
Towards Human Pose Estimation in
Video Sequences

by

Georgii Oleinikov

B.Sc., V. N. Karazin Kharkiv National University, 2010
M.Sc., V. N. Karazin Kharkiv National University, 2011

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

The Faculty of Graduate and Postdoctoral Studies

(Computer Science)

The University Of British Columbia

(Vancouver)

January 2014

c© Georgii Oleinikov 2014

ii

Abstract

Recent advancements in human pose estimation from single images have
attracted wide scientific interest of the Computer Vision community to the
problem domain. However, the problem of pose estimation from monoc-
ular video sequences is largely under-represented in the literature despite
the wide range of its applications, such as action recognition and human-
computer interaction. In this thesis we present two novel algorithms for
video pose estimation that demonstrate how one could improve the perfor-
mance of a state-of-the-art single-image articulated human detection algo-
rithm on realistic video sequences. Furthermore, we release the UCF Sports
Pose dataset, containing full-body pose annotations of people performing
various actions in realistic videos, together with a novel pose evaluation met-
ric that better reflects the performance of current state of the art. We also
release the Video Pose Annotation tool, a highly customizable application
that we used to construct the dataset. Finally, we introduce a task-based
abstraction for human pose estimation, which selects the “best” algorithm
for every specific instance based on a task description defined using an appli-
cation programming interface covering the large volume of the human pose
estimation domain.

iii

Preface

The work on the contents of Chapter 6 was done in collaboration with Gregor
Miller. In this section of the thesis we would like to highlight the parts of
the research project, performed by Gregor Miller and the author. Gregor
Miller’s contributions towards the project are as follows:

• An idea of a task-based abstraction targeting non-expert users together
with a task-to-algorithm mapping

• Formulation of the target description and organization of the condition
matrix 6.1

• Part of the experiments for the evaluation of pose estimation algo-
rithms

The author of this thesis made the following contributions to the project:

• Formulated the input type and output requirements that are included
in the task description

• Surveyed the pose estimation literature to make sure the task descrip-
tion covers sufficiently large volume of the problem space

• Selected the algorithms that were included in the framework

• Manually annotated training and test images with description such as
amount of clutter and occlusion

• Performed part of the experiments for the evaluation of pose estima-
tion algorithms

• Analyzed the results of the experiments and determined the contents
of the condition matrix 6.1

• Suggested the task-to-algorithm mapping procedure 2

Also, Kevin Woo helped us to create the UCF Sports Pose Dataset
by making high-quality annotations using the Video Pose Annotation tool
(Chapter 3).

iv

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Tables . vi

List of Figures . vii

Acknowledgements . viii

Dedication . ix

1 Introduction . 1
1.1 Motivation . 1
1.2 Outline . 3
1.3 Organization . 6

2 Related Work . 7
2.1 Literature Overview . 7

2.1.1 Pose Estimation Algorithms 7
2.1.2 Pose Estimation in Video 8
2.1.3 Datasets . 9
2.1.4 Abstractions over Computer Vision 9

2.2 Relevant Algorithms . 11
2.2.1 Flexible Mixture of Parts 11
2.2.2 Dynamic Programming 12
2.2.3 Distance Transform of Sampled Functions 14
2.2.4 Optical Flow . 15

Table of Contents v

3 Data Preparation . 17
3.1 Video Pose Annotation Tool 18

3.1.1 Application Features 18
3.1.2 Graphical User Interface 22
3.1.3 Design . 24
3.1.4 Implementation . 27

3.2 Dataset . 27
3.2.1 Evaluation Metric . 28

3.3 Discussion . 30

4 Pose Estimation in Video: a Shortest Path Approach . . . 33
4.1 Model . 34
4.2 Inference . 36
4.3 Experiments . 38
4.4 Discussion and Future Work 39

5 Pose Estimation in Video: a Detection Approach 45
5.1 Model . 45
5.2 Inference . 48

5.2.1 Message Passing . 48
5.2.2 An Approximate Distance Transform 49
5.2.3 The Inference Procedure 52

5.3 Experiments . 53
5.4 Discussion and Future Work 54

6 Abstracting Human Pose Estimation 58
6.1 Task Description . 59

6.1.1 Input Description . 59
6.1.2 Output Requirement 60
6.1.3 Target Description . 61

6.2 Task to Algorithm Mapping 63
6.2.1 Algorithm Selection 64
6.2.2 Closest Algorithm Search 65
6.2.3 Parameter Derivation 68

6.3 Algorithm Selection Evaluation 69
6.4 Discussion and Future Work 70

7 Conclusion . 74

Bibliography . 76

vi

List of Tables

4.1 Results of our shortest path approach (SPA) 39

5.1 Results of our detection approach (DA) 54

6.1 Abstraction condition matrix 64

vii

List of Figures

1.1 Pose estimation in video sequence example. 2

2.1 The Viterbi algorithm . 13
2.2 Lower envelope of parabolas for the distance transform 15

3.1 Several examples of 14-joint pose annotations 19
3.2 Annotation using tracking in a cluttered scene 20
3.3 Annotation using interpolation in a cluttered scene 21
3.4 A screenshot of the Video Pose Annotation tool GUI 23
3.5 Video Pose Annotation tool GUI functionality example 24
3.6 The UML class diagram for skeletal body models 26
3.7 Annotation examples from two different datasets. 29
3.8 Example of video pose annotation with alternating limbs . . . 30
3.9 Examples of the UCF Sports Pose dataset 32

4.1 Examples of pose estimates of the shortest path approach . . 42
4.2 Examples of pose estimates of the shortest path approach . . 43
4.3 Examples of pose estimates of the shortest path approach . . 44

5.1 Spatio-temporal tree structure of the model 47
5.2 Examples of pose estimates of the detection approach 56
5.3 Examples of pose estimates of the detection approach 57

6.1 Examples of scene conditions and algorithms output 63
6.2 Graph representing input types 66
6.3 Graphs representing output requirements 67
6.4 Algorithm mapping evaluation for full-body pose estimation . 71
6.5 Algorithm mapping evaluation for head yaw estimation . . . 72
6.6 Algorithm mapping evaluation for upper-body pose estimation 73

viii

Acknowledgements

First and foremost, I would like to thank my supervisor Prof. Little for
his invaluable support and encouragement throughout my Master’s thesis,
for multiple prolific and stimulating discussions, important suggestions and
insights as well as for the constant involvement and the readiness to help.
I want to thank Gregor Miller for the interesting and productive collabora-
tion on the pose estimation abstraction, for multiple inspiring and motivat-
ing ideas and suggestions. I would also like to thank Prof. Woodham for
thoroughly reading my thesis and providing many valuable comments.

I would like to thank Ankur Gupta for his help as well as many thought-
ful discussions and insightful comments on my ideas throughout my Master’s
thesis. I want to thank Kevin Woo for making the high quality video an-
notations as well as his important feedback and suggestions regarding the
Video Pose Estimation tool. I would like to thank Daria Bondareva for her
invaluable continuous support throughout my thesis that helped me to over-
come multiple challenges, for her readiness to help, and for the work she did
on the video annotations.

ix

Dedication

I dedicate this thesis to my Mom

Nina Oliinykova

who made it possible for me, without whom I would not be here.
Everything that she gave me from my earliest childhood played a role in

who I am now. The English lessons that she taught me when I was a small
kid were exciting and inspiring, and I would never forget the verb flower

garden that she drew for me. The Math classes that we went through
together determined my future career path. And I will always remember
the door with a picture of a smiling computer on it, behind which I first

experienced the exciting world of personal computers.
For an amazing childhood, for all the love she gave to me I am infinitely

grateful to my Mom.

1

Chapter 1

Introduction

Human pose estimation is an area in Computer Vision that aims to identify
the correct pose of a person, often defined by the position of body joints and
limbs, given an image, video sequence or depth data. Unconstrained, real-
world human pose estimation is a challenging problem that has been widely
studied in Computer Vision. It has great potential to assist a wide range of
applications, such as indexing of images and videos, activity understanding
and action recognition, automatic surveillance and human-computer inter-
action [37].

In this thesis we address the problem of 2D human pose estimation in
monocular video sequences. In particular, we are interested in developing
algorithms that determine the 2D coordinates of 14 body joints in every
frame of a given video sequence. We assume that there is only one per-
son in the recording and the full body is visible in all frames. Figure 1.1
demonstrates an example of the desired output of a video pose estimation
algorithm. Although in this thesis we consider full-body poses only, the
techniques developed in this work can be applied towards upper-body or
other kinds of poses.

Furthermore, we also consider the pose estimation problem from the op-
posite perspective. Namely, how one should select the right pose estimation
algorithm for a particular problem, and what semantic language would one
use to describe it. We are seeking to develop an abstraction that would allow
one to describe any pose estimation problem for which the solving algorithms
exist in the literature or may potentially emerge in future. The problem de-
scription includes specification of the input data and requirements for the
pose estimation results as well as relevant task conditions. In addition, we
are interested in a system that would accept the problem description and
return the results of a pose estimation method that suits the problem best.

1.1 Motivation

Most of the pose estimation applications in real-world scenarios provide one
with video sequences. Video cameras and other sensors often work in real-

Chapter 1. Introduction 2

Figure 1.1: Pose estimation in video sequence example. The pose in each
frame is represented by a body graph with more than 14 joints, with con-
nections between joints denoting parts of limbs, torso and head.

time, producing streaming data. In fact, there are relatively few applications
where pose estimation in images is required while video data is not available.
Surprisingly, most of the current pose estimation algorithms focus on esti-
mating the pose from single images. However, it seems that pose estimation
over time is critical for improving the estimations [25], and the temporal
information should be utilized for improved performance. This motivates
us to develop two video pose estimation algorithms, attempting to fill in
the gap between the wide range of applications of pose estimation in video
and the lack of algorithms that utilize the full available data by focusing on
video sequences. We develop these algorithms with an application to sports
video analysis in mind.

In order to evaluate and train video pose estimation algorithms one
would need the ground truth. To the best of our knowledge, there are no

Chapter 1. Introduction 3

publicly available datasets with unconstrained real-world video sequences
and fully annotated human poses (see Section 2.1.3). We firmly believe that
the shortage of data is one of the reasons for the lack of video pose estima-
tion algorithms. Therefore, in this thesis we are also determined to create a
video dataset with annotated full-body poses.

In our opinion, the lack of data is mainly due to the fact that it is
time-consuming and generally difficult to annotate all frames of a video
sequence with human poses. It is much harder than to annotate bounding
boxes or provide action labeling, since various pose representations usually
consist of 10 to 20 body joints, each of which must be manually adjusted
for every frame. Furthermore, providing one dataset with fully annotated
poses would not solve the problem of the shortage of data, simply because
it cannot fit all the potential requirements in the degree of data complexity
and type. Certain algorithms may require high-quality data with annotated
upper bodies, while other would need full-body annotated videos with heavy
occlusions and action labelings. Therefore, we decide to take a thorough
approach and create a tool, that would allow one to annotate skeletal poses
of humans in video sequences.

The challenge to develop accurate pose estimation algorithms is not the
only obstacles that prevent them from being effectively embraced in real-
world applications. For most software engineers who are not experts in
Computer Vision it is challenging to utilize the best pose estimation algo-
rithm for their needs. With the state of the art advancing fast it is hard
to track down the best algorithm for every specific case of input conditions
and output requirements. Furthermore, it is hard for non-experts to imple-
ment these algorithms and keep them up-to-date with the state of the art.
In order to address these problems we develop an abstraction over human
pose estimation together with a task-to-algorithm mapping, which selects
the best pose estimation algorithm based on task description.

1.2 Outline

Data Preparation. In order to help solve the data shortage problem we
introduce a Video Pose Annotation tool, which allows one to annotate skele-
tal poses people in video sequences. The skeletal representations may have
various forms, enabling the tool to be adjusted for the specific needs of the
user, such as annotation of upper bodies or hands only. The tool features a
simple yet powerful graphic user interface, and the annotation process is as-
sisted by automatic detection, tracking and interpolation. Furthermore, we

Chapter 1. Introduction 4

introduce the UCF Sports Pose dataset, which is a UCF Sports dataset with
annotated full-body poses. It features more than 150 sports video sequences
with high-quality full-body annotations made with the aforementioned an-
notation tool. In addition, we propose a new pose estimation evaluation
metric that in our opinion better reflects the performance of the common
state-of-the-art algorithms for pose estimation. To the best of our knowl-
edge, until most recently both the tool and the dataset were the only ones
of their kind1.

Pose Estimation. Most of the recent single-image pose estimation al-
gorithms build on top of the pictorial structures model [2]. It represents the
human body as a tractable tree graph, making full search possible via dy-
namic programming. However, the direct application of the same technique
to video sequences is not possible in practice. The single-frame tree graph
turns into a loopy intractable model, where inference complexity would grow
exponentially with the number of frames.

The most natural way to overcome the above is to make an algorithm
that works on top of the detections returned by a single-image pose esti-
mator. It would not search through all possible combination of poses, but
it may give a good approximation, depending on the quality of the single-
image pose detector. Wang et al. [51] uses dynamic programming to search
through multiple single-image detections of a state-of-the-art pose estima-
tor, utilizing color information to score pose configurations. Zuffi et al. [58]
build their work on the idea of using the optical flow to integrate image ev-
idence from multiple frames. They iteratively propagate best single-image
detections from every frame to the adjacent ones and then refine and shrink
the set of poses for every frame.

The first video pose estimation method that we introduce in this thesis
builds on the two ideas described above2. We first run a state-of-the-art
single-image pose detector on every frame of a video sequence, selecting
several best detections. Then we propagate the poses in every frame to
neighbouring frames in order to expand the set of poses for every frame.
Finally, we select the best-overall combination of poses throughout the ob-
tained sets of poses. We use Flexible Mixture of Parts (FMP) [55] as a
state-of-the-art single-image pose estimation algorithm. We refer to this
method as the shortest path approach, since it involves minimizing the cost
of transferring from a pose in the first frame to a pose in the last frame.

1See Section 2.1.3.
2Note that current algorithm was developed independently from [51] and [58]. See

Section 4.4 for comparison of these approaches.

Chapter 1. Introduction 5

One of the alternatives to the above is to look at some of the ways to deal
with the temporal dimension from the action recognition approaches liter-
ature. Most of the common methods utilizing local features involve either
computation of optical flow or trajectories [52] [54] or utilize local volumet-
ric space-time features such as SIFT3D [45] or HOG3D [28]. Fragkiadaki
et al. [19] use optical flow to segment body parts and propagate segmenta-
tions over time. Tian et al. [49] extend the Deformable Parts Model [14]
to the temporal dimension by replacing the 2D HOG filters [9] with their
volumetric versions HOG3D and use them for action detection.

The second video pose estimation method that we develop resorts to a
different approach. Instead of using 3D spatio-temporal features or optical
flow only, we look at how the 2D features change over time along the paths
of the optical flow, thus combining the appearance and flow information in
a single framework. Furthermore, in contrast to the approaches above we
are able to do inference in the current frame and several previous frames at
once. The latter is possible because we relax the connections between all
joints in every frame but the current one, only leaving the temporal connec-
tions between joints and their instances in the past. The resulting structure
is a tree, which enables full search via dynamic programming (see Figure
5.1). The relaxation of the body edges in previous frames does not have as
much impact as one may think, because we set their expected positions in
accordance with the backward optical flow around the body joints in the
current frame. The idea of conversion of the intractable model spanning
more than one frame to a tree structure is the most similar to the work by
Sapp et al. [44], who decompose the model into an ensemble of several tree-
structured models that cover the edge relationships of the full model. We
refer to our method as the detection approach, since it estimates the pose
in every current frame independently, taking into account several previous
frames.

Abstraction. In this thesis we also develop an abstraction over human
pose estimation together with a task-to-algorithm mapping. The abstrac-
tion features an interface, allowing the user to describe the pose estimation
problem, which includes input conditions and output requirements. The
interface is flexible enough to describe most of the possible variations in a
problem description. The task to algorithm mapping encompasses expert
knowledge about performance of several pose estimation methods and uses
it to select the best one according to the given problem definition. We de-
sign this system as a part of OpenVL, an abstraction over Computer Vision,
which currently encompasses tasks such as segmentation, image registration,
correspondence, detection and tracking.

