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Abstract 

 

Discovering biomarkers and molecular drivers of head and neck endocrine tumors was the 

inspiration for this thesis. Here, I describe the molecular evaluation of tumors of the thyroid 

and parathyroid endocrine glands for the purpose of identifying somatic driver alterations in 

these cancers. While molecular interplay of the germline genomic background of an individual 

and the somatic genome that emerges throughout the lifetime plays significant roles in 

increasing the susceptibility to cancer and in driving the malignant phenotype, the major known 

contributors to cancer remain the acquired somatic mutations. Analysis of a sporadic and 

recurring parathyroid carcinoma, with incidence of 1 per million population, revealed mutations 

in mTOR, MLL2, CDKN2C and PIK3CA and comparison of patient-matched primary and recurrent 

malignant tumors uncovered loss of PIK3CA activating mutation during the evolution of the 

tumor. Loss of the short arm of chromosome 1 along with somatic missense and truncating 

mutations in CDKN2C and THRAP3 provided new evidence for the potential role of these as 

tumor suppressors. Hürthle cell thyroid carcinoma accounts for a small proportion of all thyroid 

cancers; however, this malignancy often presents at an advanced stage and poses unique 

challenges. Genomic analysis revealed large regions of copy number variation encompassing 

nearly the entire genomes accompanied also by near haploidization. Moreover, I identified loss-

of-function mutations of the tumor suppressor gene MEN1 in 4% of patients. Repeated 

alterations of the epigenetic machinery in anaplastic thyroid carcinoma, one of the most fatal of 

all adult solid malignancies, and novel gene fusions including MKRN1-BRAF, FGFR2-OGDH and 



iii 

 

SS18-SLC5A11 are reported here. The transcriptomic analysis suggested known drug targets 

such as FGFRs, VEGFRs, KIT and RET to have low expressions in this cancer; however, through 

integrative data analysis, I identified the mTOR signaling pathway as a potential therapeutic 

target for anaplastic thyroid cancer. Molecular analysis of papillary thyroid carcinoma and 

benign thyroid nodules revealed very low mutation rates in these tumors with CYP1B1, PTPRE, 

CTSH and RUNX1 emerging as promising diagnostic markers. The key somatic mutations 

identified in these studies can serve as novel diagnostic markers as well as therapeutic targets.  
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Chapter 1: Introduction1 

 

1.1 Head and Neck Endocrine Tumors 

 

1.1.1 Thyroid Cancer 

 

Thyroid cancer is a relatively rare disease, accounting for 1-5% of all cancers in females and less 

than 2% in males [1]. Although rare, thyroid carcinoma is the most common endocrine 

malignancy and its incidence rate has increased in most parts of the world [1]. According to 

statistics released by the Canadian Cancer Society in 2014, thyroid cancer is the most rapidly 

increasing of all major cancers in Canada. The incidence rate has also more than doubled in the 

United States [2], France [3], and Australia [4], with the average worldwide increase of 48.0% 

among males and 66.7% among females from 1973-1977 to 1998-2002 [1]. The increased use of 

techniques such as fine-needle aspiration biopsy and thyroid ultrasound, in addition to, physical 

examination which was the sole primary method of detection before the late 1990’s, has led to 

the discovery of smaller thyroid nodules and has contributed to the increase in the incidence 

rate [2]. Although the stable mortality rate from these malignancies supports the hypothesis of 

over-diagnosis [2], some suggest that the increase might be real [1]. For instance, although the 

                                                 

1
 Portions of this chapter have been published, and the author contributions are provided in the Preface as per the 

University of British Columbia PhD thesis guidelines: Katayoon Kasaian, Steven JM Jones. (2011). A new frontier in 
personalized cancer therapy: mapping molecular changes. Future Oncology. 2011 Jul;7(7):873-94. doi: 
10.2217/fon.11.63. Copyright by Future Medicine Ltd. Katayoon Kasaian, Yvonne Y Li and Steven JM Jones. (2014). 
Chapter 9 - Bioinformatics for Cancer Genomics, In Cancer Genomics, edited by Graham Dellaire, Jason N Berman, 
Robert J Arceci, Academic Press, Boston, 2014, Pages 133-152, ISBN 9780123969675. Copyright by Elsevier. 
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incidence of cancer diagnosis after the late 1990’s increased in individuals from high 

socioeconomic backgrounds with better access to health care and diagnostic technologies, 

there was a steady increase in incidence in individuals from low socioeconomic backgrounds 

and the increasing diagnostic trend for larger malignant tumors remained the same in both 

groups [5].  

 

With the discovery of smaller malignant nodules and the knowledge that these cancers are 

found to have an indolent course in a large subset of the population, the clinicians are faced 

with the challenge of stratifying patients based on their risk of recurrence and metastasis, and 

treating only those individuals at higher risk [5,6]. The current standard of care usually requires 

the removal of the thyroid gland from the patient presenting with a malignancy and hence 

most patients diagnosed with thyroid cancer undergo total thyroidectomy [2]. Although 

complications of total thyroidectomy including permanent hypoparathyroidism, recurrent 

laryngeal nerve damage and vocal cord paresis are uncommon, they are not negligible [7]. 

These concerns, and the need for hormone replacement therapy for life, suggest a need for 

more sensitive diagnostic tools for routine clinical use. 

 

1.1.1.1 Papillary Thyroid Carcinoma 

 

Papillary subtype of thyroid malignancies is the most common form of the disease, accounting 

for 80-85% of all thyroid cancers [8]. Papillary thyroid carcinoma (PTC) along with follicular and 
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Hürthle cell subtypes compromise the well-differentiated thyroid cancers (DTC) [9]. These are 

the cancers of the follicular cells of the gland, which produce the thyroid hormones T3 and T4 

[10]. Papillary cancers generally have a favorable prognosis with 25-year survival rate at > 95% 

[8]; however, some patients are at high risk for developing recurrence and death [11]. It has 

been suggested that the step-wise de-differentiation of these malignancies could lead to the 

more aggressive forms such as the poorly differentiated and anaplastic (undifferentiated) 

carcinomas [9]. Several recurrent mutations have been described in PTCs, the most frequently 

observed mutation is the BRAF p.V600E activating mutation, present in 40-45% of cases [12]. 

Other observed genetic alterations include rearrangements of RET/PTC, particularly in 

individuals exposed to ionizing radiation [11] as well as other rare mutations such as TRK 

rearrangements [11] and RAS point mutations [13].  

 

1.1.1.2 Anaplastic Thyroid Carcinoma 

 

Anaplastic thyroid carcinoma (ATC), the undifferentiated subtype of thyroid malignancies 

lacking any evidence of follicular differentiation or even that of epithelial origin, is the least 

common form of the disease; it accounts for only 1-2% of all thyroid cancers [9]. Although the 

incident rate is low, the mortality and morbidity rates are extremely high [14]. ATC is the most 

aggressive type of thyroid cancer and one of the deadliest forms of all human malignancies 

[15]. Patients usually present with advanced disease demonstrating local invasion and distant 

metastases; 90% of patients die within 6 months of diagnosis with the median survival rate at 
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just 4 months [15]. There is an immediate need to characterize these malignancies on the 

molecular level to identify the driver mutations, which could subsequently assist in 

administering targeted therapeutics. Known alterations in ATCs include TP53 point mutations 

which are otherwise rare in all other subtypes [16] as well as BRAF [14] and beta-catenin point 

mutations [17]. Compared with DTCs, anaplastic carcinomas are more likely to be aneuploid 

[14] and harbor large regions of gene copy loss and gain [18]. 

 

1.1.1.3 Hürthle Cell (Oncocytic) Thyroid Carcinoma 

 

Hürthle cell or oncocytic thyroid carcinoma accounts for about 2-3% of thyroid cancers. A cell is 

referred to as an oncocytic cell if it demonstrates an abnormal accumulation of mitochondria in 

the cytoplasm. These cells have a granular appearance under the microscope and can be found 

in several, often metabolically active, organs such as kidney, thyroid, parathyroid, salivary and 

adrenal glands [19,20]. Pathological review of a thyroid tumor will indicate it to be an oncocytic 

nodule if 75% or more of its constituent cells are Hürthle cells. Those nodules with signs of 

invasion to local tissue or distant metastasis are diagnosed as malignant tumors. No molecular 

connections are established between benign and malignant oncocytic tumors and no 

comprehensive molecular profiling of these tumors has been performed before. To date, two 

studies have reported NRAS [21] and GRIM19 [22] mutations in a small subset of oncocytic 

thyroid carcinomas. This malignancy has a poorer prognosis than the more common DTCs and 

yet no information regarding its molecular alterations is available. Currently, the treatment 
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options are surgery, radioactive iodine treatment, chemotherapy and in some cases external 

beam radiation therapy. 

 

1.1.2 Benign Thyroid Nodules 

 

Despite the rarity of thyroid cancer, benign thyroid lesions are found at a high frequency in the 

population and high-resolution ultrasound can detect thyroid nodules in 19-67% of randomly 

selected individuals [23]. The tumors can be detected by physical examination or incidentally 

through imaging done for other indications and are more common in women and the older 

population [24]. Histologically, an encapsulated tumor is referred to as an adenoma whereas 

one lacking a defined fibrous capsule and with poor boundaries with the normal tissue is 

referred to as a hyperplastic adenomatous nodule [25]. Benign tumors can also be classified as 

“cold”, “normal”, or “hot” indicative of decreased, normal or increased uptake of iodine, 

respectively [26]. “Cold” nodules are generally more likely to be malignant and thus should be 

examined more carefully [24]. Nodular goiter, another form of benign thyroid disease, refers to 

the enlargement of the gland with either single or multiple nodules affecting the normal 

structure of the organ [26]. Neither the size of the nodule or number of nodules in the gland is 

indicative of malignancy [24]. Factors such as iodine intake level, exposure to radiation, 

smoking, age and gender are known to influence the development of benign thyroid tumors; 

however, the interplay of these mediators and the individual’s genetic makeup is the ultimate 

determining factor for the occurrence of these nodules [26]. Surgery, especially when tumors 
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are causing compressive symptoms, and radioiodine therapy, are the main modes of 

therapeutic intervention for these tumors [24]. To date, no comprehensive molecular 

characterization of benign thyroid tumors has been performed and hence the available 

knowledge on the molecular alterations leading to these lesions is very limited. 

 

1.1.3 Parathyroid Carcinoma 

 

Parathyroid carcinoma is an extremely rare cancer type. Uncontrolled cell division in the body’s 

smallest organ, the parathyroid gland, causes an extensive and deadly imbalance in the blood 

calcium level given that the main function of this endocrine gland is controlling the level of 

calcium. A large percentage of patients with parathyroid carcinoma have multiple recurrences 

of the disease throughout their lifetime and the extreme calcium level, not the disease burden, 

is often the cause of death in these patients. Although some parathyroid tumors, usually benign 

nodules, are observed in individuals with multiple endocrine neoplasia 1 and 2A syndromes, 

parathyroid carcinomas tend to be sporadic [27]. High expression of CCND1 has been observed 

in parathyroid cancer; however, an inversion involving CCND1 ultimately leading to its high 

expression was first reported in benign parathyroid adenomas [28,29]. Hence, the deregulation 

of this cell cycle activator is unlikely to be the sole driver of malignancy. The rare nature of this 

disease has hindered a detailed and comprehensive study of this cancer and no recurrent 

mutations has been identified in association with sporadic parathyroid carcinomas. 

 



7 

 

1.2 Cancer Genomics 

 

In the late 1800s and early 1900s, David von Hansemann and Theodor Boveri were the first to 

propose the genetic basis of cancer explaining that aberrant mitosis can lead to the unequal 

distribution of chromosomes which can in turn produce malignant cells with the ability to grow 

without control [30,31]. The knowledge that cancer is a genetic disease has driven the scientific 

community for over 100 years in search of molecular mutations that are associated with various 

cancer types. Prior to the advent of high-throughput sequencing technologies, lower resolution 

methodologies were utilized in deciphering the biology of cancer. The majority of these efforts 

involved single-gene experiments or the examination of a gene family in a small cohort of 

patients using the then-novel Sanger sequencing. Such initiatives led to the discovery of 

activating point mutations in oncogenes such as BRAF, KRAS, NRAS and HRAS and loss of 

function mutations of tumor suppressors such as TP53 with varying frequencies in different 

head and neck endocrine tumors. This suggested a potential utility for high-resolution 

sequencing techniques to unveil a more comprehensive profile of these tumors. Since the 

completion of the Human Genome Project, there has been a revolution in genomic 

technologies particularly the DNA sequencing methodologies. Advances in massively parallel 

and high-throughput next generation sequencing (NGS) have enabled cost-effective sequencing 

of a single human genome at an unprecedented rate, facilitating scientific endeavors never 

imagined possible before. These improvements have transformed the field of cancer genomics, 

allowing the complete molecular characterization of large cancer cohorts in hopes of identifying 
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common tumorigenic pathways and of individual cancer genomes allowing for the delivery of 

precision cancer medicine in the clinic.  

 

Unraveling the genomic abnormalities that lead to cancer, potential therapeutic targets and the 

mechanisms behind tumor response or resistance to a particular treatment modality is integral 

to the advancement of cancer medicine. Therefore, the ultimate goal of the cancer genomics 

field is to fully explore the potential of the NGS technologies in characterizing different types of 

cancer on the molecular level, understanding the mechanism of the disease, identifying 

diagnostic, prognostic and predictive markers and finally translating this knowledge into 

patient-based therapies. Computational biology and bioinformatic techniques provide solutions 

for examining complete genetic material of a cancer sample for every type of mutation 

including single nucleotide variations (SNVs), small insertions and deletions (indels), copy 

number variations (CNVs), regions of loss of heterozygosity (LOH) as well as structural variations 

(SVs). These analysis tools and algorithms help to understand complex biological systems by 

systematically analyzing large data sets and by providing the necessary techniques for 

integrating various data types. This enables us to derive a global view of the healthy state of a 

cell and to identify how these are altered in the disease state. The utility of the vastly parallel 

sequencing machines is not limited to analyzing the genome; the epigenome, the transcriptome 

and the proteome of a cell can all be investigated through the use of these high throughput 

technologies (Figure 1.1).  
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The rest of this chapter reviews the strengths and limitations of different data modalities in 

cancer genomics and outlines some of the current bioinformatic algorithms and software for 

data analysis with an emphasis on whole genome and transcriptome analysis tools that were 

used in the described work of chapters 2, 3, 4 and 5. The specific aim of this thesis was to utilize 

the power of NGS technologies and the recent advances in bioinformatic software in the study 

of endocrine tumors of the head and neck particularly those of the thyroid and parathyroid 

glands. The goal was to identify novel and recurrent mutations associated with these tumors, 

describe the potential route of oncogenesis for these malignancies and devise diagnostic and 

therapeutic markers.  

 

1.3 Data Types in Cancer Genomics 

 

1.3.1 Whole Genome and Exome Sequence Data 

 

Cancers arise due to mutations that provide the cell with a growth advantage. In sporadic or 

non-familial cases of cancer, these somatic events can be identified through the comparison of 

cancer and normal genomes of a patient. Whole genome shotgun sequencing provides the 

complete genetic landscape of a tumor specimen and this sequence data can be examined for 

the presence of various somatic alterations. Although the majority of mutations in any cancer 

sample fall outside the protein-coding regions, the scientific community for the most part has 

focused on examining the protein-coding changes not due to a lack of interest but perhaps to a 
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lack of comprehensive knowledge about the regulatory elements of the genome. Additionally, 

whole genome sequencing is still not affordable enough to be carried out for individual patients 

in clinical settings or even in every research laboratory and thus whole exome sequencing has 

become an appealing alternative. Sequencing only the exomes provides the information 

encoded in the complete coding region of the genome at a high depth of coverage and for a 

lower cost than whole genome sequencing. Currently, the NGS technologies provide such high 

sequence coverage that multiple exome libraries can be indexed, pooled and sequenced in a 

single experiment without losing any information while decreasing the cost even further. Whole 

exome sequence data can still unveil small mutations such as SNVs and indels. A few tools have 

been developed that promise the identification of regions of copy number loss and gain from 

the exome capture data [32,33]. In addition, examples of SVs detected from whole exome 

sequencing are evident from the literature [34]. However, most of the progress to date in 

finding somatic CNVs and SVs has been the result of whole genome sequencing experiments.  

 

Examining the cell’s DNA provides a static view of the mutations that could potentially be 

disrupting protein function. Cells are however dynamic entities, transcribing and translating the 

genetic information into protein products in accordance to their needs. Studying the dynamic 

profile of the cell through transcriptome sequencing or characterizing the protein collection of 

the cell can serve as a powerful tool for identifying disrupted pathways in a disease state. 

 



11 

 

1.3.2 Whole Transcriptome Sequence Data 

 

It has long been known that there is a global change in the expression of genes in cancer cells 

compared with their normal counterparts. Some of these alterations, such as changes in the 

expression of oncogenes and tumor suppressors, will be drivers of the disease while others are 

the result of the malfunctioning cell and the fragile cancer genome. Using NGS technologies, 

the complete transcriptome of a cell can now be sequenced, providing a digital count of the 

expression of all genes. Through whole transcriptome sequencing, also referred to as RNA-seq, 

expressed mutations can be identified. De novo assembly of transcriptome data can also serve 

as a powerful tool for identifying events such as novel transcripts, skipped exons, retained 

introns or novel splicing events. Differential expression analysis between malignant and 

adjacent normal tissues can shed light on the altered pathways in the disease and help in 

developing diagnostic and prognostic panels; however, such analysis in cancer genomics is 

hindered due to the typically limited access to neighboring matched normal tissue. Patient’s 

blood usually serves as the normal specimen and though it serves as a good reference for the 

tumor genome, the expression profile of the blood cells will be entirely different from that of a 

solid tumor, for instance. Different data types in cancer genomics have distinct strengths and 

limitations, generating as many datasets as possible using different modalities and their 

integration is the most promising solution in deciphering cancer signatures (Table 1.1). 
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1.3.3 Proteomic Data 

 

High throughput techniques such as protein microarrays and mass spectrometry have been 

developed for studying the complete collection of a cell’s proteins, often referred to as the 

proteome. Proteomic analysis of a biological sample can unveil all the proteins present, their 

amount, specific post-translation modifications and all protein-protein interactions. Through 

such analyses of cancer and matched normal tissues or various cancer subtypes, one can 

identify diagnostic and prognostic biomarkers as well as novel drug targets. Our knowledge of 

the human proteome however has lagged behind the efforts such as the Human Genome 

Project, which decoded the sequence of almost the entire genome, mostly due to lack of high-

throughput technologies. Understanding the structure and function of proteins is an important 

step in cancer genomics, leading to conclusions about the function of mutated proteins, 

whether they contribute to disease initiation and progression and how they can be targeted. 

The Human Proteome Project launched in 2011 aims to identify the structure and function of at 

least one protein product of each protein-coding gene [35]. Such efforts combined with 

improvements in analytical tools and algorithms will lead to better understanding of the 

functional consequences of DNA mutations. 
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1.3.4 Epigenomic Data 

 

Next generation sequencing technologies have also enabled the study of the epigenome, the 

transcriptional control of the cell. Mutations of several epigenetic enzymes are found in various 

cancers and thus there is increasing evidence that changes in the epigenome and the resultant 

alterations in the expressional profile of the cell could be the cause of many diseases including 

cancers. Examining the pattern of epigenetic marks associated with both the DNA and histone 

proteins throughout the genomes of the cancer and matched normal tissue can provide 

profound understanding of the changes leading to the disease state. Chromatin 

immunoprecipitation followed by sequencing (CHIP-seq) [36], with higher throughput and 

better sensitivity than CHIP-on-chip [37], provides a genome-wide view of specific DNA-protein 

interactions including histone modification marks. Profiling the methylation state of the 

genome is also now possible through techniques coupled with high throughput sequencing 

[38]. These methods are divided into those which enrich for methyl-DNA [39-41], those which 

utilize methylation-dependent restriction enzymes [42,43] and the third category which is 

based on direct bisulfite conversion [44-50]. 

 

Data generation has arguably become the easiest and the most efficient step in studying a 

cancer genome. The challenge now is to analyze the sheer volume of generated data and to 

integrate different types of mutational datasets such as SNVs, indels, CNVs, SVs, expression 
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profiles and the epigenetic alterations in order to draw a biologically correct and meaningful 

conclusion about the underlying cause of the disease and how to best treat it.  

 

1.4 Data Analysis 

 

1.4.1 Sequence Data Alignment and Assembly 

 

High-throughput sequencing technologies produce large number of short reads in a relatively 

short period of time. Application of these technologies in cancer genomics depends on the 

ability to re-construct the complete genome from these short reads with great accuracy in a 

time- and memory-efficient manner. Generally, two options exist; one is to align the reads to 

the reference genome and the other is to perform a de novo assembly. 

 

Simply put, alignment refers to the task of finding the location in the complete genome where a 

sequence read was generated from. This is in essence a string matching problem. Although the 

standard Smith-Waterman algorithm [51] widely used for the alignment of longer reads 

provides the most optimal solution, it becomes computationally intractable when working with 

a large number of short sequence reads. As a result, a growing number of algorithms for the 

alignment of NGS reads to the human reference genome has been implemented [52-58]; all 

however face a trade-off between accuracy and speed. The often-ignored limitation of the 

current aligners is their intended use for the alignment of sequence reads generated from 
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normal specimens. These tools are not yet optimized for the alignment of reads generated from 

cancer samples which could potentially contain large insertions and deletions, as well as 

evidence of other structural variations such as duplications, translocations and gene fusions. In 

addition, as the sequencing technologies improve and the reads become longer, the majority of 

the tools for alignment of short reads will not be applicable anymore. There will be a need for 

specialized software to optimally map longer reads, perhaps containing indels or other 

structural variations, to the reference genome.  

 

An alternative option to the alignment process is de novo assembly of sequence reads. Such 

approach allows for the identification of highly diverged DNA regions in the sequenced sample 

compared with the reference genome. The techniques used in assembling longer reads 

produced by the early sequencing technologies, such as Sanger, generally involved finding areas 

of overlap between reads and extending those into longer contigs. Shorter reads and higher 

coverage produced by the NGS technologies however make such algorithms computationally 

inefficient, if not unfeasible. Currently, the more widely used assemblers make use of the de 

Bruijn graph data structure where all possible substrings of size k are stored in the nodes of the 

graph and each edge indicates an overlap of size k-1 between the two connecting nodes [59-

62]. Traversing such a graph built from raw sequence reads will yield a collection of contigs 

representing the sample’s sequence. De novo assembly techniques are not yet as 

computationally efficient as alignment of reads directly to the reference genome and hence not 

yet as widely used. Currently, the genomic analysis of a cancer and its matched normal tissue 
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involves separate alignment of each sample; this is followed by variant calling and the 

identification of somatic mutations in the tumor tissue. With advances in assembly algorithms 

as well as increase in read length and insert sizes of paired-end libraries, it is conceivable that 

de novo assembly of tumor and normal genomes will eliminate the need for the alignment 

process. As a result, this approach can provide more comprehensive insights into each 

individual’s unique genomic landscape and pave the way for more personalized diagnosis and 

treatment options. 

 

1.4.2 Discovery of Point Mutations 

 

The alignment and/or assembly results are subsequently explored for the presence of various 

types of somatic mutation including single nucleotide variants. The majority of the early SNV 

detection tools [63-65] rely on setting arbitrary thresholds for variables such as sequence 

coverage, read mapping quality, base quality and distance between mismatched bases in order 

to filter out technical noise and identify the positions that show true variability from the 

reference. These tools however are best suited for the analysis of normal samples and 

detection of germline variations where, for example, a heterozygote SNV would be expected to 

have variant allele frequency of 50% while in a homozygote position the variant base would be 

observed at 100% frequency. When analyzing tumor samples, contamination with adjacent 

normal tissue, the presence of multiple clonal populations within the tumor, as well as tumor 

aneuploidy can result in single nucleotide variants that are observed at any allele frequency. 
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Probability-based models designed specifically for the detection of variants in cancer samples 

have been developed; these identify the most likely genotype at each position based on a 

probabilistic model for allelic distribution [66,67]. Dependence of all these tools on separate 

analysis of cancer and normal samples followed by their pair-wise subtraction has however 

deemed them as suboptimal in detecting somatic mutations. Recent developments in 

simultaneous analysis of matched sample pairs have resulted in more confident somatic 

mutation calls by calculating the likelihood of genotype differences between the two genomes, 

at all locations [63,68-71]. These algorithms allow for the detection of true somatic mutations 

which lack strong support in the tumor sequence data and distinguish them from false positive 

calls with weak support in the normal sequence data. Current state of cancer genomics requires 

the verification of computationally detected variant calls in their corresponding specimens 

using orthogonal methods. In the near future, such verification may no longer be needed 

should advances in sequencing technologies and analysis tools lead to near optimal quality of 

reads and genotype calls. 

 

1.4.3 Identification of Indels 

 

Detecting small insertions and deletions from NGS short read products has proved more 

challenging than detecting single nucleotide variants. This is mainly attributed to the limitations 

of current aligners, which by default allow a set number of small mismatches between a read 

and the reference, typically with no gaps, leading to misalignment or no alignment of reads 



18 

 

spanning indels. Parameters such as the number of reads supporting an indel, mapping and 

base qualities as well as presence or absence of homopolymer regions should be taken into 

account when estimating the true positive probabilities [63,64]. Dindel [72], the 1000 Genomes 

project indel-caller [73], uses local realignment of reads to increase the accuracy of indel 

detection rate. Dindel accepts a list of potential indels and SNP calls as input, identifies all 

candidate haplotypes surrounding these sites and realigns reads to all the candidates in order 

to identify true events [72]. One limitation of Dindel, however, is its dependence on the 

sensitivity of the aligner, which provides the initial list of potential insertion and deletions. 

Indels, having the potential to alter or completely eliminate a protein’s function, are the second 

most abundant type of variation in the human genome after SNVs [74]. The majority of 

specialized software for indel detection, including the above-mentioned tools, rely on separate 

analysis of cancer and matched normal tissues and hence have less than optimal sensitivity and 

specificity. More recent efforts have resulted in the development of robust probabilistic 

algorithms for the detection of somatic indels from paired specimens [75] and as a result a 

more accurate analysis of malignant genomes. 

 

1.4.4 Structural Variation Detection 

 

Structural alterations including large insertions and deletions, duplications, inversions, 

translocations and gene fusions have been associated with various cancer types [76]. Before the 

advent of NGS technologies, cytogenetics, karyotyping and fluorescent in situ hybridization, as 
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well as array-bases techniques such as SNP arrays and array comparative genomic 

hybridization, were used in detecting large SVs. However, the emergence of next generation 

sequencing technologies and the corresponding analysis tools has enabled the detection of 

various SVs including copy-neutral events and the corresponding break points at a much higher 

resolution and with greater accuracy.  

 

Paired-end sequencing protocols, where the two ends of a single DNA molecule are read, allow 

the detection of SVs in the genomic data; since the order and orientation of read pairs and the 

insert size distribution are known, any deviation from these expectations in the alignment 

might suggest a variation in the sample. Several tools have been developed which detect read 

pair anomalies and infer specific SVs in genomic [77-81] and transcriptomic [82-84] datasets. 

However, we now know that the majority of structural variations are found in duplicated 

regions of the genome [85,86], regions that pose the most difficulty for the alignment process. 

As a result, alignment-based SV detection may result in many false positives while missing true 

events. An alternative to examining the alignment data for anomalies is to assemble the 

sequence reads de novo and compare the resultant contigs with the reference genome [87] or 

more accurately to the de novo assembled matched normal genome; such de novo assembly 

techniques can also detect fusion transcripts [87,88]. As the reads get longer, the assembly of 

individual genomes becomes more feasible and detection of SVs will have higher sensitivity and 

specificity.   

 



20 

 

Large deletions and amplifications, at times encompassing chromosome arms or whole 

chromosomes, lead to changes in number of gene copies and in some cases their expression 

levels. These structural alterations are often collectively referred to as copy number variations. 

Given the assumptions that the whole genome is sampled uniformly and that the reads are 

generated with equal probability, depth of coverage can serve as a quantitative measure of 

copy number [89,90]. These assumptions are not strictly correct however. GC content, for 

instance, introduces bias during the sequencing experiment [91] while challenges such as 

alignment of short reads to repetitive regions of the reference genome leads to computational 

biases. Various techniques have been employed in identifying somatic CNVs by correcting for 

these deviations from the expected distribution and by directly comparing tumor and matched 

normal datasets [32,92-95]; additionally, tools capable of distinguishing the somatic events that 

are unique to different subclones in the tumor [96-98] can be very valuable in guiding 

therapeutic decision-making given the propensity of tumor subclones to become resistance 

disease in the course of treatment. 

 

1.4.5 Expression Analysis 

 

High-throughput sequencing of the complete transcriptome offers a few advantages over the 

more traditional means of expression analysis such as oligo-nucleotide microarray technologies. 

All expressed entities including novel transcripts, novel isoforms and non-human transcripts are 

sampled in these surveys of the whole transcriptome as opposed to microarray experiments, 
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which are restricted to known genes and annotations. Digital analysis of the transcriptome also 

increases both specificity and sensitivity; the high coverage that can be achieved through these 

experiments enables the identification of genes with even the lowest expression levels. 

Identifying differentially expressed genes or specific isoforms between malignant and normal 

states can reveal pathways which when altered might lead to tumorigenesis. Differential 

expression analysis can also identify subtypes of a disease and subsequently aid in finding 

diagnostic and prognostic markers [99]. A slew of software including several R packages (R Core 

Team (2014). R: A language and environment for statistical computing. R Foundation for 

Statistical Computing, Vienna, Austria. URL http://www.R-project.org/) is available for 

differential expression analysis of RNA-seq data [100].   

 

Expression analysis is not restricted to the cell’s messenger RNA. Small non-coding transcripts 

such as miRNAs can also be subjected to high-throughput sequencing and analysis. Integration 

of protein-coding gene expression profiles with miRNA expression, promoter methylation and 

copy number variation data can provide indications as to which genes are silenced and thus 

may function in tumor suppression, and which are overexpressed and might be acting as 

oncogenes. 
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1.5 Data Interpretation and Integration 

 

When interpreting genomic data, it is imperative to be aware of potential confounding factors. 

Presence of circulating tumor cells in a normal blood sample, normal cell contamination in a 

tumor sample or a heterogeneous tumor specimen with several sub-clonal populations can lead 

to false positive and false negative mutation calls. Bioinformatic algorithms have been 

developed to estimate and correct for the amount of normal contamination and to more 

sensitively determine the copy number variant regions (CNANorm) [101], SNVs (MutationSeq) 

[70], or regions with loss of heterozygosity (APOLLOH) [95]. The next step following the 

computational discovery of candidate mutations typically entails verification of those events in 

their corresponding sample(s). This step identifies the variant calls that were falsely identified 

as somatic due to sequencing or computational errors. Mutation verification usually involves 

the amplification of the potential variant site in both cancer and matched normal tissues using 

PCR techniques followed by Sanger or next-generation sequencing.  

 

Over the span of just a few years, the cancer genomics community has made great progress in 

developing algorithms and software for detecting various types of mutations from short read 

datasets. As improvements are made to sequencing technologies and detection tools, the most 

challenging task becomes mining the large and diverse mutational profiles that are generated in 

even a single patient experiment for mutations that contribute to disease initiation and 

progression. The list of putative cancer-related somatic mutations can be refined using publicly 
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available reference databases. These include repositories where variations in the healthy 

population are curated such as dbSNP [102], Database of Genomic Variants [103] and 1000 

Genomes Project [73], as well as databases where known cancer genes and their mutations are 

stored. Examples of such include: the COSMIC (Catalogue of Somatic Mutations in Cancer) 

[104], an open source database containing somatic mutations and copy number alterations 

associated with cancers; OMIM (Online Mendelian Inheritance in Man), which collates 

information on familial cancer genes and susceptibility loci; Cancer Gene Census [76], which 

catalogues all genes shown to be causally implicated in cancers; and the Mitelman database of 

chromosome aberrations and gene fusions in cancer [105]. The assumption when using these 

databases is that variations that are commonly found in the general population are less likely to 

contribute to diseases such as cancer while genes recurrently mutated in various cancer types 

are potential tumor suppressors and oncogenes (Figure 1.2).  

