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Abstract

Power distribution networks play an important role in electricity grid. Distribution sys-
tem components require becoming smarter and more automated for the sake of improv-
ing their reliability and increasing their operational efficiency. Smart meters are one of
the powerful devices that achieved this goal. However, their data are of minimal use —
grid or load information obtained from smart meters are shallowly analysed. This thesis
takes advantage of the shortcoming by accurately calculating the load information using
EMTP-based load disaggregation method. The approach is applicable to residential loads
at small scale and feeders at large scale.
In this thesis we first give our theoretical method for load disaggregation inspired by
EMTP computational program. Then with simulation and experimental results, we demon-
strate that our work outperforms past solutions by the following advantages:

1. EMTP-based load disaggregation is applicable at every point of interest, i.e., from
distribution feeder down to the customer’s entry point.

2. Unlike other methods, our method employs both transient and steady state load
properties.

3. Last but not least, our solution is capable of determining load’s electrical parame-
ters.

In this thesis we stress on three major eigen-loads: (1) motor, (2) resistive, and (3) purely
inductive. Then we report how much of the load is made of each eigen-load. We exam-
pled our method on a number of PSCAD simulation cases and a few real appliance mea-
surements. Our results prove load disaggregation shall assist power system engineers in
evaluating the power flow on accurate load observations.
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Chapter 1

Introduction

Every power systems network is comprised of three main sections: (1) Generation, (2)
Transmission, and (3) Distribution. Generation takes care of producing electrical power
from the potential water accumulated behind dams or burning the coal or natural gas.
Transmission is the process of transferring the generated power to feeders — electrical
power is transmitted at high voltage through overhead transmission lines. Distribution is
about dividing the electrical power to lower voltages to supply residential and industrial
customers. In this thesis target domain is distribution. Distribution networks, as the last
part of a power system chain are reportedly less studied [1], thus require more attention.
This chapter gives the background overview of power distribution network then the main
motivation behind the thesis work. In the following, Section 1.1, an overview of the power
system network is provided, then in Section 1.2, the problem statement and fundamental
needs for this thesis are discussed.

1.1 Power Distribution Networks
Power distribution compared to generation and transmission is less studied [1]. This is
while distribution networks play a key role in distributing the energy where monitoring
the quality of power and voltage is significantly important. However adding monitors
in distribution networks carry some challenges. Traditional distribution networks, con-
sist of feeder elements such as reclosers, switches, fault indicators, capacitor banks, and
voltage regulators that are incapable of sending critical information to the control center.
Besides, the major obstacle is the lack of communication infrastructure across the distribu-
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tion systems. There basically is no or little possible communication way between control
centres and distribution network equipment. There certainly is a need for automation
involvement in distribution similar to transmission network — in transmission, faults’
propagation is managed by monitoring, localizing, and predicting the fault through au-
tomation.
To overcome the shortage, utilities launched deployment of smart meters. Smart meters,
collect customers’ consumption information regularly. Smart meters emergence, since
last decade, encourages most or all sections of a network to become automated and in-
telligent. This thesis will cover more on smart meters in Section 1.2.2. However, more
work needs to be done to have a smart, automated and efficient Distribution Manage-
ment System (DMS). An automated DMS will fulfil the following requirements for future
grids:

1. Integration of distributed renewable energy resources in substitute of traditional
fossil fuels.

2. Providing management for optimising demand, i.e., providing incentives for cus-
tomers to use electrical energy in a more efficient manner.

3. Improving Automatic Generation Control (AGC) system due to the peak demand
rise, especially for emerging demand of electrical vehicles.

4. Managing fast-response behaviour of power electronics components of the grid ver-
sus slow-response nature of synchronous generators.

Additionally, industry has developed the following smart tools for main parts of a
distribution system. Some of these smart tools are:

1. Voltage VAR Optimization (VVO) : VVO algorithm, optimises the voltage profile
along the distribution feeders and customers to avoid voltage flickers and fluctua-
tions. VVO is not practical without being informed about description of the load.

2. Stochastic load and generation forecasting in consideration of large renewable pen-
etration.

3. Optimal network reconfiguration: Providing an optimum switching manoeuvre for
the feeder. Disconnecting some parts of the feeder compromised to reduce the en-
ergy loss and supply more critical loads. Load disaggregation reveals descriptions
of feeder connected loads beneficial to network reconfiguration.

2



Having less accurate real time measurement devices, not accessing to the efficient algo-
rithms corresponding to the real time data management, and possessing no accurate load
models restrict the distribution system’s future improvement. To improve the operational
behaviour of the distribution network, feeder planning, outage prediction and customers’
reliability improvement are well advised. Figure 1.1 shows a basic schematic of a smart
distribution network. Figure 1.2 shows a typical radial distribution feeder layout.

Figure 1.1: Distribution network from substation to feeders from [2].

In following section, BC-Hydro distribution network as an example is discussed.

1.1.1 An Example of Distribution: BC-Hydro Distribution Network

A typical BC-Hydro distribution network consists of an infinite bus, which is connected
via a primary distribution line to the distribution substation. The low voltage bus at the
substation is generally regulated with one of the following elements:

1. Automatic load tap changer (LTC) with a set point of about 124 V (7.44/12.89 kV or
14.88/25.77 kV).

2. 3-phase 300/400 Amp feeder position voltage regulator.

3. Bus regulator with a set point of 122-123 Volt (120.0 Volt on a secondary basis is
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Figure 1.2: Typical distribution feeder schematic.

equivalent to Bc-Hydro nominal primary voltages of 7.2/12.47 kV and 14.4/25.0
kV) [3].

To this end, we introduced the structure of a typical distribution network. We pointed out
the difference between traditional distribution network and a smart distribution network
as well.
Distribution system dynamic behaviour is all about the nature of its loads. Load disag-
gregation function is to separate the aggregated load to its components. Knowing the
components of the total load, supports power engineers towards a more efficient power
system’s operation and maintenance.

1.2 Motivation
The basic goal of a power system cycle is to supply different types of the load. Thus,
having an accurate information about customer loads plays a critical role in the distribu-
tion system planning and operation. On the other hand, advent of distributed generators
such as solar panels, onshore/offshore wind farms and PVs forces conventional grid to
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operate more dynamically, thus capturing load’s dynamic behaviour turns into be more
crucial matter. In the following Sections 1.2.1 and 1.2.4, the most important application
need of load disaggregation are discussed.

1.2.1 Energy Management

Today, energy management is challenging due to the fast growing nature of energy de-
mands (loads). Electricity demand is increasing twice as fast as overall energy use. On
the other hand, energy supplies are declining to two thirds by 2035 as shown in Fig-
ure 1.3. This increasing need and decreasing energy production, coupled with the fact
that coal fuels are 40% of energy supply contributor, makes electricity energy generation
as the highest cause of CO2 emission. Hence, world needs to increase electricity energy
supply preferably clean energy resources for the next 20 years [4]. Accessing adequate

Figure 1.3: World’s total primary energy supply from 1965 to 2035 by fuel [5].

clean energy supply resources without tackling demand side management is not practi-
cal. Thereby, to cope with the growing energy demand while producing less greenhouse
gasses, it is important to understand the type of loads connected to the grid as the main
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players’ demand type. Real-time information helps out in having a less lossy distribution
network and a more stable and reliable transmission system thus saving energy.

1.2.2 Smart Grid

Smart grid refers to a modernized and smart healing network. Smart Grid (SG) answers
most of the upcoming challenges which Distribution System (DS) is facing since 20th cen-
tury. SG adds up communication and automation features to grid’s elements [6]. Strong
communication capability enables utilities, substations, and distribution customers mon-
itor each other in real-time. For example, if a contingency occurs and one generator or
transmission line trips, distribution system is able to get updated in less than a second
reducing outage duration.

Smart Meter

Smart grid development, brought smart meters and in-home energy displays as the solu-
tion to address the issue of accessing customers’ real-time demands information. Smart
meters are intelligent energy meters that obtain customer load’s information and send it
back to control centre. Meter measures time domain voltage and current waveforms for
a customer and sends the obtained data for evaluation to supplier [7]. Received real-time
data are analysed for the following purposes:

1. Giving customers an insight of their energy consumption.

2. It offers tariff models in electricity market.

3. Providing customers with incentives about the time of usage.

4. Enabling the utilities to monitor the grid’s aggregated load and energy in real time.

5. Helping out distribution engineers in optimising VVO techniques.

Load disaggregation exploits smart meter readings to provide customers with an intuitive
quantitative understanding of the amount of energy consumed by them. The main aim of
load disaggregation is energy saving.

Distribution Management System

With the addition of millions of new data resources in DS, it is imperative for utility op-
erators to monitor and control a high volume of real-time data in an optimum manner.
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DMS is the decision support tool, which collects data all over from smart measurement
devices. It takes the data back to the control centre. Operators assess the grid based on
received data. The most important application of DMS is that, it improves operators and
distribution engineers’ visibility to the distribution system. DMS is valuable because of
its application in the following:

1. Advanced control of the voltage and reducing network’s loss through the automatic
distribution optimized reconfiguration.

2. Integration of distributed renewable resources.

3. Integration of dynamic loads and having dynamic feeder protection.

In other words, DMS is an effective mechanism of managing the AMI data and perform-
ing complex analysis and calculation [8]. Figure 1.4 shows a large picture of a DMS net-
work including all subsystems and devices incorporated together. Load disaggregation

Figure 1.4: DMS (Distribution Management System) schematic [9].

algorithm has to be embodied in a DMS, towards achieving a better performance from all
sections of the DMS platform.
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1.2.3 VVO

VVO Definition

VVO is defined as maintaining the voltage level at a standard range (+/- 15% nominal
voltage according to CSA standard) through the distribution network. VVO has been of
great interest by utilities for many years. Load’s behaviour and consequently voltage/-
VAR level are changing throughout the day. Therefore, distribution engineers need to
apply different methods to control the voltage at the feeders. Deployment of voltage regu-
lators and shunt capacitors are the two common methods of controlling the voltage within
a limit. Voltage and reactive power have a proportional relation, meaning that increasing
the reactive power leads to voltage rise and reactive power drop will cause voltage drop
as well. Because of this, inductive and capacitive loads play an important role in con-
trolling the voltage profile of the system. Recently, with advent of Advanced Metering
Infrastructure (AMI), engineers try to leverage real time data achieved from smart meters
to control the voltage along the feeders more realistically. Voltage regulators, capacitor
banks and On Load Tap Changer (OLTC) are common equipment employed, to control
the voltage and the reactive power. OLTC increases and decreases the voltage level ac-
cording to the load changes. For example, if load increase across the feeder, tap changers
will increase the voltage to account for the excessive voltage drop on the feeder. Voltage
regulators and capacitor banks perform the same.

Load Disaggregation Role in VVO Definition

Loads play an important role in VVO techniques. Motor loads form more than 80% of
the total load. They have inductive characteristics. They absorb Q from the feeder which
leads to a voltage drop. Also, for a capacitive load case, they generate reactive power
which may cause a voltage rise in the system. Thus, loads nature has a direct impact
on the system voltage and power levels. Being able to detect the accurate type of load
helps VVO to control the system more accurately.
supervisory control and data acquisition (SCADA) enables optimising the voltage and
reactive power, according to the load changes.
All in all, we need load voltage and power information at the feeder level to adjust the
voltage and reactive power along a feeder [10].
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1.2.4 Linear Power Flow (LPF)

Power flow calculation is one of the strongest tools to analyse distribution network. Power
flow study solves a group of non-linear equations to calculate the bus voltage magnitudes
and phase angles. Advance distribution system automation should be fast enough to
meet the real time demand response. Linearising the power flow algorithm gives this
opportunity to analysis the distribution system faster and more efficiently. Linear Power
Flow (LPF) is introduced for the first time in [11]. There are different load models that are
used in solving a power flow problem as described in following section.

Load Models

Loads modelling has not been taken into serious consideration for the last 2 decades in
power systems area [12]. Based on BC-Hydro experimental results, there is 0.6 percent
KWh (active power P) reduction per 1 percent load’s voltage reduction, and a 3 percent
KVAR (Reactive power Q) reduction per 1 percent voltage reduction which brightens the
significance of Loads models [13]. Loads are classified to two types of load modelling
methodologies:

1. Static: So far, static load models are integrated in a power flow solution. Static load
models are not dependant on time, i.e. static models express P&Q relationship to
voltage at the same time instant while dynamic approaches describe P and Q as
a function of voltage at each time instant. Power system study tools mostly use
polynomial and exponential load models under the static group.

2. Dynamic: Dynamic loads characteristics change in time. So, they should be mod-
elled in real time.

For static models, Equation 1.1 formulates the voltage dependency of load characteristics
by an exponential model.

P(V) = P0(
V
V0

)a

Q(V) = Q0(
V
V0

)b
(1.1)

Polynomial models (ZIP model) also are widely used for load’s behaviour formulation.
There are three major components in (ZIP model), (1) constant power, (2) constant current,
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(3) constant impedance. They are formulated in Equation 1.2.

P(V)

P0
= Fz(

V
V0

)2 + FI(
V
V0

) + Fp

Q(V)

Q0
= (F′z)(

V
V0

)2 + F′I(
V
V0

) + F′p

(1.2)

Where, FZ, FI , FP are constant impedance, constant current and constant power respec-
tively. Both polynomial and exponential models add non-linearity to the power flow
equations. A new static load model is proposed in [11], which demonstrates a linear
presentation of load’s behaviours. Equation 1.3 describes the new load model (ZI model).
It assumes a load, as the combination of constant impedance ( Z) and constant current (I),
which leads to a linear power flow formulation.

P(V)

P0
= Cz(

V
V0

)2 + CI(
V
V0

)

Q(V)

Q0
= (C′z)(

V
V0

)2 + C′I(
V
V0

)

(1.3)

Where (CI + CZ = 1)and(C′I + C′Z) = 1.
CI ,CZ,C′1,C′Z are derived from measurement data. A curve fitting will determine the val-
ues of C and C’. It is a matter of solving a fitting optimization problem as formulated in
Equation 1.4.

minimize
N

∑
i=1

(Cz(Vi)
2 + CIVi − P(Vi))

2 (1.4)

subject to Cz + CI = 1. Figure 1.5 shows a comparison between three different explained
load modelling forms, applied on a three phase induction motor with the ratings of: 460
V, 3-phase, 1.4 hp, 1725 r/min .

Load Disaggregation Application in LPF

Loads are behaved as voltage dependent instead of constant P and Q as described in
Equatuion 1.3. Voltage dependency characteristics of the loads are required for solving
a linear power flow (LPF). Different type of loads have different voltage dependency in-
dexes. Therefore, we should know the type of a load to estimate its voltage dependency
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Figure 1.5: Comparison of the exponential, ZIP and proposed LPF load mod-
els. [11].Data in this figure are from [14].

behaviour. Load disaggregation result is fed into the LPF problem. EPRI ( Electric Power
Research Institute) conducted a study on how to derive voltage dependency of different
type of loads from laboratory measurements [15]. Above mentioned factors motivated us
to devise an innovative tool to recognize grid connected types of loads. The main focus of
this thesis is load disaggregation.
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Chapter 2

Literature Review

This chapter provides previous work made in research and industry. In Section 2.1, based
on surveyed literature, appliance load monitoring as the first topic discussion for load
disaggregation is discussed. In Section 2.2, based on a collection of papers, load disag-
gregation main elements are listed and the contributions in each domain are reviewed.
Finally, in Section 2.3, popular studies in the area of load disaggregation are discussed.

2.1 Appliance Load Monitoring
Appliance Load Monitoring (ALM) is essential for energy management. It allows to ob-
tain appliance specific energy consumption. It is approachable in the following two meth-
ods:

1. Intrusive Load Monitoring (ILM) which is known as distributed sensing method.

2. Non Intrusive Load Monitoring (NILM) which is known as single point sensing
method [16].

In the following, these two methods are reviewed.

2.1.1 ILM

ILM requires deploying smart power outlets on every appliance due to extra hardware
cost and installation complexity. However, it is accurate in measuring appliance’s specific
energy consumption.
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2.1.2 NILM

NILM, also called, load disaggregation, is an area in computational sustainability that
tries to discern what electrical loads (i.e. appliance) are running within a physical area.
Such areas can include communities, industrial sites, office towers, buildings, homes, or
even within an appliance [17].
NILM receives the aggregated load data from home entry electrical panel with no need
to install sensors for each appliance inside the home. George W. Hart was the first one
coming up with this idea about load disaggregation [18].

NILM History

NILM is initiated almost two decades ago by Hart [18]. He suggested to install Non In-
trusive Appliance Monitoring (NALM) devices connected to the total load circuit. Based
on switching on/off events and specific signatures for each individual load, he was able
to determine the nature and number of loads connected. Moreover, he was able to check
out each load’s active and reactive power consumption and its time of the day variation.
Figure 2.1 shows the power consumption versus the time of a single family for 40 minutes

Figure 2.1: Power consumption of a single family for 40 minutes [18].

period. There are four step changes in the active power consumption. This states existence
of four different appliances. However, with knowing each individual load’s consumption
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pattern, we can say when each load is switched on or off and for how long. Figure 4.2

Figure 2.2: Overview diagram of NILM [19].

presents NILM as a block diagram which is fed in with two main inputs, measurements
and appliance data information. NILM connects with the total load using standard meter
user socket. It measures information such as voltage, current, P, Q and Total Harmonic
Distortion (THD) for total load of a house entry. Appliance data block contains specific
appliance’s information such as P signatures, Q signatures and also type of the appliance
obtained by the manufacturer [19]. The output of NILM process is the daily status of the
analysed appliance.

2.2 Load Disaggregation Elements
This section elaborates three main elements of a load disaggregation process: (1) data ac-
quisition, (2) feature extraction and (3) learning/classification.
Researchers working in load disaggregation domain, argue about different techniques
and state of the art algorithms which are applicable in any of the three major modules.
Most researchers consider the active and reactive power patterns as the appliance distinct
features, to distinguish between different types of home appliances. The common prop-
erty among most of the load disaggregation studies, is to report the types of loads looking
at a single customer’s point of entry. Their algorithm will state which appliances turn on
or off at each moment.
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2.2.1 Data Acquisition

Data Acquisition receives loads electrical waveforms measured at smart meters. Different
energy meters have different sampling rates. We need to choose the appropriate sampling
frequency based on the type of signal chosen for load’s feature. For example, if steady
state real power and reactive power are the metrics, low sampling rate (i.e., 120 Hz) is
adequate. But If harmonics are studied as loads signatures, we need to sample the mea-
sured data at a higher frequency rate. For instance, to capture the harmonics up to 6, the
minimum sampling frequency should be 360 Hz. The other important point to consider is
Nyquist-Shannon criteria. Nyquist theorem states that sampling frequency has to be more
than twice of the highest harmonic frequency in a signal. Since there is no higher than
11th harmonics available, maximum sampling rate is between 1.5-02 KHz [20]. Higher
frequency meters are useful in capturing more accurate information of a signal to reach
high accuracy of load detection. They are able to capture “Microscopic” features such
as harmonics and instantaneous signal values. In compare with Microscopic signatures,
power consumption changes are “Macroscopic” features, which can be detected with low
frequency meters.

2.2.2 Feature Extraction

After obtaining load data, we have to choose a distinguishable feature of the load. Raw
data received from meter needs to be processed towards achieving a load feature metric,
to distinguish between different types of loads. Loads’ signatures are classified into steady
state and transient categories.

1. Steady state features: RMS values of a waveform like voltage and current and an
event change in a metric like power consumption are examples of steady-state fea-
tures. Sampling time of equal or larger than 1 second in adequate to extract steady
state features. For example power consumption changes usually happens whenever
an appliance turns on or off. This happens in more than one second time duration.
Capturing this type of slow changing load properties does not need high volume
of memory or fast paced measurement devices. This is known to be the advantage
of using steady state load features as far as they are able to differentiate between
different types of loads. The other dominance property is that they do not require
repeatable patterns unlike transients signals [18] and [21].
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2. Transients features: An appliance’s starting current, starting power, shape and du-
ration of high order harmonics and also some other transient load’s characteristics
that happen in less than one milliseconds are examples of transient features. Tran-
sient features recognize the non-linear type of loads. Interestingly, transient signals
contain some unique characteristics of the load since, some characteristics, happen
in high frequencies [22] [23] [24] [25] [26]. Figure 2.3 demonstrates different cate-
gories of load features.

Figure 2.3: Load electrical features categorization [27].

Selecting an appropriate method either time domain approaches or frequency domain,
depends on the level of disaggregation accuracy required and also the meter type. For
example, if harmonics are chosen as appliances’ distinctive features, we employ frequency
domain analysis (fft, dft).

2.2.3 Load Classification

Learning process is grouped into two categories:

1. Supervised Learning Approaches (Classification)

2. Unsupervised Learning Approaches (Clustering)
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Supervised Learning

Supervised classification algorithms, assign a label for each input data. Given a training
data in the form of xi which represents ith example data, and yi which is the ith class label,
the algorithm finds a model in which A(xi) = yi. The extracted load features are analysed
with an optimization method, or with a pattern recognition (machine learning) technique.
Researches in this domain, usually pattern recognition technique to train a seen library of
data and detect the unseen load based on trained data information. Learning system
allows training a classifier based on available load measurements signals. Any pattern
recognition composes of three major steps:

1. Selecting a category of load features which are distinctive enough to classify be-
tween different types of loads.

2. Synthesizing a training set of feature’s data.

3. Training a classier with the observed data towards identifying the new type of load
after training.

Supervised learning uses KNN, Byes theorem, SVM, Neural Networks and Optimization
methods as the classification tools to make the distinctive clusters of different load types.
In following, each of above mentioned classifiers are briefly introduced.

KNN KNN works based on the smallest distance between the input data and trained
one. Accordingly the class label assigned to smallest k, is given to that input.

Byes Theorem Byes theorem assigns the class which has the highest probability is as-
signed to the observed data [21] [28]. We can assign class c to an unknown example
within feature sets: X = (x1, · · · , xn) such that: c = max

c
P(C = c | x1, · · · , xN).