Chapter 1. Introduction 6

To summarize, in this thesis we make the following five key contributions:

• Video Pose Annotation tool, which allows one to annotate skeletal
poses of humans in video sequences

• UCF Sports Pose dataset, containing realistic videos with full-body
annotations, together with a new pose estimation evaluation metric
PCP2D

• Video pose estimation method, demonstrating a way to improve a pose
estimation algorithm for video sequences

• Novel video pose estimation method, embracing both temporal and
appearance information in a single framework

• An abstraction over human pose estimation together with a task-to-
algorithm mapping, which selects the best algorithm according to the
given problem description.

1.3 Organization

This thesis is organized as follows. In Chapter 2 we discuss related work as
well as briefly give necessary background on algorithms that are essential for
understanding this thesis. We present the Video Pose Annotation tool and
the UCF Sports Pose dataset in Chapter 3. Afterwards we focus on pose
estimation algorithms for video sequences and introduce the shortest path
approach in Chapter 4. Then we proceed to the detection approach for pose
estimation in Chapter 5. We describe the abstraction over pose estimation
in Chapter 6 and finally finish with conclusions in Chapter 7.

7

Chapter 2

Related Work

In this chapter we survey the relevant literature in Section 2.1 and then
give necessary background required for understanding of the material in
this thesis in Section 2.2.

2.1 Literature Overview

In this section we first survey related work on pose estimation algorithms
for various forms of input data and output results from the task-result per-
spective, which is be needed in Chapter 6 in order to justify the design of
the abstraction interface and the selection of the algorithms in the frame-
work. Then we proceed to the overview of the existing methods targeting 2D
human pose estimation in monocular videos. We further describe relevant
datasets and annotation tools, and then proceed to existing abstractions
over Computer Vision and briefly describe OpenVL.

2.1.1 Pose Estimation Algorithms

3D human pose estimation is a hard problem that has been researched most
successfully in the setting of depth images. A method for super-realtime
estimation of 3D positions of body joints and pixel-wise body-part labelings
based on randomized decision forests was introduced by Shotton et al.in [46],
which was a technology behind the initial release of KinectTM. Fanelli et
al. [13] tackled a problem of real-time head pose estimation from depth data
using random regression forests.

Another class of methods considered the problem of 3D human pose
estimation using sources of data other than depth images. Yu et al. [56] in-
troduced a method for monocular 3D pose estimation from video sequences
using action detection on top of 2D deformable part models. Amin et al. [1]
presented a method for 3D pose estimation from multiple calibrated cam-
eras, incorporating evidence from every camera obtained with 2D pictorial
structures. The problem of determining 3D shape of the human body to-
gether with its pose was considered by Guan et al. [20]. Although estimating

Chapter 2. Related Work 8

a 3D pose solely from a 2D image is an under-constrained problem, it has
been tackled by Simo-Serra et al. [48] by jointly solving 2D detection and
3D inference problems.

The problem of 2D body pose estimation has traditionally been ap-
proached with variations of pictorial structures framework [2]. Recently,
Yang and Ramanan introduced a flexible mixture of parts model [55], which
extended the deformable parts model [14] for articulated 2D human detec-
tion with considerable improvement to the state of the art. The state of the
art was further improved among others by Rothrock et al., who used a com-
positional and-or graph grammar model together with segmentation [43].
Also, Kinect-style body-part labelings were obtained by Ladicky et al. [31],
combining part-based and pixel-based approaches in a single optimization
framework. Hara and Chellappa introduced a super-realtime 2D pose esti-
mator with the help of multidimensional output regressors along the body
part dependency paths [21]. The problem of head and face orientation es-
timation from images was tackled by Maji et al. [34] and Zhu and Ra-
manan [57].

It is easy to see that with such an abundance of algorithms performing
various tasks the development of an abstraction to select the best algorithm
for every specific case would be beneficial.

2.1.2 Pose Estimation in Video

There is a large literature on 2D human pose estimation in single images.
Similarly, many methods were devoted to the pose tracking problem, which
often assumes correct manual initialization in at least one of the frames
of the video sequence. However, general 2D pose estimation in monocular
video sequences is largely underrepresented in the literature.

Nevertheless, several recent papers focused on pose estimation in video
without any requirement for supervision. Some papers exploit the idea of re-
lying on confident detections. Ramanan et al. [41] require that the video se-
quence contains an easily detectable canonical pose. They find the pose with
an accurate canonical pose detector and use it for instance-specific appear-
ance training, which is subsequently utilized to find poses in all frames inde-
pendently. Buehler et al. [6] use a similar approach by identifying keyframes
with reliable detections and filling in the intermediate frames taking into ac-
count temporal consistency. Ferrari et al. [16] first reduce the search space by
highlighting the foreground with segmentation applied on top of the results
of a human detection algorithm. Then they do single-frame pose detections
and refine them with a spatio-temporal instance-specific model trained on

Chapter 2. Related Work 9

reliable detections. Wang et al. [51] searches for a best-overall combination
of poses obtained from a single-image pose detector, taking into account
temporal and appearance coherence.

Other methods use optical flow to exploit coherence of the information
from consecutive frames. Fragkiadaki et al. [19] use segmented body parts
and propagate segmentations over time with the help of optical flow. Zuffi
et al. [58] exploit optical flow to propagate best single-image detections to
the adjacent frames and refine and shrink the poses for every frame in an
iterative process.

Simultaneous inference over more than one frame presents a challenge to
deal with loopy intractable models, which necessitates approximate inference
as in [53]. Alternatively, one may attempt to convert the intractable model
into one where exact inference is possible. Sapp et al. [44] decompose the
loopy model into an ensemble of several tree-structured models that cover
the edge relationships of the full model.

2.1.3 Datasets

There exist a variety of single-image datasets with annotated poses [40] [10]
[12] [11]. However, there are few video pose annotated datasets mostly due
to the difficulties in manual annotation.

HumanEva [47] is a motion capture dataset providing both motion cap-
ture and video data of 4 subjects performing a set of 6 actions two times
each. However, the environment is not realistic and the videos have static
backgrounds, well centered persons and high contrast clothing, while the set
of actions is limited. VideoPose 2.0 [44] is a video dataset with annotated
arm joints every other frame. The dataset consists of 44 short clips, 2-3
seconds in length each, 1,286 video frames in total. Most recently, Jhuang
et al.released J-HMDB [25], a video dataset with annotated full-body joint
positions and human silhouettes derived from joints. It contains 21 action
classes, 36-55 clips per action class 15-40 frames each, 31,838 video frames
in total. Together with the dataset Jhuang et al.announce an annotation
tool1 that helped them to build J-HMDB. Its current web demo allows one
to drag joints over the body and propagate annotations to the next frame.

2.1.4 Abstractions over Computer Vision

The idea of developing an abstraction for Computer Vision tasks is not new,
and there have been numerous attempts towards it. Matsuyama and Hwang

1http://files.is.tue.mpg.de/hjhuang/pose_annotation/html/avalidator.html

http://files.is.tue.mpg.de/hjhuang/pose_annotation/html/avalidator.html

Chapter 2. Related Work 10

introduced SIGMA [35], an expert system performing detection based on a
learned appearance model, which is selected based on geometric context-
dependent reasoning. Kohl and Mundy developed the Image Understand-
ing Environment, an abstraction providing high-level access to vision meth-
ods, although requiring the understanding of all the algorithms underneath
it [29]. Firschein and Strat introduced RADIUS [18], which helped the user
choose best image processing algorithms based on geometric models, defined
by the user. Konstantinides and Rasure developed a visual programming
language in Khoros, which allowed its users to create vision applications
by connecting components in a data flow [30]. However, it also required a
thorough understanding of the vision algorithms, as the components it in-
cluded were relatively low-level, featuring color conversions, spatial filtering
and feature extraction.

More recently declarative programming languages such as ShapeLogic2

and FVision [39] were introduced, which provided functionality as small
low-level units, requiring expert knowledge about vision methods. Chiu and
Raskar introduced Vision on Tap, a web-based tool featuring a high-level
abstraction targeted for web developers [8], although its usage is limited due
to its web interface.

Several openly available libraries, such as OpenCV [3], FastCV3, OpenTL
[38] and the Vision Toolbox4, provide common Computer Vision function-
ality. These frameworks provide direct access to specific vision components
and algorithms, but the context of usage and tuning of the parameters is
essential, which requires expert Computer Vision knowledge.

Most recently Miller and Fels introduced OpenVL [36], an abstraction
targeting a variety of Computer Vision problems from the task perspective.
Currently, OpenVL is working with segmentation, correspondence and regis-
tration, while certain steps have been made towards tracking and detection.
Human pose estimation can be considered as an articulated human detec-
tion problem and thus fits well into the OpenVL paradigm, which allows us
to extend OpenVL with pose estimation.

2http://www.shapelogic.org
3http://developer.qualcomm.com/mobile-development/mobile-technologies/

computer-vision-fastcv
4http://www.mathworks.com/products/computer-vision

http://www.shapelogic.org
http://developer.qualcomm.com/mobile-development/mobile-technologies/computer-vision-fastcv
http://developer.qualcomm.com/mobile-development/mobile-technologies/computer-vision-fastcv
http://www.mathworks.com/products/computer-vision

Chapter 2. Related Work 11

2.2 Relevant Algorithms

In this section we go over some algorithms that are essential for understand-
ing this thesis. We start with a brief description of the Flexible Mixture of
Parts model (FMP) [55]. We further go over dynamic programming and the
Viterbi algorithm and then proceed to the distance transform of sampled
functions [15]. Also, we cover the basics of optical flow and explain the
notation of median optical flow which we use as a tracking algorithm.

2.2.1 Flexible Mixture of Parts

Our work largely builds on top of FMP and we briefly describe it in this
section. It is a human pose estimation method from single images, based on
a mixture of non-oriented pictorial structures.

Model. The model is a tree graph (V,E) covering the human body,
where each node i is located at pixel pi = (xi, yi) and is assigned a filter
type fi. Every filter type fi is associated with a particular HOG filter [9]
representing a specific mode of the appearance of part i. Every body part has
several appearance modes, which cover the most common cases of the part’s
appearance. The score of a configuration of body part positions p = {pi}Ki=1

and part types f = {fi}Ki=1 in an image I is defined as follows:

S(I, p, f) =
∑
i∈V

bfii +
∑

(i,j)∈E

b
fifj
ij +

∑
i∈V

ωfii · φ(I, pi)+
∑

(i,j)∈E

ω
fifj
ij · ψ(pi − pj),

(2.1)

where ψ(dx, dy) = [d2
x d2

y dx dy]
T is a deformation spring model and

φ(I, pi) is an image feature vector extracted at location pi. The first two
terms of (2.1) represent the appearance compatibility score, the third term
defines the appearance score, while the last term is a quadratic-cost defor-
mation score. Note that, in practice, in order to reduce computation during

inference the assumption on ω
fifj
ij is relaxed, stating that deformation spring

models depend only on the filter type of child i:

ω
fifj
ij = ωfiij . (2.2)

Inference. The inference procedure corresponds to maximizing (2.1)
with respect to p and f . This can be done efficiently using dynamic pro-
gramming (see Section 2.2.2) with message passing of the form

Chapter 2. Related Work 12

scorei(fi, p) = bfii + ωfii · φ(I, pi) +
∑

j∈kids(i)

mj(fi, p), (2.3)

mj(fi, p) = max
fj

[
b
fjfi
ji + max

pj

(
scorej(fj , pj) + ω

fjfi
ji · ψ(pj − pi)

)]
. (2.4)

The computational cost of (2.4) for each body part is O(L2H2), where
L is the total number of body part pixel locations and H is the number
of HOG filters per part. This can be reduced to O(LH2) with the help of
the distance transform [15], described in Section 2.2.3. Assumption (2.2)
reduces the cost further to O(LH).

Learning. The supervised learning paradigm with negative {Î(n)}n∈N
and positive labeled {(I(n), p(n), f (n))}n∈P training examples is employed.
The scoring function is linear in model parameters β = (b, ω) and can be
rewritten as S(I, z) = β · Φ(I, z), where z(n) = (p(n), f (n)). Therefore, the
model is learned in the form

arg min
ω,εn≥0

1

2
β · β + C

∑
n

εn, (2.5)

s.t. ∀n ∈ P β · Φ(I(n), z(n)) ≥ 1− εn,
∀n ∈ N, ∀z β · Φ(I(n), z) ≤ −1 + εn.

The latter is a quadratic programming problem, which can be optimized
with an out of the box solver such as the cutting plane solver in [17] or
stochastic gradient descent in [14].

2.2.2 Dynamic Programming

We extensively use dynamic programming throughout this thesis. In this
section we discuss relevant dynamic programming ideas.

The Viterbi algorithm. Suppose we are given a sequence of variables
X = (X1, . . . , Xn), each of which can take one of the m values {sj}kj=1.
Furthermore, there are scores Si(Xi) associated with the choice of particular
assignment of values to variables Xi as well as scores Si−1,i(Xi−1, Xi) for
particular co-assignments of the values in adjacent variables Xi−1, Xi. The
Viterbi algorithm solves the following problem:

Chapter 2. Related Work 13

Figure 2.1: The Viterbi algorithm. For every value of X2 the best value of
X1 is computed, then the process continues up to Xn.

arg max
X

S(X), (2.6)

S(X) =
n∑
i=1

Si(Xi) +
n∑
i=2

Si−1,i(Xi−1, Xi) (2.7)

In order to do this, for every Xi starting with X2 we can compute the
best candidate value for Xi−1 (see Figure 2.1):

score1(X1) =S1(X1), (2.8)

scorei(Xi) =Si(Xi) + max
Xi−1

mi−1(Xi−1, Xi), i > 1, (2.9)

mi−1(Xi−1, Xi) =(scorei−1(Xi−1) + Si−1,i(Xi−1, Xi)), (2.10)

indi(Xi) = arg max
Xi−1

mi−1(Xi−1, Xi), i > 1. (2.11)

Here scorei(Xi) stores the total accumulated score (2.7) up to Xi, and
indi(Xi) is the index of the best assignment to Xi−1 for every assignment
of Xi. This process is generally referred to as message passing from Xi to
Xi+1.

After finishing the message passing procedure scoren(Xn) would contain
the final configuration scores. The best combination of assignments (2.6) can
be then obtained by taking the maximum value of scoren(Xn) and applying

Chapter 2. Related Work 14

backtracking, a process of consecutively recovering the best assignment of
Xi:

X =
n⊗
i=1

(indi+1 ◦ · · · ◦ indn ◦ id)(arg max
Xn

scoren(Xn)), (2.12)

where ⊗ denotes Cartesian product, ◦ denotes function composition, id is
the identity function.

Tree structures. The Viterbi algorithm can also be applied to other
cases when the graph connecting variables Xi forms a tree. The whole
inference procedure stays the same, with the only difference that message
passing (2.9) has to take into account all children kids(i) of node i:

scorei(Xi) = Si(Xi) +
∑

j∈kids(i)

max
Xj

mj(Xj , Xi). (2.13)

2.2.3 Distance Transform of Sampled Functions

In this section we describe the distance transform of sampled functions [15],
as its understanding is essential in Chapter 5.

One dimension. Let G = {g1, . . . , gn} be a one-dimensional grid. The
goal is to compute Df (p), Ef (p) for every p in a grid H = {h1, . . . , hm}:

Df (p) = min
q∈G

P2(p, q), (2.14)

Ef (p) = arg min
q∈G

P2(p, q), (2.15)

P2(p, q) = a(p− q)2 + b(p− q) + f(q). (2.16)

This can be done via full search in O(nm) time. The distance transform
however is able to compute this in O(n+m) in the following way. The first
step is the computation of the lower envelope of parabolas a(p− q)2 + b(p−
q) + f(q). This can be done in linear time by using simple algebra. During
the second step the values of Df (p) are filled in for all p in grid H by selecting
the appropriate parabolas in the lower envelope (see figure 2.2).

Two dimensions. LetG = {g1
1 . . . g

1
n}×{g1

1 . . . g
k
1} be a two-dimensional

grid with an arbitrary function f : G → R defined on it. We are aiming to
compute Df (x, y) for every (x, y) in a grid H = {h1

1 . . . h
1
m} × {h1

1 . . . h
l
1}:

Chapter 2. Related Work 15

Figure 2.2: Lower envelope of parabolas for the distance transform. In this
example b = 0 and parabolas are centered at points in grid G = {2, 4, 6, 8}.
Blue contour corresponds to lower envelope of parabolas, while dotted parts
of the parabolas represent their parts that do not constitute a part of it.
Dotted red vertical lines correspond to grid H = {3, 5, 7}, in which the values
of Df (p) will be filled. In this example Ef (3) = 4, Ef (5) = 6, Ef (7) = 6.