 

The number and profile of somatic mutations demonstrate great variability in different cancers 

[106]. High number of mutations is seen in malignancies such as melanomas [107] whereas 

some pediatric cancers exhibit a very low number of alterations [108]. Regardless, all somatic 

mutations can be categorized into ‘drivers’, changes that are responsible for disease 

pathogenesis and tumor evolution, or ‘passengers’ which are simply the by-product of the 

unstable cancer genome and provide no growth advantage to tumor cells [106]. Distinguishing 

these two types of mutational entities is critical given that passenger mutations play no 

functional role in disease initiation, progression or maintenance and thus treatment(s) targeting 
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them may prove ineffective. Computational techniques are developed that aim at 

distinguishing drivers and passengers in silico prior to the more labor-intensive and time-

consuming procedures of functional validation in the wet lab. Since it is believed that mutations 

that result in changes in protein structure and function are more likely to act as cancer drivers, 

the majority of the community’s focus to date has been on mutations that affect protein-coding 

regions of the genome. A common computational strategy in examining the functional role of a 

somatic mutation is to determine its location with respect to functional domains and key amino 

acid residues in the protein product using resources such as UniProt. Software tools such as 

PolyPhen [109], MutationAssessor [110] and SIFT [111] use evolutionary conservation of gene 

sequences as well as homology to provide a likelihood score for the deleterious effect of a point 

mutation on protein structure and function. Genes with higher number of somatic mutations 

than would be expected by chance alone are likely contributors to disease phenotype given the 

general assumption that driver mutations provide growth advantage for the tumor and hence 

must be under evolutionary positive selection while the passengers are less likely to be selected 

for [112,113]. Several factors such as gene length, background mutational rate of a particular 

tumor and a particular region of the genome affected by gene replication timing, for instance, 

influence the number of somatic mutations in a gene [114]; several algorithms have been 

developed to control for these variables and to distinguish driver and passenger mutations 

[112,113].   
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Integration of all somatic mutation calls and expression data from a cancer sample plays an 

important role in creating a molecular pathway hypothesis of aberrations driving the tumor. 

Biology of a cell is complex and involves processes and controls of those processes on the 

genomic, epigenomic, transcriptomic and proteomic levels (Figure 1.3). Molecules in the cell 

are not isolated, but are part of a collective system of interacting parts [115], and aberrations in 

one molecule can perturb the whole system. When examining a cohort of samples, data 

integration and identifying commonly altered pathway(s) often becomes more significant than 

pinpointing recurrently mutated gene(s). Different samples could have mutations in various 

genes, all contributing to one biological process which when disturbed leads to tumorigenesis. 

The Cancer Genome Atlas pilot project, for instance, uncovered core mutated pathways in 

glioblastomas by integrating sequence data, gene expression, copy number variation as well as 

epigenetic assessments [116]. Data integration in these cohorts can also identify genes, which 

may be frequently altered through multiple mechanisms (point mutations, structural 

disruption, loss of copy, or hypermethylation of the promoter) but would not otherwise be 

identified through separate analysis of each data type. 

 

1.6 Thesis Chapter Summaries 

 

In this thesis, I have coupled massively parallel sequencing approaches, bioinformatic analyses 

and subsequent verification and validation steps to study papillary, oncocytic and anaplastic 

thyroid carcinomas, benign thyroid nodules and parathyroid carcinoma. These studies have 
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provided detailed accounts of the altered genomes of these endocrine tumors and have shed 

light on potentially perturbed pathways and tumorigenesis mechanisms in these diseases. In 

each of the following research chapters, the analysis methods and results, limitations and 

strengths of such approaches and future directions are discussed for each disease type. Chapter 

2 describes an in-depth analysis of multiple recurrences of a parathyroid tumor, providing the 

first such analysis in the literature and a first look at the genome of this tumor. The research 

aim in Chapter 3 was to comprehensively characterize Hürthle cell or oncocytic thyroid 

carcinomas on the whole genome scale. The analysis led to the identification of recurrent 

mutations in the tumor suppressor gene MEN1 in a subset of these cancers. Chapter 4 provides 

the first whole genome and transcriptome analysis of the rare but extremely aggressive 

anaplastic thyroid carcinoma. The genomic analysis revealed extensive amount of changes in 

the number of chromosomal and gene copies. Although no recurrent mutations, besides TP53 

loss of function, were identified in the four studied genomes, recurrent alterations of the 

epigenetic machinery and gene fusions involving known cancer genes were found in these 

tumors. Finally in Chapter 5, transcriptomic profiles of papillary thyroid carcinoma, the most 

abundant subtype of thyroid cancer, and benign thyroid nodules are described. These tumors 

are found to have a very low mutation rate and very few copy number changes; however, one 

benign tumor demonstrated the loss of TP53 and vast changes in copy number likely due to the 

loss of this tumor suppressor. Such molecular signatures have only been associated with 

anaplastic cancers and thus the genomic analysis of this benign tumor might have unveiled a 

precursor tumor for an aggressive disease. The transcriptomic landscapes of benign and 
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malignant tumors are also compared in an attempt to identify molecular signatures that are 

able to discriminate between malignant and benign tumors.  
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Table 1.1 Advantages and disadvantages of different data types in cancer genomics 

Data Analysis Type Advantages Disadvantages 

Whole Genome  
Shotgun Sequencing 

- CNVs 
- Indels 
- SNPs 
- SVs 

- Comprehensive 
interrogation of mutations 

- Most expensive 
- No information on expression status 

Whole Exome  
Capture Sequencing 

- Indels 
- SNPs 
 

- Cost efficient - Restricted to known annotations 
- Detects only small coding mutations 

Whole Transcriptome 
Shotgun Sequencing 

- Expression 
- Indels 
- SNPs 
- SVs 

- Cost efficient 
- Digital gene expression 
- Detects novel events 
- Gene fusion discovery 

- Detects only expressed alterations 
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Figure 1.1 Applications of high-throughput sequencing technologies 
Through such applications, the genome, the epigenome and the transcriptome can be examined in great detail, 
providing a comprehensive picture of the state of health or any alterations leading to disease. Such experiments 
allow for the identification of both small and large variations in individual samples 
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Figure 1.2 Identifying cancer-specific somatic alterations 
Filtering the identified somatic mutations in a cancer sample using publicly available databases of common genetic 
polymorphisms such as dbSNP, 1000 Genomes project and the Database of Genomic Variants as well as those of 
known cancer-specific variants including COSMIC, OMIM, Cancer Gene Census and Mitelman databases can 
narrow down the potentially long list of candidates to the most likely drivers 
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Figure 1.3 Data integration 
Identifying the perturbed pathways and networks that are driving the disease is integral to better understanding of 
the causes of cancer, exploring potential therapeutic targets and predicting drug response. Integration of data 
generated from both normal and cancer samples promises the unbiased examination of a cell’s interconnected 
network of molecules 
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Chapter 2: Complete Genomic Landscape of a Recurring Sporadic Parathyroid 

Carcinoma2
 

 

2.1  Introduction 

 

The parathyroid glands are important endocrine glands that regulate the serum calcium level 

through secretion of parathyroid hormone (PTH). PTH binds to type 1 parathyroid hormone 

receptors on target organs such as bones, kidneys and intestine, and results in an influx of 

calcium into the blood stream. PTH production and secretion is negatively regulated through 

binding of calcium to calcium-sensing receptors (CaSRs) that are located on the surface of 

parathyroid cells [117,118]. Thus, any deviation in the level of secreted PTH, and as a direct 

result the blood calcium level, may negatively impact multiple body systems. Primary 

hyperparathyroidism (PHPT), that has an incidence of 1-3 per 1,000 population, causes fatigue, 

weakness, depression, bone disease, nephrolithisis, pancreatitis, and peptic ulcer disease 

[27,119]. The majority of cases of PHPT are sporadic and only about 5% are associated with 

hereditary syndromes such as multiple endocrine neoplasia type 1 and 2A (MEN1, MEN2A), 

familial isolated hyperparathyroidism (FIHP) and hyperparathyroidism-jaw tumor syndrome 

                                                 

2
 A version of this chapter has been published, and the author contributions are provided in the Preface as per the 

University of British Columbia PhD thesis guidelines: Katayoon Kasaian, Sam M Wiseman, Nina Thiessen, Karen L 
Mungall, Richard D Corbett, Jenny Q Qian, Ka Ming Nip, Ann He, Kane Tse, Eric Chuah, Richard J Varhol, Pawan 
Pandoh, Helen McDonald, Thomas Zeng, Angela Tam, Jacquie Schein, Inanc Birol, Andrew J Mungall, Richard A 
Moore, Yongjun Zhao, Martin Hirst, Marco A Marra, Blair A Walker, and Steven JM Jones. (2013). Complete 
genomic landscape of a recurring sporadic parathyroid carcinoma. Journal of Pathology, 230: 249–260. 
doi: 10.1002/path.4203. Copyright by Wiley. 
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(HPT-JT) [27]. While virtually all cases of PHPT are the result of parathyroid adenomas or 

hyperplasia, a small proportion (<1%) are due to parathyroid carcinoma (PC) [117].  

 

PC is an extremely uncommon endocrine malignancy. Unlike PHPT, cases of PC occur with equal 

frequency in men and women, and at the time of diagnosis patient age ranges from 12 to 90 

years (mean age at 44-48 years) [120]. The reported 10-year overall survival rates for PC vary 

from 49-77% [121-124]. However, 40-60% of patients develop disease recurrence that is 

difficult to manage [122,124]. The majority of studies reporting on PC are generally limited to 

small retrospective case studies. Young age at diagnosis, female gender and absence of 

metastases have all been identified as favorable prognostic factors [123]. The majority of PCs 

are functional, producing high levels of PTH, and therefore patients tend to present with high 

blood calcium levels [125]. Mortality and morbidity from PC are usually attributable to the high 

level of PTH and calcium, rather than the tumor burden itself [124]. Currently the ideal 

treatment of PC is en bloc surgical resection of the tumor and adjacent grossly involved neck 

structures that may include the ipsilateral thyroid lobe, with grossly clear margins, and taking 

great care to avoid tumor spillage. Chemotherapy has proven largely ineffective for PC 

[120,125] and radiation therapy is of limited benefit [123]. PC patients usually suffer from 

complications of disease that may be neurological, cardiac, renal and skeletal. Therefore, the 

goals of treating PC patients are elimination of all detectable disease and control of the 

metabolic complications of the cancer. Prescribing bisphosphonates and calcimimetic agents 

help in controlling the calcium level [120]. 
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The etiology of sporadic PC is largely unknown. Molecular profiling of familial cases has 

identified a few candidate genes. Bi-allelic inactivating mutations of the tumor suppressor gene 

HRPT2/CDC73 are observed in some parathyroid tumors, mainly those associated with HPT-JT 

and FIHP [27,120,126-130]. Loss-of-function mutations of the tumor suppressor gene MEN1 

[131-133] and activating mutations of the RET proto-oncogene [134] are also associated with 

benign tumors of the parathyroid in MEN1 and MEN2A patients, respectively. The CCND1 

(cyclin D1) proto-oncogene, first characterized in a parathyroid adenoma [135], is 

overexpressed in the majority of PCs [136]. An inversion of chromosome 11 leading to the 

fusion of PTH and cyclin D1 was found to put this oncogene under the control of the tissue-

specific and highly active PTH regulatory elements [28,29] causing its overexpression. The 

detected mutations and alterations in the oncogenes CCND1 and RET, and tumor suppressors 

MEN1 and HRPT2 do not represent cancer-specific states and do not account for all cases of PC. 

The objective of the current study is to identify novel mutations and altered pathways in a 

single case of recurring sporadic PC.  

 

The patient is a fit and active 76-year old male who initially presented in March 2005 with a 

greater than 30 year history of nephrolithiasis that required multiple urological procedures. He 

also complained of significant musculoskeletal and bony pains. He had no personal or family 

history of hyperparathyroidism, MEN, or any other endocrine disorder. At presentation his 

laboratory results were: serum calcium level 3.72 (normal 2.10-2.60 mmol/L), albumin level 40 

g/L (normal 34-48 g/L), creatinine 151 umol/L (normal 30-130 umol/L), ionized calcium level 
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1.97 mmol/L (normal 1.17-1.29 mmol/L), and PTH 72.2 (normal 1.3-6.8 pmol/L). A sestamibi 

scan suggested a parathyroid carcinoma was located inferior to the right lobe of the thyroid 

gland. He subsequently underwent a focused parathyroidectomy, utilizing adjunctive 

intraoperative radioguidance and PTH measurement, and what grossly appeared to be a well-

circumscribed parathyroid tumor was removed intact from just inferior to the right lobe of the 

thyroid gland. Pathological evaluation of the parathyroid tumor described thickened capsule 

and thick broad fibrous bands. There also was evidence of capsular and vascular invasion, and 

the tumor was diagnosed as a PC. Postoperatively his PTH and calcium levels normalized. In 

2009, however, they began to rise suggesting that the PC had recurred. Evaluation by CT scan of 

the neck, chest, abdomen, and pelvis, sestamibi scan, MRI and ultrasound of the neck, and 

selective venous sampling for PTH, all suggested a local recurrence in the right central neck. On 

November 25, 2009 he underwent a re-exploration of the right central neck with removal of the 

right thyroid lobe, and also a right central neck dissection with skeletonization of recurrent 

laryngeal nerve and removal of neck lymph node levels V and VI, including all grossly recurrent 

PC. The pathology confirmed that PC recurrence was resected. Postoperatively his calcium and 

PTH levels normalized, but in 2010 they once again began to climb, suggesting another PC 

recurrence. Repeat imaging suggested this recurrence was also local. On October 27, 2010 he 

underwent re-exploration of the right central neck with removal of recurrent PC and the right 

recurrent laryngeal nerve that was grossly invaded by cancer. Postoperatively his calcium and 

PTH levels normalized and he was also treated with external beam radiation therapy. In early 

2012 his calcium and PTH levels yet again began to climb, and repeat imaging suggested 
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another local recurrence. On March 15, 2012 he underwent re-exploration of his right central 

neck. Recurrent PC and scar tissue was removed, and postoperatively his calcium and PTH 

levels again normalized (Figure 2.1). Recently these have again begun to rise, he has refused 

further surgical intervention, and he is being managed medically with both cinacalcet and 

regular pamidronate infusions. The formalin fixed paraffin embedded (FFPE) primary cancer 

specimen, the flash frozen first and second PC recurrences, and patient’s blood specimens were 

analyzed using high-throughput sequencing. The parathyroid specimens were classified 

according to the World Health Organization criteria. The tumor specimens were collected as 

part of a research project approved by the University of British Columbia and the British 

Columbia Cancer Agency Research Ethics Board and are in accordance with the Declaration of 

Helsinki. Informed consent was obtained from the patient for profiling the tumor using RNA-seq 

as well as whole genome sequencing. Our protocol stipulates that these data will not be 

released into the public domain but can be made available via a tiered-access mechanism to 

named investigators of institutions agreeing by a materials transfer agreement that they will 

honor the same ethical and privacy principles required by our center.  
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2.2 Methods 

 

2.2.1 DNA Sequencing 

 

Whole genome sequencing of the first PC recurrence and matched blood specimens was 

performed by Illumina (Inc.); 100 bp paired-end reads were generated using the PCR-free 

protocol on HiSeq machines. The subsequent sequencing was performed at the British 

Columbia Cancer Agency Genome Sciences Centre using Illumina HiSeq2000 technologies 

following our established protocols (Figure 2.1). Briefly, for RNA-seq analysis, RNA was 

extracted from 15 x 20 μm sections cut from both recurrent samples using MACS mRNA 

isolation kit (Miltenyi Biotec), resulting in 5-10 μg of DNase I-treated total RNA as per the 

manufacturer’s instructions. Double-stranded cDNA was synthesized from the purified poly(A)+ 

RNA using the Superscript Double-Stranded cDNA Synthesis kit (Invitrogen) and random 

hexamer primers (Invitrogen) at a concentration of 5 μM. The cDNA was fragmented by 

sonication and a paired-end sequencing library prepared following the Illumina paired-end 

library preparation protocol. Cluster generation and sequencing were performed on the 

Illumina HiSeq2000 following the manufacturer’s recommended protocol. 75bp paired-end 

reads were generated for these two libraries (Table 2.1).  

 

A Whole genome shotgun library was constructed from the 7-year old primary FFPE sample, 

using a modified version of our standard protocol as follows. Tumor DNA was extracted from 
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formalin-fixed, paraffin-embedded thyroid sections according to Qiagen’s Allprep DNA/RNA 

FFPE Kit protocol (Qiagen Inc, Toronto, Ont.). Two micrograms of extracted DNA were sheared 

for 55 seconds using a Covaris E210 focused ultra-sonicator (Covaris Inc., Woburn, Mass.) at 

20% Duty cycle, 5% Intensity, and 200 Cycles per burst. The sheared products were separated 

on an 8% Novex TBE gel (Invitrogen Canada, Inc., Burlington, Ont.) and the 200 to 300 bp size 

fraction was excised and eluted into 300 µl of elution buffer containing 5:1 (vol/vol) LoTe  (3mM 

Tris-HCl, pH7.5, 0.2mN EDTA)/7.5 M ammonium acetate. The elute was purified from the gel 

slurry by centrifugation through a Spin-X centrifuge tube filter (Fisher Scientific Ltd., Nepean, 

Ont.), and EtOH precipitated. A small gap paired-end library was constructed from the purified 

DNA following Illumina’s protocol (Illumina Inc., USA). Cluster generation and sequencing were 

performed on the Illumina HiSeq2000 following the manufacturer’s recommended protocol. 

100bp paired-end reads were generated (Table 2.1). All genotype data have been deposited at 

the European Genome-phenome Archive (EGA, http://www.ebi.ac.uk/ega/) under accession 

number EGAS00001000484. 

 

2.2.2 Sequence Data Alignment and Analysis 

 

Using the Burrows-Wheeler Alignment (BWA, version 0.5.7), sequence reads were aligned to 

the human reference genome (hg19/GRCh37), or in the case of RNA-seq, to a genome file that 

was augmented with a set of all exon-exon junction sequences [56]. The exon-exon junction 

sequences and their corresponding coordinates were defined based on annotations of any 

transcripts in UCSC known genes, Ensembl (version 54) or the Refseq database (as downloaded 

http://www.ebi.ac.uk/ega/
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from the UCSC genome browser on March 2009). After the alignment, the junction-aligned 

reads that mapped to exon-exon junctions were repositioned as large-gapped alignments in the 

genome based on the coordinates of the exons that were used to construct the junction 

sequences. Reads that aligned to junctions with insufficient overhang past the splice junction 

sites were changed to soft-clipped un-gapped genomic alignments. Candidate single nucleotide 

variations (SNVs) in the primary tumor, first recurrence and the blood genomes as well as 

variations in both transcriptomes were identified using SAMtools; for matched genomic 

datasets (primary vs. blood and recurrence vs. blood), the mpileup paired option was used [64]. 

Variants with CLR (phred log ratio of genotype likelihood) >= 20 were used as input into 

MutationSeq [70]. MutationSeq simultaneously examines features from both tumor and normal 

genomes and assigns each variant a probability score indicating the degree of confidence that 

the mutation is indeed somatic. The variant calls with probability >= 0.5 were manually 

inspected in the integrative genomics viewer (IGV) [137]. Any SNV at sites assessed as being 

polymorphisms (SNPs) were disregarded, including variants matching a position in dbSNP [102] 

or 1000 Genomes project [138]. For paired samples with matched normal DNA sequence, all 

variants with evidence in the constitutional DNA were considered germline variants and were 

no longer considered. For the purposes of identifying structural variations such as 

translocations, inversions and duplications, we analyzed the sequence data using a de novo 

assembly approach. Genome and transcriptome sequence reads from the first recurrence as 

well as the RNA-seq data from the second recurrence were assembled and analyzed using 

ABySS [62] and trans-ABySS [87,139]. All variants detected as somatic and not common 
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polymorphism sites were verified in the original tumor sample using Sanger sequencing and 

verified as being somatic using DNA from the patient’s peripheral blood. Copy number variation 

(CNV) and loss of heterozygosity (LOH) analyses were performed using HMMcopy and APOLLOH 

software, respectively [95]. HMMcopy corrects for GC content bias as well as high mappability 

regions, while APOLLOH segments the genome to regions of LOH accounting for normal tissue 

contamination. These results were graphed using the Circos tool [140]. An expression profile 

was derived based on the RNA-seq datasets. In the absence of RNA from matched normal 

tissue, we took a similar approach to Jones et al.  [141] in conducting the differential expression 

analysis. We compared the expression of genes in the two parathyroid transcriptome libraries 

against a compendium of 19 normal transcriptome libraries from the Illumina Body Map 2.0 

project (available from ArrayExpress, query ID: E-MTAB-513) [142]. Sixteen different tissue 

types are included in the compendium (no parathyroid tissue-derived libraries was available) 

(Table 2.2). This approach allows for discovering tumor specific changes in expression and thus 

provides a better understanding of the mechanism of the disease as well as opportunities in 

identifying relevant therapeutic interventions. Number of reads per kilobase of exon model per 

million mapped reads (RPKM value)  [143] calculated for each protein coding gene as annotated 

in Ensembl (v54)  [144] were used as a measure of expression. Differential expression analysis 

was done using outlier statistics and fold change comparison between the parathyroid sample 

RPKM and the compendium’s mean RPKM for each gene. Overexpressed genes were defined as 

having a Benjamini and Hochberg [145] corrected outlier P-value < 0.05 and fold change > 2. 

Genes with an uncorrected outlier P-value < 0.1 and fold change < -2 were considered 
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underexpressed. Pathways enriched for the differentially expressed genes were identified using 

IPA (Ingenuity Systems, www.ingenuity.com). 

 

2.2.3 Validation of Putative Somatic Variants Using Sanger Sequencing 

 

Primers were designed for all 23 potential somatic SNVs (Table 2.3); due to the degraded 

nature of FFPE DNA, shorter amplicons were designed for the primary sample. Forward and 

reverse primers were tailed with T7 and M13Reverse 5’ priming sites, respectively. PCR 

conditions were an initial denaturation of 98°C for 30 seconds, followed by 35 cycles of 98°C for 

10 seconds, 69°C for 15 seconds and 72°C for 11 seconds, and a final extension at 72°C for 10 

minutes. PCR was set up using Phusion polymerase (Fisher Scientific, catalogue # F-540L) 

according to manufacturer’s specifications. Amplified regions of interest were sequenced using 

the Sanger technology. The sequencing reactions consisted of 35 cycles of 96°C for 10 seconds, 

43°C (for M13Reverse) or 48°C (T7) for 5 seconds and 60°C for 3 minutes and were analyzed 

using an AB 3730XL DNA sequencer.  

 

All detected structural variations were also verified in the original tumor sample and validated 

as being somatic by comparing to DNA extracted from patient’s blood. PCR primers were 

designed to amplify 450-1000bp regions around each breakpoint; pairwise mixture of primers 

from corresponding genes was used to examine the presence of novel fusion events (Table 2.4). 

Forward and reverse primers were tailed with T7 and M13Reverse 5’ priming sites, respectively. 
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PCR conditions were similar to above. All capillary traces were visually inspected to confirm the 

presence of novel events in the tumor and their absence from the germline. 

 

2.3 Results 

 

2.3.1 Single Nucleotide Variations 

 

Twenty-three SNVs were confirmed as somatic events (Table 2.5). 15 were detected in both the 

primary and the recurrent genomes, 7 were only found in the relapse and 1 mutation in the 

PIK3CA gene was found only in the primary tumor. The degraded nature of the DNA from the 

FFPE sample may explain the lower number of unique variations found in the primary, but we 

note that the presence and absence of the PIK3CA mutation in the primary and recurrent 

samples, respectively, were verified using Sanger sequencing. This might be suggestive of a role 

for PIK3CA in tumor initiation but not maintenance or of tumor heterogeneity.  

 

Three of the twenty-three SNVs have been observed and verified as somatic in cancers other 

than parathyroid carcinomas (http://www.sanger.ac.uk/genetics/CGP/cosmic/) [146]. PIK3CA 

E545K (COSM763), mTOR L2334V (COSM462591) and THRAP3 R101* (COSM186652) mutations 

are seen in 816, 1 and 2 cancers, respectively. PIK3CA encodes the p110α catalytic subunit of 

PI3K, a lipid kinase with an important role in signaling pathways, and as a result in regulating 

cell growth and proliferation [147]. The observed PIK3CA p.Glu545Lys somatic mutation, 
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although a well-characterized activating mutation [148], has never been previously observed in 

PCs [146]. Loss of this mutation from the dominant clone in the recurrence underscores the 

necessity for temporal monitoring of tumors on the molecular level as changes in their 

mutational profile, in this case in the absence of any chemotherapy or radiation therapy, will 

likely affect the targeted treatment options.  

 

Other well-characterized cancer genes with mutations are mTOR, CDKN2C/p18 and 

MLL2/KMT2D. Deregulation of mTOR signaling pathway is seen in various cancers and currently 

mTOR inhibitors are utilized to treat solid tumors [149]. The L2334V mTOR mutation is situated 

in the kinase catalytic domain of the protein. Although the activating status of this specific 

change is not known, clusters of other activating mutations in this same domain have been 

observed in cancers such as large intestine adenocarcinoma and renal cell carcinoma [150,151]. 

CDKN2C/p18-INK4C plays a crucial role in regulating cell cycle progression by inhibiting 

activation of cyclin-dependent kinases 4 and 6 (CDK6/4)  [152] and hence could lead to 

suppression of tumorigenesis. Although mutations of p18 in cancer are rare [146], its loss of 

expression and function has been observed in various types of tumors [153-158]. The frequent 

loss of 1p in parathyroid tumors and the potential for a tumor suppressive activity in the region 

led Tahara et al to examine 25 parathyroid adenomas for mutations, specifically in p18 [159]; 

no mutations were found. This may suggest a valuable utility for p18 as a discriminatory marker 

between parathyroid carcinoma and adenomas. MLL2/KMT2D is a member of the SET family of 

proteins with histone 3 lysine 4 methyltransferase activity, playing a pivotal role in regulating 
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active chromatin states and epigenetic regulation of gene transcription [160,161]. Somatic 

mutations of this putative tumor suppressor are observed in various cancer types [162-167]. 

MLL2/KMT2D inactivating mutations are found to be the cause of Kabuki syndrome [160], one 

case of which has been observed in a patient with familial hypocalciuric hypercalcemia (FHH), a 

clinically benign and related phenotype to primary HPT resulting from heterozygous inactivating 

mutations of CaSR [118,168]. 

 

THRAP3/TRAP150, a member of the thyroid hormone receptor-associated protein (TRAP) 

complex [169], has lost a copy in the recurrent specimen while acquiring a truncating mutation 

in the remaining copy (Table 2.5 and Figure 2.2). THRAP3 is also a member of the spliceosome 

[170] and has been shown to act as an activator of pre-mRNA splicing and to participate in post-

transcriptional mRNA degradation through its C-terminus [171]. In addition, THRAP3 is found in 

the SNARP complex, thought to specifically regulate cyclin D1 RNA stability and expression 

[172-174]. A recent study found strong phosphorylation of THRAP3 residues Ser-210, 211, 399, 

406 and 408 (all deleted in this patient) in response to DNA damage, and hence proposed a 

potential role for this protein in the DNA damage response pathway [175]. This study also 

demonstrated higher cell sensitivity to DNA damaging agents when THRAP3 was depleted using 

siRNAs. This may imply a role for THRAP3 in driving parathyroid carcinomas perhaps through 

regulating CCND1 expression and the level of mRNA degradation in the cell. It is noteworthy 

that deletion or disruption of THRAP3 is observed in other cancers such as oral squamous cell 

carcinomas [176] and liver cancers [177]. The identified truncating mutation is present in both 



45 

 

recurrent transcriptomes, indicating that non-sense-mediated decay does not affect this 

mutation.  

 

2.3.2 Structural Variants 

 

Two inter-chromosomal translocations and one inversion were detected in the genomic data; 

none of which produced an expressed chimeric transcript (Figures 2.2, 2.3 and Tables 2.6, 2.7). 

All events were validated as somatic using the patient’s peripheral blood and Sanger 

sequencing. To date, no fusion events involving these genes have been reported in any cancer 

types, including PC [146].  

 

The fusion of the 5’-UTR region of the PLD1 gene to AGBL1 might result in the deletion of key 

PLD1 regulatory elements such as sequences recognized by DNA binding proteins while leaving 

the conserved domains of the protein intact, leading to alterations in expression level but not 

function [178]. Differential expression of PLD1 could in turn play an important role in 

parathyroid tumorigenesis since this gene is an upstream regulator of mTOR signaling [179,180] 

and has been implicated in signal transduction, membrane trafficking, transformation, and 

cytoskeletal reorganization [181-183]. In addition, PLD1 is an important regulator of 

intracellular trafficking of the parathyroid hormone ligand-receptor complex after its 

internalization into target cells [184] and thus alterations in gene expression can affect the 

downstream PTH signaling pathways.  
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Fusion of SKP2 and BC033837 leads to loss of SKP2 exon 10. S-phase kinase-associated protein 2 

(SKP2) is a member of E3 ligase complex regulating the cell cycle through ubiquitin-mediated 

proteolysis of cyclins and CDKs, specifically p27, and thus acts as an oncogene [185,186]. The 

deleted exon does not encompass the F-box conserved domain but results in the deletion of 

leucine-rich repeats 9 and 10. Although SKP2 and p27 mRNA levels show similar levels to those 

of normal controls, loss of leucine-rich repeats might prevent protein-protein interactions and 

as a result disrupt vital signal transduction pathways in the cell [187,188].  

 

The inversion in chromosome 15 leads to the fusion of first 8 exons of AKAP13 to exon 18 of 

DMXL2.  DMXL2, consisting of 12 WD repeats, plays an important role in Notch signaling [189] 

while AKAP13 regulates multiple signal transduction pathways including MAPK and estrogen 

receptor signaling [190-192]. AKAP13 also binds the regulatory subunit of protein kinase A 

through its RII-binding region and regulates the Rho/Rac GTPase cycle with its dbl oncogene 

homology (DH) and pleckstrin homology (PH) domains, thus coordinating these two signaling 

pathways [193,194]. The identified inversion in this case leads to the fusion of RII-binding 

domain of AKAP13 to the C-terminal WD repeats of DMXL2. Loss of DH and PH domains and the 

N-terminal WD repeats from AKAP13 and DMXL2, respectively, may disrupt signal transduction 

pathways important for cell cycle progression and cellular growth. 
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2.3.3 Copy Number Variants 

 

Similar to previous reports [120], the PC specimen presented with a large number of both arm-

level and focal changes in copy number. The arm-level changes included gain of 1q and loss of 

all or large stretches of sequence from 1p, 3q, 4q, 7p, 11q, 15q, 17p and 22q (Figure 2.2). Focal 

changes included two homozygously deleted areas on 1p, a homozygous loss on 3q, 22q and 

Xq, multiple heterozygously deleted regions on 19p and a single heterozygous loss on 5p, 11p, 

12q and 21q. Small regions of gain and amplification are observed on 3q, 7p, 7q, 11q 

(encompassing CCND1), 14q, 15q, 16q, 19p, 22q and Xp. Coordinates for focal regions of loss 

and gain are listed in Table 2.8. Loss of 1p is common in PCs, previously observed in 40% of 

carcinomas and only 10% of adenomas [195]; we did not identify large areas of gain with the 

exception of 1q, a carcinoma specific event [118,195]. 

 

The degraded nature of DNA extracted from the 7-year old primary FFPE specimen made the 

CNV and LOH analyses challenging (Figure 2.4). All observed arm-level changes in the 

recurrence were present in the primary PC except for the loss of 4q. Although no somatic 

mutations were found in this region, inactivation of the remaining allele of a putative tumor 

suppressor via promoter hypermethylation or mutations of regulatory elements may be 

responsible for the progression of the disease. We also observed a large region of loss on 5p in 

the primary PC specimen that was not present in the relapse; we ruled out allele-specific 
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amplification of the region in the recurrent sample using APOLLOH (Figure 2.5). Distinguishing 

true focal changes from the background noise was not feasible in the primary PC specimen. 

 

2.3.4 Analysis of Differential Transcript Abundance 

 

In the first recurrence specimen, 2 and 1339 genes showed under- and overexpression, 

respectively, while 1 and 1581 genes were under- and overexpressed in the second recurrence. 

Overlap between the two samples included 1173 overexpressed genes (Kendall’s tau =0.899, p 

=< 2.2e-16 for all protein-coding genes).  

 

Among the top 25% differentially expressed genes are PTH, CCND1 and interestingly CDKN2A 

and CASR. Perhaps not surprisingly, the PTH gene has the highest expression level in both 

recurrent specimens. Over 90% of PCs show overexpression of cyclin D1 [136] which in 

association with cyclin-dependent kinases plays an integral role in regulating the cell-cycle 

machinery by driving the progression through the G1/S checkpoint [196]. CCND1 amplification 

and overexpression are also hallmarks of other cancers [197-202]. Similar to p18, CDKN2A/p16 

is a member of the INK4 cyclin dependent kinase inhibitors (CDKIs) and it acts in parallel to p18 

to inhibit activation of cyclin-dependent kinases 4 and 6 (CDK4/6). Although we see loss of one 

copy of p18 and a somatic missense mutation in the remaining copy, a remnant of a tumor 

suppressor activity, the parallel pathway through p16 shows overexpression. To date, no 

somatic mutations of CASR but its downregulation have been reported in parathyroid tumors 

[119]. The overexpression of CASR might be attributed to the lack of comparable matched 
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normal parathyroid tissue even though CASR is expressed in other tissue types included in the 

compendium such as kidney, thyroid, lung and liver. Pathway analysis using differentially 

expressed genes identified 26 and 19 statistically significant pathways in the first and second 

recurrence specimens, respectively. These included known cancer-related Wnt/β-catenin, 

ErbB2-ErbB3 signaling, mismatch repair and Notch signaling pathways. Aberrations in the 

WNT/β-catenin signaling pathway have previously been suggested to be a cause of a subset of 

PCs [203]. Pathway analysis using the genes overexpressed exclusively in one recurrent 

transcriptome showed overexpression of mostly metabolism pathways in the second 

recurrence. However, cancer genes such as AKT2 and ERBB2 were overexpressed in the first 

recurrence only, perhaps driving the overexpression of pathways such as PI3K-AKT-mTOR. 

