
A Camera-Based Approach to Remote
Pointing Interactions in the Classroom

by

Francisco Escalona Gonzalez

B.Sc., Universidad Nacional Autónoma de México, 2008

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate and Postdoctoral Studies

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

September 2015

c© Francisco Escalona Gonzalez 2015

Abstract

Modern classrooms are brimming with technological resources, from sound

systems and multiple large wall displays to the individual computers and

cellphones of students. Leveraging this technology presents interesting op-

portunities in human-computer interaction to potentially create a richer ex-

perience that improves the effectiveness of classrooms both for lecturers and

students. A key enabler of this experience is the ability for lecturers to ma-

nipulate objects on the screen by direct pointing, allowing them to be away

from a computer for input. We designed and implemented a remote pointing

technique that makes use of a web-camera and a pattern of shapes on the

wall display to perform target tracking. A controlled study to evaluate per-

formance and compare the camera-based technique to a traditional mouse

for a target selection task in a classroom setting revealed that both devices

have comparable error rates but that users are almost twice as fast with

the mouse. The increased freedom of movement and immediacy of inter-

action provided by direct pointing makes the trade-off between speed and

convenience reasonable. The technique does not require specialized hard-

ware: the ubiquity of personal pocket cameras and computers makes target

tracking with a camera a feasible future option for enabling direct pointing

interactions on large wall displays in classroom settings.

ii

Preface

The research presented in this thesis was carried out under the supervision

of Dr. Kellogg S. Booth. I was the primary researcher in all work presented.

Peter Beshai provided the code for the i>Clicker driver that was used in the

implementation of our pointing device.

Ethics approval for the experimental study with human participants was

provided by the Behavioural Research Ethics Board at UBC under ID H11-

01756.

The research reported in this thesis was funded under the Discovery

Grant program by the Natural Sciences and Engineering Research Council

of Canada and under the Network of Centres of Excellence program through

GRAND, the Graphics, Animation and New Media Network of Centres of

Excellence.

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Tables . vii

List of Figures . viii

Acknowledgements . xi

Dedication . xii

1 Introduction . 1

1.1 Two Important Input Devices for Pointing 4

1.1.1 Light Pen . 6

1.1.2 Mouse . 10

1.2 Contributions . 15

1.3 Overview of the Thesis . 16

2 Related Work . 17

3 Chiroptic Tracker: Camera-Based Remote Pointing 24

3.1 Design Constraints . 24

3.2 The Camera Tracking Process 26

3.3 Implementation . 32

3.3.1 Grid of Markers . 33

3.3.2 Cursor . 35

3.3.3 Feature Extraction 36

3.3.4 Computing Relative Coordinates 37

iv

Table of Contents

3.3.5 Cursor Position . 40

3.3.6 Performance . 42

3.4 Known Limitations . 42

3.4.1 Occlusion Caused by the Grid 42

3.4.2 High Color Contrast 44

3.4.3 Chaotic Movement 45

3.4.4 Lens Blur . 45

3.4.5 Lag . 45

3.4.6 Acute Angles . 46

3.5 Pilot Testing . 47

4 Comparing Remote Pointing to the Mouse 50

4.1 Hypotheses . 50

4.2 Empirical Models of Pointing Performance 51

4.3 Method . 54

4.3.1 Participants . 54

4.3.2 Apparatus . 55

4.3.3 Study Design . 59

4.3.4 Procedure . 60

4.4 Results . 62

4.4.1 Movement Time . 63

4.4.2 Error Rates . 65

4.4.3 Throughput . 66

4.4.4 Subjective Data . 68

4.5 Discussion . 70

5 Design Brief for a Classroom Interface 72

5.1 Goals of the Interface . 72

5.2 Required Resources Available Today 74

5.3 Styles of Interaction . 75

5.4 General Recommendations 76

5.5 Example of Future In-Classroom Interaction 77

6 Conclusions and Future Work 80

v

Table of Contents

Bibliography . 83

Appendix

A Experimental Resources . 90

A.1 Consent Form . 90

A.2 Initial Questionnaire . 93

A.3 Final Questionnaire . 95

vi

List of Tables

4.1 The six pose conditions used in the study. 60

4.2 The four formulations of Fitts’s Law considered for our anal-

ysis. Each predicts movement time MT from target width W

and amplitude (distance) of movement A. 64

4.3 Movement time models for the Fitts and Welford formula-

tions. Significant differences in nested models are highlighted

in bold. 64

4.4 Movement time models for the Shannon-Fitts and Shannon-

Welford formulations. Significant differences in nested models

are highlighted in bold. 64

4.5 Error rates for pose and target conditions. 65

4.6 Throughput means for all pose conditions, in bit/s. 66

vii

List of Figures

1.1 The difference between relative and absolute pointing. In

relative pointing (left) the cursor’s final position Pf depends

on both the movement of the device and the cursor’s initial

position, Pi. In absolute pointing (right) the cursor’s final

position depends only on the device’s final position. 5

1.2 The light pen (top) and a diagram showing its composition

(bottom). Taken from Sutherland’s dissertation. 8

1.3 A replica of the original mouse by Engelbart and English

seen from its side and bottom. Images borrowed from the

Computer History Museum’s webpage. 11

1.4 Optical system for a mouse. A light source, in this case an

LED, shines through a plastic lens to illuminate the surface,

while a small chip that contains a tiny camera processes the

images to detect translation changes from one frame to the

next. Image by Jeroen Domburg from spritesmods.com. . . . 13

3.1 The three processes involved in chiroptic tracking. The dis-

play renders the cursor and screen contents, the sensor inter-

prets what it sees in the display to extract a position, and the

human brain adjusts for errors. 27

3.2 Two different perspectives of the same grid cell, as captured

by the camera. Corresponding points are labeled with the

same letter. The tracker has to deal with the distortions

caused by perception. Note also the marked contrast in illu-

minations on the top and bottom sides of the left image. . . . 29

3.3 The architecture of our tracker’s implementation. 32

viii

List of Figures

3.4 Grid of fiducial markers. The black ellipses define a reference

frame, the gray circles determine proper orientation, and the

green squares encode row and column number. 33

3.5 A sequence of bits used to encode row and column numbers.

Numbers from 0 to 15 are arranged so that the two high-order

bits of one are the same as the two low-order bits of the next.

Each of the 16 numbers appears once in the sequence. 34

3.6 Design of the cursor for the chiroptic tracker. 35

3.7 The results of feature extraction on one frame of the camera.

On the left is the original image with perimeter pixels and

the main axis of each ellipse highlighted in red. On the right

is the the binarized version used to find the ellipses, and their

bounding boxes. 37

3.8 (Top) Difference between affine (a) and perspective (b) trans-

formations. (Bottom) Although the affine transformation

based on points A, B and C is not good enough to predict the

position of point D, it finds a good approximation in point D′. 39

3.9 An early version of the chiroptic sensor that incorrectly identi-

fied four blobs, highlighted with red, green, blue and magenta,

as the corners of a grid cell. The cause is extreme perspective

distortion in the image and the use of weaker heuristics for

grid identification. 46

3.10 Two of the grips used to hold the chiroptic tracker. The

screwdriver grip on the left is commonly used to hold a laser

pointer. The pencil grip on the right seems to be slightly

more intuitive for aiming the tracker. 49

4.1 Illustration of the task performed by participants: (left) the

cursor is moved from its starting position towards the darker

rectangle, (center) if the user clicks correctly on the target the

other rectangle becomes the new target, and (right) if instead

the user misses the target it flashes red and the targets then

switch. 55

ix

List of Figures

4.2 (top) A picture of the room illustrating what participants

saw. All lights were turned off during the study. (bottom) A

diagram drawn to scale of the room layout. Positions #1 and

#2 are perpendicular to the center of the screen, and position

#3 is off to the side. 56

4.3 The physical prototype of the tracker device used by partici-

pants. The image also shows the pencil grip they were asked

to use during the study. 59

4.4 Mean movement times in milliseconds at different indexes of

difficulty for all pose conditions. Lines are included only for

readability. 63

4.5 Comparison of average throughput values per participant.

Participants were sorted by increasing throughput in the “no

grid” condition, and the values for the “standing” condition

are also shown. 67

4.6 Difficulty ratings subjectively reported by participants for the

pointing task using the chiroptic tracker, from 1 (easy) to 5

(impossible). 68

x

Acknowledgements

Time flies when you are having fun, and two years at UBC can go by very

quickly. Still, much has happened during this time that has allowed me to

grow as a person, and I owe a debt of gratitude to many people who made

my experience unforgettable.

First and foremost, I am thankful to all the people who took the time

to share their knowledge with me and challenge me; my teachers, you are

outstanding. Among them I have to single out my supervisor, Dr. Kellogg

Booth, whose mind is a cornucopia of interesting ideas and projects, and

whose kindness has given me space to grow in my field. Thank you for your

time and your conversation.

One of the salient features that I love about the CS department at UBC

is the willingness of its people to help each other, more so when everyone’s

time is so constrained. I am thankful to my second reader, Dr. Jim Little,

for his advice on this work that has made it better, and to all the others

who likewise provided guidance and insight on my work.

My friends and fellow grad students are among the most capable and

smart people I have met; working with them has been a pleasure. Thank

you, Antoine, Kamyar and Derek, for our work together, and all the people

in the MUX lab who inspire me with their work and friendship, especially

Peter, Matt, Jessica and Oliver, for advice on things academic and otherwise.

To my family, most of them encouraging me from afar, but always

present. And to my wife, Jazmin, for the past and for the future.

I am blessed.

xi

To Lulu, Héctor and Edel,

for everything.

xii

Chapter 1

Introduction

The chiroptic1 tracker is a pointing input device designed for instructors as

a means of interacting directly with content on classroom displays. Those

displays are usually large and out of reach, so the interaction happens at

a distance and from all kinds of angles. The chiroptic tracker technique is

based on the metaphor of pointing a camera at the large wall display as if a

line were shooting out of its center to interact with the display at the point of

intersection. We achieve this direct pointing interaction by interpreting the

contents of the image captured by the camera, and figuring out a position

on the screen to render the cursor. The tracker is aimed in a similar way

as a laser pointer, but does not require more hardware resources than those

currently available to instructors.

Modern classrooms are equipped with lots of resources: multiple dis-

plays driven by powerful projectors, sound systems, computers, networking,

lighting controls, and all the personal devices contributed by its occupants,

which means more displays, microphones, processors, cameras, etc. These

resources are not being used to their full potential. Imagine some future

time when all of these devices are the instruments of an orchestra: they

tune and synchronize at the beginning of the class, identifying each other

and their layout around the room, so that as the class develops they create

a richer experience than what they could each bring in isolation. When

1 This is a word we made up from two roots, chiro- and optic, defined in the Collins
English Dictionary as:

chiro- combining form indicating the hand; of or by means of the hand
optic adj. (Anatomy) of or relating to the eye or vision

We are aware of a previous meaning of the word used in Chemistry to describe optical
techniques for investigating chiral substances, but that is not how we will use the word.
We use it to qualify an object that allows a person to “see through their hands”, possibly
by holding a camera.

1

Chapter 1. Introduction

students ask a question, microphones around them pick it up and send it to

speakers at the other end of the room to echo it so that everybody can hear.

Each personal laptop, tablet, or smartphone screen is a window into the

content shown on the main displays that students can annotate together.

The lecturer can move around freely and have conversations that engage

everyone, and when an unexpected question comes up, both students and

the lecturer have the freedom to modify the display without having to go all

the way back to the lectern. These are real possibilities that can be explored

with what is available right now. Direct pointing is an enabling capability

for this kind of experience.

The highly specialized classrooms for subjects such as Geography, Chem-

istry and Art, with posters and tools always at hand, can be seen as inter-

faces that provide a better user experience. These classrooms make learning

subject matter easier because the maps, burners and vials, or art supplies

the class needs at any given time are readily accessible. A Geography class-

room that does not have a map of a territory posted on a wall for reference

when a class is trying to learn about its terrain is not doing its job well. In

Don Norman’s terminology [34], it does not have good affordances for learn-

ing Geography. Other subjects such Literature or History might require

fewer visual displays, but they should present an interface conducive for dis-

cussion. Mathematics might require many surfaces to write on. In sharp

contrast to these examples, classrooms that are multi-purpose like those

commonly found in universities are stripped down of any specific content,

and instead provide tools so that lecturers can “dress” them however they

see fit for their class, which often means the lecturer prepares beforehand a

set of slides to show on the room’s main displays, to a great extent estab-

lishing the way the lecture will flow over time. This approach to learning is

less organic and less flexible, and often lacks engagement for students.

Consider what a lecturer that wants to improvise would have to do to

modify the contents of the screen. They often only have a limited mecha-

nism that allows them to move back and forth between slides, so for a more

complex maneuver they have to physically approach their computer to use

the keyboard and mouse, getting engaged in their personal screen, setting

2

Chapter 1. Introduction

things up and then glancing back towards the display to check that it is

showing what they need before resuming where they left off. If we acknowl-

edge that lecturing is a little like putting on a show, then this interaction is

terrible because it leaves the audience unattended, completely ignored by the

performer, disrupting their attention and the flow of the conversation. The

interface is in the way of the users. These limitations of the classroom can

be overcome with better interfaces, and direct pointing is a crucial element.

It is not that current input devices do not work, but they were designed

for a different kind of environment, a more personal one. If we use them

naively in the classroom, they create an obstacle between the users and what

they want to do. Current devices do not offer good affordances for the kind

of interaction we believe is important in the modern classroom.

In this thesis we explore the problem of direct pointing on large wall

displays in a classroom setting, using technology already available to lec-

turers and without prior calibration to the specific classroom in which it is

deployed. We design a technique that matches the requirements that we

identify, we describe its implementation, then we test it against the mouse

in a pointing task.

Our focus is on providing an improved input technique for the lecturer.

While members of the audience could also use the technique presented here,

they already have better means of interacting with the contents of the dis-

play, such as their network-connected personal computers, or personal re-

sponse systems such as the i>Clicker. Previous research by Beshai [6] and

Shi [43] has already looked into that side of classroom interactions, so we

will not go further into it here. For an example of a system that allows the

audience to share and control the large display, Liu and MacKenzie offer LA-

COME [23, 28] as a solution. In any case, it is worth noting that improving

the experience for the lecturer will likely also improve the experience for the

audience, by creating a more engaging and dynamic classroom environment.

Two fundamental assumptions guide our research:

1. Remote pointing in the classroom can be achieved without introduc-

ing any more hardware resources than those commonly available to

3

1.1. Two Important Input Devices for Pointing

lecturers: a general-purpose computer controls the contents of a large

wall display, and the lecturer holds a camera that can communicate

with the computer. Nothing else is required.

2. The lecturer’s interactions with the display are sporadic. Among other

things, this implies that a trade-off between speed for the convenience

of the lecturer and clarity for the engagement of the audience is ac-

ceptable.

1.1 Two Important Input Devices for Pointing

Pointing devices can be used for either relative or absolute input, and some

can be used for both modalities. Absolute pointing means that there is a

1–1 correspondence of positions in physical space to positions in the virtual

display, so that physically pointing or moving to the same physical position

will always give the same result in virtual space. A prime example of this is

a touch-sensitive surface, such as modern tablets and smartphones, where

touching a part of the screen means also “clicking” on whatever is shown

at that position in the display. In contrast, other devices have relative

positioning, like the mouse, where the cursor’s final position depends on

its initial position on the screen, even when the exact same movement is

performed with the mouse on a surface. Figure 1.1 illustrates these concepts.

Another aspect of pointing devices is that their control to display ratio

(or its reciprocal, gain) can be adjusted to tune their sensibility. Gain is

a multiplicative factor that is applied to the movement of the device to

increase or decrease the movement in the virtual space. A small movement

in a mouse with high gain can make the cursor go from one side of the

screen to the other. This has the advantage that users have to spend less

effort to move bigger distances in virtual space, but comes with the trade-off

of lowering their precision, because it is harder to point at things precisely

when even the slightest movement will cause a large change in position. On

the other hand, a low gain value means that the device has to be moved a

large distance to make the cursor go from side to side.

Users of the mouse who have experienced low gain settings are probably

4

1.1. Two Important Input Devices for Pointing

Figure 1.1: The difference between relative and absolute pointing. In relative
pointing (left) the cursor’s final position Pf depends on both the movement
of the device and the cursor’s initial position, Pi. In absolute pointing (right)
the cursor’s final position depends only on the device’s final position.

familiar with a technique in which, after moving the mouse through a large

displacement, it is raised and brought back and moved again, repeating this

perhaps many times to reach the desired target destination. When the mouse

is raised it “stops working”, in the sense that it does not change the position

of the cursor on the screen while it moves through air, but as soon as it is set

back down the cursor starts moving again. This technique is called clutching

and can be used in other devices as well to temporarily disable them while

the user gets into position, preventing unwanted movement of the cursor.

Naturally, an interaction that requires much clutching takes more time and

can be frustrating, but low gain values increase precision.

Modern operating systems can choose to vary the control to display ratio

of a pointing device, and often do this dynamically based on the speed of

movement as the user moves around, often without them noticing. When

they detect a fast movement they increase gain, making the assumption that

the user wants to go to a far target, but the value is decreased for smaller

movements to improve accuracy and precision. Varying gain dynamically

can improve user’s performance with a device, automatically balancing speed

and precision trade-offs.

Gain is most often associated with relative pointing, but it can also be

5

1.1. Two Important Input Devices for Pointing

used for absolute pointing. The defining property of absolute pointing is

that there is a 1–1 correspondence between control position (the location of

the input device) and display position (the location of the cursor). When

the correspondence has no scale factor, the gain is one, but when there is a

scale factor between control and display the correspondence is still 1–1.