The P probability can be formulated as : P(C = c | x1, · · · , xN) =
P(C=c).P(x1,··· ,xN |C=c)

P(x1,··· ,xN)

SVM SVM is mainly used for binary classification. SVM method separates an ‘n’ di-
mensional space into two classes. However, since data set is not always linearly separa-
ble, sometimes kernel-induced feature space is introduced to cast the space into higher
dimensional one [23] [25] [26].
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Neural Network Neural network works based on three layers of trained neurons: (input
layer, hidden layer and output layer). Observed data set is fed into the input layer. Dif-
ferent weights are assigned to the input data due to a function which could be designed
based on problem’s objective. Input data it passed through the hidden layer. Finally, Out-
put layer is a value which shows the class label of the corresponding input. To illustrate
more on this one,in order to identify an event associated with operation of an new appli-
ance, we match data set which includes all available event based appliances’ signatures,
with new load’s event based value. There are many literature arguing different available
recognition techniques [22] [26] [29] [30].

Optimization methods Optimization methods consider load disaggregation problem as an
optimization problem. It works well when we need to identify an unknown single load
which is not present in the data set. It compares the new measured feature vector like
p(t), to the feature vectors which exist in the data set library. The objective is to reduce the
matching error. The optimization problem is formulated in Equation 2.1

class = argmin
i
|| y∧i − yi || (2.1)

In which yi is the new measured feature vector and y′i is the feature vector which exists in
the load library. The limitation appears when, when we are working with an unknown ag-
gregated load data. The reason arises form the fact that, an optimization problem can has
one objective function at each time instant. To identify the components of an aggregated
load, the method should consider all possible combinations of the appliances present in
the data set, which are probable to synthesis the unknown signal. The combination, which
leads to the least matching error will be selected as the components of the total load. Inte-
ger programming and generic algorithms are the examples of an optimization problem’s
solvers [31]. However, in the presence of a complex load feature vector, it is getting com-
putationally expensive and time consuming to approach the load disaggregation as an
optimization problem.

Un-Supervised Learning

Recently, researchers are developing unsupervised learning techniques to resolve some
of supervised learning algorithm’s drawbacks. Supervised learning system is expensive
and not efficient due to the fact that preparing a complete data set covering all the possible
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types of loads, needs new meters and sometimes sensors’ installation. Unlike supervised
methods, unsupervised algorithms, tackles the load disaggregation, in a smarter way with
no need to the data set pool. K-means and clustering approaches, are two examples of
an unsupervised learning method [32] [33] [34]. For example in Figure 2.4 P and Q are
selected as the main load features to constitute the major load clusters. The goal behind

Figure 2.4: Load clustering using P and Q [16].

any unsupervised learning approach, is to achieve the minimum distance between an
unknown load and the existing clusters in order to recognize, which main category of
loads, the new load belongs to.
Most of unsupervised load disaggregation methods, need to full fill following criteria due
to their application with smart meters and due to having a more simplified computation
effort.

1. Power consumption data should be captured in real time.

2. No training dataset is necessary.

3. Number of total appliances usually does not exceed 20-30.

4. These methods cover ON/OFF appliances, multi state appliances, continuous con-
suming appliances and permanent consuming appliances.

5. Methods are scalable in a sense of robustness.
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2.3 Literature Reviews of Previous Studies
Hart adopted active power as the main signature of loads. NILM’s task is to decompose
the P value in Equation 2.2, into its single load’s power components [16]. Total value of
active power mainly is formulated as the sum of all the individual load’s consumption as
following:

[P(t) = p1(t) + p2(t) + ... + pn(t)] (2.2)

Where pi is the power consumption of individual appliance and n is the total number of
appliances. There are literatures which employs unsupervised learning methods to cap-
ture a load’s type. Dominik Egarter, takes advantage of HMM (Hidden Markov Model)
for the appliance modelling and FHMM (Factorial Hidden Markov Model) for the house-
hold consumption modelling. All the hidden states of appliances, which are generated
with HMM, are transferred to FHMM. FHMM aggregates the appliance’s power con-
sumption. He proposes popular Monte Carlo (Partial Filtering) estimation method, to
estimate the disaggregated appliance’s states. Partial Filtering calculates the weighted
particles to obtain PDF values for each state. Particles are propagated over time to ob-
tain the new particles and new the weights [32]. For the validation, this method is, tested
on a household synthetic power draw numbers. It was capable of recognizing up to 18
different appliances. He evaluated his approach on Residential Energy Disaggregation
Data (REDD) data set.
REDD contains detailed power usage information from several homes [35]. Figure 2.7
demonstrates how to install a REDD box inside a house.

We conclude that unsupervised learning methods, are advantageous because they do
not need any training library. They require a general knowledge about the appliance
structures such as, the number of operations ( whether on/off and multi state appliances)
and also, power demand measured values of each appliance.

In [33] load disaggregation is viewed as a single channel source separation problem.
In this study, tensor (Multi-way array) factorization algorithm is applied for the electrical
source modelling. Multi-way array considers the power consumption of each load at
each smart home as a tensor. The Goal is to achieve all appliance’s significant information
through the available measurements data resulted from tensors factorization. Authors in
this paper intend to develop a model based on a non-negative sparse coding, in particular
a non-negative matrix factorization algorithm, which enforces the sparsity conditions to
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Figure 2.5: An example of energy consumption during a day for one of the house [35].

Figure 2.6: REDD box instalment inside a house

the load models. This approach learns a sparse model for each load, which is later used for
the purpose of disaggregation. This method assumes an aggregated power consumption
signal x(t), corresponding to the sum of all of the appliance’s usage over time period of T:

x(t) = f (x1(t), ..., xk(t)) (2.3)
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In Equation 2.3, f is assumed as a linear combination of constitution load. In this case we
can formulate f as :

x(t) = ∑ xi(t) (2.4)

To solve a single source separation problem, all the load’s models are used to extract the
significant characteristics of each source xi. Load’s models can be learned using On-line
measurement data if available. Otherwise Matrix Factorization is a common method for
source modelling. xi(t) is modelled as sum of the products of the main characteristic’s
matrix and activation matrix as formulated in Equation 2.5.

xi(t) = ∑ a(t) ∗ b(t) (2.5)

In which xi(t) is the power consumption of the ith appliance at time instant t. a(t) contains
main features of appliance i and matrix b is the activation matrix. Figure 2.7 shows the
three way tensor. Note that, different matrices x1 to xk across the devices direction, are
source models for appliances 1 to k. This decomposition extracts information about the
three directions ( time of the day, days of the week, type of electrical appliance). RMSE
(Root-Mean-Square-Error) is the evaluation metric in this approach which measures the
error between predicted and actual measured power consumption as formulated in Equa-
tion 2.6.
The restriction of this model is that each source is independently modelled, ignoring the
dependency characteristics existing between different appliances. In other words, if two
different appliances are turned on simultaneously, the algorithm, is not able to distinguish
between them.

RMSE(X̄, ˆ̄X) =

√√√√√ T
∑

t=1

m
∑

d=1
(X̄− ˆ̄X)2

T ∗m
(2.6)

In which X̄ is the actual aggregated signal and ˆ̄X is the predicted value. m is the num-
ber of days for training. The other popular approach to load disaggregation problem is
adopting probabilistic methods.
Kim Etal was the first person to use probabilistic method for solving load disaggrega-
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Figure 2.7: Load three dimensional characteristics[36].

tion problem. He applied FHMM as the main method. He also, considered modelling
the coupling between dependant appliances. His method, incorporates a non-geometric
parametric distribution of discrete-time ON durations. Even though his algorithm takes
advantage of the time-ON statistics information to address the overlapping problem, but
it still suffers form the computational complexity which increases exponentially with the
number of appliances [34]. In [28] Zeifman, applied probabilistic approaches to meet the
smart meter’s requirements as following:

1. Load’s selected features have to be compatible with the smart meters.

2. Algorithm is able to detect near real time appliances status.

3. Disaggregation accuracy should not drastically drop when the number of appliances
is increasing.

In this paper, Semi-Markov model is selected as the mathematical solution for load dis-
aggregation problem. The candidate of appliances are chosen between the one which has
the overlap in the power draw for the sake of decreasing the complexity of problem. The
idea is, to consider a group of two appliances i and i+1, with different time off durations.
The probability of that an observed power change corresponds to the appliance i, depends
on whether the appliance i+1 is turned on or off and for how long. Briefly explained, the
algorithm is able to determine the starting time and the ending time of an appliance, with
having an aggregated metered data. For example, Figure 2.8 shows the measured power
consumption versus the reconstructed power pattern of a refrigerator and a dish-washer
using Probabilistic method.
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Figure 2.8: Metered vs reconstructed consumption of a dish washer and refrigerator
using probabilistic method [28].

In article [26], researches use “V-I” trajectory, (the mutual locus of instantaneous volt-
age and current waveforms) towards separating an aggregated power data to its eigen-
loads as shown in Figure 2.9.
They also tested different numbers of learning algorithms such as feed forward Artificial
Neural Network (ANN), Hybrid learning algorithm and Support Vector Machine (SVM)
to evaluate the precision and robustness of different classification algorithms. Energy
consumption data is needed for this method to extract instantaneous voltage and current
waveforms information. This method is considered as the high frequency approach since
it needs to sample voltage and current signals at a rate of 100 samples per second. Ex-
tracted data is for the purpose of training which means, system learns different load’s
behaviours based on these sampling points.

This method, suffers from its requirement for a huge learning data set. It also, needs
clustering methods, to pre-process the dataset in order to apply V-I trajectory method
on it . Jin-Wen University researchers, proposed analysis of load’s transient operational
characteristics named as transient time and transient energy to detect power demand and
load operation. Study applies DWT (Discrete Wavelet Transform) to the frequency-time
domain features vectors to analyse the behaviour of a specific type of loads. This research
asserts that using steady state features is less accurate in compare with employing tran-
sient features of the loads. Because, in the event based methods, (steady state information
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Figure 2.9: Graphical illustration of voltage-current trajectories from six different ap-
pliances from REDD household 3 [26].

are captured after an event like switching ON/OFF happens)whenever two different ap-
pliances have the same switching time or when the power of a certain load equals the total
power of the other load, it is not possible to distinguish between the two loads. Following
Equation 2.7 shows how to calculate the transient energy function of an aggregated load.

Vk = vk − vk−1 Ik =
ik + ik−1

2
Ut = U1phtransient =

K

∑
k=0

Vk Ik (2.7)

in which VkandVk−1 are derived from the transient voltage for Kth and (k+1)th samples.
I(k) is the average of transient current received from smart meter measurement. This
study, compares the results of the Short Time Fourier Transform (STFT) and Discrete
Wavelet Transform (DWT) of the turn on transients of three different loads. Figure 2.10
shows the result of applying short term Fourier transfer on transient current of three dif-
ferent categories of loads. The transient response time of each load can be identified from
the ending time and the starting time based on Figure 2.10.
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Figure 2.10: The STFT results on turn on current transients. (a) 160 horse power
induction motor, (b) 123 horse power induction motor driven by variable volt-
age driver. (c) A bank of loads supplied by a six-pulse thyristor rectifier for AC
power [37].

In order to compare STFT method with DWT method, Wavelet transform of same three
waveforms are captured and pictured as following: DWT is more robust since it should
not use fixed window frame same as STFT. Size of the window is scalable in DWT which
enables this method to capture all information from starting point to ending point (same
starting time and end time as load’s signal).

In Figures 2.11, 2.12 and 2.13, first picture is instantaneous power waveforms of turn-
on transients for a 160 hp induction motor, a 123 hp induction motor driven by variable-
voltage drivers and a bank of loads supplied by a six-pulse thyristor respectively and
2nd plot demonstrates discrete wavelet coefficients which are distinguishable for different
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Figure 2.11: The DWT results of turn on instantaneous power transients for a 160 hp
induction motor [37].

appliances.
High frequencies harmonics envelopes are the other strong descriptor for detecting a

specific type of load in particular, power electronic types. Many loads, inherently draw
non-sinusoidal, distorted current due to their physical characteristics. Taking Fourier
transform of their current waveforms, aims to compute “spectral envelopes” which uniquely
characterises the specific type of the load. In [38] a computer and an incandescent light
bulb got detected in the ∆P, ∆Q and ∆3rd harmonic, coordinate system as shown in Figure
2.14.

In [25] matrix pencil method is used to represent the current in time value in terms
of conjugate poles and residues. 1st, 3rd and 5th current harmonics are studied for over 9
different load classes including, incandescent Lamp, halogen Lamp, economy Lamp, wa-
ter heater, electric convector, oven, hot Plate (one and two burners), television, Computer)
and PC. There is a data set of 900 samples prepared to be passed in to a selected classifier.

The drawn current by each appliance is the sum of M complex valued sinusoid signals
weighted by complex residues expressed in Equation 2.8.

it =
M

∑
m1

rm.exp(am + j2π. fm)t + b(t) (2.8)
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Figure 2.12: The DWT results of turn on instantaneous power transients for a 123 hp
induction motor driven by variable voltage driver [37].

The discrete current signal is expressed in Equation 2.9:

ik =
M

∑
m1

rm.zk
m + b(k) k = 1,2, · · · , N (2.9)

Where

zm = exp(am + j2π. fm)ts m = 1,2, · · · , M (2.10)

In Equation 4.1, am is the attenuation factor, fm is frequency, ts is the sampling time
and rm is the residue of mth component.
The other innovative approach to load disaggregation arises from harmonic energy coef-
ficients. This study, carried out different measurements to deduce that steady-state har-
monics contents, are more repeatable than transients harmonics contents. Therefore, they
concluded that steady state harmonics are more reflective of the loads behaviour. For this
reason, just before and after an event, steady state harmonics contents, should be exam-
ined. This method measures currents harmonics content of the electrical loads, from a
three-phase environment. A vector of length 27 corresponds to the first 8 harmonics plus
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Figure 2.13: The DWT results of turn on instantaneous power transients for a bank of
loads supplied by a six-pulse thyristor rectifier for AC power [37].

the fundamental frequency content, for all three phases is developed as the load’s fea-
ture’s database. An observed new load is identified with comparing its harmonics energy
content to the reported library’s harmonics vectors and minimizing the match error [24].
In [22] researchers assert that a load’s current waveform polluted with harmonics can be
represented as a normalized energy vector consisting of five elements. They took sam-
ples of three loads ( personal computer, fluorescent lamp and dimmer for incandescent)
current waveforms at the rate of 10 KHz with total period time of 51.2 ms. then, 5 level
decomposition of wavelets has been applied for analysis. It is shown that for each type of
load the wavelet coefficients curves give distinctive signatures and they used these signa-
tures to identify each specific type of load. The other innovative approach, considers the
steady-state starting noise of each appliance as a distinctive load feature. approach uses
single plug in sensor, to detect both the abrupt noise created with an abrupt switching
operation, and also the noise created by the certain devices in operation. The single plug-
in model connects to a PC and PC records the generated noise caused by an appliance’s
switching ON or OFF as shown in Figure 2.15. Learning classifier, learns the certain char-
acteristics of the noise to detect what appliance is turned ON or OFF in future. Authors
in this paper, categorise the noise into two categories named as transient noise and steady
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Figure 2.14: A computer and an incandescent light bulb in the ∆ P, ∆ Q and ∆ 3rd
harmonic coordinate system [38].

state noise. transient noise pulse is created while a large motor load such as a fan is turned
on while, transient noises last only for microseconds and contain rich spectrum of the fre-
quency components which is ranged from 100 Hz-10 KHz.

This study assumes noise signature of a particular device depends on both type of the
device and the transmission line behaviour of the interconnecting power line. They cap-
ture both contributors in the load identification process. Three main classes of electrical
residential loads, are considered in this research.

1. Pure resistive loads such as light bulbs and stoves, do not create detectable amount
of electrical noise.

2. Motor loads like blender and fan which produce transient voltage noise synchronous
to 60 Hz.

3. Power electronic appliances, such as microwave, PC and chargers which emit the
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Figure 2.15: Frequency spectrum of a particular light switch being toggled (on and
off events). Graphs indicate amplitude at each frequency level. Events at (b) were
captured two days after (a). (c) events are captured one week after (a). On and off
events are different enough to be distinguished.

steady-state noise synchronous to the internal oscillator.

This study was able to classify the various electrical events using SVM learning algorithm
with accuracies ranging from 85-90% [23].

2.4 Chapter Summary
This chapter, summarized previous research and studies in the area of load disaggrega-
tion. Each method has its own advantages and disadvantages as explained. The mutual
limitation in all above algorithms, is that in most of them, we need to have a large accu-
rate load library, including different types of loads in order to train a classifier which will
detect a new type of load based on seen signatures in future. Also, none of the methods,
consider disaggregating the total load from the distribution feeder level, which is more
efficient from an electrical grid point of view.
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Chapter 3

Theory

As discussed in Chapter 2, researchers did not come up with an efficient algorithm to de-
tect all power grid connected loads. Most of the studies focus on load identification based
on a supervised learning method, meaning that a learning system observes training data
set’s behaviour, thereafter it recognizes a new observed load type. This sort of approach is
restricted from the fact that if a new observed load is not operationally similar to the ones
which system already is trained with, it will not detect the correct load’s type. The other
shortcoming arises from the fact that non of recent researches look at load disaggregation
problem from distribution feeder point of view. In other words, the ability to detect total
load’s components connected to a specific feeder at each time instant. As yet, people who
are working in this domain, are looking at each customer’s entry in particular residential
loads.
This thesis proves that looking at aggregated load from distribution feeder instead of
each customer’s entry point will benefit both the power system engineers and also the
customers. It helps Distribution and Transmission engineers to capture a larger picture of
connected load’s structure. Because all consumer’s load information is gathered together
and each feeder’s data is sent back to control centre for analysis.
The thesis introduces an algorithm to obtain feeder level load structures and electrical pa-
rameters using EMTP discrete time based solutions. This is the first time that there is a
connection between Load Disaggregation problem and EMTP analysis solution.
We developed a method which enables engineers at control centre to know exactly how
many percent of the aggregated load is motor type, purely resistive or purely inductive.
We are able to report the load type for all feeders. This will help in a sense that most
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powerful tools in power systems need to know the exact type of load at a large picture.
Estate estimation, power flow studies, stability related studies, etc. all need to know total
load’s major components.
This thesis employs EMTP technique that helps predict the order of total load. Addi-
tionally, the thesis adopts network synthesis methods for the sake of recognizing exact
parameters of aggregated load constitutes.
In Section 3.3 different electromagnetic transient program integration (discretization) rules
are described and compared. In Section 3.5 Foster and Cauer methods are introduced and
considered to construct load’s electrical circuit based on Z (aggregated load impedance)
and Laplace transform function formulated from EMTP coefficients.
But before starting the theory, I give a brief overview of the two power analysis tools,
EMTP and PSCAD in Sections 3.1 and 3.2 respectively, because these two power tools are
the foundation of my thesis.

3.1 EMTP Software
This section gives an overview of the EMTP solution with the purpose to provide the suf-
ficient background to reach a full understanding of the proposed method.
EMTP (Electro Magnetic Transient Program) is a general purpose computer program for
simulating transient events in power system. The program features wide variety of mod-
elling capabilities. The beauty and uniqueness of EMTP solution are rooted in the nature
of the discretization process. It focuses on discrete domain and offers solution methods
encompassing Trapezoidal, Backward Euler, Forward Euler, etc. Herman Dommel devel-
oped EMTP in late 1960s at Bonneville Power Administration (BPA) which considered the
program as a digital computer [39].
EMTP solution, first, defines discretization of each elements of the network instead of dis-
cretizing the circuit’s full sets of differential equations. In other word, in the EMTP every
component’s relationship between voltage and current is modelled with a discreet time
equivalents circuits consisting of resistance and source combinations. The values depend
on the integration method and sampling ratio.
This thesis assumes every single load a combination of passive elements R, L and C, which
are connected together to make a load’s circuit. Therefore, we behave a load like an elec-
trical circuit consisting of R, L and C components which can be solved via EMTP discrete-
time solutions. The initiative idea behind our solution for load disaggregation problem
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is in form of EMTP-like solution techniques. EMTP can solve networks consisting of in-
terconnections of resistances, inductances, capacitances, distributed- parameter lines and
other certain elements. Another reason motivated employing EMTP as the main algo-
rithm is small discretizing time step used in simulations. Small discretzation helps, trace
the instantaneous value of our signals in real time. Smart meters are based on the same
technique, i.e., they send out real time voltage and current values to the control centre.
Popularity of smart meters enthused this thesis toward employing EMTP technique.

3.2 PSCAD
System’s behaviour, can be studied in time domain or frequency domain. EMTDC (elec-
tromagnetic transients including DC) is the most powerful electro-magnetic transients
simulation engine for time domain simulations [40].
This engine started becoming a power tool in 1975, at Manitoba Hydro by Dennis Wood-
ford (Executive Director of the Centre 1986 - 2001), which at the time was sufficiently
powerful and flexible to study the Nelson River HVDC power system.
PSCAD software is the advanced graphical user interface (GUI) of EMTDC which en-
ables user to model the circuit, run it and analyse data extracted from the software in
other types of environment such as Matlab. EMTDC serves time domain electromagnetic
transient solution engines for the family of PSCAD software. PSCAD is widely used to
analyse, model and study power system including DC systems, AC ones and also power
electronics.
PSCAD is the main simulator in our research since it is accurate, user friendly, and com-
patible with Matlab. More importantly it is written based on EMTP solution techniques.
The main idea appears in 1969 by Dr. Hermann Dommel published at [39]. Electromag-
netic transient solution methods considers a fixed or variable time step (in our case is
fixed) to solve differential equations representing network behaviour in time domain. The
solution is the step by step proceeding along the time axis. Each step depends on its previ-
ous value in time, i.e., history parameters. In other words, state of the system is measured
during t = 0, t = ∆t, t = 2∆t, · · · , t = n∆t. At each state we need to examine previous time
steps as well.
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3.3 Discretization Methods
There are various methods applied to solve the differential equations using different inte-
gration rules. The common benefit in all these methods is the capability of converting dif-
ferential equation to a simple algebraic one including voltage, current and some history
values. EMTP software converts electrical circuit to the simple equivalent resistive and
then applies integration rules to calculate voltage and injected current. The main purpose
is to model lumped passive components (resistance, inductance and capacitance) which
is easily solved in discrete time domain afterwards.
Integration rules transform differential equations describing steady state and transient
behaviours of the system’s components to the discrete time models at finite time incre-
ments. A complete network is then formulated to solve for the system conditions at each
time step. Following Figure 3.1 shows the table of different integration methods.

