragments to the new node in the background. The hot spare waits
for the Mnesia tables to be ready, updates the other nodes to send states to
it, and then calls reach.

We ran PReachDB on three nodes and used kill -9 on one node, similar
to the previous test. We then sent a user command to pause the all nodes.
The two remaining nodes responded and waited. We ran the script to add
a spare node from a different machine, and when it was ready ran the user
command to resume all nodes. Although the spare had not participated
in the work before, it had access to the same data as the dead node. The
three nodes were able to complete and reported the same number of unique
explored states as the control.

4.2 Performance

A strong benefit of using Mnesia is how well it provides recovery from system
faults. Recovery time for most operations appears to the user as practically
instant. Both restarting a node with a disk table and inserting a hot spare
node into the Mnesia node pool for fragment replication do not negatively
impact the other nodes. Mnesia copies table fragments in the background to
the hot spare. This does have the possible effect of overloading the Mnesia
system.

Unfortunately, in the normal usage of PReachDB, Mnesia reported fre-
quently that it was overloaded. These messages decreased when replication
was reduced to R = 1, but once any node became bogged down the system
became stuck.
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Figure 4.1: Without Mnesia, time on logarithmic scale: There is a long
period with very little progress as process 0 catches up.

With Mnesia transactions, writes to remote nodes (required for repli-
cation) over the network must complete in full before a node can continue
processing. We use transactions for correctness because Mnesia cannot guar-
antee ACID properties with dirty database writes. We relax this later in
this section to test the performance with dirty operations, which return as
soon as the operation completes for at least one node in the Mnesia node
pool.

4.2.1 Performance without Replication

Running PReachDB without the –mnesia flag causes it to run with the
PReach data structures implemented at the time of code forking. Each
node runs with a local visited state table and a local state queue. The
visited state table is by default a bloom filter based on [1] with fixed capacity
N = 40, 000, 000 and error probability E = 0.000001. The state queue is
maintained as a list of states sent as argument to the recursive function
reach. The acknowledgment table is not used.

Figure 4.1 shows the time in seconds on a logarithmic scale per 10,000
states visited and the Erlang process memory in MB (log scale) of a typical
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Figure 4.2: Without Mnesia.

run. Figure 4.2 shows the same information with time on a non-logarithmic
scale. On the non-logarithmic time scale, the horizontal distance between
successive data points is the time to process 10,000 states. Longer distances
mean a slower rate. There is a long gap on process 0 between 130,000
and 140,000 states visited, and between those data points, process memory
increases greatly. State queue size also jumps by an order of magnitude
between those data points, from 2,308 to 34,354 states. The other processes
wait for process 0 to catch up, and begin processing new states received
from process 0 as soon as they are ready.

The slowdown may an artifact of the older PReach code base, as current
PReach does not have this behavior. The load balancing added to PReach
addresses the bogging down of a particular node, which in turn helps the
whole system continue to make progress.

Figure 4.3 shows the time and process memory of PReachDB with the
–mnesia flag enabled. Progress is slow but steady. When –mnesia is enabled,
the size of the in-memory state queue is limited to a fixed maximum size of
5,000 states. When the in-memory state queue reaches that length, addi-
tional states are written to the global work queue but not to the in-memory
queue. This queue length limitation plus work queue stealing prevents any
one process from becoming bogged down and holding up the other processes.
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Figure 4.3: With Mnesia: Progress is slow but steady.

4.2.2 In-memory Queue Spilling

One possible reason for PReachDB’s slow performance, as suggested by one
of the authors of PReach, is Erlang’s inefficient list operations when the
number of states in the per-node work queue is large. The Erlang docu-
mentation warns that improperly implemented list operations will result in
a O(n2) operation due to repeated list copying [12]. To test if performance
is impacted by this issue, we implemented queue spilling for the in-memory
work queue. This was previously discussed in Section 3.6.3.