Because both relative and absolute pointing mechanisms can make use of

clutching and gain, in a remote pointing setting like the one we are interested

in clutching can be used to activate the device only when the user needs it,

and get it out of the way when they do not. This blurs the distinction

between relative and absolute pointing, the difference being more about

how clutching is triggered than about whether the mapping is relative vs.

absolute.

Gain occurs naturally in absolute pointing: if users are close to the

screen, the angles involved create a low gain that increases precision, and

conversely when users are far away the angles create a high gain that al-

lows them to reach all corners with reduced effort. Gain can be provided in

software to simulate this, somewhat analogous to how camera angle changes

viewing perspective. Changing gain for absolute pointing changes the angu-

lar mapping for cursor location.

In the next sections we briefly look into other devices that are relevant

to our research for a variety of reasons: their popularity, the ideas they

bring to the discussion, or because they are used in settings similar to the

classroom where there is a large display and an imbalance of roles between

lecturer and audience. We describe how each device works and highlight

key ideas, weaknesses or strengths that they exhibit, with the purpose of

informing our own design. Most of the historical claims in this Section are

based (without explicit citation) on Buxton’s excellent historical survey [8].

Other sources are cited explicitly in context.

1.1.1 Light Pen

In the early 1950’s Robert Everett created an input device called the Light

Gun that looked like an actual gun with a handle and barrel, which the

6

1.1. Two Important Input Devices for Pointing

user pointed to the screen to read the position of an object by pressing the

trigger. The Light Pen was descended from it, designed in 1957 by Ben

Gurley to allow users to interact with a computer via a stylus-shaped input

device pointed directly at the screen. It consisted of a light sensor tuned to

detect the distinct light signal emitted by the phosphor-coated glass in CRT

displays of the era. The electron beam of the display would activate the

phosphor at specific positions one dot at a time, and the light pen reacted

when it saw the initial peak of the light emission. By keeping a record of the

position of the dots being rendered, the pen’s reaction told the computer

roughly at what part of the screen the user was aiming, enabling direct

pointing input on the display.

Ivan Sutherland introduced Sketchpad [46] to the scientific community

in 1963, a system that implements drawing on computer displays directly

using a light pen as a pointing device. In his PhD dissertation he describes

many ideas for interacting with computers in graphical ways. Some of the

concepts he discusses have been adopted in modern interfaces, including the

notion of direct manipulation by pressing a button to select an object or drag

it around. A light pen like the one shown in Figure 1.2 was a central piece

in his work, because it enabled a type of interaction with the computer that

people could relate to well — it was like drawing on the screen — giving the

user a greater freedom of movement and expression that was not possible

using only buttons and knobs. Sutherland described in detail the techniques

he designed to track the light pen’s position across the screen continuously,

and some finer details of his implementation that serve as inspiration when

designing other pointing devices.

A critical point is that the sensor needed to see some light in order to

know its position, but when the user moved it away from the light source the

position was lost again. In order to track the pen continuously the system

needed to make sure there was always some shape being drawn under it, or

close enough that it could be seen. A clever solution to this problem was the

use of the cursor. The cursor is a visual indicator of what position the user

is pointing at, but it is itself a shape on the display, and if it is moved fast

enough mirroring the light pen there will always be a shape to see and thus

7

1.1. Two Important Input Devices for Pointing

Figure 1.2: The light pen (top) and a diagram showing its composition
(bottom). Taken from Sutherland’s dissertation.

to get position information from, creating a nice loop that enables tracking.

With a field of view of about half an inch on the light pen, Sutherland was

able to follow the path of the user’s movement at a speed of 20 inches per

second across the screen if he refreshed the cursor position 100 times each

second. This tracking process alone took 10% of the computer’s resources

on the first version Sutherland implemented, but it worked well enough that

he could develop his interface, Sketchpad.

8

1.1. Two Important Input Devices for Pointing

Users would first have to activate the light pen by pointing it at any

shape on the screen, a process Sutherland called “inking up”, which would

cause a cursor to be drawn to indicate that the light pen was now tracking.

They would then move it to perform whatever action was required, and

when they were done they would just have to flick it fast enough to make

the sensor lose track of the cursor, causing it to disengage. That was the

clutch mechanism for the light pen. A user would have to learn how to

perform these three actions: acquiring the cursor, tracking, and releasing

the cursor, to use the light pen effectively in his system.

Different cursor designs were tried for the light pen, from a cloud of

random points to a tracking cross built from individual dots that could

be spaced apart evenly, or as Sutherland chose to do it, logarithmically,

presumably because this increases the concentration of points at the edges

of the cross, which is the portion most likely to be in the sensor’s field of

vision. He also experimented with the idea of anticipating cursor movement

by using constant velocity and constant acceleration equations, although he

reports that those techniques caused instability and he did not pursue them

further. In Chapter 3 we will talk about why this happens, and what can

be done to deal with it.

Sutherland gives another important insight in making a distinction be-

tween “actual” and “pseudo” locations. He realized that the actual position

the user is pointing to is often not as important as what they mean to point

to, which in the case of Sketchpad could be a line, a point of intersection,

or even an abstract quantity such as the length of a line segment. He used

a host of geometry heuristics and threshold values to try to tease out this

information from the user’s actions, and would often render the cursor at

its pseudo position to give better visual feedback to the light pen holder.

This is an important lesson of the light pen that we want to stress: the

cursor is an efficient design that has multiple purposes, directed to different

observers. On the one hand it indicates to the user the screen position or

object they are interacting with, but on the other it allows the light pen’s

position to be tracked by the computer. Each observer, user and computer,

benefits differently from the presence of the cursor, and it thus needs to be

9

1.1. Two Important Input Devices for Pointing

tuned to assist both at the same time.

Light pen technology is not in use anymore. CRT-based line-drawing

systems are hard to find because they have been displaced by raster devices

that refresh the whole screen at the same time instead of one shape at a

time. Rendering now takes place in a virtual canvas that is copied all at

once many times per second onto the display, which means that we cannot

use the same interrupt-driven mechanism to get position information from

the shapes being drawn on the screen. We know that direct pointing is

still a desirable interaction method, as evidenced by the prevalence of touch

sensitive surfaces in all kinds of displays these days, but now it is performed

differently. Instead of a light sensor we now use capacitive surfaces, infrared

beams or other hardware to do it. Unfortunately, in a room with a large

display that is potentially out of the user’s reach, direct touch is not a viable

option.

Stepping back a bit, we see that the light pen was basically a light

sensor, like a camera, mounted inside a pen-shaped holder and connected to

the computer. A style of interaction similar to it is conceivable for remote

pointing in a classroom. When users need to interact they point a camera at

the screen and specifically ask to acquire a cursor. The interaction then takes

place, after which the cursor goes away because it is not needed anymore.

The ideas embodied in the light pen remain valid and inspirational. If the

camera is in direct communication with the processor in charge of rendering

the contents of the visual display, we could recover position information for

pointing provided there is enough “stuff” to see in the field of view of the

camera. The question is what needs to be displayed for the camera to get

this position information. This will be discussed in detail in the next chapter

where we present the chiroptic tracker inspired by early light pens.

1.1.2 Mouse

The mouse is perhaps the best known pointing device because of widespread

adoption for desktop computers. It was developed by Doug Engelbart and

William English at the Stanford Research Institute (SRI) in California in

10

1.1. Two Important Input Devices for Pointing

1964, and presented to the world in December of 1968 in what became a

very famous demonstration of new ideas for human-computer interaction.

It was a successor to the Trackball, a pointing device that consisted of

a ball nested inside a mechanism that detected its rotation to move the

cursor on the screen. The original mouse consisted of a hand-sized box with

two perpendicular wheels attached to its bottom face that translated their

rotation into X and Y displacements via rotary potentiometers. A replica

from the Computer History Museum is shown in Figure 1.3.

Figure 1.3: A replica of the original mouse by Engelbart and English seen
from its side and bottom. Images borrowed from the Computer History
Museum’s webpage.

The idea to turn the trackball upside down so that the ball rested on

a planar surface came in 1968 from a group in Germany led by Rainer

Mallebrein, and independently again in 1973 from a group in Xerox PARC

led by Ronald Rider. Ball mice were basically the same technology as the

SRI original, but improved the experience of the user: the ball transferred

its movement over a surface to two wheels inside the casing that translated

it into screen coordinates. Another improvement came in 1981 from two

independent teams, one led by Steven Kirsch and another by Richard Lyon,

through the use of an optics system that read displacements in a pattern of

shapes as the mouse was moved over it. The advantage the optical mouse

had over the mechanical one was that the latter usually picked up dust and

dirt from the surface where it was used, eventually degrading the moving

parts inside and damaging the mouse. A disadvantage of the optical mouse

11

1.1. Two Important Input Devices for Pointing

was that it needed the presence of the pattern to work. Almost 20 years later,

in 1999, Agilent Technologies developed a new version of the optical mouse

that got rid of that limitation by constantly taking “pictures” of the surface

where it was being used and comparing them in sequence to determine the

magnitude of movement. Optical mice are very popular devices these days,

with an LED mounted on the bottom arranged next to a lens that refracts

its light to shine on the working surface, so that the camera can pick it up.

A laser diode can also be used, which improves the contrast of elements in

the surface to make the mouse work almost anywhere.

We can simulate the workings of an optical mouse by setting up a camera

to look at a desk at a constant angle while we move it over its surface, com-

paring successive images of the desktop to compute a translation value, and

converting that into a command for cursor displacement. Our simulation

would run much slower than the mouse, but the underlying principles that

make it work would be the same. Optical mice are highly optimized hard-

ware that works with very low resolution cameras, sometimes only 18×18

pixels, with a sampling rate of hundreds or thousands of frames per second.

Figure 1.4 shows the elements of the optics system for a mouse. Mice achieve

such speeds by using low resolution images and doing computations in the

mouse itself, so that when we move the mouse we perceive an instantaneous

change in cursor position on the screen.

Engelbart’s 1968 demo presented many important ideas that have been

very influential in modern interfaces, from video conferencing to hypertext,

and the mouse became the tool that enabled what has been called “direct

manipulation”, a technique by which the user can point and interact graph-

ically with objects shown on the screen, and affect them directly by pressing

buttons, to do things such as selecting, dragging or highlighting. It was a

crucial part in enabling a new metaphor for human-computer interaction.

To a lesser degree but in the same vein, we believe that remote pointing is an

enabling technology for powerful interaction metaphors with large displays

that can change how interactions take place in classrooms.

The mouse was designed for personal use on relatively small displays,

and requires the user to be fairly stationary so the mouse can rest against a

12

1.1. Two Important Input Devices for Pointing

Figure 1.4: Optical system for a mouse. A light source, in this case an
LED, shines through a plastic lens to illuminate the surface, while a small
chip that contains a tiny camera processes the images to detect transla-
tion changes from one frame to the next. Image by Jeroen Domburg from
spritesmods.com.

surface while the user operates it. In that sense it fits very well on a desktop

with a personal screen, but not necessarily in a room with a large shared

display where the user is roaming around. A mouse is usually used as a

relative pointing device: each time we move it on the desk the cursor moves

relative to its previous position on the screen, not to an absolute position

determined by the mouse location on the desktop. A mouse is also the prime

example of clutching: lifting it from the desk we can prevent the cursor from

moving, and setting it back down in a more advantageous position brings it

back into motion.

The cursor used in personal computers is often an arrow with the tip

indicating the point of interaction. It is designed to be small enough that

it minimizes occlusion of targets in the screen while still remaining visible

to the user who is controlling the cursor. A user that loses sight of the

cursor will often move the mouse around to find it again, which works due

to our increased visual sensitivity to moving objects (see Ware [50]). This is

an easy trick that most mouse users have learned (perhaps of necessity) on

their own. It helps balance the ease of visually finding the cursor when it

13

1.1. Two Important Input Devices for Pointing

is lost with the designer’s desire that the cursor blend out of the way when

not needed. Once users have found the cursor they can track it without

difficulty because they are the ones moving it, and so they know where to

look for it; but a passive observer will probably have more trouble following

the cursor and thus the interaction that is taking place. A shared setting

should rethink the cursor design to improve the experience of the audience

if that is an important goal of the shared interaction.

The most common type of mouse is restricted to two dimensions by

design: it works only when on a surface. This has a few advantages. For

example, optical mice only need to be concerned with movement in two

dimensions, so the computations from frame to frame are easier to perform

and the lens can be optimized for the fixed distance of the camera to the

surface. Another advantage is that by placing buttons on top of the mouse

it can be used as an input device for selection: the buttons require the user

to press on an axis perpendicular to the surface, so clicking them does not

cause the cursor to move. A six-degree-of-freedom freehand camera will have

a greater challenge interpreting movement change, and placing buttons on

it can potentially cause the user to accidentally change the pointing position

while clicking a button.

A new user of the mouse has to learn to control it. Some users are so

accustomed to the mouse that they can operate it without much thought,

but initially they were not as proficient and only became skilled with time.

For many it is a worthwhile investment, so it is important to recognize that

proficiency with an input device may not be automatic. A simple exercise

shows that we are not particularly good at using a mouse without visual

feedback. Try the following: take a look at a computer screen with a mouse

attached, notice the position of the cursor and choose a target some distance

away, make a mental image of what you are seeing and close your eyes, then

move the mouse to the target. Research by Phillips and Triggs [37] suggests

that you will probably miss. This also happens outside the computer. Try

the same exercise with objects on your desk: reaching for one of them with

your eyes closed will probably make you miss, knock it over, or at best slow

you down considerably.

14

1.2. Contributions

But humans are adaptable and they learn new skills over time. Our sen-

sorimotor system automatically adjusts to our movements based on feedback

from the senses to help us reach our target, which is a fundamental part of

why the mouse works so well: we do not even have to make a conscious

effort to do it. However, for this to work there should not be too much delay

between the movement and the feedback or our error correction mechanism

starts to degrade, as research by MacKenzie and Ware [27] suggests.

Mice are ubiquitous pointing devices that for many years have provided

tremendous value for our interactions with computers. They will likely con-

tinue to do so for some time. They were designed for a different purpose than

the one we are interested in, interaction with a large display in a classroom

setting, but the insights gained from this brief review will be very valuable

to us.

1.2 Contributions

This thesis presents the following four primary contributions:

• A description for an architecture of chiroptic trackers. The processes

involved and the challenges that have to be overcome to design them

are presented. This high-level view provides insights and advice for

anyone interested in studying the technology. It forms a framework

that allows many possible implementations.

• A proof of concept implementation of a chiroptic tracker is presented,

demonstrating that it has a realizable, low-cost instantiation that re-

quires only a consumer-grade webcam. We provide details and clarifica-

tion on many points that might not be obvious from the architecture’s

abstract description, and we analyze the weaknesses still present in

the prototype along with ideas on how to improve it.

• Results from a controlled experimental study that compares the proof-

of-concept chiroptic tracker to a mouse provide baseline information on

performance. The study reveals that the tracker is not only feasible,

it also works well for remote pointing tasks in the classroom setting.

15

1.3. Overview of the Thesis

The results verify Fitts’s Law models of movement time for pointing

tasks, which can be used by HCI researchers and interface designers.

• A design brief explaining the key ideas desirable when building a class-

room interface using direct pointing with available hardware. The de-

sign can be realized with the chiroptic tracker or any other device that

provides similar functionality.

1.3 Overview of the Thesis

In this first chapter we have presented a comprehensive introduction to the

topic of the thesis and background information on the lightpen and the

mouse. The lightpen is the inspiration for the chiroptic tracker; the mouse

is both the current dominant technology and the target for replacement.

Chapter 2 provides further background. It discusses related work directly

influencing ours, or that presents alternative approaches to solving the prob-

lem we are tackling.

The design and implementation of the chiroptic tracker is presented in

detail in Chapter 3, where we also discuss its limitations and opportunities

for further development. In Chapter 4 we report the results of the controlled

study performed in a classroom at the University of British Columbia, where

participants performed a Fitts’s Law-style pointing task with our camera-

based chiroptic tracker and also with a mouse for comparison.

The research presented in this thesis validates the chiroptic tracker in

various dimensions. In Chapter 5 we discuss how a novel classroom inter-

face could be designed using it, considering the lessons learned in previous

chapters. Lastly, Chapter 6 summarizes the work that has been presented

and lays down a path for future work.

16

Chapter 2

Related Work

The idea of using the camera in a cellphone to control a cursor is not new.

Madhavapeddy et al. [29] proposed enhancing widgets on the display with

markers similar to the ones used for tracking in augmented reality envi-

ronments, so that a user wielding a camera cellphone can twist, move or

otherwise interact with the widgets by pointing at them. Rohs [40] went

into detail about how this kind of marker can be used to detect position us-

ing the camera, describing the algorithms involved. Their markers are very

similar to the two-dimensional barcodes that are a popular tool to encode

a text string, and so in addition to giving an estimate of the camera’s six-

degree-of-freedom position, they can be used to tell apart different targets

or displays.

Ballagas et al. [5] extended this work to create an interaction called

“point and shoot”, where users aim through their phone screens at a target

of interest on a large display, and by pressing a button a grid of markers is

shown for a few moments while the camera captures a picture, which is then

processed to decode the markers and decide what object they are pointing to.

After this is done, the grid goes away and the user can continue interacting

with the selected object using other means. While the same marker grid

could be used to provide cursor tracking, the markers occlude most of the

screen due to their size, so they are not ideal. Similarly, an approach like the

one by Celozzi et al. [10] to detect camera position, using markers like those

proposed by Fiala [12], can be an accurate tracker but is not optimal due

to its denseness. Ballagas et al. also described another technique they call

“sweep”, which is an analogous mechanism to the optical mouse. It works

by analyzing motion flow of consecutive images, and the user does not have

to point at the screen, any surface will do as long as it has recognizable

features. Both of their techniques were reported to exhibit a 200ms delay

17

Chapter 2. Related Work

on the phone at the time, and selection with “point and shoot” can be done

in around five seconds, but we should keep in mind hardware is faster now,

so these times have probably improved.

