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Abstract 

The productivity of autotrophic organisms affects all life on Earth; hence, gaining insight in the variability 

of autotrophic productivity has received significant research interest. At cell to organism level, much 

knowledge has been gained under controlled conditions through laboratory analysis. At the stand level 

and beyond, control over the driving variables is limited, and hence experiments have relied on 

extensive time series, and geospatial analysis to observe changes in productivity across a wide range of 

environmental conditions. Significant technologies at these scales are eddy covariance that provides 

point sample estimates of productivity by measuring CO2 fluxes between land and atmosphere, and 

remote sensing that provides for extrapolating eddy-covariance measurements across the landscape 

using canopy-reflectance data. Challenges in fusing eddy covariance with remote sensing relate to the 

limited capacity of airborne and spaceborne instruments to observe changes in the biophysical state of 

deep canopy strata; hence, eddy-covariance estimates that capture the productivity of an arbitrarily 

dense canopy volume are extrapolated based on top-of-canopy reflectance data. Proximal-sensing 

technology extends the acquisition of reflectance data to arbitrary locations within the canopy; 

however, these data are affected by the immediate canopy structure surrounding the sensor that 

introduces a sensor-location bias, and the direct use of these data in stand-level models is therefore 

challenging. This thesis explores the simulation of photosynthetic down-regulation using geometrically 

explicit forest models and meteorological records. The geometrically explicit models are constructed by 

combining laser-scanning data with tree-regeneration models, and are used to simulate a time series of 

leaf-level incident radiation. The parameters of a leaf-level photosynthesis model are then optimized 

against eddy-covariance productivity estimates. Finally, the potential of geometrically explicit models for 

the fusion of remote sensing and proximal sensing data is discussed.  
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1. Introduction 

Information about forest productivity is useful to optimize yield, and map the distribution and quality of 

timber resources (Van Leeuwen et al. 2011a). Forest productivity is also an important indicator of 

biodiversity (Coops et al. 2008), and is significant for the valuation of ecosystem services (De Groot et al. 

2012; Gamfeldt et al. 2012, 2013) such as carbon sequestration (Gibbs et al. 2007), and the provision of 

clean air, water and food (De Groot et al. 2000). 

 Remote sensing provides proven techniques for estimating forest productivity over large scales 

(Hall et al. 2012) in a consistent and reproducible manner (Herold & Johns 2007) by measuring the state 

and change of emitted and reflected electromagnetic radiation from the Earth surface using airborne 

and spaceborne instrumentation, typically in the visible, near infrared and thermal domains (i.e. 400 to 

100,000 nm). Remote sensing is a useful tool for monitoring forested environments based on the ability 

to observe land-use change and disturbance (Hilker et al. 2009), but also changes in nutrient status, 

pigment concentrations and structural attributes of the canopy from features in the reflectance signal. 

Such features may be extracted by, for example, computing vegetation indices from specific spectral 

bands (Gitelson et al. 2006; Tucker & Sellers 1986), by considering a full spectrum of bands for analysis 

using wavelet decomposition and neural networks (Blackburn & Ferwerda 2008; Blackburn 2007; Weiss 

et al. 2001), through spectral mixture analysis (Ustin et al. 2004) or by using canopy radiative transfer 

modeling (RTM) that aims to describe the relation between biophysics, the sun-sensor-target geometry, 

and reflectance observed at the sensor (Jacquemoud et al. 2009; Schaepman et al. 2009; Verhoef 1984). 

While most methods in remote sensing rely on empirical calibration, RTM is the only physically-based 

method and permits direct coupling with physiological models (Choudhury 2001; Van der Tol et al. 2009; 

Wang & Jarvis 1990a). 

 Radiative transfer models describe the radiation field in a canopy as a balance between 

incoming and outgoing radiation resulting from absorption, emission and scattering (Gerstl & Borel 

1992; Liang 2004). Radiative transfer can be computed for the one-dimensional (homogeneous) and 

three-dimensional (heterogeneous) case. One-dimensional models may consider turbid media of 

isotropic scattering particles of infinitesimal size or may consider anisotropic scattering due to specular 

reflectance or the casting of shadows from stacked layers of reflective bodies (Liang 2004; Roujean et al. 

1992). Three-dimensional cases of radiative transfer consider lateral transport of radiation in addition to 
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vertical transport. Lateral transport is due to the heterogeneity of the scene and modeling requires 

geometrically explicit descriptions of the scene, often simply as geometric solids. Estimates derived from 

RTMs are averaged over these turbid media or geometric solids and significant deviations from these 

averages may arise due to the discrete nature of forest canopies (Gerstl & Borel 1992). To avoid scaling 

issues, the parameterization and validation of an RTM requires data that are collected at scales that are 

similar to the scales of turbid media or geometric solids. However, the availability of data is a key 

limiting factor and scales that are more commonly used for acquiring physiological data range from the 

shoot to tree level (e.g. Black & Moran 2006; Ethier et al. 2006; Passioura 1979; Sharkey 1985). 

 To bridge the gap between remote sensing and physiological mensuration and forest 

inventories, novel models of canopy radiation are needed at finer scales. The eminent challenges to 

compute radiation transfer at such fine scales include 1) computational tractability, 2) design of 

methods that efficiently capture the fine canopy structure in virtual models, and 3) coupling 

physiological responses to the simulated radiation regime. Recent advances in computing power and 

remote sensing have significantly improved processing capabilities that support the widespread 

digitization and animation of 3D real-world information at increasingly fine resolutions (Beraldin et al. 

2000; Koch 2010). Such advances invite research that explores whether geometrically explicit models of 

real-world canopy structure can be used for the simulation of canopy radiation. This requires knowledge 

about the state-of-the-art in 3D remote sensing, modeling and rendering techniques, as well as 

knowledge about key physiological functions and environmental drivers affecting photosynthesis. The 

remaining parts of this chapter therefore provide a literature review on photosynthesis at the cell, leaf 

and canopy levels, and provide a synthesis of studies and techniques used to model canopy structure at 

scales ranging from the shoot to canopy level. 
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1.1. Scales of photosynthesis 

An understanding of photosynthetic assimilation in trees involves knowledge about physiological 

functioning at the cell, leaf and canopy level. This knowledge is gained through a combined use of 

theory, measurement and simulation. 

 

1.1.1. Cell level photosynthesis 

Photosynthesis is the process of converting solar radiation in the range 400-700 nm into chemical 

energy in sugars for growth and maintenance respiration. Cell-level photosynthesis focusses on the 

light-dependent and light-independent reactions inside chloroplasts and the processes involved have 

been documented in many text books (Raven et al. 2005; Sharkey 1985), in summary: chlorophylls are 

the major pigments responsible for absorption of light for photosynthesis and reside in the thylakoid 

membrane inside the chloroplasts. Chlorophyll is distributed over two photosystems and light captured 

through the respective photosystems I and II excites electrons that are carried onto the electron 

transport chain to form nicotinamide adenine dinucleotide phosphate (NADPH). Electrons needed to 

replace those carried onto the electron transport chain are extracted from water through photolysis. 

This reaction establishes a proton gradient across the thylakoid membrane that is used to create 

adenosine triphosphate (ATP). The metabolites, NADPH and ATP are then used to sequester CO2 and 

create glucose in the light-independent reactions through the Calvin cycle and this takes place outside 

the thylakoids. This cyclic reaction revolves around the enzyme Rubisco and the substrate Ribulose-1,5-

bisphosphate (RuBP). Using the gained metabolites and CO2 from the atmosphere, RuBP is continuously 

regenerated as sugars are formed. 

 Limitation in either RuBP regeneration or electron transport rate arise from limitations in 

environmental drivers such as the ambient CO2 concentration, temperature, soil nutrient status and 

water availability (Monteith 1972, 1977). When photosynthesis is limited and cells are exposed to 

increasing or prolonged high light levels, a build-up of active oxygen and protons occurs and damage 

may arise (Demmig-Adams & Adams 2006). To avoid damage of the photosystems at high light levels 

regulating processes are in place that act at the cell level as well as at the tissue and the canopy levels. 

The predominant mechanism acting at the cell level is the xanthophyll cycle (Ahn et al. 2008), a group of 

carotenoid pigments residing in the thylakoid membrane, which involves a series of epoxidation and de-
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epoxidation reactions establishing the conversion of violaxanthin to antheraxanthin and zeaxanthin. As 

the pool sizes of these pigments change, and zeaxanthin becomes more abundant, excess amounts of 

incident light are dissipated safely as heat (Demmig-Adams & Adams 2006). The mechanisms underlying 

the non-photochemical dissipation are still poorly understood (Farquhar et al. 2001; Holt et al. 2004; 

Ahn et al. 2008). 

 

1.1.2. Leaf level photosynthesis 

At the leaf level, cells are arranged into layers. The epidermis cells constitute the surface layers, while 

chloroplasts reside in cells of the mesophyll tissue (Sharkey 1985). Key photosynthetic regulators at the 

leaf level are the stomata that regulate transpiration and the exchange of CO2 and O2 with the 

atmosphere and prevent leaves from wilting. Closing of the stomata affects the partial pressure of CO2 

inside the leaf, and may induce photorespiration: a process initiated when a molecule of O2 is taken up 

in the Calvin cycle instead of a molecule of CO2 which results in a lowering of the assimilation rate. The 

mechanism of stomatal closure is governed by guard cells that regulate their internal cell pressure 

(turgor) through osmosis. Regulation of photosynthetic rate and light use efficiency may also be 

adjusted through chloroplast movement (Wada et al. 2003) and diurnal leaf movement in certain plants 

(Kao & Forseth 1991; Liu et al. 2007). These movements may either increase the amount of light incident 

on the leaf by moving the leaf so that it is perpendicular to the sun (diaheliotrophism) or decrease the 

incident light by turning the leaf away from the solar beam (paraheliotropism). 

 Figure 1.1 shows the dependency of photosynthesis on light. The curve shows an asymptotic 

increase that indicates a diminishing efficiency in fixing CO2 at higher light levels. Semi-empirical 

approaches have modeled this relationship using hyperbolic functions constrained by two or three 

parameters (Cannell & Thornley 1998; Middleton et al. 2009). A mechanistic model at the cell level was 

proposed by (Farquhar et al. 1980) that describes photosynthesis as a limitation of either RuBP 

regeneration or Rubisco, so that the overall assimilation of photosynthate is the minimum of these two 

potentials. Dependencies of both RuBP regeneration and electron transport rate on temperature are 

treated in the model as well as CO2 and O2 concentrations. The model has found wide use in plant 

research and has been used to examine the effects of temperature changes (Medlyn et al. 2002) and 

elevated CO2 concentrations on productivity (McMurtrie & Wang 1993). The Farquhar model describes 
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photosynthetic response under steady-state conditions when the photosynthetic rate is at equilibrium 

with incident radiation. 

 

 

Figure 1.1: General shape of the photosynthetic light-response curve. Shown on the y-axis is the 

photosynthetic assimilation (i.e. gross or net uptake of CO2) and on the x-axis is incident radiation. 

 

  Methods of measuring plant productivity at the level of individual leaves include gas exchange, 

chlorophyll fluorescence, and spectroscopy. Gas exchange measurements are made using either steady-

state or non-steady-state approaches. The former typically requires a constant flow of air through a 

chamber in which the leaf or shoot is secured and illuminated with a constant radiation source. 

Exchange of CO2 and H2O are then calculated as the product of the flow rate and the difference between 

the CO2 concentration of the air entering and leaving the chamber (Ethier & Livingston 2004; Sharkey 

1985). In the non-steady-state approach the rate of change in CO2 concentration in the chamber 

enclosing the leaf is used to calculate CO2 or O2 exchange (Field et al. 1989). Fluorescence is the 

phenomenon in which photons are emitted after electrons relax to their ground state, after they are 

excited to a higher energy level by light. When the reaction centres transfer energy onto the electron 

carriers, the oxidation state of the reaction centre needs to be reduced and the reaction centre is 

‘closed’ and unavailable for electron transport. As a result, absorbed light energy can either be 

dissipated as heat (known as non-photochemical quenching, NPQ) or emitted as fluorescence. Since 

these two mechanisms have separate reaction times to changes in irradiance, portions of emitted and 
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dissipated radiation can quite easily be determined. Moreover, maximum photosynthetic potential (i.e. 

when all reaction centres are open) can easily be measured when the leaf is acclimated to dark 

conditions and all reaction centres are open, by emitting a pulse of light onto the leaf and measuring 

fluorescence. The energy released through fluorescence peaks around 680 nm and amounts to 

approximately 1 or 2% of the total absorbed light (Maxwell & Johnson 2000). In field conditions, this can 

be measured with relative simplicity using a modulated light source (Porcar-Castell et al. 2008). Finally, 

an important contribution to the observation of photosynthetic down-regulation was made by Gamon 

et al. (1992) who demonstrated the use of the photochemical reflectance index (PRI) that isolates 

absorption features of anteraxanthin and zeaxanthin from other leaf pigments and that is indicative of 

changes in the state of the xanthophyll cycle, and relates to NPQ. This index is derived using 

spectrometers (Gamon et al. 1992) or narrow-waveband sensors (Filella et al. 1996) and is computed as 

the normalized difference between leaf reflectance ( ) at 531 and 570 nm, as: 

                      ⁄ . 

 

1.1.3. Canopy level photosynthesis 

Canopy structure affects internal shading and exposure of leaves to downwelling hemispherical 

irradiance. The fractal, or self-similar geometry of canopy architecture, establishes a formation of foliage 

clumps and canopy gaps that improves the penetration of radiation towards deeper canopy strata 

(Oker-Blom 1986). In addition, the small size of needles and leaves in relation to the solid angle of the 

solar disc leads to the formation of penumbra or half-shadows that further improve the penetration and 

spread of incident light (Stenberg 1995a). Over large spatial scales, the attenuation of visible or 

photosynthetically active light (400-700 nm) follows an exponential decay with canopy depth. This rate 

of decay increases with leaf area and decreases with clumping and is different for direct and diffuse 

illumination (Black et al. 1991; Chen & Black 1992; Nilson 1971); However, using data representing much 

finer spatial scales such as acquired from vertical tram lines or balloons, a profound deviation from this 

exponential relation or even abrupt changes (lumiclines) in canopy radiation can be observed (Parker et 

al. 2001). 

 The complex relationship between leaf incident radiation and canopy structure has important 

implications for photosynthesis. For example, the movement of the sun in combination with wind 

creates a constant movement of sunflecks and under such transient changes in leaf-level light intensity, 
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assimilation rates deviate from steady-state conditions (Pearcy 1990). At the time scale of weeks, the 

predominant canopy radiation conditions change due to trends in meteorology, and nitrogen may be 

reallocated to accommodate higher photosynthetic capacities of highly exposed leaves (De Pury & 

Farquhar 1997). Such reallocations of minerals and changes in photosynthetic capacities have also been 

observed with the aging of the canopy, and older leaves and tree crowns have been associated with 

lower photosynthetic capacities resulting from lower mesophyll- and stomatal conductance (Ethier et al. 

2006) and hydraulic conductance (Gamon and Bond 2013). Important impacts on productivity at the 

canopy scale also arise from competition between trees and species and leads to a rather different 

physiological behaviour at the canopy level than what is observed under conditions when a plant is 

isolated and not in competition (Poorter et al. 2013). 

 A wide range of canopy-level productivity models exists (see Table 1.1 for a selection of models). 

It is evident that for modeling forest productivity at operational scales, only some of the most significant 

physiological controls on photosynthesis can be considered (Landsberg 2003). At the broadest scales, 

models typically do not consider canopy structure and assume the forest to behave as if it were a single 

big leaf (Monteith 1972, 1977) or consider a different extinction coefficient for diffuse radiation (Cai et 

al. 2009). So-called two-leaf models consider sun and shade acclimated leaves (De Pury & Farquhar 

1997). The latter approach is preferable since it considers the higher photosynthetic capacity of sun 

acclimated leaves compared to shade acclimated leaves. Both approaches do not consider vertical 

profiles in environmental parameters, however, so that they inevitably fail to address an important 

function of the canopy, namely that of creating homeostasis of environmental conditions that is known 

to have a profound effect on photosynthesis (Jarvis 1976). Instead, the models use effective parameters 

that relate to the entire canopy and, as a result, model estimates can only be derived at an aggregate 

level (i.e. the canopy). This leads to two key problems. The first problem arises when these models are 

used in conjunction with data sources that represent scales that are different from the models. For 

example, passive optical remote sensing methods are used to monitor forest productivity globally; 

however, these data are limited to observations of top-of-the-canopy reflectance and are unable to 

discriminate physiological dynamics in the reflectance signal that occur deeper in the canopy. Combining 

observations and models thus leads to the problem of parameterizing the entire canopy productivity 

using data from only the top of the canopy. The second limitation relates to availability of ground-truth 

data. Currently, two common methods of validation at the canopy scale exist. These are destructive 

sampling and the eddy-covariance technique. The latter technique estimates productivity from fluxes of 

CO2 and O2 that are inferred from high-frequency measurements of wind vector components and gas 
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mixing ratios (Baldocchi et al. 2001). Both techniques, however, are costly and the eddy-covariance 

technique is limited to homogeneous and relatively flat terrain, so that data availability for model 

validation is greatly limited. 

 Researchers have developed process-based models that operate at the scale of individual trees 

that are reconstructed using geometrical primitives such as spheroids and cones (McMurtrie et al. 1990; 

Wang & Jarvis 1990a) or layered canopy models (Norman 1979). Such models provide for integration of 

in situ sensors for validation and parameterization; however, these models are limited to explaining 

forest productivity for homogeneous and simple heterogeneous scenes only and fine canopy structural 

details cause some significant differences between in situ sensor readings and model estimates (Wang & 

Jarvis 1990b). A preferable, but hard-to-reach solution would be to model canopy structure at an 

arbitrary fine resolution, e.g. shoot level (Disney et al. 2000). Recent contributions from remote sensing 

and computer graphics make the capture of 3D real-world data and the modeling of realistic tree 

architectures increasingly possible, and create opportunities for further investigating the potential of 

this fine-scale modeling approach (Disney et al. 2000; Godin et al. 1999). At increasingly fine resolutions, 

such models become virtual plant environments that help to close the gap between remote sensing 

observations and shoot or tree-level measurements (Disney et al. 2000; Godin et al. 1999; Pradal et al. 

