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Abstract

Multi-stage programming is a form of metaprogramming that is an extension of

ideas and techniques of partial evaluation. This thesis discusses a (re)implementation

of a multi-stage programming system MetaOCaml. The system presented here dif-

fers from the OCaml implementation by Taha et al in that it is implemented on top

of a modern OCaml compiler. It differs from BER MetaOCaml in that it supports

generation of native code in a turn-key fashion. It differs from both systems in that

it uses the OCaml intermediate representation to represent the notion of code (to

the best of my knowledge, existing system use abstract syntax trees instead.)
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Preface

The thesis is original, unpublished, independent work by the author, Evgeny Roubinchtein.
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Chapter 1

Introduction

When faced with a problem that can be solved by computer, one possible approach

is to write a program that solves that problem. Another approach is to write a

program that produces a program that solves the problem. The former approach is

commonly known as programming The latter is (somewhat less commonly) known

as meta-programming. Practitioners of meta-programming report being able to

produce concise and expressive programs [11] [14]; being able to produce pro-

grams that run efficiently with relatively little programmer effort has also been

reported [16] [20][2].1

Multi-stage programming is a form of meta-programming which builds on

ideas from partial evaluation. Figure 1.1 shows the flow of data in a typical partial

evaluation system: a program together with a specification of some of its inputs

is first subjected to (automated) binding time analysis to decide which of the pro-

gram’s internal variables depend on the given inputs. The binding time analysis

phase is followed by partial evaluation proper, which produces a residual program.

When the residual program is run, any values whatsoever may be assigned to the

subset of the inputs that were not specified during partial evaluation. If S denotes

the subset of the original program’s inputs that were specified during partial eval-

uation and U denotes the subset of program’s inputs that were not specified during

1While hand-coding the program in assembly and optimizing it for a specific architecture might
produce a significantly more efficient program, part of the emphasis here is on saving programmer’s
effort.
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Program Names of
statically known inputs

Binding Time Analysis
(BTA)

Annotated program
Values of

statically known inputs

Specialization

Residual Program

Figure 1.1: Partial evaluation data flow: the language of annotated and resid-
ual program need not be the same.

partial evaluation, then running the residual program while assigning any values

whatsoever to the inputs in U is equivalent to running the original program with

the values that were given to the partial evaluator for the inputs in S and providing

those same – arbitrary – values for the inputs in U .

Figure 1.2 shows the flow of data in a multi-stage programming system: the

responsibility for doing binding time analysis is transferred from the machine to the

human: programmer is responsible for annotating the program to describe which

values may be immediately calculated from a given set of inputs. The machine

then faithfully follows the annotations provided by the programmer to arrive at a

2



(Meta)
Programmer

Program
Names of

staticaly known inputs

Values of
staticall knon inputs

Multi-stage programming system
(compiler or interpreter)

Annotated program

Figure 1.2: Multi-stage programming data flow: the language of annotated
and residual program is the same, and specialization step may be re-
peated an arbitrary number of times.

residual program.

Lisp macro system may be considered as an early example of a multi-stage pro-

gramming system. Graham [14] popularized meta-programming with Lisp macros,

and also observed that, “macro definitions are harder to read than ordinary code” [15].

A plausible approach to help programmers debug Lisp macros would be to have

3



problematic usages of macros. Types are a programming languages device that

enables compile-type checking of programs. If it were possible to create a type

system for Lisp macros, then compile-type checking of Lisp macros could be im-

plemented. Wand studied the Lisp macro system to determine if any guarantees

could be made about the behavior of Lisp macros, and concluded that no type sys-

tem could be devised for the Lisp macros system.[33]

MetaML, invented by Sheard [31], is a typed meta-programming system. The

type system detects certain programming errors. Examples of the kinds of errors

prohibited by the type system include unbound variables, and using a variable in

the wrong stage (before its value has been calculated). Type systems for multi-

stage programming detect those errors without running the program, and without

needing to re-examine the program during each successive stage of the evaluation.

Taha showed that, unlike Lisp macro system, a type system for MetaML can be

devised [29].

MetaOCaml is a descendant of MetaML, first implemented by Taha [4]. Taha’s

work was done on OCaml version 3, and was never (to my knowledge) ported

to OCaml version 4. BER MetaOCaml is an implementation of MetaOCaml for

OCaml version 4 that supports generating byte code (only) in a turn-key fashion.

The work presented here is a clean-room re-implementation of MetaOCaml with a

focus on native code generation.

The goal of this project was to explore using the OCaml intermediate repre-

sentation2 rather than AST as the concrete representation of the program that is

being manipulated by the meta-programming system. To the best of my knowl-

edge, all existing MetaOCaml implementations manipulate ASTs. Because of how

the OCaml compiler is implemented, manipulating ASTs means that program is

type-checked at every stage of evaluation. While not harmful, such type checking

is unnecessary in view of the existence of multi-stage programming type systems.

We were curious if getting rid of the repeated type checking would positively im-

pact run-time performance. The performance evaluation of the resulting system is

found in Chapter 4.

A secondary goal of the project is that the implementation should be minimally-

2The intermediate representation used for this project is caled Lambda. It is described in more
detail is Section 2.5.
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invasive with respect to the underlying OCaml system it is based on. This goal is

shared between the BER MetaOCaml implementation and the work presented here.

As I show in Chapter 3, the resulting system is somewhere mid-way between BER

MetaOCaml and “classic” MetaOCaml in terms of the changes it makes to the

underlying OCaml implementation.

The contribution of this project is demonstrating the feasibility of producing

a minimally-invasive implementation of MetaOCaml that uses the OCaml inter-

mediate representation as the concrete representation of the program that is being

manipulate.

After giving the necessary background on multi-stage programming and the

OCaml compiler, I describe the design and implementation of the multi-stage pro-

gramming extensions added to the OCaml compiler; a performance evaluation of

the resulting system follows, and is followed in turn by a summary and conclusion.

5



Chapter 2

Background

2.1 Overview
MetaOCaml is a multi-stage programming system based on MetaML. The work

presented in this thesis implements MetaOCaml as an extension to the compiler

for OCaml version 4. This chapter introduces the basic notions of multi-stage

programming, and gives an overview of the OCaml compiler, with particular focus

on the parts of the compiler that are important for the discussion of implementation

in Chapter 3.

2.2 A brief introduction to multi-stage programming
The goal of this section is to introduce readers unfamiliar with multi-stage pro-

gramming to the basic concepts, and to provide some simple examples of multi-

stage programs.

Multi-stage programming is an extension of ideas found in the field of partial

evaluation, so, in order to explain multi-stage programming, I start by describing

partial evaluation.

2.2.1 Partial evaluation

Partial evaluation may be described informally as running a program when values

are known for only some of the program’s variables. Naturally, if values for all of

6



Values of
statically known inputs

Values of
inputs not know until runtime

Partial evaluation system

(Full) Program

Residual Proogram

Results of running program
all inputs

Figure 2.1: Partial evaluation data flow.

the program’s variables are known, the program can just be run in the usual fashion

to obtain the result. If only some of the values are known, however, then a program

along with the known values may be given to a partial evaluator, which will analyze

the program and the available inputs and produce a residual program, as illustrated

in Figure 2.1. When the values for the variables that were not yet known at the time

the partial evaluator ran become known, the residual program may be run with just

those extra values to obtain the result. The correctness criteria for partial evaluation

is quite natural: the result obtained should not depend on whether a program was

run in the normal fashion, with all the values specified or whether the program was

first run through the partial evaluator with only some of the values known, and then

the residual program was run on the remaining values.

To describe the process of partial evaluation in more detail, I will use a simple

7



x ∈ VARIABLE n ∈ N t ∈ TERMv ∈ VALUE
t ::= n |x |λ x. t | t t |fixx. t | t ? t : t | t + t | t − t | t ∗ t

v ::= n |λ x. t

Figure 2.2: Syntax of a toy language for partial evaluation

“toy” language. The syntax of the language is given in Figure 2.2.1

The language is typical of functional programming languages inspired by Church’s

lambda calculus [6]. The intuition is that writing down one of the terms (TERM) cre-

ates an expression; expressions may be evaluated to obtain their value. The rules

of evaluation appear below, but the intuitive meaning of numbers (n), variables (x),

and arithmetic operations on natural numbers (+,−,∗) is probably clear to any-

one familiar with at least one programming language. The conditional expression

(t ? tt : t f ) works like the conditional operator t ? tt : t f found in C (and Java).

Writing down λ x. t creates a function expression. Function expressions may be

applied to an argument using t t (the rules by which application is evaluated appear

below). Finally, fixx. t creates recursive expressions: if one writes down fixx. t,

then, within t, x stands for the entire expression fixx. t, and t t may be used to

apply that expression to an argument. A word on precedence is in order: function

application has the highest precedence, and in particular the precedence of a func-

tion application is higher than that of any of the binary operators. This means that

f 1 + 2 is parsed as ( f 1) + (2), rather than as f (1 + 2) As usual, parentheses

may be used to override the default precedence.

