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Abstract

Using the Cahn-Hilliard diffuse-interface model, I have studied three inter-
facial dynamic problems for incompressible immiscible two-phase flows. As
the first problem, capillary instability of a liquid torus is computed. The
main differences between the torus and a straight thread are the presence
of an axial curvature and an external flow field caused by the retraction of
the torus. We show that the capillary wave initially grows linearly as on a
straight thread. The axial curvature decreases the growth rate of the cap-
illary waves while the external flow enhances it. Breakup depends on the
competition of two time scales: one for torus retraction and the other for
neck pinch-off. The outcome is determined by the initial amplitude of the
disturbance, the thickness of the torus relative to its circumference, and the
viscosity ratio.

The second problem concerns interfacial dynamics and three-phase con-
tact line motion of wicking through micropores of two types of geometries:
axisymmetric tubes with contractions and expansions of the cross section,
and two-dimensional planar channels with a Y-shaped bifurcation. Results
show that the liquid meniscus undergoes complex deformation during its
passage through contraction and expansion. Pinning of the interface at pro-
truding corners limits the angle of expansion into which wicking is allowed.
Capillary competition between branches downstream of a Y-shaped bifur-
cation may result in arrest of wicking in the wider branch.

As the third problem, auto-ejection of drops from capillary tubes is stud-
ied. This study focuses on two related issues: the critical condition for auto-
ejection, and the role of geometric parameters in the hydrodynamics. From
analyzing the dynamics of the meniscus in the straight tube and the nozzle,
we develop a criterion for the onset of auto-ejection based on a Weber num-
ber defined at the exit of the nozzle and an effective length that encompasses
the geometric features of the tube-nozzle combination. In particular, this
criterion shows that ejection is not possible in straight tubes. With steeper
contraction in the nozzle, we predict two additional regimes of interfacial
rupture: rapid ejection of multiple droplets and air bubble entrapment.
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Chapter 1

Introduction

1.1 Motivation

The category of problems in which the interaction between forces created
by the surface and bulk flow is important is called interfacial hydrodynam-
ics. Beside being scientifically interesting, in recent years due to increasing
interest in small scale applications (like micro-engineering), interfacial flow
has assumed greater significance. Using the Cahn-Hilliard diffuse interface
method, we are going to numerically study the following problems:

• Capillary breakup of a liquid torus

• Wicking flow through microchannels

• Auto-ejection of liquid drops from capillary tubes

These problems have been selected based on several considerations. First, in
the framework of immiscible mixtures of incompressible Newtonian fluids,
we are interested in fundamental scientific questions about the dynamics
of the interface. Second, these questions, while scientifically significant,
must be computationally amenable to our numerical algorithms and codes.
Typically, the thickness of the interface in diffuse-interface method should
be two orders of magnitude smaller than the bulk to produce physically
meaningful results. This gives rise to high computational cost and limits
the amount of inetrfacial area/length of the problem especially for three
dimensional configurations. Third, for the problems with moving contact
lines, there should be an experimental or a theoretical datum to calibrate
the parameters of the numerical model (see section §2.2 for more details).

Here, a brief introduction for each problem and numerical method is
presented. More detailed description of the studied problems and method
is presented in the corresponding sections.

As the first problem, we will study the capillary instability of a Newto-
nian liquid torus suspended in a surrounding Newtonian liquid. This study
is motivated by the recent experiment of Pairam and Fernandez-Nieves [57]
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(a) (b)

Figure 1.1: (a) Schematic of a liquid torus suspended in a bath of surrounding
liquid (b) Experimental results of [57] on the breakup of silicone-oil tori suspended
in glycerine. The thin torus breaks down into multiple droplets while the fat torus
shrinks into one droplet.

on the breakup of silicone-oil tori suspended in glycerine. As shown in
Fig.1.1(b), they observed that a torus can either shrink to a single droplet
or break down into multiple droplets depending on the ratio of its axial ra-
dius R0 to the radius of its cross section a0 (Fig.1.1(a)). There is a clear
connection to the classical problem of Rayleigh-Tomokita instability [65, 81]
of a straight, infinitely long filament for which the growth rate depends on
the wavenumber, defined relative to the radius of the filament and also its
viscosity ratio. With the torus, several complications arise. First, due to pe-
riodicity of the torus geometry only a few discrete wavelengths are possible
on a torus of given aspect ratio β = R0/a0. Second, the torus has an axial
curvature which may affect the growth of the capillary wave. In addition,
axial curvature produces shrinkage which induces flow in the surrounding
fluid which may modify the capillary instability as well [52, 81]. Finally
the presence of the shrinkage puts a limitation on the available time for the
disturbance growth. Here we are going to explore the effect of these differ-
ences on the initial growth of small disturbances as well as final breakup
and number of produced droplets.

The second problem concerns wicking flow through microchannels. Wick-
ing is the suction of a liquid by the negative capillary pressure due to the
meniscus curvature. It is a key mechanism for flow in porous media [21] like

2



1.1. Motivation

water transport in the gas diffusion medium of proton-exchange-membrane
fuel cells [54], and in microfluidics for chemical analysis and biological as-
say [10, 17]. Porous media and microfluidics devices can have a complex
microchannel structure through which flow happens in a range of different
geometrical configurations where the interfacial morphology and motion de-
termine to a large degree the efficacy and efficiency of the devices [10, 17].
Two types of common geometrical features of microchannels are contraction
or expansion in the tube area and interconnectivity of the channels. The
focus of this study is to investigate the interfacial dynamics in a simplified
form of these two geometries.

Effect of area change on the meniscus dynamics has been studied before
[47, 60, 66, 68, 73]. These studies are generalizations of the Lucas-Washburn
solution to tubes and channels of gradually varying cross sections. However,
a common feature of all these studies is that they ignore dynamics at the
meniscus. The capillary pressure is quasi-statically equilibrated along the
meniscus, thus giving it a spherical shape whose curvature is used to compute
the capillary pressure via the Young-Laplace equation. Such assumption
is not valid in relatively sharp area changes and the transient dynamics
of the meniscus needs to be considered. As is shown in Fig.1.2, here we
will consider an axisymmetric contraction, expansion and combination of
them and study the dynamics of an interface through these geometries.
Competition among interconnected pores is considered the key mechanism
in developing a tree-like morphology of water transport in the gas diffusion
medium (GDM) of fuel cells [54, 59]. To the best of our knowledge such
dynamics has not been studied for wicking flow. Therefore we are going to
consider a two-dimensional Y-shaped branching configuration and study the
interfacial dynamics on and after the junction.

As the third problem, we have studied the auto-ejection of drops from
capillary tubes. The term auto-ejection is used by Wollman and coworkers
for a new mode of drop formation that relies on wicking in a capillary tube
[86, 87, 88]. As shown in Fig. 1.3, a glass tube with a tapered end is put
into contact with a reservoir of silicone oil, which wets the glass perfectly.
The liquid meniscus rises with sufficient momentum such that a jet is ejected
from the nozzle, and later disintegrates into droplets. The sequence of photos
shown here were captured under microgravity in a drop tower [88]. Similar
experiments have been done in the International Space Station and under
normal gravity on earth [86, 87]. The process is interesting in that it involves
no external forces or flux, and is entirely autonomous.

The critical condition for ejection is the most important question about
the auto-ejection process. Wollman et al. [88] have suggested an instan-
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Figure 1.2: Schematic of an axisymmetric contraction and expansion in tube area.

taneous Weber number at the end of the nozzle as the parameter which
controls the ejection. Experimental data of Wollman and Weislogel [88]
shows that such Weber number is not sufficient to quantify the number of
ejected droplets. There is a large scatter of data in terms of the instanta-
neous Weber number.

Another important question is to elucidate the role of the geometric pa-
rameters on the auto-ejection. Dynamics of auto-ejection happens through
two main stages. The first stage is meniscus rise inside the tube and noz-
zle. It is governed by interplay between contact line dynamics, inertia and
viscous forces which are themselves a function of the geometric parameters
and liquid-solid properties. The second stage of liquid ejection from the
tube is governed by the interplay between incoming inertia and capillary
forces. Unlike pulsed ejection in which there is an imposed source of force
or velocity, in capillary ejection velocity decreases as liquid moves out of the
tube. Variation of velocity as well as its profile at the nozzle exit depends on
the geometric parameters and fluid-solid properties. The aim of this study
is to develop a criterion for auto-ejection and to study the role of geometric
parameters as typically used in experiments.

There are theoretical and numerical difficulties in computing interfacial
dynamics. These include the lack of a good model for the moving contact
line, the need to capture dynamically a moving and deforming interface,
morphological singularities in coalescence and rupture of interfaces, and
the complex flow geometries in practically interesting problems like flow

4



1.1. Motivation

Figure 1.3: A sequence of snapshots showing spontaneous capillary rise and auto-
ejection of droplets in the experiment of [88] under microgravity. The inner diameter
of the glass tube is 9.2 mm in the straight section, and the liquid is PDMS of
viscosity 0.65 cs. The drop volume is roughly 20 μl. Ohnesorge number Oh =
0.0015, static contact angle θ = 0o , contraction angle of nozzle α = 17o, contraction
ratio of nozzle C = 0.42, tube length L = 8.0 (see § 5.2 for detailed definition of
the terms α,C,Oh, and L). The photos are taken 0.1 s apart. Adapted from [88]
with permission, c©Springer.

in porous medium. The Cahn-Hilliard diffuse-interface method is a power-
ful method in treating such difficulties. As real interfaces are actually thin
mixing layers, in this method an interface has a finite thickness and stores a
mixing energy. The two phases are distinguished by a phase field parameter
that varies smoothly through the interface. When the interface thickness
goes to zero the model approaches a sharp-interface level set formulation.

An advantage of using the diffuse-interface method is that it regularizes
the singular events on the interfaces like breakup, coalescence and moving
contact lines. Thus, this formulation allows us to capture the moving in-
terface and its morphological changes accurately and naturally, including
pinning at sharp corners and otherwise singular interfacial breakup at bifur-
cations without manual interventions. In the aforementioned problems, the
physical origin of the method can also shed additional light on the underlying
physics.
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1.2 Thesis outline

In Chapter 2, the Cahn-Hilliard diffuse-interface method is introduced and
the way that the moving contact line is captured in this model is explained.
The key features of the finite element solver are explained and finally, two
common difficulties in using the Cahn-Hilliard diffuse-interface method are
explained in the context of an example problem. Chapters 3 to 5, deal with
the three interfacial dynamics problems to be studied. In Chapter 3, we
report simulation results for the dynamics of a Newtonian torus suspended
in a surrounding Newtonian liquid in three dimensions (3D). This study has
three man parts. First we will study the linear growth of a sinusoidal distur-
bance on the torus and investigate the effect of the retraction and the axial
curvature on the growth rate. Then we will examine the nonlinear insta-
bility and the final breakup into droplets in terms of competition between
retraction and pinch-off mechanism. Finally the numerical results will be
compared with the experiment.

In Chapter 4, we report numerical simulations of wicking through micro-
pores of two types of geometries, axisymmetric tubes with contractions and
expansions of the cross section, and two-dimensional planar channels with a
Y-shaped bifurcation. At a contraction and an expansion, the dynamics of
the meniscus at concave and convex corners is illustrated and its effect on
passage time is discussed. For branching geometries, dependence of the flow
trajectory on geometrical and wetting properties of conduits is explained.

In Chapter 5, the auto-ejection of drops and jets from capillary tubes is
investigated. A criterion for ejection is developed in terms of the instanta-
neous Weber number at the nozzle exit and the effective tube length. Effects
of a large contraction angle on the meniscus dynamics inside the nozzle and
on the auto-ejection are studied. Finally, the effect of the thickness of the
tube wall on ejection is explained.

Finally, Chapter 6 summarizes the thesis, outlines the significance and
limitations of the current work, and makes recommendations for future work.
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Chapter 2

Methodology of Research

2.1 Governing equations

The problems that we have chosen to study all fall in the category of im-
miscible two-phase flows with both fluids being Newtonian. The flow hy-
drodynamics is governed by the continuity equation (2.1) and momentum
equation (2.2) for incompressible flows:

∇ · v = 0, (2.1)

ρ
Dv

Dt
= −∇p+∇ · (μ∇v) +G∇φ, (2.2)

where v is the velocity, p is the pressure, ρ is the density, and μ is viscosity.
The term G∇φ in equation (2.2) represents the role of interfacial tension
in the momentum equation [39, 97] and is obtained by means of variational
calculus. This is the way that a diffuse-interface model handles the interface,
as will be explained below. For the first two problems the Bond number is
very small and the third problem, on auto-ejection from a capillary tube,
concerns mostly microgravity experiments. Thus, gravity is ignored in most
of the simulations to be presented. In the first two problems considered
here the resulting Reynolds number is typically much below unity and the
flow dynamics is governed by capillary and viscous forces. Therefore, we
will neglect the inertia term (left hand side of equation 2.2) for the first two
problems and solve the modified form of the Stokes equation. For the third
problem, viscous forces are negligible and the flow dynamics is determined
by the balance between capillary and inertial forces.

To capture the interface, the Cahn-Hilliard diffuse-interface method is
used. In the diffuse-interface model the two fluid components are viewed
as mixing to a limited extent in a narrow interfacial layer. A scalar phase

field φ is introduced to distinguish the components such that φ = 1 in one
liquid, φ = −1 in the other liquid or gas, and φ = 0 gives the position of
the interface. In this framework all flow parameters are continuous through
the interface and instead of solving equations for two parts of the domain
separated by the interface, the same equations are solved for the whole
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domain including the interface itself. In the interfacial region, v may be
viewed as a volume-averaged velocity and μ as an average viscosity between
those of the two components:

μ =
1 + φ

2
μ1 +

1− φ

2
μ2. (2.3)

The Cahn-Hilliard model is an energy-based approach to the diffuse-
interface method. The total free energy of the system can be written in the
following form

F =

∫
Ω
fmix(φ,∇φ)dΩ +

∫
A
fw(φ)dA, (2.4)

where Ω is the fluid domain and A is the solid surface, and fmix is the mixing
energy of the fluid-fluid system

fmix(φ,∇φ) =
λ |∇φ|2

2
+

λ

4ε2
(φ2 − 1)2, (2.5)

where ε is the interfacial thickness and λ is the mixing energy density. In
the limit of thin interfaces, the classical concept of interfacial tension σ can
be recovered from the mixing energy:

σ =
2
√
2

3

λ

ε
. (2.6)

fw in 2.4 is the wall energy [40]:

fw(φ) = −σ cos θ
φ(3− φ2)

4
+

σw1 + σw2

2
, (2.7)

At φ = ±1, i.e. away from the contact line, fw should give the fluid-wall
interfacial tension for the two fluids, σw1 and σw2. This requirement leads
to Young’s equation that prescribes the static contact angle θ:

cos θ =
σw2 − σw1

σ
. (2.8)

Using variational calculus, we can calculate the chemical potential as the
variation of the mixing energy with respect to φ:

G = −λ∇2φ+
λ

ε2
φ(φ2 − 1). (2.9)
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Using the gradient of the chemical potential to drive the diffusive fluxes
across the interface, the Cahn-Hilliard equation for the evolution of φ is
derived [13]:

∂φ

∂t
+ v · ∇φ = ∇ · (γ∇G), (2.10)

where γ is the mobility parameter and assumed to be constant. Flow hy-
drodynamics and interface dynamics is obtained by solving equation (2.10)
along with equation (2.1) and (2.2) as a boundary value problem, with
boundary conditions specified below.

2.1.1 Simulation of moving contact lines

Problems studied in Chapter 4 and Chapter 5 involve contact line dynamics.
Interaction of molecular and large scale dynamics at the three phase con-
tact line makes it a stress singularity point for Navier-Stokes formulation.
Different methods use different approaches to handle it. Traditional sharp-
interface models typically impose a slip velocity on the wall [102]. Therefore,
it is important to explain how the contact line dynamics is captured in the
Cahn-Hilliard diffuse-interface method.

In the diffuse-interface method diffusion across the interface driven by
the gradient of chemical potential (G) allows the contact line movement
without imposing a slip velocity on the wall. This has two implications, first
it is possible to use no-slip boundary condition on the wall (equation 2.13).
Second, the mobility parameter in equation (2.10) has an important role in
contact line movement which will be discussed in the next section.

Physically it is known that the interface at the wall is almost at equilib-
rium. In the Cahn-Hilliard model, fluid-fluid and solid-fluid intermolecular
forces are reflected in mixing energy and wall energy respectively. In most
situations, the fluid layer next to the wall is assumed to be always in equilib-
rium with the wall. Mathematically this is reflected by a natural boundary
condition [40, 96]

n · ∇φ = −f
′

w(φ)

λ
, (2.11)

where the normal vector n points into the solid wall. It is also possible
to allow the wall energy to relax at a finite rate. This leads to another
boundary condition (equation 2.12) in which Γ is the rate constant of wall
relaxation

n · ∇φ = −f
′

w(φ)

λ
− 1

Γλ

(
∂φ

∂t
+ v · ∇φ

)
. (2.12)
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For Γ → ∞, it can be shown that to the leading order, equation (2.12)
constrains the dynamic contact angle to be equal to the static one [40, 93].
Either of the two equations above, along with the no-slip condition and zero
mass flux into the wall,

v = 0, (2.13)

n · ∇G = 0, (2.14)

gives the complete set of boundary conditions for the flow problem.