 

2.4 Discussion  

 

Despite population-based studies showing a 60% increase in the PC incidence rate in the United 

States between 1988 and 2003 [123], its etiology has remained largely unknown. The diagnosis 

of PC is seldom made preoperatively due to a high prevalence of benign disease, as well as a 

lack of molecular profiling tools that could potentially assist with diagnosis [204]. The overlap in 

pathological characteristics of benign parathyroid pathology and PC also means features such 

as local invasion, and the development of local recurrence or distant metastasis, are required 

for definite histopathological diagnosis of malignancy [127]. These characteristics however are 

present at a more advanced stage of disease when a cure is less likely. A comprehensive 

analysis of the molecular profile of PC can aid in not only identifying sensitive diagnostic tools, 



50 

 

but also novel therapeutic options [205]. In this report, we have examined the complete 

genome and transcriptome of a PC, made a comparison to the primary tumor’s genome and 

identified novel somatic mutations in PC. 

 

The MEN1 tumor suppressor gene is mutated in a subset of parathyroid tumors [206-208]. Its 

product, a nuclear protein called menin, is believed to play a role in transcriptional regulation of 

gene expression, perhaps through modification of chromatin structure [209]. Several DNA-

binding transcription factors [210-213] and chromatin-modifying proteins including MLL2 are 

also shown to interact with menin [214-216]. The histone methyltransferase complex that 

consists of menin, MLL2 and ASH2L trithorax family members methylates histone H3 on lysine 

4, and acts as a transcriptional activator. The activity of the complex however is lost in tumors 

harboring menin mutations [215]; as a result, the epigenomic regulatory role of MEN1 might be 

responsible for its tumor suppressive activities [215]. Since H3K4 methylation is typically 

associated with an active transcription state [217], menin could enforce its tumor suppressive 

activity through activating important regulatory elements within the cell.  

 

The CDKN2C/p18 gene shows LOH in this patient with the remaining allele containing a 

missense mutation. In mice, haploinsufficiency of p18 causes increased sensitivity to chemical 

carcinogens and leads to spontaneous pituitary tumors and lymphomas [218]. Other evidence 

for the role of p18 as a tumor suppressor in endocrine tissues include the presence of germline 

mutations in cases of MEN1 with no MEN1 mutations [219] and reduced expression of p18 in 
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benign parathyroid tumors [220]. Mutations in CDKN1B/p27Kip1, a member of another distinct 

CDKI, are observed in cases of sporadic parathyroid adenomas [221]. p27 germline mutations 

are also found in patients with pituitary and parathyroid tumors lacking MEN1 mutations [222]. 

Similar to p18, loss of p27 leads to enlargement of organs in mice as well as the development of 

pituitary adenomas [223-225]. Knockout of both p18 and p27 leads to the development of 

tumors in multiple endocrine glands including the parathyroids, a phenotype similar to multiple 

endocrine neoplasia syndromes [226]. Since mutations of these CDKIs lead to malignancies of 

endocrine glands and MEN1 is a known tumor suppressor whose loss leads to tumors of the 

endocrine organs, there is a possibility that these two processes are related [227]. 

 

An in vitro study using mouse embryonic fibroblasts has suggested that menin regulates the 

expression of p18 and p27 by directly binding to these loci and by recruiting MLL, a close 

homolog of MLL2, to the promoter of these cell cycle regulators [228]. Thus, loss of function of 

either MLL or menin results in reduction of H3K4 trimethylation and down-regulation of p18 

and p27 expression [228,229]. H3K4 methylation of p27 and p18 promoters by menin maintains 

the transcription of these two cell cycle regulators and as a result prevents the formation of 

endocrine tumors [229]. Menin also forms a complex with MLL2/KMT2D and menin point 

mutations have been found to prevent complex methyltransferase activity [215]. The 

somatically acquired mutations in MLL2 and p18 in this patient may be driving the malignant 

phenotype through the same pathway that would otherwise be disrupted through the loss of 

MEN1.  
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Somatic mutations of mTOR and PLD1 upstream of CCND1 may also contribute to the 

development of PC. Increased activation of the mTORC1 complex can up-regulate cell cycle 

regulators such as MYC and cyclin D1 [149-151,230]. mTOR is also a member of the mTORC2 

complex that, in association with protein rictor, phosphorylates Akt at Ser473 [231]. PLD1 

hydrolyzes phosphatidylcholine to produce phosphatidic acid (PA), a lipid second messenger 

and regulator of cell signaling pathways. PA is required for stabilization and activation of both 

mTOR complexes and their downstream effectors [180,231,232]. As a result, alterations of PLD1 

can affect the mTOR signaling pathway [149,233]. The loss of the 5’ UTR region of the gene in 

this patient suggests a loss of its regulatory elements, and as a consequence may lead to 

deregulated production of PA in the cells. This is of critical importance when considering 

therapeutic options for this patient or others with a similar molecular phenotype. PA not only 

interacts with and activates mTORC1 through binding to its FRB domain, but also competes 

with rapamycin for binding to this domain, and as a result elevated levels of PA confer 

resistance to rapamycin treatment [232,234]. PA has also been shown to have a more stable 

interaction with mTORC2 complex that plays an important role in cancers via phosphorylating 

Akt, hence blockers of both mTOR complexes along with lowering the PA level may prove to be 

the most effective means of blocking the mTOR signaling pathway in cancers [231].   

 

The current study, to the best of our knowledge, is the first to profile the complete genomic 

and transcriptomic landscape of a PC and is also unique in defining somatic mutations in known 

cancer genes such as p18, MLL2, PIK3CA and mTOR that have never been previously identified 
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in PCs. The high frequency of 1p loss in PC [195] has led to the search for a tumor suppressor in 

this region. Both p18 and THRAP3 serve as candidate tumor suppressors in our case; the 

observed truncating mutation in the only copy of THRAP3 is especially intriguing. These 

identified genomic alterations in PC, and the pathways they affect, could potentially be 

exploited as markers for diagnosis, and also as potential targets for therapy. Any clinical 

application of these novel observations will require the functional annotation of the identified 

mutations. 
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Table 2.1 Sequence libraries read statistics 

 Total Number 
of Reads 

Number of 
Aligned Reads 

Average 
Coverage 

Primary genome 378325412 257948721 8.1 

Recurrence genome 1380449244 1213268909 41.3 

Blood genome 1249701624 1123730025 38.4 

First recurrence transcriptome 256888116 210608444 - 

Second recurrence transcriptome 159972160 142737727 - 
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Table 2.2 Nineteen Illumina Body Map 2.0 project libraries and their tissue types 

Lib ID Protocol Pathology Tissue 

HCT20142 RNA-seq normal kidney 

HCT20143 RNA-seq normal heart 

HCT20144 RNA-seq normal liver 

HCT20145 RNA-seq normal lung 

HCT20146 RNA-seq normal lymph node 

HCT20147 RNA-seq normal prostate 

HCT20148 RNA-seq normal skeletal muscle 

HCT20149 RNA-seq normal white blood cells 

HCT20150 RNA-seq normal ovary 

HCT20151 RNA-seq normal testes 

HCT20152 RNA-seq normal thyroid 

HCT20158 RNA-seq normal adipose 

HCT20159 RNA-seq normal adrenal 

HCT20160 RNA-seq normal brain 

HCT20161 RNA-seq normal breast 

HCT20162 RNA-seq normal colon 

HCT20170 RNA-seq normal 16 Tissues mixture 

HCT20172 RNA-seq normal 16 Tissues mixture 

HCT20173 RNA-seq normal 16 Tissues mixture 
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Table 2.3 Primers for verification of 23 putative somatic mutations 
Genomic position of each mutation is indicated; given the degraded nature of DNA extracted from the FFPE 
sample, smaller amplicons were designed for the primary specimen compared with the flash frozen recurrent 
(recur) and blood samples 
 

Chr Position Sample Forward Primer Reverse Primer Amplicon 
Size 

1 11177077 recur & 
blood 

AATTAAATTACTCACCTATCTCCCAGGC GAGGCTGCAGTGAGCCAAGATAG 257 

1 11177077 primary AATTAAATTACTCACCTATCTCCCAGGC ATAGCACCACTGCCTTCCAGC 238 

1 36752132 recur & 
blood 

GTGGGCGTAACAGAGGCTTTTATC GCCGGCTATCCTTAGAAGAGGAC 306 

1 36752132 primary GTGGGCGTAACAGAGGCTTTTATC AAGAACGGGAGGATGAGGAGC 228 

1 51436102 recur & 
blood 

AATCACGTGTGAATCGAGGGG TGTGCATTGACGTTTACATTATTTTGC 297 

1 51436102 primary CCAGATTAACCATCCCAGTCCTTC TGTGCATTGACGTTTACATTATTTTGC 227 

1 153747974 recur & 
blood 

AACCAGACGGTGCCGATAGAG ATGAGAAAGGTGTGCGCGG 287 

1 153747974 primary GTTTCTGCTCTCCGCCCG TAGCAACAGCAGCAGGGGC 225 

1 159284298 recur & 
blood 

GAAGTACATGGGGGTGTGAAGATG CCTTGGTCCAGCCTACTCTGTTTC 272 

1 159284298 primary GAAGTACATGGGGGTGTGAAGATG CCAGCTCTTTCAAACCTAGACCTACC 215 

1 248263363 recur & 
blood 

CCTGTGGCCGAGTCCTATTTG ATCCCAAACACTCTCCTCATAGCC 271 

1 248263363 primary CCTGTGGCCGAGTCCTATTTG CAGGCTGTAGATAATGGGATTGAGC 227 

2 58311236 recur & 
blood 

TTGTCTGCAGCTTTCCCCAC GGGTAATAGCTGGCAATACAGAAAAAC 249 

2 58311236 primary TTTTTGTCTGCAGCTTTCCCC AGAAAAACAAAGGTTCTCCAGTTTTAATG 233 

3 120319986 recur & 
blood 

TTTAGGAAAATCCTGCCTTGCTTC AAGGTGGGAGGGGCACTG 258 

3 120319986 primary TTTAGGAAAATCCTGCCTTGCTTC CAGCTGGTCCCTAGAAAGTGAACC 214 

3 178936091 recur & 
blood 

ACACGAGATCCTCTCTCTGAAATCAC GCATTTAATGTGCCAACTACCAATG 277 

3 178936091 primary ACACGAGATCCTCTCTCTGAAATCAC TTTCCACAAATATCAATTTACAACCATTG 243 

5 54570746 recur & 
blood 

AATGAGATCCAGGTTGATTTTATGAGG CCACTATTAAAAAGTATACGCTTCCTGTATTTTAAC 287 

5 54570746 primary AATGAGATCCAGGTTGATTTTATGAGG TTTGAATGAATGCAAATACCGCC 217 

5 112227760 recur & 
blood 

CAGGAGAAGAAAGAAAAAGAGGAAGC CCATTCCAAACGTTGTAAACATGC 256 

5 112227760 primary CAGGAGAAGAAAGAAAAAGAGGAAGC GGACTAGATGTTGGGAAATTATGTTTACG 215 

6 56883260 recur & 
blood 

TTATTTCCCAATACGGATGATGTTTC CACTCCCAGTTCTCCCCTTTTG 284 
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Chr Position Sample Forward Primer Reverse Primer Amplicon 
Size 

6 56883260 primary TTATTTCCCAATACGGATGATGTTTC TGGGTCACTAGTATTTTCTAGTAGAGTGATTGG 235 

8 22078960 recur & 
blood 

CATGAGCTGGTGCCCACTG TCTACTGCATGTACACGGCCTACC 251 

8 22078960 primary CATGAGCTGGTGCCCACTG ACTACGCCATCCTGGTGCTG 227 

9 138714298 recur & 
blood 

CTCTATGTCCACCACATCCGAGTC CCACCGAGACAGGACCACTG 248 

9 138714298 primary TATGTCCACCACATCCGAGTCAG CGCAGGAGAGGTCTGTGGTG 214 

12 49444944 recur & 
blood 

CTCAGGGGACAGATGCGATTC GCAGGCTGAGGAGCCACAC 274 

12 49444944 primary GACAGATGCGATTCCTCAGGC GAGGAGCCACACTTGTCCCC 206 

12 53701335 recur & 
blood 

AGAACAGGTGGTGGCCCTG TGGCTGCTGTATGGCTCTGC 272 

12 53701335 primary AGAACAGGTGGTGGCCCTG CCTTCTCTGCAGGGCTGGTC 209 

14 45432103 recur & 
blood 

GGTAGTGATGAGAAGCGGCTCTG GAAGCAGTAGTGCTGTGGAAGCTC 274 

14 45432103 primary TAGTGATGAGAAGCGGCTCTGC TATAAGCGTTCTCAGCACCTCTCC 214 

16 1877300 recur & 
blood 

GAGTGGGGAAAGAACATCGTCTG TATCCAGGCACAGGGCATAGC 265 

16 1877300 primary GAGTGGGGAAAGAACATCGTCTG ACGTAGTCCATGGCCGCAG 239 

16 9024162 recur & 
blood 

AACCACAGGCACTTACCATCCTC TTTTTGGATTAGAATGAATCTTTATTGTGG 265 

16 9024162 primary AACCACAGGCACTTACCATCCTC GGAATTTATTAATGATTAGGCAACATCAAAAG 228 

17 75398219 recur & 
blood 

ACCCAACTCCACCCCACC CCTCTTGAGCCCGAACCG 289 

17 75398219 primary ACCCAACTCCACCCCACC GATGTCAATGGACAGCTCAGTGC 229 

18 2775787 recur & 
blood 

AGAGCTGCGATGGTTATTTCTTGG TTCAAGTCAATTCTCTGTTTTAGGTATCTTTTAG 277 

18 2775787 primary TTGACAGTTTATTTTTAATTCATGTGTTTCAG GACTACACAGTCCATGTCACTTGCC 211 

18 3880013 recur & 
blood 

GAGTGGTGCGACAGCGAGTC AGGCTGCAGGAAGCAGAGATG 279 

18 3880013 primary GAGTGGTGCGACAGCGAGTC ACCTAATTTCCAAGAGAAATGTTAACGAC 206 

X 90691393 recur & 
blood 

GAGCAACTTTCACCAATGTTTTCG AGGCGTTCAATTTTCTTCTGTGC 259 

X 90691393 primary TGAAGGAACTTTTCTGTGAATATGGG AGGCGTTCAATTTTCTTCTGTGC 199 
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Table 2.4 Primers used for verification of putative somatic structural variants 

Region Forward Primer Reverse Primer 
 

AGBL1 breakpoint CACTTGGATTTTCTCTCTTCTTTTCTTG CAGAACATTCTAACCAATAACCACAGAATATG 

PLD1 breakpoint AGAGTTATCGAACCCTAATAACTCCACC AGGATGTCTCATGACAGTAACAGAATAAGAG 

AGBL1-PLD1 fusion point AGGATGTCTCATGACAGTAACAGAATAAGAG CAGAACATTCTAACCAATAACCACAGAATATG 

BC033837 breakpoint CTTGGCCCACAGTTCCTCTCTC GCGGCTATAAACTCTAGTCCTGCC 

SKP2 breakpoint CCAGGAAACTTGAAGTGTAATTGGG GTGTTTCCCAAAGGAAAGATGGAC 

BC033837-SKP2 fusion point GTGTTTCCCAAAGGAAAGATGGAC GCGGCTATAAACTCTAGTCCTGCC 

DMXL2 breakpoint TGATCTTCATAGCTCTGTGGTATCTTTG GGCAAGAAAAAGTGTTGTTGAAGG 

AKAP13 breakpoint TGAATTCAAATACCTCTGTTTCTTAGTACTCC TCGCAGCTAGAGATAAATTACATGGTTC 

DMXL2-AKAP13 fusion point TGATCTTCATAGCTCTGTGGTATCTTTG TGAATTCAAATACCTCTGTTTCTTAGTACTCC 
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Table 2.5 List of verified novel somatic point mutations in the parathyroid carcinoma samples 
**Repeated attempts to amplify the region around these three SNVs using PCR failed in the primary tumor, 
potentially due to the degraded nature of FFPE DNA. As a result the status of these three mutations in the primary 
sample is not verified despite the strong support from the next-generation sequence data 
 

 
 
 
 
 
 
 
Chr 

 
 
 
 
 
 
 
Position 

 
 
 
 
 
 
Reference 
Base 

 
 
 
 
 
 
Variant  
Base 

 
 
 
 
 
Amino 
Acid 
Change 

 
 
 
 
 
 
Zygosity 
State 

 
 
 
 
 
 
 
Gene 

 
 
 
 
Genomic 
Sample 
with 
Mutation 

 
 
Variant 
Allele 
Present 
in 
1

st
 

Recurrence 

 
 
Variant 
Allele 
Present 
in 
2

nd
 

Recurrence 

Gene 
Expression 
Fold 
Change: 
1

st
 

Recurrence 
vs 
Compendium 

Gene 
Expression 
Fold 
Change: 
2

nd
 

Recurrence 
vs 
Compendium 

1 11177077 A C L2334V Hemizygous mTOR primary & 
recurrence 

Yes Yes -1.5 -1.8 

1 36752132 C T R101* Hemizygous THRAP3 primary & 
recurrence 

Yes Yes -12.3 -8.3 

1 51436102 T G L21R Hemizygous CDKN2C primary & 
recurrence 

Yes Yes 3.8 4.4 

1 153747974 A G M48V Heterozygous SLC27A3 primary & 
recurrence 

Yes Yes -1.2 -1.1 

1 159284298 C T R51H Heterozygous OR10J3 primary & 
recurrence 

No No 1 1 

1 248263363 C A S229* Heterozygous OR2L13 primary & 
recurrence 

No No -1.1 -1.1 

2 58311236 A G N50S Heterozygous VRK2 primary & 
recurrence 

Yes Yes -1.4 -1.5 

3 120319986 A G Y70C Hemizygous NDUFB4 recurrence** Yes Yes 1.1 1.4 

3 178936091 G A E545K Heterozygous PIK3CA primary No No -1.2 -1.5 

5 54570746 C T M840I Heterozygous DHX29 primary & 
recurrence 

Yes Yes 1.2 1.2 

5 112227760 C T Q142* Heterozygous ZRSR1 recurrence** Yes Yes -2.1 -1.9 

6 56883260 A G I252V Heterozygous BEND6 primary & 
recurrence 

No No -3.1 -3 

8 22078960 C T G300E Heterozygous PHYHIP recurrence No No -8.2 -7.3 

9 138714298 C T D737N Heterozygous CAMSAP1 recurrence Yes Yes -1.1 -1.2 

12 49444944 C A C841F Heterozygous MLL2 primary & 
recurrence 

Yes Yes 1.8 1.3 

12 53701335 G A P527S Heterozygous AAAS primary & 
recurrence 

Yes Yes 2.4 3.1 

14 45432103 C T S160L Heterozygous FAM179B recurrence Yes Yes -1.3 -1.3 

16 1877300 G A G24R Heterozygous FAHD1 primary & 
recurrence 

Yes Yes 1.7 1.9 

16 9024162 C A D58Y Heterozygous USP7 primary & 
recurrence 

Yes Yes -1.5 -1.5 

17 75398219 T A L52H Heterozygous SEPT9 primary & 
recurrence 

Yes Yes 1.8 1.6 

18 2775787 A C H1744P Heterozygous SMCHD1 recurrence ** Yes Yes -1.9 -1.9 

18 3880013 G A A19V Heterozygous DLGAP1 primary & 
recurrence 

No No -3.9 -3.7 

X 90691393 C T R273* Heterozygous PABPC5 recurrence No No -1.8 -1.7 
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Table 2.6 Somatic gene fusions in the parathyroid genome 
Three somatic gene fusions were detected in the parathyroid genome (coordinates are based on the hg19/GRCh37 
assembly). The expression status of affected genes in both transcriptomes is listed; none showed over- or under-
expression compared with the normal compendium 
 

 
Event 

 
Type 

 
Breakpoint 

 
Gene 

Expressed in 1
st

 
Recurrence 

Expressed in 2
nd

 
Recurrence 

PLD1-AGBL1 
Fusion 

Translocation chr15:87238736 AGBL1 No No 

  chr3:171477831 PLD1 No No 

BC033837-SKP2 
Fusion  

Translocation chr22:49971207 BC033837 No No 

  chr5:36177713 SKP2 Yes Yes 

AKAP13-DMXL2 
Fusion  

Inversion chr15:51791474 DMXL2 Yes Yes 

  chr15:86131718 AKAP13 Yes Yes 
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Table 2.7 Sequence of the assembled genomic contigs providing support for the structural events 

 
Event Type 

 
Genes 

 
Contig Sequence 
 

 
Translocation 

 
AGBL1-PLD1 

TAAAAAAGTCAAATATACTTCTTGGCTTCTACTAAAACCTCCTTTC 
ATTATTTGCATGACTATAATGGTCTATCAATTTTATGTATCTTTTC 
AAAGAACCAGCTTTTTGTTTCATTTATTTTTGT 

 
Translocation 
 

 
SKP2-BC033837 

AGTTAATCCGAAAAATTTGGAAAGAAAAAAAAAAAAAGACACTA 
ACCCACATTGGGTCTGCCTGGCTGAATGGGTCCCGACGGCTCTG 
ACGGCTCCCCACACCCCTGCCCTGTGGGCCATGCT 

 
Inversion 
 

 
DMXL2- AKAP13 

CCTTAGAAAGGGAAGGAAAAAACTCACATCCTTGAATTCAAATAC 
CTCTGTTTCTTAGTACTCTATTTCTGATGATGTTTTTTGTTCACC 
AACTGTAATTCAAGATGGTGGCTTATTTGAGGCTG 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



62 

 

Table 2.8 Coordinates for focal-level copy number changes in relapse sample 
Gain=1 extra copy, Amplified= 2 extra copies, Highly Amplified= 3 or more extra copies 

 
Chromosome Start Position End Position Event Type 

 

1 13002001 13393000 Homozygous Deletion 

1 16866001 16991000 Homozygous Deletion 

1 25588001 25665000 Homozygous Deletion 

3 162512001 162626000 Homozygous Deletion 

3 164685001 166006000 Amplified 

5 35531001 36178000 Heterozygous Deletion 

7 21641001 21739000 Amplified 

7 22076001 22502000 Amplified 

11 34703001 34847000 Heterozygous Deletion 

11 63032001 64095000 Heterozygous Deletion 

11 69043001 69450000 Heterozygous Deletion 

11 69450001 69493000 Highly Amplified 

11 69493001 69592000 Heterozygous Deletion 

12 55197001 56680000 Heterozygous Deletion 

14 22474001 22987000 Gain 

15 72979001 73074000 Amplified 

16 70894001 71201000 Gain 

19 235001 392000 Heterozygous Deletion 

19 3415001 5386000 Heterozygous Deletion 

19 11123001 12066000 Amplified 

19 12066001 14696000 Heterozygous Deletion 

19 14696001 18207000 Amplified 

19 18605001 24513000 Heterozygous Deletion 

19 24594001 24630000 Heterozygous Deletion 

21 19715001 19758000 Heterozygous Deletion 

22 39358001 39389000 Homozygous Deletion 

22 47861001 48270000 Highly Amplified 

22 48270001 48592000 Amplified 

22 48592001 48673000 Highly Amplified 

22 48894001 49111000 Amplified 

22 49364001 49971000 Heterozygous Deletion 

X 143141001 143619000 Homozygous Deletion 
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Figure 2.1 Patient history 
Timeline of the patient’s disease history and the sequencing experiments performed on each sample. WGSS: whole 
genome shotgun sequencing, WTSS: whole transcriptome shotgun sequencing, FFPE: formalin-fixed paraffin-
embedded 
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Figure 2.2 Somatic alterations 
Regions of CNV and LOH, somatic SNVs and SVs identified from the recurrent genome are depicted. From the outer 
circle inward: somatic single nucleotide variants (blue dots), regions of copy number gain (red) and loss (green), 
regions of loss of heterozygosity (purple) and large structural events (red lines) 
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Figure 2.3 Somatic structural variants 
Schematic diagrams of the 3 structural variants identified in the recurrent whole genome data. Sanger sequence 
traces of the validation experiments demonstrate the novel sequences at the fusion breakpoint 
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Figure 2.4 Primary and relapse specimens CNV and LOH regions 
Tracks from the outer circle inward are relapse CNV, primary CNV, relapse LOH and primary LOH. The formalin-
fixed paraffin-embedded relapse sample demonstrated a profile with a much higher background noise due to the 
degraded nature of preserved DNA 
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Figure 2.5 Primary and relapse specimens CNV comparison 
The most prominent copy number differences between the genomes of the primary and first relapse samples are 
depicted 
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Chapter 3: MEN1 Mutations in Hürthle cell (Oncocytic) Thyroid Carcinoma3
 

 

3.1  Introduction 

 

Hürthle or oncocytic cells of the thyroid are follicular-derived cells with a large nucleus, 

prominent nucleolus and an abnormal accumulation of mitochondria resulting in a distinct 

granular appearance on histology sections [19]. Although oncocytes can be found in various 

metabolically active tissues such as kidney, parathyroid, salivary and adrenal glands, they are 

more commonly found in the thyroid and are believed to be the result of metaplastic changes 

in the epithelial cell linings of thyroid follicles [19,20]. 

 

Nodules consisting of 75% or greater oncocytic cells are categorized as Hürthle cell neoplasms; 

those demonstrating capsular or vascular invasion or presence of distant metastasis are 

diagnosed as malignant tumors, rendering fine-needle aspiration cytology as an inadequate 

technique for diagnosis of Hürthle cell malignancies [19]. Hürthle cell thyroid carcinoma, also 

known as oncocytic thyroid carcinoma, is considered an oncocytic variant of follicular thyroid 

cancers (FTCs) by some [235] while others regard it as a separate subtype of differentiated 

                                                 

3
 A version of this chapter has been published, and the author contributions are provided in the Preface as per the 

University of British Columbia PhD thesis guidelines: Katayoon Kasaian, Ana-Maria Chindris, Sam M Wiseman, 
Karen L Mungall, Thomas Zeng, Kane Tse, Jacqueline E Schein, Michael Rivera, Brian M Necela, Jennifer M 
Kachergus, John D Casler, Andrew J Mungall, Richard A Moore, Marco A Marra, John A Copland, E Aubrey 
Thompson, Robert C Smallridge, Steven JM Jones. (2015). MEN1 Mutations in Hürthle Cell (Oncocytic) Thyroid 
Carcinoma. Journal of Clinical Endocrinology and Metabolism. 2015 Apr;100(4):E611-5. doi: 10.1210/jc.2014-3622. 
Epub 2015 Jan 27. Copyright by Endocrine Society.  
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thyroid cancers (DTCs) [236]. Nonetheless, it is treated according to the same established 

guidelines for papillary and follicular neoplasms, namely surgical removal of all or part of the 

gland, radioactive iodine treatment and to a lesser extent with chemotherapy and radiation 

treatment [236]. Oncocytic thyroid carcinoma is a rare entity accounting for only 3 to 7% of 

DTCs, yet it demonstrates more aggressive behavior with five-year survival rates ranging 

between 50% and 60% [19,237]. Demographic comparison of 3,311 Hürthle cell thyroid 

carcinoma patients with 59,585 individuals diagnosed with papillary or follicular carcinomas 

from The Surveillance, Epidemiology, and End Results (SEER) database between 1988 and 2009 

showed higher prevalence of oncocytic carcinomas among older men who generally present 

with larger tumors, more advanced disease and demonstrate lower disease-specific survival 

[237].  

 

The uncommon occurrence of this subtype of thyroid cancer, similar to that of parathyroid 

carcinoma, has hindered the complete characterization of this malignancy on the molecular 

level; genetic changes associated with oncocytic thyroid carcinoma and their roles in 

tumorigenesis are not entirely understood. Here we report the profile of two tumors on the 

whole genome scale in addition to identification of recurrent inactivating mutations in the 

tumor suppressor gene MEN1 in five of 74 patients diagnosed with Hürthle cell thyroid 

carcinoma.  
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3.2 Materials and Methods 

 

3.2.1 Study Samples 

 

Biopsy specimens for whole genome sequencing experiments were collected from two patients 

diagnosed with Hürthle cell carcinoma. One tumor specimen was obtained from a 58-year old 

male with a 2 cm right carcinoma with focal extrathyroidal extension (T3N0M0). The patient 

subsequently developed liver metastases for which he received chemotherapy followed by 

resection of the liver lesion. The primary tumor underwent whole genome sequencing. The 

second patient was a 55-year old female with 2.9 cm left Hürthle cell thyroid carcinoma with 

perithyroidal soft tissue involvement (T3N0M0). The patient developed neck recurrence for 

which she had cervical re-exploration; this was followed by mediastinal lymph node recurrence. 

The metastasis specimen obtained from the lymph node underwent whole genome sequencing. 

Neither patient had a family history of cancer, multiple endocrine neoplasia syndrome or 

involvement of multiple organ systems. Subsequently, DNA extracted from formalin-fixed 

paraffin-embedded (FFPE) specimens of 72 oncocytic thyroid carcinoma patients (6 

accompanied by matched adjacent normal tissue), 5 individuals diagnosed with Hürthle cell 

adenoma and one Hürthle cell carcinoma cell line, XTC.UC1, were included in the validation 

experiment. The tumor specimens were collected as part of a research project approved by the 

University of British Columbia Cancer Agency Research Ethics Board and Mayo Clinic 

Institutional Review Board and are in accordance with the Declaration of Helsinki. The tumor 

samples were classified according to the World Health Organization criteria. The data are 
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consented for research reports and scientific publications. The protocol to be followed requires 

that these datasets will not be released into the public domain but can be made available via a 

tiered-access mechanism to named investigators of institutions agreeing by a materials transfer 

agreement that they will honor the same ethical and privacy principles required by the British 

Columbia Cancer Agency Research Ethics Board.  

 

3.2.2 DNA Sequencing 

 

DNA extracted from the two frozen tumor tissues and the blood samples were subjected to 

high-throughput whole genome sequencing using locally established sequencing protocols. 

Biopsy specimens were embedded in Tissue-Tek O.C.T. (optimal cutting temperature) 

compound (Sakura Finetek USA, Inc.) and sectioned for DNA extraction. Using 1ug DNA each 

from the tumor and blood, four whole genome libraries were constructed using a modified 

version of Illumina TruSeq PCR free protocol (FC-121-3001). In brief, 1ug genomic DNA was 

sheared for 45 sec, duty cycle 10%, intensity 5 burst per second 200 using Covaris E210, to an 

average of 400bp. NEB Paired-End Sample Prep Kit (New England Biolabs, USA) was used in 

library construction. Following the end repair reaction, a size selection was done using Ampure 

XP bead (Beckman-Coulter, USA). The sample:bead ratio is 110:27 for upper cut and 137:15 for 

lower cut respectively. The resulting size selected fraction, 300-500bp, was A-tailed, and ligated 

to Illumina TruSeq adapters. The PCR-free libraries were cleaned up with Ampure XP beads and 

quantified by qPCR assay using the KAPA SYBR FAST qPCR kit (Kapa Biosystems (Pty) Ltd, South 

Africa). Paired-end 100bp reads were generated on Illumina HiSeq2500 sequencers following 
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the manufacturer’s protocol with minor variations. Software version HCS1.5.8 was utilized 

(Table 3.1).  

 

Sanger sequencing was subsequently used as an orthogonal technique for the verification of 

somatic MEN1 mutations in both patients using the forward primer 5’-

GGCTCAGAGTTGGGGGACTA-3’ and the reverse primer 5’-CGGGAGTCCAAGCCAGAG-3’, 

spanning both mutations. Following the verification experiment, the protein coding region of 

MEN1 was sequenced by exon-tiling with 17 amplicons; given the degraded nature of DNA 

extracted from FFPE samples, the primers were designed to produce smaller amplicons with 

lengths ranging in 162bp to 249bp (Table 3.2). Primers were designed with the Primer3 

software [238] with a GC clamp and an optimal Tm of 64°C to ensure specificity. Primers were 

tested using a combination of UCSC's in-silico PCR tool aligned against the reference human 

genome and custom in-house scripts to verify that all exons of MEN1 were covered by an 

Illumina MiSeq 250bp paired end read. The primers were tagged with Illumina adapters to 

enable a direct sequencing approach that precludes the need for adapter ligation during sample 

preparation. The Illumina adapter tags are as follows: 5’- CGCTCTTCCGATCTCTG on the forward 

amplicon primer and 5’- TGCTCTTCCGATCTGAC on the reverse amplicon primers. The standard 

PCR conditions used were an initial denaturation of 98°C for 30 seconds, followed by 35 cycles 

of 98°C for 10 seconds, 68°C for 15 seconds and 72°C for 8 seconds, and a final extension at 

72°C for 10 minutes. PCR was set up using Phusion polymerase (Fisher Scientific, catalogue # F-
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540L) according to manufacturer’s specifications. One amplicon in the set with a high GC 

content of 69%  

(5-‘cgctcttccgatctctgCAGAAAATGCTCCACGAAGCC-3’ and  

5’-tgctcttccgatctgacGTGGAACCTTAGCGGACCCTG-3’) required alternate PCR conditions of 98°C 

for 30 seconds, followed by 35 cycles of 98°C for 10 seconds, 69°C for 15 seconds and 72°C for 8 

seconds, and a final extension at 72°C for 10 minutes. The PCR for this GC rich amplicon was set 

up using Phusion according to manufacturer’s specifications with GC buffer and addition of 

betaine to 1M final concentration. Amplicons were pooled by template for direct-sequencing 

sample preparation. Sample preparation involved a second round of amplification using 

Phusion DNA polymerase with 6 cycles using PE primer 1.0-DS (5’-

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTCTG-3’) and a 

custom PCR Primer (5’- 

CAAGCAGAAGACGGCATACGAGATNNNNNNGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTGAC-

3’) that contains a unique six-nucleotide ‘index’ shown here as N’s.  DNA quality was assessed 

using an Agilent DNA 1000 series II assay (Agilent, Santa Clara CA, USA) and DNA quantity was 

measured using a Quant-iT dsDNA HS assay kit on a Qubit fluorometer (Life Technologies, 

Grand Island, NY, USA). The indexed libraries were pooled together and sequenced on the 

Illumina MiSeq platform with paired-end 250bp reads using v2 reagents. An in-house generated 

PhiX control library was spiked in to the samples at 20% molar ratio as a sequencing control. 