2009; Prusinkiewicz & Lindenmayer 2004) and provide a means to control for environmental variables 

through simulation that otherwise cannot be controlled for in open-air field experiments. These fine 

scale models do not only provide improvements for fusing shoot-level and canopy-level data, but can 

also be used to calibrate and validate the layered process-based models, for example, by enabling 

computer simulations to estimate extinction coefficients and averaged vertical variation in the canopy 

light regime. 
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Table 1.1: Selected canopy radiation models and productivity models covering a wide range of scales, 

and physiological functions. (D = dimensionality; LC = light competition; PC = pigment concentration; 

SC = stomatal conductance; XC = xanthophyll cycle; LAC = light acclimation; TP = branching topology) 

reference name 
structural 
representation Scope D LC PC SC XC LAC TP 

Wang and Jarvis (1990a) MAESTRO tree productivity 3D 





   McMurtrie et al. (1990) BIOMASS tree, layered productivity 3D 





   Norman (1979) CUPID layered productivity 1D 
 



   Verhoef and Bach (1984) SAIL layered scattering 1D 
 



    Strahler and Jupp (1991) GORT tree scattering 3D 

     Godin et al. (1999) AMAPmod branch productivity 3D 

    


Barton & North (2001) FLIGHT leaves LUE 1D 
   



  De Pury & Farquhar (1997) 
 

two-leaf model productivity 1D 

   


 Monteith (1972)   big-leaf model productivity 1D             

 

1.2. Measuring forest structure 

Early methods used for capturing detailed and accurate information about canopy structure have been 

laborious and are often destructive (Norman and Campbell 1989). Some methods are based on 

allometric relationships between the distribution of foliage area or mass and more easily measurable 

attributes such as branch diameters to generate statistical models of foliage distribution at the tree or 

plot level (Seidel et al. 2011). Representations of tree structure that include both geometrically explicit 

as well as topological information have also been obtained. Information about branch topology has been 

found useful to identify branches through time, e.g. for growth modeling (Godin et al. 1999). Such fine 

geometric measurements have been derived with the use of an electromagnetic digitizer (Polhemus 

1993) that includes a hand-held pointer that is used to measure the 3D position of branching nodes and 

foliage within a local coordinate frame. A tree is digitized by sampling its branching nodes in topological 

order (Godin et al. 1999) and by manually processing each measurement. Due to this laborious process, 

a full digitization of a single small tree (e.g. 600 leaves) may require several days of field  labour (Godin 

et al. 1999; Sinoquet et al. 1998). Some suggestions for automation have been made, including voice 

recognition so that an operator could work alone by dictating the observed topology and related 

measurements into a microphone (Room et al. 1994, in Godin et al. 1999). 
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 It was not until the invention of laser scanning that the direct retrieval of 3D information has 

gained real potential. Using this technology, a beam of laser light is used to measure distance as the 

time that a pulse of light takes to travel from the scanner to the target and back to the scanner. Laser 

scanning devices can be operated from ground-based or airborne platforms. For airborne scanners, 3D 

point cloud information is obtained by integrating laser scanners with global positioning systems (GPS) 

and inertial measuring units that measure attitude and position of the scanning instrument (Wehr & 

Lohr 1999). The resulting data represents the 3D coordinates of reflecting targets and is often stored as 

point cloud data. Alternatively, the reflected beam may be digitized at a nanosecond bandwidth 

providing for the full recording of returned energy against time, in which case the data is referred to as 

full-waveform data (Strahler et al. 2008). Airborne LiDAR provides a cost-effective means to map 

topological information and forest structure across the landscape. Static, ground-based laser scanners 

are simpler in design and allow for an unprecedented level of detail in acquiring forest structural 

attributes. Figure 1.2 shows two merged data sets and demonstrates the co-location of forest structural 

features in airborne LiDAR and ground-based laser scanning data. The clear differences in data 

representation result from the distinct viewing perspectives of the scanning instruments and indicate 

the complementarity of the information contents of the two technologies. While airborne LiDAR has a 

downward looking perspective, ground-based instruments have a hemispherical upward perspective. 

 A comprehensive review of methods used for the processing of LiDAR and laser scanning data is 

not provided in this thesis, but can be found in literature (e.g. van Leeuwen & Nieuwenhuis 2010). In 

general, methods for processing airborne LiDAR data advanced more quickly than techniques for 

ground-based laser scanning. Early applications for ground-based laser scanning in forestry focused on 

simple metrics such as diameter at breast height (DBH) and tree height (Aschoff & Spiecker 2004; 

Bienert et al. 2007; Liang et al. 2012; Maas et al. 2008; Pfeifer & Winterhalder 2004; Pueschel et al. 

2013; Van Leeuwen et al. 2011b), while more recent studies include estimates of leaf area (Jupp et al. 

2008), woody-to-total plant area (Clawges et al. 2007), leaf angle distributions and chlorophyll 

concentrations (Eitel et al. 2010), and crown shape (Moorthy et al. 2011). The utilization of the full 

breadth of information contained in ground based laser scanning data remains challenging to date, 

however. Airborne approaches are typically based on empirical relations between forest inventory 

attributes and statistics derived from point cloud data (Wulder et al. 2012) such as percentile 

distributions of return heights, or the coefficient of variation to infer e.g. plot-level biomass 

(Breidenbach et al. 2010; Drake et al. 2002; Næsset & Gobakken 2008), or tree height (Andersen et al. 

2005; Coops et al. 2007; Næsset et al. 2005). Airborne data can also be used to delineate individual tree 
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crowns and estimate individual tree and crown attributes (Heurich 2008; Popescu et al. 2003; Van 

Leeuwen et al. 2010). Ground-based scanning seeks to automate feature extraction and segmentation 

approaches and often involves algorithms of graph theory (Côté et al. 2009; Livny et al. 2010) and image 

processing (Pueschel 2013; Pueschel et al. 2013; Van Leeuwen et al. 2013; Van Leeuwen et al. 2011b). 

 

 

Figure 1.2: Shown are the individual returns of co-registered airborne LiDAR and ground-based laser 

scanning data of the study area (see Chapter 1.5). On the left side are shown the differences in the 

shapes of percentile distributions that were obtained from these data. 

 

 Some approaches convert the recorded laser returns to voxel spaces (Seidel et al. 2012; Yang et 

al. 2013) that are discretized and rasterized representations of a 3D continuous space; however, unlike 

computed tomography (CT), for example, that uses X-rays to obtain data related to the internals of a 

body and voxel spaces to store these data, laser scanning only sees the surface of objects and is affected 

by data occlusion effects. These effects may result in cavities or holes along the object surfaces that 

would alter their appearance and reflective (transmissive) properties. To avoid such effects, multi-
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scanning approaches have been proposed; However, the rigorous assessment of data coverage from 

multi-scanner-installation set-ups has yet to be incorporated (Yang et al. 2013). A number of studies 

have demonstrated the derivation of 3D vector models from point cloud data of individual trees or 

forest inventory plots and have focused on the credible reconstruction of unseen parts of the canopy 

(Raumonen et al. 2013). Modeling approaches have primarily focused on using point cloud information 

and generally require various assumptions on growth patterns and foliage characteristics. These 

methods typically start with the segmentation of returns into woody material and foliage, e.g. based on 

return intensities (Côté et al. 2009) or spectral information (Douglas et al. 2012; Gaulton et al. 2013) 

after which geometries of tree trunks and branching can be obtained. To address effects of data 

obscuration and roughness of object surfaces, least squares optimization (Maas et al. 2008) and 

hypothesis testing and generating techniques such as Hough transform (Fleck et al. 2004) have been 

adopted. Coarse topological graphs of branching structures may be created using skeletonization 

algorithms (Bucksch et al. 2010; Verroust & Lazarus 2000). More recent developments in modeling tree 

structure have combined laser scanner data with tree architectural software (Côté et al. 2011; Mech & 

Prusinkiewicz 1996; Runions 2007; Weber & Penn 1995) to represent levels of detail beyond the shoot. 

This is achieved by simulating the growth of fine woody structures that follow the spatial distribution of 

foliage returns or that adapt to simulations of the internal canopy radiation regime (Côté et al. 2011, 

2009; Runions et al. 2007) or by fitting template tree crowns to growing-spaces that are derived from 

stem and crown information (Van Leeuwen et al. 2013). Reconstruction of tree structure has also been 

attained using cheaper digital cameras combined with advanced photogrammetric processing 

techniques to obtain 3D information and realistic tree representations (Neubert 2007; Tan et al. 2006). 

 

1.3. Modeling canopy radiation and photosynthesis 

The attenuation of light in turbid media, such as a pigment solution, follows an exponential decrease 

and is described by Beer's law. In forestry, a modification of Beer's law has been used that is based on 

leaf area index (LAI), a solar angle dependent extinction coefficient         and the clumping factor Ω 

(Chen 1996; Nilson 1971) to correct for the organization of foliage into shoots, around branches and into 

crowns. This clumping factor has a value of 1 under random placement of foliage material and decreases 

with clumping so that the probability of radiation penetration to deeper canopy layers increases. The 

application of Beer's law can be used to estimate the fraction of absorbed photosynthetic active 
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radiation (fAPAR) that is used in a variety of models to compute canopy photosynthesis (Hall et al. 2012; 

Hilker et al. 2012a; Monteith 1972, 1977) for example as gross primary productivity (GPP), or as net 

primary productivity (NPP) that takes respiration into account. More complex radiation transfer models 

may consider stand heterogeneity or the stratification of foliage material with canopy depth. In the case 

of increasingly fine structural models, simulations of the radiation regime are based on iterative 

computations of lines of sight between canopy elements and between canopy elements and radiation 

sources. Although a wide variety of model implementations exist, two methods, ray tracing and 

radiosity, hold promise. Ray tracing provides for the derivation of a large variety of measures related to 

the canopy radiation regime at a very high accuracy (Widlowski et al. 2007). However, as the processing 

involves numerous computations of intersections of rays with the scene (Govaerts & Verstraete 1998; 

Suffern 2007), ray tracing is also the most computationally intensive technique available to compute 

such information and applications in remote sensing have often been limited to providing validation 

data sets (Côté et al. 2012; Disney et al. 2000; Widlowski et al. 2007). Moreover, due to their stochastic 

nature, ray-tracing simulations are not suited for dynamic lighting conditions. Radiosity models, on the 

other hand, compute view factors that represent the visibility from one scene element to another, and 

from scene elements to light sources. These view factors facilitate that surface absorptance and 

reflectance for all scene elements can be computed rapidly for any distribution of emittance across the 

light sources (Cohen & Wallace 1993); see Figure 1.3 for a pictorial demonstration of the differences 

between radiosity and ray tracing. The computation of view factors is challenging (Liang 2004), however, 

and approximate methods have been proposed instead. These approximate methods typically assume 

that radiation leaving a single differential area (i.e. point) on one surface element that reaches another 

surface element is representative of all differential areas (i.e. points) on that surface element. Examples 

of methods include the Nusselt analog or hemicube approximation for which the interested reader is 

referred to Cohen and Wallace (1993). Demonstrations of the potential of radiosity models in remote 

sensing have been made by, for example, Gerstl and Borel (1992) and more recently by Huang et al. 

(2013). 

  



14 
 

 

 

Figure 1.3: A pictorial demonstration of forward ray tracing (left) and radiosity (right). In forward ray 

tracing, individual photons or rays are followed until intersection with one of the scene elements and its 

fate (i.e. absorption or scattering) is determined stochastically. If the fate is to scatter, a new direction is 

computed and a new intersection is sought. This process continues until the photon is absorbed, reaches 

the camera or bounces outside the scene. If the light source or the camera is moved, the ray tracing 

simulation needs to start again. Radiosity modeling starts with the computation of view factors for all 

scene elements that store the degree of exposure of element j to radiation leaving element i, so that all 

radiation leaving i sums to unity. Once these view factors are computed, the solution to the radiosity 

model can be computed more quickly when the illumination conditions or camera perspective changes 

(see also SIGGRAPH’s educational material for an overview of the radiosity algorithm: 

http://www.siggraph.org/education/materials/HyperGraph/radiosity/overview_1.htm, last accessed on 

December 31, 2013). 
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1.4. Research objective and research questions 

The objective of this thesis is to develop automated methodology for modeling canopy structure at an 

arbitrarily fine resolution that provides for the estimation of shoot-level to canopy-level radiation and 

photosynthesis-related information. The research in this thesis focusses on the use of the high 

information content of ground-based laser-scanning data combined with tree-regeneration techniques 

to obtain realistic reconstruction of selected inventory plots. The explicit modeling of canopy elements 

within these inventory plots enables the simulation of incident canopy radiation at the leaf level. This is 

used to evaluate a leaf-level photosynthesis model that responds to temporal dynamics in the 

environmental variables: temperature, relative humidity and photosynthetic active radiation. Using a 

single-leaf photosynthesis model, GPP estimates are obtained through integration over individual 

canopy elements. The leaf-level photosynthesis parameters are optimized by minimizing differences 

between the simulated and eddy-covariance GPP estimates. 

 The research in this thesis is arranged to answer the following research questions and to explore 

opportunities to improve the integration of field mensuration data at the shoot and tree level with 

models of canopy radiation transfer. 

1. Can LiDAR remote sensing parameterize 3D light transport models at scales ranging from shoot 

level to plot level? 

2. Can leaf-level IPAR be simulated over a growing season at a sub-hourly time step from arbitrarily 

complex canopy light transport models? 

3. Can leaf-level physiological parameters be inferred from simulated canopy radiation and stand-

level productivity estimates? 
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1.5. Study area 

The study area is located on Vancouver Island, BC, Canada, near the city of Campbell River, in the Oyster 

River area about 16 km from the east coast of the island (UTM Zone 10, NAD83: 331150E, 5529900N to 

336150E, 5524900N). The area (Figure 1.4) is a plantation forest consisting of 80% Douglas-fir 

[Pseudotsuga menziesii spp. menziesii (Mirb.) Franco], 17% western redcedar [Thuja plicata Donn. ex D. 

Don], and 3% western hemlock [Tsuga heterophylla (Raf.) Sarg] (Coops et al. 2007; Krishnan et al. 2009; 

Morgenstern et al. 2004) with main understorey species, salal (Gaultheria shallon Pursh.), dull Oregon 

grape (Mahonia nervosa (Pursh.) Nutt.), vanilla-leaf deer foot (Achlys triphylla (Smith) DC), and various 

ferns and mosses. The site is located on a northeast facing 5-10° slope and the stand density is 1100 

stems ha-1 with tree heights ranging between 30 and 35 m (Hilker et al. 2010a). The predominant age of 

the trees was 60 years old in 2009. The region belongs to the dry maritime Coastal Western Hemlock 

biogeoclimatic subzone (CWHxm) and has a mean annual precipitation and temperature of 1,500 mm 

and 9.1 °C, respectively (Meidinger & Pojar 1991). A total of four 30 x 30 m plots were established based 

on representativeness of the stand of which one (plot 7) was nitrogen enriched (Hilker et al. 2012b). 

Airborne LiDAR data and ground-based laser scanning data covering all four plots were acquired in 2008, 

whereas eddy-covariance and meteorological records used for computer simulation and validation were 

selected for the year 2009. 

 

Figure 1.4: Study area showing the inventory plots and the eddy-covariance flux tower. 
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1.6. Outline 

Chapters 2 and 3 describe methods for the reconstruction of forest plots from airborne LiDAR and 

ground-based laser scanner data respectively. In Chapter 2, airborne LiDAR data are used to characterize 

crown dimensions and to efficiently parameterize a coniferous forest canopy as a series of cones with 

varying radii and heights. The intersection of these cones provides for the delineation of individual 

crowns. In Chapter 3, a novel and computationally-efficient method for the detection of tree stems and 

stem attributes from ground-based laser scanning is presented. These derived stem and crown 

attributes are then used to parameterize three-dimensional forest plots of which the structural quality is 

assessed based on simulated and measured contact frequencies of light rays with the canopy. 

 Chapter 4 combines the virtual forest scenes reconstructed through the methodology explained 

in Chapters 2 and 3 with light transport modeling to simulate the propagation of photochemically active 

radiation throughout the canopy. Estimates of incident photochemically active radiation at the level of 

individual canopy elements are combined with environmental data about temperature and relative 

humidity to drive a leaf-level photosynthesis model that has 10 parameters. Canopy-level gross primary 

productivity is then estimated over the 2009 growing season by integrating leaf-level photosynthesis 

over the individual canopy elements. The results indicate the efficiency of the light transport model for 

complex scenes and the potential to estimate leaf-level photosynthesis parameters using a model 

inversion technique and eddy-covariance stand-level estimates of gross primary productivity. 

 Chapter 5 provides a discussion of the significance of the study and the potential for airborne 

LiDAR and ground-based laser scanning to create geometrically explicit forest structural models and 

integrate shoot-level physiological measurements with remote sensing data. 
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2. Canopy surface reconstruction from a LiDAR point cloud using the 

Hough transform 

 

2.1. Introduction 

The measurement and mapping of individual tree attributes, including tree height, crown shape and 

volume are of significant importance in forestry, where such information is used to predict, for example, 

growth, yield, and standing biomass (Lim et al. 2003). These measurements are typically stored as two-

dimensional stem maps or as three-dimensional models that represent rough outlines of individual tree 

crowns (Kato et al. 2009). Such maps and models may be used to estimate stand density or to derive 

reflective and absorptive properties of a stand using geometric optical radiative transfer (Strahler & Jupp 

1991) or simulation models (Wang & Jarvis 1990a) from which valuable information is derived for the 

estimation of gross and net primary productivity (Hilker et al. 2012a; Wang & Jarvis 1990a). 

