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Abstract

As air pollution is a complex mixture of toxic components with considerable impact

on humans, forecasting air pollution concentration emerges as a priority for improving

life quality. In this study, air quality data (observational and numerical) were used to

produce hourly spot concentration forecasts of ozone (O3), particulate matter 2.5µm

(PM2.5) and nitrogen dioxide (NO2), up to 48 hours for six stations across Canada

– Vancouver, Edmonton, Winnipeg, Toronto, Montreal and Halifax. Using numerical

data from an air quality model (GEM-MACH15) as predictors, forecast models for

pollutant concentrations were built using multiple linear regression (MLR) and multi-

layer perceptron neural networks (MLP NN). A relatively new method, the extreme

learning machine (ELM), was also used to overcome the limitation of linear methods

as well as the large computational demand of MLP NN. In operational forecasting, the

continuous arrival of new data means frequent updating of the models is needed. This

type of learning, called online sequential learning, is straightforward for MLR and ELM

but not for MLP NN. Forecast performance of the online sequential MLR (OSMLR) and

online sequential ELM (OSELM), together with stepwise MLR, all updated daily were

compared with MLP NN updated seasonally, and the benchmark, updatable model

output statistics (UMOS) from Environmental Canada. Overall OSELM tended to

slightly outperform the other models including UMOS, being most successful with ozone

forecasts and least with PM2.5 forecasts. MLP NN updated seasonally was generally

underperforming the linear models MLR and OSMLR, indicating the need to update

a nonlinear model frequently.

ii



Preface

This thesis contains research conducted by the candidate, Huiping Peng, under the

supervision of Dr. William Hsieh, Dr. Alex Cannon. The air quality and meteorolog-

ical data sets used in this study were provided by Dr. Andrew Teakles (Environment

Canada). Fig 3.1 was reproduced using the station data from Environment Canada.

The ELM and MLP NN model in this thesis were based on R packages developed by

Aranildo Lima and Alex Cannon. The supervisory committee provided the original re-

search topic, direction and critical feedback on the research methods. The development

of statistical air quality models and the analysis of results were primarily the work of the

candidate, but William Hsieh, Alex Cannon and Andrew Teakles contributed substan-

tially by suggesting specialized analysis techniques, by helping to interpret the results

and by carefully editing the manuscript. Currently no part of this thesis has been

published, but a paper based on this thesis is undergoing preparation for submission.

iii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Machine Learning Techniques . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Extreme Learning Machine (ELM) . . . . . . . . . . . . . . . . 9

2.3 Air Quality Forecasting Models . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Dispersion Models . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Photochemical Models . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 Regression Models . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.4 Neural Network Models . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

iv



Table of Contents

3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Study Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Methods and Models Set up . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Input Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Multiple Linear Regression (MLR) . . . . . . . . . . . . . . . . . . . . . 23

4.3 Online-Sequential Multiple Linear Regression (OS-MLR) . . . . . . . . 24

4.4 Multi-layer Perceptron Neural Network (MLP NN) . . . . . . . . . . . 26

4.5 Extreme Learning Machine (ELM) . . . . . . . . . . . . . . . . . . . . . 27

4.6 Online-Sequential Extreme Learning Machine (OS-ELM) . . . . . . . . 30

4.7 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.7.1 Pearson Correlation Coefficient (r) . . . . . . . . . . . . . . . . 31

4.7.2 Mean Absolute Error (MAE) . . . . . . . . . . . . . . . . . . . . 31

4.7.3 MAE/MAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.7.4 Root Mean Square Error (RMSE) . . . . . . . . . . . . . . . . . 32

4.7.5 Skill Score (SS) . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1 Ozone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 PM2.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 NO2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Model Results with Antecedent Predictors . . . . . . . . . . . . . . . . 74

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

v



List of Tables

3.1 Statistical properties of ozone concentration in 6 stations. . . . . . . . . 21

5.1 Statistical properties of ozone concentration (ppb) by station and season. 43

5.2 Statistical properties of top 10th percentile ozone concentration by sta-

tion and season. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Statistical properties of PM2.5 concentration (µg/m3) by station and

season. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4 Statistical properties of top 10th percentile PM2.5 concentration (µg/m3)

by station and season. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5 Statistical properties of NO2 concentration (ppb) by station and season. 68

5.6 Statistical properties of top 10th percentile NO2 concentration (ppb) by

station and season. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

vi



List of Figures

2.1 The general structure of a MLP NN model (Hsieh, 2009). . . . . . . . . 7

2.2 A diagram illustrating the problem of over-fitting. The dash curve shows

a good fit to noisy data (squares), while the solid curve illustrate over-

fitting, where the fit is perfect on the training data (squares), but is poor

on the test data (circles) (Hsieh and Tang, 1998). . . . . . . . . . . . . . 9

3.1 Geographical distribution of the UMOS-AQ stations (red dots), with the

six stations selected in this study shown as blue triangles. . . . . . . . . 19

5.1 Boxplot of the observed ozone values and the predicted values from five

methods over all forecast lead times (1 - 48hr) at six stations. . . . . . . 35

5.2 Ozone forecast scores of different methods averaged over all forecast lead

times (1 - 48hr) at the six stations. . . . . . . . . . . . . . . . . . . . . . 36

5.3 Forecast correlation score as a function of the forecast lead time (1-48hr)

from the five models displayed in a heat map (bottom panels) for fore-

casts initiated at 00 UTC (left) and 12 UTC (right) at six stations. Black

vertical stripes indicate “missing values”, i.e. fewer than 100 data points

were available for model training during 2009/07-2011/07. The mean di-

urnal ozone cycle is displayed in the top panels. 00 UTC corresponds

to local time (daylight saving time) of 5 pm, 6 pm, 7 pm, 8 pm, 8 pm

and 9 pm at Vancouver, Edmonton, Winnipeg, Toronto, Montreal and

Halifax, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Ozone MAE skill score of different models by forecast hour, with fore-

casts initiated at 00 UTC (left column) and 12 UTC (right column).

The panels are arranged in six rows, from Vancouver (top) to Halifax

(bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.5 Boxplot of the ozone residuals (prediction−observation) by season and

station. Outliers are not plotted but can be seen in Fig 5.7. . . . . . . . 43

vii



List of Figures

5.6 Ozone forecast scores (MAE, RMSE, MAE/MAD and r) by season and

station. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.7 Boxplot of ozone residuals (prediction−observation) (over all leadtimes)

from the top 10th percentile by season and station. . . . . . . . . . . . . 46

5.8 Ozone forecast scores of top 10th percentile by season and station. . . . 47

5.9 Boxplot of the PM2.5 observations and predictions by different methods

at six stations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.10 PM2.5 forecast scores of different methods at the six test stations. . . . . 49

5.11 Mean diurnal PM2.5 concentration and heat map of the correlation score

by model and station for forecast lead time 1-48hr and forecasts initiated

at 00 UTC (left) and 12 UTC (right). . . . . . . . . . . . . . . . . . . . 53

5.12 PM2.5 MAE skill score of different models by forecast hour for the six

stations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.13 Boxplot of PM2.5 residuals (prediction−observation) by season and sta-

tion. Outliers are not plotted but can be seen in Fig 5.15. . . . . . . . . 56

5.14 PM2.5 forecast scores by season and station. . . . . . . . . . . . . . . . . 57

5.15 Boxplot of PM2.5 residuals (prediction−observation) (over all lead times)

from the top 10th percentile by season and station. . . . . . . . . . . . . 59

5.16 PM2.5 forecast scores of top 10th percentile by season and station. . . . 60

5.17 Boxplot of the observed NO2 values and the predicted values from five

models (over all forecast lead times ) at six stations. . . . . . . . . . . . 61

5.18 NO2 forecast scores of different methods in the six stations. . . . . . . . 62

5.19 Mean diurnal NO2 concentration and heat map of the correlation score

by model and station. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.20 NO2 MAE skill score of different models by forecast hour for the six

stations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.21 Boxplot of NO2 residuals (prediction−observation) by season and sta-

tion. Outiers are not plotted but can be seen in Fig 5.23. . . . . . . . . 69

5.22 NO2 forecast scores by season and station. . . . . . . . . . . . . . . . . . 70

5.23 Boxplot of NO2 residuals (prediction−observation) (over all lead times)

from the top 10th percentile by season and station. . . . . . . . . . . . . 72

5.24 NO2 forecast scores of top 10th percentile by season and station. . . . . 73

5.25 Ozone forecast scores from models with and without antecedent predic-

tors in the six stations. Models with antecedent predictors (OSELM-A

and OSMLR-A) are in red, the original models without the extra pre-

dictors are in blue, and UMOS is in black. . . . . . . . . . . . . . . . . . 75

viii



List of Figures

5.26 Ozone MAE skill score from models with and without antecedent pre-

dictors by forecast hour. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.27 Ozone top 10th percentile forecast scores from models with and without

antecedent predictors by season and station. . . . . . . . . . . . . . . . . 77

5.28 PM2.5 forecast scores from models with and without antecedent predic-

tors in the six stations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.29 PM2.5 MAE skill score from models with and without antecedent pre-

dictors by forecast hour. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.30 PM2.5 top 10th percentile forecast scores from models with and without

antecedent predictors by season and station. . . . . . . . . . . . . . . . . 80

5.31 NO2 forecast scores from models with and without antecedent predictors

in the six stations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.32 NO2 MAE skill score from models with and without antecedent predic-

tors by forecast hour. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.33 NO2 top 10th percentile forecast scores from models with and without

antecedent predictors by season and station. . . . . . . . . . . . . . . . . 83

ix



List of Abbreviations

AQHI Air quality health index

ELM Extreme Learning Machine

GEM-MACH15 Global environmental multi-scale model - modeling air quality and

chemistry with 15-km grid spacing

LST Local sidereal time

MAD Mean absolute deviation

MAE Mean absolute error

MLP NN Multilayer perceptron neural network

MLR Multiple linear regression

NO2 Nitrogen dioxide

O3 Ozone

OSELM Online sequential extreme learning machine

OSMLR Online sequential multiple linear regression

PM2.5 Particulate matter 2.5 µm

r Pearson correlation coefficient

RMSE Root mean square error

SS Skill score

UMOS Updatable model output statistics

UTC Coordinated universal time

x



Acknowledgements

I would like to thank Prof. William Hsieh for his never-ending guidance and support.

The time that was put into this research could not have been done without his co-

ordination and exceptional knowledge of Atmospheric Science and machine learning

methods. His constant support and considerate attitude allowed the completion of this

research without any pressure or tension. I would also like to thank Dr. Alex Cannon

for his commitment to learning and advisement for this research. I would also like to

acknowledge and thank the members of the UBC climate prediction group: Aranildo

Rodrigues, Jian Jin and Andrew Snauffer. Not only were they my fellow students who

helped and supported, but they were also my friends. I would like to thank Andrew

Teakles and Jonathan Baik, for providing data and detailed instruction in each phase

of the research, for approving my research and inspiring me through their excellent ex-

perience with Environment Canada. I would like to thank Prof. Roland Stull and Prof.

Susan Allen, who taught me courses, and the knowledge gained was able to contribute

to my research. Lastly I would like to thank my parents and all of my friends for their

love and encouragement, they are always my best support no matter where I am.

xi



Chapter 1

Introduction

With economic development and population rise in cities, environmental pollution prob-

lems involving air pollution, water pollution, noise and the shortage of land resources

have attracted increasing attention. Among these, air pollution’s direct impact on hu-

man health through exposure to pollutants has resulted in an increased public awareness

in both developing and developed countries (Kim et al., 2013; Kurt and Oktay, 2010;

McGranahan and Murray, 2003). Air pollution is usually caused by energy produc-

tion from power plants, industries, residential heating, fuel burning vehicles, natural

disasters, etc. Human health concern is one of the important consequences of air pol-

lution, especially in urban areas. The global warming from anthropogenic greenhouse

gas emissions is a long-term consequence of air pollution (Nordiska, 2008; Ramanathan

and Feng, 2009; Kumar and Goyal, 2013). Accurate air quality forecasting can reduce

the effect of a pollution peak on the surrounding population and ecosystem, hence im-

proving air quality forecasting is an important goal for society.

1.1 Background

Air pollution is the introduction of particulates, biological molecules, or other harmful

materials into the Earth’s atmosphere, causing disease, death to humans, damage to

other living organisms such as food crops, or damage to the natural or man-made en-

vironment. An air pollutant is a substance in the air that can have adverse effects on

humans and the ecosystem. The substance can be solid particles, liquid droplets, or

gases. Pollutants are classified as primary or secondary. Primary pollutants are usu-

ally produced from a process, such as ash from a volcanic eruption. Other examples

include carbon monoxide gas from motor vehicle exhaust, or sulfur dioxide released

from factories. Secondary pollutants are not emitted directly. Rather, they form in

the air when primary pollutants react or interact. Ground level ozone is a prominent

example of a secondary pollutant. The six “criteria pollutants” are ground level ozone

(O3), fine particulate matter (PM2.5), carbon monoxide (CO), nitrogen dioxide (NO2),
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1.1. Background

sulfur dioxide (SO2), and lead, among which ground level O3, PM2.5 and NO2 (main

component of NOx) are the most widespread health threats.

Ground level O3, a gaseous secondary air pollutant formed by complex chemical

reactions between NOx and volatile organic compounds (VOCs) in the atmosphere,

can have significant negative impacts on human health (Chen et al., 2007; Brauer and

Brook, 1997). Prolonged exposure to O3 concentrations over a certain level may cause

permanent lung damage, aggravated asthma, or other respiratory illnesses. Ground

level O3 can also have detrimental effects on plants and ecosystems, including damage

to plants, reductions of crop yield, and increase of vegetation vulnerability to disease

(EPA, 2005).

