
Robot Learning for Autonomous Navigation in a Dynamic
Environment

by

Yunfei Zhang

B.Sc., Qingdao University of Science and Technology, 2006

M.Sc., Shanghai Jiao Tong University, 2010

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Mechanical Engineering)

The University of British Columbia

(Vancouver)

September 2015

c© Yunfei Zhang, 2015

Abstract

This dissertation addresses autonomous navigation of robots in a dynamic environ-

ment where the existence of moving and/or unknown objects leads to more serious

challenges for the robots than those when operating in a traditional stationary en-

vironment. Therefore, the use of learning capabilities to facilitate proper robotic

operation in a dynamic environment has become an important research area in the

past decade. This dissertation proposes several novel learning-based methods to

overcome the shortcomings in the existing approaches of autonomous navigation.

Three aspects are addressed in the present work.

First, a real-time path planning method is designed for autonomous naviga-

tion that can generate a path that avoids stationary and moving obstacles. To this

end, learning ability is imparted to the robot. The present framework incorporates

the statistical planning approach called probabilistic roadmap (PRM), Q-learning

together with regime-switching Markov decision process (RSMDP) due to its ben-

eficial characteristics, to form a robust Q-learning. Consequently, the initial path

can be improved through robust Q-learning during interaction with a dynamic en-

vironment.

Second, motion planning under constraints is investigated. Specifically, a closed-

form piecewise affine control law, called piecewise affine-extended linear quadratic

regulator (PWA-ELQR), for nonlinear-nonquadratic control problems with con-

straints is proposed. Through linearization and quadratization in the vicinity of

the nominal trajectories, nonlinear-nonquadratic control problems can be approx-

imated to linear-quadratic problems where the closed-form results can be derived

relatively easily.

Third, people detection is integrated into the autonomous navigation task. A

ii

classifier trained by a multiple kernel learning-support vector machine (MKL-

SVM) is proposed to detect people in sequential images of a video stream. The

classifier uses multiple features to describe a person, and learn its parameter values

rapidly with the assistance of multiple kernels.

In addition to the methodology development, the present research involves

computer simulation and physical experimentation. Computer simulation is used

to study the feasibility and effectiveness of the developed methodologies of path

planning, motion planning and people detection. The experimentation involves

autonomous navigation of a homecare robot system. The performance of the de-

veloped system is rigorously evaluated through physical experimentation and is

improved by refining the developed methodologies.

iii

Preface

The entire work presented in this dissertation was conducted at the Industrial Au-

tomation Laboratory of the University of British Columbia, Vancouver campus

under the supervision of Dr. Clarence W. de Silva. A collection of manuscripts,

resulting from the collaboration of several researchers, contribute the content of

this work. I was responsible for majority of the research in this work, including lit-

erature survey, algorithm development and implementation, open-source software

implement, numerical simulation and physical experimentation, with the guidance

and advice of my supervisor, Dr. Clarence W. de Silva. I wrote the manuscripts,

which were edited and refined by Dr. Clarence W. de Silva.

Parts of Chapter 2 and Chapter 3 are based on the work published on:

• Yunfei Zhang, Weilin Li and Clarence W. de Silva, ”RSMDP-based Robust

Q-learning for Optimal Path Planning in a Dynamic Environment,” Interna-

tional Journal of Robotics and Automation, 2015 (accepted).

A version of combined Chapter 4 and Chapter 6 has been submitted to a journal

and is under second round review:

• Yunfei Zhang, Xun Chen and Clarence W. de Silva, ”PWA-Extended LQR

for Optimal Motion Planning of Nonholonomic Mobile Robot with Con-

straints”.

Chapter 5 is based on the work published on:

• Yunfei Zhang, Rajen Bhatt, and Clarence W. de Silva, ”MKL-SVM-based

human detection for autonomous navigation of a robot,” IEEE International

Conference In Computer Science & Education (ICCSE), Vancouver, August

22-24, 2014.

iv

Table of Contents

Abstract . ii

Preface . iv

Table of Contents . v

List of Tables . viii

List of Figures . ix

Nomenclature . xii

List of Acronyms . xiv

Acknowledgments . xvi

1 Introduction . 1
1.1 Motivation . 1

1.2 Research Scope and Problem Specification 4

1.2.1 Research Scope . 4

1.2.2 Problem Specification 5

1.3 Related Works . 8

1.3.1 Path Planning . 8

1.3.2 Motion Planning . 9

1.3.3 People Detection . 11

1.4 Challenges, Contributions and Organization of the Dissertation . . 12

v

1.5 Thesis Outline . 14

2 Robot Learning . 16
2.1 Introduction . 16

2.2 Reinforcement Learning . 18

2.2.1 Markov Decision Process 18

2.2.2 Dynamic Programming: Model-based Method for Solving

MDP . 22

2.2.3 Reinforcement Learning: Model-free Method for Solving

MDP . 26

2.3 Support Vector Machine: A Popular Method of Supervised Learning 34

2.3.1 Geometric Margins . 35

2.3.2 Optimal Margin Classifier 39

2.3.3 Dual Problem and Support Vectors 40

3 Robust Q-learning with Regime-Switching Markov Decision Process
for Optimal Path Planning . 42
3.1 Introduction . 42

3.2 RSMDP . 43

3.3 Probabilistic Roadmap for RSMDP 45

3.4 Path Planner with Online Q-learning 47

3.5 Simulation Studies . 51

4 Extended Linear Quadratic Regulator Enhanced with PWA for Mo-
tion Planning . 56
4.1 Introduction . 56

4.2 Optimal Motion Planning with Constraints 56

4.3 Piecewise Affine-ELQR . 58

4.3.1 Traditional Linear-Quadratic-Regulator 58

4.3.2 Piecewise Affine Feedback Control for Constrained Con-

trol Problems . 59

4.3.3 PWA-LQR Smoothing 62

4.3.4 PWA-ELQR: Local Approximation for Nonliear-Nonquadratic

Control Problems . 65

vi

4.4 Simulation Studies . 67

5 People Detection-using MKL-SVM 74
5.1 Introduction . 74

5.2 Combined Features: HOG-HOF 75

5.2.1 Histogram of Oriented Gradients 75

5.2.2 Histograms of Optical Flow 78

5.3 MKL-SVM Classifier . 79

5.4 Performance Evaluation . 81

6 Implementation and Experimentation 85
6.1 Overview . 85

6.2 The Hardware System . 87

6.2.1 Segway Mobile Base . 87

6.2.2 3D Camera: Microsoft Kinect 87

6.2.3 2D Laser Ranger Finder: Hokuyo UTM-30LX 89

6.3 Software System . 89

6.3.1 People Detection . 89

6.3.2 Autonomous Navigation 92

6.4 Experimental Results . 95

7 Conclusions and Future Work . 104
7.1 Conclusions . 104

7.2 Future Work . 106

Bibliography . 108

vii

List of Tables

Table 5.1 Comparisons of different kernels and corresponding results . . 82

Table 6.1 Segway RMP100 Specifications 87

Table 6.2 Microsoft Kinect Specifications 88

Table 6.3 Hokuyo UTM-30LX Specifications 89

viii

List of Figures

Figure 1.1 Percentage of elderly (>65) with respect to working-age (16-

65) population. 2

Figure 1.2 A scenario of autonomous navigation in home environment. . 3

Figure 1.3 A typical function structure of autonomous navigation. 5

Figure 1.4 The designed scenario of autonomous navigation in a real-

world home environment. 6

Figure 1.5 (a) The Segway two-wheel differential-drive mobile robot; (b)

Kinematic scheme of the two-wheel differential-drive mobile

robot. 7

Figure 2.1 Basic MDP scheme for modeling the environment when robot

learning is applied. 18

Figure 2.2 Basic MDP scheme for modeling the environment where robot

learning are applied into. 23

Figure 2.3 Static collision-free roadmap for establishing Q table. 33

Figure 2.4 Reward matrix R (-1 means there is no edge between nodes, 0

means an arrived node is not a goal node, 10 means an arrived

node is a goal node). 34

Figure 2.5 Q table in the form of matrix Q at the initial iteration. 35

Figure 2.6 Q table in the form of matrix Q at the iteration 5. 36

Figure 2.7 Q table in the form of matrix Q at the iteration 50. 37

Figure 2.8 The basic scheme of linear classifier. 37

Figure 2.9 The basic scheme of geometric margins. 39

ix

Figure 2.10 An example of the concept of support vectors for a linear clas-

sifier. 41

Figure 3.1 The probabilistic roadmap (PRM) process in the configuration

space (C-space) . 46

Figure 3.2 Local roadmap generation. 48

Figure 3.3 Simulated environment for the mobile robot in a 640×480 im-

age plane, in a learning process. 51

Figure 3.4 History of Q-value with γmax = 0.8,0.5,0.2 and 100 sampled

points generated in PRM. 52

Figure 3.5 Performance comparison between traditional Q-learning and

robust Q-learning with γmax = 0.98. 53

Figure 3.6 Obstacle avoidance in dynamic environment. 55

Figure 4.1 (a) The real-world environment where SegPanda executes au-

tonomous navigation; (b) The simplified simulation environ-

ment corresponding to (a). 68

Figure 4.2 Comparison of the optimal trajectories of the input control be-

tween ELQR (does not consider constraints on control during

motion planing) and PWA-ELQR. 69

Figure 4.3 The corresponding comparison of the optimal trajectories of

the state between ELQR, which does not consider constraints

on control during motion planing, and PWA-ELQR(Hence the

state trajectory of ELQR can theoretically reach to the goal

location). 70

Figure 4.4 Comparison of the optimal trajectories of the state between

ELQR and PWA-ELQR in a simplified simulation environ-

ment. Although ELQR results in a somewhat shorter path, it

costs 142.97 and can not be executed because of control con-

straints. PWA-ELQR costs 140.77 and is executed success-

fully since it considers constraints during motion planning. . . 72

Figure 5.1 The definition of cell and block for a sample image 75

Figure 5.2 Calculation of the gradients of the sample image. 76

x

Figure 5.3 8-bin histogram orientation for one cell 77

Figure 5.4 Overview of extracting HOG feature 78

Figure 5.5 Overview of extracting HOF feature 78

Figure 5.6 (a) Detection results (light color bounding boxes) based on

HOG-HOF feature using MKL-SVM; (b) Detection results (dark

color bounding boxes) based on HOG feature using MKL-

SVM. 84

Figure 6.1 The prototype of the autonomous navigation system-SegPanda. 86

Figure 6.2 An example of a simulated environment built by ROS. 86

Figure 6.3 The structure of Kinect components 88

Figure 6.4 An example of the scanning result of Hokuyo in the Industrial

Automation Laboratory (IAL) laboratory environment. The

green lines pointed using red arrows show the scanning result

of Hokuyo. 90

Figure 6.5 The result of people detection in a one-person case. 91

Figure 6.6 The result of people detection in a two-person case. 92

Figure 6.7 The overview structure of the ROS navigation stack. 93

Figure 6.8 The overall structure of the autonomous navigation system . . 95

Figure 6.9 An example of the local costmap used for autonomous naviga-

tion. 97

Figure 6.10 An example of the computed global path used for autonomous

navigation. 99

Figure 6.11 The flowchart of the overall autonomous navigation system. . 100

Figure 6.12 The views of the experimental demonstration. 101

Figure 6.13 The views of the experimental demonstration: avoiding a static

obstacle. 102

Figure 6.14 The views of the experimental demonstration: avoiding a mov-

ing obstacle. 103

xi

Nomenclature

A = {a1,a2, ...,aN} a set of actions of an MDP
At state matrix of a discrete-time formulation
Āt state matrix of a reverse discrete-time formu-

lation
α learning rate
b optimal parameter
Bt control matrix of a discrete-time formulation
B̄t control matrix of a reverse discrete-time for-

mulation
ct immediate cost function at time-step t
cl immediate cost function at final time-step l[

Dt CT
t

Ct Et

]
cost weight matrix in cost-to-go function[

D̄t C̄T
t

C̄t Ēt

]
cost weight matrix in cost-to-come function[

dt

et

]
cost weight vector in cost-to-go function[

d̄t

ēt

]
cost weight vector in cost-to-come function

δ iteration termination threshold
dx vertical stride size
dy horizontal stride size
η geometric margin
E mean value (expectation)
γ discount factor
I image
Im gradient magnitude image
Io gradient orientation image

xii

Ix vertical difference image
Iy horizontal difference image
k kernel function
L distance between the two wheels
P transition function of an MDP
Pψk transition function of an RSMDP
π policy of an MDP
πψk policy of an RSMDP
π∗ optimal policy of an MDP
π∗ψk

optimal policy of an RSMDP
ψ regime
Ψ collection of regime
Φi feature space
Q state-action function
Q∗ optimal state-action function
Qψk state-action function in each regime
Q∗ψk

optimal state-action function in regime ψk

Q Q value matrix
r cost function
rψk cost function in regime ψk
R reward function of an MDP
Rψk reward function of an RSMDP
R reward matrix
σ iteration threshold
S = {s1,s2, ...,sN} a set of states of an MDP
TC terminal cost function of an MDP
TCψk terminal cost function of an RSMDP
t time
u = [vl,vr]

T robot control input, vl left wheel velocity, vr

right wheel velocity
ε greedy threshold
vt cost-to-go function
v̄t cost-to-come function
V value function
V ∗ optimal value function
Vψk value function in each regime
V ∗ψk optimal value function in regime ψk
wm normal vector to the hyperplane for the fea-

ture space Φm

w optimal parameter

xiii

List of Acronyms

ANN artificial neural networks

C-space configuration space

CNN convolutional neural networks

DP dynamic programming

EL evolutionary learning

ELQR extended linear-quadratic-regulator

HOG histograms of oriented gradients

HOG-HOF histograms of oriented gradients-histograms of optical flow

HOF histograms of optical flow

KKT Karush-Kuhn-Tucker

LQR linear-quadratic-regulator

LSVM linear support vector machine

MC Monte Carlo

MDP Markov decision process

MKL multiple kernel learning

MKL-SVM multiple kernel learning-support vector machine

MPC model predict control

IAL Industrial Automation Laboratory

xiv

IL imitation learning

PCL point cloud library

POMDP partially observable Markov decision process

PRM probabilistic roadmap

PWA-LQR piecewise affine-LQR

PWA-ELQR piecewise affine-ELQR

QP quadratic programming

RBF radial basis function

RGB red-green-blue

RGB-D red-green-blue-depth

RL reinforcement learning

RHC receding horizon control

ROS robot operating system

RSMDP regime-switching Markov decision process

SimpleMKL simple multiple kernel learning

SVM support vector machine

TDL temporal difference learning

xv

Acknowledgments

Five years of pursing PhD degree is an extremely fantastic journey in life, bringing

me much joy and cheers, at the price of many challenges, hardship, pressure and

tears. Only after experiencing such feelings, can I thoroughly understand what

gratitude is.

First, I wish to express my sincere gratitude to my supervisor, Dr. Clarence

W. de Silva. It is he who offered me this precious opportunity for pursing a PhD

degree, enabling me to freely swim in the ocean of knowledge and solidly build a

foundation for my future, which without doubt has completely changed my path

of life. I greatly appreciate all of his advice, mentorship, understanding and unwa-

vering support during the past five years. In my eyes, Dr. de Silva is not just my

academic supervisor, but also my life mentor who always encouraged me with his

generosity and patience.

I would like to thank a few of senior labmates, Dr. Ying Wang for his recom-

mendation, Dr. Tahir Khan for his humour, Dr. Roland Haoxiang Lang for the

happy hours I spent at his home during festivals, and Dr. Yanjun Wang for en-

joyable conversations in our lab. Without their help and guidance, I could not go

through the difficulties in the beginning period of my PhD program.

Also, I wish to thank all my other colleagues in the Industrial Automation

Laboratory (IAL), Ms. Yu Du, Mr. Muhammad Tufail Khan , Mr. Shan Xiao, Ms.

Lili Meng, Mr. Hani Balkhair, Ms. Pegah Maghsoud, Mr. Min Xia, Mr. Shujun

Gao, Mr. Zhuo Chen, Mr. Teng Li., and Mr. Tongxin Shu for their friendship and

help.

A big thank you goes to my close friendship groups, THREEPLUSONE in

China and WOCHANG in Vancouver. Their support and comfort have made me

xvi

believe that a bright future will come my way eventually. Special thanks go to my

dear friend, Prof. Xun Chen, for his advice on research that inspires me to purse a

higher academic goal.

This work has been supported by research grants from the Natural Sciences and

Engineering Research Council (NSERC) of Canada, the Canada Foundation for

Innovation (CFI), the British Columbia Knowledge Development Fund (BCKDF),

and the Tier 1 Canada Research Chair in Mechatronics and Industrial Automation

held by C.W. de Silva. Thank all sponsors.

In conclusion, I would like to express my deepest gratitude to my family. Thank

you my parents and parents-in-law, for your unconditional love and confidence in

me that encouraged me to always go forward. Thank you my lovely twins, Lunlun

and Yaya. You are god-sent gifts that can recharge me whenever I am out of power.

Pingping Liu, my wife, a simple thank you cannot express my gratitude for your

sharing and contributing to this journey. Only with her that I am able to know how

my world rotates.

xvii

Chapter 1

Introduction

1.1 Motivation
During the past decade, researchers in robotics have increasingly redirected their

attention from traditional industrial robots operating in structured or stationary en-

vironments to the more challenging area of mobile robotics in unstructured and

dynamic environments with applications in military, space exploration, underwater

operations, and service robots. In the area of service robotics, homecare robotics

for the elderly and the disabled has a special significance for its contribution to im-

proving the quality of life and reducing the caregiver burdens and costs. According

to UN statistics shown in Fig. 1.1, the percentage of adults who are over 65 (with

respect to those over 16) will be more than double in many countries (including

Canada) in the next 50 years. As a result there will be a severe shortage of nursing

assistants for the elderly and the disabled. This will generate a major opportunity

for the development of robotic technologies to assist or even substitute the nursing

assistants in a home environment. Also, this has important quality-of-life implica-

tions since it is known that people regardless of their age or the ability prefer to live

independently in their own homes. The overall goal of the homecare project in our

laboratory (Industrial Automation Lab) is to develop technologies for autonomous

mobile robots that can assist the elderly and the disabled in their daily activities in

a home environment. Many such activities involve autonomous navigation in the

presence of static and dynamic obstacles under uncertain and unknown conditions.

1

Figure 1.1: Percentage of elderly (>65) with respect to working-age (16-65)
population.

Autonomous navigation means that the robot can navigate by itself from the

start location to reach the goal location, in the presence of obstacles, which is an

essential ability for a variety of application of intelligent robots such as military

tasks, space exploration, and people rescue. In static and structured environments,

maps and models of the world (environment in which the robot moves) can be

generated to support autonomous navigation by a prior sensory/perception process

together with available information. However, in homecare robotics, as shown in

Fig. 1.2, autonomous navigation becomes more complex since the home environ-

ment is dynamic (and somewhat arbitrary), and changes take place due to moving

objects such as humans and pets and their actions. For instance, giving first aid

to a person who suddenly suffers heart attack or guiding an elderly person to a

washroom involves robotic movement in a dynamic environment[1]. Therefore, it

is important that such robots learn how to deal with dynamic environments so that

they can repeat those or similar tasks more effectively, by taking advantage of their

prior experience. The main focus of the present dissertation is the imparting of the

learning capability to robots so that they can adapt to dynamic environments during

2

autonomous navigation.

Figure 1.2: A scenario of autonomous navigation in home environment.

The problem of population aging is a global one due to the rising life ex-

pectancy and declining birth rate. Initially, this has been a problem primarily in

countries that are economically more developed. But recently, developing coun-

tries such as China and India are also affected by this problem. According to the

prediction of Statistics Canada, the percentage of the senior population will reach

25% of the total population by 2050. The social and economic effects of popula-

tion aging are enormous. The elderly need some care and physical assistance when

necessary, in their daily life. The total cost of providing care to people of this group

is tremendous, considering the large size of the aging population.

Another group of people that will rapidly increase its size are those with phys-

ical and cognitive impairments. The Canadian government spends about $9 billion

on disability related matters. The cost of basic care for a disabled person at home

is about $10,000/month, and this is a huge burden on the Government.

The burden described above may be reduced through the use of a homecare

robotic system, which consists of a group of robotic devices to work together in a

coordinated and efficient manner and carry out a common task of providing assis-

tance to elderly and/or disabled people in the home setting. The needed technolo-

gies of robotics, network communication, and control are sufficiently mature and

3

are available at reasonable cost. Due to the lack of necessary assistive technologies

and specialized end-effector devices, and also due to insufficient efforts in bring-

ing the pertinent technology teams together, the development of affordable and

reliable systems has eluded the application area in the past. The research in home-

care robotics is a new but rapidly developing field of service robotics, especially in

Japan.

Through our established facilities in the Industrial Automation Laboratory we

are in the process of developing an affordable and effective system of service robots

for the elderly or the disabled people with physical and cognitive impairments in

a home setting. The system comprises several sets of robot manipulators having

mobile bases, and can provide assistance in daily activities, medical assistance,

surveillance, and so on. They can work independently or collaboratively in a team,

based on the complexity of the task. The designed homecare robotic system allows

the care-receiver to stay in their familiar home environment where the assistance is

provided, which is a merit of the associated technologies.

1.2 Research Scope and Problem Specification

1.2.1 Research Scope

In carrying out complex robotic tasks in a dynamic environment, autonomous nav-

igation involves multi-domain technologies such as sensor fusion, data processing,

computer vision, artificial intelligence, optimal control and so on. Typically it can

be divided into three functional parts: perception part, computation part and execu-

tion part, as shown in Fig. 1.3. The perception part provides many kinds of sensor

data to recognize the environment around the robot; the computation part analy-

ses the data from the perception part and gives corresponding commands to the

robot according to the task goals; and the execution part accomplishes all the me-

chanical action by following the commands from the computation part. In view of

the needed capabilities of autonomous navigation for a homecare application, the

scope of the present research focuses on three main areas: 1. global path planning

that provides an optimal path to direct the robot to the global goal; 2. local motion

planning that gives the robot specific controls to follow the global path; 3. people

4

detection in a home environment. Path planning and local motion planning which

belong to the computation part are critical and indispensable for autonomous navi-

gation. People detection also falls into the computation part. But more importantly,

humans play an important role in the environment of many robotic applications,

especially in a homecare environment. Therefore, taking the existence of humans

into account during autonomous navigation has a vitally practical significance.

