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Abstract

In this work, we study systems with two levels of memory: a fixed-size cache, and

a backing store, each of which contain blocks. In order to serve an IO request,

the block must be in the cache. If the block is already in the cache when it is

requested, the request is a cache hit. Otherwise it is a cache miss, and the block

must be brought into the cache. If the cache is full, a block must be evicted from

the cache to make room for the new block. A replacement policy determines which

block to evict. In this work, we consider only the LRU policy. An LRU cache evicts

the block which was least recently requested.

A trace is a sequence of blocks, representing a stream of IO requests. For a

given trace, a hit rate curve maps cache sizes to the fraction of hits that such a

cache would achieve on the trace. Hit rate curves have been used to design storage

systems, partition memory among competing processes, detect phases in a trace,

and dynamically adjust heap size in garbage-collected applications.

The first algorithm to compute the hit rate curve of a trace over a single pass

was given by Mattson et al. in 1970. A long line of work has improved on this

initial algorithm. The main contribution of our work is the presentation and formal

analysis of two algorithms to approximate hit rate curves. Inspired by recent results

in the streaming algorithms community on the distinct elements problem, we use

memory efficient probabilistic counters to estimate the number of distinct blocks in

a subsequence of the trace, which allows us to approximate the hit rate curve using

sublinear space. We also formally state some variants of the hit rate curve approxi-

mation problem which our algorithms solve, and derive lower bounds on the space

complexity of these problems using tools from communication complexity.
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Preface

This thesis is the formal analysis complement of the more systems-oriented work

published as J. Wires, S. Ingram, N. J. A. Harvey, A. Warfield, and Z. Drudi; Char-

acterizing storage workloads with counter stacks; published in 11th USENIX Sym-

posium on Operating Systems Design and Implementation. The ideas behind the

algorithms described in chapter 3 are common to both works, and were developed

together by the above authors.

The analysis in chapters 3, 4, and 5 is original, unpublished work. The imple-

mentation used for the experiments in chapter 6 is the same as that analyzed in the

published paper mentioned above.
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Chapter 1

Introduction

Most computer systems use multiple levels of storage. CPU caches permit very

efficient read and write operations, speeding the execution of processes, but are

limited in size by their high cost. Main memory is slower, cheaper and larger, but

again too expensive to provide all the storage requirements of a system. Magnetic

disks or flash drives provide very high capacity storage, but at significantly lower

speeds.

Given this memory hierarchy, much work has been done to make the most

efficient use of available resources. To simplify the discussion, we assume there

are only two levels of memory: a fast, small cache, and a larger backing store.

Both the cache and the store contain data organized into fixed size blocks. During

execution, a process issues block requests. If a requested block is in the cache, we

have a cache hit, and the process can continue execution. Otherwise, a cache miss

occurs, and the requested block must be brought into the cache before the process

can resume. If the cache is full, a block must be evicted from the cache into the

store. A replacement policy determines how this block is chosen. To simplify

matters, in the following we will just consider the trace, which is the sequence of

block requests made by a process, and ignore the process itself.

Belady [4] did early, foundational work on comparing different replacement

policies by simulation on request traces. The most widely used replacement policy

is LRU. LRU stands for Least Recently Used. When a cache miss occurs, the

LRU policy evicts the block whose last request occurred before the last request of
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any other block in the cache. Although implementing LRU involves dynamically

reordering blocks on every request and is somewhat expensive, there are variants

of LRU that are both simple and efficient to implement in practice, and are widely

used.

Given a replacement policy such as LRU and a trace, the hit rate curve is a

function mapping cache sizes to the fraction of hits for that cache size.

Mattson et al. [23] introduced the notion of a stack algorithm, which character-

izes a class of replacement policies (including LRU), and gave a simple algorithm

that can compute the hit rate curve for a fixed stack algorithm in a single pass over

the trace. The algorithm computes the stack distance of each request, and tallies

them to produce the hit rate curve after the trace has been processed. The stack

distance of a request to a block b is the number of distinct blocks that occurred in

the trace between the current request to b and the last request to b. The stack dis-

tance of a request corresponds to the minimum size LRU cache that would produce

a hit on the request. If there is no such earlier request to b, the stack distance is

defined to be infinite, as a request to a new block is necessarily a miss regardless

of cache size. In the Mattson et al. algorithm, a linked list maintains the blocks

that have been previously requested. To process a new request for a block b, the

linked list is linearly searched for b. If b is found, its position in the linked list is

the stack distance of the request. The block b is then removed from the linked list,

and reinserted at the head of the list. If b is not found in the list, then this is the first

request for b, and the request is assigned a stack distance of infinity. After the trace

is processed, the value of the hit rate curve for a given cache size C is simply the

number of stack distances less than or equal to C, normalized by the total number

of requests.

While simple, this algorithm is quite inefficient. If the trace has length m and

the blocks come from a store of size n, each request will take O(n) time to process.

A series of more efficient algorithms has been introduced by authors interested in

CPU caches ([5], [26], [28], [1], [13], [27], [34], [15], [25]) . The traces studied are

produced by a processor executing a given program, and each request corresponds

to a memory location. The cache is the CPU level cache, while the backing store

is main memory. For these traces, m is typically on the order of billions, even

for short program executions of a minute or less, while n is a fraction of main
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memory. In this setting, online algorithms which process each request as it is

made by the process are attractive because the trace doesn’t need to be recorded.

These algorithms must be very efficient or they will impose unacceptable overhead

on program execution. Accordingly, past work has frequently focused on time

complexity, while space complexity has received comparatively little attention.

In this work, we approach the problem motivated by storage level traces. These

traces correspond to requests made to the file system. In this setting, the backing

store is the permanent storage medium of the system, which may be a magnetic disk

or flash drive. The number of distinct blocks in the backing store, n, may exceed

main memory, so we are very sensitive to space usage. Our contribution is the

presentation and analysis of approximation algorithms to compute hit rate curves

using sublinear space. The main ingredient in our approach is a line of work from

the streaming algorithms community on algorithms to count the number of distinct

elements in a stream using sublinear space ( [16], [2], [3], [14], [17], [21]). Using

these counting algorithms as a black box, we can estimate the stack distances of

requests in the trace, and produce an approximate hit rate curve. Unlike prior work

on approximate hit rate curves, we derive precise error bounds for our algorithms.

Furthermore, using results from communication complexity we give lower bounds

for the space complexity of algorithms solving several variants of the hit rate curve

problem.
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Chapter 2

Related Work

Researchers have done a substantial amount of work exploring improved versions

of the Mattson algorithm first proposed in [23], as well as entirely new techniques

for computing hit rate curves. Here we discuss some of these contributions. We

first discuss exact algorithms, and then we describe some recent approximation

algorithms.

2.1 Exact Algorithms
Bennett and Kruskal [5] improved on the original Mattson algorithm by replacing

the linear list with a k-ary tree. The leaves of the tree represent requests, and store

1 or 0 depending on whether the request corresponds to the last request of the

block. Interior nodes store the sum of their children. The last time each block was

requested with respect to a given point in the trace is stored in a hash table, which is

updated after processing each request. The stack distance of a request is computed

by looking up the block to find the time it was last requested, and finding the sum

of the corresponding subtree. The time complexity to process a request is thus

O(log(m)). This general framework of using a hashtable to store the last access

time of each block and an auxilliary tree-based datastructure to compute the stack

distance was used by many later authors ([26], [28], [1], [13], [25]).