Conceptually, a result is obtained by rewriting the program according to the

rules that appear in Figure 2.3 until no rewrite rules apply.

The intuition is as follows: Numbers,and abstractions (the standard name for

λ x. t, which defines an anonymous function) evaluate to themselves. To evaluate

an application (the standard name for t t), one evaluates both the term (t1) being

applied (the operator) and the argument of the application (t2) (the operand): the

operator must evaluate to a λ x. t-form (however it is immaterial what the operand

1More formally, the BNF rule describes the set of syntactically valid terms of the language.
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evaluates to); once both the operator and the operand are known, one substitutes

the operand for the formal parameter of the λ x. t-form ([v/x]) in the body of the

λ x. t-form, while being careful not to capture variables by accident (more details

on the rules of substitution are found below); finally, one evaluates the term that

results from the substitution: the value obtained from evaluation is the value of the

application. The fixx. t expression allows recursive functions to be written: the

intuition is that fixx. t gives a name to the function that is in the process of being

defined, so that the name can be used inside the body of the function to allow the

defintion to “refer to itself.”. More formally, after writing down fixx. t, whenever

x is applied to an argument, the rules of evaluation ensure that an entire new copy

of fixx. t will be substituted in place of x (to avoid infinite recursion, one needs to

ensure that applying fixx. t to an argument doesnt always result in an application

of x to some argument). The intuition for t ? tt : t f is that it works like the ternary

? : operator in C (and Java).

A combination of conditional and (recursive) function calls enables a wide

range of flow control constructs to be expressed in the language. A few illustrations

of programs written using in the toy language are forthcoming, but, to finish the

presentation of the language, capture-avoiding substitution needs to be described.

Capture-avoiding substitution

In an expression like λ x. x+y, the variable x is bound, while the variable y is free,

and analogously for the fixx. x+ y. The function FV t produces a set of variables

that are free in a term in the toy language. The formal definition of the FV t function

appears in Figure 2.5. A variable is bound if it is not free.

The intent of the capture-avoiding substitution is that bound variables should

stay bound following the substitution and free variables should stay free: this way,

the “meaning” of terms is preserved by substitution. To demonstrate an example

of a variable capture, if one were to perform textual substitution (λ x. y)[y := x] to

obtain λ x. x, a variable that started out free (namely, y) has been captured following

textual substitution.

I now give a few examples to illustrate how familiar functions can be expressed

9



t1→ t ′1
t1 t2→ t ′1 t2

t→ t ′

v t→ v t ′ (λ x. t) v→ t[v/x]

fixx. t→ t[(fixx. t)/x]

t→ t ′

t ? t1 : t2→ t ′ ? t1 : t2
n 6= 0

n ? t1 : t2→ t1 0 ? t1 : t2→ t2

t1→ t ′1
t1 + t2→ t ′1 + t2

t2→ t ′2
v+ t2→ v+ t ′2

n = n1 +n2
n1 +n2→ n

t1→ t ′1
t1− t2→ t ′1− t2

t2→ t ′2
v− t2→ v− t ′2

n = n1−n2
n1−n2→ n

t1→ t ′1
t1 ∗ t2→ t ′1 ∗ t2

t2→ t ′2
v∗ t2→ v∗ t ′2

n = n1 ∗n2
n1 ∗n2→ n

Figure 2.3: Semantics of a toy language for partial evaluation

in this “toy” language. The familiar factorial function is

fix f . (λ n. n ? n∗ f (n−1) : 1)

.

The function to calculate the nth Fibonacci number is

fix f . λ n. λ a. n ? λ b. (( f (n−1)) b) (a+b) : a

The evaluation of the expression

(fix f . (λ n. n ? n∗ f (n−1) : 1)) 3

10



FV n =∅
FV x = x

FV λ x. t = FV t \{x}
FV (t1 t2) = FV t1∪ FV t2
FV fixx. t = FV t \{x}

FV (t1 ? t2 : t3) = FV t1∪ FV t2∪ FV t3
FV (t1 + t2) = FV t1∪ FV t2
FV (t1 − t2) = FV t1∪ FV t2
FV (t1 ∗ t2) = FV t1∪ FV t2

Figure 2.4: The free variables function

[t/x]n = n

[t/x]y = y x 6= y

[t/x]x = t

[t/x]λ x. t = λ x. t

[t/x]λ y. t = λ x′. [t/x][x′/y]t where x 6= y and x′ /∈ FV λ y. t ∪ FV t ∪ x

[t/x](t1 t2) = [t/x]t1 [t/x]t2
[t/x]fixx. t = fixx. t

[t/x]fixy. t = fixx′. [t/x][x′/y]t where x 6= y and x′ /∈ FV fixy. t ∪ FV t ∪ x

[t/x](t1 ? t2 : t3) = [t/x]t1 ? [t/x]t2 : [t/x]t3
[t/x](t1 + t2) = [t/x]t1 + [t/x]t2
[t/x](t1 − t2) = [t/x]t1 − [t/x]t2
[t/x](t1 ∗ t2) = [t/x]t1 ∗ [t/x]t2

Figure 2.5: The capture-avoiding substitution function

11



(fix f . (λ n. n ? n∗ f (n−1) : 1)) 3 =

(λ n. n ? n∗ (fix f . (λ n. n ? n∗ f (n−1) : 1))(n−1) : 1) 3 =

3 ? 3∗fix f . (λ n. n ? n∗ f (n−1) : 1) (3−1) : 1 =

3∗ (fix f . (λ n. n ? n∗ f (n−1) : 1) 2) =

3∗ ((λ n. n ? n∗fix f . (λ n. n ? n∗ f (n−1) : 1) (n−1) : 1) 2) =

3∗ (2 ? 2∗fix f . (λ n. n ? n∗ f (n−1) : 1) (2−1) : 1) =

3∗2∗ (fix f . (λ n. n ? n∗ f (n−1) : 1) 1) =

3∗2∗ ((λ n. n ? n∗fix f . (λ n. n ? n∗ f (n−1) : 1) (n−1) : 1) 1) =

3∗2∗ (1 ? 1∗fix f . (λ n. n ? n∗ f (n−1) : 1) (1−1) : 1) =

3∗2∗1∗ (fix f . (λ n. n ? n∗ f (n−1) : 1) 0) =

3∗2∗1∗ ((λ n. n ? n∗fix f . (λ n. n ? n∗ f (n−1) : 1) (n−1) : 1) 0) =

3∗2∗1∗ (0 ? 0∗fix f . (λ n. n ? n∗ f (n−1) : 1) (n−1) : 1) =

3∗2∗1∗1 =

6

Figure 2.6: The evaluation of (fix f . (λ n. n ? n∗ f (n−1) : 1)) 3

proceeds as shown in Figure 2.6

I can now give an example of partial evaluation. If I wish to obtain a function

for calculating nth Fibonacci number with the value of n fixed ahead of time (e.g.,

n = 3), then the function can be obtained simply by rewriting the application

(fix f . λ n. λ a. n ? λ b. (( f (n−1)) b) (a+b) : a) 3

until all occurrences of the variable n are eliminated from the expression, as shown

in Figure 2.7 (to make the calculations less cluttered, I only substitute for f when

the next step of the calculation depends on its definition). A noticeable difference

between the partial evaluation of

(fix f . λ n. λ a. n ? λ b. (( f (n−1)) b) (a+b) : a) 3

12



(fix f . λ n. λ a. n ? λ b. (( f (n−1)) b) (a+b) : a) 3 =

(λ n. λ a. n ? λ b. (( f (n−1)) b) (a+b) : a) 3 =

λ a. λ b. (( f 3−1) b) (a+b) =

λ a. λ b. (((fix f . λ n. λ a. n ? λ b. (( f (n−1)) b) (a+b) : a) 2) b) (a+b) =

λ a. λ b. (((λ n. λ a. n ? λ b. (( f (n−1)) b) (a+b) : a) 2) b) (a+b) =

λ a. λ b. ((λ a. λ b. (((fix f . λ n. λ a. n ? λ b. (( f (n−1)) b) (a+b) : a) 1) b) (a+b)) b) (a+b) =

λ a. λ b. ((λ a. λ b. (((λ n. λ a. n ? λ b. (( f (n−1)) b) (a+b) : a) 1) b) (a+b)) b) (a+b) =

λ a. λ b. ((λ a. λ b. ((λ a. λ b. (( f 1−1) b) (a+b)) b) (a+b)) b) (a+b) =

λ a. λ b. ((λ a. λ b. ((λ a. λ b. (( f 0) b) (a+b)) b) (a+b)) b) (a+b) =

λ a. λ b. ((λ a. λ b. ((λ a. λ b. ((λ a. a) b) (a+b)) b) (a+b)) b) (a+b)

Figure 2.7: Partial evaluation of (fix f . λ n. λ a. n ? λ b. (( f (n− 1)) b) (a+
b) : a) 3

and the standard evaluation of

(fix f . (λ n. n ? n∗ f (n−1) : 1)) 3

is that, during the evaluation of

(fix f . (λ n. n ? n∗ f (n−1) : 1)) 3,

the work of calculation (reduction) always happened at the outer-most level of

the term (a pattern typical of tail-recursive functions, which are equivalent to while

loops). On the other hand, during the partial evaluation of

(fix f . λ n. λ a. n ? λ b. (( f (n−1)) b) (a+b) : a) 3,

the reduction happened inside the term, in a pattern typical of functions that are not

tail recursive – even though, as written, the function

fix f . λ n. λ a. n ? λ b. (( f (n−1)) b) (a+b) : a

is tail-recursive when fully applied.
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While the partial evaluation of

(fix f . λ n. λ a. n ? λ b. (( f (n−1)) b) (a+b) : a) 3

may demonstrate the process of partial evaluation, it leaves the question of how a

partial evaluator program might be implemented somewhat vague. To understand

multi-stage programming, a high-level understanding of how a partial evaluator

works is helpful, so I will sketch out the architecture of a partial evaluation system.