Particle pollution (also called particulate matter or PM) is the term for a mixture

of solid particles and liquid droplets found in the air. Some particles, such as dust,

dirt, soot, or smoke, are large or dark enough to be seen with the naked eye. Others

are so small they can only be detected using an electron microscope. Fine particulate

matter (PM2.5) consisting of particles with diameter 2.5 µm or smaller, is an important

pollutant among the criteria pollutants. The microscopic particles in PM2.5 can pene-

trate deeply into the lungs and cause health problems, including the decrease of lung

function, development of chronic bronchitis and nonfatal heart attacks. Fine particles

can be carried over long distances by wind and then deposited on ground or water

through dry or wet deposition. The wet deposition is often acidic, as fine particles

containing sulfuric acid contribute to rain acidity, or acid rain. The effects of acid rain

include changing the nutrient balance in water and soil, damaging sensitive forests and

farm crops, and affecting the diversity of ecosystems. PM2.5 pollution is also the main

cause of reduced visibility (haze) (EPA, 2005).

Nitrogen dioxide (NO2) is one of a group of highly reactive gases known as “nitro-

gen oxides” (NOx). US Environmental Protection Agency (EPA) Ambient Air Quality

Standard uses NO2 as the indicator for the larger group of nitrogen oxides. NO2 forms

quickly from emissions of automobiles, power plants, and off-road equipment. In addi-

tion to contributing to the formation of ground-level ozone, and fine particle pollution,

current scientific evidence links short-term NO2 exposures, ranging from 30 minutes

to 24 hours, with adverse respiratory effects including airway inflammation in healthy

people and increased respiratory symptoms in people with asthma (EPA, 2005).

2



1.1. Background

The Air Quality Health Index (AQHI) is a public information tool designed in

Canada to help understand the impact of air quality on health. Basically, the AQHI

is defined as an index or rating scale range from 1 to 10+ based on mortality study

to indicate the level of health risk associated with local air quality (Chen and Copes,

2013). The higher the number, the greater the health risk and the need to take pre-

cautions. The formulation of Canadian national AQHI is based on three-hour average

concentrations of ground-level ozone (O3), nitrogen dioxide (NO2), and fine particulate

matter (PM2.5). The AQHI is calculated on a community basis, each community may

have one or more monitoring stations and the average concentration of 3 substances

is calculated at each station within a community for the 3 preceding hours. AQHI is

a meaningful index protecting residents on a daily basis from the negative effects of

air pollution. Our study gives direction to predicting individual pollutants of one hour

average concentration instead of AQHI (or its maximum) as the formulation of AQHI

is based on health related science and may evolve over time. Building a forecast system

based on individual pollutants and one hour average concentration will make it more

flexible to future changes in health indices. Our result can also be beneficial to external

clients and meteorologists.

The concentration of air pollutants including ground level ozone, PM2.5 and NO2

varies depending on meteorological factors, the source of pollutants and the local to-

pography (Dominick et al., 2012). Among these three factors, the one which most

strongly influences variations in the ambient concentration of air pollutants is mete-

orological factors (Banerjee and Srivastava, 2009). Meteorological factors experience

complex interactions between various processes such as emissions, transportation and

chemical transformation, as well as wet and dry depositions (Seinfeld and Pandis, 1997;

Demuzere et al., 2009). In addition, the spatial and temporal behavior of wind fields

are affected by the surface roughness and differences in the thermal conditions (Oke

et al., 1989; Roth, 2000), which further influence the dispersion of pollutants. For

example, Revlett (1978) and Wolff and Lioy (1978) found that ambient ozone concen-

tration not only depended on the ratio and reactivity of precursor species, but also on

the state of the atmosphere - the amount of sunlight, ambient air temperature, rela-

tive humidity, wind speed, and mixed layer (ML) depth, while Tai (2012) found that

daily variations in meteorology as described by the multiple linear regression (MLR)

including nine predictor variables (temperature, relative humidity, precipitation, cloud

cover, 850-hPa geopotential height, sea-level pressure tendency, wind speed and wind

direction) could explain up to 50% of the daily PM2.5 variability in the US. Hence, me-

3



1.1. Background

teorological factors play an important role in air pollutant concentrations, also making

them difficult to model.

Most current air quality forecasting uses straightforward approaches like box mod-

els, Gaussian models and linear statistical models. Those models are easy to implement

and allow for the rapid calculation of forecasts. However, they usually do not describe

the interactions and non-linear relationship that control the transport and behaviour

of pollutants in the atmosphere (Luecken et al., 2006). With these challenges, machine

learning methods originating from the field of artificial intelligence have become popu-

lar in air quality forecasting and other atmospheric problems (Comrie, 1997; Hadjiiski

and Hopke, 2000; Reich et al., 1999; Roadknight et al., 1997; Song and Hopke, 1996).

For instance, several neural network (NN) models have already been used for air quality

forecast, in particular for forecasting hourly averages (Kolehmainen et al., 2001; Perez

et al., 2000) and daily maximum (Perez, 2001). Although NN have advantages over

traditional statistical methods in air quality forecasting, NN-based models still need to

improve in order to achieve good prediction performance as effectively and efficiently

as possible (Wang et al., 2003). A number of difficulties associated with NN hamper

their effectiveness in air quality forecasting. These difficulties include computational

expense, multiple local minima during optimization, over-fitting to noise in the data,

etc. Furthermore, there are no general rules to determine the optimal size of network

and learning parameters, which will greatly affect the prediction performance.

Another key consideration of forecast models is their updatability when doing real-

time forecasting. For a forecast model, recently observed data should be used to refine

the model. This generally follows a procedure that links the discrepancy between model

forecasts and the corresponding latest observation to all or some of the parameters in

model. Normally there are two ways for model updating: batch learning and online

learning. Whenever new data are received, batch learning uses the past data together

with the new data and performs a retraining of the model, whereas online learning

only uses the new data to update the model. Batch learning can be computationally

expensive in real-time forecasting as the procedure means repeatedly altering a rep-

resentative set of parameters calibrated over a long historical record. Linear models

are generally easy to update online (Wilson and Vallée, 2002), and even with batch

learning, linear models are fast and easy to implement. As for non-linear methods,

true online learning is difficult for many formulations such as the non-linear kernel

method. Furthermore, short time (daily) update via batch learning is too expensive

4
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to implement as a non-linear model tends to have more parameters to train and the

training process is much slower compared to linear models. Consequently, there is a

need to develop non-linear updatable models for real-time forecasting. This study at-

tempts to use the extreme learning machine (ELM) (Schmidt et al., 1992; Huang et al.,

2006b), a non-linear machine learning algorithm using randomized neural networks, to

forecast air pollutant concentrations in Canada. The ELM model has an architecture

similar to the multi-layer perceptron (MLP) NN model, but it can be used for online

sequential learning. ELM has been successfully used in different research areas and has

been found to produce good generalization performance with generally less learning

time compared with traditional gradient-based NN training algorithms (Huang et al.,

2011; Lima et al., 2015).

1.2 Research Objectives

The research goal of this study is to develop a non-linear updatable model for real-time

air quality forecasting, to potentially replace the updatable linear regression models

currently being used. The ultimate goal is to improve air pollution forecasting in

Canada and in other countries.

1.3 Organization of Thesis

Chapter 2 provides a literature review covering topics related to air quality forecast-

ing, machine learning techniques and updatable model output statistics (UMOS), a

linear online updating model from Environment Canada. Background theory on vari-

ous machine learning and air quality topics will be covered. The reviewed air quality

forecasting studies as well as the modeling techniques will be discussed on how they

can be applied to this research. Chapter 3 describes the study area and the data sets

used in this study. Chapter 4 outlines the methods used to conduct this research and

describes the developed forecast models and evaluation methods. In Chapter 5 the re-

sults from all developed forecast models for each pollutant are discussed in detail. The

thesis concludes with Chapter 6 where the original research objectives are addressed

and recommendations for future research are made.
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Chapter 2

Literature Review

2.1 Introduction

Air pollution is major threat to health and exerts a wide range of impacts on biological

and economic systems. The purpose of this literature review is to justify the research

objectives of this study in light of previous work by investigating past air quality pre-

diction studies and determining where future research is needed. Literature related

to air quality prediction and various types of machine learning methods used in this

study are reviewed. Machine learning theory and past applications are examined to

show why these methods are likely to perform well in air quality forecasting.

2.2 Machine Learning Techniques

Machine learning is a major sub-field in computational intelligence (also called artificial

intelligence). Its main objective is to use computational methods to extract information

from data. Machine learning has a wide spectrum of applications including handwrit-

ing and speech recognition, robotics and computer games, natural language processing,

brain-machine interface and so on. In the environmental sciences, machine learning

methods have been heavily used in data processing, model emulation, weather and

climate prediction, air quality forecasting, oceanographic and hydrological forecasting.

(Hsieh, 2009).

2.2.1 Neural Network

Neural network (NN) methods were originally developed from investigations into human

brain function and they are adaptive systems that change as they learn (Hsieh and Tang,

1998). There are many types of NN models, the most common one is the multi-layer

perceptron (MLP) NN model shown in Fig 2.1
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2.2. Machine Learning Techniques

Figure 2.1: The general structure of a MLP NN model (Hsieh, 2009).

The input variables xi are mapped to a layer of intermediate variables known as

“hidden neuron” hj by

hj = f(
∑
i

wjixi + bj), (2.1)

and then onto the output variables yk by

yk = g(
∑
j

βkjhj + βk0). (2.2)

where f and g are “activation” functions in the hidden layer and the output layer,

respectively. Normally f can be the logistic sigmoidal or hyperbolic tangent function

and g can be linear in NN models for regression. wji and βkj are weight parameters and

bj and βk0 are offset parameters. Their optimal values are learned by model training

(Hsieh and Tang, 1998) where the mean squared error of the model output is minimized.

Numerous studies show NN models have good forecasting performance. Walter

et al. (1998) used NN methods to simulate the observed global (and hemispheric) an-

nual mean surface air temperature variations during 1874-1993 using anthropogenic and

natural forcing mechanisms as predictors. The two anthropogenic forcings were equiv-

alent CO2 concentrations and tropospheric sulfate aerosol concentrations. The natural

forcing were volcanism, solar activity and ENSO (El Niño Southern Oscillation). The

NN explained up to 83% of the observed temperature variance, significantly more than

by multiple regression analysis. Hewitson and Crane (1996) used MLP NN for precipi-
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2.2. Machine Learning Techniques

tation forecast with predictors from the general circulation model (GCM) atmospheric

data over southern Africa and the surrounding ocean. The six leading PCs (principal

components) of the sea level pressure field and the seven leading PCs of the 500 hPa

geopotential height field from the GCM were used as inputs to the NN. Cavazos (1997)

also used MLP NN to downscale GCM synoptic-scale atmospheric circulation to local

1 ◦ × 1 ◦ gridded winter daily precipitation over north-eastern Mexico and found the

model was able to reproduce the phase and, to some degree, the amplitude of large

rainfall events. Marzban and Stumpf (1996) trained an MLP to predict the existence of

tornadoes. The approach outperformed other techniques including discriminant anal-

ysis, logistic regression and a rule-based algorithm. Neural networks have also been

used to solve hydrological problems, such as the prediction of reservoir inflows, stream

flow forecasting, downscaling precipitation, and prediction of water resource variables

(e.g., flow, water level, nitrate, salinity and suspended sediment concentration) (Tri-

pathi et al., 2006; Chen et al., 2010; Maier et al., 2010; Cannon, 2012b; Rasouli et al.,

2012; Thirumalaiah and Deo, 1998). Other applications of neural network methods

include remote sensing and GIS related activities, air quality management (Boznar

et al., 1993), adsorbent beds design (Basheer and Najjar, 1996), and hazardous waste

management.

Researchers have shown that neural networks have salient advantages over tradi-

tional statistical methods in environment forecasting problems. However, a number

of difficulties associated with NN hamper their effectiveness, efficiency and general ac-

ceptability (Wang et al., 2003). One of the main challenges in developing a NN model

is how to address the problem of over-fitting. An over-fitted NN model could fit the

data very well during training, but produce poor forecast results during testing (Hsieh

and Tang, 1998). Over-fitting occurs when a model fits to the noise in the data and it

will not generalize well to new data sets as shown in Fig 2.2.
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2.2. Machine Learning Techniques

Figure 2.2: A diagram illustrating the problem of over-fitting. The dash curve shows
a good fit to noisy data (squares), while the solid curve illustrate over-fitting, where
the fit is perfect on the training data (squares), but is poor on the test data (circles)
(Hsieh and Tang, 1998).

Typically regularization (i.e. the use of weight penalty) is used to prevent over-

fitting (Golub et al., 1979; Haber and Oldenburg, 2000). This usually requires some of

the training data to be used as validation data to determine the optimal regularization

parameter to prevent over-fitting. Yuval (2000) introduced generalized cross-validation

(GCV) to control overfitting/underfitting automatically in MLP NN and applied the

method to forecasting the tropical Pacific SST anomalies. Yuval (2001) used bootstrap

resampling of the data to generate an ensemble of MLP NN models and used the en-

semble spread to estimate the forecast uncertainty.

Another issue is the computational expense involved during the training process

in neural networks. Training the NN model to learn from the target data, we need

to minimize the objective function J , defined here to be mean squared error (MSE)

between the model output y and the target t. Normally the back-propagation algorithm

is used to perform the training tasks, using a gradient-descent approach to reduce the

MSE iteratively (Hsieh, 2009), which could be time-consuming.