Almási, Caşcaval and Padua [1] proposed some variants of the Bennett and

Kruskal algorithm, counting the number of “holes” (leaves containing 0, instead of
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1) instead of the number of 1s in the leaves, and using an interval tree data structure

(implemented using either an AVL or red-black tree) to store the locations of the

holes. Their modifications were more efficient in practice, although they had the

same asymptotic complexity. Sugumar and Abraham [28] used splay trees instead.

Niu et al. presented a parallel algorithm [25]. Given p processors, the trace is

split into p chunks, with the kth chunk going to the kth processor. The computation

is performed in a series of rounds. In each round, every processor uses a variant of

the sequential Mattson algorithm to process its chunk of the trace, storing the stack

distances in a local copy of the stack distance histogram. Requests to blocks which

occur for the first time in a given chunk may have occured in a previous chunk

in the trace. To determine their true stack distances, these requests are added to

a queue, and passed to the previous processor at the end of the round. After at

most O(p) rounds, all stack distances have been found, and the local histograms

are aggregated to produce the complete histogram.

2.2 Approximation Algorithms
By dynamically resizing the tree, Ding and Zhong [13] approximate the hit rate

curve by approximating the stack distance of each request with multiplicative er-

ror ε . For each block, their algorithms record the time range that the last ac-

cess belongs to instead of the exact time. The tree structure itself only consumes

O(log(n)/ε) space, but they still require a hash table mapping each block to the

last time in the trace it was requested, requiring O(n) space. The trace can be pre-

processed to include this information with each request, at the cost of O(m logn)

time.

Shen et al. augment the algorithm of Ding and Zhong with sampling [34]. The

trace is divided into alternating sampling and hibernating intervals. The hash table

of last access times is always updated, but the stack distance of a given request

is only recorded if the latest prior access occurred in a sampling interval. They

also tweak the tree bookkeeping of Ding and Zhong’s algorithm by merging all

requests from a given hibernating interval into a single leaf node, and record only

the number of distinct blocks requested in the interval.

Shen et al. use a probabilistic model to estimate the stack distance histogram [27].
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Using a histogram of time distances (the number of requests between two succes-

sive requests to the same block) and the number of distinct blocks accessed in the

trace, they estimate the stack distance histogram. Their experimental results show

good accuracy, but they do not provide analytical error bounds.

Eklov and Hagersten combine trace sampling with approximation of stack dis-

tances from reuse distances [15]. Building on their work in [6], their method finds

the average stack distance among all reuse windows of a fixed size by using the

distribution of forward reuse distances.

Xiang et al. [33], building on earlier work [32], use an approach based on

averaging. They define the footprint of a window of the trace to be the number

of distinct blocks accessed during the window. For a given window size w, the

average footprint is the average number of distinct blocks accessed in windows

of size w. They calculate the average footprint of a logarithmic scale of window

sizes by recording the reuse distances of requests. Inverting the average footprint

function yields an approximation to the unnormalized hit rate curve. While their

approach is fast and accurate, their memory requirements are linear in n, and it is

unclear if their averaging technique maintains the precise error bounds of an earlier,

slower approach measuring all footprints [32].
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Chapter 3

Presentation and Analysis of
Algorithms

In this chapter we describe our main algorithms and characterize their space usage

and accuracy guarantees. We begin by establishing some notation, and introducing

the working set data structure abstraction. In section 3.3, we present deterministic

algorithms for computing hit rate curves. In section 3.4 we modify these using

work from the streaming algorithms community. In Theorem 2, our main result of

this chapter, we show that the resulting algorithm computes the hit rate curve with

additive error ε , and in Corollary 6 we show it uses only O(poly(1/ε, log(nm)))

space.

3.1 Preliminaries
To state our results precisely, let us fix some notation. We will use n to represent

the size of the store from which blocks are drawn, and m to represent the trace

length. We will identify blocks with integers from the set [n] = {i : 1≤ i≤ n}.
The set of requested blocks between time t ′ and strictly before time t is:

B(t ′, t) =
{

bi : i ∈ [m] and t ′ ≤ i < t
}
.

7



At time t, the most recent request for block bt occurred at time

R(t) = max{ x : x < t and bx = bt } .

We define R(t) = −∞ if bt was not requested before time t. The stack distance of

the request at time t is

D(t) =

|B(R(t), t)| (if R(t)>−∞)

∞ (otherwise)

A cache of size k has a hit at time t if and only if D(t) ≤ k. The hit rate curve is

the function C : [n]→ [0,1] where C(k) is the hit rate for a cache of size k. Thus

C(k) = |{ t ∈ [m] : D(t)≤ k }|/m.

In this work we are concerned with computing the hit rate curve at ` uniformly-

spaced points, where ` is a parameter. For simplicity, assume that n = `∆, n = `∆where ∆

is an integer. The histogram of D is the function H : [`]→ N where

H(i) = |{ t ∈ [m] : (i−1)∆ < D(t)≤ i∆ }|. (3.1)

The fraction of requests that are hits with a cache of size x∆ is ∑
x
i=1 H(i)/m. The

hit rate curve at the desired ` uniformly-spaced points is

C(x∆) =
x

∑
i=1

H(i)/m ∀x ∈ [`].

3.1.1 Algorithmic guarantees

All algorithms in Sections 3.4 and 4.2 produce a function Ĉ that satisfies

C
(
(x−1)∆

)
− ε ≤ Ĉ(x∆) ≤ C(x∆)+ ε ∀x ∈ [`+1] (Weak-Guarantee)
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with high probability. In fact, the algorithms of Sections 3.4.1 and 4.2 actually

satisfy the guarantee

C
(
(x−1)∆

)
− εx/` ≤ Ĉ(x∆) ≤ C(x∆)+ εx/` ∀x ∈ [`+1].

(Strong-Guarantee)

The algorithms of Sections 3.4.2 and 4.2 use space poly(`,1/ε, log(nm)).

3.2 The Working Set Data Structure
To streamline our presentation, we introduce an abstract data type called a working

set data structure. In the following section, we will describe a single algorithm to

compute hit rate curves, given an implementation of a working set data structure.

Then, we will present a series of implementations of working set data structures.

The notion of a working set comes from Denning [11]. The working set of the

trace between times t ′ and t is simply B(t ′, t). As the stack distance D(t) is defined

in terms of |B(R(t), t)|, if we knew |B(t ′, t)| for all t ′, t we could compute the stack

distance for every request in the trace. A working set data structure gives estimates

of |B(t ′, t)|, enabling a client to estimate stack distances and thus the hit rate curve.

A working set data structure supports two operations, REGISTER(t,b), which

records that block b was requested at time t, and GETWORKINGSETSIZE(t), which

estimates the number of distinct blocks requested since time t.

The simplest way to implement a working set data structure is to use a counter,

which is an abstract data type that computes the number of distinct elements in a

data stream. This data type supports two operations, INSERT and QUERY, which

returns the number of distinct elements that were inserted. Pseudocode illustrating

this is shown in Algorithm 1.

3.3 Deterministic Algorithms for Computing Hit Rate
Curves

We are interested in computing the value of C at ` uniformly-spaced points, so we

begin with Algorithm 2 which computes those values. It can be implemented in

O(m logn) time and O(n) space using the hash table plus tree approach of Bennett

and Kruskal [5].
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Algorithm 1: An implementation of a working set data structure based on
abstract counters.
1 c← 1
2 Function Register(t,bt):
3 c← dt/∆e
4 if t ≡ 1 (mod ∆) then
5 Create the new counter K [c]

6 for i = 1, . . . ,c do
7 K [i].INSERT(bt)

8 Function GetWorkingSetSize(t):
9 Return K [dt/∆e].QUERY()

Algorithm 2: Algorithm for computing the hit rate curve at ` = n/∆

uniformly-spaced points.