 For large areas, airborne LiDAR remote sensing can be used to obtain measurements of 

individual tree attributes rapidly and cost-efficiently. Typically, canopy height models (CHMs) are 

derived from these LiDAR data and are used to detect and delineate individual tree crowns. These CHMs 

are created by interpolating first-return LiDAR data after normalizing the return heights to a digital 

terrain model (Ben-Arie et al. 2009). Individual tree locations are derived as the local maxima in CHMs 

and the crown delineations are derived using template matching (Popescu et al. 2003) or watershed 

algorithms (Chen et al. 2006). These delineations can then be used to subset the LiDAR data and to 

extract individual tree attributes. 

 However, a number of problems have been identified that limit CHMs to accurately retrieve 

individual tree and crown attributes (Ben-Arie et al. 2009; Brandtberg et al. 2003; Nelson et al. 2000). 

First, crown delineation from CHMs can result in inappropriate crown shapes, and crown boundaries can 

overlap with other trees or cover canopy gaps (Mei & Durrieu 2004; Rahman & Gorte 2009; Weinacker 

et al. 2004). Second, underestimation of tree height is commonly reported (Holmgren & Nilsson 2003; 

Næsset 1997; Nilsson 1996) and results from LiDAR acquisition whereby tree apexes may be missed 

(Morsdorf et al. 2004), and the permeability of tree crowns to laser light (Gaveau & Hill 2003). Third, 

CHMs typically contain surface irregularities that require correction (Ben-Arie et al. 2009) and smoothing 

techniques used to correct surface irregularities can have adverse impacts on individual tree detection, 
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crown delineation, and the retrieval of crown parameters (Leckie et al. 2003; Popescu & Wynne 2004). 

Fourth, as a result of rasterizing, tree top locations in the CHM may have moved from their location in 

the raw point cloud (Pitkanen et al. 2004). 

 Improvements in the delineation of tree crowns may be sought in the use of algorithms that are 

less sensitive to noise or irregularities in the CHM as well as algorithms that fit three-dimensional shapes 

to the LiDAR data as opposed to two-dimensional templates or watersheds. Once three-dimensional 

shapes are fitted, delineations between shapes are easily obtained by computing geometric 

intersections. Hypothesis testing and generating procedures such as the Hough transform (Hough 1962; 

Duda et al. 2001) have been frequently used for fitting template shapes to noisy images or three-

dimensional data sets. In such procedures, image pixels or three-dimensional data points vote over a set 

of object parameterizations (i.e. shapes) from which the parameterization that fits best is determined 

based on consensus. The goal of this research is to develop a tree-level object-based canopy model, 

called the parametric height model (PHM) that is based on the Hough transform. The proposed 

algorithm describes the forest canopy as a series of cones fitted to the raw LiDAR point cloud, from 

which tree-crown delineations can be extracted through simple geometric operations. It is further 

anticipated that by fitting cones to the raw LiDAR point cloud, the negative height bias can be corrected. 

 

2.2. Methodology 

2.2.1. Study area 

A full study area description is available in section 1.5. 

 

2.2.2. Data processing 

Ground versus non-ground hits in the LiDAR data were separated and a gridded digital terrain model 

was created. The non-ground point cloud was normalized to obtain LiDAR return heights relative to 

digital terrain model height, and from this normalized point cloud a CHM was created following Ferster 

et al. (2009), and using a grid cell size of 40 cm. 

 Local maxima were detected in the CHM using the level-set method (Ying et al. 2004). Using this 

method, a set of equally spaced height-thresholds is used and for each pixel in the CHM a Boolean is 

stored to indicate whether the pixel is above or below the threshold. This results in a stack of Boolean 
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images where true values are assigned to those pixels with heights greater than the threshold. These 

stacks of images enable one to follow the outline of an individual crown across a range of heights. The 

local maxima of individual tree crowns were then obtained as follows: if, for any layer i in the image 

stack, there is a contiguous set (a.k.a. ‘blob’) of ‘true’ pixels that overlaps with a contiguous set of ‘true’ 

pixels in the next layer (i.e. i+1) then the top of the crown is not yet found. However, if any contiguous 

set of pixels in layer i does not overlap with a set of layer i+1 then a local maximum is computed as the 

geometric centre of pixels contained in the contiguous set of ‘true’ pixels in layer i. The thus found local 

maxima relate to the CHM and local maxima in the raw LiDAR point cloud were subsequently found 

within vertically aligned cylinders centered at the CHM local maxima. Based on point spacing and the 

cell-size of the CHM, the cylinder radii were set to 50 cm. 

 At the position of the local maxima, cone shaped objects were fitted to the raw LiDAR data using 

an implementation of the Hough transform (Hough 1962). The Hough transform has been extensively 

used in image processing, for example, for the detection of lines and circles in photographs. For 2D 

imagery, the Hough transform is typically preceded by an edge-detection algorithm that identifies a 

potentially sparse set of pixels along object contours displayed in the image. A so-called parameter 

space is created to define the range of parameter values that constitute the set of potential object 

shapes and orientations. For every contour pixel, a set of potentially fitting shapes (e.g. circles, lines) is 

determined and its parameters denote the coordinates of a vote that is registered in a so-called 

accumulator space. As votes accrue, the accumulator space updates the number of votes per unique 

parameter combination. Consensus around the best fit is then obtained from the accumulator space as 

the combination of parameters with the most popular vote. The Hough transform has also been used for 

3D applications, for example, for reconstruction modeling of buildings from LiDAR data (Vosselman & 

Dijkman 2001). In our implementation, cones were fitted to the raw LiDAR point cloud data using two 

free parameters to constrain the cone shape: apex angle (  ) and cone height, and the locations of the 

cones in the x,y-plane was fixed to the local maxima of the CHM. The apex angle of a cone relates to 

coordinates of points along the cone surface as: 

 

        √
 

 
           (2.1) 
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where 
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           (2.3) 

 

In equation 2.2 and 2.3, xT, yT, and zT are the coordinates of the cone top (i.e. with xT and yT  obtained 

from the local maxima in the raw LiDAR point cloud) and x, y, z are the coordinates of points along the 

cone surface. Apex angle,   , expressed as the angle between the cone axis and a line on the cone 

surface was limited to the range 10 – 24⁰. The cone height, zT, had no absolute bounds but was 

restricted to a range of 0 to 2 m above the local maximum (CHM) of the tree crown that a particular 

cone instance was fitted to. LiDAR returns voting over a cone shape, where selected using a vertically 

aligned cylindrical subset of returns within 2.5 meter distance from the tree top (xT, yT)-locations. In 

order to assess the accuracy of the method, statistical analysis was conducted to assess the correlation 

between tree heights obtained from the raw point clouds (i.e. from the local maxima) and those heights 

obtained from the PHM and the CHM, and any bias introduced in creating the surface models. 

 Additionally, crown delineations were derived based on computed intersections between lines 

and triangles. For each cone, a set of lines was constructed from the cone apex to its base as well as a 

set of isosceles triangles that have one edge at the cone apex. Using the intersections between lines and 

triangles the crown delineations were established. Line-with-triangle intersections were computed, 
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rather than line-with-cone, or cone-with-cone intersections for the generality of the method and sole 

demonstration purpose of this study. 

 

2.3. Results 

Figure 2.1a and b show the original CHM and the created PHM, respectively. In Figures 2.1a and b, the 

CHM are offset vertically and displayed along a second height axis for comparison. The CHM shows clear 

smoothing of tree tops and ambiguous crown boundaries, whereas the PHM shows clear crown 

boundaries and distinct tops. Figure 2.2 demonstrates the delineation of individual tree crowns from the 

parametric height model. 

 Linear regression indicates that both the PHM and CHM were highly correlated with the heights 

of local maxima in the raw LiDAR point cloud (r = 0.99, and r = 0.98, respectively, Table 2.1). However, 

CHM heights are negatively biased with the raw local maxima, whereas PHM heights are positively 

biased. A dependent samples t-test reveals that these offsets are significantly greater than zero (P < 

0.01). For the PHM, the offset is 1.3 m (se = 0.6 m), and for the CHM the offset is -1.2 m (se = 0.7 m) 

(Table 2.1). By describing the forest canopy height as a model that comprises a series of cones, a 

significant reduction of data size is achieved, in this case by a factor 80. 

 

Table 2.1: Statistics obtained from linear regression and a dependent samples t-test. 

Model Equation r bias se N 

PHM hPHM = 0.87 + 1.01hraw 0.99 1.3 0.6 157 

CHM hCHM = -0.71 + 0.99hraw 0.98 -1.2 0.7 157 
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Figure 2.1a (left): Presentation of the PHM (bottom) and CHM (top) generated for plot 1. Figure 2.1b 

(right):  PHM sliced and overlaid with the raw LiDAR point cloud. (Notice the stacked z-axes; The CHM is 

vertically offset and scaled along the top-most z-axis.) 

 

Figure 2.2: Demonstration of the delineation of individual tree crowns (red) based on geometric 

intersections of the individual tree crowns. 
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Figure 2.3: Illustration of the method covering a larger region of the airborne LiDAR data set (300 x 

300m). 

 

2.4. Discussion 

LiDAR derived CHMs have been used to generate forest attributes to meet a wide-range of forest 

monitoring and inventory information needs (Wulder et al. 2008). However, the retrieval of tree level 

crown characteristics from CHMs remains challenging. This study demonstrates the effectiveness of the 

Hough transform to fit a basic primitive shape, here a cone, to individual tree crowns present in the 

LiDAR point cloud. After fitting the cones to the data, tree crown delineations can be trivially obtained as 

the geometric intersections between cones. The derived delineations and rough crown outlines provide 

a principal step towards the extraction of individual tree attributes and modeling at the tree level. While 

the current study focusses on the application and validation of the method at plot level, the method can 

equally be applied over larger areas of airborne LiDAR (Figure 2.3). 

 An additional benefit of the method, investigated in this study is the representation of tree 

height – that in CHMs and LiDAR data sets is often underrepresented due to porosity of the canopy to 

laser light and missing and smoothing of tree apexes. The bias found between PHM and raw LiDAR tree 

heights found in this study is consistent with the inherent bias in LiDAR data (Holmgren & Nilsson 2003; 

Næsset 1997; Nilsson 1996), and indicates potential for development of an automated correction 

procedure. Ongoing research will focus on this technique for retrieving inter-crown gap distributions and 

for use within simulation models such as ray tracing to model the radiation regime within tree crowns.   
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3. Automated reconstruction of tree and canopy structure for 

modeling the internal canopy radiation regime 

 

3.1. Introduction 

Canopy structure encompasses the spatial distribution of foliage as well as the architecture of the 

supporting woody components such as stems and fine branches. For coniferous canopies, the 

distribution of foliage elements is typically described around three levels of organization (Oker-Blom 

1986):  1) the clumping of needles into shoots, 2) the clumping of shoots around branches, and 3) the 

clumping of the canopy into crowns. This complex arrangement of foliage elements increases radiation 

penetration to lower canopy strata (Oker-Blom 1985, 1986; Stenberg et al. 1995a) and affects the 

physiological adaptation of foliage elements to their immediate radiation environment, which has 

important implications for forest growth and productivity (Field 1983; Givnish 1988). Over large spatial 

scales, an exponential decay in radiation with canopy depth is observed. This rate of decay increases 

with leaf area and decreases with clumping; However, profound deviations from an exponential relation 

or even abrupt changes (lumiclines) in canopy radiation can be observed over finer spatial scales or 

along vertical canopy transects (Parker et al. 2001).  

Canopy radiation can be computed using radiative transfer models that relate the absorption, 

reflection, and transmission of radiation to the biophysical characteristics of foliage elements and their 

spatial arrangement within the canopy. Radiative transfer models range from high spectral resolutions 

(Jacquemoud et al. 2009) to fine spatially explicit models of canopy structure (Ross & Marshak 1991; 

Welles & Norman 1991). These finer levels of geometric detail enable the comparison of simulated 

radiation budgets against in situ measurements (Mariscal et al. 2004), facilitate coupling with leaf or 

shoot-level functional models (Van der Tol et al. 2009; Wang & Jarvis 1990), and provide for a 

benchmark that can be used to evaluate model performances that operate at wider scales (Widlowski et 

al. 2006). The parameterization of the latter models is challenging and costly, due to the large number of 

structural parameters. 

Ground-based laser scanning is a recent technology that has significant potential for direct and 

cost-efficient measurement of forest structure at very high resolutions. Canopy structure is digitized by 

emitting laser pulses across a wide field of view and by measuring the time of flight between each 
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emission, reflection off any scanned targets, and return at the instrument (Aschoff & Spiecker 2004). 

The recorded laser returns may be digitized as full waveform data, where the full return of laser energy 

is recorded at a nanosecond bandwidth, or as discrete returns, where data is represented as point 

clouds. In forestry, these data have been used for the modeling of stem volume and taper (Maas et al. 

2008), branching structures (Bucksch et al. 2010), and - in combination with tree modeling techniques 

such as L-systems (Prusinkiewicz & Lindenmayer 2004) - the reconstruction of individual trees at levels 

of detail beyond the shoot scale (Côté et al. 2011, 2009).  

The high level of structural detail of these data provides an important opportunity to 

parameterize geometrically explicit radiative transfer models. Modeling approaches have primarily 

focused on using point cloud information and generally require various assumptions on growth patterns 

and foliage characteristics. Methods typically start with the segmentation of returns into woody 

material and foliage, e.g. based on return intensities (Côté et al. 2009) after which geometries of tree 

trunks and branching can be obtained. To address effects of data obscuration and roughness of object 

surfaces (Côté et al. 2011; Liang et al. 2012) least squares optimization (Maas et al. 2008) and hypothesis 

testing and generating techniques such as Hough transform (Fleck et al. 2004) have been adopted. 

Coarse topological graphs of branching structures may be created using skeletonization algorithms such 

as provided by Verroust & Lazarus (2000) and Bucksch et al. (2010). More recent developments in 

modeling tree structure have combined laser scanner data with tree architectural software to represent 

levels of detail beyond the shoot. This is achieved by simulating the growth of fine woody structures that 

follow the spatial distribution of foliage returns or that adapt to simulations of the internal canopy 

radiation regime (Côté et al. 2009; Runions et al. 2007; Van der Zande et al. 2011). 

 A number of challenges remain in modeling of canopy structure at scales ranging from individual 

shoots to the crown level. Data obscuration makes the automation of the modeling pipeline challenging 

(Côté et al. 2011) and the level of detail of crown and canopy reconstructions needs to be balanced with 

computational tractability while remaining able to simulate canopy radiation profiles.  

 In this paper we present a methodology for the automated reconstruction of canopy structure 

from ground-based laser scanning data into three-dimensional mesh models that provide for modeling 

radiation transmission with canopy depth. The data used in the reconstruction pipeline are discrete but 

the point clouds are derived from full waveform data. We then compare and evaluate this method of 

reconstruction against an established method for deriving canopy radiation transmission from the full-

waveform data and evaluate the radiative consistency between these two approaches. We conclude the 
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paper with a discussion on the use of these modeling techniques and opportunities for analysis of shoot 

level functioning. 

 

3.2. Methods 

3.2.1 Study area 

A full study area description is available in section 1.5. 

 

3.2.2. Data 

Field data was collected in August 2008 at all four plots including diameter at breast height (DBH), tree 

height, and stem locations. Stem locations and heights were measured using a vertex (Haglöf, Sweden) 

hypsometer and compass bearing and DBH was measured using a diameter tape measure. Laser 

scanning data was acquired concurrently using the EchidnaTM Validation Instrument (EVI) (Strahler et al. 

2008). This laser scanner features a 1064 nm laser light source and digitizes the full-waveform of 

returned light energy at 2 Giga samples per second (Gs/s) and covers a field of view of 360° azimuth and 

130° zenith. Data was collected using an angular sampling interval of 4 mrad and beam divergence of 5 

mrad and range measurements were cut off if values exceeded 100 m. Five scans per plot were acquired 

comprising the four plot corners and the centre. North was marked in the scans using a reflective 

marker that was placed using a compass and coordinates of scan locations were recorded using GPS.  

 

3.2.3. Data processing  

3.2.3.1. Preprocessing 

The full-waveform digitization from the EVI instrument is beneficial for analyzing surface scattering 

where the size of the scatterers is fine compared to the instrument footprint, as this leads to a degree of 

porosity of the medium to the laser beam that can be used for modeling the transmission of radiation 

through the canopy (Jupp et al. 2009; Yang et al. 2010). In this study, the full-waveform data was used to 

derive foliage profiles and canopy gap fraction, the latter is used as a measure of radiation transmission. 
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Single and last returns were used for creating virtual geometric models of the forest plots. These returns 

were obtained from the full-waveform information using methods described by Yang et al. (2013). The 

single and last returns were projected using the recorded azimuth and zenith angles of the respective 

laser shots into the 2D image domain (Andrieu et al. 1994). The same projection was then used to 

produce a suite of additional EVI outputs including return intensity, range, Cartesian coordinates and 

radial distance that was defined as the horizontal component of range. 

All scans were aligned to north using the reflective target, then six-degree-of-freedom offsets 

between corner scans and the centre scan were determined manually by interactively shifting and 

rotating the point clouds, acknowledging that automated routines for coregistration already exist (Gruen 

& Akca 2005). A digital elevation model (DEM) and canopy height model (CHM) were created using co-

registered data of five scans per plot and using a grid-cell size G (40 cm) and smoothing using a 1.5m 

Gaussian kernel (σK=1m) in accordance with values previously used in similar forest types (Ferster et al. 

2009). Additionally, local maxima were derived from the CHM using the level-set method (Kato et al. 

2009) and a Parametric Height Model (PHM) was created using these local maxima and the CHM 

(Chapter 2). The PHM model outlines individual crowns by fitting cones to a CHM or to raw LiDAR data 

so that the number of returns within threshold distance m (10cm) from the cone surface is maximized. 

Transmittance of the DEM was set to zero. 

Subsequent processing addresses the detection of stem locations and the retrieval of stem 

diameters (§3.2.3.2.), and the derivation of geometric models of the forest plots (§3.2.3.3.). The virtual 

plots are then used to simulate canopy radiation transmission (§3.2.3.4.). 