Decoding position information from shapes is an idea similar to the

“structured light” technique used by computer vision researchers, where

a known pattern is projected onto a surface and the result analyzed by a

camera to determine properties such as shape and depth. Our problem is

simpler because we are interested in a planar surface, but the ideas are

insightful and will contribute to our discussion in Section 3.4.

Salvi et al. [41] present a survey of pattern encoding techniques. Tem-

poral encoding consists of sequences of patterns that change through time.

A camera is carefully synchronized with the projector to pick up the way

the pattern is distorted as light falls on the scene, and from that extracts

a three-dimensional approximation of what it sees. Spatial encoding uses

a two-dimensional pattern such that the neighborhood of each projected

point is unique and can be recognized by finding corresponding points. Di-

rect mapping projects shapes or numbers directly onto the scene that encode

position. This is the most similar strategy to the marker-based approach

discussed earlier.

Displaying the patterns for structured light can be very intrusive, but

there are ways to make it invisible to the human eye, as explained by Fofi

et al. [14]. One idea is to use infrared projection, which can be picked

up by a camera but not by humans. A different approach uses high-speed

projectors to quickly switch between the pattern and its negative, so that a

camera with a very short shutter time can see it, but our perceptual system

will fuse both patterns into a solid grey color. The main disadvantage we

see with using structured light as described is that it requires equipping the

classroom with more specialized equipment than what is commonly available

right now, however, it might become an interesting line of research as this

type of hardware becomes more common.

There have been efforts to do feature-based tracking using a camera with-

out the need of extra visual clutter from markers. Jeon et al. [20] propose

a range of techniques to do cursor manipulation using a camera phone, one

18

Chapter 2. Related Work

of which is called “marker-cursor”, where as the name suggests the cursor

is the marker. They use a square marker that allows them to calculate a

coordinate transformation function (a homography), and the interior of the

marker is a triangle that both provides a point of interaction and a way

to fix the orientation of the homography. Jiang et al. [21] use a different

approach without the use of any specialized markers, cleverly taking the last

two frames of the camera and using the cursor displacement to compute a

different transformation function, an affine transformation, which they use

to approximate the cursor position. Their approach is less powerful in that

it only provides two-dimensional translation and rotation information, and

when the cursor is relatively stationary the rotation information cannot be

computed.

Both of these approaches suffer from the limitation that there is no

recovery mechanism when the user moves so fast that the camera loses track

of the cursor, meaning they have to go back to where it was left and begin

dragging it again. This is an inherent limitation of the “marker-cursor”

approach. More recently, Baldauf et al. [3] have adapted more advanced

vision techniques to do feature-based tracking of a scene in real time with

a camera phone, which does not need any markers at all. They describe a

general framework for multi-user and multi-screen interaction that works by

computing a homography from a baseline image provided by the screen, and

matching of features on the camera image. This is a promising approach

that gives full six-degree-of-freedom information of the camera pose, and is

reported to work at interactive rates (although no numbers are provided).

The challenge remains of how to do cursor tracking on a blank screen, for

example for drawing applications.

Computing the camera pose from consecutive images of a scene is one

aspect of estimating optical flow, the apparent change in position of image

elements through time; brightness patches can change from one frame to

the next for reasons other than motion, so observing optical flow does not

necessarily mean a movement happened. By imposing certain constraints

on our interpretation of a scene, algorithms can build a geometric model

from optical flow data to estimate the position of the camera relative to

19

Chapter 2. Related Work

the scene. This model can be used to find the point of intersection of the

camera’s optical axis and some other object, such as a large wall display.

One way of computing optical flow is through feature-tracking algo-

rithms, which as their name suggest match individual points, edges or cor-

ners across different images. An example is the Lucas-Kanade algorithm [24],

which makes three assumptions: matching points look the same in every im-

age (they have the same brightness), movements are relatively small, and

points move similarly to their neighbors. These assumptions provide enough

constraints for an equation that estimates the magnitude and direction of

movement from one image to the other, and by assuming small movements

the time required to compute the solution is kept manageable. Some image

features can be tracked better than others, specifically textured regions work

better than plain regions, so the presence of trackable features is important

when estimating motion. The technique presented in Chapter 3 is simpler

because it assumes the presence of a specific pattern of features, that they all

lie on a plane and that they do not move, so any movement comes from the

camera: the algorithm was designed to take advantage of these constraints.

There are a variety of alternative techniques that can be used for in-

teracting at a distance with large wall displays. The survey by Ballagas et

al. [4] is a great resource for camera-based techniques, including direct and

indirect pointing. An example is C-Blink by Miyaoko et al. [30] that con-

sists of a screen mounted camera that is trained to look for color sequence

patterns on cellphone screens. Users can move their cursors on the screen

by running a program that flashes one of these patterns, showing it to the

camera as they move their arms around. An easier approach is to use the

touchscreen of a smartphone as a sort of remote control for the cursor, as

illustrated by Deller and Ebert [11], where dragging on the phone’s screen

moves the mouse on the large screen. This removes the benefits of direct

pointing, but works on any display. Gallo et al. [16] implemented an algo-

rithm that uses the phone’s camera to track the hand of the user in front of

it, and the tip of their fingers becomes the cursor position. They did this

at an impressive 30fps on a camera phone with a very limited processor by

today’s standards, but the algorithm’s performance suffers with increased

20

Chapter 2. Related Work

background clutter.

Another common approach involves more advanced camera systems, like

those used for motion capture by Vicon [47] and OptiTrack [19], and consists

of equipping a room with various precisely calibrated infrared cameras that

track reflective markers worn by users in the room. By placing the markers

correctly, one can obtain a model of the user’s joints and bones, or of a hand-

held wand, which can then be used to compute a virtual point of intersection

with the display. The main benefit of this technique is that it is very precise,

but it requires a lot of equipment that has to be previously installed and

calibrated, and so is a more expensive solution.

Others have used depth-sensing cameras to approximate the model of the

user’s body and carry out the same task with less precision. Muradov [31]

implemented such a system where a Microsoft Kinect camera tracked the

user’s movements, built a user model, and then computed a cursor on the

screen as previously described.

Sharp et al. [42] created highly optimized algorithms that use the same

sensor to recognize a hand with high accuracy. By using the joint positions of

the index finger we can determine a cursor position on the screen where users

point, without them wearing any special equipment. The main disadvantage

of depth sensors is that they have a restricted field of vision, only a couple

of meters wide, so to cover a large area one needs to use multiple sensors

carefully synchronized. This increases the cost of implementation and the

system complexity considerably. In addition, the infrared light used by all

of these devices may conflict with other technology in the room, like some

models of personal response (clicker) systems.

Alternatively, the depth-sensing camera can be held in hand and pointed

at the scene. KinectFusion, by Newcombe et al. [33], uses this approach to

generate a volumetric surface reconstruction of room-sized scenes in real

time, which continuously tracks the six-degree-of-freedom position of the

depth camera while it moves around the room. Identifying the large display

in the scene, the camera pose can be used to estimate where a user is point-

ing. As depth sensors become more widely available this technique should

be of great relevance for direct pointing.

21

Chapter 2. Related Work

Laser pointers are commonly used by lecturers in presentations to high-

light material on the screen. By using a room-mounted camera that is cali-

brated for the screen’s position and dimensions, a system can determine the

position of the laser beam on the screen to enable interactions, as described

by Kirstein and Mueller [22].

Olsen et al. [36] provide advice to implement such a system, and also

proposed an interaction scheme based on synchronized collaboration with

the windowing system to allow the user to press buttons, select items from

drop down menus, etc. They suggest that the cursor should change depend-

ing on the mode of interaction that is going on, and proceeded to test their

system to measure its effectiveness. Their system had considerable lag and

low sampling rate, due to technological limitations at the time, but worked

sufficiently well for most of the purposes they designed. Although not a

standard test, they observed that users took about twice as long to per-

form a series of tasks with the laser compared to the mouse. Among their

findings they realized that there is a real problem of hand jitter that makes

interaction with small objects difficult.

The jitter problem can be expected to increase the farther the user is

from the display. A nice feature of using laser pointers like this is that the

light on the screen is an effective cursor, easily seen by the audience and by

the camera, and its position is updated without delay. On the other hand

this means we cannot use techniques like adjusted gain to improve pointing

precision. The laser tracking technique has seen many variations, and is a

popular choice because it is relatively low-cost, requiring only the presence

of a calibrated camera on the room. It can even be extended for multiple

users by using modulated light patterns that help distinguish different lasers

as shown by Vogt et al. [49], and some researchers have experimented with

infrared lasers which are invisible to the human eye, allowing once more to

separate the virtual cursor from the laser beam, for example Cavens et al. [9].

Interestingly, users performed poorly with the IR laser when compared to a

visible light laser, which the authors speculate is because of the delay caused

by the rendering of the virtual cursor.

Comparisons of devices, like the ones performed in the cited research,

22

Chapter 2. Related Work

can be carried out in different ways. One of the most frequent is to use

the theory developed by Fitts [13] where he describes a model of movement

time prediction for different tasks that involve users selecting targets and

interacting with them in different ways. It consists of a linear model that

takes into account the relationship between width of the targets and the

amplitude of the movement, which he summarizes in a quantity known as the

index of difficulty of the task. His results have been refined by Welford [51] to

consider the individual differences in subjects and the separate contributions

of width and amplitude to the model, recognizing two distinct phases, one

of fast ballistic movement directly affected by amplitude, and one of homing

into the target affected more by target width.

Fitts’s predictive model has been used by HCI researchers in the past due

to its consistent reliability, and is now called Fitts’s Law. MacKenzie [25]

gives a good introduction of how Fitts’s tests are carried out, and Soukoreff

and MacKenzie [45] present guidelines for standard practices. Furthermore,

Shoemaker et al. [44] compare different variants of Fitts’s Law and conclude

that for pointing at a distance on large displays, particularly when gain

values are manipulated, two-part models based on Welford’s analysis work

better.

Myers et al. [32] performed comparisons of camera-tracked laser pointers

and other devices, including the mouse, for pointing tasks from across the

room in a manner similar to what MacKenzie and Jusoh [26] did for other

remote pointing devices, and found that the laser pointer performed about

one and a half times slower compared to the mouse. They also reinforced

what was known about the problem of hand jitter affecting laser pointer

precision. To the best of our knowledge, feature-based trackers that use

markers have not been compared in this way to a baseline device like the

mouse.

23

Chapter 3

Chiroptic Tracker: Camera-Based Remote Pointing

The goal of this chapter is to describe a technique that has potential to be

used effectively for remote pointing in a classroom setting without intro-

ducing any extra resources into the classroom using only technology that is

already there, and to explain the main challenges that have to be considered

by designers who build similar tools. The basic idea is to have a pattern

of shapes shown on the screen that encode position information. A camera

takes pictures of this pattern and then analyzes them to extract information

and thus understand where it is looking. In this way a user holding the

camera can “point it” at specific targets of interest on the display to initiate

interaction.

We begin by specifying a set of design constraints that help guide the

creation of the camera tracker, then describe the process of chiroptic track-

ing in the abstract, what systems are involved, and what are their roles and

dependencies. This high-level view of things helps to understand the gen-

eral concepts behind our tracking technique. We proceed to then look at a

specific implementation made to serve as a proof of concept, and compare

it to other technologies and measure its capabilities and deficiencies. We

end by going over the current known limitations and problems with our im-

plementation, and propose ways in which they can be avoided or overcome,

paving the road for future research in this area.

3.1 Design Constraints

From our analysis of the problem, and looking at design lessons from other

input devices, we came up with a set of design constraints that helped

guide the construction and implementation of the chiroptic tracker. We will

summarize them briefly and then explain in more detail what the rationale

24

3.1. Design Constraints

is behind each one.

For a classroom setting. The design should consider that the tracker is

being designed for use in a classroom setting. That is one of our main

objectives, so if it does not work there it is a bad design. Specifically a

solution should acknowledge the fact that there are multiple spectators

involved, the lecturer and the audience, and that they have different

roles. There is a natural imbalance of control in the roles and the

tracker is meant for use mainly by the lecturer, however, the audience

should not feel lost or abandoned while the lecturer is using the device.

A solution should also consider how people will use it. We expect an

instructor to have infrequent interactions with the material that is

being displayed on the display, and more frequent interaction with

the audience, so the device should enable these interactions without

getting in the way. Because pointing interactions are infrequent, it is

okay if they take a little more effort than with other devices, as long

as they keep the flow of the lecture going.

Use existing hardware. There are plenty of technological resources al-

ready available that are not being fully exploited. Our belief is that a

solution should be possible using only the existing resources, so ideally

no more hardware should be required. Specifically, we want to avoid

having to introduce special lighting (such as infra-red) into classrooms,

or cameras that must be mounted in the classroom, or modified high-

frame-rate projectors beyond the standard ones that are commonly

found in today’s classrooms.

Focus on pointing. An interface meant for interacting with material on a

large display involves tackling many different challenges. The tracker

itself should only worry about addressing the problem of pointing at

targets of interest. If it can also be used for other things, like selecting

(clicking), dragging or gesturing, that is fine, but that functionality

should be secondary to the main objective, which is pointing.

25

3.2. The Camera Tracking Process

Flexible. The device should work by itself, without depending on other

installations or third party software. Specifically it should be indepen-

dent of whatever program is used to display slides or other content

on the display. It should be possible to adapt it for other uses, so it

is desirable to make it as general purpose as possible. It could seem

a slight contradiction to require both that it work in the classroom

setting and that it is as general purpose as possible, but that is not

the case. While it should be designed to work in a classroom first. a

solution should not be constrained to work only in a classroom. Any

solution should allow common techniques used in other pointing input

devices, such as clutching and gain control.

Intuitive. Users should be comfortable using it, and it should not get in

the way of how they want to naturally interact. It should work as they

expect, although some minimal training on how to use it is OK and

full proficiency may require a bit of practice. It should not require any

calibration. It should “just work”.

The rest of this chapter explains the general idea for the chiroptic tracker

and discusses an implementation. We believe our design meets most of the

constraints set forth for it. In Chapter 4 we report the results of a controlled

user study where we compared it with a mouse to get an idea of how well

it performs, and in Chapter 5 we present a design brief on an interface for

classroom interactions that uses it as a pointing input device.

3.2 The Camera Tracking Process

There are three systems involved in making the chiroptic tracker work: the

display system, the chiroptic sensor and the user’s sensorimotor system, as

diagrammed in Figure 3.1. They work together in two loops that make up

the camera tracking process. The first loop is between the system display

and the chiroptic sensor, and its purpose is to update the position of the

cursor based on where the sensor is being pointed at. The second loop

is between the user’s sensorimotor system and the chiroptic sensor, and

26

3.2. The Camera Tracking Process

Figure 3.1: The three processes involved in chiroptic tracking. The display
renders the cursor and screen contents, the sensor interprets what it sees in
the display to extract a position, and the human brain adjusts for errors.

its purpose is to adjust the position of the sensor until the cursor is on

a target of interest. We rely on the user’s sensorimotor system to make

the necessary adjustments to the position of the sensor in order to correct

pointing errors without conscious effort, similarly to how we do with the

mouse. This is necessary because readings from the sensor are noisy due

to diverse factors that will be discussed in Section 3.4, and because there

is a delay in the whole system that has to be compensated for. The error

correction mechanism is left almost entirely to the human. In our prototype

we only provide slight help by smoothing the cursor movement, so we will

not discuss the second loop in any more detail except when we later describe

the smoothing algorithm. Instead we will focus on the first loop, between

the sensor and the display, and discuss how that works. The overall process

is as follows:

1. The display system renders a series of shapes on top of the regular

content of the screen, including the tracking cross (the cursor). These

shapes are called fiducial markers2 and are used as a reference frame

2 Fiducial markers are images that can be tracked with relative ease by vision algo-

27

3.2. The Camera Tracking Process

that encodes position information for the sensor.

2. The chiroptic sensor is made from a camera and a processing unit. The

camera captures a frame that includes enough of the markers that the

position information can be decoded. The frame is processed and the

sensor relays the position it read to the display system.

3. The display system transforms the position read by the sensor into X

and Y coordinates in the virtual display, and then uses that informa-

tion to update a model for the cursor position, possibly also a model

for the shape and position of the markers, and then it starts again

from step 1.

The first step of the loop is relatively straightforward. The display should

just make sure to show all relevant markers in a way that the camera can

see them. The particular design of the markers is more interesting because

of how it encodes position information. We will look at a possible set of

markers when we talk about implementation in Section 3.3.

It is important to note that the position computed in step 2 by the

sensor is relative to the markers. The markers create a reference frame that

is used by the display system to transform the relative position to absolute

coordinates. To get the relative position we usually choose a fixed point in

the camera, like the camera center, and then find the relative coordinates

of that point with respect to the markers. This is necessary because the

camera is capturing a frame out of context, it does not know what part

of the display it represents, and does not care about the dimensions of the

display or its resolution.

To process the image captured by the camera, the first step is to identify

the fiducial markers and make sense of them. These problems are sometimes

called feature detection and extraction and scene analysis and there are many

techniques that help address them, from simply looking at individual values

of pixels to sophisticated mathematical analysis. See for example the books

rithms. They serve as points of reference and are commonly used to create augmented
reality systems or facilitate scene understanding.

28

3.2. The Camera Tracking Process

by Szeliski [48] and Forsyth and Ponce [15] for an introduction to computer

vision techniques. Depending on the design of the markers, it might be

faster to use heuristics like geometric relationships to make sense of them.