2.2.2 Extreme Learning Machine (ELM)

The extreme learning machine (ELM) is a randomized neural network method proposed

by Schmidt et al. (1992) and popularized by Huang et al. (2006b). The ELM algorithm

has the same architecture as a single-hidden layer feed-forward neural network (SLFN),

but it is generally fast to train. The ELM randomly chooses the weights leading to the

9



2.2. Machine Learning Techniques

hidden nodes or neurons (HN) and analytically determines the weights at the output

layer by solving a linear least squares problem. The only hyper-parameter to be tuned

in the ELM is the number of HN (Lima et al., 2015). Extensions to ELM includes on-

line sequential ELM (OS-ELM)(Liang et al., 2006), incremental ELM (I-ELM)(Huang

et al., 2006a; Huang and Chen, 2007, 2008), ELM ensembles, pruning ELM (P-ELM)

(Rong et al., 2008) and error minimized ELM (EM-ELM) (Feng et al., 2009). In online

sequential learning, new data arrive continuously and the model is repeatedly updated

with the new data. OS-ELM is readily updated using only the new data, without the

need to retrain using the complete historical record.

ELM has also been successfully used in different research areas (Huang et al., 2011).

An integration of several ELMs was proposed by Sun et al. (2008) to predict the future

sales amount. Several ELM networks were connected in parallel and the average of the

ELMs outputs was used as the final predicted sales amount, with better generaliza-

tion performance. Heeswijk et al. (2009) investigated the adaptive ensemble models of

ELM on the application of one-step ahead prediction in stationary and non-stationary

time series. They found that the method worked well on stationary time series and

the adaptive ensemble model achieved a test error comparable to the best methods on

the non-stationary time series, while keeping adaptivity with low computational cost.

Handoko et al. (2006) found that the ELM was as good as, if not better than, the MLP

NN in terms of computing time, accuracy deviations across experiments and prevention

of overfitting. Using the ELM as a mechanism for learning the stored digital elevation

information to allow multi-resolution access in terrain models, Yeu et al. (2006) found

that to achieve the same MSE during access, the memory needed in ELM was sig-

nificantly lower than that needed by Delaunay triangulation (DT). Additionally, the

offline training time for the ELM network was much less than that for the MLP NN,

DT and support vector machines (SVM).

As a randomized neural network, ELM is controlled by hyper-parameters such as

the range of the random weights and the number of HN. The optimal number of HN is

problem dependent and unknown in advance. We have to ensure the network structure

is balanced between generalization ability and network complexity. Low network com-

plexity (i.e. too few HN) might be unable to capture the true non-linear relationship,

whereas too high a network complexity might decrease model generalization ability due

to overfitting to noise in the data, and increase the model training time. In general,

the number of HN is selected empirically based on model performance over indepen-
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2.3. Air Quality Forecasting Models

dent validation data not used in model training. For an ELM, the optimal number of

HN found can be much greater (sometimes by orders of magnitude) than MLP using

iterative non-linear optimization, so an automatic procedure is needed to select the

number of HN. Lima et al. (2015) used the hill climbing method to find the optimal

number of HN and the test results on nine environmental regression problems showed

that among the non-linear models, the ELM method, with often the fastest computing

time for model training, tended to perform well in prediction skills.

Random initialization of the weights is another important prerequisite for good

convergence of NN models. A balance must exist to ensure that the activation function

does not remain linear nor become saturated near the asymptotic limits of -1 and 1

in the case of a hyperbolic tangent function. If the range of random weight distribu-

tion is too small, both activation and error signals will die out on their way through

the network. If it is too large, the saturated activation function will block the back-

propagated error signals from passing through the node (Lima et al., 2015). Normally

the range of weight interval is simply a constant, but Parviainen and Riihimaki (2013)

raised questions about meaningfulness of choosing model complexity based on HN only

and also found that using an appropriate weight range can improve ELM performance,

achieving a similar effect as regularization in traditional neural network models.

2.3 Air Quality Forecasting Models

An air quality model is a numerical tool used to describe the causal relationship be-

tween emissions, meteorology, atmospheric concentration, deposition and other factors.

It can give a complete deterministic description of the air quality problem (Nguyen,

2014). The most commonly used air quality models include dispersion models, photo-

chemical models and regression models. Various neural network models, as non-linear

regression models, have also been shown to be effective in air quality forecasting. In

this section, different models and their applications will be introduced.

2.3.1 Dispersion Models

Dispersion models normally use mathematical formulations to simulate the atmospheric

process after pollutants were emitted by a source. Data needed for dispersion models
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2.3. Air Quality Forecasting Models

vary in their complexity. At a minimum, most of the models require meteorological

data, emissions data, and details about the facilities in question (such as stack height,

gas exit velocity, etc.). Some of the more complex models require topographic infor-

mation, individual chemical characteristics and land use data. The output is predicted

concentration at selected downwind receptor locations. There are different types of

dispersion models with specific requirement and special scales. The most commonly

used dispersion models are the box model, Gaussian plume model, Lagrangian model,

Eulerian model, computational fluid dynamics model and Gaussian puff model. The

processes included in those models are building wake effects, topography, street canyon,

intersections, plume rise and chemistry (Holmes and Morawska, 2006).

Two of the most common models used to calculate the dispersion of vehicle emis-

sions are CALINE4 (California Department of Transportation) and HIWAY2 (US

EPA). Both models are based on a Gaussian plume model. Yura et al. (2007) ex-

plored the range of CALINE4’s PM2.5 modeling capabilities by comparing previously

collected PM2.5 data with CALINE4 predicted values. Two sampling sites, a subur-

ban site and an urban were used for this study. Model predicted concentrations are

graphed against observed concentrations and evaluated against the criterion that 75%

of the points fall within the factor-of-two prediction envelope. However, only the subur-

ban site results by CALINE4 met the criterion. For urban site, several factors including

street canyon effects likely contributed to an inaccuracy of the emission factors used in

CALINE4, and therefore, to the overall CALINE4 predictions. The study suggested

that CALINE4 might not perform well in densely populated areas and differences in

topography may be a decisive factor in determining when CALINE4 may be applicable

to modeling PM2.5.

Colvile et al. (2002) applied the ADMS-urban atmospheric dispersion model sys-

tem to review air quality in central London in 1996-1997. The model performance was

validated by monitoring data and showed that model precision was 10% with 0-12%

bias for the annual mean NO2 and PM10 concentrations. Wallace and Kanaroglou

(2008) used the Integrated Model of urban Land-use and Transportation for Environ-

mental Analysis to estimate emission and concentrations of NOx from traffic sources in

the Hamilton census metropolitan area. The results showed a prominent triangle area

of high pollution, which is defined by major roads and highways along the Hamilton

Harbour during peak hour. The resulting dispersion surfaces characterized the spatial

distribution of traffic emissions and thus provide a way for assessing population expo-
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2.3. Air Quality Forecasting Models

sure over the Hamilton area.

Although dispersion models consider many processes that affect air pollutant con-

centration, they have some limitations such as the simplified treatment of turbulence

and meteorology, and cannot take into account any formation of pollutants. Even NOx

and SOx, which are fundamental to determining particles and ozone concentrations, are

often only calculated using a simple exponential decay (Holmes and Morawska, 2006).

Gaussian models have also been shown to consistently over predict concentrations in

low wind conditions (Benson, 1984), as Gaussian models are not designed to model the

dispersion under low wind conditions.

2.3.2 Photochemical Models

Photochemical models have become widely utilized as tools in air pollution control

strategies. Photochemical models simulate the changes of pollutant concentrations in

the atmosphere using a set of mathematical equations characterizing the chemical and

physical processes in atmosphere. These models are applied at multiple spatial scales

from local, regional, national, and global (Nguyen, 2014).

Photochemical models have been formulated in both the Lagrangian and Eulerian

reference frames (Russell and Dennis, 2000). Eulerian models include both single box

models and multi-dimensional grid-based models. Box models were used early and are

still used today in studies focusing on atmospheric chemistry alone. The limitation

of box models is a lack of significant physical realism such as horizontal and verti-

cal transport, and spatial variation. Grid models are potentially the most powerful

photochemical model (Hansen et al., 28; Dennis et al., 1996), but are also the most

computationally intensive. They solve a finite approximation by dividing the modeling

region into a large number of cells, horizontally and vertically, which interact with each

other to simulate the various processes that affect the evolution of pollutant concen-

trations, including chemistry, diffusion, advection, sedimentation (for particles), and

deposition.

Photochemical models have been widely used to assess the relative importance of

VOC and NOx controls in reducing ozone levels. Milford et al. (1989) used the CIT

model to show the spatial variation of ozone isopleths and found a negative response of
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2.3. Air Quality Forecasting Models

ozone to NOx controls in the downtown region of Los Angeles. Flemming et al. (2001)

have employed the regional Eulerian model with 3 chemistry mechanisms (REM3), to

operationally forecast ozone since 1997 at the Freie University, Berlin. The model has

been used for making 1, 2, and 3 day advance ozone forecasts with data over Germany

from 1997 to 1999. The resulted correlation coefficient (r) ranged from 0.77 to 0.90.

The disadvantage of this model was that it tended to underestimate the low ozone con-

centrations. Wotawa et al. (1998) developed a Lagrangian photochemical box model for

providing ozone forecasts for Vienna, Austria. This model consisted of up to 8 vertical

and up to 5 horizontal boxes. It simulated emission, chemical reactions, horizontal

diffusion, vertical diffusion, dry deposition, wet deposition and synoptic scale vertical

exchange. Model input data included a trajectory term, which was calculated using

forecast meteorological data. The model predictions for 1995 O3 season underestimated

O3 concentrations on most days and r was greater than 0.6 for most of the study cases.

2.3.3 Regression Models

Both linear regression and non-linear regression models have been employed for air

quality forecasting. The general purpose of a linear regression model is to learn about

the linear relationship between several independent variables (predictors) and a depen-

dent variable (predictand).

Prybutok et al. (2000) built a simple linear regression model for forecasting the

daily peak O3 concentration in Houston. The final model used four meteorological and

O3 precursor parameters: O3 concentration at 9:00 a.m., maximum daily temperature,

average NO2 concentration between 6:00 a.m. and 9:00 a.m. and average surface wind

speed between 6:00 a.m. and 9:00 a.m. The correlation coefficient r of this model was

0.47. Chaloulakou et al. (1999) proposed a multiple regression model to forecast the

next day’s hourly maximum O3 concentration in Athens, Greece. The set of input

variables consisted of eight meteorological parameters and three persistence variables,

which were the hourly maximum O3 concentrations of the previous three days. Testing

this linear regression model on four separate test data sets, the mean absolute error

(MAE) ranged from 19.4% to 33.0% of the corresponding average O3 concentrations.

Non-linear regression models are superior to simple linear regression models because

they capture the non-linear relationships between air pollutant and meteorological pa-
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rameters. Bloomfield et al. (1996) described a non-linear regression model to explain

the effects of meteorology on O3 in the Chicago area. The model input variables

consisted of a seasonal term, a linear annual trend term, and twelve meteorological

variables. The observed ozone and meteorological data in 1981-1991 were divided into

subsets for model development and validation. The model error were within ±5 ppb

about half the time, and within ±16 ppb about 95% of the time. Bloomfield et al.

(1996) demonstrated that the meteorological data accounted for at least 50% of the

ozone concentration variance.

As the reference model in this thesis, the updatable model output statistics - air

quality (UMOS-AQ) system applies multiple linear regression (MLR) to forecast air

quality predictands. UMOS-AQ is a statistical post-processing system for air quality

forecasting in Canada. The current Environment Canada (EC) operational AQ fore-

cast model is the GEM-MACH15 (global environmental multi-scale model - modeling

air quality and chemistry with 15-km grid spacing). GEM-MACH15 runs twice daily

at 00 and 12 UTC to give 48-hour AQ forecasts (Anselmo et al., 2010). UMOS-AQ

is based on post-possessing the GEM-MACH15 forecasts. The UMOS post-processing

package has been used by EC to forecast meteorological predictands such as surface

temperature and probability of precipitation since 1995 (Wilson and Vallée, 2002, 2003).

UMOS-AQ uses the existing UMOS framework and became operational in July 2010.

Three predictands are currently considered by UMOS-AQ: O3, PM2.5 and NO2. Possi-

ble MLR predictors include O3, PM2.5 and NO2 hourly concentrations at a station for

each hour of the previous day (i.e., persistence) plus 84 other chemical, meteorologi-

cal, and physical predictors (e.g., solar flux, sine of scaled Julian day). Two seasons

(summer and winter) are considered with a transitional period of 6 weeks. A minimum

of 250 observation-model pairs per season are needed to generate robust MLR equa-

tions and the equations are regenerated with the latest model data every week (Moran

et al., 2014). One of UMOS-AQ’s main advantages is its ability to adapt to the model

changes, as its equations are updated four times per month. However, UMOS-AQ can

only be constructed for locations where historical AQ measurements are available (Wil-

son and Vallée, 2002; Moran et al., 2014). This becomes a limitation because most AQ

stations are not co-located with public weather forecast stations. A solution is to blend

the UMOS-AQ point forecasts with GEM-MACH15 gridded forecast fields. This is now

being done by optimal interpolation (OI) using MIST (Moteur d’Interpolation STatis-

tique), an EC statistical interpolation package that uses the OI algorithm described by

Mahfouf et al. (2007).
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2.3.4 Neural Network Models

Although many approaches such as box models, Gaussian plume models, persistence

and regression models are commonly applied to characterize and forecast air pollu-

tants concentration, they are relatively straightforward with significant simplifications

(Luecken et al., 2006).