 

3.2.3.2. Stem detection and reconstruction 

Tree stems were segmented from single scans. The segmentation was implemented using the medial 

axis transformation (MAT) and regression analysis of object boundaries. The medial axis of a polygonal 

or polyhedral shape is a thin curve or curved plane centred within the boundaries of that shape (Das et 

al. 2011; Martinez-Perez et al. 1999; Yuan et al. 2011). A large number of methods exist for the 

derivation of the MAT (Siddiqi & Pizer 2008). In this study, the MAT was derived from a distance 

transformation. First, using radial distance, solid objects such as stems, branches, and ground hits were 

crudely separated from permeable targets (foliage) by identifying pixels whose range did not deviate 
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from all 8-connected neighbouring pixels by more than a tolerance, δ (Figure 3.1, step 1). In this binary 

image, apparent edges in the range image are zero while surfaces in the range image are non-zero. 

Second, from this binary image the distance transformation (DT) was computed (Figure 3.1, step 2) that 

represents the distance from any surface pixel to their nearest edge pixel, e.g. (Shih & Pu 1995). 

Segments of surface pixels in the DT show an elevation in values towards the segment centres, resulting 

in the appearance of ridge-lines along the long axis of tree stems. Third, the MAT was derived from the 

distance transformed image using the sign-change of the image derivative that was computed along 

image lines (Siddiqi & Pizer 2008) (Figure 3.1, step 3). Association of surface pixels to their nearest edge 

pixels allows for the conversion from a medial representation (MR) to a boundary representation (BR) 

(Siddiqi & Pizer 2008) (Figure 3.1, step 4). A set of boundary pixels was obtained and classified into 

       and        relative to the medial axis       . An illustration of the method for stem detection is 

provided in Figure 3.3. 

 Tree stems were detected using the MR and BR based on three filtering criteria: 1) a measure of 

normalized cross-correlation, r, between the paired boundary lines, 2) change in local orientation along 

the medial axes,  , and 3) the number of pixels contained in the medial axis,     (Figure 3.1, step 5). 

The normalized cross-correlation, r, was computed between corresponding pixel y-coordinates of the 

paired boundary lines: 

 

∑
(                 )(                   )

        
          

  

 
      (eq. 3.1) 

 

where k is the number of paired boundary pixels associated with the medial axis and                   
 

the standard deviations of y-coordinates. The normalized cross correlation is frequently used in image 

processing and computer vision, for example, to match stereo pairs (Fua 1993). The local orientation 

was computed for every medial axis pixel as the slope, in the image coordinate frame, of the line 

through the associated, paired boundary pixels (       ,         ). The parameter   was computed as the 

change of orientation between two adjacent medial axis pixels (                  and medial axis pixels 

for which the local orientation changed by more than a user-specified threshold were removed. After 

filtering for  , the parameter     was used to filter any small objects that were considered too short to 
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reliably compute a normalized cross-correlation. Filtering for r,  , and    , detects tree stems. A 

sensitivity analysis around stem detection parameters was conducted by varying one parameter at a 

time over specified ranges (Appendix A.1.1.). Stem diameters were computed along unobscured, 

detected stems following (Strahler et al. 2008): 

 

       (       )  
   

  
 

 

       (eq. 3.2) 

     
 

   
         (eq. 3.3) 

 

where R is the range, D the stem diameter, and       is the angular width spanned by the tree trunk. 

Stem centres were computed from the original radial distance that relate to the stem surface (i.e. bark), 

and derived stem diameters. 
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Figure 3.1: Schematic representation of the stem detection algorithm showing the individual steps of 

processing. See text for explanations about the individual processing steps. 
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3.2.3.3. Mesh modeling 

Stem segments detected in the single scans, that overlapped in co-registration were merged into a 

single stem object. To reduce impacts of co-registration errors as well as errors in diameter attribution 

between scans, the merged data were smoothed by averaging stem attributes along 0.5 m height 

intervals. Gaps in stem representation may occur, however, due to the effects of occlusion in ground-

based laser-scanning data. To bridge these gaps, B-splines were fitted through all stem segments and 

tangent vectors were computed at every spline node. For every possible pair of segments, a connecting 

spline was fitted using the same nodes as contained in the individual splines combined, and from the 

paired nodes the angles (s) between tangent vectors (connecting spline vs. the two separate splines) 

were computed, except for a number of six nodes centred around the joint of the two segments, due to 

sensitivity of splines towards the extremes (Daniels II et al. 2008). If a pair of segments was shorter than 

six nodes in length, the pair was skipped. If these angles or the z-component of the gap length (LZ) 

exceeded user specified values sMAX, LZ,MAX, respectively, the two segments were interpreted as not 

belonging to the same tree. Alternatively, any two segments were assessed to belong to the same tree 

stem if segment wj was the smoothest connecting segment for wi and if wi was the smoothest 

connecting segment for wj too; this is analogous to stereo matching criteria used by Fua (1993).  

After this step, data occlusion near the trunk base and tree top may remain. To recover these 

final missing parts, an approach was developed where the trunks were extended towards the ground 

and the tree tops. Liu et al. (2005) describe an approach that reconstructs curves from point cloud 

information based on the tangential flow. Their algorithm produces a B-spline that grows along its two 

end-points using a cylinder that is aligned with the spline’s tangent and that is used to follow apparent 

curves in the point cloud. Given that tangential vectors of trees are generally vertical, a solution of 

reduced complexity was sought in this study. The point cloud was compressed along the z-axis (i.e. 

height-axis) by a factor 20 and a cylinder with radius 2.5 m was placed around the top of the detected 

stem segment. Iteratively, the nearest return within 30 cm above the stem top and within the cylinder 

was added to the sequence of spline nodes and using the new top additional returns were added until 

no additional returns were found. The same procedure was used to extend the stem segments towards 

the ground. 

The set of cones derived from the PHM, each representing an individual, dominant tree crown, 

was matched with the tree stems by locating, for every cone tip, the nearest stem top and for every 
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stem top the nearest cone tip. If matches were mutual, a connection was registered (Fua 1993). Stem 

diameters were then assigned using linear extrapolation towards the stem tops, while diameters were 

kept constant towards the DEM. The transmittance of the stems and the forest floor was set to zero. 

 Tree crowns were modeled using a combination of laser-derived crown dimensions and Arbaro, 

an open source tree modeling software (Weber & Penn 1995; http://arbaro.sourceforge.net/, last 

accessed on December 31, 2013) that provides for the modeling of deciduous, coniferous, as well as 

herbaceous vegetation. Plants modeled in Arbaro behave as if they were solitary, and do not exhibit 

competition for light with neighboring vegetation. Arbaro uses an extensive list of parameters including 

branch lengths in relation to parent branches, the number and curvature of branches, as well as random 

variations around each parameter. To reduce the number of modeling parameters, no random variation 

was considered and a template coniferous tree crown was created whose dimensions and shape could 

be adapted to fit the stem shapes and crown outlines derived from the point clouds. The template tree 

was defined with a crown depth of 60% of tree height and a constant internode distance (0.25 cm), and 

a distribution of branch insertion angles and branch curvature that resemble the plagiotropic and 

heliotropic distribution of branches in the lower and top canopy strata, respectively (Halle et al. 1978). 

Crown depth was estimated from field observations of dominant trees and was computed as the height 

of first living branch to the total tree height. Internode distance was chosen to balance the frequency of 

first order branching with computing resources, while ensuring that canopy layering was abundantly 

sampled. Heights and opening angles of cones in the PHM were used to define tree height and lengths 

of first order branches and the crowns were draped over the laser-reconstructed stems to account for 

sweep and lean. To avoid crowns intersecting one another and to ensure they resemble natural 

competition in stands, branches were scaled to individual tree growing spaces that were computed by 

tessellating the plot space to the nearest tree stem based on the rationale that locations within the plot 

are likely to be populated by foliage from the nearest stem, rather than a stem located further away. To 

simplify canopy representation without comprising the radiative consistency, planar polygons were 

fitted to clusters of first and second order branches. The use of planar surfaces builds on traditional 

concepts used in layered crown and canopy models (Oker-Blom et al. 1991; Ross & Marshak 1991). In 

contrast to the use of uniform canopy layers in one-dimensional radiative transfer models, the current 

use of planar polygons provides for radiative transport between crowns and whorls. After 

reconstruction of the plots, the mesh models were decimated to 50,000 triangles to reduce computing 

costs of radiative transmission simulations (§3.2.3.4.). 
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 Uncollided transmission of radiation through the planar polygons was expressed as the gap 

fraction, g(θi), a measure similar to the foliage silhouette-to-total-area ratio used in modeling shoot-

level albedos (Stenberg et al. 1995b). This gap fraction is a function of illumination geometry relative to 

the normal angles of the branch facets. For incoming rays under a 0° normal angle, the gap fraction was 

set to 15% based on photographical measurements perpendicular to the predominant shoot direction 

that generally ranged between 10 to 20%, and the value of gap fraction decreased linearly with the 

cosine of the ray-normal-angle. The sensitivity of this parameter was assessed by changing g(θ0) from 5 

to 30% in steps of 5% (Appendix A.1.3.). 
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Figure 3.2: A schematic of the complete processing pipeline used for reconstructing plots. 
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3.2.3.4. Modeling the internal canopy radiation regime 

The radiative consistency of the produced mesh model was validated against EVI-derived measurements 

of gap probability (Jupp et al. 2009). Gap probability,          , is the probability of having no 

scattering material (e.g. foliage, woody material) between the laser scanner and a point at a specified 

range ( ) under a specified zenith angle ( ) and is derived as: 

 

            
 

  
∫                  (eq. 3.4) 

 

where    is the normal reflectance of a face and      is the apparent reflectance that is determined 

from the recorded waveform of returned light energy as: 

 

          
         

       
        (eq. 3.5) 

 

where        is the measured intensity at the range R, and angle θ. K(R) is a telescope efficiency factor 

and    is the outgoing energy (Jupp et al. 2009).      is computed in zenith angle bands that are 

typically between 5 to 20° in width. A vertical profile of      was computed from eq. 3.4 for each plot 

using the center scans. 

      provides for the derivation of foliage profiles as: 

 

          (        )        (eq. 3.6) 

 

Foliage profiles were computed for zenith angles ranging from 55 to 60 degrees (Lovell et al. 2003) and 

were compared against the vertical distribution of facet areas of the mesh models. 
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Vertical profiles of gap probability were derived from the mesh models by forward ray tracing (Appendix 

A.2). Hemispherical irradiance was simulated using 5000 light sources that each emitted a single beam 

of collimated light directed towards the plot origin. The number of light sources was to balance the 

resolution of directional variation in hemispherical illumination such as caused by direct sun and cloud 

cover with computational cost of the model simulations. These light sources where distributed about a 

vertical axis, so that the distance to that axis decreased exponentially with the sample's rank and the 

angular distance between samples was approximately constant (i.e. one light source corresponds to 

1.26 milli-steradians; for details on methods see e.g. Piccini et al. 2011 and Vogel, 1979). In this study, a 

100% diffuse sky was simulated by assigning equal intensities to all light sources, and this relates to the 

condition of a complete overcast. At every ray-mesh intersection, the probability of uncollided 

transmission,  , through the facet (i.e. ground, stem, foliage) was determined from the directional gap 

fraction, g(θi), (§3.2.3.3) using the angle between the ray and the normal angle of the intersected facet. 

At every intersection,      was computed as       and the propagated, uncollided irradiance as     . 

Vertical hit distributions were derived as the fraction of hits within 10 cm height bins and were 

compared with the EVI      profiles derived from a below-canopy perspective. As indication of 

correspondence, 50 samples at heights ranging between 0 – 30 m were randomly drawn from the 

simulated and full-waveform derived      profiles centered at 57.5° and Pearson correlation coefficients 

were computed for each plot. The processing pipeline is summarized in figure 3.2. 

 

3.3. Results 

3.3.1. Stem detection  

Figure 3.3 shows the detection of stems for plot 1. On average, stem detection was calculated within 3 

to 5 seconds per scan, making the technique extremely computationally efficient. The threshold 

parameters used for stem detection were δ=0.30 m, r=0.95,  =15°, and    =24. Detection was limited 

to stems covering a minimum cross section of 3 to 4 pixels. Figure 3.4 shows the detection rate by radial 

distance measured over all 20 scans, from which cumulative detection rates can be obtained through 

integration. For distances up to 10 m, 93% of trees were detected. In general, trees not detected within 

10 meters showed excessive branching, or were snags. At distances up to 15 m, 85% of trees were 

detected, while at distances up to 20 and 25 m only 67% and 56% of the trees were detected, 

respectively. This rapid reduction in detection rate with distance is a result of decreasing spatial point 
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density with distance and effects of occlusion. Using the co-registered data, an average of 9.25 trees per 

plot totaling 9.8 % of trees detected in the field inventory were not located in the EVI-derived stem map 

as a result of occlusion or decreasing resolving power with range. The method was insensitive against 

returns obtained from branches, albeit trees around this geographical location generally have sparse 

branch densities along the lower bole sections. The method was unable to detect some younger trees 

with heavy branching structure and foliage along the entire visible stem, and distant trees. Errors of 

commission were few and limited to objects close to the scanner and were eliminated later in the 

modeling pipeline as stems need to have a certain length. 

 DBH estimates were found to correlate well with field observations (R2 = 0.82; Figure 3.5); 

However, a decrease in accuracy was observed, as expected, with distance from the scanner. Field 

measured DBH was underestimated (p < 0.05) by EVI (      
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 = 22.5 cm vs.         
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 = 27.3 cm), 

consistent with findings of Strahler et al. (2008) and Yao et al. (2011). Figure 3.6 shows field detected 

and EVI detected tree stems for plot 1, with the size of the markers representing DBH. Mis-registration 

between compass (vertex) determined tree locations and EVI derived stem locations may be attributed 

to individual scanner setups as well as to distance from the plot centre. 
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Figure 3.3: Binary image showing clusters of pixels in white that have all 8-connected neighbors within 

range δ (a). Distance transformation and projection of the Medial Axis Transformation overlaid in red 

(b). Stem detection overlaid on laser intensity image (c). Pixels along the horizontal axis represent equal 

steps along azimuthal directions, while pixels along the vertical represent equal steps in zenith angles. 
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Figure 3.4: Detection rate as a function of radial distance from the scanner's location. 

 

 

Figure 3.5: Linear regression of EVI-derived, and tape-measured diameter at breast height indicates a 

negative bias among diameters derived from EVI data. 
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Figure 3.6: Co-registration of TLS stem locations for the north-east (blue), south-east (magenta), north-

west (yellow), south-west (cyan) and centre (red) locations within the plot, against field-measured stem 

locations (green) for plot 2. Diameter estimates are indicated by the size of the markers. Trees that were 

detected in the TLS scans and for which no DBH information was derived as a result of partially occluded 

stem-edge data are shown in their respective scan colours as plus-signs (+). 

 

3.3.2. Mesh modeling 

Accuracy of the stem modeling was assessed by interpreting the co-registered point clouds, and showed 

that the merging of individually detected tree stems and stem parts overcame many of the major issues 

associated with occlusion. Figure 3.7 provides an illustration of the stem reconstructions and shows that 

stems were modelled well into the higher strata of the canopy allowing consistent matching with the 

individual crown tops. In some cases, however, coregistration-errors caused that individual trees could 

not be correctly merged for the final mesh model, and these cases resulted in the reconstruction of two 

stems, instead of one. The implications of this on the formation of tree growing spaces seemed minimal 

as the combined set of growing spaces for these trees and their reconstructed crowns would act in the 
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same manner as that it for a single tree would (Morsdorf et al. 2004). The creation of tree growing 

spaces was effective in delineating both dominant as well as suppressed trees (data not shown). The 

method does not guarantee that individual branches always get assigned to their true parent stem. In all 

cases, however, the foliage gets assigned to their nearest stems. In figure 3.8, a demonstration is 

provided of the fitting of planar polygons to the crowns of the Arbaro tree models, the fitting the 

modelled crowns to the reconstructed tree stems, and scaling of the crowns to the growing spaces. 

Figures 3.9 and 3.10 show the reconstructed virtual forest plots using the Arbaro tree models 

parameterized with tree height, and crown taper, that were derived from the EVI data set. Individual 

tree crowns did not intersect one another in the mesh models, as a result of scaling the crowns to the 

tree growing spaces. The Arbaro tree model output coarsely resembled the clumping of foliage around 

branches and into crowns, typical for conifers (Oker-Blom 1986), although the exact placement of 

foliage material could not be validated at tree level against the current data set.  

 

 

 

Figure 3.7: 3D map of stem reconstructions for DF49 plot 1 (a). Detail of one reconstructed tree and its 

neighboring point cloud (b). (The neighboring tree visible in the point cloud was also detected.) 
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Figure 3.8: Fitting of planar polygons to Arbaro branch models and scaling of crowns to the tree growing 

spaces. 

 

 It was found across all plots that tree heights in the mesh model were considerably shorter than 

field measured heights; this is also reflected in Figure 3.11 showing facet area profiles of the mesh 

models against height vs. EVI-derived leaf area profiles against height. Some of this underestimation 

may be explained from a decreasing ability to detect discrete returns with increasing path length 

through the canopy, while additional contributions were associated with the creation of the CHM, and 

PHM, and decimation of the Arbaro tree crown models that resulted in the removal of fine branches 

located at the tree tops. In contrast to the EVI foliage profiles, the facet area profiles include a profound 

ground peak that is due to the inclusion of the ground terrain in the mesh models. Significant 

differences between foliage profiles and facet area profiles remain for the mid-canopy (around 15m) 

that can be explained from differences in definition that may be resolved by foliage density attribution 

to the individual facets.  
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Figure 3.9: Illustration of reconstructions for all four plots. Shown are the woody skeletons produced by 

Arbaro software and fitted to the tree growing spaces. 
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Figure 3.10: Illustration of reconstructions for all four plots. Shown in this illustration are the planar 

polygons to simulate the layering of foliage elements in coniferous canopies. 
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Figure 3.11: Facet area profiles (bars) derived from mesh reconstructions and point cloud information 

and full-waveform EVI derived leaf area profiles (solid black line) per cubic meter for the four plot 

reconstructions. Heights [m] are relative to plot origin. 
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3.3.3. Modeling radiative transmission properties 

Figure 3.12 shows the modeled hit distribution against height. Individual data points represent fractions 

of hits within 10 cm height bins, while the fitted lines show a polynomial fit and moving median (1 m 

window size) through these data points. A sixth-order polynomial fit was chosen to capture peaks in 

absorption by the canopy volume as well as ground vegetation. Simulated hit distributions showed an 

increase around the mid-canopy where foliage and facet area densities are highest and also showed 

increasing variation in light interception with canopy depth (figure 3.12). The highest probability      for 

single facets was observed near the tree tops and around canopy gaps. 