When the sensor computes a position it has to take into account that

the image from the camera will be distorted. It should compensate for this

distortion or its reading will be off by a factor depending on how distorted

the image is, or just plain wrong if the distortion is too severe. Distortion

can come from different sources, including the lens of the camera, but most

importantly because of the perspective of the camera relative to the screen,

which comes from the angle, distance and rotation between these two ele-

ments. To illustrate the point, Figure 3.2 shows an example of two images

of the same fiducial markers captured from different camera positions. Note

that on the left image in the figure the distance between points A and B

is perceptibly bigger than for points C and D, however in the grid those

two segments are the same size. That foreshortening is being caused by

perspective distortion in the image.

Figure 3.2: Two different perspectives of the same grid cell, as captured by
the camera. Corresponding points are labeled with the same letter. The
tracker has to deal with the distortions caused by perception. Note also the
marked contrast in illuminations on the top and bottom sides of the left
image.

To compensate for distance, the relative position can be expressed in

“marker units”, which is a unit of measurement derived from the fiducial

29

3.2. The Camera Tracking Process

markers. It can be, for example, the distance between two of the markers.

As long as the display knows the value of that distance in pixels it can

transform sensor coordinates to screen coordinates. Compensating for angle

and rotation is a little bit trickier because it requires that the sensor interpret

the image to understand how the different fiducial markers are arranged, and

from that get a transformation function that allows it to undo the effects of

the distortion. This is called a perspective transformation, or homography,

and computing it is a common problem in the area of computer vision,

so there are many techniques that can be used to do it. The previously

referenced books by Szeliski and by Forsyth and Ponce are good resources

for this.

Step 3 begins by translating the raw reading from the sensor, which is the

relative position of the cursor, to an absolute position in screen coordinates.

This is generally a relatively straightforward step that depends on how the

encoding of the position was done on the markers.

The absolute position can be used to update several models. The first of

these is a model of the cursor position that can be used to predict a useful

place to draw the cursor, but can also be used for more advanced techniques

like target prediction, where one tries to move one step ahead and predict

what object of interest the user is ultimately moving to. The second model

is for the position of the markers on the screen. When the markers are fixed

there is nothing to do, but if the markers move around based on the sensor

readings the model can be used to predict good places to render them so

that the sensor will see them on the next reading (this is similar to what

Sutherland did for the light pen’s cursor). The third model that can be

useful is for the position in space of the camera, relative to the screen. This

position is determined by six parameters, the three coordinates and three

angles of the camera, and computing them is known as the pose estimation

problem in computer vision, which has a strong connection to the problem

of homography estimation.

There are potential advantages gained from modeling the camera pose.

For example, the pose itself is a good proxy of the position of the user in the

room, which can be used by interface designers to create interactions that

30

3.2. The Camera Tracking Process

vary depending on where the user physically located. Another advantage is

that by correctly modeling camera pose we can predict where it is likely to

move, and so the sensor can filter out readings that are inconsistent with

the model, so if the pose of the camera changes from one side of the room

to the other in a single frame, then one of those readings is likely wrong.

There is an extra challenge involved when the shape and position of the

markers change based on the cursor position, which is that they create what

is called a closed-loop control system in control theory. We will not go into

much detail about this3 except to explain some of the effects that such a

system has on the overall tracking process. In a few words, what happens

is that the sensor cannot trust what it is reading from the screen because of

the delay in the system, and so has to compensate for errors. To illustrate

this consider a camera running at 30fps, in a system with a delay of 100ms,

with the cursor being sensed stably in the center of the camera. If the

camera moves one cm to the right of its current position we would expect

a similar movement to be seen on the markers in the display and then the

system to return to a stable state where nothing moves. Instead, the first

frame after the camera is moved will send a relative movement of a units

to the display which will take 100 ms to be seen by the camera again, and

by that time the camera will have seen the same markers two more times

causing a movement of 3a units total. When this error is finally discovered

the camera will compensate, but that reading will also get repeated a few

frames because of the delay, and so the markers will again overshoot their

movement in the opposite direction. This causes an oscillation, which makes

the system unstable and is a problem that only gets more complicated if the

delay of the system is variable. When the position of the markers is kept

in place we do not have this problem because the sensor can be confident

that it will always be computing positions relative to the current position of

the markers. There are techniques such as damping, Kalman Filters or PID

controllers that are used to fix these issues, but we will not discuss them

here.

3 But see the books by Astrom et al. [2] and Ogata [35] for introductory material to
this field.

31

3.3. Implementation

3.3 Implementation

We chose to make an absolute pointing system with a fixed grid of fiducial

markers that are shown persistenly on the screen. The architecture for our

implementation is diagrammed in Figure 3.3. There are two main processes

that communicate in a loop: the display communicates with the sensor

by showing a grid of markers that the camera captures, and the sensor

communicates its readings to the display using a network socket. Within

the sensor process there are several subsystems that carry out the steps

required to compute a relative position. First, the camera image is analyzed

to extract the markers using a blob detection algorithm, then the blobs are

processed to identify four that are the corners of a cell in the grid. The

sensor computes a homography from these four points, which is used to

identify the rest of the components of the cell and to obtain the position

of the camera center relative to it. The relative position and cell row and

column numbers are sent to the display process that further transforms it

to an absolute position, feeds it to the cursor model, and then renders the

grid of markers and the updated cursor according to the model.

Figure 3.3: The architecture of our tracker’s implementation.

This implementation makes no assumptions about the camera itself,

which can have any sampling rate or lens distortion on it. We are ignoring

the radial distortion of the lens because we will be focusing on the center

of the image, where the effect is minimized, and because for the cameras

32

3.3. Implementation

that we tested the negative effect on accuracy is very small and likely easily

compensated by the user. The sampling rate of the sensor is independent

of the refresh rate of the display, so the model for the cursor can be used to

update its position even when the sensor readings are relatively infrequent.

3.3.1 Grid of Markers

The fiducial markers are arranged in a grid as shown in Figure 3.4. Groups

of four ellipses with alternating horizontal and vertical orientations make up

one cell of the grid. There are circular grey markers that indicate the correct

orientation of the cell and green markers that encode its row and column

number. We use black ellipses for the corners because these are relatively

easy to find, and they are the first objects that the sensor will look for to

start making sense of the image. By following the main axis of an ellipse we

can identify others in the same line or column of the grid. That information

is very helpful in deciding which ellipses belong to which cell.

Figure 3.4: Grid of fiducial markers. The black ellipses define a reference
frame, the gray circles determine proper orientation, and the green squares
encode row and column number.

With this design the camera only needs to be able to see four ellipses that

33

3.3. Implementation

make up one cell of the grid to ensure that it can compute a position relative

to that cell, and because the green markers identify the cell uniquely, the

display process can translate that into an absolute position. The resolution

of the grid should be adjusted so that the camera can capture at least one

cell in each frame while avoiding making the markers so small that they will

not be seen by the camera correctly. The size of the individual markers can

also be adjusted to improve sensing.

Each cell has unique row and column numbers, represented as bits by

the green markers. If a green marker is present, it counts as a 1, if it is

not, it counts as a 0. The four horizontal green markers are used for column

number and the vertical ones for the row, however we exclude row and

column 0 because of an artifact of motion blur: when the camera image gets

blurred the ellipses can still be read sometimes, but not the green markers,

and the sensor incorrectly reports a movement relative to cell (0, 0) which

causes the cursor to suddenly jump on the display. So we end up with a

design that supports a grid with a resolution of up to 15×15 cells. A final

detail comes from the observation that contiguous cells share sides, so we

need to arrange the numbers in a way that ensures the two high-order bits

of one are the same as the two low-order bits of the next. One possible bit

arrangement is shown in Figure 3.5.

Figure 3.5: A sequence of bits used to encode row and column numbers.
Numbers from 0 to 15 are arranged so that the two high-order bits of one
are the same as the two low-order bits of the next. Each of the 16 numbers
appears once in the sequence.

34

3.3. Implementation

Figure 3.6: Design of the cursor for the chiroptic tracker.

3.3.2 Cursor

Our cursor design is shown in Figure 3.6. Its shape and size vary depending

on its recent position history, with the idea that both the lecturer and the

audience can follow it better. Previous research by Po et al. [38] shows that

for pointer interaction orientation-neutral cursors or cursors aligned with

the direction of movement generally work better, so our design for the rest-

ing cursor is a circle and for a moving cursor we show a trail, which also

facilitates observers following it with their gaze. The trail gets longer the

faster the cursor moves and disappears when it moves slowly. The size of the

circle also changes dynamically, expanding with fast movements and shrink-

ing when the cursor is relatively stable. In this way we expect observers can

track it more effectively when it is moving, but it will be small enough to

afford precise selection when users dwell on targets. A final element of the

cursor is an orthogonal cross made up of a vertical and a horizontal segment,

which appears only when the cursor is fairly stationary and is meant to en-

able pixel-precision readings of the its position. The specific sizes, shapes

and colors in the cursor were determined empirically. Our only recommen-

dation for now is that they should be clearly visible to the humans in the

room, but invisible (or easy to tell apart and ignore) to the chiroptic sensor.

For our implementation the cursor is always rendered close to the actual

position that the user is pointing. We smooth the actual position computed

from the sensor using an exponential moving average, which is a weighted

interpolation of the current sensor reading and the previous average, defined

by the following equation:

35

3.3. Implementation

Ct = α · Pt + (1 − α) · Ct−1 (3.1)

The value of α is a parameter that can be adjusted to change smoothness.

For values closer to 1, the actual current position is weighted more heavily

than the history, and so there is less smoothing. Values closer to 0 will make

the cursor behave very smoothly, but movement will feel sluggish.

3.3.3 Feature Extraction

The image captured by the camera is just an array of color values with

entries for every one of its pixels. To make sense of it we have to first extract

features, like shapes or corners, that we can use to conduct a higher level

analysis. For our simple grid we chose to implement a naive blob detection

algorithm that looks for the ellipses and filters everything else out. It works

by first creating a copy of the original image where every pixel has been

substituted by just black or white based on a threshold luminance value, so

if the pixel has a very dark color it will be changed to black, and if it is

below the threshold, it will be colored white. This binarized image is then

scanned one line at a time looking for segments of black pixels, which are

grouped together to form blobs. Those are our best guess at identifying the

ellipses, so blobs that have a very small or very large area are filtered out as

noise. Note that for this to work we require a strong contrast between the

black color of the ellipses and the rest of the contents of the screen. This is

one of the weaknesses of our method, and we will come back to discuss it at

the end of the chapter.

As we find the blobs we also compute their bounding box, their perimeter

and the direction of their main axis. The bounding box is the smallest

rectangle parallel to the X and Y axes that contains the blob, and if the

blob is an ellipse then its center is a good approximation to the center of the

ellipse. Blob pixels that are adjacent to some other white pixel are marked

as part of the perimeter, then they are sorted by their distance to the center

of the blob and with the ten that are the farthest we find a regression line

of best fit, which will give us an approximation to the direction of the main

36

3.3. Implementation

axis of the ellipse. Figure 3.7 shows an example of a frame captured by the

camera, its binarized version, and the perimeters and main axes of the blobs

that get identified with this method.

Figure 3.7: The results of feature extraction on one frame of the camera.
On the left is the original image with perimeter pixels and the main axis
of each ellipse highlighted in red. On the right is the the binarized version
used to find the ellipses, and their bounding boxes.

There are more advanced computer vision algorithms that perform ro-

bust feature detection with subpixel precision, which would improve the

quality of the sensor readings. An advantage of our approach is that it can

be done very fast and we can tune it to our specific needs, for example

exploiting the properties of the ellipses. Our technique is weak because it

requires lighting conditions to be optimal in the room for the tracking to

work, so it should be considered only as a proof of concept with much room

for improvement.

3.3.4 Computing Relative Coordinates

The next goal is to identify four ellipses from the previous step that form

the four corners of a grid cell, which is challenging due to the perspective

distortion in the image. Note that in Figure 3.7 the main axes of the ellipses

form a staircase pattern, and one “step” of this staircase forms a triangle

that is half of a cell of the grid. Using a few heuristics we can identify such

a triangle and get the fourth point from that. First, we assume that the

37

3.3. Implementation

blob that is closest to the camera center is part of the triangle. Then we

compare the distance of all other blobs to the line formed by the original

ellipse’s main axis, and choose the one that is closest. Similarly, the third

blob is the one closest to the axis line of the second blob. All comparisons

are made using the blob centers, and if there are any ties we break them

by choosing the blob closest to the previous blob. In this way we find the

triangle we were looking for, and now we only need to identify one final blob

to complete the grid cell.

With the three ellipses found so far we can compute a function known as

an affine transformation that can undo other forms of distortion. The dif-

ference between an affine and a projective transformation is that the former

preserves parallel lines and the latter maps them to lines that intersect at a

point, so the affine transformation can be used to fix a distortion of our grid

like the one shown on Figure 3.8a, but not like the one shown in Figure 3.8b.

In a way, however, the affine transformation is a cheap way to approximate

the perspective distortion of the image, as shown in Figure 3.8c. We use it

to compute an expected position for the fourth point of the cell and choose

the blob that is closest to that. Building the affine transformation relative

to the cell corners is straightforward if we arrange them as in the figure,

and define the position of point A to be (0, 0), of B to be (0, 1), and of C

to be (1, 0), giving us two vectors that form a basis for the cell’s coordinate

system. By mapping the respective vectors in image coordinates to those

in cell coordinates the affine transformation follows, and its inverse can be

used to get the expected position of point (1, 1) in image coordinates.

Now that we have the four points that make up the corners of a grid

cell, we can use them to estimate the perspective transformation, which

can be used to reverse the distortion of the camera, by using an algorithm

known as Direct Linear Transform described in the book by Hartley and

Zisserman [18]. This algorithm requires that we provide the correspondence

of four points in image space to their coordinates in real world space, so

by using a similar idea as before we can map point A to (0, 0), point B to

(0, 1), point C to (1, 0) and point D to (1, 1). We use the OpenCV library [7]

to solve the required system of equations and get in return a homography

38

3.3. Implementation

(a) Affine distortion (b) Perspective distortion

(c) Affine approximation

Figure 3.8: (Top) Difference between affine (a) and perspective (b) trans-
formations. (Bottom) Although the affine transformation based on points
A, B and C is not good enough to predict the position of point D, it finds
a good approximation in point D′.

expressed as a matrix, which when multiplied by a point in image coordinates

gives us the corresponding point in grid coordinates relative to the cell. We

can also perform the opposite transformation using the matrix inverse. With

the inverse we look for the grey circle in the position where we expect to

39

3.3. Implementation

find it for each of the four ellipses, and once we find it we know the correct

orientation of the grid cell.

Using the inverse of the homography again we look at the positions where

we expect the green markers to be. If we find a pixel value that has more

green saturation than red or blue, we consider it to be a 1. If not, it is a

0. Putting together the eight green markers in the correct order we decode

the row and column numbers of the cell. We then use the homography one

last time to transform the position of the camera center to grid coordinates,

and send this relative position with the grid row and column numbers to the

display process. With that, the sensor process is done and will go through

everything again when a new frame comes from the camera. The display

process uses its knowledge of the layout of the grid to perform a final trans-

formation to the sensor’s reading, from cell-relative coordinates to absolute

screen pixels, which it uses from there on.

3.3.5 Cursor Position

Every time the display process gets a reading from the sensor, which happens

asynchronously, it uses the absolute coordinates to updates its model of the

cursor. Our current model is simple, it keeps its current position separate

from the sensor reading, which is treated as a goal to reach eventually. In a

separate processing thread, when the display process renders a new frame,

it asks the model for a position where it should show the cursor. The model

takes its previous position and the newest sensor reading and interpolates a

value between the two using equation 3.1 to smooth the movement, storing

the result for the next interpolation. As long as no new readings come from

the sensor, the model will keep doing these interpolations so that the actual

cursor position approaches its goal a little at a time, but when a new reading

comes the goal is updated and the next interpolation will cause a movement

towards that. This simple model works surprisingly well using low values

for the α parameter in the interpolation. For a display refresh rate of 60fps

we determined an empirical value of α = 0.2.

The cursor model has one other function. From time to time the sensor

40

3.3. Implementation

will get confused, either due to noise, motion blur or other problems, and

will report an erroneous position. The model is configured with a threshold

value so that if the distance between a sensor reading and the previous one

is too big, it will be counted as a fluke and ignored. This heuristic gives

stability to the cursor on the screen, however if the user makes a drastic

movement that is legitimate, the model will incorrectly filter out the new

sensor readings. For that reason these “erroneous” readings are stored in

the model and if after a few of them the cursor seems to be stable in a new

position, the model updates to move there. We currently filter only only

reading, so if the sensor reports the same general position information two

times in a row, we update. The values used for this filtering depend on how

reliably the sensor can identify the markers in any given setting, and will

probably not be needed when more robust vision techniques are used.

In our implementation, when the sensor cannot read position informa-

tion for any reason or gets a reading wrong, the cursor simply continues

inching towards its goal position and then stops. This means that when the

user changes position quickly the cursor will seem to “stick” for a moment

and then shoot towards the new position, causing a very perceptible delay

in response. We tried an alternative model using second order prediction

(velocity and acceleration) to keep moving the cursor past its goal, but with-

out imposing some synthetic deceleration, similar to the effect of friction,

it created awkward cursor movements. Using the friction it behaved very

similar to the simple model, so we did not pursue that idea any further.

The position obtained from the model is used to render the cursor di-

rectly. We keep a history of cursor positions that we use to vary the size

and trail of the cursor, as explained before. Other implementations could

look to use position information in different ways, for example choosing not

to show the cursor but instead highlighting a predicted target of interest.