2.3 Partial evaluation systems
A typical partial evaluation system [18] can be thought of as occurring in two dis-

tinct phases: a binding time analysis phase which annotates the source code to

indicate where computation can be done using the statically known inputs, and the

specialization phase, which transforms the parts of the program annotated by the

binding time analyzer to produce a residual program. The residual program itself

can then be subjected to partial evaluation, producing in turn a new residual pro-

gram, which could then be partially evaluated. As a simple example of this process

of “chained” partial evaluations, the residual program obtained in Figure 2.7 could

be partially evaluated if the value of the starting term of the Fibonacci sequence

was supplied. I have found it easiest to understand multi-stage programming as

building on the notion of “chained” partial evaluation.

2.4 Multi-stage programming in MetaOCaml
The MetaOCaml multi-stage programming system does not include an automated

binding-time analysis phase: instead, it requires the programmer to perform binding-

time analysis manually, and to annotate the source code with staging annotations

(which are essentially binding-time annotations). Also, in addition to the usual

values (such as integers, strings, etc.), a MetaOCaml program may produce code

for a program that contains staging annotations (i.e., asking a MetaOCaml system

to evaluate suitably annotated

(fix f . λ n. λ a. n ? λ b. (( f (n−1)) b) (a+b) : a) 3

14



Table 2.1: Translation from λ -calculus to (Meta)OCaml syntax

λ -calculus syntax OCaml syntax

x x
n n 3

λ x. t fun x → t4

t1 t2 t1 t2
fix f . t let rec f = t 5

t1 ? t2 : t3 if t1 != 0 then t2 else t3
t1 + t2 t1 + t2
t1 − t2 t1 − t2
t1 ∗ t2 t1 ∗ t2

will produce a value that looks very much like the final line of Figure 2.7 – except,

of course, expressed in MetaOCaml, rather than λ -calculus syntax).

To illustrate, I will show below how to annotate the Fibonacci function from

above in MetaOCaml. A translation from the λ -calculus syntax which I have been

using so far to (Meta)OCaml syntax is given in Table 2.12.

So, the definition of

fix f . (λ n. n ? n∗ f (n−1) : 1)

becomes

let rec f = (fun n → if n != 0 then n∗ f (n−1) else 1),

and the definition of

fix f . λ n. λ a. n ? λ b. (( f (n−1)) b) (a+b) : a

2The translation given in the table is intended to produce OCaml code that is as close to the
corresponding λ -calculus syntax as possible (as opposed to producing idiomatic OCaml)

3Negative integers need to be written as ˜−1, ˜−2,etc. in OCaml syntax
4The arrow(→) is typed as a sequence of two characters: –>
5let rec f = t in needs to be used if let rec f = t appears within another term (as opposed to at

the outer level of a term), e.g., , let rec f = fun x → t . . ., but fun x → let rec f = fun y → . . . in . . .
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becomes

let rec f = fun n → fun a → if n != 0 then fun b → (( f (n−1)) b) (a+b) else a.

In MetaOCaml, three kinds of annotations are used to express the order of

staging (or, equivalently, the result of binding-time analysis). The code brackets

.<,>. mark a term as code (i.e, not evaluated); the unary operator .~ (escape)

is used inside a code block to request that an expression be evaluated, and a result

be spliced into a piece of code, and, finally .! (run) is used to run a piece of code.

As a practical matter, just code and escape are sufficient for the annotations

most programmers would want to write most of the time. A key property of the

design of MetaOCaml system is that it is always possible to erase all annotations

from a piece of MetaOCam code and end up with valid code in plain OCaml.

Taha [30] reports that, in his experience, annotating functions as code trans-

formers (i.e., functions take arguments, some of which may be pieces of code)

tends to produce fewer annotations than annotating functions as “pieces of code

that happen to contain functions”. With that in mind, I start the annotation of the

function to calculate the nth Fibonacci number. Here is the original function again:

let rec f = fun n → fun a → if n != 0 then fun b → (( f (n−1)) b) (a+b) else a

To make the definition of the function legal under the OCaml type system,

which requires that both branches of the if conditional produce result of the same

type, I rearrange the definition by “moving out” the fun b →

let rec f = fun n → fun a → fun b → if n != 0 then (( f (n−1)) b) (a+b) else a

Borrowing inspiration from Roberts [26] and Felleisen et al. [9], I can con-

trast the process of writing regular Fibonacci numbers function with the process

of adding staging annotations to the Fibonacci numbers function as follows: when

writing regular Fibonacci numbers function, the recursive leap of faith [26] is that

the recursive call to the function produces a previous Fibonacci number in the
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sequence; the job of the programmer is to use operations on numbers (addition,

subtraction, multiplication, etc.) to construct an expression for the next Fibonacci

number given the recursive leap of faith [9]. On the other hand, when adding multi-

stage annotations to the Fibonacci numbers function, the recursive leap of faith is

that the call to the function produces the code which calculates the previous Fi-

bonacci number. The job of the multi-stage programmer is to use operations on

code (i.e., quoting using meta-brackets and splicing using .~ to produce the code

which calculates the next Fibonacci number in the sequence, given the recursive

leap of faith.

Both the unannotated and the annotated version of the Fibonacci function take

three parameters, but the meanings of the parameters differ: while the unannotated

version takes a count of how many numbers lie between the parameter named a and

the desired Fibonacci number, the value of the second-most-recent Fibonacci num-

ber calculated so far, and the value of the most-recent Fibonacci number calculated

so far (in that order), in the annotated version, the meaning of the first parameter

is unchanged, but the second and third parameter are now pieces of code which

calculate the respective Fibonacci numbers. Also, the return values of the two ver-

sions of the function differ: the unannotated version of the function returns the

desired Fibonacci number; the annotated version returns the code which calculates

the desired Fibonacci number.

What annotations need to be added to the function? For the n = 0 branch of

the conditional, if the function is given a piece of code that calculates the desired

Fibonacci number, it simply returns that piece of code. On the other hand, in the

n 6= 0 case, a holds a piece of code which calculates i− 1st Fibonacci number,

while b holds a piece of code which calculates ith Fibonacci number. The function

needs to construct and pass to the recursive call a piece of code which calculates

the i+1st Fibonacci number. A template for the piece of code to be constructed can

be written down as .<...+ ...>.. The first idea might be to write down simply

.<a + b>.; however that expression is rejected by MetaOCaml. The reason the

expression is rejected is that it is nonsense[8]: plus(+) operates on numbers, not on

pieces of code. The MetaOCaml .~ operator takes a piece of code that calculates x,

and splices x into a fragment of code that surrounds the application of the operator.

The final annotated function then, is:
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l e t rec f = fun n −>

fun a −>

fun b −> i f n != 0 then ( ( f ( n−1) b ) . < ( .~ a+.~b ) > .

else a

The behavior of the annotated function, when fully applied (i.e., when n, a and b

have all been supplied) is indistinguishable from the original function. However,

the compiler has been directed how to produce a partial function when the function

is partially applied to just n (or just n and a).

2.5 OCaml compiler overview
The goal of this project was to re-implement MetaOCaml on top of a modern

OCaml compiler, targeting the native code generation interface of the OCaml com-

piler. Before describing the specifics of the implementation strategies chosen, I

describe the structure of the OCaml compiler to help the reader orient herself.

At a high level, the OCaml compiler is structured similarly to other modern

compilers, as shown in Figure 2.8: there is a compiler front end which produces

the intermediate representation of the program’s code and several back-ends which

work on the intermediate representation to generate code for various target instruc-

tion sets.

The front end that is part of the standard OCaml distribution is responsible

for performing lexical analysis and parsing of the OCaml source code as well

as for type checking the program, as illustrated in Figure 2.9. A key data struc-

ture is an abstract syntax tree (abstract syntax tree (AST)), as defined in the file

parsing/parsetree.mli6. The standard OCaml distribution also includes a

preprocessor which allows ASTs to be transformed before they are handed off to

the type checker.