Figure 1.3: A typical function structure of autonomous navigation.

1.2.2 Problem Specification

This dissertation combines the aforementioned three research scopes into one au-

tonomous navigation scenario, as shown in Fig. 1.4. The autonomous navigation

system needs to complete the following tasks: detect people around the robot and

the people’s location, set the people location as the goal location, calculate an op-

timal path starting from the current location to the goal location, compute a local

motion plan to follow the global path, and avoid obstacles (both moving and static)

5

during all of the procedures. The mobile robot that is used in this research work

is a nonholonomic two-wheel differential-drive mobile robot. A zoom-out view of

the mobile robot and its kinematic scheme are shown in Fig. 1.5.

Figure 1.4: The designed scenario of autonomous navigation in a real-world
home environment.

The robot states are represented by its position and orientation (angle of rota-

tion) x = [x,y,θ]T . Considering the left wheel velocity and the right wheel velocity

as the robot control inputs, u = [vl,vr]
T , the robot kinematic model can be ex-

pressed as

ẋ =
1
2
(vr + vl)cosθ

ẏ =
1
2
(vr + vl)sinθ

θ̇ =
1
L
(vr− vl)

(1.1)

where L represents the distance between the two wheels.

Generally for formula derivation, it is common to express Equation (1.1) in

a vector form of a deterministic continuous-time formulation which is the most

typical way to describe the kinematics of a nonlinear robotic system, as given by

Equation (1.2).

ẋ(t) = f(t,x(t),u(t)) (1.2)

6

For computer representation of a continuous-time system, the discrete-time formu-

lation of Equation(1.2) for any given time-step is expressed as:

xt+1 = gt(xt ,ut), (1.3)

with gt ∈X×U→X, xt ∈X and ut ∈U, where X⊂Rn and U⊂Rm. Accordingly,

for the purpose of cost-to-come (as discussed in Section 4.3.3) the inverse discrete-

time kinematic is denoted as:

xt = ḡt(xt+1,ut), (1.4)

where ḡt ∈ X×U→ X such that gt(ḡt(xt +1,ut),ut) = xt+1.

(a) (b)

Figure 1.5: (a) The Segway two-wheel differential-drive mobile robot; (b)
Kinematic scheme of the two-wheel differential-drive mobile robot.

7

1.3 Related Works

1.3.1 Path Planning

Path planning is critical for a homecare robot, as it moves in an environment of

unknown and dynamic factors. In path planning, the path of the navigating robot

from the start location to the goal location is planned according to some criteria

(e.g., shortest path, quickest path and/or path of minimum energy) while avoiding

collisions with static and moving obstacles, and subject to some constraints (e.g.,

robot capabilities with respect to its possible movements). However, path planning

becomes more complex in the present application since the home environment is

dynamic and unstructured due to moving objects such as humans and pets and their

actions (e.g., rearrangement of furniture)[2–4].

Sampling-based methods such as probabilistic roadmap (PRM) [5–7] and Rapidly-

exploring Random Trees (RRT) [5, 8] became very popular since the nineties.

These algorithms have proved to be very effective for path planning in high-dimension

since they rely on a collision-checking module instead of explicit representation of

the environment; however, convergence to optimal solutions cannot be guaranteed

with probability one . Recently in [8], a series of variants to the sampling-based

methods (PRM*, RRT*) have been proposed to provide probabilistic complete-

ness. This means, if a solution exists for a particular plan, the probability of dis-

covering the optimal solution converges to one as the sampled number of states

increases to infinity. All these methods do not explicitly consider moving obstacles

when asymptotically converging to the optimal path.

In practical applications, however, most challenges in path planning come from

factors of uncertainty in dynamic environments such as varying environment and

unknown and moving obstacles. Inspired by the consideration of static obstacle

and moving obstacle separately and the configuration-time state space, Van den

Berg proposed a hybrid approach, which first constructs a path using PRM in the

configuration-time state space based on the stationary obstacles in the environment,

and subsequently plans a collision-free path from the original path by taking into

account the moving obstacles, which are modeled as time discs [9, 10]. A particular

advantage of this approach is that it does not need to exactly know the specific

8

movements of the obstacles, such as speed and direction, and the planner is able

to generate a path on-line while taking into account changes in the environment

during the period of deliberation. However, the approach has some disadvantages

as well. One is the assumption that the maximum speed of obstacle motion must

be less than that of the robot. Another is that the safety buffer of the time disc

module sacrifices part of the collision-free space. Furthermore, the approach does

not make use of the previous planning experience, which can help to reduce the

computational burden.

1.3.2 Motion Planning

The objective of motion planning under constraints is to plan optimal motions for

a robot such that a user-defined cost function is minimized, without disrupting

any required constraints on states and inputs. It is basically treated as an optimal

control problem. The linear-quadratic-regulator (LQR)[11] is a transitional and

popular optimal feedback controller,which can determine a proper optimal robotic

control action, given the current state. It has been studied for several decades and

been successfully applied in many practical optimal control problems [12][13][14].

However, it only provides a closed-form optimal solution and assumes that the

robot system is linear and the cost function is quadratic. Iterative LQR (iLQR)[15]

and its variants [16][17] have been proposed in order to deal with nonlinear systems

with nonquadratic cost functions. But these approaches do not consider constraints

explicitly during the iteration process. They just add an extra effort (e.g., linear

search) to guarantee iteration convergence. Consequently, the executed trajectories

easily deviate the robot from the planned trajectories beyond a tolerant range, and

the robot may even fail to complete the task (e.g., avoiding obstacles).

Much of the work related to nonlinear-nonquadratic control problems has fo-

cused on deterministic robot systems. Basically most of the numerical methods fall

into one of the following three categories.

One category consists of sample-based methods [18][19].These methods utilize

search algorithms to go through the configuration space that is defined by the user.

Even though these methods can give global results and implicitly handle constraints

by sampling, the need of gridding or other ad doc discretization can cause difficul-

9

ties. Learning-based method is another category. Based on the structure of Markov

Decision Processing (MDP), approximate reinforcement learning (ARL)[20]uses

polity iteration or value iteration to get an approximate cost function by learning

from samples and then obtain the optimal control. Optimistic planning (OP)[21]

approximates the cost function by using a new search method called simultane-

ous optimistic optimization for planning. However, these learning-based methods

also have to first discretize the continuous space, which makes them unsuitable for

large-scale problems.

The third category contains optimization-based methods. Differential dynamic

programming (DDP)[22][23] belongs to this category. DDP first maintains a rep-

resentation of a single trajectory, and then improves it locally relying on dynamic

programming. It shows second-order convergence and is numerically more effi-

cient than Newton’s method[24]. iLQR is closely related to DDP but proves to be

more efficient for complex control problems [15]. It iteratively linearizes the non-

linear system and quadratizes the cost function at the current nominal trajectory

given by the previous iteration and gets a new trajectory via modified Riccati equa-

tions. In order to guarantee convergence, iterative LQR (iLQR) [15]additionally

needs convergence measure (e.g. line search) to drive the new trajectory not far

from where linearization and quadratization are valid. Extended LQR (ELQR)[17]

is proposed to avoid the specific convergence measure through a concept called

LQR-smoothing. LQR-smoothing utilizes cost-to-go and cost-to-come cost func-

tions to establish a total-cost function for each iteration. It implements linearization

and quadratization only about a sequence of states and controls that are dynami-

cally feasible. A particular advantage of the methods DDP, iLQR and ELQR is that

they yield feedback control laws that are suitable for real-time control. However,

their common shortcoming is that they are unable to handle constraints explicitly.

Model Predictive control (MPC) [25][26][27], also called receding horizon

control (RHC)[28], has become an acceptably systematic way to handle constraints

explicitly for motion planning[29]. MPC iteratively solves the convex-optimization

problem starting from the current state over a finite horizon, and then obtains a se-

quence of open-loop optimal controls. The main drawbacks of the MPC are the

intrinsic open-loop characteristic and relatively formidable on-line computational

effort[30]. These drawbacks limit its applicability to relatively slow or small prob-

10

lems, though the partially close-loop RHC (PCLRHC)[28] method can improve

the speed of performance. Sequential quadratic programing (SQP) is also suitable

for solving constraints. It can accommodate convex constraints on the state and

the control input. However, SQP typically does not generate a feedback control

policy, but gives a sequence of optimal open-loop control inputs. The piecewise

affine-ELQR (PWA-ELQR) method proposed in the present work, inherits advan-

tages from ELQR, and incorporates piecewise affine close-loop optimal control

into the process of minimizing the total cost function, so that the input control

constraints and differential constraints can be explicitly solved in each iteration.

Additionally, the feedback control is locally optimal, which further facilities fast

convergence under constraints to generate executable controls. The present work

assumes that obstacle occupation is a unique form of state constraint, since the en-

tire unreachable state space is defined as the obstacle state and is considered in the

cost function.

1.3.3 People Detection

People detection for autonomous navigation of homecare robots has attracted con-

siderable interest in the past decade, since humans are integral part of a homecare

robots environment. Though remarkable progress has been made in human-free

scenarios such as the DARPA Urban Challenge1, autonomous navigation in dy-

namic environment where there are moving people is still a largely unsolved prob-

lem.

Digital cameras can deliver much richer appearance information than range

sensors such as LIDAR, although cameras rarely reach the geometric accuracy as

those of range sensors. This advantage of richer appearance makes cameras attrac-

tive for detecting humans in applications of autonomous navigation. One popular

framework to solve appearance-based human detection usually insists on a space

of image features and a learned classifier. In such a framework, there are three

main steps: feature extraction, classifier training, and detection strategy. One type

of features extracted from raw image data is called histograms of oriented gradi-

ents (HOG) [31] and is quite popular. Its variants include histograms of optical

1http://www.darpa.mil/GRANDCHALLENGE/

11

flow (HOF) [32], and combined versions with other features like integral channel

features [33][34] or color features [35]. Classifiers usually use two categories of

approaches: support vector machine (SVM) or some variants of boosting, which

learn to map the features to the scores indicating the probability that the detected

area represents a human. After training the classifier, a sliding window scheme

[36] is commonly used to search the entire image and detect which part is believed

to represent a human according to the detection score.

1.4 Challenges, Contributions and Organization of the
Dissertation

The challenges in each considered component of autonomous navigation are sum-

marized below:

1. The considered dynamic environment is unstructured and has uncertainty

due to lack of knowledge of the behavior of moving obstacles. Hence it is

rather difficult to model the surrounding environment and the unpredictable

movements of the obstacles. Therefore, a good autonomous navigation sys-

tem requires that the global path planning is able to deal with such dynamic

environments.

2. Motion planning is more difficult as well in dynamic environments due to

three main challenges:(1) continuous state and control space bring about

the inevitable curse of dimensionality; (2) nonlinear robot system and non-

quadratic cost function make the solving optimization problem extremely

hard; and (3) inherent system constraints decrease the effectiveness of the

optimal solution. Apparently, it is non-trivial to address the foregoing three

points all-in-once for constrained motion planning.

3. Distinguishing moving people from other objects so as to locate a persons

position is another big challenge. This challenge is caused due to several

reasons [37]: (1) Human appearance possesses very high variability caused

by changing pose, wearing different clothes with diverse colors, and having

a considerable range of sizes. In addition, a cluttered background (home or

urban environment) under a wide range of illumination and weather condi-

tions varies the quality of the sensed information. The case of being partially

12

occluded by other objects definitely increases the analysis complexity; (2)

Both humans and sensors that are in motion can complicate the movement

analysis. Furthermore, humans appearing at different view angles and a sen-

sor system working over a large scope of distances result in more complex

situations. (3) The real-time requirement for detection demands fast reaction

time and robust performance.

The goal of this research is to develop novel learning methods to address these

challenges that arise when a homecare robot operates in a dynamic environment.

In achieving this objective, the main three technical contributions are:

1. This present work proposes a novel framework called the regime-switching

Markov decision process (RSMDP) scheme to represent a dynamic and un-

structured global environment. Develop a novel optimal path planner by inte-

grating an online reinforcement learning approach into the RSMDP scheme

to avoid unknown or unpredictable moving obstacles

2. To address the constraint problem explicitly in the iteration process as well

as the indicated four challenges together, a new iLQR-based feedback con-

troller called PWA-ELQR is proposed in the present work. The idea of

PWA-ELQR comes from the extended linear-quadratic-regulator (ELQR)

[17] which is inspired by the extended Kalman filter. It incorporates a piece-

wise affine structure into ELQR to solve constraints explicitly, with the help

of quadratic programming (QP). The entire iteration process begins with an

arbitrary initial trajectory. Then it iteratively linearizes the robot system and

quadratizes the cost function at the states of the previous nominal trajectory

forwardly and backwardly. Next, it adds the cost functions of the forward

pass and the backward pass to get approximate total-cost functions. Lastly,

it minimizes the approximate total-cost functions to progressively obtain a

better knowledge of the robot’s future trajectory, and uses the new trajectory

to repeat the entire process.

3. Design a classifier trained by an multiple kernel learning-support vector ma-

chine (MKL-SVM) method, that comes from an off-the-shelf open source,

to detect moving people in sequential images from a video stream, where ap-

plying multiple features consisting of HOG + HOF features, which had been

13

proposed in literature, for detecting moving people. Then combine multiple

features and the designed MKL-SVM classifier as the people detector for

moving people.

1.5 Thesis Outline
The rest of this dissertation is organized as follows:

Chapter 3 presents a robust Q-learning method for global path planning in a

dynamic environment. The method consists of three steps: first, a regime-switching

Markov decision process,RSMDP, is formed to present the dynamic environment;

second a probabilistic roadmap PRM is constructed, integrated with the RSMDP

and stored as a graph whose nodes correspond to a collision-free world state for

the robot; and third, an online Q-learning method with dynamic step size, which

facilitates robust convergence of the Q-value iteration, is integrated with the PRM

to determine an optimal path for reaching the goal. In this manner, the robot is able

to use past experience for improving its performance in avoiding not only static

obstacles but also moving obstacles, without knowing the nature of the obstacle

motion. The use of regime switching in the avoidance of obstacles with unknown

motion is particularly innovative. The developed approach is applied to a homecare

robot in computer simulation. The results show that the online path planner with

Q-learning is able to rapidly and successfully converge to the correct path.

Chapter 4 presents a closed-form piecewise affine control law for nonlinear-

nonquadratic control problems with constraints. The existing ELQR is a valid

iterative method for handling nonlinear-nonquadratic control problems. Yet it can-

not explicitly deal with constraints during iteration. The present work proposes an

effective method, PWA-ELQR, to take constraints into account explicitly during

the iteration process, by combining QP and ELQR smoother. In this method, QP

provides a linear piecewise affine feedback control law for linear-quadratic con-

trol problems, and the ELQR smoother provides tools to approximate nonlinear-

nonquadractic control problems through linearization and quadratization in the

vicinity of nominal trajectories. The developed approach is tested in a complex

control problem: optimal motion planning for a nonholonomic mobile robot with

constraints on the control input. The simulation and experimental results demon-

strate good performance, and the proposed approach is a promising feedback con-

14

troller for optimal motion planning with constraints.

Chapter 5 presents a classifier trained by a multiple kernel-learning support

vector machine,MKL-SVM to detect a human in sequential images from a video

stream. The developed method consists of two aspects: multiple features consist-

ing of HOG features and HOF features suitable for moving objects, and combined

nonlinear kernels for SVM. For the purpose of real time application in autonomous

navigation, the popular open-source algorithm called simple multiple kernel learn-

ing (SimpleMKL) is implemented into the proposed MKL-SVM classifier. It is

able to converge rapidly with sufficient efficiency through a weighted 2-norm reg-

ularization formulation with an additional constraint on the weights. The classi-

fier is compared with the state-of-the-art linear SVM using a dataset called TUD-

Brussels, which is available on line. The results show that the proposed classifier

outperforms the Linear SVM with respect to accuracy.

Chapter 6 presents a physical experimental platform, called SegPanda, to test

the proposed methods in this dissertation, as well as the hardware and software used

for SegPanda. The designed experiment combines into one autonomous navigation

scenario all of the three key aspects: path planning, motion planning and people

detection, which shows good performance based on the proposed methods.

The conclusions of the dissertation and suggestions for future research are sum-

marized in Chapter 7.

15

Chapter 2

Robot Learning

2.1 Introduction
Robot Learning, an application of machine learning approaches to the physical

world of robotics, is a research area that brings together the methods to endow

robots with learning capabilities. Learning implies that every time the observa-

tion about the environment is obtained, the robot will be able to perform their

activities better in view of the knowledge/experience gained through the learning

process. Historically, industrial robots did not possess learning capabilities. They

were used in controlled contexts such as factories to perform predefined specific

tasks repeatedly with little uncertainty in interaction with humans or in a varying

environment. Recently, the goal of developing autonomous robots that have ca-

pabilities of adapting to unstructured or unknown and dynamic environments has

provided a good rationale for incorporating learning capabilities into robots.

There are many ways by which the robots may learn and exploit that capability.

They may learn by adjusting parameters based on an outcome, build environmental

models such as maps, exploit patterns, evolve rule sets for condition-action pairs,

generate entire behaviors, devise new strategies for actions, predict environmental

changes, recognize the strategies of the opponents or exchange knowledge with

other robots. Such capability in robots would relieve humans from much of the

drudgery of intervention to correct robotic actions and would potentially allow op-

eration in environments that are unstructured, changeable, unpredictable or only

16

partially known. In view of (but not limited to) the mentioned advantages of learn-

ing, autonomous robots with the capability has been an important goal of robotics,

artificial intelligence, and the cognitive sciences.

Although boundaries between different learning methods are blurred, basically

robot learning is divided into the following three classifications in terms of what

type of feedback can be received [38]:

Supervised Learning: In supervised learning, the robot observes some input-

output pairs in the form of a given training set, and discovers a function that maps

from input to output. Methods such as support vector machine(SVM) [39, 40],

artificial neural networks (ANN) [41] and imitation learning (IL) [42] belong to

this category.

Unsupervised Learning: In unsupervised learning, the robot needs to deduce

various patterns by observing the input without explicit feedback from the output.

evolutionary learning (EL) [43, 44] falls into this category.

Reinforcement Learning: In reinforcement learning, unlike the forgoing two

types of learning, there is no available input in the beginning for the robot. It

requires the robot to interact with its environment to acquire the input knowledge.

Such a trial-and-error mechanism prompts the robot to find the optimal policy,

which establishes the mapping between states and actions. Policy iteration [45]

and value iteration [46] are common methods that belong to this category.

In addition, increasingly, researchers have adopted hybrid learning strategies

to adapt to a dynamic environment. For example, the work reported in [1, 47, 48]

employs inverse reinforcement learning methods to recover the intent of the teacher

by modeling his cost function, and subsequently, derives the policy that is optimal

with respect to the cost-to-go. The work in [49] combines ANN with imitation

learning to teach goal finding and obstacle avoidance to a Nomad 200 mobile robot.

In the context of autonomous navigation in a dynamic home environment, the

research presented in this dissertation mainly concentrates on suitable methods that

belong to supervised learning and reinforcement learning (RL). The associated

background and the algorithms (Algorithm 1-6) which had been proposed in the

past by other researchers are introduced in the following sections.

17

2.2 Reinforcement Learning

2.2.1 Markov Decision Process

Much attention has been given recently [50–52] concerning the formulation of the

use of robot learning as either Markov decision process (MDP) or a partially ob-

servable Markov decision process (POMDP) framework. Both MDP and POMDP

perform very well in a dynamic environment, but their disadvantages are also ob-

vious. MDP requires complete observation of states, and POMDP has a heavy

computational burden of exact planning since it needs to estimate various possi-

ble uncertainties, thereby making the method unfeasible in just about any practical

problem of robotics, without further extension [53].

In the present research, the approximation process in path/motion planning in-

evitably leads to the introduction of noise and uncertainty into the autonomous

navigation task. Hence, explicit consideration of stochastic elements and uncer-

tainty cannot result in adequate benefits for an autonomous navigation task. There-

fore, unless explicitly stated, the entire system is treated as a deterministic one and

MDP is chosen as the framework for the reinforcement learning methods. MDP

Figure 2.1: Basic MDP scheme for modeling the environment when robot
learning is applied.

is a tuple (S,A,P,R) where S = {s1,s2, ...,sN} is a set of states, being infinite or

18

finite, discrete or continuous; A = {a1,a2, ...,aN} is a set of actions, being infinite

or finite, discrete or continuous; P(· | ·, ·) : S×S×A→R>0 is a transition function

that satisfies ∑s′∈S P(s′ | s,a) = 1 for all s ∈ S and a ∈ A; R(·, ·, ·) : S×A× S→ R
is an immediate reward (cost) function for all s ∈ S and a ∈ A. Some researchers

also use the form of (S,A,P,R,TC) where TC : S→ R is a terminal cost function

denoting an end of an MDP, to especially express the impact of the terminal state.

The transition function P and the reward function R together define the model of

the MDP. The basic MDP scheme is shown in Fig. 2.1. Based on the status of P

and R, the MDP problems can be further divided into subtypes. It is termed a a de-

terministic MDP if P or R is deterministic, otherwise it is called a stochastic MDP

(e.g. P or R is a probabilistic function). In addition, it is termed a model-free MDP

if P or R is unknown in advance. Conversely, it is called model-based MDP if both

P and R are known in advance. The fundamental property of the MDP assumes

that the current state s possesses all the information of the historical states, which

implies that all of the future states are determined only by the current state, and not

using the historical states. This assumption plays a significant role when applying

the MDP. The following introduces the core components of an MDP.