The important point to keep in mind is that the computed position does

not have to be the rendered position, they may serve different purposes if it

helps improve the usability of the interface.

41

3.4. Known Limitations

3.3.6 Performance

We implemented this prototype using the Processing 2.0 language, which is

based in Java and uses the OpenGL library. The algorithms used are not

particularly optimized, so they can probably be tuned to perform faster.

Running both processes on an Intel i7-4710HQ CPU @2.5GHz with 12GB

of RAM and an NVIDIA Geforce GTX 850M graphics card, the sensor code

can run at slightly more than 240fps processing a 640×480px resolution

image each time. In the lab we measured the delay from the time the grid

is shown to the cursor position being updated at around 150 ms.

This is high-end equipment, but we expect that the same techniques

should run on more modest resources at adequate sampling rates, so in

principle it should be feasible to use something like a smartphone directly

for processing. The biggest problem might be delay in getting the image from

the camera to the software, and the restricted memory available. Lowering

the resolution of the camera would also improve time performance, and it is

possible that users could deal with the lower sensor accuracy. All of this is

speculation and remains to be tested, but we feel confident these ideas can

be implemented in current hardware.

3.4 Known Limitations

Our implementation is enough for our purposes — it is a proof of concept

showing that the idea is realizable, it works well enough under controlled

conditions that we can perform a study to compare the chiroptic tracker

to a baseline device like the mouse, and measure its performance to get an

idea of its capabilities. It is still an early prototype implementation, and as

such has some problems and limitations that have to be addressed in future

research. Here we discuss the more pressing ones.

3.4.1 Occlusion Caused by the Grid

The markers that are displayed for the sensor have to be shown on top of

the contents of the display, which causes the obvious problem of occluding

42

3.4. Known Limitations

important information, and they are distracting for the audience. For the

classroom setting this problem is mitigated by the assumption that the lec-

turer will have only sporadic interactions with the display, and so the grid

only needs to be shown during those times. In Chapter 5 we present a design

brief for a classroom interface that uses the tracker as it is now, so we believe

that it can be made to work and that the benefits outweight the cost.

Nevertheless there are things that can be done to fix or mitigate the issue.

The simplest is to adjust dynamically the resolution of the grid and the size

of the markers depending on the position of the camera, so that it can see

them as needed but at the same time keeping the density of markers to a

minimum on the screen. Making the grid change dynamically introduces

again the problem of dealing with a closed-loop control system that was

discussed earlier, but it is a common problem with proven solutions in many

engineering applications. Alternatively, we could create better prediction

models for where the markers need to be, leaving only the four that are

necessary to compute a homography and in this way removing most of the

grid from the screen. In the extreme case we could make the cursor itself be

made up of markers. This is also a closed-loop solution that we are starting

to look into.

If the projector in the room has the capabilities, the grid could be shown

in infrared light so that the audience cannot see it, and a camera without an

infrared filter would still make an effective sensor. Or if the camera has high

enough framerate and the projector can work at 120fps or faster, we could

show the grid on only some frames and not others, or switch its colors in

alternating frames so that they “cancel out”, in a way similar to the invisible

structured light techniques discussed in Chapter 2. In theory, when done

fast enough the audience would not even notice the presence of the grid. We

feel these are weaker solutions because they depend on the availability of

less common hardware, and in particular a blinking pattern could end up

being more disruptive than a grid that is always on, while infrared could

already be in use by a different system in the room, such as some models of

clickers, however, they are still possibilities to look into.

43

3.4. Known Limitations

3.4.2 High Color Contrast

The algorithms we use are not robust, and the sensor simply stops working

when the colors on the display have little contrast. That is often the case

when using projectors that have a weak light source, or with poor color

balance settings. Another issue is ambient room light coming from sunlight

or artificial light sources, which has the effect of attenuating the contrast

of colors in the camera image. This is particularly bad when a light falls

directly on the surface of the display, because the same rendered color will

have different RGB values in the sensor’s image depending on how much

light falls on it. The human perception system has color constancy, which

allows us to identify two very different patches of light as the same color (for

an example consider the sun falling directly on half of a desk, even though

the half in shadow and the half in the light look very different when taken

individually, we know the desk surface is a single color). There are many

techniques in computer vision that model color constancy, see for example

work by Agarwal et al. [1] and by Gijsenij et al. [17], so this is a problem

that can likely be solved. As a partial solution the sensor could synchronize

with the display to show a pattern that helps calibrate the expected color

values, which would happen only at the beginning of the interaction or from

time to time during normal operation.

Another alternative is to be less reliant on color, for example by using

distinct shapes instead of distinct hues, or by using a different technique for

tracking altogether. For example, we could perform point correspondence

across consecutive frames directly on features found on the contents of the

display, without having to show any extra markers, and get a homography

from that. In a situation where there are not enough features on the display,

like a drawing application with a blank canvas, we could show a gentle,

neutral texture as a background that presents enough recognizable features

to the camera. Szeliski’s [48] discussion on motion estimation algorithms

would be a good starting point to go deeper into this.

44

3.4. Known Limitations

3.4.3 Chaotic Movement

Natural hand jitter, noise in the camera sensor and motion blur can all

cause erroneous position readings that send the cursor flying around the

screen chaotically, which is very disruptive when trying to interact with the

display. Some of the techniques we mentioned in the implementation, like

smoothing and filtering out extreme changes in position, help to alleviate

the problem at the cost of making the cursor feel somewhat more sluggish.

Instead of smoothing we could try manipulating control to display ratio

values, which would lower the impact of jitter. That would not help with

problems caused by motion blur, for which smarter and more robust algo-

rithms could be designed. Ultimately, better cameras with a higher sampling

rate and improved sensors would get rid of many of these issues, so perhaps

as hardware continues to evolve this limitation will fix itself.

3.4.4 Lens Blur

When the image from the camera is not properly focused the blur can cause

the sensor to misbehave. If the user is consistently interacting at a sufficient

distance from the display this is not a problem, because most lens systems

can focus objects at far distances accurately without major dynamic adjust-

ments. Otherwise the tracker should have some way of dealing with this,

like the auto-focusing features found on some cameras.

3.4.5 Lag

The 150 ms it takes for the sensor to capture an image and decode the cursor

position, together with the smoothing techniques used to improve accuracy,

make the system feel slow to respond. In Chapter 4 we will present the re-

sults of a study designed to measure the usability of the device as it is, but

it would always be desirable to have less delay. This could be accomplished

by using different software tools with faster access to the camera, and even-

tually we could manufacture dedicated hardware like it is done with the

mouse today. In the meantime, an interesting approach is to create other

45

3.4. Known Limitations

models that help predict the user movements, either by keeping track of the

six degrees-of-freedom of the camera pose in the room or by other predictive

techniques.

3.4.6 Acute Angles

Figure 3.9: An early version of the chiroptic sensor that incorrectly identified
four blobs, highlighted with red, green, blue and magenta, as the corners of
a grid cell. The cause is extreme perspective distortion in the image and the
use of weaker heuristics for grid identification.

When the distortion from perspective is too strong, our heuristics fail

and the sensor reports erroneous information. Figure 3.9 shows an example

from an early version of our prototype that used different heuristics for

detecting the grid cell, where the sensor got confused and labeled four blobs

incorrectly as the corners of a grid cell. When the angle is too extreme the

distortion is simply too much and the sensor will just not work, but there is

a limit point where it sometimes works and sometimes not, and that can be

frustrating to the user because the cursor moves erratically on the screen.

The use of better heuristics or a different marker design could help address

this problem.

46

3.5. Pilot Testing

3.5 Pilot Testing

We piloted the study described in the next chapter with seven colleagues

and found many interesting observations that were used to improve the

experiment. We consider them valuable lessons when designing other similar

studies, and also because they give insight into how users might interact with

chiroptic trackers. We summarize them here.

Mouse gain was set to a value that all participants considered comfort-

able enough to reach all targets yet giving them enough precision for smaller

movements. Windows 8.1 has a ten notch slider for adjusting mouse gain;

after trying different values all seven pilot participants suggested indepen-

dently that the 6th notch was optimal for the task.

Our first design of a camera tracker used a glove in which all fingers

except for the index had been cut out. The stripped-down plastic casing of

the camera was attached to the tip of the finger with hot glue and the cable

allowed to hang loose from it. Users reported that the weight of the camera

was enough that they were getting tired by the middle of the study. From

observations, it was also clear that the flexibility of the glove and weight

from the cable made the camera droop from the end of the finger, so that

users had to compensate by pointing higher than what was their intuition.

We decided to drop the glove design and instead create a device similar to a

laser pointer that was used for the study. It is possible that pointing using

just a finger is a feasible idea, but clearly doing it well is a design challenge

of its own.

We reduced the number of trials per width and amplitude combination

from 16 to 12, incremented the duration of mandatory pauses between block

of trials, and increased the frequency of optional pauses. This was because

several of the participants in the pilot study mentioned that they were get-

ting tired before the end. We also adjusted the side position to be difficult

yet doable by all participants, bringing the user a little closer to the screen

and with a more obtuse angle than what we had originally planned. The

final position was nearly 4 meters from the screen center and roughly at a

40 degree angle, a smaller angle caused significantly more trouble for most

47

3.5. Pilot Testing

users.

The grid of fiducial markers was adjusted so that the camera could per-

ceive it from all three positions correctly. We used a grid of 6×3 cells, with

ellipses of 24.4 cm of major axis and 9.75 cm of minor axis. We adjusted

the smoothing factor α in equation 3.1 to 0.2 so that the cursor position

was the weighted sum of 20% of the most recent position as reported raw

by the sensor and 80% of the previous average. This was evaluated sub-

jectively by pilot participants as a good trade-off between smoothness and

responsiveness.

We had observed before that new users of the camera tracker tend to

“drag it” a bit cautiously as if attempting not to lose it, while in reality

this is not necessary because it is an absolute pointing device and will find

itself on the screen even if it gets temporarily lost. This observation was

corroborated with pilot participants. To try to encourage participants to

take advantage of the affordances of absolute pointing, we experimented with

a lower refresh rate for the cursor, which updated its actual position at full

sampling rate, yet only provided updated visual feedback every 150ms. This

seemed to work, but qualitatively all pilot participants reported a strong

preference for the smooth cursor. We resolved the dilemma with another

observation: after dealing with the narrow targets that were farther apart,

users usually discovered on their own that jumping to arbitrary positions

was safe and effective, so we designed practice sessions to start with precisely

those targets.

A final problem with the study design came from one of the tracker’s

limitations. As mentioned previously, in certain situations like those caused

by motion blur, the tracker algorithm gets confused and decides the user is

pointing at a radically different position. This causes the cursor to fly around

the screen in chaotic movement. While the problem was minimized with

thresholding, it still happened from time to time. This would cause some

pilot participants to lose the tracker completely and spend a long time, often

tens of seconds, trying to reacquire it. We asked them to experiment with

different grips, the two more common ones being the screwdriver grip and

the pencil grip, as shown in Figure 3.10, and the pencil grip seemed to be the

48

3.5. Pilot Testing

one where they could reacquire the tracker faster. Accuracy and precision

with both grips seemed comparable, so we decided to ask participants to

use the pencil grip as a requirement for the study. We should mention

that a pistol grip, similar to how a person holds a gun, was suggested as

a superior option, but we did not pursue it because it could potentially

make people uncomfortable. We also observed an effect, possibly transferred

from mouse use, where participants would move the camera around when

losing the cursor in an attempt to find it again. This would often result in

motion blur in the camera, causing more chaotic movements and confusion

for participants. We preempted this problem during the study by explaining

a better strategy for finding the cursor, which is described in the next chapter

in Section 4.3.4.

Figure 3.10: Two of the grips used to hold the chiroptic tracker. The screw-
driver grip on the left is commonly used to hold a laser pointer. The pencil
grip on the right seems to be slightly more intuitive for aiming the tracker.

These observations suggest that usage of the tracker is not always intu-

itive, and users will benefit from understanding the general principles behind

it, as well as from better design that takes into account these natural inter-

action affordances.

49

Chapter 4

Comparing Remote Pointing to the Mouse:

a Study on the Feasibility of Chiroptic Devices

Having described how to implement the camera tracker, we now turn our

attention to evaluating its performance and comparing it to what is probably

the most common input device used in classroom presentations today, the

mouse.

Our goal is to obtain initial models of user performance for the camera

tracker, and in the process attempt to demonstrate that the camera can be

a valid device for pointing at a distance. To do this we designed and ran a

study in which we compared the camera to the mouse in a standard Fitts’s

Law task [13].

One of the clear downsides of our current approach to the camera tracker

is that the grid of fiducial markers has to be rendered on top of the screen

contents, which causes occlusion of potential targets of interest and possibly

confusion to the user. For this reason we were also interested in measuring

the effect of the grid on the ability of users to carry out tasks with targets of

different sizes. Our design assumes that prolonged presence of the grid on

the display will become “background noise” that users will learn to “filter

out” after a while.

A secondary goal of the study was to collect data that might be used to

inform the decisions of designers of interfaces that utilize the camera tracker.

4.1 Hypotheses

Based on our observations while developing and testing the camera tracker,

we expected it to perform worse than the mouse, but still well enough that

it can be considered an effective alternative input mechanism. The study

tested the validity of the following hypotheses that each addressed some

50

4.2. Empirical Models of Pointing Performance

aspect of performance:

H1. Myers et al. [32] showed laser pointers are around 1.5 times slower

and have slightly higher error rates than the mouse for tasks requiring

pointing at a distance. Due to the similarities with the laser pointer,

we expect that the mouse will perform better than the camera, with

both a better throughput and a better error rate, but the camera’s

performance will only be a factor of 2 or 3 times slower than the

mouse and 10-25% less precise.

H2. There will not be an effect on user performance with the mouse when

the grid is on for relatively big targets (those targets that the fiducial

markers can only occlude partially).

H3. Due to the nature of the computer vision algorithms employed, par-

ticipant hand jitter, and motion blur effects, pointing with the camera

tracker will be less effective the farther a user is from the screen and

the more acute the angle to the screen is.

H4. Pointing performance with the camera while sitting down will be com-

parable to pointing with the camera while standing up.

4.2 Empirical Models of Pointing Performance

To test our hypotheses we used empirical models of pointing performance

drawn from the literature. All are based on the well-known Fitts’s Law,

first published in 1956 [13]. Fitts proposes a linear model for movement time

that takes into account the index of difficulty of a movement task, which is a

quantity that depends on the ratio of the amplitude of the movement and the

width of the target (Equation 4.1). His original formulation (Equation 4.3)

has been refined by Soukoreff and MacKenzie [45] to better match Shannon’s

theory of information, which in part inspired Fitts’s model, using a different

index of difficulty (Equation 4.2). The resulting model (Equation 4.4) has

51

4.2. Empirical Models of Pointing Performance

become an accepted standard for movement time studies.

(Index of Difficulty) ID = log2

(
A

W

)
(4.1)

(Shannon Index of Difficulty) ID = log2

(
A

W
+ 1

)
(4.2)

(Fitts) MT = a+ b log2

(
A

W

)
(4.3)

(Shannon-Fitts) MT = a+ b log2

(
A

W
+ 1

)
(4.4)

Both of these movement time models are called one-part formulations

because they consider only the ratio of amplitude and width—their indi-

vidual magnitudes are not relevant. In 1968, Welford [51] recognized that

there are two phases of movement, one of rapid ballistic motion affected

mainly by amplitude, and one of homing into the target which depends

mainly on target width. Welford’s proposed a two-part formulation (Equa-

tion 4.5), which explicitly recognizes the different contributions of width

and amplitude. Recently, Shoemaker et al. [44] suggested a fourth formu-

lation (Equation 4.6) that combines aspects of the Shannon-Fitts one-part

formulation and Welford’s two-part formulation, which they used to analyze

pointing tasks at a distance on large wall displays.

(Welford) MT = a+ b1 log(A) − b2 log(W) (4.5)

(Shannon-Welford) MT = a+ b1 log(A+W) − b2 log(W) (4.6)

The b parameter in Equations 4.3 and 4.4 is the rate of change of move-

ment time as the index of difficulty is varied. Looking at it helps to un-

derstand how a particular model behaves. It can also be compared across

different models, for example for different pointing devices, to understand

their relative performance, but care should be taken because this compar-

ison does not take into account the a parameter of the models. Instead,

Soukoreff and Mackenzie [45] suggest a comparison based on throughput per

individual, which they define as the average of ratios of effective index of

52

4.2. Empirical Models of Pointing Performance

difficulty over movement time. Throughput is measured in bits per second,

in keeping with the information-theoretic interpretation of Fitts’s Law and

its variants. For participant i in a study performing in conditions indexed

by j

TPi =

 1

n

n∑
j=1

IDij

MTij

 (4.7)

where n is the number of target conditions (combinations of target width

and amplitude). The average of all participant throughput values is the

overall throughput for a given condition. This value can be used to compare

conditions directly.

Welford’s also suggested that using the actual width of targets for the

computations might be incorrect. For example, a person moving quickly

towards a wide target will tend to tap it on a position closer to the near

edge than the far edge of the target, and so the distribution of tap positions

will likely fall on a region narrower than the target’s width. The effective

width of a target is the region where most observations happen, irrespective

of its actual width. A similar reasoning can be used to derive the concept

of effective amplitude. Soukoreff and Mackenzie [45] encourage the use of

effective widths and amplitudes for Equations 4.3 and 4.4, and we adopt

this for our analysis of all model formulations. We use their definition of

effective width as the region where approximately 96% of the observations

occur, and so it is given by

We = 4.133σ (4.8)

where σ is the standard deviation of the end-point positions of the observa-

tions for the particular target. Effective amplitude is defined as the mean

amplitude between successive observations for the target. We will write

simply W and A for effective width and effective amplitude throughout the

text, rather than the more cumbersome We and Ae.