Figure 3.1: Different integration methods description.

35



3.3.1 Forward Euler

Forward Euler is based on calculating the area under polygons between two endpoints of
the integral. In other words, forward Euler approximated the integral value by production
of value of function at xn i.e., f (xn)times h = xn − xn−1. Figure 3.2 illustrates the method
it more clearly [41].
In fact it is the expansion of Taylor series in two terms [41].
xn+1=xn + h/1! f (xn, tn) + h2/2! f ′(xn, tn) + h3/3! f (2)(xn, tn) + ...−→ xn+1=xn + h ∗ f (xn, tn)

Figure 3.2: Approximation of x(t) by Forward-Euler method [41].

3.3.2 Backward Euler

Backward Euler is so similar to Forward Euler in a sense that, both considers the area
under polygons embedded by integral endpoints, but in Backward Euler the integral
value equals the production of h = xn − xn+1 into f (xn+1) as you can see in Figure3.3.
xn+1=xn + h ∗ f (xn+1, tn+1)
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Figure 3.3: Approximation of x(t) by Backward Euler method [41].

A quick review of these two methods shows that forward Euler gives larger value than
the real one while backward Eulers output is less than real value of function.

3.3.3 Trapezoidal

Here is where Trapezoidal rule kicks in by taking average of two values f (xn+1) and f (xn).
In other words the value of integral between xn and f (xn+1) is the area under trapezoid
ABCD shown in Figure 3.4.
xn+1=xn +

f (xn+1,tn+1)+ f (xn,tn)
2 ∗ h
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Figure 3.4: Approximation of x(t) by Trapezoidal method [41].

In fact in each integration step the average value of the intervals beginning and end is
taken into account. It is the most accurate 2nd order integration method.

3.3.4 Simpson’s

The other integration rule is called Simpsons rule which is Newton-Cotes formula using
second order parabolas in estimating integral value. It uses quadratic polynomial instead
of piecewise linear segments as in trapezoidal method. As can be followed in Figure 3.5
that the approximation for the integral function is the following:
xn+1=xn−1 + h/3 ∗ ( f (xn−1, tn−1 + 4 f (xn, tn) + f (xn+1, tn+1)

All these methods instead of giving continues solution of transients, aggregates snapshots
of all discrete intervals with width of ∆t as the solution. These integration methods de-
scribed in Sections 3.3.1, 3.3.2 and 3.3.4 cause truncation error leading to numerical insta-
bility. Trapezoidal integration rule as described in section 3.3.3, is selected as my adopted
method to distinguish load’s circuits behaviour because it is simple, accurate and numer-
ically stable [39].
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Figure 3.5: Approximation of x(t) by Simpson method

In this thesis our main focus is predicting load types based on their unique equivalent
circuit. Motor types, lighting types and heating ones are our main three classes. All types
of residential, commercial and industrial loads are categorized under motor, heating or
lighting categories. Motor class represents induction motors. Lighting is symbolic of
inductance types of loads. And lastly, heating is illustrative of resistive one. Our first
assumption is that lighting types are modelled by “L”, heating ones are represented by
“R” and motor are modelled using equivalent model of an induction motor. Further in-
vestigation shows that we can assume load circuits as different combinations of L, R and
in lumped form. Then we apply Trapezoidal rule to solve the time domain equation.

Trapezoidal Equivalent Models

In the following, I first, provide RLC trapezoidal equivalent models analysis to show how
three main components of our study (R, L and C) are modelled in EMTP using Trape-
zoidal integration method. Then, we will calculate discrete time coefficients for complex
combinations of RLC elements in the form of an induction motor equivalent circuit and
etc.
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Inductance Model

For the case of an inductor, it is modelled as demonstrated in Figure 3.6. The relation
between voltage and current across is given by following calculations:

Figure 3.6: Inductance equivalent EMTP model.

V12(t) = L. di12
dt

V12(t).dt = Ldi12(t)

∫ t
t−∆t V12(t)dt = L.

∫ t
t−∆t di12(t)

∫ t
t−∆t V12(t)dt = L.[i12(t)− i12(t− ∆t)]

Where ∆t is the descretization time step.
TrapezoidalDiscretization−−−−−−−−−−−−−→ V12(t)+V12(t−∆)

2 .∆t = L.[i12(t)− i12(t− ∆t)]
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Then the voltage across the inductor is:

−→ v12(t) =
2L
∆t︸︷︷︸

Equivalent Impedance

i12(t)−
2L
∆t

i12(t− ∆t)− v12(t− ∆t)︸ ︷︷ ︸
History Terms(eh(t))

(3.1)

Figure 3.7: Voltage across the inductor [42].

Equation 3.1 describes the equivalent impedance value as a function of inductance (L)
and time step ∆t. Also, voltage value across the inductance at time t depends on history
term which includes current value at previous time step and voltage value at t=t-∆t

Capacitance Model

For the case of a capacitor it is modelled as demonstrated in Figure 3.8. Equation 3.2
describes the equivalent impedance value as a function of capacitance (C) and time step
∆t. Also, voltage value across the capacitance at time t depends on history term which
includes current value at previous time step and voltage value at t=t-∆t.

41



Figure 3.8: Capacitance equivalent EMTP model.

i12(t) = Cdv12(t)dt

∫ t
t−∆t i12(t)dt = C.

∫ t
t−∆t dv12(t)dt

∫ t
t−∆t i12(t)dt = C.[v12(t)− v12(t− ∆t)]

TrapezoidalDiscretization−−−−−−−−−−−−−→ i12(t)+i12(t−∆t)
2 .∆t = C.[v12(t)− v12(t− ∆t)]

Then the voltage across the capacitance is:

−→ v12(t) =
∆t
2C︸︷︷︸

Equivalent Impedance

i12(t)+
∆t
2C

i12(t− ∆t) +
v12(t− ∆t)

C︸ ︷︷ ︸
History Terms(eh(t))

(3.2)
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Figure 3.9: Voltage across the capacitance [42].

Resistance Model

For the case of a resistor it is modelled as demonstrated in Figure 3.10. The relation be-
tween voltage and current across is described in Equation 3.3.

Figure 3.10: Voltage across the resistance [42].

For the case of a resistance the relation between voltage and current across it is given
by:

V(t) = R.i(t) (3.3)
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3.4 The Thesis Method Discussion
In this thesis hereafter, all the current coefficients are annotated by letter ‘a’ and all voltage
coefficients are annotated by letter ‘b’. Starting from i(t), the first coefficient is a1, then
for i(t − ∆t) the corresponding coefficients is a2 and so on for i(t − n.∆t) which is an.
Same for voltage coefficient’s notation, we have b1 for v(t − ∆t), b2 for v(t − 2∆t) and
bn corresponding to v(t − n∆t). Substituting each passive element with its trapezoidal
model leads to the following well known EMTP formulation which relates voltage and
current time series values:

a0i(t) + a1i(t− ∆t) + a2i(t− 2∆t) + · · ·+ ani(t− n∆t) =

b0v(t) + b1v(t− ∆t) + b2v(t− 2∆t) + · · ·+ bnv(t− n∆t)
(3.4)

For t = 0,∆t,2∆t · · · ,n∆t
In order to solve Equation (3.4), all terms are brought to one side of the equation except
term v(t). The new form of equation is as following:

v(t) = a′0i(t) + a′1i(t− ∆t) + a′2i(t− 2∆t) + · · ·+ a′ni(t− n∆t)

+b′0v(t− ∆t) + b′1v(t− 2∆t) + · · ·+ b′nv(t− (n + 1)∆t)
(3.5)

For t = 0,∆t,2∆t, · · · ,n∆t
In order to find a′0, a′1, · · · , a′n,b′0,b′1, · · · ,b′n values, we need instantaneous voltage and cur-
rent values at (t = 0,∆t, 2∆t,· · · ,n∆t) as the known parameters. Voltage and current co-
efficients will be the unknown variables. Before solving Equation 3.6, we need to deter-
mine the order of the load circuit. The load’s order is determined with solving z(t) =
v(t)
i(t) equation. Trapezoidal discretization rule will be applied on z(t) same as in Sec-
tions 3.3.4 and 3.3.4. Integration of the impedance function using trapezoidal rule, we
will derive an equation in the same form as Equation (3.4). The largest ∆t index where
x = 1, · · · ,n, will be the load order. Equation (3.5) is in the form of AX = B or (AX− B = 0)
where two main matrices A and B include instantaneous values of voltage and current
at time t, t − ∆t, t − 2∆t, · · · , t − n∆t. The rows include i(t − ∆t) · · · , i(t − n∆t)and also
v(t−∆t) · · · ,v(t−n∆t) terms for one specific sampling scenario while number of columns
is determined by the order of the load and interprets the total number of sampling points.
Here is a symbolic representation of A and B matrices:
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A=


is1(t) is1(t− ∆t) . . . is1(t− n∆t) vs1(t− ∆t) vs1(t− 2∆t) . . . vs1(t− n∆t)
is2(t) is2(t− ∆t) . . . is2(t− n∆t) vs1(t− ∆t) vs2(t− 2∆t) . . . vs2(t− n∆t)

...
...

...
...

...
...

...
...

isn(t) isn(t− ∆t) . . . isn(t− n∆t) vs1(t− ∆t) vsn(t− 2∆t) . . . vsn(t− n∆t)


Where ”n” is the order of our load. Depending on the order matrix size is defined.
s1, s2, . . . , sn defines sample numbers, i.e., first sampling point, second sampling point and
so on. Rows correspond to the samples and columns correspond to different time steps

values. B=


vs1(t)
vs2(t)

...
vsn(t)


B matrix has n rows where n is again number of samples (or order of circuit) and it al-
ways has one column including voltage values at time t. Inverse (A)*B gives the solution
matrix for Equation (3.6) which describes the numerical relationship between voltage and
current in time.


is1(t) is1(t− ∆t) · · · is1(t− n.∆t) vs1(t− ∆t) vs1(t− 2∆t) · · · vs1(t− n.∆t)
is2(t) is2(t− ∆t) · · · is2(t− n.∆t) vs2(t− ∆t) vs2(t− 2∆t) · · · vs2(t− n.∆t)

...
...

...
...

...
...

isn(t) isn(t− ∆t) · · · isn(t− n.∆t) vsn(t− ∆t) vsn(t− 2∆t) · · · vsn(t− n.∆t)

 ∗



a0

a1

a2
...

an

b0

b1
...

bn



=


vs1(t)
vs2(t)

...
vsn(t)



(3.6)

Basically, the result of Inv(A) ∗ B is a matrix with (2n + 1) rows and one column where
the first (n+ 1) coefficients correspond to current characteristics and the rest n coefficients
are numerical descriptor of voltage terms. Note that order of the circuit takes a decision
of number of sampling points required. For example if we have a circuit with order=n,
numbers of sampling points required to calculate the matrices A and B is (2n + 1).
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3.4.1 Load’s Electrical Circuit Order Determination Knowing the Structure of
the Load

Here is a general sequence summarizing how the order of an electrical load is obtained
knowing the structure of the load’s circuit:

1. Equivalent Z (impedance) of load’s circuit is calculated in the form of Laplace do-
main (S domain). (Writing down the impedance of load in the form Z(s) = V(s)

I(s) ,
then expanding the formula, we get V(s) = Z(s).I(s).
Resulted S domain expanded equation is converted to a discrete time domain ex-
panded equation by substituting S parameter with d/dt, s2 with d/dt2 up to re-
placement of sn with d/dtn.

2. Integrating on both sides of the main equation and applying Trapezoidal discretiza-
tion, results in a same format equation same as Equation (3.4).

3. the maximum coefficient of ∆t appeared among history terms, determines the order
of the circuit.

Up to this point, we discussed how to determine a load network’s order with having its
structure. Now it is time to determine the order of load’s circuit with having no infor-
mation about the load’s topology. Because the main aim of this research is to develop an
algorithm detecting feeder connected load’s structures.

3.4.2 Load’s Electrical Circuit Order Determination Unknowing the Structure
of the Load

We summarize the process of predicting an electrical circuit’s order having no knowledge
about the topology of the circuit.
There are two distinct features about resultant discrete time coefficient which makes them
an excellent candidates to be chosen as for the load distinctive signatures.

1. Since we assume an aggregated load as one single electrical circuit at each time step,
for different harmonics scenarios these resultant matrix from Inv(A) ∗ B are equal.
In other words, these time series coefficients are only function of circuit parameters
(load passive elements) which are constant for one specific type of load, and also
∆t which is the same for different harmonics as far as we use the same sampling
frequency being able to capture major signal information of that circuit.
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2. For different sampling scenarios (of course which samples to take is important)
as discussed previous statement, corresponding coefficients are function of constant
circuit passive elements and ∆t.
Again, choosing the same sampling frequency with selection of same initial sample
points with different sampling windows, or different initial samples but with the
same window length we get the same values as for these coefficients.

In this thesis, both approaches are evaluated on different combinations of loads in PSCAD
simulation which lead to the same results. The first approach is more simple and practical
for types of loads which produce harmonics such as power electronics types. Extracting
at least two different frequency content both from voltage and current signals and calcu-
lating discrete time coefficients for each set, will give the order of the connected load. But
looking an ideal power system world, goal is to reduce the harmonics effects, nowadays.
Accordingly, second approach is considered as the main validation method for the rest
of this study. In favour of predicting a connected load’s order based on our approach,
an initial order is considered, starting from order=0 (it happens for resistive loads). At
least two distinguishing groups of coefficients derived from different sampling scenarios
as demonstrated in Figures 3.11 and 3.12 are taken into account. If the obtained discrete
time coefficient values for the selected scenarios, were equal, it means that guessed order
was correct. Otherwise, order is increased by one and the same process is followed for
the new order of the circuit. The process is repeated until for an order, the output ma-
trix (Inv(A) ∗ B) shows unequal values for different sets of sampling points. We started
validating this idea based on simulations at PSCAD. In order to create different test case
scenarios being able to compare different sets of coefficients, three sampling schemes are
introduced:

1. Various width windows having same start point. (Sliding windows along time
axis). We achieve this situation by changing the distance between sampling points
as shown in Figure 3.11.
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Figure 3.11: Different length windows having the same initial point as one of “volt-
age/current sampling points” selection method.

2. Windows with different starting point while having the same length as shown in
Figure 3.12.

Figure 3.12: Same length windows having different initial point as one of “volt-
age/current sampling points” selection method.

48



3. Analysing two 1st and 2nd voltage and current harmonics as an input, calculating
the corresponding Matrix for both sets which is not employed in this thesis.

Flowchart in Figure 3.13 exhibits this research’s algorithm. The first step is receiving time
series voltage and current data. The next step is prediction of load’s order and finally,
network synthesis methods help calculating load’s parameters. In the following section,

START 

Voltage and Current signals are 
derived from smart meters. 

 

Start from order=n for (n=0… Inf):     
n=n+1 

 

Start from order=n for (n=0… Inf): 
     n=n+1 

Selecting at least two different sets of 
time sampling windows (number of 
samples=2(order of circuit) +1) 

Selecting at least two different sets of 
harmonics voltage and current time series 
signals (number of samples=2(order of 
circuit (n)) +1) 

Calculate impedance 
coefficients in the form of 
equation 1 

Impedance 
coefficients are 
equal for two 

different sampling 
sets 

Form Voltage and Current as following format:  
 

 

Convert time series equation to S domain 

Foster/Cauer network synthesis method are applied to calculate exact parameters (R,L and C) for the load circuit 
 

No 

Yes 

Figure 3.13: Proposed method: Process from smart-meter data capturing to load
identification.

examples of parametric discrete time coefficients, describing the relation between voltage
and current are calculated for few major load types.
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3.4.3 Examples of Parametric Equivalent RLC Circuits Trapezoidal Models

Case One: Inductive Load-First Order Example

This example is already analysed in equation 3.1. Maximum ∆t appeared in the expanded
equation form is one, which confirms that a purely inductive load is a first order system
with following coefficients: a0 =

2L
∆t

a1 = − 2L
∆t

b0 = −1 This example calculates time series voltage and current coefficients for an ”In-
ductor” . This category of load represents lighting eigen-loads.

Case Two: RL Parallel Load-First Order Example

Figure 3.14: Parallel RL case.

V(s)
I(s) = RL(s)

R+LS −→

RV(S) + LSV(s) = RLsI(s) convert−to−time−domain−−−−−−−−−−−−−→

RV(t) + L(dV/dt) = RL.(di/dt) −→

∫ t
t−∆t RV(t) + L(dV/dt)dt =

∫ t
t−∆t RL.(di/dt)dt

Trapezoidal−integration−−−−−−−−−−−−→ R[V(t)+V(t−∆t)
2 .∆t] + L[V(t)−V(t− ∆t)] = RL[i(t)− i(t− ∆t)] −→

V(t)[R.∆t
2 + L] + [R.∆t

2 − L].V(t− ∆t) = RLi(t)− RLi(t− ∆t)
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−→ V(t) = [ 1
R.∆t

2 +L
].[RLi(t)− RL i(t− ∆t) ]− [ R.∆t

2 −L]
[ 1

R.∆t
2 +L

]
. V(t− ∆t) ] −→

Voltage and current coefficeints are :
a0 =

RL
R.∆t

2 +L

a1 =
RL

R.∆t
2 −L

b0 =
[ R.∆t

2 −L]
R.∆t

2 +L
In this case highlighted terms in Red are the largest ∆t history terms. Based on our algo-
rithm, first order is determined as the correct order for his type of load. For a resistance
load, no ∆t term will appear since impedance is a constant value of R, no history terms
exist in this situation. Therefore, for all resistive loads, order=0 is assumed. Adding a
resistive load in parallel or series with other loads will not change the original order of
circuit.

Case Three: LC Parallel With A Resistance Load-Second Order Example

Figure 3.15: A parallel LC in series with a resistance case.
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V(s)
I(s) = RLCS2+LS+R

LCS2+1 −→

LCs2.V(s) + V(s) = RLCs2.I(s) + LSI(s) + RI(s) convert−to−time−domain−−−−−−−−−−−−−→

V(t) + LC.d2V/dt2 = RLC.d2i/dt2 + L.di/dt + Ri(t) −→∫ t
t−∆t[V(t) + LC.d2V/dt2]dt =

∫ t
t−∆t[RLC.d2i/dt2 + L.di/dt + Ri(t)]dt

trapezoidal−integration−−−−−−−−−−−−→
LC[dV/dt− dV(t−∆t)/dt] + [V(t)+V(t−∆t)

2 .∆t] = RLC[di/dt− di(t−∆t)/dt] + L[i(t)− i(t−∆t)] + R.[ i(t)+i(t−∆t)
2 .∆t]

trapezoidal−integration−−−−−−−−−−−−→ RLC.[i(t)− i(t− ∆t)]− RLC.[i(t− ∆t)− i(t− 2∆t)] + (L + R.∆t
2 ).[ i(t)+i(t−∆t)

2 .∆t]
+ (R.∆t

2 − L).[ i(t−∆t)+i(t−2∆t)
2 .∆t] = LC.[V(t)−V(t− ∆t)]− LC.[V(t− ∆t)−V(t− 2∆t)] + ∆t

2 .[(V(t)+V(t−∆t)
2 .∆t)

+ (V(t−∆t)+V(t−2∆t)
2 .∆t)] −→

i(t)[RLC + (L + R.∆t
2 ). ∆t

2 ] + i(t− ∆t).[−2RLC + (L + R.∆t
2 ). ∆t

2 + (−L + R.∆t
2 ). ∆t

2 ]

+ i(t− 2∆t).[RLC + (−L + R.∆t
2 ). ∆t

2 ] = v(t).[LC + ∆t2

4 ] + v(t− ∆t).[−2LC + ∆t2

2 ] + v(t− 2∆t).[LC + ∆t2

4 ] −→

i(t).[R. ∆t2

4 + L ∆t
2 + RLC] + i(t − ∆t).[R. ∆t2

2 − 2RLC] + i(t− 2∆t) .[R. ∆t2

4 − L ∆t
2 + RLC] = v(t).[LC + ∆t2

4 ] + v(t −

∆t).[−2LC + ∆t2

2 ] + v(t− 2∆t) .[LC + ∆t2

4 ] −→ Voltage and current coefficeints are :

a0 =
[R. ∆t2

4 +L ∆t
2 +RLC]

[LC+ ∆t2
4 ]

=
R.[ ∆t2

4 +LC]+L ∆t
2

[LC+ ∆t2
4 ]

= R +
L ∆t

2

[LC+ ∆t2
4 ]

a1 =
[R. ∆t2

2 −2RLC]

[LC+ ∆t2
4 ]

a2 =
[R. ∆t2

4 −L ∆t
2 +RLC]

[LC+ ∆t2
4 ]

=
R.[ ∆t2

4 +LC]−L ∆t
2

[LC+ ∆t2
4 ]

= R +
−L ∆t

2

[LC+ ∆t2
4 ]

b0 = −
[−2LC+ ∆t2

2 ]

[LC+ ∆t2
4 ]

b1 = −
[LC+ ∆t2

4 ]

[LC+ ∆t2
4 ]

= −1
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Highlighted terms in Red show 2∆t terms which determines this circuit as being the
2nd order system.

Case Four: Motor Load-Second Order Example

This example calculates time series Voltage and Current coefficients for an “Induction
Motor” . Figure 3.16 represents all motor types load which is one of 3 major eigen-loads
in this study. Highlighted history terms have the largest index for ∆t which confirms
motor loads as being 2nd order systems.