Policies A policy π in an MDP acts as an mapping between a state s ∈ S and an

action a ∈ A. The mathematical form of deterministic policy π can be defined as

π : S→ A. It also has the stochastic form defined as π : S×A→ [0,1] such that

π(s,a)≥ 0 and ∑a∈A π(s,a) = 1 for each s∈ S. In the present research, policies are

assumed to be deterministic. Given a policy π , the MDP works in the following

way: 1. Get an initial state s0 using either a random mechanism or a predefined

function (e.g., initial state distribution); 2. Obtain the responded action a0 = π(s0)

according to π; 3. With the obtained s0 and a0, predict the next state s1 and the

associated reward r0 relying on the transition function T (s0,a0,s1) and the reward

function R(s0,a0,s1); 4. Previous steps continue to get a sequence of state-action-

reward process in the form s0,a0,r0,s1,a1,r1.... If the state-action-reward process

ends in a terminal state sgoal and is restarted in a new random state s0, the process

from s0 to sgoal is called one episode associated to one π . The objective of learning

in an MDP is to find an optimal policy π∗ which is able to gather the largest reward

in an episode.

19

Optimality The optimality in an MDP is expressed by optimizing the gathered

rewards. There are three models of gathering rewards, as given by:

E[
h

∑
t=0

rt] (2.1)

E[
h

∑
t=0

γ
trt] (2.2)

lim
h→ ∞

E[
1
h

h

∑
t=0

rt] (2.3)

Equation 2.1 is the finite horizon model which takes rewards of a finite horizon of

length h. Here π∗ should optimize its expected rewards over this horizon and yield

h− steps of optimal action. The robot can either take all of the h actions or just

choose the first certain amount of actions. The latter case is known as receding

horizon control (RHC) or model predict control (MPC) in the context of optimal

control problems. The problem that exits in this model is that the choice of the

horizon length depends on the specific problem. Equation 2.2 represents the in-

finite horizon model, which takes long-run rewards into account. The parameter

γ ∈ [0,1) denotes the discount factor, which determines how many future rewards

will be received. With the exponential form of γ , the further away a future reward

is received, the lower the weight this future reward occupies in the entire set of

rewards. Such design accords with real-world experience, since farther future re-

wards come with more uncertainty and hence their weights should be lower than

the near future rewards. When γ = 0, only the immediate reward would be taken

into account at the current state. In addition, even with infinite horizon, the sum

of the gathered rewards is still finite since γ ∈ [0,1) mathematically guarantees

this property mathematically. Hence, many algorithms prefer to using this model.

Equation 2.3 represents average-reward model, which is used when only the en-

tire reward is the concern. Obviously this model cannot distinguish between two

policies that have different rewards in different steps, because all the differences

are averaged into the result. Therefore, which model should be chosen depends on

the specific learning problem. If the length is known, the finite-horizon model is

the best. Otherwise if the task continues infinitely and the associated episode has

20

no clear terminal goal, the infinite-horizon model would be more suitable. More

details about choosing an optimal model are found in [54].

Value Functions Value functions in an MDP play the role of connecting the opti-

mality models to the policies. A value function estimates how good the policy is in

terms of the number of the expected rewards, which is termed as the return, the pol-

icy gathers at state s. The value function of a state s under policy π , represented as

V π(s), denotes the expected return when starting in state s and following π there-

after. Using the infinite-horizon model of optimality in the present dissertation, the

full form of the value function is expressed as:

V π(st) = Eπ{
∞

∑
i=0

γ
irt+i | st = s} (2.4)

Without of loss generality, the expectation symbol E is used in the above expression

and in later sections to handle the stochastic MDP. However, E can be disregarded

if only deterministic MDP is considered.

Sometimes an analogous state-action value function termed as Q-function may

be defined as:

Qπ(st ,at) = Eπ{
∞

∑
i=0

γ
irt+i | st = s,at = a} (2.5)

where Q : S×A→ R. With Q-function, the state s ∈ S and action a ∈ A can be

chosen without knowing the transition function T , so that it is suitable for model-

free approaches.

Value function 2.4 possesses a fundamental recursive property, and hence the

so-called Bellman equation can be deduced as follows:

V π(st) = Eπ{
∞

∑
i=0

γ
irt+i | st = s}

= Eπ{rt + γrt+1 + γ
2rt+2 + ... | st = s}

= Eπ{rt + γV π(st+1) | st = s}

= ∑
st+1

P(st ,π(st),st+1)(R(st ,π(st),st+1)+ γV π(st+1)).

(2.6)

It denotes that an value function consists of the immediate reward, and the value of

21

the possible next state weighted by a discount factor. In addition, the reward-next-

state set may be multiple due to transition probabilities. Each of the reward-next-

state sets is weighted by the associated transition probabilities. The optimal value

function V ∗(st) can be obtained by solving the following optimization problem:

V ∗(st) = max
a∈A

∑
st+1∈S

P(st ,π(st),st+1)(R(st ,π(st),st+1)+ γV ∗(st+1)). (2.7)

The associated optimal policy can be obtained by:

π
∗(st) = argmax

a∈A
∑

st+1∈S
P(st ,π(st),st+1)(R(st ,π(st),st+1)+ γV ∗(st+1)) . (2.8)

As in Equation 2.5, an analogous Q-function version of the Bellman equation and

the related optimal policy are defined as:

Q∗(st ,at) = max
a∈A

∑
st+1∈S

P(st ,π(st),st+1)(R(st ,π(st),st+1)+ γQ∗(st+1),at+1),

(2.9)

π
∗(st) = argmax

a∈A
Q∗(st ,at) (2.10)

Policy Q∗ and V ∗ is called a greedy policy because it selects the best action ac-

cording to the maximum mechanism. The relation between Q∗ and V ∗ is given

by:

V ∗(st) = max
a∈A

Q∗(st ,at) (2.11)

2.2.2 Dynamic Programming: Model-based Method for Solving
MDP

Once all of the components of the MDP have been defined, explicitly solving the

optimal policy from the value functions becomes the next step. One method of so-

lution uses dynamic programming (DP). It represents a class of algorithms that is

capable of computing optimal policies given a perfect model (P and R) of the MDP

problem. Classical DP algorithms have limited application in reinforcement learn-

ing due to the requirement of a perfect model and its heavy computation. However,

DP serves as an essential foundation since such assumption leads to good proper-

ties in terms of mathematical deduction. Hence, most other methods can be viewed

22

as attempts to achieve similar results as DP by transferring the original conditions

to the perfect-model assumption, with some added noise. Also, because of such

mathematical benefits, DP has been widely used in the optimal control domain,

where the state vector is denoted by the set of x = {x1,x2, ...,xN} and the input

vector by the action set u = {u1,u2, ...,uN}, in order to differentiate from the plan-

ning problems. This situation will be encountered in Section 4.3 where an optimal

motion controller for the motion planning function of autonomous navigation is

proposed.

Two typical DP algorithms are policy iteration [55] and value iteration[56],

which provide two fundamental structures for various variants and combinations.

They are discussed now.

Policy Iteration

Policy iteration includes two phases: policy evaluation and policy improvement.

These two phases iterate to a convergent result (optimal policy) that satisfies certain

threshold conditions, which are used for terminating the iteration process. Fig. 2.2

shows the basic scheme of the entire iteration process.

Figure 2.2: Basic MDP scheme for modeling the environment where robot
learning are applied into.

23

Policy Evaluation This phase computers the value function of the k-th iteration

V π
k (st) for each state st ∈ S in the current policy π , based on Equation (2.6). In each

iteration as k goes to infinity, the old value for the state st is replaced until conver-

gence, based on the expected value of possible successor states. This sequence of

updating V π
k (st) is termed backup operation. By defining a backup operator Bπ

over the value functions, the policy evaluation phase can be expressed as:

(BπV)(st) = ∑
st+1

P(st ,π(st),st+1)(R(st ,π(st),st+1)+ γV π(st+1)). (2.12)

Policy Improvement This phase improves the current policy with respect to the

newly available value functions obtained from the policy evaluation phase. Once

the value functions for the states are known, the next step will determine if there

is an action at ∈ A that can improve the value function of the associated state st by

using:

Qπ(st ,at) = Eπ{rt + γV π(st+1) | st ,at}

= ∑
st+1∈S

P(st ,π(st),st+1)(R(st ,π(st),st+1)+ γV π(st+1),at+1)
(2.13)

If now V π(st) is less than Qπ(st) for at ∈ A, then it means there is a better policy

for this particular state. Similarly, the entire original policy can be improved by

greedily selecting the best action in each state as follows:

π
′(st) = argmax

a∈A
Qπ(st ,at)

= argmax
a∈A

Eπ{rt + γV π(st+1) | st ,at}

= argmax
a∈A

∑
st+1∈S

P(st ,π(st),st+1)(R(st ,π(st),st+1)+ γV ∗(st+1)) .

(2.14)

The iterative procedure of these two phases generates a sequence of alternating

policies and value functions. The complete algorithm of policy iteration is given in

Algorithm 1.

24

Algorithm 1 The Policy Iteration Algorithm
Input: initial policy π(st) and value function V π(st) for all st ∈ S; iteration
threshold σ

Output: optimal policy π∗(st)

1: Policy Evaluation
2: repeat
3: δ := 0
4: for each step of episode t do
5: for each st ∈ S do
6: v :=V π(st)
7: V (st) := ∑st+1∈S P(st ,π(st),st+1)(R(st ,π(st),st+1)+ γV (st+1))
8: δ = max(δ , | v−V (s) |)
9: end for

10: end for
11: until δ < σ

12: Policy Improvement
13: policy-state:=true
14: for each step of episode t do
15: for each st ∈ S do
16: b := π(st)
17: π(st) := argmaxa∈AV (st)
18: if b 6= π(st) then
19: policy-state:=false
20: end if
21: end for
22: end for
23: if policy-stable then
24: π∗ = π

25: Stop Iteration
26: else
27: go to Policy Evaluation
28: end if

Value Iteration

One disadvantage of the policy iteration algorithm 1 is that the policy evaluation

phase can provide a useful value function only when it satisfies the convergence

25

Algorithm 2 The Value Iteration Algorithm
Input: initial policy π(st) and value function V π(st) for all st ∈ S; iteration
threshold σ

Output: optimal policy π∗(st)

1: repeat
2: δ := 0
3: for each step of episode t do
4: for each st ∈ S do
5: v :=V π(st)
6: V (st) := maxa∈A ∑st+1∈S P(st ,π(st),st+1)(R(st ,π(st),st+1)+ γV (st+1))

7: δ = max(δ , | v−V (s) |)
8: end for
9: end for

10: until δ < σ

11: π∗(st) = argmaxa∈A ∑st+1∈S P(st ,π(st),st+1)(R(st ,π(st),st+1)+ γV ∗(st+1))

condition δ < σ in each iteration, which may cost significant computation. How-

ever, in some cases, the policy evaluation phase does not need to exactly converge

in each iteration. Then, truncating it to save computational time will not hurt the

convergence guarantee of the policy iteration[57].One traditional approach is to let

the policy evaluation stop after only one step backup operation, and then execute

the policy improvement. This algorithm is called value iteration, which may be

expressed as follows:

Vk+1(st) = max
at∈A

E{rt+1 + γV π
k (st+1) | st ,at}

= max
at∈A

∑
st+1∈S

P(st ,π(st),st+1)(R(st ,π(st),st+1)+ γVk(st+1),at+1).

(2.15)

The complete value iteration algorithm is given in Algorithm 2.

2.2.3 Reinforcement Learning: Model-free Method for Solving MDP

RL is a class of algorithms that obtain an optimal policy for problems where a

model of MDP is not available in advance. The underlining objective in RL con-

26

centrates on finding the estimated model for MDP. Due to the lack of a model, RL

needs to sample and explore the MDP to acquire experience (statistical knowledge)

about the unknown model, in order to establish the estimated value functions, as

in DP methods. Basically the RL algorithms for MDP can be divided into two

categories in terms of how to deal with the employed policy during learning: off-

policy methods and on-policy methods. In off-policy methods, the policy used for

generating behaviors (actions) is independent of the policy that is evaluated and

improved. On the contrary, on-policy methods attempt to evaluate and improve the

same policy that is used for generating behaviors. As a result, exploration must be

built into the policy to find a possible improvement, and the speed of the policy im-

provements should be fast. These two different aspects usually oppose each other;

specifically, strengthening one aspect will weaken the other aspect. This is called

exploration-exploitation trade-off problem. The most basic exploration strategy is

the ε-greedy method in which the best action is taken at probability (1−ε) and the

other action is randomly selected at probability ε . Many other exploration meth-

ods can be found in[58, 59]. In the following sections, two types of RL methods,

Monte Carlo (MC) methods and temporal difference learning (TDL) methods, are

introduced.

Monte Carlo Methods

MC comes from the law of large numbers in random theory; namely, in the limit,

the expected value of a set of samples is equal to the average value (mean). That’s

the reason why MC is a class of algorithms solving RL that rely on averaging sam-

ple returns. It samples sequences of states, actions, and rewards from interaction

with either actual or simulated environment to acquire an estimated model instead

of a real model. Then the estimated model provides approximate transition and

reward functions that are required by model-based methods. In addition, to guar-

antee satisfying principal conditions, the experience of MC is learned episode by

episode rather than step by step. This means the value functions and the policies

get updated only after one episode is finished, with the assumption that all episodes

eventually reach the terminal state in the limit no matter what actions are selected.

Another property of MC is that it prefers to estimate the state-action value

27

functions Qπ(s,a) under one policy π other than state value functions V (s), since

V (s) alone is not sufficient to provide sample information for estimating the tran-

sition and reward functions when a model is not available. Therefore, all of the

following MC methods use action value functions Qπ(s,a). Suppose that a given

set of episodes is sampled by following π and passing through state s. Each occur-

rence of state s in an episode is called a visit to s. If the estimated Qπ(s,a) comes

from the average of the returns following all the visits to s in a set of episodes, it is

termed the every-visit MC method. Similarly, first-visit method uses the average of

returns following just the first visit to s in a set of episodes. The first-visit method

has been widely researched and hence the following section uses it to express MC

methods.

On-Policy MC The overall scheme of on-policy MC is similar to DP methods.

It also includes policy evaluation and policy improvement. As introduced before,

on-policy MC improve the policy that is currently used for generating actions. An

ε−greedy policy exploration is built into the process of learning the optimal policy.

An example of on-policy MC algorithm is given in Algorithm 3.

Off-Policy MC Off-policy MC distinguishes from on-policy MC in that the pol-

icy used to generate actions is not the one that is used for evaluation, as given in

Algorithm 4.

Temporal Difference Learning

TDL is a class of algorithms combining the advantages of both DP and MC. It

can learn the experience directly from interaction with the environment without a

model of the environment like MC does, as well as update estimates by using part

of other learned estimates without waiting for an entire episode to end like DP does.

With all of these advantages, TDL has become an important breakthrough in RL

because it can be applied to a wide situations such as the case where the episodes

are very long or where there is no episodes at all. TDL update the estimates in

an incremental manner based on other estimates, so that each step of update will

generate a useful experience. The simplest TDL method TD(0) is given as an

28

Algorithm 3 The On-Policy Monte Carlo Algorithm
Input: for all st ∈ S,at ∈ A(s): initial policy π(s) with ε − greedy := arbitrary;
initial state-action value function Q(s,a):=arbitrary; Retures(s,a):=empty list;
iteration threshold σ

Output: optimal policy π∗(s)

1: repeat
2: Generate an episode using π

3: for each step t = 0,1,2, ...,T of the generated episode do
4: for each state-action pair st ,at appearing in each episode do
5: R := the return following the first-visit MC
6: Append R to Retures(s,a) (not (st ,at), since the (st ,at) may be same

in different t)
7: q := Q(s,a)
8: Q(s,a) := average(Retures(s,a))
9: δ = max(δ , | q−Q(s,a) |)

10: end for
11: for each state s appearing in each episode do
12: a∗ = argmaxa Q(s,a)

13: for all a ∈ A(s):ε−greedy :=

{
1− ε + ε

/
|A(s) | i f a = a∗

ε
/
|A(s) | i f a 6= a∗

14: end for
15: end for
16: until δ < σ

17: π∗(s) = π(s)

example:

Vst =Vst +α[rt+1 + γV (st+1)−Vst], (2.16)

where α is a constant step-size parameter denoting the learning speed and γ denotes

the discount factor of the future estimate. From Equation (2.16), it is noted that

TD(0) updates the estimated value function V(st) only until the next time step t +1

and by using the observed reward rt+1 and the estimated value function of next

state V(st+1). In MC, the return Rt , which can be obtained only when one episode

ends, is used for the value function, whereas the observed reward rt+1 is used in

TD(0). Hence the target for the TD update is rt+1 + γVt(st+1) instead of Rt in MC.

29

Algorithm 4 The Off-Policy Monte Carlo Algorithm
Input: for all st ∈ S,at ∈ A(s):
initial policy π(s):= arbitrary;
initial state-action value function Q(s,a):=arbitrary;
Nu(s,a):=0; Numerator of Q(s,a)
De(s,a):=0; Denominator of Q(s,a)
iteration threshold σ

Output: optimal policy π∗(s)

1: repeat
2: for each step t = 0,1, ...,T of the generated episode do
3: Generate an episode {s0,a0,r1,s1,a1,r2, ...,sT−1,aT−1,rT ,st} by select-

ing a policy π ′

4: τ=last time at which aτ 6= π(sτ)
5: for each state-action pair st ,at appearing in each episode do
6: t=the time of first visit (after τ) of (s,a)
7: ω := ∏

T−1
k=t+1

1
π ′(sk,ak)

8: Nu(s,a) := Nu(s,a)+ωRt

9: De(s,a) := De(s,a)+ω

10: Q(s,a) := Nu(s,a)
De(s,a)

11: q := Q(s,a)
12: δ = max(δ , | q−Q(s,a) |)
13: end for
14: for each state s appearing in each episode do
15: π(s) = argmaxa Q(s,a)
16: end for
17: end for
18: until δ < σ

19: π∗(s) = π(s)

As discussed under MC, TDL also has the requirement to build approximate

transition and reward functions, and have to trade off exploration and exploitation

by some policies like the ε − greedy exploration policy. Accordingly, the state-

action value function Qπ of TDL also has similar challenges. All of these methods

can also be divided into two categories: on-policy methods and off-policy methods.

In the following, an on-policy TDL, SARSA, and an off-policy TDL, Q-learning,

are introduced.

30

Algorithm 5 The SARSA Algorithm
Input: for all st ∈ S,at ∈ A(s):
initial state-action value function Q(s,a):=arbitrary;
iteration threshold σ

Output: optimal policy π∗(s)

1: repeat
2: for each episode do
3: Randomly choose a state s as starting state
4: Choose a for s using policy derided from Q(s,a) based on ε − greedy

exploration
5: repeat
6: for each step t = 0,1, ...,T of the generated episode do
7: Choose at for st , observe reward rt and the next state st+1
8: Choose at+1 for st+1 using policy derived from Q(s,a) based on ε−

greedy exploration
9: Qst ,at = Qst ,at +α[rt+1 + γQ(st+1,at+1)−Qst ,at]

10: end for
11: until st reaches the terminal state
12: end for
13: q := Q(s,a)
14: δ = max(δ , | q−Q(s,a) |)
15: until δ < σ

16: π∗(s) = argmaxa Q(s,a))

SARSA: On-Policy TDL In SARSA methods, the policy for generating actions is

the same as the one to update evaluation. Each evaluation update occurs after every

transition from a state-action pair (st ,at) to next state-action pair (st+1,at+1), and

receives a feedback reward rt , as expressed in the following equation:

Qst ,at = Qst ,at +α[rt+1 + γQ(st+1,at+1)−Qst ,at], (2.17)

Here st is not a terminal state. If state st+1 is terminal, then define Q(st+1,at+1) as

zero. All of the elements of Equation 2.17 forms a quintuple of (st ,at ,rt ,st+1,at+1)

that makes up a transition. This is why this algorithm is called SARSA. The com-

plete algorithm is given in Algorithm 5.

31

Q-learning: An Off-Policy TDL method Q-learning is an effective method and a

significant development of off-policy TDL. It is different from SARSA in that it

uses a build-in max operator over the function values of the next state-action pair

when updating every transition. The core algorithm is given by:

Q(st ,at)← Q(st ,at)+ α[rt(st ,at)+ γmax
a

Q(st+1,at+1)−Q(st ,at)] (2.18)

where the value of Q(st ,at) is termed Q value. Q-learning builds its experience

base through establishing a Q table. An example is presented here to demonstrate

how to establish a Q table.

Suppose that a static collision-free roadmap has been obtained as shown in

Fig. 2.3. According to the definitions given in Section 3.3, each node represents

one state s, and action a is represented by the arrows around each edge. The reward

r after executing an action will be 10 if it arrives at the goal state s11; otherwise,

it will be 0 after executing one action. Suppose that the mobile robot is in state

s1, and it has four action options: go to state s1,s2,s4 and s5. If it chooses state

s5, the value of r is set equal to 0. It cannot go to state s7 because there is no

edge between them, which means that the space between them is blocked either by

moving obstacles or by static obstacles. Let us express such a state diagram and

the instant reward values by the reward table, matrix R, given in Fig. 2.4.

After building the reward matrix R, the next step is to build the Q table accord-

ing to matrix R and set the Q-learning algorithm given by Equation (2.18). In this

dissertation, Q table is also expressed in the form of a matrix Q. We will start by

setting all the Q values to zero as shown in Fig. 2.5, and the initial state as state s1.

According to the second row of matrix R there are four possibilities for the current

action. By the strategy of uniform random selection among these four actions, we

select to go to state s2 without loss of generality. Suppose now that the robot is

in state 2. Then according to the third row of matrix R, there are four possible

actions: go to state s1, s3,s5 or s6. The corresponded transition is:

Q(1,2) = Q(1,2)+α {R(1,2)+ γ max[Q(2,1),Q(2,3),Q(2,5),Q(2,6)−Q(1,2)]

Now the next state s2 becomes the current state. We repeat the above steps until the

32

Figure 2.3: Static collision-free roadmap for establishing Q table.

robot arrives at the goal state s11. In this manner we have completed one episode.