Without limiting the in-memory work queue size, PReachDB with –
mnesia does not slow down the same as PReach when the in-memory work
queue of any node grows large. Figure 4.4 shows that the run time without
limiting the queue size is similar to the run time when it is limited. This
implies that the queue size limitation has no effect on performance. The
list operations may be implemented as suggested in [12]. It is also possible
that the Mnesia write/read bottleneck masks a slow down caused by the
in-memory work queue size. If this effect is happening, then PReach would
demonstrate the slow down while PReachDB would not.
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Figure 4.4: With Mnesia and no limit on the in-memory queue size. Progress
is similar to with limiting enabled.

4.2.3 Replication Factor

There does not seem to be significant performance impact when running with
–mnesia between a replication factor of R = 1 and R = 2. The experiment
we ran with R = 2 (Figure 4.5) finished sooner than for R = 1 (Figure 4.3).

4.2.4 Work Queue Replication

We tried running PReachDB with Mnesia-backed non-global work queues,
where the option local content on the work queue is set to true for each
node. This inherently disallows work stealing between nodes.

This exacerbated the bogging down problem. The fast nodes repeatedly
sent states they had already sent. Since states are not removed from the
work queue until all acknowledgments are received, the fast nodes would
revisit unacknowledged states in its work queue before the slow node could
send its initial acknowledgment. With no work stealing, the slow nodes
never caught up and the reachability computation did not complete. The
system got stuck in livelock. By the time the slow node acknowledged a
state from the fast node, the fast node had resent that state with a new
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Figure 4.5: R = 2

sequence number, and so the fast node discarded the acknowledgment.

4.2.5 Dirty Table Operations

In this section we compare the performance of PReachDB using dirty database
table reads and writes to the visited state table and the global work queue
versus using synchronous transactions. According to the Mnesia documen-
tation, a dirty operation will not wait for changes to be fully replicated to
all nodes, but will instead return as soon as one node completes the oper-
ation. If the table fragment is resident on the node, this operation should
take less time than waiting for all remote nodes to acknowledge the replica-
tion. “This still involves logging, replication and subscriptions, but there is
no locking, local transaction storage, or commit protocols involved. Check-
point retainers and indices are updated, but they will be updated dirty. ...
A dirty operation does, however, guarantee a certain level of consistency
and it is not possible for the dirty operations to return garbled records. ...
However, it must be noted that it is possible for the database to be left in
an inconsistent state if dirty operations are used to update it.” [13]

The dirty operations we perform are:

1. Read from the visited state table if a state exists and if not insert the
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state into the visited state table and the global work queue.

2. Read from the global work queue to determine if a state being pro-
cessed has already been retired and is no longer in the global work
queue.

3. Delete the state from the global work queue when its acknowledgment
table counter reaches 0 outstanding ACKs.

The main concern here is that with work stealing, it is possible and
probable for two nodes to explore the same state and read and write lo-
cally without seeing the dirty operations of the other node. In the case of
PReachDB, this should not affect the correctness of the reachability com-
putation, but it may do redundant work. The correctness claim is justified
as follows.

One problem with this approach is termination detection. An incorrect
read of 0 states left in the global work queue could cause the nodes to attempt
early termination. We fix this by doing a synchronous read of the global
work queue size if the dirty read returns 0 states left. The synchronous read
returns the actual number.

Figure 4.6 shows that the performance is similar to that with syn-
chronous transactions. Synchronous transactions adds a 21% overhead over
dirty operations as implemented, with run times of 1435s for dirty operations
and 1740s for synchronous transactions.

We also tried dirty operations with Mnesia in-memory only tables, shown
in 4.7. This did not significantly affect performance versus saving to disk.