Performing the validation experiments on MiSeq instruments rather than Sanger sequencing 

that was done for parathyroid mutation validation in Chapter 2 allowed for identification of low 
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allele frequency mutations that would have otherwise been missed. All genomic and targeted 

sequencing datasets have been deposited at the European Genome-phenome Archive (EGA, 

http://www.ebi.ac.uk/ega/) under accession number EGAS00001000940. 

 

3.2.3 Bioinformatic Analysis 

 

Sequence reads from the whole genome libraries were aligned to the human reference genome 

(build hg19) using the Burrows-Wheeler Alignment (BWA) tool [56]. The tumor’s genomic 

sequence was compared to that of patient’s constitutive DNA to identify somatic alterations. 

Regions of copy number variation (CNV) and loss of heterozygosity (LOH) were identified using 

Hidden Markov model-based approaches HMMcopy and APOLLOH [95], respectively. Single 

nucleotide mutations were identified using a probabilistic joint variant calling approach utilizing 

SAMtools and Strelka [64,75]. Small insertions and deletions (indels) were identified using 

Strelka [75]. De novo assembly and annotation of genomic data using ABySS [62] and Trans-

ABySS [87,139] were used to identify small indels, structural variants and fusion genes. 

Sequence reads from the targeted validation experiment were aligned to the same reference 

genome but using BWA-MEM given the longer read lengths [56]. Variants were called with the 

same pipeline as above, skipping read depth and duplicate read filtration steps. These reads 

were also de novo assembled using ABySS to provide supporting evidence for the variants 

identified through alignment-based techniques. 

 

http://www.ebi.ac.uk/ega/
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3.3 Results 

 

Copy number analysis revealed large regions of somatic copy number alteration in both tumors. 

The metastatic tumor had a change in every chromosome with 1 copy loss of chromosomes 1, 

2, 3, 4, 6, 8, 9, 11, 14, 15, 16, 21 and X while the remaining chromosomes had gained extra 

copies. The primary tumor had a striking profile, showing copy-neutral LOH of chromosomes 1, 

2, 3, 4, 6, 8, 9, 11, 13, 14, 15, 17 and 22 (Figures 3.1, 3.2 and 3.3). Loss of heterozygosity while 

maintaining two chromosomal copies is likely the result of chromosomal amplification of a 

mostly haploid genome during the evolution of the tumor. Copy number data also points to the 

high amplification of mitochondrial genome confirming the increase in mitochondrial numbers 

in both tumors. De novo assembly of sequence reads found no gene fusions in these tumors. 

The profile of large genomic alterations in these thyroid oncocytic tumors demonstrated a very 

different profile compared to the parathyroid cancer genome (Figure 2.2). Such extensive 

regions of copy number alteration and loss of heterozygosity were not observed in the 

parathyroid cancer; however, regions of focal copy number change in the parathyroid, perhaps 

also facilitating the acquirement of gene fusions by introducing genomic breakpoints, were not 

present in these oncocytic tumors. 

 

We identified 51 and 157 somatic single nucleotide variants (SNVs) and indels in the primary 

and metastatic genomes, respectively (Tables 3.3 and 3.4). Of particular interest was a splice 

site mutation in EWSR1 in the primary tumor, a heterozygous missense mutation in BRCA1 and 
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a hemizygous frame-shift deletion in the DNA mismatch repair gene MSH2 in the metastatic 

tumor. Although this MSH2 frame-shift deletion is recorded in dbSNP Clinical Channel 

(rs63751463), its clinical significance is unknown. Mismatch repair (MMR) deficiency including 

loss of function of the MSH2 gene have been observed in various cancers and are often 

associated with hypermutated and microsatellite unstable phenotypes [239,240]. Higher 

number of somatic mutations and small insertions and deletions, particularly those in 

microsatellites, may as a result indicate an MMR deficiency [241]. Over 3 times more somatic 

mutations were identified in the genome of the metastatic tumor when compared with the 

primary tumor. While only 3% of these mutations in the primary tumor were short indels, over 

25% of those in the metastatic tumor were, perhaps suggesting an MMR deficiency in this 

tumor. None of the primary tumor indels affected the microsatellites and only a small fraction 

of those in the metastatic tumor (0.38%) led to uncorrected insertions and deletions in 

microsatellites. Overall, oncocytic tumors demonstrate a much more unstable genome than 

that of parathyroid cancer with higher number of small mutations and large CNVs.    

 

Mutational analysis of the two genomic datasets revealed mutations of multiple endocrine 

neoplasia 1 gene (MEN1) in both tumors; MEN1 was the only shared mutated gene in these 

specimens and it harbored two distinct somatic single nucleotide deletions. The primary tumor 

showed a homozygous deletion of a single base leading to a shift in the reading frame and as a 

result the deletion of amino acids 592 to the end of MEN1. The metastatic tumor showed a 

hemizygous deletion of a single base causing a frame-shift in MEN1 starting from amino acid 
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521 in exon 10. This particular deletion has previously been identified in the germline of 

patients diagnosed with multiple endocrine neoplasia type I disorder [242] and also in 3 large 

intestine and 1 liver carcinoma samples (COSM1355794) [146]. Both deletions were present at 

close to 100% allele frequency after correction for normal tissue contamination. The presence 

of these two somatic mutations was subsequently verified using Sanger sequencing. As 

mentioned in chapter 2, MEN1 loss of function mutations are frequently found in parathyroid 

tumors of patients with MEN1 disorder or those with familial isolated hyperparathyroidism; 

however, tumors of the thyroid, including oncocytic benign or malignant variants, are not seen 

in these patients. It is intriguing that while we did not found such mutations in sporadic 

parathyroid carcinoma, they are likely the drivers of thyroid oncocytic cancer. MEN1 protein 

may play essential roles in maintaining various normal endocrine functions and it will be of 

great interest to define its specific role in different endocrine glands.      

 

Targeted sequencing of the validation cohort on MiSeq instruments provided a high depth of 

sequence coverage of the MEN1 gene (Figure 3.4). The majority of tumor specimens did not 

have matched adjacent normal tissues to distinguish somatic and germline mutations; however, 

given the mutational profiles of the original two tumors and the known tumor suppressive role 

of MEN1 [131], we examined the samples for the presence of likely loss-of-function mutations 

such as nonsense SNVs and indels. We found small deletions in 3 patients diagnosed with 

oncocytic carcinoma in the validation cohort with mutational allele frequencies of 17.8%, 10.7% 

and 3.2%. Adjacent normal tissue was available for one of these 3 and it did not harbor the 
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MEN1 mutation. We also found small deletions in an additional 4 oncocytic thyroid carcinoma 

patients with allele frequency levels (1.5%, 1.4%, 1.3% and 1%) close to the sequencing 

technology’s inherent error rate and hence we have not included these in the population’s 

mutational rate estimate despite a previous publication reporting one of these as a somatic 

mutation in sporadic parathyroid adenomas [243] (Figure 3.5 and Table 3.5). All the above-

mentioned deletions, including those found at low allele frequencies, were identified through 

both alignment-based and de novo assembly-based variant calling methods. No loss-of-function 

mutations were observed in the oncocytic cancer cell line XTC.UC1, benign Hürthle cell tumors 

or the normal specimens. 

 

3.4 Discussion 

 

Hürthle cell thyroid carcinoma, a rare entity accounting for only 2-3% of all thyroid cancers, 

often presents in a metastatic setting and hence has a poor prognosis [244]. Genomic studies of 

oncocytic thyroid cancers are limited and the molecular aberrations driving these carcinomas 

are not entirely understood. Activating NRAS mutations, frequently found in follicular thyroid 

cancers [244], were identified in 3 of 27 oncocytic carcinomas [21] leading perhaps to the 

conclusion that a subset of these malignancies might be derived from FTCs. It has been 

suggested that in contrast to these Hürthle cell variants of papillary or follicular carcinomas, in 

“true” or “primary” Hürthle cell tumors the aberrations leading to oncocytic phenotype occur 

prior, rather than subsequent, to neoplastic change(s) such as NRAS mutations [245]. It is 
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conceivable that these different Hürthle cell carcinoma subtypes are subjected to distinct 

oncogenesis mechanisms. In this study, we aimed to provide molecular profiles of those 

Hürthle cell malignancies that lack the most commonly mutated genes in other subtypes of 

thyroid cancers. We found MEN1 mutations in three of 72 (4.2%) patients diagnosed with 

Hürthle cell thyroid carcinoma. In the initial two tumors that underwent whole genome 

sequencing, complete loss of MEN1 through the loss of the remaining wild type allele was 

observed. In agreement with previous reports on the tumor suppressive role of MEN1 [131], 

the mutational profile of these tumors, namely homozygous and hemizygous frameshift 

deletions, has lent itself to a strong argument for a likely causative role of this tumor 

suppressor gene in Hürthle cell thyroid malignancies.   

 

Hürthle cells are generally found in tissues with low proliferative index, which accumulate 

excess mitochondria over long periods of time [245]. Mutations leading to decreased 

mitochondrial function might cause an increase in their number to compensate for the loss of 

the machinery indispensable for cellular energy production, hence causing the granular 

appearance of oncocytic tumors [20,245,246]. Disruptive mutations of mitochondrial DNA 

(mtDNA) have been described in Hürthle cell thyroid cancers [246]; however, mtDNA 

alterations are not restricted to tumors of the thyroid and are found in a variety of oncocytic 

and non-oncocytic cancers [245]. It is unclear what function, if any, these mutations might play 

in initiating a state of malignancy. Aberrations of the energy-producing organelles and their 

decreased efficiency seem unlikely to have a causative role in oncogenesis; they could, 
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however, serve as risk factors. We found considerable copy number alterations in the genomes 

of both tumors, revealing extensive regions of either hemizygosity or copy-neutral LOH. 

Haploidization, in some cases followed by endoreduplication, has previously been reported in 

recurrent oncocytic follicular carcinomas leading to the hypothesis that mitochondrial 

mutations may lead to loss of large regions of the genome as an energy-conserving mechanism 

and a survival mode [247]. Mitochondrial aberrations followed by haploidization are thus likely 

to provide a ripe opportunity for the second hit in a tumor suppressor gene, such as MEN1, to 

pave the way for the initiation of tumorigenesis.  

 

Germline loss-of-function mutations of MEN1 are recognized as the single predisposing event in 

both familial and sporadic cases of multiple endocrine neoplasia type 1 (MEN1) disorder. 

Clinical features of MEN1 can be diverse. Affected individuals develop tumors of two or more 

endocrine organs with the majority found in the parathyroid, pancreatic islets, duodenal 

endocrine cells and anterior pituitary; although most are benign nodules, some, particularly 

tumors of the pancreas, thymus and bronchi, can become metastatic [131,248]. A wide array of 

mutations including frame-shift, nonsense, missense and in-frame deletions throughout MEN1, 

with no distinct hotspot mutations, along with loss of the wild type allele have been identified 

in association with this syndrome [131,132,249]. Moreover, somatic inactivating mutations of 

both MEN1 alleles are found in sporadic endocrine tumors unrelated to multiple endocrine 

neoplasia type 1 disorder; these include benign parathyroid tumors [206], carcinoids tumors of 

the lung [250], gastrinomas and insulinomas [251].  
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In contrast to its prominent role in benign endocrine tumorigenesis, MEN1 has not been 

implicated as the main driver of malignancy in any cancer type. A query of the cBioPortal 

database [252] which contains mutational data from several large-scale studies including 

published and ongoing work from The Cancer Genome Atlas project revealed a low mutation 

rate in MEN1 (Figure 3.6). To date, the only malignancy with higher MEN1 mutation rate than 

that found by the current study is adrenocortical carcinoma, where approximately 9% of 

tumors have MEN1 mutations. This query also included 401 cases of papillary thyroid 

carcinoma from The Cancer Genome Atlas project, where only 1 patient was found to have a 

MEN1 mutation. Pathogenic implications of MEN1 mutations in thyroid tumorigenesis have 

been uncertain. Thyroid adenomas can accompany other endocrine tumors in a small 

percentage of MEN1 cases [131] and there are three case reports of MEN1 patients with 

papillary thyroid carcinoma diagnosis [253-255]. However, all three found the carcinoma to be 

a separate entity from the MEN1-related endocrine tumors. No mutations and/or LOH of MEN1 

were observed indicating that this gene is not etiologically related to papillary thyroid 

carcinomas [254]. Kim et al have described a patient who presented with several MEN1-related 

clinical features along with Hürthle cell thyroid carcinoma but had no germline mutations of 

MEN1 [256]. A report of an atypical MEN1 patient with Hürthle cell adenoma by Pinna et al 

identified a germline heterozygote missense mutation in MEN1 [257]. However, such 

mutational profile does not match that of an expected loss-of-function mutation in a tumor 

suppressor gene.  
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MEN1 encodes for a 615 amino acid-long tumor suppressor protein called menin. Although 

ubiquitously expressed, the exact mechanism by which this nuclear protein [258] leads to 

uncontrolled growth and division of mostly endocrine cells is not understood. MEN1 is involved 

in several key cellular processes. This gene plays a role in transcriptional regulation by control 

of chromatin remodeling through interaction with histone deacetylases [214] and in complex 

with MLL/SET histone methyltransferases [215,216]; these are possibly accomplished by direct 

interaction of MEN1 with several transcription factors [215,249]. This protein is also found to 

interact with the tumor metastasis suppressor NM23 and to bind hTERT promoter and directly 

repress its expression [215]. Menin can also inhibit cell proliferation [259] and induce apoptosis 

[260]. It maintains DNA integrity and is involved in DNA damage repair pathways [261]. 

Chromosomal instability due to loss of MEN1 might have resulted in the vast amount of copy 

number changes observed in the genomic datasets (Figure 3.1). Loss of chromosomal integrity, 

copy number alterations and premature centromere division are observed in MEN1 patients 

harboring MEN1 mutations but not in unaffected individuals or those affected but with wild 

type MEN1 [262]. Although, no genotype-phenotype correlations have been established in 

MEN1 patients with MEN1 mutations [249], the identified mutations in this study could shed 

light on the protein domains important for initiation of malignancy.  

 

The current study is perhaps underestimating the prevalence of MEN1 mutations in the 

oncocytic thyroid carcinoma population. Intra-tumor heterogeneity, frequently observed in 

most cancers but specifically in oncocytic carcinomas [247] and low tumor content, a common 
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characteristic of tissue cores obtained from FFPE specimens, might have resulted in 

underestimating MEN1 mutation rate. In addition, we cannot rule out the presence of UTR, 

intronic or promoter alterations or epigenomic silencing of the gene. Nonetheless, this study 

implicates MEN1 in the pathogenesis of a subset of Hürthle cell thyroid carcinomas. Further 

mutational analyses in this rare cancer type, preferably using micro-dissected regions of flash 

frozen tissues, are warranted and promise to aid in unraveling the mechanism of disease 

initiation and progression. 
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Table 3.1 Sequencing libraries read statistics 

 Total Number of Reads Number of Aligned Reads Average Coverage 

Primary tumor genome 1472791858 1093559232 37.8 

Blood genome 1632289136 1285598519 43.9 

    

Metastatic tumor genome 1462312890 1142572224 39 

Blood genome 1685907542 1289286505 44.1 
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Table 3.2 List of primers used for the validation experiment 

Targeted Region  
(build hg19) 

Amplicon 
Size (bp) 

Forward Primer Sequence Reverse Primer Sequence 

chr11:64571741-64571986 246 GCTCAGAGTTGGGGGACTAAGG CACTTTCCAGAGTGAGAAGATGAAGG 

chr11:64571843-64572091 249 GTGTAGTCACTAGGGGTGGACACTTTC GAAGCCTCCTGGGACTGTCG 

chr11:64572036-64572270 235 CCGTGCTGCCACCTTCAG ATAGTGAGCCGAGAGGCCGAG 

chr11:64572133-64572324 192 CTTGTCCAGTGCTGGCTTCTTG AACCTTGCTCTCACCTTGCTCTC 

chr11:64572427-64572646 220 CTGGGCCAGAAAAGTCTGACAAG CTCCAGGACCCTGAGTGCTTC 

chr11:64572523-64572726 204 CTAGGGACTGCACAAGAAAGGTGG CTCTGCTAAGGGGTGAGTAAGAGACTG 

chr11:64573066-64573283 218 AGGTGGGAGGCTGGACACAG AGACCCCTTCAGACCCTACAGAGAC 

chr11:64573633-64573865 233 GACGAGGGTGGTTGGAAACTG GATCCTCTGCCTCACCTCCATC 

chr11:64574388-64574597 210 AACACACAAAGTTCTCTTCTCATCTGC GCAGCCTGAATTATGATCCTTTCC 

chr11:64574568-64574729 162 TACCTAGGAAAGGATCATAATTCAGGC CTGTTCCGTGGCTCATAACTCTCTC 

chr11:64575005-64575245 241 CCATTGGCTCAGCCCTCAC GAAGACAGAAGAGCCCCTTTTCC 

chr11:64575319-64575491 173 TACTACAGTATGAAGGGGACAAGGCTG GCCCTGTCTGAGGATCATGC 

chr11:64575425-64575612 188 AGGTGACCTCAGCTGTCTGCTC AAGCACAGAGGACCCTCTTTCATTAC 

chr11:64577042-64577267 226 TCACAAGGCTTACAGTTCTTAAAAGGG CTATCCTCGAGAAGGGGGTGTCTC 

chr11:64577205-64577450 246 CATATGACATCGGAGACCTTCTTCAC GGAGCATTTTCTGGCTGTCAAC 

chr11:64577252+64577487 236 CCCTTCTCGAGGATAGAGGGACAG CGGACCTGGTGCTCCTTTC 

chr11:64577438-64577682 245 CAGAAAATGCTCCACGAAGCC GTGGAACCTTAGCGGACCCTG 
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Table 3.3 Tumor 1 (primary tumor) somatic SNVs & indels 

Chr Position Reference 
Allele 

Alternate 
Allele 

dbSNP/ 
COSMIC ID 

Effect Type AA 
Change 

Gene EnsEMBL Gene ID 

1 151131447 C A  Non-synonymous p.Q92K TNFAIP8L2 ENSG00000163154 

1 152287809 G A rs138819199, 
COSM170933 

Non-synonymous p.R42W FLG ENSG00000143631 

1 153946171 G A  Non-synonymous p.E325K CREB3L4 ENSG00000143578 

2 114256859 C T rs189095552, 
COSM228316 

Non-synonymous p.P9L FOXD4L1 ENSG00000184492 

2 15770132 G C  Non-synonymous p.E664Q DDX1 ENSG00000079785 

2 179476159 C A  Non-synonymous p.A14365S TTN ENSG00000155657 

2 210860209 C T  Non-synonymous p.H3199Y UNC80 ENSG00000144406 

3 180693943 G A rs149239435 Non-synonymous p.E492K FXR1 ENSG00000114416 

3 47161718 G T  Non-synonymous p.P1470T SETD2 ENSG00000181555 

3 53752750 C T  Non-synonymous p.S507F CACNA1D ENSG00000157388 

5 114860337 G C  Non-synonymous p.L508V FEM1C ENSG00000145780 

6 107070781 T C  Non-synonymous p.E113G RTN4IP1 ENSG00000130347 

6 168276091 G A  Non-synonymous p.E218K MLLT4 ENSG00000130396 

8 144547945 G C  Non-synonymous p.S750C ZC3H3 ENSG00000014164 

8 30701727 C G COSM1229015 Non-synonymous p.E1603Q TEX15 ENSG00000133863 

9 127215413 G A  Non-synonymous p.C146Y GPR144 ENSG00000180264 

11 21250971 G T  Non-synonymous p.G507V NELL1 ENSG00000165973 

11 61290678 TCA -  Codon deletion  p.MK325K SYT7 ENSG00000011347 

11 64571880 T -  Frameshift p.M592fs MEN1 ENSG00000133895 

13 37602394 G A  Stop gained p.Q349* FAM48A ENSG00000102710 

14 105359869 C T  Non-synonymous p.R1350C KIAA0284 ENSG00000099814 

14 32562460 C T COSM1369573 Non-synonymous p.S862L ARHGAP5 ENSG00000100852 

15 75982058 T A rs147116973, 
COSM1317755 

Non-synonymous p.R450W CSPG4 ENSG00000173546 

16 2028379 G C  Non-synonymous p.V734L TBL3 ENSG00000183751 

16 28331953 C T  Non-synonymous p.A329V SBK1 ENSG00000188322 

16 77246033 G A  Non-synonymous p.E144K SYCE1L ENSG00000205078 

17 15469301 G A  Non-synonymous p.P93L CDRT1 ENSG00000181464 

17 16455231 G T  Non-synonymous p.T742N ZNF287 ENSG00000141040 

17 38176635 G C  Non-synonymous p.F163L MED24 ENSG00000008838 

18 50923805 C T  Non-synonymous p.T939M DCC ENSG00000187323 

19 1061865 G A  Non-synonymous p.E1850K ABCA7 ENSG00000064687 

19 13264012 G C  Non-synonymous p.Q4H IER2 ENSG00000160888 

19 17922780 G A  Non-synonymous p.R323Q B3GNT3 ENSG00000179913 

19 38993270 G A  Non-synonymous p.D2580N RYR1 ENSG00000196218 

19 407478 G A  Non-synonymous p.A295V C2CD4C ENSG00000183186 

19 48248829 G C  Non-synonymous p.G5R GLTSCR2 ENSG00000105373 
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Chr Position Reference 
Allele 

Alternate 
Allele 

dbSNP/ 
COSMIC ID 

Effect Type AA 
Change 

Gene EnsEMBL Gene ID 

19 51631292 G A  Non-synonymous p.V368I SIGLEC9 ENSG00000129450 

19 53668842 G A  Stop gained p.Q301* ZNF665 ENSG00000197497 

19 56369839 C G  Non-synonymous p.D360E NLRP4 ENSG00000160505 

19 8399903 C G  Non-synonymous p.D270H KANK3 ENSG00000186994 

20 62562911 G A  Non-synonymous p.G196E DNAJC5 ENSG00000101152 

22 18165995 T C rs2587070 Non-synonymous p.I46T BCL2L13 ENSG00000099968 

22 29687589 G C  Splice Site Donor  EWSR1 ENSG00000182944 

22 50521523 G A  Non-synonymous p.A86V MLC1 ENSG00000100427 

X 14863335 G A  Stop gained p.Q524* FANCB ENSG00000181544 

X 20028971 C T COSM1119018 Non-synonymous p.E717K MAP7D2 ENSG00000184368 

X 48558600 G A  Non-synonymous p.R95K SUV39H1 ENSG00000101945 

X 67937574 A C  Non-synonymous p.N193T STARD8 ENSG00000130052 

X 90691444 C T COSM1469839 Non-synonymous p.R290W PABPC5 ENSG00000174740 

MT 10726 G A  Non-synonymous p.G86D MT-ND4L ENSG00000212907 

MT 5224 G A  Non-synonymous p.G252E MT-ND2 ENSG00000198763 
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Table 3.4 Tumor 2 (metastatic tumor) somatic SNVs & indels 

Chr Position Reference 
Allele 

Alternate 
Allele 

dbSNP/ 
COSMIC ID 

Effect Type AA 
Change 

Gene EnsEMBL Gene ID 

1 107867300 A G  Non-synonymous p.T215A NTNG1 ENSG00000162631 

1 152186042 A G rs12751022,  
COSM1127393 

Non-synonymous p.L2688S HRNR ENSG00000197915 

1 171756912 G A  Non-synonymous p.R228Q METTL13 ENSG00000010165 

1 175957501 C -  Frameshift p.C632fs RFWD2 ENSG00000143207 

1 177030270 C A  Stop gained p.E139* ASTN1 ENSG00000152092 

1 1961632 G A  Non-synonymous p.A424T GABRD ENSG00000187730 

1 203452824 G A  Non-synonymous p.R171Q PRELP ENSG00000188783 

1 223568289 G A  Non-synonymous p.R491H C1orf65 ENSG00000178395 

1 23111042 G A  Non-synonymous p.R95H EPHB2 ENSG00000133216 

1 2428962 A AT  Frameshift p.E713fs PLCH2 ENSG00000149527 

1 32263872 C T rs199645489 Non-synonymous p.R694Q SPOCD1 ENSG00000134668 

2 103149136 C CA  Frameshift p.Q796fs SLC9A4 ENSG00000180251 

2 190593424 A T  Non-synonymous p.M1024L ANKAR ENSG00000151687 

2 239010763 C T  Non-synonymous p.A159V ESPNL ENSG00000144488 

2 242098728 T C  Non-synonymous p.I135T PPP1R7 ENSG00000115685 

2 242186517 TGTT - COSM1637486 Frameshift p.K590fs HDLBP ENSG00000115677 

2 47698146 AG - rs63751463 Frameshift p.E569fs MSH2 ENSG00000095002 

3 48464254 G A  Stop gained p.Q404* PLXNB1 ENSG00000164050 

4 145040874 G T rs56077914 Non-synonymous p.S66Y GYPA ENSG00000170180 

4 42553229 C T  Non-synonymous p.V515M ATP8A1 ENSG00000124406 

5 131008245 TCTC -  Frameshift p.R602fs FNIP1 ENSG00000217128 

5 154300947 A G  Non-synonymous p.V473A GEMIN5 ENSG00000082516 

5 179291023 G A rs200438741 Non-synonymous p.R1043C TBC1D9B ENSG00000197226 

5 179545655 C T COSM172724 Non-synonymous p.R346H RASGEF1C ENSG00000146090 

5 180377473 A T  Non-synonymous p.I514F BTNL8 ENSG00000113303 

5 38425171 T G  Non-synonymous p.F362C EGFLAM ENSG00000164318 

5 59895033 G A  Non-synonymous p.R433C DEPDC1B ENSG00000035499 

5 65349266 A -  Frameshift p.N708fs ERBB2IP ENSG00000112851 

6 108066295 G T  Non-synonymous p.N180K SCML4 ENSG00000146285 

6 157099985 G A  Non-synonymous p.G308S ARID1B ENSG00000049618 

6 158923780 C T  Non-synonymous p.R1029W TULP4 ENSG00000130338 

6 161470602 G A  Non-synonymous p.R433Q MAP3K4 ENSG00000085511 

6 33289553 GCTTCCTC
TG 

-  Frameshift p.A59fs DAXX ENSG00000204209 

6 36168806 A G  Non-synonymous p.N236S BRPF3 ENSG00000096070 

6 637806 G A  Stop gained p.R5* EXOC2 ENSG00000112685 

6 72806843 G A  Non-synonymous p.R146H RIMS1 ENSG00000079841 

7 106301314 CGCCGC -  Codon deletion  p.RRR8R CCDC71L ENSG00000253276 



89 

 

Chr Position Reference 
Allele 

Alternate 
Allele 

dbSNP/ 
COSMIC ID 

Effect Type AA 
Change 

Gene EnsEMBL Gene ID 

7 149545229 G A rs370372278 Non-synonymous p.R216Q ZNF862 ENSG00000106479 

7 150884183 C T  Non-synonymous p.G12E ASB10 ENSG00000146926 

7 5541344 C T  Non-synonymous p.G186S FBXL18 ENSG00000155034 

7 73922429 C T rs201130740, 
COSM1091662 

Non-synonymous p.R7C GTF2IRD1 ENSG00000006704 

7 88963606 C A  Non-synonymous p.A437E ZNF804B ENSG00000182348 

7 99689305 G A  Non-synonymous p.G293S COPS6 ENSG00000168090 

8 106814997 C T rs200840311 Non-synonymous p.P896L ZFPM2 ENSG00000169946 

8 121237414 GAA -  Codon deletion  p.E609del COL14A1 ENSG00000187955 

8 144942300 C T rs191533123 Non-synonymous p.G1708S EPPK1 ENSG00000227184 

8 30546709 G A rs144377982 Non-synonymous p.P337L GSR ENSG00000104687 

8 75926268 G A rs150601296 Non-synonymous p.C186Y CRISPLD1 ENSG00000121005 

9 125140838 G A  Non-synonymous p.R113H PTGS1 ENSG00000095303 

9 129870571 C T  Non-synonymous p.R147H ANGPTL2 ENSG00000136859 

9 134504534 G A  Non-synonymous p.A266V RAPGEF1 ENSG00000107263 

9 15191186 A G  Splice Site Donor  TTC39B ENSG00000155158 

9 38577960 T -  Frameshift p.K811fs ANKRD18A ENSG00000180071 

10 100148175 C T  Non-synonymous p.M461I PYROXD2 ENSG00000119943 

10 102766392 C T rs191391710 Non-synonymous p.R493W LZTS2 ENSG00000107816 

10 116730191 G GC COSM1345961 Frameshift p.L199fs TRUB1 ENSG00000165832 

10 118320015 C A  Non-synonymous p.S383Y PNLIP ENSG00000175535 

10 118618628 A -  Frameshift p.K207fs ENO4 ENSG00000188316 

10 127455291 C CT  Frameshift p.K550fs MMP21 ENSG00000154485 

10 129905384 G A  Non-synonymous p.R1214W MKI67 ENSG00000148773 

10 13213237 G A rs374155592 Non-synonymous p.R108Q MCM10 ENSG00000065328 

10 27369086 A -  Frameshift p.F254fs ANKRD26 ENSG00000107890 

10 31809248 C T COSM185473 Non-synonymous p.R329W ZEB1 ENSG00000148516 

10 51465612 C T  Non-synonymous p.V282I AGAP7 ENSG00000204169 

10 5494839 C T rs373461269 Stop gained p.R130* NET1 ENSG00000173848 

10 79572115 C T COSM1349235 Non-synonymous p.R1349H DLG5 ENSG00000151208 

11 118627930 TCT -  Codon deletion  p.KI353I DDX6 ENSG00000110367 

11 120673479 C T rs145641056 Non-synonymous p.R54C GRIK4 ENSG00000149403 

11 126162666 G A rs199545047 Non-synonymous p.R121Q TIRAP ENSG00000150455 

11 130284488 C T  Non-synonymous p.G502R ADAMTS8 ENSG00000134917 

11 32676507 T - COSM1353548 Frameshift p.A220fs CCDC73 ENSG00000186714 

11 45241261 G A  Non-synonymous p.R232H PRDM11 ENSG00000019485 

11 45832632 G A  Non-synonymous p.G268S SLC35C1 ENSG00000181830 

11 60665363 G C  Non-synonymous p.Q458E PRPF19 ENSG00000110107 

11 64572093 G - COSM1355794 Frameshift p.R521fs MEN1 ENSG00000133895 

12 108140181 C T  Non-synonymous p.A383T PRDM4 ENSG00000110851 
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Chr Position Reference 
Allele 