We begin the next episode with a randomly chosen initial state, say state s7, and

update the matrix Q through similar calculation using Equation (2.18). Episodes

are repeated until each Q value converges to a certain optimal value. Then we

can choose the optimal policy for starting state s0 to goal state s11 according to

the matrix Q. Fig. 2.6 and Fig. 2.7 show the results of the Q value after 5 and 50

iterations, respectively. The value in the red square shows the updating process

of the Q value of the state-action pair (s1,a2). Note that the converged values of

matrix Q will not remain unchanged forever since it is initially obtained using a

static environment. The robot will update its Q value when interacting with the

real-time dynamic environment. The complete Q-learning algorithm is given in

Algorithm 6[60].

33

Figure 2.4: Reward matrix R (-1 means there is no edge between nodes, 0
means an arrived node is not a goal node, 10 means an arrived node is a
goal node).

2.3 Support Vector Machine: A Popular Method of
Supervised Learning

Many applications of robotic technologies require the solution of classification

problems. Detecting people, for instance, is a binary classification problem, or

say yes-or-no classification to answer if the tested area contains people. SVM

[61, 62] is among the best ”out-of-box” supervised learning algorithms to solve

classification problems. Given a training set of sample-label pairs S = {(xi,yi), i =

1,2, ...,m} where xi ∈ Rn denotes the samples and y ∈ {1,−1}l denotes the class

labels, the SVM works out the optimal parameters w,b with respect to the training

set S for the linear classifier defined as:

hw,b(x) = g(wT x+b), (2.19)

34

Figure 2.5: Q table in the form of matrix Q at the initial iteration.

where g(wT x+b) = 1 if wT x+b≥ 0 and g(wT x+b) =−1 if wT x+b < 0. There-

fore, wT x+ b = 0 is called the decision boundary, or the separating hyperplane if

the dimension of the feature x is higher than 2. Fig. 2.8 shows the basic scheme of

linear classifier.

2.3.1 Geometric Margins

With the definition of (w,b), the geometric margin of (w,b) with respect to each

training sample (xi,yi) is defined as the shortest distance from the sample (xi,yi)

to the decision boundary wT x+b = 0. It is denoted by the symbol ηi as shown in

Fig. 2.9. In Fig. 2.9, point A represents a sample xi and point B is the cross point

generated by the orthogonal vector of the decision boundary which goes through

point A. Segment AB is hence the distance from point A to the decision boundary,

35

Figure 2.6: Q table in the form of matrix Q at the iteration 5.

denoted as the geometric margin ηA.

Since A is xi, point B can be given by xi−ηi× w
‖w‖ . Note that point B lies on

the decision boundary. Hence wT
(

xi−ηi× w
‖w‖

)
+b= 0, and the ηi can be solved

as:

ηi =

(
w
‖ w ‖

)T

xi +
b
‖ w ‖

. (2.20)

In Equation (2.20), the solution of ηi is obtained for the case of a positive sample

A. Accordingly, the general solution of ηi is:

ηi = yi

((
w
‖ w ‖

)T

xi +
b
‖ w ‖

)
. (2.21)

The forgoing geometric margin is associated with one training sample. More-

over, the geometric margin of (w,b) associated with the entire training set S is

36

Figure 2.7: Q table in the form of matrix Q at the iteration 50.

Figure 2.8: The basic scheme of linear classifier.

37

Algorithm 6 The Q-learning Algorithm
Input: discount factor γ , learning rate α

initial state-action value function Q(s,a):=arbitrary, for all st ∈ S,at ∈ A(s);
iteration threshold σ

Output: optimal policy π∗(s)

1: repeat
2: for each episode do
3: Randomly choose a state s as the starting state
4: repeat
5: for each step t = 0,1, ...,T of the generated episode do
6: Choose at for st using policy derived from Q(s,a) based on ε −

greedy exploration
7: Observe reward rt and the next state st+1, choose at+1 for st+1
8: Q(st ,at)← Q(st ,at)+ α[rt(st ,at)+ γmaxaQ(st+1,at+1)−Q(st ,at)]
9: end for

10: until st reaches the terminal state
11: end for
12: q := Q(s,a)
13: δ = max(δ , | q−Q(s,a) |)
14: until δ < σ

15: π∗(s) = argmaxa Q(s,a)

defined as:

η = min
i=1,...,m

ηi. (2.22)

Obviously, the bigger the η , the greater the gap between the positive training sam-

ples and the negative samples, which reflects a very confident decision boundary.

Therefore, the objective of the classifier is to maximize the geometry margin η .

The entire process of working out a linear classifier now becomes how to solve the

following optimization problem:

max
η ,w,b

η

s.t. yi(wT xi +b)≥ η , i = 1, ...,m

‖ w ‖= 1.

(2.23)

38

Figure 2.9: The basic scheme of geometric margins.

Apparently the optimization problem (2.23)cannot be solved by ”off-the-shelf”

methods, since the constraint ‖w ‖= 1 is non-convex, which is an intractable opti-

mization problem. Therefore, functional margins are imported into (2.23) in order

to transfer (2.23) into a tractable optimization problem.

2.3.2 Optimal Margin Classifier

To aim at solving (2.23), the functional margin of (w,b) with respect to each train-

ing sample, (xi,yi) is defined as:

η̂i = yi(wT xi +b) (2.24)

The corresponded functional margin with respect to the training set S is defines as:

η̂ = min
i=1,...,m

η̂i. (2.25)

By comparing with the form of the geometry margin (2.21) with the functional

margin (2.24), η = η̂

‖w‖ can be obtained. By integrating η = η̂

‖w‖ into (2.23), as

well as noting that maximizing η̂

‖w‖ =
η̂

‖w‖ is the same as minimizing ‖ w ‖2, a

39

more tractable optimization problem can be obtained:

max
η ,w,b

1
2
‖ w ‖2

s.t. yi(wT)xi +b)≥ 1, i = 1, ...,m
(2.26)

The optimization problem (2.26) has a transitional quadratic objective with only

linear constraints, which can be solved easily by many commercial methods such

as the QP method. The solution gives the optimal classifier.

2.3.3 Dual Problem and Support Vectors

The previous optimization problem (2.26) is a so-called primal problem. An as-

sociated dual form of the problem will bring more benefits for solving the opti-

mization problem (2.26). First the Lagrangian factor for (2.26) is constructed as

follows:

L(w,b,α) =
1
2
‖ w ‖ −

m

∑
i=1

αi[yi(wT xi +b)−1], (2.27)

where α = {αi, i = 1, ...,m} denotes the Lagrange multiplier. Then fix α , and

minimize L(w,b,α) with respect to w and b separately:

∇wL(w,b,α) = w−
m

∑
i=1

αiyixi = 0⇒ w =
m

∑
i=1

αiyixi (2.28)

∂

∂b
L(w,b,α) =

m

∑
i=1

αiyi = 0 (2.29)

Next combine Equations (2.27, 2.27, and 2.29), and consider the constraints αi ≥ 0

together. The dual optimization problem can be given by:

max
α

W (α) =
m

∑
i=1

αi−
1
2

m

∑
i, j=1

yiy jαiα j〈xi,x j〉

s.t. αi ≥ 0, i = 1, ...,m
m

∑
i=1

αiyi = 0,

(2.30)

40

Obviously the form of the dual optimization problem (2.30) is convex so that it can

be solved using optimization methods. It also shows two significant advantages.

First, it transfers solving the optimal (w,b) into solving only one parameter α .

Once the optimal α∗ is solved, the optimal w∗ and b∗ can be obtained by substitut-

ing α∗ back into Equations (2.28) and (2.29). More deeply, the experience on the

solution of α discloses that most of αi will be zero, with a few non-zero α which

rightly associate with the training samples that have the smallest geometric mar-

gins (closest to the decision boundary). These samples are shown in Fig. 2.10 as

the points that lie on the dash lines parallel to the decision boundary. These points

are term support vectors . By using support vectors, the size of the training sam-

ples related to the solution of the optimal parameter will reduce significantly. The

second advantage arises in the form of < xi,x j > which is defined as kernel.The

definition of kernel helps to map the feature space of the training samples to the

feature space of higher dimension, where the nonlinear decision boundary in the

low dimension space may become linear. These two advantages are the main rea-

sons why SVM has been quite popular in the research community of classification.

Figure 2.10: An example of the concept of support vectors for a linear clas-
sifier.

41

Chapter 3

Robust Q-learning with
Regime-Switching Markov
Decision Process for Optimal
Path Planning

3.1 Introduction
This chapter presents a new path planning approach, which incorporates online

reinforcement learning integrated with regime-switching Markov decision process

(RSMDP) for a mobile robot moving in a dynamic environment. Modeling the

surrounding dynamic environment is the first challenge. To address this challenge,

a novel framework based on the RSMDP scheme is introduced to represent a dy-

namic environment. In addition, an online reinforcement learning approach is inte-

grated into the RSMDP scheme to resolve the uncertainty in a model-free environ-

ment, and probabilistic roadmap(PRM), a sample-based method, is used to resolve

the curse of dimensionality that arises with reinforcement learning when facing a

continuous space of state and action.

The main contributions of the present chapter, in the context of the related pre-

vious work [63, 64], are as follows. First, unlike [63, 64], which consider only

42

static obstacles, the present path planner is able to return a globally optimal path in

the presence of unknown moving obstacles, with regard to balancing the shortest

path and obstacle avoidance. Second, through PRM, both state space and control

space can be constrained to a low-dimensional finite space. Third, and most impor-

tantly, reinforcement learning is used in an online formation, using the concept of

regime-switching [65, 66], to represent the changing environment caused by mov-

ing obstacles, where value iteration is robust to parameter changes. This appears

to be the first application of regime switching to solve path planning problems in a

dynamic and unstructured environment.

3.2 RSMDP
The scenario of path planning problem described in Section 1.2.2 can be formu-

lated as an Markov decision process(MDP) because it has the Markov property that

the future state depends only on the current state and has no dependence on the past

states. An MDP is defined by a tuple with five elements: M = (S,A,P,R,TC) where

S is a set of states, A is a set of actions depending on S, P(· | ·, ·) : S×S×A→R>0

is a transition probability function that satisfies ∑s′∈S P(s′ | s,a) = 1 for all s ∈ S

and a ∈ A, R(·, ·, ·) : S×A×S→ R is an immediate cost function for all s ∈ Sand

a ∈ A, and TC : S→ R is a terminal cost function denoting the sign of an end of

an MDP. An absorbing state with zero cost is usually used in a path planning prob-

lem . Whether or not a control policy π : S→ A of one MDP is a good process

is determined by its corresponding expected value function, which usually can be

obtained by solving the Bellman equation given by:

V π(st) = Eπ(
∞

∑
i=0

γ
irt+i |st) = Eπ(rt +γ

∞

∑
i=0

γ
irt+i+1 |st) = Eπ(rt +γV π(st+1)) (3.1)

where γ ∈ [0,1) is the step size that corresponds to the iteration rate of the Bellman

equation, and st+1 = δ (st ,at) is the transition function according to P(· | ·, ·) : S×
S×A→ R>0. The goal is to find an optimal policy π∗(s) = argmaxaV π(s) that

minimizes (or maximizes, depending on specific definition of the cost function R)

the expected value (3.1) for every initial state S0. In this section a sample-based

method is applied to overcome the curse of dimensionality. Specifically, the finite

43

horizon discount version of MDP where i < ∞, is used for this purpose.

Next regime-switching is integrated into MDP to represent a dynamic environ-

ment. From experience it is known that a home environment can change between

static and dynamic states. A regime ψ is defined as the time/step period between

the last changes and the current changes. Therefore, the state, action and transition

probability of MDP stay the same in one regime and vary from one regime to the

next. Consider a countable collection Ψ of changing regimes of cost-minimizing

MDP problems. Each regime ψk ∈Ψ is associated with one period of static MDP

given by one RSMDP Mψk = (Sψk ,Aψk ,Pψk ,Rψk ,TCψk), where k ∈ N denotes the

index of each discrete static time/step period of the changing environment. Con-

sequently, the goal becomes finding the optimal policy πψk
∗(s) = argmaxaV π

ψk(s)

where V π
ψk(s)is given by:

V π
ψk(sψk,t) = Eψk,π(

∞

∑
i=0

γψk
irψk,t+i

∣∣sψk,t)

= Eψk,π(rψk,t + γψk

∞

∑
i=0

γ
i
ψk

rψk,t+i+1
∣∣sψk,t)

= Eψk,π(rψk,t + γψkV
π

ψk(sψk,t+1))

(3.2)

It is seen that the optimal policy πψk ∗ (s)varies from one regime to another.

Hence in RSMDP, the problem of tracking the optimal policyπψk ∗ (s) correspond-

ing to each regimeψk is considered. The only assumptions that is needed for

πψk ∗ (s) is as follows:

Assumption 1: For each regime we have ψk ∈Ψ,E[Tψ]� supE[ti], where Tψ

represents the duration of regime πψk ∗ (s), and ti represents the duration of each

iteration in the Bellman equation.

Assumption 1 implies that the requirement of successfully converging to πψk ∗
(s) means that the regime does not change too often when compared with the time

used for each iteration step in (3.2). This is satisfied in the practical scenario of

path planning that is considered in the present work. Next, the way to express the

path planning problem by incorporating PRM into RSMDP is described.

44

3.3 Probabilistic Roadmap for RSMDP
A home environment is arguably unstructured. For example, furniture may be clut-

tered and unorganized, and it is difficult to determine the structure of such furniture

using sensors. Furthermore, this will impose a huge computational burden when

building an accurate model to represent the environment. Sampling-based meth-

ods have adequately resolved the problem of computational burden, because these

methods rely on a collision-checking module instead of using an explicit represen-

tation of the environment. PRM and its variants [6, 7], provide effective methods

of path planning that are sampling-based.

PRM is a network of simple curve segments or arcs that meet at nodes. Each

node corresponds to a configuration in the configuration space (C-space). Each arc

between two nodes corresponds to a collision free path between two configurations.

It comprises a preprocessing phase and a query phase. In the following, let C

denote the robot’s C-space, C f the free C-space, N the node set, and E the edge set.

First, initiate a graph R = (N,E) that is empty. The preprocessing phase constructs

the free C-space, giving the global picture, as shown in Fig. 3.1a. The query phase,

shown in Fig. 3.1b, generates an optimal global collision-free path (bold line in

Fig. 3.1b) by connecting the start and goal nodes to the roadmap, where heuristic

methods are usually used (Q-learning is used in the present section). Details are

found in [6, 7].

As defined, state set Sψk in RSMDP corresponds to the node set N in PRM, and

action set Aψk corresponds to the edge set E. If the system is continuous, index t

denotes the time interval; otherwise, index t denotes the step interval. In this section

t is considered as the step interval without losing generality since the dynamic

environment is formulated as a discrete RSMDP and each step is very short relative

to the entire C-space. Therefore, the action subset Āψk ∈ Aψk associated with a state

sψk,i ∈ Sψk at step i under regime ψk, is countable and corresponds to those edges

connecting to the associated node in PRM. Hence which action should be chosen

at a certain state in the learning process is governed by a stochastic behavior due

to the unpredictable motion of the obstacles, although the available actions are

countable. The final goal of the present work is to find the optimal policy πψk
∗(s)

iteratively after the Q-learning process, as described in Section 3.4. Regime ψk

45

will not be changed unless the moving obstacles affect the current πψk
∗(s). Fig. 3.2

shows two common scenarios of regime change where one moving obstacle is

detected using some distance threshold. As it blocks the current optimal path, the

transition probability (although not known in advance) of the corresponding states

and actions will be changed so that the current regime ψk will be changed into

the next regime ψk+1. Then the Q-learning process will choose another available

path according to the new regime. Sometimes, once the chosen path is blocked

in the current regime, there may not exist an available path to choose from due to

the lack of sampled nodes in PRM. For example in Fig. 3.2c, an obstacle moves

to block all possible paths to the goal node and stays there for a long time. Here

again, PRM is imported to build a local roadmap around the robot and the moving

obstacle, in order to determine a feasible path. In particular, as shown in Fig. 3.2d,

(a) (b)

Figure 3.1: The PRM process in the C-space: (a)Preprocessing stage; (b)
Query state. Note:Polygons represent static and moving obstacles, and
the blank space represents the collision-free C-space. In order to repre-
sent a robot as a point as it moves on the ground, the standard practice is
to expand the obstacles corresponding to the size reduction of the robot,
as shown by the bold sideline of polygons. A uniformly random sam-
ple method is used to construct deterministic nodes in the free C-space.
Then, such nodes are collision-free nodes. The roadmap is constructed
using the collision-free nodes.

46

first a semicircular local region is built centered on the location of the previous

state of the blocked edge. Its radius is calculated from the distance between the

locations of two states connected by the same blocked edge. Then, a roadmap

is generated within this semicircle by the same PRM method as before. Clearly

the extra sampled nodes generated by the local roadmap will change the structure

of the current PRM and consequently change the current regime ψk into the next

regime ψk+1.

3.4 Path Planner with Online Q-learning
PRM works well in a static environment, but it cannot adapt to a dynamic en-

vironment where there are moving obstacles. Re-planning might be an intuitive

alternative, in the presence of moving obstacles, but it would be impractical in

general. For example, a moving obstacle might rapidly change its position after

the path planner re-calculates a path based on the previous sensor information of

the moving obstacle, and that new position of the moving obstacle might still block

the new path. Considering such problems, the present section incorporates the re-

inforcement learning method, Q-learning, into the query phase of the PRM in the

RSMDPformulation. In this manner, when the optimal path is blocked by a mov-

ing obstacle, the path planner is able to quickly choose another optimal path, using

the previous experience about the map, as determined by the Q function value.

In the 1990s reinforcement learning (RL) was proposed to solve MDP prob-

lems [5]. In RL, an agent learns its behavior through trial-and-error interactions

with a dynamic environment, while receiving rewards for good actions and penal-

ties for bad actions. Specifically, the agent performs an action at in state st and

receives a real-valued reward rt = r(st ,at)∈ R from the environment. Through this

process, the agent learns an optimal policy π∗(s) = argmaxaV π(s) where V π(s) is

equal to 1, which maps the state set S into the action set A, and arrives at its next

state st+1 = δ (st ,at). The policy should be able to maximize the cumulative reward

according to V π(s).

Q-learning is a popular version of off-policy reinforcement learning which,

regardless of the policy being followed, always estimates the optimal Q-function

that is defined as Q(st ,at) : S×A→ R. Q-learning has two main advantages when

47

(a) (b)

(c) (d)

Figure 3.2: Local roadmap generation: (a) an original path generated by
PRM; (b) an alternative path selected if the original path is blocked;
(c)(d) if no alternative path is available, a semicircle is used to define the
scope where some new points will be generated to attach to the PRM in
order to find an alternative collision-free path .

compared with other approaches of reinforcement learning. First, it does not re-

quire a model of the environment, which is advantageous when dealing with an

unknown environment. For example, in an unknown environment rt = r(st ,at) and

st+1 = δ (st ,at) are nondeterministic functions. Then, r and s are initiated arbi-

48

trarily and the algorithm will eventually converge to the optimal Q*(s,a) value in

view of its mathematical basis. Second, it is able to update the estimates using par-

tially learned estimates without waiting for completing the entire episode, which

means it bootstraps. These aspects are discussed under MDP formulation. The

core algorithm of Q-learning in RSMDP is given by:

Qψk(st ,at)←Qψk(st ,at)+ γψk,t [rψk,t(st ,at)+αψk max
a

Qψk(st+1,at+1)−Qψk(st ,at)]

(3.3)

The optimal action policy π∗ψk
is given by:

π
∗
ψk
(s) = argmax

a
Q∗ψk

(s,a) (3.4)

There are two conditions that should be satisfied to guarantee the convergence

of Q-learning to optimal Q∗ψk
(s,a) with probability one [11]. These are given now.

Condition 1: All the state-action pairs Q(st ,at) are visited infinitely often as

the number of transitions approaches infinity.

Condition 2: The step size γt should satisfy γψk,t > 0,∀k,
∞

∑
t=0

γψk,t = ∞,

∞

∑
t=0

γ2
ψk,t < ∞ .

Condition 1 is called exploration, which requires that Q-learning has nonzero

probability of choosing any action when it also needs to exploit its current knowl-

edge in order to perform well by selecting greedy actions in the current Q-function.

A popular method to balance exploration with exploitation is the ε − greedy ap-

proach:

at ←

an uni f orm random action in Aψk , with probability εk

a ∈ argmax
a

Qψk(st ,at) , with probability 1− εk
(3.5)

Condition 2 implies that the step size should meet the requirement of lim
t→0

γψk,t =

0. There is also a tradeoff problem when choosing γψk,t in regime ψk. In order for

Q-learning to converge to optimal Q∗ψk
(s,a) quickly, the step size γψk,t has to be

large; however, the step size γψk,t should be small in order to minimize the mag-

nitude of the fluctuations of the Q-function within a given regime. In traditional

Q-learning, this tradeoff does not considerably affect the system since the speed is

49

usually adequate to solve related problems in a static situation. However, in obsta-

cle avoidance in the RSMDP framework, the way how the Q-function converges

to the optimal value greatly affects the robot system. A large γψk,t is expected to

produce a fast convergence speed, but the high-magnitude fluctuations caused by

small γψk,t will lead to an incorrect optimal Q-function, possibly causing the robot

to collide with obstacles. At high speeds, safety should be given more attention.

The strategy to achieve these performance requirements is to make the Q-function

iteration process robust to γψk,t . Then, accurate optimal value can be achieved

at a satisfactory speed. Therefore, in the current work, by setting and resetting

γψk,t = γ t
max, the path planner always selects the largest possible step size for the

current regime and makes it converge to zero within the same regime. But the step

size is reset to the largest possible value again when the regime changes. In this

way, γψk,t is able to eventually converge to zero. But it is set to a large value in the

beginning of the iteration so that the Q-function iteration is robust to the changes

in γψk,t , while having sufficient speed of converging to the new optimal Q-function

Q∗ψk
(s,a) to adapt to the new regime ψk+1. When to reset γψk,t is critical in the

present approach. In view of Assumption 1 in Section 3.4, the changing frequency

of the dynamic environment should not be very high although the moving obstacle

may always make the environment to change. To this end, it is assumed that the

regime is changed only when the current path has been blocked by obstacles that

enter the robot’s dangerous area as defined by some threshold, rather than when

moving obstacles change the PRM.