4.3 Summary

We tested PReachDB under a selection of simple fault scenarios. It suc-
cessfully recovered from temporary system-wide node failure and from per-
manent single node failures with and without adding a replacement node to
the node pool. However, performance of PReachDB is currently much worse
than that of PReach; thus it is not yet suitable for practical use.
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Figure 4.6: With Mnesia and dirty reads and writes to the visited state table
and the global work queue.
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Figure 4.7: With Mnesia and dirty reads and writes to the visited state table
and the global work queue. Both tables were held in memory and not on
disk by Mnesia.
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Chapter 5

Discussion and Future Work

Distributed explicit-state model checking attempts to provide an edge over
the state space explosion problem by distributing work across multiple com-
pute nodes. As with other distributed computation, it is brittle in the face
of failures. It is a long-running, memory-intensive, communication-intensive
distributed computation. Some possible failures are:

1. A node has a system failure.

2. A node runs out of memory.

3. In the case of persisted data, a node has a disk failure.

4. There is a network partition.

Ideally none of these happen while trying to verify a model with a large
state space. However, failures do occur in practice and there are measures
that can be taken to save the progress of the system. Keeping track of which
states are retired and which states are queued or pending in a durable way
is required for a solution. To recover from a complete node loss also requires
data redundancy.

In PReachDB, we implement redundancy and persistency through Mne-
sia. Mnesia provides distributed database tables with configuration to enable
replication, table fragmentation, and disk storage. We are able to demon-
strate recovery from a single node crashing in three ways: by restarting the
node, by inserting a hot spare new node, and by letting the remaining nodes
finish the computation without a replacement node.

We do not implement explicit checkpointing, but rather use the default
transaction management through Mnesia, which does checkpointing within
the Mnesia subsystem. One option for performance improvement would be
to implement explicit checkpointing while doing fewer Mnesia operations.

We do not address Byzantine failures, which can occur in PReachDB in
a few ways. For instance, a node could make an error while verifying an
invariant predicate on a reachable state. A node could make an error in
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applying Successors(s) and potentially miss a large chunk of the reachable
state space. Or in the case of dirty database operations, an error occurring
during a dirty write could leave a record in an inconsistent state.

We do however address the problems of how to handle messages being
dropped and how to handle messages when a node has been restarted. The
use of acknowledgments also simplies the termination detection equation.

As discussed in Section 4.2.1, the performance comparison between PReach
and PReachDB is affected by an artifact of the older code base. Current
PReach with load balancing would finish at least an order of magnitude
faster than presented in 4.2.1. Given that, the overhead of enabling dis-
tributed tables in Mnesia is very high even without replication. Limiting
the in-memory work queue size did not seem to affect the performance.
Using dirty database operations did marginally improve performance, but
based on [13] the expected improvement from using dirty operations should
have been higher. Likewise the impact of disk versus in-memory Mnesia
tables was lower than expected, and suggests that using Mnesia at all may
be the problem.

The following sections describe some avenues for improvements and fu-
ture work.

5.1 Implementation Improvements

The implementation was written assuming that the root node is always
reachable. The root node is used as the host for generating the list of active
nodes when a hot spare is added. Even with this limitation, PReachDB is
more tolerant to node failures than PReach, which will fail when any single
node fails.

The implementation also assumes that the number of table fragments
equals the number of compute nodes at table creation. When the program
is started, the tables are created with a fixed number of fragments, and this
number is assumed to stay constant until completion. It would make the
system more robust to allow the number of table fragments to grow or shrink
over time as the number of compute nodes changes.

5.2 Automated Recovery

Recovering from system failures in PReachDB is a manual process and re-
quires the user to run shell scripts. There are user commands to pause or
resume the system, restart a node, or insert a new node into the node pool
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as a spare. It would be helpful for usage of the system and for running
experiments to automate the recovery process. This would involve writing
event handlers to automatically trigger recovery using Erlang and Mnesia
events.

5.3 Performance

There are several places where the performance of PReachDB could be im-
proved. There is already work in the literature that could be leveraged in
most of these cases. Further study of the Mnesia system and best practices
when dealing with it would also be beneficial.