The OCaml type checker works on ASTs, and produces ASTs that are anno-

tated with typing annotations. These typed ASTs are defined in the file typing/

typedtree.mli. The type checking is the final stage at which a program can

be rejected: once an OCaml program is accepted by the type checker, it will be

compiled, producing an executable for a target architecture. Further, the OCaml

6All paths in this chapter are rooted at the src directory of the standard OCaml distribution
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Figure 2.8: OCaml compiler overview.

type system guarantees that a program that is accepted by the type checker will be

free from certain kinds of errors at run time.7

Once the AST has been successfully type-checked, the subsequent stages of

compilation do not use typing information.8

A key data structure for the intermediate representation is defined in the file

bytecomp/lambda.mli. The location of the files lambda.mli and

translcore.mli in the source tree notwithstanding, both the byte code back

7In theory. In practice, the type checker is just a program which could – in theory – have bugs in
it. Outside of the somewhat esoteric possibility of bugs in the OCaml type checker, OCaml includes
a suite of unsafe operations in the module Obj – including an operation equivalent to the C++
reinterpret_cast (namely, Obj.magic): since (some) of those operations subvert the OCaml type system,
if a program uses one of those operations, then – generally speaking – all bets are off at run time.

8This “throwing away” of type information is characteristic of not only OCaml but most compilers
designed in the 90s [7]. Some of the compilers developed from 2000 onward retain type information
much later in the compilation process [32].
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Figure 2.9: OCaml compiler frontend detail.
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Figure 2.10: OCaml bytecode backend detail.

end and the native code back-end work on the data types defined in lambda.mli,

so, at this point in the development of the OCaml compiler it is quite reasonable to

think of Lambda as the intermediate representation in the OCaml compiler.

Type-annotated ASTs are translated to the Lambda intermediate representation

by the functions declared in the file bytecomp/translcore.mli

The byte code back end, defined in the file bytecomp/bytegen.mli, works

on the lambda representation to produce a stream of byte code instructions

(bytecomp/instruct.mli) for the OCaml byte code interpreter, as shown in
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Figure 2.11: OCaml native code backend detail.

Figure 2.10. Ultimately, a string of bytes may be emitted either to memory or to a

file on disk.

The native code back end has a few more moving parts than the byte code

back end, as shown in Figure 2.11. The intermediate representation is first closure-
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converted [3] and a bit of data flow analysis is done on it by the function intro

declared in the file asmcomp/closure.mli, producing a representation called

µlambda (asmcomp/clambda.mli). The µlambda representation is then con-

verted to the C-- language by asmcomp/cmmgen.mli (Incidentally, the C-- lan-

guage in the OCaml compiler is not related [24] to the C-- language of Simon

Peyton Jones [25]). Assembly code for a specific processor (e.g, i386, x86_64,

arm, etc.) is generated from the C-- representation via a series of standard code

generation operations, such as register allocation, pipeline scheduling, etc. The

generated assembly code is then handed off to the system’s assembler and linker

(the latter produce executables in the system’s preferred object file format).

2.5.1 OCaml values

The OCaml run-time system is garbage-collected, so, similarly to other garbage-

collected run-time systems [13] [12] OCaml makes a distinction between imme-

diate and pointer values. Broadly speaking, immediate values are values whose

run-time representation is small enough that it is practical to pass the value on the

C-like run-time stack. On the other hand, pointer values, point to (i.e., hold the

address of) a garbage-collected value on the heap. A language implementer makes

a choice about how small is “small enough” and what is “practical” to pass on the

run-time stack. Given a value, an implementation needs to be able to distinguish

at run time whether the value is immediate or a pointer. To this end, the common

implementation strategy is to tag values: the implementer decides that a few bits

of a value (usually starting with the least significant bit) are to be used to distin-

guish pointers from immediate values. The usual trick of the trade is to observe

that every microprocessor platform currently in common use, either requires that

pointer values be aligned (i.e., hold an address that is a multiple of a power of 2)

or strongly encourages aligned pointer access (by providing more efficient access

to aligned as opposed to unaligned pointers, the latter being pointer values that are

not a power of 2). That observation leads to an implementation decision to only use

aligned pointers into the implementation’s run-time heap. Since an aligned pointer

holds an address that is a power of 2, the low bits of such a pointer will always be 0

(exactly how many bits depends on the minimum alignment chosen). This means
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that, if a value does not have 0 in the low bit(s) it cannot be a pointer, and must

therefore be an immediate value.

The choices made by CamlLight (a byte-code-only precursor to OCaml) were

described by Leroy [22]. That description is still surprisingly accurate when it

comes to describing how values are laid out in the OCaml heap. The choices

OCaml makes are actually quite simple: the only immediate values are integers,

so only one tag bit is needed. Hence, pointers can (in principle) be aligned on

2-byte boundaries, and on a machine with 32-bit integers, immediate integers can

range from 231−1 to 231.

OCaml closures

The implementation of MetaOCaml code relies crucially on notions of a func-

tion’s environment and closure, so it is useful to describe those notions in some

detail. The material in this section forms the basis for the presentation of the im-

plementation in Section 3.2.

A function’s environment maps names of variables which are free 2.2.1 in the

function to the values associated with those variables. A closure [21] is a data

structure that combines the code of the function with the function’s environment.

A closure is a key mechanism for implementing lexical scope in presence of

first-class functions. A (type of) value in a programming language is said to be

first class if the language supports performing all of the following operations on an

object:

• Passing the value as an argument to functions

• Returning the value as a result of a function

• Storing the value in a data structure and assigning values to variables

To illustrate the need for a closure I invite the reader to consider the exam-

ple function that appears in Figure 2.129. The function make_adder returns a

function which adds n to its argument. Lexical scoping rules demand that the n

in the body of adder should refer to the value that was passed as an argument in

9The function is written in a fictional programming language
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function make_adder ( n ) :
function adder ( x ) :

return x+n
return adder

Figure 2.12: A function that returns a function

pointer to code of adder

(pointer to) the value
n had when make_adder
was called

Figure 2.13: The memory of the closure created for adder

the call to make_adder. Another way to say the same thing is that the environ-

ment associated with adder maps the name n with the value n had at the time

make_adder was called. In order to support lexical scoping rules, the compiler

needs to “remember” not just the code of the function adder, but also the value

that n had when make_adder was called. Because of this need to “remember”

not just the code of the function but also its environment, the compiler cannot rep-

resent the function adder with just a pointer to the function’s code: if it did, it

would lose information about adder’s environment. One possible solution to that

problem is to represent adder with an in-memory structure shown in Figure 2.13.

To arrive at that structure, the compiler might go through the following steps:

1. Make a list of all the variables that are free in the function adder. In this

example, the only free variable is n.

2. Calculate how much space is needed in order to store information about

the adder function. In the current example, the compiler is only storing

a pointer to the code of the function, but more information could be kept10.

3. For each free variable, calculate the offset at which the value the variable

refers to will be stored with respect to the beginning of the in-memory struc-

10For example, the OCaml compiler stores (at least) the number of parameters a function takes in
addition to a pointer to the function
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ture that is being created. In this example, there is only one variable named

n, so the compiler would “remember” that “variable n can be found at (zero-

based) offset 1 in the memory block”. In general, more than one variable

may be free, and a table mapping names to offsets may need to be built at

compile time.

4. Add a parameter which holds a pointer to the function’s environment to the

list of parameters for the function, and replace references to names in the

body of the function with offsets from the environment parameter, according

to the table created in the previous step. In the current example, the compiler

would arrange for adder to take an extra parameter that holds a pointer to

its environment, and, in the body of adder, the name n would get replaced

with an offset (in this case, 1) from the environment pointer.

Having completed these steps, the compiler can pass around a pointer to the in-

memory structure in Figure 2.13 in lieu of a code to just the code of adder. The

process of creating this in-memory structure is known as closure conversion [3].

To compile a call to adder under the assumption that the compiler “has in its

hands” a pointer to the structure shown in Figure 2.13 (which I will refer to simply

as closure), the compiler proceeds as follows:

1. Retrieves a pointer to the function from the pointer to the closure. In the

current example, the pointer to the function is simply the pointer stored at

offset zero with respect to the the pointer to the closure.

2. Arranges for the arguments that appear as part of the call to be passed to

the function (for example, the arguments may be pushed onto the stack). In

addition to passing each of the arguments to the call, pass in a pointer to the

closure as the value of the environment parameter.

3. Generate a jump to the function’s code.

The OCmal compiler uses flat closures [5]. The basic idea is that a closure

block is allocated that holds function information for the entire set of mutually-

recursive functions, as shown in the example that follows.
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Figure 2.14: The memory layout of a standard OCaml closure
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The closure shown in Figure 2.14 represents a closure the OCaml compiler

would create if it encountered a definition of three mutually-recursive functions

named f, f’, and f”; the function f takes a single argument (its arity is 1); the

function f’ takes two arguments (its arity is 2); the function f” takes 3 arguments.

The closure starts with a closure header11. The header is followed by one or more

function blocks (in this case, there are three function blocks: one each for the

functions f, f’, and f”. The second field of each function’s block is always the

arity of the function for which the closure block is being allocated. The contents of

the first field depends on the function’s arity: for functions of arity 1, the first field

holds the pointer to the function’s code; for functions of arity greater than 1, the first

field holds the pointer to a currying [27]12 wrapper for the original function, and

the third field contains the pointer to code for the function. Second and subsequent

function blocks are preceeded by an infix closure header (all values in the OCaml

heap are preceeded by a header; closures that appear within a flat-closure block are

values, so they need to be preceeded by a header). The variables for the entire set

of mutually-recursive functions are laid out in a single contiguous memory block.