Vertical profiles of      were computed using zenith angles centered around 17.5°, 27.5°, 37.5°, 

47.5°, and 57.5° using a 5° bandwidth (figure 3.13). A strong dependence of the      profiles on the 

zenith angle was observed. For larger zenith angles, values of      were considerably smaller than 

corresponding values at smaller angles as a result of path length through the canopy. Figure 3.13 also 

shows the simulated hit distribution profile as a function of height (thicker black line) and shows 

consistent behavior with trends in the full-waveform derived profiles. The Pearson correlation 

coefficient computed between 50 random samples taken from the simulated hit distribution and full 

waveform      distribution centered at 57.5° was 0.97, 0.95, 0.97 and 0.91 for plot 1, 2, 3, and 7, 

respectively (P << 0.01). A noticeable difference is observed at heights over 20-25 m that can be 

addressed to the difference in illumination geometries between the real and simulated results. While 

the EVI has a below-canopy perspective, the simulated results are obtained from an overhead 

perspective and resemble the down-welling radiation from the sky. 
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Figure 3.12: Hit distributions for the four plot reconstructions and fitted trend lines. The profiles show 

an increase in the mid canopy and an increase near the forest floor, and considerable variation in 

absorption around the trend lines. 
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Figure 3.13: Cumulative hit distribution against EVI      measured around different zenith angles. 
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3.4. Discussion and conclusions 

3.4.1. Stem detection 

The presented method for stem detection provided accurate results in a highly computationally efficient 

approach and provides an alternative solution to circle-fitting approaches (Maas et al. 2008) with a 

comparative advantage for lower resolution data sets (e.g. 0.25° angular resolution) or the detection of 

thinner stems from high resolution data (see figure 3.15 for a demonstration of how the filtering criteria 

for stem detection are applied to more recently acquired ground-based laser scanning data from a high-

resolution Leica C10 data set comprising nearly 10 million first returns of a Eucalypt stand, provided by 

Dr. Glenn Newnham, CSIRO, 2012). Future research will also apply stem detection to deciduous species 

with more complex branching structures. A current concern is that the 3x3 kernel test effectively erodes 

the width of the trunk that has important impacts on diameter retrieval, which may be mitigated 

through incorporating other algorithms such as connected component labeling that preserved contours 

in the segmented image. Stem detection was insensitive to the parameter   for a large number of scans, 

hence reproduction over a range of forest types may reveal if this parameter could be omitted. In 

addition, the currently used univariate normalized correlation coefficient, r, may be substituted for a 

bivariate correlation coefficient to evaluate the correlation between stem edges along the image x and y 

axes. 

 

 

Figure 3.14: Illustration of the application of stem detection (red) methods on high-resolution Leica C10 

data (greys) of a Eucalypt stand, Australia (data provided by Dr. Glenn Newnham). 
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3.4.2. Mesh modeling 

Architectural tree modeling software has predominantly been used within the fields of computer 

graphics and visualization and only more recently in remote sensing and image processing (Côté et al. 

2009; Widlowski et al. 2007). Challenges in adopting these models in remote sensing largely relate to 

the parameterization that is geared towards graphical display rather than physiological functioning (see 

also table 3.1 for a comparison). Arbaro provides for the modeling of a large variety of tree species from 

coniferous to broadleaved trees and grasses through a common set of variables. A modification of 

Abraro was used in this study with an emphasis on physiological functioning and radiation transfer by 

modeling branches as planar polygons that possess the average radiation attributes derived from field 

observations. The model parameterizations required default settings that were considered species-

specific, and effects of stocking density and age on the radiative characteristics of the foliage needs to 

be further investigated. The current implementation is of a modular form that allows substitution of 

field observations with laser derived geometrical attributes. For example, shoot-level structure acquired 

through laser scanning of shoot samples can be included in the canopy representation as attribute data 

or can be used to substitute the planar polygons entirely, for example for establishing benchmark scenes 

for model inter-comparison (Widlowski et al. 2008). 

 

Table 3.1: Comparison of terminology and variables typically used in forest mensuration and ecology 

vs. related parameters used in architectural tree models. 

 

forest mensuration/ecology                                    architectural tree models                                                      

clumping factor     distributions of 1st, 2nd
 and 3rd order branches 

leaf area     number of leaves per branch 

foliage profile     crown shape 

diameter derived from pipe model  ratio branch width to length or branch order 
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 The abstraction of crown architecture to meet computation power and functional 

representation is a key challenge that needs to be addressed in forming radiative transfer models that 

need to be operated over considerable spatial scales or where extensive analysis of parameter 

sensitivity is required using conventional computer hardware. The current choice of using planar 

polygons closely resembles the organization of foliage into layers that has been frequently used for 

modeling radiative transfer (Ross & Marshak 1991); however, other abstractions such as shoot cylinders 

(Oker-Blom et al. 1991) or convex volumes of foliage (Strahler & Jupp 1991) could be applied to pine or a 

broad variety of deciduous species. Abstracting the actual crown morphology introduces, however, 

model parameters that are effective in describing canopy radiation (e.g. Asrar & Myneni 1991), yet their 

actual real-life meaning is lost. An example of such a parameter is the effective LAI that provides for the 

application of Beer’s Law to clumped canopies, but its value does not equal the real canopy LAI. The 

current processing pipeline attempts to address concerns around the use of effective parameters by 

avoiding them where possible and adopting easy-to-measure forest inventory parameters relating to 

stem and crown dimensions and architecture. 

 While of less importance in radiative transfer modeling, stem locations form a significant aspect 

in the current automation pipeline (Côté et al. 2009) as stems are used to segment the plot into 

individual tree growing spaces and constrain the distribution of foliage elements. It is anticipated that 

the presented modeling pipeline works equally for other species that have a monopodial trunk. For 

species with trunks that split into different directions, a similar processing pipeline can be envisioned 

where growing spaces are derived around the individual stems and branches and scaling of the tree 

regenerations revolves around these individual growing spaces. For these cases, a similar ordering of 

parameter sensitivities as listed in Figure A.1. (Appendix A.1.2.) may be expected in that lower order 

stems have greater influence on the radiation profile, yet further research is needed to confirm these 

assumptions. Future studies may also investigate the use of tree (stem) vigor and dominance as 

weighing criteria in defining growing spaces, as well as adaptation of foliage densities and biophysical 

properties to the modeled radiation regime (Côté et al. 2011). 
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3.4.3. Radiative transmission 

This Chapter presents a reconstruction method with which 3D-explicit models were derived from a point 

cloud of a coastal Douglas fir forest. From these models, the range to first hit for a given irradiation 

geometry can be studied and compared with full waveform derived      measurements (Jupp et al. 

2009). A widely accepted theory on radiation transmission in forest canopies is based on Beer’s law that 

prescribes the exponential decrease in radiation with canopy depth and assumes a random distribution 

of foliage material and a homogeneous layering of foliage. Under these assumptions,      profiles show 

an exponential decrease with the optical depth of the canopy and this principle is also observed in our 

model simulations. At spatially finer scales large deviations from Beer’s law are expected (e.g. De Pury & 

Farquhar 1997) which is also observed in our model. Yet, how well the current model represents the fine 

spatial radiation patterns of the real forest canopy could not be assessed with the current data set.  

 The EVI      profiles corresponding to larger zenith angles show a convex shape owing to the 

increase in path length and reflect that information about canopy structure enclosed in the EVI data is 

biased towards lower canopy strata (Hilker et al. 2010b). Too small a zenith angle is prohibitive, 

however, as the occurrence of canopy gaps is biased towards the zenith (Yang et al. 2010). It is thus 

assumed that the range of zenith angles used in this study provides a level of confidence around the 

true plot-level     . Figure 3.12 shows that      approaches values close to zero towards the canopy 

top. This is due to the stand reaching canopy closure and for more open canopies the values of      may 

be much larger (Yang et al. 2010). All plots show a strong similarity in      profiles which indicates the 

homogeneity of the stand.  A maximum in the hit distribution can be observed for heights around 15 m, 

as well as a ground peak that contributes to around 5 to 10% of total incident radiation. Plot 7 shows the 

fastest increase in hit distribution with canopy depth, albeit subtle, which may be explained from its 

nitrogen enrichment.  

 Validation of our mesh reconstruction was achieved against the EVI      profiles and results 

indicate strong correlations between the hit distributions derived from the mesh reconstructions and 

full-waveform      profiles. For a correct interpretation of these results, the differences between the 

     and hit distributions should be considered, however. The main difference between our simulation 

and EVI      is the geometry of illumination; while the ray tracing simulations illuminate from the top of 

the canopy downward, the EVI data is collected from a below-canopy perspective. Although simulations 

could use the identical illumination geometry as the EVI, this was not done for two reasons: 1) The 
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current processing pipeline is limited in modeling the bottom of forest canopies, and for simulations 

with a below-canopy perspective the parts of the canopy closer to the instrument set-up would have a 

greater influence on the modeling results. 2) Moreover, from a physiological perspective it is more 

interesting to simulate irradiance from the top of canopy downwards as the largest contribution to 

forest productivity is provided by higher canopy strata. The difference in illumination geometry may be 

resolved through the use of tower-based scanning instruments (Eitel et al. 2013). 

 Future research should primarily address the tuning of parameter values to a range of forest 

types, species and age compositions, as well as resolving scaling issues and transfer of the presented 

method to other instruments. The limited size of the current research plot introduces edge affects that 

impact the hit distributions in that larger portions of radiation are received at lower heights compared 

to what would have been absorbed if the plot was not isolated from its environment. These edge effects 

need to be addressed through acquisition of laser-scanning data over larger areas (e.g. 100 x 100 m) or 

by using subsamples of extensive wall-to-wall airborne LiDAR data sets. In addition, results of the 

current study are simulated at plot level, although computations include approximations at a much finer 

scale. Future work will examine the three-dimensional consistency of radiative transfer at around a 1m3 

scale against an in situ sensor network that captures diurnal as well as seasonal changes in canopy 

radiation and narrow-waveband data that relate to the efficiency of solar energy capture (Garrity et al. 

2010). Future research is also needed to investigate the influence of stocking density, crown dimensions 

and foliage distributions, including clumping, on the evolution of the canopy radiation regime with stand 

development and its implications for forest growth and management. 
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4. Estimating the distribution of photosynthetic assimilation within the 

canopy volume through inversion of a geometrically explicit canopy 

model 

 

4.1. Introduction 

Forest productivity plays a key role in forest functioning and is a key driver in calculations of sources and 

sinks of CO2. Monitoring global changes in forest productivity is also important as it is indicative of 

biodiversity (Coops et al. 2008) and can be used to explain how anthropogenic influences and climatic 

changes affect ecosystem functioning (Coops et al. 2009). Monitoring productivity is challenging, 

however, due to the broad extent of global forest resources, the multitude of environmental drivers, 

including temperature, humidity, soil moisture and nutrient status, and the lack of control over these 

drivers in field experiments. As a result, a wide range of forest productivity models exist that range from 

simple to complex, and empirical to physical, to suit a wide range of scales of operation (Hilker et al. 

2008). 

 An empirical and widely used model is the Monteith model (Monteith 1972, 1977) that 

describes gross primary productivity (GPP; also referred to as gross ecosystem photosynthesis, GEP) as a 

function of incident or absorbed photosynthetic active radiation (IPAR and APAR, respectively) and the 

efficiency with which this light energy can be converted into photosynthate, known as the light use 

efficiency (LUE). When water and nutrient resources are abundant, and photosynthesis is limited by 

light, LUE reaches a maximum and GPP increases first linearly with increasing light levels. When 

resources other than light are limiting photosynthesis, LUE decreases so that GPP forms a hyperbolic 

relationship with PAR (i.e. incident or absorbed). While being a simple concept, LUE describes the net 

effect of a wide range of physiological mechanisms and much research has been conducted on the 

determination of its value for a range of environmental conditions (Hall et al. 2012; Heinsch et al. 2003; 

Hilker et al. 2012b; Mäkelä et al. 2008). At the stand level, the use of the model has heavily relied on the 

eddy-covariance (EC) method that estimates GPP from CO2 fluxes, derived from high-frequency 

measurements of wind vector components and CO2 and H2O mixing ratios (Baldocchi et al. 2001). To 

estimate GPP at regional to global scales, studies combined remote sensing data with estimates of 

temperature and vapour pressure deficit to model the down-regulation of optimal, biome-specific LUE 

values (Heinsch et al. 2003). More recent research has focused on the remote observation of changes to 
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the physiological mechanisms underlying LUE directly, such as the ability of xanthophyll pigments to 

dissipate excess light when photosynthetic capacities are reached (Demmig-Adams & Adams 2006; 

Gamon et al. 1992; Hall et al. 2012; Hilker et al. 2012a). Over the last two decades, the integration of 

LUE models with remote sensing data has provided for scaling productivity estimates to regional and 

global scales cost efficiently and rapidly, however, airborne and spaceborne data primarily capture the 

state of photosynthesis along the top of canopy (TOC) and it remains uncertain how variations in LUE 

with canopy depth affect the overall GPP. While proximal sensing techniques provide for measurements 

of down-regulation for arbitrary locations within the canopy (Gamon & Bond 2013), scaling these 

measurements across the landscape is challenging (Gerstl & Borel 1992; Timmermans et al. 2013). 

 Radiative transfer models describe scattering of light inside the canopy to derive a distribution 

of PAR and temperature at the leaf-level. These radiative transfer models can be coupled with a leaf-

level photosynthesis model from which forest productivity is computed by integrating leaf-level 

assimilation over canopy depth. Examples include some fine-scale models such as MAESTRO and 

MAESPA (Medlyn et al. 2002; Wang & Jarvis 1990) and BIOMASS (McMurtrie et al. 1990). In these 

models, individual tree crowns are represented using simple geometric primitives such as cones and 

spheroids with spatial distributions of leaf densities and orientation angles assigned and derived from 

field observations. These physical models provide an important means to integrate physiological 

mensuration data at the leaf or shoot level as well as stand level with data assimilation (Luo et al. 2001). 

However, these models require a large number of physiological parameters that are often not available 

across larger areas. To be used at landscape levels, radiative transfer models need to be sufficiently 

simple to provide for model inversion given a set of reflectance data (Jacquemoud et al. 1995) and, as a 

results, the potential to include physiological mechanisms in those models is largely unexplored 

(Widlowski 2010). 

Semi-empirical models provide a compromise between the complexity of physical models and 

the simplicity of empirical models and provide a means to include plant physiology in radiative transfer 

models that are relevant to remote sensing. Barton & North (2001) demonstrated the use of a semi-

empirical model to derive vertical profiles of LUE based on a 1D radiative transfer model and a single, 

hyperbolic leaf photosynthesis model. The down-regulation of photosynthesis by the xanthophyll cycle 

was then simulated using incident, leaf-level PAR and this was used to compute a TOC PRI signal. 

However, novel models are needed that encompass scales ranging from the shoot to stand level that 

inevitably need to be 3D in nature to resemble the discrete and heterogeneous nature of canopies. 
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Laser scanning is a recent technology that provides for the remote measure of three-

dimensional structure and intensity information of surface geometries. These scanners record the time 

difference between emission and detection of laser pulses. The data may be represented as point cloud 

data that comprise a sampling of target surface coordinates or as full-waveform data that comprise a 

recording of returned light energy over time (e.g. at a nanosecond time step). Earlier work has 

demonstrated the use of point cloud data from ground-based scanners for constructing geometrically 

explicit forest models (Bucksch et al. 2010; Côté et al. 2009; Raumonen et al. 2013; Van der Zande et al. 

2011; Van Leeuwen et al. 2013) that typically involves the reconstruction of trunks and branching 

topology combined with tree-regeneration methods to provide for the modeling of branching structures 

in regions where the sensor field of view is obscured or point densities are low. Jupp et al. (2009) 

demonstrated the use of full-waveform laser scanning to derive hit and gap probabilities at the stand 

level that provide for the estimation of vertical profiles of leaf area with canopy depth and are also 

indicative of exposure of canopy strata to PAR (Yang et al. 2010). 

The work presented herein relies on the modeling of canopy radiation transfer based on hit 

probability; however, rather than a derivation of hit probability at the plot or stand level, the current 

work uses laser scanning data to establish a 3D explicit forest scene for which shoot-level hit 

probabilities can be obtained using ray tracing techniques. Once established, incident shoot-level 

radiation is computed from meteorological records and using ambient temperature and relative 

humidity, photosynthetic assimilation and down-regulation are evaluated using a single, empirical leaf 

photosynthesis model. The parameters of the photosynthesis model are fitted using non-linear 

optimization against eddy-covariance estimates of GPP. Finally, potentials to augment model 

parameterization using proximate and airborne or spaceborne remote sensing measurements are 

discussed. 

 

4.2. Methods 

4.2.1. Study area 

A full study area description is available in section 1.5. 
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4.2.2. Data  

In 2008, ground-based laser scanning and airborne LiDAR data were acquired. The ground-based laser 

scanning data were acquired with the EVI (CSIRO) full-waveform laser scanner that emits roughly half a 

million laser pulses in an upward hemispherical direction and records the reflectance of this laser light at 

a sampling rate of 2 Gs/s so that the distance to the scattering surfaces can be determined at centimeter 

accuracy. By emitting pulses over a more than hemispherical field of view (i.e. 130 x 360 degrees), 

millions of returns are recorded per scan and a total of five scans were taken: one in the centre and one 

per plot corner. (This plot corresponds with plot 1 in Chapter 3.) For all analyses described in this 

chapter, eddy-covariance data along with meteorological records including IPAR, relative humidity and 

temperature were selected for the year 2009. GPP was calculated from eddy-covariance measurements 

of Net Ecosystem Productivity (NEP) plus respiration. Respiration estimated using nightly Net Ecosystem 

Exchange (NEE) measurements that were extrapolated to the daytime based on soil temperature 

measurements (e.g. Jassal et al. 2009). 