Df (x, y) = min
(x′,y′)∈G

P2((x, y), (x′, y′)), (2.17)

P2((x, y), (x′, y′)) = ax(x− x′)2 + bx(x− x′)
+ay(y − y′)2 + by(y − y′) + f(x′, y′). (2.18)

Since the first two terms in (2.18) do not depend on y, the equation
above can be rewritten as

Df (x, y) = min
x′

[ax(x− x′)2 + bx(x− x′) +Df |x′(y)]. (2.19)

Thus, we can use one-dimensional distance transform along the y axes
and then use it again along the x axis on the result.

2.2.4 Optical Flow

In this thesis we frequently resort to optical flow. By optical flow we mean
a class of methods attempting to calculate the motion between two consec-

Chapter 2. Related Work 16

utive video frames taken at times t and t + ∆t for small values of ∆t. The
brightness constancy equation is often utilized:

I(x, y, t) = I(x+ ∆x, y + ∆y, t+ ∆t), (2.20)

where I(x, y, t) is the brightness of the pixel (x, y) at time t. The equation
above stays that brightness of pixels, potentially belonging to the same
object in the video sequence should stay the same. Optical flow algorithms
usually encompass additional assumptions and constraints to improve the
optical flow accuracy. They can be roughly divided into local and global
approaches. Local methods such as Lucas-Kanade [33] are often more robust
to noise, while global methods such as Horn-Schunck [22] produce a dense
flow field.

In this paper we use an optical flow algorithm that combines local and
global approaches, attempting to yield a dense flow field that is robust to
noise. It uses the brightness constancy assumption, the gradient constancy
assumption and a discontinuity-preserving spatio-temporal smoothness con-
straint. It is based on [4] and [5], and we use its Matlab implementation
by Liu [32]. However, the choice of particular optical flow algorithm is not
important for us, and it can be replaced with any other method.

We also use the notion of median optical flow throughout this thesis. By
median optical flow in an image area we mean the median values of flow
coordinates ∆x and ∆y in the image region. It can be used as a simple
tracking algorithm.

17

Chapter 3

Data Preparation

There are multiple applications of human pose estimation in video sequences,
such as human-computer interaction, entertainment, surveillance and sports
video analysis. Surprisingly, there are very few methods that focus on 2D
pose estimation in video in comparison to a large number of single-image al-
gorithms being published every year (see Section 2.1.2). We strongly believe
that one of the main reasons for that is a lack of video datasets with anno-
tated poses (see Section 2.1.3), on which these algorithms could be trained
and/or evaluated. The availability of such datasets would immediately ben-
efit the research community working on pose estimation and may potentially
attract more research into this field.

While there are many video datasets with annotated people locations (for
tracking) and actions (for action recognition), there are few fully annotated
realistic pose video datasets, and untill very recently none of them included
full-body annotations (see Section 2.1.3). We think this is mainly due to the
fact that it is very hard and time consuming to annotate poses for all frames
of a video sequence. For instance, in contrast to annotating a bounding
box or an action label, for a full-body pose annotation of a 3-second video
sequence one would have to provide locations of 14 body joints for every of
the 3 × 30 frames, resulting in more than 1000 mouse clicks. Furthermore,
annotation of a pose requires much more precision than annotation of a box,
and it is difficult to make the annotations consistent throughout the video
sequence. Evidently, without any annotation tool the whole annotation
process becomes impractical.

In this chapter we make two key contributions, motivated by the argu-
ments above:

• Introduce the Video Pose Annotation tool, allowing one to make fast
and easy pose annotations in video sequences, featuring a user-friendly
graphical interface and flexible design.

• Introduce the UCF Sports Pose dataset, consisting of full-body anno-
tations for the UCF Sports Action dataset [42]. The annotations were
produced with the above annotation tool.

Chapter 3. Data Preparation 18

To the best of our knowledge, until most recently the Video Pose Anno-
tation tool was the only application aiding the task of manual annotation of
poses in images or video sequences. Likewise, the UCF Sports Pose was the
only video dataset providing full-body pose annotations in realistic environ-
ments. Recently Jhuang et al.released their J-HMDB dataset [25] together
with an annotation tool. We compare it with our tool in Section 3.3.

This chapter is organized as follows. We introduce the Video Pose An-
notation tool in Section 3.1 and then describe the annotated dataset that
we obtain with its help in Section 3.2.

3.1 Video Pose Annotation Tool

The Video Pose Annotation tool enables fast and accurate annotation of hu-
man poses in video sequences, featuring finely tuned Graphic User Interface
(GUI). The annotation process is aided by automatic pose initialization,
tracking and per-joint interpolation.

The annotations that we use are defined by the 2D locations of all body
joints that represent the structure of the body. The model of the human
pose as well as the way it is aligned with the image data depends on the
required level of detail. We follow Ramanan [40] and use the 14-joint skeleton
body model defining the positions of arms, legs, hips, shoulders, neck and
head. See Figure 3.1 for some examples of annotations that we expect for
our model. Note that since we are interested in poses in videos, the ideal
annotation would contain smooth movement of every joint throughout the
sequence, preserving the length of body parts and their placements relative
to the body.

3.1.1 Application Features

When working on a video sequence the user has the following options:

• Automatically estimate the pose in the current frame using a pose
detector

• Automatically translate the current pose to any other frame using
tracking

• Manually adjust the joints of the current pose

Automatic pose initialization is helpful because it often puts a number
of joints at their desired locations. However, the current version of the

Chapter 3. Data Preparation 19

Figure 3.1: Several examples of 14-joint pose annotations. Pink and cyan
lines cover right and left hands of a person, red and blue lines cover right and
left leg correspondingly. Note that in contrast to Ramanan [40] we mark in
red the actual right leg of the person, as opposed to the leg that is the most
left in the image, assuming that the person always looks in the direction of
the camera. This also makes difference when the limbs alternate, e.g. when
the person is running sideways (best viewed in color).

pose detector often misses body parts or places them inaccurately. Usually
manual adjustment is used afterwards to correct the pose. Furthermore,
our current pose detector returns independent poses for every frame, and
they often have slight differences in placement of head/shoulders/hips. As
a result, detections in consecutive frames may have quite different poses,
resulting in a very jittery annotation of poses overall. In order to increase
the accuracy of annotations the tool utilizes tracking. Our experience reveals
that tracking of a correct pose to the next frame produces substantially more
accurate result than independent estimation of the pose.

Despite the good annotation results provided with workflow based on
pose detections and tracking, it does have its disadvantages. The main

Chapter 3. Data Preparation 20

Figure 3.2: Annotation using tracking in a cluttered scene. The correct
pose in a frame before occlusion was tracked forward, and the pose from a
frame after occlusion was tracked back. It is very hard to guess the correct
positions of occluded joints and maintain the right motion pattern.

downside is that one has to repeat the whole process for every frame, po-
tentially adjusting every joint, which takes a lot of time. Furthermore,
whenever occlusions or self-occlusions take place, it becomes very hard to
correctly identify the positions of the missing parts in all frames, maintain-
ing the right motion pattern (see Figure 3.2). In addition, we found that
hard-to-notice subtle differences in consecutive frames may result in large
displacements overall. For instance, the width of the hips in a video se-
quence may be changing all the time. It is hard to control such long-term
deviations because one would have to go through all frames and separately
adjust the incorrectly positioned joints.

In order to overcome the above difficulties interpolation between anno-
tated poses is essential. We use a notion of a keypoint, which extends the
common understanding of a keyframe. Every joint in every frame is either

Chapter 3. Data Preparation 21

Figure 3.3: Annotation using interpolation in a cluttered scene. The inter-
polation on per-joint bases successfully resolves the occlusion problem. It
allows one to specify only certain positions of a joint when it is visible, while
all other positions get their values automatically.

marked as a keypoint or regular joint. The position of every regular joint
is linearly interpolated in time between the closest left and right keypoints,
and is adjusted accordingly when the position of any of the two keypoints
changes. Every regular joint becomes a keypoint whenever it is manually
adjusted or modified with detection or tracking. The user also has an option
to remove any keypoint, making it a regular joint.

The latter interpolation procedure helps to solve the problems stated
above. Instead of automatically estimating or tracking every pose to the next
frame, one can do this every 5 or 10 frames, and interpolation would take care
of the annotations in between. This not only saves time adjusting most of
the joints in every frame, but also helps to recover unstable hips/shoulders
and most importantly deal with occlusions (see Figure 3.3). Because of
the complexity of human motion we find it particularly important that the

Chapter 3. Data Preparation 22

interpolation is done on per-joint bases. If one would resort to keyframes
instead of keypoints, one would soon find out that most of the frames have
at least one manually modified joint, which would turn every frame to a
keyframe, and no interpolation would be performed.

We experiment with linear interpolation in two ways. In the first one,
the joint position is linearly interpolated in image coordinates between its
positions (x1, y1) and (x2, y2). While this interpolation keeps hips, shoulders
and head more stable, we found out that it does not work very well on joints
that cover hands, elbows, feet and knees mostly because human motion often
produces swings that follow round trajectories. For example, feet in Figure
3.3 rotate relatively to knees, while knees rotate relatively to hips. Therefore,
we use interpolation in polar coordinates for limb joints from ρ1, φ1 to ρ2, φ2,
where ρ1, ρ2 are the distances from joint to its parent in the first and last
frame of interpolation and φ1, φ2 are the angles relative to parent. This
helps us to reduce the number of manual adjustments of joints. Note that
the interpolation procedure described here could be replaced with any other
algorithm, e.g. incorporate human motion models [53].

3.1.2 Graphical User Interface

The Video Annotation Tool was developed in a continuous usage-feedback-
improvement loop. As a result we were able to develop a powerful yet simple
GUI that suits the user’s needs the best.

The main application window is shown in Figure 3.4. It consists of
the image area, navigation bar, input/output panels and annotation and
miscellaneous panel. Almost all of the functionality of the tool is hotkeyed,
so that frequently repeated actions can be performed fast. All the changes
made to the interface, such as last loaded video sequence or states of the
check boxes are saved in the configuration file and loaded during subsequent
runs.

Input/Output. The input panel determines the input video sequence,
which could be loaded either by selecting a video file or an image sequence
in a Load dialog window or by entering the path in the edit box. The output
panel specifies the output .mat file, containing resulting annotations. When-
ever a video sequence is loaded, the tool loads the corresponding annotations
if they are found.

Annotation. The main functionality of the tool is gathered in the an-
notation panel. The Detect button performs automatic estimation of the
pose in the current frame, while Detect Fast does local pose search based
on the position and speed of the person in previous frames for the purpose

Chapter 3. Data Preparation 23

Figure 3.4: A screenshot of the Video Pose Annotation tool GUI. Anno-
tations are displayed on top of the images as a colored stickman figure.
Brighter colors for body joints represent keypoints, while darker correspond
to regular joints. Hovering mouse over a joint pops up a transparent circle,
identifying which joint is going to be affected. The left mouse button al-
lows one to drag joints, while the right mouse button is used to remove the
keypoint from the highlighted joint.

of reducing the computation time. The arrow buttons <= and => perform
tracking of the current pose back and forward correspondingly, while num-
bers in boxes nearby specify how many frames the pose should be tracked.
The copy radio button enables the direct copy functionality, which may
come in handy if tracking fails.

View and Navigation. The navigation bar allows one to browse the
video frames back and forth, jump to a frame by number, play the video
sequence with adjustable speed, etc. The corresponding annotations are dis-
played on top of the video frames in the image area. The user may manually
adjust the annotations by dragging the joints around the image using the left

Chapter 3. Data Preparation 24

(a) (b)

Figure 3.5: Video Pose Annotation tool GUI functionality example. (a) It
is hard to see where the limbs of the person are, while dragging the joints.
(b) When annotations are hidden, only joints are shown when dragging, and
lines do not occlude the limbs.

mouse button. Holding Shift results in groups of the joints being moved
together, which is helpful when dragging the whole arm/leg/body together.
Clicking the right mouse button releases the keypoint associated with the
selected joint. Keypoints are highlighted with brighter color compared to
regular joints, which can be turned off by unchecking the Show keypoints

check box. Furthermore, one may want to uncheck Show annotations in
order to hide the annotated pose. We found this useful when annotating
videos of low quality/high motion noise, when it gets particularly hard to
see what the right pose of the human is, with the annotations displayed on
top (see Figure 3.5). Also, unchecking Show frames hides the images in
case one wants to see how realistic the resulting motion of a stickman is.
Finally, it is possible to take snapshots of the current image area with the
help of Screenshot button.

3.1.3 Design

One of the objectives of the Video Pose Annotation tool is to be flexible
enough to be applied in various scenarios. The dataset described in Section

Chapter 3. Data Preparation 25

3.2 includes full-body pose annotations, which might be useful for sports
analysis applications. However, in other domains different pose representa-
tions might be required, such as upper body or hands only. In order for this
tool to encompass potential changes in the body pose, we designed it with
the principles of Object-Oriented Programming and flexibility in mind.

Figure 3.6 demonstrates the class hierarchy of the part of the application,
responsible for body pose representation. AbstractSkeleton is the base
class for all body part representations. Skeleton2D is the base abstract
class for all “stickman” representations, which consist of 2D joint locations,
sizes and connections between them. The distinction between the two is
made in order to embrace potential classes that have information beyond
the standard 2D information, such as 3D orientation or depth.

If one wants to annotate 2D poses with a different skeleton structure,
they have to inherit the Skeleton2D class and provide implementation for
methods representing the body graph: skeletonSize, getParentIndexes,

getPartConnections, getConnectionColors, getJointColors and
getDragAdjacentJoints. Also, one may modify the SkeletonFactory

class, which creates the appropriate instance of the AbstractSkeleton class
based on the number of joints.

We provide implementations for four body pose classes. FullBody rep-
resents a 14-joint body skeleton, MidpointFullBody expands the latter pose
with joints in the middle of each limb and two additional joints on each side
of the torso, resulting in a 26-joint body structure. Likewise, UpperBody is
a 10-joint skeleton covering the upper body and MidpointUpperBody is its
18-joint expanded version. An example of a MidpointFullBody skeleton can
be seen in Figure 1.1.

Every instance of a subclass of AbstractSkeleton also has a createFrom
method, which serves the role of a constructor accepting instances of other
classes inherited from AbstractSkeleton. This enables conversions between
different pose classes, which may come handy since many pose representa-
tions share the same body parts. For instance, it is possible to convert
MidpointFullBody to FullBody and back, FullBody can be converted to
UpperBody etc.

We make two assumptions regarding the classes inherited from the base
class AbstractSkeleton. First, the graph representing the body structure
must be connected. Second, the number of joints in the graph should be
different for every subclass of AbstractSkeleton. However, the application
provides an easy way to overcome the assumptions above. If one wants to
define a disjoint skeleton such as two arms, one can connect two disjoint
subgraphs with an edge E in order to obtain a tree model and then specify

Chapter 3. Data Preparation 26

Figure 3.6: The UML class diagram for skeletal body models.
FullBody, MidpointFullBody, UpperBody, MidpointUpperBody extend the
Skeleton2D class, which extends the most abstract AbstractSkeleton

class. SkeletonFactory is used to create appropriate AbstractSkeleton

objects based on the joint information.

the color for the edge E to be transparent. Furthermore, if it happens that
two different classes have the same number of joints, one may want to modify
the SkeletonFactory class by introducing one more optional parameter,
further distinguishing the classes between each other.

The current tool was designed such that every video sequence accepts
only one annotation, thus not foreseeing simultaneous annotations of several
people in one frame. A simple workaround for multiple-person sequences is
to make a separate annotation file for every person in the video. However,
the simultaneous annotations of multiple persons is made possible by the
design of the application. This could be enabled by defining a single graph
covering several skeleton models in the way described above and providing
a multiple-person detection algorithm for initialization.

Chapter 3. Data Preparation 27

3.1.4 Implementation

We implemented the tool with Matlab and tested it on version R2011b.
We use a Matlab implementation of Flexible Mixture of Parts [55] as a
state-of-the-art pose detector (see Section 2.2.1) and median optical flow
(see Section 2.2.4) as a tracking algorithm, based on Liu’s Matlab optical
flow implementation [32]. However, the detection and tracking algorithms
can be easily changed based on the user’s need. Such replacements may be
necessary when changing the skeletal representation of the body.

3.2 Dataset

The research of this thesis was done mostly with applications to sports video
analysis in mind. Therefore, we are most interested in datasets containing
full body annotations in unconstrained real-world videos. Furthermore, ac-
tion labeling might be potentially useful for the applications of pose estima-
tion to action recognition.