A promising alternative to these models is the neural network model (Lal and Tripa-

thy, 2012; Nejadkoorki and Baroutian, 2012; Gardner and Dorling, 1998). Several NN

models have already been used for different air pollutant concentration forecast. Gard-

ner and Dorling (2000) used MLP NN to forecast the hourly ozone concentration at

five cities in UK and they found that NN outperformed both CART (classification and

regression tree) and linear regression (LR). The predictors used included the amount

of low cloud, base of lowest cloud, visibility, dry bulb temperature, vapour pressure,

wind speed and direction. To account for seasonal effect, they had two extra predictors

in model 2, sin(2πd/365) and cos(2πd/365), with d the Julian day of the year, thereby

informing the model where in the annual cycle the forecast was made. Ballester et al.

(2002) used a finite impulse response NN model to make 1-day advance predictions of

8-hr average ozone concentrations in eastern Spain. The input variables were observed

2h lagged observed values of air quality and meteorological inputs. The models were

evaluated using data from the 1996 to 1999 ozone seasons (July to September). The

statistics of the model fits for three sampling sites ranged from 6.39 to 8.8 ppb for MAE

and from 0.73 to 0.79 for R.

For particulate matter (PM), Kukkonen et al. (2003) compared the performance of

five different NN models for the prediction of PM10 concentrations in Helsinki. Results

obtained showed that NN models performed better than linear models. In addition,

Perez et al. (2000) constructed an NN PM2.5 forecast model to make predictions of

hourly averaged PM2.5 concentrations in the downtown area of Santiago, Chile. Three

forecast models, NN, LR, and persistence, were developed to predict PM2.5 concentra-

tions at any hour of the day, using the 24 hourly averaged concentrations measured on

the previous day as the input variables. The normalized MAE (NMAE) of the predic-

tions for 1994-1995 ozone season (May 1 to September 30) ranged from 30% to 60%.

These authors found that PM2.5 formation strongly depended on weather conditions,

with the PM2.5 concentrations negatively correlated with wind speed and relative hu-

midity. NO2 concentration have also been investigated using NN (Gardner and Dorling,
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1999).

Several authors compared different approaches when applied to different pollutants

and prediction time lags (Boznar et al., 1993; Lu and Wang, 2005; Yi and Prybutok,

2002). In the overview of NN application in the atmospheric sciences, Gardner and

Dorling (1998) concluded that NN generally gives as good or better results than linear

methods.

2.4 Summary

Studies from the fields of machine learning and air quality models show that much effort

has been put into air quality forecasting, including the use of various machine learning

methods. Machine learning methods have been widely used in environmental science

problems and the applications of the MLP NN tend to provide some advantages over

linear methods based on the results of the previous studies. In air quality forecasting,

machine learning methods are promising when compared with the linear regression

model and the photochemical dispersion model. The ELM method has been introduced

to overcome some of the drawbacks in the popular MLP NN model, e.g. in computing

time and the local minima problem.
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Chapter 3

Data

3.1 Study Area

The updatable model output statistics - air quality (UMOS-AQ) model uses observa-

tions from more than 250 stations across Canada (Fig 3.1). The stations belong to the

National Air Pollution Surveillance Network (NAPS), where each station measures all

or a combination of the concentrations of ozone (O3), fine particulates (PM2.5) and

nitrogen dioxide (NO2) (Antonopoulos et al., 2012). Six stations across Canada are

used for model testing: Vancouver International Airport (British Columbia), Edmon-

ton Central (Alberta), Winnipeg (Manitoba), Toronto Downtown (Ontario), Montreal

Airport (Quebec) and Halifax (Nova Scotia). These six stations include the largest

cities of Canada, the coastal cities and the major center for oil and gas industry in

Canada. They all have different topography, weather conditions and major pollution

sources.

3.2 Data Set

The data set used in this study covers the period 2009/07-2014/07 and was provided

by UMOS-AQ model of Environment Canada. The first two years of data (2009/07-

2011/07) were for model training and validation and the final three years (2011/08-

2014/07) were used for model testing as well as model updating. The model will be

evaluated using these 3-year data sets. As mentioned before, UMOS-AQ is a post

possessing system that combines multiple sources of information: AQ forecasts, mete-

orological forecasts, AQ measurements and physical variables. Hence, the input data

sets consisted of observational and numerical data.

The observational air pollutant data were from automated near-real-time (NRT)

hourly reports of local O3, PM2.5, and NO2 concentrations from around 250 urban and

rural AQ measurement stations located across Canada. The near-real-time data have
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Figure 3.1: Geographical distribution of the UMOS-AQ stations (red dots), with the
six stations selected in this study shown as blue triangles.
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uncertainty as they have not been verified and may not adequately reflect representative

air quality values. Numerical data came from an air quality model (GEM-MACH15),

which was used to produce a set of direct and calculated predictors for our machine

learning models. GEM-MACH15 produced both chemical and meteorological fields

with its twice daily 48-h forecasts starting at 00 and 12 UTC. Using these predictors,

our models produced hourly spot concentration forecasts up to 48 h.

The predictors used in this study includes persistence predictors, meteorological pre-

dictors, chemical and physical predictors. The persistence predictors included observed

ozone, PM2.5, and NO2 concentration at the time the model was initiated (00 UTC

and 12 UTC). Meteorological predictors consisted of model dry bulb temperature, wind

component, geopotential height, relative humidity, dew point depression, surface model

pressure, cumulative precipitation, average rate of snowfall in water equivalent, cloud

cover, model boundary layer height, wind speed and dew point temperature. Chemical

variables were the maximum and average ozone, PM2.5, and NO2 concentrations during

3, 6 and 24 hour interval. Physical variables included the downward solar flux, cal-

culated mixing height, day of week, sine of the Julian day and calculated mixing height.

Three predictands (target data) were considered, namely the observed ozone, PM2.5,

and NO2 hourly average concentrations in the six stations across Canada. Nine an-

tecedent predictors were also considered: 1) the pollutant concentration valid at the

same local sidereal time (LST) as the forecast but from 24 hours prior to the model

initialization, 2) the maximum hourly average pollutant concentration observed within

the 24 hour period prior to the model initialization, 3) the minimum hourly average

pollutant concentration observed within the 24 hour period prior to the model initial-

ization. As UMOS did not include antecedent predictors, we did not use the antecedent

predictors when comparing against the UMOS benchmark.

Some statistical properties of the ozone, PM2.5, and NO2 concentrations during the

study period (2009/07 - 2014/07) are shown in Table 3.1. The mean and standard

deviation were calculated over the 5-year period, while the maximum values were the

median of each year’s maximum concentration with the median used to avoid influence

from extreme events.

20



3.2. Data Set

Station Ozone (ppb) PM2.5 (µg/m3) NO2 (ppb)

Mean Std.Dev. Max Mean Std.Dev. Max Mean Std.Dev. Max

Vancouver 16.0 10.3 49.0 4.4 3.0 23.0 14.5 7.5 45.5

Edmonton 18.2 10.4 63.0 9.9 6.6 68.0 17.7 9.2 58.5

Winnipeg 25.9 11.7 66.5 5.8 3.7 37.0 6.5 6.3 39.5

Toronto 25.4 11.4 78.0 6.8 5.0 37.0 14.9 6.8 45.0

Montreal 23.6 10.9 67.0 9.5 6.1 47.0 9.8 6.9 52.0

Halifax 21.5 9.7 53.0 5.4 3.2 33.5 3.2 3.1 18.0

Table 3.1: Statistical properties of ozone concentration in 6 stations.

Table 3.1 shows that Toronto and Winnipeg have the highest mean ozone values.

All six stations have less than 10 µg/m3 mean PM2.5 concentration, with Montreal and

Edmonton being about 30% larger than others. The NO2 mean value varies greatly

among the six stations, as the mean in Halifax is only 3.2 ppb, whereas Toronto,

Vancouver and Edmonton all have over 14 ppb mean. These statistics cannot provide

a full assessment of the air pollutant concentration in each city as the statistics may

be strongly influence by the location of each station within the city.
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Chapter 4

Methods and Models Set up

In this chapter, several different methods and models are introduced. Each method

produces a different model per station per forecast hour per pollutant. The model

development can be separated into two phase: 1) training and 2) testing and updating.

Models are first trained and validated using 2-year data sets (2009/07-2011/07) and

after the initialization phase, the models are used to predict the air pollutant concen-

tration with newly arrived single datum or a chunk of data during 2011/08-2014/07.

Model updating is conducted by either batch learning algorithm or an online-sequential

learning algorithm from the newly arrived data.

When data become available, batch learning performs a complete retraining of the

model using all past data plus the new data. It can be used to update the multiple lin-

ear regression (MLR), multi-layer perceptron neural network (MLP NN) and extreme

learning machine (ELM) methods. Depending on computation resources, batch updat-

ing can be applied daily, monthly or seasonally. Batch learning can be computationally

intensive for nonlinear models as it may involve many iterations through the training

data. There are many applications where online-sequential learning algorithms are pre-

ferred over batch learning algorithms as sequential learning algorithms do not require

retraining with the full dataset whenever new data arrive (Liang et al., 2006).

A versatile online-sequential learning algorithm means the data for training are se-

quentially presented (singly or as a chunk of data) to the learning algorithm. At any

time, only the newly arrived data (instead of all past data) are needed to update the

model. The new data, once learned by the model, can be discarded (Liang et al., 2006).

The learning algorithm has no prior knowledge as to how many training dataset will be

presented. A comparison will be made between the online-sequential extreme learning

machine (OS-ELM), the online-sequential multiple linear regression (OS-MLR) and the

reference model, UMOS which is also online-sequential.
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4.1. Input Data Preprocessing

4.1 Input Data Preprocessing

Without properly transforming or scaling the input data, machine learning methods

may be trained inefficiently and the resulting model may perform poorly. If the input

variables in the training dataset vary greatly in magnitude, the model weights have to

adapt to the differences. The resulting weights will also have a large spread in mag-

nitude, rendering the training algorithm inefficient (Rasouli et al., 2012). Input data

preprocessing/scaling is an efficient way to solve the problem. The commonly used

scaling methods include: (i) linear transformation, (ii) statistical standardization, and

(iii) nonlinear transformation (e.g. the logarithmic transformation). Input data in this

study is standardized, i.e. data have the mean value subtracted, then divided by the

standard deviation, yielding variables with zero mean and unit standard deviation. As

separate forecast models are developed for the different hours of the day, there is no

need to remove the diurnal cycle from the input data. Control filters with minimum

concentration, maximum concentration and rate of change criteria were applied here

to remove unrealistic low/high observations and to ensure reasonable rates of changes

in the measurements.

4.2 Multiple Linear Regression (MLR)

Multiple linear regression models were developed in the free R software (R Development

Core Team, 2011) environment for statistical computing with the package “stats”.

MLR is a statistical technique for finding the linear relation between the independent

variables (predictors) and the dependent or response variable (Kumar and Goyal, 2013).

The general MLR model is built from N observations of the multiple predictor variables

xk (k = 1, . . . ,m) and the observed target data y. The MLR output variable ŷ can be

written in terms of the input predictor variables as

ŷ = β0 + β1x1 + β2x2...+ βmxm, (4.1)

where βj(j = 0, . . . ,m) are the regression coefficients or parameters determined by

minimizing the MSE between the model output and the target data using a linear

least squares algorithm. Stepwise regression is applied here using the R software to

choose relevant predictor variables by an automatic procedure (going both forward and

backward). The model was trained with two years of data (2009/07-2011/07), while

the testing and updating were performed daily by batch learning using the 3-year data
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4.3. Online-Sequential Multiple Linear Regression (OS-MLR)

(2011/08-2014/07). Predictors were re-selected and the linear regression was recalcu-

lated during each model update.

4.3 Online-Sequential Multiple Linear Regression

(OS-MLR)

To facilitate the rapid and frequent updating of large number of equations from a

linear statistical model, OS-MLR models are developed using the sums-of-squares-and-

cross-products matrix (SSCP) (Wilson and Vallée, 2002). The idea of the updating

is to do part of the necessary recalculation of regression coefficients in near-real time

by updating the SSCP matrix and storing the data in that form rather than as raw

observations. The MLR model in (4.1) involves finding the least squares solution of

the linear system

Xβ = Y, (4.2)

where the input data matrix X of dimension N × (m+ 1) is

X =


1 x11 · · · x1m
...

...
. . .

...

1 xN1 · · · xNm

 , (4.3)

and the β parameter vector of length m+ 1 and the target data vector Y of length N

are, respectively,

β =


β0

β1
...

βm

 and Y =


y1

y2
...

yN

 . (4.4)

Minimizing ‖Xβ − Y‖2 leads to the solution

β̂ = (XTX)
−1

XTY, (4.5)

where β̂ is the least squares estimate of the regression coefficients and K = XTX is

the SSCP or data covariance matrix.
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4.3. Online-Sequential Multiple Linear Regression (OS-MLR)

First, start with an training set with N0 data points and the solution is given by

β(0) = K−10 XT
0 Y0, where K0 = XT

0 X0.

Next, suppose a new chunk of data containing N1 data points has arrived, updating

the model requires minimizing ∥∥∥∥∥
[
X0

X1

]
β −

[
Y0

Y1

]∥∥∥∥∥
2

, (4.6)

yielding the new parameter vector

β(1) = K−11

[
X0

X1

]T [
Y0

Y1

]
,with K1 =

[
X0

X1

]T [
X0

X1

]
. (4.7)

For sequential learning, β(1) would need to be expressed only in terms of β(0),K1,X1

and Y1. K1 can be written as

K1 =
[
XT

0 XT
1

] [X0

X1

]
= K0 + XT

1 X1. (4.8)

In (4.7), [
X0

X1

]T [
Y0

Y1

]
= XT

0 Y0 + XT
1 Y1

= K0K
−1
0 XT

0 Y0 + XT
1 Y1

= K0β
(0) + XT

1 Y1

= (K1 −XT
1 X1)β

(0) + XT
1 Y1

= K1β
(0) −XT

1 X1β
(0) + XT

1 Y1.

(4.9)

Substituting (4.9) into (4.7), we get

β(1) = K−11 (K1β
(0) −XT

1 X1β
(0) + XT

1 Y1)

= β(0) + K−11 XT
1 (Y1 −X1β

(0)).
(4.10)

Generalizing the recursive algorithm for updating, when the (k+1)th chunk of new

data arrives, the least squares solution can be written as

β(k+1) = β(k) + K−1k+1X
T
k+1(Yk+1 −Xk+1β

(k)),

Kk+1 = Kk + XT
k+1Xk+1.