When compiling the definitions of the functions used in this example, the steps the

OCaml compiler takes to create the closure structure can be described as follows:

1. Make a list of all the mutually-recursive functions that appear in a single

mutually-recursive function definition (in this case, the list contains three

functions: f, f’, and f”).

2. Make a list of the names of all variables that are free in all the mutually-

recursive functions (in this case, there are N variable names)13

11Every value in the OCaml run-time heap has a value header, which indicates at run-time what
kind of value is stored in the block. The header is also used by the garbage collector to keep track of
which values are in use

12Currying is the process by which a function of multiple arguments is converted to a function
that consumes the first argument and produces a function that consumes the rest of the arguments in
the arguments list. The function that consumes the rest of the arguments in the list may in turn be
curried.

13Name clashes do not occur because the compiler generates unique name for each variable; i.e.,
even if f and f’ take an argument named a, the compiler renames the variable uniquely. To give
unique name to each variable, the compiler keeps a counter which it increments each time a new
variable name is encountered. The internal name of a variable is then formed by concatenating the
variable the programmer wrote with the value of the counter.
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3. Go through the list of mutually-recursive functions and calculate the size of

the memory block needed to hold the function blocks.

4. Go through the list of names of free variables, and calculate the offset of each

variable with respect to the start of the closure block. The offset of the first

variable is simply the size of the memory area needed to hold the function

blocks (calculated in the previous step). Subsequent variables are just laid

out sequentially in the order in which they appear in the list of names of

all free variables. The result of this step is a compile-time table mapping

names of variables that are free in the body of the function(s) to offsets in

the closure heap block. I will refer to this table as a (compile-time) lexical

environment.

5. For each of the mutually-recursive function whose code references either a

free variable or another mutually recursive function:

• Introduce a parameter to hold the environment pointer; at function ap-

plication time, the value of the environment pointer is simply the ad-

dress of the start of the respective function block

• For each of the free variables referenced, replace the variable name

with an offset from the environment pointer to the location of the vari-

able in the variables block14.

• For each of the mutually recursive functions referenced, replace the

name of the function with an offset from the environment pointer to

the location of the function in the closure block15.

2.5.2 The OCaml toplevel

In addition to the OCaml compiler, the OCaml distribution includes an interac-

tive toplevel, which operates similarly to the read-evaluate-print loop in Lisp sys-

tems[23]. For the purposes of implementing a multi-stage programming system,

14Because of the way OCaml compiler lays out the closure block, that offset is always a positive
integer

15That offset may be either positive or negative, for example, the offset from the start of f’’s
environment would be positive if f” is being accessed but negative if f is being accessed
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Figure 2.15: The OCaml toplevel

the toplevel is of interest because it is an interactive program that, during its execu-

tion, invokes the OCaml compiler to obtain OCaml values. This ability to call the

compiler at run-time is crucial to being able to implement a multi-stage program-

ming system, as will be seen in Section 3.1. In this section, I describe the operation

and implementation of the toplevel, as it relates to my MetaOCaml implementation.

When the toplevel is started, it presents the user with a prompt at which OCaml

expressions may be entered. An expression entered by the user is terminated by en-

tering a double semicolon ;;. The expression is then compiled and type-checked

almost as it would be compiled with the regular compiler.16 Then the expression is

16There is a small number of special hooks in the compiler that are used specifically to support
evaluating expressions at the top level.
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executed to obtain a result which can be either an exception or a regular value; the

result along with the result’s type are then printed to the user, and the cycle repeats.

As discussed in Section 2.5, the OCaml compiler does not pass on typing in-

formation to any compilation stages that follow the conversion to the lambda inter-

mediate representation. Yet, as mentioned above, the toplevel prints out to the user

both the value to which the expression she entered evaluates to and the type of the

value. Clearly, the toplevel cannot obtain the type of the value directly from the

compiler backend, so where does the type information come from?

The answer is that the toplevel evaluates the expression the user has entered

in two distinct phases, as shown in Figure 2.15: first, it calls the type checker

on the parsed expression and saves the type obtained from the type checker; then

it translates the expression to the intermediate representation, and compiles and

evaluates that intermediate representation to obtain a value. In the toplevel code,

the function that compiles and evaluates the lambda intermediate representation is

called load_lambda. As discussed in Section 2.5.3, the implementation of MetaOCaml

presented in this work uses the lambda intermediate representation to represent the

code objects. Hence, as described in more detail in Chapter 3, the MetaOCaml

implementation presented here uses load_lambda as a run-time interface to the OCaml

compiler.

2.5.3 Representing code

As was seen in Section 2.4, the central object of interest for multi-stage program-

ming is code. An implementer of metaprogramming system on top of OCaml

is faced with the question of which of the OCaml program representations should

code correspond to. Choosing ASTs as the internal representation of code is an

attractive option for several reasons:

1. Since AST is essentially a parse tree it is easy to “reconstitute” the code for

display to the programmer. Since the ability to interactively explore staging

annotations was one of the goals of the MetaML (and MetaOCaml) systems,

the ability to display code to the programmer is important.

2. It may be possible to take advantage of the OCaml preprocessor to do some

of code generation.
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3. The type checking performed by the OCaml compiler on the ASTs may help

catch errors in code generation.

On the other hand, using ASTs as the representation for code commits one to

running the type checker whenever code is run – even though type systems which

would reject potentially unsafe code exist [19].

Avoiding redundant type-checking was one of the goalds of this project, so I

chose to use the Lambda intermediate representation, rather than ASTs as the repre-

sentation for code. Since Lambda intermediate representation is a representation to

which fully type-checked code has been translated, this approach to implementa-

tion holds the promise of reducing the amount of type checking, but leaves open

the issue of how to present generated code to the programmer: while the Lambda

language is quite rich, it may not be possible to unambiguously reverse-translate it

into an AST.

Since all of my work was done between the intermediate representation Lambda

and Cmm levels, these levels are the focus of discussion in the Chapter 3.
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Chapter 3

Implementation

In this chapter, I describe my re-implementation of the MetaOCaml system. I take

a chronological approach to describing the implementation, as I believe this style

of presentation makes it easier to understand the design decisions and refinements

that were made as the implementation progressed. Since the main object of interest

is the native code compiler, the discussion focuses on it.

3.1 Run for closed terms
As a first subgoal of the project, I extended the OCaml compiler to support the

code and run operations, with the limitation that code terms supported needed to

be closed (i.e., could not contain free variables).

The compiler operation was extended as follows:

1. Support for parsing the code brackets (. <, > .) and the run operator (.!) was

added) to the parser (parsing/parser.mly.

2. A new built-in type code was added (in typing/predef.mli).

3. The lambda intermediate representation was extended to include a type Lcode.

Parsing an OCaml expression surrounded by the code brackets (. <, > .)

produces the Lcode intermediate representation.

4. In the compiler backend, the lambda intermediate representation of the ex-

pression that appeared between the code brackets code brackets (. <, > .) is
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Lambda IR

Marshal.to_string

Ocaml
runtime
heap

...

...

serialized Lambda IR

Figure 3.1: The implementation of code for closed terms

simply serialized (using the standard Marshal module), allocating a block of

type string in the OCaml heap, as shown in Figure 3.11.

5. When run is applied to a value serialized by .<,>., the deserialized value

becomes the body of a function that takes no arguments2 in the Lambda in-

termediate representation. Conceptually, the run needs to call the load_lambda

function in the toplevel (the OCaml toplevel is introduced in Section 2.5.2)

passing it the zero-argument function to obtain a value. To allow run to ac-

tually call the load_lambda function, I added a C-level primitive to the OCaml

run-time which calls a custom wrapper around the load_lambda function in the

OCaml toplevel. The custom wrapper deserializes the serialized Lambda term,

and passes the term to load_lambda. Figure 3.2 summarizes the operation of

run.
1Serializing the code was an early design decision, intended to ensure that the entire structure of

the Lambda terms is preserved
2Technically, OCaml does not support functions that take no arguments functions: a zero-

argument function is represented in OCaml as a single-argument function whose argument is of
special type unit . The unit type can be thought of as being similar to Java null
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Ocaml
runtime
heap

...

...

serialized Lambda IR

implementation of ’run’
(bytecomp/translcore.mli)

result
(value or exception)

Compiler backend

C-level primitive

Custom wrapper
for load_lambda

OCaml toplevel

Lambda IR

Figure 3.2: The implementation of run for closed terms

35



3.2 Cross-stage persistence
After settling on an implementation for run, the next item to tackle was cross-stage

persistence. The need for cross-stage persistence can be illustrated with the simple

function let make_code a = .<a>.. When the function is called, the desired behavior

is that the piece of code returned from the function “remembers” the value of a

that was in effect when make_code was called. From the standpoint of the user, the

behavior is very similar to the behavior of make_adder in Section 2.5.1: when the

function returned by make_adder is called, the function being called “remembers” the

value of n that was passed to make_adder. Similarly, when .! is applied to the piece

of code returned my make_code, the piece of code to which .! is being applied must

“remember” the value of a that was in effect at the time make_code was called.