Figure 3.16: Induction motor type.
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V(s)
I(s) = [(R2 + L2 ‖ LmS] + [R1 + L1S] = R1.R2+S.[R2.L1+R1.L2+R1.Lm+R2.Lm]+S2.[L1.L2+L1.Lm+L2.Lm]

R2+S.[Lm+L2]

−→ R2.V(s)+ [Lm + L2].SV(S) = R1.R2.I(s)+ [R2.L1 + R1.L2 + R1.Lm + R2.Lm].SI(s)+ [L1.L2 + L1.Lm + L2.Lm].S2 I(S)
convert− f romS−domain−to−t−domain−−−−−−−−−−−−−−−−−−−−−→ R2.v(t) + [Lm + L2].

dv(t)
dt = R1.R2.i(t) + [R2.L1 + R1.L2 + R1.Lm + R2.Lm].

di(t)
dt

+ [L1.L2 + L1.Lm + L2.Lm].
d2i(t)

d2t −→∫ t−∆t
t [R2.v(t) + [Lm + L2].

dv(t)
dt ]dt=

∫ t−∆t
t [R1.R2.i(t) + [R2.L1 + R1.L2 + R1.Lm + R2.Lm].

di(t)
dt + [L1.L2 + L1.Lm + L2.Lm].

d2i(t)
d2t ]dt

Trapezoidal−integration−−−−−−−−−−−−→ R2.( v(t)+v(t−∆t)
2 .∆t) + [Lm + L2].[v(t)− v(t− ∆t)]

= R1.R2.( i(t)+i(t−∆t)
2 .∆t) + [R2L1 + R1.L2 + R1Lm + R2Lm].[i(t)− i(t− ∆t)] + [L1.L2 + L1.Lm + L2.Lm].[ di(t)

d(t)

− di(t−∆t)
dt ] −→ [R2. ∆t

2 + [Lm + L2]].V(t) + [R2. ∆t
2 − [Lm + L2]]V(t− ∆t)

= [R1.R2. ∆t
2 + R2.L1 + R1.L2 + R1.Lm + R2.Lm].i(t) + [R1.R2. ∆t

2 − [R2.L1 + R1.L2 + R1.Lm + R2.Lm]].

i(t− ∆t) + [L1.L2 + L1.Lm + L2.Lm].[
di(t)

dt −
di(t−∆t)

dt ]
Trapezoidal−integration−−−−−−−−−−−−→ [R2. ∆t

2 + [Lm + L2]].[V(t)+V(t−∆t)
2 .∆t]

+ [R2. ∆t
2 − [Lm + L2]].[V(t−∆t)+V(t−2∆t)

2 .∆t] = [R1.R2. ∆t
2 + R2.L1 + R1.L2 + R1.Lm + R2.Lm].[ i(t)+i(t−∆t)

2 .∆t]
+ [R1.R2. ∆t

2 −]R2.L1 + R1.L2 + R1.Lm + R2.Lm]].[ i(t−∆t)+i(t−2∆t)
2 .∆t]

+ [L1.L2 + L1.Lm + L2.Lm].[i(t)− i(t−∆t)]− [L1.L2 + L1.Lm + L2.Lm].[i(t−∆t)− i(t− 2∆t)]−→ [R2. ∆t
2 +[L2+Lm]].∆t

2 .v(t)

+ R2.∆t2

2 .v(t−∆t)+ [R2. ∆t
2 −[L2+Lm]].∆t

2 . v(t− 2∆t) = [
R1.R2. ∆t

2 +[R2.L1+R1.L2+R1.Lm+R2.Lm].∆t
2 +[L1.L2 + L1.Lm + L2.Lm]].i(t)−

2[L1.L2 + L1.Lm + L2.Lm].i(t− ∆t) + [
R1.R2. ∆t

2 −[R2.L1+R1.L2+R1.Lm+R2.Lm].∆t
2

+ [L1.L2 + L1.Lm + L2.Lm]]. i(t− 2∆t) −→ a0 =
[

R1.R2. ∆t
2 +[R2.L1+R1.L2+R1.Lm+R2.Lm].∆t

2 +[L1.L2+L1.Lm+L2.Lm]]

[R2. ∆t
2 +[L2+Lm]].∆t

2

a1 =
−2[L1.L2+L1.Lm+L2.Lm]

[R2. ∆t
2 +[L2+Lm]].∆t

2

a2 =
[

R1.R2. ∆t
2 −[R2.L1+R1.L2+R1.Lm+R2.Lm].∆t

2 +[L1.L2+L1.Lm+L2.Lm]]

[R2. ∆t
2 +[L2+Lm]].∆t

2

b0 = −
R2.∆t2

2
[R2. ∆t

2 +[L2+Lm]].∆t
2

b1 = −
[R2. ∆t

2 −[L2+Lm]].∆t
2

[R2. ∆t
2 +[L2+Lm]].∆t

2
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Discussion Based on Parametric Calculations

As earlier discussed in this chapter, our new developed model recognizes three major
types of loads as eigen-loads which includes induction motor, inductive and resistive.
The reason of choosing these three categories of loads is that each of these types have
their own voltage dependency characteristic. UBC Power Systems Lab invented a new
LPF (Linear Power Flow) formulation instead of non-linear power flow solution. In their
method, loads are modelled considering their voltage dependence characteristics which
allows for a load representation with a constant-impedance and a constant-current syn-
thesis (Z-I model) [11]. Above mentioned voltage dependence is determined with know-
ing type of feeder connected loads. This fact triggered this thesis to investigate about load
disaggregation more deeply and come up with an efficient pattern. As a result, the algo-
rithm is able to detect motor, inductive and resistive contribution in the total load. Based
on few example calculations performed for a motor, an inductor and a resistor, we figured
out that “Resistive loads” do not change the circuit. “Inductive loads” are increasing the
total order by one. Motor loads are increasing the total load’s order by two. The only
limitation of this method is that, for the case of an inductor and a resistor, we cannot say
how many inductors or resistances are in parallel to result in the achieved aggregated
load. Following Table 3.1 is a summary of different category of loads with corresponding
orders:

Table 3.1: Different loads order prediction.

Type of Load Order of Load)

Resistance 0
Inductance 1

Motor 2
Resistance parallel with Inductance 1

Resistance parallel with Motor 2
Inductance parallel with Motor 3

n parallel Resistance 0
n parallel inductance 1

n parallel Motor 2n

So far, we have obtained the order of load circuit. Now it is time to calculate the
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electrical parameters of the load. For this reason, we select network synthesis to realize
the load network having its equivalent impedance transfer function.

3.5 Network Synthesis
In this section network synthesis is explained. Two general methods namely, Foster and
Cauer are discussed for the synthesis of networks having two kinds of elements (LC, RC,
or RL).
Network synthesis is the opposite way of network analysis. In any network synthesis
problem engineers deal with three quantities namely, input, output and network.
Note that, we use the calculated discrete time impedance coefficients of a load, in the
form of the impedance “Z” domain transfer function. The next step is to covert the dis-
crete time transfer function to the continuous time transfer function. Applying network
synthesis techniques to impedance Laplacian transfer function, outcomes electrical pa-
rameters of the load.
The question is, what is the network topology for a given impedance or admittance trans-
fer function.

3.5.1 Network Synthesis Description

Network synthesis is a block which is fed with a driving point such as impedance or
admittance as the input and the output is the equivalent network composed of passive
elements. In other words, it simplifies the interpretation of a closed loop driving point
impedance or admittance.
There are several techniques, which can be found in electrical engineering literature for
the synthesis of two terminal network from the driving point ( impedance/admittance
function) [43] [44] [45] [46]. We employ the main two common network synthesis meth-
ods, Foster forms and Cauer forms in this thesis [47] [48] [49].
The oldest and most widely used synthesis forms, are implemented on LC, RC and RL
networks. LC networks topologies can be generalized to the RL and RC forms as well.
The first method introduced in Section 3.6 is Foster method which is based on partial
fraction expansion of the impedance or admittance transfer function [50]. in the follow-
ing section, the synthesis of LC one port networks (i.e., LC networks having a prescribed
driving-point impedance/admittance) will be described.

56



3.6 Foster Forms

First Foster Form

First foster method realizes ZLC in the form of circuit in Figure 3.17.
Realization of Zs in the form of Figure 3.17 was first introduced by Foster. As a conse-
quence, this form of realization is named the First Foster form or F1 form.

Figure 3.17: First Foster form-partial fraction expansion in the impedance form. The
components are connected in series [51].

The equivalent impedance which is seen from the input port of the circuit in Fig-
ure 3.17 can be formulated as :

Z(s) = a1s +
a2

s
+

j−1

∑
i=3

2.ais
s2 + w2

i
+ zk(s) (3.7)

Equation 3.7 can be reformulated in a general form as Equation 3.8.

Z(s) =
H.(s2 + w12)(s2 + w32) · · · (s2 + wm2)

(s2 + w22)(s2 + w42) · · · (s2 + wr2)
(3.8)

Figure 3.17 is the result of applying 1st Foster technique on impedance Equation 3.8.

Second Foster Form

Second foster method realizes YLC in the form of circuit in Figure 3.18.
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Figure 3.18: Second Foster form-partial fraction expansion in the admittance form.
The components are connected in parallel [51].

The equivalent admittance which is seen from the input port of the circuit in Fig-
ure 3.18 can be formulated as :

Y(s) = a1s +
a2

s
+

j−1

∑
i=3

2.ais
s2 + w2

i
+ Yj(s) (3.9)

3.7 Cauer Forms
Cauer methods apply Continued Fraction on impedance or admittance transfer functions
to realize the LC circuits. First Cauer and Second Cauer topologies are shown in Figures
3.20 and 3.21 respectively.
Cauer network configurations, which are in the form of the ladder circuits, were first in-
troduced by Cauer and named as Cauer forms.
The expansion of ZLC in the first Cauer form is accomplished through the alternate use of
F1 (First Foster) and F2 (second Foster) forms. Cauer configurations are obtained through
expansion of ZLC in a continued fraction by the process of continued division.
There are continued Fraction expansion about infinity and continued fraction expansion
about zero which form these two Cauer forms.
Continued Fraction expansion about infinity process follows the following steps:

1. Z(s) is written in a form that there is a pole at infinity. This pole is removed by long
division leaving Z1(s).
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2. Z1(s) is inverted, yielding Y1(s) which has a pole at infinity.

3. Each subsequent cycle consists of an inversion and the removal of a pole at s-infinity.

4. The resultant is a circuit with capacities in series and inductors in parallel which
describes the 2nd Cauer form.

Continued fraction expansion about zero is similar to the continued Fraction expansion
about infinity except that at each subsequent it consists of an inversion and the removal of
a pole at zero. The resulting network has the same structure but with capacitors in series
and the inductors in parallel which is describes the 1st Cauer form.
To get a better insight about continued fraction process toward Cauer forms synthesis,
consider Figure 3.19 which has the series arms as the impedances and the parallel arms as
the admittances.

Figure 3.19: Ladder network topology [52].

To compute driving point of equivalent impedance for the circuit in Figure 3.19, we
follow the following steps:

1. The impedance of the last term Z6 = 1
Y6

2. The impedance of the last two arms Z5 + 1
Y6

3. The impedance of the last three arms 1
y4+

1
Z5+

1
y6

Proceeding in this manner results: Z = z1 +
1

y2+
1

z3+
1

y4+
1

z5+
1
y6

Realization of LC driving point functions as in first and second Cauer forms are demon-
strated in Figures 3.20 and 3.21.
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Figure 3.20: First Cauer form continued fraction expansion about infinity. When ap-
plied to the impedance of a positive LC network which results in a chain of series
inductors and parallel capacitors [51].

Z(s) = L1.s +
1

C2.s + 1
L3.s+ 1

C4.s+···

(3.10)

Figure 3.20 shows the obtained circuit network resulted from 1st Cauer synthesis method
being applied on Equation 3.10.
Figure 3.21 shows the obtained circuit network resulted from 2nd Cauer synthesis method
being applied on Equation 3.11.

Figure 3.21: Second Cauer form continued fraction expansion about zero. When ap-
plied to the impedance of a positive LC network which results in a chain of series
capacitors and parallel inductors [51].
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Z(s) =
1

C1.s
+

1
1

L2.s +
1

1
C3.s+

1
L4.s+···

(3.11)

Figure 3.22 summarizes Foster and Cauer synthesis methods explained so far:

Figure 3.22: First Foster, 2nd Foster, first Cauer and 2nd Cauer forms method sum-
mary.

Table 3.2 gives the general forms of the expansions for all 4 types of Foster and Cauer
methods.

Table 3.2: Foster and Cauer impedance/admittance expansions

partial fraction of impedance function Z(s) = K0 +
K1

s−s1
+ K3

s−s3
+ · · ·+ Kn

s−sn

partial fraction of admittance function Y(s) = k∞s + k0 +
K2

s−s2
+ K4

s−s4
+ · · ·+ Km

s−sm

continued fraction expansion about a point of infinity Z = a1 +
1

b2s + 1
a3+

1
b4s+ 1

a5+···

continued fraction expansion about the origin Z =
1

a1s
+

1
b2 +

1
a3s+ 1

b4+
1

a5s+···

Up to here, we explained how to derive a LC circuit employing Foster and Cauer meth-
ods. In Section 3.8 we will discuss about applying network synthesis methods toward RL
and RC circuits derivation.
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3.8 RL-RC Network Synthesis
The synthesis of RC and RL networks is essentially identical. With the change of variables,
RC and RL topologies will be converted to LC topology and vice versa. Either Foster or
Cauer techniques can be applied to RL and RC networks.

3.8.1 Realization of ZRC in Foster 1 Form:

Figure 3.23: Realization of ZRC in F1 form [53].

Evidently, to obtain the F1 form of an RC network, it is necessary to expand ZRC in the
partial fraction form as:

ZRC(s) = A0
s + A2P

s+w2
2
+ A4P

s+w2
4
+ · · ·+ A2n−2P

s+w2
2n−2

+ A2n

All residues A2k(k = 0,1, · · · ,n) and all poles [w2
2k](k = 1,2, · · · ,n − 1) are positive and

all poles are simple. Hence, all residues of ZRC are positive and all its poles occur at
s = −w2

2k(k = 0,1, · · · ,n) where s = −w2
2k is real and negative. Therefore all poles of ZRC

are simple, lie on the negative real axis ( the -σaxis) and have positive residues.
Realization of ZRC in F1 form is summarized as following:

1. Expand ZRC into partial fractions.

2. Synthesis ZRC as a series connection of impedance terms in the partial fraction form

3.8.2 Realization of ZRC in Foster 2 Form:

to obtain the F2 form of a RC network, it is necessary to expand YRC in the partial fraction
form as:

62



YRC(s) = A1 +
A3s

s+w2
3
+ A5s

s+w2
5
+ A7s

s+w2
7
+ · · ·+ A2n−1s

s+w2
2n−1

+ A2n+1s
All A’s and all w’s are positive so that all poles of YRC are simple and lie on -σaxis.
Expansion of YRC leads to the circuit configuration in Figure 3.24.
Realization of ZRC in F2 form is summarized as following:

1. Expand 1
s .YRC into partial fractions.

2. Form YRC by multiplying each term of the partial fraction expansion by s.

3. Synthesis ZRC as a parallel connection of admittance terms in the partial fraction
form

Figure 3.24: Realization of ZRC in F2 form [53].

3.8.3 Realization of ZRC in Cauer 1 Form:

Expansion of ZRC leads to the circuit configuration in Figure 3.25.
Realization of ZRC in C1 form is summarized as following:

1. Arrange the numerator and denominator polynomials in descending order.

2. perform continued division

3. Assign the quotient of the divisions as branch admittance in the C1 ladder network

Figure 3.25: Realization of ZRC in C1 form [53].
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3.8.4 Realization of ZRC in Cauer 2 Form:

Expansion of ZRC leads to the circuit configuration in Figure 3.26.
Realization of ZRC in C2 form is summarized as following:

1. Arrange the numerator and denominator polynomials in ascending order.

2. perform continued division

3. Assign the quotient of the divisions as branch admittance in the C2 ladder network

Figure 3.26: Realization of ZRC in C2 form [53].

3.8.5 Realization of ZRL in Foster 1 Form:

Expansion of ZRl leads to the circuit configuration in Figure 3.27.
Realization of ZRL in F1 form is summarized as following:

1. Expand 1
s .ZRL into partial fractions.

2. Form ZRL by multiplying each term of the partial fraction expansion by s.

3. Synthesis ZRL as a series connection of impedance terms in the partial fraction form

Figure 3.27: Realization of ZRL in F1 form [53].
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3.8.6 Realization of ZRL in Foster 2 Form:

Expansion of ZRL leads to the circuit configuration in Figure 3.28.
Realization of ZRL in F2 form is summarized as following:

1. Expand YRL into partial fractions.

2. Synthesis ZRL as a parallel connection of admittance terms.

Figure 3.28: Realization of ZRL in F2 form [53].

3.8.7 Realization of ZRL in Cauer 1 Form:

Expansion of ZRL leads to the circuit configuration in Figure 3.29.
Realization of ZRL in C1 form is summarized as following:

1. Expand YRL into partial fractions.

2. Synthesis ZRL as a parallel connection of admittance terms.

1. Arrange the numerator and denominator polynomials in descending order.

2. perform continued division.

3. Assign the quotient of the divisions as branch admittance in the C1 network.

Figure 3.29: Realization of ZRL in C1 form [53].
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1. Arrange the numerator and denominator polynomials in ascending order.

2. perform continued division.

3. Assign the reciprocals of the quotients of the divisions as branch admittance in the
C2 network.

3.8.8 Realization of ZRL in Cauer 2 Form:

Expansion of ZRL leads to the circuit configuration in Figure 3.30.
Realization of ZRL in C2 form is summarized as following:

Figure 3.30: Realization of ZRL in C2 form [53].

As shall be discussed in Chapter 4, the Cauer method is adopted for the load circuit syn-
thesis, which results in finding electrical parameters of the load.
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Chapter 4

Simulation

In this chapter, we describe simulations conducted on different combination of loads. As
explained in Chapter 3, three major eigen-loads, heating (modelled as a resistive), light-
ing (modelled as an inductive) and motor types (simulated as an equivalent model of an
induction motor) are considered in this work. We show that, with having time series infor-
mation of the voltage and current of the total load, we are able to guess, the contributions
of the three eigen-loads, (1) heating load, (2) lighting load and (3) motor load in the total
load. As the result, we simulated all different topologies of the load circuit, considering
the three mentioned eigen-loads. The significant strength of our method is that, it detects
between resistive, inductive and motor loads based on mostly steady Our algorithm de-
veloped distinguishable steady state impedance coefficients for different load types. For
lower order loads, the steady state section of the voltage and current signals are sampled.
While, for higher order loads, the transient section of the voltage and current signals are
sample as well. The selection of sampling points, is important because, impedance coef-
ficients are calculated for the sampled portion of voltage and current signals. Sampling
rate should be sufficient to capture the essential characteristics of that circuit. Also, the
sampling point distance, needs to be at least one cycle of 60 Hz period.
PSCAD as an accurate reliable study tool is selected for this study for the following rea-
sons:

1. PSCAD is the most powerful power system transient simulation tool. For higher
order load circuits, we need accurate transient data for the voltage and the current.

2. The main idea behind this research is taking advantage of the discrete time impedance
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coefficients. These coefficients are derived from implementing the trapezoidal inte-
gration rule on the voltage and current time series data. PSCAD is coded based on
trapezoidal method, i.e., the output data from PSCAD is a determined resource of
data set, to validate our theory with.

This work proves that by looking at the time series voltage and current signals, at real
time, we can say how many percent of the total load, is from motor, resistive and induc-
tive type. Simulation based data are examined as described in Sections 4.2.1, 4.2.3, 4.2.4,
4.2.6, 4.2.8, 4.2.10, 4.2.11, 4.2.12, and 4.2.14. Nine different load topologies, including dif-
ferent combination of eigen-loads are simulated in PSCAD and the Output voltage and
current time series signals are imported into Matlab. The beauty of our algorithm is its
capability of deriving the electrical parameters of the load. this will exactly tell, how many
percent of the total impedance (or admittance) is from each of the eigen-loads. we employ
network synthesis concept to achieve this goal. In order to calculate the exact values of
electrical parameters for a load, we need to have whether the impedance or the admit-
tance transfer function. Cauer (Foster) methods are stepped in to design a network which
realizes the given Z(s) or Y(s).
Note that we use admittance transfer function in developing our algorithm. We present
a method to construct a transfer function for the total impedance of the aggregated load.
We have the discrete domain function of impedance by having the values of calculated co-
efficients as will be discussed in Sections 4.2.1, 4.2.3, 4.2.4, 4.2.6, 4.2.8, 4.2.10, 4.2.11, 4.2.12,
and 4.2.14. Obtained impedance coefficients, from the impedance transfer function as
shown in Equation 4.1.

Zz =
an.Zn + an−1.Zn−1 + an−2.Zn−2 + · · ·+ a0

bm.Zm + bm−1.Zm−1 + Bm−2.Zm−2 + · · ·+ b0
(4.1)

The first step is to convert Equation 4.1 which is in Z domain to S domain as in Equa-
tion 4.2.

Zs =
a′n.Sn + a′n−1.Sn−1 + a′n−2.Sn−2 + · · ·+ a′0

b′m.Sm + b′m−1.Sm−1 + B′m−2.Sm−2 + · · ·+ b′0
(4.2)

Cauer method synthesizes admittance Laplacian function Ys = 1/Zs in the form of resis-
tances and inductance (RL circuit)or RC circuit.
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4.1 Discrete-Continues Transformation
In this section, we briefly explain how to convert the derived impedance discrete do-
main function to the continue domain function. There are five most common ”discrete-
continuous” mapping techniques namely: backward difference method, forward differ-
ence method, bilinear transform method, bilinear transform with pre-warping method
and matched-Z method. Since we applied trapezoidal to obtain our impedance discrete
coefficients, we employ bilinear transform method.

4.1.1 Bilinear Transform Method

This method is also known as trapezoidal substitution method or Tustin method. The
relation between s and z is given by:

s← 2
T . z−1

z+1 z = e(sT) = 1+sT/2
1−sT/2 where T is the time interval between samples of the

discrete-time system. The process consists of using a mapping function to replace ev-
ery z in the F(z) with the function of s to obtain F(s). The highlighted portion of s plane is
mapped inside the unit circle in z-plane as shown in Figure 4.1.

Figure 4.1: Mapping of the s-plane to the z-plane with the bilinear transform method.

The advantage of selected method (Tustin mapping)is that, it does not suffer stability
limitations associated with higher order and more complex numerical methods. There-
fore, discrete-time derived coefficients(discrete-time digital filter) will be related to the
continuous-time (analog filter)through the bilinear transform process. ”Network synthe-
sis” block obtains analog coefficients. It applies whether 1st Cauer or 2nd Cauer methods,
depending on the load topology determining the type of the loads and the exact values
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of the load’s parameters. Sections 4.2.2, 4.2.2, 4.2.2, 4.2.2, 4.2.2, 4.2.2 will demonstrate the
process of calculating each simulation load parameters.