(4.11)
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4.4. Multi-layer Perceptron Neural Network (MLP NN)

Eq.(4.11) gives the recursive formula for β(k+1) in OS-MLR. In summary, our initial

model was trained by MLR using a 2-year data set (2009/07-2011/07). After that,

prediction and model updating were conducted daily by the OS-MLR algorithm using

a 3-year data set (2011/08-2014/07).

4.4 Multi-layer Perceptron Neural Network (MLP NN)

To construct the MLP NN model (Fig.2.1), the neural network is considered to be a

system receiving information from m input variables xi (i = 1, . . . ,m), namely meteo-

rological, physical and chemical predictors, and produces a single output, in our case

the concentration of ozone, PM2.5 or NO2. No prior knowledge about the relationship

between input and output variables is assumed. The MLP NN forecast model is de-

veloped in R software using the “monmlp” package (Cannon, 2012a). The activation

function used is the hyperbolic tangent function for the hidden layer and the identity

function for output layer. Hence, the MLP NN with L hidden nodes or neurons is

mathematically modeled by

ŷi =

L∑
j=1

βjf(wj · xi + bj) + β0, (i = 1, ..., N), (4.12)

where f is the tanh function, xi and ŷi are the model input and output, respectively,

N is the number of data points, wj = [wj1, wj2, ..., wjm]T and bj are the weights or

parameters connecting the input layer to the jth hidden node, βj = [β1, β2, ..., βm]T

and β0 are the weights/parameters connecting the jth hidden node to the output.

Training the MLP NN model involves adjusting the parameters or weights to mini-

mize the objective function J , defined here to be the mean squared error (MSE) between

the model output and the target data yi:

J =
1

N

N∑
i=1

(ŷi − yi)2. (4.13)

The minimization of J involves using back-propagation (Hsieh, 2009). A common

problem in the development of a neural network is determining the optimal number

of hidden nodes (HN). A sequential, small grid search with bagging (abbreviated from

Bootstrap Aggregating) is used to select the optimal number of HN (Lima et al., 2015).
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4.5. Extreme Learning Machine (ELM)

Bagging (Breiman, 1996) is an ensemble method developed from the idea of boot-

strapping in statistics. Under bootstrap resampling, data are randomly selected repeat-

edly from a dataset with replacement to form a new training dataset, which has the

same number of data points as original dataset. A data point in the original dataset

can be selected more than once into the new training dataset. During the random

draws, predictor and predictand pairs are drawn together. For autocorrelated data,

data segments about the length of the autocorrelation time scale are drawn instead

of individual data points. In the bagging approach, one model can be built from one

bootstrap sampled set, so an ensemble of models can be derived using a large number of

bootstrap sets. By averaging the model output from individual members in the ensem-

ble, a final output is obtained. The data not selected in a bootstrap (the “out-of-bag”

data) are used as validation data. NN model training is stopped when the model error

calculated from the validation data begins to increase to prevent overfitting to noise in

the data (Hsieh, 2009).

During the grid search for the optimal number of HN using data from 2009/07 to

2011/07, we used an ensemble of 30 (bagging) models, and sequentially increased the

number of HN one by one until the maximum number of HN was achieved or consec-

utive increments were without improvements, based on the out-of-bag error. Due to

the limitation of computational resources and the time-consuming nature of the MLP

NN, models were only batch updated seasonally using the 3-year data from 2011/08-

2014/07. In each update, 30 bagging ensemble members were run with the same number

of HN as found in the initial training.

4.5 Extreme Learning Machine (ELM)

The Extreme Learning Machine was proposed by Schmidt et al. (1992) and Huang

et al. (2006b) based on single-hidden layer feed-forward neural network (SLFNs) with

random weights in the hidden layer. The ELM algorithm implements a SLFN similar

in structure to an MLP NN model (Fig 2.1) and mathematically modeled as in (4.12).

Our ELM uses the same activation functions as our MLP NN model, i.e. the

hyperbolic tangent function for the hidden layer and the identity function for the output

layer. Huang et al. (2006b) proved that the wi and bi parameter in (4.12) can be

randomly assigned if the activation function is infinitely differentiable, so only the β
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4.5. Extreme Learning Machine (ELM)

parameters need to be optimized when minimizing the mean squared error between the

model output ŷ and the target data y. Thus, in the ELM approach, training an SLFN

is equivalent to simply finding the least-squares solution of the linear system

Hβ = Y, (4.14)

where the hidden layer output matrix H of dimension N × (L+ 1) is

H =


1 f(w1 · x1 + b1) · · · f(wL · x1 + bL)
...

...
. . .

...

1 f(w1 · xN + b1) · · · f(wL · xN + bL)

 , (4.15)

and the β parameter vector of length L+ 1 and the target data vector Y of length N

are

β =


β0

β1
...

βL

 and Y =


y1

y2
...

yN

 . (4.16)

Eqs.(4.14) and (4.16) are mathematically identical to the MLR Eqs.(4.2) and (4.4),

hence ELM has transformed an MLP NN model requiring complicated nonlinear opti-

mization to a simple MLR problem. The solution of the linear system for β is simply

via least squares as in MLR, i.e.

β̂ = H†Y (4.17)

where H† is the Moore-Penrose pseudo-inverse (Liang et al., 2006).

We consider the case where rank H = L, the number of hidden nodes, then H† is

given by

H† = (HTH)
−1

HT , (4.18)

and

β̂ = (HTH)
−1

HTY. (4.19)

Huang et al. (2006b) did not have the bias parameter β0 in the output layer as

leaving out β0 might make learning more difficult (Thimm and Fiesler, 1997), we in-
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4.5. Extreme Learning Machine (ELM)

cluded it by having a first column of ones in H and having β0 in the top row of the

β matrix (Romero and Alquẽzar, 2012). Huang and Wang (2006) set the number of

hidden neurons empirically and used a uniform random distribution in the range [-1,1]

for both the weights and bias parameters in the hidden layer. In order to perform

the non-linear relationship of air quality problem efficiently, we need to find a more

accurate and automatic way to choose the parameters and the net work structure (i.e.

the number of HN).

The hill climbing method was used to decide the optimal number of HN in ELM.

Hill climbing is a simple mathematical optimization technique that starts with an arbi-

trary solution to a problem, and then attempts to find a better solution (smaller MSE)

by incrementally changing a single element (number of hidden nodes). If the change

produces a better solution, an incremental change (often by a defined step size) is made

towards the new solution. Iterations continue until no further improvements can be

found. In the hill climbing algorithm used here, the step size is automatically adjusted

by the algorithm. Thus it shrinks when the probes do poorly and it grows when the

probes do well, helping the algorithm to be more efficient and robust (Yuret, 1994).

For each candidate a 10-fold cross-validation within the training set was performed to

avoid over-fitting. Cross-validation is a model validation technique for assessing how

the results of a statistical analysis will generalize to an independent data set. In k-fold

cross-validation, the original sample is randomly partitioned into k equal sized subsam-

ples, with a single subsample retained as the validation data for testing the model, and

the remaining k − 1 subsamples as training data. The process is repeated k times so

all k subsamples are used as validation data.

As weights are randomly assigned in ELM, diversity is an important factor because

model complexity is affected by the variance of the distribution. Typically a uniform

distribution, spread over a fixed interval [−r, r] is used for weight distribution. Thimm

and Fiesler (1997) gave a review of random weight initialization methods for MLP and

found that r should be of the form

r = aF−0.5 (4.20)

where F is the number of predictors in the case of a 1-hidden layer MLP model. Using

the hyperbolic tangent as the activation function, they found a ≈ 1 to be a reasonable

value. For our ELM, a = 1 was chosen, and the random bias parameter bj in the hidden
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4.6. Online-Sequential Extreme Learning Machine (OS-ELM)

layer was chosen to be uniformly distributed within [-1, 1].

The ELM algorithm was only used to do the initial model training with two-year

data sets (2009/07-2011/07). Model updating was then conducted by the OS-ELM

algorithm. Like many other learning algorithms the stochastic nature of ELM means

that different trials of simulation may yield different results. The random assignment

of weight and bias parameters in the hidden layer makes each ELM distinct. To make

the ELM model more stable, we use an ensemble of 30 members in the ELM models

and the output of the ensemble is the average of the individual ensemble members.

4.6 Online-Sequential Extreme Learning Machine

(OS-ELM)

As ELM randomly chooses weights for the hidden layer and analytically determines

weights in the output layer by linear least squares, the ELM algorithm can be adapted

for online sequential learning in the same way as the linear regression model in Sec 4.3.

Given N0 observations in the initial training set with N0 ≥ L, the number of HN,

if we use batch ELM to train the model, the matrix ‖H0β − Y0‖2 is minimized and

the solution (4.19) gives β(0) = K−10 HT
0 Y0, where K0 = HT

0 H0.

Analogous to the online sequential solution (4.11) for OS-MLR, when the (k+ 1)th

chunk of new data arrives, the recursive least-squares solution for updating OS-ELM

is

β(k+1) = β(k) + K−1k+1H
T
k+1(Yk+1 −Hk+1β

(k)),

Kk+1 = K0 + HT
k+1Hk+1.

(4.21)

To summarize, the OS-ELM approach consists of two parts: an initial training

phase and a sequential learning phase. The initialization phase involves batch learning

with ELM on the initial training data and analytically solves (4.19). Following the

initialization phase, the model is updated in the online sequential learning phase by

(4.21) using the newly arrive chunks of data. Once a chunk of data has been used, it

can be discarded as it is not used in future model updates (Liang et al., 2006). For our

case, the initial model training was conducted by the ELM algorithm using two years
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4.7. Model Evaluation

of data (2009/07-2011/07) with 30 ensemble members. Models are then update daily

by the OS-ELM algorithm using the 3-year data set from 2011/08 to 2014/07. The

number of hidden node was chosen in the initial learning phase using the hill climbing

method and was not changed anymore during the online-sequential learning phase.

4.7 Model Evaluation

Several statistical scores were used to evaluate the performance of O3, NO2 and PM2.5

model, including the Pearson correlation coefficient (r), mean absolute error (MAE),

MAE/MAD (MAD being the mean absolute deviation), root mean squared error (RMSE)

and skill score (SS).

4.7.1 Pearson Correlation Coefficient (r)

The Pearson correlation coefficient, reflecting the degree of linear relationship between

two variables, is defined by

r =
cov(Ŷ,Y)

σŶσY
, (4.22)

where Ŷ demotes the model predicted pollutant concentrations, Y the observed values,

cov the covariance and σ the standard deviation. This coefficient varies from -1 to 1,

with 0 indicating no relationship. While the Pearson correlation is a good measure

of the linear association between predictions and observations, it does not take into

account the prediction bias, and is sensitive to rare extreme events.

4.7.2 Mean Absolute Error (MAE)

The mean absolute error (MAE) is the average absolute value of the forecast errors,

with

MAE =
1

N

N∑
i=1

|ŷi − yi|, (4.23)

where N is the number of data points, yi is the observed value and ŷi is the predicted

value.
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4.7. Model Evaluation

4.7.3 MAE/MAD

The average air pollutant concentrations can vary from one location to another. Model

predictions for areas with large variations in pollutant concentration levels usually have

higher MAE than those for areas with smaller variations. Therefore, the MAE is not

always useful for comparing model results from different locations. To normalize the

errors, MAE is divided by the mean absolute deviation (MAD) of the observations,

yielding a relative mean absolute error that allows comparison between different loca-

tions.

MAE

MAD
=

N∑
i=1
|ŷi − yi|

N∑
i=1
|yi − y|

, (4.24)

where y is the mean of y.

4.7.4 Root Mean Square Error (RMSE)

The root mean squared error (RMSE) is the square root of the mean squared error

between the predictions and observations,

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2, (4.25)

RMSE is more sensitive to outliers than the MAE.

4.7.5 Skill Score (SS)

The skill score is used to determine the skill of a forecast model by comparing it to a

base or reference model such as climatology or persistence. In this study the skill score

is given by

SS =
(A−Aref)

(Aperfect −Aref)
(4.26)

where A represents the MAE from using the MLR, OS-MLR, MLP NN or OS-ELM

model, Aref = MAE of the UMOS reference model and Aperfect = 0 for the MAE of a

perfect model. A model with SS > 0 means that it performs better than the reference

model, whereas SS < 0 means it has less skill than the reference model. The skill score
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4.8. Summary

makes it easy to compare the forecast skill of different models.

4.8 Summary

In summary, stepwise multiple linear regression (MLR), online-sequential multiple lin-

ear regression (OSMLR), multi-layer perceptron neural network (MLP NN) and online-

sequential extreme learning machine (OSELM) were developed and updated using a

total of five years of air quality data. Model performance was evaluated by several

statistical scores and compared with those of the UMOS model. These five models

compared include non-linear models (MLP NN, OSELM) and linear models (MLR,

OSMLR, UMOS). They included two different approach to model updating, namely

batch learning (MLP NN, MLR) and online-sequential learning (OSMLR, OSELM,

UMOS).
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Chapter 5

Results and Discussion

Model performance on testing data was evaluated by comparing the five model es-

timates (UMOS, MLR, OSELM, OSMLR and MLP NN) with the near-real-time ob-

served ozone concentrations. A comparison between our four models and UMOS would

not be completely fair due to differences in model strategy and some fundamental defi-

ciencies in the UMOS implementation. UMOS uses separate models for the warm and

cold seasons, whereas our models were developed for the whole year. Furthermore, the

integer precision of the UMOS output and the UMOS forecasts made under missing

data conditions likely lowered the UMOS forecast scores. Nevertheless, we have in-

cluded UMOS in our model comparisons below.