 

4.2.3. Preliminary data analysis 

Diffuse radiation has a lower canopy extinction coefficient in forest canopies compared to direct 

radiation (Norman & Jarvis 1974) hence cloudy conditions are known to lead to a distribution of 

radiation that is more homogeneous with canopy depth and this results in greater GPP. This difference 

in attenuation between diffuse and direct light causes much variation around the relationship between 

GPP and incident or absorbed PAR (Choudhury 2001). A preliminary investigation was conducted to 

examine the importance of canopy structure on the attenuation of diffuse and direct IPAR and its effect 

on eddy-covariance GPP. To this stage, neither canopy structure nor a vertical stratification of 

physiological functioning of the canopy medium was explicitly modeled. Radiation conditions were 

stratified by the diffuse to total PAR ratio into nine strata and for each stratum, flux tower GPP [μmol C 

m-2 s-1] was plotted against total incident PAR [μmol photons m-2 s-1]. A two-parameter rectangular 

hyperbolic curve of the form (Middleton et al. 2009): 

 

     
           

           
         eq. 4.1. 
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where   is the quantum yield and      the photosynthetic capacity of photosynthesis, was fit to the 

observations using the Levenberg-Marquardt (LM) technique. This optimization technique seeks to 

minimize a cost function that specifies the difference between modelled and expected values of a 

dependent variable. For this study, the cost function was: ∑ (                  )
 
   . Given a set of 

initial parameter guesses, the LM technique iteratively determines the direction and magnitude of 

parameter adjustments needed to minimize the cost function. 

 

4.2.4. Scene reconstruction 

A 3D virtual forest scene was reconstructed using a modeling pipeline described in Chapter 3. In short, 

individual tree stems are detected from single scans using image segmentation and filtering criteria 

including the correlation in shape between segment edges and segment length. Overlapping point 

clouds from adjacent scans and stem segments are then co-registered and a canopy height model 

(CHM), a digital elevation model (DEM), and a delineation of individual crowns (Chapter 2) are obtained. 

Gaps due to data occlusion along the stem segments are filled using linear interpolation and the stem 

tips are extrapolated by tracing the local point cloud geometry (Liu et al. 2005). Using the stem 

information, individual tree growing spaces are derived based on Voronoi tesselation at horizontal slices 

of a regular interval. A template tree crown was constructed using Arbaro (Weber & Penn 1995; Chapter 

3) (Figure 4.1) that models crown architecture using intuitive parameters such as branch lengths and 

insertion angles of child-branches in relation to their parent branches. Scaled copies of the crown 

template were then fitted to the virtual scenes. In contrast to skeletal tree structures produced by 

Arbaro, that contain a high level of structural detail (Figure 4.2a), the template tree used in this study 

comprised a layered series of planar polygons with specified gap fractions (15%) to represent the 

clumping of foliage around primary branches (Figure 4.2b). This scene was used to reduce computation 

cost without significantly comprising the functional representation the trees. The radiative integrity of 

this virtual scene was validated by comparing full-waveform-derived canopy gap probabilities (Jupp et 

al. 2009) and gap probabilities derived through simulation (see Chapter 3; Van Leeuwen et al. 2013).  
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Figure 4.1: An illustration of the level of detail in Arbaro tree reconstruction methods. 

 

 

Figure 4.2: Forest plot reconstructions (DF49 plot 1) at the highest level of detail (a) and a coarser level 

of detail (b) where foliage clustered around branches is represented as planar polygons. 

30 m 

A B 
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4.2.5. Canopy radiation modeling 

The virtual scenes were then used to derive vertical profiles of incident PAR (IPAR) for hourly time series 

data. For every leaf element in the canopy the fraction of visible sky was computed using the theories of 

gap and hit probability that describe the probability of having a gap over a given range and from a 

particular location into a particular direction and the probability of a hit at a given range and direction 

respectively (Jupp et al. 2009). The distribution of these probabilities with canopy depth are related to 

the leaf area density [m3 m-3] profile and canopy radiation (Yang et al. 2010) and can be acquired from 

full-waveform laser scanning data (Strahler et al. 2008). Hit and gap probability are related as (Jupp et al. 

2009): 

 

           
          

  
        eq. 4.2. 

 

 Earlier work (Chapter 3) demonstrated the use of a ray tracing model to obtain vertical hit 

distributions that were compared against full-waveform derived measures of gap probability. Every time 

a ray intersected with any of the scene facets, un-collided transmittance was derived from the gap 

fraction of the facet and the cosine of the angle between the intersecting ray and the facet normal. Ray 

tracers are typically used for applications where illumination and viewing conditions are fixed, however, 

the requirement to simulate a large number of rays to obtain a realistic distribution of canopy radiation 

makes the use of ray tracers challenging when illumination conditions are dynamic and updates to the 

radiation budgets are needed in real-time. The current study determines hit probabilities by tracing rays 

from the midpoints of scene facets towards upward facing hemispherical directions. This can be 

compared to taking a hemispherical photograph at every surface element in the scene from which 

portions of visible sky can be computed. This reduced form equates to: 

 

         ∫ ∫                                          eq. 4.3. 
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where      is the probability of receiving an un-collided ray from direction       by canopy element   

(see Appendix A.4. for additional explanations), and          is a notation to indicate the cosine 

between the normal vector of facet   and the incident ray. The model accounts for the porosity of 

foliage clustered around branches; however, the model only considers un-collided radiation and does 

not consider multiple scattering that only has a marginal effect on photosynthesis (Gobron et al. 2006).  

 Calculating equation 4.3 can be achieved numerically using a fixed angular step width in both 

azimuth and zenith directions; however, this results in a denser sampling towards the zenith. In this 

study, samples where distributed about a vertical axis so that the distance to that axis decreased 

exponentially with the sample's rank and the angular distance between samples was approximately 

constant (Piccini et al. 2011). To avoid edge effects for the small study plot, cyclic boundaries were 

applied so that a ray escaping the scene through any of the four lateral boundaries would re-enter from 

the opposite side of the scene.  

 Half hourly radiances [μmol photons m-2 s-1 sr-1] were computed from diffuse and total PAR 

sensors mounted on the EC fluxtower (BF2 sunshine sensor, Delta-T Devices). Diffuse radiance was 

assumed to be homogeneous across the hemispherical samples, and direct radiance was assigned to the 

hemispherical sample that was closest to the sun position that was computed using a solar calculator 

(See Appendix A.3. for additional details). Incident radiation at the leaf level [μmol photon m-2 s-1] was 

computed for every second half hour time step between 7 AM and 6 PM, for the majority of the growing 

season between May 1 and September 17, 2009. It was found that in simulating hit probabilities, the 

systematic sampling of facet midpoints resulted in some positive bias that leads to a slight overestimate 

of facet-level IPAR (see Appendix A.4. for details). 

 

4.2.6. Photosynthesis modeling 

A leaf-level photosynthesis model was developed based on a non-rectangular hyperbola, following 

Cannell and Thornley (1998). This model is parameterized by photosynthetic capacity (    ) that defines 

the hyperbola’s asymptote, the quantum yield ( ) that defines the initial slope of the hyperbola when 

photosynthesis is electron transport limited, and the duration of the initial linear response ( ). The value 

for   is generally larger for cells than for leaves and larger for leaves than for canopies (e.g. Cannell & 

Thornley 1998), which is caused by averaging of PAR within the canopy and the non-linear response of 
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photosynthesis to irradiance. The three-parameter non-rectangular hyperbola has the form (e.g. Cannell 

& Thornley 1998): 

 

            
            √             

                   

   
   eq. 4.4. 

 

 Down-regulation of photosynthesis is expected when the leaf is light saturated and when 

photosynthesis is limited, for example, by water availability or when the carboxylation rate of the Calvin 

cycle due to temperature or nutrient supplies is suboptimal. This down-regulation was included in the 

photosynthesis model using modifier functions based on temperature (  in °C) and relative humidity 

(   in %) for      in the form:  

 

    (         )   
 (

|      |

  
)

 

      eq. 4.5. 

               
 (

      

   
)
 

      eq. 4.6. 

 

This bell-shape was chosen to ensure that the modifier functions were constrained within the range 0 to 

1 and to reflect that photosynthesis has some tolerance around its optimum where changes in 

temperature and relative humidity have only a small effect. Further complications can be considered 

such as the asymmetry of down-regulation around the temperature optimum; however, to a first 

approximation, this was considered outside the scope of the current study. The down-regulation of      

was modeled as the product of an optimal value,     , for conditions when photosynthesis is not 

limited, and the two modifier functions: 
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                           eq. 4.7. 

 

 Since down-regulation may be affected by the duration of drought or temperature stress, 

temporally-lagged temperature and relative humidity responses were derived following Jarvis et al. 

(2004) as follows: 

 

                                    eq. 4.8. 

 

where      represents the temperature at time  ,      the lagged response, and    defines the lag 

(   ∈  , 0≤    ≤1). A similar function was applied to relative humidity. The resulting leaf model has eight 

parameters (    ,  , χ,     ,   ,     ,   ,    ) and requires three input variables: IPAR, temperature 

(T), and relative humidity (RH). Finally, physiological responses to changes in temperature and humidity 

have been observed over diurnal as well as seasonal time scales; hence an additional modifier 

            was constructed around mean daily temperatures       . Stand-level GPP for a specific 

moment in time t was computed through integration over all canopy elements n: 

 

          ∑                
         eq. 4.9. 

 

where    is the area of the photosynthetic scene facets. 

 

4.2.7. Model inversion 

In forward mode, plot-level GPP is obtained by integrating leaf-level assimilation over the canopy. In 

inverse mode, the leaf model parameters are estimated using the eddy-covariance GPP estimates,  , 
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  ,        and the simulated leaf-level IPAR. A series of model inversions was established comprising 

the cases where no down-regulation was included, where only   and    down-regulation was modeled 

and a case where  ,   , and        were used to estimate GPP. The model inversion was achieved 

numerically by minimizing the cost function that, depending on the number of down-regulation 

functions considered, has the form: 

 

       ∑ [      (                    )          ]
 

   eq. 4.10. 

 

where Θ is the vector of unknown parameters. A number of optimization techniques exist (Jacquemoud 

et al. 1995) and in this study, the Levenberg-Marquardt method was applied that minimizes the cost 

function iteratively and requires initial estimates of the parameter set Θ. To improve model conversion, 

χ was constrained to 0.9 throughout the study so that model inversion at most yielded estimates 

of     ,      ,   ,        ,   ,      and   . Figure 4.3 provides an overview of the modeling design and 

embedded test functionality to assess the verisimilitude of the model and effects of model 

approximations.  
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Figure 4.3: Schematic diagram of the modeling pipeline including test functions; GPP = gross primary 

productivity, PAR = photosynthetically active radiation, mumol is transliterated from Greek (μmol). 
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4.3. Results 

Figure 4.4 shows the general relationship between modelled GPP and TOC IPAR for half hourly data 

throughout the growing season. The relationship is hyperbolic with a high degree of variation around 

the trend. Figure 4.5 shows the stratification of this relationship by the fraction of diffuse TOC IPAR ( ). 

This stratification reveals a strong linear relationship for high diffuse-fractions (bottom right panel) and 

weakens with increasingly direct radiation (upper left; see Table 4.1). As indicated by the large range of 

GPP around 1,000 μmol photons m-2 s-1, effects of canopy structure on the internal canopy radiation 

regime through a differential attenuation of diffuse and direct radiation are considerable, which is 

consistent with observations (Norman & Jarvis 1974; Parker et al. 2004) and theory (Choudhury 2001; 

Norman & Jarvis 1975). 

 

Figure 4.4: Scatter plot of eddy-covariance estimates of gross primary productivity against measured 

top-of-canopy incident photosynthetically active radiation at the DF49 site. The curve represents a two-

parameter hyperbolic relationship that was fitted using the Levenberg-Marquardt optimization 

technique. 
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Figure 4.5: Relationships between eddy-covariance estimates of gross primary productivity, and 

photosynthetically active radiation incident on the top of the canopy, stratified by the fraction of diffuse 

to total photochemically active radiation ( ). The black lines represent the hyperbolic curve shown in 

Figure 4.4, while the dotted lines represent the fits to the strata. As can be observed from the graphs, 

under diffuse conditions the relationship between gross primary productivity and incident 

photosynthetically active radiation can best be described using a linear relationship. 
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Table 4.1: Model parameters and fit statistics for the hyperbolic relationships illustrated in Figure 4.5 

(dotted lines). 

Q 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1.0 

     33.94 56.49 41.97 40.36 52.75 49.93 55.24 57.24 48.03 

  0.0273 0.0226 0.0365 0.0478 0.0459 0.0509 0.0538 0.06 0.0696 

R2 0.17 0.42 0.53 0.65 0.73 0.76 0.78 0.76 0.73 

RMSE 4.07 2.6 4.33 4.22 4.24 4.16 4.34 4.32 3.81 

  

 The geometrically explicit model of canopy structure provided estimates of leaf-level IPAR and 

considers the reduced attenuation of diffuse compared to direct beam radiation by simulating radiative 

transfer from a large number of light sources. Figure 4.6 shows vertical profiles of within-canopy IPAR 

for a clear and a cloudy day in May, 2009. The graphs show a large variation in IPAR throughout the 

canopy and a bimodal distribution of direct and diffuse radiation. Although some bimodal distribution 

was anticipated, the bimodality of the simulation likely overestimates that of the real forest since the 

simulations did not consider multiple scattering or penumbra (Stenberg 1995a). The latter effect is 

caused by the size of the solar disc. 

 Figure 4.7a shows the Levenberg-Marquardt optimization results for the case where no 

downregulation due to temperature and relative humidity were considered. The figure shows a 

profound non-linearity and underestimate of GPP. To illustrate the behaviour of simulation results to 

changes in      and  , the parameters were manually adjusted (shown in Figure 4.7b). The resulting 

scatter has a strong linear component, however, a positive bias in GPP can also be observed, when IPAR 

is high under clear sky conditions. These data points correspond with higher temperature and lower 

relative humidity and illustrate the need for down-regulation functions. Figure 4.8 shows optimization 

results obtained by stratifying environmental conditions. Plots along the rows are stratified by 

temperature and along the columns by relative humidity. For temperature and relative humidity close to 

the optimum for photosynthesis, i.e. around 16 °C and relative humidity 75% to 100%, a clear linear 

relationship between simulated and EC-derived GPP was observed over a large range of irradiances and 

diffuse to direct IPAR conditions. Moving away from this environmental optimum, the relationship 

between simulated and measured GPP weakens and eventually becomes absent, indicated by the 

inability of simulations to describe the variation in EC-derived GPP for temperatures around 25 °C and 

relative humidity < 50%.  
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Figure 4.6: Simulation results of diffuse, direct and total IPAR for 6:00 (top left) and 13:00 (top right) on 

the cloudy day of May 3, 2009, and for 6:00 (bottom left) and 16:00 (bottom right) on a sunny day (May 

8, 2009). Values on the x-axis show leaf-level IPAR [μmol photons m-2 s-1] and the y-axis shows height 

above the scan’s origin (i.e. approximately 1.3 m above ground, at the plot centre). Data points 

represent a subset of vegetation facets within a 3 m radius from the plot centre vertical axis. 
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Figure 4.7: Scatter plots showing correspondence between simulated GPP and EC-derived GPP where   

and     were optimized without the use of temperature and relative humidity modifiers (a; values: 

    = 7.31,   = 0.12); and a manual optimization of      and   demonstrating a more linear correlation 

among data points in low-light conditions and a large bias in high-light conditions (b; values:     = 16.0, 

  = 0.07). 
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 Figure 4.9 shows the behavior of the  -modifier function as it deviates from an optimum 

temperature. The scaling parameter    controls the pace of down-regulation with distance from the 

optimal condition. The use of the      modifiers based on temporally-lagged temperature and relative 

humidity improved the relationship between simulated and EC-derived GPP (Figure 4.10) resulting in an 

R2 = 0.71 (RMSE = 4.4 μmol C m-2 s-1); however, the Levenberg-Marquardt optimization resulted again in 

an apparent curvilinear relationship between simulated and EC-derived GPP.  

Using the modifier functions, the photosynthetic capacity was found optimal at humid 

conditions (relative humidity > 75%) and at slightly higher temperatures than found for model fits 

without down-regulation (i.e. Figures 4.7 and 4.8). All parameters were optimized without constraining 

the parameters to predetermined ranges, except for   that was fixed. While most parameters were 

found within realistic ranges, the quantum yield   was found outside the typical range of values 

reported that extends from 0.06 to 0.085 μmol C μmol-1 photons for IPAR and 0.09 to 0.11 

μmol C μmol-1 photons for APAR respectively (Cannell & Thornley 1998). An additional optimization was 

computed where   was fixed at 0.07 μmol C μmol-1 photons and this resulted in a more linear 

relationship between simulated and measured GPP (Figure 4.11) with minor changes in the explanatory 

power to predict GPP. 

  Acclimation of the photosynthetic apparatus to seasonal patterns in temperature has been 

investigated in a number of studies and it has been shown that coastal Douglas-fir forests have a 

capacity to optimize photosynthesis over a wide range of temperatures (Hember et al. 2010). To 

examine the potential effect such acclimation may have on estimates of GPP, the residuals were plotted 

against time (Figure 4.12). This time series of residuals shows a clear pattern and indicates that GPP was 

underestimated for the months of June and July of 2009 (week 25 to 31). Hence, a final model run was 

computed where modifier functions for mean daily temperatures in addition half hourly temperatures 

and relative humidity were used (Figures 4.13, 4.14). 

 

 



73 
 

 

Figure 4.8: Optimization results obtained by stratifying the data set by temperature and relative 

humidity. The results indicate decreasing explanatory power with decreasing relative humidity and with 

increasing difference between   and      (with      within the range 10 to 20 °C).  
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Table 4.2: Model fit statistics for stratified meteorological data. See figure 4.8 and text for additional 

details. 