1 Input: A sequence of requests (b1, . . . ,bm) ∈ [n]m

2 Initialize the vector H ∈ N` with zeros
3 for t = 1, . . . ,m do
4 If D(t) is finite then increment H[dD(t)/∆e] by 1

5 B H[i] satisfies condition (3.1).
6 Output the hit rate curve values C(x∆) = ∑

x
i=1 H[i]/m for x ∈ [`].

Next we present Algorithm 3, which is an algorithm to approximate a hit rate

curve using a working set data structure. To facilitate compact implementations of

that data structure, the algorithm only queries the working set size at specific times

τi = (i− 1)∆+ 1 for i = 1,2, . . .. This algorithm also allows the data structure

to decline to return an estimate, in which case it returns NULL instead. Consider

implementing the working set data structure using exact counters, which compute

the number of distinct elements exactly, e.g., using a hash table. Then line 9 in

Algorithm 3 will have

Xi(t) = |B(τi, t)| ∀i, t. (3.2)

Let us now compare the accuracy of Algorithms 2 and 3 when exact counters are

used.
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Algorithm 3: An algorithm for approximating the hit rate curve at `
uniformly-spaced points, given an implementation W of a working set data
structure.
1 Input: A sequence of requests (b1, . . . ,bm) ∈ [n]m

2 Initialize the vector H ∈ N` with zeros
3 B For convenience, let τi denote (i−1)∆+1
4 for t = 1, . . . ,m do
5 B Receive request bt

6 W .REGISTER(t,bt)
7 Let c← dt/∆e
8 for i = 1, . . . ,c do
9 Let Xi(t +1)←W .GETWORKINGSETSIZE(τi)

10 for i = 1, . . . ,c−1 do
11 if Xi(t +1) 6= NULL and Xi+1(t +1) 6= NULL then
12 Increment H[dXi(t)/∆e] by(

Xi+1(t+1)−Xi+1(t)
)
−
(
Xi(t+1)−Xi(t)

)
13 Increment H[dXc(t)/∆e] by 1−

(
Xc(t+1)−Xc(t)

)
14 Output the hit rate curve approximation given by C(x∆) = ∑

x
i=1 H[i]/m for

x ∈ [`].

Claim 1. Let C be the hit rate curve computed by Algorithm 2. Let Ĉ be the hit

rate curve computed by Algorithm 3, using Algorithm 1 with exact counters to

implement W . Then

C
(
(x−1)∆

)
≤ Ĉ(x∆) ≤ C(x∆) ∀x ∈ [`].

Proof. Let H and Ĥ respectively denote the histograms computed by Algorithms

2 and 3. Note that bt 6∈ B(t ′, t) for t ′ > R(t) but bt ∈ B(t ′, t) for t ′ ≤ R(t). Because

of (3.2), we have

Xi(t+1)−Xi(t) =

1 (if R(t)< τi ≤ t)

0 (if 1≤ τi ≤ R(t))

It follows that the increment in line 12 equals 1 if τi ≤ R(t) < τi+1 and otherwise

it equals zero. Similarly, the increment in line 13 equals 1 if τc ≤ R(t). At most
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one of these conditions can hold, so for each value of t, Algorithm 3 increments

at most one entry of Ĥ. Specifically, if R(t) is finite then the algorithm increments

Ĥ[dXi∗(t)/∆e] where i∗ = dR(t)/∆e.
When R(t) is finite, we have τi∗ ≤ R(t) < τi∗+1. Since Xi∗(t) = |B(τi∗ , t)| and

D(t) = |B(R(t), t)|, we derive

Xi∗+1(t)≤ D(t)≤ Xi∗(t). (3.3)

We also have

Xi∗(t)−Xi∗+1(t) = |B(τi∗ , t)|− |B(τi∗+1, t)|

= |B(τi∗ , t)\B(τi∗+1, t)| ≤ |B(τi∗ ,τi∗+1)| ≤ ∆. (3.4)

So by 3.3 and 3.4 we have⌈
Xi∗(t)

∆

⌉
−1 ≤

⌈
D(t)

∆

⌉
≤
⌈

Xi∗(t)
∆

⌉
.

Algorithm 2 increments H[dD(t)/∆e], whereas Algorithm 3 increments Ĥ[dXi∗(t)/∆e].
So

x

∑
i=1

Ĥ[i]︸ ︷︷ ︸
Ĉ(x∆)

≤
x

∑
i=1

H[i]︸ ︷︷ ︸
C(x∆)

≤
x+1

∑
i=1

Ĥ[i]︸ ︷︷ ︸
Ĉ
(
(x+1)∆

)
.

Rearranging this yields the desired inequality.

3.4 A Streaming Algorithm for Approximating Hit Rate
Curves

In this section we design an improved working set data structure using ideas from

streaming algorithms. The working set data structure used in Claim 1 is not ef-

ficient because it uses exact counters. Our main idea is to use, as a black box, a

streaming algorithm for estimating distinct elements, which we will call a proba-

bilistic counter.

Each probabilistic counter has two parameters, n and α . The INSERT operation
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takes a value x ∈ [n] and the QUERY operation reports a value v satisfying

|S| ≤ v ≤ (1+α)|S|. (3.5)

An optimal probabilistic counter was developed by Kane et al. [21]. It ensures that

(3.5) holds with high probability for poly(m) queries, and each instantiation uses

only O
(
(1/α2 + logn) logm

)
bits of space. In practice, the HyperLogLog counter

[17] is very simple and has excellent empirical performance.

We assume three simple consistency properties of a counter.

P1: Two consecutive calls to QUERY (without any intervening insertions) re-

turn the same value.

P2: Reinserting an item that was previously inserted does not change the

value of QUERY.

P3: The values returned by QUERY do not decrease as more elements are

inserted.

3.4.1 Implementing Algorithm 3 using probabilistic counters

Now we consider the working set data structure of Algorithm 1 implemented us-

ing the optimal probabilistic counter of Kane et al. [21] with accuracy parame-

ter α = ε∆/n = ε/`. α = ε/`We will analyze Algorithm 3 with this working set data

structure. The data structure will create dm/∆e counters, each of which uses

s = O
(
(1/α2 + logn) logm

)
bits of space. So the total space usage is O(ms/∆)

bits. In Section 3.4.2 we will modify the data structure to “prune” redundant coun-

ters, which reduces the space to O(`s/ε) bits.

The following theorem compares the accuracy guarantee of Algorithm 3 using

Algorithm 1 with either exact or probabilistic counters.

Theorem 2. Let C and Ĉ respectively refer to the hit rate curves produced using

exact and probabilistic counters. Then

C
(
(x−1)∆

)
−2αx ≤ Ĉ(x∆) ≤ C(x∆)+2αx ∀x ∈ [`+1]. (3.6)

Furthermore, Ĉ satisfies the (Strong-Guarantee) condition on page 9 with respect

to the true hit rate curve.

13



Proof. Let H and Xi refer to the quantities using exact counters and let Ĥ and X̂i

refer to the corresponding quantities using probabilistic counters. We require the

following claim:

Claim 3. For any times a≤ b and any index i, we have

Xi(a)−Xi+1(a)≥ Xi(b)−Xi+1(b).