5.1 Ozone

The boxplot (Fig 5.1) shows the observed and predicted values at the six stations.

The boxplot is a convenient way of displaying the distribution of data based on the

following statistics: median, first quartile, third quartile, minimum and maximum. In

the boxplot, the central rectangle spans the first quartile to the third quartile, while

the waistline inside the rectangle shows the median. Distance between the first and

third quartiles is the interquartile range (IQR). The upper whisker extends to the hight

value within 1.5 IQR from the top of the rectangle, while the lower whisker extends

to the lowest value within 1.5 IQR from the bottom of the rectangle. Values beyond

the end of the whiskers are considered outliers and are shown as dots. Among the six

stations, Winnipeg has highest average ozone value and extreme cases, although the

extreme values have not been vetted sufficiently to know if they are valid observations,

i.e. they could be related to wildfire events upwind or local smoke issues. Fig 5.1 also

indicates the forecast models tended to underestimate the median ozone concentration,

and the extremes in Winnipeg.
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5.1. Ozone
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Figure 5.1: Boxplot of the observed ozone values and the predicted values from five
methods over all forecast lead times (1 - 48hr) at six stations.

Ozone model forecast error statistic are shown in Fig 5.2. The Pearson correlation

(r) for the five models range from 0.75 to 0.85. The MAE for the models range from

4.8 ppb to 7.3 ppb and RMSE range from 6.4 ppb to 9.8 ppb. The normalized error

MAE/MAD varies from 0.47 to 0.64.

According to the correlation and normalized error, models have best performance in

Vancouver with smallest error and highest correlation attained by the OSELM method.

Due to the extreme values in Winnipeg (Fig 5.1), all forecast models performed poorer

than other stations in terms of MAE and RMSE. All four models had better perfor-

mance than UMOS, the benchmark, and OSELM generally outperformed the other

methods over the six stations. Both OSMLR and stepwise MLR are daily updated

linear methods and both performed well in ozone forecasting, with these two linear

regression methods showing best skill in Winnipeg. The seasonally updated MLP NN

model tended to underperform when compared with MLR, OSELM and OSMLR, as

the other models were updated daily and the MLP NN only 3-monthly due to high

computational cost - updating the MLP NN seasonally used more than 10 times the

cpu time of the OSELM updated daily.
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Figure 5.2: Ozone forecast scores of different methods averaged over all forecast lead
times (1 - 48hr) at the six stations.
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Forecast correlation scores from the five models are shown by heat maps in Fig 5.3

as the forecast lead time varies from 1 - 48 hrs, with the forecast initiated at 00 UTC

and 12 UTC. The heat maps show high correlation in red and low correlation in blue,

with some missing values in Edmonton and Winnipeg. From the mean ozone con-

centration plots, strong diurnal cycle can be found in all six stations (top panels in

Fig 5.3). Station Vancouver, which has the lowest mean ozone concentration among

the six stations, has the peak during late afternoon (local time 4 pm - 6 pm). Forecast

models have better correlation scores during the peak time and the 00 UTC initiated

models also work well from 1 to 12 forecast hours. UMOS lost to other methods in

Vancouver, whereas the seasonally updated MLP NN method has competitive perfor-

mance against the daily updated linear methods.

Edmonton has average ozone concentration above 25 ppb in local late afternoon.

Correlations above 0.8 occur in 1-4 and 16-27 hour forecast lead times of the 00 UTC

initiated models and 1-16 and 30-38 hour lead times of the 12 UTC initiated models.

However, models show poor performance when ozone is low at night (12 am - 6 am)

relative to other forecast hours as well as other stations. Winnipeg has highest ozone

concentration among the six stations, with over 35 ppb mean value during peak time.

Models have good performance for first 24 hours while initiated at 00 UTC but only

works well in first 12 forecast hours of the 12 UTC initiated models.

In station Toronto, correlation scores of the 2-3, 16-26 and 42-48 hour lead time

forecasts initiated at 00 UTC are above 0.8, while for models initiated at 12 UTC,

better performance occurs in the 1-14 and 30-37 hour lead times. These forecast lead

times all correspond to the high ozone concentration period in the diurnal cycle. We

can conclude that models initiated at 00 UTC and 12 UTC both work well to predict

ozone concentration in local time (LST) 12 pm - 9 pm and the 12 UTC initiated model

also has good behavior during morning. Ozone in Montreal has average concentration

over 30 ppb in late afternoon. Models initiated at 00 UTC have higher correlation

scores during 1-10, 19-24 and 44-46 hour lead times, while the 12 UTC initiated mod-

els do well for 1-12, 32-35 hour lead times, indicating good model skills during daytime

(9 am - 8 pm LST).

While comparing different models, OSELM tends to outperform the others by mak-

ing accurate predictions over a wider range of forecast hours. Comparing stations,

models generally have lowest accuracy in Halifax.
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Figure 5.3: Forecast correlation score as a function of the forecast lead time (1-48hr)
from the five models displayed in a heat map (bottom panels) for forecasts initiated
at 00 UTC (left) and 12 UTC (right) at six stations. Black vertical stripes indicate
“missing values”, i.e. fewer than 100 data points were available for model training
during 2009/07-2011/07. The mean diurnal ozone cycle is displayed in the top panels.
00 UTC corresponds to local time (daylight saving time) of 5 pm, 6 pm, 7 pm, 8 pm,
8 pm and 9 pm at Vancouver, Edmonton, Winnipeg, Toronto, Montreal and Halifax,
respectively. 40



5.1. Ozone

To evaluate the performance of models, forecast skill scores were calculated relative

to UMOS reference model based on the MAE. Fig 5.4 shows the skill scores for differ-

ent stations and forecast lead times, with scores above zero indicating that the models

have smaller MAE than UMOS. All four methods (stepwise MLR, OSELM, OSMLR

and MLP NN) have positive skill scores for most forecast lead times at all six stations,

especially during the high ozone concentration period in the diurnal cycle. OSELM

shows the best performance in stations Vancouver, Edmonton, Toronto, Montreal and

Halifax, often outperforming UMOS by more than 10%. Linear methods (MLR and

OSMLR) also do well in ozone forecasting, showing higher skill score than OSELM

in Winnipeg. The seasonally updating MLP NN method slightly underperformed the

other three methods and is the only method underperforming UMOS in Winnipeg when

initiated at 00 UTC.

To compare model performance in different seasons, prediction and observational

data during the testing period (2011/8-2014/7) are broken into a warm season (April,

May, June, July, August, September) and a cold season (October, November, Decem-

ber, January, February, March). Table 5.1 shows the mean, standard deviation and

maximum value by station and season. It indicates the higher mean and maximum

values during warm season, but some extreme events can contribute to maximum value

during cold season (e.g. Winnipeg). The ozone residuals (prediction−observation)

(Fig 5.5) show a tendency to have a negative median value (i.e. the models have a

tendency to underpredict) during the warm season. The UMOS model was developed

separately for the warm season and the cold season, whereas MLR, OSELM, OSMLR

and MLP NN were developed using two entire years of data, which could be the reason

that the latter four models underestimated the ozone concentration during the warm

season. For forecast scores in Fig 5.6, although MAE and RMSE are higher during

the warm season, models tend to have better performance in the warm season in terms

of MAE/MAD and r for all stations except Vancouver. Comparing different models,

OSELM tends to have better scores than the other four models in Vancouver, Toronto,

Montreal and Halifax for both seasons.
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Figure 5.4: Ozone MAE skill score of different models by forecast hour, with forecasts
initiated at 00 UTC (left column) and 12 UTC (right column). The panels are arranged
in six rows, from Vancouver (top) to Halifax (bottom).
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Station Warm Season Cold Season

Mean Std.Dev. Max Mean Std.Dev. Max

Vancouver 19.9 11.5 52.0 13.9 12.2 47.6

Edmonton 25.3 12.3 64.0 15.9 10.4 63.0

Winnipeg 33.9 17.0 97.0 26.0 13.4 147.0

Toronto 31.2 14.4 90.0 21.4 10.2 72.0

Montreal 27.3 13.0 75.9 20.9 11.2 56.5

Halifax 25.2 11.6 68.0 27.0 9.8 58.0

Table 5.1: Statistical properties of ozone concentration (ppb) by station and season.

Warm Cold

−30

−20

−10

0

10

20

Va
nc
ou
ve
r

Ed
mo
nto
n

Wi
nn
ipe
g

To
ron
to

Mo
ntr
ea
l

Ha
lifa
x

Va
nc
ou
ve
r

Ed
mo
nto
n

Wi
nn
ipe
g

To
ron
to

Mo
ntr
ea
l

Ha
lifa
x

O
zo

ne
 (p

pb
) Method

UMOS
MLR
OSELM
OSMLR
MLPNN

Figure 5.5: Boxplot of the ozone residuals (prediction−observation) by season and
station. Outliers are not plotted but can be seen in Fig 5.7.
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Figure 5.6: Ozone forecast scores (MAE, RMSE, MAE/MAD and r) by season and
station.
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To study how well the models are in forecasting extreme events of ozone concen-

tration, the top 10th percentile ozone observational data and the corresponding model

predictions are extracted for the two season during 2011/08-2014/07. Table 5.2 pro-

vides statistical properties of the top 10th percentile ozone concentration observations

by season and station, which shows the mean value over 40 ppb during the warm season

and over 35 ppb for the cold season. Winnipeg has highest extreme ozone concentra-

tion with 64 ppb average during warm season and 147 ppb maximum during the cold

season over three years. Fig 5.7 presents the ozone residuals for top 10th percentile.

As the models produced 48 hours of forecasts, a high ozone day can generate multi-

ple outlier points in the boxplot. The models all have a negative median indicating

underprediction of the extreme values, slightly less serious in the cold season than the

warm season. The forecast scores for the top 10th percentile (Fig 5.8) when compared

with the forecast scores for all data (Fig 5.6 or Fig 5.2) revealed that the linear models

(OSMLR and MLR) tended to improve relative to the nonlinear models (OSELM and

MLP NN) when considering only the top 10th percentile, i.e. the linear models tended

to perform better than the nonlinear models when forecasting on high ozone days.

Station Warm Season Cold Season

Mean Std.Dev. Max Mean Std.Dev. Max

Vancouver 40.2 3.3 52.0 37.0 3.2 47.6

Edmonton 46.6 4.3 64.0 35.3 5.3 63.0

Winnipeg 64.0 6.3 97.0 48.8 6.8 147.0

Toronto 58.1 7.3 90.0 38.8 4.8 72.0

Montreal 50.1 5.2 75.9 39.3 3.8 56.5

Halifax 45.0 3.9 68.0 42.5 2.5 58.0

Table 5.2: Statistical properties of top 10th percentile ozone concentration by station
and season.
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Figure 5.7: Boxplot of ozone residuals (prediction−observation) (over all leadtimes)
from the top 10th percentile by season and station.
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Figure 5.8: Ozone forecast scores of top 10th percentile by season and station.
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5.2 PM2.5

PM2.5 observations and predictions by station are shown in Fig 5.9. Edmonton and

Montreal have the highest median PM2.5 concentration (over 8 µg/m3) among the six

stations while Vancouver has the lowest median (5 µg/m3). From the boxplot, in terms

of the median, UMOS tends to agree with the observed PM2.5 values better than the

other methods, which tend to over-predict in Edmonton, Winnipeg, Montreal and Hal-

ifax. Outliers in Edmonton, Winnipeg and Montreal are more common than in the

other three stations, indicating more extreme PM2.5 values.
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Figure 5.9: Boxplot of the PM2.5 observations and predictions by different methods at
six stations.

Fig 5.10 illustrates the PM2.5 model forecast scores during the testing period by

station. Models have poorer scores (MAE/MAD and r) for PM2.5 than for ozone

(Fig 5.2). All models have similar MAE and RMSE for PM2.5. The correlation score

(r) ranges from 0.4 to 0.7, with higher r found in Vancouver, Toronto and Montreal, and

lower r in Winnipeg and Halifax. Comparing different methods, from the relative error

(MAE/MAD) plot we found that UMOS had the lowest MAE/MAD in Edmonton,

Winnipeg and Montreal. In Fig 5.9, these three stations have more outliers, and MLR,

OSELM, OSMLR and MLP NN are all over predicting, as their median values are above
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the observed median. OSELM slightly outperformed the other methods in Vancouver,

Toronto and Halifax, while OSMLR tended to have the highest relative error in most

stations.
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Figure 5.10: PM2.5 forecast scores of different methods at the six test stations.

The mean diurnal cycle in the PM2.5 concentration and the forecast correlation

score for different forecast lead times and initial hours are shown in Fig 5.11. The heat

map shows r > 0.6 in red, r = 0.6 in white, r < 0.6 in blue, and missing values in black.

Station Vancouver, which has the lowest mean PM2.5 concentration, shows two peak

periods at night (11 pm LST) and in the morning (9 am LST) and the trough in late

afternoon (5 pm LST). Forecast correlation scores vary according to the PM2.5 diurnal

cycle, as models have better performance around 9 am and 11 pm LST. The diurnal

cycle in Edmonton is similar to that of Vancouver, with the highest concentration hap-

pening in the morning (10 am LST) and at night(10 pm LST). However, models only

have r > 0.6 for 1-8hr forecast lead time for both 00 UTC and 12 UTC initiation time.