Alternate 
Allele 

dbSNP/ 
COSMIC ID 

Effect Type AA 
Change 

Gene EnsEMBL Gene ID 

12 122018739 C CT  Frameshift p.K27fs KDM2B ENSG00000089094 

12 13061424 C A  Non-synonymous p.L81I GPRC5A ENSG00000013588 

12 39726186 G A rs142292357,  
COSM170145 

Stop gained p.R948* KIF21A ENSG00000139116 

12 39760190 C T COSM938947 Non-synonymous p.E289K KIF21A ENSG00000139116 

12 50480543 G A  Non-synonymous p.R138H SMARCD1 ENSG00000066117 

12 52184279 G A  Non-synonymous p.R1465H SCN8A ENSG00000196876 

12 54448978 A G  Non-synonymous p.T262A HOXC4 ENSG00000198353 

12 56514899 C T  Stop gained p.R185* ZC3H10 ENSG00000135482 

12 9251262 G A COSM1181114 Non-synonymous p.R598C A2M ENSG00000175899 

13 49075950 G A rs376690025 Non-synonymous p.P391L RCBTB2 ENSG00000136161 

14 23896932 C T  Non-synonymous p.G584S MYH7 ENSG00000092054 

14 70926261 T - COSM1370843 Frameshift p.L684fs ADAM21 ENSG00000139985 

14 76241852 G A COSM1371183 Non-synonymous p.R721Q TTLL5 ENSG00000119685 

15 56134324 C T  Non-synonymous p.R549Q NEDD4 ENSG00000069869 

15 77236167 A C  Non-synonymous p.E172D RCN2 ENSG00000117906 

16 1306802 A G rs2401930 Non-synonymous p.I87V TPSD1 ENSG00000095917 

16 16225734 G A  Non-synonymous p.R1303Q ABCC1 ENSG00000103222 

16 1869125 C T rs200743955 Non-synonymous p.V130M HAGH ENSG00000063854 

16 29818842 G -  Frameshift p.G224fs MAZ ENSG00000103495 

16 31336597 G A  Non-synonymous p.V793M ITGAM ENSG00000169896 

16 85682289 A AC COSM1380255 Frameshift p.V123fs KIAA0182 ENSG00000131149 

17 10404654 G A rs192282019, 
COSM1609829 

Non-synonymous p.R1171W MYH1 ENSG00000109061 

17 17931610 G A  Non-synonymous p.A87V ATPAF2 ENSG00000171953 

17 2579802 A -  Frameshift p.S304fs PAFAH1B1 ENSG00000007168 

17 36830102 G -  Frameshift p.P216fs C17orf96 ENSG00000179294 

17 4098254 C T rs375434076 Non-synonymous p.R464Q ANKFY1 ENSG00000185722 

17 41245098 C A  Non-synonymous p.G770V BRCA1 ENSG00000012048 

17 4720549 G A rs371269918 Non-synonymous p.V604I PLD2 ENSG00000129219 

17 4793023 C T  Non-synonymous p.R438W MINK1 ENSG00000141503 

17 48632895 C T rs145914453 Non-synonymous p.R701C SPATA20 ENSG00000006282 

17 7221410 C T COSM283215 Non-synonymous p.R1345H NEURL4 ENSG00000215041 

17 72878722 C T  Non-synonymous p.R159H FADS6 ENSG00000172782 

17 73732682 G A  Non-synonymous p.V633M ITGB4 ENSG00000132470 

17 76167829 G A  Stop gained p.W192* SYNGR2 ENSG00000108639 

17 80197898 C T rs373977034 Non-synonymous p.R413H CSNK1D ENSG00000141551 

18 47462659 G A rs121908105 Non-synonymous p.R656C MYO5B ENSG00000167306 

19 1229906 G A  Non-synonymous p.R484C C19orf26 ENSG00000099625 

19 12774217 C T  Non-synonymous p.D275N MAN2B1 ENSG00000104774 
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Chr Position Reference 
Allele 

Alternate 
Allele 

dbSNP/ 
COSMIC ID 

Effect Type AA 
Change 

Gene EnsEMBL Gene ID 

19 19655611 G A  Non-synonymous p.E753K CILP2 ENSG00000160161 

19 21992318 AA -  Frameshift p.F174fs ZNF43 ENSG00000198521 

19 35940962 C T  Stop gained p.Q116* FFAR2 ENSG00000126262 

19 41081377 G A  Non-synonymous p.A2533T SPTBN4 ENSG00000160460 

19 4179203 G A  Non-synonymous p.T92M SIRT6 ENSG00000077463 

19 42224095 A G  Non-synonymous p.N580S CEACAM5 ENSG00000105388 

19 47735847 T A  Non-synonymous p.M5L BBC3 ENSG00000105327 

19 50775820 G A rs374956489 Non-synonymous p.R1067H MYH14 ENSG00000105357 

19 56113688 G -  Frameshift p.V72fs ZNF524 ENSG00000171443 

19 56424537 G A  Stop gained p.Q216* NLRP13 ENSG00000173572 

19 56443533 G -  Frameshift p.Q49fs NLRP13 ENSG00000173572 

19 56671223 G A  Non-synonymous p.G212R ZNF444 ENSG00000167685 

19 58982236 G C rs145109076, 
COSM418737 

Non-synonymous p.R126P ZNF324 ENSG00000083812 

19 58982527 G C  Non-synonymous p.R223P ZNF324 ENSG00000083812 

19 6429784 G A  Non-synonymous p.A192V SLC25A41 ENSG00000181240 

19 7543215 G A rs138259370 Non-synonymous p.T159M PEX11G ENSG00000104883 

19 9018191 T C  Non-synonymous p.M12583
V 

MUC16 ENSG00000181143 

20 43837307 C T  Stop gained p.R457* SEMG1 ENSG00000124233 

20 44444208 C T  Non-synonymous p.S43L UBE2C ENSG00000175063 

20 45633591 C T  Non-synonymous p.R56C EYA2 ENSG00000064655 

20 49226196 G A  Stop gained p.Q160* FAM65C ENSG00000042062 

20 57484421 G A rs121913495, 
COSM27895 

Non-synonymous p.R201H GNAS ENSG00000087460 

20 58547177 C T rs112379790, 
COSM192808 

Non-synonymous p.T131M CDH26 ENSG00000124215 

20 60942085 A C  Non-synonymous p.S73A LAMA5 ENSG00000130702 

21 15013879 A G  Non-synonymous p.N583D POTED ENSG00000166351 

21 44841004 C T  Non-synonymous p.V212M SIK1 ENSG00000142178 

22 22277475 G A  Non-synonymous p.P452L PPM1F ENSG00000100034 

22 25750724 T G  Non-synonymous p.H165P LRP5L ENSG00000100068 

22 31999747 G A  Non-synonymous p.R608Q SFI1 ENSG00000198089 

22 36900599 G A  Non-synonymous p.R248C FOXRED2 ENSG00000100350 

22 38121787 C T rs201142573 Non-synonymous p.S1075L TRIOBP ENSG00000100106 

22 39770342 G A rs145517070 Non-synonymous p.G41S SYNGR1 ENSG00000100321 

22 50615970 G A  Non-synonymous p.V277M PANX2 ENSG00000073150 

22 50898007 C T  Non-synonymous p.V1194M SBF1 ENSG00000100241 

X 103495261 C T  Non-synonymous p.R290H ESX1 ENSG00000123576 

X 118774741 G A  Non-synonymous p.P234L SEPT6 ENSG00000125354 

X 152818575 G A COSM1117369 Non-synonymous p.E636K ATP2B3 ENSG00000067842 
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Chr Position Reference 
Allele 

Alternate 
Allele 

dbSNP/ 
COSMIC ID 

Effect Type AA 
Change 

Gene EnsEMBL Gene ID 

X 153050278 G GC  Frameshift p.A443fs SRPK3 ENSG00000184343 

X 153175478 C T COSM1117650 Non-synonymous p.A740T ARHGAP4 ENSG00000089820 

X 153676859 G A  Non-synonymous p.G157E FAM50A ENSG00000071859 

X 1719571 A T  Non-synonymous p.Q391L AKAP17A ENSG00000197976 

X 50055632 G T  Non-synonymous p.E1141D CCNB3 ENSG00000147082 

X 85212923 G A rs132630266, 
COSM1201068 

Stop gained p.R293* CHM ENSG00000188419 
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Table 3.5 Clinical characteristics of 7 patients from the validation cohort with MEN1 mutations 

Patient 
ID 

MEN1 
mutation & 
Allele 
Frequency 

Outcome Tumor 
Type 

Gender Age at 
Surgery 

Date of 
Surgery 

Surgery 
Type 

T 
Stage 

N 
Stage 

M 
Stage 

Stage Additional 
Therapies 

2370 p.EAAEAE46
8E AF=10.7% 

Alive with 
stable 
disease 

widely 
invasive 

M 57 9-Jul-02 Total TDX T3 N0 M0 III RAI 

1193 p.V178fs 
AF=3.2% 

Alive with 
no 
evidence of 
disease 

minimally 
invasive 

F 48 8-Dec-08 Lobectomy T1b Nx M0 X - 

4244 p.I252fs 
AF=17.8% 

Death due 
to disease 

widely 
invasive 

M 61 15-Sep-89 Lobectomy Tx Nx M0 X RAI 

9492 p.P498fs 
AF=1.3% 

Death due 
to disease 

widely 
invasive 

F 46 12-Dec-00 Completion 
TDX 

T4a N1b M0 IVA RAI 

8673 p.G111fs 
AF=1.4% 

Dead due 
to other 
causes 

widely 
invasive 

M 76 23-Feb-05 Total TDX T4a Nx M0 X RAI 

6933 p.AAEA469A 
AF=1% 

Alive with 
progressive 
disease 

widely 
invasive 

F 53 15-Apr-05 Near total 
TDX 

T2 Nx M0 X RAI 

6230 p.T215fs 
AF=1.5% 

Alive with 
stable 
disease 

widely 
invasive 

M 59 8-May-00 Near total 
TDX 

T2 Nx M0 X RAI 
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Figure 3.1 CNV and LOH regions in two Hürthle cell thyroid tumors 
From the outer ring in: primary tumor CNV, (unrelated) metastatic tumor CNV, primary tumor LOH and metastatic 
tumor LOH. Both tumors demonstrate large regions of copy number change; the primary tumor has gained extra 
copies of chromosomes 5, 7, 12, 16, 18p, 19, 20, 21 and X. The metastatic tumor demonstrates a much higher 
number of CNV changes including one copy loss of chromosomes 1, 2, 3, 4, 6, 8, 9, 11, 14, 15, 16, 21q and X and 
gain of extra copies of the rest of the genome. Both tumors also show extensive regions of loss of heterozygosity 
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Figure 3.2 B-allele frequency plots for the primary tumor 
This genome demonstrates large regions of copy-neutral loss of heterozygosity 
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Figure 3.3 B-allele frequency plots for the metastatic tumor 
This tumor demonstrates large regions of loss of heterozygosity associated with loss of copy number 
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Figure 3.4 Average coverage over MEN1 coding bases in validation experiment libraries 
Part of exon 1 is composed of a high GC-content region and as a result deemed more difficult to amplify 
(methods). Nonetheless, on average over 3,000 sequence reads were produced per base in this region 
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Figure 3.5 The identified mutations throughout MEN1 
While 5 mutations were found at high allele frequencies and thus are high-confident calls, extra 4 mutations were 
found to have low allele frequencies between 1 and 2%.  
* This mutation has previously been described in patients diagnosed with MEN1 disorder [242]. It has also been 
detected in 3 TCGA large intestine carcinoma specimens and 1 liver carcinoma (COSM1355794).  
** This mutation has previously been found in sporadic parathyroid adenomas [243] (COSM255131).   
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Figure 3.6 MEN1 mutation frequency in 55 cancer studies 
Data was extracted from cBioPortal database on August 22, 2014. ACC: Adrenocortical Carcinoma, Lung squ: Lung Squamous Cell Carcinoma, CCLE: Cancer Cell 
Line Encyclopedia, Uterine CS: Uterine Carcinosarcoma, NCI-60: NCI-60 Cell Lines, Lung adeno: Lung Adenocarcinoma, pRCC: Kidney Renal Papillary Cell 
Carcinoma, GBM: Glioblastoma, ccRCC: Kidney Renal Clear Cell Carcinoma, ACyC: Adenoid Cystic Carcinoma, AML: Acute Myeloid Leukemia, chRCC: Kidney 
Chromophobe, Lung SC: Lung Squamous Cell Carcinoma, MBL: Medulloblastoma, MM: Multiple Myeloma, Ovary SC: Small Cell Carcinoma of the Ovary. The 
particular study associated with each disease is indicated in the parenthesis 
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Chapter 4: The Genomic and Transcriptomic Landscape of Anaplastic Thyroid 

Cancer: Implications for Therapy4 

 

4.1 Introduction 

 

Anaplastic thyroid carcinoma (ATC) is an uncommon malignancy that accounts for only 1-2% of 

thyroid cancers and yet it is responsible for 14-39% of all thyroid cancer related deaths 

[263,264]. Dedifferentiation of thyroid follicular cells in the course of tumor evolution results in 

this most aggressive form of thyroid cancer and one of the deadliest of all adult solid 

malignancies with 68.4% and 80.7% mortality rates at 6 and 12 moths, respectively [264]. A 

study of 516 patients from 12 population-based cancer registries recorded in the Surveillance, 

Epidemiology and End Results database between 1973 and 2000 found that diagnosis made 

before the age of 60, confined disease to the thyroid and treatment with surgical resection and 

external beam radiation therapy are associated with better, but still dismal, survival in ATC 

patients [264]. Though aggressive multimodal treatment strategies may achieve better survival 

for those patients who present with fewer disease risks, for those with worse prognosis and 

extensive local and distant involvement at diagnosis, such treatments could worsen quality of 

life [265]. No effective or standard therapy for the treatment of anaplastic thyroid cancer exists; 

                                                 

4
 A version of this chapter has been submitted for publication, and the author contributions are provided in the 

Preface as per the University of British Columbia PhD thesis guidelines: Katayoon Kasaian, Sam M Wiseman,
 
Blair A 

Walker, Jacqueline E Schein, Yongjun Zhao, Martin Hirst, Richard A Moore, Andrew J Mungall, Marco A Marra, and 
Steven JM Jones. (2015). The Genomic and Transcriptomic Landscape of Anaplastic Thyroid Cancer: Implications 
for Therapy.  
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several clinical trials involving a small number of patients have failed to demonstrate any 

prolonged response and the use of chemotherapeutics such as doxorubicin and paclitaxel has 

not shown any significant survival benefits [264,265]. Multikinase inhibitors have more recently 

been used in the treatment of advanced and refractory thyroid cancers, and although some of 

these result in objective responses and can improve survival in select patients with 

differentiated thyroid cancers (DTC), the response of ATCs has been less consequential [263].  

 

The rare occurrence of ATC and the rapid death and short follow-ups as a result of its aggressive 

progression have made it challenging to study the biology of the disease or to conduct clinical 

trials where responses to novel therapies can be examined [266]. Retrospective studies of small 

cohorts of patients have found anaplastic thyroid carcinoma to be a heterogeneous disease on 

the molecular level, rendering it impossible to define a common and specific route of oncogenic 

transformation and thus to identify effective therapeutics [267]. Mutations of various pathways 

including MAPK, PI3K and Wnt have been described as potential drivers of this malignancy 

[244,267]. While some of these molecular signatures are shared with the less lethal DTCs 

(Chapter 5), suggesting their progression to ATC through step-wise accumulation of mutations 

and tumor evolution [266], dedifferentiation of preexisting benign nodules and DTCs are not 

the only means of disease development and at least a subset of ATCs may arise de novo [267].  

 

Tumor-derived cell lines provide an alternative to studying patient specimens when profiling 

rare tumors and these can facilitate the investigation of therapeutic effectiveness in pre-clinical 
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settings. Schweppe and colleagues have reported on cross-contamination and mislabeling 

concerns in 40% of thyroid cancer cell lines that have been used in over 200 published studies 

[268,269]. They have clearly emphasized the need for detailed characterization of all thyroid-

derived, including ATC-derived, cell lines. In this study, we describe the genomic and 

transcriptomic profiles of 1 primary ATC and 3 authenticated anaplastic thyroid cancer cell lines 

[269]. Those profiles augmented by the transcriptomes of 4 additional and unique cell lines 

[268] were compared to 58 pairs of papillary thyroid carcinoma (PTC) and matched normal 

tissue transcriptomes from The Cancer Genome Atlas (TCGA) study [270]. To the best of our 

knowledge, this is the first report of whole genome and transcriptome analyses of anaplastic 

thyroid cancer, allowing for the identification of regions of copy number alteration and large 

structural events at the base level resolution. 

 

4.2 Materials and Methods 

 

4.2.1 Study Specimens 

 

Excision biopsy of a primary and treatment-naive anaplastic thyroid carcinoma tumor and 

peripheral blood sample were collected from a 63-year old male at the time of palliative 

thyroidectomy; the patient lacking prior personal or family history of thyroid disease or cancer 

and radiation exposure presented with lung metastasis. He provided written informed consent 

for the complete genomic profiling of his specimens; these were collected as part of a research 

project approved by the British Columbia Cancer Agency’s Research Ethics Board and are in 
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accordance with the Declaration of Helsinki. In addition, 3 authenticated ATC cell lines, THJ-16T, 

THJ-21T and THJ-29T [269], obtained from the Mayo Clinic (Jacksonville, FL) and 4 unique cell 

lines [268], ACT-1 and T238 from Dr. R. Schweppe at the University of Colorado (Denver, 

Colorado) and C643 and HTh7 from Dr. N.E. Heldin at the Karolinska Institute (Uppsala, 

Sweden), were evaluated in this study. 

 

4.2.2 Library Preparation and Sequencing 

 

DNA from the ATC tumor, the matched peripheral blood specimen, and THJ-16T, THJ-21T and 

THJ-29T cell lines were subjected to whole genome sequencing; 100 bp paired-end sequence 

reads were generated on Illumina HiSeq2500 instruments following the manufacturer’s 

protocol with minor variations. In addition, 75 bp paired-end transcriptome sequence reads 

were produced for the tumor and all 7 cell lines (Table 4.1). The aligned sequence datasets have 

been deposited at the protected European Genome-phenome Archive (EGA, 

http://www.ebi.ac.uk/ega/) under accession number EGAS00001001214.  

 

Tumor biopsy specimen collected from the patient was embedded in Tissue-Tek O.C.T. (optimal 

cutting temperature) compound (Sakura Finetek USA, Inc.) and sectioned for DNA extraction. 

Using 1ug DNA each from the tumor and blood and 3 cell lines, THJ-16T, THJ-21T and THJ-29T, 

five whole genome libraries were constructed using a modified version of Illumina TruSeq PCR 

free protocol (FC-121-3001). In brief, 1ug genomic DNA was sheared for 45 sec, duty cycle 10%, 

http://www.ebi.ac.uk/ega/
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intensity 5 burst per second 200 using Covaris E210, to an average of 400bp. NEB Paired-End 

Sample Prep Kit (New England Biolabs, USA) was used in library construction. Following the end 

repair reaction, a size selection was done using Ampure XP bead (Beckman-Coulter, USA). The 

sample:bead ratio was 110:27 for upper cut and 137:15 for lower cut, respectively. The 

resulting size selected fraction, 300-500 bp, was A-tailed, and ligated to Illumina TruSeq 

adapters. The PCR-free libraries were cleaned up with Ampure XP beads and quantified by qPCR 

assay using the KAPA SYBR FAST qPCR kit (Kapa Biosystems (Pty) Ltd, South Africa). Paired-end 

100 bp reads were generated on Illumina HiSeq2500 instruments following the manufacturer’s 

protocol with minor variations. Software version HCS1.5.8 was utilized.  

 

For whole transcriptome sequencing, RNA was extracted from 7 cell lines using MACS mRNA 

isolation kit (Miltenyi Biotec), resulting in 5-10 μg of DNase I-treated total RNA as per the 

manufacturer’s instructions. Double-stranded cDNA was synthesized from the purified poly(A)+ 

RNA using the Superscript Double-Stranded cDNA Synthesis kit (Invitrogen) and random 

hexamer primers (Invitrogen) at a concentration of 5 μM. The cDNA was fragmented by 

sonication and a paired-end sequencing library prepared following the Illumina paired-end 

library preparation protocol. Cluster generation and sequencing were performed on the 

Illumina HiSeq instruments following the manufacturer’s recommended protocol, producing 

75bp paired-end non-stranded whole transcriptome sequence data. One transcriptome library 

from the tumor was constructed using 3ug RNA by following the strand specific RNA-Seq 

protocol [271], with a few modifications. Briefly, PolyA+ RNA was purified using the MultiMACS 
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mRNA isolation kit on the MultiMACS 96 separator (Miltenyi Biotec, Germany). The eluted 

PolyA+ RNA was ethanol precipitated and re-suspended in 10µL of DEPC treated water. First-

strand cDNA was synthesized from the purified polyA+ RNA using the Superscript cDNA 

Synthesis kit (Life Technologies, USA) and random hexamer primers at a concentration of 5µM 

along with a final concentration of 1ug/ul Actinomycin D. The second strand cDNA was 

synthesized following the Superscript cDNA Synthesis protocol by replacing the dTTP with dUTP 

in dNTP mix, allowing the second strand to be digested by UNG (Uracil-N-Glycosylase, Life 

Technologies, USA) post adapter ligation to achieve strand specificity. Library construction was 

carried out following a modified version of the Illumina paired end library protocol using the 

NEB Paired-End Sample Prep Kit (New England Biolabs, USA), the adapter-ligated products were 

purified using Ampure XP beads and digested with UNG (1U/ul) at 37°C for 30 min followed by 

deactivation at 95°C for 15 min. The digested cDNA was purified using Ampure XP beads, and 

then PCR-amplified with Phusion DNA Polymerase (Thermo Fisher Scientific Inc. USA) using 

Illumina’s PE primer set, with cycle condition 98˚C 30 sec followed by 10 cycles of 98˚C 10 sec, 

65˚C 30 sec and 72˚C 30 sec, and then 72˚C 5min. Paired-end 75bp reads were generated on 

Illumina HiSeq2500 following the manufacturer’s protocol with minor variations. Software 

version HCS1.5.8 was utilized. 
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4.2.3 Sequence Data Analysis 

 

Sequence reads from the whole genome libraries were aligned to the human reference genome 

(build GRCh37) using the Burrows-Wheeler Alignment (BWA) tool [56]. The tumor’s genomic 

sequence was compared to that of patient’s constitutive DNA to identify somatic alterations. 

Regions of copy number variation (CNV) and loss of heterozygosity (LOH) were determined 

using Control-FREEC [32]. This software does not require a matched normal tissue input; given 

the lack of such controls for the ATC cell lines, unlike the analyses done in Chapters 2 and 3, 

Control-FREEC was used. De novo assembly and annotation of genomic data using ABySS and 

Trans-ABySS [62] were used to identify small insertions and deletions (indels) and larger 

structural variants (SVs) including translocations, inversion and duplications leading to gene 

fusions; identified SVs were verified using an orthogonal alignment-based detection tool, 

BreakDancer [80]. Single nucleotide variants (SNVs) and indels in the tumor/normal pair were 

identified using a probabilistic joint variant calling approach utilizing SAMtools and Strelka 

[64,75]. Variants in the unpaired cell line genomic data were identified using SAMtools [64]; the 

indel lists for these samples were refined to include only those events that were also called 

through de novo assembly.  

 

Sequence reads from the transcriptome libraries were aligned to the human reference genome 

(build GRCh37) using TopHat [272] with Ensembl gene model annotation file on the -G 

parameter. The reference sequence and the corresponding annotation files were provided by 
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Illumina’s iGenome project and downloaded from the TopHat homepage 

(http://tophat.cbcb.umd.edu/igenomes.shtml). Quantification of gene expression was 

accomplished using HTSeq [273] in intersection-nonempty mode and excluding reads with 

quality less than 10, all subsequent analyses were run using only the count values for the 

protein-coding elements. Fifty-eight pairs of papillary thyroid carcinoma and matched normal 

tissue transcriptomes from The Cancer Genome Atlas project [270] were used for differential 

gene expression analysis. To ensure consistent analysis, raw sequence reads were downloaded 

from the Cancer Genome Hub and processed using the analysis pipeline described above. 

Protein-coding gene read counts were used as input into the R package edgeR [274] for 

differential gene expression analysis. Single-sample gene set enrichment analysis (ssGSEA)  

[275] was performed for each of the 8 transcriptomes to elucidate the oncogenic profiles 

enriched in each library when compared with normal thyroid tissue expression profiles. 

Structural variants were identified using de novo assembly-based approach employing ABySS 

and Trans-ABySS [62] and the alignment-based SV detection tool Minimum Overlap Junction 

Optimizer (MOJO) (https://github.com/cband/MOJO).  

 

4.3 Results 

 

4.3.1 Single Nucleotide Variants and Indels 

 

Twenty-four somatic SNVs and indels were identified in the tumor’s genome including 

heterozygous BRAF p.V600E and TP53 p.Y163C mutations. All three cell lines had TP53 
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homozygous nonsense or missense mutations with known pathogenic alleles. Other variants 

related to tumor biology included a homozygous BRAF p.V600E mutation in THJ-21T and 

heterozygous and homozygous frame-shift deletions of HDAC10 (p.H134Tfs) and CDKN2A 

(p.Q70Sfs), respectively, in THJ-29T. Additionally, THJ-16T harbored a heterozygous activating 

mutation in PIK3CA (p.E545K), a variant of unknown significance in RET (p.E90K) and a 

homozygous frame-shift deletion (p.S799Ffs) in EP300. Alterations of TP53 and BRAF were the 

only recurrent events and no mutations of the previously described ATC genes including H-, K-, 

N-RAS, CTNNB1, IDH1, ALK, PTEN, APC, or AXIN1 [244,276,277] were identified in these 

specimens. This is likely due to a small number of samples examined here and the infrequent 

mutations of these genes in the overall ATC population [244]. The numbers of small mutations 

in ATCs is comparable to that of parathyroid cancer (Chapter 2) and lower than those we 

observed in oncocytic thyroid tumors (Chapter 3). Due to small sample sizes, no general 

conclusions can be drawn; however, the number of small somatic mutations in endocrine gland 

malignancies does not seem to correlate with disease aggressiveness or prognosis. 

 

4.3.2 Copy Number Variants 

 

Evaluation of the copy number status and single nucleotide allele frequencies of the genomic 

data revealed extensive regions of gene copy loss and gain and the presence of triploid 

genomes in all 4 samples (Figure 4.1), consistent with previous observations of aneuploidy in 

the majority of ATCs [278]. Large-scale copy number changes have also been described in ATCs 
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[263] and are a hallmark of the progression from the mostly “quiet” differentiated cancers 

[270] to the aggressive and lethal ATCs. Although the tumor and the cell lines showed variable 

regions of copy number alterations, a 26 Mb minimal region on 5p, encompassing 196 genes, 

and the long arm of chromosome 20 showed gain of extra gene copies in all samples (Figure 

4.1). High-level and recurrent amplifications of 5p and chromosome 20 have been reported in 

studies utilizing comparative genomic hybridization in studying ATCs [277] indicating that genes 

located in these regions might play an important role in ATC tumor initiation and/or 

progression. The 5p region includes proto-oncogenes such as FGF10 and SKP2, mTOR signaling 

pathway members RICTOR and PRKAA1, in addition to IL7R, OSMR, LIFR, PRLR and GHR, all 

receptors involved in JAK-STAT and the downstream PI3K-Akt pathways. Anti-apoptotic and cell 

cycle genes BCL2L1, YWHAB, E2F1 and AURKA, proto-oncogenes PLCG1 and STK4 and 

chromatin remodeling genes ASXL1, CHD6 and DNMT3B have all gained extra copies through 

the amplification of 20q. Noteworthy observations of copy number change included the 

presence of 15 copies of each of KDR/VEGFR1, KIT and PDGFRA in a region of focal amplification 

on chromosome 4 in THJ-29T cell line. THJ-21T showed a region of high amplification on 

chromosome 11 leading to the accumulation of 25 copies of each of BIRC2, BIRC3, 

MMP1/3/7/8/10/13/27 and YAP1; this cell line also had a complete loss of a small region on 

chromosome 9 encompassing SMARCA2, a member of the SWI/SNF complex, and GLIS3, a 

transcription factor implicated in the development and normal functioning of the thyroid.  
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4.3.3 Structural Variants 

 

The study specimens were found to have anywhere between 1 to 32 structural variants (Figure 

4.2A and Tables 4.2-4.9). On average, these numbers are higher than that in parathyroid 

carcinoma (Chapter 2), thyroid oncocytic cancer (Chapter 3) and, as discussed in the following 

chapter, in benign thyroid tumors. Hence, gene fusions may play an essential role in ATC 

tumorigenesis.  Expressed in-frame gene fusions involving at least one proto-oncogene have 

been described in various cancers and are shown to be the driver of malignant phenotype, at 

times as the only such event in the tumor. We identified instances of these fusions in the 

genomes of THJ-16T and THJ-29T cell lines and the tumor (Figure 4.2B). These included an 

MKRN1-BRAF fusion in THJ-16T; the fusion product has lost the N terminal regulatory region of 

BRAF while retaining its kinase domain, hence likely leading to the constitutive activation of the 

kinase. A fusion of these two genes was also found in 1 TCGA PTC sample (0.2% population 

frequency) [270]. A reciprocal fusion between chromosomes 7 and 10 led to an in-frame fusion 

of FGFR2 and OGDH in THJ-29T, retaining the growth factor receptor’s kinase domain. Two 

TCGA PTC cases were also reported to have FGFR2 gene fusions with VCL and OFD1 as partners 

[270]. FGFR2 is found fused to various genes in different cancers where the fusion partners 

facilitate its constitutive activation through providing dimerization domains [279]. Sensitivity to 

FGFR inhibitors have been observed in patients harboring FGFR2 fusions with the same 

breakpoint as that found in the THJ-29T ATC cell line [279] and thus testing for these fusions 

might provide a tractable therapeutic option for a subset of patients diagnosed with anaplastic 
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thyroid cancer. We also identified a translocation between chromosomes 16 and 18 in the 

tumor, fusing the proto-oncogene SS18 and SLC5A11. SS18 (also known as SYT) is commonly 

found fused to one of SSX1, SSX2 or SSX4 in synovial sarcomas [280]. SS18 is a subunit of the 

SWI/SNF complex [281] and hence plays a major role in transcriptional regulation of the cell. It 

also interacts with various members of chromatin remodeling complexes such as SMARCA2, 

SMARCA4 [280] and EP300 [282] through its conserved N-terminal SNH domain that is found to 

be indispensible for the transforming ability of SS18-SSX onco-protein [280]. Although the 

fusion partner, SLC5A11, is distinct from that observed in sarcomas, it is likely that this fusion 

has transforming potential in ATCs. Only the last 8 residues of SS18 are deleted in its fusion to 

SSX genes and the mere deletion of these same 8 amino acids in the absence of a fusion partner 

was shown to disrupt the normal function of the protein [282]. Loss of SS18 C-terminal might 

be sufficient for tumorigenesis or that a yet unknown function of SLC5A11 may lead to the 

malignant transformation. In addition to the above potentially oncogenic fusions, gene 

members of the axon guidance pathway, recurrently altered in pancreatic cancer [283], were 

also found to be involved in multiple fusions: CADM2-EPHA3 fusion in the tumor’s genome, 

fusion of chromosome 19 to SLIT1 on chromosome 10 in the THJ-21T genome and SRGAP3-

SETD5 fusion in THJ-29T. 
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4.3.4 Analysis of Differential Transcript Abundance 

 

Despite the heterogeneous molecular profile of ATCs evident from the lack of commonly 

mutated genes and oncogenic fusions, the transcriptomic analysis of the tumor and all 7 cell 

lines showed consistent up- and down-regulation of several genes when compared to the 

compendium of normal thyroid tissue transcriptomes. Overexpressed genes included focal 

adhesion, cytoskeleton and ECM-receptor interaction pathway genes such as ITGA3, ITGB1, 

FLNA, ACTN1, and CD44 indicating alterations of genes involved in regulation of normal cell 

shape and migration. Cancer-related genes with significant up-regulation in all ATCs included 

MYC, mTOR, PRKCA and TGFB1 (Figure 4.3B). The down-regulated genes included thyroid 

differentiation signature genes such as TG, TTF1, TSHR and TPO (Figure 4.4) in addition to the 

tumor suppressor FHIT. Genes believed to be cancer drivers and to serve as drug targets in 

other malignancies showed consistent down-regulation in anaplastic thyroid cancer; these 

included ERBB4, NTRK2, FGF7 and MAPK10 (Figure 4.5). Differential gene expression analysis of 

the ATC cohort against the TCGA normal transcriptomes using edgeR found 840 and 574 genes 

to be down- and up-regulated in ATCs, respectively (Benjamini-Hochberg P < 0.05 and fold 

change > 4 or < -4); similar analysis yielded 605 and 419 down- and up-regulated genes in ATCs 

when compared to PTCs.  Pathway analysis of these differentially expressed genes showed 

ECM-receptor interaction, focal adhesion, endocytosis, cell cycle, p53 signaling, ErbB signaling 

and general cancer pathways to be up regulated in ATCs. Common down-regulated networks 
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included tight junctions, cell adhesion molecules and various metabolism pathways (Figure 

4.3A).  

 

Tumor genomes frequently show a vast amount of copy number change and aneuploidy. As 

these can be the side effect of the altered cell cycle machinery and disease progression rather 

than its driver(s), all copy number changes may not contribute to changes in gene expression 

levels. Integrative analysis of CNV and expression datasets thus allowed for the identification of 

correlated changes of these variations in all 4 specimens. Cell cycle kinase AURKA and the 

transcription factor E2F1, both located on chromosome 20 with gain of copies, also showed 

overexpression providing additional evidence for the deregulation of cell cycle control in ATCs. 