The online path planner with Q-learning, which is used in the present section,

chooses the optimal path according to the maximum Q value with respect to each

state-action pair. The Q value of each state-action pair is obtained by taking into ac-

count both the shortest path and obstacle avoidance in the cost function rψk,t(st ,at)

defined by:

rψk,t(st ,at) = ω f (st ,st+1)+(1−ω)h(st) (3.6)

Here f (st ,st+1) = ‖st ,st+1 ‖δ
denotes a distance function defined by the δ norm, ω

is the weighting parameter used to balance f (st ,st+1), and h(st) denotes the reward

function according to moving obstacles.

50

Once an optimal path is obtained in the current regime, the robot begins to

move. When a moving obstacle blocks the recurrent optimal path, the step size

resetting will be made and the path planner will chooses another available optimal

path by quickly converging to the new optimal policy. It is seen that although the

step size γψk,t changes every time when the regime changes, the learning rate within

the new regime will be faster than in the previous regimes since Q-value for each

state-action pair is saved as the knowledge for the new regime. That is the reason

why the present path planner is able to adapt to a dynamic environment.

3.5 Simulation Studies
This section presents simulation studies to validate the online path planner de-

veloped for mobile robot. The system is simulated using open-source software

OpenCV1.

Figure 3.3: Simulated environment for the mobile robot in a 640×480 image
plane, in a learning process.

Fig. 3.3 shows an image of a simulated environment obtained from a presumed

global camera before the mobile robot is started. The white rectangles represent

static obstacles and the white ellipse represents a moving obstacle. The world

state is made up of the pixel coordinates of the nodes of the roadmap within a

640× 480 image plane, which is represented as s(x,y) where x = 0,1, . . . ,640;

y = 0,1,2. . . ,480. After obtaining the collision-free states, the starting point and

1http://opencv.org/

51

the goal point of the robot are set at fixed positions indicated by arrows. These two

points are added to the collision-free roadmap in the same way that the roadmap

is generated, except that loop connection is used instead of incremental connec-

tion in order to provide more possibilities of path connection between the starting

point and the goal point. The thin lines represent available paths and the thicker

lines represent optimal paths obtained during the learning process. The rotation

coordination θo can be ignored here to illustrate path planning for the purpose of

simplicity of simulation, because the mobile robot can first rotate to the correct

direction before it starts to move. The number close to each edge is the Q value for

each state-action pair corresponding to the edge. Euclidian distance is used by set-

ting δ = 2,ω = 10/(640+480) in Equation (3.6) and setting the reward function

as follows:

h(st) =

R= 0; when the robot reaches the gaol

R= -10; when the robot touches the obstacle

R= -5; in any other situation.

(3.7)

The first simulation (shown in Fig. 3.4) tests how the Q value converges to its

Figure 3.4: History of Q-value with γmax = 0.8,0.5,0.2 and 100 sampled
points generated in PRM.

optimal value in terms of the possible maximum beginning value of the step size

52

Figure 3.5: Performance comparison between traditional Q-learning and ro-
bust Q-learning with γmax = 0.98.

when using the strategy γψk,t = γ t
max. The Q value of the edge close to the goal

point is chosen under three beginning step-size values, γmax = 0.8,0.5,0.2(shown

by the dotted line, star line and triangle line, respectively, in the figure). It is seen

that the smallest value γmax = 0.2 can bring up less intense fluctuations, which is in

accordance with Condition 2 in Section 3.4. Nevertheless, it is seen that the optimal

Q-value and the learning rate do not change appreciably for different maximum

beginning values of the step size γmax. In this sense, the Q-value iteration process

is robust for choosing γmax. Specifically, γmaxcan be chosen as high as possible in

order to obtain the fastest possible learning rate or the fastest convergence speed.

Fig. 3.5 shows the performance of the iteration process when γmax is set at 0.98

for robust Q-learning and traditional Q-learning. In Fig. 3.5, it is seen that both

robust Q-learning (dotted line) and traditional Q-learning (solid line) are able to

successfully converge to a new optimal Q-value when the regime changes from

regime 1 to regime 2, caused by moving obstacles. Although traditional Q-learning

is faster than robust Q-learning, robust Q-learning converges to the optimal Q-value

more smoothly when compared with the traditional Q-learning. In addition, higher

rewords (in Q-value) are obtained by robust Q-learning. These properties will help

the robot to choose a more accurate optimal action if the optimal Q-values of the

actions with respect to one state intersect with each other when the regime changes

53

quickly and there is not enough time for the Q-value iteration to converge to the

optimal value. Therefore, the safety can be guaranteed as much as possible at the

cost of low speed of convergence. This low speed is fast enough in such conditions

and can be achieved using a modern computer.

The second simulation (shown in Fig. 3.6) verifies that the present algorithm is

able to successfully avoid both static and moving obstacles under the RSMDP and

robust Q-learning framework. Keyboard controller is used to control the moving

obstacle and make it move to block the obtained optimal path. With the cost func-

tion as defined in Equation (3.6) and Equation (3.7), the simulated robot reaches the

goal point by choosing the shortest available path and avoiding obstacles, which is

considered as regime 1. When the robot detects that the moving obstacle is block-

ing its current optimal path, it quickly finds another optimal path by using the

learning experience, which is considered as regime 2. It is noted that although in-

creasing the number of PRM nodes will generate more available paths, the time

spent to learn a new optimal path will also increase. Hence, there is a tradeoff

between the number of nodes and the time taken to avoid obstacles. In the present

case, having 400 sampled nodes can provide the fastest speed to adapt to a dynamic

environment.

The online robust Q-learning method that was investigated in the present sec-

tion is a behavior-based decision-making process. In this method, the robot con-

tinuously observes the world states and selects the action having the optimal Q

value among the possible actions in the current state, as given by the Q function.

This is different from a traditional behavior-based system where the rule base of

behavior is designed entirely by a human expert in advance. The rule base of Q-

learning is learned autonomously when the robot interacts with its environment

during the training process. The curse of dimensionality is a serious challenge in

this process because, in theory, an infinite number of iterations would be needed to

guarantee convergence to the optimal value. The method proposed in the present

work overcomes this problem by incorporating a PRM roadmap as the world state

for the robot. The safety is another challenge, when dealing with rapidly moving

obstacles in a dynamic environment. The robust Q-learning in the present work

guarantees smooth convergence for Q-value iteration so that a relatively accurate

action is chosen when the regime changes.

54

(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Obstacle avoidance in dynamic environment. (a), (c), (e) origi-
nal optimal path in regime 1; (b), (d), (f) scenarios for regime 2 where
moving obstacle is blocking the current path, hence choose another op-
timal path. (a) and (b) correspond to 100 sampled points in PRM, (c)
and (d) correspond to 400 sampled points, and (e) and (f) correspond to
600 sampled points.

55

Chapter 4

Extended Linear Quadratic
Regulator Enhanced with PWA
for Motion Planning

4.1 Introduction
This chapter begins by reviewing linear-quadratic-regulator (LQR) with regard to

cost-to-go function, and how to obtain the piecewise affine closed-form control

law, piecewise affine-LQR (PWA-LQR), for constrained LQR. It is done by in-

corporating quadratic programming (QP) in the traditional LQR. PWA-LQR also

brings in the concept of cost-to-come function which uses a similar procedure as

the cost-to-go function, except that cost-to-come runs forward in time. PWA-LQR

smoothing combines these two functions to form a smoother that provides a se-

quence of optimal states for the linear-quadratic control problem. Then PWA-LQR

is extended (E) to PWA-ELQR which is used to deal with nonlinear-nonquadratic

cases where an iteratively local approximation method is used.

4.2 Optimal Motion Planning with Constraints
In the present section, the objective of the optimal motion planning is to find an

optimal control policy πt ∈ X→ U such that for the entire horizon 0 6 t 6 l the

56

selected input control ut = πt(xt) can (approximately) minimize a cost function

defined by:

cl(xl)+
l−1

∑
t=0

ct(xt ,ut), (4.1)

where l denotes the horizon, cl ∈ X→ R denotes the final-step cost function and

ct(xt ,ut) ∈ X×U→ R represents the immediate cost function at time-step t.

Based on the concept of cost function given by Equation(4.1), the cost-to-go

function vt ∈ X→ R and the related optimal control policy πt at the current state

xt can be calculated by the backward recursion procedure:

vl(xl) = cl(xl)

vt(xt) = minut (ct(xt ,ut)+ vt+1(gt(xt ,ut))),

πt(xt) = argminut
(ct(xt ,ut)+ vt+1(gt(xt ,ut))),

s.t. xmin 6 xt 6 xmax,

umin 6 ut 6 umax,

xt+1 = gt(xt ,ut),

(4.2)

According to the foregoing definition, the kinematic system (1.1) is nonlinear

and the cost function (4.1) generally is nonquadratic. Hence linear and quadratic

approximation methods are needed for handling the problem. Basically, by deriv-

ing Riccati equations when solving a quadratic optimization problem at time step

t, a formula for minimizing the cost-to-go function can be obtained at time step

t−1. However, optimizing a quadratic problem is solvable only when the Hessian

is positive-(semi)definite. This rule must be followed to assure that all of the im-

mediate cost functions have positive-(semi)definite Hessians when designing cost

functions. Specifically,
∂ 2cl

∂xl∂xl
> 0,

∂ 2ct

∂ut∂ut
> 0,[

∂ 2ct
∂xt ∂xt

∂ 2ct
∂xt ∂ut

∂ 2ct
∂ut ∂xt

∂ 2ct
∂ut ∂ut

]
> 0.

(4.3)

57

4.3 Piecewise Affine-ELQR

4.3.1 Traditional Linear-Quadratic-Regulator

LQR is a prevalent controller that provides a closed-form optimal solution for the

linear-quadratic control problem[11]. The linear kinematics for all horizon 0 6 t 6

l are defined as:

xt+1 = gt(xt ,ut) = Atxt +Btut + ct , (4.4)

where At ∈ Rn×n, Bt ∈ Rn×m, ct ∈ Rn, and both ql and pt are constant. The

quadratic immediate cost functions for all horizons 0 6 t 6 l are defined as:

cl(xl) =
1
2

xT
l Qlxl +xT

l ql +ql,

ct(xt ,ut) =
1
2

[
xt

ut

]T [
Qt PT

t

Pt Rt

][
xt

ut

]
+

[
xt

ut

]T [
qt

rt

]
+ pt ,

(4.5)

whereQt ∈ Rn×n,Rt ∈ Rm×m,Pt ∈ Rm×n,qt ∈ Rn, and rt ∈ Rm, such that Ql > 0

and Rt > 0 are positive-definite, and

[
Qt PT

t

Pt Rt

]
> 0 is positive-semidefinite, in

accordance with Equation (4.3).

There are two attractive features in the linear-quadratic control problem. The

first one is that the corresponding cost-to-go functions have explicit quadratic for-

mulation as follows:
vl(xl) =

1
2

xT
l Slxl +xT

l sl + sl,

vt(xt) =
1
2

xT
t Stxt +xT

t st + st ,

(4.6)

where sl ,st are constant, St ∈ Rn×n > 0, and st ∈ Rn. For final-step l, Sl = Ql ,

sl = ql and sl = ql . By combining Equations (4.2), (4.4), and (4.5), we can obtain:

vt(xt) = min
ut

1
2

[
xt

ut

]T [
Dt CT

t

Ct Et

][
xt

ut

]
+

[
xt

ut

]T [
dt

et

]
+ pt

 , (4.7)

58

where:
Ct = Pt +BT

t St+1At ,

Dt = Qt +AT
t St+1At ,

Et = Rt +BT
t St+1Bt ,

dt = qt +AT
t st+1 +AT

t St+1ct ,

et = rt +BT
t st+1 +BT

t St+1ct .

(4.8)

and accordingly,

St = Dt −CT
t E−1

t Ct , (4.9)

st = dt −CT
t E−1

t et . (4.10)

The second feature is that linear-quadratic control problems have a closed-form

optimal controller which is an explicit linear formulation in the feedback form:

ut = πt(xt) = Ltxt + lt , (4.11)

Lt =−E−1
t Ct , lt =−E−1

t et . (4.12)

4.3.2 Piecewise Affine Feedback Control for Constrained Control
Problems

The closed-form feedback control law (4.11) comes from the minimization of the

quadratic cost-to-go function (4.6) with the assumption that none of the variables

have constraints. This can be considered as solving an unconstrained optimization

problem. Even when there are natural constraints on variables, it may be reasonable

to disregard them as their effects on the solution are negligible. However, in many

practical problems, the constraints play a critical role (like in the example of the

present work). Therefore, the unconstrained problem has to be transformed into a

59

constrained one as follows, in accordance with Equation (4.6):

vl(xl) =
1
2

xT
l Slxl +xT

l sl + sl,

vt(xt) =
1
2

xT
t Stxt +xT

t st + st ,

s.t.xmin 6 xt 6 xmax,

umin 6 ut 6 umax,

xt+1 = gt(xt ,ut) = Atxt +Btut + ct ,

(4.13)

Equation (4.13) is a typical constrained optimization problem which can be solved

by QP [67].

An optimization problem with a quadratic objective function and linear con-

straints is called a quadratic program. Clearly, Equation (4.13) belongs to inequality-

constrained problems and satisfies first-order optimality conditions. Therefore, it

can be solved by applying Karush-Kuhn-Tucker (KKT) conditions, also known as

first-order necessary conditions as follows:

Step 1, Lagrangian function for Equation (4.13):

£(xt ,λt) = vt(xt)+λ(1)t(Atxt +Btut + ct)

+λ(2)t(xt −xmin)

+λ(3)t(xmax−xt)

+λ(4)t(ut −umin)

+λ(5)t(umax−ut),

(4.14)

60

Step 2, specifying KKT conditions for the optimal solution x∗:

Ox£(x∗t ,λ
∗
t) = 0,

x∗t −xmin ≥ 0,

xmax−x∗t ≥ 0,

ut −umin ≥ 0,

umax−ut ≥ 0,

λ(1)t ≥ 0,

λ(2)t ≥ 0,

λ(3)t ≥ 0,

λ(4)t ≥ 0,

λ(5)t ≥ 0,

λ(1)t(Atx∗t +Btut + ct) = 0,

λ(2)t(x∗t −xmin) = 0,

λ(3)t(xmax−x∗t) = 0,

λ(4)t(ut −umin) = 0,

λ(5)t(umax−ut) = 0.

(4.15)

Based on (4.14) and (4.15), the piecewise affine feedback control law for (4.13)

can be obtained as follows:

ut = πt(xt) = Li
txt + lit ,xt ∈CRi (4.16)

where CRi is the critical region to which xt belongs, according to the constraints on

the state and (or) the control input, and,

Si
t = Dt −CT

t Li
t , (4.17)

si
t = dt −CT

t lit , (4.18)

where Ct , Dt , Et , dt and et are similar as (4.8).

There are a handful of effective methods to calculate CRi.They include active-

61

set methods which are suitable for small- and medium-sized problems[68], and

interior-point methods for large problems[69][70][71]. It is indicated in [69] that,

in convex quadratic programming, interior-point methods are generally much faster

on large problems than active-set methods.

QPs can always be solved (or shown to be infeasible) in a finite amount of

computation. But the effort required to find a solution depends strongly on the

characteristics of the objective function and the number of inequality constraints.

If the Hessian matrix G is positive semi-definite, Equation (4.13) is said to be

a convex QP, and in this case the problem is often similar in difficulty to a linear

program (strictly convex QPs are those in which G is positive definite). Nonconvex

QPs, in which G is an indefinite matrix, can be more challenging because they can

have several stationary points and local minima.”

4.3.3 PWA-LQR Smoothing

The cost-to-go functions (4.2) is called backward LQR or PWA-LQR if there are

constraints. It means only the total future cost that will occur between stage t and

stage l (inclusive of stage t and stage l) is considered. In this subsection the sim-

ilar concepts, cost-to-come functions and forward LQR, are introduced. Then the

forward LQR is extended to forward PWA-LQR. Finally the PWA-LQR smoother

is obtained by combining backward PWA-LQR and forward PWA-LQR.

Cost-to-come functions and Forward PWA-LQR

Cost-to-come functions, denoted by v̄t(xt), give the total past cost that occurred be-

tween stage 0 and stage t (excluded). Given the inverse kinematics (1.4), v̄t(xt) and

inverse control policy π̄t are defined by the following forward value iteration[17]:

v̄0(x0) = 0

v̄t+1(xt+1) = minut (ct(ḡt(xt+1,ut)),ut)+ v̄t(ḡt(xt+1,ut))),

πt(xt+1) = argminut
(ct(ḡt(xt ,ut))+ v̄t(ḡt(xt+1,ut))),

s.t. xmin 6 xt 6 xmax,

umin 6 ut 6 umax,

xt = ḡt(xt+1,ut),

(4.19)

62

The control input ut = π̄t(xt+1) drives state xt to state xt+1 with minimal cost-to-

come cost. Assume that the inverse kinematics are linear, defined by:

xt = ḡt(xt+1,ut) = Ātxt+1 + B̄tut + c̄t , (4.20)

where Āt = A−1
t , B̄t = −A−1

t Bt and c̄t = −A−1
t ct . Combining (4.19), (4.20) the

same local cost functions as (4.5), an explicit quadratic formulation of global cost-

to-come functions can be obtained:

v̄0(x0) = 0

v̄t(xt) =
1
2

xT
t S̄txt +xT

t s̄t + s̄t ,
(4.21)

Similar to (4.11) and (4.12), the feedback control law for forward LQR is:

ut = π̄t(xt+1) = L̄txt+1 + l̄t (4.22)

L̄t =−Ē−1
t C̄t , l̄t = Ē−1

t ēt . (4.23)

where

S̄t+1 = D̄t − C̄T
t L̄t , (4.24)

s̄t+1 = d̄t − C̄T
t l̄t , (4.25)

C̄t = B̄T
t (S̄t +Qt)Āt +PtĀt ,

D̄t = ĀT
t (S̄t +Qt)Āt ,

Ēt = B̄T
t (S̄t +Qt)B̄t +Rt +PtB̄t + B̄T

t PT
t ,

d̄t = ĀT
t (s̄t +qt)+ ĀT

t (S̄t +Qt)c̄t ,

ēt = rt +Pt c̄t + B̄T
t (s̄t +qt)+ B̄T

t (S̄t +Qt)c̄t

(4.26)

Suppose that there are constraints on the state and control input in the cost-to-

63

go functions, given by:

v̄0(x0) = 0

v̄t(xt) =
1
2

xT
t S̄i

txt +xT
t s̄i

t + s̄t , xt ∈CRi

s.t. xmin 6 xt 6 xmax,

umin 6 ut 6 umax,

xt = ḡt(xt+1,ut),

(4.27)

The similar KKT conditions (4.14)(4.15) should be added, and the corresponded

piecewise affine feedback control law can be obtained as:

ut = π̄t(xt+1) = L̄i
txt+1 + l̄it , xt+1 ∈CRi (4.28)

where

S̄i
t+1 = D̄t − C̄T

t L̄i
t , (4.29)

s̄i
t+1 = d̄t − C̄T

t l̄it , (4.30)

C̄t = B̄T
t (S̄

i
t +Qt)Āt +PtĀt ,

D̄t = ĀT
t (S̄

i
t +Qt)Āt ,

Ēt = B̄T
t (S̄

i
t +Qt)B̄t +Rt +PtB̄t + B̄T

t PT
t ,

d̄t = ĀT
t (s̄

i
t +qt)+ ĀT

t (S̄
i
t +Qt)c̄t ,

ēt = rt +Pt c̄t + B̄T
t (s̄

i
t +qt)+ B̄T

t (S̄
i
t +Qt)c̄t

(4.31)

The recursive update Equations (4.25)-(4.27) run forward from stage 0 to stage

t. The overall procedure is referred as forward PWA-LQR.

PWA-LQR Smoother

Executing both backward and forward PWA-LQR for a given constrained linear-

quadratic control problem gives the cost-to-go functions vt and cost-to-come func-

tions v̄t . The sum of vt and v̄t results in the total cost, denoted by v̂t , which accu-

mulates the entire cost between stage 0 and stage l by a minimal-cost sequence of

64

states and controls that visits xt at stage t:

v̂t(xt) = vt(xt)+ v̄t(xt) =
1
2

xT
t (S

i
t + S̄i

t)xt +xT
t (s

i
t + s̄i

t)+ st . (4.32)

Using x̂t to denote the state at stage t that minimizes the total-cost function v̄t , we

obtain:

x̂t =−(Si
t + S̄i

t)
−1(si

t + s̄i
t). (4.33)

The x̂t is the smoothed state, which results in the sequence of minimum-cost states
{x̂0, ..., x̂l} for the given linear-quadratic control problems.

4.3.4 PWA-ELQR: Local Approximation for Nonliear-Nonquadratic
Control Problems

The foregoing discussion concerns the linear quadratic control problem. How-

ever, most practical systems come under nonlinear, nonquadratic control prob-

lems, such as that considered in the present work. Therefore, it is necessary to

extend PWA-LQR (both forward and backward) to the case of nonlinear kinematic

and nonquadratic local cost function. This is similar to extending the Kalman fil-

ter to nonlinear systems. This subsection proposes the PWA-ELQR to deal with

the linearization and quadralization. These two approximation procedures are per-

formed in the vicinity of the state and control input candidates for both backward

PWA-ELQR and forward PWA-ELQR. A critical challenge in this regard is how

to choose candidates about which to linearize the kinematics and quadratize the

local cost functions. In the present work, the smoother state x̂t and the correspond-

ing control ût are selected as the candidates since they bring excellent convergence

characteristic for the entire iterative structure of PWA-ELQR. The details of lin-

earization and quadralization are introduced next.