5.3.1 Load Balancing

During normal usage of PReachDB, Mnesia reports that it is overloaded
several times. The node from which the warning messages originate also
tends to get bogged down and progresses very slowly. Adding a work queue
aware load balancer to the system is one direction for future work which has
been met with success in other model checkers. [5, 25]

5.3.2 Messages

PReachDB is structured to send at least as many messages as there are
reachable state transitions. The cost of communication is particularly im-
portant because it is higher for PReachDB than for PReach. PReachDB
is designed to run on separate machines due to disk IO, while PReach has
no disk IO and can run multiple nodes on one machine with multithread-
ing. Given that [5] found multiple factor speedup by batching messages into
groups of 100 or 1000, applying the same method to PReachDB should yield
sizable performance improvement.

5.3.3 Memory and Disk Usage

Batching can also be applied to writes to Mnesia. The implementation
writes states to the Global Visited State Table and the Global Work Queue
as it explores, but it would be possible to decouple exploration from saving
by using different threads for the two tasks. This would allow the explorer
to run ahead. In the event of a failure any work done by the explorer that
was not saved would need to be repeated. Batching writes may fit more
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naturally into PReachDB than explicit checkpointing, since we are already
doing transactions with single writes.

We could decrease both memory and disk footprint by using shorter keys
to the Mnesia tables. The key is currently the full state descriptor Erlang
object.

Another method we could try is to use an in-memory Erlang ets cache
as the first line of defense before reading from Mnesia. If the cache does
have the item, then we do not need to do the lookup through Mnesia and
we can avoid resending successors states which have recently been sent.

We could potentially try a different approach using Mnesia as a dis-
tributed log of operations done on in-memory hash tables. There may be a
nice way to use the Murphi in-memory hash table, which is tuned for this
problem. Writes to the log can be batched. Any operations not written to
the log and lost when a node crashes can be rediscovered by replaying the
log and continuing from there.

5.4 Conclusion

PReachDB adds the fault tolerance capabilities of redundancy and persis-
tence to the PReach distributed explicit-state model checker. It does this
through use of the Mnesia distributed database system for Erlang. This
project provides demonstration that PReachDB can recover from faults both
off- and on-line. The overhead of the proof-of-concept implementation ex-
plored here is too high to recommend it for practical usage. Many of the pos-
sible performance improvements suggested are equally applicable to PReach
as to PReachDB. We currently recommend using PReach and investigating
performance improvements that could be applied to both model checkers.
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Code

The PReachDB code is hosted on Github. See [22].
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Tabular Data

For each table, time is in seconds and memory is in MB.
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Tabular Data

Table A1: Data for Figures 4.1, 4.2

# states visited
proc 0 proc 1 proc 2

time memory time memory time memory

0 0.0 4.7 0.0 4.6 0.0 4.5
10000 2.3 5.7 5.9 13.6 6.0 13.6
20000 4.7 7.4 12.5 20.1 12.3 20.1
30000 7.2 7.4 19.2 31.2 19.0 31.2
40000 9.8 7.4 25.0 31.2 24.9 31.2
50000 12.5 7.4 30.7 31.2 30.6 31.2
60000 15.1 7.4 36.6 31.2 36.6 31.2
70000 17.7 7.4 42.1 31.2 42.2 31.2
80000 20.4 7.4 47.7 31.2 47.7 31.2
90000 25.1 17.2 52.1 31.2 52.2 31.2
100000 30.1 22.0 56.5 31.2 56.6 31.2
110000 32.8 17.1 60.6 31.2 60.7 31.2
120000 37.6 17.1 64.7 31.2 64.9 31.2
130000 43.5 11.9 69.0 31.2 69.1 31.2
140000 1479.4 235.0 73.0 31.2 73.1 31.2
150000 1481.7 235.0 76.9 31.2 77.1 31.2
160000 1483.4 235.0 80.6 31.2 80.9 31.2
170000 1485.1 235.0 84.2 31.2 84.4 31.2
180000 1486.8 235.0 1510.5 35.8 1649.8 13.7
190000 1658.6 235.0 1657.1 22.8 1659.8 5.6
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Table A2: Data for Figure 4.3