Proof of claim. Recall that Xi(t) = |B(τi, t)|. As τi < τi+1, we get Xi(t)−Xi+1(t) =

|B(τi,τi+1)\B(τi+1, t)|. Thus

Xi(a)−Xi+1(a)− (Xi(b)−Xi+1(b))

= |B(τi,τi+1)\B(τi+1,a)|− |B(τi,τi+1)\B(τi+1,b)| ≥ 0,

as B(τi+1,a)⊂ B(τi+1,b).

The histogram H and the hit rate curve C are computed by the increment op-

eration of the ith iteration of the loop on line 10 in algorithm Algorithm 3 while

processing the request at time t, for each valid i, t pair. For simplicity, we consider

line 13 to be the final iteration of this loop. This increment operation involves only

Xi and Xi+1. The same is true of Ĥ and Ĉ, using instead the pair X̂i and X̂i+1. So,

to prove (3.6), we will show that the contribution from the pair X̂i and X̂i+1 to Ĉ

approximately equals the contribution from the pair Xi and Xi+1 to C.

Contribution to C. Fix any x ∈ [`] and recall that C(x∆) = ∑
x
j=1 H[ j]/m. By con-

sidering lines 4, 12, and 13 of Algorithm 3 we see that the pair Xi and Xi+1 can

only contribute to C(x∆) while t ≤m and dXi(t)/∆e ≤ x. So, let Ti be the time after

the last contribution of Xi and Xi+1 to C(x∆), i.e.,

Ti = min({ t : Xi(t)> x∆ }∪{m+1}).

At all times t ≥ Ti, the pair Xi and Xi+1 does not contribute to C(x).

14



For the time being, let us assume that τi+1 ≤ m. That is, an (i+1)th counter is

created during trace processing. The contribution to m ·C(x∆) from the the pair Xi

and Xi+1 isXi+1(t +1)−Xi+1(t)−Xi(t +1)+Xi(t) (for each time t ∈ {τi+1, . . . ,Ti−1})

1−Xi(t +1)+Xi(t). (for each time t ∈ {τi, . . . ,τi+1−1}).

Summing up, the total contribution is

∑
τi≤t<τi+1−1

(
1−Xi(t +1)+Xi(t)

)
+ ∑

τi+1≤t<Ti

(
Xi+1(t+1)−Xi+1(t)−Xi(t+1)+Xi(t)

)
= ∆−Xi(τi+1)+Xi(τi)+Xi(τi+1)−Xi+1(τi+1)+Xi+1(Ti)−Xi(Ti)

= ∆+Xi+1(Ti)−Xi(Ti) (3.7)

Contribution to Ĉ. Similarly, let T̂i = min({ t : X̂i(t) > x∆}∪{m+1}). Then at

all times t ≥ T̂i, the pair X̂i and X̂i+1 do not contribute to Ĉ(x). (This assertion uses

property P3 of the counters.) Summing up as before, the total contribution of the

pair X̂i and X̂i+1 to m ·Ĉ(x∆) is

∆+ X̂i+1(T̂i)− X̂i(T̂i). (3.8)

Upper bound on contribution to Ĉ(x∆). The difference between the contribution

of X̂i and X̂i+1 to m · Ĉ(x∆) and the contribution of Xi and Xi+1 to m ·C(x∆) is the

difference between (3.8) and (3.7), namely

X̂i+1(T̂i)− X̂i(T̂i)−Xi+1(Ti)+Xi(Ti). (3.9)
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We now upper bound this quantity. First note that T̂i ≤ Ti, by (3.5). Then Claim 3

shows that (3.9) is at most

X̂i+1(T̂i)− X̂i(T̂i)−Xi+1(T̂i)+Xi(T̂i)

≤ αXi+1(T̂i) (by (3.5))

≤ αXi(T̂i) (by definition of Xi and Xi+1)

≤ α(x∆+1) (since T̂i ≤ Ti and by definition of Ti). (3.10)

Lower bound on contribution to Ĉ(x∆). For the lower bound, we must consider

the contribution of Xi and Xi+1 to C((x−1)∆). Define

T ′i = min({ t : Xi(t)> (x−1)∆ }∪{m+1}).

Arguing as before, we find that the total contribution of this pair to m ·C((x−1)∆)

is

∆+Xi+1(T ′i )−Xi(T ′i ). (3.11)

The difference between (3.8) and (3.11) is

X̂i+1(T̂i)− X̂i(T̂i)−Xi+1(T ′i )+Xi(T ′i ). (3.12)

Claim 4. T ′i ≤ T̂i.

Proof of claim. By definition of T ′i , we have Xi(T ′i ) ≤ (x−1)∆+1. By definition

of α , we have αn = ε∆ < ∆. So, by (3.5),

X̂i(T ′i ) ≤ (1+α)Xi(T ′i ) ≤ (1+α)
(
(x−1)∆+1

)
≤ (x−1)∆+1+αn < x∆+1 ≤ X̂i(T̂i).

By P3, the claim is proven.
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Applying Claim 4, we may use Claim 3 to show that (3.12) is at least

X̂i+1(T̂i)− X̂i(T̂i)−Xi+1(T̂i)+Xi(T̂i)

≥ −αXi(T̂i) (by (3.5))

≥ −α(x∆+1) (since T̂i ≤ Ti and by definition of Ti). (3.13)

The last counter. Here we consider the special case where m < τi+1. In this case,

the contribution of Xi to C(x) is

∑
τi≤t≤m

(
1−Xi(t +1)+Xi(t)

)
= m− τi +1−Xi(m+1). (3.14)

Similarly, the contribution of X̂i to Ĉ(x) is

m− τi +1− X̂i(m+1). (3.15)

The bound of α(x∆+ 1) on the absolute value of the difference of (3.15) and

(3.14) follows immediately from (3.5). Indeed, we get the bound of α∆. Note

that Ti = T ′i = m+ 1, as Xi(t) ≤ ∆ for all t ∈ [τi,m]. Thus the contribution of Xi

to C((x−1)∆) is equal to the expression in (3.14), and the lower bound follows as

well.

Proof of (3.6): We now combine our previous observations to establish (3.6).

Recall that c = dm/∆e is the total number of counters. Summing (3.10) over all i,

we obtain that

mĈ(x∆) ≤ mC(x∆)+αc(x∆+1) ≤ mC(x∆)+2αmx.

This proves the second inequality of (3.6). The first inequality of (3.6) follows

analogously from (3.13).
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Proof of (Strong-Guarantee): Let C∗ denote the true hit rate curve. Combining

(3.6), Claim 1 and the definition of α yields

C∗
(
(x−2)∆

)
−2εx/` ≤ Ĉ(x∆) ≤ C∗(x∆)+2εx/`.

Applying this bound with ∆/2 instead of ∆, and ε/2 instead of ε establishes

(Strong-Guarantee).

3.4.2 Improved space by pruning redundant counters

As requests are processed, adjacent counters may converge to the same value.

When this happens, it is not necessary to keep both counters. In this section we use

the working set data structure of Algorithm 1 with probabilistic counters, but we

delete redundant counters. The new algorithm is shown in Algorithm 4.

Claim 5. The number of active counters at any point in time is O(`/ε).

Proof. Due to lines 8 and 9, every i ∈ A satisfies either Xi−1(t)−Xi(t) > 2ε∆ or

Xi(t)−Xi+1(t)> 2ε∆. In either case, we must have

|B(τi−1, t)|− |B(τi+1, t)|> ε∆ ∀i 6∈ {1,c} , (3.16)

since, by (3.5) and the definition of α ,

|B(τ j, t)| ≤ X j(t) ≤ (1+α)|B(τ j, t)| ≤ |B(τ j, t)|+ ε∆

for every j ∈ A and every t. Summing (3.16) over i we obtain

ε∆(|A|−2)≤ ∑
i∈A\{1,c}

(
|B(τi−1, t)|− |B(τi+1, t)|

)
≤ 2

c−1

∑
i=1

(
|B(τi, t)|− |B(τi+1, t)|

)
≤ 2n.