OSELM and MLP NN slightly outperformed other methods for 12-20hr forecast lead
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time at 00 UTC initiation. Models in Winnipeg performed worse with r < 0.6 for most

forecast hour, especially for long lead time.

Correlation scores in Toronto and Montreal are the best among the six stations.

PM2.5 concentration peaks in the morning (9 am LST) with a secondary peak at night

(10 pm LST) for both station. In Toronto, models have r > 0.6 during 1-24 forecast

hours for 00 UTC initiation and 1-36 forecast hours for 12 UTC initiation. The cor-

relation heat map of Montreal shows r > 0.7 for 1-24 forecast hours and the models

performed well even during the low concentration period in the diurnal cycle (32-36

forecast lead times of the 12 UTC models). Halifax has a similar mean PM2.5 value

as Vancouver, but the models’ scores are much worse. Most of the correlation scores

are below 0.6, during both high and low concentration periods. UMOS loses to other

methods for the 20-24 and 40-48 hour forecasts initiated at 00 UTC, whereas OSELM

tends to slightly outperform the other models.

PM2.5 model MAE skill scores (relative to UMOS) are plotted in Fig 5.12. For

Vancouver, positive skill scores are found for most forecast lead times for the 00 UTC

initiated models, while only OSMLR loses to UMOS in the 12 UTC initiated models.

OSELM and MLP NN tend to have better scores than the two linear daily updating

methods in Vancouver. For Edmonton, Winnipeg and Montreal, all of the models de-

veloped underperform UMOS (by about 5%), especially for the MLP NN and OSMLR

models. OSELM is the only one surpassing UMOS for most forecast lead times in

Toronto and Halifax.
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Figure 5.11: Mean diurnal PM2.5 concentration and heat map of the correlation score
by model and station for forecast lead time 1-48hr and forecasts initiated at 00 UTC
(left) and 12 UTC (right).
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Figure 5.12: PM2.5 MAE skill score of different models by forecast hour for the six
stations.
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Table 5.3 presents statistical properties of PM2.5 concentration by station and sea-

son. High and low PM2.5 values do not correspond to different seasons. Vancouver,

Edmonton, Montreal and Halifax have lower mean values during the warm season,

though the outliers value of 147 µg/m3 (Fig 5.9) was found in the warm season in

Edmonton. In contrast, Winnipeg and Toronto have higher mean PM2.5 concentration

during the warm season. Fig 5.13 and Fig 5.14 display model performance by season

according to the residuals and forecast scores. Model residuals are relative smaller in

magnitude in the warm season according to the first and third quartiles in Fig 5.13.

According to the median of the residuals (Fig 5.13), overprediction mainly occur in Ed-

monton, Winnipeg and Montreal for both seasons, which is consistent with the models

performing worst relative to UMOS at these three station (Fig 5.12).

In Fig 5.14, there is little difference in the forecast scores among the models, how-

ever there are differences in the scores between the warm and cold seasons - e.g. all

the models perform better in the warm season in Toronto and Halifax, and in the

cold season in Edmonton and Montreal. However, the much poorer MAE/MAD and

r scores in the warm season relative to the cold season for Edmonton could be caused

by the outlier of 147 µg/m3 in the warm season data as noted earlier. For the corre-

lation score, OSELM was marginally ahead of all the other models in the cold season

for all stations, and in the warm season for all stations except Edmonton and Winnipeg.

Station Warm Season Cold Season

Mean Std.Dev. Max Mean Std.Dev. Max

Vancouver 4.6 3.0 24.0 5.2 5.1 48.0

Edmonton 8.1 6.9 147.0 9.3 8.1 97.0

Winnipeg 6.7 6.9 83.0 5.7 5.9 88.0

Toronto 8.1 6.2 62.0 7.3 6.7 75.0

Montreal 7.9 6.6 88.0 8.9 7.7 75.0

Halifax 6.1 4.9 46.0 6.3 5.0 55.0

Table 5.3: Statistical properties of PM2.5 concentration (µg/m3) by station and season.
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Figure 5.13: Boxplot of PM2.5 residuals (prediction−observation) by season and station.
Outliers are not plotted but can be seen in Fig 5.15.
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Figure 5.14: PM2.5 forecast scores by season and station.
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The top 10th percentile of the observational data and the corresponding model pre-

dictions are extracted by season and station. Table 5.4 shows that the mean extreme

value in the cold season is higher than that in the warm season for all stations except

Winnipeg, and the maximum PM2.5 concentrations are also higher for the cold season in

Vancouver, Winnipeg, Toronto and Halifax. The boxplot of residuals (Fig 5.15) shows

that all five models were unable to capture the maximum PM2.5 values (147 µg/m3) in

Edmonton, which would have a major impact on the forecast scores. Fig 5.16 presents

the error and correlation scores for different models by season. All of the MAE/MAD

values are above 1 and most correlations are below 0.3, which indicate weak model

performance. For extremes, the nonlinear models in general did not improve on the

linear models (UMOS, MLR and OSMLR).

Station Warm Season Cold Season

Mean Std.Dev. Max Mean Std.Dev. Max

Vancouver 11.0 2.4 24.0 17.0 5.1 48.0

Edmonton 22.6 9.7 147.0 27.0 9.5 97.0

Winnipeg 20.7 12.4 83.0 19.2 7.2 88.0

Toronto 21.7 5.5 62.0 22.6 7.5 75.0

Montreal 21.5 9.1 88.0 26.2 7.6 75.0

Halifax 16.7 5.0 46.0 17.1 5.3 55.0

Table 5.4: Statistical properties of top 10th percentile PM2.5 concentration (µg/m3) by
station and season.
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Figure 5.15: Boxplot of PM2.5 residuals (prediction−observation) (over all lead times)
from the top 10th percentile by season and station.
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Figure 5.16: PM2.5 forecast scores of top 10th percentile by season and station.
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5.3 NO2

Boxplot of NO2 observations and predictions by station are shown in Fig 5.17. Ed-

monton has highest median NO2 concentration (16 ppb) and the most extreme events,

whereas Halifax’s median concentration is only 1.4 ppb. The station in Halifax is lo-

cated near Lake Major, which may explain the low NO2 concentration as automobile

emission is the main source of NO2. Fig 5.17 also indicates the model medians to lie

above the observed median for all stations. The forecast scores in Fig 5.18 show all five

methods to have similar performance, and except for Halifax, the relative errors are

generally below 0.7, with OSELM being marginally better than the other methods. In

Halifax, UMOS has lowest relative error, but it is still greater than 1. From the corre-

lation score, OSELM is slightly ahead and UMOS is slightly behind all other methods

at all five stations.
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Figure 5.17: Boxplot of the observed NO2 values and the predicted values from five
models (over all forecast lead times ) at six stations.
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Figure 5.18: NO2 forecast scores of different methods in the six stations.

In Fig 5.19, the heat map displays r > 0.7 in red and r < 0.7 in blue and missing

data at Edmonton and Winnipeg in black. NO2 often has the highest diurnal value

during the morning (9 am LST), with a second peak during the night (10-11 pm LST)

and becoming lower in the afternoon (2-4 pm LST). The main except occurs in Van-

couver where the second peak is slightly higher than the first, and in Halifax where

the highest peak occurs at 3-4 am LST. Models in Vancouver have good performance

during 1-25 hour forecasts when initiated at 00 UTC and UMOS underperforms other

method for 20-40 hour forecasts when initiated at 12 UTC. Edmonton, which has the

highest mean concentration among the six stations, has the best model behavior among

the stations. The difference in r between the five methods is small, though OSELM

and MLR are slightly stronger and UMOS slightly weaker than others. In Winnipeg,

OSELM is slightly stronger and UMOS slightly weaker than the others, with all models

forecasting poorer during the trough in the diurnal cycle.
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In Toronto, the mean NO2 concentration in the morning is over 17.5 ppb. Correla-

tion scores for 1-15 forecast hours from 00 UTC and 1-5 forecast hours from 12 UTC

are generally higher than other lead times, again with OSELM being slightly stronger

and UMOS slightly weaker among the models. In Montreal, models have relatively high

correlation scores, but poorer performance can be found during the low concentration

period and the second peak period, corresponding to the local afternoon and midnight.

OSELM and MLR are slightly stronger and UMOS slightly weaker among the models.

Halifax has the worst model scores, with correlation below 0.4 most of the time.

MAE skill scores relative to UMOS (Fig 5.20) illustrates that MLR, OSELM,

OSMLR and MLP NN have positive skill scores in Vancouver and Edmonton for most

forecast hours, and OSELM slightly outperforms other methods, whereas OSMLR and

MLP NN slightly underperform in Vancouver and Edmonton, respectively. For Win-

nipeg, Toronto and Montreal, negative skill scores occur during the low concentration

period in the diurnal cycle, upon comparing Fig 5.20 with Fig 5.19, indicating that

UMOS is slightly better at forecasting during low NO2 hours. In Winnipeg and Mon-

treal, OSELM slightly outperforms MLR, OSMLR and MLP NN, but all four models

have comparable skills in Toronto. In Halifax, all four methods lose to UMOS in the

MAE skill score.

63



5.3. NO2

Initial00 Initial12

MLPNN

OSMLR

OSELM

MLR

UMOS

MLPNN

OSMLR

OSELM

MLR

UMOS

1 4 8 12 16 20 24 28 32 36 40 44 48 1 4 8 12 16 20 24 28 32 36 40 44 48
Forecast Hour

Pe
ar

so
n 

C
or

re
la

tio
n

0.0
0.2
0.4
0.6
0.8
1.0

Correlation

Initial00

Initial00

Initial12

Initial12

10

12

14

16

MLPNN

OSMLR

OSELM

MLR

UMOS

10

12

14

16

MLPNN

OSMLR

OSELM

MLR

UMOS

1 4 8 12 16 20 24 28 32 36 40 44 48

1 4 8 12 16 20 24 28 32 36 40 44 48

1 4 8 12 16 20 24 28 32 36 40 44 48

1 4 8 12 16 20 24 28 32 36 40 44 48
Forecast Hour

M
ea

n 
N

O
2 (

pp
b)

Pe
ar

so
n 

C
or

re
la

tio
n

Station
Vancouver

0.0
0.2
0.4
0.6
0.8
1.0

Correlation

Vancouver

(a)

Initial00 Initial12

MLPNN

OSMLR

OSELM

MLR

UMOS

MLPNN

OSMLR

OSELM

MLR

UMOS

1 4 8 12 16 20 24 28 32 36 40 44 48 1 4 8 12 16 20 24 28 32 36 40 44 48
Forecast Hour

Pe
ar

so
n 

C
or

re
la

tio
n

0.0
0.2
0.4
0.6
0.8
1.0

Correlation

Initial00

Initial00

Initial12

Initial12

15.0

17.5

20.0

22.5

MLPNN

OSMLR

OSELM

MLR

UMOS

15.0

17.5

20.0

22.5

MLPNN

OSMLR

OSELM

MLR

UMOS

1 4 8 12 16 20 24 28 32 36 40 44 48

1 4 8 12 16 20 24 28 32 36 40 44 48

1 4 8 12 16 20 24 28 32 36 40 44 48

1 4 8 12 16 20 24 28 32 36 40 44 48
Forecast Hour

M
ea

n 
N

O
2 (

pp
b)

Pe
ar

so
n 

C
or

re
la

tio
n

Station
Edmonton

0.0
0.2
0.4
0.6
0.8
1.0

Correlation

Edmonton

(b)

64



5.3. NO2

Initial00 Initial12

MLPNN

OSMLR

OSELM

MLR

UMOS

MLPNN

OSMLR

OSELM

MLR

UMOS

1 4 8 12 16 20 24 28 32 36 40 44 48 1 4 8 12 16 20 24 28 32 36 40 44 48
Forecast Hour

Pe
ar

so
n 

C
or

re
la

tio
n

0.0
0.2
0.4
0.6
0.8
1.0

Correlation

Initial00

Initial00

Initial12

Initial12

4

6

8

MLPNN

OSMLR

OSELM

MLR

UMOS

4

6

8

MLPNN

OSMLR

OSELM

MLR

UMOS

1 4 8 12 16 20 24 28 32 36 40 44 48

1 4 8 12 16 20 24 28 32 36 40 44 48

1 4 8 12 16 20 24 28 32 36 40 44 48

1 4 8 12 16 20 24 28 32 36 40 44 48
Forecast Hour

M
ea

n 
N

O
2 (

pp
b)

Pe
ar

so
n 

C
or

re
la

tio
n

Station
Winnipeg

0.0
0.2
0.4
0.6
0.8
1.0

Correlation

Winnipeg

(c)

Initial00 Initial12

MLPNN

OSMLR

OSELM

MLR

UMOS

MLPNN

OSMLR

OSELM

MLR

UMOS

1 4 8 12 16 20 24 28 32 36 40 44 48 1 4 8 12 16 20 24 28 32 36 40 44 48
Forecast Hour

Pe
ar

so
n 

C
or

re
la

tio
n

0.0
0.2
0.4
0.6
0.8
1.0

Correlation

Initial00

Initial00

Initial12

Initial12

12.5

15.0

17.5

MLPNN

OSMLR

OSELM

MLR

UMOS

12.5

15.0

17.5

MLPNN

OSMLR

OSELM

MLR

UMOS

1 4 8 12 16 20 24 28 32 36 40 44 48

1 4 8 12 16 20 24 28 32 36 40 44 48

1 4 8 12 16 20 24 28 32 36 40 44 48

1 4 8 12 16 20 24 28 32 36 40 44 48
Forecast Hour

M
ea

n 
N

O
2 (

pp
b)