# states visited
proc 0 proc 1 proc 2

time memory time memory time memory

0 0.0 5.0 0.0 4.9 0.0 4.8
10000 220.0 7.7 78.6 7.6 74.0 6.6
20000 426.2 12.2 160.2 7.6 151.2 9.3
30000 641.0 12.2 243.4 15.4 229.1 9.3
40000 840.5 12.2 326.8 12.1 308.2 9.3
50000 1039.1 12.2 410.0 12.1 387.2 9.3
60000 1227.7 12.2 494.1 12.1 465.6 9.3
70000 1417.0 12.2 579.4 12.1 546.7 9.3
80000 1593.4 12.1 664.3 12.1 631.8 9.4
90000 1718.6 12.2 750.6 12.1 713.9 9.3
100000 1881.3 7.7 842.6 58.5 802.6 81.9
110000 2040.9 9.4 932.1 97.4 888.9 81.9
120000 1016.2 164.9 985.4 81.9
130000 1109.9 343.2 1078.7 82.0
140000 1195.7 352.7 1168.2 81.9
150000 1285.2 58.5 1257.2 82.0
160000 1368.8 116.0 1359.9 81.9
170000 1458.4 116.0 1453.7 81.9
180000 1541.9 82.1 1548.6 81.9
190000 1632.5 97.5 1657.6 82.0
200000 1720.7 236.1 1759.8 81.9
210000 1802.1 74.6 1856.3 82.0
220000 1888.8 36.2 1951.1 81.9
230000 1959.2 53.7 2030.6 81.9
240000 2034.5 7.7
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Table A3: Data for Figure 4.4

# states visited
proc 0 proc 1 proc 2

time memory time memory time memory

0 0.0 4.9 0.0 4.9 0.0 4.9
10000 55.9 5.6 491.8 69.1 57.4 8.4
20000 113.0 5.3 747.8 100.2 115.6 6.5
30000 172.4 5.2 973.6 97.4 175.0 6.6
40000 233.2 7.7 1173.1 97.3 234.1 6.6
50000 293.6 7.7 1359.9 97.4 295.4 5.1
60000 356.6 45.8 1519.6 97.4 359.8 58.5
70000 420.2 6.7 1658.5 97.4 427.3 99.4
80000 490.8 7.7 1699.7 97.4 493.2 82.0
90000 552.7 7.7 1719.1 97.4 559.5 115.9
100000 622.4 6.7 1730.7 97.4 627.4 69.2
110000 702.4 6.0 1737.0 97.4 698.7 116.0
120000 775.7 7.8 1741.9 97.4 769.5 116.0
130000 857.1 7.8 1746.4 97.4 842.1 82.1
140000 928.2 6.7 906.5 116.0
150000 999.6 7.7 979.2 82.1
160000 1069.9 6.7 1056.1 156.6
170000 1138.5 7.8 1125.9 7.7
180000 1213.0 7.7 1200.6 179.1
190000 1288.8 6.7 1269.2 215.0
200000 1363.3 7.8 1338.4 6.1
210000 1446.1 50.6 1405.8 69.2
220000 1519.9 50.6 1481.5 48.7
230000 1600.3 50.7 1549.7 32.3
240000 1670.5 50.6 1614.8 7.8

1675.3 30.3
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Table A4: Data for Figure 4.5