We conclude that |A| ≤ 2+2n/ε∆ = O(`/ε).

Corollary 6. The space complexity of Algorithm 3 implemented using Algorithm 4

is O
(
`(`2/ε2 + logn) log(m)/ε

)
bits.
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Algorithm 4: An implementation of a working set data structure incorporat-
ing pruning. A is the set of active counters.

1 A← /0
2 Function Register(t,bt):
3 c← dt/∆e
4 if t ≡ 1 (mod ∆) then
5 Create the new counter K [c]
6 A← A∪{c}
7 for i ∈ A\{1,c} do
8 if (

(i−1 6∈ A)∨ (Xi−1(t)−Xi(t)≤ 2ε∆)
)

∧
(
(i+1 6∈ A)∨ (Xi(t)−Xi+1(t)≤ 2ε∆)

)
then

9 Delete K [i] and set A← A\{i}

10 for i ∈ A do
11 K [i].INSERT(bt)

12 Function GetWorkingSetSize(t):
13 Let i = dt/∆e
14 if i ∈ A then
15 Return K [i].QUERY()
16 else
17 Return NULL

Proof. Using the optimal probabilistic counter [21] with the parameter α = ε/`

each counter uses space s = O
(
(`2/ε2 + logn) logm

)
. The space requirement for

the histogram used by Algorithm 3 is O(` logn). By Claim 5, the total space usage

is O
(
(`/ε) · s

)
, as required.

The next theorem compares the accuracy of Algorithm 3 with two different

working set data structures: either Algorithm 1 or Algorithm 4. In both cases we

use probabilistic counters.

Theorem 7. Let C and Ĉ be respectively the hit rate curve produced from Al-

gorithm 3 using Algorithm 1 or Algorithm 4 to implement the working set data
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structure. Then

|C(x∆)−Ĉ(x∆)| ≤ 4ε ∀x ∈ [`+1].

Consequently, Ĉ satisfies the (Weak-Guarantee) condition on page 8 with respect

to the true hit rate curve.

Proof. Let H and Xi refer to the quantities computed using Algorithm 1. Let Ĥ and

X̂i refer to the corresponding quantities computed using Algorithm 4. We will as-

sume that both algorithms are furnished with the same random bits. Consequently,

Xi(t) = X̂i(t) whenever X̂i(t) 6= NULL ∀i ∈ [c], t ∈ [m]. (3.17)

As in the proof of Theorem 2, we fix x ∈ [`+ 1] and i ∈ [c] and compare the

contribution from the pair of counters Xi and Xi+1 to C(x∆) and the contribution

from the pair of counters X̂i and X̂i+1 to Ĉ(x∆).

Let Ti = min({ t : Xi(t)> x∆ }∪{m+1}). As in the proof of Theorem 2, the

pair of counters Xi and Xi+1 cannot contribute to C(x∆) at any time t ≥ Ti.

Let T̂i be the first time t at which X̂i(t)> x∆, {i, i+1}* A, or t ≥m+1. Then,

by considering lines 11-13 of Algorithm 3, we see that the pair of counters X̂i and

X̂i+1 cannot contribute to Ĉ(x∆) at any time t ≥ T̂i. In the case that X̂i(t) > x∆

this follows from property P3 of X̂i, and in the case that {i, i+1}* A this follows

because of line 17 of Algorithm 4.

We first assume τi+1 ≤ m. Following the argument of (3.7) in the proof of

Theorem 2, the difference in contributions to m ·Ĉ(x∆) and m ·C(x∆) is

X̂i+1(T̂i)− X̂i(T̂i)−Xi+1(Ti)+Xi(Ti). (3.18)

Case 1. Suppose that T̂i is such that dX̂i(T̂i)/∆e > x or T̂i = m + 1. Then we

necessarily have T̂i = Ti due to (3.17). In this case (3.18) is clearly zero.

Case 2. Suppose that {i, i+1}* A in iteration T̂i. In this case we might not have

X̂i(T̂i)> x∆, but we do have

X̂i(T̂i)− X̂i+1(T̂i) ≤ 2ε∆, (3.19)
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by line 8 of Algorithm 4. Observe that T̂i ≤ Ti.

Let Yi(t) denote |B(τi, t)|. Since Yi(t)≤ n and α = ε∆/n, it follows from (3.5)

that

0 ≤ Xi(t)−Yi(t) ≤ ε∆ ∀i ∈ [c], t ∈ [m]

0 ≤ X̂i(t)−Yi(t) ≤ ε∆ ∀i ∈ [c], t ≤ T̂i.
(3.20)

The first step is to upper bound (3.18).

X̂i+1(T̂i)− X̂i(T̂i)−Xi+1(Ti)+Xi(Ti)

≤ Yi+1(T̂i)−Yi(T̂i)−Yi+1(Ti)+Yi(Ti)+2ε∆ (by (3.20))

≤ 2ε∆,

by Claim 3, since T̂i ≤ Ti. Next we lower bound (3.18).

X̂i+1(T̂i)− X̂i(T̂i)−Xi+1(Ti)+Xi(Ti)

≥ X̂i+1(T̂i)− X̂i(T̂i)−Yi+1(Ti)+Yi(Ti)− ε∆ (by (3.20))

≥ X̂i+1(T̂i)− X̂i(T̂i)− ε∆ (by definition of Y )

≥ −3ε∆

by (3.19). It follows that (3.18) is at most 3ε∆ in absolute value.

The last counter: Here we examine the special case where τi+1 > m. As τi+1 =

i∆+ 1, at every time t ∈ [τi,m], c = i. Thus the for loop of 7 cannot prune the ith

counter. So T̂i = Ti, and the difference between the contributions of counters is

zero.

Summing up the contribution to m ·C(x∆) and m ·Ĉ(x∆) from all pairs of coun-

ters, we obtain that

|m ·C(x∆)−m ·Ĉ(x∆)| ≤ c ·3ε∆ = dm/∆e ·3ε∆ ≤ 4εm.

This proves the theorem.

21



Chapter 4

A Unified Representation

In the past chapter, we used probabilistic counters as a black box. Here, by exam-

ining the implementation of probabilistic counters, we will derive a new algorithm

that makes different space tradeoffs. In order to explain this algorithm, we will

describe some work from the streaming algorithms community on the distinct ele-

ments problem.

4.1 Distinct Elements and Probabilistic Counters
The distinct elements problem, referred to as DISTINCT-ELEMENTS, is the prob-

lem of estimating the number of distinct elements in a stream of tokens. There are

two parameters: ε is the desired accuracy of the estimate, and δ is the failure prob-

ability. Formally, an algorithm solves DISTINCT-ELEMENTS with parameters ε

and δ if given a stream S, the algorithm outputs an estimate d such that

Pr((1− ε)|S| ≤ d ≤ (1+ ε)|S|)≥ 1−δ .

Using O(|S|) space, it is possible to solve DISTINCT-ELEMENTS deterministi-

cally with ε = δ = 0. However, it is provably impossible to use sublinear space

with ε = 0 or δ = 0.

Probabilistic counters are randomized algorithms which use only sublinear

space to solve DISTINCT-ELEMENTS. Many probabilistic counters [2, 3, 17, 21]

rely on a {0,1}-matrix M that is updated while processing each item in the stream.
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Each item b in the stream is hashed to a binary string σ , and then M is updated

based on lsb(σ), the number of trailing zeros in σ . We will call such a matrix M a

bitmatrix.