   
Temperature (⁰C) 

      10-15 15-20 20-25 25-30 

Relative 
Humidty 

(%) 

0-25 R2   0.76 0.00 0.00 

 
RMSE   1.125 4.531 3.569 

25-50 R2 0.44 0.64 0.47 0.30 

 
RMSE 5.384 4.205 4.688 4.629 

50-75 R2 0.73 0.74 0.58 0.21 

 
RMSE 4.289 3.933 4.941 8.209 

75-100 R2 0.73 0.71 *   

 
RMSE 4.119 4.924 *   

 * No statistics shown since the number of samples within stratum is N=3. 

 

 

Figure 4.9: A graph illustrating the behavior of the temperature modifier function. The modifier function 

is a bell-shaped curve whose width increases with values for    and the response is constrained to the 

range 0 to 1 (y-axis).  
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Figure 4.10: Model inversion using the Levenberg-Marquardt algorithm, and temperature and relative 

humidity modifiers. Colours indicate top of canopy incident photochemically active radiation [μmol 

photons m-2 s-1]. Variations in eddy covariance were explained with an R2 = 0.71 and RMSE = 4.4 μmol C 

m-2 s-1 (values:          ,                          ,        ,         , and 

         ). 
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Figure 4.11: Model inversion using the Levenberg-Marquardt algorithm, and temperature and relative 

humidity modifiers, with quantum yield constrained (i.e. in addition to  ). Colours indicate 

photochemically active radiation incident on the forest canopy [μmol photons m-2 s-1] (parameter 

values:           ,                     ,        ,          ,       , and     

    ) 
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Figure 4.12: Time series box plots showing residuals between simulated and measured productivity for 

constrained α=0.07 μmol C μmol-1 photons, and for selected weeks of the year 2009.  
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Figure 4.13: Model inversion using the Levenberg-Marquardt algorithm, with relative humidity, diurnal 

as well as mean daily temperature modifiers, with constrained quantum yield. Colours indicate top of 

canopy IPAR [μmol photons m-2 s-1] (parameter values:          ,                       , 

                           ,        ,                   ) 

 

Figure 4.14: residual errors over time (week numbers for the year 2009) illustrating that some bias for 

the midseason is removed using modifier functions based on mean daily temperature. 
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4.4. Discussion 

This study addressed the need for canopy radiation models that provide for the fusion of proximal- and 

remote sensing data. The model utilizes highly detailed canopy structural data to yield IPAR and 

photosynthetic assimilation at the branch level as well as plot-level GPP in a manner that provides for 

extensive time series analysis. IPAR was computed at the level of individual scene elements by 

integrating hemispherical, down-welling radiation corrected for the hit probability that is probability 

that a pencil of light from a specific direction in the sky penetrates the canopy and collides at a specific 

location in the canopy. The model was parameterized using 3D structural data that is acquired with laser 

scanning technology and field observations of crown architecture, time series measurements of incident 

diffuse and direct PAR, and leaf-level photosynthesis parameters including      or     ,  ,  , and 

parameters defining the down-regulation of photosynthesis resulting from changes in temperature and 

relative humidity. While the virtual scene is constructed in forward modeling mode, the photosynthetic 

parameters were determined through model inversion against EC flux-tower estimates using the 

Levenberg-Marquardt method. To improve conversion, two parameters (   ) were fixed, while other 

parameters remained unconstrained. Despite differences in scale between the modeled forest plot and 

the footprint of the eddy-covariance flux tower, model optimization resulted in simulated GPP values 

matching the range of error typical for the eddy-covariance technique (e.g. Baldocchi et al. 2001), while 

remaining model parameters were also within ranges typically reported in literature. 

 Model validation tests for conservation of energy show that the light transport model 

introduces some error that is due to approximation (Appendix A.3., A.4.). The first approximation comes 

from the sampling distribution to capture down-welling radiation that introduces an error by setting the 

sun angles to the best matching direction among a limited number of hemispherical directions. The 

second approximation stems from the systematic sampling introduced in computing     . For every 

facet in the scene, a hit probability is computed by tracing rays originating from the centre of that facet 

towards unique hemispherical directions so that the hit probability of the facet centre represents the hit 

probability of the entire facet, and this can lead to bias in the estimated amount of radiation impinging 

on the facet. Other methods for computing      may be used to avoid bias. For example, in radiosity 

modeling, view factors     are computed that express the fraction of radiation leaving a facet   that 

reaches another facet   so that all view factors from a given facet sum to unity. (For comparison, in the 

current model the probabilities of a hit at facet  , before   and after   sum to unity.) Once view factors 

are determined, the radiosity equation is solved and has the form (Cohen & Wallace 1993): 
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        ∑      
 
           e.q. 4.11. 

where    is the radiosity of surface element   (e.g. μmol photons m-2 s-1) and is also known as radiant 

exitance or exitent flux density (Cohen & Wallace 1993; Schaepman-Strub et al. 2006),    is the surface 

emission and may be considered zero for woody and foliage elements and    is the surface reflectance 

or transmittance that is (bi-)directionally dependent. 

 This concept of view factors suits dynamic lighting conditions; however, it becomes 

computationally expensive when scenes comprise a large number of surface elements. Ray tracing 

methods (Disney et al. 2000; Gastellu-Etchegorry et al. 1996; Govaerts & Verstraete 1998; Chapter 3) on 

the other hand, handle arbitrarily large scenes and avoid bias by randomly locating ray origins as well as 

ray directions and provide for computing               or, rather, the probability of absorbing radiation 

from a particular hemispherical direction; However, these benefits come at the expense of increasing 

the number of computational steps. Whether such computational expenses are desired, depends on the 

study at hand. Estimates of      remain constant over prolonged periods of time, or undergo only 

modest changes due to foliage allocation, and once computed, the derivation of IPAR at the leaf level 

takes only a few seconds per time step (i.e. half hour), meaning that canopy radiation profiles from 

complex forest scenes may be obtained at a temporal resolution consistent with typical integration 

windows used for EC measurements or satellite overpasses. 

 Additional model approximations relate to the semi-empirical nature of the photosynthesis 

model and it was assumed that only ambient temperature and humidity affected photosynthetic down-

regulation. Improvements may include the use of radiosity modeling to simulate the transfer of heat 

within the canopy, as opposed to the current assumption of having no spatial distribution of 

temperature within the canopy. The      modifier functions did not consider hysteresis in their 

response to changes in temperature and relative humidity. It is likely, however, that LUE responds more 

quickly to precipitation than to dry conditions. For example, for a drought to have a significant impact on 

photosynthesis a weather record of several weeks to months may need to be considered, whereas a 

sudden event of heavy rain after a prolonged period of dry conditions affects the growth of vegetation 

more quickly. Other important considerations are the allocation of nutrients and acclimation of leaves to 

prevalent PAR regimes (De Pury & Farquhar 1997) and temperature (Hember et al. 2010) as well as 

effects of transient changes in incident radiation on photosynthetic down-regulation (Pearcy 1990). An 

effective way to capture the combined effect of these processes is through augmenting the modeling 
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with proximal sensing techniques, such as sensor network data (Garrity et al. 2010). Future research will 

investigate model parameterization using photochemical reflectance (PRI) data that was obtained from 

inexpensive narrow-waveband sensor network (forthcoming). Such PRI sensor network data can be used 

to understand the regulative capacity of the canopy on radiation transport and vertical profiles of 

photosynthetic down-regulation. Combined with fine-scale models of photosynthesis and light transport 

these sensor network data can be fused with a broad range of existing physiology, biometeorology, and 

airborne and spaceborne remote sensing data sources to advance our knowledge about the variability of 

LUE within the canopy. Understanding gained through this fine-scale modeling may be used to 

formulate empirical relationships that describe the vertical variations in LUE for use in simpler 

productivity models such as the Monteith model for use at operational scales.  

 

4.5. Conclusions 

Canopy structure is an important driver for canopy radiation modeling and is an important component 

in forest GPP models as it determines how portions of diffuse and direct radiation are distributed 

throughout the canopy. In this study, a method was presented that provides rapid updates of the 

canopy radiation regime, after an initial, computationally intense model set-up phase. The model relies 

on the hit probability of individual branches and handles the dynamic changes in the canopy radiation 

that result from solar tracking and atmospheric conditions. Once canopy radiation was simulated, a 

single leaf-level photosynthesis model was used to model canopy productivity for a time series of over 

2,000 measurements spread throughout a growing season. Through optimization of the model 

parameters to EC flux-tower data it was found that photosynthetic capacity was highest at cool 

temperatures (16 °C) and humid conditions (relative humidity > 75%) - in agreement with reported 

values for this climatic zone. While the current model suffers from model approximations, the research 

efforts presented herein offer a contribution towards the fusion of proximal and remote sensing data.  
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5. Conclusions 

The confidence around remote sensing estimates of GPP is, in part, affected by the limitation to observe 

the variation in light use efficiency with canopy depth that is inherently related to the extinction of light 

with canopy depth. Current GPP models only use a coarse level of canopy structural detail and provide 

only spatially averaged estimates that make model parameterization with field observations challenging. 

While proximal sensing technology is increasingly able to capture fine resolution photosynthesis-related 

data, the fusion of these data with stand-level data is still challenging (see Figure 5.1). The objective of 

this thesis was to derive automated methodology for modeling canopy structure, light transport, and 

leaf-level photosynthesis using conventional inventory parameters, laser scanning data, and 

meteorological records, and to explore the feasibility to obtain leaf-level photosynthesis parameters 

from stand-level productivity measurements. This work was guided by three research questions 

(Chapter 1.4): 

1. Can LiDAR remote sensing parameterize 3D radiative transfer models at scales ranging from 

shoot to plot level? 

2. Can leaf-level IPAR be simulated over a growing season at a sub-hourly time step from arbitrarily 

complex canopy light models? 

3. Can leaf-level physiological parameters be inferred from simulated canopy radiation and stand-

level productivity estimates? 

 The first question relates to the potential of laser scanning technology to generate geometrically 

explicit models of forest canopies and is answered in Chapters 2 and 3. Chapter 2 demonstrates the use 

of the Hough transform to delineate individual, dominant tree crowns from LiDAR data. This delineation 

or segmentation of the LiDAR data into individual trees provides an important first step towards forest 

reconstruction. Chapter 3 demonstrates a finer resolution of modeling based on ground-based laser 

scanning data combined with tree-regeneration models. The reconstruction pipeline builds on the 

previous chapter and extends the modeling of trees by detecting individual stems and tessellating the 

scene into growing spaces for each stem. The wide-beam Echidna data used in this study provides for 

full-waveform data recordings but offers a limited point density and this makes reconstruction of 

individual branches challenging. However, the method demonstrates stems can be detected that are 

only 3 or 4 pixels wide in the range image, so that the method can be applied to low resolution data as 
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well as for the detection of finer stems using higher resolution scanner data. The latter also reduces the 

need for field observational data to parameterize the tree-regeneration models. 

 The second research question relates to the use of geometrically explicit models to simulate 

leaf-level incident     and this is addressed in Chapter 4. Previous models (e.g. McMurtrie et al. 1990; 

Wang & Jarvis 1990a, 1990b) have addressed the computation of averaged leaf-level PAR and these 

measures may not resemble the variability observed in the field. As a result, the fusion of shoot and 

canopy-level data has been challenging (Jarvis 1976). Ray tracing models have been used to simulate 

radiation transfer at arbitrary (Widlowski 2010) levels of detail; however, they are computationally 

expensive. The work presented in this thesis relies on the modeling of canopy radiation transfer based 

on hit probability as demonstrated by Jupp et al. (2009) and Yang et al. (2013); however, rather than a 

derivation of hit probabilities at the plot-level, the current work uses laser scanning data to establish a 

3D-explicit forest scene for which branch or shoot-level hit probabilities can be simulated using ray 

tracing techniques. Once hit probabilities are determined for all scene elements, incident leaf-level IPAR 

can be computed rapidly to facilitate the study of diurnal as well as seasonal variations in photosynthetic 

assimilation at scales ranging from the leaf to the canopy-level.  

 The third research question investigates if parameters related to leaf-level assimilation can be 

inferred from eddy-covariance estimates of stand-level productivity and simulated canopy radiation. The 

simulation of stand-level productivity from a leaf-level photosynthesis model by integrating leaf-level 

assimilation over the canopy is not new and has been demonstrated in a number of models such as 

MAESTRO (Wang & Jarvis 1990) and BIOMASS (McMurtrie et al. 1990). However, these models require a 

large number of variables so that model inversion is challenging. The model developed in this thesis uses 

a semi-empirical photosynthesis model based on quantum yield and photosynthetic capacity and the 

latter is down-regulated as a function of environmental variables. A fully unconstrained optimization 

procedure was able to find realistic values for most photosynthesis parameters, however, quantum yield 

was found to exceed theoretical and observed limits that have been reported in literature. Fixing 

quantum yield to 0.07 μmol C μmol-1 photons reduced bias between simulated-, and eddy-covariance 

GPP estimates. Some variation among the residuals remained that appeared to be due to seasonal 

changes in the photosynthetic capacity and may be addressed using separate modifier functions for 

diurnal and seasonal trends in temperature. After parameter optimization, the correspondence between 

the model simulations and eddy-covariance estimates yielded an R2 around 0.7 and RMSE around 4 

μmol C m-2 ground s-1. These results suggest that the current photosynthesis model captures some 
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important aspects of photosynthesis; however, more processes may need to be considered to explain 

variation in photosynthesis within the canopy. For example, vertical gradients in leaf temperature and 

relative humidity are the result of homeostatic functions of canopy structure and the creation of micro-

meteorological sites within the canopy (Jarvis 1976; Parker et al. 2001), but only ambient temperature 

and relative humidity were used in the current study. Similarly, impacts of variations in hydraulic 

conductance within the canopy (Gamon & Bond 2013) on leaf-level photosynthesis were not explicitly 

captured in the current approach, nor were considered the age of leaves or the acclimation of leaves to 

direct sun or shade conditions. The results from the current study indicate that the use of increasingly 

fine detailed models of canopy structure facilitate the inference around photosynthesis parameters in a 

geometrically explicit manner, from stand level measurements of GPP, and also suggest that more 

physiological mechanisms may be incorporated in the modeling in future. The demonstrated progress in 

increasing the geometric resolution of canopy models and ability to infer leaf-level photosynthesis also 

indicates potential to fuse shoot and stand-level measurements, which then opens an important 

opportunity to leverage the significant research already on leaf and tree photosynthesis. 

 The outcomes of this research demonstrate the use of laser scanning data and graphically 

inclined tree-regeneration models for scaling measurements of canopy-level GPP to a geometrically 

explicit distribution of shoot-level productivity. The unique outcomes of this research include: 

1) The development of a new approach to extract tree crowns and crown information from 

airborne and ground-based laser scanning data; 

2) A new approach to detect and segment individual tree stems from ground-based laser scanning 

data resulting in highly accurate stem maps and DBH estimates at the plot level; 

3) A new method to populate a virtual scene with trees based on a Voronoi tessellation of the 

derived stem map; 

4) A new application of ray tracing models to simulate branch-level hit probabilities from which 

IPAR can be computed; 

5) An innovative model to optimize leaf-level photosynthesis-related parameters to canopy-level 

GPP measurements. 

 The model developed within the framework of this thesis comprises a level of detail that is 

uncommon among established productivity models that typically rely on the use of spatially and 
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temporally averaged canopy attributes and environmental conditions; however, these models often 

include effective parameters that cannot be measured directly in the field (e.g. the average chlorophyll 

content over broad areas), or lack physical units (e.g. clumping index or soil quality), so that validation of 

underlying modeling assumptions can be challenging. In addition, certain physiological processes may 

not be resolved at these coarser levels of detail. For example, leaf-level responses to sunflecks (Pearcy 

1990) may be obscured at the canopy-level where processes are primarily affected by the sunlit canopy 

fraction (Hall et al. 2012; Hilker et al. 2012a) that change at a much slower rate. The new model 

developed in this thesis overcomes these challenges to a significant extent by using conventional forest 

inventory information and fine structural information obtained from laser scans. This finer discretization 

of canopy structure provides for a spatial breakdown of PAR and photosynthetic efficiencies, and holds 

promise to simulate dynamic responses to changes in light (i.e. sunflecks) that are inherently related to 

the discrete nature of canopies (Pearcy 1990). 

  The reconstruction methods presented in this thesis were demonstrated for data from a 60-

year-old Douglas-fir stand and the methods applied assumed a monopodial tree architecture (i.e. 

consisting of a single trunk that reaches from base to apex) that is typical for coniferous trees. The 

potential to include a broader diversity of tree species needs to be addressed in future studies. Of 

importance to note, however, is the potential of the stem detection method presented in Chapter 3 for 

branches of arbitrary order provides that the data resolution (i.e. point density) is high enough to 

resolve the individual branches by a minimum of 3 to 4 laser returns along the cross-sections of 

branches. Future studies may therefore investigate the use of high density laser scanner data as well as 

mobile and hand-held scanning devices to optimize point density and to address data obscuration. 

 The fusion of simulated radiative transfer and photosynthetic assimilation with proximal sensors 

provides an important means to study the variability of assimilation under transient light conditions and 

that may help us better understand the relationship between canopy structure and function (e.g. Pearcy 

1990). Proximal sensors provide levels of detail in diurnal physiological changes that cannot be 

addressed with remote sensing techniques and the installation of these sensors offers a unique 

opportunity to study temporal variations in commonly used spectral indices. High frequency sampling of 

PRI or chlorophyll fluorescence, for example, provide accurate estimates of down-regulation of light use 

efficiency throughout the day as well as the season. In addition, their measurement is not hindered by 

cloud cover so that measurements represent a wider spectrum of meteorological conditions. Detailed 

geometric-explicit models provide for a “bottom-up” modeling approach, opposed to remote sensing 
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models that represent “top-down” approaches and require a break-down of signals from an aggregate 

level. For example, estimates of leaf-level biophysical parameters are obtained from canopy reflectance 

so that the confidence bounds of the estimates are based on a propagation of model errors and 

assumptions around the effects of geometric and volumetric scattering. The fusion of remote sensing 

data with data from proximal sensors and eddy-covariance stations also provides opportunities to 

reduce uncertainties around productivity estimates by identifying and reducing impacts of outliers in 

data collections. 