# states visited
proc 0 proc 1 proc 2

time memory time memory time memory

0 0.0 5.0 0.0 4.9 0.0 4.9
10000 56.1 6.0 514.4 12.1 57.9 7.6
20000 113.6 5.9 757.4 12.1 118.2 7.6
30000 172.3 5.5 976.9 12.2 178.1 7.7
40000 232.9 7.8 1167.8 12.2 238.1 6.6
50000 292.4 7.7 1353.7 12.1 300.1 5.1
60000 354.2 5.1 1491.4 12.1 363.3 97.8
70000 416.7 7.7 1617.9 44.0 428.0 144.7
80000 480.0 7.7 491.9 97.5
90000 544.3 7.7 558.5 116.0
100000 612.6 6.0 630.5 130.2
110000 680.9 7.7 698.0 176.9
120000 749.2 7.7 766.3 227.7
130000 820.2 64.0 836.2 172.7
140000 896.5 7.7 910.2 177.0
150000 974.8 7.7 994.6 287.5
160000 1048.6 7.8 1063.3 266.7
170000 1123.8 6.0 1134.6 116.0
180000 1202.6 7.7 1209.9 262.8
190000 1275.0 6.1 1282.6 123.5
200000 1347.7 58.5 1353.2 69.2
210000 1419.3 58.5 1423.0 69.2
220000 1497.5 58.5 1497.5 58.5
230000 1568.5 58.5 1564.0 32.3
240000 1642.2 58.5 1631.3 31.6
250000 1706.7 58.5 1697.6 14.1
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Tabular Data

Table A5: Data for Figure 4.6

# states visited
proc 0 proc 1 proc 2

time memory time memory time memory

0 0.0 4.8 0.0 4.7 0.0 4.8
10000 32.1 5.9 112.9 12.0 33.0 6.5
20000 66.0 8.1 224.8 12.0 68.0 9.3
30000 100.5 8.1 319.6 12.0 103.4 12.7
40000 135.6 8.0 384.1 12.4 139.2 9.3
50000 170.7 8.1 431.1 12.4 175.4 9.2
60000 205.7 6.7 478.4 12.4 212.0 9.3
70000 241.5 8.0 524.0 15.8 249.3 9.3
80000 278.3 8.0 560.9 15.8 283.5 6.5
90000 316.6 7.0 608.3 15.7 323.6 9.7
100000 356.6 9.7 656.3 7.9 372.0 8.3
110000 414.3 8.0 720.8 86.7 431.7 8.3
120000 474.6 8.0 826.0 116.2 493.7 6.6
130000 555.4 9.8 999.9 116.2 564.5 7.2
140000 614.8 8.4 1134.3 7.9 646.5 8.7
150000 679.1 8.0 1271.1 82.2 750.3 154.8
160000 766.5 8.0 1381.9 17.6 883.5 62.5
170000 934.0 8.0 981.2 161.3
180000 1067.2 7.0 1051.9 97.8
190000 1213.1 58.8 1157.9 69.4
200000 1307.4 58.8 1221.4 44.6
210000 1372.4 58.8 1323.9 49.0
220000 1387.2 14.3
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Tabular Data

Table A6: Data for Figure 4.7

# states visited
proc 0 proc 1 proc 2

time memory time memory time memory

0 0.0 5.1 0.0 4.8 0.0 4.9
10000 28.1 6.7 82.6 7.5 28.3 6.5
20000 57.9 9.4 167.8 7.5 58.2 9.3
30000 88.6 9.4 254.8 12.1 88.9 9.3
40000 119.3 9.4 313.6 12.1 119.9 9.3
50000 151.1 9.4 357.8 12.0 151.7 9.3
60000 182.2 9.5 403.7 12.1 182.9 9.3
70000 214.0 9.4 445.8 12.1 214.8 9.3
80000 247.3 9.5 488.8 12.1 246.5 9.3
90000 282.4 7.7 535.1 12.1 282.5 7.6
100000 332.8 7.8 569.1 12.1 326.5 7.6
110000 383.1 6.7 645.9 6.5 384.7 6.3
120000 442.1 82.2 779.7 69.1 439.4 8.3
130000 501.6 141.0 877.8 178.6 501.0 119.5
140000 574.2 82.1 1048.1 164.9 572.8 6.6
150000 684.9 82.1 1161.3 5.9 660.1 115.9
160000 829.7 82.1 1261.0 58.4 781.9 82.1
170000 974.3 129.6 1386.7 58.4 950.6 122.3
180000 1121.3 82.1 1055.8 52.0
190000 1245.3 82.1 1180.2 58.4
200000 1360.1 82.1 1359.1 26.2
210000 1459.0 82.1 1442.5 14.0
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