Overexpression of aurora kinase A is believed to be the cause of vast chromosomal 

abnormalities in ATCs given its key regulatory role in mitotic cell division, chromosome 

segregation and cytokinesis through association with centrosomes and the mitotic spindle 

[267,284]. Several investigational drugs with inhibitory effect on AURKA are under study and 

these might serve as promising therapeutics in ATCs. It is however imperative to demonstrate 

the high expression of these kinases as the driver of malignancy rather than just a by-product of 

the high rate of cell division in cancers particularly ATCs [285]. Similarly, tissue transglutaminase 

gene (TGM2) has gained extra copies in all samples and also shows overexpression compared 

with normal thyroid tissue and PTCs. Over-activation of TGM2 in ATCs correlates with its 

observed over-expression in pancreatic cancer, another aggressive human malignancy with 

mortality rates close to 100%. TGM2 over-expression leads to tissue invasion, metastasis and 
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chemotherapeutic resistance in cancers of the pancreas [286] and is shown to protect these 

cancer cells from autophagy leading to growth advantage and resistance to chemotherapy 

[286]. TGM2 may as a result serve as a direct drug target where its blockage leads to autophagic 

cell death. 

 

4.4 Discussion 

 

Anaplastic thyroid cancer is an extremely aggressive malignancy with dismal prognosis that has 

had little change in its 4-month median survival rate over the past 50 years [277]. Similar to the 

case we genomically profiled, the majority of ATC patients present with a rapidly growing neck 

mass often causing dyspnea, dysphagia and at times vocal cord paralysis [285]. The extremely 

poor prognosis of ATC is reflected by the current American Joint Committee on Cancer staging 

system for thyroid cancer in which individuals with anaplastic histopathology, regardless of 

extent of disease, are classified as having stage IV disease [264]. There are currently no 

standard therapies for the treatment of anaplastic thyroid cancer as its rarity and rapidly fatal 

course have made it difficult to study large cohorts of patients and to conduct randomized 

clinical trials [287]. Doxorubicin is the most commonly used chemotherapeutic agent for the 

treatment of progressive and metastatic ATC, but has little impact on survival, with a partial 

response rate estimated to be 10-30%; if administered in combination with cisplatin, it may 

have slightly higher efficacy [287,288]. Multimodal treatments comprised of surgical resection, 

external beam radiation therapy and systemic therapy have been associated with increased 
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survival in some patients [263] though often only effective in managing uncommonly diagnosed 

localized ATCs [284]. Individual responses to targeted therapies including multi-kinase inhibitors 

have been reported [289-291], however, no single agent has shown significant improvement in 

progression-free survival in the setting of a clinical trial and thus none has gained approval for 

routine clinical use. Phase II trials of Pazopanib [292], imatinib [293], gefitinib [294], axitinib 

[295] and sorafenib [296,297] in small patient cohorts showed limited or negligible activity. This 

is despite some of these agents, such as sorafenib, resulting in objective response and receiving 

approval for the treatment of advanced DTCs.  

 

The important role of increased endothelial cell proliferation and angiogenesis in thyroid cancer 

progression and maintenance is well recognized [295], and consequently the majority of the 

tested compounds are aimed at blocking these signaling pathways. The expression of some of 

the intended targets of these drugs by our ATC specimens, and the 58 pairs of PTC and normal 

thyroid tissues, are depicted in Figure 4.5. The majority of these drug targets, including FGFR1, 

2, 3 and 4, VEGFR1, 2 and 3, PDGFRA, PDGFRB, KIT and RET, show similar or lower expression in 

ATCs compared with both normal tissues and PTCs. The extent of messenger RNA expression 

might not be an accurate estimate of the protein level in the cell, and over-activation of a 

kinase is not captured on the transcript level, nonetheless, mRNA is an intermediary 

information molecule and its amount in the cell serves as a surrogate for protein expression 

levels. Based on the current differential mRNA expression analysis none of the multi-kinase 

inhibitors with observed response in DTCs would have an effect on the survival of ATC patients; 
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this is in agreement with the failure of all tested compounds to date and has implications in the 

development of future clinical trials. Lenvatinib has recently gained approval for the treatment 

of refractory DTCs, but the first described trial for its use in the treatment of 9 ATC patients 

showed only a median progression-free survival of 5.5 months [298]. We predict, based on the 

current study, that lenvatinib would not result in prolonged response in ATCs given the lower 

expression of all its targets (vascular endothelial growth factor receptors 1,2, and 3, fibroblast 

growth factor receptors 1, 2, 3 and 4, platelet-derived growth factor receptor alpha, RET and 

KIT) in ATC specimens (Figure 4.5). Generally, inhibitors of growth factors and their receptors 

appear to have a very limited effect on the survival of ATC patients. A similar lack of inefficacy is 

also found when using vascular disrupting agents. A single agent trial of the fosbretabulin (also 

known as combretastatin A-4 phosphate) or its combination use with carboplatin/paclitaxel in a 

cohort of patients, although showed some clinical activity, had no effect on progression-free 

survival [299,300].  

  

Analysis of genomic and transcriptomic datasets in this study allowed for identification of 

potential new drug targets. TRIP13 has gained extra copies in all specimens as a result of the 5p 

gain described above. This gene and its binding partner PRKDC promote non-homologous end 

joining (NHEJ) in cancer cells resulting in chemoresistance in head and neck malignancies where 

inhibitors of NHEJ, such as Nu7026, are believed to re-sensitize cells to cisplatin [301]. Both 

TRIP13 and PRKDC show very high expression in the ATCs we studied and could serve as novel 

targets for therapy. The mTOR signaling pathway is also a putative target and inhibitors such as 
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everolimus may show efficacy in ATC. Mutations of the pathway genes including mTOR and the 

tumor suppressor TSC2 have been previously described in ATC [276,289] and a dramatic and 

long-lasting response to everolimus in an ATC patient with a truncating mutation in TSC2 was 

reported [289]. Though no mutations were identified in the current study, a high level 

expression of mTOR and its downstream effector HIF1A was observed, thus raising the 

possibility for the use of mTOR inhibitors (Figure 4.3B). Overexpression of mTOR or loss of TSC2, 

its negative regulator, through promoting the transcriptional level of HIF1A leads to increased 

angiogenesis that is sensitive to rapamycin treatment [302]. Given that overexpression of 

vascular growth factor receptors are not likely to directly lead to increased angiogenesis in 

ATCs, mTOR signaling emerges as a key angiogenesis driving pathway in this cancer. The effect 

of everolimus on 5 ATC cell lines including HTh7 and C643 were tested by Papewalis and 

colleagues [303]. They found that both cell lines responded to therapy with HTh7 exhibiting a 

much higher sensitivity when compared to known responding lymphoma cell lines. The 

alterations of mTOR pathway and its potential role in parathyroid tumorigenesis were also 

described in Chapter 2, suggesting a primary role for this signaling pathway in endocrine 

function. Prior to embarking on clinical trials, further in vitro and in vivo studies are needed to 

elucidate the mechanism of response and resistance to targeted therapeutics such as mTOR 

inhibitors.  

 

A successful evolutionary history for cancer requires rapid and dynamic changes in the 

blueprint of the cell. Through providing a larger pool of possible mutational targets, recurrent 
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hits to specific cellular machineries or pathways, rather than the same gene, can accelerate the 

success of the cancer in overcoming its host defenses. We found alterations of the epigenetic 

machinery in all 4 ATC specimens with genome sequence data. A translocation of SS18, a 

member of SWI/SNF complex [281] in the tumor, homozygous frame-shift deletion in the 

histone acetyltransferase EP300 and a fusion of methyl CpG binding protein MECP2 and F8 in 

THJ-16T cell line, complete loss of SMARCA2, another member of the SWI/SNF complex and 

interacting partner of SS18 [281], in THJ-21T, a heterozygous frame-shift deletion in the histone 

deacetylase HDAC10 and a gene fusion of the transcriptional repressor and member of the 

SWI/SNF complex BCL11A [281] and GRIP2 in THJ-29T. The FGFR2-OGDH fusion in THJ-29T is, in 

addition to the involvement of the growth factor receptor, intriguing considering the role of 

OGDH in the control of metabolism and cellular epigenetic state. OGDH is a metabolic enzyme 

of the tricarboxylic acid (TCA) cycle and a subunit of the complex which converts 2-

oxoglutarate, product of IDH, to succinate, substrate of SDH. Mutations of IDH1 and IDH2 as 

well as those in SDH have been observed in numerous cancers and found to cause global 

epigenetic changes in the tumor [304,305]. 2-oxoglutarate is required for the normal 

functioning of chromatin-modifying enzymes such as UTX, JARID1C and TET2 [305] and 

succinate acts as an inhibitor of DNA and histone demethylases [304]; changes in their cellular 

concentration as a result of OGDH translocation can in turn alter the epigenomic state of ATC 

cells. Further evidence for the potential role of epigenomic deregulation in ATC came from 

single-sample GSEA. Top 20% most enriched oncogenic signatures in each of the 8 

transcriptome libraries were identified and those shared in two or more libraries are plotted in 
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Figure 4.3C. Top signatures enriched with over- and under-expressed ATC genes included genes 

that were up- and down-regulated, respectively, upon knockdown of BMI1 or PCGF2 or both 

genes [306]. BMI1 and PCGF2 are members of the Polycomb group of transcriptional regulators 

which control the expression of, among others, genes involved in ECM remodeling, cell 

adhesion and integrin-mediated signaling pathways [306], all of which demonstrated 

deregulation in ATCs. It is conceivable that understanding the effect of epigenetic changes in 

anaplastic thyroid cancer could pave the way for the development and application of novel 

therapeutics in this aggressive solid tumor. Histone deacetylase inhibitor valproic acid, for 

instance, increases the effect of both doxorubicin and paclitaxel in ATC cells [277] providing in 

vitro experimental evidence for a driving role of deregulated epigenetic control in ATC. 

Epigenetic alterations in ATCs in addition to mutations of MLL2 in parathyroid carcinoma 

(Chapter 2) and MEN1 mutations in oncocytic thyroid cancer (Chapter 3), both members of the 

histone methyltransferase complex, may be indicative of a role the epigenetic alterations play 

in all endocrine tumorigenesis. 

 

In this study, we profiled the molecular alterations of several anaplastic thyroid carcinoma 

specimens including unique and authenticated ATC cell lines. Given the heterogeneous genomic 

profiles of these samples and the low frequency of recurrent mutations, studies involving larger 

cohorts of cases through multi-institutional collaborations are required to identify genes at the 

“long tail” of the mutational spectrum, and to decipher the underlying biology of the disease. 

Furthermore, lack of common targetable oncogenic mutations, observed responses to targeted 
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therapies in other cancer types harboring the same aberrations as those found in at least a 

small subset of ATCs [279], and clinical responses to targeted therapies described in individual 

ATC patients [289-291] calls for a more genotype-driven approach to diagnosis and treatment 

of this rare and rapidly fatal cancer. With recent advances in molecular and information 

technology alike, it is anticipated that sequencing-based clinical tests provide the ability to 

comprehensively assay the large number of diverse and complex mutational forms that can 

arise, hence facilitating routine application of precision oncology in the clinic. 
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Table 4.1 Sequence libraries read statistics 

 Total Number of Reads Number of Aligned Reads Average Coverage 

Tumor genome 1022984062 887257120 30.5 

Blood genome 999542818 872101026 29.9 

THJ-16T genome 1063849260 944842455 32.4 

THJ-21T genome 1215949294 1057883434 36.2 

THJ-29T genome 1273726388 1124785419 38.5 

Tumor transcriptome 310755118 295756636 - 

THJ-16T transcriptome 178466960 160865258 - 

THJ-21T transcriptome 179493758 167089410 - 

THJ-29T transcriptome 166304638 150904101 - 

ACT-1 transcriptome 169675398 152479566 - 

T238 transcriptome 228841146 196149944 - 

C643 transcriptome 164143700 146172923 - 

HTh7 transcriptome 182831104 160580587 - 
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Table 4.2 List of somatic SVs in the tumor 

Event Type Breakpoint Coordinates (chr:pos) Genes Dataset 

translocation 16:29755668|18:36982773 BOLA2,NA genome 

duplication 3:85605596|3:89300765 CADM2,EPHA3 genome 

inversion 9:20380439|9:35743408 MLLT3,GBA2 genome 

translocation 16:26167689|18:23620965 NA,SS18 genome 

translocation 16:24873489|18:23622703 SLC5A11,SS18 genome 

translocation 16:24873922|18:23632588 SLC5A11,SS18 transcriptome 
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Table 4.3 List of SVs in THJ-16T cell line 

Event Type Breakpoint Coordinates (chr:pos) Genes Dataset 

deletion 7:140339236|7:140484371 DENND2A,BRAF genome 

duplication X:153312442|X:154169354 MECP2,F8 genome 

duplication X:153357642|X:154159951 MECP2,F8 transcriptome 

duplication 7:140159131|7:140484340 MKRN1,BRAF genome 

duplication 7:140159507|7:140482957 MKRN1,BRAF transcriptome 
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Table 4.4 List of SVs in THJ-21T cell line 

Event Type Breakpoint Coordinates (chr:pos) Genes Dataset 

inversion 15:78475563|15:79249350 ACSBG1,NA genome 

translocation 1:49740819|22:34381101 AGBL4,NA genome 

duplication 11:108142376|11:112351888 ATM,NA genome 

duplication 11:101946694|11:106151630 C11orf70,NA genome 

inversion 11:115069069|11:129563504 CADM1,NA genome 

duplication 5:122755261|5:122822216 CEP120,NA genome 

translocation 3:3050371|3:177932944 CNTN4,NA genome 

inversion 5:148925846|5:177497743 CSNK1A1,NA genome 

inversion 9:37739931|9:37753561 FRMPD1,NA genome 

duplication 11:120691806|11:122939218 GRIK4,NA genome 

translocation 6:29814678|12:133066751 HLA-H,NA genome 

deletion 10:121572626|10:121591129 INPP5F,MCMBP genome 

inversion 11:102666101|11:102755581 MMP1,NA genome 

inversion 11:101607373|11:106685771 NA,GUCY1A2 genome 

inversion 9:37749768|9:37777310 NA,TRMT10B genome 

translocation 6:43962453|8:14835894 NA,SGCZ genome 

duplication 1:48685420|1:48712126 NA,SLC5A9 genome 

inversion 22:21079831|22:34070927 PI4KA,LARGE genome 

translocation 10:72640780|16:34298022 SGPL1,NA genome 

duplication 8:19251056|8:19274690 SH2D4A,CSGALNACT1 genome 

translocation 10:98931589|19:7716903 SLIT1,NA genome 

inversion 11:101424515|11:102934901 TRPC6,DCUN1D5 genome 

inversion 9:37169126|9:37764686 ZCCHC7,TRMT10B genome 

duplication 17:57915656|17:57970686 VMP1,RPS6KB1 transcriptome 

translocation 12:133721111|15:63190850 ZNF10,NA transcriptome 
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Table 4.5 List of SVs in THJ-29T cell line 

Event Type Breakpoint Coordinates (chr:pos) Genes Dataset 

translocation 1:55030044|22:19435942 ACOT11,NA genome 

translocation 1:55029949|7:36106893 ACOT11,NA genome 

inversion 8:41658930|8:42009254 ANK1,NA genome 

translocation 2:60745077|3:14544960 BCL11A,GRIP2 genome 

translocation 3:8671456|15:24393332 SSUH2,NA genome 

inversion 3:7749290|3:82978863 GRM7,NA genome 

translocation 16:19773458|16:83946365 IQCK,MLYCD genome 

translocation 16:19773338|16:83945972 IQCK,MLYCD transcriptome 

duplication 20:33051633|20:33442216 ITCH,GGT7 genome 

inversion 15:37381985|15:40139066 MEIS2,GPR176 genome 

translocation 3:154811040|X:130141822 MME,NA genome 

translocation 3:564457|18:25560906 NA,CDH2 genome 

inversion 4:57763192|4:57915169 NA,IGFBP7 genome 

translocation 14:40057342|15:28265969 NA,OCA2 genome 

translocation 3:8446180|15:102006040 NA,PCSK6 genome 

inversion 4:56021378|4:57852745 NA,POLR2B genome 

duplication 8:40804685|8:41142233 NA,SFRP1 genome 

translocation 8:93134086|19:19220429 NA,SLC25A42 genome 

inversion 5:123822053|5:136833667 NA,SPOCK1 genome 

translocation 7:44679455|10:123240245 OGDH,FGFR2 genome 

translocation 7:44684926|10:123243212 OGDH,FGFR2 transcriptome 

translocation 2:179191810|3:63693746 OSBPL6,NA genome 

translocation 3:9449750|14:41243421 SETD5,NA genome 

deletion 20:48506228|20:61944892 SLC9A8,COL20A1 genome 

duplication 3:9218482|3:9463500 SRGAP3,SETD5 genome 

translocation 21:32810936|X:31501405 TIAM1,DMD genome 

translocation 2:175510803|18:47452566 WIPF1,MYO5B genome 

translocation 2:175510843|5:114425634 WIPF1,NA genome 

translocation 3:2942489|4:54119104 CNTN4,SCFD2 genome 

translocation 3:2944560|4:54139993 CNTN4,SCFD2 transcriptome 

translocation 16:87450678|20:57361072 ZCCHC14,NA genome 

translocation 16:87451066|20:57357892 ZCCHC14,NA transcriptome 

translocation 5:136832346|6:73764725 SPOCK1,KCNQ5 genome 

translocation 5:136602744|6:73751785 SPOCK1,KNCQ5 transcriptome 

translocation 3:8115946|14:53144141 NA,ERO1L genome 

translocation 3:8148799|14:53145152 NA,ERO1L transcriptome 

deletion X:54222315|X:54471569 WNK3,TSR2 genome 

deletion 4:6878218|4:6991990 KIAA0232,TBC1D14 genome 
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Table 4.6 List of SVs in ACT1 cell line 

Event Type Breakpoint Coordinates (chr:pos) Genes Dataset 

inversion 11:71112918|11:71640170 NA,RNF121 transcriptome 
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Table 4.7 List of SVs in C643 cell lines 

Event Type Breakpoint Coordinates (chr:pos) Genes Dataset 

deletion 1:165470864|1:214724526 LOC400794,PTPN14 transcriptome 

translocation 1:25072116|1:222761907 CLIC4,TAF1A transcriptome 

inversion 1:8877219|1:12438482 RERE,VPS13D transcriptome 

inversion 1:167042776|1:198126406 GPA33,NEK7 transcriptome 

duplication 5:110712558|5:139574237 CAMK4,CYSTM1 transcriptome 

translocation 1:45363116|1:224868728 EIF2B3,CNIH3 transcriptome 

duplication 1:17380443|1:173495853 SDHB,SLC9C2 transcriptome 

translocation 2:24985645|4:82380668 NCOA1,RASGEF1B transcriptome 

duplication 1:1509858|1:154942675 SSU72,SHC1 transcriptome 

duplication 1:39768596|1:90152170 MACF1,LRRC8C transcriptome 

inversion 1:16174645|1:94057950 SPEN,BCAR3 transcriptome 

inversion 1:40420840|1:42800730 MFSD2A,FOXJ3 transcriptome 

deletion 5:112043579|5:140358534 APC,PCDHA1 transcriptome 

translocation 1:15665977|1:205418996 FHAD1,NA transcriptome 
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Table 4.8 List of SVs in HTh7 cell line 

Event Type Breakpoint Coordinates (chr:pos) Genes Dataset 

deletion 1:1354929|1:9262638 ANKRD65,NA transcriptome 

duplication 5:38151367|5:38925473 NA,OSMR transcriptome 

translocation 5:43644904|7:92546151 NNT,NA transcriptome 

inversion 22:39317220|22:50905767 NA,SBF1 transcriptome 

translocation 1:60538342|5:38556436 C1orf87,LIFR transcriptome 

inversion 11:74209114|11:74500744 MGC12965,RNF169 transcriptome 

translocation 7:19555924|9:133738422 NA,ABL1 transcriptome 

translocation 7:156589083|8:41393879 LMBR1,GINS4 transcriptome 

duplication 7:91924203|7:94285892 ANKIB1,PEG10 transcriptome 

duplication 7:91794294|7:94285892 AL133568,PEG10 transcriptome 

duplication 5:43067189|5:43388578 NA,CCL28 transcriptome 

inversion 1:58971732|1:60223603 DAB1,FGGY transcriptome 
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Table 4.9 List of SVs in T238 cell line 

Event Type Breakpoint Coordinates (chr:pos) Genes Dataset 

duplication 18:55233679|18:56205456 FECH,ALPK2 transcriptome 

deletion 1:162551249|1:224318174 UAP1,FBXO28 transcriptome 

inversion 18:53128250|18:54547175 TCF4,WDR7 transcriptome 

duplication 18:52544798|18:54483375 RAB27B,WDR7 transcriptome 

inversion 1:150772185|1:150998149 CTSK,PRUNE transcriptome 

inversion 19:58500089|19:59070776 ZNF606,LOC100131691 transcriptome 

translocation 3:1189611|18:55919286 CNTN6,NEDD4L transcriptome 

inversion 18:53565658|18:55711940 NA,NEDD4L transcriptome 

inversion 18:55628638|18:56001124 NA,NEDD4L transcriptome 
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Figure 4.1 CNV regions in sequenced genomes 
A circos plot depicting, from the outer ring inward, tumor CNV, THJ-29T CNV, THJ-21T CNV, THJ-16T CNV, tumor 
LOH, THJ-29T LOH, THJ-21T LOH and THJ-16T LOH.  Red and green CNV regions illustrate the regions of copy gain 
and loss, respectively. The LOH tracks illustrate the B Allele Frequencies (BAF) ranging from 0.5 to 1. Those regions 
with BAF >= 0.9 are highlighted in purple. Regions of 5p and 20q showed recurrent copy gain in all samples 
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Figure 4.2 Structural variants in ATCs 
A. Structural variants identified in the genomic and transcriptomic datasets B. Detailed structure of the potentially 
oncogenic fusions: SS18 (transcript: ENST00000415083)/SLC5A11 (transcript: ENST00000347898) fusion in the 
tumor, MKRN1 (transcript: ENST00000255977)/BRAF (transcript: ENST00000288602) fusion in THJ-16T cell line and 
FGFR2 (transcript: ENST00000358487)/OGDH (transcript: ENST00000222673) fusion in THJ-29T cell line 
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Figure 4.3 ATC expression analyses 
A. Samples were ordered on the basis of pathology and 1647 significantly expressed genes in 58 TCGA normal thyroid tissue transcriptomes, 58 TCGA papillary 
thyroid cancer transcriptomes and 8 anaplastic thyroid cancer transcriptomes were clustered B. The expression levels (RPKM=reads per kilobase per million 
mapped reads) of select genes in the TCGA and ATC specimens are plotted C. ssGSEA was performed for all 8 transcriptome libraries using fold changes in 
expression of each gene (ATC expression/average expression in 58 normal libraries) in order to identify enriched oncogenic signatures. Top 20% most enriched 
signatures that were shared in two or more libraries are plotted. The molecular signatures enriched with up- and down-regulated ATC genes included genes 
that were up- and down-regulated upon knockdown of BMI1 or PCGF2 or both genes
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Figure 4.4 Down-regulation of thyroid differentiation marker genes in ATCs 

 

 

 

 

 



134 

 

 

Figure 4.5 Down-regulation of potential cancer drivers and drug targets in ATCs 
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Chapter 5: Molecular Profiling of Papillary Thyroid Carcinoma and Benign 

Thyroid Nodules5 

 

5.1 Introduction 

 

Approximately 5% of the population has palpable thyroid disease and by ultrasound 

examination, over 50% of the population will be diagnosed with thyroid nodules [6]. In 20-35% 

of cases, preoperative diagnosis by fine needle aspiration (FNA) biopsy is inconclusive and so a 

large proportion of individuals with indeterminate FNAs undergo thyroid surgery as a diagnostic 

procedure for cancer [307]. After surgery, over 80% of suspicious tumors are found to be 

benign nodules [23]. Hence, there is a great need for robust diagnostic markers that can 

improve the ability of fine needle aspiration biopsy to discriminate between benign and 

malignant nodules, reducing the number of surgeries that are needlessly undertaken. Over 90% 

of all thyroid malignancies are those referred to as differentiated thyroid cancer (DTC), the 

                                                 

5
 Portions of this chapter have either been published or are in preparation for submission; the author contributions 

are provided in the Preface as per the University of British Columbia PhD thesis guidelines: Section 5.3.1, “Cav1 and 
Gal3 Immunohistochemical Analysis”, was published as Jay Shankar, Sam M Wiseman, Fanrui Meng, Katayoon 
Kasaian, Scott Strugnell, Alireza Mofid, Allen Gown, Steven JM Jones, and Ivan R Nabi. (2012). Coordinated 
expression of galectin-3 and caveolin-1 in thyroid cancer. Journal of Pathology, 228: 56–66. 
doi: 10.1002/path.4041. Copyright by Wiley. Section 5.2.1, “Prognostic Significance of Papillary Thyroid Carcinoma 
Presentation Mode”, has been published as Heywood Choi, Katayoon Kasaian, Adrienne Melck, Kaye Ong, Steven 
JM Jones, Adam White, Sam M Wiseman. (2015). Papillary Thyroid Carcinoma: Prognostic Significance of Cancer 
Presentation. American Journal of Surgery, doi: 10.1016/j.amjsurg.2014.12.047. Copyright by Elsevier. Section 
5.2.2, “Prognostic Significance of Tumor Laterality in Papillary Thyroid Cancer”, is in preparation for submission: 
Sarah E Moore, Katayoon Kasaian, Steven JM Jones, Adrienne Melck, and Sam M Wiseman. (2015). Papillary 
Thyroid Cancer: Epidemiology of Bilateral Disease. Whole genome and transcriptome studies of benign thyroid 
nodules and papillary thyroid carcinoma described in sections 5.4 and 5.5 are based on unpublished work.  
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group of cancers derived from follicular cells of the thyroid gland; these include the papillary, 

follicular and Hürthle cell (Chapter 3) thyroid carcinomas with the papillary thyroid carcinoma 

(PTC) accounting for the majority of DTCs [9]. Unlike Hürthle cell (Chapter 3) and anaplastic 

thyroid cancers (Chapter 4), which do not pose any diagnostic challenges, discriminating PTCs 

from benign nodules is less simple. In the following described studies, we aimed to identify 

diagnostic and prognostic markers for PTCs and to examine and compare the genomic profiles 

of benign thyroid nodules and PTCs with the aim of defining the spectrum of mutations and 

genetic alterations accruing during the development of these tumors and of identifying ways 

these can be utilized for diagnostic purposes. 

 

5.2 Prognostic Factors for Papillary Thyroid Cancer 

We performed two studies using a prospectively maintained database of papillary thyroid 

carcinoma patients in order to identify potential correlations between the mode of disease 

presentation and prognosis in addition to any associations between disease bilaterality and 

prognosis. These studies have the potential to stratify patients to those with low and high risk 

of disease recurrence and metastasis before surgery and hence facilitate treatment decision-

making. 
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5.2.1 Prognostic Significance of Papillary Thyroid Carcinoma Presentation Mode 

 

The aim of this study was to make a comparison of prognosis between patients who presented 

with symptomatic disease and those who were diagnosed incidentally either through routine 

physical examinations or through imaging performed for unrelated purposes such as chest x-

ray. We hypothesized that the increasing number of radiological studies that are being 

performed would lead to a greater number of diagnosed PTCs; many of these likely represent 

over-diagnosis, given the rising incidence of PTCs with stable mortality rates [308]. 

 

We conducted a retrospective cohort study utilizing a prospectively maintained thyroid cancer 

database from the St Paul’s Hospital, Vancouver, British Columbia, Canada. This database 

contained clinical and pathological information of thyroid cancer patients treated surgically 

between 2000 and 2013. The patient charts were reviewed to identify the initial event leading 

to cancer diagnosis. These events were categorized as follows:  

 

1. Incidental imaging detection group: the detection of thyroid nodule by imaging performed 

for indications unrelated to the thyroid mass. 

2. Incidental physical examination detection group: the thyroid nodule detected by a clinician 

during an evaluation for complaints not related to a thyroid mass. 
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3. Non-incidental detection group: the patient presents with complaints possibly related to the 

thyroid mass such as dysphagia, dysphonia, neck pain, self-detection of a neck mass or self-

requested screening for thyroid cancer. 

 

MACIS (metastasis, age, completeness of resection, invasion, and size) scoring system reflecting 

the 20-year disease-specific survival [309], developed at the Mayo Clinic and widely utilized as a 

measure of papillary thyroid cancer prognosis, was used as a measure of prognosis comparison 

between the incidental and non-incidental diagnosed PTCs. The twenty-year disease specific 

survival rate is 99% for MACIS score <6, 89% for MACIS score 6-6.99, 56% for MACIS score 7-

7.99, and 24% for MACIS score >8 [309]. Significant associations between the type of PTC 

presentation and MACIS score, as well as with each component of the MACIS score, were 

assessed using Pearson chi-squared or Fisher’s exact test, where appropriate. Scripts written in 

the R programming language (version 3.1.1, R Development Core Team, R Foundation for 

Statistical Computing, Vienna, Austria) were used for these analyses. P values were corrected 

for multiple testing using the Benjamini–Hochberg (BH) correction method [145]. All statistical 

tests were two-tailed and a P value of less than 0.05 was considered statistically significant. 

 

168 PTC patients met study inclusion criteria and made up the study population. There were 

126 women and 42 men in this study cohort. 28 (17%) patients had incidental imaging that led 

to their PTC detection, 60 (36%) patients had their PTC detected incidentally during a physical 

examination by a physician, and 80 (47%) of PTC patients presented with complaints related to 
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a thyroid mass. There was no significant difference in gender and whether PTC presented 

incidentally or symptomatically. The distribution of MACIS scores for patients in the incidental 

imaging PTC detected group was: <6 (85%), 6-6.99 (4%), 7-7.99 (7%), and ≥8 (4%). The 

distribution of MACIS scores for patients in the incidental physical examination PTC detected 

group was: <6 (78%), 6-6.99 (13%), 7-7.99 (7%) and ≥8 (2%). The distribution of MACIS scores 

for patients presented with complaints related to thyroid mass was: <6 (90%), 6-6.99 (5%), 7-

7.99 (4%) and ≥8 (1%). The difference in the proportion of patients in each MACIS group 

amongst the 3 clinical presentation categories was not statistically significant. Each individual 

component of the MACIS score (presence of distant metastases, patient age, completeness of 

cancer resection, cancer invasion, and tumor size) was also examined with respect to the three 

presentation categories, with no significant differences between them. Data was also analyzed 

after subdividing patients into groups presenting prior to or subsequent to 2009, representing 

groups who were diagnosed before or after a major increase in the use of medical diagnostic 

technologies, with no significant differences observed between the two time periods with 

respect to PTC presentation and cancer prognosis. 

 

Our study suggests that regardless of the mode of presentation, the disease specific survival did 

not differ between patients. These findings support the current practice of disregard for the 

diagnostic event when a fine needle aspiration biopsy is recommended [236].   
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5.2.2 Prognostic Significance of Tumor Laterality in Papillary Thyroid Cancer 

 

The standard of care for patients diagnosed with PTC is to perform a total thyroidectomy even 

in cases of unilateral disease; however, the extent of surgery, especially in low-risk individuals, 

has been extensively debated [7] and some experts support that lobectomy may be suitable for 

individuals at low risk of developing local or distant metastasis [310]. While known 

complications of total thyroidectomy (permanent hypoparathyroidism, recurrent laryngeal 

nerve damage and vocal cord paresis) are uncommon, they are not negligible [7] and therefore 

may affect the decision for pursuing a more aggressive surgical course. The aim of this study 

was to examine the correlations between disease laterality and MACIS score and to identify 

which, if any, clinicopathological factors are associated with bilateral thyroid cancer. If 

unilateral disease is found to pose a lower risk to the individual, less extensive surgery could be 

performed in these cases.  

 

We reviewed data for 203 patients with papillary thyroid cancer who were treated with either 

total thyroidectomy or completion thyroidectomy at St. Paul’s Hospital, Vancouver, British 

Columbia, Canada, between 2000 and 2012. All patients in the cohort presented with one or 

more thyroid nodules and had an ultrasound-guided FNA biopsy. Patients were then referred to 

one of three head and neck surgeons and following resection, specimens were analyzed and a 

formal diagnosis of PTC was given. It is the standard of care at St. Paul’s Hospital to perform 

total thyroidectomy in the setting of PTC. In the event of indeterminate FNA results, thyroid 



141 

 

lobectomy may be performed; patients then proceed onto completion thyroidectomy if PTC is 

identified on pathology. Demographic factors of gender and age and histopathologic 

characteristics including disease in the contralateral lobe (bilaterality), presence of multifocal 

disease, size of tumor, presence of extrathyroidal invasion, vascular invasion, nodal or distant 

metastases and completeness of resection were recorded. A Pearson chi-squared or Fisher’s 

exact test, where appropriate, was used to determine if differences between the bilateral and 

unilateral groups were significant with respect to clinicopathological characteristics. P values 

were corrected for multiple testing using the Benjamini-Hochberg correction [145]. All 

statistical tests were two-tailed and a P value of < 0.05 was considered statistically significant. 

Multivariate logistic regression was also performed, considering all covariates. All analyses were 

done using scripts written in the R programming language (version 3.1.1, R Development Core 

Team, R Foundation for Statistical Computing, Vienna, Austria). 