The UCF Sports Action dataset [42] fits the description above and thus
suits our needs. It contains more than 150 video sequences falling in one
of the 9 action classes: diving, golf-swinging, kicking, lifting, riding-horse,
running, skating, swinging and walking. The actions were collected from
various sport recordings, typically featured on broadcast TV channels. Most
sequences contain one or more people performing similar action.

In this work we release annotations for human poses in selected video
sequences of the UCF Sports Action dataset. We limited ourselves to the
following 7 action classes due to time constraints: golf-swinging, kicking, lift-
ing, riding-horse, running, skating and walking. The people in these videos
are roughly upright, which is in line with a some existing image datasets
with annotated poses [16] [40] [12]. If a video sequence contains more than
one person, we create annotation files for each one of them if they perform
the action of their action class and are sufficiently unoccluded. We used the
Video Pose Annotation tool (Section 3.1) to create these annotations. See
some examples of the annotations in Figure 3.9. By releasing the dataset
together with the annotation tool we hope to encourage more research into
human pose estimation in video sequences and to lessen the gap between the
abundance of its real-world applications and the lack of targeted algorithms.

Chapter 3. Data Preparation 28

3.2.1 Evaluation Metric

In this section we consider the question of the definition of the correct pose.
We show that authors of different datasets and algorithms understand it
differently and propose our own definition that in our opinion better suits the
current state-of-the-art algorithms. We follow the tradition for the datasets
in defining evaluation metrics for the consistency of the results, and propose
a PCP2D evaluation metric that we suggest be used when reporting results
on our dataset.

The most common evaluation metric for human pose estimation is the
percentage of correct parts (PCP), reflecting the number of body parts esti-
mated withing a certain distance threshold to their ground truth positions.
Body parts are usually defined by the edges in the body graph. The most
widely used version of PCP labels a body part as correct if the average dis-
tance of its joints to their ground truth positions is less than a threshold,
which is defined by a fraction of the size of the ground truth body part [16].
The stricter version of PCP used by Ramanan [40] requires that both joints
are within a threshold distance to their ground truth locations. The two
versions of the PCP measure are the consequence of an ambiguous verbal
definition of PCP by Ferrari [16]. In order to avoid such confusions in future
we think it is important to address the question of how to define what is
ground truth, which has not been addressed in the literature yet.

Let us consider the problem of pose estimation as the task of fitting a
color skeleton in the image. The skeleton’s right leg is red, left leg is blue,
right arm is pink, left arm is cyan, torso is yellow and head is green. Johnson
and Everingham [26] provide annotations for the Leeds dataset, such that
the skeleton position always corresponds to the actual position of a person in
the image (Figure 3.7 (a)). However, Ramanan [40] always fits the skeleton
in the image so that the skeleton’s red leg and pink arm are roughly on the
left from its blue leg and cyan arm (Figure 3.7 (b)). Such labeling may be
beneficial for various pose estimation algorithms such as FMP [55], because
it allows them to build different appearance models for right and left parts
of the body, which improves the pose estimation performance.

From the examples above one may see that the authors of different papers
understand the notion of a correct pose differently. Johnson and Evering-
ham require that a pose estimation algorithm evaluated on their dataset
is capable of telling which side of the body is left and which is right. Ra-
manan, to the contrary, requires an algorithm to label everything on the left
as red/pink, and on the right as blue/cyan. Therefore, an algorithm giv-
ing perfect results on the Leeds dataset would often confuse the limbs and

Chapter 3. Data Preparation 29

(a) (b)

Figure 3.7: Annotation examples from two different datasets. (a) Leeds
dataset [26]. (b) People datset [26] (best viewed in color).

give lower performance on the People dataset and, conversely, the perfect
algorithm for the People dataset will often fail on the Leeds dataset. Fur-
thermore, such discrepancies become even more important when one deals
with video sequences, where the relative horizontal placements of body parts
change in one video sequence (Figure 3.8).

In order to address the above issues, we suggest two evaluation schemes.
The first scheme requires an algorithm to be able to distinguish the left and
right sides of a body, and uses standard PCP (either strict or loose) for
evaluation. This scheme could be applied to the datasets that themselves
distinguish the left and right sides such as Leeds dataset. The second scheme
does not require an algorithm to have any knowledge about which side is
which and allows it to freely confuse the left/right body parts. Although the
first scheme describes the image best, we argue that the state of the art for
2D pose estimation is not able to differentiate the actual right and left body
parts, and is not intended for this purpose [55]. Therefore, we introduce a
modified version of PCP that we entitle PCP2D in order to elaborate the
second scheme.

PCP2D is a metric for evaluating the percentage of correct body parts,
allowing an algorithm to switch the left and right body parts. It operates
on pairs of larger body parts that are defined by several edges in a body
graph, which represent the arms, legs and two sides of the torso. There are
two possible assignments of every pair of the left (L) and right (R) ground
truth body parts to the left (L) and right (R) instances in the detection:
L→ L,R→ R and L→ R,R→ L. We compute the standard PCP (either

Chapter 3. Data Preparation 30

Figure 3.8: Example of video pose annotation with alternating limbs.
Left/right positioning of left/right leg changes with time (best viewed in
color).

strict or loose) for every assignment and take the highest one. The final
PCP2D measure incorporates the highest PCP from every pair and also
includes non-paired body parts such as the head.

We suggest using the PCP2D evaluation metric on the UCF Sports Pose
dataset for algorithms that do not distinguish between the left and right sides
of the body, as we think that using the standard PCP measure in such cases
does not reflect the actual performance of an algorithm. However, standard
PCP is an option for methods that are able to predict the left/right side
labeling.

3.3 Discussion

Recently Jhuang et al.released an annotation tool, aiding manual annotation
of human poses in video sequences [25]. In this section we briefly contrast
it to the tool introduced in this section. The advantages of JHuang’s tool
in comparison to our application are as follows:

• Annotations come together with a direction-specific human silhouette

• The tool has web interface, which does not require any proprietary
software such as Matlab

Chapter 3. Data Preparation 31

It is worth noting that the tool allows one to chose the silhouette based
on direction, however its shape is defined by a set of joints and cannot be
modified. Therefore, one may reconstruct similar silhouettes from anno-
tations made with our tool. The drawbacks of the Jhuang’s application
according to its online demo are the following:

• Although the tool propagates the body poses to the next frame using
optical flow, it does not have any interpolation functionality, and the
pose must be adjusted for every frame

• Without interpolation there is no easy way one could deal with occlu-
sions and self-occlusions when using the tool

• There is no easy way one could make temporally smooth annotations.
The tool also does not support the video playback functionality, which
would allow one to check the temporal consistency of annotations

• In contrast to our highly configurable application Jhuang’s tool sup-
ports only one type of annotation which is the pre-defined full-body
model

• At the time of writing the tool only features a web demo for a specific
video sequences, and cannot be used for the user’s data, doesn’t sup-
port saving and loading annotations. Our tool in contrast can be used
to browse annotations in a convenient way

• The source code of the tool is hidden behind the web interface, and
thus cannot be modified. Our tool is available together with the source
code and features flexible design for easy changes in algorithms under-
neath it

At the time of writing we have no access to J-HMDB annotations [25]
and cannot directly compare the quality of the data. However, given the
above considerations we believe that our annotations are more accurate and
smooth, even when the exact location of body joints is unknown due to the
occlusions.

Chapter 3. Data Preparation 32

Figure 3.9: Examples of the UCF Sports Pose dataset.

33

Chapter 4

Pose Estimation in Video: a
Shortest Path Approach

In this chapter we focus on human pose estimation in video sequences. In
particular, we are aiming to improve the state-of-the-art human pose estima-
tion method in single images entitled Flexible Mixture of Parts (FMP) [55].
The key observations that motivate the work of this chapter are as follows:

• The FMP pose estimations are very noisy, often giving substantially
different results in consecutive frames of a video sequence, even when
the subject is almost static

• Often the pose estimation with the highest score obtained with FMP is
not the best one, and there are better estimates among the top-scoring
candidates

• Frequently the best estimation of pose is not present in the set of
results, returned by FMP, while a similar pose is present among the
best results in the adjacent frames. This happens mostly due to the
double-counting problem, when two body parts cover the same image
region

The above observations imply that it is possible to combine FMP with
motion information to obtain better estimations of pose. The main con-
tribution of this chapter is a method for human pose estimation in video
sequences, improving the state-of-the art for pose estimation in single im-
ages.

This chapter is organized as follows. In Section 4.1 we describe the
model, in Section 4.2 we explain the inference method. We discuss results
in Section 4.3.

Chapter 4. Pose Estimation in Video: a Shortest Path Approach 34

4.1 Model

The main idea of this method is to collect the best n outputs of FMP for
every frame and expand it with additional examples that were missed by
FMP using tracking, then find the best combination of poses throughout
the whole video sequence with respect to a certain measure. We assume an
offline setup, when the whole video sequence is given at once. The measure
that we use when computing the best set of poses is the combination of
local and pairwise scores. The local score of a pose in an image determines
how well the pose matches the image, while the pairwise score between two
consecutive pair of poses measure how well the poses are aligned with each
other. We refer to this method as the shortest path approach.

Suppose we are given a sequence of video frames I = {It}Tt=1. Let pt =
{pti}Ki=1 denote body pose in frame It, where pti = (xti, y

t
i) is the pixel location

of body part i, and p = (p1, . . . pT) denote the total spatial configuration of
body parts in T frames. Our goal is to find the best combination of poses
throughout the T video frames:

p = arg max
p∈P

S(I, p), (4.1)

S(I, p) =

T∑
t=1

Sloc(It, p
t) +

T∑
t=2

Spair(It−1, It, p
t−1, pt). (4.2)

Features. Although it is possible to use additional information such as
color for the computation of local scores, we use only HOG features [9] in
order to make the comparison to FMP fair. For the computation of pairwise
scores we resort to tracking methods capturing motion information. Namely,
we use optical flow (see Section 2.2.4).

Tracking. In the current model we use tracking extensively. We chose
the median optical flow because it shares information between its separate
instances when tracking different image areas in the same video sequence,
which makes it relatively fast (see Section 2.2.4). However, usage of different
tracking algorithms is possible. We write (x′, y′) = Ft1t2(x, y) for the result
of a tracking algorithm from frame t1 to frame t2 applied to the image region
centered at (x, y) with the size of a body part. Furthermore, F̂t1t2(pt1) =
{Ft1t2(pt1i)}Ki=1 is the pose obtained by tracking pose pt1 to frame t2.

Poses search set. P determines the set of poses considered in (4.1). Let
FMP(It) denote a set of n best-scoring poses, returned by flexible mixture
of parts for frame t. We first populate P with FMP(It) and then expand it

Chapter 4. Pose Estimation in Video: a Shortest Path Approach 35

with tracking FMP(It) with median optical flow θ frames back and forward.
We find expansion necessary as it usually fills in the correct poses, missing
from FMP(It):

P =
T⊗
t=1

(
FMP(It) ∪

τ2⋃
τ=τ1

{F̂τt(pτ)|pτ ∈ FMP(Iτ)}

)
, (4.3)

where τ1 = max(1, t − θ), τ2 = min(T, t + θ) and
⊗

denotes Cartesian
product.

Local scores. Sloc(It, p
t) define the local score of pose pt in image

It. Since we are determined to use HOG features only, the best score of
the pose would be the actual score returned by FMP, as it contains both
the appearance and deformation parts. However, there is no score assigned
to many poses in P , as they were obtained by tracking, as opposed to be
directly returned by FMP. We reconstruct the scoring function of FMP by
computing the best combination of filters given current position of body
parts:

SFMP(It, p
t) = max

f t
S(It, p

t, f t), (4.4)

where S(I, p, f) is defined as in (2.2.1). This can be done using dynamic
programming with the following message passing:

scoreti(f
t
i , p

t) = b
f ti
i + ω

f ti
i · φ(It, p

t
i) +

∑
j∈kids(i)

mt
j(f

t
i , p

t), (4.5)

mt
j(f

t
i , p

t) = max
f tj

(
b
f tjf

t
i

ji + scoretj(f
t
j , p

t
j) + ω

f tjf
t
i

ji · ψ(ptj − pti)
)
. (4.6)

FMP is far from being perfect, and it frequently happens that low-scoring
body configurations estimate the pose better than high-scoring ones. With
the above scoring function correct detections that were obtained by tracking
and not selected by FMP will have low scores and will often be rejected by
the dynamic programming algorithm selecting the best-overall combination
of poses p. However, the tracking origins of such poses as direct outputs of
the FMP will score higher. This motivates us to alter the local scores of
tracked poses to capture both the score of the tracking origin and the actual

Chapter 4. Pose Estimation in Video: a Shortest Path Approach 36

score by blending them together:

Sloc(It, p
t) =

SFMP(It, p

t) if pt ∈ FMP(It),

| τθ |SFMP(It, p
t)

+(1− | τθ |)SFMP(It+τ , F̂
−1
t+τ,t(p

t)) if pt ∈ F̂t+τ,t(FMP(It+τ)).

(4.7)
Pairwise scores. Spair(It−1, It, p

t−1, pt) represents score between poses
pt−1, pt in two adjacent frames. We use squared euclidean distance between
the pose obtained by tracking of pt−1 and pose pt:

Spair(It−1, It, p
t−1, pt) = Cd(F̂t−1,t(p

t−1), pt), (4.8)

d(pt1 , pt2) =
K∑
i=1

(xt1i − x
t2
i)2 + (yt1i − y

t2
i)2, (4.9)

where C is a normalizing constant utilized in order to make the local and
pairwise scores comparable.

4.2 Inference

Inference corresponds to maximizing (4.2) with respect to the combination
of poses p. This can be done efficiently using dynamic programming with
the following message passing:

scoret(p
t) = Sloc(It, p

t) + max
pt−1∈Pt−1

Spair(It−1, It, p
t−1, pt), (4.10)

where Pt = {pt|(p1, . . . , pt, . . . , pT) ∈ T} is a set of poses in frame t. After
passing messages throughout the whole chain of poses scoreT (pT) would
contain the total scores of pose configurations. The final set of poses can be
obtained by taking the maximum-scoring pose from scoreT (pT) and applying
backtracking.

The inference procedure can be summarized as follows:

Chapter 4. Pose Estimation in Video: a Shortest Path Approach 37

Input: Set of images I = {It}Tt=1, constants n, θ

Output: Set of poses p = (p1, . . . , pT)

for each frame It do
P̂t ← the set of n best poses returned by FMP;
if t > 1 then

ft−1,t(x, y)← optical flow for all (x, y);

end
end
for each frame It do

Pt ← P̂t;
τ1 ← max(1, t− θ);
τ2 ← min(T, t+ θ);
for τ = τ1, . . . , τ2, τ 6= t do

for each pτ ∈ P̂t do
Fτt(p

τ
i)← median of optical flow around pti;

pt ← {Fτt(pτi)}Ki=1;
S1 ← reconstructed score of FMP;
S2 ← score of pτ returned by FMP;
α← |t− τ |/θ;
Sloc(It, p

t)← αS1 + (1− α)S2;
Pt ← Pt ∪ pt;

end
end

end
for each frame It, t > 1 do

for each pt−1 ∈ Pt−1 do
for each pt ∈ Pt do

Spair(It−1, It, p
t−1, pt)← d(F̂t−1,t(p

t−1), pt)

end
end

end
(score(p), ind(p))← dynamic programming on Sloc, Spair;
(p1, . . . , pT)← backtracking with ind(arg max(score));

Algorithm 1: Pose estimation in video procedure.

Chapter 4. Pose Estimation in Video: a Shortest Path Approach 38

4.3 Experiments

Parameter Adjustment. The major parameters in the algorithm to be
set are the number of top FMP detections in each frame n and the number of
frames each original detection is tracked back and forward to θ. The major
factor that we take into account when adjusting parameters for the model
is the time of inference. We would like the computation time of our method
to be of the same order of magnitude as FMP. The latter often runs in 5-20
seconds for a single image on a conventional machine. We limit ourselves to
60 seconds per image frame, which puts certain constraints on n and θ.

The computation time during detection is mostly consumed by two
stages: computing n FMP detections and tracking detection back and for-
ward θ frames. The FMP computation time does not depend on n, therefore
we have to minimize the tracking time, which in our experiments takes on
average 80% of the inference time. In every frame our algorithm performs
articulated tracking 2nθ times, which involves tracking each of the 26 body
parts in the model. We use median optical flow, which on average takes
0.06 seconds per body part, taking into account pre-computation of optical
flow for every consecutive pair of images. Therefore we impose a constraint
nθ < 20 in order to satisfy 60 seconds per frame computation time require-
ment.