4.2 Simulation Results

4.2.1 Simulation One: Parallel Resistive and Inductive Load

As the first example, the simulation case is a parallel steady state RL circuit( representing
Resistive load in parallel with an Inductive load) with sampling rate of ∆t = 625µs (sam-
pling frequency =1600 Hz) and maximum simulation time of tmax = 0.0625s. As stated,
loads are classified into major three groups specified as resistor (R), lamps ( modelled as
a single inductor), and motors ( model as an induction motor). This simulation case, de-
scribes the behaviour of a resistive load paralleled with an inductive load. There are 100
samples in total. Voltage magnitude is 230 KV to mimic the city electricity magnitude. No
transient sample is selected since the order of the circuit is one and the steady state por-
tions of the voltage and current signals are sufficient to discriminate between inductance
and resistance values. Three samples are chosen from the voltage and the current signals.
The reason is that this load case is a first order system. (Note that corresponding voltage
and current meters are inserted right after the voltage source, because we need to get
the aggregated load’s information.)
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Figure 4.2: Inductive load paralleled with a resistive load.

As proved in Chapter 3, the magnitude of coefficients, a0, a1, · · · , an,b0,b1, · · · ,bn will
be equal regardless of the sampling points selection pattern. Therefore, for all nine simu-
lation cases, we consider at least two different sampling scenario, (in some cases we illus-
trated three different sampling scenarios). For each of the sampling schemes, a0, a1, · · · , an

b0,b1, · · · ,bn coefficients are calculated. We prove that, as for the correct order of the load
circuit, the magnitude of these coefficients will be equal. For the wrong choice of load
order, the magnitude of these coefficients are diverse.

Simulation One: First Sampling Scenario

In this sampling scheme, the first sampling point is the 76th point of voltage and current
waveforms. The distance between each samples is 10 samples. Matrix A describes the
values for all current terms and all voltage history terms (refer to Equation 3.4 in Chap-
ter 3). Matrix B contains voltage (Vt) values. First order impedance discrete time series
coefficients are calculated and resulted as:
[a0, a1,b0] = [12.3077− 12.3077− 0.2308]
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Table 4.1: Values of current at time t and t − ∆t, voltage at time t − ∆t for the first
sampling scenario in the case of a parallel RL load.

selected sample i(t) i(t− ∆t) v(t− ∆t)
sample 76th -62.9551 -72.1146 -50.8833
sample 86th 95.73191 89.20309 -191.188
sample 96th -37.726 -19.3333 321.2645

Table 4.2: Values of voltage at time t for the first sampling scenario in the case of a
parallel RL load.

selected sample v(t)
sample 76th 124.475
sample 86th 124.475
sample 96th -300.509

Simulation One: Second Sampling Scenario

In this sampling scheme, the first sampling point is the 20th point of voltage and current
waveforms. The distance between each samples is 20 samples. First order discrete time

Table 4.3: Values of current at time t and t− ∆t, voltage at time t− ∆t for the second
sampling scenario in the case of a parallel RL load.

selected sample i(t) i(t− ∆t) v(t− ∆t)
sample 20th -77.1399 -73.7391 147.6691
sample 40th 14.39903 34.66287 289.8169
sample 60th 97.46917 94.06845 -147.669

impedance coefficients are calculated and resulted as:
[a0, a1,b0] = [12.3077− 12.3077− 0.2308]
For both sets of sampling schemes, derived coefficients {a0, a1,b0}, have the same val-
ues. It confirms that this load case is a first order system. The same process is practice
for second order coefficients. Five samples are selected from the voltage and the current
signals. [a0, a1, a2,b0,b1] coefficient values were different for two individual group of sam-
pling points. It proves that, this load, does not full fill the second order requirements.
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Table 4.4: Values of voltage at time t for the second sampling scenario in the case of
a parallel RL load.

selected sample v(t)
sample 20th -75.9326
sample 40th -316.282
sample 60th 75.93257

Figure 4.3: First order impedance coefficients for the first and second scenarios of a
paralleled RL load.

4.2.2 Simulation One: Paralleled RL Load Parameters Calculations

Figure 4.4: Paralleled RL Load
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Equation 4.3is resulted from the discrete time impedance coefficients that are derived from
PSCAD.

V(z)
I(z)

= 12.3077I(z)− 12.3077I(z).z−1 − 0.2308V(z).z−1 TustinTrans f rom−−−−−−−−−→ Z(s) =
s + 2000

20s
(4.3)

Tustin method converts Equation 4.3 to Equation 4.4.

Z(s) =
s + 2000

20s
(4.4)

Applying 2nd Cauer method (Continued fraction on Z(s)) determines load’s constituent’s
parameters as following:

Figure 4.5: Paralleled RL parameters calculation

4.2.3 Simulation Two: Resistor in Series with a Parallel Inductance and
Capacitance

Figure 4.6 is predicted to be a second order load based on calculations(refer to Chapter 3).
We implement the same process as for Section 4.2.1 to calculate the discrete impedance
coefficients for this load as well. We selected 1

5 of the sample points from slow transient
portion of the voltage and current signals. Note that slow transient is simulated with
adding the ”ramp up time” value to the voltage source setting. The signal will reach to the
steady state condition after the ramp up time. Using a switch after the voltage source will
also produce the slow transient situation in PSCAD. In this simulation case, sampling rate
is ∆t = 625µs(sampling frequency =1600 Hz), maximum simulation time is tmax = 0.0625s
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and ramp up time=0.00625. Up to sample number 10, it is all slow transient portion of
the signal. Steady state section starts from the 11th sample. One sample is selected from
the slow transient samples. All the rest four samples are chosen from the steady state
samples. Note that, in Chapter 3, it is proved, knowing the circuit topology, we can guess
the order of the load circuit. Thereafter, network synthesis tool as explained in Chapter3,
Section 3.5, will solve the load disaggregation problem. It will detect the load’s type and
determine the loads’ parameters. But, In a real system, load’s circuit’s configuration is
unknown, therefore the first and key step is to predict the order of the load’s circuit.

Figure 4.6: Resistive load in series with a paralleled LC.

Figure 4.6, represents a parallel inductance and capacitance which are placed in series
with a resistance. Two different sampling scenarios are designated which both have the
same initial point, (both start from 8th point of the voltage/current signal )with the dif-
ferent sample points distances.
The process to determine the order of a load circuit is such that, (a0, a1, a2, · · · an,b0,b1,b2, · · · ,bn)
coefficients are calculated for orders=(1,2,...,n) up to the correct order. for the correct pre-
dicted order, resulting matrix of inv(A) ∗ B carries the same values for at least two differ-
ent sampling patterns.

Simulation Two: First Sampling Scenario

In this sampling scheme, the first sampling point is the 8th point of voltage and current
waveforms. The distance between each samples is 20 samples. First order discrete time
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Table 4.5: Values of current at time t and t − ∆t, voltage at time t − ∆t for the first
sampling scenario in the case of a resistance in series with a paralleled LC load.

selected sample i(t) i(t− ∆t) v(t− ∆t)
8th sample 0.221231 1.549666 -30.53
28th sample 15.56777 14.67393 -321.265
48th sample -2.20467 -5.80907 50.8833

Table 4.6: Values of voltage at time t for the first sampling scenario in the case of a
resistance in series with a paralleled LC load.

selected sample v(t)
8th sample -17.8642
28th sample 324.2664
48th sample 25.52032

impedance coefficients are calculated and resulted as:
[a0, a1,b0] = [36.3046− 19.3411− 0.1335]

Simulation Two: Second Sampling Scenario

In this sampling scheme, the first sampling point is the 8th point of voltage and current
waveforms. The distance between each samples is 35 samples.

Table 4.7: Values of current at time t and t− ∆t, voltage at time t− ∆t for the second
sampling scenario in the case of a resistance in series with a paralleled LC load.

selected sample i(t) i(t− ∆t) v(t− ∆t)
8th sample 0.221231 1.549666 -30.53
43th sample -15.3608 -15.8779 316.2819
78th sample 9.564251 6.340717 -191.188
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Table 4.8: Values of voltage at time t for the first sampling scenario in the case of a
resistance in series with a paralleled LC load.

selected sample v(t)
8th sample -17.864

43th sample -289.816

78th sample 247.336

Discrete time impedance coefficients are calculated and resulted as:
[a0, a1,b0] = [36.079 − 19.0608 − 0.1209] So far, we calculated the first order impedance
coefficients for two different sampling scenarios. The magnitude of the two impedance
matrices are equal within less than 10% error. Since this load satisfies the 1st order criteria,
we will continue to the second order calculation. As explained in Chapter 3, for the second
order situation, we will engage five sampling points from the voltage and the current
signals.

Simulation Two: First Sampling Scenario For the Second Order Status

In this sampling scheme, the first sampling point is the 8th point of voltage and current
waveforms. The distance between each samples is 20 samples.

Table 4.9: Values of current at time t, t−∆t and t− 2∆t, voltage at time t−∆t and t−
2∆t for the first sampling scenario in the case of a resistance in series with a paralleled
LC load.

selected sample i(t) i(t− ∆t) i(t− 2∆t) v(t− ∆t) v(t− 2∆t)
8th sample 0.221231 1.549666 2.336653 -30.53 -62.2376

28th sample 15.56777 14.67393 13.02486 -321.265 -300.509

48th sample -2.20467 -5.80907 -9.0913 50.8833 124.4751

68th sample -15.7265 -14.7778 -13.0126 321.2645 300.5095

68th sample 2.200985 5.811509 9.100879 -50.8833 -124.475
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Table 4.10: Values of voltage at time t for the first sampling scenario in the case of a
parallel RL load.

selected sample v(t)
8th sample -17.8642

28th sample 324.2664

48th sample 25.52032

68th sample -324.266

88th sample -25.5203

Discrete time impedance coefficients are: [a0, a1, a2,b0,b1] = [22.8470− 32.8826 17.1530 −
1.6441 1.0000]

Simulation Two: Second Sampling Scenario For the Second Order Status

In this sampling scheme, the first sampling point is the 8th point of voltage and current
waveforms. The distance between each samples is 10 samples.

Table 4.11: Values of current at time t, t− ∆t and t− 2∆t, voltage at time t− ∆t and
t − 2∆t for the second sampling scenario in the case of a resistance in series with a
paralleled LC load.

selected sample i(t) i(t− ∆t) i(t− 2∆t) v(t− ∆t) v(t− 2∆t)
8th sample 0.221231 1.549666 2.336653 -30.53 -62.2376

18th sample -13.4113 -15.2336 -15.9516 263.1482 300.5095

28th sample 15.56777 14.67393 13.02486 -321.265 -300.509

38th sample -9.59291 -6.34855 -2.74361 191.1884 124.4751

48th sample -2.20467 -5.80907 -9.0913 50.8833 124.4751
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Table 4.12: Values of voltage at time t for the second sampling scenario in the case of
a resistance in series with a paralleled LC load.

selected sample v(t)
8th sample -17.8642

18th sample -211.245

28th sample 324.2664

38th sample -247.337

48th sample 25.52032

Discrete time impedance coefficients are calculated and resulted as:
[a0, a1, a2,b0,b1] = [22.8470 − 32.8826 17.1530 − 1.6441 1.0000] Second order de-
rived impedance coefficients are identical. It justifies that this circuit satisfies the second
order characteristics. Up to this end, first order and 2nd order discrete time coefficients
values for different group of sampling points are equivalent. This forces us to continue
the same process for third order.

Simulation Two: First Sampling Scenario For the Third Order Status

In this sampling scheme, the first sampling point is the 5th point of voltage and current
waveforms. The distance between each samples is 15 samples. For the third order situa-
tion, we need at least 7 sampling points.

Table 4.13: Values of current at time t, t − ∆t, t − 2∆t and t − 3∆t, voltage at time
t− ∆t, t− 2∆t and t− 3∆t for the first sampling scenario in the case of a resistance in
series with a paralleled LC load.

selected sample i(t) i(t− ∆t) i(t− 2∆t) i(t− 3∆t) v(t− ∆t) v(t− 2∆t) v(t− 3∆t)
5th sample 2.688084 2.664771 2.253407 1.384349 -74.201 -57.9634 -31.6282

20th sample -7.19437 -10.6446 -13.4113 -15.2336 147.6691 211.2454 263.1482

35th sample 1.014964 4.708302 8.121243 11.05883 -25.5203 -100.514 -169.953

50th sample 5.171216 1.524038 -2.20467 -5.80907 -100.514 -25.5203 50.8833

65th sample -10.5285 -7.46292 -3.98515 -0.28728 211.2454 147.6691 75.93257

80th sample 14.27682 12.25925 9.564251 6.340717 -289.817 -247.337 -191.188

95th sample -15.8509 -15.1888 -13.6873 -11.4295 324.2664 309.3493 277.3375
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Table 4.14: Values of voltage at time t for the first sampling scenario in the case of a
resistance in series with a paralleled LC load.

selected sample v(t)
5th sample 76.47536

20th sample -75.9326

35th sample -50.8833

50th sample 169.9526

65th sample -263.148

80th sample 316.2819

95th sample -321.265

Discrete time impedance coefficients are calculated and resulted as:
[a0, a1, a2, a3,b0,b1,b2] = [537.1875 − 775.8906 407.2500 − 2.0454 37.210 − 61.4375 32.0879]

Simulation Two: Second Sampling Scenario For the Third Order Status

In this sampling scheme, the first sampling point is the 5th point of voltage and current
waveforms. The distance between each samples is 10 samples.

Table 4.15: Values of current at time t, t − ∆t, t − 2∆t and t − 3∆t, voltage at time
t−∆t, t− 2∆t and t− 3∆t for the second sampling scenario in the case of a resistance
in series with a paralleled LC load.

selected sample i(t) i(t− ∆t) i(t− 2∆t) i(t− 3∆t) v(t− ∆t) v(t− 2∆t) v(t− 3∆t)
5th sample 2.688084 2.664771 2.253407 1.384349 -74.201 -57.9634 -31.6282

15th sample -15.5555 -14.2037 -12.1923 -9.87563 324.2664 309.3493 277.3375

25th sample 10.6904 7.756909 4.333147 0.562823 -211.245 -147.669 -75.9326

35th sample 1.014964 4.708302 8.121243 11.05883 -25.5203 -100.514 -169.953

45th sample -11.8722 -14.0006 -15.3608 -15.8779 247.3366 289.8169 316.2819

55th sample 15.85452 15.19178 13.68826 11.42731 -324.266 -309.349 -277.338

65th sample -10.5285 -7.46292 -3.98515 -0.28728 211.2454 147.6691 75.93257
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Table 4.16: Values of voltage at time t for the second sampling scenario in the case of
a resistance in series with a paralleled LC load.

selected sample v(t)
5th sample 76.47536

15th sample -321.265

25th sample 263.1482

35th sample -50.8833

45th sample -191.188

455th sample 321.2645

65th sample -263.148

Discrete time impedance coefficients are calculated and resulted as:
[a0, a1, a2, a3,b0,b1,b2] = [6.9746 − 38.082 45.5977 − 21.0547 − 4.0745 4.9507 − 2.2212] Dif-
ferent obtained impedance coefficient matrices confirm that this load is not a third order
load. The largest order, which resulted to the equal impedance values is two. Note that,
Both inductance and capacitance, generate first order history terms and they are set in
parallel. Second history terms will be generated when we implement trapezoidal inte-
gration on Zz. We analyse this simulation load case with a different Deltat value as well.
The new value of ∆t is 0.0022 seconds. tmax = 0.4s and ramp up time=0.044(slow transient
ends at sample 22). [a0, a1, a2,b0,b1] = [24.9774 3.8009 15.0226 0.1900 1.0000] For the sec-
ond order conditions, we considered two different sampling scenarios. The two scenarios
resulted in two identical impedance matrices for t = t, t − ∆t, t − 2∆t time stamps. this
proves our statement in Chapter 3 that says, different ∆t values will result in equal discrete
impedance coefficients. In other word, the sampling rate will not impact our algorithm.
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Figure 4.7: First order impedance coefficients for the first and second scenarios of a
resistance in series with a paralleled LC load.

Figure 4.8: Second order impedance coefficients for the first and second scenarios of
a resistance in series with a paralleled LC load.
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Figure 4.9: Third order impedance coefficients for the first and second scenarios of a
resistance in series with a paralleled LC load.

Figures 4.7 and 4.7 demonstrate first order and 2nd order impedance coefficient values
for both scenarios. This confirms that two graphs are exactly matched while in Figure 4.9,
we see two different patterns of coefficients.

4.2.4 Simulation Three: Motor Load

Figure 4.10: Motor load case.
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This simulation case describes the behaviour of a motor type load. We assume motor loads
as the second order systems based on calculations in Chapter 3. Simulation data confirms
this fact. In this simulation case, sampling rate is ∆t = 2200µs, maximum simulation time
is tmax = 0.4seconds and ramp up time is 0.066 seconds. Following analysis starts with
order=1. It calculates (a0, a1,b0) coefficients for at least two different sets of voltage and
current samples. the same process is continued for higher orders until we get the correct
order of the circuit. We selected one sampling point from transient portion of the voltage
and the current signal.

Simulation Three: First Sampling Scenario

In this sampling scheme, the first sampling point is the 25th point of voltage and current
waveforms. The distance between each samples is 20 samples.

Table 4.17: Values of current at time t and t− ∆t, voltage at time t− ∆t for the first
sampling scenario for a single motor load

selected sample i(t) i(t− ∆t) v(t− ∆t)
25th sample 13.1152 7.969328 -11.6227

45th sample -11.9759 -16.7281 6.975206

65th sample -1.39197 11.37702 6.267753

Table 4.18: Values of voltage at time t for the first sampling scenario for a single motor
load.

selected sample v(t)
25th sample 6.132031

45th sample 5.544468

65th sample -14.7334

Discrete time impedance coefficients are calculated and resulted as:
[a0, a1,b0] = [2.3049− 1.56431.0007]
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Simulation Three: Second Sampling Scenario

In this sampling scheme, the first sampling point is the 25th point of voltage and current
waveforms. The distance between each samples is 32 samples.

Table 4.19: Values of current at time t and t−∆t, voltage at time t−∆t for the second
sampling scenario for a single motor load

selected sample i(t) i(t− ∆t) v(t− ∆t)
25th sample 13.1152 7.969328 -11.6227

57th sample 4.449092 14.92126 0.976791

89th sample -15.2177 -5.10202 15.47781

Table 4.20: Values of voltage at time t for the second sampling scenario for a single
motor load.

selected sample v(t)
25th sample 6.132031

57th sample -12.11

89th sample -11.6041

Discrete coefficients are calculated and resulted as:
[a0, a1,b0] = [2.1643− 1.51450.8789]

Simulation Three: Third Sampling Scenario

In this sampling scheme, the first sampling point is the 40th point of voltage and current
waveforms. The distance between each samples is 32 samples.

Table 4.21: Values of current at time t and t− ∆t, voltage at time t− ∆t for the third
sampling scenario for a single motor load

selected sample i(t) i(t− ∆t) v(t− ∆t)
40th sample 16.33137 8.214105 -15.4778

72th sample 6.438923 15.75991 -0.97679

104th sample -14.2184 -3.06126 15.16008
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Table 4.22: Values of voltage at time t for the third sampling scenario for a single
motor load.

selected sample v(t)
40th sample 9.301219

72th sample -10.7907

104th sample -12.8112

Discrete coefficients are calculated and resulted as:
[a0, a1,b0] = [2.1643− 1.51450.8789] Looking at the three obtained matrices for [a0, a1,b0],
all are equivalent. We will continue with second order analysis:

Simulation Three: First Sampling Scenario For the Second Order Status

In this sampling scheme, the first sampling point is the 25th point of voltage and current
waveforms. The distance between each samples is 20 samples.

Table 4.23: Values of current at time t, t− ∆t and t− 2∆t, voltage at time t− ∆t and
t− 2∆t for the first sampling scenario for a single motor load.

selected sample i(t) i(t− ∆t) i(t− 2∆t) v(t− ∆t) v(t− 2∆t)
25th sample 13.1152 7.969328 -1.69501 -11.6227 -9.39485

45th sample -11.9759 -16.7281 -10.6144 6.975206 14.96564

65th sample -1.39197 11.37702 16.75935 6.267753 -6.26775

85th sample 13.75697 2.231712 -10.7419 -14.9656 -6.97521

105th sample -16.1424 -14.2184 -3.06126 12.81116 15.16008
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Table 4.24: Values of voltage at time t for the first sampling scenario in the case of a
single motor load

selected sample v(t)
25th sample 6.132031

45th sample 5.544468

65th sample -14.7334

85th sample 13.23837

105th sample -2.14351

Discrete time series coefficients are calculated and resulted as:
[a0, a1, a2,b0,b1] = [2.2981− 3.8341 1.5405 0.0112− 0.9888]

Simulation Three: Second Sampling Scenario For the Second Order Status

In this sampling scheme, the first sampling point is the 25th point of voltage and current
waveforms. The distance between each samples is 32 samples.

Table 4.25: Values of current at time t, t− ∆t and t− 2∆t, voltage at time t− ∆t and
t− 2∆t for the second sampling scenario for a single motor load.

selected sample i(t) i(t− ∆t) i(t− 2∆t) v(t− ∆t) v(t− 2∆t)
25th sample 13.1152 7.969328 -1.69501 -11.6227 -9.39485

57th sample 4.449092 14.92126 15.70543 0.976791 -10.7907

89th sample -15.2177 -5.10202 8.327259 15.47781 9.301219

121th sample -9.39709 -16.5789 -12.9948 4.057742 13.81616

153th sample 12.16258 -0.2891 -12.5526 -14.1579 -4.80718
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Table 4.26: Values of voltage at time t for the second sampling scenario in the case of
a single motor load

selected sample v(t)
25th sample 6.132031

57th sample -12.11

89th sample -11.6041

121th sample 8.335509

153th sample 14.31545

Discrete time series coefficients are calculated and resulted as:
[a0, a1, a2,b0,b1] = [2.2980− 3.83391.54040.0112− 0.9887]

Simulation Three: Third Sampling Scenario For the Second Order Status

In this sampling scheme, the first sampling point is the 15th point of voltage and current
waveforms. The distance between each samples is 40 samples.