 

Only 2 of the studied variables demonstrated a correlation with bilaterality – smaller tumor size 

(P < 0.0001) and presence of vascular invasion (P < 0.0001). The rest of the clinicopathological 

variables and the MCIS score did not correlate with laterality with any significance. Eighty two 

(40.4%) patients had bilateral disease, and 121 (59.6%) had unilateral disease; the analysis 

demonstrated that all 121 patients with unilateral disease had tumor sizes > 1 cm; however, of 

the 82 patients with bilateral disease, 22 (26.8%) had a tumor size ≤ 1 cm. A total of 16 patients 

(19.5%) with bilateral disease had evidence of vascular extension compared to only 2 (1.7%) 

patients with unilateral disease. MACIS scores for each patient were calculated and stratified 
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into categories of low grade (score < 6), middle-low grade (6-6.99), middle-high (7-7.99) or high 

grade (≥ 8). Most patients had low MACIS scores (< 6) for both bilateral disease (65 patients, 

82.3%) and unilateral disease (92 patients, 76.7%). When scores were created as a binary 

variable (<7 vs ≥7), the number of patients with higher scores did not differ significantly 

between the bilateral and unilateral groups – 7 (8.9%) and 11 (9.2%), respectively. 

 

Multifocality is defined as the presence of more than one site of disease and by definition all 

patients with bilateral disease were considered to have multifocal disease. By comparison, only 

3 patients in the unilateral group (2.5%) showed any evidence of multifocal disease within the 

same lobe. Multifocality was further studied to determine if the main site of multifocal disease 

in bilateral cases was ipsilateral or contralateral to the dominant tumor. One of 82 patients with 

bilateral disease was not included in this analysis since detailed pathology reports were lacking. 

Interestingly, the majority of patients in the bilateral cohort had their main site of multifocality 

within the lobe ipsilateral to that of the dominant tumor (P = 0.03). This finding may suggest 

that these tumors tend to spread locally first within the ipsilateral lobe before appearing in the 

contralateral lobe, thereby giving rise to bilateral disease. This observation would also support 

the notion of step-wise accumulation of mutations and tumor evolution over time rather than 

the appearance of multiple unrelated tumors in the gland.  

 

Overall, our results demonstrate very few correlations between poor prognostic factors and 

bilateral disease. Bilaterality was associated with smaller tumor size and vascular invasion; the 
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association between bilaterality and vascular invasion suggests that they are possibly more 

locally aggressive within the gland itself, rather than having a higher preponderance towards 

systemic spread. This may also be supported by the fact that cases of bilateral disease 

demonstrated a significantly higher incidence of multifocality within the ipsilateral lobe. The 

association with smaller tumor size suggests that bilaterality is an early event in thyroid tumor 

progression, and perhaps earlier than other forms of tumor progression. It is possible that 

bilateral disease occurs because of vascular invasion, indicating that it may result from intra-

thyroidal metastases. However, whether this is the case, or whether bilaterality is a result of 

multiple primary tumors requires further study to understand the molecular behavior of these 

lesions.  

 

5.3 Diagnostic Markers for Papillary Thyroid Carcinoma 

 

Tissue microarray (TMA) analyses of several markers, alone or combination were performed on 

a large cohort of benign thyroid nodules and PTCs with the aim of finding diagnostic biomarkers 

for routine use in the clinic. TMA construction, staining and scoring were performed as 

described before [311,312]. Briefly, two sets of benign thyroid lesion TMAs, one composed of 

100 specimens and the other of 236, and two sets of malignant TMAs, one with 99 DTCs and 

the other 242, were prepared from archival pathology specimens of patients. Clinical, cytologic 

and pathologic data were available for all specimens and our Institutional Research Ethics 

Boards had approved the use of all tumors and clinical data for this study. A Leica microtome 

(Leica Microsystems, Richmond Hill, Ontario, Canada) was used to cut serial 4-μm sections from 
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the TMA blocks that were transferred onto adhesive-coated glass slides for 

immunohistochemistry. Sections were then de-paraffinized and antigen retrieval was 

performed. Antibodies were optimized for thyroid tissue according to the manufacturer’s 

instructions and appropriate positive and negative controls were used for each antibody. Two 

pathologists, blinded to all clinical data, examined the stained TMA sections at high-power 

magnification to determine the proportion of cells expressing the markers. The scoring systems 

used were based on previously published reports of immunohistochemical studies evaluating 

these markers, and are summarized in Table 5.1. The correlation of clinicopathological 

characteristics (patient age, gender, tumor size, presence or absence of vascular invasion, 

completeness of cancer resection, presence of extrathyroidal extension, American Joint 

Committee on Cancer T, N and M stages and MACIS score) with expression or co-expression of 

markers, and the significance of marker expression in malignant versus benign tissues was 

assessed using contingency table statistics (Pearson 2 or the Fisher exact test, where 

appropriate for categorical variables and the Mann-Whitney U test for continuous variables) 

using scripts written in the R programming language (version 2.4.1, R Development Core Team, 

R Foundation for Statistical Computing, Vienna, Austria). The analysis was run with both 

categorical and semi-quantitative marker scorings. Two marker score categories were analyzed; 

in ‘‘grouping 1,’’ marker scores were grouped as either ‘‘negative’’ (score = 0) or ‘‘positive’’ 

(score >= 1). In ‘‘grouping 2,’’ marker scores were grouped as either ‘‘negative/weak’’ (score = 0 

or 1) or ‘‘moderate/strong’’ (score >= 2). P values were corrected for multiple testing using the 

Benjamini-Hochberg (BH) correction [145]; all tests were 2-tailed and a P value of less than 0.05 



145 

 

was considered statistically significant.  

 

Alterations of normal cell shape and scaffolding and cell anchorage to the extracellular matrix 

are considered the main events leading to tumor metastasis. Expression of several proteins 

which function in maintaining normal cellular structure including Cav1, Gal3 and CK19 were 

tested in the above described TMAs. Cav1 is a membrane protein and a major component of 

caveolae; in addition, it is involved in a variety of cellular signal transduction pathways and can 

act as both a tumor suppressor and an oncogene depending on the tissue type [313]. This 

protein was shown to promote cell polarization and promote focal adhesion turnover in thyroid 

cells and hence may be a key player in inducing metastasis in thyroid tumors [314]. CK19 is a 

member of the keratin family of proteins and is a constituent of the cytoskeleton [315]; its 

overexpression has been associated with various cancers and it may serve as a diagnostic or 

prognostic marker for thyroid cancer [316]. Gal3 is a carbohydrate binding galectin, which 

forms an extracellular lattice facilitating receptor tyrosine kinase signaling [314]. Given the 

important roles of MAPK and PI3K signaling pathways in thyroid cancer initiation and 

progression [317] and the contributing role of Gal3 to PTC phenotype maintenance [318], this 

protein was considered as a promising diagnostic marker candidate for thyroid cancer. 
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5.3.1 Cav1 and Gal3 Immunohistochemical Analysis 

 

The study cohort TMAs were composed of human specimens from 100 benign thyroid lesions 

(26 follicular adenomas, 54 goiters, three cases of Hashimoto’s thyroiditis, 10 Hürthle cell 

adenomas, four hyperplastic nodules and three cases of lymphocytic thyroiditis) and 99 

sporadic DTCs (90 PTCs, six follicular thyroid cancers and three Hürthle cell carcinomas). A 

significantly higher proportion of DTCs either expressed Gal3, alone or in conjunction with Cav1, 

compared to benign lesions (Table 5.2). Individually, Gal3 and Cav1 were expressed in 83.7% 

and 51.5% of DTC cases, demonstrating significantly increased expression in DTCs (Gal3, 83.7% 

versus 5.05%, P < 0.001; Cav1, 51.5% versus 10.1%, P < 0.001) compared to benign thyroid 

lesions. Co-expression of Gal3 and Cav1 was significantly increased in DTCs compared to benign 

thyroid lesions, and the majority of Cav1-expressing DTCs also expressed Gal3. Overall, the 

utility of Gal3 and Cav1 co-expression for clinical diagnostic purposes has an accuracy, 

sensitivity, specificity and precision of 74.5%, 48.98%, 100% and 100%, respectively. Evaluation 

of the clinicopathological characteristics of the DTC cohort and the expression of Gal3 and Cav1 

showed a statistically significant correlation only between Gal3 and Cav1 expression and 

papillary DTC pathology. The extended in vitro study, which followed the TMA analysis 

demonstrated the coordinated expression of these two proteins to be a major player in driving 

the papillary thyroid cancer cell migration [314]. 
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5.3.2 CK19 and Gal3 Immunohistochemical Analysis 

 

The co-expression of CK19 and Gal3 proteins and their diagnostic utilities were examined in 

DTCs and benign thyroid tissues. The correlation of clinicopathological characteristics with the 

expression of these markers in the DTC specimens was also studied. The study cohort included 

236 patients diagnosed with benign thyroid lesions and 254 patients diagnosed with thyroid 

malignancies. After excluding the 12 patients with medullary thyroid cancer (MTC) that is 

derived from a distinct cell type than follicular cells, 478 patients were remained in the study 

cohort. The expression of both Gal3 and CK19 was found to be higher in DTCs compared with 

benign lesions (Gal3, 77.4% versus 6.5%, P < 0.001; CK19, 74.4% versus 11.2%, P < 0.001). 

Higher proportion of malignant samples also showed co-expression of Gal3 and CK19 (Table 

5.3). The utility of Gal3 and CK19 co-expression for diagnostic purposes has an accuracy, 

sensitivity, specificity and precision of 81.9%, 66.1%, 98.3% and 97.5%, respectively. Evaluating 

the correlation between the clinicopathological characteristics of the DTC cohort and the 

expression of CK19 and Gal3 showed that the expression of CK19 in the absence of Gal3 

(CK19+Gal3-) demonstrates correlation with the absence of lymph node metastasis (P < 0.001) 

and N0 stage (P < 0.001); the expression of Gal3 alone (CK19-Gal3+) does not show any 

correlation with any clinicopathological characteristics. However, the co-expression of CK19 and 

Gal3 (CK19+Gal3+) shows correlation with papillary thyroid cancer pathology (P < 0.000), the 

presence of lymph node metastasis (P < 0.000), extra thyroidal extension (P = 0.004), smaller 
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tumor size (P = 0.005) and N1 stage (P < 0.000). This is indicative of perhaps a role for Gal3 in 

tumor aggressiveness but only in synergy with other cellular players such as CK19. 

 

5.4 Whole Genome Profiling of Benign Thyroid Nodules 

 

In this study, we profiled the common benign thyroid nodules on the whole genome scale with 

the aim of identifying alterations that might play a causal role in benign tumorigenesis. It is not 

yet understood if step-wise accumulation of mutations in benign tumors could and do lead to a 

malignant state. RET/PTC rearrangements and RAS mutations, both found in 10-20% of PTCs, 

are also observed in 10-45% and 20-40% of thyroid adenomas, respectively [9]. This might be 

suggestive of a pre-cancerous state in at least a subset of benign tumors giving rise to follicular 

variants of PTCs and FTCs. This is the first study to date to provide a comprehensive genomic 

profile of benign thyroid tumors; whole genome sequencing allowed us to identify regions of 

copy number loss and gain with base-level precision. Novel large-scale rearrangements and 

gene fusions were identified through both de novo and alignment-based methods.  

 

 

 

 

 



149 

 

5.4.1 Materials and Methods 

 

5.4.1.1 Study Samples 

 

Biopsy specimens for whole genome sequencing experiments were collected from three 

patients diagnosed with benign thyroid nodules; a 67-year old female diagnosed with follicular 

adenoma (F67FA), a 46-year old female diagnosed with follicular adenoma (F46FA) and a third 

tumor from a 55-year old male diagnosed with goiter (M55G). Adjacent matched normal tissue 

was also collected from each patient for sequencing and these served as the control specimens. 

The tumor samples were collected as part of a research project approved by the British 

Columbia Cancer Agency’s Research Ethics Board are in accordance with the Declaration of 

Helsinki. The tumor samples were classified according to the World Health Organization criteria. 

 

5.4.1.2 DNA Sequencing 

 

DNA extracted from the frozen tumor and normal tissues were subjected to high-throughput 

whole genome sequencing using locally established sequencing protocols. Biopsy specimens 

were embedded in Tissue-Tek O.C.T. (optimal cutting temperature) compound (Sakura Finetek 

USA, Inc.) and sectioned for DNA extraction. Using 1ug DNA each from each sample, six whole 

genome libraries were constructed using a modified version of Illumina TruSeq PCR free 

protocol (FC-121-3001) as described in Chapter 3. Paired-end 100bp reads were generated on 
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Illumina HiSeq2500 sequencers following the manufacturer’s protocol with minor variations. 

Software version HCS1.5.8 was utilized (Table 5.4).  

 

5.4.1.3 Bioinformatic Analysis 

 

Sequence reads from the whole genome libraries were aligned to the human reference genome 

(build hg19) using the Burrows-Wheeler Alignment (BWA) tool [56]. The tumor’s genomic 

sequence was compared to that of normal tissue DNA to identify somatic alterations. Regions 

of copy number variation (CNV) and loss of heterozygosity (LOH) were identified using Hidden 

Markov model-based approaches HMMcopy and APOLLOH [95], respectively. Single nucleotide 

mutations were identified using a probabilistic joint variant calling approach utilizing SAMtools 

and Strelka [64,75]. Small insertions and deletions (indels) were identified using Strelka [75]. De 

novo assembly and annotation of genomic data using ABySS [62] and Trans-ABySS [87,139] 

were used to identify small indels, structural variants and fusion genes.  

 

 

5.4.2 Results 

 

The F67FA, F46FA and M55G tumors harbored 22, 8 and 10 somatic SNVs and indels, 

respectively (Tables 5.5, 5.6 and 5.7). These indicate a much lower mutation rate in benign 

thyroid nodules compared with malignant tumors derived from the follicular cells of the gland 
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(Chapters 3 and 4). No recurrent mutations or those in known cancer drivers were identified. Of 

particular interest however were a frameshift insertion in RPTOR, a member of the mTOR 

signaling pathway and an inhibitor of the mTOR kinase, a non-sense mutation in TRIM16, a 

regulator of the cell cycle and cell proliferation inhibitor [319] and a two-codon deletion in 

ribunuclease 3 domain of DICER1 in F67FA; a splice site donor mutation of KIF1B, potentially 

implicated in neural crest-derived tumors such as pheochromocytomas and neuroblastomas 

[320] was identified in F46FA. It is noteworthy that the two follicular adenomas demonstrated 

such mutations but not the goiter specimen indicating that perhaps these diseases although all 

falling under the umbrella of benign thyroid disease are subjected to different disease 

pathways. Small single nucleotide mutations of the thyroglobulin gene (TG) have previously 

been found in patients with nodular goitre [321,322]. Thyroglobulin acts as a substrate for the 

synthesis of thyroid hormones T3 and T4. Although M55G did not harbor any somatic SNVs or 

indels in TG, de novo assembly of the sequence data revealed the presence of a translocation 

between chromosomes 8 and 19, with one of the breakpoints in TG gene (Table 5.8) potentially 

leading to the loss of function of this gene. Table 5.8 also lists 5 large-scale structural events 

that were identified in F67FA including a gene fusion between DICER1 and NTNG2. As 

mentioned above, this patient also harbored an in-frame deletion in DICER1, a gene with 

integral role in miRNA processing and synthesis. The indel and the translocation breakpoint are 

situated over 53Kb apart and hence it is not possible to deduce if they affect one or both alleles 

of the gene from the sequence data.  
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The copy number and loss of heterozygosity analyses revealed a striking difference between 

these three benign tumors. Although F46FA and M55G had relatively quiet genomes with 1 

copy loss of 2q and 9q in F46FA and a small region of 1 copy loss in 2p in M55G (Figures 5.1 and 

5.2), the F67FA tumor demonstrated several large regions of gene copy loss and gain (Figure 

5.3). These included one copy loss of a region of 1q, 3q, 4p, 15q, 16p, 16q, 17p, 20p, 20q, 22q 

and the entire chromosome 13; chromosome 18 showed high amplification in this follicular 

adenoma specimen. Not only is the difference between these benign nodules striking, but also 

given the very quiet genomes of papillary thyroid carcinomas [270], it was perhaps unexpected 

for a benign nodule to demonstrate such large-scale alterations with respect to gene copy 

numbers. It is also intriguing that the two follicular adenomas show very different profiles.  

 

5.4.3 Conclusion 

 

The three benign thyroid nodules demonstrated vast differences in their genomic profiles. 

While all harbored a small number of somatic SNVs and indels, larger alterations of gene copies 

were observed. 70 protein coding genes on chromosome 2 had lost one copy in the goiter 

specimen, 722 genes on chromosome 2 and 541 genes on chromosome 9 lost one gene copy in 

the follicular adenoma specimen, F46FA; these included tumor suppressors TSC1 and PTCH1. 

Proto-oncogenes with additional gene copies in F67FA specimen included SS18, BCL2 and YES1. 

Tumor suppressors with 1 copy loss included BRCA2, RBL1, SMARCB1, AXIN1, TSC2, RBL2, TP53, 

BUB1B, CHEK2 and NF2 (Figure 5.3). This adenoma specimen, F67FA, and the goiter also 
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appeared to have lost all mitochondrial content. Partial loss of TP53 in the F67FA follicular 

adenoma specimen is particularly of interest given that loss of this protein, often through point 

mutations, is unique to anaplastic forms of thyroid cancer. This was confirmed by our 

observations in Chapter 4 where TP53 was the only recurrently mutated gene in the examined 

ATC samples. The vast amount of changes in copy number might also be explained through the 

loss of one copy of this tumor suppressor as observed in ATCs and explained in chapter 4. In 

addition, SS18 copy gain and loss of AXIN1 and TSC2 copies, all found to be mutated in ATCs 

(see Chapter 4), also suggest that this benign tumor might have been a precursor to an 

anaplastic thyroid cancer. This patient had undergone a thyroidectomy to remove the benign 

tumor and as such she is not expected to develop any further disease. However, continued 

monitoring of this patient would be recommended bases on the genomic analysis.  

 

The Cancer Genome Atlas (TCGA) initiative has conducted an extensive study of over 400 

papillary thyroid carcinomas; the biomarker publication has described a very low mutation rate 

in PTCs with a small percentage of tumors demonstrating somatic copy number variations 

[270]. Gene fusions involving known PTC drivers such as RET and BRAF were also identified. 

Comparison of the genomic data from the current study examining benign nodules with that of 

the TCGA PTC study revealed no common mutations or gene fusions among these tumors. This 

observation provides supporting evidence for the hypothesis that not all benign nodules 

become malignant through accumulation of mutations over time. Alternatively, given the 

finding from TCGA study that the majority of PTCs only harbor one driver mutation, it is 
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plausible that acquiring only one such mutation is sufficient for transforming a benign tumor to 

a papillary malignant phenotype. Profiling larger cohorts of benign tumors will shed light on the 

association between these various entities and the mode of tumor evolution. 

 

This study was limited in that it only examined 3 specimens of two different pathologies; hence 

the variables such as age and sex, in addition to pathology, were not controlled for. Another 

potential limitation of this study was the use of adjacent matched tissue as the normal control. 

Although two independent pathologists confirmed that these were indeed normal thyroid 

tissues, it is possible that somatic driver mutations are present in tissues, which appear 

“normal” to pathologists resulting in incorrect findings and conclusions on somatic alterations. 

 

5.5 Transcriptomic Comparison of Benign Thyroid Nodules and Papillary Thyroid Carcinoma 

 

The transcriptome provides a snapshot of the cell population dynamics in a tumor specimen. 

Not only expressed mutations such as SNVs and SVs can be detected, changes in the levels of all 

transcripts can also be identified. Moreover, events such as novel transcripts, splicing and 

polyadenylation sites can be detected. As a result, we next aimed to compare the 

transcriptomic landscapes of benign thyroid nodules and papillary thyroid carcinomas with the 

aim of identifying recurrent mutations, differentially active or silenced pathways and 

discriminative biomarkers between the two disease groups. 
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5.5.1 Materials and Methods 

 

5.5.1.1 Study Samples 

 

RNA for the sequencing experiment was extracted from 19 benign thyroid nodules (distinct 

from the 3 tumors described in section 5.4 above) and 10 papillary thyroid carcinoma 

specimens. All patients had gone through total or partial thyroidectomy and had provided 

written informed consent for the complete profiling of their tumor specimens. Table 5.9 lists 

patient characteristics and tumor pathologies.  

 

5.5.1.2 RNA Sequencing 

 

In order to construct transcriptome libraries, RNA was extracted from 15 x 20 μm sections cut 

from flash-frozen tissue using MACS mRNA isolation kit (Miltenyi Biotec), resulting in 5-10 μg of 

DNase I-treated total RNA as per the manufacturer’s instructions. Double-stranded cDNA was 

synthesized from the purified poly(A)+ RNA using the Superscript Double-Stranded cDNA 

Synthesis kit (Invitrogen) and random hexamer primers (Invitrogen) at a concentration of 5 μM. 

The cDNA was fragmented by sonication and a paired-end sequencing library prepared 

following the Illumina paired-end library preparation protocol (Illumina). Cluster generation and 

sequencing were performed on the Illumina HiSeq2000 following the manufacturer’s 

recommended protocol (Illumina Inc., Hayward, CA) (Table 5.10). 
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5.5.1.3 Bioinformatics Analysis 

 

The sequence data were aligned to the human reference genome (build hg19) using TopHat 

2.0.6 [323]. The reference sequence and the corresponding annotation files were provided by 

Illumina’s iGenome project and downloaded from the TopHat homepage 

(http://tophat.cbcb.umd.edu/igenomes.shtml). Quantification of gene expression was 

accomplished using HTSeq-0.5.4p3 in intersection-nonempty mode [324], all subsequent 

analyses were run using the count values for the protein-coding elements only. The generated 

read counts were used as input in the R package edgeR v.3.4.0 [274] for differential gene 

expression analysis; reads with quality less than 10 were discarded from differential expression 

analyses. De novo assembly and annotation of sequence data using ABySS [62] and Trans-ABySS 

[87,139] were used to identify structural variants and gene fusions. Only those events also 

identified by the alignment-based fusion detection software Minimum Overlap Junction 

Optimizer (MOJO) (https://github.com/cband/MOJO) were considered to be true positives. 

 

5.5.2 Results 

 

We sequenced the mRNA of 19 benign and 10 malignant thyroid tumors using next generation 

sequencing technologies. An average of 160M 75bp paired-end reads were generated for each 

sample. Sequence reads were aligned to the human reference genome (build hg19); on average 

137.5M reads were mapped to the reference for each sample with 84% of read pairs having the 

http://tophat.cbcb.umd.edu/igenomes.shtml
https://github.com/cband/MOJO
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expected insert size and orientation. The only recurrent expressed single nucleotide variant was 

the BRAF p.V600E mutation in 8 out of 10 papillary cancer samples. In addition, 4 benign 

tumors harbored activating RAS mutations; a follicular adenoma with p.Q61R NRAS mutation, 

one with p.Q61R HRAS mutation and two goiters one with p.G13R HRAS mutation and the 

other p.G12D KRAS activating mutation. No recurrent gene fusions or fusions involving known 

thyroid or cancer genes were identified. Differential gene expression analysis identified 867 

upregulated and 324 downregulated genes with fold change >=4 and <=-4, respectively 

(Benjamini-Hochberg P < 0.05) in papillary carcinomas compared with the benign nodules. A 

Heatmap of these 1191 differentially expressed genes is depicted in Figure 5.4. Pathway 

analysis using these genes as input was performed with DAVID (Database for Annotation, 

Visualization and Integrated Discovery)  [325] and the KEGG (Kyoto Encyclopedia of Genes and 

Genomes) knowledge base [326]. Pathways enriched with the downregulated genes included 

steroid hormone biosynthesis, hedgehog and PPAR signaling pathways. Those enriched with 

PTC overexpressed genes included cell adhesion molecules, cytokine-cytokine receptor 

interaction, chemokine signaling pathway and various networks related to the role of immune 

system including graft-versus-host disease, type I diabetes mellitus, primary immunodeficiency 

and autoimmune thyroid disease, to name a few. This is not a surprising finding given the 

extensive lymphocytic infiltration observed in PTCs and reported in pathology reviews of the 

samples examined in this study. Figure 5.5 depicts the expression of select differentially 

expressed genes with the least overlap in expression values between benign and malignant 

tumors. CDON and SLC4A4 genes show downregulation in PTCs when compared to benign 



158 

 

tumors. CDON is a cell surface receptor that is a member of the immunoglobulin superfamily 

and its loss of function may play a role in oncogenesis [327]. SLC4A4, a sodium bicarbonate 

cotransporter, regulates intracellular pH levels [328]. A Polish study found the expression of 

SLC4A4 to be higher in PTCs than normal thyroid tissue [329] and thus the even higher 

expression observed in benign tumors of the current study might suggest an active and 

significant role of this gene in benign tumorigenesis. CTSH, CYP1B1, PTPRE and RUNX1 showed 

higher expressions in PTCs compared with benign tumors. All these genes and their protein 

products have shown associations with malignant phenotypes. Increased expression of CTSH, a 

lysosomal proteinase, was observed to cause prostate cancer cell migration and disease 

progression [330]. PTPRE is a protein tyrosine phosphatase that, when overexpressed, leads to 

overexpression and activation of ERK1/2 and AKT in human breast cancer cells [331]. The 

transcription factor RUNX1 may act as both a tumor suppressor and an oncogene depending on 

the tissue type; its expression has been correlated with poorer prognosis in triple negative 

breast cancers [332,333]. CYP1B1 is a member of the cytochrome P450 whose overexpression 

was found in malignant tumors of various organs such as breast, colon, lung, esophagus, skin, 

lymph node, brain and testis; the expression was specific to the tumors and missing from the 

matched adjacent normal tissues [334]. Moreover, upregulation of IL-6, a pro-inflammatory 

cytokine, in colorectal cancers leads to overexpression of CYP1B1 [335], perhaps providing a 

suitable diagnostic marker for thyroid cancers which are associated with chronic inflammation. 

The mRNA expression level of these genes or their protein levels, contingent on further studies, 

can be used as diagnostic markers for papillary thyroid cancer.  
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De novo assembly of sequence reads allowed for identification of events such as novel 5’ and 3’ 

splice sites leading to skipped exons, retained introns and novel transcript start sites or end 

positions. We identified a novel 5’ splice site in SLC34A2 gene, causing a deletion of 30 amino 

acids from exon 9 in 6 PTC samples and none of the benign tumors. Figure 5.6 depicts a 

schematic of this deletion as well as the alignment of assembled contigs from all 6 tumors to 

the reference genome. Since this novel event appeared to be specific to the malignant samples, 

we hypothesized that this resultant transcript and in particular the 30-amino acid deleted 

region can serve as a diagnostic marker. Moreover, SLC34A2 is a membrane transporter 

molecule with the amino acids 310 to 339 located in the extracellular domain [336] and thus 

specific antibodies for this region may be of clinical use. PCR primers were designed to amplify 

and validate this observation (Table 5.11). One pair was designed such that they flanked the 

deletion; two bands would be expected in this case, one corresponding to the original and 

longer transcript and one shorter band corresponding to the transcript with the deletion. The 

other primer pair was designed such that one primer spanned the novel breakpoint joining 

exons 8 and 9 and the other flanking it. This pair would only result in a band if the novel 

sequence, which was unique in the human reference genome, was present in the sample. 

Figure 5.7 is an image of the cDNA PCR products from the 6 PTC samples that were 

computationally found to have the novel splice site and an additional 6 benign tissues. It is 

evident from the image that the expression of both wild type and novel SLC34A2 transcripts are 

higher in PTCs compared with benign tissues. PCR products in lanes 1 and 2 for each sample 

(products of flanking primers) are dominated by the wild type and it is not clear if the novel 
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transcript is present at all. However, PCR products are seen in lane 4 where we would expect to 

see a band only if the unique and chimeric sequence is present. These observations collectively 

suggest that the transcript with the 30-amino acid deletion is present in the cell but at a much 

lower expression level compared with the wild type transcript(s). The low expression level may 

pose challenges for the utility of antibodies for diagnostic purposes; however, the use of 

sensitive tools such as digital PCR techniques can provide avenues for novel diagnostic markers 

such as this SLC34A2 variant.   

 

5.5.3 Conclusion 

 

Benign thyroid nodules are commonly found in the population but the molecular alterations 

leading to these tumors are not yet understood. Our analysis of a small group of these nodules 

revealed a very low mutation rate with mostly quiet genomes harboring minimal copy number 

changes. Papillary thyroid carcinoma represents the most common form of thyroid cancer; it 

has a favorable prognosis in the majority of patients with 25-year overall survival rate 

estimated at 80-90%. Analysis of our in-house data and those of The Cancer Genome Atlas 

study revealed a very low mutation rate even in these malignant tumors. The lack of such 

genomic and particularly protein-coding alterations might be indicative of a causative role for 

the epigenomic processes in thyroid tumorigenesis. Examining the epigenome utilizing the now 

available technologies with base-level sensitivity such as whole genome bisulfite sequencing, 

and ChIP-Seq analysis of chromatin markers will be the next step in deciphering the molecular 
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biology of these tumors. Deregulation of miRNAs is also a well-known contributor to the 

malignant phenotype in a variety of cancer types. The Cancer Genome Atlas study of papillary 

thyroid cancers found differential expression of some of these miRNAs between the malignant 

and normal thyroid tissues as well as between different clusters of PTCs derived based on the 

methylation profiles and/or mutational spectrums [270]. miRNA sequencing of benign and 

papillary tumors and their comparison may provide clues about the mechanism of disease 

initiation and progression.  