To support cross-stage persistence, it must be possible for run to execute a piece

of code in a way that closely simulates how the code would have been executed if

it had not been surrounded by the code brackets (. <,> .). Specificially, the code

fragment inside the code brackets must have access to all the variables that are lex-

ically visible at the point at which the code fragment occurs. In order to execute

the code fragment in the same lexical environment in which the code fragment oc-

curred, run needs to have access to a an environment that maps free variables in the

code fragment to the values those variables were referring to when the expression

that created the code fragment was encountered. One way to satisfy this require-

ment is to arrange things so that run has access to a closure created at the time the

corresponding code construct is encountered. This is exactly the approach taken

by the implementation presented here. Additionally, in order for run to be able to

compile the code fragment, run needs to have access to a lexical environment that

maps variable names to offsets in the closure block.

The responsibility for acquiring these two pieces of information is split be-

tween the implementation of code and implementation of run. As shown in Fig-

ure 3.3, the implementation of code is modified to preserve, in addition to the

code fragment itself, the lexical environment in which the code fragment should be

compiled.

The code construct allocates a structure which I will refer to as MetaOCaml
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closure conversion
(asmcomp/closure.mli)

lexical environment

Lambda IR

implementation of ’code’
(bytecomp/translcore.mli)

Lambda IR

C– translator
(asmcomp/cmmgen.mli)

Ocaml
runtime
heap

...

...

MetaOCaml closure

Figure 3.3: The implementation of code for cross-stage persistence

closure. A MetaOCaml closure is an extension of a regular OCaml closure3. The

MetaOCaml closure, shown in Figure 3.4, adds two fields to the standard OCaml

closure4:

1. The piece of code which contains the free variables whose values appear in

the closure (as a Lambda intermediate representation).

2. The lexical environment that maps names of free variables to offsets in the

3Figure 2.14 shows the memory layout of a standard OCaml closure
4Conceptually, MetaOCaml closure adds two fields. In practice, the fields are stored as a serial-

ized representation of a standard OCaml record, so the actual number of fields added is 1.
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Closure Header

f_label
(not used)

int_arity
(not used)

closure_variable1

closure_variable2

...

closure_variableN

code fragment
(Lambda IR)

offset for
closure_variable1

offset for
closure_variable2

...

Lexical environment

offset for
closure_variableN

Standard
OCaml
Closure

MetaOCaml
extensions

Figure 3.4: The MetaOCaml closure

closure.

As shown in Figure 3.5, run passes a pointer to a MetaOCaml closure to a

C-level primitive, which, in turn, calls back into a custom wrapper around the

load_lambda function in the OCaml toplevel. The custom wrapper uses the

Lambda intermediate representation of the code fragment and the lexical envi-

ronment it has retrieved from the MetaOCaml closure along with the pointer to

38



implementation of ’run’
(bytecomp/translcore.mli)

C-level primitive

Custom wrapper
for load_lambda

Lambda IR

Ocaml
runtime
heap

...

...

MetaOCaml closure

lexical
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closure

OCaml toplevel

result
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Compiler backend

pointer to
closure

custom Lambda IR variant

Figure 3.5: The implementation of run for cross-stage persistence
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MetaOCaml closure to construct a custom variant record in the Lambda interme-

diate representation, which it passes to the load_lambda function in the OCaml

toplevel. I extended the compiler backend to recognize the custom variant. The

steps the compiler back-end takes to process the custom variant can be described

as:

1. Perform closure conversion on the code fragment using the lexical environ-

ment it has received as part of the variant record. The result of the compila-

tion is code for a function. The function takes zero parameters; it also takes

a pointer to the environment in which it expects to be run.

2. Call the function obtained in the previous step passing to it the pointer to the

closure contained in the variant record (and ultimately obtained from the C

primitive) as the value of the environment parameter to obtain a result (i.e.,

a value or an exception).

3.3 Splicing
Splicing is the MetaOCaml mechanism by which pieces of code can be combined

to produce other (larger) pieces of code. The basic idea is that the programmer

constructs a template for the code she wants to have generated. The template (con-

ceptually) has a few placeholders. The programmer then uses splicing to indicate

what pieces of code to “plug into” the locations of the placeholders. The pieces

of code being “plugged in” may have been passed as function’s arguments or they

may have been constructed by preceding code. It may help to think of MetaO-

Caml as embedding a language for manipulating pieces of code into OCaml. In

the tradition of SICP [1], to understand the language one needs to understand what

primitives it provides and what means for creating and constructing those prim-

itives are available. The only primitive the language provides is code (a code

fragment). The means for combining those primitives are quoting (putting the

meta-brackets(. <,> .) around a literal code fragment) and splicing (plugging in

a piece of code into a code fragment).5 In Chapter 1, the splicing operator was
5I am treating run as somewhat tangential to the issue of constructing and manipulating pieces of

code: run evaluates a piece of code to produce a value, but the resulting value may or may not be a
piece of code.
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used to combine the pieces of code that calculate the n−1st and n−2nd Fibonacci

numbers. It is important to note that not every fragment of code preceded with

the escape operator (.~) needs to be evaluated: Taha [30] introduces the notion

of a level of a (syntactic) term, which is simply the number of meta-brackets the

term is surrounded by minus the number of escape operators that precede the term.

The rules of evaluation for MetaOCaml state that only escapes at level 0 need to

be evaluated. To motivate this rule, it may help to think of evaluation as proceed-

ing in phases, with subsequent phases being (potentially) separated in time. Only

the splices that appear at level 0 are relevant for the evaluation during the current

phase: the splices that appear at levels numbered higher than 0 are relevant for

evaluation during later phases, which may potentially occur at later time.6.

To summarize, the splicing operator may only occur inside the code brackets

(.<,>.). The operator causes the expression that follows it to be evaluated. The

result of the evaluation must be a piece of code7. That piece of code is “plugged

in” at the location at which the splicing operator appears. The processing of splices

only takes place for splices that appear at level 0: the splices that appear at levels

higher than 0 will be evaluated during a later phase of evaluation.

The processing of a fragment of code with splices may be visualized as shown

in Figure 3.6. The end goal of the processing is to produce a regular MetaOCaml

closure, which can be processed in all the ways code can be processed. The pro-

cessing proceeds as follows:

1. A code fragment is examined, and a list of splices it contains is created.

References to splices inside the fragment of code are replaced with numbers

representing position of respective splice in the list of splices.

2. The code for each splice is translated to the µLambda representation in the

usual fashion. The code for the main body of the code is not translated

at this time (though its lexical environment is preserved, to be used in the

MetaOCaml closure allocated in the next step).

6The MetaOCaml type system prohibits splices at levels lower than 0
7The MetaOCaml type system ensures that the expression being spliced in is indeed a piece of

code.
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.<... .˜a ... .˜z ...>.

scan for level-0 splices
(asmcomp/closure.ml)

.<... .#1 ... .#26 ...>.
(Lambda IR)

list of splices: (a,...,z)
(Lambda IR)

closure conversion of spliced-in fragments
(asmcomp/closure.ml)

compilation of spliced-in fragments
(asmcomp/cmmgen.ml)

.<... .#1 ... .#26 ...>.
(Lambda IR)

list of splices: (a,...,z)
(uLambda IR)

OCaml Heap

MetaOCaml
closure for
.<...#1...#26 ...>.

value of splice 1

...

value of splice N

count of splices

rebuild primitive

Figure 3.6: The implementation of code for splicing

42



3. A MetaOCaml closure is allocated for the main body of the code. The clo-

sure’s size is declared to be large enough to hold the MetaOCaml closure

proper, the values of splices, and a count of the number of splices.

4. The rebuild primitive is called on the extended MetaOCaml closure allocated

in the previous step.

The data flow of the rebuild primitive is identical to the operation of the run

primitive describe in Section 3.2: it constructs a custom variant of the Lambda in-

termediate representation and passes that variant to load_lambda8, so I do not

duplicate that part of the description here, and instead focus on how the custom

variant of the Lambda intermediate representation constructed by the rebuild prim-

itive is processed in the compiler backend. An important point to keep in mind is

that the value of each splice is a MetaOCaml closure, which means that it contains

the Lambda intermediate representation of a fragment of code, the vector of values

of variables that are free in that code fragment, and a lexical environment mapping

names of free variables to offsets in the values array.

The rebuild primitive operates on the extended MetaOCaml closure shown

in Figure 3.6; it produces a regular MetaOCaml closure9 as follows:

1. The lexical environment of the rebuilt MetaOCaml closure is the lexical envi-

ronment of the MetaOCaml closure corresponding to the main code fragment

augmented with names of variables that appear in the lexical environment of

some splice but not in the lexical environment of the main code fragment.