Although the median optical flow is fast, it is not the best tracking algo-
rithm. In our experiments we observe that tracking for more than 2 frames
often drifts away and picks the background regions especially when people
in the videos move fast. Therefore we set θ = 2 to maximize the number of
FMP detections, and set n = 10. Our early experiments demonstrated the
benefit of this approach in comparison with θ = 5, n = 4. We also set the
transition cost weighting constant C = 1, as it does not seem to significantly
affect the results.

Evaluation. We evaluate our algorithm using PCP2D, a definition of
percentage of correct parts proposed in Section 3.2.1. As discussed earlier,
evaluation of an algorithm that does not distinguish between left and right
sides of a body on a dataset that does differentiate them using standard PCP
measure does not necessarily reflect the performance of the algorithm. We
use PCP2D based on a more common (loose) version of PCP (see Section
3.2.1). The threshold for the PCP measure often varies depending on the
dataset. Since our detections are 26-part body skeletons, the parts them-
selves are smaller than in a 14-joint skeleton, therefore we set the threshold
to a relatively large value 0.6.

Many videos in the UCF Sports Pose dataset contain multiple people

Chapter 4. Pose Estimation in Video: a Shortest Path Approach 39

Table 4.1: Results of our shortest path approach (SPA). Results are com-
pared to FMP [55] for different action classes and overall.

Action Class Golf Kick Lift Ride Run Skate Walk All
Swing Horse

FMP [55] 58% 57% 72% 52% 52% 58% 68% 60%
SPA 64% 60% 82% 60% 60% 64% 79% 68%

either in the background or performing similar actions together. FMP is
a detection approach, which may often detect people other than the target
person. In order to make the comparison to FMP fair we crop the ini-
tial video sequences such that they contain single person only. Due to the
time constraints we evaluate our algorithm on a subset of UCF Sports Pose
dataset, containing 4 to 10 videos per action class, totaling from 230 to 405
video frames per action class. It has 39 video sequences with 2305 video
frames in total. The comparison of the algorithm introduced in this chapter
and FMP for each action class and overall is presented in Table 4.1. For the
examples refer to Figures 4.1-4.3. The author’s website1 provides several
video examples comparing FMP to our approach.

4.4 Discussion and Future Work

Comparison to other methods. The approach described in this chapter
is close in some of its ideas to both [51] and [58], although it was devel-
oped independently, as its development started before these papers were
published. Here we would like to briefly contrast these methods with our
approach.

Both our approach and [51] take the top n outputs of the FMP. Wang et
al. [51] find the best-overall combination of poses using dynamic program-
ming. They score every pose according to a pre-learned color model, and
score co-occurrences of poses in adjacent frames using color similarity. We
find the best combination of poses in the same way, however we chose not
to use any features other than HOG. We want to make the comparison to
FMP fair, and we are interested in seeing how the addition of only flow
information improves the detections. Instead, we use the score returned by
the FMP itself. In order to obtain the pairwise scores we propagate the

1http://www.cs.ubc.ca/nest/lci/thesis/olgeorge/index.html

 http://www.cs.ubc.ca/nest/lci/thesis/olgeorge/index.html

Chapter 4. Pose Estimation in Video: a Shortest Path Approach 40

body poses to the adjacent frames and compute their displacements, while
Wang et al.do not use optical flow.

We further decide to incorporate knowledge from adjacent frames in
every frame. We propagate the poses from adjacent frames to the current
frame and add them to the pool of poses for dynamic programming. In this
we are similar to Zuffi et al. [58] who propagate poses from the neighbouring
frames in order to aggregate more information for further processing.

Future work. Our algorithm “fails” most often in the presence of fast
motion or motion blur. The tracking of poses loses the body parts, result-
ing in incorrect propagation of information, which often causes wrong pose
estimates. In order to improve our algorithm one may replace the median
optical flow with a more accurate tracker. As the tracker is required to
be relatively fast, we foresee two potential candidates. The first one called
Median Flow [27] combines forward-backward error filtering and normalized
cross-correlation. It is based on optical flow and may satisfy the speed re-
quirement. The second alternative to median optical flow is the utilization
of trajectories, such as dense trajectories [52]. One may compute the tra-
jectories for the current frame and then use the median value in a box for
tracking. This procedure should not be time consuming as well. In order
to improve the pairwise scoring of poses in adjacent frames one may uti-
lize learning of the co-occurrence patterns of the appearance features of the
model. An alternative direction of the future work is to make the algorithm
online, as many applications of pose estimation such as human-robot inter-
action require the processing of the information on-the-fly. This could be
achieved by utilizing a hidden Markov model instead of the Viterbi algorithm
when looking for the best-overall combination of poses.

Our approach may be considered as a sampling method that first choses
a subset of all possible points representing the space of its model and then
does the full search on the results. The performance of a sampling method
depends on the sampling technique, which in our case is heavily based on
FMP. Therefore, it has very strict limitations to the set of poses it can
produce, which is determined by the output of FMP. Thus, if on a certain
sequence FMP fails, our method would fail as well. Furthermore, our method
would make the largest improvement on the sequences where FMP works
sufficiently well to detect the right pose among its top candidates, but not
well enough to pick the best one. In other words, our approach allows FMP
to fix itself based on what it already knows, filtering out incorrect detections.
Also, our method knows nothing about the dynamics of human motion,
performing only spatial reasoning about the discrepancies in consecutive
frames of a video sequence. In the next chapter we aim to address the above

Chapter 4. Pose Estimation in Video: a Shortest Path Approach 41

issues by introducing a method that does full search over several consecutive
frames while taking into account the change of the appearance in time.

Chapter 4. Pose Estimation in Video: a Shortest Path Approach 42

Figure 4.1: Examples of pose estimates of the shortest path approach. The
results are compared to the results of FMP [55]. The first and third rows
contain the results of FMP, the second and fourth rows contain the results
of our method on the same images.

Chapter 4. Pose Estimation in Video: a Shortest Path Approach 43

Figure 4.2: Examples of pose estimates of the shortest path approach. The
results are compared to the results of FMP [55]. The first and third rows
contain the results of FMP, the second and fourth rows contain the results
of our method on the same images.

Chapter 4. Pose Estimation in Video: a Shortest Path Approach 44

Figure 4.3: Examples of pose estimates of the shortest path approach. The
results are compared to the results of FMP [55]. The first and third rows
contain the results of FMP, the second and fourth rows contain the results
of our method on the same images.

45

Chapter 5

Pose Estimation in Video: a
Detection Approach

The approach described in Chapter 4 gives better results than the original
Flexible Mixture of Parts (FMP). Acting as a smoothing filter, it helps to
get rid of sporadic incorrect detections, giving an overall better estimation of
pose throughout the video sequence. However, it is fundamentally a filtering
approach, and as was discussed in Section 4.4 it can give better results only
when the original approach succeeds more often than fails.

In order to address the above limitation in this chapter we introduce a
novel articulated human detection algorithm in video sequences. In contrast
to the previous approach that searches only among the best FMP results, it
is a detection algorithm that enables full search in several consecutive frames
at once, which internally takes into account both appearance and motion
information. Like FMP, it utilizes a tree model, allowing fast and tractable
inference using dynamic programming and a modified distance transform.
In addition it is an online method, in the sense that at every point in time
it does not require any future information in order to detect a pose in the
current frame. The latter makes it possible to run it in real-time, given
enough computational power.

This chapter is organized as follows. In Section 5.1 we define the model,
in Section 5.2 we describe inference algorithm together with our modification
of the distance transform of sampled functions. We present results in Section
5.3.

5.1 Model

The main idea behind the current method is the way to incorporate motion
and appearance in a single model, such that it captures how the appearance
changes with time. This can be achieved by learning the co-occurrence
patterns of filter types, corresponding to the same body part in consecutive
frames. Thus, the model fully connecting several tree models covering the

Chapter 5. Pose Estimation in Video: a Detection Approach 46

human body in adjacent frames may be utilized. However, inference in
such model becomes intractable. In order to restore the tree property of
the model graph, we drop the limb connections in all frames except the
first one, leaving a “trail” of positions in the past several frames for every
part (see Figure 5.1). Although the dropped connections would distort the
positions of body parts in previous frames, this may be compensated by
the temporal connections, aligned with the optical flow. Furthermore, the
inference problems that arise when utilizing this model can be solved by a
modified distance transform.

Let us write I = {It}Θt=0 for a sequence of Θ + 1 video frames, where I0

is the frame where we want to detect a pose and IΘ . . . I1 are Θ preceding
frames. We use descending enumeration for convenience. Our model utilizes
a tree graph (V,E) = (

⋃Θ
t=0 Vt,

⋃Θ
t=0Et) spanning Θ+1 frames, such that in

frame I0 graph (V0, E0) represents a K-node tree model of the human body,
while nodes VΘ . . . V1 correspond to locations of body parts in Θ preceding
frames and edges EΘ . . . E1 connect body parts to their instances in the
previous frame (See Figure 5.1). Formally, we use double indexing for nodes
in the graph, such that V = {(i, t)}K,Θi=1,t=0 where t denotes the frame number,
and i represents the body part index. Then E0 = {((i, 0), (j, 0))} and Et =
{((i, t− 1), (i, t))}Ki=1. For convenience we use the following notation: V ′t =
{i}Ki=1, E′0 = {(i, j)}, E′t = {i}Ki=1.

Furthermore, let pti = (xti, y
t
i) be the pixel location of body part i in

frame It. Then pt = {pti}Ki=1 defines all body part locations in frame It, and
p = (p0, . . . , pΘ) is the total spatial configuration of body parts in Θ + 1
frames. Likewise, let f ti = {1, . . . , R} determine the filter type for body part
i in frame t, then f t = {f ti }Ki=1 and f = (f0, . . . , fΘ) represent the filter
configuration in frame t and the total filter configuration correspondingly.
Also, similarly to Section 4.1 let (x′, y′) = Ft(x, y), t = {1, . . . ,Θ} denote
the median optical flow frame t− 1 to frame t in the image region centered
at (x, y) with the size of a body part (see Section 2.2.4).

The score of a specific configuration of body part locations p and filter
types f in Θ + 1 video frames I has the following form:

S(I, p, f) =

Θ∑
t=0

St(I, p, f), (5.1)

Chapter 5. Pose Estimation in Video: a Detection Approach 47

(a) (b)

Figure 5.1: Spatio-temporal tree structure of the model. Graph (V0, E0)
represents body structure in the frame where detection is being performed.
Each set of nodes Vt correspond to locations of body parts t frames back
in time, each set of edges Et connects nodes in Vt−1 to their correspond-
ing nodes in Vt. (a) An example of the model structure for Θ = 2. (b)
Corresponding poses for frames I2, I1, I0.

S0(I, p, f) =
∑
i∈V ′0

b
f0i
i +

∑
(i,j)∈E′0

b
f0i f

0
j

ij + . . .

∑
i∈V ′0

ω
f0i
i · φ(I0, p

0
i)+

∑
(i,j)∈E′0

ω
f0i f

0
j

ij · ψ(p0
i − p0

j),
(5.2)

St(I, p, f) =
∑
i∈V ′t

b
f ti
i +

∑
i∈E′t

b
f ti f

t−1
i

i + . . .

∑
i∈V ′t

ω
f ti
i · φ(It, p

t
i)+

∑
i∈E′t

ω
f ti f

t−1
i

i · ψ(pti − Ft(pt−1
i)), t = {1, . . . ,Θ}.

(5.3)

In the above equation φ(It, p
t
i) is a feature vector extracted from image

It at location pti. This could be a HOG descriptor [9] or any other feature.
We also write ψ(dx, dy) = [d2

x d2
y dx dy]

Θ.

Chapter 5. Pose Estimation in Video: a Detection Approach 48

Given this notation, our model has the following form:

M = (B,Ω) , (5.4)

B =
(
{bmi }, {bmnij }, {bmni }

)
, (5.5)

Ω =
(
{ωmi }, {ωmnij }, {ωmni }

)
. (5.6)

Here bmi favours assignment of filter type m to body part i, bmnij favours
co-occurrence of filter types m and n in body parts i and j, bmni favours
switching from filter m to filter n in body part i in two consecutive frames.
Furthermore, ωmi is the filter of type m of body part i. The quadratic
deformation spring model between filters m and n of body parts i and j
is determined by ωmnij . Also, ωmni defines the deformation model for the
switching from filter n to filter m of body part i in two consecutive frames.

Note that S0(I, p, f) is exactly the cost function of the Flexible Mixture
of Parts [55] (see Section 2.2.1). Thus, our model turns into FMP in the
case when Θ = 0.

5.2 Inference

Inference corresponds to maximizing the model’s score function (5.1) over
parameters (p, f) given a sequence of video frames I = {It}Θt=0. Since our
relational graph (V,E) is a tree, dynamic programming enables full search
over all possible locations p and filter types f , similarly to FMP.

5.2.1 Message Passing

In order to perform dynamic programming, we set up a message passing
mechanism from child to parent nodes (see Section 2.2.2). Let kids(i, t) be
the set of children of node (i, t), let kt(i, t) denote the temporal child of node
(i, t) and ks(i, t) denote its spatial children:

ks(i, t) = {(j, τ) ∈ kids(i, t)|τ = t},
kt(i, t) = {(j, τ) ∈ kids(i, t)|τ = t+ 1, j = i}.

The message that child (i, t) passes to its parent has the following form:

scoreti(f
t
i , p

t
i) = b

f ti
i +ω

f ti
i · φ(It, p

t
i) + . . .

+
∑

(j,τ)∈ks(i)

mstj(f
t
i , p

t
i)+

∑
(j,τ)∈kt(i)

mtt+1
i (f ti , p

t
i),

(5.7)

Chapter 5. Pose Estimation in Video: a Detection Approach 49

where mstj and mtti are defined as follows:

mstj(f
t
i , p

t
i) = max

f tj

[
b
f tjf

t
i

ji + max
ptj

(
scoretj(f

t
j , p

t
j) + ω

f tjf
t
i

ji · ψ(ptj − pti)
)]

,

(5.8)

mtti(f
t−1
i , pt−1

i) =

max
f ti

[
b
f ti f

t−1
i

i + max
pti

(
scoreti(f

t
i , p

t
i) + ω

f ti f
t−1
i

i · ψ(pti − Ft(pt−1
i))

)]
(5.9)

Note that our inference procedure is obtained from the one in FMP by
adding the second sum in equation (5.7), which has 0 and 1 terms for leaves
and internal nodes correspondingly.

The message passing starts from leaves, and proceeds until all the nodes
except the root have passed messages to their parents. Then, score0

1(f0
1 , p

0
1)

contains the final scores for detection, and similar to FMP we obtain multiple
detections by thresholding the score and applying non-maximum suppression
(see Section 2.2.1) on the result to remove the detections covering the same
human. We use backtracking to restore the detected poses (see Section
2.2.2).

5.2.2 An Approximate Distance Transform

The computationally expensive portion of message passing is computing
(5.8) and (5.9). It requires looping over L×R possible locations and types
of the parent and L×R potential locations and types of the child, making the
complexity of the whole procedure O(L2R2). The relaxation (2.2) reduces
the complexity to O(L2R). However, given that the total number of possible
locations L is often very large, the quadratic complexity makes inference
procedure too slow, almost impractical. In our experiments it took more
than an hour to find a pose in a small image on a conventional PC.

Therefore, utilization of methods reducing computation time is essen-
tial. Yang and Ramanan [55] use the distance transform developed by
Felzenszwalb and Huttenlocher [15], which reduces computation of (5.8)
to O(LR2) in the case when ψ(dx, dy) is a quadratic function (see Section
2.2.3). However, direct usage of the aforementioned distance transform for
computation of (5.9) is not possible. In this section we will describe how
one can modify it for our case.

Chapter 5. Pose Estimation in Video: a Detection Approach 50

One dimension. Consider the following problem. Let G = {g1, . . . , gn}
and H = {h1, . . . , hm} be one-dimensional grids, f : G→ R and d : H → R
be arbitrary functions. For every p in grid H find Df (p), defined as:

Df (p) = min
q∈G

P2(p+ d(p), q), (5.10)

P2(p, q) = a(p− q)2 + b(p− q) + f(q) (5.11)

This problem can be reduced to Felzenszwalb’s distance transform of
sampled functions [15] in the following way. First, we perform the compu-
tation of the lower envelope of parabolas P2(p, q) for all q in G. Then we
fill in the values of Df (p), but we replace p with p + d(p) when computing
values of the lower envelope.