 Future efforts on the integration of proximal sensing with geometrically explicit light transport 

models should address reflectance, however, that currently remains a limitation of the model presented 

in Chapter 4. Including leaf-level reflectance in simulations provides for assimilation of top of canopy 

reflectance data, which can then be used for spectral mixture analysis that uses canopy reflectance data 

and a system of linear equations to obtain end-member reflectance data of sun and shade acclimated 

foliage elements (Middleton et al. 2009). For the case of single-scattering reflectance, the branch-level 

hit probabilities can be used to simulate the joint probability of exposure of scene elements to incoming 

radiation as well as the exposure of a virtual sensor to the lit scene elements. In the case of multi-

scattering, a more elaborate method is required that handles multiple reflectance and collided 

transmittance of radiation. Such a method could be based on the ray tracer presented in Chapter 3 from 

which the probabilities of absorbing photons incident from a specific direction by a specific canopy 

element can be computed, or – when photons are reflected outside the scene towards the atmosphere 

– what their contribution to the canopy BRDF is. For multi-scattering, the concept of the hit probability 

may then be substituted by the probability of scene elements to absorb directional radiation as well as 

the probability of aggregates of scene elements to reflect the incoming, directional radiation towards an 

observer (Disney et al. 2000). 

 Modeling multiple scattering requires a significant amount of additional computation and it 

remains unclear whether improvements gained warrant this additional computational effort. The cost 

allowed for model simulation likely depends on the significance of the study site and long term research 

goals. Recent trends in the acquisition of forest inventory data in Canada have moved towards an 

intense use of permanent inventory plots (Gillis 2001). The continued monitoring and revisiting of study 

sites has reduced measurement uncertainties, and motivates investment in the geometrically explicit 

mapping of forest structure and computational cost of simulations. At the same time, long term 

maintenance of research sites imposes costs that limit the availability of ground-truth measurements of 
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productivity elsewhere, which then introduces uncertainty as to how well these sites represent the 

variation in productivity across the landscape. Proximal sensing techniques often rely on low-cost sensor 

network technology (Garrity et al. 2010; Soudani et al. 2012) so that the number of study areas may be 

increased at an affordable cost, much to the benefit of validating and calibrating a range of remote 

sensing products. These proximal sensing techniques monitor productivity-related variables at a scale 

that is common to laboratory studies as well as field mensuration. Hence, proximal techniques can be 

calibrated against laboratory standards before they are installed in situ at a study site, as opposed to 

remote sensing instruments for which typically only radiometric calibrations are conducted in 

laboratories, while the calibration of empirical relationships between spectral indices and GPP is 

exclusively achieved while the instrumentation is air-, or spaceborne. Proximal sensing, therefore, 

appears better suited to the acquisition of precision measurements and under a wider range of 

environmental conditions, whereas the strength of remote sensing methods primarily lies in the scaling 

of estimates across the landscape and broader scales. 
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Figure 5.1: A network representation of data and models of forest gross primary productivity operating 

at various scales and levels of detail. The dashed arch illustrates the lack of process-based models that 

provide for fusion of proximal and remote sensing data sources.  
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Appendix 

A.1. Sensitivity analysis 

A.1.1. Stem detection 

The sensitivity of stem detection to changes in parameter values was analysed using plot-centre scans 

and by varying one parameter over specified ranges (δ = 0.1, 0.2, 0.3, 0.4, 0.5 m; r = 0.7, 0.8, 0.9, 0.99, 

0.995;   = 5, 10, 15, 20, 35°;     = 6, 12, 24, 36, 42) while the remaining parameters were kept fixed (δ 

= 0.3m; r = 0.95;   = 15°;     = 12). Table A.1 summarizes the commission and omission errors caused 

by changes in δ, r, and    . Filtering for   only reduced errors of commission in some scans, whereas it 

had no effect in others including the plot-center scans. 

 

Table A.1: Sensitivity analysis of parameters δ, r, and     on percentage of correctly detected stems, 

and errors of commission and omission. Values for δ,    , or r were changed one at a time, while 

remaining parameters were kept constant. Constants used for sensitivity analysis were δ=0.3m, 

   =12, r=0.95. 

δ (m) 0.1 0.2 0.3 0.4 0.5 

 

trend 

Correctly detected 73.97% 82.53% 82.88% 83.90% 83.90% 

 

+ 

Errors of commission 19.52% 14.73% 14.73% 12.67% 8.90% 

 

- 

Errors of omission 26.03% 17.47% 17.12% 16.10% 16.10% 

 

- 

             6 12 24 36 42 

  Correctly detected 89.73% 81.85% 75.34% 66.78% 64.04% 

 

- 

Errors of commission 61.30% 16.10% 0.34% 0.00% 0.00% 

 

- 

Errors of omission 10.27% 18.15% 24.66% 33.22% 35.96% 

 

+ 

        r 0.7 0.8 0.9 0.99 0.995 

  Correctly detected 82.88% 82.88% 82.88% 82.88% 82.88% 

 

0 

Errors of commission 32.53% 32.19% 25.68% 15.41% 2.74% 

 

- 

Errors of omission 17.12% 17.12% 17.12% 17.12% 17.12% 

 

0 
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A.1.2. Arbaro parameters 

A listing of the Arbaro parameters that were not derived from point cloud data, but that have a 

significant role in the construction of the geometrically explicit scenes is provided in Table A.2. Values 

for these parameters were obtained from field inventory data. The sensitivity of these Arbaro 

parameters on radiative transfer simulations was assessed by conducting a set of simulations using an 

arbitrary stem map and random tree heights, and by changing Arbaro parameter values by -20% to 

+20% (in steps of 10%). One Arbaro parameter was changed at a time, while remaining parameters were 

kept constant.  The sensitivity analysis shows that BaseSize, defining the height of the branch free bole 

section and canopy depth, is the most sensitive parameter. First order down angle (1DownAngle) and its 

distribution (1DownAngleV) with canopy depth, both parameters regulating the angle between a branch 

and the main stem, causes estimates of cumulative hit distributions to vary by 16% and 8% of total 

absorbed radiation, respectively. The six most important Arbaro parameters were further investigated 

and the effect of individual parameters and their interactions are shown in Figure A.1. Along the 

diagonal, the effect of changing one parameter is shown. The cumulative hit distribution using the 

reported values is represented by a thick line and the two thinner lines indicate the range in simulation 

outcomes caused by changing the respective parameter value. The upper half of the matrix lists these 

effects for changing two parameters at a time. The lower half of the matrix plots the range in simulation 

outcomes against canopy depth so that the black line in plots (i,j) correspond with plots (j,i) and the blue 

and red lines correspond with the plots along the diagonal. For example, a change in BaseSize of +/- 20% 

(0.32 to 0.48) causes a change in the cumulative hit distribution from 0.18 to 0.47 around the 21-m 

height, indicating the significance of this parameter on the derived hit distribution profiles. In addition, 

varying both the value of BaseSize and 1DownAngle simultaneously causes a greater range in model 

outcomes than changing either of the parameters alone. This effect is disaggregated to individual 

parameter contributions in the lower half of the matrix. The graphs show a decrease in parameter 

sensitivity with branching order. 

 

 

 

 

  



109 
 

Table A.2: Parameter values used in the Arbaro architectural tree modeling software. 

level 0 trunk Value* 
 

Level 1 branches Value* 
 

Level 2 branches Value* 

Shape conical (n/a) 
 

1DownAngle 90° (16%) 
 

2DownAngle 45 ° ** 

levels 3 (n/a) 
 

1DownAngleV  -50 (8%) 
 

2Rotate -90° (3%) 

BaseSize 0.4 (30%) 

 

1Rotate 140° ** 

 

2CurveRes 5 ** 

AttractionUp -0.1 ** 

 

1CurveRes 25 (1%) 

 
  

  
 

1Curve -40° (2%) 

 
  

* Parameter sensitivity is shown between parenthesis and is expressed as the difference in cumulative hit 

distribution (x100%) caused by a +20% and -20% change of the listed parameter value. Sensitivities were 

computed for one parameter at a time, while remaining model parameters were kept constant. 

** Parameters for which sensitivity was less than 1%. 
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Figure A.1: Arbaro parameter sensitivity analysis. Variation induced by the six most important 

parameters is displayed along the diagonal of the matrix of plots, while effects of co-varying two 

parameters on the cumulative hit distribution is displayed in the upper half, and the observed range in 

model outcome in the lower half. 
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Figure A.1 (continued): Arbaro parameter sensitivity analysis. Variation induced by the six most 

important parameters is displayed along the diagonal of the matrix of plots, while effects of co-varying 

two parameters on the cumulative hit distribution is displayed in the upper half, and the observed range 

in model outcome in the lower half. 
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A.1.3. Gap fraction 

 

Besides the geometry of the mesh model, gap fraction is an important parameter and regulates un-

collided transmission through the planar polygons and thus the hit distribution. Varying g(θi) from 5 to 

30% resulted in a maximum difference in hit distribution at 18 m of 0.02 suggesting that most 

transmission occurs between crowns and outside the branch silhouettes. Values used for g(θi) are 

among the lower bound observed for a 30-year-old Norway spruce stand in Sweden (Stenberg et al., 

1995). 

 An analysis of the effects of varying foliage densities on the radiation transmission properties of 

the virtual canopies was conducted after separating sun and shade facets. This was achieved by 

computing for every facet in the scene the probability of a direct line of sight in directions from a set of 

1,064 uniformly distributed directions across the hemisphere. Using computed sun azimuth and zenith 

angles, a stratification of facets into sun and shade was made based on whether the facets were in 

direct line of sight with the sun (Hilker et al. 2010a). The effects of different foliage densities on the hit 

distribution were then investigated by altering the gap fractions of sun and shade facets (Figure A.2). 

The lower value is the gap fraction for sun facets and the higher value for shade facets. We can see that 

the impact of changing foliage densities is relatively small compared to effects of some other model 

parameters (e.g. BaseSize), suggesting that crown shape has a strong influence on the observed 

radiation profiles. 
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Figure A.2: Effect of altering distributions for gap fraction g(θi) on the cumulative hit distribution for all 

four plots. 
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A.2. Ray tracer details 

To provide a better understanding of the ray tracer developed for this study, this appendix provides a 

brief overview of its main components and underlying algebra of radiation transport. 

 

A.2.1. Radiation transport 

When computing reflectance from a certain surface element into directions        , the intrinsic 

scattering properties of the material under consideration in combination with the projected solid angle 

(Arecchi et al. 2007) are of principal importance. In the current ray tracer, reflectance and transmittance 

are described for a Lambertian surface, that is a surface that reflects the same amount of radiation [W 

m-2 sr-1] in all directions, and its intensity [W m-2] drops with the cosine normal angle (Schaepman-Strub 

et al. 2006). Thus, the probability of a photon hitting a Lambertian surface and reflecting (transmitting) 

in a certain direction is a probability density function whose values decrease with the cosine of the angle 

between the incident path of the photon and the surface normal.  

 The bidirectional reflectance distribution function (BRDF) [sr-1] of a surface describes the 

distribution of reflection over a hemisphere of outgoing directions         for a beam that is incident 

on the surface under direction        . The BRDF is defined as the ratio of radiance    [W m-2 sr-1] that is 

reflected from the surface and irradiance    [W m-2] that is incident on the surface. For any given 

surface, the BRDF integrated over the viewing hemisphere sums to the surface reflectance,    [unitless]. 

A Lambertian surface has a constant BRDF of    ⁄ , so that when integrated over the full hemisphere 

(Suffern, 2007): 

 

∫ ∫                

 
 

   

                
  

   

  

      ⁄  ∫       

 
 

   

                    ⁄  
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The reflected radiance into any one direction         from such a surface is: 

    
 

 
        

 

 
    ∫              

 

    

 

Furthermore, it can be observed analytically that the reflected intensity of such a surface decreases with 

increasing normal angle: 

 

   

  
  

 

 
               

 

 
            ∫              

 

    

 

The bidirectional reflectance of a Lambertian target can thus be described by the intensity of photons 

hitting a surface element and a cosine-weighted probability of reflecting into the direction        . 

Transmittance is described similarly using a Bidirectional Transmittance Distribution Function (BTDF), 

that for a Lambertian target equals to 
 

 
   , where    is the materials collided transmittance. 

 

A.2.2. Monte Carlo Ray Tracing 

The ray tracer is implemented in the Python programming language, follows object-oriented coding 

design and was developed specifically for computing      and      but has been extended to compute 

absorptance and transmittance for model validation purposes. The ray tracer simulates absorptance and 

transmittance by tracing individual photon paths within a virtual scene of Lambertian targets that are all 

a circular or triangular shape. Intersections of photon paths with the scene elements are computed 

largely following Moller and Trumbore (1997) and methodology explained by D. Sunday 

(http://geomalgorithms.com/a06-_intersect-2.html, last accessed on December 31, 2013). Photons 

originate from a reference plane that is oriented horizontally and that is just above the highest element 

in the scene.  When photons collide with the scene elements, their fate as to being absorbed or 

scattered is evaluated from the materials properties     and    and in the case of either reflection or 

transmission a new direction vector is sampled from a cosine weighted hemispherical distribution 
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(Suffern 2007). A new photon is generated each time a previous photon is absorbed or bounced outside 

the scene. Alternatively, the ray tracer provides for the simulation of      and      by generating rays 

that upon intersection with the scene are partially obstructed and for which uncollided transmittance 

can be computed based on a gap fraction assigned to each surface element. 

 

A.2.2.1. Validation 

Validation of the ray tracer was achieved against the Radiative Transfer Model Intercomparison (RAMI) 

Online Model Checker (ROMC) (Widlowski et al. 2008) that was designed to find consistency among 

existing radiave transfer models through the development and use of benchmark data sets. The model’s 

performance was evaluated against four heterogeneous baseline scenarios: HET01_DIS_UNI_RED and 

HET01_DIS_UNI_NIR and using zenith angles of 20 and 50 degrees. For each scenario, the fraction of 

radiation entering the scene that is absorbed by foliage elements (fabs) and the fraction of radiation 

impinging on the background surface (ftran) were computed from 4 to 10 million simulated photons. All 

fabs simulations showed consistency with the ROMC-reference to within ~1%. Differences with the 

ROMC baseline for ftran were observed for the Near-Infrared case and the simulations showed a 

constant bias of around 4%. 

 

A.2.2.2. Deriving gap/hit probability 

The ray tracer can be used to derive gap and hit probabilities for scenes that have materials specified 

with certain gap fractions, i.e. the degree of porosity of a surface element from which un-collided 

transmission results. Individual elements that are intersected by a ray are ordered with respect to their 

distance from the ray’s source and a hit probability is computed at every intersection based on the 

cosine angle with the element and the element’s gap fraction. At every intersection i, in sorted order, 

the transmitted portion of the ray is computed as            , where    is the payload that propagates 

un-collided through intersection i-1 and    is the payload of the primary ray, so that values     of all 

primary rays originating from a hemisphere of light sources are equal and sum to one. 
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A.3. Computing hemispherical down-welling radiance 

Using diffuse and total irradiance from 400 to 700 nm (PAR band) the direct irradiance was computed 

for every half hour: 

 

                        

 

Down-welling diffuse radiance was assumed to be constant throughout the hemisphere, and was 

computed from diffuse irradiance as: 

         
        

   ∫                 
   

 

 
        

 
 

 

Direct radiance was then assigned to the hemispherical sample that was located closest to the sun’s 

position, determined using a KD-tree, and direct radiance was computed from direct irradiance by 

correcting for the sun zenith angle that was computed using a solar calculator, and the average solid 

angle spanned by the hemispherical samples: 

 

        
       

              ⁄  
 

 

To test the accuracy of the methods, total irradiance was computed by integrating radiance over the full 

hemisphere and this value was compared with measured irradiance for all time steps involved in the 

study (Figure A.3). The comparison shows some inaccuracy that result from the hemispherical sampling 

chosen that, however, was found acceptable given the improvement in computational speed this 

sampling provides. 
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Figure A.3: Demonstration of the measured irradiance (x-axis) and test results obtained by integrating 

simulated radiance over the full hemisphere (y-axis). 
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A.4. Computing IPAR 

The amount of irradiance incident on a flat, horizontal panel can be computed as the integration over 

the hemispherical down-welling radiance as: 

 

     ∫∫                          

 

Using numerical integration, the integral can be solved as a summation using a fixed step size for 

azimuth and zenith angles. However, using fixed step sizes, the sampling density towards the zenith 

increases thereby reducing the cost efficiency of computation. When a set of   hemispherical samples 

are distributed following the Capitulum sampling (e.g. Piccini et al. 2011; Vogel, 1979), the solid angle 

covered per sample can be assumed to be approximately constant      ⁄   and the hemispherical 

integration can be computed as: 

      
  

 
 ∑  

 

   

         

 

where the index   symbols the rank of the hemispherical sample,    the radiance coming from sample   

[μmol m-2 s-1 sr-1] and    the zenith angle of the sample. When a panel   is tilted, however, the angle 

between the surface normal and the hemispherical sample (denoted       needs to be considered and 

this is computed as the dot product between the facet normal vector   and the direction vector of 

incident radiation,  : 

 

      
  

 
 ∑  

 

   

    (    ) 

   (    )  
   

‖ ‖‖ ‖
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If the panel is porous, the un-collided transmittance can be computed from the gap fraction of the panel 

    and the angle of incidence: 

 

                 |   (    )| 

 

For a given spatial configuration of   porous panels, the probability of a first hit from direction         

on panel   is equal to the probability of having a gap through the set of panels    that fall on an 

intersecting line that starts from a point on panel   into direction        , times the probability of 

colliding with panel   given the incidence angle: 

              (                      )  ∏            

       
  ∈  

 

          

 

The irradiance incident on a porous panel   received from a specific hemispherical sample can then be 

computed as: 

 

               
  

 
                     (    ) 

 

and can be compared against measurements (Figure A.4). 
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Figure A.4: Correlation and bias between simulated and measured incident PAR. 