2.2 Parameters of the Cahn-Hilliard model

The Cahn-Hilliard model formulated above has three parameters that have
no counterparts in conventional Navier-Stokes problems. The interfacial
thickness ε, mobility parameter γ, and rate of wall relaxation Γ. They
give rise to three additional dimensionless parameters: the Cahn number
Cn = ε/lc, diffusion length scale S = ld/lc, and wall relaxation Π = 1/Γμlc.
Cn is the ratio between the interfacial thickness and the macroscopic length
scale (lc), S is the ratio of the diffusion length ld = γ1/2(μ1μ2)

1/4 to the
macroscopic length [96], and Π shows how fast flow close to the wall equi-
librates with the wall. The choice of these three parameters (Cn, S, and
Π) is informed by their physical meanings and the requirement of achieving
the sharp-interface limit. Real interfaces, a few nanometers in thickness, are
typically not resolvable in macroscopic flow simulation. Thus the diffuse-
interface method uses an artificial ε that may be much larger than the real
value. This is allowable if the sharp-interface limit is achieved: when ε
and Cn are sufficiently small such that the results are not affected by the
unrealistic thickness of the interface [12, 96]. For interfacial flows with-
out contact lines such as the capillary instability of a suspended torus, the
sharp-interface limit is typically approached at Cn ∼ 0.01 [97]. In such flows
the Cahn-Hilliard diffusion across the interface, represented by ld or S, is
immaterial as long as the sharp-interface limit is achieved.

With moving contact lines, Yue et al. [96] have shown that the achieve-
ment of sharp-interface limit is also dependent on the diffusion length. For
Couette and Poiseuille flows with a transverse interface, they found that the
shape of the meniscus converges to a unique solution after Cn falls below
a threshold Cn ≈ 4S and suggested this as the criterion for achieving the
sharp-interface limit. On the other hand, the motion of the contact lines is
affected by interfacial diffusion and wall relaxation. Thus, S and Π must
be chosen judiciously, e.g., to coincide with an experimental measurement
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[96]. We use the following procedure proposed by Yue and Feng [93] to
set values of S and Π. Choose as small an Cn value as computationally
affordable, and then pick a value for S to ensure the sharp-interface limit is
achieved. Finally, determine the wall relaxation parameter Π by fitting an
experimental datum. For studying the wicking flow, contact line movement
happens very slowly and meniscus keeps its equilibrium shape. Therefore
we have set Π equal to zero for the problem studied in Chapter 4. For the
auto-ejection problem, due to fast movement of the meniscus, there is a
considerable deviation from the static shape and Π should have a non-zero
value.

2.3 Discretization of governing equations and

computational domain

The governing equations are solved using a finite-element package called
AMPHI in planar 2D, axisymmetric and 3D geometries. [97] and [100]
have described the numerical algorithm in detail, presented numerical ex-
periments on grid and time-step refinements and validated the methodology
against numerical benchmarks. The numerical package has been applied to
a number of interfacial-dynamics simulations [1, 27, 28, 96, 101]. Here, we
will only mention a few important features.

The discretization of the governing equations follows Galerkin formalism.
The fourth-order Cahn-Hilliard equation is decomposed into two second-
order equations:

∂φ

∂t
+ v · ∇φ =

γλ

ε2
∇2(ψ + sφ), ψ = −ε2∇2φ+ (φ2 − 1− s)φ, (2.15)

where s is a positive number to enhance the stability of the numerical method
and set to 0.5 [69]. Piecewise quadratic (P2) elements are used for velocity,
φ and ψ and piecewise linear (P1) elements are used for pressure. Time-
stepping is done in a second-order implicit scheme. The nonlinear algebraic
system generated from the weak form of the equations is solved using New-
ton’s method. The equations are discretized on an unstructured grid and
the finite thickness of the interface is resolved using adaptive meshing, with
the grid being dynamically refined and coarsened, respectively, upstream
and downstream of the moving interface. This is done by a general-purpose
mesh generator called GRUMMP that produces a triangular mesh in 2D
and a tetrahedral mesh in 3D [26] by Delaunay triangulation. It controls
the grid size by using a scalar field, which can easily be computed from the
∇φ field of the diffuse-interface method.
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Four parameters are used to specify the domain discretization: mesh
size at the interface (h1), mesh sizes at the two bulks (h2 and h3), and a
grading parameter (Gp) which controls the transition between the bulk and
interface mesh size. For all of the results to be presented, we have used
sufficiently refined spatial and temporal discretization to ensure numerical
convergence. This is confirmed by grid and time-step refinements to verify
that the results change little with further refinement. A few typical spatial
and time steps are indicated below as examples. For capillary breakup
of liquid torus (Chapter 3), mesh sizes inside the torus, at the interface,
and in the surrounding liquid are chosen to be equal to 1/5 of the torus
thickness, interfacial thickness (ε), and 1/2 of torus thickness, respectively.
Grading parameter Gp is chosen to be 3. For wicking flow in microchannel
(Chapter 4) and auto-ejection of drops from capillary tubes (Chapter 5), the
bulk mesh sizes inside the tube and nozzle are chosen to be 1/8 of the tube
and nozzle exit radii, respectively. Mesh size at the interface is chosen to
be ε/2 and grading parameter for these problems is equal to 5. The typical
time-step of the simulations for problems in Chapters 3, Chapter 4, and
Chapter 5 is 10−2, 5× 10−3, and 5× 10−4, respectively.

2.4 Limitations on resolving small lenght scales

In this section two types of difficulties in using the Cahn-Hilliard diffuse-
interface model will be discussed. These difficulties happen due to limi-
tations on resolving the small length scales which are not specific to the
Cahn-Hilliard model. The real diffusion length of the contact line is around
six orders of magnitude smaller than the bulk length scale which is not com-
putationally resolvable. Therefore, there are two parameters in the model
γ, Γ whose values are not known and they are important to the contact
line dynamics. To capture the interfacial dynamics using a large diffusion
length, it is required to calibrate the diffuse-interface parameters using an
experimental or a theoretical data point. Such data points are not available
for all physical problems.

The second difficulty, is the high computational cost of the diffuse-
interface method. Numerically capturing an interfacial region which is
around six orders of magnitude smaller than bulk region is almost impos-
sible with current computational resources. Therefore, the sharp-interface
concept is used to show that with much thicker interfaces, it is possible to
get physically meaningful and numerically converged results. Despite being
a remedy for many interfacial problems, such an approach fails when there

12



2.4. Limitations on resolving small lenght scales

are disparate length scales in the problem which are important to the final
output of the simulation. An example is to capture the physical quantities
which are very sensitive to coalescence/pinch-off phenomenon. Physically
such a process depends on the intermolecular forces. Sharp-interface meth-
ods face a singularity in dealing with coalescence/pinch-off which is usually
handled by imposing a cut-off length. In the diffuse-interface method, there
is no need to impose an extra cut-off condition and such length is determined
by the diffusive nature of the method and finite thickness of the interface.
For some problems such natural treatment of the coalescence/pinch-off is de-
sirable like the filament breakup for capillary instability of a torus (Chapter
3), and droplet pinch-off for the auto-ejection (Chapter 5). But sometimes
the desired physical quantity is strongly dependent on the inherent cut-off
length of the diffuse-interface method. One such quantity may be, for ex-
ample, the duration of a drop pinch-off process. As the characteristic length
scale eventually goes to zero, no numerical scheme can follow the process
”exactly” till the end. In reality, short-range molecular effects come in at
some point to dominate the rest of the process. Then it is a subtle point
as to how a diffuse-interface model might represent such a process. In the
following, we illustrate both difficulties by a concrete example.

2.4.1 Bubble production in meniscus sessile droplet

collision

Let’s apply the Cahn-Hilliard diffuse-interface method to study air-entrapment
when a nearly flat liquid meniscus impacts a sessile droplet. Such an impact
may happen in dip-coating [6, 19], immersion lithography [75] and results
in a production of small air bubbles which are not desirable. Keij et al. [43]
have studied this problem experimentally and showed that when an inter-
face impacts a sessile droplet, there are two possible scenarios: coalescence
of the droplet and meniscus on or close to the contact line and coalescence
farther above the substrate. The first case will result in either no air bubble
formation or appearance of a floating air bubble. The second case produces
a bubble that sticks to the substrate. It is shown that the size of the floating
bubble increases with increasing the capillary number and the size of stick-
ing bubbles is independent from the impact velocity and is about an order
of magnitude smaller than the first.

We aimed to carry out numerical simulations in both two (Fig. 2.1(a))
and three dimensional setup (Fig. 2.1(b)) in which a meniscus with a velocity
U and contact angle of θ will impact a sessile droplet with equivalent radius
R. As is shown in Fig. 2.1(a) a simple shear flow is imposed at the inlet
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(a) (b)

Figure 2.1: (a) A meniscus with a velocity U and contact angle of θ will impact
a sessile droplet with a equivalent radius R (b) Three dimensional schematic of the
problem setup.

and it is assumed that the meniscus has reached its steady shape before
the impact. The nondimensioanl parameters of the problem are capillary
number, viscosity ratio, contact angle, and gap size. The main desired
output is how the coalescence, bubble shape and its volume vary with the
governing parameters. We also assume rapid relaxation of the wall energy
so Π is equal to zero. We were unsuccessful in simulating both floating and
sticking bubbles, reasons for which are explained in the following sections.

2.4.2 Dependence of bubble dynamics on meniscus shape

The main result that we want to capture in this study is the bubble size
and its position, which depend on whether the coalescence between the
meniscus and the drop happens on the wall or at some point above the wall
[43]. Position of the coalescence is dependent on the shape of the meniscus
which itself is dependent on the value of the diffusion length scale. It is
shown by Yue et al. [96] that in shear flows the meniscus shape or interface
inclination is highly sensitive to S. In Fig. 2.2, meniscus shapes for two
different values of the diffusion length scale are shown. It can be easily
seen that at S=0.0025, collision on the substrate never happens while for
S=0.04, drop and meniscus will collide on some point above the meniscus.
In addition, the amount of the air trapped in the bubble depends on the
shape of the meniscus. This means that a slight change in the value of
the diffusion length can change the shape of the meniscus and hence the
type of the coalescence and the size of the bubble considerably. Therefore
in order to get physically meaningful results, it is very important to have
a good estimate for the value of S based on an experimental datum. The
experimental data point is available for a case in which the bubble size is at
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2.4. Limitations on resolving small lenght scales

x

y

4 5 6 7 8 9 100

1

2

3

S=0.0025
S=0.04

Figure 2.2: Effect of diffusion length scale on the coalescence type.

least ten times smaller than the drop radius. This brings us to the second
difficulty which is discussed in the next section.

2.4.3 Dependence of bubble volume on cut-off length

As mentioned before, the important quantity that we want to capture is the
volume for the bubble, which equals the amount of air entrapped between
the meniscus and the droplet. Therefore, the distance between droplet and
meniscus (d) at the moment of pinch-off determines the volume of the bub-
ble. If we assume that air entrapped between the droplet and interface is an
air sheet with the thickness d and area equal to the front face of the droplet,
then the radius of the bubble can be roughly related to the distance between
the meniscus and droplet as

Rb

R
≈ (

d

R
)
1

3 (2.16)

where Rb is the radius of the bubble. The largest reported bubble size
in the experiment is around one tenth of the droplet size. Therefore, to
capture such bubble size d/R ratio should be at least 1 × 10−3. According
to numerical results, two interfaces start affecting each other when they
are approximately 5ε apart (ε is the interface thickness) for S = 0.01. This
means that the Cn number should be around 2×10−4. The smallest possible
Cn achievable in 3D simulation is 0.015. Therefore, capturing such small
bubble size is impossible with current computational resources.

Problems to be studied in Chapter 3 to Chapter 5, are not subjected
to the mentioned difficulties where obtained results are not sensitive to the
pinch-off/coalescence time/length scale. Problems in Chapters 4 and 5 in-
volve contact line movement for which there are theoretical and experimental
data points respectively.
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Chapter 3

Capillary Breakup of a

Liquid Torus

3.1 Introduction

As discussed in Chapter 1, we want to study the capillary breakup of a
liquid ring suspended in a surrounding liquid which has a main additional
geometric characteristic compared to a straight filament: the presence of
axial curvature around the center of the torus. The axial curvature modifies
the curvature driven capillary instability and produces shrinkage which im-
poses an external flow around the torus, changes the instantaneous geometry
of torus and puts a time limitation on disturbance growth.

The initial growth rate of the disturbances can be related to linear growth
rate of the liquid filament which is a classical problem in fluid mechanics
[24, 71]. A long cylindrical liquid thread becomes linearly unstable to distur-
bances with a wavelength longer than the circumference of the thread 2πa,
a being the radius of the filament. The most unstable wavelength is 9.02a
for an inviscid filament [65], and longer and dependent on the viscosity ratio
for a viscous thread in a viscous surrounding fluid [80]. The capillary waves
grow into the nonlinear regime and ultimately lead to breakup, and satellite
drops may appear depending on the viscosity ratio [79]. Thus, capillary
breakup of long straight filaments is well understood.

In comparison, we have a rather limited knowledge of the stability of
curved filaments. Experimentally, Pairam and Fernandez-Nieves [57] stud-
ied the retraction and breakup of Newtonian tori in a Newtonian surround-
ing liquid. McGraw et al. [50] and Wu et al. [89] further considered the
breakup of nano-scale polymer and liquid metal rings on solid substrates.
Several theoretical and numerical studies have appeared in the literature,
and most of these have dealt with the more complicated situation of a liq-
uid ring or torus in contact with solid substrates. For instance, Wu [90]
computed the Rayleigh modes on a liquid ring spreading on a solid after
impingement. Bostwick and Steen [9] considered the static stability of the
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3.1. Introduction

(a) (b)

Figure 3.1: (a) A quarter of the top half of a liquid torus for simulating the
capillary growth of an even mode, i.e. with an even number of wavelengths around
the torus. For odd modes, a half of the top half must be included. (b) The interface
on the symmetric mid-plane with and without a sinusoidal disturbance.

so-called torus lift, a liquid ring constrained by a solid ribbon in contact
with part of the liquid surface. Nguyen et al. [55] carried out molecular-
dynamics and long-wave continuum simulations of the capillary breakup of
a nano-scale liquid metal ring on a solid surface. Gomes [32] computed
the stability of a rotating toroidal gas bubble constrained between two con-
centric cylinders. The baseline situation, of a freely suspended torus in a
quiescent medium, seems to have been studied only in Yao and Bowick [92];
they solved the Stokes flow during the contraction of the torus but did not
investigate its capillary instability.

In this study we simulate the dynamics of a Newtonian torus suspended
in a surrounding Newtonian liquid in three dimensions (3D). First we will
study the linear growth of a sinusoidal disturbance on the torus and investi-
gate the effect of the retraction and the axial curvature on the growth rate.
Then we will examine the nonlinear instability and the final breakup into
droplets. Finally the numerical results will be compared with the experi-
ment.
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3.2. Problem setup

3.2 Problem setup

Consider a Newtonian liquid torus of viscosity μt suspended in an immiscible
Newtonian medium of viscosity μm. Initially the cross section of the torus
is a circle of radius a0, and the axis through the centre of the cross section is
a circle of radius R0. Hereafter, we refer to the curvatures due to R−1

0 and
a−1
0 as the axial curvature and azimuthal curvature, respectively. Although

non-varicose modes of instability are possible under external forcing, the
experiments showed only varicose necking and breakup. Thus, we assume
symmetry about the mid-plane of the torus, and only need to consider its
top half. Furthermore, we can compute a half or a quarter of the top half
for the growth of odd and even sinusoidal modes (Fig. 3.1). A sinusoidal
perturbation of wavelength l̄0 is imposed on the torus at the start:

(r −R0)
2 + z2 = a20

[
1 + δ0 cos

(
2πR0

l̄0

)
ω

]2
, (3.1)

where r, z, and ω show the surface of the torus in cylindrical coordinates,
k = 2πR0/l̄0 is the number of waves along the circumference 2πR0, and
δ0 is the initial dimensionless amplitude. In presenting results, k will be
called the wave number, though it differs from the usual sense of the word
(2πa0/l̄0). We use the subscript 0 to indicate the initial condition. With
contraction of the torus and growth of the disturbance, a(t), R(t), l̄(t) and
δ(t) all change in time.

The subsequent fluid flow is governed by the Stokes equation; inertia and
buoyancy are negligible in the experiment and will be neglected in the com-
putations. For boundary conditions, we assume symmetry on the bottom
and planar side walls of the domain of Fig. 3.1(a). The top wall is 11a0 above
the top of the torus, on which we impose zero stresses. The outer cylindrical
wall is at least 10a0 from the torus, and is solid with vanishing velocity. The
outer boundaries are sufficiently removed from the torus that they do not
affect the retraction and capillary instability on the latter. Toward the end
of the chapter, when trying to match the experimental geometry of [57], we
will bring the side wall closer to the torus.

Two dimensionless numbers quantify the physical problem: the torus-
to-medium viscosity ratio m = μt/μm and the initial aspect ratio of the
torus β = R0/a0. The Cahn-Hilliard model introduces two more parame-
ters, the Cahn number Cn = ε/a0 and a diffusion length scale S = ld/a0.
We have used S = 0.02 and Cn = 0.05 throughout this chapter; this en-
sures the attainment of the sharp interface limit during torus retraction.
The final breakup involves length scales shrinking to zero, and the finite
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3.3. Results: linear growth of capillary waves

thickness of the interface and the diffusion within will eventually manifest
themselves. With Cn = 0.05, numerical experiments show that the pinch-
off time increases by less than 5% when S decreases from 0.02 to 0.004. In
presenting results, we use a0 as the characteristic length and the capillary
time tc = a0μt/σ as the characteristic time, σ being the interfacial tension.
The wavelength l, however, will be scaled by the instantaneous circumfer-
ence of the cross section of the torus 2πa to facilitate comparison with the
straight-filament results. Note that tc characterizes the capillary waves on
the torus. Its retraction in the presence of a viscous external fluid is on the
time scale (R0 − a0)μm/σ = tc(β − 1)/m.