The simplest counter [2] uses a single hash function h, and the matrix M has

a single column. To process a new stream element b, the algorithm computes

z = lsb(h(b)). For each i ≤ z, Mi is set to 1. After the stream is processed, the

algorithm outputs 2 j∗ , where j∗ is the index of the greatest non-zero row. This

algorithm produces an O(1) estimate of |S| with failure probability ≤
√

2/3.

Other algorithms refine this estimate by using additional columns and another

hash function g, which determines which column to update.

The estimate could be, for example, a function of the average of the lowest

non-zero value in each column [14, 17], or the number of non-zero cells below a

certain row (Algorithm 3 in [3]).

Many distinct elements algorithms have a fixed failure probability. To reduce

the failure probability, a standard method called the median trick is used. Suppose

a probabilistic counter solves the distinct elements problem with parameters ε,δ ,

where δ < 1/2. Now run k independent instantiations of the algorithm on the

stream S, and output the median estimate. If the median is greater than (1+ ε)|S|,
then the estimate of k/2 counters exceeded (1+ ε)|S|. By a Chernoff bound, this

occurs with probability 2Ω(−k). Similarly, we obtain a 2Ω(−k) probability for the

event that the median is less than (1− ε)|S| (further details can be found in [10]

and [18]). We will make use of this trick below.

4.2 Counter Packing
If we imagine that Algorithm 1 uses such a counter, and that all counters use the

same hash functions h and g, then we see that there is a great deal of redundant

state. For example, at time step t we apply the hash functions to the block bt , then

perform the appropriate update on Mc, the bitmatrix corresponding to the most

recently created counter. We also loop over all the older counters, and update

their bitmatrices as well. However, if Mc
i,z = 1, it follows that M j

i′,z = 1 for every

0≤ i′≤ i and 1≤ j≤ c, as older counters will have certainly undergone any updates

that newer counters have. This observation leads to the following idea: instead of
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storing the bitmatrices for all counters separately, we can store a single unified

matrix from which all bitmatrices can be computed.

We will keep a single matrix Q to represent a sequence of counters, where

the kth counter was started at time (k− 1)∆+ 1 in the trace. We will maintain Q

such that at any time t during stream processing, Qi, j = r means that the bitmatrix

of the rth counter has a 1 at position i, j, and for any r′ > r, the bitmatrix of the

r′th counter is 0 at position i, j. By the observation made above, it follows that

for any r′ < r, the r′th bitmatrix has a 1 in position i, j. To extract the bitmatrix

corresponding to the r′th counter, Mr′ , we examine each entry of Q. Let Qi, j = r.

If r < r′, then Mr′
i, j = 0. Otherwise, Mr′

i, j = 1. The pseudocode for the algorithm is

given in Algorithm 5.

Algorithm 5: An implementation of a working set data structure based on
a unified counter representation. Parameterized by a randomized counter
algorithm A . The set Q has many independent copies of the hash functions
and the resulting table. We need only |Q|= O(log(1/δ )) with δ = m−3.

Data: A collection Q of pairs (Q,H ), where Q is a matrix, H is a set of
hash functions

A randomized counter algorithm A
1 c← 1
2 Function Register(t,bt):
3 c← dt/∆e
4 for (Q,H ) ∈Q do
5 Update Q using bt according to A

6 Function GetWorkingSetSize(t’):
7 for Q ∈Q do
8 Let r = dt ′/∆e

9 Define the bitmatrix Mr by Mr
i, j =

{
1 if Qi, j− r ≥ 0
0 otherwise

10 Feed Mr into counter algorithm A to obtain estimate RQ

11 Return the median of estimates RQ
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4.3 Analysis
In order to analyze Algorithm 5, we must specify a concrete randomized counter al-

gorithm A . We will use Algorithm 2 from the paper of Bar-Yossef et al. [3]. In this

algorithm, each matrix Q has log(n) rows, and k = O(1/α2) columns. Each collec-

tion H consists of k t-wise independent hash functions, where t is O
(

log(1/α)
)
.

To update Q, for j ∈ [k], we set Qi, j = c if lsb(h j(bt))≥ i. Given the bitmatrix M,

this randomized counter algorithm can produce its estimate.

Claim 8. The space requirement of Algorithm 5 is O
(
`2 log(n) log(m) log(1/δ )/ε2

)
.

Proof. Each Q has O(1/α2) columns, logn rows, and each cell requires logm

space. Thus Q requires O
(

log(n) log(m)/α2
)

space. Each collection H requires

O
(

log2(1/α) logn
)

space, which is negligible. We have O(log(1/δ )) such pairs

(Q,H ). Thus the total space requirement is O
(
α−2 log(n) log(m) log(1/δ )

)
. Sub-

stituting α = ε/` completes the proof.

Theorem 9. Algorithm 3 using Algorithm 5 as its working set data structure sat-

isfies (Strong-Guarantee).

Proof. Let Xi(t) be the result of GETWORKINGSETSIZE(τi) at time t, which is

an estimate of |B(τi, t)|. It suffices to show that Xi(t) ∈ [|B(τi, t)|,(1+α)|B(τi, t)|]
with high probability, in which case the argument of Theorem 2 applies.

For any i, t, by taking the median of O(log(1/δ )) estimates of A , we have

Pr[|Xi(t)−|B(τi, t)||>α|B(τi, t)|]≤ δ . At time t, the algorithm computes estimates

for t/∆ counters, and thus O(m2) estimates are taken in total. By a union bound,

the probability that any estimate is poor is ≤ δm2.

There is one subtlety: Theorem 2 assumed counters with only one-sided er-

ror, while A provides counters with two-sided error. If we take α ′ = α

2+α
as the

accuracy of A and divide all estimates by (1−α ′), we recover one-sided α ap-

proximations.
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Chapter 5

Lower Bounds

In this section we prove lower bounds on the space needed by one-pass algorithms

to compute approximate hit rate curves. Formally, let HRCn,m,ε,` be the computa-

tional problem in which, given an input sequence in [n]m, one must compute a func-

tion Ĉ satisfying (Weak-Guarantee), where ∆ = bn/`c. Similarly, let HRC′n,m,ε,` be

the analogous problem in which Ĉ must satisfy (Strong-Guarantee).

While HRCn,m,ε,` is perhaps a more natural formulation of the hit rate curve

problem, Theorems 2 and 9 show that two of our algorithms actually solve HRC′n,m,ε,`.

It is useful to analyze the fundamental complexity of both HRCn,m,ε,` and HRC′n,m,ε,`

in order to understand the limits of our current algorithms and to design improved

ones.

5.1 Communication Complexity
In order to prove our lower bounds, we will use communication complexity. The

basic model of communication complexity involves two players, Alice and Bob,

who are tasked with computing f (x,y), where x is given to Alice and y to Bob. The

challenge is to devise a communication protocol such that Alice and Bob exchange

the least number of bits to compute f (x,y).

A k-round protocol is a communication protocol in which k messages are sent

between Alice and Bob. For example, in a 1-round protocol, Bob can compute

f (x,y) after receiving a single message from Alice. A randomized protocol fur-
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nishes Alice and Bob with random bits. In a private coin protocol, Alice and Bob

each have access to their own random bits and cannot see the other’s random bits.

In a public coin protocol, Alice and Bob have access to the same random bits. For

a detailed introduction to communication complexity, consult [22].