Table 4.27: Values of current at time t, t− ∆t and t− 2∆t, voltage at time t− ∆t and
t−−2∆t for the third sampling scenario for a single motor load.

selected sample i(t) i(t− ∆t) i(t− 2∆t) v(t− ∆t) v(t− 2∆t)
15th sample -3.3824 -6.74192 -5.57201 1.429158 5.375798

55th sample 15.70543 6.29245 -7.2055 -15.5514 -10.2141

95th sample 2.804772 14.07973 16.21294 2.530041 -9.61164

135th sample -16.7539 -11.5663 1.132217 14.60327 13.81616

175th sample 3.476008 -9.74306 -16.6352 -8.0028 4.433859
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Table 4.28: Values of voltage at time t for the third sampling scenario in the case of a
single motor load

selected sample v(t)
15th sample 4.192964

55th sample 10.79071

95th sample -13.0289

135th sample -5.90798

175th sample 15.24297

Discrete time series coefficients are calculated and resulted as:
[a0, a1, a2,b0,b1] = [2.2981− 3.83411.54050.0112− 0.9888]
Motor circuit full fills 2nd order principals because all three matrices[

A = 2.2981 −3.8341 1.5405 0.0112 −0.9888
]

[
B = 2.2980 −3.8339 1.5404 0.0112 −0.9887

]
[
C = 2.2980 −3.8339 1.5404 0.0112 −0.9887

]
are equivalent as shown in figure 4.12.

Additionally, since it is determined that motor circuit is satisfying the second order charac-
teristics, we analyse the case with the third order criteria. It resulted in different impedance
coefficients. This interprets that third order and higher orders cannot be the correct order
for the single motor load.
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Figure 4.11: First order impedance coefficients for three different scenarios of a single
motor load.

Figure 4.12: Second order impedance coefficients for three different scenarios of a
single motor load.
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4.2.5 Simulation Three: Single Motor Load Parameters Calculations

Figure 4.13: Single motor load.

Y(s)is the results from converting the discrete time coefficients to the continuous domain.

Figure 4.14: Motor load parameter calculation.

As shown in Figure 4.14, in every step of the division, the quotients are R and L values
of the load circuit. The first quotient is Zs which is a series arm and is equivalent to R1.
Second quotient is Ys which indicates shunt arm and is equivalent to Lm. Third quotient
shows R2 and the last quotient is the value of L2. L1 value is not synthesized.
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We captured four parameters of a single motor load. Note that we have to continue the
division as yet we get zero in the remainder.

4.2.6 Simulation Four: Paralleled Resistive and a Motor

This simulation, evaluates the behaviour of an aggregated load including a single motor
load in parallel with a resistive load. We will consider all combinations of heating (resis-
tive), lighting (inductive) and motor loads , because these are the three major eigneloads
we considered in this work. We will prove that we can distinguish between these three
types In this simulation case, sampling rate is ∆t = 2200µs(sampling frequency =1600

Figure 4.15: Paralleled resistive and a motor.

Hz), maximum simulation time is tmax = 0.8s(totalsamples : 367) and ramp up time=0.08.
Theoretically, this circuit is also supposed to be 2nd order. Because, resistance does not
generate any history terms. Motor load is also confirmed to be a second order system in
Section ??. It may seem that this algorithm is not able to discern between a case of the
single motor load and a case of the paralleled motor and resistance since both systems are
second order. But in fact, due to different obtained discrete coefficients, network synthesis
will result in two different topologies which determines whether there is a single motor
or a paralleled motor and resistance.
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Simulation Four: First Sampling Scenario

In this sampling scheme, the first sampling point is the 25th point of voltage and current
waveforms. The distance between each samples is 20 samples.

Table 4.29: Values of current at time t and t− ∆t, voltage at time t− ∆t for the first
sampling scenario in the case of a paralleled resistance and a motor.

selected sample i(t) i(t− ∆t) v(t− ∆t)
25th sample 11.07299 7.054133 -9.58875

45th sample -11.6826 -17.0501 6.975206

65th sample -2.13397 11.05827 6.267753

Table 4.30: Values of voltage at time t for the first sampling scenario in the case of a
paralleled resistance and a motor.

selected sample v(t)
25th sample 5.058925

45th sample 5.544468

65th sample -14.7334

Discrete time series coefficients are calculated and resulted as:
[a0, a1,b0] = [2.0939− 1.4113 0.8522]

Simulation Four: Second Sampling Scenario

In this sampling scheme, the first sampling point is the 25th point of voltage and current
waveforms. The distance between each samples is 32 samples.

Table 4.31: Values of current at time t and t−∆t, voltage at time t−∆t for the second
sampling scenario in the case of a paralleled resistance and a motor.

selected sample i(t) i(t− ∆t) v(t− ∆t)
25th sample 11.07299 7.054133 -9.58875

57th sample 3.838176 14.86706 0.976791

89th sample -15.8025 -5.88056 15.47781
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Table 4.32: Values of voltage at time t for the second sampling scenario in the case of
a paralleled resistance and a motor.

selected sample v(t)
25th sample 5.058925

57th sample -12.11

89th sample -11.6041

Discrete time series coefficients are calculated and resulted as:
[a0, a1,b0] = [2.0772− 1.4058 0.8369]

Simulation Four: Third Sampling Scenario

In this sampling scheme, the first sampling point is the 30th point of voltage and current
waveforms. The distance between each samples is 40 samples.

Table 4.33: Values of current at time t and t− ∆t, voltage at time t− ∆t for the third
sampling scenario in the case of a paralleled resistance and a motor.

selected sample i(t) i(t− ∆t) v(t− ∆t)
30th sample -7.47218 -12.8154 3.986642

70th sample 15.44856 5.059682 -15.3798

110th sample 4.256216 15.0745 0.586322

Table 4.34: Values of voltage at time t for the third sampling scenario in the case of a
paralleled resistance and a motor.

selected sample v(t)
30th sample 5.839642

70th sample 12.11003

110th sample -11.8608

Discrete time series coefficients are calculated and resulted as:
[a0, a1,b0] = [2.1281− 1.4220 0.8824]
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Considering three calculated coefficient matrices:[
A = 2.0667 −1.4027 0.8271

]
[

B = 2.0717 −1.4043 0.8317
]

[
C = 2.1110 −1.4168 0.8672

]
They are all equivalent. We will continue with order=2.

Simulation Four: First Sampling Scenario For The Second Order Condition

In this sampling scheme, the first sampling point is the 25th point of voltage and current
waveforms. The distance between each samples is 40 samples.

Table 4.35: Values of current at time t, t− ∆t and t− 2∆t, voltage at time t− ∆t and
t− 2∆tfor the first sampling scenario in the case of a parallel resistance and a motor
resistance

selected sample i(t) i(t− ∆t) i(t− 2∆t) v(t− ∆t) v(t− 2∆t)
25th sample 11.07299 7.054133 -1.01084 -9.58875 -7.75075

65th sample -2.13397 11.05827 17.06735 6.267753 -6.26775

105th sample -16.2537 -14.8632 -3.82351 12.81116 15.16008

145th sample 8.217491 -5.49593 -15.6423 -11.0689 0.586322

185th sample 13.16801 16.91667 9.679471 -8.66295 -15.3798

Table 4.36: Values of voltage at time t for the first sampling scenario in the case of a
paralleled resistance and a motor

selected sample v(t)
25th sample 5.058925

65th sample -14.7334

105th sample -2.14351

145th sample 15.5367

185th sample -3.67906

Discrete time series coefficients are calculated and resulted as:
[a0, a1, a2,b0,b1] = [2.0612− 3.4389 1.3817− 0.1619− 0.8178]
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Simulation Four: Second Sampling Scenario For The Second Order Condition

In this sampling scheme, the first sampling point is the 15th point of voltage and current
waveforms. The distance between each samples is 50 samples.

Table 4.37: Values of current at time t, t− ∆t and t− 2∆t, voltage at time t− ∆t and
t − 2∆tfor the second sampling scenario in the case of a parallel resistance and a
motor resistance.

selected sample i(t) i(t− ∆t) i(t− 2∆t) v(t− ∆t) v(t− 2∆t)
15th sample -2.61752 -5.62104 -4.81866 1.179055 4.435033

65th sample -2.13397 11.05827 17.06735 6.267753 -6.26775

115th sample 11.68301 -1.30108 -13.4423 -13.4395 -3.29806

165th sample -16.7807 -8.9643 4.671463 15.47781 11.60412

215th sample 15.46045 15.79731 5.875347 -11.6041 -15.4778

Table 4.38: Values of voltage at time t for the second sampling scenario in the case of
a paralleled resistance and a motor.

selected sample v(t)
15th sample 3.459195

65th sample -14.7334

115th sample 14.85421

165th sample -9.30122

215th sample 0.195482

Impedance coefficients are calculated and resulted as:
[a0, a1, a2,b0,b1] = [2.0612− 3.4389 1.3817− 0.1618− 0.8178]

Simulation Four: Third Sampling Scenario For The Second Order Condition

In this sampling scheme, the first sampling point is the 20th point of voltage and current
waveforms. The distance between each samples is 50 samples.
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Table 4.39: Values of current at time t, t− ∆t and t− 2∆t, voltage at time t− ∆t and
t− 2∆tfor the third sampling scenario in the case of a parallel resistance and a motor
resistance.

selected sample i(t) i(t− ∆t) i(t− 2∆t) v(t− ∆t) v(t− 2∆t)
20th sample -4.67116 2.140791 6.900771 5.479104 -0.27411

70th sample 15.44856 5.059682 -8.6172 -15.3798 -8.66295

120th sample -16.7856 -13.6895 -1.70625 13.81616 14.60327

170th sample 11.70028 17.07949 11.367 -6.97521 -14.9656

220th sample -2.15386 -13.9538 -16.6941 -2.53004 9.61164

Table 4.40: Values of voltage at time t for the third sampling scenario in the case of a
paralleled resistance and a motor.

selected sample v(t)
20th sample -8.11793

70th sample 12.11003

120th sample -4.05774

170th sample -5.54447

220th sample 13.02888

Discrete time series coefficients are calculated and resulted as:
[a0, a1, a2,b0,b1] = [2.0604− 3.4383 1.3819− 0.1629− 0.8171] Motor in parallel with Resis-
tance also full fills second order principals, because all three obtained matrices:[

A = 2.0615 −3.4394 1.3820 −0.1618 −0.8180
]

[
B = 2.0613 −3.4396 1.3823 −0.1622 −0.8179

]
[
C = 2.0652 −3.4422 1.3811 −0.1566 −0.8214

]
are equivalent. This is shown in Figures 4.16 and 4.17.
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Figure 4.16: First order impedance coefficients for three scenarios of a paralleled mo-
tor and resistance

Figure 4.17: Second order impedance coefficients for three scenarios of a paralleled
motor and resistance
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4.2.7 Simulation One: Paralleled Motor and Resistance Load Parameters
Calculations

Figure 4.18: Paralleled motor and resistance.

This case determines a motor type in parallel with resistance. As described in Section 4.2.6,
this load is a second order load.

Figure 4.19: Motor load in parallel with a resistive load parameter calculation.

Note that, PSCAD discrete time coefficients are different for a Motor load and a Mo-
tor+Resistance load cases, although, the circuit order and the number of coefficients are
the same.
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Following case products five steps of division prior to getting a remainder of zero whereas
in Section 4.2.5, we get zero in remainder after continuing the long division for four con-
secutive stages. The first four quotients, determine motor’s parameters, R1, Lm, R2&L2

and the fifth quotient is the value of parallel resistance.

4.2.8 Simulation Five: Single Motor in Parallel with One Resistance and One
Inductance

Figure 4.20: Single motor in parallel with one resistance and one inductance load.

In this simulation case, sampling rate is ∆t = 2200µs(sampling frequency =1600 Hz),
maximum simulation time is tmax = 0.8s and ramp up time=0.132s. This case describes an
aggregated load combining of motor, inductance and resistance. As discussed in Chap-
ter 3, induction motor load is a 2nd order system. Inductance is a first order system.
Therefore, a parallel circuit including both will have the characteristics of a third order
system. We calculated impedance discrete time coefficients for first and second order sit-
uation. Resulted discrete time coefficients were within 10% equivalence. Thus, we need
to move on to the third order analysis. In Following you will see the results earned from
order=3 analysis.
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Simulation Five: First Sampling Scenario For The Third Order Status

In this sampling scheme, the first sampling point is the 35th point of voltage and current
waveforms. The distance between each samples is 10 samples.

Table 4.41: Values of current at time t, t − ∆t, t − 2∆t and t − 3∆t, voltage at time
t− ∆t, t− 2∆t and t− 3∆t for the first sampling scenario in the case of a motor load
in parallel with an inductance and a resistance.

selected sample i(t) i(t− ∆t) i(t− 2∆t) i(t− 3∆t) v(t− ∆t) v(t− 2∆t) v(t− 3∆t)
35th sample -3.6274 4.025515 8.683997 7.590059 5.286402 -1.34935 -6.73159

45th sample -8.59834 -12.2633 -7.98461 1.151465 4.998898 10.47595 9.046218

55th sample 14.64574 6.203539 -5.87806 -13.7587 -13.7371 -8.8522 1.492288

65th sample -1.65254 11.63228 17.44466 12.04937 6.267753 -6.26775 -14.7334

75th sample -14.8389 -16.5727 -7.54313 6.387411 10.21408 15.55144 10.79071

85th sample 14.35952 2.584053 -10.8687 -17.2634 -14.9656 -6.97521 5.544468

70th sample 2.614842 14.37684 16.80403 8.320351 2.530041 -9.61164 -15.5122

Table 4.42: Values of voltage at time t for the first sampling scenario in the case of a
motor load in parallel with an inductance and a resistance.

selected sample v(t)
35th sample -8.79022

45th sample 4.065943

55th sample 9.711642

65th sample -14.7334

75th sample 1.755633

85th sample 13.23837

70th sample -13.0289

Discrete time series coefficients are calculated and resulted as:
A=

[
2.2080 −4.3249 2.5497 −0.4297 −0.2943 −0.9923 0.3021

]
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Simulation Five: Second Sampling Scenario For The Third Order Status

In this sampling scheme, the first sampling point is the 20th point of voltage and current
waveforms. The distance between each samples is 15 samples.

Table 4.43: Values of current at time t, t − ∆t, t − 2∆t and t − 3∆t, voltage at time
t − ∆t, t − 2∆t and t − 3∆t for the second sampling scenario in the case of a motor
load in parallel with an inductance and a resistance.

selected sample i(t) i(t− ∆t) i(t− 2∆t) i(t− 3∆t) v(t− ∆t) v(t− 2∆t) v(t− 3∆t)
20th sample -2.73869 1.437729 4.278048 4.175772 3.320669 -0.16612 -3.16289

35th sample -3.6274 4.025515 8.683997 7.590059 5.286402 -1.34935 -6.73159

50th sample -3.44124 7.511785 13.2344 10.30246 6.402241 -3.47319 -10.7268

65th sample -1.65254 11.63228 17.44466 12.04937 6.267753 -6.26775 -14.7334

80th sample 0.451432 13.05818 17.18663 10.15616 4.433859 -8.0028 -15.243

95th sample 2.614842 14.37684 16.80403 8.320351 2.530041 -9.61164 -15.5122

110th sample 4.737216 15.46906 16.15683 6.353933 0.586322 -11.0689 -15.5367

Table 4.44: Values of voltage at time t for the first sampling scenario in the case of a
motor load in parallel with an inductance and a resistance.

selected sample v(t)
20th sample -4.91996

35th sample -8.79022

50th sample -12.4484

65th sample -14.7334

80th sample -13.9915

95th sample -13.0289

110th sample -11.8608

Discrete time series coefficients are calculated and resulted as:
B=

[
2.2080 −4.3250 2.5498 −0.4298 −0.2944 −0.9923 0.3021

]
Matrices A and B equal. Thus, third order properties match with this load’s properties.
Worth mentioning, for higher order systems, to be able to detect the correct load’s com-
ponents, more samples from the slow transient section of the voltage and the current
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signals need to be selected.
Order=4 is also verified not to be the correct order for this load circuit, since it results in
non-equal impedance coefficients, for the two different sampling scenarios as following:

Simulation Five: First Sampling Scenario For The Fourth Order Status

In this sampling scheme, the first sampling point is the 30th point of voltage and current
waveforms. The distance between each samples is 10 samples. Impedance coefficients
are:
A=

[
1.4781 −1.8820 −0.2716 0.8721 −0.1931 −0.6313 0.4679 −1.1464 0.4666

]
Simulation Five: Second Sampling Scenario For The Fourth Order Status

In this sampling scheme, the first sampling point is the 20th point of voltage and current
waveforms. The distance between each samples is 15 samples.
B=

[
0.8023 −3.2489 4.2122 −2.0933 0.3266 −2.5863 2.2977 −0.8562 0.4071

]

Figure 4.21: Third order impedance coefficients for three different scenarios of a mo-
tor load in parallel with an inductance and a resistance.
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Figure 4.22: Fourth order impedance coefficients for three different scenarios of a mo-
tor load in parallel with an inductance and a resistance.

4.2.9 Simulation Five: Single Motor in Parallel with One Resistance and One
Inductance Parameters Calculations

Figure 4.23: Single motor in parallel with one resistance and one inductance

This case determines an induction motor type in parallel with an inductance. Following
Ys is derived from the third order discrete time coefficients which have been analysed
in Section 4.2.8. Figure 4.24 indicates six stages of continued division, prior to getting a
remainder of zero.
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Figure 4.24: Motor in parallel with an inductive and a resistive load parameter calcu-
lation.

The first four quotients correspond to the motor’s parameters, R1, Lm, R2&L2 and 5th
and 6th quotients, are the values of individual resistance and inductance.
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4.2.10 Simulation Six: Two Series Motor in Parallel with a Resistive and an
Inductive Load

Figure 4.25: Two series motor in parallel with a resistive and an inductive load.

In this simulation case, sampling rate is ∆t = 625µs(sampling frequency =1600 Hz), max-
imum simulation time is tmax = 0.1875s, ramp up time=0.0375s (slow transient ends at
sample number 60). This simulation describes two series motor loads in parallel with a
resistance and an inductance. Although, in real power system, loads are connected in par-
allel from a distribution feeder. But we analysed a higher order case in this section. Some-
times, some power electronic loads have more complex circuit structures which leads to
the higher orders. We proved that our algorithm is capable of detecting the higher order
loads as well.

Simulation Six: First Sampling Scenario For The Third Order Status

In this sampling scheme, the first sampling point is the 20th point of voltage and current
waveforms. The distance between each samples is 10 samples.
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Table 4.45: Values of current at time t, t − ∆t, t − 2∆t and t − 3∆t, voltage at time
t − ∆t, t − 2∆t and t − 3∆t for the first sampling scenario in the case of two series
motor in parallel with a resistive and an inductive Load.

selected sample i(t) i(t− ∆t) i(t− 2∆t) i(t− 3∆t) v(t− ∆t) v(t− 2∆t) v(t− 3∆t)
20th sample -1.08422 -1.18047 -1.20521 -1.1643 2.11873 2.862528 3.356094

30th sample 1.847889 1.670556 1.409224 1.084638 -6.90432 -6.97878 -6.65809

40th sample -1.63121 -1.07295 -0.48892 0.086761 8.778512 7.294637 5.486276

50th sample -0.58222 -1.30023 -1.92157 -2.41571 -3.84574 -0.95609 1.865721

60th sample 3.152638 3.541393 3.719616 3.684601 -6.82702 -9.59789 -11.7463

70th sample -4.04172 -3.75978 -3.27442 -2.6127 14.79497 15.50839 15.36482

80th sample 2.216767 1.375249 0.45409 -0.49584 -13.8608 -11.8291 -9.14379

Table 4.46: Values of voltage at time t for the first sampling scenario in the case of
two series motor in parallel with a resistive and an inductive Load.

selected sample v(t)
20th sample -1.14999

30th sample 6.410918

40th sample -9.83224

50th sample 6.638006

60th sample 3.571032

70th sample -13.264

80th sample 15.12653

Discrete time series coefficients are calculated and resulted as:
A=

[
10.7906 −28.2620 24.2639 −6.7923 −1.7882 0.6953 0.0954

]
Simulation Six: Second Sampling Scenario For The Third Order Status

In this sampling scheme, the first sampling point is the 10th point of voltage and current
waveforms. The distance between each samples is 15 samples.
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Table 4.47: Values of current at time t, t − ∆t, t − 2∆t and t − 3∆t, voltage at time
t− ∆t, t− 2∆t and t− 3∆t for the second sampling scenario in the case of two series
motor in parallel with a resistive and an inductive Load.

selected sample i(t) i(t− ∆t) i(t− 2∆t) i(t− 3∆t) v(t− ∆t) v(t− 2∆t) v(t− 3∆t)
10th sample -0.07954 0.03305 0.109863 0.15053 0.640957 0.142396 -0.24335

25th sample 0.339286 -0.03408 -0.37887 -0.67713 -3.87283 -2.58956 -1.27105

40th sample -1.63121 -1.07295 -0.48892 0.086761 8.778512 7.294637 5.486276

55th sample 3.023137 2.447016 1.754769 0.989035 -13.6991 -12.8223 -11.2744

70th sample -4.04172 -3.75978 -3.27442 -2.6127 14.79497 15.50839 15.36482

85th sample 3.889271 3.97408 3.835769 3.481958 -11.8291 -13.8608 -15.1265

100th sample -3.39011 -3.83106 -4.0635 -4.07461 7.062435 10.10304 12.58535

Table 4.48: Values of voltage at time t for the second sampling scenario in the case of
two series motor in parallel with a resistive and an inductive Load.

selected sample v(t)
10th sample -1.21923

25th sample 5.03414

40th sample -9.83224

55th sample 13.82834

70th sample -13.264

85th sample 9.143793

100th sample -3.63156

Discrete time series coefficients are calculated and resulted as:
B=

[
10.7411 −27.0579 22.4343 −6.1140 −1.7042 0.6530 0.0644

]
It is important to note that, since this circuit is a higher order circuit, more transient sam-
ples are selected in compare with the lower order loads. In this specific example, four
sampling points are selected from point 1 to 60, which are considered as the transient
data. We will analyse 4th order coefficients since third order coefficients satisfy our as-
sumptions.
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Simulation Six: First Sampling Scenario For The Fourth Order Status

n this sampling scheme, the first sampling point is the 20th point of voltage and current
waveforms. The distance between each samples is 10 samples.