3.3 Results: linear growth of capillary waves

Compared with the Rayleigh-Tomotika instability on a straight filament,
several complications arise on the torus. First, due to the finite circumfer-
ence of the torus, only a number of discrete wavelengths are possible for a
given aspect ratio β. Second, the torus has an axial curvature (R−1) which
may affect the growth of the capillary wave. Finally, the contracting torus
induces a flow in the surrounding fluid which may modify the capillary in-
stability as well [52, 81]. Under the constraint of quantized wavelengths, the
last two effects will be explored separately.

3.3.1 Quasi-static retraction: effect of axial curvature

By choosing a large initial aspect ratio β and a small viscosity ratio m, we
can separate the time scales for the growth of the capillary wave and the
retraction of the torus. In physical terms, this corresponds to a thin torus
retracting slowly in a highly viscous bath. The speed of retraction dR/dt
decreases in time. As an indication of its magnitude, dR/dt = −0.0036
at R = 4 for m = 0.033. For larger m, the retraction speed increases in
proportion as expected. Such a quasi-static process is convenient in that we
can probe the effect of the axial curvature on the linear instability of the
torus while excluding the dynamic effect of the retraction-induced external
flow. Furthermore, if we use a small enough initial perturbation and carry
out the simulations on the time scale of torus retraction tc(β−1)/m, we can
record the linear growth rate at different axial curvatures and wavelengths.
Thus a dispersion relation can in principle be generated in one simulation.

For one such torus with initial aspect ratio β = 5.3 and viscosity ratio
m = 0.033, we impose two wave forms on it (k = 2). Different initial
amplitudes (δ0 = 0.005 and 0.01) are tested, and ln(δ/δ0) initially grows
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3.3. Results: linear growth of capillary waves
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Figure 3.2: (a) Dispersion relation on a shrinking torus compared to that for a
straight filament. The latter is computed by our diffuse-interface method and agrees
with the Tomotika formula within 4%. The wavelength l and the growth rate α are
made dimensionless by the instantaneous 2πa and tc, respectively. (b) The linear
growth rate decreases with the axial curvature for a prescribed dimensionless wave
length l0 = 2. The point at 1/β = 0 corresponds to a straight filament.

linearly in time with a slope α that is independent of δ0. This confirms that
we are in the linear regime, with α being the growth rate. Over longer times
(on the order of tc(β− 1)/m ∼ 100tc), the growth rate remains independent
of δ0 but starts to change in time. This is an effect of the torus retraction
even though the instability is still in the linear regime. Since the wave
number k = 2 is fixed, the wavelength shrinks with the retraction, not only
in dimensional terms, but also relative to the thickening filament radius a.
Thus, recording the growth rate as a function of the changing wavelength
produces the dispersion relation in Fig. 3.2(a). The growth rate on the torus
is some 15% below that on the straight filament, although the difference is
expected to diminish for larger β. For β ≈ 10, the difference narrows down
to within 5%. In the limit of R0 
 a0, of course, one recovers the growth
rate on a straight circular cylinder. Therefore, the axial curvature on the

torus tends to hinder the growth of the capillary waves. Note also that both
the minimum wavelength for instability and the fastest growing wavelength
have shifted slightly to longer waves from those for the straight filament.

The simulation above is not ideal in quantifying the effect of the ax-
ial curvature R−1 on the growth rate α since the former cannot be pre-
scribed but continues to increase in time. For this purpose, we have con-
ducted a series of simulations with tori of the same initial a0, but different
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3.3. Results: linear growth of capillary waves
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Figure 3.3: (a) Ratio of growth rates on a torus as a function of the viscosity ratio
for a capillary wave of dimensionless wavelength l = 2. (b) Ratio of growth rates on
a straight filament under uniform extensional flow, calculated from the theoretical
result of [52].

initial aspect ratio β in proportion to the wave number k. Thus, these
capillary waves have the same initial wavelength [in dimensionless form
l0 = (2πR0/k)/(2πa0) = β/k = 2], and differ only in the axial curvature
R−1

0 . Fig. 3.2(b) plots the initial linear growth rate α as a function of
1/β = a0R

−1
0 , the non-dimensionalized axial curvature. It shows unequivo-

cally that the instantaneous growth rate decreases with the axial curvature.

3.3.2 Faster retraction: effect of external flow

To examine the effect of the external flow field on capillary instability of
the torus, we have gradually decreased the viscosity of the suspending fluid
to produce faster retraction of the torus. Even on a straight filament, in
the absence of the flow effect being examined, the ambient viscosity would
have affected the growth rate. To remove this effect and isolate that of
the retraction-induced external flow, we compute the ratio αr between the
growth rate on a retracting torus and that on a straight filament, the latter
being calculated from the Tomotika formula using the same viscosities and
the instantaneous filament diameter and wavelength of the torus. This ra-
tio, as a function of m, demonstrates how the flow affects the growth of the
instability. Note that the torus viscosity μt remains unchanged in this pro-
cess; it gives a fixed time scale tc against which the growth rate is measured.
The faster retraction is then indicated by an increasing viscosity ratio m.
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3.4. Results: nonlinear growth and breakup

Fig. 3.3(a) plots the ratio of growth rates αr against the viscosity ratio
m for a dimensionless wavelength l = 2. With increasing m and hence in-
creasing retraction speed, the growth rate ratio increases. This implies that
the external flow induced by the torus retraction has the effect of enhancing
the growth of instability. That αr is below unity reflects the quasi-static
effect of the axial curvature discussed in the preceding subsection.

It is interesting to compare this flow effect with that on a straight fila-
ment. [52] computed the effect of a uniform extensional flow on the capillary
instability on a straight filament. The growth rate is written as the sum of
two terms (see their Eq. 59). The first, due to the thinning of the filament
and advective lengthening of the wavelength, had previously been computed
by [81]. This effect is quasi-static in nature, and its counterpart on the torus
has been included in the analysis of the last subsection. The second term,
proportional to the strain rate G, explicitly accounts for the flow effect.
From our torus retraction simulation, we extract a negative G from the rate
of filament thickening, and then compute the two terms for the same wave-
length l = 2. We take the ratio between the total growth rate and the first
term, and plot it as a ratio of growth rates αM in Fig. 3.3(b). This is not
the same ratio as that in Fig. 3.3(a) since there is no axial curvature. Nev-
ertheless, the qualitative trend is clear and confirms our observations on the
retracting torus: the compression of a straight filament enhances the growth
of capillary instability.

3.4 Results: nonlinear growth and breakup

The nonlinear instability and breakup of the torus must take place before
the torus contracts onto itself. In this process, the quantized wavelength
available and the initial amplitude of the perturbation are both important
factors. Besides, the initial aspect ratio of the torus and the viscosity ratio
are key parameters.

3.4.1 Fastest mode

On a retracting torus, with the wavelength and filament thickness changing
continually, the initially dominant mode does not necessarily persist till
breakup. In fact, the torus retraction should favor initially longer waves and
this is illustrated in Fig. 3.4, with β = 6.7, m = 0.033 and δ0 = 0.02. Based
on the dispersion relation for the torus, the linearly dominant wavelength is
l = 2.03 and corresponds to a wave number k = 3.3. Thus, k = 3 or k = 4
should initially produce the fastest growth. Indeed, the two modes grow
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3.4. Results: nonlinear growth and breakup
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Figure 3.4: Nonlinear evolution of three modes of instability, with wave number
k = 2, 3 and 4, for β = 6.7, m = 0.033 and initial amplitude δ0 = 0.02. δ is the
instantaneous amplitude of the capillary waves. The curves for k = 2 and k = 3
end in breakup, with the onset of secondary necking also marked on the latter. The
k = 4 mode ends in complete retraction.

at comparable rates at the beginning. But as the torus shrinks, the k = 3
mode maintains a high growth rate while the growth rate for k = 4 declines,
leading eventually to retraction, not breakup. This can be rationalized by
noting that for a retracting torus with a fixed wave number k, the wavelength
gets shorter in time, in dimensional terms and especially relative to the
growing thickness a. Thus the initially longer wave (k = 3) is favored over
the shorter one (k = 4). The k = 2 mode grows more slowly but does
lead to breakup. The breakup of the torus into droplets is depicted by
snapshots in Fig. 3.5 for k = 3, starting from an initial perturbation of
amplitude δ0 = 0.02. Primary necking proceeds at three points around the
circumference of the torus until t = 678, when two secondary necks emerge
around each primary neck. At t = 748 the torus breaks down into three
primary drops and three satellite droplets. In time these all relax toward
the spherical shape.

3.4.2 Pinch-off time versus retraction time

From the preceding discussion, it is clear that the breakup of the torus
depends on the competition of two time scales: tp needed for the neck to
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3.4. Results: nonlinear growth and breakup
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Figure 3.5: Snapshots of the evolving interface on the mid-plane of the torus for
β = 6.7, m = 0.033 and δ0 = 0.02. The interface is given by the level set of φ = 0
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Figure 3.6: (a) The pinch-off time decreases with increasing initial amplitude of
disturbance. β = 5.3, m = 0.033, k = 2. The solid curve is the best fitting by
Eq. (3.2). (b) The critical initial amplitude δc decreases with the initial aspect
ratio β. The solid curve is the best fitting by Eq. (3.3).

pinch off, and ts needed for the torus to shrink onto itself. This competition
can be affected by multiple factors. For example, the k = 4 mode of Fig. 3.4
can survive till breakup if the initial perturbation has a sufficiently large
amplitude; δ0 defines tp. Besides, the breakup depends on the initial aspect
ratio β and the viscosity ratio m, each having a role in ts. These three
factors will be examined in turn.

Fig. 3.6(a) demonstrates the dependence of the pinch-off time tp on the
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Figure 3.7: Effect of the viscosity ratio on the growth of disturbance. β = 5.3,
δ0 = 0.02 and k = 2.

initial amplitude δ0 for β = 5.3, m = 0.033 and k = 2, which is the initially
dominant mode. If δ0 is below a critical value δc ≈ 0.02, no breakup occurs.
For δ0 > δc, the torus breaks up into two principal drops and two satellite
droplets, and tp decreases with increasing δ0 as expected. Besides, the faster
the breakup, the larger the satellite droplets. The critical amplitude δc
decreases with increasing initial aspect ratio β, as shown in Fig. 3.6(b). The
thinner, longer torus offers a longer ts within which breakup can take place.
In the β range shown, k = 2 persists till breakup from all δ0 > δc; no other
modes emerge from noise to overtake the imposed k = 2 mode.

The viscosity ratio m = μt/μm is another parameter that modulates
the competition between pinch-off and retraction. Our results show that
the torus retraction is more influenced by the matrix viscosity μm while the
necking and pinch-off more by the torus viscosity μt. As m increases from
0.033 to 0.05 and 0.1, the critical amplitude δc increases from 0.02 to 0.03
and 0.07. For m = 0.5 even δ0 = 0.18 is unable to break down the relatively
viscous torus before it contracts into a single drop, often entrapping a droplet
of the ambient fluid in the centre [97].

Fig. 3.7 illustrates the effect of m on the growth of an initial distur-
bance with k = 2, which is the initially dominant mode for all the m values
considered here. Since time is scaled by tc = a0μt/σ, using the torus vis-
cosity, increasing m can be conveniently thought of as due to a decreasing
μm. As μm decreases, the initial growth rate of the capillary wave increases.
However, the retraction of the torus becomes faster as well. Numerical ex-
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3.5. Comparison with experiment

periments show that the latter has the upper hand. Thus, for lower μm, δ
reaches a maximum quickly and then declines, due to the thickening of the
torus and the effective shortening of the wavelength. It is for the largest
matrix viscosity, at m = 0.033, that the slow retraction offers the capillary
disturbance sufficient time to grow till breakup, despite the slower linear
growth rate.

The competition between time scales can be represented by scaling argu-
ments. As noted earlier, the shrinkage time ts ∼ tc(β− 1)/m. The pinch-off
time can be taken as that required for the disturbance to grow from the non-
dimensionalized initial amplitude δ0 to 1: tp = − ln δ0/αm, where the fastest
growth rate αm can be estimated from the Tomotika solution: αm ∼ √

m/tc
[18]. Therefore, we can write

tp = tc
c1√
m

ln

(
1

δ0

)
, (3.2)

and c1 = 40.6 gives a reasonably good fitting to the numerical data in
Fig. 3.6(a). Furthermore, equating this tp with the shrinkage time ts gives
us the critical initial amplitude for breakup:

δc = exp

(
−c2

β − 1√
m

)
, (3.3)

which fits the data in Fig. 3.6(b) well with c2 = 0.16. Given that much of the
necking and pinch-off is nonlinear, these linearly based scaling relationships
work remarkably well.

3.5 Comparison with experiment

As far as we know, the only prior experiment on the breakup of a freely sus-
pended torus is that of Pairam and Fernandez-Nieves [57]. With Newtonian
glycerol tori in a Newtonian oil bath, these authors reported that thick tori
shrink to one droplet while thin ones break down into a number of droplets
through Rayleigh-Tomotika instability. We match the liquid viscosities and
flow geometry in the experiment, where the torus is confined in a cylindrical
drum, with the top and side walls being some 6a away from the outer edge
of the torus. Our numerical experimentation shows that this confinement is
essential for slowing down the torus retraction and allowing breakup. Still
two uncertainties complicate a direct comparison. The first is the initial
amplitude of perturbation δ0. In the experiment, the torus is generated by
releasing a glycerine jet into silicone oil while the drum rotates. There is
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Figure 3.8: (a) Determining the initial amplitude of perturbation δ0 from the
variation of the thickest radius at versus the thinnest radius an on the torus. Both
radii are normalized by the initial value a0. (b) Determining the interfacial tension
σ from the temporal variation of an. β = 5.3, k = 2 and m = 0.033.

a complex flow history, and it is not obvious how to gauge the magnitude
of the initial perturbation. The second is the interfacial tension σ in the
experiment. It was not reported and cannot be made available to us. We
determine δ0 and σ first by fitting the experimental data.

First note that the capillary time tc is the only time-scale of the problem,
and the only role of σ is to lengthen or compress tc. Thus, in Fig. 3.8(a) we
plot the radius at of the thickest part of the torus against the thinnest radius
an at the neck. Such a curve should be independent of tc. Among numerical
results starting from different δ0 values, δ0 = 0.01 agrees very closely with
the experiment. So we take δ0 = 0.01 to be the initial amplitude for this
case. Now plotting the temporal variation of the neck radius in Fig. 3.8(b)
gives us a fitting of σ = 31.8 mN/m, which is within the 5 percent of the
handbook values [63].

With the δ0 and σ values determined, we compare the number of pri-
mary drops N between the simulation and the experiment for a range of
torus aspect ratio β (Fig. 3.9). All the simulations have started with the
fastest linear mode for the β value. The results agree with the experiment
except for β = 4, where the simulation predicts complete retraction, while
the experiment reported N = 1, breakup at a single primary neck for the
k = 1 mode. We cannot explain this at present; possibly this experiment
had a different δ0 from that fitted in Fig. 3.8(a) for β = 5.3. Numerical
experimentation indicates that δ0 = 0.02 would lead to breakup at a single
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Figure 3.9: Comparison between the predicted and observed number of primary
drops after breakup, for tori with five initial aspect ratios. m = 0.033 and δ0 = 0.01.
N = 0 and 1 refer to, respectively, complete retraction with no breakup and breakup
at a single primary neck.

neck. In all the cases leading to breakup, N corresponds to the fastest linear
mode. Even though the wavelength and filament thickness both change dur-
ing the retraction, we have never seen the linearly dominant mode yielding
to a nascent mode in the nonlinear stage. This reflects the fact that there
is a limited time window for growth and it is too short for another mode to
emerge spontaneously from random noise.

3.6 Summary and conclusions

Capillary instability of a Newtonian liquid torus is studied by imposing a
sinusoidal disturbance on an initially stationary torus in quiescent surround-
ing Newtonian liquid. The main findings of this study are

(a) If the initial disturbance has sufficiently small amplitude, the capillary
instability initially grows linearly, at a growth rate independent of the
amplitude of the disturbance.

(b) The geometry of the torus can affect the capillary instability through
its axial curvature and the external flow field.
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3.6. Summary and conclusions

(c) Effect of axial curvature on the disturbance growth is studied by choos-
ing a very viscous surrounding liquid and hence producing very slow
retraction. A dispersion relation is constructed for the torus by look-
ing at the growth rate of the disturbance during the shrinkage. It is
shown that axial curvature decreases the growth rate of the distur-
bance compared to straight filament.

(d) Effect of the external flow field on capillary instability of the torus
is examined by gradually decreasing the viscosity of the surrounding
fluid to produce faster retraction of the torus. By finding the ratio of
the growth rate of a certain wavelength on a torus to its counterpart on
a straight filament, it is shown that shrinkage enhances the capillary
instability. This is further confirmed by comparing the flow induced
term and quasi-static term in the equation proposed by [52] for the
flow effects in a straight filament.

(e) The final shape of torus is a result of competition between two time-
scales called shrinkage and pinch-off timescale. Shrinkage can be scaled
as ts ∼ tc(β − 1)/m which shows that it is inversely proportional to
viscosity ratio and is proportional to aspect ratio of the torus as well
as capillary timescale. The pinch-off time depends on the wavelength.
If we choose the fastest one and assume that the growth rate is almost
equal to the initial growth rate during the retraction. The follow-

ing scaling can be proposed for the pinch-off time: tp ∼ tc√
m
ln

(
1
δ0

)
.

Competition of these two time-scales determines the final shape of the
torus.
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Chapter 4

Wicking Flow through

Microchannels

4.1 Introduction

As mentioned in Chapter 1, capillary force is a key mechanism to move
flow inside narrow channels of porous media and microfluidic devices that
typically consist of complex geometric features. Dynamics of interface is
dependent on the geometry of the conduit, and it is usually ignored in pre-
vious studies of wicking flow, which is typically one-dimensional. There are
theoretical and numerical difficulties in computing wicking flows through
complex geometries. These include the lack of a good model for the mov-
ing contact line, the need to capture dynamically a moving and deforming
interface, morphological singularities in coalescence and rupture of inter-
faces, and the complex flow geometries in practically interesting problems.
The first three are generic to simulation of interfacial flows. The last, on
geometry, is especially pertinent to flow in porous medium. The geomet-
ric features of a pore include changes in the cross-sectional area between
wide pore chambers and narrow pore throats, branching and intersection of
pores, and the appearance of sharp edges and corners on which a gas-liquid
interface can be pinned.