For the backward PWA-ELQR with 0 6 t 6 l, the recursion sequence of updat-

ing cost-to-go functions proceeds from t = l− 1 until t− 1, with the current-best

approximation of total-cost at stage t +1:

x̂t+1 =−(Si
t+1 + S̄i

t+1)
−1(si

t+1 + s̄i
t+1). (4.34)

Using the transitional kinematic and control policy from the backward procedure,

65

as introduced in section 4.3.1, the state and control input candidates for stage t can

be obtained by:

ût = π̄t(x̂t+1), x̂t = ḡt(x̂t+1, ût) (4.35)

Then linearize the kinematic gt(xt ,ut) about ût , x̂t for (4.4), with:

At =
∂gt

∂xt
(x̂t , ût),Bt =

∂gt

∂ut
(x̂t , ût),

ct = x̂t+1−At x̂t −Bt ût ,

(4.36)

and quadratize the local cost function ct(xt),ut about ût , x̂t for (4.5), with:[
Qt PT

t

Pt Rt

]
=

∂ 2ct

∂

[
xt

ut

]
∂

[
xt

ut

](x̂t , ût),

[
qt

rt

]
=

∂ct

∂

[
xt

ut

](x̂t , ût)−

[
Qt PT

t

Pt Rt

][
x̂t

ût

] (4.37)

Combining (4.36) and (4.37) with (4.17) and (4.18), the corresponding Si
t , si

t and

control policy πt can be calculated repeatedly until t = 0.

For the forward PWA-ELQR with 06 t 6 l, the recursion sequence of updating

cost-to-come functions proceeds from t = 0 until t = t + 1, with the current-best

approximation of total-cost at stage t:

x̂t =−(Si
t + S̄i

t)
−1(si

t + s̄i
t). (4.38)

Using the inverse kinematics and the inverse control policy from the forward pro-

cedure (introduced in section 4.3.3), the state and the control input candidates for

stage t can be obtained by:

ût = π̄t(x̂t), x̂t+1 = ḡt(x̂t , ût) (4.39)

Take ût and x̂t+1 as the candidates about which to linearize the inverse kinematic

66

ḡt(xt ,ut) to get (4.20):

Āt =
∂ ḡt

∂xt+1
(x̂t+1, ût), B̄t =

∂ ḡt

∂ut
(x̂t+1, ût),

c̄t = x̂t − Āt x̂t+1− B̄t ût ,

(4.40)

Given the above matrices and vectors, the parameters for quadratizing the local

cost function ct(xt),ut can be calculated in the same way as (4.37). Then S̄i
t , s̄i

t

and the control policy π̄t can be calculated repeatedly up to t = t + 1 based on

(4.22)-(4.26).

The entire iterative algorithm of PWA-ELQR is summarized in Algorithm 7.

From Algorithm 7, it is seen that PWA-ELQR is a locally optimal method due

to its requirement for linearization and quadralization around state and input can-

didates. Therefore, explicitly considering constraints during the iterative process

will facilitate restriction of the searching region to the vicinity of the state and input

candidates. This advantage of local approximation for nonlinear-nonquadratic con-

trol problems helps to avoid divergence, which is caused by blindly following the

optimal principle, and hence increases the speed of convergence. The simulation

given later will show this characteristic.

4.4 Simulation Studies
In this section, the proposed PWA-ELQR method is applied to the constrained mo-

tion planning function of autonomous navigation for a two-wheeled differential-

drive mobile robot, named SegPanda, as described in detail in chapter 6. SegPanda

is equipped with a Segway nonholonomic mobile robot, a Kinect camera to detect

the goal position and a Hokoyu laser ranger finder to detect obstacles (both static

and moving) in the environment. All the physical devices (mobile robot, drivers,

sensors etc.) are operated by Robot Operating System (ROS, http://www.ros.org/),

which is a popular open-source software platform for controlling many types of

robots. A main advantage of ROS is that, it provides powerful simulation tools for

motion planning and result visualization, and the simulated results can be trans-

ferred to a physical experiment seamlessly.

The PWA-ELQR is implemented in both real world environment as shown

67

(a) (b)

Figure 4.1: (a) The real-world environment where SegPanda executes au-
tonomous navigation; (b) The simplified simulation environment corre-
sponding to (a).

in Fig. 4.1a, and simplified simulation environment created by ROS shown in

Fig. 4.1b. With the help of ROS, the result from the simulated environment can be

transferred conveniently to the corresponding real-world environment. In Fig. 4.1a,

the circles represent obstacles (corresponding to boxes in Fig. 4.1b) with radius of

0.3 m.

The simulated SegPanda, which is built to the same scale as the physical Seg-

way mobile robot, has a radius of 0.3 m. The initial state is set to x∗0 = (0,0,0)

and the goal state (the people position in Fig. 4.1a and the black cube position in

Fig. 4.1b) to x∗l = (2,2,2), where the number of steps is fixed at l = 60. PWA-

ELQR need not be seeded with an initial trajectory. The algorithm runs until the

relative improvement satisfies:

oldcost−newcost
newcost

< 10−4

Three types of constraints are considered in the present control problem:

Differential/kinematic constraints as (1.1);

Control input constraints vl,vr ∈ [−0.75,0.75]m/s;

State constraints [x,y,θ]∈ [(−10m,10m),(−10m,10m),(−3.14rad,3.14rad)].

Actually here the only state constraints is the maximum scope of the entire

68

Figure 4.2: Comparison of the optimal trajectories of the input control be-
tween ELQR (does not consider constraints on control during motion
planing) and PWA-ELQR.

69

Figure 4.3: The corresponding comparison of the optimal trajectories of the
state between ELQR, which does not consider constraints on control
during motion planing, and PWA-ELQR(Hence the state trajectory of
ELQR can theoretically reach to the goal location).

70

environment. The obstacles can also bring constraints on states. However, in order

to improve convergence performance, a more efficient way is to consider the effect

of the obstacles in cost functions defined as:

cl =
1
2
(x−x∗l)

T Q(x−x∗l),

c0 =
1
2
(x−x∗0)

T Q(x−x∗0)+
1
2
(u−u∗)T R(u−u∗),

ct =
1
2
(u−u∗)T R(u−u∗)+q∑

i
exp(−di(x)),

where q ∈ R+ gives the weight the obstacle cost occupies in the entire local cost

function; u∗ = [0.25,0.25]m/s represents the nominal control input which is the

moving speed we expect the SegPanda has during navigation; and the function

−di(x) represents the signed distance between the SegPanda and the i′th obstacle

in the environment. It is seen that the Hessian of the term q∑i exp(−di(x)) cannot

be guaranteed to be positive-semidefinite, hence its Hessian is regularized by com-

puting the eigen decomposition and setting the negative eigenvalues to zero[72].

With this setting, both ELQR and PWA-ELQR are tested in the environment

of Fig. 4.1. Fig. 4.2 shows the comparison of the optimal trajectories the in-

put control between ELQR and PWA-ELQR. It is seen that the result of PWA-

ELQR follows the constrains of vl,vr ∈ [−0.75,0.75]m/s rather accurately. On

the other hand, ELQR just blindly follows the optimal principle without taking

vl,vr ∈ [−0.75,0.75]m/s into account. Common sense tells us that SegPanda can-

not realize the control input during execution. The corresponding comparison of

the optimal trajectories of the state between ELQR and PWA-ELQR is shown in

Fig. 4.3 and in Fig. 4.4. In Fig. 4.4, it is noted that although ELQR results in a

somewhat shorter path, it costs 142.97 and can not be executed because of control

constraints. PWA-ELQR gives a competitive path that costs 140.77 and can be ex-

ecuted successfully, since PWA-ELQR follows the control input constraints when

planning motions.

Another advantage of PWA-ELQR is that, in the present implementation, it

takes 8 iterations to achieve convergence, which is 3 fewer than that for ELQR.

It is noted that constraints introduce extra calculation for each iteration of PWA-

71

Figure 4.4: Comparison of the optimal trajectories of the state between
ELQR and PWA-ELQR in a simplified simulation environment. Al-
though ELQR results in a somewhat shorter path, it costs 142.97 and
can not be executed because of control constraints. PWA-ELQR costs
140.77 and is executed successfully since it considers constraints during
motion planning.

ELQR. However, with modern computers (e.g., in our case Intel i5 3320 2.60GHz,

4GB RAM), such differences can be ignored with regard to real-time control.

72

Algorithm 7 The PWA-ELQR Algorithm (proposed in the present work)
Input: local cost functions:ct ,0 6 t 6 l; standard kinematic equation: (1.3) and
inverse kinematic equation: (1.4); l: number of time steps
Variables: x̂t :smoothed states; πt : control policy; π̄t :inverse control policy
vt :cost-to-go function;v̄t :cost-to-come function
Output: πt for all t

1: πt = 0,St = 0,st = 0,st = 0
2: repeat
3: S̄t := 0, s̄t := 0,st := 0
4: for t = 0; t < l; t = t +1 do
5: x̂t =−(Si

t + S̄i
t)
−1(si

t + s̄i
t) (smoothed states following constraints)

6: ût = πt(x̂t), x̂t+1 = g(x̂t , ût)
7: Linearize Eq. (4.40) and Quadratize Eq. (4.37) about (x̂t+1, ût)
8: Compute S̄t , s̄t , s̄t and π̄t of forward PWA-LQR based on Eqs. (4.22)-

(4.25)
9: if ut = π̄t(x̂t+1) ∈ [umin,umax] then

10: S̄i
t = S̄t , s̄i

t = s̄t , s̄i
t = s̄t , π̄t

11: else
12: Re-compute S̄i

t , s̄i
t , s̄

i
t and π̄t of constrained forward PWA-LQR based

on Eqs. (4.28)-(4.30)
13: end if
14: end for
15: Quadratize cl about x̂l in the form of Eq. (4.37)
16: Sl = Ql , sl = ql and sl = ql
17: for t = l−1; t ≥ 0; t = t−1 do
18: x̂t+1 = −(Si

t+1 + S̄i
t+1)

−1(si
t+1 + s̄i

t+) (smoothed states following con-
straints)

19: ût = π̄t(x̂t+1), x̂t = ḡ(x̂t+1, ût)
20: Linearize Eq. (4.4) and Quadratize Eq. (4.37) about (x̂t , ût)
21: Compute St ,st ,st and πt of backward PWA-LQR based on Eqs. (4.16)-

(4.18)
22: if ut = πt(x̂t) ∈ [umin,umax] then
23: Si

t = S̄t ,si
t = st ,si

t = st

24: else
25: Re-compute Si

t ,si
t ,s

i
t and πt of constrained backward PWA-LQR based

on Eqs. (4.16)-(4.18)
26: end if
27: end for
28: until Converged

73

Chapter 5

People Detection-using
MKL-SVM

5.1 Introduction
The present chapter mainly focuses on finding a suitable people detector for ap-

plication in autonomous navigation. Specifically, a learning scheme that integrates

multiple kernel learning (MKL) with support vector machine (SVM), leading to

MKL-SVM, is designed in order to increase the precision of detection. Comparing

with a state-of-the-art classifier linear support vector machine (LSVM) [73], the

designed MKL-SVM can map the features into a higher dimension space so that

the linear assumption for data set can be released, while controlling the training

time within an acceptable range. An experiment based on open-source dataset,

TUD-Brussels [74] is used to show that the proposed classifier achieves good per-

formance.

The performance of a sliding window-based detector is significantly affected

by the choice of both feature and classifier. For autonomous navigation, the mov-

ing system and the dynamic environment require that the people detector is able to

consider features caused by movements. Therefore, the present work chooses to de-

scribe the people feature in an image by combining static feature HOG(histograms

of orientated gradients) and motion feature HOF(histograms of optical flow) as in

[35], but does not include color feature due to the specific application for real-time

74

detection that is treated in the dissertation. Then MKL-SVM classifier based on

the combined features is proposed and how to apply the learned classifier to detect

a person in an image is explained.

5.2 Combined Features: HOG-HOF

5.2.1 Histogram of Oriented Gradients

HOG, first proposed in [31], characterizes local object appearance with the distri-

bution of local intensity gradients. HOG feature is a local description. The gradient

information is quite suitable for depicting the edge features of the body of a person.

Apart from preprocessing steps like illumination normalization and image graying,

the process of extracting HOG feature has three main steps:

Figure 5.1: The definition of cell and block for a sample image

75

1. Define some area parameters by dividing the entire sample image I = height×
width into cells, each of which consists of c× c pixels, and combining the

neighbored e× e cells into one block, as shown in Fig. 5.1. Then calculate

the gradients at each pixel in the sample image I, as shown in Fig. 5.2. Ob-

tain one gradient for a pixel by first calculating the vertical difference by the

vertical filter [−1,0,1]T and calculating the horizontal different by the hor-

izontal filter [−1,0,1]; then calculate the gradient magnitude image Im and

the gradient orientation image Io based on the vertical difference image Ix

and the horizontal difference image Iy using the following relationships:

Im =
√

I2
x + I2

y

Io = arctan
Iy

Ix

(5.1)

Figure 5.2: Calculation of the gradients of the sample image.

2. Compute the histogram of oriented gradients for each cell by voting orienta-

tions Io in each cell through distributing the gradient orientation into b bins

of the histogram. The bins are defined as the gradient orientation interval

76

with equal space. The present research uses an 8-bins histogram orientation

based on a 360-degree setting, as shown in Fig. 5.3. The magnitude of each

is obtained by the following equation:

h(ci) = h(ci)+m× (1− o− ci

b
)

h(c j) = h(c j)+m× (
o− ci

b
)

(5.2)

where ci, c j are the two closest bin centers to the orientation of one pixel

for the orientation histogram of the cell which covers the pixel; b is the bin

size of the orientation histogram; m is the magnitude of each orientation of

a pixel; h(ci) is the magnitude of each bin with center ci in the orientation

histogram, and the same h(c j) for c j. Note that ci and ci can be obtained

through interpolation (e.g., trilinear interpolation). After this, concatenate

the histograms of each cell within this block and normalize the value of each

histogram to form the HOG feature for each block.

Figure 5.3: 8-bin histogram orientation for one cell

3. Slide the block along the sample image vertically and horizontally with stride

sizes dxand dy. The sliding block is referred to as the HOG descriptor. Then

send each HOG descriptor into a trained SVM classifier which generates the

people detection result for this block. If this block is positive, it is considered

as people area and is marked as people position.

77

Interpolation and normalization make the HOG representation robust to changes

in lighting conditions and small variations in pose. The entire process is summa-

rized in Fig. 5.4.

Figure 5.4: Overview of extracting HOG feature

5.2.2 Histograms of Optical Flow

HOF has been proposed to analyze video content or camera images on moving

equipment where the background moves as much as the people in the scene [32].

The basic idea of HOF came from HOG, and their principles are almost same

except that HOF uses optical flow gradients instead of pixel intensity gradients.

Further improvements can be done for making the HOF scheme more accurate.

In the present work, an IMHdiff (Internal Motion Histograms Difference) scheme

as in [32] is used for real-time application. The process of calculating HOF is

summarized in Fig. 5.5.

Figure 5.5: Overview of extracting HOF feature

78

5.3 MKL-SVM Classifier
The classification algorithm is a key element of the detection procedure in the

MKL-SVM classifier. Its reliability, computational complexity and recognition ef-

ficiency have a significant effect on the overall performance of the system. Two

families of classifiers, SVMs and AdaBoosts, provide the best performance, ac-

cording to a recent evaluation [75]. Since AdaBoosts cannot achieve more compet-

itive results [76], it is not considered here. Linear SVMs often perform well, but

the assumption that the dataset is linearly separable inevitably brings errors into

the detection. Therefore, in the present work, a multiple kernel learning SVM, that

is termed MKL-SVM, is proposed to increase the precision of the people detector.

SVM uses an optimal separating hyperplane between classes by focusing on

the support vectors, which are training samples lying at the edge of the class distri-

butions. The remaining training samples can be effectively discarded by this way.

The principle of the SVM classifier is that only the training samples lying on the

class boundaries are considered for discrimination. A more detailed discussion of

SVM is found in [77]. In SVM, a feature map k(xi,xj) =
〈
Φ(xi),Φ(xj)

〉
, named

kernel function k, implicitly maps samples x into a high-dimension feature space.

For kernel algorithms, the solution of the learning problem is of the form:

f (x) =
`

∑
i=1

wmk(xi,x)+b (5.3)

Since there are different kernel types such as radial basis function (RBF) ker-

nel, polynomial kernel, and Hyperbolic tangent kernel, it is often unknown what

the most suitable kernel is for the presented task. Hence the designer may com-

bine several possible kernels. One problem with simply adding kernels is that the

use of uniform weights may not result in an optimal solution. For example, one

kernel unrelated with the labels will just add noise and degrade the performance.

Hence, using an optimized kernel function that could fit the data structure well is a

desirable way. An intuitive thought is to use a group of optimally weighted kernel

functions to fit the data structure. Therefore, combination of multiple features as

well as multiple kernels in SVM has been proposed in literature. The present work

proposes the use of the following multiple kernel learning approach for people

79

detection.

A useful way of optimizing kernel weights is MKL. In the MKL approach, a

convex formation of M kernels is used as follows:

k(xi,xj) =
M

∑
m=1

dmk(xi,xj) (5.4)

where dm ≥ 0,
M
∑

m=1
dm = 1, and M is the total number of kernels used. In the

multiple kernel learning problem, for binary classification, assume that we have

a training set of N samples {xi,yi}, i = 1,. . . ,N, yi ∈ {1,−1}, where xi is trans-

lated via M mappings Φm(xi) 7→ RDm , m = 1, ...,M, from the input into M feature

spaces (Φ1(xi), ...,ΦM(xi)), where Dm denotes the dimensionality of the m-th fea-

ture space. We need to solve the following MKL primal problem [78], which is

equivalent to the linear SVM when M =1:

min
1
2

(
M

∑
m=1

dm‖wm‖2

)2

+C
N

∑
i=1

ξi

w.r.t wm ∈ RDm ,ξ ∈ RN
+,b ∈ R

subject to yi

(
M

∑
m=1

dm 〈wm,Φm(xi)〉+b

)
> 1−ξi

∀i = 1, ...N

(5.5)

where wm is the normal vector to the hyperplane for the feature space Φm. In [78]

80

the MKL dual is derived for the problem (5.5) as given below:

min γ

w.r.t γ ∈ R,α ∈ RN

subject to 0 6 α 6 1C,
N

∑
i=1

αiyi = 0

1
2

N

∑
i, j=1

αiα jyiy jkm(xi,xj)−
N

∑
i=1

αi︸ ︷︷ ︸
=:Sm(α)

6 γ

∀m = 1, ...M

(5.6)

where α = (α1,α2, ...,αN), αi are Lagrange multipliers, and wm =
N
∑

i=1
αiyiΦm(xi).

In order to solve (5.6), a weighted 2-norm regularization formulation has been

proposed in [79], in order to deal with the MKL problem. The work in [79] uses an

additional constraint on the weights so as to encourage sparse kernel combinations.

This algorithm is called SimpleMKL, and it can converge rapidly at comparable

efficiency. Therefore, SimpleMKL will be adopted as the MKL approach in the

present work.

5.4 Performance Evaluation
In this section, TUD-Brussels database is chosen as the evaluation data due to its

arguably realistic and challenging dataset, which provides motion pair images for

the HOF feature. The motion-pair training set contains 1776 annotated pedestrians

recorded from multiple viewpoints taken from a handheld camera in a pedestrian

zone. These 1776 annotated pedestrians are positive samples cropped from the

1092 positive image pairs. In the present example 300 positive samples are chosen

among the 1776 samples. TUD-Brussels also contains 192 negative image pairs,

from which 300 negative samples with fixed [height width] size of [128 64] are

chopped. Therefore, a total of 600 motion-pair samples are obtained from TUD-

Brussels.

The sizes of the sliding windows for both extracting histograms of oriented

81

gradients-histograms of optical flow (HOG-HOF) features and detecting on the

targeted image are set as [128 64]. To fit such sliding windows, positive samples

need to be resampled at the same size of [128 64]. Within each sliding window,

every block contains 2× 2 cells each of which having 8× 8 pixels. The stride

size for both sliding window and sliding block is 8. The bin size for histogram

orientation is set at 9 within the scope of [0,2π]. With these settings, each vector

of HOG-HOF feature contains 4608×2 components and the entire training dataset

has a matrix size of 9261×600.

For training the MKL-SVM and LSVM classifier, 60% of the 600 motion-pair

samples are selected randomly as the training subset. Specifically, all the left 40%

samples are considered as the testing subset. With the duality gap of 0.01 for the

convergence threshold of both MKL-SVM and LSVM, Table 5.1 shows the test

results when using different features combined with different classifier.

The first row gives the LSVM result, and the remaining rows concern MKL-SVM.

It is seen that MKL-SVM has higher precision than LSVM. For MKL-SVM, two

common nonlinear kernels, RBF kernel and polynomial kernel (Poly), are used.

The tuned parameter for the RBF kernels is sigma, and for the Poly kernels it is

degree. Clearly RBF is able to describe the HOG-HOF better than other options.

Three combined RBF kernels are enough to reach the highest precision in this eval-

uation. Further increasing the kernel number cannot produce any improvement.

Table 5.1: Comparisons of different kernels and corresponding results

Kernel Type Kernel Number Kernel Parameters Precision
Linear SVM 94.24%
RBF 10 [0.5 1 2 5 8 10 12 15 17 20] 96.68%
RBF 5 [0.5 2 5 10 15 20] 96.68%
RBF 3 [0.5 2 5] 96.68%
RBF 2 [0.5 2] 74.27%
RBF, Poly 8 [0.5 2 5 10 15 20],[1 2] 96.68%
RBF, Poly 6 [0.5 2 5],[1 2 3] 96.27%
RBF, Poly 4 [0.5 2],[1 2] 92.95%

Choosing the best kernel combination according to Table 5.1, Fig. 5.6 shows

82

an example of the detection results given by the trained classifiers based on HOG

features and HOG-HOF features. It is seen that HOG-HOF features result in better

detecting performance than with HOG features. The scores on the pictures indicate

the possibility that the bounding boxes contain humans. A score larger than 0 gives

a positive result while a score less than 0 means a negative answer. The closer it is

to 1, the higher the likelihood of people presence. Conversely, closer to 0 means

a lower likelihood. The chosen images in Fig. 5.6 show for a classifier a typical

complex scenario where there exist some advertising boards with people models or

some parts of the construction are similar to a people body profile. This can cause

some false positive bounding boxes. Even the motion feature failed to distinguish

them from the presence of a real person.