Table 4.49: Values of current at time t, t− ∆t, t− 2∆t, t− 3∆t and t− 4∆t, voltage at
time t− ∆t, t− 2∆t, t− 3∆t and t− 4∆t for the first sampling scenario in the case of
two series motor in parallel with a resistive and an inductive Load.

selected sample i(t) i(t− ∆t) i(t− 2∆t) i(t− 3∆t) i(t− 4∆t) v(t− ∆t) v(t− 2∆t) v(t− 3∆t) v(t− 4∆t)
20th sample -1.08422 -1.18047 -1.20521 -1.1643 -1.06742 2.11873 2.86E+00 3.356094 3.593048

30th sample 1.847889 1.670556 1.409224 1.084638 0.719978 -6.90432 -6.97878 -6.65809 -5.98841

40th sample -1.63121 -1.07295 -0.48892 0.086761 0.622167 8.778512 7.294637 5.486276 3.472675

50th sample -0.58222 -1.30023 -1.92157 -2.41571 -2.76055 -3.84574 -0.95609 1.865721 4.464868

60th sample 3.152638 3.541393 3.719616 3.684601 3.445646 -6.82702 -9.59789 -11.7463 -13.1745

70th sample -4.04172 -3.75978 -3.27442 -2.6127 -1.81158 14.79497 15.50839 15.36482 14.37219

80th sample 2.216767 1.375249 0.45409 -0.49584 -1.42207 -13.8608 -11.8291 -9.14379 -5.95316

90th sample 0.68201 1.587901 2.402648 3.081205 3.586052 4.807176 1.220537 -2.43355 -5.95316

100th sample -3.39011 -3.83106 -4.0635 -4.07461 -3.8638 7.062435 10.10304 12.58535 14.37219

Table 4.50: Values of voltage at time t for the first sampling scenario in the case of
two series motor in parallel with a resistive and an inductive Load.

selected sample v(t)
20th sample -1.14999

30th sample 6.410918

40th sample -9.83224

50th sample 6.638006

60th sample 3.571032

70th sample -13.264

80th sample 15.12653

90th sample -8.12817

100th sample -3.63156

Discrete time series coefficients are calculated and resulted as:
A=

[
5.4039 −17.4479 20.7260 −10.7033 2.0216 −3.1295 3.7334 −2.0526 0.4507

]
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Simulation Six: Second Sampling Scenario For The Fourth Order Status

In this sampling scheme, the first sampling point is the 30th point of voltage and current
waveforms. The distance between each samples is 5 samples.

Table 4.51: Values of current at time t, t− ∆t, t− 2∆t, t− 3∆t and t− 4∆t, voltage at
time t− ∆t, t− 2∆t, t− 3∆t and t− 4∆t for the second sampling scenario in the case
of two series motor in parallel with a resistive and an inductive Load.

selected sample i(t) i(t− ∆t) i(t− 2∆t) i(t− 3∆t) i(t− 4∆t) v(t− ∆t) v(t− 2∆t) v(t− 3∆t) v(t− 4∆t)
30th sample 1.847889 1.670556 1.409224 1.084638 0.719978 -6.90432 -6.97878 -6.65809 -5.98841

35th sample 1.08932 1.46565 1.73506 1.888555 1.92441 -0.6713 -2.56383 -4.19955 -5.5

40th sample -1.63121 -1.07295 -0.48892 0.086761 0.622167 8.778512 7.294637 5.486276 3.472675

45th sample -2.94331 -2.96092 -2.8198 -2.53509 -2.1294 8.477551 9.702566 10.33646 10.3709

50th sample -0.58222 -1.30023 -1.92157 -2.41571 -2.76055 -3.84574 -0.95609 1.865721 4.464868

55th sample 3.023137 2.447016 1.754769 0.989035 0.195007 -13.6991 -12.8223 -11.2744 -9.16667

60th sample 3.152638 3.541393 3.719616 3.684601 3.445646 -6.82702 -9.59789 -11.7463 -13.1745

65th sample -0.91593 0.023743 0.953767 1.819716 2.568313 10.10304 7.062435 3.631558 -4.10E-13

70th sample -4.04172 -3.75978 -3.27442 -2.6127 -1.81158 14.79497 15.50839 15.36482 14.37219

Table 4.52: Values of voltage at time t for the second sampling scenario in the case of
two series motor in parallel with a resistive and an inductive Load.

selected sample v(t)
30th sample 6.410918

35th sample -1.37901

40th sample -9.83224

45th sample -6.70545

50th sample 6.638006

55th sample 13.82834

60th sample 3.571032

65th sample -12.5854

70th sample -13.264

Discrete time series coefficients are calculated and resulted as:
B=

[
5.2638 −16.9958 20.1887 −10.4259 1.9692 −3.1492 3.7865 −2.1002 0.4650

]
Resulted coefficients matrices as for order =4 are equivalent which confirms that this load
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is a 4th order load.

Simulation Six: First Sampling Scenario For The Fifth Order Status

In this sampling scheme, the first sampling point is the 20th point of voltage and current
waveforms. The distance between each samples is 5 samples. Discrete time series coeffi-
cients are calculated and resulted as:
[a0, a1, a2, a3, a4, a5,b0,b1,b2,b3,b4] =[
14.74 −31.096 3.26 34.092 −27.1717 6.173 −0.5759 −2.310 2.0379 0.2863 −0.4369

]
Simulation Six: Second Sampling Scenario For the Fifth Order Status

In this sampling scheme, the first sampling point is the 10th point of voltage and current
waveforms. The distance between each samples is 10 samples. Discrete time series coeffi-
cients are calculated and resulted as:
[a0, a1, a2, a3, a4, a5,b0,b1,b2,b3,b4] =[
8.89 −26.292 26.25 −8.26 −1.502 0.912 −2.582 2.537 −1.470 0.710 −0.192

]
Coefficients values for 5th order mismatch. Therefore, the largest order which results in
equal coefficients is four.
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4.2.11 Simulation Seven: Three Series Motor in Parallel with a Resistive and
an Inductive Load

Figure 4.26: Three series motor in parallel with resistive and inductive load.

In this simulation case, sampling rate is ∆t= 2200µs. {tmax = 0.7seconds and Rampuptime=
0.05 (slow transient ends at sample number 22). This simulation describes two series mo-
tor loads in parallel with a resistance and an inductance.

Simulation Seven: First Sampling Scenario For the Fifth Order Status

In this sampling scheme, the first sampling point is the 10th point of voltage and current
waveforms. The distance between each samples is 5 samples.
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Table 4.53: Values of current at time t, t − ∆t, t − 2∆t, t − 3∆t, t − 4∆t and t − 5∆t,
voltage at time t − ∆t , t − 2∆t, t − 3∆t, t − 4∆t and t − 5∆t for the first sampling
scenario in the case of three series motors in parallel with a resistive and an inductive
load

selected sample i(t) i(t− ∆t) i(t− 2∆t) i(t− 3∆t) i(t− 4∆t) i(t− 5∆t) v(t− ∆t) v(t− 2∆t) v(t− 3∆t) v(t− 4∆t) v(t− 5∆t)
10th sample 1.193384 1.112585 0.358973 -0.45581 -0.82461 -0.65301 -5.14035 -4.25538 -1.07124 1.833812 2.695656

15th sample -0.31091 -1.69494 -1.88942 -0.94974 0.368754 1.193384 1.886488 7.096053 7.189436 2.914371 -2.33956

20th sample -2.31235 -0.18528 1.803115 2.431806 1.463945 -0.31091 8.766567 -0.43857 -8.35002 -10.1862 -5.53471

25th sample 3.403337 3.010995 0.694947 -1.90806 -3.11962 -2.31235 -15.1601 -12.4012 -1.98061 8.726071 12.98868

30th sample -0.95577 -3.11054 -3.2285 -1.22808 1.58982 3.403337 5.177457 14.31545 14.15793 4.807176 -7.66504

35th sample -2.29308 0.39524 2.838765 3.451327 1.836957 -0.95577 9.61164 -2.53004 -13.0289 -15.0676 -7.32243

40th sample 3.46756 2.74645 0.250337 -2.3994 -3.48173 -2.29308 -15.4778 -11.6041 -0.19548 11.34009 15.51215

45th sample -1.38373 -3.29701 -3.0628 -0.83291 1.945039 3.46756 6.975206 14.96564 13.23837 2.914969 -9.30122

50th sample -1.95381 0.819001 3.065566 3.327291 1.434418 -1.38373 8.002801 -4.43386 -13.9915 -14.4639 -5.54447

55th sample 3.503459 2.446064 -0.19479 -2.70418 -3.45255 -1.95381 -15.5514 -10.2141 1.755633 12.58535 15.24297

60th sample -1.77804 -3.41712 -2.83301 -0.40488 2.290679 3.503459 8.662952 15.37981 12.11003 0.976791 -10.7907

Table 4.54: Values of voltage at time t for the first sampling scenario in the case of a
three series motors in parallel with a resistive and an inductive load

selected sample v(t)
10th sample 2.339559

15th sample 5.534712

20th sample -12.9887

25th sample 7.665039

30th sample 7.322435

35th sample -15.5122

40th sample 9.301219

45th sample 5.544468

50th sample -15.243

55th sample 10.79071

60th sample 3.679061

Discrete time series coefficients are calculated and resulted as:
[a0, a1, a2, a3, a4, a5,b0,b1,b2,b3,b4] =
A=

[
2.261 −4.796 1.66 2.1376 −1.330 0.067 −1.918 1.553 −0.484 0.050 0.1637

]
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Simulation Seven: Second Sampling Scenario For The Fifth Order Status

In this sampling scheme, the first sampling point is the 15th point of voltage and current
waveforms. The distance between each samples is 5 samples.

Table 4.55: Values of current at time t, t − ∆t, t − 2∆t, t − 3∆t, t − 4∆t and t − 5∆t,
voltage at time t− ∆t , t− 2∆t, t− 3∆t, t− 4∆t and t− 5∆t for the second sampling
scenario in the case of three series motors in parallel with a resistive and an inductive
load

selected sample i(t) i(t− ∆t) i(t− 2∆t) i(t− 3∆t) i(t− 4∆t) i(t− 5∆t) v(t− ∆t) v(t− 2∆t) v(t− 3∆t) v(t− 4∆t) v(t− 5∆t)
15th sample -0.31091 -1.69494 -1.88942 -0.94974 0.368754 1.193384 1.886488 7.096053 7.189436 2.914371 -2.33956

20th sample -2.31235 -0.18528 1.803115 2.431806 1.463945 -0.31091 8.766567 -0.43857 -8.35002 -10.1862 -5.53471

25th sample 3.403337 3.010995 0.694947 -1.90806 -3.11962 -2.31235 -15.1601 -12.4012 -1.98061 8.726071 12.98868

30th sample -0.95577 -3.11054 -3.2285 -1.22808 1.58982 3.403337 5.177457 14.31545 14.15793 4.807176 -7.66504

35th sample -2.29308 0.39524 2.838765 3.451327 1.836957 -0.95577 9.61164 -2.53004 -13.0289 -15.0676 -7.32243

40th sample 3.46756 2.74645 0.250337 -2.3994 -3.48173 -2.29308 -15.4778 -11.6041 -0.19548 11.34009 15.51215

45th sample -1.38373 -3.29701 -3.0628 -0.83291 1.945039 3.46756 6.975206 14.96564 13.23837 2.914969 -9.30122

50th sample -1.95381 0.819001 3.065566 3.327291 1.434418 -1.38373 8.002801 -4.43386 -13.9915 -14.4639 -5.54447

55th sample 3.503459 2.446064 -0.19479 -2.70418 -3.45255 -1.95381 -15.5514 -10.2141 1.755633 12.58535 15.24297

60th sample -1.77804 -3.41712 -2.83301 -0.40488 2.290679 3.503459 8.662952 15.37981 12.11003 0.976791 -10.7907

65th sample -1.57773 1.236617 3.251941 3.159695 1.019851 -1.77804 6.267753 -6.26775 -14.7334 -13.6321 -3.67906

Table 4.56: Values of voltage at time t for the second sampling scenario in the case of
a three series motors in parallel with a resistive and an inductive load.

selected sample v(t)

15th sample 5.534712

20th sample -12.9887

25th sample 7.665039

30th sample 7.322435

35th sample -15.5122

40th sample 9.301219

45th sample 5.544468

50th sample -15.243

55th sample 10.79071

60th sample 3.679061

65th sample -14.7334
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Discrete time series coefficients are calculated and resulted as:
[a0, a1, a2, a3, a4, a5,b0,b1,b2,b3,b4] =
B=

[
2.2236 −4.714 1.632 2.1014 −1.3074 0.066 −1.9253 1.576 −0.4994 0.050 0.1667

]
Two derived impedance coefficient matrices are equivalent for the 5th order analysis.
Also, 6th order calculations yield to two different impedance matrices. Thus, this load
is a 5th order system.

4.2.12 Simulation Eight: Two Parallel Motors Loads

Figure 4.27: Two parallel motors loads.

This example illustrates an aggregated load constituting of two parallel motor loads.
In this simulation case, sampling rate is ∆t = 625µs(sampling frequency =1600 Hz), max-
imum simulation time is tmax = 0.0625s and ramp up time=0.03(slow transient ends at
sample number 48).

Simulation Eight: First Sampling Scenario For The Third Order Status

In this sampling scheme, the first sampling point is the 30th point of voltage and current
waveforms. The distance between each samples is 4 samples.
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Table 4.57: Values of current at time t, t − ∆t, t − 2∆t and t − 3∆t, voltage at time
t− ∆t, t− 2∆t and t− 3∆t for the first sampling scenario in the case of two parallel
motors.

selected sample i(t) i(t− ∆t) i(t− 2∆t) i(t− 3∆t) v(t− ∆t) v(t− 2∆t) v(t− 3∆t)
30th sample 10.61917 9.017144 7.040091 4.826744 -8.6304 -8.72347 -8.32261

34th sample 11.15864 12.0443 12.22007 11.72101 -3.20478 -5.24944 -6.875

38th sample 1.289478 4.522545 7.326548 9.56945 6.857844 4.340844 1.723764

42th sample -12.313 -9.21498 -5.77706 -2.20721 12.96362 12.2903 10.97314

46th sample -17.7378 -17.7059 -16.7179 -14.8728 8.38181 10.59694 12.12821

50th sample -8.25894 -11.9136 -14.8025 -16.7668 -4.80718 -1.19511 2.332151

54th sample 9.265115 4.953669 0.424436 -4.06529 -14.795 -13.264 -11

Table 4.58: Values of voltage at time t for the first sampling scenario in the case of
two parallel motors.

selected sample v(t)
30th sample 8.013647

34th sample 0.839119

38th sample -9.1183

42th sample -12.9206

46th sample -5.58108

50th sample 8.12817

54th sample 15.50839

Discrete time series coefficients are calculated and resulted as:
A=

[
5.0677 −11.4741 8.1121 −1.7024 −0.5052 −0.9970 0.51539

]
Simulation Eight: Second Sampling Scenario For The Third Order Status

In this sampling scheme, the first sampling point is the 40th point of voltage and current
waveforms. The distance between each samples is 4 samples.
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Table 4.59: Values of current at time t, t − ∆t, t − 2∆t and t − 3∆t, voltage at time
t−∆t, t− 2∆t and t− 3∆t for the second sampling scenario in the case of two parallel
motors.

selected sample i(t) i(t− ∆t) i(t− 2∆t) i(t− 3∆t) v(t− ∆t) v(t− 2∆t) v(t− 3∆t)
40th sample -5.77706 -2.20721 1.289478 4.522545 10.97314 9.118296 6.857844

44th sample -16.7179 -14.8728 -12.313 -9.21498 12.12821 12.92057 12.96362

48th sample -14.8025 -16.7668 -17.7378 -17.7059 2.332151 5.581085 8.38181

52th sample 0.424436 -4.06529 -8.25894 -11.9136 -11 -8.12817 -4.80718

56th sample 16.28371 13.11448 9.265115 4.953669 -15.3648 -15.5084 -14.795

60th sample 19.32273 20.15932 19.91034 18.59294 -7.06243 -10.103 -12.5854

64th sample 6.816886 11.01555 14.62358 17.44378 7.062435 3.631558 -4.10E-13

Table 4.60: Values of voltage at time t for the second sampling scenario in the case of
two parallel motors.

selected sample v(t)
40th sample -12.2903

44th sample -10.5969

48th sample 1.195109

52th sample 13.26397

56th sample 14.37219

60th sample 3.631558

64th sample -10.103

Discrete time series coefficients are calculated and resulted as:
B=

[
5.0644 −11.4930 8.1528 −1.7211 −0.5136 −0.9904 0.5159

]
Impedance coefficient values for t = t, t − ∆t, t − 2∆t, t − 3∆t are equal for the two sam-
pling scenarios. Therefore, we will proceed with order=4 coefficient calculation. Three
different sampling sets are selected.

Simulation Eight: First Sampling Scenario For The Fourth Order Status

In this sampling scheme, the first sampling point is the 20th point of voltage and current
waveforms. The distance between each samples is 5 samples.
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Table 4.61: Values of current at time t, t−∆t, t− 2∆t and t− 3∆t and t− 4∆t, voltage
at time t− ∆t, t− 2∆t, t− 3∆t and t− 4∆t for the first sampling scenario in the case
of two parallel motors.

selected sample i(t) i(t− ∆t) i(t− 2∆t) i(t− 3∆t) i(t− 4∆t) v(t− ∆t) v(t− 2∆t) v(t− 3∆t) v(t− 4∆t)
20th sample -6.79403 -7.00161 -6.82318 -6.31469 -5.54857 2.648413 3.57816 4.195117 4.49131

25th sample 0.258391 -1.83327 -3.64976 -5.11123 -6.16645 -4.84104 -3.23695 -1.58881 1.74E-13

30th sample 10.61917 9.017144 7.040091 4.826744 2.52011 -8.6304 -8.72347 -8.32261 -7.48552

35th sample 9.56945 11.15864 12.0443 12.22007 11.72101 -0.83912 -3.20478 -5.24944 -6.875

40th sample -5.77706 -2.20721 1.289478 4.522545 7.326548 10.97314 9.118296 6.857844 4.340844

45th sample -17.7059 -16.7179 -14.8728 -12.313 -9.21498 10.59694 12.12821 12.92057 12.96362

50th sample -8.25894 -11.9136 -14.8025 -16.7668 -17.7378 -4.80718 -1.19511 2.332151 5.581085

55th sample 13.11448 9.265115 4.953669 0.424436 -4.06529 -15.5084 -14.795 -13.264 -11

60th sample 19.32273 20.15932 19.91034 18.59294 16.28371 -7.06243 -10.103 -12.5854 -14.3722

Table 4.62: Values of voltage at time t for the first sampling scenario in the case of
two parallel motors.

selected sample v(t)
20th sample -1.43749

25th sample 6.292675

30th sample 8.013647

35th sample -1.72376

40th sample -12.2903

45th sample -8.38181

50th sample 8.12817

55th sample 15.36482

60th sample 3.631558

Discrete time series coefficients are calculated and resulted as:
[a0, a1, a2, a3, a4,b0,b1,b2,b3] =[
5.0678 −16.4878 19.4712 −9.7424 1.6912 −1.4958 −0.4912 1.4957 −0.5087

]
Simulation Eight: Second Sampling Scenario For The Fourth Order Status

In this sampling scheme, the first sampling point is the 30th point of voltage and current
waveforms. The distance between each samples is 5 samples.
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Table 4.63: Values of current at time t, t−∆t, t− 2∆t and t− 3∆t and t− 4∆t, voltage
at time t− ∆t, t− 2∆t, t− 3∆t and t− 4∆t for the second sampling scenario in the
case of two parallel motors.

selected sample i(t) i(t− ∆t) i(t− 2∆t) i(t− 3∆t) i(t− 4∆t) v(t− ∆t) v(t− 2∆t) v(t− 3∆t) v(t− 4∆t)
30th sample 10.61917 9.017144 7.040091 4.826744 2.52011 -8.6304 -8.72347 -8.32261 -7.48552

35th sample 9.56945 11.15864 12.0443 12.22007 11.72101 -0.83912 -3.20478 -5.24944 -6.875

40th sample -5.77706 -2.20721 1.289478 4.522545 7.326548 10.97314 9.118296 6.857844 4.340844

45th sample -17.7059 -16.7179 -14.8728 -12.313 -9.21498 10.59694 12.12821 12.92057 12.96362

50th sample -8.25894 -11.9136 -14.8025 -16.7668 -17.7378 -4.80718 -1.19511 2.332151 5.581085

55th sample 13.11448 9.265115 4.953669 0.424436 -4.06529 -15.5084 -14.795 -13.264 -11

60th sample 19.32273 20.15932 19.91034 18.59294 16.28371 -7.06243 -10.103 -12.5854 -14.3722

65th sample 2.257668 6.816886 11.01555 14.62358 17.44378 10.10304 7.062435 3.631558 -4.10E-13

70th sample -17.2642 -14.5713 -11.0641 -6.93537 -2.41191 14.79497 15.50839 15.36482 14.37219

Table 4.64: Values of voltage at time t for the second sampling scenario in the case of
two parallel motors.

selected sample v(t)
30th sample 8.013647

35th sample -1.72376

40th sample -12.2903

45th sample -8.38181

50th sample 8.12817

55th sample 15.36482

60th sample 3.631558

65th sample -12.5854

70th sample -13.264

Discrete time series coefficients are calculated and resulted as:
[a0, a1, a2, a3, a4,b0,b1,b2,b3] =[
5.0678 −16.4825 19.4589 −9.7335 1.6892 −1.4947 −0.4918 1.4947 −0.5081

]
Simulation Eight: Third Sampling Scenario For The Fourth Order Status

In this sampling scheme, the first sampling point is the 40th point of voltage and current
waveforms. The distance between each samples is 5 samples.
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Table 4.65: Values of current at time t, t−∆t, t− 2∆t and t− 3∆t and t− 4∆t, voltage
at time t− ∆t, t− 2∆t, t− 3∆t and t− 4∆t for the third sampling scenario in the case
of two parallel motors.

selected sample i(t) i(t− ∆t) i(t− 2∆t) i(t− 3∆t) i(t− 4∆t) v(t− ∆t) v(t− 2∆t) v(t− 3∆t) v(t− 4∆t)
40th sample -5.77706 -2.20721 1.289478 4.522545 7.326548 10.97314 9.118296 6.857844 4.340844

45th sample -17.7059 -16.7179 -14.8728 -12.313 -9.21498 10.59694 12.12821 12.92057 12.96362

50th sample -8.25894 -11.9136 -14.8025 -16.7668 -17.7378 -4.80718 -1.19511 2.332151 5.581085

55th sample 13.11448 9.265115 4.953669 0.424436 -4.06529 -15.5084 -14.795 -13.264 -11

60th sample 19.32273 20.15932 19.91034 18.59294 16.28371 -7.06243 -10.103 -12.5854 -14.3722

65th sample 2.257668 6.816886 11.01555 14.62358 17.44378 10.10304 7.062435 3.631558 -4.10E-13

70th sample -17.2642 -14.5713 -11.0641 -6.93537 -2.41191 14.79497 15.50839 15.36482 14.37219

75th sample -15.2861 -17.7612 -19.2498 -19.6691 -18.9951 1.220537 4.807176 8.12817 11

80th sample 5.666001 1.092029 -3.53966 -7.97276 -11.9619 -13.8608 -11.8291 -9.14379 -5.95316

Table 4.66: Values of voltage at time t for the third sampling scenario in the case of
two parallel motors.

selected sample v(t)
40th sample -12.2903

45th sample -8.38181

50th sample 8.12817

55th sample 15.36482

60th sample 3.631558

65th sample -12.5854

70th sample -13.264

75th sample 2.433549

80th sample 15.12653

Discrete time series coefficients are calculated and resulted as:
[a0, a1, a2, a3, a4,b0,b1,b2,b3] =[
5.0678 −16.4670 19.4235 −9.7082 1.6839 −1.4916 −0.4937 1.4919 −0.5066

]
Fifth order impedance coefficients are not equivalent for two selected sampling patterns.
The largest order which results in the equal impedance coefficients is 4. Usually, in the
case of parallel motors, if they are not identical, each single motor will increase the total
order of the circuit, by two. In other words, if n motor loads are connected to a feeder, the
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aggregated load will be a 2n order system.