The classic work on wicking flows is that of Lucas [49] and Washburn
[85], who computed capillary rise in straight tubes. This solution is notable
for its simplicity. Dynamics of the meniscus is completely ignored. In its
place, a static interfacial shape is assumed such that the interface merely
supplies a constant suction pressure. In addition, the flow in the tube is
taken to be fully developed Poiseuille flow. Now the capillary rise can be
computed by balancing the capillary pressure against the viscous friction.
Later work has sought to include inertia, dynamic contact angle and entry
effects [8, 23, 42, 70, 98]. More recently, tubes of non-circular cross sections
have also been considered [35].

Of more relevance to our work are generalizations of the Lucas-Washburn
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4.1. Introduction

solution to tubes and channels of gradually varying cross sections. Using the
lubrication approximation, one-dimensional (1D) solutions have been ob-
tained for sinusoidal tubes [68, 73], sinusoidal tubes with tortuosity [60] and
tubes and channels with convergent, divergent and power-law cross sections
[66]. Liou et al. [47] extended the previous solutions to 2D axisymmetric
flows by using approximate velocity profiles. This allowed them to include
inertia as well as viscous stresses that vary with the cross-sectional area.

The only numerical study of wicking flow inside tubes with convergent-
divergent cross section is done by Erickson et al. [25] They have computed
the 2D axisymmetric flow inside tubes by finite elements, but excluded the
hydrodynamics of the interface as in the analytical studies mentioned above.
By assuming a spherical shape of the meniscus, they update its position
from the liquid volume flow rate. The capillary pressure is introduced by
the Young-Laplace equation along with a dynamic contact angle. Perhaps
to minimize the disturbance to the meniscus and to make the spherical
shape a more accurate approximation, they have used very long tubes with
exceedingly mild contractions and expansions, with a contraction/expansion
angle of 0.5◦. A surprising prediction is that if the total lengths of the wider
and narrower portions of the tube are fixed, the time for the meniscus to pass
through the tube is independent of the number of the contraction/expansion
cycles along the tube’s length.

To summarize this brief review of the literature, previous studies have
ignored the hydrodynamics of the meniscus. The motion of the contact
line is unaccounted for, and the meniscus shape is always prescribed to be
spherical. Little can be found in the literature that deals with the detailed
morphological changes of the meniscus during its motion through complex
geometries. As such, their applicability to two-phase transport in porous
media is quite limited. For one, pinning of the interfaces on sharp corners of
the pore is responsible for pore blockage and, if external pressure is applied,
eventual capillary breakthrough [22, 48]. Competition among interconnected
pores will depend on the dynamics of the interfaces in complex geometries,
including rupture and coalescence as the meniscus negotiates bifurcations
and junctions. Finally, the wettability of porous medium is often manipu-
lated to enhance two-phase transport [58]. The underlying mechanism has
to be sought from the hydrodynamics of the interface. In this context, a
fundamental understanding of interfacial dynamics during wicking through
complex geometry is essential. In view of the various difficulties mentioned
above, however, a rigorous study of the dynamics of the meniscus based on
hydrodynamic principles has yet to be done.

This chapter presents an initial effort toward addressing these issues. We
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4.2. Problem setup

Figure 4.1: Schematic of the flow geometry for wicking into a capillary tube with
contraction.

examine the two quintessential geometric features of a porous medium: the
areal changes between pore throats and chambers and the branching of flow
conduits. Specifically, we simulate the wicking flow in axisymmetric tubes
with non-uniform cross sections and 2D planar channels that bifurcate into
two branches. Using a Cahn-Hillard description of the contact line dynam-
ics allows us to capture the moving interface and its morphological changes
accurately and naturally, including pinning at sharp corners and otherwise
singular interfacial breakup at bifurcations. We show that the meniscus un-
dergoes complex deformations through contractions and expansions, with
contact line pinning at protruding corners and turning of the interface at
concave corners. Capillary competition between bifurcating channels may
suppress wicking in the wider branch in favor of the narrower one. Manip-
ulating the wettability in the branches can even produce flow reversal.

4.2 Problem setup

Wicking is significant in small capillary tubes and pores, and the resulting
Reynolds and Bond numbers are typically much below unity. Therefore,
we will neglect inertia and gravity throughout this work, and highlight the
roles of capillarity and viscosity. The hydrodynamics is governed by the
continuity equation and a modified Stokes equation.

The computational domain is illustrated in Fig. 4.1. Natural boundary
conditions are employed at the inlet and the outlet. In addition, the pressure
is set to be equal between the inlet and the outlet such that the motion of
the liquid column is driven entirely by wicking, i.e. by the capillary pressure
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4.2. Problem setup

generated by the meniscus.
The wicking flow consists in a column of hydrophilic fluid of viscosity

μ1 displacing a hydrophobic one of viscosity μ2 (Fig. 4.1). The geometrical
parameters include the contraction or expansion angle α, the total length
Ht, length of the upstream section Hu, and the larger and smaller tube radii
R1 and R2. In Fig. 4.1, Hb denotes the position of the center of the meniscus,
hereafter called its base point. Hw marks the position of the contact line
on the wall, hereafter called the wall point of the meniscus. Initially, there
is no flow and the liquid column is at Hw = H0. Later, both Hw and Hb

vary in time as the wicking proceeds. In this dynamic process, the interface
shape is determined by the viscous and capillary forces, and is in general not
spherical. However, it will prove convenient to use an effective curvature κ,
defined for a spherical surface, in discussing the evolution of the interface.
From the height of the meniscus δm = Hw − Hb and the local tube radius
R, we can calculate the radius of the spherical surface that passes through

the wall and base points of the meniscus: ρs = R2+δ2m
2δm

, from which we can
define:

κ =
2δm

R2 + δ2m
. (4.1)

Note that κ is an overall indication of the meniscus curvature, and does not
reflect the local deformation of the interface. It varies along the axis in an
expansion or contraction as R does. In presenting results in dimensionless
form, we scale length by R1, curvature by R−1

1 , velocity by σ/μ1 and time by
μ1R1/σ. Throughout this study we have set R2/R1 = 0.5 and Ht/R1 = 20
except in Fig. 4.10 where Ht/R1 = 21.

The physical parameters of the problem can be combined into two di-
mensionless parameters: the static contact angle θ and the viscosity ratio
m = μ2/μ1. Unless noted otherwise, m is set to 0.02 to represent the vis-
cosity ratio between air and water at room temperature.

4.2.1 Choice of Cahn-Hilliard parameters

As discussed in Chapter 2, the contact line velocity is very small for the
considered wicking flow so we assume fast wall relaxation and set Π equal
to zero. Therefore, the diffuse-interface model introduces two additional
lengths [96]: the interfacial thickness ε and a diffusion length ld = γ1/2(μ1μ2)

1/4.
They produce two dimensionless parameters: the Cahn number Cn = ε/R1

and S = ld/R1. ε or the Cahn number Cn should be sufficiently small so
that the numerical results no longer depend on it; this is known as the sharp
interface limit. To ensure that the sharp-interface limit for moving contact
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Figure 4.2: Sharp-interface limit for computing capillary rise. (a) Contact line
motion indicated by the rise of Hw in time for two Cahn numbers Cn = 0.01 and
0.02. (b) Variation of the effective meniscus curvature κ with time for the same
two Cn values. S = 0.04, θ = 60◦, the tube radius R = 1, total length Ht = 20 and
the initial column height H0 = 15.

lines is achieved, we use the criterion of Yue et al. [96]: (Cn ≈ 4S). In our
wicking problem, the criterion turns out to be more stringent than that of
Yue et al. [96]. We tested a range of Cn values for S = 0.04, and found the
results to be essentially independent of Cn once it is below 0.02. Fig. 4.2
shows that the contact line motion and the meniscus shape agree closely be-
tween Cn = 0.02 and Cn = 0.01. Thus, the sharp-interface limit is achieved
by using Cn = 0.02 in this case.

As discussed in Chapter 2, the diffusion length ld or the parameter S,
should be chosen to match a single experimental measurement. In this
section, we examine these issues in the simple geometry of imbibition and
drainage in a straight capillary tube. Our aim is twofold: to select a suitable
value for S, and to validate the numerical results for a straight circular tube
against the Lucas-Washburn formula [49, 85].

In the capillary rise problem, the Lucas-Washburn formula [49, 85]

H(t) =

√
H2

0 +
σR cos θ(t− t0)

2μ
(4.2)

is widely accepted as an accurate representation of the interfacial movement,
as long as the liquid column is long enough such that the “end effect” is
negligible and the flow can be approximated by the Poiseuille flow. Here,
R is the tube radius, μ is the viscosity of the liquid and that of the gas is
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(a) (b)

Figure 4.3: Comparison between the diffuse-interface simulation and the analyt-
ical Lucas-Washburn formula at different S values. (a) Imbibition with θ = 60◦,
Cn=0.01, m = 0.02 and H0 = 15. (b) Drainage with θ = 120◦, Cn=0.01, and
H0 = 19. Now the less viscous component is wetting, and the non-wetting-to-
wetting viscosity ratio m = 50.

neglected.
Fig. 4.3 compares our diffuse-interface calculation of capillary imbibition

and drainage at several S values with the Lucas-Washburn formula. A
few observations can be made. First, in both imbibition and drainage, the
numerical result approaches the analytical formula as S increases. While the
analytical solution neglects the dynamics at the meniscus and the contact
line completely, the Cahn-Hilliard model includes a friction at the contact
line in terms of an additional dissipation [97]. As the diffusion length or S
increases, the effective slippage at the contact line increases, thus reducing
the influence of this friction. For S = 0.04, the effective curvature of the
interface is 5% lower than that expected of a spherical surface. This is
due to the flow effects at the meniscus that the Lucas-Washburn formula
disregards.

Second, the contact line speed is insensitive to S. With a tenfold change
in S, the contact line speed changes by some 6%. This forms an interesting
contrast to the situation studied by Yue et al. [96], where in shear flows
the meniscus shape or interface inclination is highly sensitive to S. This
can be rationalized by the fact that the contact line speed is determined by
equating the viscous dissipation to the surface energy gained by wetting or
dewetting. Thus, insofar as most of the dissipation occurs in the bulk of the
column, the effect of S is mild. In shear flows, in contrast, the contact line
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4.3. Wicking in a tube with contraction or expansion

speed is prescribed, and the amount of Cahn-Hilliard diffusion affects the
shape of the interface greatly.

Third, the same S produces larger deviation from the Lucas-Washburn
formula for imbibition than for drainage. This reflects the fact that the
viscosity of the displacing and the displaced components contributes to the
contact line motion differently. But this asymmetry is not reflected by the
definition of S used here. Finally, there is an upper limit to reasonable S
values. Using too large a diffusion length ld exaggerates the area that is
directly affected by the contact line. Our numerical experiment shows that
for S = 0.15, for example, the overall features of the flow are distorted
by the interfacial diffusion and the solution becomes very inaccurate. In
typical flow situations, the slip length is orders of magnitude smaller than
the macroscopic length scale [20, 94].

To sum up this section, we have demonstrated how the sharp-interface
limit can be achieved by using a small enough Cn and how S can be selected
by comparing with the Lucas-Washburn formula. Most of the results to be
presented are for S = 0.04 and Cn = 0.01. For the wicking through multiple
contraction-expansion combinations (Fig. 4.10), we have used Cn = 0.02.
To better resolve contact line pinning and turning at corners (e.g., Figs. 4.4
and 4.7), we have used a smaller Cn = 0.005.

4.3 Wicking in a tube with contraction or

expansion

We consider the wicking flow of a liquid column into an axisymmetric tube,
with a contraction as shown in Fig. 4.1 or with an expansion. The goal is
to elucidate the detailed hydrodynamics of the moving interface, in partic-
ular how the contact line negotiates concave and convex corners. Also of
interest is the passage time as a function of the flow geometry, with a single
contraction-expansion combination or multiple cycles of it.

4.3.1 Contraction

Fig. 4.4 illustrates the wicking of a liquid through a 2:1 contraction at con-
traction angle α = 45◦. The wall is hydrophilic to the liquid, with a wetting
angle θ = 60◦. The evolution of the interface is punctuated by several
critical points marked on the Hb ∼ Hw and κ ∼ Hw curves as well as by
the insets. In the first stage of the process (Hw < Hu), the meniscus moves
with a constant shape within the wide tube before it reaches the contraction.

36



4.3. Wicking in a tube with contraction or expansion

(a) Hw

H
b

9.8 10 10.2 10.4 10.6 10.8
9.5

9.7

9.9

10.1

10.3

10.5

a

b

c

d

(b) Hw

κ

9.8 10 10.2 10.4 10.6 10.80

0.5

1

1.5

2

a

b

c

d

Figure 4.4: Meniscus movement through a contraction with α = 45◦ represented
by (a) the variation of the base point with the wall point, and (b) the effective
curvature defined in Eq. (4.1). θ = 60◦, Cn = 0.005 and Hu = 10. In (a) the insets
correspond to the four points marked by squares on the curve. In (b) the dashed
line indicates the curvature expected of a quasi-static spherical meniscus.

The base point and wall point advance at equal speed and the trajectory
in Fig. 4.4(a) is a straight line with slope 1. The meniscus is not spherical,
however. Viscous forces distort it so that the constant effective curvature
κ is 6% below that expected of a spherical meniscus at equilibrium in the
upstream portion of the tube.

As the contact line reaches the corner at the beginning of the contraction,
marked by point a in the plot, a new behavior sets in. First, the contact line
quickly moves past the concave corner. Once it is on the inclined wall of the
contraction, the interface must rotate by α to maintain the same contact
angle θ with the wall. This rotation first occurs locally at the contact line,
elevating the local curvature. Then the interfacial distortion propagates
toward the center by interfacial tension, causing the central portion of the
meniscus to pull back upstream. This process is reflected in Fig. 4.4(a) by
the downturn of the trajectory and the sharp upturn of κ in Fig. 4.4(b). The
interfacial adjustment is completed by point b, when the base point of the
interface is at a minimum. During this highly dynamic transition, κ falls far
below what one would expect by assuming a quasi-static spherical meniscus.

After point b, the base point moves forward again, and at a higher speed
than the wall point because R is shrinking and the interface is continuously
becoming more curved. Hence the continued increase in κ. The next mile-
post is when the contact line reaches the convex corner marking the end of

37



4.3. Wicking in a tube with contraction or expansion

the contraction (point c). The contact line is pinned at the corner [37] while
the base point continues to move forward. Thus the interface rotates toward
the downstream as if hinged at the corner, and in the mean time straightens
with a steep decline in κ. The pinning ends when the angle between the
interface and an extension of the downstream wall reaches the contact angle
θ, in accordance with Gibbs’ pinning criterion, and the meniscus as a whole
moves into the narrow channel. This moment is marked by d in Fig. 4.4.
The effective curvature κ settles into a steady value roughly 14% below that
for a perfectly spherical meniscus at equilibrium.

4.3.2 Regularization of corner singularity

The turning of the interface at the concave corner (point a) deserves a
closer examination. The case illustrated in Fig. 4.4 has a relatively mild
contraction with α < θ. Thus, as the contact line advances from the corner
onto the ramp, the interface rotates locally by α to form a tight curve, which
is subsequently smoothed out over the rest of the interface. Now imagine a
stronger contraction with α > θ. If the interface rotates by α at the corner,
it would have to penetrate the wall upstream. Hence, a concave corner
with a contraction angle larger than the wetting angle appears to present a
singularity to the contact line.

This singularity is not real, of course. It arises because the foregoing
argument is made in the classical sharp-interface framework, with the in-
terface being viewed as a mathematical surface of zero thickness. This is a
good representation of real interfaces as long as the length scale of interest
is much larger than the interfacial thickness. At a concave corner of suffi-
ciently large α, the turning of the interface entails intersection with the solid
wall, which in reality would invoke physics on the molecular length scale.
Little surprise that an apparent singularity should appear. In fact, a strict
implementation of the sharp-interface model would encounter difficulty even
for a contact line moving on a flat substrate [61, 62].

This is where the diffuse-interface model presents a distinct advantage.
By preserving the reality that interfaces are diffuse mixing layers rather
than discontinuities, the model circumvents the traps of singularity on flat
substrate as well as at corners. On a flat substrate, Cahn-Hilliard diffusion
allows a contact line to move and predicts a dynamic contact angle [94, 96].
Inside a concave corner, diffusion allows the interface to turn a large α in a
natural manner as demonstrated in Fig. 4.5.

We have to point out that the diffuse-interface model introduces a lo-
cal length scale ε, the interfacial thickness. If the physical process being
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4.3. Wicking in a tube with contraction or expansion

Figure 4.5: Gray-scale contours of φ depicting the interface traversing a concave
corner through Cahn-Hilliard diffusion. The light line indicates the contour of
φ = 0. The contraction angle α = 75◦ is greater than the wetting angle θ = 60◦.
Hu = 10 and initially the meniscus is at H0 = 9.8.

studied involves a length scale that shrinks indefinitely, as occurs here in
Fig. 4.5 and during interfacial pinch-off or rupture [29, 95], the finite-ε effect
manifests itself eventually, and is intrinsic to the diffuse-interface formalism.
Therefore, the negotiation of the corner in Fig. 4.5 occurs more slowly with
decreasing ε. The question of choosing suitable Cahn-Hilliard parameters
has been discussed elsewhere [94]. For the current problem, the diffuse-
interface model regularizes the singularity at the corner and captures the
qualitative features of the process, but cannot foretell what ε value would
predict reality quantitatively.