A thorough discussion of the four empirical models of pointing perfor-

mance that we will use is provided by Shoemaker et al. [44]. We follow

53

4.3. Method

closely their approach for analyzing the results of our study and for com-

paring between the models.

4.3 Method

We conducted a controlled study that utilized the one-dimensional hori-

zontal serial tapping task commonly used in Fitts’s Law studies in which

participants have to point at and select alternating targets on the display.

We based the design and analysis on similar experiments in previous HCI

research, and we carried out some additional analyses suggested by Souko-

reff and MacKenzie [45]. We also analyzed our data using Welford-style

two-part formulations as suggested by Shoemaker et al. [44] to learn more

about the separate effects of width and amplitude on movement time.

We chose a one-dimensional task instead of a two-dimensional task be-

cause we wanted to carry it out in a realistic setting, which for us is an

auditorium-style classroom with a large display that is usually located high

above and out of reach of the instructor. Such a setup creates an acute verti-

cal angle between the user and the display that causes important differences

in target perception due to foreshortening and, in early tests, it was seen to

cause discomfort for some users. In the study participants were shown rect-

angular targets that they had to point to and select in alternating motion,

as illustrated in Figure 4.1, switching between devices as the experiment

progressed. The full details of the experiment are provided in the remaining

sections of this chapter.

4.3.1 Participants

There were 24 participants who took part in the study (7 female) between the

ages of 22 and 34. They were recruited by advertising in UBC student email

lists and by word of mouth. To avoid experimental bias due to handedness

or personal handicaps, all our participants were screened by self-report to

be right-handed, as well as having normal or corrected to normal vision, no

color-blindness, and to be regular computer users averaging 8 hours a week

or more of computer usage.

54

4.3. Method

Figure 4.1: Illustration of the task performed by participants: (left) the
cursor is moved from its starting position towards the darker rectangle,
(center) if the user clicks correctly on the target the other rectangle becomes
the new target, and (right) if instead the user misses the target it flashes
red and the targets then switch.

The study had approval from the Behavioural Research Ethics Board at

UBC. Participants were fully informed of the purpose of the study and of

their right to withdraw at any point. They were compensated $10 for their

time.

4.3.2 Apparatus

The study was run in an amphitheater-style classroom, which is the type

of room the camera tracker was designed for. The display was 390cm wide

and 248cm tall, raised 216cm above the floor. An ASUS laptop with an

Intel i7-4710HQ CPU @2.5GHz, 12GB of RAM, and an NVIDIA Geforce

GTX 850M discrete graphics card using 64-bit Windows 8.1 ran all of the

experimental software. The laptop computer was connected via HDMI to an

EPSON PowerLitePro Z8050W projector located at the back of the room.

The display generated a 1280×800px resolution image at 60Hz. The laptop

computer was used to record all experimental data.

During each condition participants were located in one of three positions

in the room as shown in Figure 4.2. Positions #1 and #3 were closer to

the screen and thus at little or no elevation relative to where instructors

normally stand during lectures. Position #2 was farther away, where the

55

4.3. Method

Figure 4.2: (top) A picture of the room illustrating what participants saw.
All lights were turned off during the study. (bottom) A diagram drawn to
scale of the room layout. Positions #1 and #2 are perpendicular to the
center of the screen, and position #3 is off to the side.

56

4.3. Method

floor is significantly raised relative to the front of the room, and so had an

elevation of 74cm. Assuming eye-level at 120cm from the floor when sitting

down and 170cm when standing up, vertical angles from eyes to the center

of the display were approximately 27.5◦ and 22◦ for sitting and standing

poses respectively in position #1, and 7.9◦ and 32◦ for a standing pose in

positions #2 and #3 respectively.

One of the main goals of the study was to make a fair comparison between

the mouse and the camera, so both were tested from position #1, which had

the line of sight perpendicular to the screen and provided an optimal angle

of view for both devices. The other positions were only used for the camera.

For this reason, position #1 is of main interest and is where most of the

study took place.

We tried moving position #1 closer to the screen to increase ecological

validity for the camera condition, but this proved too straining for users,

particularly in the mouse conditions. Position #1 is close enough to an

actual lecturing position that we believe it is a good compromise that allowed

users to perform the study comfortably.

Position #2 increased the distance to the screen, so we could get an idea

of how this factor affects performance and which formulation of Fitts’s Law

works better. Position #3 was chosen because it represents more closely

how a lecturer might use the tracker in actual practice. It is at the front

of the classroom but off to the side, so pointing can be done without fully

turning your back on the audience.

We used the OpenCV library [7], written in C/C++, for homography

estimation and a Java-based driver for the i>Clicker devices that was devel-

oped by Shi [43] and refined by Beshai [6] to capture clicker interaction. The

rest of the software for the study was implemented natively in the Process-

ing 2 language, which runs on the Java Virtual Machine and can maintain

a refresh rate of 60fps.

57

4.3. Method

Mouse

Participants were given a Microsoft Comfort Optical Mouse 1000, which

they could move freely on a desk to reach all parts of the display, and use

the left button to select targets. Mouse acceleration was disabled in the

operating system, and the gain adjusted to a value at which participants

could reach the more distant targets without clutching while still allowing

them enough precision for smaller targets. This gain value was determined

by early testing with multiple pilot participants. The mouse was connected

to the computer by a 6m active USB extension to ensure a strong signal,

and the end of the extension was anchored in place so that its weight would

not pull on the mouse.

Camera

We adapted a generic consumer-grade low-end USB webcam with a resolu-

tion of 640×480px, sampled at 25fps with automatic exposure and white-

balancing that could not be turned off. We removed extra parts from the

plastic casing and attached it to a wooden dowel using hot glue to create

a device resembling a laser pointer. The camera’s USB cable was twisted

around the dowel and held in place with tape to ensure its weight would

not pull on the front side of the pointer. The camera focus can be adjusted

by twisting the screw-mounted lens on the front; it tends to change unpre-

dictably with movement and vibrations, so it was brought to an appropriate

state and held in place with a rubber band twisted on itself. Figure 4.3

shows the result, which is what was used for the study. The total cost of

this device was less than $5.

For target selection, we wanted to avoid the problem of the pointer

moving out of position when the user clicked a button on it, so instead

participants held in the left hand an i>Clicker device that was synchronized

with a base station connected to the experiment’s computer. Any of the

5 buttons of the clicker could be used to indicate selection. As with the

mouse, we used the active USB extension to connect the camera, similarly

anchored, except for position #3 where we had no reliable way of doing

58

4.3. Method

Figure 4.3: The physical prototype of the tracker device used by partici-
pants. The image also shows the pencil grip they were asked to use during
the study.

it. For that position users held the end of the extension in their left hand

together with the i>Clicker so the weight of the cable would not interfere

with the right hand’s use of the camera.

4.3.3 Study Design

Our study was within-subjects. Experimental conditions for the target rect-

angles were 3 widths, 24, 48 and 96 pixels — 7.31, 14.63 and 29.25 cm

respectively, and 3 amplitudes, 200, 400 and 800 pixels — 60.94, 121.88 and

243.75 cm respectively, as measured from center to center of the rectangles.

All 9 combinations of widths and amplitudes were used for the target con-

ditions. Additionally there were 6 blocking pose conditions summarized in

Table 4.1.

The first four poses, all in position #1, made up the main part of the

experiment. We used those to determine the parameters for models of per-

formance based on Fitts’s Law, to compare performance between the mouse

and the camera, and to measure the effects of the grid being visible when

the mouse was used. The order in which participants experienced these were

59

4.3. Method

Pose Pos Device Details

no grid #1 Mouse Sitting down, grid off.

grid #1 Mouse Sitting down, with grid visible.

sitting #1 Camera Sitting down.

standing #1 Camera Standing up.

far #2 Camera Standing up.

side #3 Camera Standing up.

Table 4.1: The six pose conditions used in the study.

fully counterbalanced to account for learning or tiredness effects. Those four

conditions were always presented first. After that, participants would do the

“far” and “side” poses, which were partially balanced between them so that

of the 12 participants that experienced “standing” as the first camera pose,

half of them did “far” first and the other half did “side” first. Similarly for

the 12 participants that experienced “sitting” first. Target conditions were

randomized within each block for every participant.

Everyone experienced all 6 pose conditions, performing 12 trails for each

of the 9 targets, so there were 24 × 6 × 3 × 3 × 12 = 15,552 total trials.

The whole session took about 45 minutes to complete.

4.3.4 Procedure

After reading and signing a consent form explaining their rights and what

the experiment was about, as required by the UBC Behavioural Research

Ethics Board, participants were presented with a questionnaire to make sure

they met the requirements for participation.

They were told they would see different shapes on the display, in par-

ticular two vertical blue rectangles, one dark and one light, and that their

task was to point at the dark rectangle and click, at which point the rectan-

gles would switch colours and participants would then have to click on the

other rectangle that had become dark, going back and forth between them

until the end of a block. They were shown both devices, the mouse and the

camera tracker, and given a brief explanation on how to operate them.

For the mouse they all had previous experience, and could use it as usual

60

4.3. Method

pressing the left button to select a target.

For the camera we explained that it was a regular webcam, that they

were supposed to hold it like a pencil and point it at the screen, and that for

selecting they should hold the i>Clicker in their left hand, using any of the

buttons on it to indicate a selection. Other than the pencil grip, they were

allowed to hold and move their arm in front of them however they wanted,

but were advised that they could rest their arm while sitting down or hold

it close and bend it while standing to avoid getting tired. They were told

that if ever they lost the tracker, the best strategy was to avoid waving their

hand in the air trying to find the tracker again, but instead to hold it still

for a moment while pointing at the center of the display and let the tracker

find itself.

Room lights were turned off for the remainder of the experiment, so the

only light in the room came from the display.

Whenever participants clicked with the mouse or pressed a button on

the clicker, the active (dark) rectangle would become inactive (light) and

vice versa. If a participant missed a target, the target would flash red for a

moment to indicate that an error had occurred. The cursor consisted both

of a red circle and an orthogonal cross. Participants were told that as long

as the center of the cross was inside the rectangle, it was considered a good

tap. They were instructed to emphasize accuracy first and speed second.

Participants carried out practice sessions with the camera and with the

mouse before doing the main task until both they and the experimenter felt

confident about their proficiency with the devices and their understanding of

the task. At a minimum, all participants did 3 practice taps for each of the

rectangle conditions, all while sitting down in position #1. Two participants

requested a second practice session with the camera. For practice with

the mouse, visibility of the grid was synchronized with their first mouse

condition, so those who would see the mouse with the grid condition first got

practice with the grid visible but those who would see the no-grid condition

first did not.

After each block consisting of all trials for one of the poses, there was a

minimum 2 minute pause. During this time the experimenter would switch

61

4.4. Results

devices (if appropriate) and move the participant to a new position in the

room as necessary. Additionally, within the block there were 2 optional

pauses, one after every 3 target conditions. Most participants used the

pauses to take a few seconds of rest when using the camera tracker. After

finishing all 6 blocks for the poses, participants were presented with a ques-

tionnaire to gather qualitative data about their experience with the camera.

4.4 Results

For the analysis the first trial of each target condition was thrown out.

From time to time during the study, the camera would have a series of bad

readings causing the cursor to jump around the screen chaotically. When

this happened, participants sometimes had trouble finding it and getting it

to stabilize again. For this reason, of the remaining 14,256 trials, 14 were

considered outliers for taking more than 10 seconds and were discarded (11

of those were in the “side” condition, all on the left target of the narrowest

width and widest amplitude). A further 31 trials were thrown out because

they ended 5 standard deviations or more away from the target center.

We encountered a problem during the experiment that was not found in

piloting. After pressing a clicker button, the remote imposed a delay of .75

seconds where no other button press would go through. This meant that

sometimes when participants clicked one target and then another in less than

.75 seconds, the second click would not be registered, causing them to do a

“double take” when the targets did not switch, increasing their registered

movement time for that trial. We did not remove these trials from the

analysis because they were sporadic and difficult to detect reliably, but the

fact should be kept in mind when interpreting results.

We measured movement time and tap position for each trial, from which

we extracted error rates for each condition. Analyses for these variables

and the throughput calculations suggested in the literature for Fitts’s Law

experiments are reported in the subsections that follow.

62

4.4. Results

Figure 4.4: Mean movement times in milliseconds at different indexes of
difficulty for all pose conditions. Lines are included only for readability.

4.4.1 Movement Time

Data were aggregated by target and pose. Mean movement time, effective

width and effective amplitude were computed for pose-target conditions as

discussed in Section 4.2. Figure 4.4 shows the mean movement time values

plotted against index of difficulty (Equation 4.2) from the Shannon formu-

lation of Fitts’s Law, which is an accepted standard for this type of study.

Shoemaker et al. [44] recommend that two-part models be considered

when analyzing Fitts’s tasks with multiple levels of gain. Although we did

not vary gain in our study, we did vary distance from the screen, which

has also been reported to be better modeled by a two-part forumlation by

63

4.4. Results

Rajendran [39]. This is an area of much interest for current and future re-

search, and so we present results for analyses using all four models discussed

by Shoemaker et al., summarized in Table 4.2

One-Part (Fitts) Two-Part (Welford)

basic a+ b log2
(
A
W

)
a+ b1 log2(A) − b2 log2(W)

Shannon a+ b log2
(
A
W + 1

)
a+ b1 log2(A+W) − b2 log2(W)

Table 4.2: The four formulations of Fitts’s Law considered for our analysis.
Each predicts movement time MT from target width W and amplitude
(distance) of movement A.

We also carried out F-test comparisons between pairs of nested models

to see if the two-part formulations work better than the corresponding one-

part models for our data. The results for Fitts and Welford models are

shown in Table 4.3 and for Shannon and Shannon-Welford in Table 4.4.

Fitts Welford F-test
Pose a b R2 a b1 b2 R2 F p
no grid 287.45 229.82 0.969 657.96 201.23 276.76 0.994 24.60 0.003
grid 207.58 256.68 0.961 496.64 235.68 295.57 0.977 4.10 0.089
sitting 423.91 431.59 0.963 800.18 406.57 484.27 0.971 1.83 0.225
standing 270.28 472.59 0.930 659.64 454.38 540.75 0.940 1.06 0.342
far 343.00 489.98 0.907 1363.62 439.54 661.95 0.954 6.16 0.048
side 130.03 622.24 0.899 770.34 595.10 733.73 0.912 0.89 0.383

Table 4.3: Movement time models for the Fitts and Welford formulations.
Significant differences in nested models are highlighted in bold.

Shannon-Fitts Shannon-Welford F-test
Pose a b R2 a b1 b2 R2 F p
no grid 153.23 257.05 0.970 539.28 225.15 300.44 0.994 24.20 0.003
grid 53.77 288.66 0.966 357.04 265.05 325.39 0.982 5.45 0.058
sitting 150.03 490.01 0.967 540.01 461.85 539.21 0.976 2.17 0.191
standing -17.90 534.16 0.932 389.13 513.39 601.30 0.943 1.16 0.323
far 20.56 560.55 0.915 1079.70 503.28 727.42 0.963 7.90 0.031
side -297.77 718.35 0.908 366.29 687.16 827.14 0.922 1.01 0.353

Table 4.4: Movement time models for the Shannon-Fitts and Shannon-
Welford formulations. Significant differences in nested models are high-
lighted in bold.

In every condition the two-part models outperform their corresponding

one-part formulations, as measured by R2 values. By the same measure, the

64

4.4. Results

Shannon models did better than their respective basic counterparts. The F-

tests show a significant difference between one and two-part models only for

the “no grid” and “far” conditions. From this data it seems the performance

of the different models is generally comparable in our intended classroom

setting: both one-part and two-part models work equally well, although the

Shannon-Welford model might be slightly preferred.

For one-part models the b parameter is the slope, or rate of change of

movement time as the index of difficulty increases. For our range of index

of difficulty values, the camera models have a slope roughly twice those for

the mouse, which suggests we can expect movement time for pointing tasks

to take roughly twice as long to be performed. This however is not entirely

clear from the data because the a parameter, the intercept, also plays a role.

We will come back to this point when we analyze throughput.

Note that the R2 values are worst in conditions “far” and “side”, which

makes sense because those correspond to tasks with a higher handicap, and

are prone to more noise due to the bigger challenge presented to the camera’s

vision algorithms. In addition the “side” models are oversimplifying, in that

they group taps from both left and right targets together, while in reality

tapping on the left side was considerably harder than the right side because

of the reduced visual angle due to the geometry.

4.4.2 Error Rates

24px 48px 96px

200px 400px 800px 200px 400px 800px 200px 400px 800px

no grid 4.6% 5.0% 5.4% 2.7% 5.0% 3.0% 1.1% 1.5% 1.5%

grid 3.8% 3.8% 3.8% 1.9% 4.6% 4.6% 0.4% 0.8% 0.8%

sitting 6.4% 8.7% 7.3% 3.4% 3.4% 4.6% 1.9% 2.7% 1.1%

standing 5.0% 9.5% 13.7% 1.9% 5.3% 3.1% 0.0% 1.9% 1.1%

far 11.4% 12.9% 16.0% 3.8% 3.0% 3.0% 1.1% 1.5% 0.8%

side 14.0% 15.2% 19.1% 3.4% 4.6% 6.0% 1.1% 2.7% 3.8%

Table 4.5: Error rates for pose and target conditions.

Error rates for each pose and target condition are shown in Table 4.5.

Conditions “no grid” and “standing” represent the fairest comparison be-

65

4.4. Results

tween the mouse and camera, respectively, and they have similar error rates

except for the more narrow rectangles, where the mouse is more reliable.