83

(a)

(b)

Figure 5.6: (a) Detection results (light color bounding boxes) based on
HOG-HOF feature using MKL-SVM; (b) Detection results (dark color
bounding boxes) based on HOG feature using MKL-SVM.

84

Chapter 6

Implementation and
Experimentation

6.1 Overview
This chapter presents the physical experimentation carried out in the Industrial Au-

tomation Laboratory (IAL) of the University of British Columbia. The laboratory

mimics a home environment, to implement and evaluate the performance of the

methodologies developed in the present research. A prototype autonomous nav-

igation system, named ”SegPanda”, has been assembled for the experimentation

as shown in Fig. 6.1. It consists of three hardware components: a mobile base, a

on-board 2D laser ranger finder and a 3D camera. The laser ranger finder is used

to build maps and detect obstacles around the robot. The 3D camera is used for

detecting people. All of the hardware operates under an open-source system called

robot operating system (ROS)1 which provides rich libraries for a wide variety of

hardware. Fig. 6.2 shows an example of a simulated environment built by ROS,

which also builds the modeled SegPanda. One big advantage of ROS is that the

results of simulations can be transferred to the physical SegPanda very easily.

SegPanda’s task in this experiment is to realize the function of human-aware

autonomous navigation in a home environment, as shown in Fig. 1.4. Specifically,

1http://www.ros.org/

85

Figure 6.1: The prototype of the autonomous navigation system-SegPanda.

Figure 6.2: An example of a simulated environment built by ROS.

SegPanda needs to first recognize if there are people in front of it and to determine

the location of a detected person. Then taking the location of the detected people as

the goal location, a planned path is followed to reach that location, while avoiding

obstacles simultaneously. The designed experiment does not limit itself to com-

plete a common-sense human following function. In addition, it evaluates whether

the proposed methodologies of path planning, motion planning and human detec-

tion, each of which can be applied to many other robotic tasks, can perform well.

That is more meaningful than just completing an autonomous navigation function.

86

6.2 The Hardware System

6.2.1 Segway Mobile Base

The mobile base used in this experiment is a Segway RMP100. It is a typical non-

holonomic two-wheel differential-drive mobile robot, which can be represented by

a unicycle model as in Fig. 1.5b. The Segway mobile base has a build-in odometer

which can provide wheel speed information, so that the speed and the position of

the robot can be obtained accordingly by using ROS libraries. The related specifi-

cations are found in Table 6.12.

Table 6.1: Segway RMP100 Specifications

Segway RMP100 Specifications
Top Speed 10km/h
Track Width 46cm
Tire Diameter 41cm
Turning Radius zero degrees
Turning Envelope 64cm
Data Updated Rate 100Hz
Maximum Payload 68Kg

6.2.2 3D Camera: Microsoft Kinect

Kinect was originally developed as a motion sensing device for Microsoft Xbox

360. Because of its relatively low price, it has become a popular experimental sen-

sor in the robotics community. Kinect consists of four key components: infrered

optics, red-green-blue (RGB) camera, motorized tilt and multi-array microphone,

as shown in Fig. 6.33. The two components related to this experiment are the RGB

camera and the infrared optics. The RGB camera provides a 2D image with rich

color information, and the infrared optics provides depth information. The com-

2http://rmp.segway.com/
3http://www.winbeta.org/news/company-behind-microsofts-kinect-sensor-sold-apple-345-

million

87

bination of the RGB camera and the infrared optics can generate red-green-blue-

depth (RGB-D) 3D data, which have been used in many robotics applications[80–

82].

Figure 6.3: The structure of Kinect components.

The specifications of Kinect are listed in Table 6.24. It is seen that the depth

space range of 0.8m-4m is its main disadvantage. However, this range is good

enough to realize the experiment in the present work where the people are located

in this range.

Table 6.2: Microsoft Kinect Specifications

Kinect Specifications
Viewing Angle 43◦ vertical by 57◦ horizontal
Vertical Tilt Range 27◦

Frame Rate (depth and color stream) 30 frames per second (FPS)
Depth Space Range 0.8m-4m

4http://msdn.microsoft.com/en-us/library/jj131033.aspx

88

6.2.3 2D Laser Ranger Finder: Hokuyo UTM-30LX

SegPanda uses a single UTM-30LX Hokuyo sensor to map the environment and

detect obstacles in a 2D map. The UTM30LX has a 30m and 270 degree scanning

range, which is ideal for mapping lab environments (usually fairly large rooms).

Another advantage of this sensor is its low weights of only 370g. As a result it

is a suitable sensor for small robots. The sensor is located about 20cm above the

ground, and hence only works for obstacles that can be seen at that height, such

as boxes and walls. But this setting usually can detect most obstacles in a home

environment. The green lines pointed by red arrows in Fig. 6.4 show an example

of the scanning result of Hokuyo in the IAL lab environment. More details of its

specifications are found in Table 6.35.

Table 6.3: Hokuyo UTM-30LX Specifications

Segway RMP100 Specifications
Detection Range 0.1m to 30m
Accuracy 0.1 to 10m:30mm; 10 to 30m:50mm
Angular Resolution 0.25◦

Scan Time 25msec/scan
Weight Approx. 370g(with cable attachment)

6.3 Software System

6.3.1 People Detection

SegPanda detects people in front of it using a Microsoft Kinect 3D camera. A

ROS-wrapped driver, called OpenNI6, publishes information from the Kinect sen-

sor into ROS, which is then analyzed using point cloud library (PCL) 1.7 7 func-

tions to provide image and depth information. The people namespace in PCL is

used to process the published RGB-D data. This algorithm is focused on speed

5https://www.hokuyo-aut.jp/02sensor/07scanner/utm 30lx.html
6http://wiki.ros.org/openni launch/
7http://pointclouds.org

89

Figure 6.4: An example of the scanning result of Hokuyo in the IAL labora-
tory environment. The green lines pointed using red arrows show the
scanning result of Hokuyo.

and real time processing without the use of a dedicated GPU. The people detec-

tion is based on Euclidean clustering using multiple kernel learning-support vector

machine(MKL-SVM) parameters trained by the method in Section 5.3 for detec-

tion of human bodies. If there are several people in an image, the clustering may

group two people together into a single person. To resolve this problem, the Head-

Based subclustering in ROS is borrowed to perform after Euclidean Clustering

to detect the number of heads and use that information to split groups of people

90

that were clustered together into separate people. The confidence of each person is

calculated using histograms of oriented gradients-histograms of optical flow(HOG-

HOF). This algorithm has satisfactory performance in slow moving and stationary

people who stand upright, which is executed as a ROS node. When the people

detection ROS node is first run, it waits for point cloud data indefinitely until the

first RGB-D data is acquired. When the first RGB-D data are acquired, they are

displayed in the visualizer and the user is requested to select three floor points

manually to calculate where the floor in the 2D RGB image is. After processing,

the people with HOG-HOF confidence above a threshold are published onto a vi-

sualizer and also published as a custom ROS message. The ROS message that is

eventually published is used to send as a navigation goal to make the robot follow

around the person. Fig. 6.5 and Fig. 6.6 show the results of the people detection.

Figure 6.5: The result of people detection in a one-person case.

The Microsoft Kinect has a relatively narrow viewing angle and can only gen-

erate relatively high-accuracy RGB-D data from a distance of 0.8 to 4 meters. This

limited viewing range plus the fact that the algorithm can only process upright

people limits the possible places the person can stand to be seen by the people

detection algorithm. The algorithm does not reliably work in all environments.

In environments where random object orientations can appear like a person when

transformed into a point cloud, the algorithm will have trouble separating people

91

Figure 6.6: The result of people detection in a two-person case.

from inanimate objects. Due to the user entered ground plane coordinate imple-

mentation, the ground plane must always stay the same in the Kinect view frame.

This means the Kinect cannot be translated along the z axis or rotated along the x

and y axis without the people detection algorithm failing.

6.3.2 Autonomous Navigation

SegPanda relies on the ROS Navigation stack to combine all of the elements of the

autonomous navigation system and make it to move. The overview structure of the

ROS Navigation stack is shown in Fig. 6.78.

A goal is given to the navigation stack by either user input or another ROS

node configured to interact with the navigation stack. The navigation stack uses

the odometry of the mobile base and at least one sensor to localize itself on the

global map created by the Gmapping package. It also uses the sensor to create

a local map that updates quickly for real time object avoidance. The navigation

algorithm operates by using a global costmap and local costmap. Each costmap is

modeled as an occupancy grid with the local costmap having a higher resolution.

Each grid square is assigned a probability for it to be occupied. The global costmap

8http://wiki.ros.org/navigation/Tutorials/RobotSetup

92

Figure 6.7: The overview structure of the ROS navigation stack.

is taken directly from the map created using Gmapping when the navigation stack

first boots.

Amcl package is used to localize the robot inside the global costmap, according

to data from the Hokuyo sensor. The localization only works when the odometry

is somewhat closely matched with the global map frame. The user is responsible

for providing the navigation stack with a pose estimate of where the robot is when

the navigation stack first starts. Once the navigation starts, Amcl localizes the

robot automatically. This removes the reliance on perfect odometry and prevents

SegPanda from drifting out of position on the global costmap as it navigates around

the environment. Odometry must still be relatively accurate for Amcl to work. The

tests specified in the mapping section for odometry must be satisfied for Amcl

navigation as well.

The navigation stack takes a goal input and calculates a global path based on the

most current global costmap, by using the path planner presented in Chapter 3. The

goal can be input into the navigation stack using RVIZ or a goal sending program

that conforms to the navigation API. Once a goal is received, the navigation stack

calculates a global path to the goal using the global costmap. The path is usually

the shortest way to the goal that the robot considers to be safe. Then, based on the

global path, the navigation stack creates a constantly updating local path that goes

to the edge of the local costmap (5m x 5m). The local path is created through the

motion planner proposed in Chapter 4 based on the local costmap, which attempts

93

to adhere generally to the global path but has a more accurate and smooth path. The

local path is what the navigation stack uses to send the robot velocity commands.

Due to the fast update rate of the local path and local costmap, the robot is able

to navigate in dynamic environments, and able to avoid randomly slow moving

objects.

The navigation package outputs to the mobile base driver by sending velocity

commands under the unicycle model. It sends a velocity command that consists

of a linear velocity with positive forward and an angular velocity with positive

counter-clockwise. The navigation stack is plugged into SegPanda’s tf transforms.

Using, the odometry message and the base link message to various robot body link

transforms, the navigation stack is able to create an accurate 2D model of the robot

inside the global map. The navigation stack takes into account the radius of the

robot when navigating, instead of navigating with only a center point. This allows

it to solve navigation problems such as how far should the calculated path be away

from any obstacles and whether or not the robot can fit in between two obstacles.

The local motion planner (local planner) and global planner can be configured

as plugins to ROS. SegPanda uses the previously mentioned global planner and the

local planner for its navigation. The Eband local planner is the planner included

in the segbot ROS package that we took and modified for our SegPanda. As long

as the navigation algorithm conforms to the ROS Navcore API, it can be used as a

plugin for either global planners or local planners.

The driver package for the mobile base of SegPanda is taken from the Seg-

bot package available on the ROS Wiki9, and modified according to SegPanda’s

hardware. The odometry information is published by the driver and read by the

navigation stack for use in navigation and localization. The robot driver creates

odometry information by keeping track of its motor rotations and how it would

affect the robot’s real world position. Since SegPanda is much heavier than the

original Segway50rmp, which the driver was written for, the odometry scale and

min-max speeds have been modified to suit SegPanda’s specifications.

9http://wiki.ros.org/segbot

94

6.4 Experimental Results
The overall scheme of the present experiment is shown in Fig. 6.8.

Figure 6.8: The overall structure of the autonomous navigation system

SegPanda uses the dual navigation goal node to implement the goal sending

capability. The navigation goal program connects the people detection program

with the ROS navigation stack. The people detection node publishes the people lo-

cation information to a ROS topic. The navigation goal node sender subscribes to

that ROS topic and uses the data to determine the goal that is to be sent to the nav-

igation stack. The dual navigation goal node in fact has two nodes each of which

sends navigation goals to the navigation stack. Each node works by receiving the

position of a person from the people detection node, transforming the data into a

position on the map and then sending it to the navigation stack as a goal. The pro-

95

gram waits until the robot has reached the goal before a new goal can be received

and sent. Thus, an individual navigation node is not capable of changing the goal

during navigation. A property of the navigation stack is that it can be interrupted

in the middle of navigating if a new goal is received from an input source. The im-

plementation on SegPanda takes advantage of this property and has two navigation

goal nodes alternatively sending the location of the person as a goal at a frequency

of about 1 Hz. Since these two nodes interrupt each other continuously, the navi-

gation goal will always be reset to the current position of the person, allowing the

robot to follow a person in real time.

In the event that more than one person is in view or no people are in view, the

robot will idle and wait until it sees a person before moving. While idling, it can

still be controlled by manual navigation goals or teleoperation key controls. Since

the people detection algorithm may interpret noise data as people while the robot

is moving, a noise filtering algorithm is implemented to ensure that the robot only

starts moving once it is confident that what it sees is a person. The Kinect must

have five consecutive frames where a person is in the RGB-D data before it sends

as a navigation command. This solves the problem when random noise makes one

or two frames see a fake person. However, this does not deal with the problem that

occurs when the people detection node legitamately detects a non-person object as

a person, which happens fairly often in uncontrolled environments.

In addition, the navigation system that is used on SegPanda requires a map file

of the robot’s environment constructed beforehand. This map file is used as the

global costmap for navigation, allowing the robot to self-localize using Amcl. The

used map is created using the ROS wrapper for OpenSlam’s Gmapping10, which

is a package available on ROS that is supported up to ROS Indigo. Odometry

information published by SegPanda and at least one horizontally mounted sensor

(Hokuyo Laser Ranger Finder in our case) are required for Gmapping to make a

map of the environment.

Once the global costmap is obtained, using the UTM-30LX hokuyo sensor and

most currently global costmap, SegPanda creates a fast updating local costmap in

a 5× 5m square with itself located in the center (assuming rolling window is set

10http://wiki.ros.org/gmapping

96

to true), as shown in Fig. 6.9. In Fig. 6.9, the blue area denotes the expansion

of the obstacles according to the radius of SegPanda. In this way, the robot can

be considered as a single point to facilitate the calculation during planning. The

obstacles seen in the local costmap are saved to update to global costmap constantly

as the robot navigates around. The primary use of the local costmap is to recognize

non static objects (such as boxes or chairs) and navigate around them. The updates

to the global costmap are not saved in the map file, so each time the navigation

stack boots up, a new instance of the global costmap is created.

Figure 6.9: An example of the local costmap used for autonomous naviga-
tion.

97

Now all the preliminaries for the core navigation algorithm have been devel-

oped and presented. First the global planner provides, based on the current global

costmap, a global path which is able to avoid static obstacles. But the global path

does not possess specific control commands to move SegPanda. It provides a rough

idea on how and where the SegPanda should move. Therefore, the crossing point

between the global path and the frame of the local costmap, which is in front of the

robot, is sent to the local planner as its temperate goal. The local planner creates

a local motion plan and control actions based on the local costmap which con-

tains all the information on the real-time environment. The local costmap always

has the robot in the middle and is constantly updated so that the created motion

plan can have capability to avoid obstacles (either static or moving) which are un-

known when determining the global path. Fig. 6.10 shows the calculated global

path (green line) and the local motion path (green circle). It is noted that the local

motion path does not completely follow the global path, and it has a new trajectory

within the scope of the associated local costmap.

The last step is to control the SegPanda for it to move to the goal location .

The driver plugs into ROS, sends the robot odometry and receives unicycle model

control commands from the local planner. The unicycle model is a convenient

abstraction of linear and angular velocity that the driver converts into left wheel

speed and right wheel speed. The navigation stack is responsible for sending these

velocity commands that the driver then executes. The complete flowchart of the

autonomous navigation system is shown in Fig. 6.11. The people detection module

launches the Microsoft Kinect and analyzes the RGB-D data to find any people

in the Kinect viewing range. If a person is found, the position of the person rela-

tive to the Kinect is published for another module to read. The people navigation

goal module waits for the people detection module to send it the position of the

person to follow, then sends the position of the person as a goal to the navigation

stack. The navigation goal module constantly updates the position of the person

and sends new goals to interrupt previous ones so as to follow the person in real

time. The navigation stack receives the goal sent by the people navigation goal

module and uses a combination of global and local planners to try to navigate to

the point. It must receive the transform functions and odometry information from

the robot driver and description to work effectively. The navigation stack outputs

98

Figure 6.10: An example of the computed global path used for autonomous
navigation.

only a linear velocity command and an angular velocity command in each cycle,

and will output a stop command once the goal is reached. The robot driver moves

the motors based on the commands received from the navigation stack and con-

stantly publishes the odometry information at a rapid rate. Based on the forgoing

algorithm, the physical experiment has been executed in IAL to evaluate its validity

for navigation. The screen of the experiment demonstration is divided into three

different views as shown in Fig. 6.12: the top-left view represents the Kinect view

99

Figure 6.11: The flowchart of the overall autonomous navigation system.

which shows the result of people detection; the down-left view represents the real

world as seen by the audience; the entire right view represents the navigation func-

tion, or say, the view of SegPanda, operated by ROS. The overall process of the

100

Figure 6.12: The views of the experimental demonstration.

present experiment is shown in the sequence of still images in the following figures.

Fig. 6.13 shows the case of detecting people and making the SegPanda successfully

move to the goal location, where there are only static obstacles (the boxes in the

real world view) in the environment. The generated paths illustrate that SegPanda

is able to reach the global goal even when the global goal is changing during the

navigation process. Fig. 6.14 is the sequential image set that follows Fig. 6.13. It

shows SegPanda’s ability of avoiding a moving obstacle during navigation. The

red-circled box denotes the moving obstacle, which is unknown in advance, and

is pushed out in the middle of the original path, allowing SegPanda to move for-

ward (sequence 1-3 in Fig. 6.14). The sensor of SegPanda detects this change, and

SegPanda updates the costmap accordingly, generates alternative paths, and goes

forward to the detected person successfully (sequence 4-6 in Fig. 6.14).

101

Figure 6.13: The views of the experimental demonstration: avoiding a static
obstacle.

102

Figure 6.14: The views of the experimental demonstration: avoiding a mov-
ing obstacle.

103

Chapter 7

Conclusions and Future Work

7.1 Conclusions
In this dissertation, several main challenges related to three aspects of autonomous

navigation in a dynamic environment were investigated, primarily with a focus on

robot learning methods. These three aspects are: path planning, motion planning

and people detection.

Path planning:

An online, robust Q-learning path planning method for an autonomous robot

in a dynamic environment with unpredictable moving obstacles was proposed and

developed. The strategy of dynamic step size in online robust Q-learning is cen-

tral when using regime-switching Markov decision process (RSMDP) to represent

a dynamic environment. This strategy makes the Q-value iteration robust to the

choice of maximum initial step size. Probabilistic roadmap (PRM) contributes to

overcoming the curse of dimensionality, which is a common problem in Markov

decision process (MDP) and in reinforcement learning. Simulation studies pre-

sented in this dissertation have shown that the developed path planner can rapidly

and safely find an optimal path in a dynamic environment in the presence of both

static and moving obstacles.

Motion planning:

A novel locally optimal feedback control, piecewise affine-extended linear-

quadratic regulator (PWA-ELQR), was proposed and developed to solve nonlinear-

104

nonquadratic constrained motion planning for a nonholonomic mobile robot. In op-

timization, PWA-ELQR gives an optimal control policy with the objective of min-

imizing a user-defined cost function. First, piecewise affine-linear quadratic regu-

lator (PWA-LQR) was introduced to handle constrained, linear-quadratic, control

problems, by combining quadratic programming (QP) and PWA-LQR smoother.

QP specifically handles constraints by providing a piecewise affine control law.

PWA-LQR smoother facilitates the convergence performance by combining cost-

to-go functions and cost-to-come functions to form total-cost functions. Next

PWA-ELQR was proposed and developed to extend PWA-LQR to nonlinear non-

quadratic control problems by iteratively performing linearization and quadratiza-

tion in the vicinity of nominal trajectories. The characteristic of local optimization

of PWA-ELQR is inherently suitable to handle constraints since it seeks to keep the

changes of trajectories small in scope. Conversely, solving constraints using QP

benefits the convergence performance of PWA-ELQR by producing results within

the constraint scope, which results in fewer iteration steps. The proposed approach

was implemented in both simulation and real-world experimentation. The results

demonstrated that PWA-ELQR could provide competitive results compared with

ELQR, but with a better executable control policy that takes into account con-

straints.

People detection:

Under this topic, an multiple kernel learning-support vector machine (MKL-

SVM) classifier was designed, combined with multiple features, static feature HOG

(histograms of oriented gradients) and motion feature HOF (histograms of optical

flows) which have been proposed by other researchers, to detect people in a video

sequence for the present task of autonomous navigation. MKL-SVM usually only

focuses on one type of feature to increase the detection precision. This is because

calculating a multiple kernel matrix for large quantities of data introduces a sig-

nificant computational burden. In order to increase the detection accuracy while

decreasing the computational load, the SimpleMKL algorithm, which is available

as an open-source library, was incorporated into the conventional support vec-

tor machine (SVM) scheme. SimpleMKL effectively relieves the computational

load through a weighted 2-norm regularization formulation with an additional con-

straint on the weights. Tests carried out on the open-source TUD-Brussels database

105

showed that the detection precision was increased as a result, when compared to

LIBLINER SVM.

Finally, an autonomous navigation experiment was designed to combine all

the proposed methods into one framework and test if these methods together can

work well in a real environment. To this end, an experimental platform, called

SegPanda, was assembled. All of the hardware of SegPanda are controlled by robot

operating system (ROS) system that also provides rich simulation tools and open-

source functions. With the help of ROS, the simulated results can be transferred to

physical SegPanda without much difficulties. The experimental results showed that

SegPanda could successfully detect and localize people who appear in its Kinect

view, set the people location as the goal location, and reach the goal location by

successfully avoiding static and moving obstacles during navigation.