 

Despite the mostly great prognosis for patients with thyroid tumors, the immediate clinical 

need still remains in the process of diagnosis. A large subset of patients with “indeterminate” 

thyroid cytopathology will undergo thyroidectomy while the histopathology review finds the 

tumor to be benign after surgery. Although there is some evidence that chronic benign tumors 

may lead to malignancy over time and particularly to those with the most aggressive behavior 

such as ATCs, avoiding unnecessary surgeries and monitoring the benign disease over time 

could eliminate patient anxiety associated with surgery and also lower health care costs. 
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Table 5.1 Antibody characteristics and the scoring system used for each marker 

 
Marker Name Isotype Company Antigen 

Retrieval 
Concentration Localization Scoring System 

Caveolion 1 
(CAV1) 

Rabbit 
polyclonal 

Santa Cruz 
Biotechnology 

Heat 
induced 

1:1000 Membrane 3+=>75% of cells positive                  
2+=26-75% of cells positive             
1+=5-25% of cells positive            
0=<5% of cells positive 

Cytokeratin 19 
(CK19) 

IgGk1 Dako PC8 citrate 1:100 Cytoplasm 3+=>75% of cells positive                  
2+=26-75% of cells positive             
1+=5-25% of cells positive            
0=<5% of cells positive 

Galectin-3 
(Gal3) 

IgG1 Vector 
Laboratories, 
Burlingame, 
California 

S20 EDTA 1:250 Cytoplasm 3+=Strong                      
2+=Moderate                           
1+=Weak  
0=Negative 
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Table 5.2 Percentage of benign and DTC samples expressing Cav1, Gal3 and their co-expression 

Expression Benign (%) DTC (%) 

Cav1-positive 10.1 51.5 

Gal3-positive 5.1 83.7 

Cav1-positive and Gal3-positive 0 49 

Cav1-positive and Gal3-negative 10.2 3.1 

Cav1-negative and Gal3-positive 5.1 34.7 

Cav1-negative and Gal3-negative 84.7 13.3 
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Table 5.3 Percentage of benign and DTC samples expression CK19, Gal3 and their co-expression 

Expression Benign (%) DTC (%) 
 

CK19-positive 11.2 74.4 

Gal3-positive 6.5 77.4 

CK19-negative and Gal3-negative 84 13.8 

CK19-negative and Gal3-positive 4.8 11.3 

CK19-positive and Gal3-negative 9.5 8.8 

CK19-positive and Gal3-positive 1.7 66.1 
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Table 5.4 Sequence libraries read statistics 

 Total Number of Reads Number of Aligned Reads Average Coverage 

F67FA tumor genome 1297569058 1128514273 38.6 

F67FA blood genome 1357133174 1109232518 38 

F46FA tumor genome 1302977538 1127562684 38.6 

F46FA blood genome 1386382678 1178621340 40.3 

M55G tumor genome 1337648720 1131656888 38.6 

M55G blood genome 1437793306 1146850574 39.1 
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Table 5.5 F67FA somatic SVNs and indels 

Chr Position Reference 
allele 

Alternate 
allele 

dbSNP/COSMIC 
ID 

Effect type AA change Gene EnsEMBL Gene ID 

1 169493094 T C - Non-synonymous N1946S F5 ENSG00000198734 

1 197091560 C A - Non-synonymous D1186Y ASPM ENSG00000066279 

4 160266304 C G - Non-synonymous Q948E RAPGEF2 ENSG00000109756 

5 110440043 G A - Non-synonymous A300T WDR36 ENSG00000134987 

9 5921851 A - - Frame-shift L1382Wfs KIAA2026 ENSG00000183354 

10 73498319 C T - Non-synonymous A1428V CDH23 ENSG00000107736 

11 102826408 G T - Non-synonymous F9L MMP13 ENSG00000137745 

11 64083331 C T rs80310817 Non-synonymous R388C ESRRA ENSG00000173153 

12 2566818 G A - Non-synonymous A235T CACNA1C ENSG00000151067 

13 111102778 T G - Non-synonymous L439R COL4A2 ENSG00000134871 

14 95560472 AATTCT - - Codon-deletion LEF1704F DICER1 ENSG00000100697 

16 74425826 G A COSM472094 Non-synonymous A258T NPIPL2 ENSG00000196436 

16 8994397 C T - Non-synonymous V668I USP7 ENSG00000187555 

17 15554473 G A - Stop-gained Q151* TRIM16 ENSG00000221926 

17 40936511 G C - Non-synonymous G362R WNK4 ENSG00000126562 

17 71334761 G A - Non-synonymous R1319W SDK2 ENSG00000069188 

17 78935240 - C - Frame-shift L1061Pfs RPTOR ENSG00000141564 

18 20793945 G C - Non-synonymous V12L CABLES1 ENSG00000134508 

18 21419818 G T - Non-synonymous R1087S LAMA3 ENSG00000053747 

MT 12889 G A - Non-synonymous A185T MT-ND5 ENSG00000198786 

MT 13069 G A COSM488740 Non-synonymous A245T MT-ND5 ENSG00000198786 

X 103267905 C G - Non-synonymous V110L H2BFWT ENSG00000123569 

 

 

 

 

 

 

 

 

 

 



167 

 

Table 5.6 F46FA somatic SVNs and indels 

Chr Position Reference 
allele 

Alternate 
allele 

dbSNP/COSMIC 
ID 

Effect type AA change Gene EnsEMBL Gene ID 

1 10381915 G T - Non-synonymous K740N KIF1B ENSG00000054523 

1 10381916 G T - Splice-site-donor - KIF1B ENSG00000054523 

1 16388642 G A rs79991837 Non-synonymous R74C FAM131C ENSG00000185519 

1 248487576 T A - Non-synonymous T99S OR2M7 ENSG00000177186 

11 71238675 C G rs200832929 Non-synonymous S110C KRTAP5-7 ENSG00000244411 

15 92647683 G A - Non-synonymous R100K SLCO3A1 ENSG00000176463 

X 12937599 C A - Non-synonymous S147Y TLR8 ENSG00000101916 

X 106888559 C G - Non-synonymous T128R PRPS1 ENSG00000147224 
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Table 5.7 M55G somatic SNVs and indels 

Chr Position Reference 
allele 

Alternate 
allele 

dbSNP/COSMIC 
ID 

Effect type AA change Gene EnsEMBL Gene ID 

4 6107649 C A - Stop-gained E59* JAKMIP1 ENSG00000152969 

11 65810306 T A - Non-synonymous E323V GAL3ST3 ENSG00000175229 

12 122691456 G A COSM159311 Non-synonymous D195N B3GNT4 ENSG00000176383 

14 51404528 A C - Non-synonymous Y91D PYGL ENSG00000100504 

14 52986004 G A - Non-synonymous L134F TXNDC16 ENSG00000087301 

16 4702722 C - - Frame-shift R115Gfs MGRN1 ENSG00000102858 

19 24115932 G C - Non-synonymous E338D ZNF726 ENSG00000213967 

21 47754549 G A rs61735823 Non-synonymous R169H PCNT ENSG00000160299 

X 82763964 C T - Non-synonymous T211M POU3F4 ENSG00000196767 

MT 13039 T C - Non-synonymous S235P MT-ND5 ENSG00000198786 
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Table 5.8 Somatic translocations and gene fusions in F67FA and M55G 
No events were found in F46FA. Coordinates are based on the hg19 human genome assembly 
 

Patient Event Breakpoint 1 Gene 1 Breakpoint 2 Gene 2 

F67FA       

 Translocation chr15:67795174 - chr16:6537736 RBFOX1 

 Translocation chr18:77197367 NFATC1 chr22:42642302 - 

 Translocation chr1:244547178 C1orf100 chr20:11928844 - 

 Translocation chr4:17866584 LCORL chr16:47477978 ITFG1 

 Translocation chr9:135096660 NTNG2 chr14:95614287 DICER1 

      

M55G        

 Translocation chr8:134009359 TG chr19:54093641 - 
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Table 5.9 Characteristics of 19 benign thyroid nodules profiles using RNA-seq 

Patient 
ID 

Sex Age Index Lesion Pathology Background Pathology Papillary 
Carcinoma 
Subtype 

Hotspot 
Mutations 

WT017 M 44 Follicular Adenoma Hashimoto's Thyroiditis   - 

WT049 F 51 Follicular Adenoma Lymphocytic Thyroiditis   - 

WT075 F 27 Follicular Adenoma None   NRAS (Q61R) 

WT091 F 45 Follicular Adenoma None   - 

WT119 F 32 Follicular and Hurthle Cell 
Adenoma 

None   HRAS (Q61R) 

WT015 M 59 Goiter None   - 

WT055 F 78 Goiter Lymphocytic Thyroiditis   - 

WT061 F 52 Goiter None   HRAS (G13R) 

WT079 F 34 Goiter None   - 

WT083 F 65 Goiter None   - 

WT127 M 57 Goiter None   KRAS (G12D) 

WT025 F 55 Goiter Hurthle Cell Metaplasia   - 

WT095 F 44 Goitre None   - 

WT099 M 51 Goitre None   - 

WT077 F 61 Hurtle Cell Adenoma Goiter   - 

WT019 F 50 Hyperplastic Nodule Goiter   - 

WT073 F 51 Hyperplastic Nodule Lymphocytic Thyroiditis   - 

WT037 F 19 Hyperplastic Nodule None   - 

WT051 F 37 Toxic Nodule Goiter   - 

WT107 F 28 Papillary Thyroid 
Carcinoma 

None Classic BRAF (V600E) 

WT123 F 54 Papillary Thyroid 
Carcinoma 

Follicular Hyperplasia and 
Chronic Thyroiditis 

Follicular BRAF (V600E) 

WT125 F 55 Papillary Thyroid 
Carcinoma 

Hashimoto's Thyroiditis Classic BRAF (V600E) 

WT045 F 35 Papillary Thyroid 
Carcinoma 

None Classic - 

WT069 F 74 Papillary Thyroid 
Carcinoma 

Lymphocytic Thyroiditis Classic BRAF (V600E) 

WT071 F 49 Papillary Thyroid 
Carcinoma 

Hurthle Cell Metaplasia Classic BRAF (V600E) 

WT033 F 45 Papillary Thyroid 
Carcinoma 

Goiter Mixed - 

WT001 M 43 Papillary Thyroid 
Carcinoma 

Benign Hyperplastic 
Nodule 

Classic BRAF (V600E) 

WT003 F 55 Papillary Thyroid 
Carcinoma 

Lymphocytic Thyroisitis Classic BRAF (V600E) 

WT013 F 65 Papillary thyroid 
carcinoma 

Hashimoto's Thyroiditis Classic BRAF (V600E) 
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Table 5.10 Sequence libraries read statistics 

Patient ID Pathology Total Number of Reads Number of Aligned Reads 

WT015 Benign 197428460 171940362 

WT017 Benign 162817354 131851407 

WT019 Benign 195772878 174118863 

WT025 Benign 178915706 159843334 

WT037 Benign 143222902 128256360 

WT049 Benign 138657386 120867918 

WT051 Benign 162050768 142335041 

WT055 Benign 119354060 102832972 

WT061 Benign 243675894 205271600 

WT073 Benign 135870362 118119142 

WT075 Benign 169640988 140124334 

WT077 Benign 155734764 133418278 

WT079 Benign 134663182 119305555 

WT083 Benign 151309892 127780804 

WT091 Benign 165329818 142489611 

WT095 Benign 126150386 114158421 

WT099 Benign 138945768 122671836 

WT119 Benign 165395100 142176111 

WT127 Benign 186404728 143416691 

WT001 Cancer 171851018 149240644 

WT003 Cancer 199245096 154792078 

WT013 Cancer 101524322 86567402 

WT033 Cancer 96628950 78816041 

WT045 Cancer 170572728 152940242 

WT069 Cancer 145602160 125742598 

WT071 Cancer 147139830 124501464 

WT107 Cancer 165587530 137770957 

WT123 Cancer 189567686 152878294 

WT125 Cancer 188854436 153571099 
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Table 5.11 List of primers used to validate the novel slicing event in SLC35A2 
Two sets of flanking primers and 2 sets of spanning ones were designed. One of the primer pairs in red was later 
found to have been designed incorrectly 
 

Primer Pair 
Name 

Forward Primer Reverse Primer Expected 
WT 
Amplicon 
Size (bp) 

Expected 
Novel 
Amplicon 
Size (bp) 

SV68.flank.001 AAATCAGTGTTGATGGTCTTCTTGATG AAAGTTATCAGCCAAATTGCAATGAAC 380 290 

SV68.flank.002 GAGGTGGAAATTCACAAAGATATGCTG AAAGTCATCACTAAGCCCTTCACAAAG 285 195 

SV68.span.001 CTTGTAGGTCACATTCTTGTTGGTAAAAGT ATCATAACCCAGCTTATAGTGGAGAGC 0 216 

SV68.span.002 GATAAGCCCTCTCAATGGTTATCACG ACTTTTACCAACAAGAATGTGACCTACAAG 0 364 
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Figure 5.1 B-allele frequency plots for F46FA 
Long arms of chromosomes 2 and 9 show wider allele separation due to loss of chromosomal copies 
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Figure 5.2 B-allele frequency plots for M55G 
A small region on the short arm of chromosome 2 shows wider allele separation due to loss of chromosomal copies 
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Figure 5.3 B-allele frequency plots for F67FA 
Extensive regions of the genome demonstrate allele separation 
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Figure 5.4 Hierarchical clustering of differentially expressed genes 
Heatmap demonstrating pairwise complete-linkage hierarchical clustering of 1191 differentially expressed genes in 
10 papillary thyroid carcinoma specimens and 19 benign thyroid nodules. Rows (genes) were median-centered and 
Spearman’s rank correlation was used for as the distance measure for both genes and samples 
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Figure 5.5 Potential biomarkers 
The expression (RPKM) of select genes in 19 benign and 10 papillary carcinoma tumors. Targeted RNA expression 
panels designed for profiling the expression of these genes may have utility for thyroid cancer diagnosis 
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Figure 5.6 Novel splicing event in SLC34A2 
Top: A schematic diagram showing the loss of 30 amino acids from exon 9 of SLC34A2 as a result of a novel 5’ splice site detected through de novo assembly. 
Bottom: A screenshot of the alignment of assembled contigs from 6 different papillary thyroid carcinoma specimens to the reference human genome 
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Figure 5.7 SLC34A2 novel splicing event validation 
Lanes containing PCR products amplified from 6 papillary thyroid cancers and 6 benign thyroid tumors. Four lanes 
were run for each sample: lanes 1 and 2 with flanking primer pairs and lane 4 with a spanning primer pair. Lane 3 
was run with a primer pair which was later found to be incorrectly designed. The primer sequences are listed in 
Table 5.11. It is evident when comparing the amount of PCR products in lanes 1 and 2 of all specimens that the 
SLC34A2 gene, in its wild type form, is much more highly overexpressed in PTCs. This may indicate that the gene 
itself is a sensitive diagnostic marker for thyroid tumors. The PCR product in lane 4 would only be present in 
samples with the novel and unique splice site sequence. These are present in all 6 malignant samples and none of 
the benign specimens. Although the novel sequence is present, we did not observe two clear and separate bands 
in lanes 1 and 2 as would be expected. This suggests that although the novel sequence is present in malignant 
samples, it is expressed at a much lower quantity compared with the wild type transcripts 
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Chapter 6: Conclusion 

 

6.1 Summary 

 

This thesis describes the application of massively parallel and high-throughput sequencing 

technologies and generation of whole genome and transcriptome datasets in the study of 

benign and malignant thyroid tumors and those of its neighboring gland, the parathyroid. Both 

rare and common tumors of the thyroid were studied and despite their shared cell of origin, 

stark differences in the genomes of these tumors were observed. In general, very few recurrent 

mutations were found in the tumors studied here. We found the benign tumors to harbor very 

few mutations and copy number changes; The Cancer Genome Atlas (TCGA) study of papillary 

thyroid carcinoma (PTC) that was conducted concurrent to this work also found the genomes of 

PTCs to be very quiet with respect to both small mutations and large copy number variant 

regions [270]. On the other hand, we found vast amount of copy number alterations and 

aneuploidy in anaplastic and oncocytic thyroid cancers and those of the parathyroid gland. This 

work revealed mutations and gene fusions that had not been previously described and thus has 

shed light on the biology of disease and tumorigenesis pathways in these endocrine organs. 

Additionally, I have examined and compared the genomic landscapes of various types of tumors 

that arise from the thyroid gland with the aim of uncovering molecular evidence in support or 

in disagreement of step-wise transformation of benign to cancerous tumors. Integrative 

analysis of genomic and transcriptomic datasets were described and shown to increase our 



181 

 

confidence in identifying the altered pathways leading to disease. The continual application of 

such analysis over time or in studying biopsy specimens from multiple sites in the tumor will 

allow for deciphering the temporal and spatial evolution of these tumors. In addition, detailed 

epigenomic profiles of the common thyroid tumors including benign nodules and papillary 

thyroid carcinomas are being generated at our institution. These experiments include ChIP-Seq 

and whole genome bisulfite sequencing for identifying select histone marks and methylation 

status of the complete genome. Proteomic experiments through providing complementary 

information to genomic, transcriptomic and epigenomic studies promise to unveil the 

molecular mechanisms leading to thyroid tumorigenesis; however, such experiments still await 

the more high-throughput and affordable techniques in proteomics. In this final chapter, I will 

outline the general conclusions from all studies, their strengths and limitations and provide 

directions for future work.  

 

6.2 Parathyroid Cancer 

Parathyroid cancer is an extremely rare disease with the incidence rate of about 1 per million 

population. In chapter 2, I have described the genomic and transcriptomic analysis of a primary 

parathyroid tumor and two recurrences of the same tumor from one patient. Retrospective 

studies in the literature have pointed to high rate of disease recurrence in parathyroid cancer 

with up to 11 recurrences observed in one patient [122,124]. The molecular comparison of all 

tumors from the patient in our study revealed no major changes in cancer driver pathways 

between the different recurrences. Due to the rare occurrence of this malignancy, no 



182 

 

established therapy protocols including cytotoxic chemotherapeutics or targeted therapies are 

available or recommended. The patient under study only received calcimimetic agents to 

control his blood calcium level and no other therapeutics were administered. As a result, unlike 

most cancer patients who receive therapy and malignant tumors that evolve in response to 

them, minimal adaptations in the genome of this patient’s tumor was observed over time. This 

is evident from the lack of observation of any major differences between the tumors. This may 

imply that the tumor lacks any need for accumulation of further mutations in order to recur at a 

later time; however, the observed copy number changes in chromosomes 4 and 5 (Figure 2.5) 

may point to the contrary. It is postulated in the literature that incomplete removal of 

malignant tissue or accidental residual disease could lead to future recurrence(s); thus it is 

recommended that the entire gland and its adjacent tissues be resected when malignancy is 

established [121]. The molecular profiling of parathyroid cancer in the current study provides 

supporting evidence for the hypothesis that multiple recurrences of the disease are likely due 

to the presence of residual disease and not attributed to disease progression and evolution.  

 

Whole genome datasets revealed large areas of copy gain and loss. Thousands of genes 

incurred changes in copy number; hence, the integrative analysis of the genome data with the 

transcriptome profiles was used to identify altered pathways. Those genes with gain of copy 

and over-expression or those which had lost copies and showed lower expressions were 

considered for network analysis. Gene copy loss and as a result loss of heterozygosity 

augmented with a truncating mutation in the remaining allele of THRAP3 pointed to possible 
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role for this gene in driving parathyroid malignancy. Another interesting observation was the 

loss of activating PIK3CA point mutation in the recurrent specimen that was originally present 

in the primary tumor. Loss or gain of activating mutations of this gene during the evolution of 

the tumor has been described in other cancer types, particularly in breast cancers [337], but 

never in the absence of therapy. This may indicate that PIK3CA mutations was present in the 

dominant clone in the primary tumor but only in a minor sub-clone in the recurrent parathyroid 

tumor suggesting that its activation was not necessary for tumor progression and maintenance 

but required for tumor initiation. It is also possible that due to random sampling of the tumor, 

entirely different clonal populations were examined; a comprehensive spatial profiling of both 

tumors will provide more insight into the role of this oncogene in parathyroid tumorigenesis. 

Activation of the PI3K/Akt pathway might still be important for tumor progression in the 

absence of PIK3CA mutation and this need might be met through the activation of the 

downstream MTOR and its targets without reliance on PIK3CA. This is an important 

consideration in the case of rare parathyroid cancer; the patient under study harbored an 

MTOR mutation and the inhibitors of this signaling pathway including everolimus are available 

and approved for use in treating several cancer types. Additional studies, for instance those of 

immunohistochemical examination of mTOR pathway expression levels, can determine if this 

pathway is constitutively activated in parathyroid cancer and can as a result lead to the use of 

the already available targeted drugs in treating parathyroid cancer.  
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Although this study was the first to examine a parathyroid malignant tumor on the genomic 

level, it was limited to only a few samples from one patient. No other parathyroid carcinoma 

specimens were available for inclusion in this study and we do not expect to encounter another 

case in the near future given the very uncommon nature of this malignancy. Given the 

heterogeneous nature of cancer and varying mutational profiles in patients with the same 

cancer type, interpreting the results of this study is limited to this patient and no specific 

conclusions can be drawn about the disease. A recent study published after our report 

performed whole exome analysis of 8 parathyroid cancer patients and described novel germline 

and somatic mutations of PRUNE2 in 2 patients [338]. Although invaluable, whole exome 

sequencing experiments examine only the protein-coding regions, a mere 2% of the entire 

genome. Such approach does not provide a high-resolution view of the regions with copy 

number change nor does it allow for identification of fusion breakpoints falling in non-coding 

regions. Collaborative and multi-institutional studies are required to examine larger cohorts of 

parathyroid cancers on the whole genome and transcriptome scale. These studies will likely 

have to rely on cohorts of formalin-fixed paraffin-embedded (FFPE) tissues. The study described 

in this chapter detailed the successful application of whole genome sequencing to both flash 

frozen tumor tissues as well as the more commonly available FFPE clinical specimens. Future 

studies of this rare tumor promise to identify recurrent mutations including single nucleotide 

variants, small insertion and deletions and gene fusions that could serve as therapeutic targets.  

Only through the use of such mutation-driven treatments, residual disease can be eradicated 

and recurrent disease prevented. 
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6.3 Hürthle Cell (Oncocytic) Thyroid Carcinoma 

 

Hürthle cell, also known as oncocytic, thyroid cancer arises from the follicular cells of this 

endocrine gland and accounts for about 3-5% of all thyroid cancers [19]. No comprehensive 

molecular profiling of these tumors had been performed and the knowledge about the 

molecular drivers of this malignancy is very limited. In chapter 3, I described whole genome 

study of two Hürthle cell thyroid tumors, and the follow-up validation experiment in a larger 

cohort of patients. Whole genome sequencing revealed large regions of copy change often 

encompassing whole chromosomes. Common changes between the two tumors included gain 

of chromosomes 5, 7, 12, 18p, 19 and 20. More intriguingly large regions of the genome 

showed loss of heterozygosity, at times while maintaining two copies of the chromosome. Both 

tumors showed loss of heterozygosity of chromosomes 1, 2, 3, 4, 6, 8, 9, 11, 14, 15 and X. 

Despite vast amount of copy number change, fewer regions of focal gain or loss were identified. 

No structural variants or gene fusions were found through de novo assembly of the raw 

sequence reads. Collectively, these observations imply a causative role for small alterations 

such as single nucleotide variants and small insertions and deletions, particularly those affecting 

genes with loss of heterozygosity, in Hürthle cell thyroid tumorigenesis. We identified two 

distinct hemi- and homozygous frame-shift deletions in MEN1 gene in both tumors. This gene 

has been known to play a key role in endocrine organ tumorigenesis. Its mutation and loss of 

function is the cause of multiple endocrine neoplasia type I syndrome, which manifests in 

benign tumors of multiple endocrine organs such as the parathyroid, pancreatic islets, duodenal 
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endocrine cells and anterior pituitary. Its mutations had not been known to cause thyroid 

malignancy. Targeted examination of the MEN1 gene in a larger cohort of Hürthle cell thyroid 

tumors followed where we identified mutations in an additional 3 samples.  

 

We identified and validated somatic MEN1 frame-shift deletions in the two original flash frozen 

Hürthle cell tumors but only in 3 of 72 validation cohort specimens (4.2% population 

frequency). The low frequency of the mutation in the validation cohort was a surprising finding 

given the presence of mutations in both discovery specimens. Although it is quite possible that 

MEN1 mutations are only present in a small subset of oncocytic thyroid tumors, it is also likely 

that these loss-of-function mutations are present in a larger patient subpopulation but our 

study was underpowered to detect them. A major limitation of this experiment was the use of 

formalin-fixed paraffin-embedded tissues for the validation experiment while no information 

regarding the tumor DNA content for these specimens was available. The relatively rare 

occurrence of this malignancy required that we rely on FFPE specimens collected over many 

years for the validation experiment. It is well established that over time DNA integrity of these 

preserved samples is diminished and a rigorous pathology review of the biopsy material is 

needed in such cases. If serial sections had been made from each of the 72 samples and 

pathology review of hematoxylin and eosin stained slides had been performed, we would have 

a more accurate understanding of the phenotype of the validation cohort samples.  
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Hürthle cells are not unique to the thyroid gland and can be found in other organs with high 

metabolic rate such as the kidney, parathyroid, salivary and adrenal glands [19,20]. It will be of 

interest to examine and compare the Hürthle cell tumors from all these organs for the presence 

of mutations especially those of the MEN1 gene and identify associations, if any, between these 

mutations and the specific phenotype of excess mitochondrial accumulation. The distinct 

haploid genomic profiles of the tumors in this study also raise the question of whether loss of 

MEN1 protein function in the cell is a causative event for the appearance of haploid genomes. It 

is also of importance to identify potential links, if any, between benign Hürthle cell tumors and 

those of malignant tumors; it is not known if benign oncocytic tumors can or would lead to 

malignant tumors through accumulation of mutations. Genomic profiling of large cohorts of 

benign and malignant tumors could provide a better understanding of these tumors.  

 

6.4 Anaplastic Thyroid Carcinoma 

 

In chapter 4, I described the genomic profile of the rare and aggressive anaplastic thyroid 

cancer (ATC). ATCs account for only a small subset of all thyroid cancers but they are 

responsible for the majority of deaths in patients diagnosed with cancers of this endocrine 

gland. Anaplastic transformation of follicular thyroid cells leads to un-differentiation and 

complete loss of all thyroid-specific markers from the cell surface. As a result, not only diagnosis 

of ATCs, and at times even differentiating them from sarcomas, becomes challenging but their 

treatment with radioiodine ablation is also impossible due to loss of sodium/iodide 

cotransporter that is unique to thyroid cells and the target of therapy in papillary carcinomas.  
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The genomic data revealed aneuploidy with vast areas of copy gain and loss. Recurrent 

mutations of the epigenetic machinery including novel gene fusions were also observed in all 

samples and the transcriptome profiles hinted to a potential causative role for epigenetic 

deregulation in tumorigenesis. We also identified fusions of gene members of the axon 

guidance pathway in several of the ATC specimens. Deregulation of this pathway and its 

recurrent alterations have been observed in pancreatic ductal carcinoma, lung, breast, kidney 

and cervical cancers [283]. This is a pathway with regulatory roles in embryogenesis and it also 

interacts with and modulates known cancer pathways such as MET and WNT [283]. Evidence is 

emerging for members of this signaling network as promising drug targets [339]; these might 

have clinical applications for ATCs. Given that mutations such as BRAF p.V600E and those of 

RAS family of genes are shared between a subset of PTCs and those of anaplastic cancers, it is 

believed that some ATCs arise from precursor differentiated thyroid cancers while the rest arise 

de novo. It would be of great interest and of clinical utility to distinguish those PTCs that will 

eventually become undifferentiated and develop into ATCs; continual monitoring of patients at 

risk can facilitate early diagnosis and the delivery of more effective treatments. A small cohort 

of ATCs was examined in this study, however, I found gene fusions involving FGFR2 and BRAF 

genes that have also been found in less than 1% of the PTC population [270]. Those PTCs 

harboring oncogenic fusions may demonstrate more aggressive behavior and represent a small 

subset of papillary cancers that will evolve to ATCs.  
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The lack of recurrent targetable mutations in ATCs predicts variable and unpredictable 

responses to one-size-fits-all therapies. This is in agreement with lack of objective responses to 

therapy in various clinical trials to date and the absence of approved and standard therapies for 

this cancer. ATC may as a result be a suitable disease candidate for an approach to diagnosis 

and treatment that is mutation driven and more “personalized”. Such oncogenomic efforts 

have become more commonplace in the past few years and several centers around the world 

are increasingly utilizing the power of NGS technologies for identifying targeted therapy options 

in individual patients.  

 

Although this study was the first to provide an in-depth molecular signature of ATCs including 

several unique and authenticated cell lines, it was limited to a few specimens. Small sample 

sizes can lead to over-estimation of the true effect of findings while failing to identify all 

relevant and causative events in this cancer. Multidimensional genomic analyses of a large 

cohort of anaplastic thyroid cancers, similar to what has been accomplished for papillary 

thyroid cancer by The Cancer Genome Atlas study, promises to find low frequency DNA 

mutations and describe alterations of cell’s mRNA and miRNA repertoires and the methylome. 

 

6.5 Papillary Thyroid Carcinoma and Benign Thyroid Nodules 

 

An estimated 4% to 7% of the population will develop a clinically significant thyroid nodule 

during their lifetime. In up to a quarter of cases, preoperative diagnosis by needle biopsy is 

inconclusive and so a large proportion of individuals undergo thyroidectomy as a diagnostic 
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procedure for cancer. The molecular mechanisms that drive thyroid tumorigenesis and 

progression are still poorly understood. Likewise, the molecular causes of benign thyroid 

nodules have also yet to be elucidated. We performed RNA sequencing of papillary thyroid 

cancer, the most abundant form of the disease, and benign thyroid nodules using massively 

parallel sequencing technologies in order to characterize the molecular changes underlying 

these lesions. Whole genome sequencing of 3 benign nodules and their matched normal tissues 

were also performed.  

 

Our study demonstrated a very low mutation rate in benign nodules of the thyroid. The Cancer 

Genome Atlas study of 402 PTC specimens also estimated the mutation rate to be low and 

around 0.41 nonsynonymous mutations per Mb [270]. Both diseases showed very quiet 

genomes with very few copy number changes throughout. A few, although non-recurrent, gene 

fusions were observed in the genomes as described in Chapter 5. The most frequently mutated 

gene in PTCs was BRAF harboring the p.V600E activating mutation in over 60% of the 

population. It is believed that common adult epithelial cancers require at least 5 to 7 driver 

gene mutations to become a malignant mass [340]. Although TCGA study was the first to 

comprehensively examine a large cohort of PTCs and succeeded in shrinking the percentage of 

“dark matter” PTCs, tumors with no known driver mutations, to 1.2%, only a very small fraction 

of tumors were found to have two or more driver mutations. This raises the question of 

whether there are other mutations, perhaps non-coding and regulatory alterations, that are 

responsible for these malignancies and which are not identified through the use of the current 
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technologies. Alternatively, since the majority of PTCs are very indolent tumors and do not 

become locally aggressive or metastasize to distant organs, it is feasible that the presence for 5-

7 driver mutations is not a universal requirement and having merely one driver is sufficient for 

these nodules to be declared malignant based on current pathological standards. These tumors 

may remain indolent until they acquire further disease drivers. Although only the genomes of 3 

benign nodules were examined in this thesis, no shared mutations with PTCs were identified. It 

is well recognized that 20-25% of benign nodules harbor RAS mutations that are also found in 

the follicular variants of PTC [244]; however, it is still unknown if a step-wise accumulation of 

mutations transforms a benign thyroid nodule to a PTC. Studies that will examine PTCs from 

patients with history of benign nodules will shed light on the evolutionary process in these 

tumors.  

 

The required whole genome sequence depth and coverage for identifying all variations in a 

genome has been extensively discussed and updated over the past few years to reflect the 

advances in technology [341]. Currently, utility of sequencing experiments in clinical oncology 

mandates a high depth of coverage of at least 80-100x, while genome resequencing 

experiments can rely on an average depth of 35x [341]. However, although this threshold may 

suffice when examining a near-normal genome, studying cancers pose unique challenges. 

Sample and tumor heterogeneity in addition to aneuploid genomes that are observed in close 

to all cancer specimens require a high depth of sequence coverage to identify all relevant 

somatic mutations. Due to still substantial cost of whole genome sequencing, 30-40x coverage 
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was produced for the studies discussed in the thesis (Tables 2.1, 3.1, 4.1 and 5.4). Although 

these datasets result in reliable identification of structural variants and copy number altered 

regions at the base-level resolution, they are not as robust in finding all SNVs and indels. Low 

coverage in the tumor or the matched normal tissue may have resulted in false negative or 

false positive somatic calls, respectively, while the studied datasets did not have the power to 

detect subclonal events. 

 

Whole genome, exome and transcriptome profiling of cancer specimens are very powerful in 

deciphering mutations that are likely to be driver of disease, this is evident from the many 

discoveries made in just the past few years. However, these studies do not examine or provide 

any insight into numerous other factors that may be crucial in cancer initiation and progression. 

One of these concerns the role of the microenvironment surrounding the tumor. If the 

immediate environment around the newly formed nodule consisting of only a limited number 

of mutated cells is hostile to its maintenance, the tumor will not be able to progress into a more 

aggressive form invading local or distant tissues. Small and indolent in situ thyroid nodules were 

found in over 50% of autopsies from patients with clinically normal thyroid gland and the 

presence of occult thyroid cancer is reported in up to 13% of autopsies [342]. It would be 

imperative to compare the microenvironment of the small fraction of aggressive PTCs and ATCs 

with those of the majority, indolent and confined PTCs. This can not only shed light on the 

biology of the disease but also enable the discrimination of aggressive and non-aggressive 

tumors early in the course of the disease and hence enable the delivery of more effective 
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therapies [343]. 

 

Another related but important consideration in the pathogenesis of thyroid tumors is the role 

of immune system in carcinogenesis. Only when the body’s defense system fails to recognize 

and eradicate a nodule, regardless of the tissue and organ of origin, the tumor will have the 

opportunity to evolve and become invasive. However, through maintaining an inflammatory 

microenvironment, the immune system may also facilitate the tumorigenesis process. It is not 

yet understood how the immune system contributes to or prevents the development of thyroid 

tumors. Cancers can arise if the immune system does not recognize tumor-specific antigens and 

hence remain inactive. Malignant tumors may develop mechanisms to escape the immune 

system’s inhibitory effect through various processes such as downregulation of antigen 

presentation, expression of inhibitory molecules, recruitment of suppressor cells or eliminating 

the need for growth stimulation by developing autocrine signaling [344]. Loss of MHC class I 

was recently found in a large proportion of PTCs and was shown to be associated with immune 

escape [345]. Cataloguing all pathways through which the tumor escapes the immune system in 

thyroid cancer and identifying those that are reversible [345] can facilitate the administration of 

target therapies. It has also been suggested that thyroid tumors associated with inflammation 

and higher number of infiltrating lymphocytes have a better prognosis, due perhaps to the early 

immune response to the tumor [345,346]. Pathology reports of PTC biopsy specimens (Chapter 

5) indicated an extensive lymphocytic infiltration in the majority of these tumors. While the 

presence of white blood cells in and around the tumor might be suggestive of the efforts of the 
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immune system in eradicating the disease, it may also explain the manifestation of the disease 

after battle with a long-standing inflammation in the organ. The link between chronic 

inflammation and cancer has long been established [343] and inflammation as a result of 

thyroid autoimmune diseases such as Grave’s or Hashimoto’s thyroiditis may contribute to the 

progression of cancer in this endocrine gland [347]. Such inflammatory events may also arise in 

response to the immune system’s anti-tumor activity which at times leads to unintended 

protumor effects [344]. As discussed in Chapter 5 (section 5.5.1.4), cytokine-cytokine receptor 

interaction and chemokine signaling pathways showed statistically significant upregulation in 

PTCs compared with benign tumors, these chemicals secreted by the invading leukocytes can 

help to maintain the malignant phenotype by increasing cell proliferation and angiogenesis 

[347]. Defining the mechanisms by which chronic inflammation may harm or protect the tumor 

can guide future therapy options for thyroid cancer. Generally, papillary thyroid cancer has a 

great prognosis and while immunotherapy can provide a more personalized approach to 

treatment, more effective stratification of patients based on their immune phenotype prior to 

radical surgery and total thyroid ablation will have high and immediate impact in the clinic.  
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