Two dimensions. Let f : G → R be an arbitrary function defined on
two-dimensional grid G = {g1

1 . . . g
1
n} × {g1

1 . . . g
k
1}, and let d : H → R be an

arbitrary function defined on grid H = {h1
1 . . . h

1
m} × {h1

1 . . . h
l
1}. The goal

is to find Df (x, y) for every (x, y) in H:

Df (x, y) = min
(x′,y′)∈G

P2((x, y) + d(x, y), (x′, y′)), (5.12)

P2((x, y), (x′, y′)) = ax(x− x′)2 + bx(x− x′)
+ay(y − y′)2 + by(y − y′) + f(x′, y′). (5.13)

Df (x, y) = min
(x′,y′)∈G

ax(x+ d1(x, y)− x′)2 + ay(y + d2(x, y)− y′)2 + f(x′, y′)

(5.14)

In the case when d(x, y) ≡ 0 the problem reduces to (2.17)-(2.18), which
can be formulated as (2.19). The latter can be solved by performing Felzen-
szwalb’s one-dimensional distance transform along each column of the grid
G and then computing the distance transform along each row of the result.
Similar reduction to the one-dimensional case (5.10) is possible when the
function d(x, y) = (d1(x, y), d2(x, y)) satisfies the constraints

d1(x, y1) = d1(x, y2) = d1(x), ∀x ∈ {h1
1 . . . h

1
n}, (5.15)

d2(x1, y) = d2(x2, y) = d2(y), ∀y ∈ {h1
1 . . . h

k
1}, (5.16)

Chapter 5. Pose Estimation in Video: a Detection Approach 51

because in this case the first two terms of (5.13) do not depend on y:

Df (x, y) = min
x′,y′

(ax(x+ d1(x, y)− x′)2 + bx(x+ d1(x, y)− x′)+

ay(y + d2(x, y)− y′)2 + by(y + d2(x, y)− y′) + f(x′, y′)) = (5.17)

min
x′

[ax(x+ d1(x)− x′)2 + bx(x+ d1(x)− x′)+

min
y′

(ay(y + d2(y)− y′)2 + by(y + d2(y)− y′) + f(x′, y′))] = (5.18)

min
x′

[ax(x+ d1(x)− x′)2 + bx(x+ d1(x)− x′) +Df |x′(y)]. (5.19)

Intuitively, the aforementioned reduction is possible because the set of
points (x, y) + d(x, y) forms a grid:

R =
{

(x, y) + d(x, y)|(x, y) ∈ H} ≡ {r1
1 . . . r

1
m

}
× {r1

1 . . . r
l
1}. (5.20)

However, in the general case when equalities 5.15-5.16 do not hold the
procedure outlined above does not provide the solution to the problem 5.10-
5.11. One of the possible ways to deal with it is to form a grid from the
set R as defined in (5.20) by taking the Cartesian product of its projections
on the X and Y axes. This however may expand the set from L to L2

points and although in this case the above procedure could be utilized, the
computation will not be performed in linear time, thus the benefit of the
distance transform will be lost.

An alternative solution to this problem would be a distance transform
working directly in two dimensions by utilizing a two-dimensional lower
envelope of elliptic paraboloids. However, the computation of the lower
envelope in two dimensions is a much more complicated procedure, as one
has to find intersections of every elliptic paraboloid with all its neighbours,
and potentially neighbours of the neighbours, forming a complex partition
of the two-dimensional space, consisting of polygons of potentially arbitrary
shape.

We take a different approach. We quantize the set R as defined in (5.20)
into grid H, by obtaining d̃(x, y) such that (x, y) + d̃(x, y) is the closest
point to (x, y) + d̃(x, y) in grid H. Then we use the distance transform in
the conventional way, obtaining Df (x, y) as defined in (2.17). Finally we
compute the approximation to the distance transform D̃f (x, y) as defined in
(5.14):

D̃f (x, y) = Df (x+ d̃1(x, y), y + d̃2(x, y)). (5.21)

Chapter 5. Pose Estimation in Video: a Detection Approach 52

The above is equivalent to quantizing the optical flow information to the
nearest HOG cell. Since body part filters are often represented by 4× 4 to
6 × 6 HOG grids, this loss of information is not dramatic, which may be
effectively mitigated for a more accurate tracking algorithm. Furthermore,
when the quadratic coefficients ax, ay are sufficiently small as in our exper-
iments, the paraboloids are wide, and the difference in the computation of
the score is minimal.

In order to apply the distance transform to message passing (5.9), one

has to define [ax, ay, bx, by] ≡ ω
f ti f

t−1
i

i , f(x, y) = scoreti(f
t
j , (x, y)), d(x, y) =

Ft(x, y). Then utilization of the approximate distance transform is possible,
reducing the corresponding portion of message passing to linear time.

5.2.3 The Inference Procedure

As mentioned in the beginning of this chapter, the approach described above
is a detection algorithm, requiring information only about previous frames.
Given a video sequence V = {V1, . . . , VT } the inference corresponds to find-
ing a pose in frame t for all t ∈ {τ∆ + 1, . . . , T}, taking into account only
video frames V1, . . . , Vt. In order to do this, for every frame t we select Θ
previous frames with temporal step ∆:

I ={Iτ}Tτ=0, (5.22)

Iτ =Vt−τ∆, τ = {0, . . . ,Θ}. (5.23)

Then, for every t the inference procedure described in this section can
be performed independently, obtaining a full temporal tree, representing
the human body in Θ frames. The temporal part can be then disregarded,
leaving only the spatial part in the current frame, which represents the final
result of the detection.

Input: Sequence of video frames V = {V1, . . . , VT }, constants Θ,∆

Output: Set of poses p = (p1, . . . , pT)

for each t ∈ {τ∆ + 1, . . . , T} do
for each τ ∈ {0, . . . ,Θ} do

Iτ ← Vt−τ∆;

end
p← arg maxp maxf S({Iτ}Θτ=0, p, f);
pt ← (p)1;

end

Chapter 5. Pose Estimation in Video: a Detection Approach 53

5.3 Experiments

Parameter Adjustment. Our model consists of a spatial and a temporal
part. The spatial part defines how well the model fits the current frame,
while the temporal part identifies how consistent the appearance and loca-

tion of every body part in time is. We think that b
f ti
i and ω

f ti
i from equalities

5.1-5.1 that determine appearance bias and filter can be learned indepen-
dently of the temporal dimension, because the detection is performed in
evey frame independently taking into account several previous frames, and
these parameters may not depend on t. Therefore we use the corresponding

parameters from the FMP model trained on single images: b
f ti
i = b

f0i
i and

ω
f ti
i = ω

f0i
i . We follow Yang and Ramanan [55] and resort to relaxation

ω
f0i f

0
j

ij = ω
f0i
ij , which reduces the computation cost during inference.

We explore two simple methods for learning b
f ti f

t−1
i

i . The first method
finds the score of every ground truth pose in the training video sequence
by fixing the position and maximizing over all possible filter types for all
body parts using equations 4.5-4.6. Then for each body part it counts co-
occurrences of different filter types in two consecutive frames. The second
method acts similarly, but it takes into account all filter responses at every
time instance, as opposed to only counting the filter types that were selected
in the score reconstruction process. If in the current frame filter type i
has score si, and in the next frame filter type j has score sj , then the co-
occurrence bias of filter types i and j is increased by s1s2. When both i
and j either score high or negatively low this favours co-occurrence of these
filter types. It penalizes the co-occurrence when one of them is high and the
other one is low. We also explored other counting functions such as s1 + s2,
max(s1, 0) max(s2, 0) but found no difference in several early experiments.

Although the above learning schemes demonstrated efficiency in early
experiments, we found that they do not always improve the pose estimation
performance even on the videos they were trained on, and do not trans-
late well between video sequences. Therefore in our experiments we set

b
f ti f

t−1
i

i = 0 and explore the framework in the absence of the appearance

switch bias. We set ω
f ti f

t−1
i

i = ω
f0i
i as it does not significantly alter the re-

sults. Such an approach does not require any training video data, as we use
the model trained on single images. We set the temporal step ∆ = 2 to
increase the discrepancy between two consecutive frames and set the num-
ber of simultaneously considered frames in the past as Θ = 1. Increasing
Θ above 2 results in the growth of the number of tracking failures of our

Chapter 5. Pose Estimation in Video: a Detection Approach 54

Table 5.1: Results of our detection approach (DA). Results are compared to
FMP [55] for different action classes and overall.

Action Class Golf Kick Lift Ride Run Skate Walk All
Swing Horse

FMP [55] 58% 57% 72% 52% 52% 58% 68% 60%
DA 57% 53% 73% 54% 58% 58% 67% 62%

median optical flow algorithm. This decreases the algorithm performance,
as the model is constrained to search for the pose using incorrect spatio-
temporal tree configuration.

Evaluation. Similarly to Section 4.3 we evaluate the algorithm using
PCP2D on the same subset of videos from the UCF Sports Pose dataset,
consisting of 29 video sequences totaling 2305 video frames. The comparison
of the algorithm to FMP for each action class and overall is demonstrated
in Table 5.1. See Figures 5.2-5.3 for some pose estimation examples.

5.4 Discussion and Future Work

As one may see from Figures 5.2-5.3 our algorithm gives results very close
to the results of FMP. The optical flow does add new information which
leads to overall marginal improvement. However, on certain video sequences
our method works worse than FMP because inaccurate tracking imposes
incorrect priors on a pose in the previous frame.

We see several steps that may address the issues above. The first one
utilizes a joint spatio-temporal training scheme similarly to Yang and Ra-

manan [55]. It may help define the biases b
f ti f

t−1
i

i more optimally, which
may play an important role in the detection process by penalizing unlikely
filter switches. For instance, the horizontal forearm in the current frame is
unlikely to be vertical in the next frame as the change is too abrupt. Such
relations may be captured by a jointly learned spatio-temporal model.

However, providing a better learning scheme may not be enough to make
a substantial improvement in accuracy. Since we relax the spatial relation-
ships between joints in previous frames we need a good prior on the location
of these joints. The second step that we suggest for future work is to seek a
better tracking mechanism. As discussed in Section 4.4 the potential algo-
rithms are Median Flow [27] and dense trajectories [52].

Chapter 5. Pose Estimation in Video: a Detection Approach 55

An alternative way to improve the performance may exploit richer spatio-
temporal models. For instance one may utilize multiple tree structures
providing additional coverage of the edges in the original loopy graphical
model. A similar idea was exploited by Sapp et al. [44] who decompose the
intractable model into a tree ensemble with the full coverage of the edge
relationships of the original model. We do not know how the above im-
provements might increase the accuracy of the algorithm, and we leave it as
an interesting problem for future research.

Chapter 5. Pose Estimation in Video: a Detection Approach 56

Figure 5.2: Examples of pose estimates of the detection approach. The
results are compared to the results of FMP [55]. The first and third rows
contain the results of FMP, the second and fourth rows contain the results
of our method on the same images.

Chapter 5. Pose Estimation in Video: a Detection Approach 57

Figure 5.3: Examples of pose estimates of the detection approach. The
results are compared to the results of FMP [55]. The first and third rows
contain the results of FMP, the second and fourth rows contain the results
of our method on the same images.

58

Chapter 6

Abstracting Human Pose
Estimation

Human pose estimation is a challenging problem and an active research
field, motivated by many applications of pose detection, such as human-
computer interaction, surveillance and gaming. Recent advancements in
pose estimation [46] are able to give results sufficiently good for the use
in industrial and/or commercial applications, such as Microsoft KinectTM.
However, using a state-of-the-art algorithms in real-world applications has
numerous challenges. The majority of software engineers are non-experts
in Computer Vision and pose estimation and they may encounter many
problems, including the following:

• The state of the art advances fast and it is hard to track it down,
as there is no regularly updated list of benchmarked and evaluated
pose estimation algorithms. Furthermore, there is no one method that
would work best in all circumstances.

• Given a state-of-the-art pose estimation academic paper, it is not triv-
ial for non-experts to implement it. Furthermore, it is very hard to
constantly reimplement the pose estimation algorithm for a specific
application to keep up with the state of the art.

• The interface to most ready-to-use algorithms requires understanding
of the parameters.

We believe that the solution to these problems may be addressed with
the notion of the task, which we define as a combination of input descrip-
tion and output requirement, as well as parameters that can affect the result.
This provides enough information to select the appropriate algorithm, while
hiding the implementation details behind the abstraction. If the abstraction
covers enough of the problem space, new algorithms can be seamlessly inte-
grated without any changes to the interface, which would provide users with
continuous updates to the state of the art. Furthermore, the requirements

Chapter 6. Abstracting Human Pose Estimation 59

of a specific platform may be taken into account, e.g. by utilizing low-power
algorithms for mobile devices.

The purpose of this chapter is to introduce a task-based human pose
estimation control system. We focus on the problem of 2D pose estimation
in our selection of algorithms used in the system. However, the design of the
abstraction is sufficiently general to accept other types of algorithms, such as
3D pose estimation and pose estimation in stereo. The system was designed
as part of OpenVL [36], a framework that abstracts some Computer Vision
problems such as segmentation, matching and image registration.

The two key contributions of this chapter are:

• A task-based abstraction for human pose estimation, which hides im-
plementations of various pose estimation algorithms behind a single
simple yet powerful application programming interface (API)

• A method for mapping from task to algorithm that automatically se-
lects method most likely to succeed and adjusts its parameters based
on the task description

This chapter is organized as follows. We first discuss task description
in Section 6.1, and then outline the mapping from the task description to
the algorithm which produces final pose estimates. Section 6.3 present the
experimental evaluation of the algorithm mapping, Section 6.4 is devoted to
discussion and future work.

6.1 Task Description

The task description is based on three categories: input, output, and target.

6.1.1 Input Description

Input type. In our definition of abstraction we would like to capture as
many combinations of input data as possible. With this in mind, we format
the input data as a temporal sequence of spatial arrangements. Every spatial
arrangement is determined by a set of images coupled with poses of the
corresponding cameras at the current moment. The poses may be undefined,
while images contain information about color, depth or both. Temporal
sequences may also contain data such as whether the video sequence is being
streamed or is available at once. We refer to this as the input type.

The above definition of Input Type is flexible enough to cover most of
the common combinations of cameras in time and space. For instance, it

Chapter 6. Abstracting Human Pose Estimation 60

naturally represents the setting of multiple calibrated cameras, where each
spatial arrangement captures the position of the cameras at every time in-
stance. The stereo vision system may be described by spatial arrangements,
each containing two color images. The setup when the single camera is mov-
ing with an unknown trajectory is described by spatial arrangements with
single image and undefined camera position each. The common case of a
single depth camera is handled by one spatial arrangement with single depth
image.

Image description. In addition to input type we include an image
description, which encompasses the user’s prior knowledge about the input
image data. We define two types of image description: amount of occlusion
and clutter. We think they are the most relevant to the general description
of an image or video sequence in the setting of 2D pose estimation. However,
in other cases such as ones utilizing depth images there might be different
relevant conditions, which may be added as part of future work.

We loosely define the clutter as how many features would likely be found
in regions of the image not belonging to a person. For instance, an image
with a person standing on a field would possess low clutter, while an image
of a person in a city setting with many cars and buildings in the background
would be considered as high clutter. The occlusion condition reflects how
likely human bodies or their parts are to be covered by elements in the scene,
such as a person standing behind of a desk. Both clutter and occlusion are
defined in the range of (0, 1) and we quantize them into Low, Medium, High,
as most of the problems do not require an in-depth description.

Our input description consists of the input type and image description as
defined above, which we use to select the algorithm most likely to succeed
in the current case. The input type constrains the set of algorithms our
framework may select, because most of the algorithms strictly define what
kind of data they work on, such as color images or or stereo vision pairs.
We use image description as a factor to find the best algorithm for the given
input data.