In the following, we will construct k-round, public coin protocols.

5.2 Gap Hamming Distance
Our lower bounds are based on reductions from the Gap Hamming Distance (GHD)

problem. In GHDk,t,g, Alice and Bob are respectively given vectors x,y ∈ {0,1}k.

They are required to determine whether the Hamming distance between x and y,

denoted d(x,y), is ≤ t−g or > t +g, outputting 0 or 1 respectively.

The Gap Hamming Distance problem was first introduced by Woodruff and

Indyk in [19]. Their goal was to obtain lower bounds for the space complexity

of the Distinct Elements problem. They described a reduction of Gap Hamming

Distance to Distinct Elements, and gave a lower bound for the space complexity

of Gap Hamming Distance. A subsequent line of work ([30], [20], [31], [7], [8]),

culminating in the 2012 paper of Chakrabarti and Regev [9], settled the communi-

cation complexity of GHDn,
√

n,n/2 as Ω(n). The Chakrabarti and Regev paper [9]

also contained the following generalization, which will be helpful:

Theorem 10 (Chakrabarti-Regev [9], Proposition 4.4). Any protocol that solves

GHDk,k/2,g with probability ≥ 2/3 communicates Ω(min{k,k2/g2}) bits.

Since GHD was originally introduced to obtain lower bounds for the distinct

elements problem [19], and since hit rate curves fundamentally involve the number

of distinct elements, it is not too surprising that reducing GHD to HRC and HRC′

is useful.

5.3 HRC Lower Bounds
Theorem 11. The space complexity of HRCn,n,ε,` is Ω(min{n,1/ε2}).

Proof. Let k= n/2=m/2, and assume ` divides n. Given an instance of GHDk,k/2,2εk

with inputs x,y, as well as an algorithm which solves HRCn,n,`,ε using space s, con-

sider the following protocol:

27



Alice constructs the set X = { j : x j = 1}∪{k+ j : x j = 0}, then runs the algo-

rithm for HRCn,n,`,ε on the stream of elements of X in arbitrary order. She passes

the s bits of state to Bob. Bob constructs the set Y = {k+ j : y j = 1}∪{ j : y j = 0},
and using the state from Alice, continues the algorithm on the elements of Y . If

Ĉ((`+1)∆)≤ 1/4, he outputs 0, otherwise he outputs 1.

By construction, d(x,y) = |X ∩Y |, so 2k ·C(`∆) = d(x,y). (Recall that the hit

rate curve is normalized by the length of the request sequence, which is m = 2k.)

Since Ĉ satisfies (Weak-Guarantee), we have

2k ·C(`∆)−2kε ≤ 2k ·Ĉ((`+1)∆) ≤ 2k ·C((`+1)∆)+2kε = 2k ·C(`∆)+2kε.

Thus the protocol correctly distinguishes the cases d(x,y)≤ k/2−2εk and d(x,y)>

k/2+ 2εk. Applying Theorem 10, we conclude that s ∈ Ω(min{k,(k)2/(kε)2} =
Ω(min{n,1/ε2}).

Theorem 12. The space complexity of HRC′n,n,ε,` is Ω(min{n/`,`/ε2}).

Proof. Let k= n/2=m/2, and assume ` divides n. Given an instance of GHDk,k/2,2εk

with inputs x,y, as well as an algorithm which solves HRC′n,n,`,ε using space s, con-

sider the following protocol:

Alice constructs the ` sets

Ai =
{

j : x j = 1 ∧ (i−1)∆ < j ≤ i∆
}
∪
{

j+ k : x j = 0 ∧ ( j−1)∆ < j ≤ j∆
}
.

Bob defines the ` sets

Bi =
{

j+ k : y j = 1 ∧ (i−1)∆ < j ≤ i∆
}
∪
{

j : y j = 0 ∧ ( j−1)∆ < j ≤ j∆
}
.

Alice runs the algorithm for HRC′n,n,ε,` on A1, and passes the s1 bits of algo-

rithm state to Bob, who uses it to run the algorithm on B1. He sends the resulting

s2 bits of state back to Alice, who uses it to process A2. Passing the current state

back and forth in this manner, after 2`−1 messages have been exchanged and Bob

has finished running the algorithm on B`, the algorithm has processed the request

sequence

A1,B1,A2,B2, . . . ,A`,B`,
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where the entries of each individual set Ai or Bi may be ordered arbitrarily. Note

that the Ai’s are pairwise disjoint, as are the Bi’s. Furthermore, Ai ∩B j = /0 for

i 6= j. Thus as |Ai| = |Bi| = ∆ for all i, at every time t we have either D(t) ≤ ∆

or D(t) = ∞, and so C(i∆) = C(∆) for all i ≥ 1. Since 2k ·C(`∆) = d(x,y) and Ĉ

satisfies (Strong-Guarantee), we have

d(x,y)−2kε/` ≤ 2k ·Ĉ(2∆) ≤ d(x,y)+2kε/`.

Thus Bob can solve GHDk,k/2,2kε/` as before.

By Theorem 10,

(2`−1) ·max
j

s j ≥
2`−1

∑
j=1

s j = Ω(min{k, `2/ε
2}).

So for some j, we have s j ∈Ω(min{n/`,`/ε2}).
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Chapter 6

Experimental Results

Based on the ideas developed in Chapter 3, a prototype was implemented [29]. We

compare this prototype against an implementation of the Mattson algorithm [23] on

a collection of storage traces [24] released by Microsoft Research in Cambridge.

Xiang et al., the authors of the average footprint paper [33], released an open

source implementation of their algorithm [12]. We include the results from a

slightly modified version of this implementation in our figures, and discuss some

of the strengths and weaknesses of their approach.

6.1 Microsoft Research Traces
The MSR traces record the disk accesses of a collection of 13 different servers over

a period of one week. Each trace is a list of records, where each record represents

a disk access. Records have fields for the time stamp, server name, disk number,

operation type (read or write), disk offset, size of data requested, and latency. In

order to process these traces, we filtered out writes and expanded each remaining

record into a list of distinct blocks touched by the request. We used a block size of

4 KB.

The smallest trace, wdev, has 52,489 distinct blocks and 725,194 requests,

while the largest trace, prxy, has 523,879 distinct blocks and 358,267,307 re-

quests. The proj trace touches the largest volume of data with 324,760,925 dis-

tinct blocks, and contains 564,577,120 requests.
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Traces
hm mds prn proj prxy rsrch src1 src2 stg ts usr wdev web

avgfp
average 0.96 0.03 1.71 0.50 0.18 0.59 3.53 0.33 0.02 1.17 0.43 1.10 4.51

max 4.43 0.57 6.97 4.29 27.91 9.04 44.14 26.46 0.15 15.52 15.56 14.17 35.68

cs
average 0.23 1.06 0.34 1.01 0.98 0.67 0.56 0.74 1.02 1.46 0.26 1.45 1.29

max 9.71 4.68 8.46 2.54 37.50 16.45 14.55 26.51 1.70 25.41 13.36 22.33 13.91

Table 6.1: Average and maximum error for avgfp and cs.

In Figure 6.1, we plot the hit rate curves generated by three algorithms on

the MSR traces. The avgfp algorithm is an implementation of the average foot-

print technique [33]. The authors released their implementation as open source on

github [12]. The original implementation used a statically allocated array of size

512 MB to map blocks to last access times during trace processing, an efficient

approach for CPU traces using relatively few distinct memory locations. Given the

size of the larger MSR traces, a statically allocated data structure is impossible to

use on modern hardware for this purpose, so we altered avgfp to use a hash table

instead. The cs algorithm is a protoype based on the ideas sketched in Chapter 3.