There is no clear pattern between the “sitting” and “standing” condi-

tions, however the “grid” condition outperforms the “no grid” condition in

all but one case, suggesting there might be a correlation between presence

of the grid and improved error rate.

Errors for narrow rectangles in the “far” and “side” condition rise dras-

tically, suggesting that the camera tracker’s reliability falls with increased

depth and acute angles, as expected. Hand jitter is probably a factor here,

but also the increased presence of chaotic movements due to deficiencies in

the vision algorithms.

4.4.3 Throughput

We use the Shannon-Fitts formulation of index of difficulty (Equation 4.2)

for the throughput equations described in Section 4.2. The results are pre-

sented in Table 4.6.

Pose grid no grid sitting standing far side

Throughput 3.54 3.58 2.04 2.08 1.92 1.79

SD 0.29 0.39 0.29 0.30 0.34 0.32

Table 4.6: Throughput means for all pose conditions, in bit/s.

The “standing” and “no grid” throughput values strengthen the argu-

ment that the mouse is roughly twice as efficient as the camera as an input

technique in this setting. We ran a one-way repeated-measures ANOVA to

detect possible effects of pose on throughput. Mauchly’s test revealed no vi-

olation of sphericity, χ2(14) = 22.55, p = 0.07, and the results show an effect

of pose on participant’s throughput, F (5, 115) = 571.69, p < 0.001 . Bonfer-

roni post hoc tests show that there are significant differences between mouse

conditions and camera conditions (all p < 0.001), between “side” and both

“sitting” or “standing” (both p < 0.001) conditions, and between “far” and

“standing” (p = 0.01) conditions. No other differences were significant, in

particular no difference between the mouse conditions “grid” and “no grid”,

66

4.4. Results

or between the camera conditions “sitting” and “standing” was found.

Figure 4.5: Comparison of average throughput values per participant. Par-
ticipants were sorted by increasing throughput in the “no grid” condition,
and the values for the “standing” condition are also shown.

Throughput values varied considerably between participants. Figure 4.5

shows average throughput values per participant for the main mouse and

camera conditions, sorted by increasing throughput with the mouse. The

data for the camera condition shows a clear upward trend, suggesting a pos-

itive correlation between performance with both devices. Only a few partic-

ipants had markedly different performance levels between devices, perform-

ing strongly with the mouse but poorly with the camera, for example. This

could be due to individual differences in how users interact with computer

interfaces, or to individual strategies while carrying out the task (a cou-

ple of the participants with high performance did mention they consciously

searched for an efficient strategy).

67

4.4. Results

4.4.4 Subjective Data

We asked participants to rate the level of difficulty they perceived the task

to be when using the camera, from 1 (Easy) to 5 (Impossible), to report

any particular strategy that they might have employed, and to provide any

other comments they had regarding their experience with the task. The

average difficulty was rated as 2.292 (SD = 1); the details are summarized

in Figure 4.6.

Figure 4.6: Difficulty ratings subjectively reported by participants for the
pointing task using the chiroptic tracker, from 1 (easy) to 5 (impossible).

The most common strategy was that of doing a fast initial movement to

launch the cursor close to the target, and then fine-tuning their pointing with

precise movements, with 13 participants saying they did this. It is possible

that the technique was encouraged by the defect in sensing described in

Section 3.3.5 that makes the tracker “sticky” when suddenly moving a long

distance. Two participants who commented they were trying to be fast used

a technique in which they would move quickly and then click while the cursor

was passing over the target rectangle, so it did not matter if they overshot

as long as they clicked in time. Three people tried to train their body to

68

4.4. Results

remember the distance they had to flick their wrist to go from one target to

the other.

Several participants mentioned during the experiment that lag was per-

ceptible. A few of the participants expressed frustration with the narrower

targets, both in their written comments and while doing the experiment.

Other comments were about too much shakiness/sensitivity in the cursor,

fatigue, preference between devices, and ergonomics. Looking more into

these issues would be beneficial, but from this data there does not seem to

be a main theme or trend. In the end it might come down to just individual

differences and preferences.

• Cursor sensitivity. P06 said “The lack of accurate and stable control

makes the task difficult when using the camera”, P11 said “The pointer

is shaky and too sensitive to movements”, and P08 said “Pointing

the camera like a pen is probably not the most stable way, holding a

flashlight might be more stable figure”.

• Fatigue. P22 said “Using this pointer for long periods of time may be

exhausting”, and similarly P07 said “The arm is getting tired after a

while, but I imagine in a real-world scenario one wouldn’t do so many

interactions after another”. On the other hand P09 said “Time was

not a factor. I was not tired.”

• Preference of device. Opinions were varied. P18 said “I liked the

mouse so much more”, but in contrast P12 said “So far it is a great

technique to look and point at objects”, while P24 said “Same difficulty

as mouse, mostly. Exception is when it flitted all over the place”,

possibly referring to the chaotic movements that happened from time

to time when the sensor misbehaved. Most likely, each device has its

place depending on the task, as P20 hints, by noting “The mouse may

be more accurate but the camera felt easier and more intuitive to use.”

• Ergonomics. P17 said “If the camera can be held in [another] way

[...] it might be easier and put less pressure on your wrist.”, and P21

summed it up as “I think it will be important to take ergonomics into

69

4.5. Discussion

account.” We have stated before that the design of a physical tracker

is a challenge in itself because we should consider the comfort of users

and balance their preference for grip with the benefits of one that

promotes better accuracy and precision.

4.5 Discussion

Our results indicate that the chiroptic tracker is a valid technique for a

pointing task in a classroom setting. While there is still much work to do,

our findings are encouraging. Pointing with the camera seems to follow

the Fitts paradigm, and while generally the Shannon-Welford model had

the best fit, there was no real difference in between formulations for most

conditions.

We used a constant gain value for all of the conditions in the study. Had

we varied gain, we might be better able to determine whether a two-part

Welford formulation is required, as has been discussed in the literature.

As discussed by Myers et al. [32], users of laser pointers experience sig-

nificantly more vertical jitter in their hand movement than horizontal jitter.

In future research it would be valuable to measure the effects of vertical

movements on camera tracker performance.

In closing, we briefly summarize our four hypotheses and the degree to

which our experimental data support each of them.

H1 was supported. Error rates between camera and mouse conditions

in position #1 are comparable, and throughput values with both devices

are within a factor of two of each other. While there seems to be varied

preferences in devices, it is clear that participants can perform sufficiently

well with a camera tracker. The mouse has the home advantage, because

all our participants are regular computer users familiarized with its use.

We do not expect users will ever match the mouse performance as they

become more experienced with the camera—they are fundamentally different

methods of interaction—but at least their subjective experience might be

improved.

Good interface design will also increase usability. Narrow targets were

70

4.5. Discussion

distinctly harder to hit than the rest, so care should be taken by designers to

work around the natural limitations that come with pointing at a distance.

H2 was supported. Analysis of throughput shows that the presence of

the grid did not impact user’s performance with the mouse significantly,

and their error rates were comparable. While the requirement to overlay

the grid on top of the screen contents is unpleasing, it seems users can work

around it effectively in this task. This is a promising finding as we continue

to design a classroom interface using the chiroptic device.

H3 was supported. This is not a very surprising result, because a larger

distance from the screen increases the effect of natural hand jitter, or, put

another way, it reduces the width of the targets when measured in visual

angles from the point of view of the user, making it more difficult to acquire

them precisely. Sharper angles have the added problem of bringing the vision

algorithms in the tracker to their limit, making the sensor less reliable. In

the future we would like to perform more experiments manipulating control

to display ratio at different distances from the screen to dig deeper into the

effects of distance, and improving the sensor is still an active research area.

H4 was supported. There was no significant difference in throughput

values for the “sitting” and “standing” condition. The error rates are only

slightly larger for the thinnest rectangles at maximum movement amplitude

for the “standing” pose.

71

Chapter 5

Design Brief for a Classroom Interface

In chapter 4 we saw that users perform about twice as fast with the mouse

than with the camera tracker, but the camera tracker has a strong advantage

in that it allows for direct pointing that gives freedom to the lecturer to move

around the room and perform relatively complex interactions without having

to go back to the computer. It is this freedom that we believe greatly offsets

the performance cost of the camera tracker.

Informed by our experience implementing and using the chiroptic tracker,

in this chapter we present some key design ideas for anyone who wants to

build a classroom interface with a direct pointing device. These ideas have

not been tested yet; our goal is to motivate discussion and provide a starting

point for future interface designers.

We will describe our design brief in abstract first, making the case for

direct pointing in general, and later we will describe in more concrete terms

an example of how our own prototype could be used as part of a larger

system to support engagement in an interactive classroom. We present our

recommendations as a set of assertions, accompanied by a brief summary

behind our reasoning for each.

5.1 Goals of the Interface

Engaging for students. The interface should be a way for lecturers in a

classroom setting to interact with a large wall display. Its main goal is to

empower users to perform interactions that are more dynamic and complex

than what is common today, which is largely restricted to flipping back and

forth between slides and pointing at the screen with a laser. Even though

lecturers are the primary target, the design should take care to acknowledge

the needs of the rest of the occupants of the room. This means, especially,

72

5.1. Goals of the Interface

that the audience should be able to follow along with whatever action is

taking place.

Tailored to expert users. University lecturers can be expected to spend

some effort in learning the interface, so while it should not be unnecessarily

complex or obscure, a rich and powerful interface is more desirable than a

simplistic one even if it requires a bit of training and practice to fully master

it. Lecturers are professionals. They should have professional-quality tools

and they should invest time and effort developing their skills with those

tools.

Embedded in current practice. Interactions should flow naturally as part

of the conversation between lecturer and audience that happens in a class.

Disruptions to this conversation should be avoided as much as possible.

When possible the interaction should mimic traditional classroom activity

that has stood the test of time. Traditional chalk-board lectures had many

advantages. We believe some of these can be reclaimed while still profiting

from the many new opportunities digital media provide.

Multimodal and embodied. When people talk, they perform deictic ges-

tures that make their words more precise or nuanced. Pointing a finger at

something is a strong deictic gesture, as is switching your gaze towards an

object: most people will instinctively look to see what is being pointed or

looked at. This is the reason why direct pointing is such a desirable quality

in a classroom interface, because the lecturer can use body language that

the audience understands naturally, and if this body language is translated

into updated interface elements, then the conversation will flow effortlessly.

The action of turning towards the screen to point is an indication to the

audience that they should turn their attention there. In contrast, a pointing

technique that manipulates the display indirectly, like a mouse or a touch-

sensitive surface that acts as a remote control, does not convey this natural

human understanding.

73

5.2. Required Resources Available Today

5.2 Required Resources Available Today

We assume a lecturer has both hands available to carry out direct pointing

interactions, one to hold the camera and another for pressing buttons. Ob-

viously this will not always be the case (special versions of the equipment

will be needed for those with disabilities, which is a challenge we will not

address here beyond noting that this consideration is essential to the final

design). The setup we used before conforms to this description, with the

camera tracker on one hand and the 5-button clicker on the other. In the

future, as the physical form of the tracker evolves, it might be possible to

have everything integrated into a single device, or to free one hand entirely

by placing the camera on the wrist, for example.

We further assume that instructors are more likely to tolerate some level

of inconvenience if it grants them a richer set of interactions with students,

which is the reason they are already willing to clip on microphones and

bring their own laptop computers to class for lectures. Because our direct

pointing techniques are intended for instructors giving lectures, not for stu-

dents listening to lectures, convenience for the casual user is not (yet) a

requirement.

A fundamental assumption is that there is a small but sufficient set of

distinct buttons available to the user. There has to be at least one button to

switch the device on and off (clutching). Two more buttons are enough to

do most interactions because we can use one to toggle between modes and

the other to trigger actions. Having more than just three buttons reduces

the number of distinct modes required, but it also increases the complexity

of the device. Our goal is not to provide the user with a mobile keyboard,

so we will assume there are about five buttons available, which is what an

i>Clicker has and thus is readily available in many classrooms.

Buttons on an i>Clicker can detect only a “press down” event. It makes

no difference if you keep a button pressed or let it go, so actions such as

dragging, which is usually performed by clicking, moving, and then releasing,

have to be done instead by pressing, moving, and then pressing again (i.e.,

we are restricted to point-and-click rather than drag-and-drop). This simple

74

5.3. Styles of Interaction

“button down” behavior is the absolute minimum functionality of a button,

and is the way that many clicker systems work (including i>Clicker).

In our design the camera is part of a dedicated device for tracking. While

it is possible that a device such as a cellphone can be used for tracking with

the techniques described in earlier chapters, it is not optimal because user

accuracy may suffer: the physical form factor of a phone makes pointing

unintuitive. In general, it is best to make the interface design independent

of the physical properties of the pointing device. As the research progresses,

the tracking device could become more sophisticated and versatile, however,

this should not be relied on in the high-level design. The simple approach

taken in our prototype is sufficient to support a rich set of interactions.

The two pieces of hardware that we require are available today. The

i>Clicker fully meets our requirements for the button device. Low cost

cameras, configured as in our prototype, provide the tracker device. While

these are not currently available as commercial products, the supporting

technology is available at commodity prices. This means that in a practical

sense all of the equipment is accessible for use in the classroom and ready

for commercialization. No additional hardware is required beyond what is

already in place in most classrooms: an instructor’s laptop computer (or a

built-in classroom computer), WiFi connectivity, and one or more display

systems connected to the computer.

5.3 Styles of Interaction

Interactions happen mainly through direct pointing, but the meaning of the

pointing gesture changes depending on what buttons are pressed. The in-

terface should not require direct access to the computer’s resources, such

as keyboard, mouse or personal screen, unless it is an unavoidable excep-

tion such as connecting to the WiFi network or the classroom displays, or

enabling the chiroptic tracker support software on the computer.

Interactions are meant to be sporadic. The design of the interface does

not require continuous input from the user for prolonged periods of time.

The chiroptic device is not the best way to carry out prolonged interactions,

75

5.4. General Recommendations

even in the classroom, because that is not what it is designed for. For our

prototype, this explains why the grid occluding the contents on the display

screen is not a problem: the grid serves as an indication that an interaction

is underway, but it goes away immediately when the interaction is finished,

so if the interactions are carried out quickly and sporadically, occlusion will

not be a significant distraction because the grid will get out of the way and

allow the lecture to continue once the interaction is complete.

Usually lecturers will be standing and positioned in front or to the side

of the main wall display, with their backs to the display and looking at the

audience. A lecturer will want to avoid blocking students’ view of the display,

so the angle of pointing will usually be considerably skewed. Lecturers will

have some room to move around and may instinctively move to a more

advantageous position for pointing when it is required.

Students in the audience might have secondary displays in front of them,

such as computer screens or paper-based notebooks, but their attention will

often be mainly focused on the lecturer and the main wall display.

5.4 General Recommendations

We make four recommendations about appropriate design choices that are

particularly suited to the type of classroom-based interaction we want to

support.

Modes. These allow a user to perform different actions using the same

gesture because the gesture is interpreted in the context of the current mode.

An illustrating analogy is the tool palette of drawing software such as Pho-

toshop: clicking and dragging the mouse has a different effect based on what

tool is selected. Our prototype uses modes. Some modes could transition

automatically from others, and some could share functionality. For exam-

ple “copying” a section of the display and “highlighting” both require the

user to “draw” a region first, so those two actions (modes) could become

available after the drawing mode.

Try to minimize mode switching. This will involve determining which

modes are more common so they can be activated by default, and which

76

5.5. Example of Future In-Classroom Interaction

ones are natural transitions from other modes, so the user does not have to

switch explicitly.

Make buttons perform actions that are similar across modes. This helps

the user build a simple mental model because the button mapping is consis-

tent. For example, the button that switches tracking off could also be used

to cancel an action, such as the drawing of a shape, or to reset the position

of an object that is being dragged.

Be agnostic about other classroom software. It is acceptable to treat

the contents of the display in a special way that is optimized for a class-

room interface with direct pointing, but do not tie the interface to a specific

software package, like a slide presentation program. Ideally it should work

independent of the software responsible for rendering the contents of the

display, and the device driver for the tracker should handle its own set of

commands and not expect them to be dealt with by plug-ins to other appli-

cations. As standard functionality, include a mode that makes the tracker

and clicker work like a mouse with emulated left and right-click buttons, so

that any software can be used remotely with the tracker. This should not

be the default mode of interaction.

5.5 Example of Future In-Classroom Interaction

The recommendations in this chapter were designed in abstract where it

was possible, independent of any specific implementation of the chiroptic

tracker. In this section we give an example of how an interaction could take

place with our current prototype and a 5-button clicker like the one used for

the study described in Chapter 4. Our description is only one way in which

the interaction can take place; the design space for a classroom interface

based on direct pointing is vast. Exploring it more deeply is an interesting

topic for future research.

We will consider the following scenario:

James is giving a math lecture discussing the implications of a

theorem. His current slide is relevant to the context of the dis-

cussion. It includes an equation with multiple parts. A student

77

5.5. Example of Future In-Classroom Interaction

asks a question and James realizes the answer involves only two

isolated parts of the equation, so he decides to highlight them.

He turns towards the display, presses button 5 on his clicker

to activate the camera tracker he is holding on his right hand.

This action overlays a grid of fiducial markers on the display.

He points at the first relevant section and presses button 1 on

his clicker, which starts drawing the outline of a rectangle at

the current cursor position. Then he drags the cursor to en-

large the rectangle until it surrounds the first part that he wants

to highlight in the equation, and then presses button 1 again

to complete the rectangle. He does the same thing to create an-

other rectangle surrounding the second part of the equation, and

then presses button 2, which causes the two rectangles and their

content to remain bright while the space outside them becomes

darker, achieving a highlighting effect. At this point the grid and

cursor disappear, the camera is no longer active. James turns

back to the student to explain the relevant concepts. When the

question is resolved he presses button 4 on his clicker, which

removes the highlights and returns to the original state of the

slide, and he continues his lecture.