Figure 4.28: Third order impedance coefficients for two different sampling scenarios
of two parallel motor loads.
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Figure 4.29: Fourth order impedance coefficients for three different sampling scenar-
ios of two parallel motor loads.
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4.2.13 Simulation Eight: Two Parallel Motors Load Parameters Calculations

Figure 4.30: Two parallel motors.

Ys in Figure 4.31 is derived from the 4th order calculated discrete impedance coefficients.
Following division products 8 steps of division prior to getting a remainder of zero
The first eight quotients are indicating two motor’s parameters respectively, R1, Lm, R2&L2

& R3, L2m, R4&L4.
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Figure 4.31: Two parallel motors load parameter calculation.
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4.2.14 Simulation Nine: Two Parallel Motors in Parallel with One Resistive
Load

Figure 4.32: Two parallel motor in parallel with one resistive load.

In this simulation case, sampling rate is ∆t = 625µs(sampling frequency =1600 Hz), max-
imum simulation time is tmax = 0.0625s and ramp up time=0.03 (slow transient ends at
sample number 48). For this case, since resistor does not change the total order of the
aggregated circuit, this load is a 4th order load same as Section 4.2.12.

Simulation Nine: First Sampling Scenario For The Fourth Order Status

In this sampling scheme, the first sampling point is the 30th point of voltage and current
waveforms. The distance between each samples is 5 samples.
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Table 4.67: Values of current at time t, t− ∆t, t− 2∆t, t− 3∆t and t− 4∆t, voltage at
time t− ∆t, t− 2∆t, t− 3∆t and t− 4∆t for the first sampling scenario in the case of
two parallel motors in parallel with a resistive load.

selected sample i(t) i(t− ∆t) i(t− 2∆t) i(t− 3∆t) i(t− 4∆t) v(t− ∆t) v(t− 2∆t) v(t− 3∆t) v(t− 4∆t)
30th sample 10.77944 9.189752 7.21456 4.993196 2.67E+00 -8.6304 -8.72347 -8.32261 -7.48552

35th sample 9.534974 11.17542 12.1084 12.32506 11.85851 -0.83912 -3.20478 -5.24944 -6.875

40th sample -6.02286 -2.42667 1.107112 4.385388 7.239731 10.97314 9.118296 6.857844 4.340844

45th sample -17.8735 -16.9299 -15.1153 -12.5714 -9.47426 10.59694 12.12821 12.92057 12.96362

50th sample -8.09637 -11.8174 -14.7786 -16.8134 -17.8494 -4.80718 -1.19511 2.332151 5.581085

55th sample 13.42177 9.575283 5.249569 0.689716 -3.84529 -15.5084 -14.795 -13.264 -11

60th sample 19.39536 20.30056 20.1124 18.84465 16.57115 -7.06243 -10.103 -12.5854 -14.3722

65th sample 2.005961 6.614825 10.8743 14.55095 17.44378 10.10304 7.062435 3.631558 -4.10E-13

70th sample -17.5295 -14.8672 -11.3743 -7.24266 -2.69935 14.79497 15.50839 15.36482 14.37219

Table 4.68: Values of voltage at time t for the second sampling scenario in the case of
two parallel motors in parallel with a resistive load.

selected sample v(t)
30th sample 8.013647

35th sample -1.72376

40th sample -12.2903

45th sample -8.38181

50th sample 8.12817

55th sample 15.36482

60th sample 3.631558

65th sample -12.5854

70th sample -13.264

Discrete time series coefficients are calculated and resulted as:
B=

[
4.6014 −14.9632 17.6626 −8.8337 1.5329 −1.6559 −0.0936 1.1800 −0.4305

]
Simulation Nine: Second Sampling Scenario For The Fourth Order Status

In this sampling scheme, the first sampling point is the 40th point of voltage and current
waveforms. The distance between each samples is 5 samples.
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Table 4.69: Values of current at time t, t− ∆t, t− 2∆t, t− 3∆t and t− 4∆t, voltage at
time t− ∆t, t− 2∆t, t− 3∆t and t− 4∆t for the second sampling scenario in the case
of two parallel motors in parallel with a resistive load.

selected sample i(t) i(t− ∆t) i(t− 2∆t) i(t− 3∆t) i(t− 4∆t) v(t− ∆t) v(t− 2∆t) v(t− 3∆t) v(t− 4∆t)
40th sample -6.02286 -2.42667 1.107112 4.385388 7.239731 10.97314 9.12E+00 6.857844 4.340844

45th sample -17.8735 -16.9299 -15.1153 -12.5714 -9.47426 10.59694 12.12821 12.92057 12.96362

50th sample -8.09637 -11.8174 -14.7786 -16.8134 -17.8494 -4.80718 -1.19511 2.332151 5.581085

55th sample 13.42177 9.575283 5.249569 0.689716 -3.84529 -15.5084 -14.795 -13.264 -11

60th sample 19.39536 20.30056 20.1124 18.84465 16.57115 -7.06243 -10.103 -12.5854 -14.3722

65th sample 2.005961 6.614825 10.8743 14.55095 17.44378 10.10304 7.062435 3.631558 -4.10E-13

70th sample -17.5295 -14.8672 -11.3743 -7.24266 -2.69935 14.79497 15.50839 15.36482 14.37219

75th sample -15.2374 -17.7856 -19.3459 -19.8316 -19.2151 1.220537 4.807176 8.12817 11

80th sample 5.968531 1.369245 -3.30308 -7.78988 -11.8428 -13.8608 -11.8291 -9.14379 -5.95316

Table 4.70: Values of voltage at time t for the second sampling scenario in the case of
two parallel motors in parallel with a resistive load.

selected sample v(t)
40th sample -12.2903

45th sample -8.38181

50th sample 8.12817

55th sample 15.36482

60th sample 3.631558

65th sample -12.5854

70th sample -13.264

75th sample 2.433549

80th sample 15.12653

Discrete time series coefficients are calculated and resulted as:
B=

[
4.6014 −14.9667 17.6706 −8.8395 1.5341 −1.6567 −0.0930 1.1806 −0.4308

]
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Figure 4.33: Third order impedance coefficients for two different sampling scenarios
of two parallel motors in parallel with one resistance load.

Figure 4.34: Fourth order impedance coefficients for two different sampling scenarios
of two parallel motors in parallel with one resistance load.
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Figure 4.35: Fifth order impedance coefficients for two different sampling scenarios
of two parallel motors in parallel with one resistance load.

4.2.15 Simulation Nine: Two Parallel Motors in Parallel with A Resistive
Load Parameters Calculations

Figure 4.36: Two parallel motors in parallel with a resistive load.
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In Figure 4.37, Ys is derived from the 4th order impedance coefficients. In this case, we see
9 stages of division before we reach zero in remainder. The first eight quotients are the
values of the 2 motors parameters respectively, R1, Lm, R2&L2 & R3, L2m, R4&L4 and the
last quotient is the value of paralleled resistance.
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Figure 4.37: Two parallel motors load parameter calculation.
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4.2.16 Simulation Ten: Two Parallel Motors in Parallel with A Resistive and
An Inductive Load Parameters Calculations

In this section, we describe two parallel motors in parallel with a resistive and inductive
load. The load is a 5th order load. Since inductance generates 1st order history terms, it
increase the total order of the aggregated load circuit by one. According to our algorithm,
the order of an aggregated load combining of motor loads and inductive loads in parallel
is formulated as:(number of inductive loads)*1+(number of motor loads *2)

Figure 4.38: Two Parallel motors in parallel with a resistive and an inductive load.

This case determines an inductor type in parallel with two induction motors. In Fig-
ure 4.39, Ys is derived from the 5th order discrete time impedance coefficients. This load
scenario products ten steps of long division before reaching to zero in remainder.
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Figure 4.39: Two parallel motors in parallel with a series RL load parameter calcula-
tion. 133



The first eight quotients are 2 motors parameters respectively namely, R1, Lm, R2&L2

& R3, L2m, R4&L4. The 9th and the 10th quotients are the values of paralleled Resistor
and inductor within some errors. In conclusion, having the electrical parameters of an
aggregated load, and the types of its constituent eigenloads, will determine, what type of
loads are connected to the feeder at each time stamp. Figure 4.40 demonstrates the general
overview of our load disaggregation algorithm.

Figure 4.40: General overview of or work.

In which u1,u2 and u3 are the contributions of each eigen-loads in the total load.
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Chapter 5

Experimental Results

The proposed “Load decomposition” algorithm is validated with real experimental data
accomplished on a number of different appliance types at “UBC Power Lab”. As dis-
cussed in Chapter 3, voltage and current signals in near-real time domain, are the inputs
of the proposed algorithm. The main goal of this chapter is to verify the proposed method
with real measurements. A number of electric appliances were analysed in the lab and
current and voltage waveforms were recorded for a period of few seconds. Sampling
frequency is 10KHz. A current and voltage probe (different probe) were attached to an
oscilloscope for measuring the voltage and current waveforms. Table 5.1 summarizes the
list of appliances which have been tested.

5.1 Appliances Electrical Load Types and Classification
In this section, we briefly explain about four major category of appliances according to
their characteristics.

5.1.1 Resistive Loads

Loads consisting of any type of heating elements such as conventional electric heating ap-
pliances (without power electronic interfaces), iron, heater, toaster, oven, kettles, electric
rice cookers, electric hair curlers and even incandescent lights are categorized as resistive
loads. These type of loads have negligible reactive power.
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Table 5.1: Experimental appliances list.

Appliance type order of the load/type of the load
Compact Florescent Lamp with magnetic ballast 1st order-inductive

Fan 2nd order-Motor load
Refrigerator 2nd order-Motor Load
Hair Dryer 2nd order-Motor Load

LCD Samsung power electronics
iphone charger power electronics
HTC charger power electronics
Asus charger power electronics

Razor 2nd order and Motor
Vacuum Cleaner 2nd order and Motor type

Iron resistive load
incandescent lamp purely Resistive

5.1.2 Inductive Loads

An example of this group are florescent lamps which convert the electromagnetic radia-
tion to the light.

5.1.3 Motor Loads

Induction motors have the most appearance among the household appliances. Fan, vac-
uum cleaner, dishwasher and refrigerator are examples of motor loads.

5.1.4 Non-Linear Loads

These loads do not draw the sinusoidal current pattern. The most predominant ones are
power electronic loads such as charger, TV and desktop computer. Figure 5.1 shows the
measured voltage at the outlet. To obtain the aggregated voltage value, we measured
the voltage between the outlet and appliances. Note that, in order to mimic the similar
situation as in real power gird, all loads are directly connected to the 120 volt outlet. We
use the same voltage signal for all the appliances.
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Figure 5.1: Voltage measured at main outlet.

5.2 Measuring General Observations
Some loads such as the vacuum cleaners exhibit a fairly constant frequency over the time.
While the magnitude of current has a decaying component (inrush current). Some loads
have multiple stages from the starting moment to the steady state. The current waveform
of a HTC laptop charger as shown in Figure 5.5, has this characteristic. Current has the
higher frequency components at the middle stage and then starts damping after a few
cycles.

5.2.1 Fan

Figure 5.2 indicates the current waveform for a table fan captured on-line while it was
connected to the city electricity.
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Figure 5.2: Current waveform in time for a fan.

5.2.2 Fan Parameters Calculation

As the first step, we need to choose at least two different sampling scenarios or two differ-
ent harmonic data sets. We extracted the 60 Hz instantaneous voltage and current signals.
Additionally, two sampling patterns were selected due to calculating the impedance co-
efficients. Both vt and it are sampled with sampling rate of ∆t = 1.6e-06 seconds. As
discussed in Chapter 3, from Equation 3.4, we derive the second order impedance coeffi-
cients for two different sampling scenarios as following.

First Sampling Scenario For the Second Order Status
A = [a0, a1, a2,b0,b1] =

[
257.1647 −499.2356 242.3976 −1.9700 0.9726

]
Second Sampling Scenario For the Second Order Status
B = [a0, a1, a2,b0,b1] =

[
259.2187 −499.2816 240.2983 −1.9631 0.9653

]
Matrices A and B are equivalent within 10% error. We also, analysed the third order
coefficients. The derived values were not equivalent for two different sampling schemes.
Implementing second Cauer synthesis method on the continuous admittance function of
the fan leads to:
R1 = 107ohm
Lm = 11.02mH
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R2 = 419.43ohm
L2 = 11.02mH

5.2.3 Florescent Lamp

Figure 5.3 demonstrates the current waveform of a magnetic ballast florescent lamp. There
are some noise and also harmonics embedded in the current waveform. We extracted
60Hz component and implemented our method on the instantaneous voltage and current
data. Florescent lamp was confirmed to be a first order load based on real voltage and
current data.

Figure 5.3: Current waveform in time for a florescent lamp

5.2.4 Florescent Parameters Calculation

As the first step, we need to choose at least two different sampling scenarios or two dif-
ferent harmonic data sets. We extracted the 60 Hz instantaneous voltage and current sig-
nals. Additionally, two sampling patterns were selected due to calculating the impedance
coefficients. Both vt and it are sampled with sampling rate of ∆t = 8e-07 seconds. As dis-
cussed by Equation 3.4, we derive the first order impedance coefficients for two different
sampling scenarios as following.

First Sampling Scenario For the First Order Status
A = [a0, a1,b0] =

[
1567.7 −1567.8 −1

]
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Second Sampling Scenario For the First Order Status
B = [a0, a1, a2,b0,b1] =

[
1567.5 −1567.5 −1

]
Matrices A and B are equivalent within 10% error. We also, analysed the second order
coefficients. The derived values were not equivalent for two different sampling schemes.
Implementing second Cauer synthesis method on the continuous admittance function of
the fan leads to:
L = 0.637mH

5.2.5 Fan in Parallel With Florescent Lamp Parameters Calculation

We put the fan and the florescent lamp in parallel for this case and aggregated voltage
and current are measured.

5.2.6 Parallel Florescent and Fan Parameters Calculation

As the first step, we need to choose at least two different sampling scenarios or two differ-
ent harmonic data sets. We extracted the 60 Hz instantaneous voltage and current signals.
Additionally, two sampling patterns were selected due to calculating the impedance co-
efficients. Both vt and it are sampled with sampling rate of ∆t = 1.6e-06 seconds. As
discussed in Chapter 3, from Equation 3.4, we derive the second order impedance coeffi-
cients for two different sampling scenarios as following.

First Sampling Scenario For the Second Order Status
A = [a0, a1, a2,b0,b1] =

[
351.25 −703.5 −352 −2 1

]
Second Sampling Scenario For the Second Order Status
B = [a0, a1, a2,b0,b1] =

[
347.2160 −694.2740 347.0588 −1.9993 .9993

]
Matrices A and B are equivalent within 10% error. This confirms that this parallel load
topology, at least satisfies the second order circuit requirements. Therefore the next pro-
posed order is order number three. As shown by Equation 3.4, we derive the third order
impedance coefficients for two different sampling scenarios as following.

First Sampling Scenario For the Third Order Status Since the selected order is three, we
need at least seven coefficients. A = [a0, a1, a2, a3,b0,b1,b2] =[
365 −1094.3 1093.6 −364.3 3 −3 1

]
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Second Sampling Scenario For the Third Order Status B = [a0, a1, a2, a3,b0,b1,b2] =[
368.5 −1104.5 1103.6 −376.6 3 −3 1

]
Matrices A and B are equivalent within 10% error. This confirms that this parallel load
topology, at least satisfies the third order circuit requirements. Therefore the next pro-
posed order is order number four. Fourth order nine impedance coefficients including
[a0, a1, a2, a3, a4,b0,b1,b2,b3] received different values for the two different group of 60 Hz
voltage and current samples. This proves that a parallel fan and florescent lamp load is a
third order system. Note, as described in Chapter 3, motors are second order loads and
inductive loads are first order loads. Whenever, we have an odd number for the aggre-
gated load, there has to be some motor and some inductance. But, in the case of the even
orders, total load can either be a combination of motors, or parallel motor and resistances.
We concluded that a parallel fan and florescent lamp is a third order load. This implies
that there is a second order motor load and a first order inductive load in parallel. Sec-
tions 5.2.1 and 5.2.3, already proved that a fan is a motor load and a florescent lamp is an
inductive load type. Therefore, the parallel combination will be a third order load.

5.2.7 Hair Dryer

Figure 5.4 shows the current waveform of a current waveform. The current signal is in
phase with voltage signal which confirms that, hair dryer is a resistive load. We also
verified this with our algorithm.
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Figure 5.4: Current waveform in time for a hair-dryer.

This thesis for the hair dryer, did not cover finding circuit parameters. However, based
our theory and simulation results in Section 3.4, we believe, hair dryer is a first order load.

5.2.8 HTC Charger

HTC charger as discussed before is a power electronic load. For the power electronic
loads, we extract at least two different frequency components from the voltage and the
current signals. Impedance coefficients are calculated for each set of two harmonics.
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Figure 5.5: Current waveform in time for an HTC laptop charger.

This thesis does not cover power electronic load analysis.

5.2.9 Refrigerator

Refrigerator is an induction motor type of load. It is widely used for heavy duty applica-
tions requiring high starting torques.

Figure 5.6: Current waveform in time for a refrigerator.

For the refrigerator, we did not cover finding circuit parameters. However, based our
theory and simulation results in Section 3.4, we believe, refrigerator is a second order
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load.

5.3 Chapter Summary
In this chapter, we validated our method with some real measurements, which have been
conducted on a few home electrical appliances. This proved that the method is imple-
mentable to BC-Hydro distribution feeders.

144



Chapter 6

Conclusions and Future Work

6.1 Summary
In this thesis, we devised an innovative solution for the load disaggregation challenges.
So far, most researches in this domain, looked at load’s active and reactive power wave-
forms to extract the distinctive patterns for individual load types. But this thesis exploits
smart meter voltage and current load information to discern between different type of
loads. Our algorithm is able to distinguish between motor, heating and lighting loads. We
proposed an EMTP based solution to solve the load disaggregation problem. The most
important breakthrough is that we are able to recognize the type and the value of the loads
at any level in distribution network. The result of this research is an input feeding the lin-
ear power flow technique provided in paper [11]. LPF, assumes a linear voltage-power
dependency for all the load categories. Since, the dependency factor is different for each
type of load, we need to know the load type before solving a LPF problem.
First chapter, introduced the concept of load disaggregation and its applications in smart
distribution system. It also covered the definition of DMS, smart meter, and VVO. Chap-
ter 2 summarized literature review. Most researchers employed machine learning tech-
niques to classify different loads. Third chapter is the main body of this research. It
explained, how to derive the discrete time values of the impedance matrix for each type
of load. Network synthesis is integrated into our algorithm to calculate load’s electrical
circuit parameters. In Chapter 4, we analysed some of PSCAD simulation load cases.
Three major type of loads, (1) motor, (2) inductive, and (3) resistive are accounted in our
technique. Total loads are synthesized from different combinations of these eigen-loads.
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For this reason, simulation examples covered different circuit topologies including R and
L elements in the form of a motor, pure inductance and pure resistance. In Chapter 5, we
validate our method with real measurement data.

6.2 Future Work
The following are suggested areas for future work and improvement to this thesis:

1. This method is implementable on data received from BC-Hydro smart meters.

2. This thesis can be coupled with Shifted Frequency Analysis (SFA) models and em-
ployed by PSCAD. The shifted system is then numerically integrated to obtain dy-
namic phasor solutions, which are more easily understood by power system oper-
ators and planners than instantaneous time domain results. SFA allows the exact
simulation of frequencies within a band centred around a fundamental frequency
using large time steps in a discrete-time EMTP type of solution environment [54].
This powerful tool, gives us the freedom to choose the sampling rate from the load
voltage and current signals.

3. The other future’s improvement is to expand the selection of eigen-loads. One can
consider different category of induction motors, as an example. For instance, adopt-
ing another circuit synthesis method, may result in more exact determination of load
circuit parameters.

4. The other extension can be the process of converting a discrete time impedance
function to a continuous time impedance function. There is always a compromise
between accuracy and stability in all the discrete-continuous mapping methods.

5. One last limitation of this thesis is in its incapability of detecting individual induc-
tance values and resistance components in total load. This work only reported the
aggregated value for R and L. Working toward this challenge is another future work.
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