4.3.3 Expansion

Wicking through an expansion, schematically depicted in Fig. 4.6, differs
from wicking through a contraction in that the contact line first encounters a
convex corner, and then a concave one. The process is illustrated in Fig. 4.7.
When the meniscus is entirely inside the narrower channel upstream, Hw and
Hb advance with the same speed. As the contact line reaches the corner at
the start of the expansion (point a), it is pinned temporarily according to
Gibbs’ pinning criterion [37]. Meanwhile the base point moves forward very
quickly until point b, when the interface reaches an angle of θ + α = 85◦

with respect to the upstream wall. It depins from the corner, and the entire
meniscus advances through the expansion. This corresponds to the segment
between points b and c. At point c, the meniscus reaches the end of the
expansion with the contact line at the concave corner. As the wall rotates
counterclockwise by α at this corner, so must the interface before it could
march downstream onto the straight portion of the tube. This causes a large
local curvature of the interface, which propagates toward the center, causing
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4.3. Wicking in a tube with contraction or expansion

Figure 4.6: Schematic of an expansion illustrating the pinning criterion. θb = α+θ
is the breakthrough angle, and θm = 90◦ is the maximum angle that the interface
may reach at the corner.
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Figure 4.7: Wicking through an expansion with α = 25◦, θ = 60◦, Cn = 0.005
and Hu = 5. The insets correspond to the four points a–d on the curve.

the base point of the meniscus to retreat, as illustrated by the decline of Hb

beyond point c. Once this interfacial adjustment is completed at point d,
the entire meniscus moves down the wider straight channel, again with the
base point and wall point advancing at the same speed.

Naturally one contrasts the above process with wicking through a con-
traction (Fig. 4.4). The behavior at the concave corner at the end of the
expansion, between points c and d in Fig. 4.7, is essentially the same as
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4.3. Wicking in a tube with contraction or expansion

Figure 4.8: Permanent pinning of the interface at the entrance to an expansion
with α = 30◦. θ = 60◦, Cn = 0.005, Hu = 5 and H0 = 4.9.

appears at the start of the contraction, from a to b in Fig. 4.4. If the ex-
pansion is too abrupt, with α > θ, the corner would present a singularity to
a sharp-interface model but not to our Cahn-Hilliard model. On the other
hand, the convex corner at the start of the expansion, point a in Fig. 4.7,
differs fundamentally from its counterpart, point c in Fig. 4.4; here it has
the potential of permanently pinning the interface. This would happen if
the expansion is abrupt enough such that the required breakthrough angle
θb = θ + α is beyond the maximum achievable θm = 90◦:

α+ θ ≥ 90◦. (4.3)

Such a situation is illustrated by the snapshots in Fig. 4.8 for θ = 60◦ and
α = 30◦. After the contact line gets pinned at t = 6.6, the interfacial tension
acts to move the rest of the interface forward so as to minimize the interfacial
area. This continues till t = 101.6, when the meniscus becomes a flat surface
and can move no further. At this point, the angle between the interface and
the upstream wall is θm = 90◦, barely equal to the breakthrough angle
θb. The contact line cannot depin and the flow is arrested permanently.
Thus, the geometric constraint of Eq. (4.3), based on the Gibbs pinning
condition [37], specifies a degree of expansion beyond which a hydrophilic
fluid cannot enter. This may be contrasted with the convex corner at the end
of the contraction (point d of Fig. 4.4). As long as the fluid is hydrophilic
(θ < 90◦), the contact line always depins before the meniscus becomes flat
at 90◦ angle with the downstream wall.

4.3.4 Penetration time

The speed of wicking and the time required to penetrate a given depth are
of practical significance in various applications [10, 54, 60], and have been
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Figure 4.9: (a) Comparison of wicking speed through 2:1 contractions at two
contraction angles α = 15◦ and 25◦. The inset illustrates the flow geometry. Hu =
10, H0 = 9, θ = 60◦. (b) Similar comparison for 1:2 expansions at α = 15◦ and
25◦. Hu = 5, H0 = 4, θ = 60◦.

studied by a few groups [25, 73]. In this subsection, we will examine how the
speed of wicking through contractions and expansions is affected by the flow
geometry. Consider a tube of total length Ht. The two radii R1 and R2 are
prescribed, as is the upstream length Hu. The rest of the length consists of a
contraction or expansion and possibly a straight downstream segment. The
question is what contraction or expansion angle gives the fastest wicking
through the total length. We have tested a range of contraction/expansion
angles and wetting angles. A clear trend emerges, and is illustrated in
Fig. 4.9 by comparing α = 15◦ and 25◦ for θ = 60◦.

In Fig. 4.9(a), the two trajectories coincide prior to reaching the start of
the contraction, point a. Afterwards the wicking accelerates faster through
the sharper contraction at α = 25◦, evidently because of the faster increase
in curvature and capillary pressure. But the sharper contraction is shorter,
and the acceleration ends at point b, after which the meniscus enters the
narrow downstream segment and decelerates. In comparison, the milder
contraction sees a more gradual acceleration that lasts longer, till point c.
Downstream of point c, wicking decelerates as well, but at a gentler rate than
in the sharper contraction. This is because the sharper contraction incurs
more viscous friction. As a result, the meniscus eventually overtakes that
in the sharper contraction, at Hw ≈ 14.8. Therefore, the question of which
geometry gives faster wicking depends on the length of the downstream
segment. If it is long enough, a gentler contraction wins. If Ht and Hu are
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prescribed, then there is an optimal α that gives the shortest penetration
time through the entire length. For example, for Ht = 13, Hu = 10, and
θ = 60◦, we have tested α values from 15◦ to 65◦, and α = 25◦ gives the
shortest transit time.

For expansion, the story is simpler (Fig. 4.9b). Wicking is slower in
the sharper expansion because the driving force, the capillary pressure, de-
creases more steeply with the expanding tube radius. This effect is so strong
that the sharper expansion (from a to b) takes longer time to traverse than
its milder counterpart (from a to c) despite its shorter length. Note the
sudden surge of Hw at b and c when the contact line rapidly traverses the
concave corner. Upon entering the downstream segment, wicking acceler-
ates to more or less the same speed in both geometries. This speed will
gradually decline in the downstream tube. Overall, the sharper expansion
always causes a longer penetration time. Besides, comparing Fig. 4.9(a) and
(b), the expansion takes much longer time than the contraction of the same
length and same α, by 15-fold for α = 15◦, and 53-fold for 25◦. This implies
that in a contraction-expansion combination, the latter takes up most of the
penetration time.

The penetration or passage time tp, as it turns out, sheds unique light
on the validity of the quasi-static assumption widely used in the literature.
By using the formula of Liou et al. [47], based on a quasi-static spherical
interface, we have calculated tp through expansions at different angles. The
formula overpredicts tp by 2.5% for α = 5◦, and by 0.81% for α = 25◦. With
increasing α, wicking becomes slower, giving the interface more time to relax
toward equilibrium. A different picture emerges for contractions. As α in-
creases from 5◦ to 25◦, the underestimation of tp by the quasi-static method
increases from 16% to 32%. Evidently, a faster moving interface deviates
more from the spherical shape, and renders the quasi-static assumption less
accurate. At large contraction angles, however, another factor comes into
play. The strong radial flow tends to restore the meniscus toward spherical
(cf. Fig. 4.4b).

To better reflect the flow geometry in porous media, Erickson et al. [25]
studied wicking through multiple contraction-expansion cycles. They came
to the surprising conclusion that as long as the total lengths of the wide seg-
ments and narrow segments are each kept constant, the penetration time tp
remains the same regardless of the number of contraction-expansion cycles.
This implies that adding additional contraction and expansion pairs costs
no delay in the wicking, something inconsistent with our observations in
Fig. 4.9. To probe this further, we compare wicking through three channels
with N = 1, 2 and 3 contraction-expansion cycles (Fig. 4.10). The total
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Figure 4.10: Wicking through multiple contraction-expansion cycles. For N = 1,
2 and 3, α = 26.6◦, 45◦ and 56.3◦. The wetting angle θ = 30◦, Cn = 0.02. The
total length Ht = 21, and the meniscus starts at H0 = 10 at the beginning.

lengths of the straight segments are the same among the three, 16 for the
wider part and 3 for the narrower part. The sloping segments also add to
the same length of 2, and the contraction/expansion angle then increases
with N . This geometric setup is modeled after Erickson et al. [25]

According to Fig. 4.10, the total penetration time tp is not the same
among the three; it increases by 17% from N = 1 to 2 and by another
70% to N = 3. As expected, additional contraction-expansion pairs do cost
penetration time, more so for larger N as α increases. The discrepancy
is mainly because Erickson et al. [25] used a much smaller α (∼ 0.5◦) and
straight sections much longer than the contractions and expansions. Thus
traversing the contraction and expansion takes up only a small fraction of
the total tp. Moreover, they ignored the local fluid dynamics at the meniscus
and replaced it by a quasi-static spherical surface. To probe smaller α in
our model, we have computed gentler slopes with α increasing from 1◦ at
N = 1 to 15.6◦ at N = 16, with θ = 30◦, R2/R1 = 0.75, Hu = 10 and
Ht = 41. Compared with N = 1, tp increases by a mere 2.1% for N = 8
and 11% for N = 16. Since Erickson et al. [25] only investigated N up to
3, they would not have noticed much change in tp even if they had not used
the quasi-static assumption.
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4.4. Wicking in Y-shaped branches: capillary competition

(a) (b) (c)

Figure 4.11: Schematic of a planar microchannel with a Y-shaped bifurcation,
showing three stages of wicking: (a) the meniscus reaches the expansion; (b) the
meniscus breaks into two at the bifurcation; (c) wicking continues in each branch
under suitable conditions.

4.4 Wicking in Y-shaped branches: capillary

competition

Connectivity between pores is an important attribute of porous media that
has not been considered in the above. When the meniscus reaches the bifur-
cation where one pore branches into two, will it split into two and go through
both branches, or will one branch dominate the other? What parameters
determine the interfacial dynamics at and after the bifurcation? These are
the questions that we turn to in this section.

Consider the wicking flow in the 2D planar geometry of Fig. 4.11. The
same ambient pressure pa exists at the far-upstream of the root channel
and the far downstream of both branches. When the interface reaches the
branching point, it breaks up into two smaller menisci (Fig. 4.11b), each
then quickly adjusting to the size of the branches. A bifurcation into two
identical branches is a trivial case; wicking proceeds in each branch with
equal velocity. If the two branches differ in size, then there is a potential
for capillary competition governed by the following three factors. (i) The
pressure behind each meniscus depends on its curvature and hence the size
of the branch. Although the interface is generally non-spherical, we can
roughly speak of the capillary pressure in the wide branch pw being higher
than that in the narrow one pn: pw > pn. The narrow channel engenders a
lower capillary pressure and is thus more conducive to wicking flow. (ii) At
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4.4. Wicking in Y-shaped branches: capillary competition

the junction, we can roughly think of a pressure pj that is shared by both
branches. The pressure drops pj − pw and pj − pn drive the flow in each
branch (Fig. 4.11c). (iii) pj is determined by the viscous friction in the root
tube, and continuously rises in time. This is because as wicking proceeds,
the flow in one or both branches slows down and so does the flow in the root
tube.

Depending on whether pj is greater than pw and pn, we can differentiate
two situations: wicking in both branches and wicking in one branch only.
The former happens if pw and pn differ little, or if the pressure drop expended
in the root tube is small such that pj is initially high. The latter happens
if the two branches are disparate in size, or if there is a long and thin root
tube to yield a weak pj. In discussing these two regimes in the following two
subsections, we have found it convenient to fix D2 = 0.5D1 and L0 = 4D1,
and vary the width of the root tube D0 relative to D1. In addition, the
contact angle is set at θ = 60◦. Length will be scaled by D1 and time by
μ1D1/σ.

4.4.1 Flow in both branches

With a wide root tube, the viscous dissipation in it is small and it is like
connecting the branches directly to a reservoir. In this simple situation,
wicking occurs through both branches, though at different speeds depending
on their size (Fig. 4.12).

When the meniscus reaches the end of the root tube (Fig. 4.11a), it faces
an expansion at angle β, and the discussion of pinning in §4.3.3 applies. In
particular, we require β < 90◦−θ such that the meniscus can depin from the
corner and proceed beyond this point. Throughout this section we have used
β = 20◦. When the interface reaches the point of bifurcation (Fig. 4.11b),
it breaks into two smaller menisci, whose curvature, at this point, reflects
the larger dimension of the junction. Thus they are not at equilibrium with
the smaller size of each branch. A short period of equilibration ensues, with
the wall points on the outside walls pulling back and those on the walls in
the middle surging ahead. This is why in Fig. 4.12 the curves appear to
start from a small positive L value at t = 0. In the inset, points a and b
mark when the equilibration is completed in the narrow and wide branches,
respectively. Note that the bifurcation angle β determines the size of the
meniscus in Fig. 4.11(b) and the equilibration process. But it has little
effect on the subsequent wicking in each branch. Once the equilibration is
completed, each meniscus is orientated symmetrically with respect to the
axis of its branch. The geometric setup is such that the pressure pj is higher
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Figure 4.12: Wicking in both branches with a relatively wide root tube: D0 =
1.6. The origin of time is when the meniscus first touches the tip at the junction
(cf. Fig. 4.11b). The inset shows that wicking is faster in the narrow branch initially
(t < 11) but the wide branch winns for longer times.

than both pn and pw, and wicking proceeds in both branches.
Initially, the narrow tube enjoys faster wicking because the pressure drop

pj −pn driving the flow is larger than its counterpart in the wide tube. This
lasts till t ≈ 11, marked by point c in the inset of Fig. 4.12. As the liquid
continues to invade both branches, the viscous dissipation increases with
the column height and the flow speed declines. This effect is stronger for
the narrow branch since, as the flow approaches the Poiseuille flow, the
viscous wall stress scales with the meniscus velocity divided by the channel
width. Thus, the wider tube has faster wicking for later times, similar to
the prediction of the Lucas-Washburn equation.

Once the flow starts in either branch, it does not stop in finite time.
This is because pj must exceed the pressure pn or pw for there to be flow
in the branch. In time pj and hence the pressure drop only increase as the
flow and pressure drop in the root tube declines. Thus, the flow continues
in both branches, and gradually slows down toward zero in time.

4.4.2 Flow in one branch

With thinner root tubes, pj may initially fall below the capillary pressure
pw in the wide branch such that wicking occurs only in the narrow branch.
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Figure 4.13: Capillary competition between two branches with a relatively narrow
root tube, D0 = 0.6. Wicking proceeds in the narrow branch but is suppressed in
the wide branch until tc = 194, marked by a dot on both curves. The origin of time
is when the meniscus first touches the tip at the junction (cf. Fig. 4.11b).

This behavior is demonstrated forD0 = 0.6 by the trajectories of the menisci
in Fig. 4.13 and by the snapshots of the interface in Fig. 4.14. After the
interface splits into two at the bifurcation, they reorient with respect to
the axes of the branches and adjust their curvature to the local tube size
(Fig. 4.14b). Afterwards wicking starts in the narrow branch, and the flow
in the root tube entails a pressure drop. The junction pressure pj thus
produced turns out to be lower than the capillary pressure pw in the wide
branch, and no wicking occurs there. In fact, the negative pressure pj − pw
causes the interface to retreat until the contact line becomes pinned at the
inner corner at t = 42. Fig. 4.14(c) depicts a moment soon afterwards with
the meniscus immobilized in the wide branch. But the arrest of flow in the
wide branch is necessarily temporary. As the flow slows down in the narrow
tube, pj rises continually, eventually surpassing pw to produce wicking flow
in the wide branch as well. This is marked in Fig. 4.13 by tc = 194 when the
liquid column in the narrow tube is at Lc

n = 2.56. After that the situation
becomes qualitatively the same as in Fig. 4.12, and Fig. 4.14(d) shows a
snapshot in this stage. Eventually wicking slows down toward zero in both
branches.

The onset of wicking in the wide branch, indicated by tc or Lc
n, is of

practical interest. For instance, in a porous medium of finite thickness, the
critical value Lc

n for the small pores will determine whether the bigger pores
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(a) (b)

(c) (d)

Figure 4.14: Evolution of the interfacial morphology for the simulation depicted
in Fig. 4.13. (a) The meniscus touches the salient corner at t = 0. (b) The
meniscus relaxes toward the equilibrium curvature inside each branch. (c) After
a brief retraction, the meniscus is immobilized in the wide branch. (d) After the
restarting of flow in the wide branch, the menisci advance in both branches.

will contribute to liquid transport at all. If the liquid traverses the entire
length of the smaller pores before wicking even starts in the bigger ones, the
latter will be dead ends, which have been observed in experiments [33] and
considered a major hinderance to water transport through the GDM of fuel
cells [48]. Note that all the ideas and qualitative arguments discussed so far
in this section apply as well to 3D flows in real porous media.