6.1.2 Output Requirement

Similarly to input description, we would like the output requirement to cover
most of the common body representations that one might want to infer from
the image or video data. With this in mind we first define a set of all body
parts that we include in the framework: Head, Neck, Chest, L/R Shoulder,
L/R UpperArm, L/R Elbow, L/R LowerArm, L/R Hand, Abdomen, L/R
Hip, L/R UpperLeg, L/R Knee, L/R LowerLeg, L/R Foot. Although finer-

Chapter 6. Abstracting Human Pose Estimation 61

grained representations such as one including fingers may fit well into our
framework, we are leaving this as a future work. We further include body
part composition, which is a set of body parts with a description of the
requirement regarding the included parts. The composition requirement
may include one or several of the following:

• 2D or 3D location relative to camera

• Orientation as roll, pitch and yaw relative to camera

• Pixel-wise mask

• Bounding box or cube

Finally, we define the output requirement for the task as a set of body
part compositions. We also predefine a set of common compositions includ-
ing Full-Body, Upper-Body, Head+Torso, Head. Note that if the system
detects more than one person, it returns the required information about
each of them. We also include the speed/accuracy requirement in the range
of (0, 1), determining how much the accuracy could be sacrificed for the
speed.

The above representation captures the results one may get from the
majority of pose estimation algorithms. For instance, kinect-style body part
labelings together with 3D positions of body joints may be described by a
set of compositions, each of which requires a 3D location of the joint and a
pixel-wise mask. A set of 2D body joint positions together with the person’s
silhouette may be represented as a set of single-part compositions with the
requirement of a 2D position, together with a composition of all body parts,
requiring a pixel-wise mask. A simple face detector may be described as a
single composition with a single body part Head with the only requirement
of the bounding box.

Note that the above description may encompass a set of other algorithms
in Computer Vision, generally not associated with pose estimation such
as face or head detection and pose orientation estimation. However, we
believe that they share common features and algorithms with the field of
pose estimation and person detection and should be considered together (see
Section 2.1.1).

6.1.3 Target Description

The target description allows users to encode their prior knowledge about
people in the image, which consists of one or more of the following:

Chapter 6. Abstracting Human Pose Estimation 62

• The population

• The set of compositions with defined priors that include visibility, lo-
cation, size and orientation in 2D or 3D

• The distinctiveness from background in terms of color, texture, or
motion, in the range (0, 1)

We define the population as the number of people in each image. The
size and location of body part compositions are defined in the range (0, 1)
relatively to the size of the input image. The above conditions may affect
the selection of the algorithm. For example, there may exist algorithms that
specifically target multiple-people scenarios or work well on low-resolution
images. Conversely, there may be algorithms that fail on images when cer-
tain body parts are invisible, e.g. lower body. The distinctiveness from
background may be given when the user knows something about the ap-
pearance or motion of the person in the video. High color distinctiveness
may favour methods that rely on color while high texture may be important
for certain gradient-based algorithms. High motion distinctiveness tells the
system that the person is moving fast compared to the background, and
certain methods involving motion-based segmentation may come into play.
Alternatively, certain pre-processing based on color, gradient or motion fea-
tures may be applied.

Furthermore, the user may also have prior knowledge of the person’s
pose, such as visibility, location, size or orientation of certain body parts,
which may play a role in the algorithm selection process. For instance, prior
knowledge of legs being hidden behind the desk may trigger the selection of
an upper-body pose estimation algorithm, or the prior that the person is fac-
ing the camera may help select the face orientation method instead of head
orientation estimation algorithm. The prior knowledge of the above condi-
tions may be utilized by algorithms that employ instance-specific learning
applied on top of reliable detections of canonical poses [41]. Alternatively,
this may be directly incorporated by certain algorithms. For instance, lo-
cal features involving invisible body parts may be weighted low in the pose
estimation procedure while a location prior may increase scores for certain
parts in the image. Prior knowledge of size of body parts may weight cer-
tain scales higher, and orientation prior may be used to increase weight for
orientation-specific features in an algorithm.

In addition, we provide several pre-defined body poses that may be used
instead of body compositions: Regular, Unusual and Front-Facing. The
Unusual pose is a non-vertical or highly articulated body configuration and

Chapter 6. Abstracting Human Pose Estimation 63

(a) (b) (c) (d) (e)

Figure 6.1: Examples of scene conditions and algorithms output. The results
from three algorithms are presented, from top to bottom: GBM [43], F-
FMP [55], U-FMP [55]. (a) Regular Pose (b) Unusual Pose (c) Lower Body is
invisible (d) High Clutter (e) Low Clutter and Large Size. These algorithms
are described in Section 6.2.

Regular is any other pose. Front-Facing is a pose when torso of the person
is roughly facing the camera. See Figure 6.1 for some examples of images
with a defined image description or pose prior together with the outputs
from the algorithms that we include in the framework.

6.2 Task to Algorithm Mapping

Based on the abstraction outlined in the previous section we now present a
proof-of-concept framework designed to demonstrate the utilization of the
abstraction. In this work we consider four algorithms for 2D body pose
estimation: Rothrock’s grammar-based model (GBM) [43], Flexible Mix-
ture of Parts [55] for upper body (U-FMP) and full body (F-FMP) and our
shortest path approach from Chapter 5 (SPA). Furthermore, we include two
algorithms for head and face orientation estimation in order to demonstrate
the utility of the part-wise requirement formulation in the abstraction: Face
orientation estimation by Zhu and Ramanan [57] (FO) and head/torso ori-
entation prediction algorithm by Maji et al. [34] (HTO). We selected the

Chapter 6. Abstracting Human Pose Estimation 64

Table 6.1: Abstraction condition matrix. The task controls are presented
in the first two columns, followed by the algorithms used in our proof-of-
concept abstraction. The level of satisfaction for each control per algo-
rithm forms the basis for algorithm selection based on the user-supplied
description. Note: FB = Full Body, UB = Upper Body, LB= Lower Body,
FF=Front-Facing, H+T=Head+Torso; L=Low, M=Medium, H=High; px
= pixels.

Controls GBM F-FMP U-FMP SPA HTO FO
[43] [55] [55] [34] [57]

Input Image X X X 7 X X
Type: Video X X X X X X
Image Clutter L M-H M-H M-H L-H L-H

Descrip- Occlusion L M-H M-H M-H H L-M
tion:

Target Population 1 >= 1 >= 1 1 >= 1 >= 1
Descrip- Size (px) 80− 300 50− 500 > 300 50− 500 > 20 > 80

tion: Pose All Regular FF Regular All FF
Invisibility 7 LB LB LB 7 7

Output Joint Locations FB,UB FB,UB UB FB,UB 7 Head
Require- Joint Orientation 7 7 7 7 H+T Head
ments: Accuracy/Speed X 7 7 X X X

algorithms for the framework based on the problem space coverage, per-
formance and code availability on the web. Methods for pose estimation
return 2D locations of body joints, while head/face orientation estimation
algorithms return the yaw angle in degrees. All methods operate on color
images or image sequence in the case of SPA.

6.2.1 Algorithm Selection

We use the task description presented from the previous section to select
the appropriate algorithm. Table 6.1 shows the conditions matrix that we
use for the algorithm selection. The Input Type row reflects that only the
SPA algorithm does not work on single images. Image description specifies
the level of occlusion and clutter different algorithms can tolerate.

Target description identifies that only GBM and SPA a require single
person in the image. Size describes on which pixel sizes of relevant com-
positions the algorithm work best. For pose estimation algorithms GBM,
F-FMP, U-FMP and SPA the size of the body is reflected in the table, while

Chapter 6. Abstracting Human Pose Estimation 65

we use size of the face or head for HTO and FO. Pose specifies the poses for
which the algorithm has relatively high performance. GMB works relatively
well on all poses, F-FMP and SPA require a roughly vertical pose and U-
FMP works best when the person is facing the camera. Likewise, FO works
on front-facing people, while HTO works in all circumstances. Invisibility
reflects that GBM does not work as well as FMP when parts of the body
are not visible.

Output requirements specify what kind of output each algorithm is able
to produce. We can see that among pose estimation algorithms only U-FMP
cannot return full body pose. In contrast to FO, HTO is not able to give any
information about the location of the head. Furthermore, among all algo-
rithms only HTO and FO can return orientation of body parts, Head+Torso
and Head correspondingly.

In order to select the appropriate algorithm for a specific task, the system
performs the following steps:

1. Searches the task conditions matrix (Table 1) for all methods that
would satisfy the input description and output requirements. If no
algorithm covers the provided specification, the closest algorithm is
chosen (see Section 6.2.2).

2. From the chosen algorithms it selects the ones that satisfy the condi-
tions of the target description sequentially for each condition in the
following order: support for multiple people; support for invisibility,
size, orientation and location priors; support for color, texture or mo-
tion priors.

3. Chooses the fastest algorithm among the ones obtained in the previ-
ous step and adjusts its parameters according to the speed/accuracy
requirement.

6.2.2 Closest Algorithm Search

The input type of a task is either a single image, a temporal sequence of
frames, multiple images from calibrated cameras or multiple video sequences
from calibrated cameras. This could be represented by a directed graph,
such that every edge from a parent to its child induces loss of information,
such as conversion from video sequence to a single image by discarding all
frames but the current one (Figure 6.2 (a)). Furthermore, every image or
video frame contains either grayscale, color, depth or both color and depth
information, which may be likewise described by a directed graph (Figure

Chapter 6. Abstracting Human Pose Estimation 66

(a) (b)

Figure 6.2: Graph representing input types. (a) Input types form a 4-node
graph. (b) Image types form a 4-node graph.

6.2 (b)). The final definition of input type includes both aspects outlined
above. Therefore, the set of all possible input types may be represented by
a directed graph containing 4×4 nodes, where the less informative type is a
single grayscale image, while the most informative contains temporal video
sequences of color images with depth from multiple cameras.

Our output requirements are represented by two graphs GLO and GDO ,
where each edge identifies a data conversion process. Edges in graph GLO
involve loss of information (Figure 6.3), while edges GDO involve deriving the
non-existent information using certain assumptions or default values (Figure
6.3). For instance, 2D joint locations are obtained from 3D joint locations
by projecting them onto the image plane, and pixel-wise body part labeling
may be obtained from the positions of 2D body joints using a simple puppet
model, whose size is determined by the average limb length in the skeleton.

Suppose the task description includes input data I and output require-
ment O. If no algorithm in the framework fits the provided task description,
the procedure described in Algorithm 2 is performed with GLO replacing GO.
The algorithm returned by the solution works on at least one of the sub-sets
of the given input data and returns the results, at least as detailed as the
requirement is. In this case our framework directly supports the given task
description, and if the procedure returned more than one algorithm, further
selection takes place as outlined in the previous section. If the procedure

Chapter 6. Abstracting Human Pose Estimation 67

(a) (b)

Figure 6.3: Graphs representing output requirements. (a) Graph GLO reflects
loss of information in the data conversion process. (b) Graph GDO identifies
deriving additional data during the conversion process.

does not find any algorithm, the framework repeats it, but uses GDO instead
of GO. In contrast to the previous attempt, the returned algorithm infers
certain parts of the data, and it is labeled as Inferred. For example, the
algorithm may return 2D joint positions, but the conversion procedure will
assume the Z axes to be 1 for all joints. The latter procedure will always
return an algorithm, because the bottom of the chain is a 2D pose estima-
tion algorithm included in the framework that works on grayscale images,
which will be selected in the worst case.

Chapter 6. Abstracting Human Pose Estimation 68

Input: Input type I in a graph GI , output requirement O in a graph
GO

Output: Pose estimation algorithm

Algorithm ← ∅;
Queue ← ∅; Queue ←↩ O;
for Queue 6= ∅ do

Ô ←↩ Queue; Queue ←↩ parents(Ô)
Queue2 ← ∅; Queue2 ←↩ I;
for Queue2 6= ∅ do

Î ←↩ Queue2; Queue2 ←↩ children(Î)
if Exist algorithm A for Î and Ô then

Algorithm ← A;
exit;

end
end

end

Algorithm 2: Closest algorithm search. The procedure finds the closest
algorithm that matches input type I and output requirement O, assuming
input type graph GI and output requirement graph GO. By ←↩ we denote
the operation of taking and putting an element into a set.

6.2.3 Parameter Derivation

The task description is also used to derive the appropriate parameters for the
chosen algorithm. Often many of the parameters of an algorithm are learned
and included with the model. However, usually there are certain parameters
one has to tune according to one’s needs. In our current set of algorithms
we only adjust parameters that affect the speed/accuracy tradeoff. As can
be seen in Table 6.1 all algorithms but FMP can be tuned in accordance
with the user’s requirement for speed. GBM requires scale parameters to
be specified, which are set based on the prior knowledge of target size and
speed constraints. SPA has controls that specify likelihood of guessing the
correct pose and the amount of smoothing, which is tuned for the required
level of speed/accuracy. FO comes with three pre-trained models of different
levels of detail and different inference speeds, which are set automatically.
HTO directly provides the parameter that affects speed and accuracy.

Chapter 6. Abstracting Human Pose Estimation 69

6.3 Algorithm Selection Evaluation

Every algorithm has a concrete input type that it can accept and output
requirements it is able to satisfy, which allows us to fill Input Type and
Output Requirements rows of the condition matrix 6.1. However, filling
the Image Description and Target Description rows requires an insight into
the performance of the algorithms under various task conditions, which we
determine with the help of experiments. We selected 120 images from five
pose estimation datasets: Buffy Stickmen [16], Image Parse [40], Leeds Pose
Dataset [26] and Synchronic Activities Stickmen [12]. We selected the images
based on the maximum coverage of the task description problem space, and
manually annotated them with the following labels:

• The amount of clutter

• The amount of occlusion

• Lower body visibility flag

• Target size

• Pose label

We measure clutter as the distinctiveness from the background in terms
of occlusion and clutter. Pose is labeled to be either Regular or Unusual and
may be Front-Facing (in the abstraction, All is equal to Regular+Unusual).
Non-vertical or highly articulated body configurations were labeled as Un-
usual, roughly facing the camera as Front-Facing, all others as Regular.
Furthermore, we cropped the images such that they each contained a single
person only in order to maintain consistency, as GBM works only on single
person images.

We ran GBM, and F-FMP and U-FMP on 70 images out of 120 selected
and filled the task conditions matrix based on obtained evidence of perfor-
mance of the algorithms, leaving the remaining 50 images for testing. We
found that F-FMP is the preferable algorithm for the task of full-body pose
estimation in the presence of clutter, as GBM is more likely to pick suitable
clutter as a body part. At the same time GBM works better in the absence
of clutter, while FMP is more likely to miss a body part in an uncluttered
environment. We think this can be explained by the fact that GBM uti-
lizes segmentation to better distinguish foreground from the background.
Furthermore, F-FMP produces limb double counting more frequently than
GBM, which may be explained by the fact that it is a tree model which

Chapter 6. Abstracting Human Pose Estimation 70

does not share knowledge between its limbs. Furthermore, F-FMP produces
subtly less accurate results in the case of non-vertical or highly articulated
poses, as it seems to have stronger priors towards such poses in its training
dataset. We use SPA in the cases when the video sequence is available.

For upper body pose estimation we found that U-FMP is the preferred
method when the image is sufficiently large or the person is facing the cam-
era. It also works better than other algorithms when the prior knowledge
of lower body being occluded is given, although F-FMP is more likely than
GBM to correctly detect the hands of the person even when there is no
evidence of legs in the image. For the task of head yaw estimation we found
that the main control that affects the selection between HTO and FO is the
prior knowledge of the size of the head or orientation.

In order to evaluate the task-based algorithm mapping, we ran three
pose estimators GBM, F-FMP and U-FMP on the remaining 50 images
and determined the system success rate, which was defined by how often
the best algorithm for a specific task is selected. The success rate was
76%, and in cases where it picked a non-optimal method the difference in
accuracy between the best and selected algorithms was approximately 15%,
therefore the result would be relatively close to optimal. This supports our
insights on the performance of the algorithms and shows that the system
selects pose estimation algorithms reasonably well. Figures 6.4-6.6 illustrate
some examples of the results of our algorithm selection process. Every row
corresponds to a single algorithm, while every column represent an image
with a task description. The algorithm selected by our system is marked in
green, the correct one is marked in blue.

6.4 Discussion and Future Work

This chapter is intended to demonstrate that a wide-coverage abstraction
over human pose estimation targeted at non-expert users is possible, and a
task-based approach provides a reasonable level of control while still hiding
the complexity of algorithmic details and parameters under a single flexible
application programming interface. Our abstraction utilizes various kinds
of input data together with image description, target prior knowledge def-
inition and output requirements to cover a large volume of the pose detec-
tion problem space. The condition matrix together with closest algorithm
search procedure 2 maps the task description to a suitable pose estimation
algorithm and automatically derives the necessary parameters. Our results
demonstrate the advantages of the current approach.