Finally, mattson is a single-threaded implementation of the Mattson algorithm

bundled with parda [25]. We used mattson to compute the true hit rate curves to

compare against the other algorithms.

To compare the resource usage of the algorithms, we ran each on the trace

obtained by merging all MSR traces and sorting by time stamp. The resulting

trace, called the master trace, is 22 GB, uncompressed. The avgfp algorithm

processed master in 10 minutes using 22 GB of memory, mattson in 1 hour

using 92 GB, and cs in 12 minutes using 0.5 GB. These experiments were run

on a Dell PowerEdge R720 with two six-core Intel Xeon processors and 96 GB of

RAM.

We give quantitative errors for avgfp and cs on the MSR traces in Table 6.1.

We measured the error of an algorithm by finding the deviation between its curve

and the curve produced by mattson.

Although Xiang et al. developed their technique with CPU traces in mind [33],

their implementation does quite well on most of the MSR traces. Two exceptions

are src1, with 44.1 maximum and 3.5 average error, and web, with 35.7 maxi-

mum and 4.5 average. In comparison, cs has 14.6 maximum and 0.6 average error
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Figure 6.1: Hit rate curves for MSR traces. Cache size in GBs against hit rate
percentage.

32



on src1, and 13.9 maximum and 1.3 average error on web. While both algorithms

are less accurate at approximating volatile hit rate curves, avgfp exhibits higher

error.

As the staircase plot suggests, web is characterized by multiple working sets

of markedly different sizes in different phases of the trace. Such traces can cause

problems for the average footprint technique. We investigate this further in the next

section.

6.2 Average Footprints and Phase Changes
For each window length w, the average footprint technique computes the average

working set size across all windows of length w in the trace. If the trace is marked

by distinct phases in which working set size varies drastically, the average working

set size may skew the reported stack distances.

To validate this suspicion, we generated an artificial trace, cyclic. cyclic

is composed of two distinct phases. In the first phase, the first 104 blocks are read

in order. This sequential scan is repeated 1000 times. The second phase consists of

105 repeated scans of the first 100 blocks. Both phases consist of 107 requests, for

a total of 2 ·107 requests to 105 distinct blocks. The hit rate curves for cyclic as

computed by avgfp, cs, and mattson are plotted in 6.2.

As suspected, the average footprint technique has trouble with this trace. For

cache sizes between 0.020 GB and 0.035 GB, avgfp reports a hit rate of nearly

100%, while cs and mattson both give about 50%. The average and maximum

error for avgfp are 24.6 and 50.0, while for cs they are 0.5 and 41.3. Because the

hit rate changes so dramatically for a small change in cache size, large maximum

errors are unavoidable for both algorithms (recall Theorem 2 bounds the error for

bin x in terms of bins x−1 and x).

This trace is highly artificial and cannot be interpreted as a realistic model for

system behaviour. However, we believe that it highlights an important limitation

in the average footprint approach. Traces with highly pronounced phases do exist,

and will cause inaccuracies with the average footprint method, as evidenced by

web. We fabricated this trace in order to examine the worst case for the average

footprint algorithm.
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Chapter 7

Conclusion

In this work, we introduced new algorithms for approximating hit rate curves which

differ dramatically from existing approaches. We characterized the space usage of

our algorithms, and provided lower bounds on the space complexity of any algo-

rithm which approximates hit rate curves with given error bounds. We also vali-

dated an implementation based on our algorithms on the MSR traces, and compared

our results to past work.

Our focus was entirely on space efficiency. We did not characterize the time

complexity of our algorithms, nor did we provide lower bounds on time complex-

ity. A careful analysis of our algorithms’ time usage may result in more efficient

algorithms, and is a possible direction for future work.

Our space lower bounds are not satisfactory. In particular, we were not able to

obtain any dependence on ` for the lower bound of HRCn,m,ε,` in Theorem 11. We

suspect neither Theorem 11 nor Theorem 12 gives tight bounds for their respective

problems. We believe a deeper investigation of the space complexity of the hit

rate curve problem, besides finding tighter bounds, could result in algorithms with

greater space efficiency as well.
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[1] G. S. Almási, C. Caşcaval, and D. A. Padua. Calculating stack distances
efficiently. In Proceedings of the 2002 workshop on memory system
performance (MSP ’02), pages 37–43, 2002. → pages 2, 4

[2] N. Alon, Y. Matias, and M. Szegedy. The space complexity of
approximating the frequency moments. In Proceedings of the twenty-eighth
annual ACM symposium on Theory of computing, pages 20–29. ACM, 1996.
→ pages 3, 22, 23

[3] Z. Bar-Yossef, T. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan.
Counting distinct elements in a data stream. In Randomization and
Approximation Techniques in Computer Science, pages 1–10. Springer,
2002. → pages 3, 22, 23, 25

[4] L. A. Belady. A study of replacement algorithms for a virtual-storage
computer. IBM Systems Journal, 5(2):78–101, 1966. → pages 1

[5] B. T. Bennett and V. J. Kruskal. LRU stack processing. IBM Journal of
Research and Development, 19(4):353–357, 1975. → pages 2, 4, 9

[6] E. Berg and E. Hagersten. Statcache: a probabilistic approach to efficient
and accurate data locality analysis. In Performance Analysis of Systems and
Software, 2004 IEEE International Symposium on-ISPASS, pages 20–27.
IEEE, 2004. → pages 6

[7] J. Brody and A. Chakrabarti. A multi-round communication lower bound for
gap hamming and some consequences. In Computational Complexity, 2009.
CCC’09. 24th Annual IEEE Conference on, pages 358–368. IEEE, 2009. →
pages 27

[8] J. Brody, A. Chakrabarti, O. Regev, T. Vidick, and R. De Wolf. Better
gap-hamming lower bounds via better round elimination. In Approximation,

36



Randomization, and Combinatorial Optimization. Algorithms and
Techniques, pages 476–489. Springer, 2010. → pages 27

[9] A. Chakrabarti and O. Regev. An optimal lower bound on the
communication complexity of gap-hamming-distance. SIAM Journal on
Computing, 41(5):1299–1317, 2012. → pages 27

[10] A. Chakrabarti et al. Cs49: Data stream algorithms lecture notes.
http://www.cs.dartmouth.edu/∼ac/Teach/CS49-Fall11/Notes/lecnotes.pdf,
2012. Retrieved 2014-07-17. → pages 23

[11] P. J. Denning. The working set model for program behavior.
Communications of the ACM, 11(5):323–333, 1968. → pages 9

[12] C. Ding. Program locality analysis tool. https://github.com/dcompiler/loca,
2014. Retrieved 2014-07-03. → pages 30, 31

[13] C. Ding and Y. Zhong. Predicting whole-program locality through reuse
distance analysis. In PLDI, pages 245–257. ACM, 2003. → pages 2, 4, 5

[14] M. Durand and P. Flajolet. Loglog counting of large cardinalities. In
Algorithms-ESA 2003, pages 605–617. Springer, 2003. → pages 3, 23

[15] D. Eklov and E. Hagersten. StatStack: Efficient modeling of LRU caches. In
Performance Analysis of Systems & Software (ISPASS), 2010 IEEE
International Symposium on, pages 55–65. IEEE, 2010. → pages 2, 6

[16] P. Flajolet and G. Nigel Martin. Probabilistic counting algorithms for data
base applications. Journal of computer and system sciences, 31(2):182–209,
1985. → pages 3
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