2. The values vector of the rebuilt MetaOCaml closure is the values vector of

the MetaOCaml closure corresponding to the main code fragment augmented

with values corresponding to variable names that were added to the lexical

environment of the MetaOCaml closure in the previous step.

3. The Lambda intermediate representation of the rebuilt closure is obtained by

replacing the ith splice marker in the Lambda intermediate representation of

8It would have been possible to have a single primitive that dispatches on the type of value passed
to it; having two primitives is a bit overkill, but it does offer a very straightforward implementation.

9Figure 3.4 illustrates a regular MetOCaml closure
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l e t puzzle = . ! ( . < fun a −>
. ~ ( ( fun x −> . <x > . ) ( ( fun x −> . <a > . ) 0 ) > . ) 5

Figure 3.7: Example that illustrates the scope extrusion problem, by Taha

the main fragment with the Lambda intermediate representation found in ith

splice10

As a result of this processing, a regular MetaOCaml closure is produced. This

closure can then be processed in all the usual ways code can be processed, giving

the user of the system multi-staging abilities.

3.3.1 Dealing with scope extrusion

The scope extrusion problem as it applies to MetaOCaml was described by Taha [30].

Briefly, the scope extrusion problem is the fact that a naive implementation of splic-

ing may allow variables that should be bound (by an abstraction or let-form) to

escape the scope of their corresponding binder. Taha’s original example illustrat-

ing the scope extrusion problem appears in Figure 3.7. As first described in [30],

a naive implementation of MetaOCaml will return something like .<a123>. when

presented with this example. The peculiar value .<a123>. is the (uniquely-renamed)

variable a which is bound by the fun a −>, but is free in the code fragment that fol-

lows the .~. The difficulty arises because, as mentioned in Section 3.3, the MetaML

mental model of the order of evaluation demands that the spliced-in value be eval-

uated before the code fragment into which they are being spliced. The variable a

is free in the code fragment, so the expression (fun x −> .<a>.) 0 yields the variable

.<a123>.; when the closure environment is built for the function (fun x −> .<x>.), the

variable x is bound to the code fragment that contains .<a123>., and when the value

bound to the variable a is finally known, a naive implementation does not “realize”

that it needs to traverse the structure of the closure created for the function fun a −>

to find and replace the now-unbound value of a.

My solution to the scope extrusion problem is based on the observation that, at

any point in the code fragment, it is known which variables are bound (static scope
10The bound variables of each splice are renamed before substitution is performed to avoid acci-

dental variable capture.
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discipline ensures that that is the case). In other words, the compiler can find out

which variables should be bound simply by recursively descending the code term

while keeping track of the binders encountered so far and the variables they bind.

To handle the scope extrusion problem in my code, I extended the Ulambda language

by introducing a Ucover term (the inspiration for my implementation of Ucover as well

as the term cover come from Taha [30]).

The high-level intuition for my implementation of the concept of covers, pio-

neered by Taha [30]) is that I want a construct that obeys the rules of regular lexical

scoping (so that it can have access to all the variables that are lexically visible at

the point at which it occurs), but which delays actually acting on the pieces of code

it covers until the values of the variables that are appear to be free in the body of

the code being spliced in are known.

The operation of the Ucover term can be described as follows:

1. When a piece of code is compiled, the Lambda-tree is traversed, looking for

variables bound by functions. Each point in the code where an expression

is spliced in is annotated with the list of (names of) variables that have been

bound by the function definitions encountered so far. I view the information

about "what variables are bound" as a property of the context into which an

expression is being spliced rather than as an intrinsic property of the spliced-

in expression itself.

2. When the expression being spliced is closure-converted, the lexical environ-

ment in which closure-conversion happens is "poisoned" by binding each of

the variables that appear as an argument to any function (from the previous

item) to a special tag (Ufreevar variable_name_here).

3. The closure-converted code is then examined to see which Ufreevars (if any)

have been "closed over". For any Ufreevar’s that have been captured, offsets

from the beginning of the closure block are collected. (This trick is borrowed

from stock OCaml close_functions code, which is what processes a "let rec"

definition: that function does something very similar to what I described

above to decide whether it actually needs to pass to a function the address of

its corresponding closure block).
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4. The list of Ufreevars is used to construct a Lcover that "wraps around" the

splicing-in point. The Lcover expression is part of the "main" body of the

code (as opposed to being part of the code of the expression being spliced

in), so all variables that have been bound by functions are lexically visible to

Lcover. Lcover eventually compiles to code that puts values corresponding

to variables at their intended offsets in the closure’s variable block (Ufreevar

compiles to code that just allocates a dummy cell in the closure’s variable

block).
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Chapter 4

Evaluation

In this chapter, I present the results of evaluating the performance of my MetaO-

Caml implementation and other MetaOCaml implementations on a few bench-

marks. As mentioned in 2.4, a property of the MetaOCaml design is that it is

always possible to erase all annotations from a piece of MetaOCaml code to end

up with valid plain OCaml code. The role of the annotations is to allow the pro-

grammer to influence the order of evaluation. The stated motivation for design of

MetaML [31] (and MetaOCaml) was that, by allowing programmers to control the

order of evaluation, programmers will be able to influence the performance of the

programs they write. In view of that design goal of annotations as a tool for im-

proving performance of programs, I consider the ratio of running time for staged

function (under MetaOCaml) to the running time of unstaged function (under the

matching version of plain OCaml compiler) to be of primary interest, and raw run-

ning time statistics to be of secondary interest.

4.1 Methodology
The measurements for the 4.02.1 series of compilers were collected using the

Core_bench library from Jane Street [17]. Suppose I have a procedure (i.e., a func-

tion that takes no arguments and does not return any interesting results to its caller)

named p. The Core_bench library attempts to find and report the average running

time tavg of the procedure p which allows the total running time ttotal for k runs of
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open Core . Std
open Core_bench . Std

l e t p1 ( ) = . . .
l e t p2 ( ) = . . .

l e t main ( ) =
Command. run ( Bench . make_command [

Bench . Test . c reate ~name : " p1 " p1 ;
Bench . Test . c reate ~name : " p2 " p2 ;

] )

l e t ( ) = main ( )

Figure 4.1: The OCaml code to benchmark (hypothetical) procedures named
p1 and p2 using Core_bench.

p to be calculated simply as ttotal = ktavg. It finds tavg by sampling ttotal for various

values of k, and then fitting a straight line through the data points obtained during

sampling. Figure 4.1 shows the OCaml code to benchmark two OCaml procedures

named p1 and p2 using Core_bench.

Unfortunately, Core_bench is not available under the original MetaOcaml [4]

(because the version of OCaml on which that implementation of MetaOCaml is

based is too old), so I used a simple piece of code to run the function for a specific

number of iterations and report the average running time. The code appears in

Figure 4.2. The number of times to run each individual function was determined in

an ad-hoc manner, by trying a few different values until the reported average time

appeared to be stable; I report the number of iterations used for each function.

All measurements were performed on a virtual machine running Debian stable

(jesse) release 8.2 with 64-bit Linux kernel version 3.16.0. The virtual machine

was run under VirtualBox version 5.0.6; the virtual machine had a single CPU

allocated to it; the host CPU was i5-2520M with the (nominal) clock frequency of

2.5 GHz.

Table 4.1 describes the microbenchmarks used to measure the performance of

the OCaml systems under evaluation.

The power and fib are the traditional favorites of the partial evaluation and multi-

stage programming communities, while the peval1 and peval2 were used by Taha [28]

as case studies to motivate the usefulness of multi-stage programming techniques.
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l e t i t e r s = re f 1234

l e t rec loop i f =
i f i <= 0 then ( )
else begin f ( ) ; loop ( i −1) f end

l e t simple_bench f =
l e t t0 = Sys . t ime ( ) in
loop ! i t e r s f ;
l e t t1 = Sys . t ime ( ) in
p r i n t _ f l o a t ( ( t1 −. t0 ) / . ( f l o a t _ o f _ i n t ! i t e r s ) ) ; p r i n t _new l i ne ( )

l e t main f =
i f Array . leng th Sys . argv > 1
then i t e r s := i n t _ o f _ s t r i n g ( Sys . argv . ( 1 ) ) ;
simple_bench f

l e t ( ) = main ( fun ( ) −> . . . )

Figure 4.2: The OCaml code to collect timing data from Taha et. al MetaO-
Caml.

Benchmark Description

fib The function to calculate Fibonacci numbers.
power The function to raise a number to an (integer) power.
cfib The staged version of the function

to calculate Fibonacci numbers.
cpower The staged version of the function

to raise a number to an integer power.
peval1 An interpreter for a simple language

with the four arithmetic operations and first-order functions.
peval2 A staged version of the interpreter for a simple language

with the four arithmetic operations and first-order functions.

Table 4.1: Description of the benchmarks used in evaluating the performance
of the MetaOCaml implementations.
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The code for the power, fib , cpower and cfib appears in Figure 4.3. The code for

peval1 and peval2 appears in [28]1.