Chapter 6. Abstracting Human Pose Estimation 71

(a) (b) (c)

Figure 6.4: Algorithm mapping evaluation for full-body pose estimation.
Images with various descriptions are taken: (a) Regular Pose, High Clutter,
Low Occlusion, Small Size; (b) Regular Pose, Medium Clutter, Low Occlu-
sion, Large Size; (c) Unusual Pose, High Clutter, Low Occlusion, Small Size.
Algorithm, selected by the abstraction is marked in green, the correct one
is marked in blue. Algorithms from top to bottom: GBM [43], F-FMP [55].
Best viewed in color.

The main flaw of the system in its current state is the fact that it requires
expert knowledge to be encoded into the condition matrix. If one wants to
add an algorithm into the current framework, one would have to run it on the
same set of images we used to test other algorithms and expand the condition
matrix in accordance with the results. However, there is no guarantee that
the parameters that we chose in our framework such as clutter and occlusion
give the best prediction for the efficiency of the algorithms.

The solution to the above might be provided by an automated run-time
algorithm selection process based on the features extracted from input im-
ages or video sequences. This may be guided by a multi-class classification
procedure, where every class corresponds to a certain algorithm that fits the
given task conditions. During inference the system would select the best
algorithm according to the output of the classifier. The classifier may be
trained on the features extracted from a set of training images with anno-

Chapter 6. Abstracting Human Pose Estimation 72

(a) (b) (c)

Figure 6.5: Algorithm mapping evaluation for head yaw estimation. Images
with various descriptions are taken: (a) Large Size, Non-Front-Facing; (b)
Small Size, Front-Facing; (c) Large Size. Algorithm, selected by the ab-
straction is marked in green, the correct one is marked in blue. Algorithms
from top to bottom: HTO [34], FO [57]. Empty annotation reflect algorithm
failure. Best viewed in color.

tated poses, which would be coupled with class labels, specifying the best-
performing pose estimation algorithm. In our opinion a broad set of various
features may be beneficial. Together with a weighting classifier such as SVM
one may find out which features have the most influence in algorithm selec-
tion process. Furthermore, in practice feature computation should not be
time-consuming, so features like BRIEF [7] or Haar-like features [50] may
come into play. With this setup the new algorithms can be seamlessly added
into the framework, without any prior expert knowledge about their perfor-
mance, as the training process outlined above would automatically re-train
the classifier. Furthermore, the set of spatial features may be changed or
expanded at any time with the same effect. Note that similar approaches
have been tried in other areas in Computer Science, utilizing machine learn-
ing for aiding algorithm selection process [23] and runtime prediction [24].
In addition, one may explore the ways of automatic adjustment of the pa-
rameters for each algorithm in the system. We leave such an automated
classification procedure to future work.

Chapter 6. Abstracting Human Pose Estimation 73

(a) (b) (c)

Figure 6.6: Algorithm mapping evaluation for upper-body pose estimation.
Images with various descriptions are taken: (a) Medium Clutter, Low Oc-
clusion, Small Size; (b) Low Clutter, Low Occlusion, Small Size; (c) Low
Clutter, Large Size, Lower Body Invisible. Algorithm, selected by the ab-
straction is marked in green, the correct one is marked in blue. Algorithms
from top to bottom: GBM [43], F-FMP [55], U-FMP [55]. Best viewed in
color.

74

Chapter 7

Conclusion

In this thesis we consider the problem of human pose estimation. We
present two novel algorithms for monocular 2D pose estimation from video
sequences. The first one aggregates the information from adjacent frames
and then searches for a shortest path of pose estimates from the output of
a single-image pose estimator throughout the whole video sequence, signif-
icantly outperforming the state of the art for single-image pose estimation.
The second algorithm utilizes a spatio-temporal tree model and for every
video frame performs articulated human detection, taking into account sev-
eral previous frames, demonstrating state-of-the-art pose estimation perfor-
mance.

Furthermore, we release the UCF Sports Pose dataset, which consists
of full-body human pose annotations for a subset of videos from the UCF
Sports Action dataset that contain people in roughly vertical positions. Fur-
thermore, we propose a new metric for the evaluation of pose estimation
results, which better reflects the performance of the current state of the art
algorithms for 2D human pose estimation. In addition, we release a highly
configurable Video Pose Annotation tool that greatly simplifies the manual
process of annotating poses in video sequences.

Finally, we present a novel abstraction over human pose estimation that
captures a large volume of the pose estimation problem space. The abstrac-
tion comes with a notion of a task description, which includes the description
of the input data and the output requirements for the pose estimation prob-
lem. It also includes a meta-algorithm that maps a task description to a
pose estimation algorithm that is expected to give the best results on the
specific problem based on the expert knowledge about the algorithms in the
framework.

Future work for each part of this thesis is discussed in detail in the end of
each chapter. The future work on the first video pose estimation algorithm
may focus on the utilization of a better and faster method of tracking the
poses. In addition, learning of the patterns of temporal co-occurrence of
appearance may be employed. An alternative research direction is to inves-
tigate the ways to make the algorithm work in an on-line setting. Future

Chapter 7. Conclusion 75

work on the second algorithm encompasses joint spatio-temporal learning,
improved tracking of poses and exploration of different tree models.

The abstraction of human pose estimation may benefit from utilization
of a machine learning technique for the expert knowledge directly encoded
into the system. The technique may work on image features and consider the
task as a classification problem, where each class corresponds to a specific
pose estimation algorithm. Furthermore, one may want to explore ways to
automatically tune the parameters of each algorithm.

76

Bibliography

[1] S. Amin, M. Andriluka, R. Marcus, and B. Schiele. Multi-view Pictorial
Structures for 3D Human Pose Estimation. In British Machine Vision
Conference, 2013.

[2] M. Andriluka, S. Roth, and B. Schiele. Pictorial structures revisited:
People detection and articulated pose estimation. In Computer Vision
and Pattern Recognition, 2009.

[3] G. Bradski and A. Kaehler. Learning OpenCV: Computer Vision with
the OpenCV Library. 2008.

[4] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy op-
tical flow estimation based on a theory for warping. In IEEE European
Conference on Computer Vision, volume 3024, pages 25–36. 2004.

[5] A. Bruhn, J. Weickert, and C. Schnörr. Lucas/Kanade meets
Horn/Schunck: Combining local and global optic flow methods. In-
ternational Journal of Computer Vision, 61:211–231, 2005.

[6] P. Buehler, M. Everingham, D.P. Huttenlocher, and A. Zisserman. Up-
per body detection and tracking in extended signing sequences. Inter-
national Journal of Computer Vision, 95:180–197, 2011.

[7] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. BRIEF: Binary robust
independent elementary features. In IEEE European Conference on
Computer Vision, pages 778–792, 2010.

[8] K. Chiu and R. Raskar. Computer vision on tap. In IEEE Conference
on Computer Vision and Pattern Recognition Workshops, pages 31–38,
2009.

[9] N. Dalal and B. Triggs. Histograms of oriented gradients for human de-
tection. In IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 886–893, 2005.

Bibliography 77

[10] M. Eichner and V. Ferrari. Better appearance models for pictorial
structures. In British Machine Vision Conference, 2009.

[11] M. Eichner and V. Ferrari. We are family: Joint pose estimation of
multiple persons. In IEEE European Conference on Computer Vision,
2010.

[12] M. Eichner and V. Ferrari. Human pose co-estimation and applica-
tions. IEEE Transasctions on Pattern Analysis and Machine Intelli-
gence, pages 2282–2288, 2012.

[13] G. Fanelli, J. Gall, and L. Van Gool. Real time head pose estima-
tion with random regression forests. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 617–624, 2011.

[14] P.F. Felzenszwalb, R.B. Girshick, D. McAllester, and D. Ramanan. Ob-
ject detection with discriminatively trained part-based models. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 32:1627–
1645, 2010.

[15] P.F. Felzenszwalb and D.P. Huttenlocher. Distance transforms of sam-
pled functions. Technical report, Cornell Computing and Information
Science, 2004.

[16] V. Ferrari, M. Marin-Jimenez, and A. Zisserman. Progressive search
space reduction for human pose estimation. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–8, 2008.

[17] T. Finley and T. Joachims. Training structural SVMs when exact infer-
ence is intractable. In International Conference on Machine Learning,
pages 304–311, 2008.

[18] O. Firschein and T.M. Strat. RADIUS: Image Understanding For Im-
agery Intelligence. Morgan Kaufmann, 1st edition, 1997.

[19] K. Fragkiadaki, Han Hu, and Jianbo Shi. Pose from flow and flow from
pose. In IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2013.

[20] P. Guan, A. Weiss, A.O. Balan, and M.J. Black. Estimating Human
Shape and Pose from a Single Image In IEEE International Conference
on Computer Vision, 2009

Bibliography 78

[21] K. Hara and R. Chellappa. Computationally efficient regression on a
dependency graph for human pose estimation. In IEEE Conference on
Computer Vision and Pattern Recognition, 2013

[22] B.K.P. Horn and B.G. Schunck. Determining optical flow. Artificial
Intelligence, 17:185–203, 1981.

[23] F. Hutter, D. Babi, H.H. Hoos, and Alan J. Hu. Boosting verification
by automatic tuning of decision procedures. In Formal Methods in
Computer Aided Design, pages 27–34, 2007.

[24] F. Hutter, Lin Xu, H.H. Hoos, and K. Leyton-Brown. Algorithm run-
time prediction: The state of the art. Artificial Intelligence Journal,
abs/1211.0906, 2012.

[25] H. Jhuang, J. Gall, S. Zuffi, C. Schmid, and M. J. Black. Towards
understanding action recognition. In IEEE International Conference
on Computer Vision, 2013.

[26] S. Johnson and M. Everingham. Clustered pose and nonlinear appear-
ance models for human pose estimation. In British Machine Vision
Conference, 2010.

[27] Z. Kalal, K. Mikolajczyk, and J. Matas. Forward-backward error: Auto-
matic detection of tracking failures. In IEEE International Conference
on Pattern Recognition, pages 2756–2759, 2010.

[28] A. Kläser, M. Marsza lek, and C. Schmid. A spatio-temporal descriptor
based on 3d-gradients. In British Machine Vision Conference, pages
995–1004, 2008.

[29] C. Kohl and J. Mundy. The development of the image understanding
environment. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 443–447, 1994.

[30] K. Konstantinides and J.R. Rasure. The khoros software development
environment for image and signal processing. IEEE Transactions on
Image Processing, 3:243–252, 1994.

[31] L. Ladický, P.H.S. Torr, and A Zisserman. Human pose estimation
using a joint pixel-wise and part-wise formulation. In IEEE Conference
on Computer Vision and Pattern Recognition, 2013

Bibliography 79

[32] C. Liu. Beyond Pixels: Exploring New Representations and Applica-
tions for Motion Analysis. PhD thesis, 2009.

[33] B.D. Lucas and T. Kanade. An iterative image registration technique
with an application to stereo vision. In International Joint Conference
on Artificial Intelligence, pages 674–679, 1981.

[34] S. Maji, L. Bourdev, and J. Malik. Action recognition from a dis-
tributed representation of pose and appearance. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 3177–3184, 2011.

[35] T. Matsuyama and H. Vincent. Sigma: a framework for image un-
derstanding integration of bottom-up and top-down analyses. In In-
ternational Joint Conference on Artificial intelligence, volume 2, pages
908–915, 1985.

[36] G. Miller and S. Fels. OpenVL: A task-based abstraction for developer-
friendly computer vision. In IEEE Winter Application and Computer
Vision Conference, pages 288–295, 2013.

[37] .B. Moeslund, A. Hilton, V. Krger, and L. Sigal, editors. Visual Analysis
of Humans - Looking at People. 2011.

[38] G Panin. Model-based Visual Tracking: the OpenTL Framework. John
Wiley and Sons, 2011.

[39] J. Peterson, P. Hudak, A. Reid, and G.D. Hager. Fvision: A declarative
language for visual tracking. In Third International Symposium on
Practical Aspects of Declarative Languages, pages 304–321, 2001.

[40] D. Ramanan. Learning to parse images of articulated bodies. Advanced
in Neural Information Processing Systems, 2006.

[41] D. Ramanan, D.A. Forsyth, and A. Zisserman. Strike a pose: Tracking
people by finding stylized poses. In IEEE Conference on Computer
Vision and Pattern Recognition, volume 1, pages 271–278, 2005.

[42] M.D. Rodriguez, J. Ahmed, and M. Shah. Action mach a spatio-
temporal maximum average correlation height filter for action recog-
nition. In IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1–8, 2008.

[43] B. Rothrock, S. Park, and S.-C. Zhu. Integrating grammar and segmen-
tation for human pose estimation. In IEEE Conference on Computer
Vision and Pattern Recognition, 2013.

Bibliography 80

[44] B. Sapp, D. Weiss, and B. Taskar. Parsing human motion with stretch-
able models. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 1281–1288, 2011.

[45] P. Scovanner, S. Ali, and M. Shah. A 3-dimensional SIFT descriptor
and its application to action recognition. In International Conference
on Multimedia, 2007.

[46] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,
A. Kipman, and A. Blake. Real-time human pose recognition in parts
from single depth images. In IEEE Conference on Computer Vision
and Pattern Recognition, 2011.

[47] L. Sigal, A.O. Balan, and M.J. Black. Humaneva: Synchronized video
and motion capture dataset and baseline algorithm for evaluation of
articulated human motion. International Journal on Computer Vision,
87:4–27, 2010.

[48] E. Simo-Serra, A. Quattoni, C. Torras, and F. Moreno-Noguer. A Joint
Model for 2D and 3D Pose Estimation from a Single Image. IEEE
Conference on Computer Vision and Pattern Recognition, 2013

[49] Y. Tian, R. Sukthankar, and M. Shah. Spatiotemporal deformable part
models for action detection. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 2642–2649, 2013.

[50] P. Viola and M. Jones. Rapid object detection using a boosted cas-
cade of simple features. In IEEE Conference on Computer Vision and
Pattern Recognition, volume 1, pages I–511–I–518 vol.1, 2001.

[51] C. Wang, Y Wang, and A.L. Yuille. An approach to pose-based action
recognition. In IEEE Conference on Computer Vision and Pattern
Recognition, 2013.

[52] Heng Wang, A. Klaser, C. Schmid, and Cheng-Lin Liu. Action recog-
nition by dense trajectories. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 3169–3176, 2011.

[53] J.M. Wang, D.J. Fleet, and A. Hertzmann. Gaussian process dynamical
models for human motion. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 30:283–298, 2008.

Bibliography 81

[54] Shandong Wu, O. Oreifej, and M. Shah. Action recognition in videos
acquired by a moving camera using motion decomposition of lagrangian
particle trajectories. In IEEE International Conference on Computer
Vision, pages 1419–1426, 2011.

[55] Y. Yang and D. Ramanan. Articulated pose estimation with flexible
mixtures-of-parts. In IEEE Conference on Computer Vision and Pat-
tern Recognition, 2011.

[56] T.-H. Yu, T.-K. Kim, and R. Cipolla. Unconstrained Monocular 3D
Human Pose Estimation by Action Detection and Cross-modality Re-
gression Forest. In IEEE Conference on Computer Vision and Pattern
Recognition, 2013.

[57] X. Zhu and D. Ramanan. Face detection, pose estimation, and land-
mark localization in the wild. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 2879–2886, 2012.

[58] S. Zuf, J. Romero, C. Schmid, and M.J. Black. Estimating human pose
with flowing puppets. In IEEE International Conference on Computer
Vision, 2013.

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Motivation
	Outline
	Organization

	Related Work
	Literature Overview
	Pose Estimation Algorithms
	Pose Estimation in Video
	Datasets
	Abstractions over Computer Vision

	Relevant Algorithms
	Flexible Mixture of Parts
	Dynamic Programming
	Distance Transform of Sampled Functions
	Optical Flow

	Data Preparation
	Video Pose Annotation Tool
	Application Features
	Graphical User Interface
	Design
	Implementation

	Dataset
	Evaluation Metric

	Discussion

	Pose Estimation in Video: a Shortest Path Approach
	Model
	Inference
	Experiments
	Discussion and Future Work

	Pose Estimation in Video: a Detection Approach
	Model
	Inference
	Message Passing
	An Approximate Distance Transform
	The Inference Procedure

	Experiments
	Discussion and Future Work

	Abstracting Human Pose Estimation
	Task Description
	Input Description
	Output Requirement
	Target Description

	Task to Algorithm Mapping
	Algorithm Selection
	Closest Algorithm Search
	Parameter Derivation

	Algorithm Selection Evaluation
	Discussion and Future Work

	Conclusion
	Bibliography