7.2 Future Work
The performance comparison between the proposed piecewise affine-extended lin-

ear quadratic regulator (PWA-ELQR) and the existing ELQR was presented in this

dissertation. The PWA-ELQR originated from ELQR, and the latter approach does

not incorporate constraints in the motion planning problem. Hence a more reason-

able comparison would be with other methods that can directly resolve the con-

straint problem in optimal motion planning. For instance, model prediction control

(MPC) [25][26][27] has also been proposed to solve constraint problems for mo-

tion planning. To this end, comparing the performance of PWA-ELQR with MPC

may lead to stronger evidence on the performance of PWA-ELQR in situations

with constraints associated with optimal motion planning. A suitable approach for

this would be: compare the paths generated by PWA-ELQR and MPC individually

in both simulation and experimentation, and then analyse the results by using nu-

merical data. This plan will be undertaken as important future work. In addition,

autonomous navigation that was investigated and developed in this dissertation as-

sumes that the robot knows the state of the environment with certainty, so that MDP

model can be used successfully for learning how to act in a dynamic environment.

Obviously, this is a strong assumption which is typically not satisfied in a real situa-

tion. In a real dynamic environment, there always exist uncertainties caused by the

106

robot itself or the environment. For example, robot’s on-board sensors suffer from

noise due to mechanical reasons. Another source of uncertainty may come from

some hidden states. For instance, if a part of the body of a person is occluded by a

table, then the camera fails to detect the person from the surrounding environment.

To better solve the problem of autonomous navigation in a dynamic environment

full of uncertainty, future work may utilize the partially observable Markov deci-

sion process (POMDP), which provides a solid mathematical framework to solve

the problem of optimal decision making in environments that are only partially

observable to a robot. In addition to applying POMDP in robot navigation in a

small 2D grid like that in the work of [83], new problems with hundreds of thou-

sands of state or even with a continuous state space can be solved in just a few of

minutes [84–86]. Therefore, exploring POMDP for autonomous navigation with

uncertainty and continuous state will be a promising future direction of research.

Another possible future direction is to apply deep learning, specifically con-

volutional neural networks (CNN), to people detection, since the developments in

cloud computation can greatly enhance the practical utility of CNN [87]. In the

work of the present dissertation, only one location was needed for autonomous

navigation. Hence, a method of detecting a single person was integrated into the

autonomous navigation framework. The big advantage of CNN is that there is no

need, or little need, to specify design specific features for specific objects. The

algorithm itself is able to learn proper features to distinguish from different objects

[88]. Therefore, with one learning framework, multiple types of objects can be de-

tected and classified by using CNN, as some recent work has introduced [89, 90].

The Segway robot has only been tested in the IAL and may not work well in

other environments, especially those with many complex objects. It also requires

to be connected to a power source, as the Kinect and Hokuyo need outlet power

to function. A desirable direction of future work can be the expansion of the au-

tonomous navigation application to a larger and more complicated environment

like an urban area. If the method proposed in the present dissertation can work

well in such dynamic environments, a variety of meaningful applications, such as

self-driving vehicles, can arise from it.

107

Bibliography

[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse rein-
forcement learning. In Proceedings of the 21th international conference on
Machine learning, page 1. ACM, 2004.

[2] Howie M Choset. Principles of robot motion: theory, algorithms, and imple-
mentation. MIT press, 2005.

[3] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[4] Joelle Pineau, Michael Montemerlo, M. Pollack, Nicholas Roy, and Sebas-
tian Thrun. Probabilistic control of human robot interaction: Experiments
with a robotic assistant for nursing homes. In The second IARP/IEEE/RAS
Joint Workshop on Technical Challenges for Robots in Human Environments
(DRHE), October 2002.

[5] Ryan Luna, Ioan A Sucan, Mark Moll, and Lydia E Kavraki. Anytime solu-
tion optimization for sampling-based motion planning. In IEEE International
Conference on Robotics and Automation (ICRA), pages 5068–5074, 2013.

[6] EE Kavraki, Mihail N Kolountzakis, and J-C Latombe. Analysis of prob-
abilistic roadmaps for path planning. IEEE Transactions on Robotics and
Automation, 14(1):166–171, 1998.

[7] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Proba-
bilistic roadmaps for path planning in high-dimensional configuration spaces.
IEEE Transactions on Robotics and Automation, 12(4):566–580, 1996.

[8] Sertac Karaman, Matthew R Walter, Alejandro Perez, Emilio Frazzoli, and
Seth Teller. Anytime motion planning using the rrt*. In IEEE International
Conference on Robotics and Automation (ICRA), pages 1478–1483, 2011.

[9] Jur Van Den Berg, Dave Ferguson, and James Kuffner. Anytime path plan-
ning and replanning in dynamic environments. In IEEE International Con-
ference on Robotics and Automation (ICRA), pages 2366–2371, 2006.

108

[10] Jur Van Den Berg and Mark Overmars. Planning time-minimal safe
paths amidst unpredictably moving obstacles. The International Journal of
Robotics Research, 27(11-12):1274–1294, 2008.

[11] Dimitri P Bertsekas. Dynamic programming and optimal control, Third Edi-
tion, volume 1. Athena Scientific Belmont, MA, 2005.

[12] Huzefa Shakir and Won-Jong Kim. Nanoscale path planning and motion
control with maglev positioners. IEEE/ASME Transactions on Mechatronics,
11(5):625–633, 2006.

[13] Yantao Shen, Eric Winder, Ning Xi, Craig A Pomeroy, and Uchechukwu C
Wejinya. Closed-loop optimal control-enabled piezoelectric microforce sen-
sors. IEEE/ASME Transactions on Mechatronics, 11(4):420–427, 2006.

[14] Thomas Baumgartner and Johann Walter Kolar. Multivariable state feed-
back control of a 500 000-r/min self-bearing permanent-magnet motor.
IEEE/ASME Transactions on Mechatronics, 2015 (To be published).

[15] Weiwei Li and Emanuel Todorov. Iterative linear quadratic regulator design
for nonlinear biological movement systems. In Proceedings of the First In-
ternational Conference on Informatics in Control, Automation and Robotics,
August 25-28 2004.

[16] Jan van den Berg. Iterated lqr smoothing for locally-optimal feedback control
of systems with non-linear dynamics and non-quadratic cost. In American
Control Conference (ACC), 2014, pages 1912–1918, 2014.

[17] Jur van den Berg. Extended lqr: Locally-optimal feedback control for sys-
tems with non-linear dynamics and non-quadratic cost. In International Sym-
posium of Robotics Research (ISRR), December 2013.

[18] Amit Bhatia, Lydia E Kavraki, and Moshe Y Vardi. Sampling-based motion
planning with temporal goals. In IEEE International Conference on Robotics
and Automation (ICRA), pages 2689–2696, 2010.

[19] Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal
motion planning. The International Journal of Robotics Research, 30(7):846–
894, 2011.

[20] Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien Ernst. Rein-
forcement learning and dynamic programming using function approximators.
CRC press, 2010.

109

[21] Lucian Busoniu, Alexander Daniels, Rémi Munos, and Robert Babuska. Op-
timistic planning for continuous-action deterministic systems. In IEEE Sym-
posium on Adaptive Dynamic Programming And Reinforcement Learning
(ADPRL), pages 69–76, 2013.

[22] David H Jacobson and David Q Mayne. Differential dynamic programming.
1970.

[23] Evangelos Theodorou, Yuval Tassa, and Emo Todorov. Stochastic differential
dynamic programming. In American Control Conference (ACC), pages 1125–
1132, 2010.

[24] Li-zhi Liao and Christine A Shoemaker. Advantages of differential dynamic
programming over newton’s method for discrete-time optimal control prob-
lems. Technical report, Cornell University, 1992.

[25] Morteza Farrokhsiar and Homayoun Najjaran. An unscented model pre-
dictive control approach to the formation control of nonholonomic mobile
robots. In IEEE International Conference on Robotics and Automation
(ICRA), pages 1576–1582, 2012.

[26] M Farrokhsiar and H Najjaran. A robust probing motion planning scheme:
A tube-based mpc approach. In American Control Conference (ACC), pages
6492–6498, 2013.

[27] Morteza Farrokhsiar and Homayoun Najjaran. Unscented model predic-
tive control of chance constrained nonlinear systems. Advanced Robotics,
28(4):257–267, 2014.

[28] Noel E Du Toit and Joel W Burdick. Robot motion planning in dynamic,
uncertain environments. IEEE Transactions On Robotics, 28(1):101–115,
2012.

[29] C Goerzen, Zhaodan Kong, and Bernard Mettler. A survey of motion plan-
ning algorithms from the perspective of autonomous uav guidance. Journal
of Intelligent and Robotic Systems, 57(1-4):65–100, 2010.

[30] Alberto Bemporad, Manfred Morari, Vivek Dua, and Efstratios N Pistikopou-
los. The explicit linear quadratic regulator for constrained systems. Automat-
ica, 38(1):3–20, 2002.

[31] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human
detection. In IEEE Computer Society Conference on Computer Vision and
Pattern Recognition(CVPR), pages 886–893, 2005.

110

[32] Navneet Dalal, Bill Triggs, and Cordelia Schmid. Human detection using
oriented histograms of flow and appearance. In European Conference on
Computer Vision(ECCV), pages 428–441. Springer, 2006.

[33] Piotr Dollár, Zhuowen Tu, Pietro Perona, and Serge Belongie. Integral chan-
nel features. In The British Machine Vision Conference (BMVC), 2009.

[34] Rodolphe Sepulchre, Derek A Paley, and Naomi Ehrich Leonard. Stabiliza-
tion of planar collective motion with limited communication. IEEE Transac-
tions on Automatic Control, 53(3):706–719, 2008.

[35] Stefan Walk, Nikodem Majer, Konrad Schindler, and Bernt Schiele. New fea-
tures and insights for pedestrian detection. In IEEE conference on Computer
vision and pattern recognition (CVPR), pages 1030–1037, 2010.

[36] Paul Viola and Michael J Jones. Robust real-time face detection. Interna-
tional Journal of Computer Vision, 57(2):137–154, 2004.

[37] David Geronimo, Antonio M Lopez, Angel Domingo Sappa, and Thorsten
Graf. Survey of pedestrian detection for advanced driver assistance sys-
tems. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
32(7):1239–1258, 2010.

[38] Stuart Russell and Peter and Norvig. Artificial Intelligence: A Modern Ap-
proach. 3 edition, 2011.

[39] Dylan Campbell and Mark Whitty. Metric-based detection of robot kidnap-
ping with an svm classifier. Robotics and Autonomous Systems, 2014.

[40] Kun Li and Max Meng. Robotic object manipulation with multilevel part-
based model in rgb-d data. In IEEE International Conference on Robotics
and Automation (ICRA), pages 3151–3156, 2014.

[41] S Hamid Dezfoulian, Dan Wu, and Imran Shafiq Ahmad. A generalized
neural network approach to mobile robot navigation and obstacle avoidance.
In Intelligent Autonomous Systems 12, pages 25–42. Springer, 2013.

[42] David Silver, James Bagnell, and Anthony Stentz. High performance outdoor
navigation from overhead data using imitation learning. Robotics: Science
and Systems IV, pages 262–269, 2009.

[43] Chia-Feng Juang and Yu-Cheng Chang. Evolutionary-group-based particle-
swarm-optimized fuzzy controller with application to mobile-robot navi-
gation in unknown environments. IEEE Transactions on Fuzzy Systems,
19(2):379–392, 2011.

111

[44] Matt Knudson and Kagan Tumer. Adaptive navigation for autonomous
robots. Robotics and Autonomous Systems, 59(6):410–420, 2011.

[45] Thomas Kollar and Nicholas Roy. Trajectory optimization using reinforce-
ment learning for map exploration. The International Journal of Robotics
Research, 27(2):175–196, 2008.

[46] Daoyi Dong, Chunlin Chen, Jian Chu, and T Tarn. Robust quantum-inspired
reinforcement learning for robot navigation. IEEE/ASME Transactions on
Mechatronics, 17(1):86–97, 2012.

[47] Adam Coates, Pieter Abbeel, and Andrew Y Ng. Learning for control from
multiple demonstrations. In Proceedings of the 25th international conference
on Machine learning, pages 144–151. ACM, 2008.

[48] Nathan D Ratliff, David Silver, and J Andrew Bagnell. Learning to search:
Functional gradient techniques for imitation learning. Autonomous Robots,
27(1):25–53, 2009.

[49] Noel E Sharkey. Learning from innate behaviors: A quantitative evaluation
of neural network controllers. Machine Learning, 31(1-3):115–139, 1998.

[50] Peter Trautman and Andreas Krause. Unfreezing the robot: Navigation in
dense, interacting crowds. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 797–803, 2010.

[51] Guy Shani, Joelle Pineau, and Robert Kaplow. A survey of point-based
pomdp solvers. Autonomous Agents and Multi-Agent Systems, 27(1):1–51,
2013.

[52] Tiago Veiga, Matthijs Spaan, and Pedro Lima. Point-based pomdp solving
with factored value function approximation. In Twenty-Eighth AAAI Confer-
ence on Artificial Intelligence, 2014.

[53] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic robotics.
MIT press, 2005.

[54] Sven Koenig and Yaxin Liu. The interaction of representations and planning
objectives for decision-theoretic planning tasks. Journal of Experimental &
Theoretical Artificial Intelligence, 14(4):303–326, 2002.

[55] Ronald A Howard. Dynamic programming and markov processes. 1960.

112

[56] Richard Bellman. Dynamic programming and lagrange multipliers. Proceed-
ings of the National Academy of Sciences of the United States of America,
42(10):767, 1956.

[57] Richard S Sutton and Andrew G Barto. Introduction to reinforcement learn-
ing. MIT Press, 1998.

[58] Stuart Ian Reynolds. Reinforcement learning with exploration. PhD thesis,
The University of Birmingham, 2002.

[59] Bohdana Ratitch. On characteristics of Markov decision processes and rein-
forcement learning in large domains. PhD thesis, McGill University, 2005.

[60] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning,
8(3-4):279–292, 1992.

[61] Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training
algorithm for optimal margin classifiers. In Proceedings of the 5th annual
workshop on Computational learning theory, pages 144–152. ACM, 1992.

[62] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
learning, 20(3):273–297, 1995.

[63] Ron Alterovitz, Thierry Siméon, and Kenneth Y Goldberg. The stochastic
motion roadmap: A sampling framework for planning with markov motion
uncertainty. In Robotics: Science and Systems (RSS), volume 3, pages 233–
241, 2007.

[64] Vu Anh Huynh, Sertac Karaman, and Emilio Frazzoli. An incremental
sampling-based algorithm for stochastic optimal control. In IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pages 2865–2872,
2012.

[65] G Yin, Vikram Krishnamurthy, and Cristina Ion. Regime switching stochas-
tic approximation algorithms with application to adaptive discrete stochastic
optimization. Society for Industrial and Applied Mathiematics Journal on
Optimization, 14(4):1187–1215, 2004.

[66] Andre Costa and Felisa J Vázquez-Abad. Adaptive stepsize selection for
tracking in a regime-switching environment. Automatica, 43(11):1896–1908,
2007.

[67] Nocedal Jorge and J Wright Stephen. Numerical optimization,second edition.
Springerverlang, USA, 2006.

113

[68] Elizabeth Lai Sum Wong. Active-set methods for quadratic programming.
2011.

[69] Nicholas IM Gould and Philippe L Toint. Numerical methods for large-scale
non-convex quadratic programming. Springer, 2002.

[70] Nick Gould, Dominique Orban, and Philippe Toint. Numerical methods for
large-scale nonlinear optimization. Acta Numerica, 14:299–361, 2005.

[71] E Michael Gertz and Stephen J Wright. Object-oriented software for
quadratic programming. ACM Transactions on Mathematical Software,
29(1):58–81, 2003.

[72] Nicholas J Higham. Computing a nearest symmetric positive semidefinite
matrix. Linear algebra and its applications, 103:103–118, 1988.

[73] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-
Jen Lin. Liblinear: A library for large linear classification. The Journal of
Machine Learning Research, 9:1871–1874, 2008.

[74] Christian Wojek, Stefan Walk, and Bernt Schiele. Multi-cue onboard pedes-
trian detection. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 794–801, 2009.

[75] Piotr Dollar, Christian Wojek, Bernt Schiele, and Pietro Perona. Pedestrian
detection: An evaluation of the state of the art. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 34(4):743–761, 2012.

[76] Dennis Park, C Lawrence Zitnick, Deva Ramanan, and Piotr Dollár. Explor-
ing weak stabilization for motion feature extraction. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 2882–2889, 2013.

[77] Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S Sathiya Keerthi, and Sella-
manickam Sundararajan. A dual coordinate descent method for large-scale
linear svm. In Proceedings of the 25th international conference on Machine
learning, pages 408–415. ACM, 2008.

[78] Francis R Bach, Gert RG Lanckriet, and Michael I Jordan. Multiple kernel
learning, conic duality, and the smo algorithm. In Proceedings of the 21th
international conference on Machine learning, page 6. ACM, 2004.

[79] Alain Rakotomamonjy, Francis Bach, Stéphane Canu, Yves Grandvalet, et al.
Simplemkl. Journal of Machine Learning Research, 9:2491–2521, 2008.

114

[80] Felix Endres, Jürgen Hess, Nikolas Engelhard, Jürgen Sturm, Daniel Cre-
mers, and Wolfram Burgard. An evaluation of the rgb-d slam system. In
IEEE International Conference on Robotics and Automation (ICRA), pages
1691–1696, 2012.

[81] Christian Kerl, Jurgen Sturm, and Daniel Cremers. Robust odometry estima-
tion for rgb-d cameras. In IEEE International Conference on Robotics and
Automation (ICRA), pages 3748–3754, 2013.

[82] Peter Henry, Michael Krainin, Evan Herbst, Xiaofeng Ren, and Dieter Fox.
Rgb-d mapping: Using depth cameras for dense 3d modeling of indoor envi-
ronments. In Experimental Robotics, pages 477–491. Springer, 2014.

[83] Amalia Foka and Panos Trahanias. Real-time hierarchical pomdps for au-
tonomous robot navigation. Robotics and Autonomous Systems, 55(7):561–
571, 2007.

[84] Haoyu Bai, David Hsu, Wee Sun Lee, and Vien A Ngo. Monte carlo value
iteration for continuous-state pomdps. In Algorithmic foundations of robotics
IX, pages 175–191. Springer, 2011.

[85] Hanna Kurniawati and Vinay Yadav. An online pomdp solver for uncertainty
planning in dynamic environment. ISRR, 2013.

[86] Konstantin M Seiler, Hanna Kurniawati, and Surya PN Singh. An online and
approximate solver for pomdps with continuous action space. In Proc. IEEE
Int. Conference on Robotics and Automation (ICRA), 2015.

[87] Rodrigo Benenson, Mohamed Omran, Jan Hosang, and Bernt Schiele. Ten
years of pedestrian detection, what have we learned? In European Conference
on Computer Vision (ECCV), pages 613–627. Springer, 2014.

[88] Pulkit Agrawal, Ross Girshick, and Jitendra Malik. Analyzing the perfor-
mance of multilayer neural networks for object recognition. In European
Conference on Computer Vision(ECCV), pages 329–344. Springer, 2014.

[89] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric
Tzeng, and Trevor Darrell. Decaf: A deep convolutional activation feature for
generic visual recognition. Computing Research Ropository, abs/1310.1531,
2013.

[90] Ning Zhang, Jeff Donahue, Ross Girshick, and Trevor Darrell. Part-based
r-cnns for fine-grained category detection. In European Conference on Com-
puter Vision(ECCV), pages 834–849. Springer, 2014.

115

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Nomenclature
	List of Acronyms
	Acknowledgments
	1 Introduction
	1.1 Motivation
	1.2 Research Scope and Problem Specification
	1.2.1 Research Scope
	1.2.2 Problem Specification

	1.3 Related Works
	1.3.1 Path Planning
	1.3.2 Motion Planning
	1.3.3 People Detection

	1.4 Challenges, Contributions and Organization of the Dissertation
	1.5 Thesis Outline

	2 Robot Learning
	2.1 Introduction
	2.2 Reinforcement Learning
	2.2.1 Markov Decision Process
	2.2.2 Dynamic Programming: Model-based Method for Solving MDP
	2.2.3 Reinforcement Learning: Model-free Method for Solving MDP

	2.3 Support Vector Machine: A Popular Method of Supervised Learning
	2.3.1 Geometric Margins
	2.3.2 Optimal Margin Classifier
	2.3.3 Dual Problem and Support Vectors

	3 Robust Q-learning with Regime-Switching Markov Decision Process for Optimal Path Planning
	3.1 Introduction
	3.2 RSMDP
	3.3 Probabilistic Roadmap for RSMDP
	3.4 Path Planner with Online Q-learning
	3.5 Simulation Studies

	4 Extended Linear Quadratic Regulator Enhanced with PWA for Motion Planning
	4.1 Introduction
	4.2 Optimal Motion Planning with Constraints
	4.3 Piecewise Affine-ELQR
	4.3.1 Traditional Linear-Quadratic-Regulator
	4.3.2 Piecewise Affine Feedback Control for Constrained Control Problems
	4.3.3 PWA-LQR Smoothing
	4.3.4 PWA-ELQR: Local Approximation for Nonliear-Nonquadratic Control Problems

	4.4 Simulation Studies

	5 People Detection-using MKL-SVM
	5.1 Introduction
	5.2 Combined Features: HOG-HOF
	5.2.1 Histogram of Oriented Gradients
	5.2.2 Histograms of Optical Flow

	5.3 MKL-SVM Classifier
	5.4 Performance Evaluation

	6 Implementation and Experimentation
	6.1 Overview
	6.2 The Hardware System
	6.2.1 Segway Mobile Base
	6.2.2 3D Camera: Microsoft Kinect
	6.2.3 2D Laser Ranger Finder: Hokuyo UTM-30LX

	6.3 Software System
	6.3.1 People Detection
	6.3.2 Autonomous Navigation

	6.4 Experimental Results

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	Bibliography