4.2 Performance results
Table 4.2 shows the ratios of running times of staged code in MetaOCaml im-

plementations being benchmarked to the respective running times of plain OCaml

code under the same major and minor version of the compiler and the same backend

as the staged code. My MetaOCaml implementation is currently based on OCaml

4.02.1 and comes with a native code backend, so I report the numbers normalized

to native code produced by the standard OCaml compiler version 4.02.1; on the

other hand BER MetaOCaml comes with a byte code backend (and is also based

on OCaml 4.02.1), so I report numbers for BER normalized to byte code produced

by the standard OCaml compiler version 4.02.1; finally the original MetaOCaml

implementation is based on OCaml version 3.0.9, and comes with both a native

code and a byte code backend – however, I am primarily interested in the native

code backend, so I only report numbers for the original MetaOCaml normalized to

the native code produced by the standard OCaml compiler version 3.0.9.

Tables 4.4, 4.5, 4.8, 4.6, 4.7, and 4.9 present the “raw” running times for BER

MetaOCaml, my implementation of MetaOCaml, the original MetaOCaml, plain

OCaml 4.02.1 (the byte code backend), plain OCaml 4.02.1 (the native code back-

end), and OCaml 3.09 (the native code backend) respectively. As mentioned in

Section 4.1, the numbers for implementations based on OCaml version 4.02.1 were

collected using Core_bench, while the numbers for the implementations based on

OCaml 3.0.9 were collected using a simple piece of code which only measures the

running times. Unfortunately, no numbers could be obtained for peval2 under the

original MetaOCaml implementation, since the compiled program crashed with the

message, “Fatal error: exception Ctype.Unify(_, _).”2 (the program does run under

the bytecode toplevel in the original MetaOCaml).

I speculate that the reason staged functions run significantly slower than un-

1For consistency, I prefix names of all staged functions with “c”(for “code”), so peval2 appears
as cpeval2

2Regrettably, I am not familiar enough with the original MetaOCaml implementation to be able
to effectives debug the cause of the crash.
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Benchmark BER MetaOCaml My MetaOCaml Original MetaOCaml

cpower 2850 180∗103 6530
cfib 45000 22∗106 780∗103

Table 4.2: Ratio of running time of (annotated) benchmarks to the running
time of unannotated program in the corresponding OCaml compiler.

l e t rec power x n = i f n = 0 then 1 else x * power x ( n−1)

l e t rec f i b a b n = i f n = 0 then a else f i b b ( a + b ) ( n−1)

l e t rec s f i b a b n = i f n = 0 then a else s f i b b ( . < ( . ~ a ) + ( . ~ b ) > . ) ( n−1)

l e t c f i b = s f i b ( . <2 > . ) ( . <3 > . ) 17

l e t rec spower x n = i f n = 0 then . <1 >. else . < ( .~ x ) * ( . ~ ( spower x ( n−1))) >.

l e t cpower = spower ( . <2 > . ) 17

Figure 4.3: The code for power, fib and their staged counterparts, cpower and
cfib

staged versions of the same function is that staged functions allocate significantly

more heap memory than their non-staged counterparts. The memory allocation

numbers, as reported by Core_bench are shown in Table 4.3. As can be seen, both

BER MetaOCaml and my implementation of MetaOCaml allocate significantly

more memory than regular OCaml when running these benchmarks.

I speculate that the reason my implementation allocates significantly more heap

storage than the BER MetaOCaml is the serialization and deserialization of the

Lambda intermediate language. Getting rid of the serialization and deserialization

is one obvious avenue for future work. At a higher level, my measurements suggest

that reducing the number of allocations in the run-time heap during a program’s run

time is likely to yield higher performance gains than reducing the number of CPU

instructions the program executes while it runs.
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Benchmark BER MetaOCaml My MetaOCaml Stock OCaml

cpower 18∗103 2.5∗106 0
cfib 2600∗103 17.9∗106 0

Table 4.3: Memory allocation for benchmarks (in words allocated in the mi-
nor heap).

Name Time minor heap major heap minor→ major promotions

cpower 1,600µs 18∗103 words 2∗103 words 3∗103 words
cfib 230,000µs 2,700∗103 words 400∗103kw 400∗103 words

cpeval2 600µs 7∗103 words 1∗103 words 1∗103 words

Table 4.4: Raw data for BER MetaOCaml, as reported by Core_bench. All
numbers are average values per run.

Name Time minor heap major heap minor→ major promotions

cpower 110,000 µs 2.5∗106 words 5∗103 words 3.7∗103 word
cfib 790,000 µs 18∗106 words 840∗103 words 770∗103 words

Table 4.5: Raw data for my MetaOCaml implementation, as reported by
Core_bench. All numbers are average values per run.

Name Time minor heap

power 575.46ns
fib 510.08ns

peval1 9,600ns 150.00w

Table 4.6: Raw data for OCaml v4.02.1 with byte code back-end, as reported
by Core_bench. All numbers are average values per run. BER MetaO-
Caml running times are normalized to the numbers in this table.
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Name Time minor heap

power 61ns
fib 36ns

peval1 1,800ns 149 words

Table 4.7: Raw data for OCaml v4.02.1 with native code back-end, as re-
ported by Core_bench. All numbers are average values per run. The
running times of my MetaOcaml implementation are normalized to the
numbers in this table.

Name Time number of iterations

cpower 430µs 700
cfib 31,000µs 400

cpeval2 (crashed) —

Table 4.8: Raw data for the original MetaOCaml implementation. All num-
bers are average values per run.

Name Time number of iterations

power 66ns 299999999
fib 41ns 199999999

peval1 1,690ns 29999999

Table 4.9: Raw data for OCaml 3.09 with native code backend. All numbers
are average values per run. The running times of the originala MetaO-
caml implementation are normalized to the numbers in this table.
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Chapter 5

Conclusions

5.1 Summary
I have presented my re-implementation of MetaOCaml on top of a modern OCaml

compiler. My implementation uses the Lambda intermediate representation (as op-

posed to abstract syntax trees) to represent OCaml code fragments. Cross-stage

persistence is achieved by using an extended version of OCaml closures which

combine the values vector of the usual OCaml closure with a code fragment to be

compiled and the lexical in which environment to perform the compilation. Splic-

ing is accomplished by directly manipulating the Lambda intermediate representa-

tion, followed by concatenation of the values vector of the OCaml closures which

correspond to the main body of code and the code being spliced. (Implementing

splicing by direct manipulation of Lambda terms is helped by the fact that Lambda

language is a rather high-level and AST-like. It has been argued that this prop-

erty makes certain kinds of “standard” optimizations awkward to perform [10], but

the AST-like nature of Lambda definitely helped with my implementation of MetaO-

Caml). The scope extrusion problem is dealt with by a pre-emptive scan of the

lexical structure of each code term.
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5.2 Retrospective
I have presented a (re)-implementation of MetaOCaml that supports turn-key native

code generation on top of a modern OCaml compiler infrastructure. The existing

MetaOCaml implementation that supports turn-key generation of native code are

not based on a modern OCaml compiler. The existing MetaOCaml implementation

that is based on a modern OCaml compiler does not support turn-key generation of

native code.

Along with producing a convenient way to compile MetaOCaml to native code,

a secondary goal of the project was to evaluate the current version of OCaml as a

substrate for implementing MetaOCaml. In summary, I am happy to report that

the current OCaml compiler is a very good environment for implementing MetaO-

Caml: the total number of lines of code that needed to be changed or added as com-

pared with the standard OCaml compiler is well under 3000. I was able to extend

the existing compiler data structures and functions essentially without doing any

major re-architecturing work on the compiler: outside of exposing the load_lambda in-

terface in toploop/nattoploop.ml, and changing the scope of the module-

global reference program_name in the same file, very little of my implementation work

can be accurately described as “fixing bugs in the OCaml compiler.”

A third goal of the project was to check whether by removing the redundant

type-checking at run-time the overall performance of the MetaOCaml compiler was

improved (as compared with the existing native-code compiler). Unfortunately, no

significant improvements in run time of programs were observed during the perfor-

mance evaluation. One area potentially worth exploring with respect to run-time

performance is whether serializing and deserializing of complete Lambda strcutures

is really necessary. It certainly was a convenient and quick implementation strat-

egy, but it may have come at a cost in terms of program performance.

5.3 Possible future work
Possible directions for future work are:

Do not serialize Lambda A question worth investigating is whether performance

can be significantly increased by getting rid of serialization/deserialization

of the Lambda intermediate representation into string.
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Bytecode compiler During the development of the native code compiler, I im-

plemented run and cross-stage persistence in a byte code compiler. Unfor-

tunately, the implementation of the byte code version of those features did

not use the implementation model which can be summarized as “extend the

Lambda language enough to be able to support MetaOCaml; make a min-

imal wrapper around load_lambda”: instead, it relied on a special version of

load_lambda. Redoing that implementation so that it does not need a special

version of load_lambda would be desirable.

Native code back-end for BER MetaOCaml BER MetaOCaml is an implemen-

tation of MetaOCaml that keeps pace with current developments of the OCaml

compiler. Some of the experience gained from the current “clean-room”

implementation of native MetaOCaml code generator may be transferrable

towards producing a native code generator for BER.
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