Pe
ar

so
n 

C
or

re
la

tio
n

Station
Toronto

0.0
0.2
0.4
0.6
0.8
1.0

Correlation

Toronto

(d)

65



5.3. NO2

Initial00 Initial12

MLPNN

OSMLR

OSELM

MLR

UMOS

MLPNN

OSMLR

OSELM

MLR

UMOS

1 4 8 12 16 20 24 28 32 36 40 44 48 1 4 8 12 16 20 24 28 32 36 40 44 48
Forecast Hour

Pe
ar

so
n 

C
or

re
la

tio
n

0.0
0.2
0.4
0.6
0.8
1.0

Correlation

Initial00

Initial00

Initial12

Initial12

6

8

10

12

14

MLPNN

OSMLR

OSELM

MLR

UMOS

6

8

10

12

14

MLPNN

OSMLR

OSELM

MLR

UMOS

1 4 8 12 16 20 24 28 32 36 40 44 48

1 4 8 12 16 20 24 28 32 36 40 44 48

1 4 8 12 16 20 24 28 32 36 40 44 48

1 4 8 12 16 20 24 28 32 36 40 44 48
Forecast Hour

M
ea

n 
N

O
2 (

pp
b)

Pe
ar

so
n 

C
or

re
la

tio
n

Station
Montreal

0.0
0.2
0.4
0.6
0.8
1.0

Correlation

Montreal

(e)

Initial00 Initial12

MLPNN

OSMLR

OSELM

MLR

UMOS

MLPNN

OSMLR

OSELM

MLR

UMOS

1 4 8 12 16 20 24 28 32 36 40 44 48 1 4 8 12 16 20 24 28 32 36 40 44 48
Forecast Hour

Pe
ar

so
n 

C
or

re
la

tio
n

0.0
0.2
0.4
0.6
0.8
1.0

Correlation

Initial00

Initial00

Initial12

Initial12

1.0

1.5

MLPNN

OSMLR

OSELM

MLR

UMOS

1.0

1.5

MLPNN

OSMLR

OSELM

MLR

UMOS

1 4 8 12 16 20 24 28 32 36 40 44 48

1 4 8 12 16 20 24 28 32 36 40 44 48

1 4 8 12 16 20 24 28 32 36 40 44 48

1 4 8 12 16 20 24 28 32 36 40 44 48
Forecast Hour

M
ea

n 
N

O
2 (

pp
b)

Pe
ar

so
n 

C
or

re
la

tio
n

Station
Halifax

0.0
0.2
0.4
0.6
0.8
1.0

Correlation

Halifax

(f)

Figure 5.19: Mean diurnal NO2 concentration and heat map of the correlation score
by model and station.
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Figure 5.20: NO2 MAE skill score of different models by forecast hour for the six
stations.
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To analyze the model performance seasonally, Table 5.5 shows the statistical prop-

erties of NO2 by season and station, where higher NO2 concentration occurs in the

cold season for all six stations. For the warm season (Fig 5.21), linear models (MLR,

OSMLR) have median residuals slightly closer to 0 and all our models have median

residuals slightly closer to 0 than UMOS for all stations. However, UMOS has median

residuals slightly better than most models in the cold season, especially in Halifax.

The models have little spread in the errors (MAE and RMSE) (Fig 5.22), however,

MLR, OSELM, OSMLR and MLP NN have slightly higher r scores than UMOS at all

stations for both the warm and cold seasons, with OSELM slightly ahead of the other

methods.

Station Warm Season Cold Season

Mean Std.Dev. Max Mean Std.Dev. Max

Vancouver 11.2 7.6 46.8 17.2 9.7 56.8

Edmonton 11.6 7.7 62.0 23.6 11.3 155.0

Winnipeg 3.5 5.3 40.0 8.1 8.6 50.0

Toronto 12.0 7.5 60.0 15.6 8.6 65.0

Montreal 7.4 6.2 57.9 12.5 10.0 61.2

Halifax 1.0 1.5 21.0 1.3 2.0 26.0

Table 5.5: Statistical properties of NO2 concentration (ppb) by station and season.

68



5.3. NO2

Warm Cold

−20

−10

0

10

20

Va
nc
ou
ve
r

Ed
mo
nto
n

Wi
nn
ipe
g

To
ron
to

Mo
ntr
ea
l

Ha
lifa
x

Va
nc
ou
ve
r

Ed
mo
nto
n

Wi
nn
ipe
g

To
ron
to

Mo
ntr
ea
l

Ha
lifa
x

NO
2 (

pp
b)

Method
UMOS
MLR
OSELM
OSMLR
MLPNN

Figure 5.21: Boxplot of NO2 residuals (prediction−observation) by season and station.
Outiers are not plotted but can be seen in Fig 5.23.
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Figure 5.22: NO2 forecast scores by season and station.
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5.3. NO2

For the top 10th percentile observations, Table 5.6 shows Edmonton to have the

most extreme event with 155 ppb of NO2. From the model residual shown in Fig 5.23,

the medians are all below 0, indicating under prediction of the extremes, though our

model medians tend to be slightly less negative than those from UMOS. The MAE,

RMSE, MAE/MAD and correlation scores of top 10th percentile data in Fig 5.24 show

that model skills tend to be better in the warm season, and in terms of MAE/MAD

our models tend to slightly outperform UMOS at all stations in both the warm and

cold seasons.

Station Warm Season Cold Season

Mean Std.Dev. Max Mean Std.Dev. Max

Vancouver 27.3 4.08 46.8 34.83 3.83 56.8

Edmonton 27.78 6.73 62 45.36 8.62 155

Winnipeg 16.34 5.85 40 28.10 6.68 50

Toronto 28.83 5.91 60 34.58 6.12 65

Montreal 21.63 6.07 57.9 34.08 5.52 61.2

Halifax 4.49 1.94 21 5.8 2.67 26

Table 5.6: Statistical properties of top 10th percentile NO2 concentration (ppb) by
station and season.
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Figure 5.23: Boxplot of NO2 residuals (prediction−observation) (over all lead times)
from the top 10th percentile by season and station.
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Figure 5.24: NO2 forecast scores of top 10th percentile by season and station.
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5.4 Model Results with Antecedent Predictors

Nine antecedent predictors, i.e. the pollutant concentration 24 hours prior to the fore-

cast time, the maximum and minimum pollutant concentration observed within the 24

hour period prior to the model initialization for ozone, PM2.5 and NO2, were added

to the OSELM-A and OSMLR-A models to test whether they would contribute to the

model accuracy, with the new model results compared with the original UMOS, OS-

ELM and OSMLR results.

For ozone, models with antecedent predictors performed better than the original

models in Winnipeg and Halifax but only marginally at the other four stations, as

seen in the MAE, RMSE, MAE/MAD and r (Fig 5.25). In the ozone MAE skill

score (Fig 5.26), the models with antecedent predictors appear to improve on the

original models mainly in Winnipeg and Halifax. Forecast scores for data in the top

10th percentile (Fig 5.27) show that in the warm season, the antecedent predictors

mainly improved the scores in Winnipeg and Edmonton, while in the cold season, they

mainly improved in Halifax, followed by Winnipeg and Edmonton. We conclude that

adding the antecedent predictors tend to improve on the ozone forecasts, especially in

predicting extreme values at some stations.
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Figure 5.27: Ozone top 10th percentile forecast scores from models with and without
antecedent predictors by season and station.
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For PM2.5, Fig 5.28 shows that models with antecedent predictors tended to im-

prove on the original models at all six stations, with smaller MAE/MAD and higher

Pearson correlation, mainly in Edmonton, Winnipeg and Halifax. For the MAE skill

score (Fig 5.29) at stations Edmonton, Winnipeg and Montreal, all our original mod-

els had negative skill scores relative to UMOS for most forecast lead times, but with

the antecedent predictors added, OSELM-A is slightly outperforming UMOS for most

forecast hours in these three stations, though OSMLR-A is still behind UMOS. In Van-

couver, Toronto and Halifax, the new models have similar performance as the original

models. For the top 10th percentile PM2.5 data, Fig 5.30 shows that other than improv-

ing the scores in Halifax in the cold season, adding the antecedent predictors brought

no clear benefit. In conclusion, models with antecedent predictors added seemed to

improve on PM2.5 forecasting, but not in forecasting extreme PM2.5 concentration.
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Figure 5.28: PM2.5 forecast scores from models with and without antecedent predictors
in the six stations.
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Figure 5.30: PM2.5 top 10th percentile forecast scores from models with and without
antecedent predictors by season and station.
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For NO2, Fig 5.31 shows that adding antecedent predictors offered essentially no

improvement at all stations except Halifax. The MAE skill score (Fig 5.32) shows

clear improvement in Halifax - the skill scores of OSELM and OSMLR were mainly

negative over all forecast hours, but have changed to mainly positive in OSELM-A and

OSMLR-A. For data in the top 10th percentile, adding antecedent predictors mainly

helped to improve forecast scores in Halifax, and slightly reduced the errors in the cold

season in Vancouver and Montreal.
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Figure 5.31: NO2 forecast scores from models with and without antecedent predictors
in the six stations.
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Figure 5.32: NO2 MAE skill score from models with and without antecedent predictors
by forecast hour.
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Figure 5.33: NO2 top 10th percentile forecast scores from models with and without
antecedent predictors by season and station.
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Chapter 6

Conclusion

6.1 Summary

This study focuses on the hourly spot concentration forecasts of ozone (O3), particu-

late matter 2.5µm (PM2.5) and nitrogen dioxide (NO2) concentration up to 48 hours

for six stations across Canada (Vancouver, Edmonton, Winnipeg, Toronto, Montreal

and Halifax). In air quality prediction, model accuracy, efficiency and updatability are

key considerations. Many current air quality forecasting methods use only linear tech-

niques which would miss nonlinear relationship in the data. In many cases, machine

learning methods have been found to outperform linear techniques for air quality pre-

diction. But traditional neural networks have a number of difficulties including com-

putational expense, local minima and over-fitting, which hamper their effectiveness.

Consequently, the extreme learning machine (ELM), an updatable machine learning

algorithm using randomized neural networks, was applied in air quality forecasting.

In this study, air quality forecasting models - the stepwise multiple linear regression

(MLR), online-sequential multiple linear regression (OSMLR), multilayer perceptron

neural network (MLP NN) and online-sequential extreme learning machine (OSELM)

- have been studied using five years of data (2009/07-2014/07). The prediction perfor-

mances of the MLR, OSMLR, MLP NN and OSELM are evaluated against updatable

model output statistics (UMOS) from Environmental Canada.

For ozone, all four models (MLR, OSELM, OSMLR and MLP NN) performed bet-

ter than UMOS, the benchmark, especially during the high ozone concentration period

in the diurnal cycle. OSELM showed the best performance among the various models

in all stations except Winnipeg, often outperforming UMOS by more than 10% in the

MAE skill score. Linear methods (MLR and OSMLR) also did well in ozone forecasting

relative to UMOS, showing the highest MAE skill scores among the models in Win-

nipeg. For extreme ozone events (top 10th percentile) prediction, all models tended

to underpredict extreme values, while linear models tended to improve relative to the

nonlinear methods when considering only the top 10th percentile data.
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6.1. Summary

For PM2.5, model correlation scores ranged from 0.5 to 0.7 and all models under-

performed UMOS in Edmonton, Winnipeg and Montreal. OSELM was the best model

in Vancouver, Toronto and Halifax, surpassing UMOS and the other models for most

forecast lead times. For extreme PM2.5 events, all of the relative errors (MAE/MAD)

were above 1, indicating weak model performance, and nonlinear models still in general

did not improve on the linear models.

For NO2, OSELM was marginally better than all the other methods in all stations

except Halifax. In Halifax, all four methods (MLR, OSELM, OSMLR and MLP NN)

lost to UMOS in the MAE, as UMOS tended to forecast slightly better during the low

NO2 hours in the diurnal cycle. For the top 10th percentile NO2 observations, OSELM,

MLR, OSMLR and MLP NN tended to slightly outperform UMOS at all stations in

both warm and cold seasons.

Antecedent predictors have different effects on three different pollutants. Adding

the antecedent predictors tended to improve on the ozone forecasts, especially in pre-

dicting extreme values. For PM2.5, models with antecedent predictors had improved

performance compared to the original models, but not in forecasting extreme PM2.5

concentration. For NO2, adding antecedent predictors offered improvement only at

Halifax, but also slightly reduced the errors for extreme NO2 in the cold season in

Vancouver and Montreal.

This study has demonstrated the potential of using nonlinear machine learning

methods to improve air quality forecasts. In terms of improving forecast accuracy,

OSELM appeared most beneficial in ozone forecast and least in PM2.5 forecast. MLP

NN when updated with new data only seasonally due to the large computational cost

generally underperformed the daily updated linear methods (MLR and OSMLR). In

contrast, OSELM, with its low cost updating and nonlinear modeling capability, gen-

erally outperformed the linear methods in forecast accuracy. Antecedent predictors

could also be added to the models to improve forecast accuracy.
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6.2. Future Research

6.2 Future Research

A limitation of this research was that models were not developed separately by sea-

son because of the limited data record. When more data are available, it could be

worth investigating using separate models for different seasons. Another limitation is

the model structure of OSELM and MLP NN methods. The number of hidden nodes

were decided according to the initial training data and did not change in subsequent

model updates because of limiting computational resources, resulting in fixed model

complexity. As new data arrive, information on larger term variability, e.g. interannual

or interdecadal variability, becomes available, but the fixed model complexity would

not have the capacity to learn the additional structure in the data. If model complexity

can be changed during the updating process, this may enhance the prediction skills.
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