In this example a few things stand out. First, the interaction was not

planned, it was improvised based on the dynamic requirements of the class-

room. Second, the tracker and clicker only come into play during the actions

taken by the lecturer to highlight regions of the screen. The rest of the time

they are out of the way and the lecture proceeds as normal. Third, it is

possible to carry out this example with our technique, and the resources to

do so are available to an instructor now.

Designing an effective classroom interface that is based around direct

pointing is a task that requires iteration and experimentation. We hope the

discussion in this chapter provides enough insights to begin the next steps

in the process. Ultimately, the camera-based pointer and the interaction

techniques that use it will be only a part of a larger multi-user interface for

78

5.5. Example of Future In-Classroom Interaction

all the people in the classroom, an interface that might resemble an orchestra

of smart instruments playing in coordination to the mutual benefit of the

room’s occupants.

79

Chapter 6

Conclusions and Future Work

Technological resources in modern classrooms are not being used to their

full potential. They could be leveraged to create a richer interface for the

benefit of both lecturers and students. A key component to enable such

an interface is a pointing device that allows direct manipulation of content

on the screen without tethering users to the computer and ideally without

introducing more hardware into the classroom.

We have explained how such a device can be created by using a pattern

of structured shapes on the display to encode position information, paired

with a hand-held camera that when pointed at the screen interprets the pat-

tern and determines a position to draw the cursor. In addition, we provide

an implementation of these ideas running reliably at sampling rates that are

high enough to provide a smooth experience for users of the pointing device.

Our implementation is still a proof of concept with many possible improve-

ments, including the use of better vision algorithms for feature extraction

that are more robust to varying lighting conditions and reduced color con-

trast. There is a vast pool of knowledge in computer vision that we have not

fully explored, so it is possible that a completely different approach would

work better, for example by tracking feature points of the display itself.

It would also be interesting to explore the creation of a closed-loop ver-

sion of the device, where the shapes on the display are moved around de-

pending on the user’s location, to both minimize clutter on the screen and

ensure position information can always be obtained. As long as we track

four distinct points, we should be able to estimate a six-degree-of-freedom

position for the camera. The closed-loop tracker could be stabilized using

Kalman filters, PID controllers or particle filters, all of which have been used

previously for this kind of problem. Stabilizing a closed-loop solution would

allow us to do more interesting things with the tracker, like dynamically

80

Chapter 6. Conclusions and Future Work

adjusting the markers positions and dimensions to make them optimal for

both the camera and the audience.

The results of a controlled study comparing the camera pointing device

to a mouse were reported, and they show that the mouse performs about

twice as fast as the camera, while error rates are comparable between the

devices. Our belief is that this is a good trade-off for classroom users, who

often interact only infrequently with the display and will enjoy the increased

usability of direct pointing. In the future we would like to work with lecturers

that are willing to help us test the device in an actual classroom setting, to

gather field data that will be very valuable in creating a better classroom

interface. We would also like to run further studies where control to display

ratio values are adjusted at different distances from the display, to measure

the effects on device reliability and precision.

Many of our study participants mentioned the lag in the device was

noticeable, but not problematic. Understanding the sources and effects of

lag in the system would give us a better sense of how well the device can

work with faster hardware. Our conjecture is that reduced system latency

would increase user throughput. We would like to run a second study that

looks into the effect of lag on user performance with the chiroptic tracker,

which would allow us to estimate how much improvement in performance

could be expected from reduced lag.

We presented ideas for the creation of an interface that makes use of a

direct pointing device and a 5-button clicker to encourage the discussion of

what a classroom interface should be like. Future work will implement these

techniques and test their effectiveness with real users.

The prototype implementation for the chiroptic tracker that was pre-

sented here exceeded some of our initial expectations. It is possible that it

can be used effectively in other settings than the one we designed it for. We

would like to do more explorations of the physical design to create a tech-

nology that can be flexible enough to be used with a camera phone (which,

while not the optimal form factor, might be a convenient way to have a chi-

roptic tracker readily available), but also embedded into clothing or other

wearables. This flexibility would enable the creation of more sophisticated

81

Chapter 6. Conclusions and Future Work

interfaces with interactions that are similar to those found in multi-touch

interfaces. In any case more effort should be put into the design of a chi-

roptic tracker as a dedicated device, one that grants lecturers a robust set

of interactions with which to create a rich classroom experience.

82

Bibliography

[1] Vivek Agarwal, Besma R. Abidi, Andreas Koschan, and Mongi A.

Abidi. An overview of color constancy algorithms. Journal of Pattern

Recognition Research, 1(1):42–54, 2006.

[2] Karl Johan Aström and Richard M. Murray. Feedback systems: an

introduction for scientists and engineers. Princeton University Press,

2010.

[3] Matthias Baldauf, Peter Fröhlich, and Katrin Lasinger. A scalable

framework for markerless camera-based smartphone interaction with

large public displays. In Proceedings of the 2012 International Sympo-

sium on Pervasive Displays, PerDis ’12, pages 4:1–4:5, New York, NY,

USA, 2012. ACM.

[4] Rafael Ballagas, Jan Borchers, Michael Rohs, and Jennifer G. Sheridan.

The smart phone: a ubiquitous input device. Pervasive Computing,

IEEE, 5(1):70–77, 2006.

[5] Rafael Ballagas, Michael Rohs, and Jennifer G. Sheridan. Sweep and

point and shoot: Phonecam-based interactions for large public displays.

In CHI ’05 Extended Abstracts on Human Factors in Computing Sys-

tems, CHI EA ’05, pages 1200–1203, New York, NY, USA, 2005. ACM.

[6] Peter Beshai. Implementation and evaluation of a classroom syn-

chronous participation system. Master’s thesis, University of British

Columbia, Vancouver, BC, Canada, 2014.

[7] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software

Tools, 2000.

[8] Bill Buxton. Some milestones in computer input devices: an informal

timeline. http://www.billbuxton.com/inputTimeline.html. Ac-

cessed August 12, 2015.

83

http://www.billbuxton.com/inputTimeline.html

Bibliography

[9] Duncan Cavens, Florian Vogt, Sidney Fels, and Michael Meitner. In-

teracting with the big screen: Pointers to ponder. In CHI ’02 Extended

Abstracts on Human Factors in Computing Systems, CHI EA ’02, pages

678–679, New York, NY, USA, 2002. ACM.

[10] Cesare Celozzi, Gianluca Paravati, Andrea Sanna, and Fabrizio Lam-

berti. A 6-dof ARTag-based tracking system. Consumer Electronics,

IEEE Transactions on, 56(1):203–210, 2010.

[11] Matthias Deller and Achim Ebert. ModControl - mobile phones as a

versatile interaction device for large screen applications. In Proceedings

of the 13th IFIP TC 13 International Conference on Human-computer

Interaction, Part II, INTERACT ’11, pages 289–296, Berlin, Heidel-

berg, 2011. Springer-Verlag.

[12] Mark Fiala. Artag, a fiducial marker system using digital techniques. In

Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. IEEE Computer Society.

[13] Paul M Fitts. The information capacity of the human motor system

in controlling the amplitude of movement. Journal of experimental

psychology, 47(6):381–391, 1954.

[14] David Fofi, Tadeusz Sliwa, and Yvon Voisin. A comparative survey on

invisible structured light. In Proc. SPIE, volume 5303, pages 90–98.

Machine Vision Applications in Industrial Inspection XII, 2004.

[15] David A. Forsyth and Jean Ponce. Computer vision: a modern ap-

proach. Prentice Hall, 2003.

[16] Orazio Gallo, Sonia M. Arteaga, and James E. Davis. Camera-based

pointing interface for mobile devices. In 15th IEEE International Con-

ference on Image Processing, ICIP ’08, pages 1420–1423. IEEE, 2008.

[17] Arjan Gijsenij, Theo Gevers, and Joost Van De Weijer. Computational

color constancy: Survey and experiments. IEEE Transactions on Image

Processing, 20(9):2475–2489, 2011.

84

Bibliography

[18] Richard Hartley and Andrew Zisserman. Multiple view geometry in

computer vision. Cambridge University Press, second edition, 2003.

[19] NaturalPoint Inc. OptiTrack. http://www.optitrack.com/. Accessed

August 17, 2015.

[20] Seokhee Jeon, Jane Hwang, Gerard J. Kim, and Mark Billinghurst.

Interaction techniques in large display environments using hand-held

devices. In Proceedings of the ACM Symposium on Virtual Reality

Software and Technology, VRST ’06, pages 100–103, New York, NY,

USA, 2006. ACM.

[21] Hao Jiang, Eyal Ofek, Neema Moraveji, and Yuanchun Shi. Direct

Pointer: Direct manipulation for large-display interaction using hand-

held cameras. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, CHI ’06, pages 1107–1110, New York,

NY, USA, 2006. ACM.

[22] Carsten Kirstein and Heinrich Mueller. Interaction with a projection

screen using a camera-tracked laser pointer. In Proceedings of Multi-

media Modeling, MMM ’98, pages 191–192. IEEE, 1998.

[23] Zhangbo Liu. LACOME: a cross-platform multi-user collaboration sys-

tem for a shared large display. Master’s thesis, University of British

Columbia, Vancouver, BC, Canada, 2007.

[24] Bruce D. Lucas and Takeo Kanade. An iterative image registration

technique with an application to stereo vision. In Proc. 7th Intl. Joint

Conf. on Artificial Intelligence, volume 81 of IJCAI, pages 674–679,

1981.

[25] I. Scott MacKenzie. Movement time prediction in human-computer in-

terfaces. In Ronald M. Baecker, Jonathan Grudin, William A. S. Bux-

ton, and Saul Greenberg, editors, Human-computer Interaction, pages

483–492. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,

1995.

85

http://www.optitrack.com/

Bibliography

[26] I. Scott MacKenzie and Shaidah Jusoh. An evaluation of two input

devices for remote pointing. In Murray R. Little and Laurence Nigay,

editors, Engineering for Human-Computer Interaction, volume 2254 of

Lecture Notes in Computer Science, pages 235–250. Springer Berlin

Heidelberg, 2001.

[27] I. Scott MacKenzie and Colin Ware. Lag as a determinant of human

performance in interactive systems. In Proceedings of the INTERACT

’93 and CHI ’93 Conference on Human Factors in Computing Systems,

CHI ’93, pages 488–493, New York, NY, USA, 1993. ACM.

[28] Russell MacKenzie. LACOME: Early evaluation and further devel-

opment of a multi-user collaboration system for shared large dis-

plays. Master’s thesis, University of British Columbia, Vancouver, BC,

Canada, 2010.

[29] Anil Madhavapeddy, David Scott, Richard Sharp, and Eben Upton. Us-

ing camera-phones to enhance human-computer interaction. In Sixth

International Conference on Ubiquitous Computing (Adjunct Proceed-

ings: Demos), 2004.

[30] Kento Miyaoku, Suguru Higashino, and Yoshinobu Tonomura. C-blink:

A hue-difference-based light signal marker for large screen interaction

via any mobile terminal. In Proceedings of the 17th Annual ACM Sym-

posium on User Interface Software and Technology, UIST ’04, pages

147–156, New York, NY, USA, 2004. ACM.

[31] Orkhan Muradov. Feasibility of supporting pointing on large wall dis-

plays using off-the-shelf consumer-grade tracking equipment. Master’s

thesis, University of British Columbia, Vancouver, BC, Canada, 2013.

[32] Brad A. Myers, Rishi Bhatnagar, Jeffrey Nichols, Choon Hong Peck,

Dave Kong, Robert Miller, and A. Chris Long. Interacting at a distance:

Measuring the performance of laser pointers and other devices. In Pro-

ceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI ’02, pages 33–40, New York, NY, USA, 2002. ACM.

86

Bibliography

[33] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David

Molyneaux, David Kim, Andrew J. Davison, Pushmeet Kohi, Jamie

Shotton, Steve Hodges, and Andrew Fitzgibbon. KinectFusion: Real-

time dense surface mapping and tracking. In Proceedings of the 10th

IEEE International Symposium on Mixed and Augmented Reality, IS-

MAR 2011.

[34] Donald A. Norman. The psychology of everyday things. Basic books,

1988.

[35] Katsuhiko Ogata. Modern Control Engineering. Prentice Hall, fifth

edition, 2010.

[36] Dan R. Olsen Jr. and Travis Nielsen. Laser pointer interaction. In Pro-

ceedings of the SIGCHI Conference on Human Factors in Computing

Systems, CHI ’01, pages 17–22, New York, NY, USA, 2001. ACM.

[37] James G. Phillips and Thomas J. Triggs. Characteristics of cursor

trajectories controlled by the computer mouse. Ergonomics, 44(5):527–

536, 2001.

[38] Barry A. Po, Brian D. Fisher, and Kellogg S. Booth. Comparing cursor

orientations for mouse, pointer, and pen interaction. In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems,

CHI ’05, pages 291–300, New York, NY, USA, 2005. ACM.

[39] Vasanth Kumar Rajendran. Interaction with large stereoscopic displays:

Fitts and multiple object tracking studies for virtual reality. Master’s

thesis, University of British Columbia, Vancouver, BC, Canada, 2012.

[40] Michael Rohs. Real-world interaction with camera phones. In Proceed-

ings of the Second International Conference on Ubiquitous Computing

Systems, UCS ’04, pages 74–89, Berlin, Heidelberg, 2005. Springer-

Verlag.

[41] Joaquim Salvi, Jordi Pagès, and Joan Batlle. Pattern codification

87

Bibliography

strategies in structured light systems. Pattern Recognition, 37(4):827–

849, 2004.

[42] Toby Sharp, Cem Keskin, Duncan Robertson, Jonathan Taylor, Jamie

Shotton, David Kim, Christoph Rehmann, Ido Leichter, Alon Vinnikov,

Yichen Wei, Daniel Freedman, Pushmeet Kohli, Eyal Krupka, Andrew

Fitzgibbon, and Shahram Izadi. Accurate, robust, and flexible real-time

hand tracking. In Proceedings of the 33rd Annual ACM Conference

on Human Factors in Computing Systems, CHI ’15, pages 3633–3642.

ACM, 2015.

[43] Junhao Shi. Improve classroom interaction and collaboration using

i>Clicker. Master’s thesis, University of British Columbia, Vancouver,

BC, Canada, 2013.

[44] Garth Shoemaker, Takayuki Tsukitani, Yoshifumi Kitamura, and Kel-

logg S. Booth. Two-part models capture the impact of gain on point-

ing performance. ACM Transactions on Computer-Human Interaction

(TOCHI), 19(4):28:1–28:34, December 2012.

[45] R. William Soukoreff and I. Scott MacKenzie. Towards a standard

for pointing device evaluation, perspectives on 27 years of Fitts’ Law

research in HCI. International Journal of Human-Computer Studies,

61(6):751–789, December 2004.

[46] Ivan E. Sutherland. Sketchpad: a man-machine graphical communica-

tion system. Technical Report 574, University of Cambridge, Computer

Laboratory, September 2003.

[47] Vicon Motion Systems. Vicon. http://www.vicon.com/. Accessed

August 17, 2015.

[48] Richard Szeliski. Computer vision: algorithms and applications.

Springer Science & Business Media, 2010.

88

http://www.vicon.com/

[49] Florian Vogt, Justin Wong, Sidney Fels, and Duncan Cavens. Track-

ing multiple laser pointers for large screen interaction. In Extended

Abstracts of ACM UIST, pages 95–96, 2003.

[50] Colin Ware. Information Visualization: Perception for Design. Else-

vier, 2012.

[51] Alan Traviss Welford. Fundamentals of skill. Methuen, 1968.

89

Appendix A

Experimental Resources

The following are the documents given to participants of the pointing study

described in Chapter 4.

A.1 Consent Form

Participants were asked to read and sign this consent form.

90

A.1. Consent Form

91

A.1. Consent Form

92

A.2. Initial Questionnaire

A.2 Initial Questionnaire

This questionnaire was given to participants at the beginning of the study,

to gather basic demographics and check they met the study’s requirements.

93

A.2. Initial Questionnaire

94

A.3. Final Questionnaire

A.3 Final Questionnaire

This questionnaire was given to participants at the end of the study, and

they were instructed to report only on their experience with the camera, to

gather subjective and qualitative data.

95

A.3. Final Questionnaire

96

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Two Important Input Devices for Pointing
	Light Pen
	Mouse

	Contributions
	Overview of the Thesis

	Related Work
	Chiroptic Tracker: Camera-Based Remote Pointing
	Design Constraints
	The Camera Tracking Process
	Implementation
	Grid of Markers
	Cursor
	Feature Extraction
	Computing Relative Coordinates
	Cursor Position
	Performance

	Known Limitations
	Occlusion Caused by the Grid
	High Color Contrast
	Chaotic Movement
	Lens Blur
	Lag
	Acute Angles

	Pilot Testing

	Comparing Remote Pointing to the Mouse
	Hypotheses
	Empirical Models of Pointing Performance
	Method
	Participants
	Apparatus
	Study Design
	Procedure

	Results
	Movement Time
	Error Rates
	Throughput
	Subjective Data

	Discussion

	Design Brief for a Classroom Interface
	Goals of the Interface
	Required Resources Available Today
	Styles of Interaction
	General Recommendations
	Example of Future In-Classroom Interaction

	Conclusions and Future Work
	Bibliography
	Experimental Resources
	Consent Form
	Initial Questionnaire
	Final Questionnaire