In the spirit of the Lucas-Washburn analysis (Eq. 4.2), we can esti-
mate the onset of wicking in the wide branch by neglecting dynamics at the
menisci and assuming fully developed Poiseuille flow in the root and narrow
tubes. Let us denote the instantaneous average velocity in the narrow tube
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4.4. Wicking in Y-shaped branches: capillary competition

by V2 and that in the root tube by V0. Then the junction pressure pj can
be estimated either from the force balance on the liquid in the root tube or
that in the narrow tube:

pj = pa − 12μL0V0

D2
0

= pa − 2σ cos θ

D2
− 12μLnV2

D2
2

. (4.4)

The critical condition for wicking in the wide tube is pj being equal to the
capillary pressure behind the meniscus in the wide tube:

pj = pw = pa − 2σ cos θ

D1
. (4.5)

In addition, volume conservation requires V0D0 = V2D2. Eliminating V0

and V2 from the above gives the following critical condition on the liquid
column Lc

n:

Lc
n = L0

(
D1

D2
− 1

)(
D2

D0

)3

. (4.6)

Recall our previous argument that wicking in the wide tube depends
on the viscous friction in the root tube and the dissimilarity between the
two branches. It is no surprise that Lc

n turns out to depend on the length
and diameter of the root tube as well as the size difference between the
two branches. For the conditions in Fig. 4.13, Eq. (4.6) predicts Lc

n = 2.3,
reasonably close to the numerical result of 2.56. Numerical experimentation
with narrower D0 values has confirmed further delays in the wide branch in
agreement with Eq. (4.6). Finally, we note that the above calculation can
be easily generalized to 3D circular tubes, and the formula has the exponent
on (D2/D0) changed from 3 to 4.

4.4.3 Flow reversal due to spatially inhomogeneous

hydrophilicity

Insofar as the Young-Laplace equation gives a capillary pressure in the form
of σ cos θ/D, varying the contact angle θ in a branch is in a way tantamount
to varying the tube size D. Thus, capillary competition between branches
can be controlled by varying θ as well as D. Suppose that in Fig. 4.11, we
make the downstream portion of the wide branch more hydrophilic, with
a smaller contact angle. Then a flow reversal may occur in the narrow
channel, as illustrated in Fig. 4.15.

In this geometry, θ = 60◦ throughout the Y-branch except for the down-
stream portion of the wide branch starting from Lw = 1.25 that features
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Figure 4.15: Flow reversal in the narrow branch when the meniscus in the wide
branch moves onto a more hydrophilic portion with θ = 20◦ at Lw = 1.25. Else-
where θ = 60◦. D0 = 0.6, L0 = 4, D2 = 0.9.

a smaller θ = 20◦. The geometric and physical parameters of the setup
are such that wicking occurs initially only in the narrow branch, and starts
later in the wide channel around t = 110. When the meniscus encounters
the more hydrophilic portion in the wide branch (t = 942), the wicking
suddenly accelerates, causing a flow reversal in the narrow tube. This is
because the elevated flow rate in the root tube depresses the pressure at the
junction so much that it falls below the capillary suction pressure pn in the
narrow tube.

Depending on the physical and geometric parameters, the liquid column
may retreat entirely from the narrow tube, with the interface pinned at the
corner of the bifurcation, or reverse its course again before that. Thereafter,
the situation becomes similar to Fig. 4.13 or Fig. 4.12. Based on the Young-
Laplace equation, one may view the wicking in the more hydrophilic portion
of the wide branch as occurring in a tube with θ = 60◦ but a smaller effective

width De = D1 cos 60
◦/ cos 20◦ = 0.53D1, which is narrower than D2. (The

viscous friction will be different, of course.) Thus, the wicking continues
with dwindling speed in the wide branch until the junction pressure has
again risen above the capillary pressure in the narrow tube to restart wicking
there.

Such flow reversal has been observed experimentally. Litster et al. [48]
reported that in a model GDM for fuel cells, a sudden acceleration in one
flow path, due to breakthrough from the GDM into open space, causes the
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liquid to retreat in a neighboring connected path. The underlying principle is
simple and robust, and suggests how surface properties can be manipulated
to control the flow pattern in porous media. Indeed, the GDM of fuel cells
is often surface-treated in a spatially inhomogeneous way to enhance water
transport [46]. In addition, a more hydrophilic micro-porous layer with finer
pores is often attached to the GDM to create a jump in wettability along the
flow direction [78]. Another potential application for capillary competition
and flow reversal is as a precise switching mechanism in microfluidic devices
[7, 16, 44]. By careful choice of the root and branch sizes it is possible to
design a flow loop in which different branches are impregnated by liquid
at precise moments. The mechanism of capillary competition works for
multiple branches as well, and one may design microfluidic manifolds using
the same principle.

4.5 Summary and conclusions

This work aims for a detailed and rational understanding of two-phase trans-
port through micropores in porous media. Using finite-element computa-
tions, we capture the evolving morphology of the interfaces in geometries
that retain the salient features of real pores, including expansion, contrac-
tion and branching. From a fundamental viewpoint, the most important
findings are the following:

(a) The meniscus undergoes complex deformation during transit through
micropores, governed by the dynamic balance among fluid-solid and
gas-liquid interfacial tensions and viscous friction. Such flow effects
tend to distort the meniscus away from a spherical shape.

(b) The dynamics of the contact line plays a central role. It pins at pro-
truding corners, potentially barring wicking into expansions with too
steep a slope. The contact line negotiates inner corners thanks to the
diffuseness of the interface.

(c) Capillary competition between connected branches depends on the
capillary pressure due to meniscus curvature inside each, and in turn
on the size of the branches and surface wettability. Under suitable
conditions, wicking can be arrested in wider branches in favor of a
narrower one, and the flow may even reverse course when wicking
accelerates in a neighboring path.
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We have hinted at the relevance of these insights to technological ap-
plications, e.g., in proton-membrane exchange fuel cells. Against this back-
ground, however, the work reported here must be seen as a preliminary step.
Real 3D flow through porous media includes many complicating factors that
have not been accounted for, including 3D connectivity, pore size distribu-
tion and tortuosity of the flow path. Nevertheless, this serves as a starting
point for an approach to two-phase flow in porous media that is more ratio-
nal and accurate than the traditional one centered on an empirical relative
permeability.
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Chapter 5

Auto-ejection of Liquid

Drops from Capillary Tubes

5.1 Introduction

Droplet production is a fluid dynamical process of considerable importance
in engineering applications. The rapid development of microfluidic tech-
nology has given new impetus to the study of controlled drop production
in miniaturized devices [31]. A common method for drop production is to
pump liquid through a tube such that a jet issues from the end, and breaks
up due to capillary instability. In microfluidics, this is typically realized
by flow focusing [4, 77], and two regimes, jetting and dripping, have been
identified [2, 84, 99]. Jet breakup can be actively promoted and controlled
by a pressure pulse, as in drop-on-demand devices [91]. In these schemes of
drop formation, the jet is always fed by an externally controlled flow rate.

As mentioned in Chapter 1, Wollman and coworkers have demonstrated
a novel method of drop formation that relies on wicking in a capillary tube
[86, 87, 88]. Two interesting questions can be asked about this process:
what the critical condition is for ejecting one or more drops, and how geo-
metric parameters of the problem affect the ejection. The ejection process is
governed by inertia as well as capillarity, much like for Worthington jets [30]
and cavity jets [5]. Regarding the first question, it seems reasonable to argue
that auto-ejection occurs when the upward momentum of the liquid column
overcomes capillary restriction of the liquid surface. As will be shown later,
viscous friction is negligible under typical experimental conditions. How-
ever, it is difficult to quantify this idea in terms of a Weber number. This is
because both the liquid momentum and the capillary restriction vary in time
as complex functions of several factors, including the dynamic contact angle,
the shape of the nozzle and contact line pinning. In particular, auto-ejection
has never been recorded at the end of a straight tube; the converging nozzle
seems to be necessary [70, 88].

To analyze this intricate process, it seems appropriate to divide it into
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5.1. Introduction

two stages, the acceleration of the meniscus inside the tube, including the
nozzle at the end, and the protrusion and possible breakup of the jet outside
the nozzle. In the following, we will briefly summarize the current state of
knowledge on each phenomenon.

Capillary rise inside straight tubes has been extensively studied before;
see for example [72]. In the absence of gravity, the dynamics is mainly
governed by the interplay among capillary, viscous and inertial forces. At
the initial stage of the rise, viscous forces are negligible and the balance
between capillary and inertial forces yields a constant rise velocity [64]:

vci =

(
2σ cos θd

ρR

) 1

2

, (5.1)

where R is the tube radius, ρ is the liquid density, σ is the surface tension
and θd is the dynamic contact angle. This is known as the capillary-inertial
velocity. As the imbibition proceeds, the liquid column increases in length
and mass. Viscous friction becomes important and the meniscus velocity
starts to decline. Eventually inertia becomes unimportant and the dynamics
enters the Lucas-Washburn regime where capillary pressure balances the
viscous friction [49, 85]. Denoting the liquid viscosity by μ, we can write
the velocity of rise as

vLW =
Rσ cos θd
4μH

, (5.2)

which decreases with the length of the liquid column H. The above are two
limiting behaviors for short and long times. In the auto-ejection process,
however, it is not clear a priori if the meniscus velocity follows either equa-
tion. What is more, these simple models disregard the contact line dynamics.
At high velocities, the dynamic contact angle θd may deviate considerably
from the static one θ [11, 38]. Thus, the capillary force driving the meniscus
changes with its velocity, adding another subtlety to the problem.

As the nozzle is essential for auto-ejection, the meniscus acceleration
inside the nozzle is a key aspect of the process. For inertialess flows, [51]
have investigated the meniscus dynamics inside contractions, including the
transient turning of the interface, its evolving curvature as well as the overall
acceleration of the liquid column. Auto-ejection requires a high incoming
momentum with a large inertia, and the meniscus dynamics inside the nozzle
remains to be studied.

In the second stage of auto-ejection, a jet emanates from the nozzle,
and one or more droplets form through a capillary mechanism known as
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end-pinching [74]. Essentially, capillary retraction at the tip produces a bul-
bous end, whose neck then becomes susceptible to capillary pinch-off. End-
pinching has been studied by linear instability analysis [45], one-dimensional
lubrication model [3], experiments [15, 83] and numerical simulations [36,
56, 67, 82]. These studies have assumed either zero incoming flow at the base
of the jet or a constant flow rate. Work of Gordillo and Gekle [34] appears
to be the only one that allows a transient incoming flow; a linearly decreas-
ing incoming velocity is assumed for Worthington jets. The auto-ejection
problem differs in that the jet is being fed by a time-dependent flow rate
that is governed by the morphology of the jet and the physical conditions
inside the tube and nozzle. Thus, spatial and temporal variations of the
liquid velocity determine the fate of the jet and the number and size of any
droplets that may form. Prior studies have indicated additional geometric
complications related to the shape and wettability of the lip of the nozzle
[2]. How the interface may depin from the inner edge of the lip and move
along its width turns out to have a strong influence on drop pinch-off.

The review of prior work suggests the criterion for auto-ejection to be
the most prominent question. To answer this question, one must study the
meniscus dynamics in the tube and the nozzle, as well as the jet behav-
ior outside. In particular, the criterion should predict how auto-ejection
depends on geometric factors: tube length, contraction angle, and even the
width of the lip at the exit of the nozzle. We undertake such an investigation
using numerical simulations that captures detailed features of the contact
line dynamics.

5.2 Problem setup

The axisymmetric computational domain consists of a capillary tube con-
nected to a liquid reservoir at the bottom and ambient air at the top
(Fig. 5.1). In most of the simulations the tube has a contracting nozzle
at its upper end. The contraction angle is α and the radius shrinks from the
tube radius R to Rn at the end of the nozzle. The total length of the tube,
including the nozzle, is L. Thus, the flow geometry is completely specified
by three dimensionless quantities: the contraction angle α, the contraction
ratio C = Rn/R and the aspect ratio L/R. Initially the air-liquid interface
is assumed flat at a small distance L0 inside the tube. For the most part, L0

represents the capillary climb under normal gravity before the drop-tower
experiment commences [88]. There is also a numerical incentive for placing
the interface inside the tube to avoid complications at the corner.
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Figure 5.1: Schematic of meridian plane of the axisymmetric computational do-
main.

The liquid and air reservoirs are sufficiently large that their boundaries
have no effect on dynamics of the meniscus, liquid jet and drops. Based
on numerical experiments, we have chosen the liquid reservoir to be 3R in
radius and 4R in height. On its bottom and side walls, we impose zero nor-
mal stress and zero tangential velocity as boundary conditions. Its top wall
is taken to have zero shear stress and zero normal velocity. This boundary
condition avoids the computational cost of tracking the slight deformation
of the liquid-air interface outside the tube. [72] have shown that this sim-
plification has little effect on the meniscus motion, and we have reached the
same conclusion by benchmarking our simulation of capillary rise against
experiments. The air reservoir on top is 4Rn in radius, and its height ranges
from 12Rn to 30Rn depending on the length of the ligament in different
simulations. Zero stress boundary conditions are used on the top, bottom
and side of the air reservoir. On the sloping walls of the nozzle, no-slip
conditions are imposed. The upper surface of the nozzle (or the “lip”) is
a horizontal ring of width Wl. For most of the simulations, this surface is
assigned a contact angle θl = 180◦ to ensure that the contact line remains
pinned at the inner corner of the lip. Smaller θl values are used in §5.4.4 to
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explore depinning of the interface from the sharp corner.
In addition to the geometric ratios, the problem is characterized by four

dimensionless groups based on material properties: the liquid-air density
ratio ρ/ρa and viscosity ratio μ/μa, the Ohnesorge number Oh = μ/

√
ρRσ,

and the static contact angle θ inside the tube and nozzle. On the inner
surface of the tube, we impose the no-slip condition, and model the motion
of the three-phase contact line by Cahn-Hilliard diffusion to be discussed
below. Gravity is neglected in all presented results except in Fig. 5.10.
This is because most of the experimental data have been collected under
microgravity, and gravity tends to inhibit auto-ejection. We will fix these
parameters: θ = 0◦ (perfect wetting), ρ/ρa = 200 and μ/μa = 100. In
comparison with the silicone oils used in the experiments [88], the density
ratio is too low but the viscosity ratio is within the range of experimental
values. In view of the numerical difficulties in computing larger density
ratios, we are satisfied that the air has little influence on the liquid jet and
drops [28]. We will vary the three geometric ratios C, α and L/R along with
the Ohnesorge number Oh. We will use R as the characteristic length, the
capillary-inertial time tci =

√
ρR3/σ as the characteristic time, and R/tci

as the characteristic velocity, and present the results in dimensionless form.

5.3 Physical model and numerical algorithm

From a computational viewpoint, the auto-ejection process is difficult to
simulate as the interface moves, deforms and eventually breaks up, and the
process features a prominent role for the moving contact line.

As discussed in Chapter 2, our diffuse-interface model leaves us with
three new model parameters, say ε, γ and Γ. We follow the procedure
recommended by [93, 94] to choose their values. For smallest value of ε
which is computationally affordable, γ is chosen to ensure that the sharp-
interface limit is achieved. Then value for the wall relaxation parameter Γ
is determined by fitting an experimental datum.

To implement this procedure, we make the parameters dimensionless us-
ing a characteristic length lc: Cn = ε/lc, S = ld/lc, and Π = 1/(Γμlc). Cn
is commonly known as the Cahn number [100]. One needs to be careful in
choosing lc. Accurate simulation using the diffuse-interface model requires
that the interfacial thickness ε and the diffusion length ld both be much
smaller than the global length scale [93]. As the meniscus advances through
the nozzle, the effective global length scale is shrinking. We find it neces-
sary to reduce ε and ld accordingly to maintain accuracy of the simulation.
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Figure 5.2: With a wall relaxation parameter Π = 0.4, the simulation approximates
experimental results closely in terms of (a) the position of the center of the meniscus,
and (b) the centerline velocity of the meniscus. The arrows indicate the moment
when the contact line reaches the start of the nozzle, and the curves end when a drop
pinches off, indicated by a filled square. The geometric and physical parameters
match the experiment of [86]: Oh = 0.011, L = 5.98, C = 0.493, α = 23.8◦ and
θ = 0◦. In addition, S = 8× 10−3 and Cn = 0.01.

Therefore, when the contact line is in the straight portion of the tube, we
take lc = R. When it is in the nozzle, we take lc to be the local radius of
the nozzle at the contact line. After the contact line reaches the lip, we fix
lc = Rn. Thus, with fixed values of Cn, S and Π, the microscopic lengths ε
and ld shrink inside the nozzle as required.

We determine the model parameters by the experiment of [87] on cap-
illary ejection. The geometric and material parameters are matched such
that Oh = 0.011, L = 5.98, C = 0.493, α = 23.8◦. The static contact angle
is 0◦ inside the tube and 40◦ degrees outside. The initial height of the liquid
column L0 = 0.08L matches the experiment condition at the start. Follow-
ing [94], we choose a small Cahn number Cn = 10−2 that is comfortably
computable, and a corresponding S = 8×10−3. Then we found that Π = 0.4
gives the closest agreement with the experimental results. This is illustrated
in Fig. 5.2 in terms of the position and velocity of the center of the meniscus.
A notable feature of this simulation is the evolution of the dynamic contact
angle θd. The wall energy relaxation in equation (2.12) allows θd to deviate
from θ [94]. Fig. 5.3 compares our computed θd for capillary rise in a straight
tube with two experimental correlations. In our computation, the meniscus
rises with an essentially constant speed V , with which we define a capillary
number Ca = μV/σ. The correlation of Ref. [11] is for solid strips drawn
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Figure 5.3: Comparison of the dynamic contact angle θd in a straight tube between
our numerical simulation and two experimental correlations due to [41] and [11].
The model parameters are the same as in Fig. 5.2.

into a pool of liquid, while that of Ref. [41] is based on the experiments
of Hoffman [38] on pushing non-polar liquids through glass capillary tubes.
The numerical and experimental results all indicate an increase of θd with
Ca, but the former exhibits a somewhat steeper slope than the experiments.
One reason for the difference is that the Cahn-Hilliard model is phenomeno-
logical, and the mechanism of wall energy relaxation cannot be expected to
capture quantitatively the dynamic contact angle. Moreover, in our simula-
tions θd is measured from the slope of the interface where it intersects the
wall. In the experiments, it is estimated from fitting a circular arc to the
central portion of the meniscus. This introduces some discrepancy as well.

5.4 Results

5.4.1 Meniscus dynamics

We begin with an overview of the dynamics of the meniscus as it advances
through the straight portion of the tube and the contracting nozzle, and
forms a jet outside the nozzle. For this purpose we select a typical set of
physical and geometric parameters: Oh = 0.01, L = 5, C = 0.5, α = 30◦

and θ = 0◦. To describe the motion and deformation of the meniscus, we
track the contact line velocity along the wall Vw and the velocity at the
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center of the meniscus Vc in time.
Fig. 5.4(a) plots Vw and Vc, as well as the average velocity across the

nozzle exit Vn, as functions of time. Before the liquid meniscus arrives at the
nozzle exit, Vn is computed from the velocity profile of air. From an initially
flat shape (Fig. 5.1), the meniscus experiences an acceleration and adjust-
ment phase at the start of the imbibition. The contact line immediately
moves upward at a roughly constant speed, while the center of the meniscus
oscillates several times before settling into a steady shape and speed of rise
(point a in Fig. 5.4). This marks the start of the capillary-inertial regime.
The meniscus velocity Vw = Vc = 1.09 agrees closely with the theoretical
result vci = 1.07 (cf. equation (5.1)). This steady rise persists till point b,
when the contact line arrives at the start of the nozzle. It is remarkable that
the meniscus velocity stays roughly constant so far, showing little decrease
due to viscous dissipation. This can be rationalized by an estimation of the
viscous effect in a straight tube. By balancing the capillary, viscous and in-
ertial forces, Bosanquet [8] derived an analytical solution for the rise of the
meniscus. For short times (Oh · t � 1), this solution predicts the following
variation of the meniscus velocity along the tube:

1

Vc

dVc

dHc
= 2.4 Oh, (5.3)

where Vc and Hc are dimensionless. Our numerical simulation verifies the
proportionality to Oh, but with a milder slope of 1.8. For Oh = 0.01 and
an axial distance of about 2.5 for the capillary-inertial regime in Fig. 5.4,
therefore, viscous reduction of the meniscus velocity Vc is only about 5%. In
fact, viscosity never plays an appreciable role throughout the entire process,
and will be disregarded for the rest of the chapter. In the experiments, Oh
is typically on the order of 0.01 [88], and viscosity is generally immaterial.

Once the contact line reaches the nozzle, the interface immediately ro-
tates at the contact line so as to adjust its orientation relative to the tapering
wall of the nozzle. This rotation pushes the central portion of the meniscus
backward by capillarity, thus reducing the centerline velocity Vc to a min-
imum at point c in Fig. 5.4. Afterwards, the meniscus accelerates rapidly
upward, mainly because of the upward momentum of the liquid column be-
ing channeled through a narrowing conduit. Capillarity also contributes to
the acceleration since the meniscus is trailing the spherical shape at the
moment, having been delayed by the rotation of the interface from b to c.
This is illustrated in the snapshots of the interfaces in Fig. 5.4. This stage
continues until point d, when the upward acceleration has moved the cen-
tral portion of the meniscus ahead of the spherical surface dictated by the
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Figure 5.4: (a) Evolution of the contact line velocity Vw, meniscus center velocity
Vc, and average velocity at nozzle exit Vn in time. (b) Evolution of the dynamic
contact angle θd. (c) Snapshots showing the position and shape of the meniscus
at significant moments marked in the velocity plot. Oh = 0.01, θ = 0◦, L = 5,
C = 0.5 and α = 30◦.

local dynamic contact angle. Thus capillary forces now pull the meniscus
backward, causing the reduction in Vc until point e, when the contact line
reaches the lip of the exit. Note that with the contact line inside the nozzle,
the contact line speed Vw is still measured by the axial position of the con-
tact line, not by the distance traveled along the wall. Fig. 5.4(b) shows that
from point a till point e, the dynamic contact angle θd closely tracks the
evolution of the contact line speed Vw, in accordance with the observations
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in Fig. 5.3.
At point e, the contact line becomes pinned at the sharp inner corner of

the lip according to Gibb’s criterion [27, e.g.]. Constraining the upward flow
near the nozzle wall results in a high pressure at the nozzle exit that thrusts
the central portion of the meniscus out in the form of a jet (point f). As the
jet is ejected and lengthens against surface tension, its tip velocity declines
toward point g, when capillary necking commences on the jet, eventually
leading to a droplet pinching off at the tip (point h).

It is interesting to contrast the behavior of the average velocity at the
nozzle, Vn, with that of the meniscus velocity Vc. Note that because of
incompressibility, Vn gives the average liquid velocity in the tube (subject to
a factor C2 due to area contraction) even before the meniscus reaches the lip
of the nozzle. During the initial acceleration of the meniscus, prior to point
a, Vn monotonically increases to a constant level that corresponds to the
capillary-inertial regime. It starts to decline near point d, when capillarity
starts to oppose the upward motion of the liquid. The decline continues
monotonically even as the jet rapidly issues from the nozzle. This can be
rationalized from how the interfacial tension, acting on the pinned contact
line, continually depletes the upward momentum of the liquid column.

The decline of Vn(t) in time after the jet formation (roughly from point
f onward) can be quantified from an energy argument. Consider a control
volume that encloses the inside of the tube and the nozzle, as well as the
liquid reservoir. The kinetic energy of the liquid inside, E, decreases because
of the energy eflux at the nozzle as well as the pressure work there:

dE

dt
= −1

2
πR2

nρV
3
n − pnπR

2
nVn, (5.4)

where pn is the liquid pressure at the exit of the nozzle. Note that the
pressure in the reservoir equal that in the ambient, and has been put to zero,
and that the incoming energy flux has been neglected as the velocity at the
boundary the reservoir is much smaller than that inside the capillary tube. E
is the sum of the kinetic energy in the tube, the nozzle and the reservoir. To
estimate the fluid velocity inside the nozzle, we make a one-dimensional plug
flow approximation by assuming that the liquid velocity is axial, and changes
from Vn at the nozzle exit to C2Vn inside the capillary tube. Similarly, the
flow in the reservoir is assumed to be radial and uniform on spherical surfaces
centered at the entry of the tube, with a velocity that can be related to Vn

through mass conservation [76]. Thus, E can be expressed in terms of Vn:
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Figure 5.5: Temporal variation of the instantaneous velocity Vn(t) at the nozzle
exit, starting from point f at tf = 4.85. L = 5, Oh = 0.01, α = 30◦, C = 0.5, θ = 0,
Le = 1.68, We = 7.0.

E ≈ π
2ρR

2
nLeV

2
n , where the effective length

Le = RC
(1− C)2

tanα
+

(
L+

7

6
R

)
C2 (5.5)

is a purely geometric parameter. To estimate the exit pressure pn, we
note that the capillary pressure decreases from 2σ/Rn to σ/Rn as the liquid
interface inflates from a semi-spherical shape to a cylinder with radius Rn.
Taking pn = 2σ/Rn, plugging E into equation (5.4) and integrating in time,
we obtain

Vn(t) = u tan

[
−u(t− tf )

2Le
+ tan−1

(
Vf

u

)]
= Vf

1− u
Vf

tan
[
u(t−tf )
2Le

]
1 +

Vf

u tan
[
u(t−tf )
2Le

] , (5.6)

where u = ( 2σ
ρRn

)1/2, tf is the starting time for the integration, at point f ,
when the average velocity across the nozzle exit is Vf = Vn(tf ).

Fig. 5.5 compares Vn(t) predicted from the simple one-dimensional model
and the numerical solution. At the start, the model slightly underestimates
the rate of deceleration. Toward the end, however, it overestimates it as the
capillary pressure at the exit falls below 2σ/Rn and approaches σ/Rn. In
simulations the velocity profile is not a perfect plug flow. Such deviations
from plug flow, have compensated for the overestimation of the capillary
pressure.
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But over the course of the deceleration of the jet, the simple model
captures reasonably well the dynamics of the jet velocity. In particular,
note how Le dictates the rate of decrease of Vn in time; a larger Le implies
a longer liquid column moving with a greater kinetic energy. Thus, the
deceleration will be slower, and a longer jet will likely be produced, in favor
of auto-ejection. This point will be revisited in the next subsection. Finally,
we have also confirmed that for the small Oh tested, viscous dissipation
makes a very small contribution to the energy balance of equation (5.4),
consistent with previous arguments on the unimportance of viscosity in the
process.

5.4.2 Ejection criterion

Naturally, we think of a Weber number to represent the idea that the upward
momentum must overcome the capillary restriction. However, there are two
difficulties in constructing such a Weber number. First, there is no obvious
characteristic velocity. The meniscus velocity is itself determined by the
wicking inside the tube, and in turn by the contact angle and geometry
(especially length) of the tube and nozzle. It also changes in time and
in space. Wollman et al. [88] suggested an instantaneous Weber number

defined using the liquid velocity at the exit of the nozzle when the meniscus
first reaches that point. This corresponds to our point e in Fig. 5.4. Let us
take this point as the nominal start of the jet-formation process t∗ = 0, with
t∗ = t − te measuring the time from this point onward. Using the velocity
Ve = Vn(te) at this point, we can define an instantaneous Weber number:

We =
ρV 2

e Rn

σ
. (5.7)

Second, the instantaneous velocity Ve or We does not completely deter-
mine the fate of the jet and breakup. Fig. 5.6(a) shows that We does not
delineate sharply the boundaries separating no-pinchoff and pinchoff, nor
among different number of droplets produced. This inadequacy is not hard
to appreciate. Roughly speaking, the eventual length of the jet is deter-
mined by converting the kinetic energy of the entire liquid column at t∗ = 0
into surface energy. Thus, the length of the liquid column should matter
as well. Fig. 5.6(b) shows that under conditions that are otherwise iden-
tical to Fig. 5.4, a shorter capillary tube (L = 1.5) produces a short jet
and no breakup, whereas the longer tube (L = 5) of Fig. 5.4 does lead to
auto-ejection. The Weber number We = 7 in both cases. Since we have
previously introduced an effective tube length Le (equation 5.5), it seems
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Figure 5.6: (a) Number of drops produced as a function of We. The wide overlaps
between different outcomes indicate that We does not provide an adequate crite-
rion for auto-ejection of droplets. These data cover most of the parameter ranges
studied: 0.005 ≤ Oh ≤ 0.02, 0.25 ≤ C ≤ 1, 1 ≤ L ≤ 10 and 0 ≤ α ≤ 40◦. (b)
A short tube (L = 1.5) fails to produce drop ejections under identical conditions
to Fig. 5.4, where a longer tube (L = 5) does produce ejection. The jet reaches
maximum length at t∗ = 1.07 and then retracts.

natural to use it to account for the total amount of kinetic energy prior to jet
formation. Fig. 5.7 plots the outcome of jet breakup against two parameters,
We and Le, where Le has been made dimensionless by R. The overlaps in
the We plot (Fig. 5.6a) have now been sorted out by Le. This plot suggests
the following criterion for predicting drop formation in auto-ejection:

N =

⎧⎨
⎩

0 if We < 3.4f(Le)
1 if 3f(Le) < We < 5.5f(Le)
2 if We > 5.5f(Le)

(5.8)

where f(Le) = 1+0.8/Le. For the range of parameters tested here, ejection
of 3 and more droplets has been observed mainly for large contraction angles,
which produce a different flow regime to be considered in §5.4.3. Thus we
do not include these cases here.

A few remarks about this criterion seem in order. First, the criterion is
general as it encompasses almost the entire parameter ranges explored in our
simulations. The material and geometric parameters of the problem have
been included through We and Le. The only exception is large contraction
angles α that induce new flow patterns. This is to be dealt with separately
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Figure 5.7: (a) Criterion for self-ejection: number of droplets plotted as a func-
tion of We and the effective length Le of equation (5.5). The three outcomes are
demarcated by We = 3.4(1+ 0.8/Le and We = 5.5(1+ 0.8/Le), shown as the solid
and dashed curves, respectively. (b) The gray band, representing 5 ≤ Lj/Rn ≤ 7
for the jet length of equation (5.9), indicates a rough threshold for auto-ejection.

in §5.4.3. Second, the auto-ejection criterion is in terms of We and Le, and
does no explicitly account for the jet dynamics outside the nozzle, includ-
ing the process of end-pinching. This is because the later dynamics are in
principle dictated by these two control parameters. More specifically, We
indicates the instantaneous upward momentum of the liquid column before
a jet is produced, and Le governs how that momentum decays in time (cf.
eqution 5.6). Taken together, they determine the ultimate length of the jet
that can be produced, which in turn determines whether end-pinching oc-
curs and how many drops result. Equating the kinetic energy and meniscus
surface energy at t∗ = 0 to the surface energy of a cylindrical jet of radius
Rn,

π
2R

2
nρLeV

2
e + 2πR2

nσ = 2πRnLjσ, we estimate the eventual length of
the jet Lj once the kinetic energy has been completely converted to surface
energy:

Lj =
We

4
Le +Rn. (5.9)

Now the numerical results of Fig. 5.7(a) can be reinterpreted in terms of Lj

in Fig. 5.7(b). Roughly speaking, the transition from non-ejection to ejection
occurs over the range of 5 ≤ Lj/Rn ≤ 7. This coincides with the critical jet
length that is determined for end-pinching on a initially stationary filament,
Lj/Rn = 6 ± 1 [14]. Thus Lj provides a connection between auto-ejection,
in which the mass flux at the nozzle exit varies in time, and end-pinching
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Figure 5.8: (a) Pressure field inside nozzles with α = 45◦ and α = 30◦ when jet
starts protruding from the nozzle exit. There is a two-dimensional pressure filed
with a high pressure region around the centreline for the nozzle with α = 45◦. (b)
Comparison of the axial velocity profile at the nozzle exit between α = 30◦ and
α = 45◦.

on a stationary filament where that flux is nil. The correspondence is not
perfect, of course, since our jet shape can differ considerably from a perfect
cylinder. At small Weber numbers, the strong capillary force makes the
shape of the jet more spherical and hence increases the critical value of Lj .
At high Weber numbers, the decaying velocity field at the exit produces
a conical jet shape with a tapering tip. This amounts to an effectively
thinner jet diameter, and consequently a smaller critical aspect ratio Lj for
breakup. Still, the criterion of equation (5.8) is somewhat unsatisfactory
in that it is expressed in terms of We based on the instantaneous velocity
Ve, which is not one of the material or geometric parameters but a complex
function of them. We have found no straightforward way to model Ve. This
is because the acceleration of the meniscus in the nozzle depends on the
dynamic contact angle θd, which depends on the meniscus velocity in turn
(cf. Fig. 5.3). Thus, we have to content ourselves for the moment with an
ejection criterion in terms of an instantaneous Weber number.

The criterion appears consistent with the experimental data of [88].
These data were presented in terms of a Weber number at the exit, sim-
ilar to our We except that the local velocity was estimated using scaling
arguments. Similar to our Fig. 5.6, different outcomes overlap considerably
in terms of We values. Non-ejection was observed for We from around 2
up to nearly 20. The ejection of 1 or 2 droplets occurred for 6 < We < 20,
while three or more drops were seen for We above 10. Since the geometric
parameters were not reported for the individual data points, we are unable
to compute Le and use it to untangle the data as we have done in Fig. 5.7.
Thus, we can only observe that the experimental data suggest threshold We
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Figure 5.9: The regime of rapid ejection at contraction angle α = 45◦, other
conditions being identical to those in Fig. 5.4. (a) t∗ = 0; (b) ejection of the first
drop at t∗ = 0.15; (c) ejection of the second drop at t∗ = 0.2; (d) ejection of the
third drop at t∗ = 2.37. (e) retraction of the filament.

values that are consistent with our results in Fig. 5.7.
Finally, the auto-ejection criterion makes an interesting prediction about

the possibility of auto-ejection in a straight capillary tube. The maximum
meniscus velocity in a straight capillary tube is the capillary-inertial velocity
vci (equation 5.1), which yields a Weber number We = 2cos θ ≤ 2. This
is smaller than the minimum We for auto-ejection We = 3.4f(Le) > 3.4.
Thus, auto-ejection cannot occur in straight tubes, as has been suggested
by empirical observations [70, 88].

5.4.3 Rapid ejection and air entrapment

This subsection deals with two new flow regimes encountered at large values
of the contraction angle α. In constructing the pinch-off criterion, we have
encoded all geometric effects into Le. The contraction induces an inward
radial flow, one consequence of which is to accelerate the average velocity
of the liquid and increase the total kinetic energy. Using a one-dimensional
plug flow assumption, we have represented the acceleration effect in Le. For
larger contraction angles, however, the two-dimensional nature of the flow
becomes important, and the radial flow tends to modify the meniscus shape
and the dynamic contact angle, thus producing new regimes of interfacial
breakup. As a baseline, we take the simulation depicted in Fig. 5.4 at
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contraction angle α = 30◦. Note that when the contact line reaches the exit
(point e), the meniscus as a whole arrives at the exit as well, with a more or
less flat interface and uniform velocity profile. Subsequently, a more or less
cylindrical jet is formed (point g), which grows to a maximum length around
5Rn before end-pinching produces a single large droplet. Considering this
baseline scenario as “regular ejection”, we encounter two new regimes at
higher α, termed rapid ejection and air entrapment.

Rapid ejection is illustrated in Fig. 5.9 for α = 45◦. The stronger con-
traction leads to faster acceleration of the contact line speed, as well as a
larger and increasing contact angle. Since capillarity cannot keep up with
the rapid contact line movement, the meniscus deviates markedly from a
spherical shape, and a deep depression forms in the center (Fig. 5.9(a),
t∗ = 0). Afterwards, the strong radial flow converges toward the center,
while surface tension lifts the meniscus rapidly. The pressure field inside the
nozzle slightly after jet’s protrusion from nozzle exit is shown in Fig. 5.8(a).
These two effects conspire to produce a highly non-uniform velocity profile
when the meniscus as a whole reaches the exit. As shown in Fig. 5.8(b), the
centerline velocity is much higher than the average velocity Vn for α = 45◦,
as compared with the baseline case of α = 30◦. As a result, the first drop is
ejected quickly at t∗ = 0.15, with drop radius r = 0.07 and velocity v = 14.8.
This is followed by a second small drop (r = 0.046, v = 6.9) at t∗ = 0.20,
and a much larger third one (r = 0.54, v = 0.06) after a much longer interval
at t∗ = 2.37. In contrast, the baseline case has its first and only ejection at
t∗ = 1.66, producing a much larger and slower drop (r = 0.61, v = 1.02).
After the third drop, the jet retracts. In view of the rapid ejection of high-
speed droplets, higher α may help induce auto-ejection under normal-gravity
conditions. Indeed, the ancillary video of [87] depicts auto-ejection under
normal gravity using a large contraction angle α = 50◦. We have carried
out a limited exploration of such scenarios, and an example is depicted in
Fig. 5.10 for Bond number Bo = ρR2g/σ = 0.4 at α = 50◦. After the ejec-
tion of one droplet, the jet grows a bulb at the tip while forming a neck at
the base (t∗ = 0.42). Shortly afterwards, the neck pinches in and the bulb
detaches, producing two drops of disparate size (t∗ = 0.5). Under the same
conditions, contraction angles below 40◦ do not produce auto-ejection at all.
It is thanks to the stronger radial flow that a thin jet forms and breaks up
into droplets.

Air entrapment occurs at an even larger contraction angle of α = 55◦

(Fig. 5.11). At t∗ = 0, the interface forms a depression as in the rapid-
ejection regime. Subsequently, however, the radial flow is so strong as to
cause the depression to narrow and deepen, producing an air finger. At
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Figure 5.10: Auto-ejection under gravity for large contraction angle. Bo = 0.4,
Oh = 0.01, α = 50◦, C = 0.25, L = 2. After ejecting a single droplet at t∗ = 0.34,
the jet pinches off at its base (t∗ = 0.47), and later breaks up into two more drops
(t∗ = 0.5).

t∗ = 0.079, the neck of the air finger pinches off, entrapping a bubble in
the liquid. Given the relatively short length of the air finger, the pinch-
off is dynamically driven by the inward liquid flow rather than interfacial
tension as in Rayleigh-Plateau instability. After this, the strong momentum
of the liquid continues to propel the jet forward, much like the later stage
of Fig. 5.9. This leads to the ejection of a large drop (r = 0.49, v = 0.71) at
t∗ = 1.68. Eventually the jet retracts. Experimentally, [87] demonstrated
the possibility of the air entrapment regime under normal gravity at α ≈ 50◦

and Oh = 0.005. This provides direct evidence for this unusual flow regime.
To conclude the investigation of the contraction angle α, we note that auto-
ejection favors an intermediate range of α values. Too gentle a contraction
does not provide sufficient flow focusing to produce a long jet. Too abrupt
a contraction stifles the upward momentum of the liquid column, again
suppressing drop ejection.

5.4.4 Contact line depinning at nozzle lip

So far, we have assumed the nozzle exit to be a horizontal surface of widthWl

that is completely non-wettable by the liquid (θl = 180◦). Thus, the contact
line is pinned at the inner corner of the lip. Under certain experimental
conditions, the contact line has been observed to depin and move outward
[87]. This effectively broadens the base of the jet and changes the outcome
of drop ejection [2]. This has motivated us to relax the pinning condition
by imposing a smaller θl so that the effect of contact line depinning can be
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Figure 5.11: Air entrapment at contraction angle α = 55◦, other conditions being
identical to those in Fig. 5.4. (a) t∗ = 0; (b) formation of air finger at t∗ = 0.069;
(c) pinch-off of the air bubble at t∗ = 0.079; (d) jet continues out of the nozzle (e)
droplet pinch-off at t∗ = 1.684 after bubble entrapment. Air bubble disappears due
to diffusion of numerical (f ) filament retraction.

investigated.
Fig. 5.12 depicts the effect of contact line depinning by tracking the

position of the centreline of interface in time for several values of θl. As
the jet emanates from the nozzle, the interfacial slope never exceeds 90◦

relative to the upper surface of the lip. Thus, for θl ≥ 90◦, the contact line
remains pinned at the inner corner of the lip and θl has no effect. These cases
are represented by the θl = 90◦ curve in Fig. 5.12(a). The geometric and
physical conditions for these runs correspond to We = 6.9 and Le = 1.46,
and thus auto-ejection of a single drop occurs according to Fig. 5.7. As θl
reduces to 80◦ and 70◦, the contact line depins and moves outward. This
hampers the lengthening of the jet and delays the pinch-off. The drop
produced is also somewhat larger. At the point of pinch-off, the contact
line is somewhere on the flat part of the upper surface, not having reached
the outer corner. For θl ≤ 60◦, the length of the jet is further stunted and
drop ejection is completely suppressed. For these cases, the contact line
reaches the outer edge of the lip and stays pinned there, at least until the
jet retracts.

Fig. 5.12(b) analyzes the suppression of drop ejection for θl = 45◦. De-
pinning of the contact line takes place at point a when the interface makes an
angle of 45◦ with respect to the upper surface of the exit. After de-pinning,
the contact line moves radially outward, broadening the base of the jet. This
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Figure 5.12: (a) Effect of contact line depinning on the growth of the jet and drop
ejection. The ordinate is the length of the jet measured from the exit of the nozzle,
and the abscissa is time starting from the moment of the contact line reaching the
inner corner of the lip. Drop pinch-off is indicated by a round dot. The width of
the upper surface is fixed at Wl = 0.25Rn, and θl is the contact angle on the upper
surface. The other parameters of the simulation are C = 0.5, α = 30◦, L = 4, θ = 0
(on the inner surface) and Oh = 0.01. (b) Snapshots of the interface for θl = 45◦

at points marked on the curve.

reduces the upward liquid velocity through mass conservation. Moreover,
the curvature of the meniscus is moderated (point b), resulting in a lower
capillary pressure at the base of the jet. Both effects conspire to restrain the
lengthening of the jet. The contact line reaches the outer corner of the lip at
point c, and the jet length peaks at point d some time later. This maximum
jet length, at 2R = 4Rn (Fig. 5.12a), is about 25% shorter than the case
without contact line depinning (θl ≥ 90◦). It is too short for drop ejection
(cf. Fig. 5.7b). Thus, the jet retracts and flattens afterwards, driving the
contact line past the outer corner, producing the nearly spherical interface
of point e.

Insofar as the contact line becomes pinned at the outer corner of the
lip during the growth phase of the jet, the width Wl of the lip should also
affect the jet behavior. For a fixed θl = 45◦, we have examined the effect
of increasing Wl from 0.05Rn to 2Rn. As expected, a wider lip broadens
the base of the jet, inhibits the lengthening of the jet, and suppresses the
potential for drop ejection.
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5.5 Summary and conclusions

As far as we know, this study represents the first numerical computation of
the process of auto-ejection. In interpreting the numerical results, we have
also developed simple models to describe various aspects of the process.
The parameter range captures most of the experimental conditions, and we
reproduce all the salient features of the experimental observations. The
main results of the study can be summarized as follows.

(a) The meniscus quickly attains the capillary-inertial regime in the straight
tube, and advances with a mostly constant velocity until it enters the
contraction in the nozzle, where it accelerates. The dynamic contact
angle increases with the meniscus speed. Viscosity has a negligible
role in the entire process.

(b) With the contact line pinned at the inner corner of the exit, a jet issues
into the ambient air. The lengthening of the jet is accompanied by
deceleration of the liquid column inside the tube, with kinetic energy
being converted into surface energy. An energy balance model captures
the temporal decay of the liquid velocity at the nozzle quite accurately.
This rate of decay is dictated by an effective length that embodies the
geometric features of of the tube-nozzle combination.

(c) A two-parameter criterion for auto-ejection of droplets is developed
using the instantaneous Weber number when the contact first arrives
at the nozzle exit and the effective length. Together they determine
the length of the jet that may be produced when the available kinetic
energy is converted into surface energy. This critical length agrees with
prior studies of end-pinching on an initially stationary filament, thus
demonstrating our criterion as being rooted in essentially the same
hydrodynamics.

(d) With increasing contraction angle, we predict new regimes of rapid
ejection of multiple drops and air bubble entrapment. When the con-
traction is too mild, auto-ejection is suppressed. In particular, auto-
ejection is impossible in a straight tube.

(e) To the extent that comparisons can be made, the numerical results
agree with experimental observations.

One limitation of the study is that the criterion for auto-ejection is given
in terms of an instantaneous Weber number, rather than in terms of the ma-
terial and geometric parameters. We attempted to model the instantaneous
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velocity at the nozzle in terms of these parameters, with little success. As
compared with other microfluidic drop-forming procedures, auto-ejection
is unique in that it involves no external force or flux, and is entirely au-
tonomous. From this standpoint, it will be desirable to devote future work
to refining the current criterion into one expressed in the geometric and
material parameters.
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Chapter 6

Conclusions and

Recommendations

In this thesis, the Cahn-Hilliard diffuse-interface model is used to numeri-
cally study three interfacial dynamic problems. The diffusive interface re-
moves the contact line singularity and singular topological events during
the pinch-off and coalescence. In addition, the finite thickness of the inter-
face with the energy-based formulation of the Cahn-Hilliard model enables
us to capture the contact line dynamics and interfacial tension more natu-
rally. In the following, a summary of key findings for each studied problem
is presented. Then the significance and limitations are discussed. Finally
recommendation for future works are made.

6.1 Summary of key findings

6.1.1 Capillary breakup of a liquid torus

The capillary breakup of a Newtonian liquid torus suspended in a surround-
ing Newtonian liquid is studied. Starting from an externally imposed sinu-
soidal disturbance, the initial stage of the growth is linear and the additional
curvature of the torus around its axis inhibits the growth of the imposed
wavelength compared to its counterpart on the straight filament. The con-
traction of the torus toward its center amplifies the disturbance growth by
producing an external flow field.

The final shape of the torus breakup and the number of produced droplets
are an outcome of the competition between the contraction of the torus and
capillary instability. This competition is controlled by three parameters
which are torus-to-medium viscosity ratio, torus aspect ratio, and initial
amplitude of the disturbance. A large aspect ratio for the torus lengthens
the shrinkage time. In addition, a large aspect ratio increases the distur-
bance growth by reducing the axial curvature. Therefore a large aspect
ratio favors the capillary pinch-off mechanism. The torus-to-medium vis-
cosity ratio is important for both processes. Higher viscosity ratios make
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the shrinkage faster and increase the growth rate of the disturbance. The
dependence of shrinkage on viscosity ratio is stronger. Therefore, increasing
the viscosity ratio favors the shrinkage mechanism. Increasing the initial
amplitude of the disturbance shortens the time for the capillary pinch-off.

6.1.2 Wicking flow through microchannels

Wicking flow is a key mechanism for flow movement inside the complex
micropore geometries of porous media. The dynamics of a meniscus in a
pore is dependent on its shape, connectivity with other pores, liquid-solid,
liquid-air, and solid-air interfacial tensions, and flow properties. For inertia-
less flows, an axisymmetric contraction, expansion and their combination
are used to study the effect of pore shape on the meniscus dynamics. It
is shown that the interface moves through a contraction or an expansion
through three main steps: shape adjustment at inward corners, movement
of spherical meniscus, and pinning at outward corners. At inward corners,
first the contact line moves in and rotates. The tendency of the meniscus to
keep a spherical profile pushes the center of the meniscus downward. The
diffusive nature of the interface enables the meniscus to negotiate the large
contraction angles at inward corners, which presents a singularity for a sharp
interface formulation. Then the meniscus moves in with nearly a spherical
shape until it reaches the end of the contraction. At outward corners, the
contact line gets pinned and the meniscus center moves up to minimize its
surface energy until it makes enough angle with the next section to depin and
move forward. For large contraction angles, dynamics of meniscus at inward
corner can change the passage time considerably. In expansion geometries,
due to a usually slow meniscus movement, neglecting the meniscus dynamic
at the corner does not affect the passage time considerably.

A simple 2D Y-branching geometry is used to study the connectivity of
pores. The flow trajectory depends on the capillary forces in the branches
as well as viscous dissipation inside the root channel. Counter-intuitively,
flow moves into the narrower channels if there is large dissipation inside the
root conduit.

6.1.3 Auto-ejection of liquid jets and drops from capillary

tubes

Auto-ejection is studied for low Ohnesorge number liquids which perfectly
wet the solid in a zero-gravity environment with negligible surrounding air
effects.
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The dynamics of the meniscus inside the tube and the nozzle are studied.
It is shown that the effect of viscosity is negligible and the meniscus dynamics
can be understood qualitatively by assuming plug flow. Inside the nozzle,
the interaction of accelerating flow field and contact line dynamics produces
complex meniscus dynamics which is carefully analyzed.

A two-parameter ejection criterion is developed. It is shown that the
ejection criterion depends on the momentum of the ejecting liquid and its
decay rate. The momentum of the ejecting liquid is quantified in terms of
the Weber number at the nozzle exit when the meniscus first gets pinned
there. Its decay rate is dependent on the kinetic energy. Using a one dimen-
sional flow inside the tube and nozzle, and sink flow inside the reservoir, it
is possible to relate the velocity at each point inside tube-nozzle reservoir
combination to the velocity at the nozzle exit. Then total kinetic energy can
be expressed in terms of an effective length and velocity at the nozzle exit. It
is shown that such an effective length is important in categorizing different
ejection regimes. The importance of the effective length is further shown
by relating the auto-ejection data to the critical aspect ratio for breakup
of stationary filaments during the retraction. It is shown that the effective
length is related to the length of the jet that can be produced by converting
the liquid kinetic energy into surface energy.

To obtain the effective length one dimensional plug flow assumption is
used inside the tube and nozzle. Such an assumption is not valid for high
contraction angles where the strong radial flow produces two-dimensional
flow inside the nozzle. It is shown that at large contraction angles, a strong
radial flow produces a highly curved meniscus inside the nozzle. This leads
to two new regimes, rapid ejection and air entrapment, with increasing con-
traction angles.

6.2 Significance and limitations

Nowadays due to miniaturization and micro-engineering, interface dynamic
and its interaction with bulk flow take on increasing scientific and practical
importance. In auto-ejection under normal gravity, for example, the de-
tailed information about the shape adjustment stage of meniscus movement
through contractions can be used to promote droplet ejection.

Information on contact line dynamics is difficult to gain through exper-
imental and numerical studies. Experiments always face unwanted factors
such as surface roughness and heterogeneity and visualization problems.
Numerically, there is a singularity in macroscopic equations for the contact
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line movement for which there is at present no satisfactory model. The
Cahn-Hilliard diffuse-interface method provides a physically motivated for-
mulation to investigate contact line dynamics. By tuning its parameters for
a certain fluid-solid combination, it is possible to study the dynamics which
are usually hard to capture. An example is the variation of the dynamic
contact angle inside the nozzle for the auto-ejection problem.

Understanding the pore scale interfacial dynamics is the building block
for developing better models for porous media flow. Such understanding can
be used to design more efficient gas diffusion layers for fuel cells. Two main
features of pores are their non-uniform cross section and connectivity. The
performed research helps to understand the interface dynamics in these two
geometries.

Capillary instability plays a main role in most of the droplet production
mechanisms. Knowledge of capillary instability is further extended by taking
into account the effect of filament curvature and compressive flow field. In
addition, liquid rings are unstable configurations and will eventually contract
onto themselves or breakup into droplets. Therefore, the simplified two
times-scale model will give an insight into the fate of the torus.

We have compared our numerical simulations with experimental and
theoretical results. There is a good agreement between physical observations
and numerical results which further demonstrates the ability of the Cahn-
Hilliard model to produce physically meaningful results.

There are also limitation for this research, which we summarize below:

• Computational limitation. Realization of the sharp interface limit is
computationally very expensive. This becomes a more severe issue
for three dimensional interfaces and when there are disparate length
scales in the problems. Besides, our AMPHI algorithm uses a fully
implicit time-updating scheme. Although this improves stability, the
computational cost in inverting the matrix is high. More efficient split
algorithms might help alleviate the problem.

• Limitation of the Cahn-Hilliard contact line model. The phenomeno-
logical nature of the contact line model implies that model parameters
need to be determined from experimental data, which are not always
available for the geometry and materials required. In addition, re-
solving the diffusion length which is around six orders of magnitude
smaller than the bulk length scale is numerically challenging.
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6.2.1 Recommendations for future work

The current work can be further extended in certain aspects. In the analysis
of the torus instability, we have not considered the effect of non-symmetric
disturbances. In reality the geometry of the torus is not a prefect ring and
it can have defects on its surface. How such defects modify the breakup
of liquid torus can be studied. In addition, we showed that the initially
fastest mode may not proceed to the end. How a combination of different
modes grow on the torus and how they morph into each other needs to be
studied. It is also interesting to study the capillary instability of the ring
in the presence of gravity where thick and thin parts of the disturbed torus
will experience different buoyancy forces and the growth of the disturbance
will be affected.

For wicking flow one can experimentally study the flow branching and
also extend it to more realistic geometries for pore-connectivity, including
3D branches and networks. Such studies will provide a benchmark for the
popular pore-network models. In addition, it can be extended to include
the effect of gravity on meniscus dynamics in Y-branches and also through
contraction or expansion.

For auto-ejection, it will be desirable to devote future work to refining
the current criterion into one expressed in the geometric and material pa-
rameters. In addition, one can explore the dependency of droplet size on
geometric and solid-fluid properties. We have done a limited test for a 1-g
condition, which can be explored in more detail. Finally, the modeling of
the dynamic contact angle in the Cahn-Hilliard model needs to be studied
more carefully, especially in regards to the energy dissipation at the contact
line.
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